
Deriving Mode Logic for Autonomous
Resilient Systems

Inna Vistbakka1(B), Amin Majd1, and Elena Troubitsyna1,2

1 Åbo Akademi University, Turku, Finland
{inna.vistbakka,amin.majd}@abo.fi

2 KTH, Stockholm, Sweden
elenatro@kth.se

Abstract. Ensuring system resilience – dependability in presence of
changes – is a complex engineering task. To achieve resilience, a system
should not only autonomously cope with non-deterministically chang-
ing internal state and external operating conditions but also proactively
reconfigure to maintain efficiency. To facilitate structuring and verifying
such complex system behavior, in this paper, we demonstrate how to
derive resilience-enhancing mode transition logic from the goals that the
system should achieve. Our approach is formalised in Event-B that allows
us to reason about resilience mechanisms at different architectural levels.
We illustrate the proposed approach by an example – safe and efficient
navigation of a swarm of drones.

1 Introduction

Resilience [6] is an ability of a system to deliver its services in a trustworthy
way despite changes. Often resilience is reasoned about using the notion of goals
– functional and non-functional objectives that a system should achieve [5].
Resilience can be seen as an ability of a system to reach its functional goals or
maintain a required level of satisfaction of non-functional goals (e.g., efficiency).

A resilient system should autonomously, i.e., without a human intervention,
recognise the changes, evaluate their impact on reachability and degree of satis-
faction of goals and adapt. The adaptation process, either triggered by failures
of system components or external changes, usually requires complex component
coordination and system reconfiguration. Due to highly non-deterministic nature
of the system and a large number of components (especially in such autonomous
systems as swarms of drones), ensuring correctness of component interactions
and the overall system resilience is a challenging and error-prone task.

In this paper, we propose an approach to a formal development of resilient
autonomous systems. Our approach allows a developer to derive a resilience-
enhancing mode logic in a structured disciplined way. We use modes [7] as a main
mechanism to structure system behaviour. The goals, which the system should ful-
fil, serve as a basis for defining the mode transition logic. We formally define reach-
ability conditions for functional goals and degree of satisfaction of non-functional
ones. Changes in complying to these conditions trigger mode transitions.
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 320–336, 2018.
https://doi.org/10.1007/978-3-030-02450-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_19&domain=pdf

Deriving Mode Logic for Autonomous Resilient Systems 321

We consider distributed autonomous systems that are composed of asyn-
chronously communicating heterogeneous components – agents. Each agent has
certain capabilities. Our goal reachability and degree of satisfaction conditions
are defined as corresponding functions over the agent capabilities.

Since mode transitions, in general, incur complex agent coordination and sys-
tem reconfiguration, we need a formal structured approach to ensure correctness
of mode transition logic. In this paper, we rely on Event-B [1] – a state-based
approach to correct-by-construction system development to specify and verify
mode logic. We propose a specification pattern for modelling mode transitions
triggered by changes in reachability and degree of satisfaction conditions.

The main development technique of Event-B – refinement – supports step-
wise construction and verification of complex specifications and allows us to
iteratively use the proposed pattern at different architectural levels. In the refine-
ment process, a high-level abstract specification is incrementally augmented to
unfold the entire multi-layered architecture and coordination between the com-
ponents at different levels of architectural hierarchy. The approach is illustrated
by an example – development of a resilient swarm of drones. Abstraction, refine-
ment and proofs as well as automated tool support allow us to scale the formal
development to such complex autonomous systems.

2 Modelling and Refinement in Event-B

Event-B is a state-based formal approach that promotes the correct-by-
construction development paradigm and formal verification by theorem proving.
In Event-B, a system model is specified using the notion of an abstract state
machine [1]. An abstract state machine encapsulates the model state, repre-
sented as a collection of variables, and defines operations on the state, i.e., it
describes the dynamic behaviour of a modelled system. The important system
properties to be preserved are defined as model invariants. A machine usually
has the accompanying component, called context. A context may include user-
defined carrier sets, constants and their properties (defined as model axioms).

The dynamic behaviour of the system is defined by a collection of atomic
events. Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, and (the event guard)
Ge is a predicate over the model state. The body of an event is defined by
a multiple (possibly nondeterministic) assignment to the system variables. In
Event-B, this assignment is semantically defined as the next-state relation Re.
The event guard defines the conditions under which the event is enabled, i.e.,
its body can be executed. If several events are enabled at the same time, any of
them can be chosen for execution nondeterministically.

Event-B employs a top-down refinement-based approach to system develop-
ment. A development starts from an abstract specification that nondeterminis-
tically models the most essential functional system behaviour. In a sequence of

322 I. Vistbakka et al.

refinement steps, we gradually reduce nondeterminism and introduce detailed
design decisions. In particular, we can add new events, refine old events as well
as replace abstract variables by their concrete counterparts.

The consistency of Event-B models – verification of model well-formedness,
invariant preservation as well as correctness of refinement steps – is demonstrated
by discharging the relevant proof obligations. The Rodin platform [17] provides
tool support for modelling and verification. In particular, it automatically gen-
erates all required proof obligations and attempts to discharge them. When the
proof obligations cannot be discharged automatically, the user can attempt to
prove them interactively using a collection of available proof tactics.

