
PAR: A Practicable Formal Method
and Its Supporting Platform

Jinyun Xue(B), Yujun Zheng, Qimin Hu, Zhen You, Wuping Xie,
and Zhuo Cheng

State International S&T Cooperation Base of Networked Supporting Software,
Jiangxi Normal University, Nanchang 330022, China

jinyun@vip.sina.com

Abstract. The use of formal methods can significantly improve the reli-
ability, correctness and efficiency of software development. Although for-
mal methods has been invented for more than 40 years, but academia
and industry do not have a unified understanding of what are formal
methods and its essential characteristics. Formal methods has not been
recognized and widely applied by academia and industry. The authors
of this paper have long been engaged in the study of the essential fea-
tures of Formal methods. The authors propose a new definition: Formal
methods are a strict technology based on mathematics and tool
support for software and hardware system, including high-level
abstract specification, modeling language and different levels
of model transformation tools. Based on this definition, this paper
develops a practicable formal methods and its supporting platform, called
PAR method and PAR platform , short for PAR. PAR consists of the
following elements: requirement modeling language SNL, algorithm mod-
eling language Radl, abstract program modeling language Apla, a set of
rules for the model transformation and a set of automatic transformation
tools from requirement models to algorithm models, to abstract program
models and to executable programs. The goal of the transformations is to
generate executable program. The elements embody 6 innovative ideas
given in Sect. 2. There are two kinds of applications of PAR. One is that
many nontrivial algorithms and programs have been developed formally.
Another is formal developing several safety-critical information systems.

Keywords: Formal methods · Par platform · Modeling language
Model transformation · Formal specification

1 Introduction

The use of Formal methods can significantly improve the reliability, correct-
ness and efficiency of software development [4]. Although Formal methods has

This work was funded by the NSF of China under Grant No. 61662036, 61472167,
61462041, 61272075, 61020106009, 60773054, 60573080, 60273092, 69983003,
69783006; MOST of China Grant No. 2008DFA11940, 2003CCA02800.

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 70–86, 2018.
https://doi.org/10.1007/978-3-030-02450-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_5&domain=pdf

PAR: A Practicable Formal Method and Its Supporting Platform 71

been invented for more than 40 years [1,3,5,14], but academia and industry
do not have a unified understanding of what is Formal methods and its essen-
tial characteristics. Woodcock [22] thought “formal methods are mathematical
techniques, often sup-ported by tools, for developing software and hardware sys-
tems”. Bjørners opinion [4] is “by a formal method we shall understand a method
whose techniques and tools can be explained in mathematics”. The definition
by Wikipedia [45] is “formal methods are a particular kind of mathematically
based techniques for the specification, development and verification of software
and hardware systems”. For these reasons, Formal methods has not been rec-
ognized and widely applied by academia and industry. Gargantini [8] thought
“many practitioners are still reluctant to adopt formal methods. Besides the
well-known lack of training, this skepticism is mainly due to: the complex nota-
tions; the lack of easy to-use tools supporting a developer during the life cycle
activities of system development”. Bjørner said [4] that when ask ourselves the
question: Have formal methods for software development in the current sense
been successful? Our answer is, regretfully, no! He thought “The academic and
industry obstacles can be overcome. Still, a main reason for formal methods
not being picked up, and hence “more” successful, is the lack of scalable and
practical tool support.”

The above situation shows that the main reason for the failure of Formal
methods to be applied in large scale is that the language provided by the existing
formal methods is very complex and difficult to learn. The tools for supporting
formal methods are simple and cannot provide effective help for the users of the
methods. We think the main reason for this is that the degree of abstraction-level
of formal languages is not high enough. On formal methods support tool, people
are not clear about its main goal. At present, the support tool of formal methods
can only form a formal verification for the related components developed by
software (program). It’s far from enough.

The authors of this paper have long been engaged in the study of the essen-
tial features of formal methods. The authors propose a new definition: Formal
methods are a strict technology based on mathematics and tool sup-
port for software and hardware system, including high-level abstract
specification, modeling language and different levels of model trans-
formation tools. The specification and modeling language should be as
abstract as possible and reflect different levels of abstraction according
to the characteristics of software and hardware. All models and model
transformation tools should be verified formally or automatically.

Based on this definition, this paper develops a practicable formal methods
and its supporting platform, called PAR method and PAR platform, short for
PAR. PAR consists of the following elements: requirement modeling language
SNL, algorithm modeling language Radl, abstract program modeling language
Apla, a set of rules for the model transformation and a set of automatic trans-
formation tools between requirement model, algorithm model, abstract program
model and executable program. The goal of the transformations is to generate
executable program. One of the distinct features of the PAR platform is the

72 J. Xue et al.

agile genericity mechanisms. In PAR not only a value, a data type and an ADT
can be generic parameter, and a computing-action (including operator, method,
function and procedure, transaction, subsystem and web service, etc.) can be
generic parameter also. The elements embody 6 innovative ideas given in the
Sect. 2.

