
Strongly Typed Numerical Computations

Matthieu Martel(B)

Laboratoire de Mathématiques et Physique (LAMPS),
Université de Perpignan Via Domitia, Perpignan, France

matthieu.martel@univ-perp.fr

Abstract. It is well-known that numerical computations may some-
times lead to wrong results because of roundoff errors. We propose an
ML-like type system (strong, implicit, polymorphic) for numerical com-
putations in finite precision, in which the type of an expression carries
information on its accuracy. We use dependent types and a type infer-
ence which, from the user point of view, acts like ML type inference.
Basically, our type system accepts expressions for which it may ensure
a certain accuracy on the result of the evaluation and it rejects expres-
sions for which a minimal accuracy on the result of the evaluation cannot
be inferred. The soundness of the type system is ensured by a subject
reduction theorem and we show that our type system is able to type
implementations of usual simple numerical algorithms.

1 Introduction

It is well-known that numerical computations may sometimes lead to wrong
results because of the accumulation of roundoff errors [8]. Recently, much work
has been done to detect these accuracy errors in finite precision computations [1],
by static [6,9,18] or dynamic [7] analysis, to find the least data formats needed
to ensure a certain accuracy (precision tuning) [11,12,17] and to optimize the
accuracy by program transformation [5,14]. All these techniques are used late
in the software development cycle, once the programs are entirely written.

In this article, we aim at exploring a different direction. We aim at detect-
ing and correcting numerical accuracy errors at software development time, i.e.
during the programming phase. From a software engineering point of view, the
advantages of our approach are many since it is well-known that late bug detec-
tion is time and money consuming. We also aim at using intensively used tech-
niques recognized for their ability to discard run-time errors. This choice is moti-
vated by efficiency reasons as well as for end-user adoption reasons.

We propose an ML-like type system (strong, implicit, polymorphic [15]) for
numerical computations in which the type of an arithmetic expression carries
information on its accuracy. We use dependent types [16] and a type inference

This work is supported by the Office for Naval Research Global under Grant
NICOP N62909-18-1-2068 (Tycoon project). https://www.onr.navy.mil/en/Science-
Technology/ONR-Global.

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 197–214, 2018.
https://doi.org/10.1007/978-3-030-02450-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_12&domain=pdf
https://www.onr.navy.mil/en/Science-Technology/ONR-Global
https://www.onr.navy.mil/en/Science-Technology/ONR-Global

198 M. Martel

which, from the user point of view, acts like ML [13] type inference [15] even if
it slightly differs in its implementation. While type systems have been widely
used to prevent a large variety of software bugs, to our knowledge, no type
system has been targeted to address numerical accuracy issues in finite precision
computations. Basically, our type system accepts expressions for which it may
ensure a certain accuracy on the result of the evaluation and it rejects expressions
for which a minimal accuracy on the result of the evaluation cannot be inferred.

Let us insist on the fact that we use a dependent type system. Consequently,
the type corresponding to a function of some argument x depends on the type
of x itself. The soundness of our type system relies on a subject reduction the-
orem introduced in Sect. 4. Based on an instrumented operational semantics
computing both the finite precision and exact results of a numerical computa-
tion, this theorem shows that the error on the result of the evaluation of some
expression e is less than the error predicted by the type of e. Obviously, as any
non-trivial type system, our type system is not complete and rejects certain pro-
grams that would not produce unbounded numerical errors. Our type system has
been implemented in a prototype language Numl and we show that, in practice,
our type system is expressive enough to type implementations of usual simple
numerical algorithms [2] such as the ones of Sect. 5. Let us also mention that our
type system represents a new application of dependent type theory motivated by
applicative needs. Indeed, dependent types arise naturally in our context since
accuracy depends on values.

This article is organized as follows. Section 2 introduces informally our type
system and shows how it is used in our implementation of a ML-like programming
language, Numl. The formal definition of the types and of the inference rules
are given in Sect. 3. A soundness theorem is given in Sect. 4. Section 5 presents
experimental results and Sect. 6 concludes.

2 Programming with Types for Numerical Accuracy

In this section, we present informally how our type system works throughout a
programming sequence in our language, Numl. First of all, we use real numbers
r{s, u, p} where r is the value itself, and {s, u, p} the format of r. The format of
a real number is made of a sign s ∈ Sign and integers u, p ∈ Int such that u is
the unit in the first place of r, written ufp(r) and p the precision (i.e. the number
of digits of the number). For inputs, p is either explicitly specified by the user
or set by default by the system. For outputs, p is inferred by the type system.
We have Sign = {0,⊕,�,�} and sign(r) = 0 if r = 0, sign(r) = ⊕ if r > 0 and
sign(r) = � if r < 0. The set Sign is equipped with the partial order relation
≺⊆ Sign × Sign defined by 0 ≺ ⊕, 0 ≺ �, ⊕ ≺ � and � ≺ �. The ufp of a
number x is

ufp(x) = min
{
i ∈ N : 2i+1 > x

}
= �log2(x)�. (1)

The term p defines the precision of r. Let ε(r) be the absolute error on r,
we assume that ε(r) < 2u−p+1. The errors on the numerical constants arising
in programs are specified by the user or determined by default by the system.

Strongly Typed Numerical Computations 199

Fig. 1. Basic binary IEEE754 formats.

