
Jing Sun
Meng Sun (Eds.)

 123

LN
CS

 1
12

32

20th International Conference
on Formal Engineering Methods, ICFEM 2018
Gold Coast, QLD, Australia, November 12–16, 2018, Proceedings

Formal Methods
and Software Engineering

Lecture Notes in Computer Science 11232

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Jing Sun • Meng Sun (Eds.)

Formal Methods
and Software Engineering
20th International Conference
on Formal Engineering Methods, ICFEM 2018
Gold Coast, QLD, Australia, November 12–16, 2018
Proceedings

123

Editors
Jing Sun
University of Auckland
Auckland, New Zealand

Meng Sun
Peking University
Beijing, China

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-02449-9 ISBN 978-3-030-02450-5 (eBook)
https://doi.org/10.1007/978-3-030-02450-5

Library of Congress Control Number: 2018957483

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This volume contains the papers presented at the 20th International Conference on
Formal Engineering Methods (ICFEM 2018) held during November 12–16, 2018, in
Gold Coast, Australia.

Since 1997, ICFEM has served as an international forum for researchers and
practitioners who have been dedicated to developing practical formal methods for
software engineering or applying existing formal techniques to improve software
development process in practical systems. We are celebrating its 20-year series in 2018.

This year, we received 66 valid submissions from 25 different countries. Each paper
went through a thorough review process by at least three members of the Program
Committee. After extensive discussions, the committee decided to accept 22 regular
papers, giving an acceptance rate of 33.3%. The proceedings also include three
extended abstracts from the keynote speakers, 12 short papers from the doctoral
symposium, and four invited abstracts from the special session.

ICFEM 2018 was organized and sponsored by the Institute for Integrated and
Intelligent Systems (IIIS) at Griffith University, Australia. We owe our thanks to the
Organizing Committee for their wonderful work in making ICFEM 2018 a successful
event. We would like to thank our sponsor from the Destination Gold Coast for their
generous donation. We are grateful to the Program Committee members and additional
reviewers for their support and professionalism in completing high-quality reviews on
time, and most importantly, to all the authors for their valuable contributions to the
conference.

We would like to express our gratitude to the doctoral symposium co-chairs, Zhe
Hou and Yamine Ait-Ameur, for their hard work in organizing the PhD symposium
session. Finally, we would like to thank the EasyChair conference system, which
indeed made the whole process much easier to manage.

August 2018 Jing Sun
Meng Sun

Organization

Program Committee

Bernhard K. Aichernig TU Graz, Austria
Cyrille Valentin Artho KTH Royal Institute of Technology, Sweden
Christian Attiogbe University of Nantes, France
Christel Baier TU Dresden, Germany
Richard Banach The University of Manchester, UK
Luis Barbosa University of Minho, Portugal
Michael Butler University of Southampton, UK
Franck Cassez Macquarie University, Australia
Ana Cavalcanti University of York, UK
Zhenbang Chen National University of Defense Technology, China
Sylvain Conchon Université Paris-Sud, France
Frank De Boer Centrum Wiskunde & Informatica (CWI),

The Netherlands
Yuxin Deng East China Normal University, China
Jin Song Dong National University of Singapore, Singapore
Zhenhua Duan Xidian University, China
Marc Frappier Université de Sherbrooke, Canada
Stefania Gnesi ISTI-CNR, Italy
Lindsay Groves Victoria University of Wellington, New Zealand
Ichiro Hasuo National Institute of Informatics, Japan
Xudong He Florida International University, USA
Zhenjiang Hu National Institute of Informatics
Jie-Hong Roland Jiang National Taiwan University, Taiwan
Gerwin Klein The University of New South Wales, Australia
Fabrice Kordon LIP6/Sorbonne Université and CNRS, France
Michael Leuschel University of Düsseldorf, Germany
Yuan-Fang Li Monash University, Australia
Shaoying Liu Hosei University, Japan
Shuang Liu Tianjin University, China
Yang Liu Nanyang Technological University, Singapore
Zhiming Liu Southwest University
Brendan Mahony Defence Science and Technology
Jim McCarthy Defence Science and Technology
Stephan Merz Inria Nancy, France
Mohammadreza Mousavi University of Leicester, UK
Shin Nakajima National Institute of Informatics, Japan
Jun Pang University of Luxembourg, Luxembourg
Yu Pei The Hong Kong Polytechnic University, China

Geguang Pu East China Normal University, China
Shengchao Qin Teesside University, UK
Silvio Ranise FBK-Irst, Italy
Adrian Riesco Universidad Complutense de Madrid, Spain
Graeme Smith The University of Queensland, Australia
Harald Sondergaard The University of Melbourne, Australia
Jing Sun The University of Auckland, New Zealand
Jun Sun Singapore University of Technology and Design,

Singapore
Meng Sun Peking University, China
Cong Tian Xidian University, China
Jaco van de Pol University of Twente, The Netherlands
Hai H. Wang University of Aston, UK
Zijiang Yang Western Michigan University, USA
Wang Yi Uppsala University, Sweden
Jian Zhang Chinese Academy of Sciences, China
Peter Ölveczky University of Oslo, Norway

Additional Reviewers

Basile, Davide
Boulton, Graham
Bride, Hadrien
Carbone, Roberto
Colange, Maximilien
Craciun, Florin
Dalvandi, Mohammadsadegh
Dghaym, Dana
Fantechi, Alessandro
Foster, Simon
Gardy, Patrick
He, Mengda
Hou, Zhe
Hussain, Nazmul
Ishikawa, Fuyuki
Kafle, Bishoksan
Khoo, Teck Ping
Lai, Hong
Li, Jiaying
Li, Xin
Li, Yi

Liyun, Dai
Ma, Feifei
Miyazawa, Alvaro
Murray, Toby
Poppleton, Michael
Ribeiro, Pedro
Robert, Thomas
Schachte, Peter
Shi, Ling
Spagnolo, Giorgio Oronzo
Ting, Su
Tomasi, Alessandro
Tueno Fotso, Steve Jeffrey
Wang, Jingyi
Weikai, Miao
Wu, Peng
Xu, Zhiwu
Yan, Rongjie
Zhang, Min
Zhang, Xiyue

VIII Organization

Abstracts from Keynotes
and Invited Talks

Algebra, Logic, Geometry at the Foundation
of Computer Science

Tony Hoare1,2,3

1 Computing Laboratory, Cambridge University, UK
2 Microsoft Research, Cambridge, UK

3 Institute for Integrated and Intelligent Systems, Griffith University, Australia

I predict that one day a Unified Theory of Programming will be generally taught
throughout a Degree Course in Computing. It will tell students a simple method for
planning, developing and testing their practical exercises and assignments. The initial
level of mathematical presentation of the Theory is that of High School lessons in
Algebra, Logic and Geometry. The Theory will be put to immediate practical use by a
Software Development Environment for students, providing guidance and immediate
checking for the programs which they write.

