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Abstract. Object capabilities are increasingly used to reason informally about
the properties of secure systems. But can capabilities also aid in formal reason-
ing? To answer this question, we examine a calculus that uses effects to capture
resource use and extend it to support capability-based reasoning. We demonstrate
that capabilities provide a way to reason about effects: we can bound the effects
of an expression based on the capabilities to which it has access. This reason-
ing is “free” in that it relies only on type-checking (not effect-checking), does
not require the programmer to add effect annotations within the expression, and
does not require the expression to be analysed for its effects. Our result sheds
light on the essence of what capabilities provide and suggests ways of integrating
lightweight capability-based reasoning into languages.

1 Introduction

Capabilities have been recently gaining attention as a promising mechanism for control-
ling access to resources, particularly in object-oriented languages and systems [4–6,16].
A capability is an unforgeable token that can be used by its bearer to perform some oper-
ation on a resource [3]. In a capability-safe language, all resources must be accessed
through object capabilities, and a resource-access capability must be obtained from an
object that already has it: “only connectivity begets connectivity” [16]. For example, a
logger component that provides a logging service would need to be initialised with an
object capability providing the ability to append to the log file.

Capability-safe languages prohibit the ambient authority [17] that is present in non-
capability-safe languages. An implementation of a logger in Java, for example, does
not need to be initialised with a log file capability, as it can simply import the appro-
priate file-access library and open the log file for appending by itself. But critically, a
malicious implementation could also delete the log, read from another file, or exfiltrate
logging information over the network. Other mechanisms such as sandboxing can be
used to limit the damage of such malicious components, but recent work has found that
Java’s sandbox (for instance) is difficult to use and therefore often misused [1,11].

In practice, reasoning about resource use in capability-based systems is mostly done
informally. But if capabilities are useful for informal reasoning, shouldn’t they also aid
in formal reasoning? Recent work by Drossopoulou et al. [6] sheds some light on this
question by presenting a logic that formalizes capability-based reasoning about trust
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between objects. Two other trains of work, rather than formalise capability-based rea-
soning itself, reason about how capabilities may be used: Dimoulas et al. [5] developed
a formalism for reasoning about which components may use a capability and which
may influence (perhaps indirectly) the use of a capability, while Devriese et al. [4] for-
mulate an effect parametricity theorem that limits the effects of an object based on the
capabilities it possesses, and then use logical relations to reason about capability use in
higher-order settings. Overall, this prior work presents new formal systems for reason-
ing about capability use, or reasoning about new properties using capabilities.

We are interested in a different question: can capabilities be used to enhance formal
reasoning that is currently done without relying on capabilities? In other words, what
value do capabilities add to existing formal reasoning approaches?

To answer this question, we decided to pick a simple and practical formal reason-
ing system, and see if capability-based reasoning could help. A natural choice for our
investigation is effect systems [18]. Effect systems are a relatively simple formal rea-
soning approach, which augment type systems with the ability to reason about dynamic
effects—and keeping things simple will help to highlight the difference made by capa-
bilities. Effects also have an intuitive link to capabilities: in a system that uses capa-
bilities to protect resources, an expression can only have an effect on a resource if it is
given a capability to do so.

One challenge to the wider adoption of effect systems is their annotation over-
head [19]. For example, Java’s checked exception system, which is a kind of effect
system, is often criticised for being cumbersome [8]. While effect inference can be used
to reduce the annotations required [9], understanding error messages that arise through
effect inference requires a detailed understanding of the internal structure of the code,
not just its interface. Capabilities are a promising alternative for reducing the overhead
of effect annotations, as suggested by the following example:

Fig. 1. Declaring an effect

Our examples are written in a capability-safe language supporting first-class, object-
like modules, similar to Wyvern [14], in which expressions declare what capabilities
they need to execute. In this case, an expression e must be passed a function of type
String → Unit,1 which incurs no more than the effect File.write when invoked.
This function is bound to the name log inside e.

What can we say about the effects that evaluating e will have on resources, such
as the file system or network? Because we are in a capability-safe language, e has no
ambient authority, so the only way it could have any effects is via the log function
given to it. Since the log function is annotated as having no more than the File.write
effect, this is an upper-bound on the effects of e. Note we only required that e obeys the
rules of capability safety. We did not require it to have effect annotations, and we didn’t

1 Unit is a singleton type, like void in C and Java.
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analyse its structure, as an effect inference would. Also note that e might be arbitrarily
large, perhaps consisting of an entire program we have downloaded from a source we
trust enough to write to a log, but not enough to access any other resources. Thus in this
scenario, capabilities can be used to reason “for free” about the effects of a large body
of code (e), based on a few annotations on the components it imports (log).

