
Developing Reliable Component-Based
Software in Mediator

Yi Li(B)

LMAM and Department of Informatics, School of Mathematical Sciences,
Peking University, Beijing, China

liyi math@pku.edu.cn

Abstract. Component-based development is widely used to reduce the
development cost of complex systems. In this pattern, software features
are organized, encapsulated and reused as components. In this report, we
present a component-based modeling framework based on the modeling
language Mediator that aims to build formally verified software, both on
model-level and code-level. This work is the core part of a Ph.D. thesis.

Keywords: Component-based · Modeling language · Mediator

1 Introduction

Modern software systems are becoming more and more complex. To simplify
the development phase, software developers encapsulate the features in smaller
components that are easier to be developed and tested. The correctness of com-
ponents are important since they are often reused by other software, hence any
small vulnerabilities may lead to dozens of potential bugs. In this report, we
present a formal modeling and code-generation framework based on Mediator
where Mediator is a new modeling language proposed in [12]. With this frame-
work, we can easily design high-level models and specify their properties, auto-
matically generate runnable codes and verify both of them.

Part of this work has been published, including the modeling language Medi-
ator and its formal semantics [12], and a code generator to C language [13].
We have also built a model checking integration with help of NuSMV [5] and
another code generator to System C. These two works have been developed but
still unpublished.

2 Related Work

Component-based software engineering has been prospering for decades.
Currently, there are various tools, both formal and informal, that sup-
ports component-based modeling. For example, NI LabVIEW [16], MATLAB
Simulink [7] and Ptolemy [9] provide powerful modeling platforms and a large
number of built-in component libraries to support commonly-used platforms.
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 432–435, 2018.
https://doi.org/10.1007/978-3-030-02450-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_29&domain=pdf


Developing Reliable Component-Based Software in Mediator 433

Fig. 1. The reliable development framework based on Mediator

However, due to the complexity of models, such tools mainly focus on synthesis
and simulation, instead of formal verification. There is also a set of formal tools
that prefer simple but verifiable model, e.g. Esterel SCADE [1] and rCOS [14]
(Fig. 1).

In the recent years, formal method has shown its power in industrial
use [8,10,15]. These works proved that formal verification techniques are capa-
ble of handling large-scale component-based embedded systems. However, the
unfamiliarity of formal specifications is still one of the main obstacles hamper-
ing programmers from using formal tools. For example, even in the most famous
formal modeling tools with perfect graphical user interfaces (like UPPAAL [2]
and PRISM [11]), sufficient knowledge about automata theory is necessary to
properly encode the models.

Importance of code generation has also been uncovered for a long time. A
large number of formal and industrial code generation tools have been built for
different target platforms. For example, Rodin for Event-B [4] and SCADE [3]
are very popular formal tools that can generate executable codes from abstract
models.

3 Mediator

Mediator is a component-based modeling language [12], which provides proper
formalism for both high-level system layouts and low-level automata-based
behavior units. Both automata and systems are encapsulated with a set of input
or output ports (which we call an interface) and a set of template parameters so
that they can be easily reused in multiple applications.

Mediator is designed to serve both software engineers and formal researchers.
On the one hand, the behavior of automata is captured by guarded transitions,
whose semantics is clear and self-contained. On the other hand, interfaces of
automata and systems are precisely defined by ports and their types, where



434 Y. Li

engineers can easily design reliable software systems through reusing. For exam-
ple, a widely-used data structure queue, a popular leader election algorithm in
distributed computing and a controller for Arduino-based wheeled vehicles are
encoded as Mediator models in [12] and [13].

4 Design of the Framework

4.1 Automatic Code Generation

Manual encoding is exceedingly time consuming and error prone, and has become
a huge obstacle between reliable software models and trustworthy computer pro-
grams. To deal with this problem, we present a code generation framework for
Mediator .

The first code generator in this framework aims to generate Arduino C pro-
grams that can be directly downloaded to the hardware without any manual
adaption [13]. As an open-sourced embedded hardware platform, various Arduino
motherboards are applied in different domains, robots and quad-copters, for
example. Another code generator for System C is already developed by not pub-
lished yet. The framework is designed to be extensible so that users can easily
develop code generators themselves.