The first one is that many nontrivial algorithms and programs have been
developed formally, formal derivation or formal proof, including graph algorithms
[29], travel tree algorithms [32], array section algorithms [25,26], Knuths famous
hard problem of cyclic permutation [10,24,33]. The abstract Hopcroft-Tarjan
planarity algorithm was described in Apla. The Apla program was transformed
by PAR platform to C++ code that can correctly test the planarity and generate
improved planar embedding [10]. A more convincing example is formal develop-
ment of Knuth’s challenging program that converts a binary fraction to decimal
fraction with certain condition [13,27,28].

The second one is to develop several safety-critical information systems,
including shuttle transportation problems [36], discrete optimization algorithm
design [37], fire evacuation [38], population classification in earthquakes [39],
Emergency railway transportation planning [40], active services support for dis-
aster rescue [41], Airline passenger profiling [42] and Industrial Accident Early
Warning [43], etc. A general distributed transaction processing system is imple-
mented in PAR and used in student information management system [23].

In Sect. 2, we give a brief description of key ideas and innovative techniques of
PAR. The third Section describes the main elements of PAR method and PAR.
Two kinds of applications of PAR and two cases study described in Sect. 4.
Related work is described in Sect. 5. Finally, conclusions and future research are
presented.

2 Key Ideas and Innovative Techniques of PAR

Compared with other formal methods and program generating system, say
B method [1], RAISE [18], Kestrelwares [19], Orc [6,12,16], rCOS, [15,21],
NDAUTO [44] and NDADAS [44], etc.,s the PAR method and PAR platform
have following innovative techniques.

2.1 A Unified Approach for Designing Algorithm
Based on Quantifier Transformation

The efficiency of an algorithm is mainly influenced by the method of algorithm
design and implementation, the data structures and programming language of
describing algorithm. In PAR [26], we put emphasis on the method of algorithm
design and implementation. In general, it is easier to design algorithms using
enumeration or exhaustive search, but the algorithms have low efficiency; in
contrast, it is more difficult to design efficient algorithm using effective design
method. Generally speaking, using traditional method, e.g. dynamic program-
ming, greedy, divide-and-conquer, etc., one can get efficient algorithm, but the

PAR: A Practicable Formal Method and Its Supporting Platform 73

difficult is in choosing suitable one. Since implementing algorithm using itera-
tion has higher efficiency than using recursion, we stick to iteration rather than
recursion in our methodology. We generalize the recurrence relation concept of
a sequence of numbers (difference equation) to problem solving sequence and
propose a unified approach for designing algorithmic program [26]. It covers sev-
eral existed algorithm design techniques including divide-and-conquer, dynamic
programming, greedy, enumeration and some nameless methods. The designer of
algorithms using PAR method can partly avoid the difficulty in making choice
among various existed design methods. Using the approach, we have formally
developed many nontrivial algorithmic programs, including graph algorithms
[29], travel tree algorithms [32].

2.2 A New Representation of Algorithms

The most important notion in PAR is recurrence relation of problem solving
sequence, short for recurrence. Based on the recurrence relation, the structure
of an algorithm is defined as follows [23,24]:

ALGORITHM: 〈algorithm name〉
SPECIFICATION: 〈algorithm specification〉
BEGIN: 〈initialization of variables and function in the recurrence〉
TERMINATION: 〈termination condition of the recurrence〉
A I: 〈algorithm invariant〉
RECUR: 〈set of recurrences〉
END

We get a new representation of algorithm, mainly a set of recurrences and
initiations. That is exactly a set of mathematical formulae and is easy for for-
mal proof and derivation. It characterizes main idea of an efficient algorithm
and is more precise and simple than the representation of algorithm in natural
language, flowchart and program. The Radl expressions have referential
transparency and make the formal derivation of algorithms possible.
The particular merit of the new representation of algorithm is easiness
of understanding and demonstrating the ingenuity and correctness of
an algorithm.

2.3 The New Techniques About Loop Invariants

The recursive program corresponding to recursive algorithm can be developed
directly based on the recurrence relation. We just pay main attention on devel-
oping the program corresponding to iterative algorithm. The key for developing
correct iterative program is loop invariant. This is recognized by not only the
advocator of formal methods of design algorithms and programs but also some
specialist of algorithm design, for example, Kingston, Baase, etc. However, the
existing standard strategies for developing loop invariants are only suitable for
some simple problems. There are many complicated algorithms and programs
that cannot get satisfying loop invariants using these techniques. This leads to

74 J. Xue et al.

that many computer scientists doubt the possibility of deriving or proving algo-
rithms and programs using loop invariant. In [25], we exposed new properties of
loop invariant and presented the new definition of loop invariant and two new
strategies for developing it. Following is the new definition and one of the two
new strategies.

The new definition and strategies are quite powerful, especially in using the
recursive definition technique of new strategy to develop the loop invariant of an
iteration program with inherent recursive property. Using the new techniques, we
have formally proved and derived many nontrivial algorithmic programs, includ-
ing graph algorithms, travel tree algorithms, sorting algorithms, array section
algorithms and some numeric algorithms. A convincing example is formal devel-
opment of Knuth’s challenging program that converts a binary fraction to deci-
mal fraction with certain conditions [13,27,28].