This example illustrates the central intuition of this paper: in a capability-safe set-
ting, the effects of an unannotated expression can be bounded by the effects latent in
the variables that are in scope. In the remainder of this paper, we formalise these ideas
in a capability calculus (CC; Sect. 2). Along the way we must generalise this intuition:
what if log takes a higher-order argument? If e evaluates, not to unit, but to a function,
what can we say about its effects? We then show how CC can model practical situations
by encoding a range of Wyvern-like programs Sect. 3). A more thorough discussion,
including a proof of soundness is given in an accompanying technical report [2].

2 Capability Calculus (CC)

While the current resurgence of interest in capabilities is primarily focused on object-
oriented languages, for simplicity our formal definitions build on a typed lambda cal-
culus with a simple notion of capabilities and their operations. CC permits the nest-
ing of unannotated code inside annotated code in a controlled, capability-safe manner
using the import form from Fig. 1. This allows us to reason about unannotated code by
inspecting what capabilities are passed into it from its unannotated surroundings.

Allowing effect-annotated and unannotated code to be mixed helps reduce the cog-
nitive overhead on developers, allowing them to prototype in the unannotated sublan-
guage and incrementally add annotations as they are needed. Reasoning about unan-
notated code is difficult in general. Figure 2 demonstrates why: apply takes a function
f as input and executes it, but the effects of f depend on its implementation. Without
more information, there is no way to know what effects might be incurred by apply.

Fig. 2. What effects can apply incur?

Consider another scenario, where a developer must decide whether or not to use
the logger functor defined in Fig. 3. This functor takes two capabilities as input, File
and Socket.2 It instantiates an object-like module that has a single, unannotated log
method with access to these capabilities. The type of this object-like module is Logger,
which is assumed to be defined elsewhere.

How can we determine what effects will be incurred if Logger.log is invoked? One
approach is to manually3 examine its source code, but this is tedious and error-prone.

2 Note that the resource literal is File, while the type of the resource literal is {File}.
3 or automatically—but if the automation produces an unexpected result we must fall back to

manual reasoning to understand why.
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Fig. 3. In a capability-safe setting, logger can only exercise authority over the File and Socket

capabilities given to it.

In many real-world situations, the source code may be obfuscated or unavailable. A
capability-based argument can do better, since a Logger can only exercise the authority
it is explicitly given. In this case, the logger functor must be given File and Socket,
so an upper bound on the effects of the Logger it instantiates will be the set of all
operations on those resources, {File.∗, Socket.∗}. Knowing the Logger could per-
form arbitrary reads and writes to File, or communicate with Socket, the developer
decides this implementation cannot be trusted and does not use it.

To model this situation in CC, we add a new import expression that selects what
authority εs the unannotated code may exercise. In the above example, the expected
least authority of Logger is {File.append}, so that is what the corresponding import
would select. The type system can then check whether the capabilities being passed
into the unannotated code exceed εs. If it accepts, then εs is a safe upper bound on the
effects of the unannotated code. This is the key result: when unannotated code is nested
inside annotated code, capability-safety enables us to make a safe inference about its
effects by examining what capabilities are being passed in by the annotated code.

2.1 Grammar (CC)

The grammar of CC has rules for annotated code and analogous rules for unannotated
code. To distinguish the two, we put a hat above annotated types, expressions, and
contexts. ê, τ̂ , and Γ̂ are annotated, while e, τ , and Γ are unannotated. The rules for
unannotated programs and their types are given in Fig. 4. Unannotated types τ are built
using → and sets of resources {r̄}. An unannotated context Γ maps variables to unan-
notated types. The syntax for invoking an operation on a resource is e.π. Resource
literals and operations are drawn from fixed sets R (containing, e.g. File, Socket) and
Π (containing, e.g. write, read).

Because our focus is on tracking what effects happen, i.e. whether particular oper-
ations are invoked on particular resources, we make the following simplifying assump-
tions: first, any operation may be called on any resource literal; and second, all opera-
tions take no inputs and return unit.

