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Abstract. Capabilities are used to control access to system resources. In
modern programming languages that execute code with different levels of
trust in the same process, the propagation of such capabilities must be
controlled so that they cannot unintentionally be obtained by unautho-
rised code. In this paper, we present a statically-checked type system for
object-oriented programming languages which guarantees that capabili-
ties are restricted to authorised code. Capabilities are regarded as types
that are granted to code based on a user-defined policy file (similar to that
used by Java). In order to provide a finer-grained access control, the type
system supports parameterised capabilities to more precisely identify sys-
tem resources. The approach is illustrated using file-access examples.
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1 Introduction

The concept of capability-based security [5,16], in which a capability is regarded
as a communicable and unforgeable token of authority, has been used in operat-
ing systems. A process inside the system, which possesses a capability, is autho-
rised to use the referenced object according to the operations that are specified
on that capability. In this model, the acquisition of capabilities is limited by
authorisation at the process-level, and forgery is prevented by storing capabil-
ities in a memory region protected from direct application writes. Capabilities
can be shared, but only through operating system APIs, which can enforce the
correct passing of capabilities based on the Principle Of Least Privilege (POLP)
[15]. In operating systems, processes are mostly isolated (i.e., run in different
memory spaces and can only communicate via restricted channels), and so it is
relatively straight-forward to ensure that capabilities are not leaked to unautho-
rised processes.

The goal of our work is provide access control at the programming-language
level using a capability-based approach. However, although capabilities may also
be used at the application (i.e. programming language) level to control access to
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resources, their use in this context is complicated by the fact that both trusted
and untrusted code may be executing within the same process, and so it is
necessary to control the flow of capabilities within the same process itself. This
is challenging because of the use of shared memory and pointers, and the level of
interaction between trusted and untrusted code. In this context, language-based
security [7,14] approaches may be used to prevent vulnerabilities that are not
addressed by process-based access control at the operating system level.

One of the main approaches to handling capabilities in programming lan-
guages is the object capability model. It was first proposed by Dennis and
Horn [1] and is currently supported by secure programming languages such as
E [11], Joe-E [9,10] and Caja [12,17]. In this model, a capability is regarded as
a reference to an object, which may be used to invoke operations on that object.
Such capabilities can only be obtained through a pre-existing chain of references.
It provides modularity in code design and ensures reliable encapsulation in code
implementation. However, this references-as-capabilities model does not provide
an explicit authorisation mechanism or enforce security guarantees.

Java [3] is an object-oriented programming language. It has an access control
model for guarding access to resources which relies on programmer discipline to
insert security checks, which are then performed at runtime [2,8]. It makes use
of a capability-like notion for access to some resources. For example, the class
FileOutputStream in the Java Class Library (JCL) is like a capability to write
to a file in the sense that permission-checking is performed in the constructor of
the class. After the class has been instantiated, no further permission checks are
required to use the operations of the class, like the write method. The Java access
control model provides an approach to prevent confused deputy attacks [4] (e.g.,
unauthorised code accesses security-sensitive code by calling authorised code).
However, it is not sufficient to track the propagation of capabilities, which means
that Java does not guarantee that capabilities are not obtained and used by
unauthorised code.

Capability-based access to Java resources was proposed recently by Hayes
et al. [6] with the aim of preventing security flaws as well as tightening security
management for access to resources both within JCL and Java applications. In
this work, a capability can be viewed as an object with a restricted interface,
which contains a set of operations that can be invoked by holders of the capabil-
ity. In other words, a capability encapsulates what one can do with a resource.
For example, a capability OutCap with a method write for output access to a
stream is declared as follows:

