
Analysis on Strategies of Superposition
Refinement of Event-B Specifications

Tsutomu Kobayashi(B) and Fuyuki Ishikawa

National Institute of Informatics, Tokyo, Japan
{t-kobayashi,f-ishikawa}@nii.ac.jp

Abstract. The superposition refinement with the Event-B modeling
method is useful because it supports construction of models in multiple
abstraction levels, and thus mitigates the burden of constructing rigor-
ous models. With such a refinement mechanism, developers can choose
which subset of a target system’s elements is specified in each abstraction
level (refinement strategy). Although differences of refinement strategies
for a model affect the complexity of modeling and verification, the effect
has not been studied. We propose our automatic refinement refactoring
method, which constructs abstract versions of a given Event-B model
according to a refinement strategy different from the original one. We
applied the refactoring method to construct various refactored versions
of large Event-B models and compared them. As a result, we found that
the granularity and frequently used variables are important factors for
reducing the complexity. We consider the findings important to help
Event-B modelers to design and change refinement strategies.

Keywords: Event-B · Refinement · Formal specifications
Design exploration

1 Introduction

Event-B [1] has been attracting strong attention. The primary advantage of
Event-B is its flexible refinement mechanism to deal with the complexity of con-
temporary software. It supports superposition refinement, which enables devel-
opers to gradually introduce elements of target systems to models.

Although it is important to consider designing of Event-B refinement, existing
studies lack explicit discussions on it. Because of the flexibility of superposition
refinement, the design space of refinement in Event-B is large. Developers can
choose the granularity and the order of introducing elements of target systems
into models. Guides for designing Event-B refinement include a textbook showing
good refinement design examples [1] and domain-specific guidelines [13]. How-
ever, they do not explicitly discuss refinement strategies themselves nor explain
why some refinement strategies are better than others.

This work was supported by JST, ACT-I grant number JPMJPR17UA.

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 357–372, 2018.
https://doi.org/10.1007/978-3-030-02450-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_21&domain=pdf


358 T. Kobayashi and F. Ishikawa

In our previous research, we have proposed methods for planning good refine-
ment strategies before constructing models [6] and refactoring refinement strate-
gies of constructed models without breaking consistency [7]. For planning, it is
essentially difficult to plan concrete refinement strategies before starting model-
ing, and thus the support our method provides is limited. Moreover, developers
often have difficulties in making design decisions before constructing and end
up reconstructing models later. For refactoring, our refactoring method helps
developers to construct consistent refactored models through the use of a new
refinement strategy. However, developers must face the task of coming up with
that strategy. In addition, the method can only be partially automated.

We tackled the problem of analyzing how to design Event-B refinement strat-
egy by solving those problems of our previous work. First, we automated our
refactoring method to support easy and flexible refactoring of refinement strat-
egy. Second, we constructed variants of sample models by giving different refine-
ment strategies to our tool and compared various refinement strategies.

The problem we address is novel and important. Methods on verification of
refinement have been actively studied in formal methods area. However, as far as
we know, design analyses of refinement that take complexity and usability into
account have never been studied. From an engineering viewpoint, refinement
design is equally important as verification. In fact, there have been many studies
on this problem in other areas such as object-oriented design [11].

The contributions of this paper are as follows:

– Automation of our refactoring (generating additional predicates for consis-
tency, automating proof of refactored models, and handling Event-B models)

– Evaluation on automation of refactoring
– Evaluation on effectiveness of refactoring
– Discussion on preferable refinement strategies
– Proposal of a tool-assisted design space exploration of Event-B refinement

The rest of this paper is organized as follows. First, we provide a background
on Event-B in Sect. 2. Next, we explain our previous work on refactoring refine-
ment in Event-B and our new proposal on automation of refactoring in Sect. 3.
We then describe experiments for comparing various refinement strategies in
Sect. 4. In Sects. 5 and 6, we discuss our methods, experiments, threats to valid-
ity, and related work. Finally, we summarize this study in Sect. 7.

2 Superposition Refinement in Event-B

2.1 Event-B and Superposition Refinement

Event-B [1] is a formal modeling method with a flexible refinement mechanism,
which is designed to mitigate the complexity of contemporary software systems.
Specifically, Event-B supports a special style of refinement, which is called super-
position (horizontal) refinement. For mitigation of complexity in modeling and
verification, it enables developers to gradually introduce elements of a target



Analysis on Strategies of Superposition Refinement of Event-B Specifications 359

system to models. In other words, it helps developers to distribute the complex-
ity over several steps. An important point of superposition refinement is that
developers can design multiple ways of introduce elements.

Another style of refinement that is popular in classical formal methods is
called data (vertical) refinement. Event-B also supports this style. This is ori-
ented for deriving executable program codes from specifications. A typical exam-
ple is conversion from a set-theoretic operation to an operation on an array. In
contrast to superposition refinement, the design space of data refinement is lim-
ited. In fact, there is a semi-automated tool [9] to do data refinement.

2.2 Modeling in Event-B

In Event-B, a unit of a model (machine) consists of variables, invariants, and
events. An event basically consists of guards and actions, which are necessary
conditions for triggering the event and state transitions of the event, respectively.