I start with a review of Boolean Algebra, illustrated by familiar laws and theorems
for disjunction. A deductive logic with implication and proof rules is derived from the
algebra in the standard way. The algebra is extended by operators for sequential and
concurrent composition. They share a unit, they are associative and distribute through
disjunction. An Interchange axiom formalises a basic principle of concurrency, in that
it shows how an arbitrarily concurrent program can be executed directly by interleaving
on a single sequential computer, without the overhead of interpretation. Proof rules are
derived for a modal logic of time and space. Its rules are definitionally equivalent to
two historic logics due to Hoare and Milner, which are now used widely for mechanical
reasoning about correctness of programs and of implementations of programming
languages. These two rival theories have at last been unified.

The lecture ends with an account of the applications of algebra to programs, and a
discussion of its limitations as the foundation of Computer Science.

Security Protocols: Model Checking Standards

David Basin

Department of Computer Science, ETH Zurich, Switzerland

The design of security protocols is typically approached more as an art than a science,
and often with disastrous consequences. But this needs not be so! I have been working
for about 20 years on foundations, methods, and tools, both for developing protocols
that are correct by construction and for the post-hoc verification of existing designs. In
this talk, I will introduce my work in this area and describe my experience analyzing,
improving, and contributing to different industry standards, both existing and
upcoming.

Scaling Up Formal Engineering

Brendan Mahony, Jim McCarthy, and Kylie Williams

Defence Science and Technology Group, Department of Defence, Australia
{brendan.mahony,jim.mccathy,kylie.williams}

@dst.defence.gov.au

Abstract. The desirability of formal verification of cyber critical systems has
long been acknowledged, particularly in Defence evaluation standards such as
TCSEC, ITSEC, Common Criteria, DefStan 00-55 and Def(AUST) 5679.
However, the technology options available for formal verification have proved
challenging to adopt and the will to break through the associated usability
barriers has largely proved lacking for many reasons. Formal verification suc-
cess stories largely addressed highly abstracted algorithms, such as abstract
credential exchange protocols, or static analysis for program quality assurance.
In consequence, little of the world’s existing cyber infrastructure has been
subjected to formal analysis and evaluation, so that little can be confidently said
regarding technical correctness or suitability for service.
Recent successes in the formal verification of low level cyber system

infrastructure (such as seL4) have demonstrated the feasibility of formal eval-
uation for medium scale systems. They have also shown that the level of effort
and the quality of personnel required remains a challenge to all but the most
committed agents.
In this paper we consider the prospect of formal analysis applied to very large

scale systems so as to provide assured and appropriate cyber infrastructure in the
era of ubiquitous computing and the internet of things.

Security Assurance for Cyber Systems

Australia’s Cyber Security Strategy [1] notes the rising prevalence and cost of
cybercrime activity.

Figures vary, but … the real impact of cybercrime to Australia could be
around $17 billion annually. These costs are expected to rise.

The emerging cyber threat is also a major theme of the 2016 Defence White Paper [5].

Cyber attacks are a direct threat to the ADF’s warfighting ability given its
reliance on information networks.

Perhaps a little surprisingly, the potential dangers of designing computers, information
systems and infrastructure with cyber attack surfaces have been well recognised since
before the advent of the internet age.

Beginning in the late 1960’s, efforts throughout the world led to the release of
evaluation criteria documents such as the US TCSEC [7], Europe’s ITSEC [8],

Canada’s CTCPEC and, finally, an international consolidation effort under the banner
of the Common Criteria [4].

Apart from recognising the need to minimise the cyber attack surface of sensitive
systems, all of these evaluation criteria also recognised the need for careful systems
analysis efforts aimed at supporting a strength of assurance argument appropriate to the
sensitivity of the application. The TCSEC observes [7, p. 67] that testing is of little use
in the absence of a clear theoretical model of system behaviour.

no test procedure for something as complex as a computer can be truly
exhaustive

Instead, assurance arguments for complex system must be synthesised from the
empirical properties of their smaller, therefore testable, components. At the highest
level of sensitivity, these analysis efforts were to be based on machine checkable
mathematical modelling or formal methods. Nevertheless, fielded products with for-
mally verified security properties remain extremely rare.

The Situation in Formal Methods

It should be noted that the analysis activities prescribed by the various criteria are
highly targeted and limited with a view to what was considered tractable, given the
state of the art current at the time. Generally, the requirement is for a formal statement
of a security policy and a high level design, together with a proof of conformance. This,
of course, gives only modest assurance that specific components of a system have not
been deliberately designed to provide an extensive cyber attack surface. In practice the
roll out of Common Criteria based evaluation programmes lead to a focus on low
assurance applications and a de-emphasis of analytic assurance in favour of empirical
approaches such as penetration testing with hard to justify epistemological foundations.

At least in part, this under-utilisation of analytic techniques stemmed from the
intractability of applying them across the application stack at medium to large scales of
system complexity. The ideal of fully verified systems, “from silicon up”, was a dream
shared both by accreditation authorities and the research community that has remained
tantalisingly out of reach.

Much of the scalability issue in formal modelling has stemmed from a lack of the
required computational power. Over the last few years, both the computational power
available to formal modelling efforts and the sophistication of tools making use of the
power has reached a point that has emboldened a number of research groups to make a
concerted attempt at applying formal techniques to the most critical parts of the
application stack. The most prominent examples are probably the separate research
efforts that have produced the seL4 system kernel [9] and the CompCert verified C
compiler [2].

Of equal significance to this narrative has been a growing appreciation in Mathe-
matics that many modern proofs are at an order of complexity that fundamentally
challenges the traditional peer review approach. A growing community of mathe-
maticians and computer scientists are devoting effort to realising significant bodies of
mathematical knowledge in machine checkable formalisms [10]. This is, of course,

XIV B. Mahony et al.

fortunate for the formal assurance program, as fully addressing the correctness of cyber
systems will require the formalisation of all of the mathematics underpinning the
design and construction of their hardware as well as their function logic.