capability OutCap { void write (int b); }
Access to this capability is restricted to code that has a corresponding permis-
sion, e.g. permission write. The philosophy behind capabilities is that code can
only access a resource if it is given an explicit capability to do so: no other access
is permitted. Once a capability is created, it has a more restrictive dynamic type
than its implementing class and access to the full facilities of the implementing
class (e.g., via down casting) is precluded. Thus, classes implementing capabili-
ties are not directly accessible to users and hence cannot be overridden. In this
way, only capabilities are open to exploit by untrusted code.
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In the original approach proposed by Hayes et al. [6], no solutions were pro-
posed for controlling the propagation of capabilities. The example in Listing 1
demonstrates how this can lead to capabilities escaping to unauthorised code.
In the listing, the class AuthorisedCode is assumed to have the permissions
required to use the file access capability (FileAccessCap), and to write to out-
put streams (OutCap), while the class UnauthorisedCode does not. Because
UnauthorisedCode does not have the permission to write to streams it can-
not directly request the capability OutCap. However, this does not prevent the
authorised code passing an instance of this capability to the unauthorised code
as a parameter in a method call.

Listing 1. Capabilities may escape to unauthorised code

pub l i c c l a s s Author i s edCode {
pub l i c s t a t i c vo id main ( S t r i n g [ ] a r g s ) throws Excep t i on {

F i l eAcce s sCap f i l e A c c e s s = new RandomAccessFi leManager ( ) ;
Unauthor i sedCode uc = new Unauthor i sedCode ( ) ;
OutCap out = f i l e A c c e s s . requestOutCap ( f i l e n ame ) ;
uc . use ( out ) ;

}
}
pub l i c c l a s s Unauthor i sedCode {

pub l i c vo id use (OutCap out ) {
out . w r i t e ( temp ) ;

}
}

In practice, permissions granted to a class are parameterised using the targets
on which a certain action is allowed. For example, a class that has the permission
to write to files may either have: unlimited access to modify any file on the system
(denoted “*”); access to modify only files in a particular directory (e.g. “dir/*”);
or only a particular file, (e.g. “dir/a.txt”) etc. In the original Capability model
proposed in [6], there was no mechanism to limit a capability to be used on
a particular target. For example, in Listing 1, either the capability OutCap is
granted to a class, or it is not. There is no way to restrict OutCap to only be
used to write to a particular file.

Contributions. In this paper, our aim is to adapt capabilities to object-oriented
programming languages in a way that (i) controls their propagation, and (ii)
allows them to be parameterised in a way that limits their use to particular
targets, so that they more closely correspond to the fine-grained permissions
that are typically granted to classes.

We use the term “type capabilities” to analogize the term “object capa-
bilities” that restrict capabilities at runtime. The key insight of our work is
that, by providing explicit code-level authorisation via a user-defined policy file,
we enforce a security guarantee at compile time that capabilities can only be
obtained by authorised code. The main contributions are summarized as fol-
lows:



218 X. Wu et al.

Table 1. Syntax of a Java-like language with parameterised capabilities

CB ::= capability cb(ñ) extends cb(ñ) {dec} (capabilities)

C ::= class c(ñ) extends c(ñ) implements cb(ñ) {τ f ;M } (classes)

M ::= dec{s} (methods)

dec ::= m(τ x () declarations)

s ::= x = e | x .f = x | s; s | x .m(x ) | if x then s else s (statements)

e ::= x | x.f | new c(σ̃) | (τ) e (expressions)

τ ::= int | c(σ̃) | cb(σ̃ () types)

σ ::= n | κ (parameters)

∗ We present a type system to enforce the proper use of capabilities by type
checking. Capabilities are regarded as types so that we can control the prop-
agation of capabilities by controlling the visibility of their types.
∗ We provide a security guarantee statically at compile time, reducing the
possibility of errors in code as well as runtime overhead. In particular, we
guarantee that a method on an object can only be invoked if: (1) the static
type of that object is granted to the calling class, and (2) the runtime type
of the object is a subtype of its static type.
∗ We introduce capability types that are parameterised by strings, denoting
the targets on which they can be used. It provides a finer-grained access
control and identifies system resources more precisely.

Organization. Section 2 gives the abstract syntax of parameterised capabilities
for a Java-like core language. In Sect. 3, we illustrate how to enforce the proper
use of capabilities statically by a type system and apply our approach on an
example of Java file access. Section 4 presents the big-step operational semantics
as well as the subject reduction theorem with a security guarantee before we
conclude our paper and point out some future directions in Sect. 5.