After constructing a model, the development environment of Event-B (Rodin)
generates proof obligations (POs), which are formulae of consistency of the
model. A primary sort of PO is that an occurrence of event e does not vio-
late an invariant i (invariant preservation, written as e/i/INV).

If a developer declares that a model is a refinement of another model, other
sorts of POs are generated. Such POs include guard strengthening (GRD), which
requires guards of a concrete event to be stronger than guards of correspond-
ing events in the abstract model, and action simulation (SIM), which requires
that concrete behavior corresponds to abstract behavior. Guard strengthening
(eC/gA/GRD, where eC is an event in the concrete machine and gA is a guard of
the abstract event of eC in the abstract machine) demands that the conjunction
of guards of eC is stronger than a guard of the abstract event gA. The (simplified)
formula of eC/gA/GRD is IA ∧ IC ∧ GC ⇒ gA, where IA and IC are abstract
invariants and concrete invariants, and GC is guards of eC. Developers can be
confident with the consistency of the model by discharging all generated POs.

2.3 Example: Cars on the Bridge

We describe a variant of an Event-B example model “Cars on the Bridge” [1,
Chap. 2]. It is about traffic between a mainland and an island, which are con-
nected with a one-way bridge (Fig. 1, right). The requirements include: (R1) The
number of cars outside of the mainland should not exceed the capacity (constant
cap). (R2) When a car is going on the bridge towards the mainland, traffic lights
on the mainland should prevent cars on the mainland from departing.

In Event-B, a developer first constructs an abstract model that disregards
some elements of the target system. For example, Fig. 2 shows an abstract model
of Cars on the Bridge (Fig. 1, left). The variable nout is the number of cars on
the island or the bridge. The invariant inv A1 represents requirement (R1). The
event describes the behavior of a car’s departure from the mainland. Various
POs including mainland out abs/inv A1/INV are generated and proved.



360 T. Kobayashi and F. Ishikawa

Fig. 1. Cars on the bridge example

Fig. 2. MCarsA: part of abstract model of example

After constructing an abstract model, a concrete model with more elements is
constructed. For instance, Fig. 3 shows a concrete model of the example (Fig. 1,
right). The number of cars on the island is nIL, and the number of cars going
left and right are n← and n→, respectively. Those variables replace the abstract
variable nout (inv C1). Variables of traffic lights on the mainland and the island
(MLTL and ILTL) are also introduced into the model. The invariant inv C2
and the guard grd2 satisfies the requirement (R2). In this model, the PO
mainland out con/grd1/GRD is dischargeable because the its formula is:

(MLTL = green) ∧ (MLTL = green ⇒ n→ = 0)
∧ (n← + nIL + 1 < cap) ∧ (nout = n← + nIL + n→) ⇒ nout < cap.

Fig. 3. MCarsC: part of concrete model of example



Analysis on Strategies of Superposition Refinement of Event-B Specifications 361

The refinement in Event-B is done in this way. First, developers blackbox traf-
fic lights and state that “Somehow, the numbers of cars satisfy these invariants
and behave like these events.” They then construct a concrete model to describe
that “It turned out that the cars’ invariants and behaviors of the abstract model
are due to traffic lights.” This flexible refinement mechanism allows developers
to freely design the elements introduced in each refinement step. For example,
they can also introduce traffic lights before introducing cars.

Henceforth, we will use the term refinement strategy (RS) to mean a sequence
of introduced variables in each step. We will also use the term refinement chain
(RC) to mean a sequence of Event-B models [M0,M1, . . . , Mn] such that Mi+1

refines Mi, where 0 ≤ i ≤ n − 1.

3 Automated Refinement Refactoring

3.1 Refinement Refactoring

We will here describe our previous work on refinement refactoring [7].
Refinement refactoring aims to improve the value of given Event-B models

by changing the refinement strategy of given verified models. The refactored
models have a different refinement strategy than that of the given models. By
refactoring, the expression of models other than the most concrete model can be
changed without changing the most concrete model, because a refinement strat-
egy dominates the expression of models. In other words, refactoring corresponds
to obtaining projection of the most concrete model onto a new state space. For
example, we can improve the maintainability of a model by decomposing one
refinement step into several small steps. In addition, a reusable part of an exist-
ing model can be extracted with refactoring by obtaining a projection onto a
state space of reusable variables. Thus, refactoring facilitates engineering use of
constructed models by obtaining a new projection of the most concrete model.

Our refactoring method receives a concrete model M and a set of variables
V as input and manually produces a model M ′(V ) (intermediate model) that is
an abstract version of M . The input V is a subset1 of all variables declared in
the given model M and its abstract models. The output model M ′(V ) should
be consistent with M , and thus all POs (such as invariant preservation, guard
strengthening, and action simulation) of M ′(V ) should be dischargeable. More-
over, the set of variables contained in M ′(V ) should be V . Refactoring is achieved
with two operations: refinement merging and refinement decomposition. For a
given refinement chain [MA,MB ,MC ], refinement merging constructs a model
MB+C , which refines MA and is constructed from MB and MC . For a given
refinement chain [MA,MC ], refinement decomposition constructs a model MB

such that [MA,MB ,MC ] is a refinement chain. By merging a refinement chain
[. . . , M ] and decomposing it into [. . . , M ′(V ),M ], we can obtain a model M ′(V )
that is written with V and consistent with M .