The errors on the computed values can be inferred by propagation of the initial
errors. Similarly to Eq. (1), we also define the unit in the last place (ulp) used
later in this article. The ulp of a number of precision p is defined by

ulp(x) = ufp(x) − p + 1. (2)

For example, the type of 1.234 is real{+, 0, 53} since ufp(1.234) = 0 and
since we assume that, by default, the real numbers have the same precision as
in the IEEE754 double precision floating-point format [1] (see Fig. 1). Other for-
mats may be specified by the programmer, as in the example below. Let us also
mention that our type system is independent of a given computer arithmetic.
The interpreter only needs to implement the formats given by the type system,
using floating-point numbers, fixed-point numbers [10], multiple precision num-
bers1, etc. in order to ensure that the finite precision operations are computed
exactly. The special case of IEEE754 floating-point arithmetic, which introduces
additional errors due to the roundoff on results of operations can also be treated
by modifying slightly the equations of Sect. 3.

> 1.234 ;; (* precision of 53 bits by default *)
- : real{+,0,53} = 1.234000000000000

> 1.234{4};; (* precision of 4 bits specified by the user *)
- : real{+,0,4} = 1.2

Notice that, in Numl, the type information is used by the pretty printer to display
only the correct digits of a number and a bound on the roundoff error.

Note that accuracy is not a property of a number but a number that states
how closely a particular finite-precision number matches some ideal true value.
For example, using the basis β = 10 for the sake of simplicity, the floating-point
value 3.149 represents π with an accuracy of 3. It itself has a precision of 4. It
represents the real number 3.14903 with an accuracy of 4. As in ML, our type
system admits parameterized types [15].

> let f = fun x -> x + 1.0 ;;
val f : real{’a,’b,’c} -> real{<expr>,<expr>,<expr>} = <fun>

> verbose true ;;
- : unit = ()

> f ;;
- : real{’a,’b,’c} -> real{(SignPlus ’a ’b 1 0),((max ’b 0) +_ (sigma+ ’a 1)),
((((max ’b 0) +_ (sigma+ ’a 1)) -_ (max (’b -_ ’c) -53))-_ (iota (’b -_ ’c) -53))} = <fun>

1 https://gmplib.org/.

https://gmplib.org/

200 M. Martel

In the example above, the type of f is a function of an argument whose
parameterized type is real{’a, ’b, ’c}, where ’a, ’b and ’c are three type
variables. The return type of the function f is Real{e0,e1,e2} where e0, e1
and e2 are arithmetic expressions containing the variables ’a, ’b and ’c. By
default these expressions are not displayed by the system (just like higher order
values are not explicitly displayed in ML implementations) but we may enforce
the system to print them. In Numl, we write +, -, * and / for the operators over
real numbers. Integer expressions have type int and we write + , - , * and /
for the elementary operators over integers. The expressions arising in the type
of f are explained in Sect. 3. As shown below, various applications of f yield
results of various types, depending on the type of the argument.

> f 1.234 ;;
- : real{+,1,53} = 2.234000000000000

> f 1.234{4} ;;
- : real{+,1,5} = 2.2

If the interpreter detects that the result of some computation has no signifi-
cant digit, then an error is raised. For example, it is well-known that in IEEE754
double precision (1016+1)−1016 = 0. Our type system rejects this computation.

> (1.0e15 + 1.0) - 1.0e15 ;;
- : real{+,50,54} = 1.0

> (1.0e16 + 1.0) - 1.0e16 ;;
Error: The computed value has no significant digit. Its ufp is 0 but the ulp of the
certified value is 1

Last but not least, our type system accepts recursive functions. For example, we
have:

> let rec g x = if x < 1.0 then x else g (x * 0.07) ;;
val g : real{+,0,53} -> real{+,0,53} = <fun>

> g 1.0 ;;
- : real{+,0,53} = 0.07000000000000

> g 2.0 ;;
Error: This expression has type real{+,1,53} but an expression was expected of type
real{+,0,53}

In the above session, the type system unifies the return type of the function
with the type of the conditional. The types of the then and else branches also
need to be unified. Then the return type is real{+,0,53} which corresponds to
the type of the value 1.0 used in the then branch. The type system also unifies
the return type with the type of the argument since the function is recursive.
Finally, we obtain that the type of g is real{+,0,53} -> real{+,0,53}. As
a consequence, we cannot call g with an argument whose ufp is greater than
ufp(1.0) = 0. To overcome this limitation, we introduce new comparison opera-
tions for real numbers. While the standard comparison operator < has type ’a ->
’a -> bool, the operator <{s,u,p} has type real{s,u,p} -> real{s,u,p} ->
bool. In other words, the compared value are cast in the format {s, u, p} before
performing the comparison. Now we can write the code:

Strongly Typed Numerical Computations 201

> let rec g x = if x <{*,10,15} 1.0 then x else g (x * 0.07) ;;
val g : real{*,10,15} -> real{*,10,15} = <fun>

> g 2.0 ;;
- : real{*,10,15} = 0.1

> g 456.7 ;;
- : real{*,10,15} = 0.1

> g 4567.8 ;;
Error: This expression has type real{+,12,53} but an expression was expected of
type real{*,10,15}

Interestingly, unstable functions (for which the initial errors grow with the
number of iterations) are not typable. This is a desirable property of our system.