2 A Java-Like Language with Parameterised Capabilities

Built on the model of capabilities described by Hayes et al. [6], a Java-like
core language with parameterised capabilities is shown in Table 1. We choose
a minimal set of features that still gives a Java-like feel to the language, i.e.,
classes, capabilities, inheritance, instance methods and fields, method override,
dynamic dispatch and object creation.

In the syntax, the metavariables cb and c range over capability names and
class names respectively; f and m range over field names and method names;
x ranges over variables, n ranges over final string variables as type parameter
names and κ stands for string literals. Names for capabilities, classes, fields and
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variables are unique in their corresponding defining scopes. For simplicity, we
use the notation x as a shorthand for the sequence x1; ...;xn, in which n stands
for the length of the sequence and we use semicolon to denote the concatenation
of sequences. A sequence can be empty.

A capability CB , defined by a new keyword capability, consists of a set of
method declarations and it may extend other capabilities. A class C is composed
of a sequence of fields f as well as a sequence of methods M . We abbreviate
sequences of pairs as τ f for τ1 f1; ...; τn fn. A class has one super class and
may implement a sequence of capabilities. Both capabilities and classes can
be parameterised by a string parameter, which limits the targets that these
capabilities or classes can be used on. The notation ñ (a sequence containing zero
or one element) represents that the parameter n is optional: if the parameter is
absent then the capabilities or classes can be used on any target.

A method M is a declaration dec, representing the method signature, followed
by a method body s. A method declaration dec with the form of m(τ x) contains
the method name m as well as a list of parameters with types. We assume
methods are not overloaded, that is, they are distinguished via their names
rather than their signatures.

A statement s is distinguished from an expression since it does not contain
return values. It can be an assignment x = e, a field assignment x.f = x, a
sequential composition s; s, a conditional choice if x then s else s or a param-
eterised method invocation x.m(x). An expression e can be a variable x, a class
field x.f or a creation expression new c(σ̃), which creates a new object of class
c with a type parameter σ̃. It can also be a type cast (τ) e, which stands for
casting the type of the expression e into type τ . A type τ can be an integer int,
a class type c(σ̃) or a capability type cb(σ̃). σ is a string type parameter, which
may be a final string variable or a string literal.

A program P is a triple (CT ,CBT , s) of a class table, a capability table and a
statement used as the program entry point. A class table CT is a mapping from
class names to class declarations. Similarly, a capability table CBT is a mapping
from capability names to capability declarations. For simplicity, the semantic
rules in Sects. 3 and 4 are written with respect to a fixed program P including a
fixed class table CT and a fixed capability table CBT . We assume that for every
class c (including class Object) appearing in CT , we have c ∈ dom(CT ) and
we simply write“class c(ñ)...” to abbreviate CT (c) = class c(ñ).... Likewise,
for every capability cb appearing in CBT , we have cb ∈ dom(CBT ) and we use
“capability cb(ñ)...” to abbreviate CBT (cb) = capability cb(ñ)....

Example. The parameterised capability for output access to a stream is given
in Listing 2, as well as its implementing class and an application class.

Classes implementing a parameterised capability are also parameterised with
the same string variable. Class OutCapImp(n) in Listing 2 implements the capa-
bility OutCap(n), which provides a method to write a file. We assume the imple-
menting class always has at least one constructor (maybe by default) taking n
as its parameter, hence the instantiation of the class is restricted to the specific
target file name. For example, in Listing 2, the class Application instantiates
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Listing 2. The parameterised capability for file output stream

c a p a b i l i t y OutCap ( n ) { w r i t e ( i n t b ) }

c l a s s OutCapImp (n ) implements OutCap ( n ) {
OutCapImp (n ) { . . . } ; // open the f i l e on path ‘ n ’
w r i t e ( i n t b ) { . . . }

}
c l a s s App l i c a t i o n {

main ( ) {
OutCap ( ” d i r /A . t x t ” ) out = new OutCapImp ( ” d i r /A . t x t ” )

}
}

OutCap with the string “dir/A.txt”, restricting the instance out to only write
to the text file “A.txt” under the directory dir.