3 Resilience-Enhancing Mode Transition Logic

To achieve resilience, an autonomous system should be able to adapt to non-
deterministically changing internal state and external operating conditions. In
our work, we study reconfigurability as an essential mechanism of achieving
resilience of autonomous distributed systems. Since the collaborative aspect of
the component behaviour is important for our study, we adopt the agent-based
approach, i.e., we consider the system components as agents and the overall
system as a multi-agent system [10], correspondingly.

Agents are autonomous heterogeneous components that asynchronously com-
municate with each other. Each agent has a certain functionality within a sys-
tem and contributes to achieving system goals. Goals are the functional and
non-functional objectives of a system [5]. Goals constitute suitable basics for
reasoning about the system behaviour and its resilience. Resilience can be seen
as a property that allows the system to progress towards achieving its functional
goals or maintain a required level of satisfaction of non-functional goals.

The goal-oriented framework provides us with a suitable basis for reasoning
about reconfigurable autonomous systems. We formulate reconfigurability as an
ability of agents to redistribute their responsibilities to ensure goal reachability or
contribute to goal satisfaction. Next we discuss how notions of goals and agents
can be used to reason about behaviour of an autonomous resilient system.

3.1 Reasoning About Resilience-Enhancing Mode Transitions

We assume that there is a number of main (global) goals defined for the system.
Let G = {G1 ,G2 , . . . ,Gn} be a set of functional and non-functional goals that
system should achieve. Goals can be decomposed into a subset of corresponding
subgoals and organised hierarchically. In general, the goals can be independent
and might even be seen as conflicting.

The system consists of a number of agents (components, in general). Let
A = {a1 , a2 , , . . . , am} be a set of system agents. To contribute to goal achieve-
ment, the agents have to utilise their capabilities. Let C = {c1 , c2 , , . . . , ck} be
a set of all agent capabilities. Then, for each agent, we can define the set of its
capabilities as a structure AC – agent capabilities – with the following property:

∀ ai : ai ∈ A ⇒ AC (ai) ⊆ C .

Deriving Mode Logic for Autonomous Resilient Systems 323

Agent failures make their capabilities unavailable. In the similar way, the changes
in the operating environment might prevent an agent from utilising its capabil-
ities. Thus agent capabilities AC is a dynamic structure, i.e., during system
execution a set of current agent capabilities can vary.

Based on their capabilities, the agents perform the tasks contributing to
achieving the system goals. To associate such goals with the agent capabilities, we
define a logical function GC – goal reachability function over agent capabilities:

GC ∈ T × G × C → BOOL.

For every goal Gi ∈ G this function determines whether or not a certain capa-
bility ci ∈ C is required to achieve this goal Gi .

In general, a number and types of capabilities can vary depending on sys-
tem needs and overall goals. The examples of capabilities include “an ability
to collect data” or “an ability to send data”. As a result of agent failures or
change in operational conditions, some agent capabilities might become unavail-
able. “Degradation” of any agent capability might also slow down or aggravate
the goal achievement or goal maintenance process.

To detect any changes in overall goal achievement, we also introduce a fitness
function GS – goal satisfaction function – that evaluates the level (degree) of
the goal achievement during system functioning:

GS ∈ T × G × C → REAL.

This function is also dynamic, i.e., its value depends on time and current available
capabilities of agents that can vary during system execution.

A decrease in goal satisfaction function as well as changes of logical goal func-
tion indicate hindering achieving the desired system goals. To achieve resilience,
a system should monitor its goals and reconfigure to maintain the required level
of goal satisfaction. In our work we propose to use modes as the main mechanism
for structuring the behaviour of the system [7]. Modes define coarse-grained rep-
resentation of system behaviour. Changes in system states trigger a change of a
mode – a mode transition. In our work, we propose to connect the states of the
system agents with the goals and trigger a mode transition every time when the
level of satisfaction of system goals changes. Thus the goals, which the system
should fulfil, serve as a basis for defining the mode transition logic.

To achieve resilience, the system architecture should contain a monitor for
detecting internal and external changes and evaluating their impact on the logical
goal function or goal satisfaction function. As a result of impact evaluation, a
mode transition might be triggered. We say that a mode transition is triggered
whenever the following condition (*) holds:

(GC (t1 ,Gi , ci) = TRUE ∧ GC (t2 ,Gi , ci) = FALSE) ∨
(GS (t2 ,Gi , ci) < GS (t1 ,Gi , ci)),where t1 < t2 . (*)

Naturally, the condition (*) serves as a condition on a mode transition: when a
logical goal condition on the required capability for a goal has been broken or

324 I. Vistbakka et al.

a degree of goal satisfaction lowered from the previous monitored cycle, mode
transition is triggered.

In case of a logical goal condition violation (first part of (*)), a transition
to the nominal mode, will be triggered as soon as the logical goal condition on
capability will be re-established. In its turn, when the goal satisfaction function
again reaches the necessary (desired) level the transition back, to the nominal
mode, will be triggered.