Scaling Formal Reasoning Tools

While there exist several dedicated verification tools, such as the B Tool and the Key
tool [3], it is logical framework tools such as Isabelle/HOL [11] and Coq [6] that are
most associated with the current uptick in formal verification effort and particularly
with formal mathematical modelling.

In discussing the scaling features of these tools, we can distinguish between the
scaling or modularity (outer) features afforded to theory development and (inner)
features afforded to modelling efforts within the theories. Generally, the outer modu-
larity features are based around the theory: a collection of named data types, functions
and associated theorems comparable in power to module features available in familiar
programming languages, effectively a record. Inner modularity features are generally
based around function abstraction and associated type theoretic structures. For exam-
ple, aside from function types and product types, Isabelle/HOL offers type classes
which collect related functions through a shared type parameter and locales which
collect related functions through a multi-parameter curried predicate. In neither case is
the modular structure embodied in the associated type theory so that it can become a
general purpose building block for large scale development. Equally importantly, the
power of function abstraction and type theory cannot be brought to bear on the problem
of structuring large scale theory development; the potential power of which is hinted at
by the development of category theory and homotopy type theory.

In order to progress formal development efforts to significantly larger scales of
model complexity, the authors believe that both the outer and inner modularity features
of logical frameworks need to become significantly more flexible and importantly they
need to be properly integrated. To this end, we propose that first class record types,
record merging and record sub-typing be introduced to serve as the primary inner-level
structuring tools. The feature naming aspect together with sub-typing make records a
significantly more tractable approach to system composition than product spaces;
precious few programming or logical (outer) languages restrict themselves to using
only sequential numbers as identifiers. Properly integrated with higher order type
theory, records will provide a highly flexible approach to constructing, decomposing
and abstracting over large system models. In order that outer-level modelling activity
should also benefit from and properly serve inner structuring, we also propose that
theories be reflected into the inner language as record types and that record based
structures be evaluated into the outer language as (complex) theories.

References

1. ACSC.: Australia’s Cyber Security Strategy. Commonwealth of Australia (2016)
2. Appel, A.W., Beringer, L., Chlipala, A., Pierce, B.C., Zhong, S., Weirich, S., Zdancewic, S.:

Position paper: the science of deep specification. Philos. Trans. R. Soc. Lond. A: Math. Phys.
Eng. Sci. 375(2104) (2017)

Scaling Up Formal Engineering XV

3. Beckert, B., Hähnle, R.: Reasoning and verification: state of the art and current trends. IEEE
Intell. Syst. 29(1), 20–29 (2014)

4. CCRA.: Common Criteria for Information Technology Security Evaluation Version 3.1.
Number CCMB-2017-04-003. Common Criteria Recognition Arrangement, April 2017

5. Department of Defence.: 2016 Defence White Paper. Commonwealth of Australia (2016)
6. The Coq development team.: The coq proof assistant reference manual: Version 8.8.1,

March 2018. https://coq.inria.fr/distrib/current/refman/
7. DOD.: Trusted Computer System Evaluation Criteria. Number 5200.28-STD. United States

Government, Department of Defence (1985)
8. EEC.: Information Technology Security Evaluation Criteria (ITSEC). Office for Official

Publications of the European Communities (1991)
9. Klein, G., Andronick, J., Keller, G., Matichuk, D., Murray, T.: Provably trustworthy sys-

tems. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 375(2104) (2017)
10. Paulson, L.: Proof assistants: from symbolic logic to real mathematics? In: Avigad, J.,

Gonthier, G., Martin, U., Moore, J.S.: Paulson, L., Pitts, A., Shankar, N. (eds.) Big
Proof Programme, June 2017

11. Wenzel, M.: The Isabelle/Isar reference manual, October 2017. https://isabelle.in.tum.de/
documentation.html

XVI B. Mahony et al.

https://coq.inria.fr/distrib/current/refman/
https://isabelle.in.tum.de/documentation.html
https://isabelle.in.tum.de/documentation.html

Security Analysis in the Real World

Cristina Cifuentes

Oracle Labs, Brisbane, Australia

Over the past year we have seen an increase in security vulnerabilities in software used
in a variety of domains, from classical enterprise software to mobile platforms. The
impact of any exploit of such a vulnerability can be tremendous. The recent emergence
of new technologies such as Blockchain, Cloud and Machine Learning/Artificial
Intelligence, promises many digital advances that can help us all into the digital future,
but, who is looking into the security of such systems?

In this talk I will give a brief overview of the Parfait static program analysis tool we
developed at Oracle Labs that detects thousands of bugs and vulnerabilities in
systems-level code and enterprise-level software. With the advent of the above men-
tioned technologies, I will talk to new challenges in analysing and verifying code
developed for these technologies including analysis of programs written in languages
such as JavaScript and Python. With the emergence of speculative execution side
channel attacks in 2018, the analysis and verification communities need to develop
hardware related abstractions. I will conclude by challenging the programming lan-
guages community to develop secure languages; languages that can assist developers
write code that is guaranteed to be secure.

Contents

Invited Keynote Paper

Engineering a Theory of Concurrent Programming 3
Ian J. Hayes

Formal Models

Behaviour-Driven Formal Model Development . 21
Colin Snook, Thai Son Hoang, Dana Dghyam, Michael Butler,
Tomas Fischer, Rupert Schlick, and Keming Wang

The Foul Adversary: Formal Models . 37
Naipeng Dong and Tim Muller

The Miles Before Formal Methods - A Case Study on Modeling
and Analyzing a Passenger Lift System . 54

Teck Ping Khoo and Jun Sun

PAR: A Practicable Formal Method and Its Supporting Platform. 70
Jinyun Xue, Yujun Zheng, Qimin Hu, Zhen You, Wuping Xie,
and Zhuo Cheng

Verification

Deductive Verification of Hybrid Control Systems Modeled in Simulink
with KeYmaera X . 89

Timm Liebrenz, Paula Herber, and Sabine Glesner

Verification of Strong Nash-equilibrium for Probabilistic BAR Systems 106
Dileepa Fernando, Naipeng Dong, Cyrille Jegourel, and Jin Song Dong

Model Checking of C++ Programs Under the x86-TSO Memory Model 124
Vladimír Štill and Jiří Barnat