3 Static Semantics

In this section, we give a set of inference rules to formalize the static semantics
of our type system. Based on a user-defined policy file, we control type visibility
to avoid capabilities escaping to unauthorised code, and to restrict the targets
that these capabilities can be used on.

Table 2. Subtyping rules

τ <: τ

cb′
i(ñ ′

i ) ∈ cb′(ñ ′) capability cb(ñ) extends cb′(ñ ′) {...}
|σ̃| = |ñ| σ̃′

i = truncate(σ̃, |ñ ′
i |)

cb(σ̃) <: cb′
i(σ̃′

i)

τ1 <: τ2 τ2 <: τ3

τ1 <: τ3

c �= Object class c(ñ) extends c′(ñ ′) ... {...}
|σ̃| = |ñ| σ̃′ = truncate(σ̃, |ñ ′|)

c(σ̃) <: c′(σ̃′)

cbi(ñi) ∈ cb(ñ) class c(ñ) extends c′(ñ ′) implements cb(ñ) {...}
|σ| = |n| σi = truncate(σ, |ni |)

c(σ) <: cbi(σi)

3.1 Subtyping Rules and Look up Functions

Subtyping rules are given in Table 2. They include the reflexive and transitive
closure of the direct subclass (and subcapability) relations. If a class c(ñ) imple-
ments a capability cb(ñ), for all instantiations σ̃ of parameter ñ, c(σ̃) is also a
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Table 3. Look up functions on fields and methods

fields(Object) = • methods(Object) = • methodsigs(Object) = •

class c(ñ) extends c′(ñ ′) {τ0 f ; m(τ x ){s}} c �= Object σ̃′ = truncate(σ̃, |ñ ′|)
fields(c(σ̃)) = fields(c′(σ̃′)) ⊕ {f �→ τ0[ ˜n\σ]

}
methods(c(σ̃)) = methods(c′(σ̃′)) ⊕ {m �→ (c(σ̃), (τ

[ ˜n\σ]
x ){s

[ ˜n\σ]
})}

methodsigs(c(σ̃)) = methodsigs(c′(σ̃′)) ⊕ {m �→ (τ
[ ˜n\σ]

)}

capability cb(ñ) extends cb′(ñ ′) {m(τ x )} σ̃′ = truncate(σ̃, |ñ ′|)
methodsigs(cb(σ)) = methodsigs(cb′(σ′))⊕ {m �→ (τ

[n\σ]
)}

subtype of cb(σ̃). Here, the sequence of the substitution value σ̃ has the same
length as the one of the string parameter ñ (denoted as |σ̃| = |ñ|). The rules
use the function truncate, which shortens a sequence to the given length, to gen-
eralise instantiation to cases where classes (or capabilities) extend other classes
(or capabilities) with fewer (i.e., zero) type parameters.

Table 3 gives the look up functions for accessing field and method definitions
and declarations. The function fields is used to look up all field definitions (as
a mapping from field names to types) in a class, including any field inherited
from its superclass(es). The functions methodsigs and methods return mappings
from method names to the method signatures and declarations (respectively) of
methods in a type. Specifically, the function methods provides a tuple for each
method, which is composed of the class type (c(σ̃)) that defined the method
body as well as the method definition (of form (τ x){s}). We use the operator ⊕
to denote the addition of two mappings, where elements in the right-hand side
mapping override (take precedence over) elements in the left-hand side mapping.
The notation t

[˜n\σ]
denotes the substitution of any reference to type parameter

n for σ within the preceding term t.