2.4 Genericity for Modeling

The generic mechanisms in executable programming languages such as Java and
C++ play an important role in increasing the reusability and reliability of soft-
ware and efficiency of software development. However, how to apply genericity
to modeling language is rarely successful, although generic mechanism such as
classifier templates, operation templates and package templates is provided in
Unified Modeling language. Due to the complexity of UML itself and the diffi-
culty of use, the wide application of genericity in MDE is seriously affected. To
solve the above problems, the author of this paper proposes a generic modeling
language mechanism implexmented in PAR [34]. One of the distinct features of
the PAR platform is the agile genericity mechanisms. In PAR not only a value,
a data type and an ADT can be generic parameter, and a computing-action
(including operator, method, function and procedure, transaction, subsystem
and web service, etc.) can be generic parameter too.

2.5 The New Techniques for Generating Database Application
Program

In Radl and Apla, accessing to database is an expression of abstract operations
rather than SQL statements. The expression is much simpler and shorter than
SQL statement. It gives us one methodology to develop the database application
system with high reliability and productivity. This makes formal derivation or
proof of a database application program possible.

2.6 Distributed Transaction Processing in PAR

The popularization and application of advanced technologies such as cloud com-
puting, big data and information system make computer software more and
more complex, and the reliability and development efficiency of software cannot
be guaranteed. The distributed transaction processing technology can be widely

PAR: A Practicable Formal Method and Its Supporting Platform 75

used in software development. Here, an abstract language mechanism of con-
current distributed transaction processing is proposed and integrated into the
Apla modeling language. The expanded Apla language of the platform is called
Apla+. Based on Apla+, a general transaction processing system is implemented
[23]. It is very easy and convenient to build abstract general transaction process-
ing programs and then convert them into Java and other executable language
programs. Because the strict correctness of abstract programs can be proved by
the standard program proving method, the reliability of the transaction process-
ing system is improved. This paper introduces the whole process of transaction
processing program design and code generation through a typical example.

3 Main Elements in PAR

PAR method given in [25,26] is a formal methods. It provides the methodology
that supports formal development of algorithmic programs described using some
executable language; say Ada, Java, C++ and C#, from their formal specifica-
tion. The Forming of PAR is a long term research plan and been supported
by a series of national research foundations including NSFC and 863 High-Tech
program.

3.1 Data Type and Action in PAR

3.1.1 Standard Data Type
The standard data type referred to in this article is the data type set in the
common executable programming language such as C++ and Java, character
type, floating-point type, Boolean type and so on.

3.1.2 Predefined Composed Data Type
These type types are stored in the component library in the form of abstract data
type (ADT) designed by the system designer, and can be used as standard data
types. The system predefines set, List, bag, binary tree, graph, relational data
and other predefined data types. The two implementations of each predefined
data were predefined.x

3.1.3 Self-defined Abstract Data Type (ADT)
The PAR platform provides an abstract data type language mechanism defined
self for building system models. The above three data types can be used as
generic parameters of modeling language.

3.1.4 Standard Action
Standard actions are operators in common executable programming language.

� Numeric operators: +,−, ∗, /,%
� Logic operators: ∧,∨,≡, �,�
� Comparison Operator>,≥, <,≤,=

76 J. Xue et al.

3.1.5 Self-defined Action
User defined action self: Subprogram, function, procedure, method, subsystem,
transaction, service, thread, etc.

The above two actions can be used as generic parameters of modeling lan-
guage.

3.1.6 Pre-defined Action
In PAR, the predefined action including several quantifiers. See Sect. 3.3.

3.2 Formal Modeling Language Radl

3.2.1 Requirement Modeling
Using the data types and actions provided in the Radl modeling language, we can
describe the formal requirements of various typical algorithms and applications.
Based on these formalized requirements, we can make use of the change rules of
quantifier and other logical expressions to realize the system function refinement
and data refinement, and get a system model which is closer to the executable
program language model. That is the algorithm model and the abstract program
design model.

3.2.2 Algorithm Modeling
Radl was designed for the description of algorithm specifications, transformation
rules for deriving algorithms and algorithms itself. We presented a set of abstract
notations for expressing pre-defined abstract data type, say array, set, sequence,
binary tree and graph, etc. The motivation of developing these mathematics-
oriented notations is aimed at making specification transformation, algorithm
derivation and program proof like operating traditional mathematical formula.
The most important notion in PAR method is recurrence relation of problem
solving sequence, short for recurrence. Based on the recurrence, the core of an
algorithm is defined as a set of recurrences, see Sect. 2.2.

The Radl expressions have referential transparency that makes the formal
derivation of algorithms possible. Radl was designed for the description of algo-
rithm specifications, transformation rules for deriving algorithms and algorithms
itself. We presented a set of abstract notations for expressing pre-defined data
type, say array, set, list, tree, graph and database, etc. Radl provides a user-
defined mechanism for abstract data type.