Network Systems

Modeling and Verifying NDN Access Control Using CSP 143
Yuan Fei and Huibiao Zhu

The Power of Synchronisation: Formal Analysis of Power Consumption
in Networks of Pulse-Coupled Oscillators. 160

Paul Gainer, Sven Linker, Clare Dixon, Ullrich Hustadt,
and Michael Fisher

CDGDroid: Android Malware Detection Based on Deep Learning Using
CFG and DFG . 177

Zhiwu Xu, Kerong Ren, Shengchao Qin, and Florin Craciun

Type Theory

Strongly Typed Numerical Computations . 197
Matthieu Martel

Type Capabilities for Object-Oriented Programming Languages 215
Xi Wu, Yi Lu, Patrick A. Meiring, Ian J. Hayes, and Larissa A. Meinicke

Capabilities: Effects for Free . 231
Aaron Craig, Alex Potanin, Lindsay Groves, and Jonathan Aldrich

Theorem Proving

A Framework for Interactive Verification of Architectural Design Patterns
in Isabelle/HOL . 251

Diego Marmsoler

Formalization of Symplectic Geometry in HOL-Light 270
Guohui Wang, Yong Guan, Zhiping Shi, Qianying Zhang, Xiaojuan Li,
and Yongdong Li

Using Theorem Provers to Increase the Precision of Dependence Analysis
for Information Flow Control . 284

Bernhard Beckert, Simon Bischof, Mihai Herda, Michael Kirsten,
and Marko Kleine Büning

Logic and Semantics

Preserving Liveness Guarantees from Synchronous Communication to
Asynchronous Unstructured Low-Level Languages 303

Nils Berg, Thomas Göthel, Armin Danziger, and Sabine Glesner

Deriving Mode Logic for Autonomous Resilient Systems. 320
Inna Vistbakka, Amin Majd, and Elena Troubitsyna

UTP Semantics for BigrTiMo . 337
Wanling Xie, Huibiao Zhu, and Shengchao Qin

XX Contents

Refinement and Transition Systems

Analysis on Strategies of Superposition Refinement
of Event-B Specifications . 357

Tsutomu Kobayashi and Fuyuki Ishikawa

Formalising Extended Finite State Machine Transition Merging 373
Michael Foster, Ramsay G. Taylor, Achim D. Brucker, and John Derrick

Checking Activity Transition Systems with Back Transitions
Against Assertions . 388

Cunjing Ge, Jiwei Yan, Jun Yan, and Jian Zhang

Emerging Applications of Formal Methods

Towards Trustworthy AI for Autonomous Systems 407
Hadrien Bride, Jin Song Dong, Zhé Hóu, Brendan Mahony,
and Martin Oxenham

Towards Dependable and Explainable Machine Learning Using
Automated Reasoning . 412

Hadrien Bride, Jie Dong, Jin Song Dong, and Zhé Hóu

Doctoral Symposium

Modeling and Verification of Component Connectors 419
Xiyue Zhang

Model Based Testing of Cyber-Physical Systems . 423
Teck Ping Khoo

Service-Oriented Design and Verification of Hybrid Control Systems 427
Timm Liebrenz

Developing Reliable Component-Based Software in Mediator. 432
Yi Li

Model Checking Nash-Equilibrium - Automatic Verification of Robustness
in Distributed Systems . 436

Dileepa Fernando

Analyzing Security and Privacy in Design and Implementation
of Web Authentication Protocols. 441

Kailong Wang

Combining Deep Learning and Probabilistic Model Checking
in Sports Analytics . 446

Kan Jiang

Contents XXI

Security Analysis of Smart Home Implementations 450
Kulani Mahadewa

Principled Greybox Fuzzing . 455
Yuekang Li

Engineering Software for Modular Formalisation and Verification
of STV Algorithms . 459

Milad K. Ghale

Towards Building a Generic Vulnerability Detection Platform by
Combining Scalable Attacking Surface Analysis and Directed Fuzzing 464

Xiaoning Du

Formalising Performance Guarantees in Meta-Reinforcement Learning. 469
Amanda Mahony

Author Index . 473

XXII Contents

Invited Keynote Paper

Engineering a Theory of Concurrent
Programming

Ian J. Hayes(B)

The University of Queensland, Brisbane, QLD, Australia
Ian.Hayes@uq.edu.au

Abstract. Our original goal was to develop a refinement calcu-
lus for shared-memory concurrent programs to support Jones-style
rely/guarantee developments. Our semantics was based on Aczel traces,
which explicitly include environment steps as well as program steps, and
were originally proposed as a basis for showing the rely/guarantee rules
are sound. Where we have ended up is with a hierarchy of algebraic theo-
ries that provide a foundation for concurrent program refinement, which
allows us to prove Jones-style rely/guarantee laws, as well as new laws.
Our algebraic theory is based on a lattice of commands that includes a
sub-lattice of test commands (similar to Kozen’s Kleene Algebra with
Tests) and a sub-algebra of atomic step commands (similar to Milner’s
SCCS) but with a structure that supports Aczel’s program and environ-
ment steps as atomic step commands. The latter allows us to directly
encode rely and guarantee commands to represent rely/guarantee speci-
fications, and to encode fair execution of a command.

1 Introduction

Our recent research has been to develop a refinement calculus for concurrent
programs based on the rely/guarantee approach of Jones [20–22]. The theory
underlying the calculus is based on a set of algebras starting from a lattice
of commands and building theories to support sequential composition, parallel
composition, tests, atomicity, etc. [8,12–14,16]. The objective of this paper is
to look back over the development of the main ideas that form the basis of the
algebraic theories. Our choice of references relates to the work that influenced
our approach and hence may not refer to the historically earliest originator of
the idea.

2 Nondeterminism

2.1 Verification

The seminal works on program verification are those of Floyd [11] and Hoare [17].
Floyd’s work examines paths in a control flow graph and uses assertions at the
beginning and end of the paths, which act as preconditions and postconditions,
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-030-02450-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_1&domain=pdf

4 I. J. Hayes

respectively. Provided each path satisfies its pre/post specification, the whole
graph satisfies its pre/post specification. Loops in the graph are considered spe-
cially and such cyclic paths are required to decrease a well-founded loop variant
to show termination.