3.2 Well-Formedness and Typing Rules

A user-defined policy file Σ is a mapping from a class c (or a capability cb) to
the set G of permissions (i.e., well-formed capabilities and well-formed classes)
granted to that class (or capability). The transitive closure G+ of the set G can
be found in Definition 1. It is defined with respect to �, which is a partial order
relation on strings. For example, “dir/A.txt” � “dir/*” and “dir/*” � “*”.

Definition 1 (Transitive Closure of G). For the permission set G of a class
(or a capability), class c, capability cb, types τ and τ ′, string literals κ and κ′,
and type parameter name n, the transitive closure of G, denoted as G+, is defined
as follows: (1) if τ ∈ G, then we have τ ∈ G+; (2) if τ ∈ G and τ <: τ ′, then
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Table 4. Well-formedness rules for program, capabilities and classes

we have τ ′ ∈ G+; (3) if c(κ) ∈ G and κ′ � κ, then we have c(κ′) ∈ G+; (4) if
cb(κ) ∈ G and κ′ � κ, then we have cb(κ′) ∈ G+; (5) if c(“*”) ∈ G, then we have
c(n) ∈ G+; (6) if cb(“*”) ∈ G, then we have cb(n) ∈ G+.

Example. Let G = {OutCap(“dir/*”)}, then we have OutCap(“dir/*”) ∈ G+.
Because the relation on strings “dir/A.txt” � “dir/*” is satisfied, according to
Definition 1, we have that OutCap(“dir/A.txt”) ∈ G+. Intuitively, if the user
allows the code to write any file in the directory dir through OutCap, then it
implicitly allows the code to write the specific text file A.txt in that directory.

A typing environment Γ is a finite sequence of bindings x : τ of variables to
types. For the variables in the domain of Γ , Γ (x) is the type bound to the variable
x. The typing judgement for an expression is of the form G Γ � e : τ , which
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means the expression e with type τ is well-formed in the typing environment Γ ,
according to the permission set G granted to the current executing class. The
type judgement for a statement is of the form G Γ � s, which is used for checking
whether a statement s is well-formed or not according to the permission set G.

Well-formedness rules for program, capabilities and classes are shown in
Table 4. A program P , composed of classes and capabilities, is well-formed
based on the user-defined policy file Σ (denoted as Σ � P ) only if all classes
and capabilities are well-formed (denoted as ∀ c ∈ dom(CT ) · Σ � CT (c) and
∀ cb ∈ dom(CBT ) · Σ � CBT (cb) respectively), as well as the entry point state-
ment of the program is well-formed (denoted as G � s, and G stands for the
permission set granted to the class containing the entry point statement).

The other two group rules in Table 4 are used for checking the well-formedness
of capabilities and classes respectively. Traditional well-formedness checking con-
siders that statements of the method body are well-formed, signatures of over-
riding methods are compatible and there are no cycles in the transitive closure of
extension relations. It also checks that the only type variable referenced inside
a class or capability is the class or capability parameter n (e.g., through the
function referencedtypevars). Besides these traditional criteria, we add the fol-
lowing additional criteria (highlighted in boldboldbold) which state a class (or capability)
is well-formed only if:

∗ types of parameters in all method signatures are granted;
∗ types of all fields in the class are granted;
∗ capability parameters (or class parameters) should remain the same in
extension (or implementation) relations.

If a type τ is granted to a capability cb (or a class c) based on the user-defined
policy file Σ, then we have τ ∈ Σ(cb) (or τ ∈ Σ(c)).

The typing rules for expressions and statements are shown in Table 5. As
before, we highlight our additions in boldboldbold. The first group of rules are used for
expressions. We can obtain the types of variables directly from the typing envi-
ronment Γ according to the first rule (VAR) and look up the types of fields using
rule (FID). Types of variables and fields are granted to the current executing
class if they are given in the set G, which stands for the set of permissions granted
to the current executing class based on the user-defined policy file. Note that
we leave the situation that the type of the expression is a subtype of a variable
or a field to be covered by the subsumption rule (SUB). The rule (NEW) for
the object creation may create an object with the parameter σ̃ to instantiate
the type parameter. The derived type of the expression should be the same as
the class type (i.e., c(σ̃)). The last rule (CAST) in the first group for expres-
sions is used to deal with the type casting in the object-oriented programming
languages, which allows an expression to be cast to a granted subtype.