3.3 Rules of Specification Transformation

Most of specification transformation rules are quantifier properties and are
proved in [15,16]. Following are used in this paper. Let θ be an binary oper-
ator and big θ be the quantifier of operator θ, then,

(θ i : r(i) : f(i)) (1)

Means the quantity of f(i) where i range over r(i). We write the quantifier
of binary operator +, •, ∧, ∨, ♦ (minimum), � (maximum), ∩ (intersection),

PAR: A Practicable Formal Method and Its Supporting Platform 77

∪ (union) and ↑ as
∑

,
∏

, ∀, ∃, ♦, �, ∩, ∪ and ↑. Obviously operator
+, •, ∧, ∨, ♦, �, ∩, ∪ are associative and commutative and their quantifier θ
have following properties:

(a) Multi-dummies

(θ i, j : r(i) ∧ s(i, j) : f(i, j)) = (θ i : r(i) : (θ j : s(i, j) : f(i, j))) (2)

(b) Split with no overlap

(θ i : r(i) : f(i)) = (θ i : r(i) ∧ b(i) : f(i)) θ (θ i : r(i)∧ �b(i) : f(i)) (3)

(c) One point split

(θ i : 0 ≤ i < n + 1 : f(i)) = (θ i : 0 ≤ i < n : f(i)) θ f(n) (4)

(d) Generalized Associativity and Commutativity

(θ i : r(i) : s(i)θ f(i)) = (θ i : r(i) : s(i)) θ (θ i : r(i) : f(i)) (5)

3.4 Modeling Language Apla

The purpose of developing Apla is to implement functional abstract and data
abstract in program development perfectly, so that any Apla program is simple
enough and is ease for understanding, formal derivation or proof. It is also ease
to transform into some OOP language programs, say C++, C#, and Java, etc.

Apla is a object-based programming with convenient generics. The purpose
of developing Apla is to implement functional abstract and data abstract in
program development perfectly so that any Apla program is simple enough and
is ease for understanding, formal derivation or proof. It is also ease to transform
into some OOP language programs, say C++, Java, C# etc... Apla and Radl
have same standard procedures and functions. The data types and Pre-defined
ADTs and are also same. We borrow some control structure from Dijkstras
Guarded Command Language, but restrict the nondeterminism.

3.5 Generic Constructions [34]

3.5.1 Type Region and Type Variable
In Radl and Apla, we define the set of types that satisfy some properties as type
region and a type parameter in a program unit as type variable. The syntax of
the type region declaration is as follows:

some type = {set of types satisfied some properties};

3.5.2 Action Region and Action Variable
We define the set of all action that satisfy some properties as action region and an
action parameter in a program unit as action variable. The syntax of the action

78 J. Xue et al.

region declaration is similar with type region. The action can be the predefined
operators of Apla and defined procedures, functions and services by users.

Action region : someaction = {set of actions satisfied some properties};

3.5.3 ADT Region and ADT Variable
The ADT consists of the set of data and the set of operations. The model of
ADT can be a algebra system. We define the set of all ADT that satisfy some
properties as ADT region and an ADT parameter in a program unit as ADT
variable. The syntax of the action region declaration is similar with type region.

ADT region : someadt = {set of ADT satisfied some properties};

3.6 Mechanism of Distributed Transaction Processing

Following is two components described using Java, where running of Transaction-
Thread will make PAR enter concurrent and distributer environment, DistTrans-
action is used to implement distributed transaction process. Following operation
appeared in Radl and Apla that make PAR implement simply Distributed Trans-
action Processing.

TransactionThread: component of transaction processing thread;
DistTransaction: distributed transaction processing component;

commit
rollback
exception

TransactionThread: component of transaction processing thread;

3.7 Automatic Model Transformation Tools

Radl algorithms and Apla programs are simple enough and ease for formal
derivation and proof. But, it cannot be executed in a computer. Therefore, we
developed the PAR platform that consists of 5 automatic transformation tools
of algorithms or programs. One of them would be able to transform a Radl algo-
rithm into Apla program. Others may transform Apla programs to the programs
of target language, says C++ and Java, etc. Based on the PAR platform, the
efficiency of developing algorithms and program and reliability of the programs
are increased obviously.

3.8 Correctness of Model and Correctness of Model Transformation

3.8.1 Correctness of Model
The model defined in this paper can be refined by manual refinement of the
requirement model, and then the algorithm model, abstract program model and
executable language program model can be obtained in turn. These models can
also be automatically generated by model automatic converters. Such models
can be based on the definition of loop invariant and development strategy given

PAR: A Practicable Formal Method and Its Supporting Platform 79

Fig. 1. Architecture of PAR platform

by Xue [25], using Dijkstra-Gries standard algorithm and program correctness
proof method, formalized or automatically proved the relevant algorithms and
program correctly. It can also be calculated the reliability of the program by
software testing method.

3.8.2 Correctness of Model Transformation
The correctness of model transformation directly affects the correctness of the
model. The correctness of model transformation can guarantee the correctness
of the algorithm and program generated by the transformation. To prove the
correctness of the model transformation, it is necessary to use the knowledge of
category theory.