1 V cannot be an arbitrary subset. See our previous work [7] for conditions of V .



362 T. Kobayashi and F. Ishikawa

The key challenge of refinement refactoring is guaranteeing consistency in
refinement decomposition. A näıve approach towards refinement decomposition
is slicing, namely constructing M ′(V ) as a collection of parts of M that can
be written with V . For example, suppose that we try to construct a model of
the example disregarding the traffic lights (MLTL and ILTL). In other words,
we try to construct a model that describes properties and behavior relevant
to the number of cars on the bridge and the island that are controlled by
the traffic lights, without describing the behavior of traffic lights. By slicing,
we obtain the model M ′

CarsC({n←, nIL, n→}) shown in Fig. 4. Although the
model should refine MCarsA, this intermediate model lacks the consistency of
mainland out int/grd1/GRD, because it lacks the invariant inv C2 and the guard
grd2 , which were necessary hypotheses for the consistency in the original model.
Thus, slicing often drops predicates that are hypotheses of consistency proofs of
the original model.

Fig. 4. M ′
CarsC({n←, nIL, n→}): a part of intermediate model (obtained by slicing, not

consistent) of example.

Our refactoring method addresses this problem by supporting the construc-
tion and addition of new predicates, which we call complementary predicates
(CPs). CPs should be able to be expressed with variables of an intermediate
model and should function as a missing hypothesis of a proof of an intermediate
model. CPs can be found by analyzing a proof of the original model because
they correspond to lemmas in the original proof (Sect. 2.3). For instance, in the
proof of mainland out con/grd1/GRD in the original example model MCarsC,
there is a lemma n→ = 0, which can be derived from hypotheses inv C2 and
grd2 . This lemma can be expressed with variables {n←, nIL, n→} and we can
discharge the PO in the intermediate model (mainland out int/grd1/GRD) by
adding this lemma to the model as a new guard of event mainland out int. Thus,
our method achieves a consistent refinement decomposition by slicing and ana-
lyzing the original proof.

3.2 Automation with Heuristics

The method in our previous work, which include manual analysis on many proofs,
is demanding and difficult. Therefore, we propose an automation of refinement



Analysis on Strategies of Superposition Refinement of Event-B Specifications 363

refactoring by constructing the following three functionalities. Complemen-
tary Predicates Generator. Obtaining CPs is the most difficult and time-
consuming part of manual refinement refactoring. Our method uses heuristics
and Craig’s interpolation (with Z3 [5]) to automate this process. Proof Finder.
Automatic prover of Rodin cannot discharge all POs of refactored models. Our
method finds parts of the original proof that correspond to the proof of refac-
tored models and reuses them. Merger and Slicer. We have also developed
rule-based automation of merging and slicing.

Those functionalities are implemented as a plug-in of Event-B’s development
environment2. This automation enables us to analyze the effects of refinement
strategies on complexity of models and verification (Sect. 4).

Manually finding CPs is significantly difficult and demanding. To manually
find a CP for a PO, a developer must find a corresponding PO in the original
model, analyze the proof of it, and find hypotheses that are essential to discharge
the PO and written in variables of the intermediate model. Repeating this pro-
cess to find CPs for all POs of large-scale models is demanding. In addition,
developers need to repeat a difficult task of deeply understanding the proofs of
original models. Therefore, we made this process systematic and automatic.

Predicates sufficient for proofs in the original model can be systematically
obtained as interpolants of the formulae of POs. In other words, a formula X
that satisfies hypotheses ⇒ X ⇒ consequence is enough to derive consequence.
Thus, if such interpolants can be added to the intermediate model, the model
becomes consistent. However, such interpolants cannot always be added to the
model because X may use variables that are not in variables of the interme-
diate model. This is because the set of identifiers of X (an interpolant) is a
subset of identifiers used in both of hypotheses and consequence. For example,
mainland out con/grd1/GRD in MCarsC is as follows:

(MLTL = green ∧ n← + nIL + 1 < cap ∧ (MLTL = green ⇒ n→ = 0)
∧ nout = n← + nIL + n→) ⇒ nout < cap. (1)

The identifiers common in the hypotheses part and the consequence part are
{nout, cap}, but nout cannot be used in the intermediate model. Thus, an inter-
polant of the formula of a PO of the original model cannot always be a CP.

Our method provides heuristics to convert a formula of PO into an equivalent
formula such that an interpolant of the converted formula becomes a CP. The
heuristic for GRD converts the original formula IA ∧ IC ∧ GC ⇒ gA into:

IAB ∧ ĨC ∧ G̃C ⇒ gA ∨ ¬ĨA ∨ ¬IBC ∨ ¬GBC, (2)

where ĨA, ĨC, and G̃C are abstract invariants, concrete invariants, and concrete
guards that contain dropped variables, and IAB, IBC, GBC are those that do not
contain dropped variables (i.e., they are obtained by slicing). We also defined

2 https://github.com/trarse-nii/SliceAndMerge.

https://github.com/trarse-nii/SliceAndMerge


364 T. Kobayashi and F. Ishikawa

heuristics for SIM and INV. For example, the heuristic converts (1) into:

(MLTL = green ∧ n← + nIL + 1 < cap ∧ (MLTL = green ⇒ n→ = 0))
⇒ (nout < cap ∨ ¬(nout = n← + nIL + n→)). (3)