> let rec h n = if (n=0) then 1.0 else 3.33 * (h (n -_ 1)) ;;
Error: This expression has type real{+,-1,-1} but an expression was expected of
type real{+,-3,-1}

Stable computations should be always accepted by our type system. Obvi-
ously, this is not the case and, as any non-trivial type system, our type system
rejects some correct programs. The challenge is then to accept enough programs
to be useful from an end-user point of view. We end this section by showing
another example representative of what our type system accepts. More exam-
ples are given later in this article, in Sect. 5. The example below deals with the
implementation of the Taylor series 1

1−x =
∑

n≥0 xn. The implementation gives
rise to a simple recursion, as shown in the programming session below.

> let rec taylor x{*,-1,25} xn i n = if (i > n) then 0.0{*,10,20}
else xn + (taylor x (x * xn) (i +_ 1) n) ;;

val taylor : real{*,-1,25} -> real{*,10,20} -> int -> int -> real{*,10,20} = <fun>

> taylor 0.2 1.0 0 5;;
- : real{*,10,20} = 1.2499 +/- 0.0009765625

Obviously, our type system computes the propagation of the errors due to
finite precision but does not take care of the method error intrinsic to the imple-
mented algorithm (the Taylor series instead of the exact formula 1

1−x in our case.)
All the programming sessions introduced above as well as the additional exam-
ples of Sect. 5 are fully interactive in our system, Numl, i.e. the type judgments are
obtained instantaneously (about 0.01 s in average following our measurements)
including the most complicated ones.

3 The Type System

In this section, we introduce the formal definition of our type system for numer-
ical accuracy. First, in Sect. 3.1, we define the syntax of expressions and types
and we introduce a set of inference rules. Then we define in Sect. 3.2 the types
of the primitives for the operators among real numbers (addition, product, etc.)
These types are crucial in our system since they encode the propagation of the
numerical accuracy information.

202 M. Martel

Fig. 2. Typing rules for our language.

3.1 Expressions, Types and Inference Rules

In this section, we introduce the expressions, types and typing rules for our
language. For the sake of simplicity, the syntax introduced hereafter uses nota-
tions à la lambda calculus instead of the ML-like syntax employed in Sect. 2. In
our system, expressions and types are mutually dependent. They are defined
inductively using the grammar of Eq. (3).

Expr � e ::= r{s, u, p} ∈ Realu,p | i ∈ Int | b ∈ Bool | id ∈ Id
| if e0 then e1 else e2 | λx.e | e0 e1 | rec f x.e | t

Typ � t ::= | int | bool | real{i0, i1, i2} | α | Πx : e0.e1

IExp � i ::= | int | op ∈ IdI | α | i0 i1

(3)

In Eq. (3), the e terms correspond to expressions. Constants are integers i ∈ Int,
booleans b ∈ Bool and real numbers r{s, u, p} where r is the value itself, s ∈ Sign
is the sign as defined in Sect. 2 and u, p ∈ Int the ufp (see Eq. (1)) and precision
of r. For inputs, the precision p is given by the user by means of annotations or
chosen by default by the system. Then p is inferred for the outputs of programs.
The term p defines the precision of r. Let ε(r) be the absolute error on r, we
assume that

ε(r) < 2u−p+1. (4)

The errors on the numerical constants arising in programs are specified by the
user or determined by default by the system. The errors on the computed values
can be inferred by propagation of the initial errors.

In Eq. (3), identifiers belong to the set Id and we assume a set of pre-defined
identifiers +, −, ×, ≤, =, . . . related to primitives for the logical and arithmetic
operations. We write +, −, × and ÷ the operations on real numbers and + , − ,
× and ÷ the operations among integers. The language also admits conditionals,
functions λx.e, applications e0 e1 and recursive functions rec f x.e where f is
the name of the function, x the parameter and e the body. The language of

Strongly Typed Numerical Computations 203

Fig. 3. The sub-typing relation � of Eq. (6).

expressions also includes type expressions t defined by the second production of
the grammar of Eq. (3).

The definition of expressions and type is mutually recursive. Type variables
are denoted α, β, . . . and Πx : e0.e1 is used to introduce dependent types [16].
Let us notice that our language does not explicitly contain function types t0 → t1
since they are encoded by means of dependent types. Let ≡ denote the syntactic
equivalence, we have

t0 → t1 ≡ Πx : t0.t1 with x not free in t1. (5)

For convenience, we also write λx0.x1 . . . xn.e instead of λx0.λx1 . . . λxn.e and
Πx0 : t0.x1 : t1 . . . xn : tn.e instead of Πx0 : t0.Πx1 : t1 . . . Πxn : tn.e.

The types of constants are int, bool and real{i0, i1, i2} where i0, i1 and i2
are integer expressions denoting the format of the real number. Integer expres-
sions of IExpr ⊆ Expr are a subset of expressions made of integer numbers, inte-
ger primitives of IdI ⊆ Id (such as + , × , etc.), type variables and applications.
Note that this definition restricts significantly the set of expressions which may
be written inside real types.