The next group of typing rules in Table 5 covers the rules for statements.
Rule (AGN) and rule (FIDAGN) for variable assignment and field assignment
are typed by ensuring that the derived type of the expression is the same as the
type of the variable x or the field f . For the rule (IF), if the variable x has the
type int, and statements s1 and s2 are well-formed under the typing environment
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Table 5. Typing rules for expressions and statements

Γ and the permission set G, then the whole statement is also well-formed under
Γ and G. To type a sequential composition, each statement needs to be typed
in the typing environment Γ under the permission set G, which is shown in rule
(SEQ). The last rule (CALL) looks up the method signature and checks whether
the types of the method arguments (i.e., the types of y) are the same as the ones
of the method parameters (e.g., τp).

3.3 Example Revisited

We revisit the example of Java file output access used in Sect. 2 to demonstrate
the applicability of the proposed model. The capability OutCap and its imple-
mentation class are given in Listing 2. A combined capability InOutCap for
both input and output access, and an application class are given in Listing 3.

The class Application is granted the type InOutCap(“dir/*”) and the type
OutCapImp(“dir/A.txt”) as permissions by the user, thus we have that:

G = Σ(Application) = {InOutCap(“dir/*”), OutCapImp(“dir/A.txt”)}
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Listing 3. Application class using file stream capabilities

capability InOutCap (n) extends OutCap(n) {
wr i t e ( int b) ;

read ( )

}
// grant : InOutCap(” d i r /∗”) and OutCapImp(” d i r /A. t x t ”)

class Appl i ca t ion {
main ( ) {

OutCap( ” d i r /A . t x t ” ) out = new OutCapImp( ” d i r /A . t x t ” ) ;

InOutCap ( ” d i r /A . t x t ” ) inOut = ( InOutCap ( ” d i r /A . t x t ” ) ) out ;

OutCap( ”∗” ) out2 = (OutCap( ”∗” ) ) inOut // i n v a l i d

}
}

We check the following three statements based on our typing rules and illus-
trate why the third statement in the main method is invalid. The first state-
ment creates an instance of capability OutCap(“dir/A.txt”), which passes the
type checking using rules (NEW), (SUB) and (AGN) from Table 5. The infer-
ence steps are illustrated below. According to Definition 1, we have both
OutCap(“dir/A.txt”) ∈ G+ and OutCapImp(“dir/A.txt”) ∈ G+.

OutCapImp(“dir/A.txt”) ∈ G+

G Γ � new OutCapImp(“dir/A.txt”) : OutCapImp(“dir/A.txt”)
OutCapImp(“dir/A.txt”) <: OutCap(“dir/A.txt”) OutCap(“dir/A.txt”) ∈ G+

G Γ � new OutCapImp(“dir/A.txt”) : OutCap(“dir/A.txt”)
Γ (out) = OutCap(“dir/A.txt”)

G Γ � out = new OutCapImp(“dir/A.txt”)

The second statement casts the type of the instance out to capability InOutCap
with the parameter “dir/A.txt”. The following inference steps are given based
on the rules (VAR), (CAST) and (AGN) in Table 5. Also, based on Definition
1, we can deduce that InOutCap(“dir/A.txt”) ∈ G+.

Γ (out) = OutCap(“dir/A.txt”) OutCap(“dir/A.txt”) ∈ G+

G Γ � out : OutCap(“dir/A.txt”) InOutCap(“dir/A.txt”) ∈ G+

G Γ � (InOutCap(“dir/A.txt”))out : InOutCap(“dir/A.txt”)
Γ (inOut) = InOutCap(“dir/A.txt”)

G Γ � inOut = (InOutCap(“dir/A.txt”))out

However, the third statement cannot pass the type checking as we cannot
deduce OutCap(“*”) ∈ G+, based on Definition 1 and the types granted to
Application.
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Through controlling the type visibility, we avoid capabilities escaping to
unauthorised code and restrict the targets that capabilities can access, based
on a user-defined policy file. Revisiting and applying our approach to the moti-
vating example in Sect. 1, we can find that the UnauthorisedCode is granted
neither the type OutCap(“dir/B.txt”) nor the type OutCap(“dir/*”), thus the
declaration itself of class UnauthorisedCode cannot pass the well-formedness
check at compile time.