The heuristics are designed so that (a) interpolants of converted formulae are
always written with identifiers of the intermediate model (i.e., the interpolants
can be added to the intermediate model) and (b) adding the interpolants to
the intermediate model makes the model consistent. Let VA, VB, and VC be
variables of the abstract model, the intermediate model, and the concrete model,
respectively. By definitions, variables of (VA\VB) do not occur in the hypotheses
part of (2) and variables of (VC\VB) do not occur in the consequence part. Thus,
the set of variables common in the hypotheses part and the consequence part is
guaranteed to be a subset of VB. Therefore, the interpolant can be added to the
intermediate model. For instance, predicate n← + nIL + n→ + 1 < cap can be
obtained as an interpolant of (3). In addition, by (2), X ⇒ gA ∨ ¬ĨA ∨ ¬IBC ∨
¬GBC. By strengthening the hypotheses part of this formula,

IA ∧ IB ∧ GB ∧ X ⇒ gA ∨ ¬ĨA ∨ ¬IBC ∨ ¬GBC,

where IB and GB are invariants and guards of the intermediate model. Since
IA ⇒ ĨA, IB ⇒ IBC, and GB ⇒ GBC,

IA ∧ IB ∧ GB ∧ X ⇒ gA.

Thus, by adding X to the corresponding event as a guard, the GRD of the inter-
mediate model becomes dischargeable. Therefore, our tool makes intermediate
models consistent by adding interpolants of formulae converted from POs.

The proof finder aims to reuse proofs on the original model. Predicates of a
model (invariants, guards, actions, etc.) related to a PO dominate the contents
of the generated PO. However, the POs of a refactored model are generated from
a mixture of multiple steps of original models because refactoring decomposes
after merging of multiple models. Hence, it is not straightforward to find which
proof on the original model should be reused to discharge POs of a refactored
model. To address this problem, we added traceability information, which shows
the predicates of original models used to generate a PO of a refactored model
to the refactored model. The proof finder uses this traceability information to
find corresponding proof in the original model and follows the same proof tree
for proving a PO in the refactored model. Although the proof finder does not
work for arbitrary proofs, we did not find any problems in our experiments
(Sect. 4). Thus, we automated reusing the proof of an original model for verifying
a refactored model by adding traceability.

4 Experiments on Models Constructed with Refactoring

4.1 Evaluation Criteria

We considered that good strategies would effectively mitigate development com-
plexity in Event-B because the primary goal of the Event-B refinement mecha-



Analysis on Strategies of Superposition Refinement of Event-B Specifications 365

nism was to mitigate such complexity. We focused on two kinds of complexities:
the complexity of model itself and the complexity of verification.

Local Model Complexity. We checked the numbers of variables, invariants,
and events of each step to evaluate the complexity of the model of each step. If a
step is small, it tends to be easy to understand the step because developers can
focus on a small number of elements. Therefore, we considered that the numbers
should be well-distributed over multiple steps if developers follow a good strategy.

Proof Complexity. We checked the number of all generated POs and the num-
ber of POs that failed to be discharged by automatic provers (manually discharged
POs) to evaluate the proof complexity. The number of manually discharged POs
are checked to evaluate actual burden of proving because Rodin has automatic
provers, which discharge most of the relatively simple proofs. In addition, we
also considered the local model complexity informative to evaluate this complex-
ity. If there is a non-dischargeable PO in a model, making modifications to a
part of the model affects multiple POs. This is because POs and the contents of
Event-B models are interrelated. For instance, if an invariant i needs to be mod-
ified, not only preservation of i by all events, but also GRD and SIM of related
events should be checked again. Therefore, distributing model contents and POs
limits the range of modification propagation, and thus reduces complexity. The
number of invariants and events also affects the number of generated POs. Thus,
we considered that effective strategies distribute number of variables, invariants,
events, and POs well.

4.2 Comparison Settings and Hypotheses

As the materials, we used models [2] of a train system [1, Chap. 17] and models
of an autonomous satellite flight formation system [12]. Both were constructed
by modelers experienced in Event-B.

There are two important characteristics of RSs: granularity and order. For
example, an RS [{a, b, c}], which introduces three variables in one step and
another RS [{a}, {b}, {c}], which introduces them one-by-one are different in
granularity. An RS [{a}, {b}, {c}] and another RS [{c}, {b}, {a}] are different in
order of variable introduction. In an experiment we conducted, we compared
strategies that differed in granularity and order to check the evaluation criteria.

To examine differences of granularity, we made the following comparisons:

Original vs. Merged. Comparison with a model constructed by merging
the original models. For example, when an RC [M1,M2,M3] followed an RS
[{nIL}, {n←, n→}, {MLTL}], we constructed a model M1+2+3 that followed an
RS [{nIL, n←, n→,MLTL}] and compared [M1,M2,M3] and [M1+2+3].

Hypothesis 1: The number of POs of the merged model is less than that of
the original models. This is because there is no need of checking consistencies
between several steps (e.g., GRD and SIM) in the merged model. This means
that decomposition adds several POs but mitigates the local model complexity.