3.9 Architecture of PAR Platform

The architecture of PAR Platform is show in Fig. 1. There are two ways to gener-
ate codes. The first way is for processing quantification problem. PAR Platform
can transform SNL requirement model to Radl specification model, then to Radl
algorithm model, and to Apla abstract program model, finally to executable pro-
gram. The second way is for processing non-quantification problem. Users can
directly design Apla program manually and give it’s formal proof, then transform
it to executable program.

4 Applications and Case Studies

4.1 There are Two Kinds of Applications of PAR

The first one is that many nontrivial algorithms and programs have been devel-
oped formally, formal derivation or formal proof, including graph algorithms
[29], travel tree algorithms [32], array section algorithms [25,26], Knuths famous
hard problem of cyclic permutation [10,24,33]. The abstract Hopcroft-Tarjan
planarity algorithm was described in Apla. The Apla program was transformed
by PAR platform to C++ code that can correctly test the planarity and generate

80 J. Xue et al.

improved planar embedding [10]. A more convincing example is formal develop-
ment of Knuths challenging program that converts a binary fraction to decimal
fraction with certain condition [13,27,28].

The second one is to develop several safety-critical information systems,
including shuttle transportation problems [36], discrete optimization algorithm
design [37], fire evacuation [38], population classification in earthquakes [39],
Emergency railway transportation planning [40], active services support for dis-
aster rescue [41], Airline passenger profiling [42] and Industrial Accident Early
Warning [43], etc. A general distributed transaction processing system is imple-
mented in PAR and used in student information management system [23].

4.2 Case Studies

The case studies consists of two typical nontrivial examples. One is a simple
problem, but the solution in not. Another is one Apla program section that
comes from a student information management system.

The Cubes of the First n Natural Numbers. Given is an integer n, 0 ≤ n.
Develop a program to store in array b[0 . . . n− 1] the cubes of the first n natural
numbers. Thus, upon termination, for each i, 0 ≤ i < n, a[i] = i3. The program
may not use exponentiation, multiplication, or division, only use addition and
subtraction.

The problem seems quite simple but in my teaching experience no student
is be able to solve the problem correctly. Even more, no student is able to
understand the correctness of the program after we show them the final solution.
Here, we develop the algorithm and the program based on PAR method.

� Step 1. Describe the formal functional specification of an algorithmic
problem using Radl;

AQ1: Given is an integer n, 0 ≤ n
AR1: (i : 0 ≤ i < n : a(i) = i3)

For satisfying the postcondition AR2, we repeat following two steps:
� Step 2. Partition the problem into a couple of subproblems each of which

has the same structure with the original problem;
� Step 3. Formally derive the algorithm from the formal functional speci-

fication. The algorithm is described using Radl and represented by recurrences
and initialization;

Based on the postcondition AR2 and algebra law, we have
a(i + 1) = (i + 1)3 = i3 + 3i2 + 3i + 1 [Partition the problem]
Let a(i) = i3

Then a(i + 1) = a(i) + 3i2 + 3i + 1 [Derive the recurrence]
For computing 3i2

Let b(i) = 3i2

Then b(i + 1) = 3(i + 1)2 = 3i2 + 6i + 3 [Partition the problem]
= b(i) + 6i + 3 [Derive the recurrence]

For computing 6i
Let c(i) = 6i

PAR: A Practicable Formal Method and Its Supporting Platform 81

Then c(i + 1) = 6(i + 1) = 6i + 6 = c(i) + 6...............(1)
b(i + 1) = b(i) + c(i) + 3...............(2)

For computing 3i
Let d(i) = 3i
Then d(i + 1) = 3i + 3 = d(i) + 3...............(3)

a(i + 1) = a(i) + b(i) + d(i) + 1...............(4)

Obviously, the algorithm invariant AI1 is
AI1: a(i) = i3 ∧ b(i) = 3i2 ∧ d(i) = 3i ∧ c(i) = 6i ∧ 0 ≤ i < n

Combining recurrence (1)–(4), then assign the initial value to each function,
we got the algorithm for solving the problem:

ALGORITHM: Cube
SPECIFICATION: {AQ1;AR1}
{AI1}
RANGE: 0 ≤ i < n
BEGIN: i := 0 : a(i) = 0 : b(i) = 0 : c(i) = 0 : d(i) = 0;
RECUR: a(i + 1) = a(i) + b(i) + d(i) + 1;

b(i + 1) = b(i) + c(i) + 3
c(i + 1) = c(i) + 6;
d(i + 1) = d(i) + 3;

END

� Step 4. Develop loop invariant directly based on our new strategy [23]
straightforward; Considering the algorithm, we need an array variable, say a, to
store the cube of integer i ; simple b, c, d to store the value of function b(i),
c(i), d(i). According to our definition [23], the loop invariant of a loop program
is an assertion that reflects verification law of each variable in the loop. Thus,
we have the loop invariant:

LI.1: a(i) = i3 ∧ b(i) = 3i2 ∧ d(i) = 3i ∧ c(i) = 6i ∧ 0 ≤ i < n
� Step 5. Based on the loop invariant, transform the Radl algorithm and

algorithm specification to Apla program and program specification mechanically
or automatically;

In this example, the program specification {PQ1;PR1} is same as the algo-
rithm specification {AQ1;AR1}. We transform the algorithm and algorithm
invariant into Apla program as follows:

PROGRAM: Cube
{PQ1;PR1}
i := 0 : a(i) = 0 : b(i) = 0 : c(i) = 0 : d(i) = 0;
{LI.1}
DO i �= n − 1 → a(i + 1) = a(i) + b + d + 1;

b = b + c + 3
c = c + 6;
d = d + 3;

OD

This program was described using Extended Guarded Command Language
(Apla), but it cannot be run on a computer. For getting an executable program,
we must do:

� Step 6. Transform the Apla program to an executable language program,
say Ada, C++, Java, etc. mechanically or automatically.

Apla Program Section for Information Processing. The problem is to
connect the student database and to get student name from the database, to
store the names into an array, then to store and sort the data in the array to
the binary tree according to inorder and dictionary order.

82 J. Xue et al.

Fig. 2. Apla and C++ Program section for accessing and sorting student names

The Apla program of solving the problem is in the left part of the Fig. 2. The
right part of the Fig. 2 is the corresponding C++ code generated by automatic
model transforming tools. Observing the Apla program is quite short, only 32
lines, but C++ code has 330 lines. The Apla program access the student name
from student database, then to build the binary tree stored by inorder, then to
store the node data according to inorder tree walk. The student name in the
array is ordered according a nondecreasing sequence.

This example show us 3 points: the abstract lever of Apla is very high; the
Apla program is ease to read; the correctness of Apla program is quite ease to
verifying. The details showed in [32].

5 Related Work

The PAR method and PAR platform is a unified and systematic approach for
formal development of algorithm and programs. There are some similar formal
approaches with ours.

Program calculus, this approach is the most famous formal methods for
developing algorithm and program, which was created by Dijkstra [7] and devel-
oped into practical techniques by Gries [9], Backhouse et al. [3]. The approach
treats program and algorithm as same thing. A program is developed hand-in-
hand with its loop invariant and proof of correct-ness. Our development of the
algorithm and program has some similarity with theirs. However our emphasis
is different: we separate algorithm, represented by recurrence, from program,
then pay special attention on formal derivation of algorithm rather than pro-
gram calculus. The algorithm represented by recurrence relation is exactly a set
of mathematical formula and has mathematical transparency. Therefore, it can
be produced directly by formal derivation based on some simple mathematical
tools. After getting correct algorithm represented by recurrence, trans-forming it
into correct program is a trivial work. The work can be done mechanically. It is

PAR: A Practicable Formal Method and Its Supporting Platform 83

possible to develop a software system to finish it automatically. However, using
calculus approach, one derive program by weakening program specification. The
program statement cannot be produced directly by formal derivation because it
has no mathematical transparency. There is a big gap between weakened pro-
gram specification and program. It is difficult to remove the gap mechanically
and automatically.

B method [1], RAISE [18], Kestrelwares [19], Orc [6,12,16], rCOS,
[15,21], NDAUTO [44] and NDADAS [44], etc., Comparing with those for-
mal methods and program generating system, PAR method and PAR platform
have following innovative techniques that described in Sect. 2: 2.1 A Unified App-
roach for Designing Algorithm Based on Quantifier Transformation; 2.2 A New
Representation of Algorithms; 2.3 The New Techniques About Loop Invariants;
2.4 Generosity for Modeling; 2.5 The new techniques for generating database
application program; 2.6 Distributed Transaction Processing In PAR.

6 Conclusion and Future Work

1. On the basis of the study of the essential features of formal methods, this
paper focuses on overcoming complex, difficult to understand and inconve-
nient for application in the existing formal methods specification and design
language. We put forward a new formal methods definition. Based on the
definition, we research successful and practical formal methods and support
platform, namely the PAR method and PAR Platform. PAR method and the
PAR platform have been successfully applied in the formal development of
complex algorithms and information processing software. The effect is remark-
able, which proves the correctness and effectiveness of the new definition of
formal method proposed in this paper.

2. The paper describes the effectiveness of the 6 innovative theories and tech-
niques given in Sect. 2.2. These innovative theories and techniques, which
guarantee the advanced and innovative nature of the PAR and PAR plat-
forms, and become the theoretical and technical basis for the realization of
the PAR platform, and can also effectively carry out the development and
promotion of the development of formal software.

3. The formal methods proposed and implemented by PAR have been applied
in the formalized development of complex algorithms and programs. It has
solved a number of international problems and has important theoretical
value. Using the PAR method and the PAR platform, many Safety-Critical
information processing systems have been developed, in the actual earth-
quake, fire, and aviation accidents. The success of disaster rescue work proves
that PAR has great practical application value.

4. The formal methods of software development and the model driven engineer-
ing MDE have their own advantages and disadvantages in practical appli-
cation. Combining these two methods can serve as a complement to each
other and will effectively promote the renewal and development of software
development methods. We will work in this area.