Rules for annotated programs and their types are shown in Fig. 5. The first main
difference is that the →ε type constructor has a subscript ε, which is a set of effects
that functions of that type may incur. The other main difference is the new expres-
sion form, import(εs) x = ê in e, where e is some unannotated code and ê is a
capability being passed to it; we call ê an import. For simplicity, we assume there
is only ever one import. Note the definition not only allows resource literals to be
imported, but also effectful functions. Inside e, ê is bound to the variable x. εs is
the maximum authority that e is allowed to exercise (its “selected authority”). For



Capabilities: Effects for Free 235

Fig. 4. Unannotated programs and types in CC.

Fig. 5. Annotated programs and types in CC.

example, suppose an unannotated Logger, which requires File, is expected to only
append to a file, but has an implementation which writes. This would be the expression
import(File.append) x = File in λy : Unit. x.write. The import expression is
the only way to mix annotated and unannotated code, because it is the only situation in
which we can say something interesting about the effects of unannotated code. For the
rest of our discussion of CC, we will only be interested in unannotated code when it is
encapsulated by an import expression.

Capability safety prohibits ambient authority. CC meets this requirement by forbid-
ding the use of resource literals directly inside an import expression (though they can
still be passed in as a capability via the binding variable x). We could have enforced
this syntactically, but we choose to do it using the typing rule for import in Sect. 2.3.

2.2 Semantics (CC)

The rules for CC are natural extensions of the simply-typed lambda calculus, so for
brevity we only give the rules for import (see Fig. 6). Reductions are defined on anno-
tated expressions, using the notation ê −→ ê′ | ε′, which means that ê is reduced to ê′ in
a single step, incurring the set of effects ε′. To execute the unannotated code inside an
import expression, we recursively annotate its components with the selected authority
εs. While it is meaningful to execute unannotated code, we only care about it inside
import expressions, so do not bother to give rules for this.
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E-IMPORT1 reduces the capability being imported. When it has been reduced to a
value v̂, E-IMPORT2 annotates e with the selected authority ε—this is annot(e, ε)—
and substitutes the import v̂ for its name x in e—this is [v̂/x]annot(e, ε).

annot(e, ε) is the expression obtained by recursively annotating the parts of e with
the set of effects ε. A definition is given in Fig. 7, with versions defined on expressions
and types. Later we will need to annotate contexts, so the definition is given here. Note
that annot operates on a purely syntatic level. Nothing prevents us from annotating a
program with something unsafe, so any use of annot must be justified.

Fig. 6. New single-step reductions in CC.

Fig. 7. Definition of annot.

2.3 Static Rules (CC)

Terms can be annotated or unannotated, so we need to be able to recognise when either
is well-typed. We do not reason about the effects of unannotated code directly, so judge-
ments involving them only ascribe a type to an expression, with the form Γ � e : τ .
Subtyping judgements have the form τ <: τ . Because these rules are essentially those
of the simply-typed lambda calculus, we do not list them here.

Judgements involving annotated terms have the form Γ̂ � ê : τ̂ with ε, mean-
ing that when ê is evaluated, it reduces to a value of type τ̂ , incurring no more than
the effects in ε. Most of the rules are analogous to those of the simply-typed lambda
calculus; these ones are given in Fig. 8. Note that the rule for typing an operation call,
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Fig. 8. Type-and-effect and subtyping judgements in CC.

Fig. 9. Definition of erase.

ε-OPERCALL, types the expression as Unit, following our simplifying assumption that
all operations return Unit.

There is one rule left, for typing import. Since it is a complicated rule, we will start
with a simplified (but incorrect) version, and spend the rest of the section building up to
the final version.

To begin, typing import(εs) x = ê in e in a context Γ̂ requires us to know that ê
is well-typed, so we add the premise Γ̂ � ê : τ̂ with ε1. e is only allowed to use what
authority has been explicitly given to it (i.e. the capability ê, bound to x). To ensure this,
we require that e can be typechecked using only one binding, x : τ̂ , which binds x to
the type of the capability being imported. Typing e in this restricted environment means
it cannot use any other capabilities, thus prohibiting the exercise of ambient authority.

There is a problem though: e is unannotated, while τ̂ is annotated, and there is no
rule for typechecking unannotated code in an annotated context. To get around this, we
define a function erase in Fig. 9, which removes the annotations from a type. We can
then add x : erase(τ̂) � e : τ as a premise.