366 T. Kobayashi and F. Ishikawa

Original vs. Decomposed. Comparing a step of original models and models
constructed by decomposing the step of original models. Complementary predi-
cates are generated and added to the model through refinement decomposition,
and the complexity is affected by CPs. Therefore, to eliminate the effect of
CPs, we compared decomposed models and a model constructed by re-merging
the decomposed model. For instance, when the RC [M1,M2,M3] was given, we
decomposed M2 to construct another RC [M1,M21,M22,M3] that follows an RS
[{nIL}, {n←}, {n→}, {MLTL}]. We then constructed a model M2∗ by merging
M21 and M22, and then compared (M21,M22) and M2∗. Since there are multiple
ways of decompositions, we compared several of them.

Hypothesis 2: Although the sum of the number of invariants may increase
due to the introduction of typing invariants3, invariants are distributed over sev-
eral steps. This also means decomposition mitigates the local model complexity.
Hypothesis 3: The number of CPs (new guards and actions) affects the num-
ber of POs because GRD and SIM should be checked for them. However, the
new GRDs and SIMs are relatively simple because CPs correspond to lemmas
of original proof and thus proofs for CPs are simpler than the original proofs.
This means that decomposition adds several POs, which are easily discharged by
automatic provers. Hypothesis 4: The number of POs of the re-merged model is
almost the same as that of the original model. This is because CPs are introduced
as guards and actions, which do not affect the number of INVs. This means that
the comparison of original models and re-merged models is fair.

To examine differences of order, we made the following comparisons:

Swapping Two Steps. Comparison with models constructed by swap-
ping two continuous steps in the original strategy. By the same reason as
Original vs. Decomposed, we used models constructed by swapping twice
instead of the original models. For example, when the RC [M1,M2,M3] was
given, we constructed another RC [MS121,MS122,M3] that follows an RS
[{n←, n→}, {nIL}, {MLTL}]. We then re-swapped them to construct another RC
[MSS121,MSS122,M3] that follows an RS [{nIL}, {n←, n→}, {MLTL}], and then
compared [MS121,MS122,M3] and [MSS121,MSS122,M3]. We calculated stan-
dard deviation of the number of POs to compare distributions of them.

Hypothesis 5: Swapping may change the distribution of number of invariants
and POs. This is because some variables are frequently used in invariants and
others are rarely used. For instance, let us assume that we are going to con-
struct models with variables {a, b} and invariants {f(a), g(a, b)}. If we construct
models by following [{a}, {b}], we can distribute the invariants because f(a) is
introduced in the first step and g(a, b) is introduced in the second step. In con-
trast, if we construct models by following [{b}, {a}], both f and g are introduced
in the second step because both depend on a. The sum of number of invariants
may slightly increase due to the introduction of typing invariants. This means
that orders of RSs are important.

3 Rodin requires variables’ typing information. Although typing information is usually
inferred from normal invariants, slicing may remove such invariants. In this case,
invariants of typing information (e.g., MLTL ∈ COLOR) must be newly provided.



Analysis on Strategies of Superposition Refinement of Event-B Specifications 367

Table 1. Merging and decomposing of results obtained for Train example.

Models ΔV I ΣI E CP PO ΣPO MPO ΣMPO Auto%

Tr 4, 3, 1, 1 8, 9, 3, 4 24 6,8,8,8 - 35, 63, 16, 13 127 7, 18, 6, 5 36 72%

TrM 9 24 24 8 - 110 110 32 32 71%

Tr1 4 8 8 6 - 35 35 7 7 80%

Tr1DA 1, 1, 1, 1 1, 2, 4, 5 12 3, 4, 4, 6 0, 0, 1, 0 0, 0, 13, 25 38 0, 0, 2, 5 7 82%

Tr1DMA 4 12 12 6 1 35 35 7 7 80%

Tr1DB 1, 1, 1, 1 1, 4, 3, 4 12 4, 5, 5, 6 1, 7, 1, 0 2, 26, 7, 17 52 0, 6, 1, 0 7 87%

Tr1DMB 4 12 12 6 9 36 36 8 8 78%

Reversing Multiple Steps. Comparison with models constructed by reversing
steps in the original strategy. Again, we used models constructed by reversing
twice instead of the original models. For instance, when the RC [M1,M2,M3]
was given, we constructed another RC [MR1,MR2,MR3] that follows an RS
[{MLTL}, {n←, n→}, {nIL}]. We then did reversing again to construct another
RC [MRR1,MRR2,MRR3] that follows an RS [{nIL}, {n←, n→}, {MLTL}], and
then compared [MR1,MR2,MR3] and [MRR1,MRR2,MRR3]. The hypothesis is
the same as that of swapping.

4.3 Results

Due to space limitations, we omitted the results on Flight Formation Systems
models, which tend to be similar to those for the Train example. The Train
model and additional information are available on the Web4.

With our automated refactoring tool, we succeeded in constructing all models
and discharging all POs. This means our tool generated correct CPs. Combined
with the SMT solvers plug-in of Rodin, our proof finder discharged all POs.
Therefore, we conclude that our tool is appropriate for this experiment.

Table 1 shows the experiment results we obtained on granularity. Each row
lists the numbers of a set of models (i.e., an RS). For example, in the original
Train example (the first row “Tr”), there are four steps that introduce 4, 3, 1, and
1 variables (ΔV ). Each step has 8, 9, 3, and 4 invariants (I), 24 invariants in total
(ΣI). E shows events in each step, CP shows the numbers of CPs introduced in
each step, PO shows the number of all POs, MPO shows manually discharged
POs, and Auto% shows the rate of automatically discharged POs.