Hoare’s work has the advantage that it is applied to structured program-
ming language constructs with a single entry point and a single exit point.
Hoare triples of the form {p} c {q} assert that if p holds initially then exe-
cution of c will establish the postcondition q provided c terminates. Hoare’s
original paper only considered partial correctness (hence the termination pro-
viso in the previous sentence) but his approach has been extended to handle
total correctness (termination) and we assume the total correctness version in
our discussion below. Each kind of language construct (assignment, sequential
composition, conditional, loop, etc.) has a rule for verifying it satisfies a Hoare
triple, where the premises for structured statements include Hoare triples for
their component statements.

There are two aspects of the work of Floyd and Hoare that distinguish their
specifications from algorithmic programming language descriptions:

– their specifications are implicitly nondeterministic in that they allow any final
state that satisfies a postcondition and there may be multiple such states, and

– preconditions explicitly record assumptions about the initial state.

Both these aspects are essential in a specification language.

2.2 Nondeterminism in Programming Languages

Dijkstra observed that while parallelism implicitly introduces nondeterminism
into the behaviour of programs, it is also advantageous to allow the semantics
of sequential programming constructs to be nondeterministic [9,10]. Dijkstra’s
guarded command language generalised conditional and iterative program con-
trol structures to allow multiple guarded branches and allowed a nondeterminis-
tic choice of which branch to execute if more than one branch had a true guard.
Rather than provide a default behaviour of doing nothing if none of the guards
of a conditional is true, Dijkstra defined its behaviour in this case to be the
same as abort, the worse possible command that gives no guarantees about its
behaviour at all. The intent being that the programmer must ensure the guards
cover all states that satisfy the precondition of the conditional. There are three
observations that can be made about his work:

– the design of his programming language focused on supporting reasoning
about programs,

– he emphasised developing an algorithm along with its proof of correctness,
and

– he gave a weakest precondition semantics for his language: wp(c, q) is the
weakest condition that on execution of c from a state in which wp(c, q) holds,
is guaranteed to terminate in a state satisfying q . Hence the Hoare triple
{p}c{q} holds if and only if p � wp(c, q).

Engineering a Theory of Concurrent Programming 5

Nondeterminism in a construct corresponds to logical conjunction in its weak-
est precondition definition which allows one to define the weakest precondition
semantics of a nondeterministic choice operator � as

wp(c � d , p) = wp(c, p) ∧ wp(d , p). (1)

Because c � d allows any behaviour of either c or d , both must guarantee to
achieve p.

A basic requirement of weakest preconditions is that they are monotonic in
their postconditions, i.e. if q � r then wp(c, q) � wp(c, r). From that, one
can deduce that wp(c, q ∧ r) � wp(c, q) ∧ wp(c, r). Dijkstra also required
his commands to be conjunctive, i.e. wp(c, q ∧ r) ≡ wp(c, q) ∧ wp(c, r). That
restriction means his commands also have a relational model.

2.3 Lattice Theory and Fixed Points

In terms of lattice theory the nondeterministic choice c � d is the greatest lower
bound of c and d , also known as their meet. The lattice of commands induces a
refinement ordering, “c � d”, meaning that c is refined (or implemented) by d
and defined by1

c � d =̂ c � d = c.

The least element of the lattice is Dijkstra’s abort command, which is refined
(i.e. implemented) by any other command: abort � c. A lattice also has a least
upper bound (or join) operator, c � d , which is the least command that refines
both c and d . For a relational model the least upper bound corresponds to the
intersection of relations.

Fixed Points. To handle recursion and iteration one can utilise the fixed point
calculus [1] to define least and greatest fixed points of monotonic functions over
a complete lattice. Axioms (2) and (3) characterise the least fixed point, μ f , of
a function f , and axioms (4) and (5) characterise its greatest fixed point, νf .

μ f = f (μ f) (2)
f (x) � x ⇒ μ f � x (3)

νf = f (νf) (4)
x � f (x) ⇒ x � νf (5)

One may then define a while loop as a least fixed point:

while b do c =̂ (μ x • if b then c ; x else nil).

Sequential composition is the highest precedence binary operator and
nondeterministic choice the lowest; we make no assumptions about the rela-
tive precedence of other operators. Greatest fixed points may be used to define
1 Note that some authors, e.g. Kozen [24], make use of the dual lattice with a reversed

ordering d ≤ c that mean d refines c, and hence their nondeterministic choice
operator is the lattice join (rather than meet).

6 I. J. Hayes

finite iteration of a command zero or more times (the Kleene star operator)2

c� =̂ (νx • c ; x � nil)

and least fixed points to define iteration of a command zero or more times where
infinite iteration is allowed.

cω =̂ (μ x • c ; x � nil)

Note that the number of iterations of both these iteration operators is nondeter-
ministic. From these definitions and the axioms of fixed points (2–5), one obtains
the usual unfolding and induction properties of the iteration operators:

c� = c ; c� � nil (6)
cω = c ; cω � nil (7)

x � c ; x � nil ⇒ x � c� (8)
c ; x � nil � x ⇒ cω � x (9)

3 Specification Languages

VDM [23] and Z [2,3,15] make extensive use of logic and set theory to specify
operations more abstractly. Postconditions are expressed as predicates on two
states, for example, Z uses an unprimed variable x for its value in the initial state
and a primed x ′ for its value in the final state. Semantically such postconditions
can be viewed as binary relations on states.

Both VDM and Z make extensive use of set theoretical constructs such as
relations, functions (maps) and sequences, as well as inductively defined data
types that allow one to define recursive structures, such as trees. Both VDM
and Z provide record-like structures (composite objects in VDM and schemas in
Z) but unlike programming language record structures, they allow an invariant
to constrain the valid objects of the type. Schemas are used extensively in Z to
represent record types, program state and state-to-state relations.

To provide a succinct and readable specification of operations, VDM and Z
make use of abstract models of the state defined in terms of set theory. Data
refinement is then used to map the abstract operation specifications to imple-
mentation data structures, such as arrays, records, trees, etc., while refining the
observable semantics of the operation.

4 Refinement Calculus

An important development was to combine specification and programming lan-
guages to give a wide-spectrum language [5]. That allows components of a pro-
gram to be specifications rather than code and thus allows stepwise refinement
from a specification to code via intermediate stages that are a combination of
the two. A crucial idea behind the refinement calculus is to provide commands
that represent pre/post specifications. Perhaps an indication of its importance
is that many authors have invented (or reinvented) essentially the same idea.
2 Authors using the dual lattice make use of the dual of greatest fixed point, i.e. least

fixed point.