4 Dynamic Semantics

In this section, we present the dynamic semantics and security-related subject
reduction theorem of the type system. We show that the type-correctness of the
runtime state and the security invariant are preserved over the evaluation of
expressions and statements.

4.1 Operational Semantics

The dynamic semantics is devised using the big-step style operational semantics.
We start by adding some additional notations to represent runtime values and
states as follows.

e ::= ... | v

v ::= lc(κ̃) | null | num

v is a runtime value, denoting the result of evaluating an expression. It can be
an integer num, a location l labeled with its dynamic type c(κ̃), or null .

We use S to stand for the stack, mapping from local variables to values (e.g.,
S(x) = v denotes that the variable x contains the value v), and H represents
the heap, mapping from locations and fields to values (e.g., H(lc(κ̃))(f) = v
describes that the field f of class c(κ̃) which is allocated at the location l on
the heap contains the value v). The notation A denotes a list recording method
invocation actions taken by the program. Each action is recorded as a quadruple
(c, ci(κ̃i), τr,m), in which c stands for the class name of the current calling
class, ci(κ̃i) is the class that contains the implementation of the method we are
calling, τr is the runtime type of the object on which we are calling the method
and m is the method name. The evaluation rule for expressions is of the form
c � 〈e | S H A〉 → 〈v | S′ H ′ A′〉, which represents that in a given class c, an
expression e can make a transition into a value v, and the evaluation of their
side effects is shown on the stack, heap and action list. The evaluation rule for
statements is in the form of c � 〈s | S H A〉 → 〈S′ H ′ A′〉, which denotes that
statements are evaluated for their side effects only.

We proceed with a detailed explanation of the semantic rules for expressions
and statements in Table 6. The notation S[x �→ v] represents the update of the
stack S that maps the variable x to the value v, which is similar with the update
of the heap H with the form of H[lc(κ̃) �→ [f �→ v]]. We use notations dom(S)
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Table 6. Dynamic semantics for expressions and statements

and dom(H) to stand for the domain of the stack S and the heap H, respectively.
The notation H ′ = H, {lc(κ̃) �→ ...} is used to represent an extension of heap H
where lc(κ̃) /∈ dom(H), and A′ = A, {...} is used for the extension of list A.

The first two rules (T-VAL) and (T-LOAD) evaluate variables and fields
from the stack and the heap respectively. The rule (T-CAST) describes the
downcasting between objects or capability variables if the runtime type is a
subtype of the type to be converted to. The last rule (T-NEW) is used for
an object creation, which extends the heap with the new object. All fields are
initially set to null.

The remaining rules are used for statement evaluations. The rules (T-AGN)
and (T-FLD) are used to update the stack and the heap respectively. Method
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invocation in (T-CALL) dynamically looks up the target method to be called
based on the dynamic type of the object. A record of the method invocation
action will be added into the action list A. The rules (T-THEN) and (T-ELSE)
describe the transitions performed by the conditional choice. In particular, the
rule (T-THEN) accounts for the case where the condition is true (indicated by the
value of the variable x is greater than zero); whereas the rule (T-ELSE) accounts
for the case where it is false. The last rule (T-SEQ) is used for evaluating the
sequential composition of two statements in order, which means that statement
s2 is evaluated based on the output configuration of statement s1.

4.2 Subject Reduction

In this section, we prove that well-formed programs are safe over subject reduc-
tion [13], which means that the type-correctness of the program state and the
security invariant are preserved under evaluations.