Row 2 (TrM) in Table 1 shows the results obtained for the merged model.
Columns ΔV , I, and E show that TrM introduces things introduced through four
steps in the original machines in one-shot. ΣPO shows that the number of POs
decreased from 127 to 110 through merging. This result supports Hypothesis 1.

Rows 3–7 (Tr1*) in Table 1 show the results obtained on decomposition of
the first step of the original model (the numbers are those of the first step of
Tr). The first step of Tr introduces four variables: resrt, resbl, rsrtbl, and OCC.
Row 4 (Tr1DA) shows the results obtained for a decomposed strategy that intro-
duces resrt, resbl, rsrtbl, and OCC one-by-one. Row 6 (Tr1DB) shows the results
4 http://tkoba.jp/publications/icfem2018/.

http://tkoba.jp/publications/icfem2018/


368 T. Kobayashi and F. Ishikawa

Table 2. Results obtained in swapping and reversing the Train example.

Models ΔV I ΣI E CP PO σPO MPO σMPO Auto%

Tr 4, 3, 1, 1 8, 9, 3, 4 24 6, 8, 8, 8 - 35, 63, 16, 13 19.9 7, 18, 6, 5 5.2 72%

TrS12 3, 4, 1, 1 4, 15, 3, 4 26 6, 8, 8, 8 0, 0, 0, 0 8, 85, 33, 13 30.5 1, 23, 9, 5 8.3 73%

TrSS12 4, 3, 1, 1 8, 13, 3, 4 28 6, 8, 8, 8 0, 0, 0, 0 36, 53, 33, 13 14.2 7, 16, 9, 5 4.1 71%

TrS23 4, 1, 3, 1 8, 2, 10, 4 24 6, 7, 8, 8 0, 5, 0, 0 35, 25, 61, 15 17.1 7, 6, 19, 6 5.5 72%

TrSS23 4, 3, 1, 1 8, 9, 3, 4 24 6, 8, 8, 8 0, 9, 0, 0 35, 65, 16, 23 18.7 7, 16, 5, 10 4.2 73%

TrS34 4, 3, 1, 1 8, 9, 1, 6 24 6, 8, 8, 8 0, 0, 4, 0 28, 45, 5, 19 20.0 7, 18, 2, 10 5.8 72%

TrSS34 4, 3, 1, 1 8, 9, 2, 6 25 6, 8, 8, 8 0, 0, 4, 0 35, 63, 7, 25 20.3 7, 18, 2, 9 5.8 72%

TrR 1, 1, 3, 4 1, 3, 6, 17 27 2, 2, 7, 8 0, 0, 1, 0 2, 7, 13, 94 37.7 0, 2, 2, 28 11.6 72%

TrRR 4, 3, 1, 1 8, 11, 5, 3 27 7, 8, 8, 8 0, 0, 1, 0 36, 49, 19, 6 16.3 9, 15, 5, 2 4.9 72%

obtained for another decomposed strategy that introduces OCC, rsrtbl, resbl,
and resrt one-by-one (i.e. in the reversed order of Tr1DA). Rows 5 and 7
(Tr1DMA and Tr1DMB) show the results obtained for a strategy constructed
by merging the four steps of Tr1DA and Tr1DB, respectively.

By comparing Tr1 and others, we see no difference in the total numbers
of variables and events, but an increasing number of invariants. From ΣPO,
we see no significant difference from Tr1 except for Tr1DB. This is because 9
CPs (as guards) and related POs were generated by following the RS of Tr1DB
([{OCC}, {rsrtbl}, {resbl}, {resrt}]). As column MPO shows, these new POs
were simple enough for automatic provers to discharge. We can see that we
succeeded in distributing variables, invariants, and POs over several steps by
decomposition. Therefore, we consider that the results support Hypotheses 2–4.

Table 2 shows the experiment results on the order in which variables are
introduced. In this table, standard deviations of PO and MPO (σPO and σMPO)
are shown. Row 1 (Tr) shows the results obtained with the original strategy.
Rows 2–3, 4–5, 6–7 (TrSn(n + 1), TrSSn(n + 1)) show the results obtained by
swapping steps 1–2, 2–3, and 3–4, respectively. Rows 8–9 (TrR, TrRR) show the
results obtained by reversing. ΔV of the swapped or reversed models’ strategy
are simply swapped or reversed numbers of ΔV of Tr.

We see no significant differences in ΣI. It is interesting that there are steps
with a large number of invariants in TrS12 (second step) and TrR (fourth step).
Both of them introduce four variables introduced in the first step of the orig-
inal strategy ({resrt, resbl, rsrtbl, OCC}). This is because those variables are
frequently used in the invariants. It is also found that the steps with a large
number of invariants (the second step of TrS12 and the fourth step of TrR) have
a large number of POs (PO and MPO), and result in high standard deviations
of those strategies. Thus, we consider that the result supports Hypothesis 5.

Summary. (1) Strategies with more steps have more POs in total but distribute
POs well, especially if strategies are carefully chosen taking dependence into con-
sideration. This is preferable as discussed in Sect. 4.1. (2) Due to the dependence
of invariants on variables, the order in which variables are introduced affects vari-
ance of invariants and POs. In general, important variables that are written in
many invariants should be introduced in early steps.