4.2 Verification

The presented framework plans to support multi-level verification on both high-
level models and low-level codes. For high-level models, we can specify properties
as CTL* formulae to both automata and systems. Mediator models and these
properties are exported into NuSMV and checked. For low-level source codes, we
plan to transform the property formulae to code notations that are supported
by many code-level verifiers, such as Frama-C [6], etc.

5 Conclusion and Future Work

In this report, we summarize the current status of our research on Mediator
and its corresponding component-based modeling and verification framework
which forms the core part of the presented Ph.D. thesis. Driven by this topic, we
have two publications [12,13] and another two submitted. At least three more
publications on this topic are planned.

In the remaining years, we will complete this framework, mainly the code-
level verification part and work on more practical case studies. We are investigat-
ing the notation language of Frama-C [6], and plan to generate these notations
directly from our models and CTL* properties.

Acknowledgements. The work is supervised by Prof. Meng Sun, and partially sup-
ported by the National Natural Science Foundation of China under grant no. 61532019,
61202069, 61272160 and 61772038.



Developing Reliable Component-Based Software in Mediator 435

References

1. Abdulla, P.A., Deneux, J., St̊almarck, G., Ågren, H., Åkerlund, O.: Designing
safe, reliable systems using scade. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004.
LNCS, vol. 4313, pp. 115–129. Springer, Heidelberg (2006). https://doi.org/10.
1007/11925040 8

2. Amnell, T., et al.: UPPAAL - now, next, and future. In: Cassez, F., Jard, C.,
Rozoy, B., Ryan, M.D. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 99–124. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45510-8 4

3. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

4. Cataño, N., Rivera, V.: EventB2Java: a code generator for Event-B. In:
Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 166–171.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0 13

5. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

6. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

7. Hahn, B., Valentine, D.T.: SIMULINK toolbox. In: Essential MATLAB for Engi-
neers and Scientists, pp. 341–356. Academic Press (2016)

8. Jeannin, J., et al.: Formal verification of ACAS X, an industrial airborne collision
avoidance system. In: Proceedings of EMSOFT 2015, pp. 127–136. IEEE (2015)

9. Kim, H., Lee, E.A., Broman, D.: A toolkit for construction of authorization service
infrastructure for the internet of things. In: Proceedings of IoTDI 2017, pp. 147–
158. ACM (2017)

10. Klein, G., et al.: seL4: formal verification of an OS kernel. In: Proceedings of SOSP
2009, pp. 207–220. ACM (2009)

11. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

12. Li, Y., Sun, M.: Component-based modeling in mediator. In: Proença, J., Lumpe,
M. (eds.) FACS 2017. LNCS, vol. 10487, pp. 1–19. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68034-7 1

13. Li, Y., Sun, M.: Generating arduino C codes from mediator. In: de Boer, F., Bon-
sangue, M., Rutten, J. (eds.) It’s All About Coordination. LNCS, vol. 10865, pp.
174–188. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90089-6 12

14. Liu, Z., Morisset, C., Stolz, V.: rCOS: theory and tool for component-based model
driven development. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961,
pp. 62–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11623-
0 3

15. Miller, S.P., Whalen, M.W., Cofer, D.D.: Software model checking takes off. Com-
mun. ACM 53(2), 58–64 (2010)

16. National Instruments: Labview. http://www.ni.com/zh-cn/shop/labview.html

https://doi.org/10.1007/11925040_8
https://doi.org/10.1007/11925040_8
https://doi.org/10.1007/3-540-45510-8_4
https://doi.org/10.1007/978-3-319-40648-0_13
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-68034-7_1
https://doi.org/10.1007/978-3-319-68034-7_1
https://doi.org/10.1007/978-3-319-90089-6_12
https://doi.org/10.1007/978-3-642-11623-0_3
https://doi.org/10.1007/978-3-642-11623-0_3
http://www.ni.com/zh-cn/shop/labview.html

	Developing Reliable Component-Based Software in Mediator
	1 Introduction
	2 Related Work
	3 Mediator
	4 Design of the Framework
	4.1 Automatic Code Generation
	4.2 Verification

	5 Conclusion and Future Work
	References