The first version of ε-IMPORT is given in Fig. 10. Since import(εs) x = v̂ in e
reduces to [v̂/x]annot(e, εs) by E-IMPORT2, its ascribed type is annot(τ, ε), which is
the type of the unannotated code e, annotated with its selected authority εs. The effects
of reducing the import are ε1 ∪ εs—the former happens when the imported capability



238 A. Craig et al.

Fig. 10. A first (incorrect) rule for type-and-effect checking import expressions.

is reduced to a value, while the latter happens when the body of the import expression
is annotated and executed.

This first rule is incomplete, since any capability can be passed to the unannotated
code e, even if it has effects that weren’t declared in εs. To avoid this, we define
a function effects, which collects the set of effects that an (annotated) type cap-
tures. For example, {File} captures every operation on File, so effects({File}) =
{File.∗}. A first (but not yet correct) definition of this is given in Fig. 11. We then add
the premise effects(τ̂) ⊆ εs, which restricts imported capabilities to only those with
effects selected in εs. The updated rule for typing import is given in Fig. 12.

Fig. 11. A first (incorrect) definition of effects.

Fig. 12. A second (still incorrect) rule for type-and-effect checking import expressions.

There are still issues with this second rule, as the annotations on one import can
be broken by another import. To illustrate, consider Fig. 13 where two4 capabilities are
imported. This program imports a function go which, when given a Unit →∅ Unit
function with no effects, will execute it. The other import is File. The unannotated
code creates a Unit → Unit function which writes to File and passes it to go, which
subsequently incurs File.write.

Fig. 13. Permitting multiple imports will break ε-IMPORT2.

4 Our formalisation only permits a single capability to be imported, but this discussion leads to
a generalisation needed for the rules to be safe when multiple capabilities can be imported. In
any case, importing multiple capabilities can be handled with an encoding of pairs.
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In the world of annotated code, it is not possible to pass a file-writing function to
go, but because the judgement x : erase(τ̂) � e : τ discards the annotations on go, and
since the file-writing function has type unit → unit, the unannotated world accepts it.
Although the unannotated code is allowed to incur this effect, since its selected authority
is {File.∗}, this nonetheless violates the type signature of go. We want to prevent this.

If go had the type Unit →{File.write} Unit, Fig. 13 would be safely rejected. How-
ever, a modified program where a file-reading function is passed to go would have the
same issue. go is only safe when it expects every effect that the unannotated code might
pass to it. To ensure this is the case, we shall require imported capabilities to have the
authority to incur every effect in εs. To achieve greater control in how we say this, we
split the definitions of effects into two separate functions, effects and ho-effects.
The latter is for higher-order effects, which are those effects not captured directly in the
function body, but rather are possible because of what is passed into the function as an
argument. If values of τ̂ possess a capability that can be used to incur the effect r.π, then
r.π ∈ effects(τ̂). If values of τ̂ can incur r.π, but need to be given the capability (as
a function argument) by someone else to do so, then r.π ∈ ho-effects(τ̂). Definitions
are given in Fig. 14.

Fig. 14. Effect functions (corrected).

Both effects and ho-effects are mutually recursive, with base cases for
resource types. Any effect can be directly incurred by a resource on itself, hence
effects({r̄}) = {r.π | r ∈ r̄, π ∈ Π}. A resource cannot be used to indirectly
invoke some other effect, so ho-effects({r̄}) = ∅. The mutual recursion echoes the
subtyping rule for functions: recall that functions are contravariant in their input type
and covariant in their output; likewise, both functions recurse on the input-type using
the other function, and recurse on the output-type using the same function.

In light of these new definitions, we still require effects(τ̂) ⊆ εs—unannotated
code must select any effect its capabilities can incur—but we add a new premise
εs ⊆ ho-effects(τ̂), which requires any higher-order effect of the imported capa-
bilities to be declared in εs. Put another way, the imported capabilities must be expect-
ing every effect they could be given by the unannotated code (which is at most εs).
The counterexample from Fig. 13 is now rejected, because ho-effects((Unit →∅

Unit) →∅ Unit) = ∅, but effects(File) = {File.∗} �⊆ ∅.
This is still not sufficient! Consider εs ⊆ ho-effects(τ̂1 →ε′ τ̂2). Expanding the

definition of ho-effects, this is the same as εs ⊆ effects(τ̂1) ∪ ho-effects(τ̂2).
Let r.π ∈ εs and suppose r.π ∈ effects(τ̂1), but r.π /∈ ho-effects(τ̂2). Then
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εs ⊆ effects(τ̂1) ∪ ho-effects(τ̂2) is still true, but τ̂2 is not expecting r.π. If τ̂2 is
a function, unannotated code could violate its annotations by passing it a capability for
r.π, even though r.π is not a higher-order effect of τ̂2.