Analysis on Strategies of Superposition Refinement of Event-B Specifications 369

5 Discussion

5.1 Effects of Refactoring to POs

Refactoring adds several POs to the original models and also removes several
POs from the original models. Generating CPs by refinement decomposition
results in the generation of new POs related to the CPs. However, as CPs can
be seen as lemmas, the generation of CPs helps automatic provers to discharge
difficult POs. In addition, as we saw in Sect. 4.3, refinement merging removes
several GRDs and SIMs.

Although changing the order of a strategy (such as swapping and reversing)
involves slicing and generation of CPs, several POs are removed through it. In
fact, TrR (reversed) has 116 POs but Tr (original) has 127 POs. We found that
several POs about consistency between two models (such as GRD and SIM) are
removed through the changing order. This is because concrete and strong guards
(which were originally introduced in later steps) are introduced in early steps
after changing order, and thus there is no need to strengthen them in later steps.

5.2 Dependence of Invariants on Variables

As we saw in experiments on the order of refinement strategies, dependence of
invariants on variables is important for detailed analyses on complexity mit-
igation with refinement. The dependence is obviously problem specific. Thus,
changing the order of strategy will not have much effect if the dependence is not
strong.

The dependence also strongly affects whether an invariant is dropped in
slicing (i.e., whether CP is generated). To analyze this, not only variables in an
invariant but also the structure of the invariant is important. For example, an
invariant inv1: f ∈ a → b, which means that “f is a total function from a to
b”, limits the value of f . Although variables a and b appear in inv1, the values
of them are not limited by inv1. Therefore, inv1 can be a hypothesis in a proof
related to f but it cannot be a hypothesis in a proof related to a or b. Because
CP is generated by a lack of hypothesis in a proof, we need to consider whether
the value of a variable is limited by an invariant.

Our future work will include detailed analyses on refactoring while taking
dependence into consideration.

5.3 Use of Automated Refactoring in Development

We also consider that search for a good refinement strategy is important in
development process. Automated refinement refactoring can be used to search
for a desirable strategy to improve flexibility against change and actually refactor
models. However, CPs generated by the current method are sometimes redun-
dant or non-human-friendly. Therefore, we are planning to improve our CP gen-
erator so that it will not only generate correctly but also be easy to understand.
Possible approaches include applying metrics of formula understandability and
a method to generate simple interpolants [3].



370 T. Kobayashi and F. Ishikawa

5.4 Threats to Validity

Internal Validity Threats. Our analyses rely on artificial data constructed
with our method. Thus the method, in particular the CPs it generates, may have
affected the obtained results. However, we carefully designed the experiment
to eliminate the effect of CPs (such as double-reversing). We also discussed
how refactoring would affect POs (Sect. 5.1). Therefore, although user studies
for further analyses are included in our future direction, we conclude that the
analyses given in this paper are valid.

Additionally, from the experiment results obtained on changing the order
of the refinement strategy, we concluded that introducing important variables
in early steps is effective in reducing complexity. Although this claim seems
natural, the complexity increased by refactoring in every case we examined. In
other words, we didn’t see any mitigation of complexity with refactoring. This
is because the original models were constructed by experienced modelers in an
ideal order (i.e., important variables were introduced in early steps). Therefore,
we are planning to use models in which variables were introduced in a bad order
to confirm the method’s validity.

External Validity Threats. In terms of generalization, there may be a concern
about the variations and practicality of the materials we used in the experiments.
For variations, we believe our findings about granularity and order are general
enough and not domain-specific. In terms of practicality, in fact, the models
were constructed by experienced modelers. Although we believe the models are
appropriate for examining our general findings, analyses on models constructed
by inexperienced modelers would be an interesting subject for future work.

Construct Validity Threats. For the sake of simplicity, we used local model
complexity and proof complexity as evaluation criteria. However, we were aware
that strategies that have atomic steps (e.g., those that introduce only one vari-
able in one step) are not optimal. Too much decomposition of refinement often
causes models that lack conceptual integrity and have many meaningless POs.
Thus, although our findings show that decomposing refinement steps tend to be
effective, we will also consider costs of long refinement chains in our future work.

6 Related Work

There have been studies to connect Event-B models with other modeling meth-
ods and requirement analysis methods, such as UML [10] and KAOS [8]. Because
such modeling methods are widely used, there have been analyses that studied
the design of such models, such as decomposition into components and refine-
ment in KAOS. In particular, in the area of object-oriented design, such stud-
ies [11] have been very active. However, by connecting Event-B models and other
modeling methods and analyze models in other notations, the expressiveness of



Analysis on Strategies of Superposition Refinement of Event-B Specifications 371

model is limited to that of other modeling notations. More importantly, analy-
sis methods do not consider proof obligations, which need to be considered for
formal refinement. Therefore, Event-B’s flexible and rigorous formalism cannot
be handled with such methods.

There have been case studies of Event-B modeling by experts [1,4]. The
study in [4] is particularly interesting because multiple researchers have con-
structed different Event-B models for the same subject problem. Their models
are sophisticated and good learning materials for other developers. However,
they do not explain why the strategies they used are better than other possible
strategies. There are also guidelines of Event-B modeling for subjects of a par-
ticular domain [13]. Although their guides are detailed, they are domain-specific
and not applicable to other areas. It will be interesting to analyze more subjects
of their models with our method because they are good examples of experts’
models.