As discussed earlier, we consider reconfiguration to be the essential mecha-
nism of achieving resilience of autonomous systems. It is triggered by the corre-
sponding mode transition. The reconfiguration is based on reallocation of respon-
sibilities between agents to ensure that the healthy (i.e., operational) agents can
either substitute the failed ones or be utilised more efficiently to partially cover
up for them. Obviously, reconfiguration requires a sophisticated agent coordina-
tion. To reason about correctness of agent coordination, we propose an Event-B
specification pattern for modelling mode transitions triggered by changes in goal
reachability and degree of satisfaction conditions.

3.2 Modelling Mode Transitions in Event-B

To derive a mode-structured coordination scheme for an autonomous resilient
system, we rely on formal modelling in Event-B. We represent the introduced
above notions and definitions in terms of the corresponding Event-B elements.
Then we derive a generic specification pattern that can be used to model
resilience mechanisms at different levels of abstraction.

Event-B separates the static and dynamic parts of a model, putting them into
distinct yet dependent components called a context and a machine. All the static
notions of our reasoning include the set of all possible goals, agents and capa-
bilities (G , A and C , respectively) as well as different static structures defining
various interdependencies between elements. The latter include (initial) values
for agent capabilities, logical goal function on capabilities and goal satisfaction
function (AC init, GC init and GS init, correspondingly). We introduce static
notions as sets and constants of a model context and define their properties as
a number of context axioms. The corresponding context is presented in Fig. 1.

Context ARSystem cnt
Sets G,A,C ,MODES , ...

Constants AC init,GC init,GS init, ...

Axioms
...
axm4: G �= ∅

axm5: A �= ∅

axm6: C �= ∅

axm7: AC init ∈ A → P(C)
axm8: GC init ∈ G × C → BOOL
...

Fig. 1. A generic structure of the specification pattern: context part

Deriving Mode Logic for Autonomous Resilient Systems 325

Machine ARSystem Abs Sees ARSystem cnt
Variables mode,AC,GC,GS prev,GS, status, ...

Invariants mode ∈ MODES ∧ AC ∈ A → P(C) ∧ GC ∈ G × C → BOOL ∧ ...

Events ...

AgentFailure ̂ noitcetederuliaftnega//=
any ai, ci
where ai ∈ A ∧ ci ∈ AC(ai) ∧ ...
then AC(ai) := AC(ai) \ {ci} || GC(gi, ci) := FALSE
end

ModeTransition ̂ edomnoitarugfinocercirenegaotnoitisnart//=
any ai, ci, gi
where mode=NOM ∧

(GC init(gi, ci) = TRUE ∧ GC(gi, ci) = FALSE) ∨ GS(gi, ci) < (GS prev(gi, ci)) ∨ ...

then mode:=RECONF
end

RestoreCapability =̂ // scheme of reconfiguration
any ai, gi, ci
where mode=RECONF ∧ (GC(gi, ci) = FALSE ∧ GC init(gi, ci) = TRUE)...
then AC(ai) := AC(ai) ∪ {ci} || GC(gi, ci) := TRUE
end

NominalModeTransition ̂ edomlanimonehtotkcabnoitisnart//=
any gi, ci
where mode=RECONF ∧ (GC init(gi, ci) = GC(gi, ci) ∧ GS prev(gi, ci) ≤ GS(gi, ci))...
then mode:=NOM
end

Fig. 2. A generic structure of the specification pattern: machine part

The system dynamics is modelled by the events in the machine of the Event-
B specification. The related notions – logical goal function and goal satisfaction
function, the mode transition conditions, mode transitions, agent failures etc. –
are represented as model variables, invariants, predicate expressions, or specific
events. GC and GS can be represented as the system variables whose values
might be changed during system functioning modelled as an execution of events.
The general structure of the abstract Event-B specification is shown in Fig. 2.

To model possible agent failure and, as a consequence, the loss of some agent
capability, we define an event AgentFailure. This event models non-deterministic
failure of ai agent. As a result of an event execution, a capability ci will be lost.
When the monitored component detects such a change as violation of logical goal
function, it triggers a dedicated mode transition. This behaviour is specified by
an event ModeTranstion. Here, in the event guard, we formulate a condition on
the event to fire (this condition is based on the logical expression (*) with small
modifications). We check that the capability ci, required to accomplish a goal
gi, is not available any more (or, in general, the level of fitness function has
been decreased). We store the current value for goal satisfaction function in GS
variable, while its previous value in the variable GS prev. Then RestoreCapability
and NominalModeTransition events model a simple case of agent reconfiguration
(as a restoring of the lost capability) and a transition back to the Nominal mode.

Let us note that in this specification pattern we consider a simple case of
reconfigurability – when an agent is able to restore its capability by itself (e.g.,
restoring communication after a transient communication failure). In more com-
plex cases (as we will discuss in Sects. 4 and 5), reconfiguration can be based on
agent cooperation, and might involve changes in relationships between agents.

326 I. Vistbakka et al.

The presented design Event-B pattern only reflects the main concepts of the
goal-based mode transition logic and represents generic modelling solutions that
can be reused in the development of resilient autonomous systems. In the next
section we demonstrate how to derive mode transition logic using the proposed
approach for a swarm of drones. Further, in Sect. 5, we present its Event-B
development relying on the generic specification pattern described above.