The cause of this issue is that ⊆ does not distribute over ∪. We want a relation like
εs ⊆ effects(τ̂1)∪ho-effects(τ̂2), which also implies εs ⊆ effects(τ̂1) and εs ⊆
effects(τ̂2). Figure 15 defines this: safe is a distributive version of εs ⊆ effects(τ̂)
and ho-safe is a distributive version of εs ⊆ ho-effects(τ̂). An amended version of
ε-IMPORT is given in Fig. 16, with a new premise ho-safe(τ̂ , εs), capturing the notion
that imported capabilities must be expecting the effects they could be passed by the
unannotated code (which is at most εs).

Fig. 15. Safety judgements in CC.

Fig. 16. A third (still incorrect) rule for type-and-effect checking import expressions.

The premises so far restrict what authority can be selected by unannotated code,
but consider the example ê = import(∅) x = unit in λf : File. f.write. The
unannotated code selects no capabilities and returns a function which takes File and
incurs File.write. This satisfies the premises in ε-IMPORT3, but its type would be the
pure function {File} →∅ Unit.

Speaking more generally, suppose the unannotated code evaluates to a function of
type f , which is annotated to annot(f, εs). Suppose annot(f, εs) is invoked at a later
point, back in the annotated world, incurring r.π. What is the source of r.π? If r.π was
selected by the import expression surrounding f , it is safe for annot(f, εs) to incur
this effect. Otherwise, annot(f, εs) may have been passed, as an argument, a capability
to do r.π, in which case r.π is a higher-order effect of annot(f, εs). If the argument
is a function, then r.π ∈ εs by the soundness of our calculus. But if the argument is a
resource literal r, then annot(f, εs) could exercise r.π without declaring it in εs—this
we do not yet account for.
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To make εs contain every effect captured by resources passed into annot(f, εs)
as arguments, we inspect f for resource types. For example, if the unannotated code
evaluates to a function of type {File} → Unit, we need {File.∗} ∈ εs. To do this,
we add a new premise ho-effects(annot(τ, ∅)) ⊆ εs. Because ho-effects is only
defined on annotated types, we first annotate τ with ∅, and since we are only inspecting
the resources passed into f as arguments, our choice of annotation doesn’t matter.

Now we can handle the example from before. The unannotated code types via the
judgement x : Unit � λf : {File}. f.write : {File} → Unit. Its higher-order
effects are ho-effects(annot({File} → Unit, ∅)) = {File.∗}, but {File.∗} �⊆
∅, so the example is safely rejected.

The final version of ε-IMPORT is given in Fig. 17. With it, we can now model the
example from the beginning of this section, where the Logger selects the File capabil-
ity and exposes an unannotated function log with type Unit → Unit and implementa-
tion e. The expected least authority of Logger is {File.append}, so its corresponding
import expression would be import(File.append) f = File in λx : Unit. e. The
imported capability is f = File, which has type {File}, and effects({File}) =
{File.∗} �⊆ {File.append}, so this example safely rejects: Logger.log has authority
to do anything with File, and its implementation e might be violating its stipulated
least authority {File.append}.

Fig. 17. The final rule for typing imports.

3 Applications

In this section, we examine a number of scenarios to show how capabilities can help
developers reason about the effects and behaviour of code. In each story we will discuss
some Wyvern code before translating it to CC and explaining how its rules apply. By
doing this, we hope to convince the reader of the benefits of capability-based reasoning,
and that CC captures the intuitive properties of capability-safe languages like Wyvern.

3.1 Unannotated Client

A logger module, when given File, exposes a log function which incurs the
effect File.append. The client module, possessing the logger module, exposes
an unannotated function run. While logger has been annotated, client has not. If
client.run is executed, what effects might it have? Code for this example is given
below.