The typing rules for our system are given in Fig. 2. These rules are mostly
classical. The type judgment Γ � e : t means that in the type environment Γ ,
the expression e has type t. A type environment Γ : Id → Typ maps identifiers
to types. We write Γ x : t the environment Γ in which the variable x has type t.
The typing rules (Int) and (Bool) are trivial. Rule (Real) states that the type
of a real number r{s,u,p} is real{s, u, p} assuming that the actual sign of r is
less than s and that the ufp of r is less than u. Following Rule (Id), an identifier
id has type t if Γ (id) = t. Rules (Cond), (Abs) and (Rec) are standard rules
for conditionals and abstractions respectively. The rule for application, (App),
requires that the first expression e1 has type Πx : t0.t1 (which is equivalent to
t0 → t1 if x is not free in t1) and that the argument e2 has some type t2 � t0.
The sub-typing relation � is introduced for real numbers. Intuitively, we want to
allow the argument of some function to have a smaller ulp than what we would
require if we used t0 = t2 in Rule (App), provided that the precision p remains
as good with t2 as with t0. This relaxation allows to type more terms without
invalidating the type judgments. Formally, the relation � is defined by

real{s1, u1, p1} � real{s2, u2, p2} ⇐⇒ s1 � s2 ∧ u2 ≥ u1 ∧ p2 ≤ u2 − u1 + p1. (6)

204 M. Martel

In other words, the sub-typing relation of Eq. (6) states that it is always correct
to add zeros before the first significant digit of a number, as illustrated in Fig. 3.

3.2 Types of Primitives

In this section, we introduce the types of the primitives of our language. As
mentioned earlier, the arithmetic and logic operators are viewed as functional
constants of the language. The type of a primitive for an arithmetic operation
among integers ∗ ∈ {+ ,− ,× ,÷ } is

t∗ = Πx : int.y : int.int. (7)

The type of comparison operators ��∈ {=, �=, <,>,≤,≥} are polymorphic with
the restriction that they reject the type real{s, u, p} which necessitates special
comparison operators:

t�� = Πx : α.y : α.bool α �= real{s, u, p}. (8)

For real numbers, we use comparisons at a given accuracy defined by the oper-
ators ��{u,p}∈ {<{u,p}, >{u,p}}. We have

t��{u,p} = Πs : int, u : int, p : int.real{s, u, p + 1} → real{s, u, p + 1} → bool.

Notice that the operands of a comparison ��{u,p} must have p+1 bits of accuracy.
This is to avoid unstable tests, as detailed in the proof of Lemma3 in Sect. 4.
An unstable test is a comparison between two approximate values such that the
result of the comparison is altered by the approximation error. For instance,
if we reuse an example of Sect. 2, in IEEE754 double precision, the condition
1016 + 1 = 1016 evaluates to true. We need to avoid such situations in our
language in order to preserve our subject reduction theorem (we need the control-
flow be the same in the finite precision and exact semantics). Let us also note
that our language does not provide an equality relation ={u,p} for real values.
Again this is to avoid unstable tests. Given values x and y of type real{s, u, p},
the programmer is invited to use |x − y| < 2u−p+1 instead of x = y in order to
get rid of the perturbations of the finite precision arithmetic.

The types of primitives for real arithmetic operators are fundamental in
our system since they encode the propagation of the numerical accuracy infor-
mation. They are defined in Figs. 4 and 5. The type t∗ of some operation
∗ ∈ {+,−,×,÷} is a pi-type with takes six arguments s1, u1, p1, s2, u2 and p2 of
type int corresponding to the sign, ufp and precision of the two operands of ∗ and
which produces a type real{s1, u1, p1} → real{s2, u2, p2} → real{S∗(s1, s2),
U∗(s1, u1, s2, u2),P∗(u1, p1, u2, p2)} where S∗, U∗ and P∗ are functions which com-
pute the sign, ufp and precision of the result of the operation ∗ in function of
s1, u1, p1, s2, u2 and p2. These functions extend the functions used in [12].

The functions S∗ determine the sign of the result of an operation in function
of the signs of the operands and, for additions and subtractions, in function of
the ufp of the operands. The functions U∗ compute the ufp of the result. Notice
that U+ and U− use the functions σ+ and σ−, respectively. These functions are

Strongly Typed Numerical Computations 205

Fig. 4. Types of the primitives corresponding to the elementary arithmetic operations
∗ ∈ {+, −, ×, ÷}. The functions S∗ and σ∗ are defined in Fig. 5.

defined in the bottom right corner of Fig. 5 to increment the ufp of the result of
some addition or subtraction in the relevant cases only. For example if a and b
are two positive real numbers then ufp(a+ b) is possibly max

(
ufp(a), ufp(b)

)
+1

but if a > 0 and b < 0 then ufp(a + b) is not greater than max
(
ufp(a), ufp(b)

)
.

The functions P∗ compute the precision of the result. Basically, they compute
the number of bits between the ufp and the ulp of the result.

We end this section by exhibiting some properties of the functions P∗. Let
ε(x) denote the error on x ∈ Realu,p. We have ε(x) < 2u−p+1 = ulp(x). Let
us start with addition. Lemma1 relates the accuracy of the operands to the
accuracy of the result of an addition between two values x and y. Lemma 2 is
similar to Lemma 1 for product.

Lemma 1. Let x and y be two values such that ε(x) < 2u1−p1+1 and ε(y) <
2u2−p2+1. Let z = x + y, u = U+(s1, u1, s2, u2) and p = P+(s1, u1, p1, s2, u2, p2).
Then ε(z) < 2u−p+1.