4 Autonomous Swarm-Based System

The swarms of drones are increasingly used for surveillance, shipping, rescue etc.
A swarm is a group of drones that, in a coordinated manner, executes a mission.
For instance, a mission can be “video surveillance of a certain area”. A video
surveillance mission can be represented by a (generic) goal:

G1 : Periodically send the images covering certain sectors of the monitored area.
For a swarm of drones, we can identify the following generic subgoals con-

tributing to achieving the overall goal G1 :
G2 : Produce the payload data (e.g., images) with the required quality level.
G3 : Guarantee survivability of drones allowing them to complete the mission.

To achieve G3 , we have to ensure that the following subgoals are satisfied:
G4 : The drones do not prematurely deplete their batteries, i.e., they are navi-
gated in an efficient way.
G5 : The drones do not collide with each other and static obstacles.
G6 : The drones do not collide with the unforeseen dynamically appearing objects.

The goals are interdependent and might even be seen as conflicting, e.g.,
the travel distance has to be increased to guarantee safety and produce the
payload data of the required quality. Hence, the controlling software should rely
on sophisticated coordination mechanisms to ensure that all the goals remain
satisfiable thought the mission execution.

The system architecture is presented in Fig. 3. The decision center (DC) – is
an intelligent component which is responsible for generating the efficient naviga-
tion strategies according to the mission goals and preventing unsafe behaviour,
i.e., it navigates the drones to avoid collisions with each other and static obsta-
cles. DC runs high-performance machine learning and evolutionary algorithms
proposed in our previous work [8,9]. They allow us to safely navigate the drones
and optimise travel distance, resource consumption and quality of payload data
ratio. The algorithms ensure inter-drone and drone-obstacle collision avoidance.

At each cycle DC receives the payload (e.g., imaging) and telemetry data
from the swarm and processes this information and if required, generates a new
routing for the swarm. The information obtained from the Dynamic Monitoring
component allows DC to detect the changes in the drone swarm and in the flying
zone. Such changes may invoke swarm reconfiguration and regeneration of the
drone routes.

The Navigation Centre (NC) communicates with the drones by sending them
the flying plan received from DC. In their turn, the drones periodically send their

Deriving Mode Logic for Autonomous Resilient Systems 327

Fig. 3. Overview of a system architecture

payload and telemetry data (current status, position, battery level, etc.) to NC,
which packages them, (sometimes) preprocesses and forwards to DC.

Drones communicate with NC and each other in order to achieve their indi-
vidual and common goals. Since communication with NC is typically long range,
it consumes significant energy. To alleviate the problem of fast energy depletion,
the swarm of the drones can be organised hierarchically and form a tree-structure
depending on its different capabilities: more powerful drones – the leaders and
less powerful drones – the slaves – that communicate with their leaders using less
power consuming means. Moreover, we distinguish a sink drone – a dedicated
leader drone – what besides area monitoring tasks transmits data between NC
and drones at the leader level. The drones of the leader level send data to the
sink. Each leader has a number of slave drones and periodically gathers infor-
mation from its corresponding slaves. Finally, drones of the slave level exchange
information with their leaders and receive new commands. Since some drones
might change their predefined routes or even fail, to maintain an efficient drone
configuration, at each cycle DC assesses the current state of the swarm and
might reconfigure the tree.

Moreover, each drone (at any level) has its own local collision avoidance
mechanism – drone reflexes computation module – a module that overrides the
goals received from DC and commands a drone to move away when a camera or
radar of a drone detects an obstacle. When a drone detects a possible collision
with an unforeseen obstacle, the reflexes computation module quickly computes
a reflex movement for a drone to prevent or mitigate the collision.

The top-most layer – DC – is responsible for achieving goals G3–G5 , i.e., it
controls the swarm to ensure quality, efficiency and implement preventive safety.
The on-board drone software is responsible for satisfying goal G2 and G6 , in
the latter case implementing defensive safety.

Next we discuss the coordination of drones and their collaborative behaviour
as well as the resilience aspect of controlling the swarm of drones.

328 I. Vistbakka et al.

4.1 Mode Transition Logic for a Swarm of Drones

Before deriving a mode transition logic for the discussed swarm of drones using
the approach presented in Sect. 3, let us now describe the capabilities of drones
of the different levels:

– The drones of the slave level have the capabilities to:
• collect data from the assigned sectors of the monitored area;
• send the collected data and house keeping data to the next drone level.

– The drones of the leader level have capabilities to:
• collect data from the assigned sectors of the monitored area;
• aggregate data received from the slave drone level;
• send all collected data to the sink level.

– Finally, the sink drone has capabilities to:
• collect data from the assigned sectors of the monitored area;
• aggregate data received from the drones of the leader level;
• send all collected data to NC.

Such capabilities allow a drone of any layer to achieve its goals and contribute
to the overall goal achievement and maintenance. However, failures of the drones,
communication loss as well as changes in the operating environment affect the
level of satisfaction of the system goals as discussed in Sect. 3.