242 A. Craig et al.

1 module def logger(f: {File}):Logger
2 def log(): Unit with {File.append} =
3 f.append(‘‘message logged’’)

1 module def client(logger: Logger)
2 def run(): Unit =
3 logger.log()

1 require File
2 instantiate logger(File)
3 instantiate client(logger)
4 client.run()

A translation into CC is given below. Lines 1–3 and 5–8 define MakeLogger and
MakeClient, which instantiate the logger and client modules respectively (rep-
resented as functions). Lines 10–14 define MakeMain, which returns a function which,
when executed, instantiates all other modules and invokes the code in the body of main.
Program execution begins on line 16, where main is given the initial capabilities (just
File in this case).

1 let MakeLogger =
2 (λf: File.
3 λx: Unit. f.append) in
4

5 let MakeClient =
6 (λlogger: Unit →{File.append} Unit.
7 import(File.append) l = logger in
8 λx: Unit. l unit) in
9

10 let MakeMain =
11 (λf: File.
12 let loggerModule = MakeLogger f in
13 let clientModule = MakeClient loggerModule in
14 clientModule unit) in
15

16 MakeMain File

The interesting part is on line 7, where the unannotated code selects {File.append}
as its authority. This matches the effects of logger, i.e. effects(Unit →{File.append}
Unit) = {File.append}. The unannotated code typechecks by ε-IMPORT, approxi-
mating its effects as {File.append}.

3.2 Unannotated Library

The next example inverts the roles of the last scenario. Now, the annotated client
wants to use the unannotated logger, which captures File and exposes a single func-
tion log, which incurs the File.append effect. The implementation of client.run
executes logger.log; it is annotated with ∅, so this violates its interface.
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1 module def logger(f: {File}): Logger
2 def log(): Unit =
3 f.append(‘‘message logged’’)

1 module def client(logger: Logger)
2 def run(): Unit with {File.append} =
3 logger.log()

1 require File
2 instantiate logger(File)
3 instantiate client(logger)
4 client.run()

The translation is given below. On lines 3–4, the unannotated code is wrapped in an
import expression selecting {File.append} as its authority. The implementation of
logger actually abides by this, but since it captures File it could, in general, do any-
thing to File; therefore, ε-IMPORT rejects this example. Formally, the imported capa-
bility has the type {File}, but effects({File}) = {File.∗} �⊆ {File.append}.
The only way for this to typecheck would be to annotate client.run as having every
effect on File.

1 let MakeLogger =
2 (λf: File.
3 import(File.append) f = f in
4 λx: Unit. f.append) in
5

6 let MakeClient =
7 (λlogger: Logger.
8 λx: Unit. logger unit) in
9

10 let MakeMain =
11 (λf: File.
12 let loggerModule = MakeLogger f in
13 let clientModule = MakeClient loggerModule in
14 clientModule unit) in
15

16 MakeMain File

3.3 Higher-Order Effects

Here, Main gains its functionality from a plugin. Plugins might be written by third-
parties, so we may not be able to view their source code, but still want to reason about
the authority they exercise. In this example, plugin has access to File, but its interface
does not permit it to perform any operations on File. It tries to subvert this by wrapping
File inside a function and passing it to malicious, which invokes File.read in a
higher-order manner in an unannotated context.

1 module malicious
2 def log(f: Unit → Unit): Unit
3 f()
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1 module plugin
2 import malicious
3 def run(f: {File}): Unit with ∅

4 malicious.log(λx:Unit. f.read)

1 require File
2 import plugin
3 plugin.run(File)

This example shows how higher-order effects can obfuscate potential security risks.
On line 3 of malicious, the argument to log has type Unit → Unit. The body of log
types with the T-rules, which do not approximate effects. It is not clear from inspecting
the unannotated code that a File.read will be incurred. To realise this requires one to
examine the source code of both plugin and malicious.

A translation is given below. On lines 2–3, the malicious code selects its authority
as ∅, to be consistent with the annotation on plugin.run. ε-IMPORT safely rejects this:
when the unannotated code is annotated with ∅, it has type {File} →∅ Unit, but the
higher-order effects of this type are {File.∗}, which are not contained in the selected
authority ∅.