84 J. Xue et al.

Acknowledgments. At first, our thanks go to anonymous reviewers for helpful sug-
gestion and comments that changed the presentation of this paper.

Our warm thanks go also to Prof. David Gries for his kind encouragement and
suggestions. His academic thought deeply influenced our research team.

We would like to thank Xu Wensheng, Zuo Zhengkang, Shi Haihe, Wang ChangJing,
who attended the previous work of the project.

References

1. Abrial, J.-R.: The B Book - Assigning Programs to Meanings. Cambridge Univer-
sity Press, Cambridge (1996)

2. Adesina, O.: Integrating formal methods with model-driven engineering. In:
International Conference on Model-Driven Engineering Languages and Systems,
Ottawa, Canada (2015)

3. Backhouse, R.C.: Program Construction and Verification. Prentice Hall Interna-
tional, London (1986)

4. Bjørner, D., Havelund, K.: 40 years of formal methods: some obstacles and some
possibilities? In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS,
vol. 8442, pp. 42–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06410-9 4

5. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. 28(4), 626–643 (1996)

6. Cook, W., Misra, J.: Structured interacting computations. In: Wirsing, M.,
Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and
New Computing Paradigms. LNCS, vol. 5380, pp. 139–145. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-89437-7 9

7. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Upper Saddle River
(1976)

8. Gargantini, G., Riccobene, A.E., Scandurra, P.: Combining formal methods and
MDE techniques for model-driven system design and analysis. Int. J. Adv. Softw.
3(1 and 2), 1–18 (2010)

9. Gries, D.: The Science of Programming. Springer, New York (1981). https://doi.
org/10.1007/978-1-4612-5983-1

10. Gries, D., Xue, J.: Generating a random permutation. In: BIT28, vol. 10 pp. 569–
572 (1988)

11. Gries, D., Xue, J.: The hopcroft-tarjan plannarity algorithm presentations and
improvements. TR88-906, CS Department of Cornell University, pp. 1–20 (1988)

12. Kitchin, D., Quark, A., Cook, W., Misra, J.: The Orc programming language. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE -2009. LNCS,
vol. 5522, pp. 1–25. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02138-1 1

13. Knuth, D.: A simple program whose proof isn’t. In: Beauty is Our Business. A
Birthday Salute to E.W. Dijkstra (1990). (Ed. by, W.H.J. Feijen et al.)

14. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall Inter-
national, New York (1986)

15. Liu, Z., Morisset, C., Stolz, V.: rCOS: Theory and tool for component-based model
driven development. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961,
pp. 62–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11623-
0 3

https://doi.org/10.1007/978-3-319-06410-9_4
https://doi.org/10.1007/978-3-319-06410-9_4
https://doi.org/10.1007/978-3-540-89437-7_9
https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1007/978-3-642-02138-1_1
https://doi.org/10.1007/978-3-642-02138-1_1
https://doi.org/10.1007/978-3-642-11623-0_3
https://doi.org/10.1007/978-3-642-11623-0_3

PAR: A Practicable Formal Method and Its Supporting Platform 85

16. Misra, J., Cook, W.R.: Computation orchestration: a basis for wide-area comput-
ing. J. Softw. Syst. Model. (2017)

17. Paull, M.C.: Algorithm Design—A Recursion Transformation Framework. Wiley,
New York (1987)

18. RAISE. http://spd-web.terma.com/Projects/raise
19. Smith, D.R.: KIDS: a semiautomatic program development system. IEEE Trans.

Softw. Eng. 16(9), 1024–1043 (1990)
20. Spivey, J.M.: Introducing Z: A Specification Language and Its Formal Semantics.

Combridge University Press, New York (1988)
21. Ke, W., Li, X., Liu, Z., Stolz, V.: rCOS: A formal model-driven engineering method

for component-based software. Fronti. Comput. Sci. China 6(1), 17–39 (2012)
22. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice

and experience. ACM Comput. Surv. 41(4), 19 (2009)
23. Xia, J., Xue, J.: Design and implementation of concurrent distributed transaction

in modeling language Apla. In: NCTCS (2018, to appear)
24. Xue, J., Gries, D.: Developing a linear algorithm for cubing a cycle permutation.

Sci. Comput. Program. 11, 161–165 (1988)
25. Xue, J.: Two new strategies for developing loop invariants and its applications. J.

Comput. Sci. Technol 8(3), 147–154 (1993)
26. Xue, J.: A unified approach for developing efficient algorithmic programs. J. Com-

put. Sci. Technol. 12(4), 314–329 (1997)
27. Xue, J., Davis, R.: A simple program whose derivation and proof is also. In: First

IEEE International Conference On Formal Engineering Method (1997)
28. Xue, J., Davis, R.: A derivation and proof of Knuths binary to decimal program.

In: Software: Concepts and Tools, vol. 12, pp. 149–156 (1997)
29. Xue, J.: Formal derivation of graph algorithmic programs using partition and recur.