In nominal situation (called Nominal mode), the drones fly according to the
plan issued by DC. Upon receiving new commands from DC the drones change
their current routes and perform reconfiguration if it is commanded by DC. In
this case, reconfiguration means that logical relationships between the drones
(i.e., sink-leader and leader-slave relationships) might be changed according to
a new update of a drone tree structure recalculated by DC.

Next we will analyse the factors affecting the goal satisfaction and define the
corresponding mode logic that allows the system to achieve the overall system
goals despite failures and deviations.

Appearing an Unpredictable Obstacle. Unpredictable obstacles appearing
in a drone flying zone might prevent a drone from achieving the goal G6. Thus,
when a drone detects a possible collision with an unforeseen obstacle, the mon-
itoring component evaluates the goal satisfaction function and issues a transi-
tion to the Reflection Activation mode. The drone reflexes computation module
quickly computes a reflex movement for a drone to prevent and mitigate the col-
lision. After the collision is avoided, the goal satisfaction function is recalculated
and a transition to the Nominal mode is triggered.

Local Communication Failure. Each drone has capabilities to identify its
local communication failure. Communication failure might prevent a drone from
achieving the goal G2. When a drone detects such a failure, the goal satisfaction
function is recalculated and a transition to the Local Communication Failure
mode is triggered. Upon this transition, every drone should move to reconnect
with NC and reunite with a swarm. This is a self-triggered mode transition, i.e.,
the drones perform it independently upon detection of a failure. When a drone

Deriving Mode Logic for Autonomous Resilient Systems 329

re-establish connection with a swarm, satisfaction function will be recalculated
and a transition to the Nominal mode is triggered.

Slave Failure. A slave failure prevents a drone from achieving the goal G2.
Upon detection a slave failure (by the corresponding leader drone), the satis-
faction function is recalculated and the Slave Failure mode is triggered. This is
a local leader-triggered mode transition meaning that it does not affect other
drones. The leader drone tries to re-establish connection with the failed slave
drone within the time bound period and, in case of unsuccessful outcome con-
siders this slave as failed. Further, the health status of every slave will be trans-
mitted to the sink drone and finally will reach DC. Let us note, that if the failed
slave was a candidate for the next leader then the new candidate is recalculated.

Leader Failure. In case of a leader failure (that affects achieving G2),
detectable by the sink drone, the sink should trigger the Leader Failure mode
transition. The corresponding reconfiguration procedure is performed to substi-
tute the failed leader by the predefined slave of the failed leader.

Sink Failure. NC is able to identify the health status of the sink drone. In case
of a sink failure, the satisfaction function will be recalculated and NC triggers a
transition to the Sink Failure mode. A sink failure can have severe consequences
and might prevent a system from achieving all G1–G6 goals. The reconfigura-
tion is triggered to substitute the failed sink by the predefined leader. In this
case, NC retransmits the DC commands to the “new” sink. Moreover, if the
leader drones detect a sink failure before NC does, all healthy leaders should
issue the commands to its corresponding slaves to slow down the flying speed.

Despite the small number of modes, the mode logic is complex due to the
highly non-deterministic nature of the conditions triggering mode transitions.
Ensuring correctness of coordinated behaviour of a collaborative swarm of drones
is a challenging engineering task. To approach it in a systematic rigorous way,
we rely on Event-B and its main development technique – refinement. In the
next Sect. 5, we will demonstrate how to derive and verify properties of the
multi-layered drone coordination in a structured rigorous way.

5 Formal Development of a Resilient Swarm of Drones

In this section, we outline the formal development of the coordinated mode logic
for the discussed swarm of drones in Event-B. The full development can be found
in [21]. We start from specifying the high-level general requirements and unfold
the entire coordination logic in the refinement process.

Abstract Model. The initial model represents the global control cycle spanning
over all layers of the architecture shown in Fig. 4. At each cycle, DC analyses the
telemetry data and either maintains the previously calculated routing or generate
a new one. The routing commands are transmitted from DC to NC and then
from NC to the sink. Next, the sink broadcasts the received information to all
the drones at the leader level. In its turn, upon receiving commands from the
sink each leader further distributes the commands to its corresponding slaves.

330 I. Vistbakka et al.

Fig. 4. System layered architecture

Once per cycle, the collected information about the monitored area and
housekeeping data (e.g., battery level) are sent by slaves to their correspond-
ing leaders. When all the required information is gathered by the leaders, they
transmit data to the sink. Then the sink drone sends this information to NC and,
NC forwards it to DC. DC analyses the received data and, if it is needed, issues
the new commands to the drones as well as triggers the drone reconfiguration.

Next we refine the abstract model to represent the coordination required to
model mode transitions in all possible nominal and off-nominal situations and
the corresponding data flow.

Introducing Drones and Drone Failures. In our first refinement, we intro-
duce a representation of the behaviour of the system components, in particular,
we augment the specification by representation of drones and their failures. We
model the impact of such failures on the system dynamics and resilience. In this
case, reconfiguration would involve changing the relationships between drones
(at every layer) in order to optimise routing, coverage, energy and safety ratio.