Engineering a Theory of Concurrent Programming 7

– Schwarz added generic (specification) commands [30] with the syntax “{p ⇒
q}”, with the meaning that if it is executed in a state satisfying the precon-
dition p it terminates in a state satisfying the postcondition q .

– Back developed a refinement calculus with a similar specification construct
that also handles adding and removing variables from the state space [4].

– Morris defined a prescription with the syntax (p ‖ q), not to be confused with
parallel composition, that if executed in a state satisfying the precondition p
terminates in a state satisfying the postcondition q [29]. Its semantics may
be given in terms of Dijkstra’s weakest preconditions: wp((p ‖ q), r) = p ∧
(∀ v • q ⇒ r), where v is the list of all the program variables.

– Morgan defined a pre/post specification statement with the syntax [p, q], with a
two-state (relational) postcondition q (similar to Z) [26]. It has a weakest pre-
condition semantics similar to Morris’ prescription but adapted to handle its
two-state postcondition. Morgan also introduced a specification statement with
a frame, w : [p, q], representing that only variables in w can be modified [27].

Such specifications are quite expressive and include infeasible specifications, such
as [true, false], which is referred to as magic because it breaks Dijkstra’s law of
the excluded miracle.

The refinement calculus allows specification commands to be used anywhere
other commands are allowed, thus providing a rich specification language. A
further refinement was to split a specification command into two primitives:
a precondition or assert command {p} and a postcondition command [q]. A
pre/post specification is then written {p} ; [q]. The primitive commands each
have simpler definitions and properties compared to the combined command,
whose properties can be derived from those of the primitives.

Another interesting construct from the refinement calculus is the “invariant”
command, (inv I · c), of Morgan and Vickers [28] that imposes and invariant I
on a command c, that is, its behaviours are those of c but restricted to those
behaviours that maintain the invariant I . For example, (inv x ∈ N · c) imposes
a type restriction on x that it is a natural number, and (inv x ≤ y · c) restricts
all states of the execution of c to satisfy x ≤ y .

5 Program Algebra

Another way of representing programs is via approaches such as relational and
Kleene algebra.

– Blikle represented programming constructs as binary relations with nonde-
terministic choice represented by relational union and sequential composition
as relational composition [6]

– Hoare et al. developed an algebraic theory of programming based on a set of
laws of programming [18].

– Hoare and He’s unifying theories of programming (UTP) made extensive use
of a relational semantics in which the relations could be on pairs of states for
sequential programs (similar to Blikle), or on traces for concurrent programs
[19].

8 I. J. Hayes

– Kozen made use of a more abstract algebraic approach that added tests (or
guards) to Kleene Algebra in order to represent programs abstractly [24].

– Kleene algebra only supports finite iteration and hence does not allow one
to represent nonterminating behaviour of loops. To address this Cohen made
use of an omega algebra that supports infinite iterations as well [7].

– Von Wright developed a demonic refinement algebra that provided an abstract
algebraic representation of the refinement calculus [31].

Some correspondences between the different approaches are shown in Fig. 1.

Kleene algebra Relational algebra Program algebra
e | f r ∪ s c d
∅ ∅ magic
e · f r s c; d

id nil
e r c

Fig. 1. Relationship between Kleene algebra, relational algebra and program algebra,
in which e and f are regular expressions, r and s are binary relations, c and d are
commands, � is relational composition, and id is the identity relation.

6 Tests (Guards)

A simple but important advance was the recognition that tests (or guards) can
be treated as a separate primitive, rather than only being considered as part of
a larger construct. This separation has been recognised in multiple approaches
to program semantics which we overview below.

6.1 Relational Algebra

Subsets of the identity relation can be used to represent tests [6,19] for example,
an if statement can be defined as follows,

if b then c else d = (b � id) � c ∪ (b � id) � d

where b � id restricts to domain of the identity relation id to the set b and b is
the complement of the set b.

6.2 Refinement Calculus

A specification command that does not allow any variables to be modified acts as
a null command if its postcondition holds but is infeasible otherwise and hence it
provides a suitable representation of a guard (or test). This observation allows a
conditional to be defined in terms of nondeterministic choice and guards, where
an empty frame is represented by ∅.

if b then c else d = ∅ :
[

b
]

; c � ∅ :
[¬ b

]

; d

Engineering a Theory of Concurrent Programming 9

This approach allows Dijkstra’s conditional to be defined in a similar manner.

if b0 → c0
� b1 → c1
...
� bn → cn
od

= ∅ :
[

b0
]

; c0
� ∅ :

[

b1
]

; c1
...
� ∅ :

[

bn
]

; cn
� ∅ :

[¬ (b0 ∨ b1 ∨ · · · ∨ bn)
]

; abort

The fact that both forms of conditional can be defined in terms of more prim-
itive constructs is important for building a theoretical basis for the refinement
calculus, as rules for reasoning about them can be derived from the properties
of the primitive constructs in their definitions. Furthermore the primitives, such
as nondeterministic choice and guards, have simpler algebra properties.

6.3 Kleene Algebra with Tests

Kozen extended Kleene algebra with tests (or in Dijkstra’s terminology, guards)
[24]. He did so in an abstract manner: tests are identified as a subset of commands
that form a boolean sub-algebra. His work can be seen as an abstraction of both
the relational algebra and refinement calculus approaches to tests. A conditional
(if) statement with a test t can be represented by t ; c � ¬ t ; d .

7 Well-Founded Relations

To handle termination of recursive programs and loops one can make use of a
well-founded relation. Proofs of such laws make use of well-founded induction,
which for a set T and a property P(k) defined on elements of T , can be stated
as follows: ≺ is well founded on T if and only if

(∀ k ∈ T • (∀ j ∈ T • j ≺ k ⇒ P(j)) ⇒ P(k)) ⇒ (∀ k ∈ T • P(k)). (10)

Using a variant over a well-founded relation gives a more general approach than
using a natural-number valued variant.

8 Shared Memory Concurrency

Jones [20–22] introduced a compositional approach to reasoning about concur-
rent processes based on a rely condition, a binary relation on states that rep-
resents an assumption about the allowable interference from the environment.
Complementing this, if a process has a rely condition of r , all the processes in its
environment need to guarantee that each step they make satisfies a guarantee
condition g that implies r .