Proof. The errors on addition may be bounded by e+ = ε(x) + ε(y). Then
the most significant bit of the error has weight ufp(e+) and the accuracy of
the result is p = ufp(x + y) − ufp(e+). Let u = ufp(x + y) = max(u1, u2) +
σ+(s1, s2) = U+(s1, u1, s2, u2). We need to over-approximate e+ in order to
ensure p. We have ε(x) < 2u1−p1+1 and ε(y) < 2u2−p2+1 and, consequently,
e+ < 2u1−p1+1 + 2u2−p2+1. We introduce the function ι(x, y) also defined in
Fig. 4 and which is equal to 1 if x = y and 0 otherwise. We have

ufp(e+) < max(u1 − p1 + 1, u2 − p2 + 1) + ι(u1 − p1, u2 − p2)
≤ max(u1 − p1, u2 − p2) + ι(u1 − p1, u2 − p2)

Let us write p = max(u1 − p1, u2 − p2) − ι(u1 − p1, u2 − p2) =
P+(s1, u1, p1s2, u2, p2). We conclude that u = U+(s1, u1, s2, u2), p =
P+(s1, u1, p1s2, u2, p2) and ε(z) < 2u−p+1. �

206 M. Martel

Fig. 5. Operators used in the types of the primitives of Fig. 4.

Lemma 2. Let x and y be two values such that ε(x) < 2u1−p1+1 and ε(y) <
2u2−p2+1. Let z = x × y, u = U×(s1, u1, s2, u2) and p = P×(s1, u1, p1, s2, u2, p2).
Then ε(z) < 2u−p+1.

Proof. For product, we have p = ufp(x × y) − ufp(e×) with e× = x · ε(y) + y ·
ε(x)+ε(x) ·ε(y). Let u = u1 +u2 +1 = U×(s1, u1, s2, u2). We have, by definition
of ufp, 2u1 ≤ x < 2u1+1 and 2u2 ≤ y < 2u2+1. Then e× may be bounded by

e× < 2u1+1 · 2u2−p2+1 + 2p2+1 · 2u1−p1+1 + 2u1−p1+1 · 2u2−p2+1

= 2u1+u2−p2+2 + 2u1+u2−p1+2 + 2u1+u2−p1−p2+2.
(9)

Since u1+u2−p1−p2+2 < u1+u2−p1+2 and u1+u2−p1−p2+2 < u1+u2−p2+2,
we may get rid of the last term of Eq. (9) and we obtain that

ufp(e×) < max(u1 + u2 − p1 + 2, u1 + u2 − p2 + 2) + ι(p1, p2)
≤ max(u1 + u2 − p1 + 1, u1 + u2 − p2 + 1) + ι(p1, p2).

Let us write p = max(u1 + u2 − p1 + 1, u1 + u2 − p2 + 1) − ι(p1, p2) =
P×(s1, u1, p1s2, u2, p2). Then u = U×(s1, u1, s2, u2), p = P×(s1, u1, p1s2, u2, p2)
and ε(z) < 2u−p+1. �

Note that, by reasoning on the exponents of the values, the constraints result-
ing from a product become linear. The equations for subtraction and division

Strongly Typed Numerical Computations 207

Fig. 6. Operational semantics for our language.

are almost identical to the equations for addition and product, respectively. We
conclude this section with the following theorem which summarize the properties
of the types of the result of the four elementary operations.

Theorem 1. Let x and y be two values such that ε(x) < 2u1−p1+1 and ε(y) <
2u2−p2+1 and let ∗ ∈ {+,−,×,÷} be an elementary operation. Let z = x ∗ y,
u = U∗(s1, u1, s2, u2) and p = P∗(s1, u1, p1, s2, u2, p2). Then ε(z) < 2u+p−1.

Proof. The cases of addition and product correspond to Lemmas 1 and 2, respec-
tively. The cases of subtraction and division are similar. �

Numl uses a modified Hindley-Milner type inference algorithm. Linear con-
straints among integers are generated (even for non linear expressions). They
are solved space limitation reasons, the details of this algorithm are out of the
scope of this article.

4 Soundness of the Type System

In this section, we introduce a subject reduction theorem proving the consistency
of our type system. We use two operational semantics →F and →R for the finite
precision and exact arithmetics, respectively. The exact semantics is used for

208 M. Martel

proofs. Obviously, in practice, only the finite precision semantics is implemented.
We write → whenever a reduction rule holds for both →F and →R (in this case,
we assume that the same semantics →F or →R is used in the lower and upper
parts of the same sequent). Both semantics are displayed in Fig. 6. They concern
the subset of the language of Eq. (3) which do not deal with types.

EvalExpr � e ::= r{s, u, p} ∈ Realu,p | i ∈ Int | b ∈ Bool | id ∈ Id
| if e0 then e1 else e2 | λx.e | e0 e1 | rec f x.e| e0 ∗ e1

.

(10)
In Eq. (10), ∗ denotes an arithmetic operator ∗ ∈ {+,−,×,÷,+ ,− ,× , ÷ }.
In Fig. 6, Rule (FVal) of →F transforms a syntactic element describing a real
number r{s, u, p} in a certain format into a value vF. The finite precision value
vF is an approximation of r with an error less than the ulp of r{s, u, p}. In
the semantics →R, the real number r{s, u, p} simply produces the value r
without any approximation by Rule (RVal). Rules (Op1) and (Op2) evaluate
the operands of some binary operation and Rule (Op) performs an operation
∗ ∈ {+,−,×,÷,+ ,− ,× ,÷ } between two values v0 and v1.