We distinguish the permanent drone failure (e.g., due to a physical drone
damage) and transient drone failure (e.g., due to loss of communication). If
a transient failure occurred then after some time a drone (of any layer) can
restore the connection with the swarm and continue to function. This behaviour
is modelled by the transition to the Local Communication Failure mode and
then returning back to the Nominal mode.

In the case of a permanent drone failure (of any layer), the corresponding
drone of the upper layer or NC will detect this failure and, eventually, DC
will be notified about the loss in the swarm. In this case, the transition to the
corresponding Sink Failure, Leader Failure or Slave Failure mode is triggered.

In case of a leader failure, as a part of reconfiguration, some predefined slave
drone associated with the failed leader will become a new leader. When the other
leaders detect a failure of a leader, they send the corresponding commands to
their slaves to slow down their speed of the flying, until the new commands
from the DC will be issued. The scheme of the leader failure reconfiguration is
presented in Fig. 5.

Deriving Mode Logic for Autonomous Resilient Systems 331

Fig. 5. Leader failure

As a result of a transition to the Sink Failure mode, reconfiguration of the
system is also activated. Namely, the predefined leader drone becomes a new sink
and the predefined slave drone replaces it by becoming a leader. The impact of
the sink failure on the system architecture is represented in Fig. 6.

To model the behaviour described above, we refine our initial model by intro-
ducing a number of new variables, events and refining some abstract events. In
particular, we define variables to specify the set of all drones, leaders and slaves
and the sink drone (by corresponding variables drones, leaders, slaves, sink):

{sink} ∪ leaders ∪ slaves = drones, drones ⊆ SWARM .

Here the swarm is represented by a finite non-empty set of drones SWARM . It
can be seen as a set that contains the ids of all drones in the swarm.

The new variable slaves of leaders established the relationship between a
leader and slaves it supervises:

slaves of leaders ∈ leaders → P(slaves).

To model the health state of the drones, we introduce a variable status. It is
defined as a function:

status ∈ drones → STATUSES ,

where STATUSES is a set consisting of the constants OK , FAILED and
DISCON representing correspondingly the nominal, failed and disconnected

Fig. 6. Sink failure

332 I. Vistbakka et al.

drone status. In the system implementation, the decision about the drone status
is made on the basis of the analysis of the currently received telemetry data and
the routing plan. Let us note that we intentionally introduce statuses instead of
modelling drones capabilities. Such an abstraction of drone statuses allows us to
avoid introducing all drones capabilities of the different layers and to have only
three states covering all the cases that might effect goal achievement.

Performing this refinement step we apply our modelling pattern proposed in
Sect. 3. A number of new events are introduce to model possible drones failures
as well as system reaction on them. We introduce SINK Failure, SINK discon,
LEADER Failure, etc. Upon execution of these events, the value of status variable
is changed. As soon as a leader failure is detected, as modelled by the new event
LEADER FailureMode, then the “new” leader should be chosen from one of its
slave drones (modelled by LEADER Failure Reconfiguration event). In this case,
slaves of leaders as well as leaders, slaves and leader alt variables are updated.
Similarly, new events are introduced to model a slave and sink failure as well
as events modelling reconfigurations and transitions back to the Nominal mode.
An excerpt from the first refinement step is presented in Fig. 7.

At this refinement step we formulate and prove the correctness of coordinated
reconfiguration involving all the layers of the architecture. For instance, we prove
that no slaves become dispatched from some leader:

∀ sl. sl ∈ slaves ⇒ (∃ ld. ld ∈ leaders ∧ sl ∈ slaves of leaders(ld)).

Multi-level Drone Communication. The goal of our second refinement is to
introduce a communication model between the sink and NC as well as between
the drones. Next we discuss a simple communication scheme that can be instan-
tiated to implement communication between the drones at any level.

Lets consider Sink-Leader communication. At every cycle, the sink initiates
the communication with a leader. The sink checks status of a leader and if it is
OK, then the sink sends the data via the inter-drone communication link. Upon
delivery of the message, a leader updates its route commands and sends the
acknowledgement to the sink. In its turn, the sink waits for the acknowledgement
from a leader. Upon receiving the acknowledgement, the sink considers the data
transition to be successfully completed. If no acknowledgement is received, the
sink triggers the transition to Leader Failure mode.

The communication between the leaders and their slaves as well as between
NC and the sink can be implemented in the similar way.

Data Flow Modelling and Introducing Reflexes Mechanisms. In the
further refinement steps, we model data flow between all system components at
the different layers and also specify the local drone safety reflex mechanisms.

The goal of the mission is to produce the payload data. As a part of the
mission, the drones periodically send the collected data to DC. Upon receiving
these data, DC makes a decision to recalculate the current route commands or
restructure drone tree-structure. To reflect the required data flow, we introduce
a number of events and variables and refine our model.

Deriving Mode Logic for Autonomous Resilient Systems 333

Machine SwarmOfDrones m1 refines SwarmOfDrones m0 Sees SwarmOfDrones c1
Variables phase,mode, drones, sink , leaders, slaves, status, slaves of leaders, sink alt, ...