J. Comput. Sci. Technol. 13(6), 553–561 (1998)
30. Xue, J.: A practicable approach for formal development of algorithmic pro-

grams. In: International Symposium on Future Software Technology (ISFST-1999),
Masami Noro, October 1999

31. Xue, J.Y.: Developing the generic path algorithmic program and its instantiations
using PAR method. In: The Second Asia Workshop On Programming Languages
and Systems, Korea (2001)

32. Xue, J.: PAR method and its supporting platform. In: International Workshop on
Formal Method for Developing Software, Annual Report, Macao: UNU-IIST, no.
348 (2006)

33. Xue, J., Yang, B., Zuo, Z.: A linear in-situ algorithm for the power of cyclic permu-
tation. In: Preparata, F.P., Wu, X., Yin, J. (eds.) FAW 2008. LNCS, vol. 5059, pp.
113–123. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69311-
6 14

34. Xue, J.: Genericity in PAR platform. In: Liu, S., Duan, Z. (eds.) SOFL+MSVL
2015. LNCS, vol. 9559, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-31220-0 1

35. Xue, J.: PAR: a model driven engineering platform for generating algorithms and
software. In: Symposium on Programming: Logics, Models, Algorithms and Con-
currency to recognize Jayadev Misra’s Accomplishments, University of Texas, 29th
and 30th April 2016. https://www.cs.utexas.edu/symposium

36. Zheng, Y.J., Xue, J.Y.: A simple Greedy algorithm for a class of shuttle trans-
portation problems. Opt. Lett. 3(4), 491–497 (2009)

37. Zheng, Y.J., Xue, J.Y.: A problem reduction based approach to discrete optimiza-
tion algorithm design. Computing 88(1–2), 31–54 (2010)

http://spd-web.terma.com/Projects/raise
https://doi.org/10.1007/978-3-540-69311-6_14
https://doi.org/10.1007/978-3-540-69311-6_14
https://doi.org/10.1007/978-3-319-31220-0_1
https://doi.org/10.1007/978-3-319-31220-0_1
https://www.cs.utexas.edu/symposium

86 J. Xue et al.

38. Zheng, Y.J., Ling, H.F., Xue, J.Y., Chen, S.Y.: Population classification in fire
evacuation: a multiobjective particle swarm optimization approach. IEEE Trans.
Evol. Comput. 18(1), 70–81 (2014)

39. Zheng, Y.J., Ling, H.F., Chen, S.Y., Xue, J.Y.: A hybrid neuro-fuzzy network based
on differential biogeography-based optimization for online population classification
in earthquakes. IEEE Trans. Fuzzy Syst. 23(4), 1070–1083 (2014)

40. Zheng, Y.J., Zhang, M.X., Ling, H.F., Chen, S.Y.: Emergency railway transporta-
tion planning using a hyperheuristic approach. IEEE Trans. Intell. Transp. Syst.
16(1), 321–329 (2015)

41. Zheng, Y.J., Chen, Q.Z., Ling, H.F., Xue, J.Y.: Rescue wings: mobile computing
and active services support for disaster rescue. IEEE Trans. Serv. Compt. 9(4),
594–607 (2016)

42. Zheng, Y.J., Sheng, W.G., Sun, X.-M., Chen, S.Y.: Airline passenger profiling
based on fuzzy deep machine learning. IEEE Trans. Neural Netw. Learn. Syst.
28(12), 2911–2923 (2017)

43. Zheng, Y.J., Chen, S.-Y., Yu, X., Xue, J.-Y.: A pythagorean-type fuzzy deep de-
noising auto-encoder for industrial accident early warning. IEEE Trans. Fuzzy Syst.
25(6), 1561–1575 (2017)

44. Xu, J.: The Automation of software. IEEE Trans. Syst. (1993). Qinghua Published
Company

45. Formal methods C Wikipedia. https://en.wikipedia.org/wiki/Formal methods

https://en.wikipedia.org/wiki/Formal_methods

	PAR: A Practicable Formal Method and Its Supporting Platform
	1 Introduction
	2 Key Ideas and Innovative Techniques of PAR
	2.1 A Unified Approach for Designing Algorithm Based on Quantifier Transformation
	2.2 A New Representation of Algorithms
	2.3 The New Techniques About Loop Invariants
	2.4 Genericity for Modeling
	2.5 The New Techniques for Generating Database Application Program
	2.6 Distributed Transaction Processing in PAR

	3 Main Elements in PAR
	3.1 Data Type and Action in PAR
	3.2 Formal Modeling Language Radl
	3.3 Rules of Specification Transformation
	3.4 Modeling Language Apla
	3.5 Generic Constructions bib34
	3.6 Mechanism of Distributed Transaction Processing
	3.7 Automatic Model Transformation Tools
	3.8 Correctness of Model and Correctness of Model Transformation
	3.9 Architecture of PAR Platform

	4 Applications and Case Studies
	4.1 There are Two Kinds of Applications of PAR
	4.2 Case Studies

	5 Related Work
	6 Conclusion and Future Work
	References