Rules (Cmp1), (Cmp2) and (ACmp) deal with comparisons. They are similar
to Rules (Op1), (Op2) and (Op) described earlier. Note that the operators <
, >, =, �= concerned by Rule (ACmp) are polymorphic except that they do not
accept arguments of type real. Rules (FCmp) and (RCmp) are for the comparison
of real values. Rule (FCmp) is designed to avoid unstable tests by requiring
that the distance between the two compared values is greater than the ulp of
the format in which the comparison is done. With this requirement, a condition
cannot be invalidated by the roundoff errors. Let us also note that, with this
definition, x <u,p y �⇒ y >u,p x or x >u,p y �⇒ y <u,p x. For the semantics →R,
Rule (RCmp) simply compares the exact values.

The other rules are standard and are identical in →F and →R. Rules (App1),
(App2) and (Red) are for applications and Rule (Rec) is for recursive functions.
We write e〈v/x〉 the term e in which v has been substituted to the free occur-
rences of x. Rules (Cond), (CondTrue) and (CondFalse) are for conditionals.

The rest of this section is dedicated to our subject reduction theorem. First
of all, we need to relate the traces of →F and →R. We introduce new judgments

Γ |= (eF, eR) : t. (11)

Intuitively, Eq. (11) means that expression eF simulates eR up to accuracy t. In
this case, eF is syntactically equivalent to eR up to the values which, in eF, are
approximations of the values of eR. The value of the approximation is given by
type t.

Formally, |= is defined in Fig. 7. These rules are similar to the typing rules
of Fig. 2 excepted that they operate on pairs (eF, eR). They are also designed for
the language of Eq. (10) and, consequently, deal with the elementary arithmetic
operations +, −, × and ÷ as well as the comparison operators. The difference
between the rules of Figs. 2 and 7 is in Rule (VReal) which states that a real
value vR is correctly simulated by a value vF up to accuracy real{s, u, p} if

Strongly Typed Numerical Computations 209

Fig. 7. Simulation relation |= used in our subject reduction theorem.

|vR − vF| < 2u−p+1. It is easy to show, by examination of the rules of Figs. 2 and
7 that

Γ |= (eF, eR) : t =⇒ Γ � eF : t. (12)

We introduce now Lemma 3 which asserts the soundness of the type system
for one reduction step. Basically, this lemma states that types are preserved by
reduction and that concerning the values of type real, the distance between the
finite precision value and the exact value is less than the ulp given by the type.

Lemma 3 (Weak subject reduction). If Γ |= (eF, eR) : t and if eF →F e′
F

and eR →R e′
R
then Γ |= (e′

F
, e′

R
) : t.

Proof. By induction on the structure of expressions and case examination on the
possible transition rules of Fig. 6.

– If eF ≡ eR ≡ r{s, u, p} then Γ |= (r{s,u,p}, r{s,u,p}) : real{s, u, p} and,
from the reduction rules (FVal) and (RVal) of Fig. 6, r{s, u, p} →F vF and
r{s, u, p} →R vR with |vF − vR| < 2u−p+1. So Γ |= (vF, vR) : real{s, u, p}.

210 M. Martel

– If eF ≡ e0F ∗ e1F and eR ≡ e0R ∗ e1R then several cases must be distinguished.
• If eF ≡ v0F ∗ v1F and eR ≡ v0R ∗ v1R then, by induction hypothesis,

Γ |= (v0F, v0R) : real{s0, u0, p0}, Γ |= (v1F, v1R) : real{s1, u1, p1} and,
consequently, from Rule (VReal),

|v0R − v0F| < 2u0−p0+1 and |v1R − v1F| < 2u1−p1+1. (13)

Following Fig. 4, the type t of e is

t =
(
Πs1 : int, u1 : int, p1 : int, s2 : int, u2 : int, p2 : int.
real{s1, u1, p1} → real{s2, u2, p2} →
→ real{S∗(s1, u1, s2, u2),U∗(s1, u1, s2, u2),P∗(s1, u1, p1, s2, u2, p2)})
s1 u1 p1 s2 u2 p2,

= real{S∗(s1, u1, s2, u2),U∗(s1, u1, s2, u2),P∗(s1, u1, p1, s2, u2, p2)}
= real{s, u, p}

By Rule (Op), e →F vF and e →R vR and, by Theorem 1, with the
assumptions of Eq. (13), we know that |vR − vF| < 2u−p+1. Consequently,
Γ |= (vF, vR) : real{s, u, p}.

• If eF ≡ v0F ∗ v1F and eR ≡ v0R ∗ v1R with Γ |= (v0, v1) int then, by
Rule (Op), e → (v, v) and, by Eq. (7), Γ � v int. If e ≡ e0 ∗ e1 then, by
Rule (Op1), e → e0 ∗ e′

1 and we conclude by induction hypothesis. The
case e ≡ e0 ∗ v1 is similar to the former one.

– If eF ≡ e0F ��u,p e1F and eR ≡ e0R ��u,p e1R then several cases have to be
examined.

• If eF ≡ v0F ��u,p v1F and eR ≡ v0R ��u,p v1R then by rules (FCmp) and
(RCmp) eF →F bF, eR →R bR with bF = v0F − v1F ��{u,p} 2u−p+1 and bR =
v0R −v1R ��{u,p} 0. By rule (RCmp) of Fig. 7, Γ |= (v0F, v1F) real{s, u, p}
and Γ |= (v0R, v1R) real{s, u, p}. Consequently, |v0R −v0F| < 2u−p+1 and
|v1R − v1F| < 2u−p+1. By combining the former equations, we obtain that
|(v0R −v1R)− (v0F −v1F)| < 2u−p. Consequently, bF = bR and we conclude
that Γ |= (bF, bR) bool.