Invariants phase ⊆ PHASES ∧ mode ⊆ MODES ∧ drones ⊆ SWARM ∧ leaders ⊆ drones ∧
slaves ⊆ drones ∧ sink ∈ drones ∧ sink alt ∈ drones ∧
slaves of leaders ∈ leaders → P(slaves) ∧
∀ sl. sl ∈ slaves ⇒ (∃ ld. ld ∈ leaders ∧ sl ∈ slaves of leaders(ld)) ∧
status ∈ drones → STATUSES ∧ ...

Events ...

SINK Failure Reconfiguration =̂
any ld alt,new ld alt, sls

where ... ∧ mode=SINK FAILURE RECONF ∧ status(sink)=FAILED ∧
status(sink alt) = OK ∧ sls=slaves of leader(sink alt) \ {ld alt} ∧
ld alt=leader alt(sink alt) ∧ new ld alt ∈ sls

then
sink := sink alt
sink alt := ld alt
leaders := (leaders \ {sink alt}) ∪ {ld alt}
slaves := slaves \ {ld alt}
leader alt(ld alt) := new ld alt
slaves of leader := ({sink alt} �− slaves of leader) ∪ {ld alt → sls}

end

LEADER Failure Reconfiguration =̂
any ld, ld alt,new ld alt, sls

where ... ∧ mode = LEADER FAILURE RECONF ∧ ld ∈ leaders ∧
sls = slaves of leader(ld) \ {ld alt} ∧ ld alt = leader alt(ld) ∧
new ld alt ∈ sls ∧ status(ld alt) = OK

then
slaves of leader := ({ld} �− slaves of leader) ∪ {ld alt → sls}
leader alt(ld alt) := new ld alt

end
...

Fig. 7. The machine SwarmOfDrones m1

Moreover, for each drone, we model possibility to react on particular haz-
ardous situations – an unexpected appearance of an obstacle in the drone flying
zone. In our proposed approach, when a drone detects a possible collision with
an unforeseen obstacle, the drone safety reflex computation module quickly com-
putes a reflex movement for the drone to prevent the collision.

To model drone safety reflex mechanisms, first we model possibility of appear-
ing an obstacle in a drone flying zone (at any level of hierarchy). Then, upon
detection an obstacle, a drone triggers mode transition to the Reflection Acti-
vation mode. Let us note that the drones perform this transition autonomously
and independently upon detection of an obstacle. Upon triggering a transition
to this “local” mode, a drone computes the best safe position and moves there.
The nominal mode is restored after DC receives the update about the current
drone positions and calculates the routing for the swarm. We introduce the new
events Unpredictable Obstacle and Reflection Activation and refine the number of
old events, e.g., Update Local Routes (omitted due to the lack of space).

6 Related Work and Conclusions

During last decades the problem of resilience and motion safety of autonomous
robotic systems attracts significant research attention. A comprehensive

334 I. Vistbakka et al.

overview of the problems associated with autonomous mobile robots is given
in [18]. The analysis carried out in [20], shows that the most prominent routing
schemes do not guarantee motion safety. Our approach resolves this issue and
ensures not only safety but also efficiency of routing.

A layered architectural solution for robot navigation has been proposed in [3].
The authors focus on a problem of safe navigation of a vehicle in an urban
environment. Similarly to our approach, they distinguish between a global route
planning and a collision avoidance control. However, in their work, they focus
on the safety issues associated with the navigation of a single vehicle and do
not consider the problem of route optimization that is especially acute in the
context of swarms of robots.

Modelling and verification of a system architecture using Event-B in the
context of multi-agent and multi-robotic systems has also been investigated in
works [12–14]. Moreover, in [15] we verified by proofs correctness and safety
of agent interactions. In [4] the interactions between agents have been studied
using goal-oriented perspective. In this work, the roles were defined as agent
capabilities to perform certain tasks in order to accomplish the entire mission.

In this paper, we have presented a novel approach to formal modelling of
resilient autonomous systems. Our approach allows a designer to derive the
resilience-enhancing mode logic from the goals that the system should fulfil.
We have considered both functional and non-functional goals and demonstrated
how to define the conditions for monitoring goal reachability or degree of goal
satisfaction. Using multi-agent modelling paradigm, we have demonstrated how
to define such monitoring conditions as the functions over the capabilities of the
system component – agents. Furthermore, we have proposed a generic Event-
B specification pattern for modelling mode transitions triggered by changes in
the monitored conditions at different architectural layers and demonstrated how
to derive the complex mode-transition logic by refinement. The approach was
illustrated by a case study – deriving mode logic of a resilient swarm of drones.

Our formal development was greatly facilitated by the Rodin platform.
Reliance of refinement, proofs and powerful tool support has allowed us to derive
a specification of a complex distributed system in a systematic rigorous way. The
proposed technique is not constrained by the number of the architectural layers
or of system components. Hence, it can potentially scale to the development of
realistic autonomous systems.

In the future work, we are planing to extend our approach and focus on its
communication model. Indeed, communication is a critical aspect in ensuring
correct coordination and safety of the autonomous swarms of drones. To extend
the communication model we can rely on our approach discussed in [19].