Our previous work [6] proposed evaluation criteria of refinement strategy
based on the number of variables, and a planning method to distribute intro-
duction of variables as much as possible. However, it is not applicable in realistic
situation because the planner requires a list of invariants and variables before
constructing models. In addition, the planning method is conceptual, and cannot
handle details of model and POs, which are necessary in empirical analyses.

Our approach in this paper establishes a method to construct a consistent
models and analyze them by automating our refactoring method. By using the
automatic refactoring, we succeeded in comparing and discussing refinement
strategies, considering predicates and POs by using actual Event-B models. As
a result, general and domain-independent findings about refinement strategies
were obtained. Our method also enables developers to search the design space
of Event-B models constructed in development.

7 Conclusion and Future Work

Our goal was exploration and analysis on the design space of Event-B’s flexi-
ble superposition refinement, which have never studied in the formal methods
area. To this end, we provided an automatic method to construct a consistent
refactored model from given models according to given refinement strategies.
We defined heuristics and applied Craig’s interpolation to generate predicates
to resolve inconsistencies occurring through the changing of a refinement strat-
egy. As this enabled us to flexibly change the refinement strategy of a given
model, we conducted an experiment in which we compared models constructed
by following various refinement strategies from the viewpoint of complexity. As
a result, we found that doing fine-grained refinement and introducing frequently
used variables to the model earlier are effective to reduce complexity of modeling
and verification of each step. In addition, we discussed the effects that refactor-
ing would have on complexity and dependence between predicates and variables.
We conclude that our method and experiments will benefit Event-B modelers
designing refinement strategies.



372 T. Kobayashi and F. Ishikawa

Our future work will primarily proceed in two directions. The first will be to
analyze the relationship between dependence and refinement strategies to make
our design space exploration more sophisticated. The second will be to conduct
user studies and compare the result with that of our experiment to check the
validity.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.-R.: Train system. http://deploy-eprints.ecs.soton.ac.uk/124/
3. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith,

H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39799-8 22

4. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V.,
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07512-9 1

5. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

6. Kobayashi, T., Ishikawa, F., Honiden, S.: Understanding and planning Event-B
refinement through primitive rationales. In: Ait Ameur, Y., Schewe, K.D. (eds.)
Abstract State Machines, Alloy, B, TLA, VDM, and Z. LNCS, vol. 8477, pp. 277–
283. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43652-3 24

7. Kobayashi, T., Ishikawa, F., Honiden, S.: Refactoring refinement structure of
Event-B machines. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 444–459. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 27

8. Matoussi, A., Gervais, F., Laleau, R.: A goal-based approach to guide the design
of an abstract Event-B specification. In: 16th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS), pp. 139–148. IEEE (2011)

9. Requet, A.: BART: a tool for automatic refinement. In: Börger, E., Butler, M.,
Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 345–345. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87603-8 33

10. Said, M.Y., Butler, M., Snook, C.: Language and tool support for class and state
machine refinement in UML-B. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009.
LNCS, vol. 5850, pp. 579–595. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-05089-3 37

11. Subramanyam, R., Krishnan, M.S.: Empirical analysis of CK metrics for object-
oriented design complexity: implications for software defects. IEEE Trans. Softw.
Eng. 29(4), 297–310 (2003)

12. Tarasyuk, A., Pereverzeva, I., Troubitsyna, E., Latvala, T.: The formal derivation
of mode logic for autonomous satellite flight formation. In: Koornneef, F., van
Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9337, pp. 29–43. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24255-2 4

13. Yeganefard, S., Butler, M., Rezazadeh, A.: Evaluation of a guideline by formal
modelling of cruise control system in Event-B. In: Proceedings of the Second NASA
Formal Methods Symposium (NFM 2010), pp. 182–191. NASA, April 2010

http://deploy-eprints.ecs.soton.ac.uk/124/
https://doi.org/10.1007/978-3-642-39799-8_22
https://doi.org/10.1007/978-3-319-07512-9_1
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-43652-3_24
https://doi.org/10.1007/978-3-319-48989-6_27
https://doi.org/10.1007/978-3-319-48989-6_27
https://doi.org/10.1007/978-3-540-87603-8_33
https://doi.org/10.1007/978-3-642-05089-3_37
https://doi.org/10.1007/978-3-642-05089-3_37
https://doi.org/10.1007/978-3-319-24255-2_4

	Analysis on Strategies of Superposition Refinement of Event-B Specifications
	1 Introduction
	2 Superposition Refinement in Event-B
	2.1 Event-B and Superposition Refinement
	2.2 Modeling in Event-B
	2.3 Example: Cars on the Bridge

	3 Automated Refinement Refactoring
	3.1 Refinement Refactoring
	3.2 Automation with Heuristics

	4 Experiments on Models Constructed with Refactoring
	4.1 Evaluation Criteria
	4.2 Comparison Settings and Hypotheses
	4.3 Results

	5 Discussion
	5.1 Effects of Refactoring to POs
	5.2 Dependence of Invariants on Variables
	5.3 Use of Automated Refactoring in Development
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	References