• The other cases for eF ≡ e0F ��u,p e1F are similar to the cases eF ≡ v0F ∗ v1F

examined previously.
– The other cases simply follow the structure of the terms, by application of

the induction hypothesis. �

Let →∗
F

(resp. →∗
R
) denote the reflexive transitive closure of →F (resp. →R).

Theorem 2 expresses the soundness of our type system for sequences of reduction
of arbitrary length.

Theorem 2 (Subject reduction). If Γ |= (eF, eR) : t and if eF →∗
F

e′
F
and

eR →∗
R

e′
R
then Γ |= (e′

F
, e′

R
) : t.

Proof. By induction on the length of the reduction sequence, using Lemma3.�

Theorem 2 asserts the soundness of our type system. It states that the eval-
uation of an expression of type real{s, u, p} yields a result of accuracy 2u−p+1.

Strongly Typed Numerical Computations 211

5 Experiments

In this section, we report some experiments showing how our type system
behaves in practice. Section 5.1 presents Numl implementations of usual mathe-
matical formulas while Sect. 5.2 introduce a larger example demonstrating the
expressive power of our type system.

5.1 Usual Mathematical Formulas

Our first examples concern usual mathematical formulas, to compute the volume
of geometrical objects or formulas related to polynomials. These examples aim at
showing that usual mathematical formulas are typable in our system. We start
with the volume of the sphere and of the cone.

> let sphere r = (4.0 / 3.0) * 3.1415926{+,1,20} * r * r * r ;;
val sphere : real{’a,’b,’c} -> real{<expr>,<expr>,<expr>} = <fun>

> sphere 1.0 ;;
- : real{+,7,20} = 4.188

> let cone r h = (3.1415926{+,1,20} * r * r * h) / 3.0 ;;
val cone : real{’a,’b,’c} -> real{’a,’b,’c}

-> real{<expr>,<expr>,<expr>} = <fun>

> cone 1.0 1.0 ;;
- : real{+,4,20} = 1.0472

We repeatedly define the function sphere with more precision in order to
show the impact on the accuracy of the results. Note that the results now have
15 digits instead of the former 5 digits.

> let sphere r = (4.0 / 3.0) * 3.1415926535897932{+,1,53} * r * r * r ;;
val sphere : real{’a,’b,’c} -> real{<expr>,<expr>,<expr>} = <fun>

> sphere 1.0 ;;
- : real{+,7,52} = 4.1887902047863

The next examples concern polynomials. We start with the computation of
the discriminant of a second degree polynomial.

> let discriminant a b c = b * b - 4.0 * a * c ;;
val discriminant : real{’a,’b,’c} -> real{’d,’e,’f} -> real{’g,’h,’i}

-> real{<expr>,<expr>,<expr>} = <fun>

> discriminant 2.0 -11.0 15.0 ;;
- : real{+,8,52} = 1.000000000000

Our last example concerning usual formulas is the Taylor series development
of the sine function. In the code below, observe that the accuracy of the result
is correlated to the accuracy of the argument. As mentioned in Sect. 2, error
methods are neglected, only the errors due to the finite precision are calculated
(indeed, sin π

8 = 0.382683432 . . .).

212 M. Martel

let sin x = x - ((x * x * x) / 3.0) + ((x * x * x * x * x) / 120.0) ;;
val sin : real{’a,’b,’c} -> real{<expr>,<expr>,<expr>} = <fun>

> sin (3.14{1,6} / 8.0) ;;
- : real{*,0,6} = 0.3

> sin (3.14159{1,18} / 8.0) ;;
- : real{*,0,18} = 0.37259

5.2 Newton-Raphson Method

In this section, we introduce a larger example to compute the zero of a function
using the Newton-Raphson method. This example, which involves several higher
order functions, shows the expressiveness of our type system. In the program-
ming session below, we first define a higher order function deriv which takes
as argument a function and computes its numerical derivative at a given point.
Then we define a function g and compute the value of its derivative at point
2.0. Next, by partial application, we build a function computing the derivative
of g at any point. Finally, we define a function newton which searches the zero
of a function. The newton function is also an higher order function taking as
argument the function for which a zero has to be found and its derivative.

> let deriv f x h = ((f (x + h)) - (f x)) / h ;;
val deriv : (real{<expr>,<expr>,<expr>} -> real{’a,’b,’c})

-> real{<expr>,<expr>,<expr>} -> real{’d,’e,’f}
-> real{<expr>,<expr>,<expr>} = <fun>

> let g x = (x*x) - (5.0*x) + 6.0 ;;
val g : real{’a,’b,’c} -> real{<expr>,<expr>,<expr>} = <fun>

> deriv g 2.0 0.01 ;;
- : real{*,5,51} = -0.9900000000000

> let gprime x = deriv g x 0.01 ;;
val gprime : real{<expr>,<expr>,<expr>} -> real{<expr>,<expr>,<expr>} = <fun>

> let rec newton x xold f fprime = if ((abs (x-xold))<0.01{*,10,20}) then x
else newton (x-((f x)/(fprime x))) x f fprime ;;

val newton : real{*,10,21} -> real{0,10,20} -> (real{*,10,21} -> real{’a,’b,’c})
-> (real{*,10,21} -> real{’d,’e,’f}) -> real{*,10,21} = <fun>

> newton 9.0 0.0 g gprime ;;
- : real{*,10,21} = 3.0001

We call the newton function with our function g and its derivative computed
by partial application of the deriv function. We obtain a root of our polynomial g
with a guaranteed accuracy. Note that while Newton-Raphson method converges
quadratically in the reals, numerical errors may perturb the process [4].