(CORR)

(∀x ∈ dom(Γ ), τ · Γ (x) = τ ∧ τ ∈ (Σ(c))+τ ∈ (Σ(c))+τ ∈ (Σ(c))+ =⇒
x ∈ dom(S) ∧ ∃v · S(x) = v ∧ H � v : τ

)

( ∀lc
′(κ̃) ∈ dom(H), f, τ · fields(c′(κ̃))(f) = τ =⇒

f ∈ dom(H(lc
′(κ̃))) ∧ ∃v · H(lc

′(κ̃))(f) = v ∧ H � v : τ

)

Σ(c) Γ � A

Σ(c) Γ � S H A

An additional rule (CORR) is given to illustrate the correspondence between
the typing environment Γ of type system and the configuration, including stack
S and heap H, under the user-defined policy file Σ and the current executing
class c. It requires that for every variable x in Γ , a value v exists for variable
x on the stack S such that v is type-correct to Γ (x). Similarly, for every object
on the heap, both the fields present, and their values, must match the object’s
type information. Lastly, the security invariant on the action list A must be
maintained.

Definition 2 (Security Invariant). For the action list A, user-defined policy
file Σ, calling class c, class ci(κ̃i) containing the method body that is called,
runtime type c′(κ̃) of the object on which the method is called and method name
m, the security invariant (represented as Σ(c) Γ � A) says that:

∀(c, ci(κ̃i), c′(κ̃),m) ∈ A,∃τ · τ ∈ (Σ(c))+ ∧ c′(κ̃) <: τ ∧
c′(κ̃) <: ci(κ̃i) ∧ methodsigs(τ)(m) = methodsigs(ci(κ̃i))(m)

The security invariant says that for all method invocation actions in A, there
exists a type τ granted to the current calling class c, of which the runtime type
c′(κ̃) is a subtype. Also, the runtime type is a subtype of the type of class ci(κ̃i)
which contains the implementation of the method we invoked and the method
signature looked up based on τ and ci(κ̃i) should be the same. It provides a
guarantee that each well-formed method invocation action in the action list A
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can only use the types (i.e., capabilities and classes) granted to its invoking
class based on the user-defined policy file, restricting capability types only to
authorised code.

In order to accommodate runtime values, we add three more rules to extend
our static inference rules for checking the runtime values are type correct in the
context of heap H.

(NULL) H � null : τ
(NUM) H � num : int (LOC)

lc(κ̃) ∈ dom(H) c(κ̃) <: τ

H � lc(κ̃) : τ

The preservation theorem for subject reduction is given in Theorem1, which
presents the preservation of well-formedness and security invariant on state-
ments. Preservation for expressions is trivial as expressions only look up values
from well-formed stack or heap, thus we omit it. Theorem 1 can be proved by
structural induction on the semantic derivation.

Theorem 1 (Preservation). For any typing environment Γ , stack S, heap H,
action list A, statement s, current executing class c, user-defined policy file Σ
and the well-formed program P :

Σ � P
Σ(c) Γ � s

Σ(c) Γ � S H A
c � 〈s|S H A〉 → 〈S′ H ′ A′〉

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=⇒ Σ(c) Γ � S′ H ′ A′

5 Conclusion and Future Work

Existing authorisation mechanisms used in programming languages like Java are
not effective in controlling interactions between different parts of code within
the same process. In this paper, we tackled the problem of adapting capabili-
ties to programming languages for providing authorisation to code. We regarded
capabilities as types and presented a statically-checked type system to enforce
the proper use of capabilities by controlling the type visibility at compile time,
providing a security guarantee that restricts capabilities (i.e., the access to
resources) only to authorised code. We also introduced parameterised capability
types to provide a finer-grained access control and to identify system resources
more precisely. We applied our model on file-access examples.

Future directions for our research include building a prototype implementa-
tion of the type system, and validating its usability by applying it to real-world
case studies. Other possible directions include extending the language with even
richer parameterisation to increase its expressiveness, and adding more language
features (e.g., method overloading, return values and exceptions) to improve the
quality of our formalism.
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