Jones extended Hoare triples to quintuples of the form {p, r}c{g , q}, in which
p is a precondition, r is a rely condition, g is a guarantee condition and q a
postcondition, and p characterises a set of states while r , g and q characterise

10 I. J. Hayes

binary relations on states. Provided c starts in a start satisfying p and all steps
made by the environment satisfy r , all program steps of c will satisfy g and c
will terminate in a state that satisfies q . Note that program steps of c are only
required to satisfy the guarantee g as long as its environment steps satisfy r ,
i.e. once an environment step does not satisfy r , c no longer needs to maintain the
guarantee or the postcondition. For example, the following is a rule for verifying
a parallel composition in terms of its components.

{p, r ∨ r0}c0{g0, q0}
{p, r ∨ r1}c1{g1, q1}

g0 � r1
g1 � r0

{p, r}c0 ‖ c1{g0 ∨ g1, q0 ∧ q1}

(11)

For this rule, r represents the interference from the environment on the whole
parallel composition, r0 is the additional interference on c0, which must be
ensured by the guarantee g1 of c1, and symmetrically, r1 is the additional inter-
ference on c1, which must be ensured by the guarantee g0 of c0. Because c0
guarantees g0 and c1 guarantees g1, their parallel composition c0 ‖ c1 only guar-
antees g0 ∨ g1.

9 Concurrent Program Algebras

Milner defined a synchronous version of CCS, SCCS [25]. In SCCS an atomic step
a synchronises (×) with atomic step b to give a × b. For parallel composition of
commands, each atomic step of the composition is a synchronisation of the first
step of the two processes followed by the parallel composition of their remainders.
This is encapsulated in the following property, in which a and b are atomic steps
and c and d are arbitrary commands.

a.c ‖ b.d = (a × b).(c ‖ d) (12)

To allow for an interleaving interpretation × has an identity element 1, such
that for any atomic step a, a × 1 = a. For example,

a.c ‖ 1.d = (a × 1).(c ‖ d) = a.(c ‖ d).

10 Concurrent Refinement Calculus

Basis. Our own work on a concurrent refinement algebra builds on the ideas
presented above. At its base is a complete lattice of commands with nondeter-
ministic choice as the lattice meet. To this we add sequential composition (with
identity nil) and parallel composition (with identity skip). A novel additional
operator is weak conjunction (�) – see below.

Engineering a Theory of Concurrent Programming 11

Tests. Following Kozen, we identify a subset of commands that form the boolean
sub-algebra of tests. In addition, we need to define how tests interact with other
commands. The algebra abstracts from the details of tests: they are just a subset
of commands that forms a boolean algebra.

The algebra can be instantiated for a state-based model by introducing a
set Σ representing the program’s state. A test command τ(p) is then associated
with a set of states p; its execution succeeds if the initial state is in p, otherwise
it is infeasible. Special cases are when p is empty, τ(∅), which corresponds to
the everywhere infeasible command �, also called magic, and when p is the
complete state space Σ, τ(Σ), which always succeeds and corresponds to the
identity of sequential composition, nil.

Atomic Steps. We also identify another subset of commands that form a boolean
sub-algebra of atomic steps and, as for tests, define how they interact with other
commands, including tests [13]. Our atomic steps are a subset of commands and
are composed using the same operators as general commands; that differs from
Milner who uses a disjoint carrier set with a separate composition operator [25].

Program and Environment Steps. As for Milner’s SCCS we identify an atomic
command, ε, that is a atomic step identity of parallel that allows the environment
of a process to make a step, i.e. a ‖ ε = a. Because atomic steps form a boolean
algebra, the complement of ε, written !ε, is well defined and corresponds to the
atomic command, π, that can perform any program step.

The abstract atomic program and environment commands may be instanti-
ated over relations on the state space Σ. For a binary relation r between states,
we define a program step command π(r) as the command that allows a single
program step from state σ to σ′ if and only if (σ, σ′) ∈ r , and an environment
step command ε(r) similarly. Both π(∅) and ε(∅) correspond to the infeasible
command �. The command π(Σ × Σ), abbreviated π, allows any program step
at all, and likewise ε(Σ × Σ), abbreviated ε, allows any environment step. Each
atomic step command is then a nondeterministic choice between some program
step command and some environment step command.

Introducing the primitive atomic step commands, π(r) and ε(r), allows one
to define commands to represent relies, guarantees, postcondition specifications,
termination, fairness, etc., for our concurrent refinement algebra. It continues
the theme of building the theory from primitives with simple properties, rather
than defining more complex commands directly in the semantics.

Guarantee Command. In the rely/guarantee approach of Jones [20–22] a com-
mand satisfies a guarantee condition g , a binary relation on states, if every
program step it makes satisfies g . A guarantee command, guar g , can be defined
that only allows program steps that satisfy g but allows any environment step.
A single step of guar g allows π(g) � ε, and the guarantee command allows any
number of these steps:

guar g =̂ (π(g) � ε)ω (13)

12 I. J. Hayes

Weak Conjunction. If c is a non-aborting command, a guarantee of g can be
imposed on c by using the conjunction (lattice join) operator: (guar g) � c,
however, if c can abort this is too strong because (guar g) is non-aborting and
hence when it is conjoined with c any aborting behaviour of c is eliminated.
To address this issue, the weak conjunction operator, �, can be used instead.
It behaves like conjunction for non-aborting commands but is abort strict, that
is c � abort = abort, for any command c. Hence one can use (guar g) � c to
represent the command c constrained by the guarantee g unless c aborts. This
faithfully represents Jones’ guarantee condition. The command π � ε allows any
atomic step; it is the atomic step identity of weak conjunction.

The representation of a guarantee by a command was originally inspired by
the invariant command of Morgan and Vickers [28], in fact the initial syntax
was (guar g · c). However, it was later realised that it was simpler to just define
a guarantee command, (guar g), and use weak conjunction to combine it with
other commands. This continues the theme of focusing on primitives that can be
combined to give more complex constructs. For example, the law for strengthen-
ing a guarantee, (guar g0 · c) � (guar g1 · c) if g1 ⊆ g0, using the old syntax, can
be replaced in the new syntax by the simpler law guar g0 � guar g1 if g1 ⊆ g0,
that focuses solely on the guarantee. This law can be proven by expanding the
definition of the guarantee command (13).

The weak conjunction operator (�) was invented while trying to give the
semantics of the (old syntax) guarantee command. It was only after inventing it
for use in the semantics, that we realised it was a useful operator in its own right.
By promoting weak conjunction to an operator in our wide-spectrum language
we were able to define more complex constructs in terms of more primitive
commands, such as the (new syntax) guarantee command, which has a simpler
set refinement laws.