6 Conclusion

In this article, we have introduced a dependent type system able to infer the
accuracy of numerical computations. Our type system allows one to type non-
trivial programs corresponding to implementations of classical numerical analysis

Strongly Typed Numerical Computations 213

methods. Unstable computations are rejected by the type system. The consis-
tency of typed programs is ensured by a subject reduction theorem. To our
knowledge, this is the first type system dedicated to numerical accuracy. We
believe that this approach has many advantages going from early debugging to
compiler optimizations. Indeed, we believe that the usual type float proposed
by usual ML implementations, and which is a simple clone of the type int, is
too poor for numerical computations. We also believe that this approach is a
credible alternative to static analysis techniques for numerical precision [6,9,18].
For the developer, our type system introduces few changes in the programming
style, limited to giving the accuracy of the inputs of the accuracy of comparisons
to allow the typing of certain recursive functions.

A first perspective to the present work is the implementation of a compiler
for Numl. We aim at using the type information to select the most appropriate
formats (the IEEE754 formats of Fig. 1, multiple precisions numbers of the GMP
library when needed or requested by the user or fixed-point numbers.) In the
longer term, we also aim at introducing safe compile-time optimizations based on
type preservation: an expression may be safely (from the accuracy point of view)
substituted to another expression as long as both expressions are mathematically
equivalent and that the new expression has a greater type than the older one in
the sense of Eq. (6). Finally, a second perspective is to integrate our type system
into other applicative languages. In particular, it would be of great interest
to have such a type system inside a language used to build critical embedded
systems such as the synchronous language Lustre [3]. In this context numerical
accuracy requirements are strong and difficult to obtain. Our type system could
be integrated naturally inside Lustre or similar languages.

References

1. ANSI/IEEE: IEEE Standard for Binary Floating-point Arithmetic (2008)
2. Atkinson, K.: An Introduction to Numerical Analysis, 2nd edn. Wiley, Hoboken

(1989)
3. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: LUSTRE: a declarative language

for programming synchronous systems. In: POPL, pp. 178–188. ACM Press (1987)
4. Damouche, N., Martel, M., Chapoutot, A.: Impact of accuracy optimization on the

convergence of numerical iterative methods. In: Falaschi, M. (ed.) LOPSTR 2015.
LNCS, vol. 9527, pp. 143–160. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-27436-2 9

5. Damouche, N., Martel, M., Chapoutot, A.: Improving the numerical accuracy of
programs by automatic transformation. STTT 19(4), 427–448 (2017)

6. Darulova, E., Kuncak, V.: Sound compilation of reals. In: POPL 2014, pp. 235–248.
ACM (2014)

7. Denis, C., de Oliveira Castro, P., Petit, E.: Verificarlo: checking floating point accu-
racy through Monte Carlo arithmetic. In: ARITH 2016, pp. 55–62. IEEE (2016)

8. Franco, A.D., Guo, H., Rubio-González, C.: A comprehensive study of real-world
numerical bug characteristics. In: ASE, pp. 509–519. IEEE (2017)

https://doi.org/10.1007/978-3-319-27436-2_9
https://doi.org/10.1007/978-3-319-27436-2_9

214 M. Martel

9. Goubault, E.: Static analysis by abstract interpretation of numerical programs
and systems, and FLUCTUAT. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013.
LNCS, vol. 7935, pp. 1–3. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38856-9 1

10. Mentor Graphics Algorithmic C Datatypes, Software Version 2.6 edn. (2011).
http://www.mentor.com/esl/catapult/algorithmic

11. Lam, M.O., Hollingsworth, J.K., de Supinski, B.R., LeGendre, M.P.: Automatically
adapting programs for mixed-precision floating-point computation. In: Supercom-
puting, ICS 2013, pp. 369–378. ACM (2013)

12. Martel, M.: Floating-point format inference in mixed-precision. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 230–246. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 16

13. Milner, R., Harper, R., MacQueen, D., Tofte, M.: The Definition of Standard ML.
MIT Press, Cambridge (1997)

14. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically improv-
ing accuracy for floating point expressions. In: PLDI, pp. 1–11. ACM (2015)

15. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
16. Pierce, B.C. (ed.): Advanced Topics in Types and Programming Languages. MIT

Press, Cambridge (2004)
17. Rubio-Gonzalez, C., et al.: Precimonious: tuning assistant for floating-point preci-

sion. In: HPCNSA, pp. 27:1–27:12. ACM (2013)
18. Solovyev, A., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous estima-

tion of floating-point round-off errors with symbolic taylor expansions. In: Bjørner,
N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 532–550. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19249-9 33

https://doi.org/10.1007/978-3-642-38856-9_1
https://doi.org/10.1007/978-3-642-38856-9_1
http://www.mentor.com/esl/catapult/algorithmic
https://doi.org/10.1007/978-3-319-57288-8_16
https://doi.org/10.1007/978-3-319-19249-9_33

	Strongly Typed Numerical Computations
	1 Introduction
	2 Programming with Types for Numerical Accuracy
	3 The Type System
	3.1 Expressions, Types and Inference Rules
	3.2 Types of Primitives

	4 Soundness of the Type System
	5 Experiments
	5.1 Usual Mathematical Formulas
	5.2 Newton-Raphson Method

	6 Conclusion
	References