During the presented in this work refinement process we arrived at a cen-
tralised specification of the multi-layered swarm-based system. Our next goal
can also focus on deriving its distributed implementation by refinement. We
can employ modularisation facilities of Event-B [2,16] to achieve this. We can
further decompose a system-level model and derive the interfaces of the drones
and guarantee that their communication supports correct coordination despite

Deriving Mode Logic for Autonomous Resilient Systems 335

unreliability of the communication channel and drones failures. To achieve it our
current work can be complemented with our approaches proposed in [11,19].

References

1. Abrial, J.R.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)
2. Iliasov, A., et al.: Supporting reuse in Event B development: modularisation app-

roach. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.)
ABZ 2010. LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11811-1 14

3. Macek, K., Govea, D.A.V., Fraichard, T., Siegwart, R.: Safe vehicle navigation in
dynamic urban scenarios. In: Proceedings of 11th International IEEE Conference
on Intelligent Transportation Systems, pp. 482–489. IEEE (2008)

4. Laibinis, L., Pereverzeva, I., Troubitsyna, E.: Formal reasoning about resilient goal-
oriented multi-agent systems. Sci. Comput. Program. 148, 66–87 (2017)

5. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
RE 2001, pp. 249–263. IEEE Computer Society (2001)

6. Laprie, J.: From dependability to resilience. In: 38th IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. G8–G9 (2008)

7. Leveson, N., Pinnel, L.D., Sandys, S.D., Koga, S., Reese, J.D.: Analyzing software
specifications for mode confusion potential. In: Human Error and System Devel-
opment, pp. 132–146 (1997)

8. Majd, A., Ashraf, A., Troubitsyna, E., Daneshtalab, M.: Integrating learning, opti-
mization, and prediction for efficient navigation of swarms of drones. In: PDP 2018.
IEEE (2018)

9. Majd, A., Troubitsyna, E.: Integrating safety-aware route optimisation and run-
time safety monitoring in controlling swarms of drones. In: ISSRE Workshops, pp.
94–95. IEEE Computer Society (2017)

10. OMG Mobile Agents Facility (MASIF). www.omg.org
11. Pereverzeva, I., Troubitsyna, E.: Formalizing goal-oriented development of resilient

cyber-physical systems. In: Alexander Romanovsky, F.I. (ed.) Trustworthy Cyber-
Physical Systems Engineering, chap. 6 (2017)

12. Pereverzeva, I., Troubitsyna, E., Laibinis, L.: A case study in formal development
of a fault tolerant multi-robotic system. In: Avgeriou, P. (ed.) SERENE 2012.
LNCS, vol. 7527, pp. 16–31. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33176-3 2

13. Pereverzeva, I., Troubitsyna, E., Laibinis, L.: Formal development of critical multi-
agent systems: a refinement approach. In: EDCC 2012, pp. 156–161. IEEE Com-
puter Society (2012)

14. Pereverzeva, I., Troubitsyna, E., Laibinis, L.: Formal goal-oriented development
of resilient MAS in Event-B. In: Brorsson, M., Pinho, L.M. (eds.) Ada-Europe
2012. LNCS, vol. 7308, pp. 147–161. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30598-6 11

15. Pereverzeva, I., Troubitsyna, E., Laibinis, L.: A refinement-based approach to
developing critical multi-agent systems. IJCCBS 4(1), 69–91 (2013)

16. Rodin: Modularisation Plug-in. http://wiki.event-b.org/index.php/
Modularisation Plug-in

17. Rodin: Event-B platform. http://www.event-b.org/

https://doi.org/10.1007/978-3-642-11811-1_14
https://doi.org/10.1007/978-3-642-11811-1_14
https://www.omg.org/
https://doi.org/10.1007/978-3-642-33176-3_2
https://doi.org/10.1007/978-3-642-33176-3_2
https://doi.org/10.1007/978-3-642-30598-6_11
https://doi.org/10.1007/978-3-642-30598-6_11
http://wiki.event-b.org/index.php/Modularisation_Plug-in
http://wiki.event-b.org/index.php/Modularisation_Plug-in
http://www.event-b.org/

336 I. Vistbakka et al.

18. Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. MIT
Press, Cambridge (2004)

19. Tarasyuk, A., Pereverzeva, I., Troubitsyna, E., Latvala, T.: The formal derivation
of mode logic for autonomous satellite flight formation. In: Koornneef, F., van
Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9337, pp. 29–43. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24255-2 4

20. Fraichard, Th.: A short paper about motion safety. In: Proceedings of the IEEE
International Conference on Robotics and Automation. IEEE (2007)

21. Vistbakka, I., Majd, A., Troubitsyna, E.: Autonomous resilient systems: derivation
of mode logic using Event-B. Technical report 1199, Turku Centre for Computer
Science (2018)

https://doi.org/10.1007/978-3-319-24255-2_4

	Deriving Mode Logic for Autonomous Resilient Systems
	1 Introduction
	2 Modelling and Refinement in Event-B
	3 Resilience-Enhancing Mode Transition Logic
	3.1 Reasoning About Resilience-Enhancing Mode Transitions
	3.2 Modelling Mode Transitions in Event-B

	4 Autonomous Swarm-Based System
	4.1 Mode Transition Logic for a Swarm of Drones

	5 Formal Development of a Resilient Swarm of Drones
	6 Related Work and Conclusions
	References