1 let malicious =
2 (import(∅) y=unit in
3 λf: Unit → Unit. f()) in
4

5 let plugin =
6 (λf: {File}.
7 malicious(λx:Unit. f.read)) in
8

9 let MakeMain =
10 (λf: {File}.
11 plugin f) in
12

13 MakeMain File

To get this example to typecheck, the program would have to be rewritten to explic-
itly say that plugins can exercise arbitrary authority over File, by changing the selected
authority of import and the annotation on plugin.run.

3.4 Resource Leak

This is another example which obfuscates an unsafe effect by invoking it in a higher-
order manner. The setup is the same, except the function which plugin passes to
malicious now returns File when invoked. malicious uses this function to obtain
File and directly invokes read upon it, violating the declared purity of plugin.

1 module malicious
2 def log(f: Unit → File):Unit
3 f().read
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1 module plugin
2 import malicious
3 def run(f: {File}): Unit with ∅

4 malicious.log(λx:Unit. f)

1 require File
2 import plugin
3 plugin.run(File)

The translation is given below. The unannotated code in malicious is on lines
5–6. It has selected authority is ∅, to be consistent with the annotation on plugin.
Nothing is being imported, so the import binds y to unit. This example is rejected
by ε-IMPORT because the premise ε = effects(τ̂)∪ho-effects(annot(τ, ε)) is not
satisfied. In this case, ε = ∅ and τ = (Unit → {File}) → Unit. Then annot(τ, ε) =
(Unit →∅ {File}) →∅ Unit and ho-effects(annot(τ, ε)) = {File.∗}. Thus, the
premise cannot be satisfied and the example is safely rejected.

1 let malicious =
2 (import(∅) y=unit in
3 λf: Unit → {File}. f().read) in
4

5 let plugin =
6 (λf: {File}.
7 malicious(λx:Unit. f)) in
8

9 let MakeMain =
10 (λf: {File}.
11 plugin f) in
12

13 MakeMain File

4 Conclusions

We introduced CC, a lambda calculus with a simple notion of resources and their oper-
ations, which allows unannotated code to be nested inside annotated code with a new
import construct. Its capability-safe design enables us to safely reason about the effects
of unannotated code by inspecting what capabilities are passed into it by its anno-
tated surroundings. Such an approach allows code to be incrementally annotated, giving
developers a balance between safety and convenience, alleviating the verbosity that has
discouraged widespread adoption of effect systems [19].

More broadly, our results demonstrate that the most basic form of capability-based
reasoning—that you can infer what code can do based on what capabilities are passed
to it—is not only useful for informal reasoning, but can improve formal reasoning about
code by reducing the necessary annotation overhead.

4.1 Related Work

While much related work has already been discussed as part of the presentation, here
we cover some additional strands related to capabilities and effects.
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Capabilities were introduced by [3] to control which processes had permission to
access which resources in an operating system. These ideas were adapted to the pro-
gramming language setting, particularly by Miller [17], whose object-capability model
constrains how permissions may proliferate among objects in a distributed system. [13]
formalised the notion of a capability-safe language and showed that a subset of Caja
(a Javascript implementation) is capability-safe. Miller’s object-capability model has
been applied to more heavyweight systems, such as [6], which formalises the notion of
trust in a Hoare logic. Capability-safety parallels have been explored in the operating
systems literature, where similar restrictions on dynamic loading and resource access
[7] enable static, lightweight analyses to enforce privilege separation [12].

The original effect system by [10] was used to determine what expressions could
safely execute in parallel. Subsequent applications include determining what functions a
program might invoke [21] and what regions in memory might be accessed or updated
during execution [20]. In these systems, “effects” are performed upon “regions”; in
ours, “operations” are performed upon “resources”. CC also distinguishes between
unannotated and annotated code; only the latter will type-and-effect-check. Another
capability-based effect system is the one by [4], who use effect polymorphism and
possible world semantics to express behavioural invariants on data structures. CC is
not as expressive, since it only inspects how capabilities are passed around a program,
but the resulting formalism and theory is much more lightweight. Ongoing work with
the Wyvern programming language includes an effect system which partially builds on
ideas from this paper [15].

4.2 Future Work

Our system only models capabilities which manipulate system resources. This defi-
nition could be generalised to track other sorts of effects, such as stateful updates.
Resources and their operations are fixed throughout runtime, but we could imagine
them being created and destroyed at runtime. Finally, other future work could incorpo-
rate polymorphic types and effects.
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