Rely Command. A rely condition is an assumption about the behaviour of the
environment of a process that every atomic step the environment makes satisfies
r . It is similar to a precondition, in that if the environment breaks the rely
condition, the process is free to do any behaviour whatsoever from that point
on, i.e. it is free to abort. The environment making a step that does not satisfy r
is represented by ε(r); the occurrence of such a step allows the process to abort.
Any other step, i.e. an environment step satisfying r , ε(r), or any program step,
π, is allowed (without abort). The rely command is then the iteration of this
behaviour any number of times, including infinitely many times.

rely r =̂ (π � ε(r) � ε(r); abort)ω

A rely command may be combined with a command c using the weak conjunction
operator: (rely r) � c. This combination behaves as c unless the environment
makes a step that does not satisfy r , in which case the combination aborts. Recall
that the main difference between conjunction (�) and weak conjunction (�) is
that weak conjunction is abort strict, i.e. c � abort = abort. This difference is
crucial here.

Engineering a Theory of Concurrent Programming 13

Parallel Introduction Law. The commands developed so far allow one to present
a refinement law equivalent to the parallel law of Jones above (11) as follows. If
g0 � r1 and g1 � r0,

(rely r) � (guar g0 ∨ g1) � {p};
[

q0 ∧ q1
]

� (rely r ∨ r0) � (guar g0) � {p};
[

q0
] ‖ (rely r ∨ r1) � (guar g1) � {p};

[

q1
]

Termination. For a sequential program, termination requires that it only per-
forms a finite number of program steps. The same applies for a concurrent pro-
gram, however, there is a subtlety with environment steps. We take the approach
that single process has no direct control over whether it may be preempted by
its environment and hence from some point on may perform only environment
steps, forever. Hence while a terminating process may only ever perform a finite
number of program steps, the number of environments steps its allows may be
infinite. Of course, if the process is executed fairly, it will not be interrupted
forever, and hence will only perform a finite number of steps overall. Fairness is
addressed below. The most general terminating program is characterised by the
command term.

term =̂ (π � ε)� ; εω

We say c terminates if term � c.

Fairness. A process is executed fairly if it is not preempted by its environment
forever. Fair execution can be characterised by the program fair that does not
allow any contiguous subsequence of environment steps to be infinite.

fair =̂ (ε� ; π)ω ; ε�

Fair execution of a process c can be imposed on it via weak conjunction with
fair, i.e. c � fair represents fair execution of c. Note that

term � fair = (ε� ; π)� ; εω � (ε� ; π)ω ; ε� = (ε� ; π)� ; ε� = (π � ε)�

and hence only admits a finite number of steps, both program and environment.
If a command c is terminating, i.e. term � c, then fair execution of c only
performs a finite number of steps overall because

(π � ε)� = term � fair � c � fair.

The command fair allows one to consider fair execution of a process in isola-
tion. This contrasts to the common approach to fairness in which the parallel
composition operator is defined to be fair. In our theory no fairness assumptions
are made of the primitive parallel operator (‖) but a fair parallel operator can
be defined in terms of fair and the primitive parallel operator.

14 I. J. Hayes

Synchronisation Operators. The three operators parallel (‖), weak conjunction
(�) and the lattice join or conjunction (�), all act as synchronisation operators;
the main difference between them is how they synchronise individual atomic
steps. We recognise their similarities by providing a theory of an abstract syn-
chronisation operator (⊗) which is then instantiated for each of the three oper-
ators. The synchronisation operator satisfies the following axioms.

a ; c ⊗ b ; d = (a ⊗ b); (c ⊗ d) (14)
nil ⊗ nil = nil (15)
a ; c ⊗ nil = � (16)

Axiom (14) corresponds to Milner’s (12) although we assume atomic steps are a
subset of commands and hence use ⊗ to combine both atomic steps a and b as
well a more general commands c and d . Axiom (15) represents that the synchro-
nisation of two null commands is null. If one process insists on performing at
least one step before terminating and the other can only terminate immediately,
their synchronisation is infeasible (16). From these properties one can deduce
laws such as the following.

a� ; c ⊗ b� ; d = (a ⊗ b)� ; ((c ⊗ b� ; d) � (a� ; c � d))

A corollary of which is a� ⊗ b� = (a ⊗ b)�.
The instantiations of ⊗ for parallel and weak conjunction differ in the way

they synchronise atomic steps.

ε(r0)‖ε(r1) = ε(r0 ∩ r1) (17)
π(r0)‖ε(r1) = π(r0 ∩ r1) (18)

π(r0) ‖ π(r1) = � (19)

ε(r0) � ε(r1) = ε(r0 ∩ r1) (20)
π(r0) � π(r1) = π(r0 ∩ r1) (21)

π(r0) � ε(r1) = � (22)

Both combine two environment steps to give an environment step: (17) and
(20). Parallel synchronises a program step only with an environment step (18)
and weak conjunction synchronises a program step only with a program step
(21). Conjunction (�) is also an instantiation of the synchronisation operator. It
behaves the same as weak conjunction on atomic steps (i.e. a � b = a � b) but
differs in that weak conjunction is abort strict, i.e. c � abort = abort.

By using the synchronisation operator as an abstraction of all three operators,
‖, � and �, a large part of the theory of these operators can be developed just
once and instantiated three times.

Representing Non-atomic Expressions. If an expression e refers to shared vari-
ables that are being modified by its environment, its evaluation is not atomic.
Even if the expression only contains a single reference to a single shared variable,
its evaluation may result in a value that is the value of e in some intermediate
state and may not correspond to e’s value in either the initial or final state of its
evaluation. Handling expression evaluation in the context of interference requires

Engineering a Theory of Concurrent Programming 15

care. Often it is prudent to limit the forms of expressions allowed. Common spe-
cial cases that may be treated more simply are expressions containing only vari-
ables not subject to change by the environment or more generally expressions
containing only a single reference to a single variable that may be modified by
the environment. The above assume reading a single variable is atomic; if this is
not the case stronger assumptions are needed about whether/how its value may
change.

Assignment commands also need careful treatment because (i) the expression
in an assignment may be subject to interference during its evaluation, and (ii)
the variable being assigned to may be shared. A further complication arises if
writing to the variable being assigned is not atomic.

Handling Conditionals. The test in a conditional is subject to the issues of
expression evaluation discussed above. Just because a boolean expression b eval-
uates to true, does not mean it is still true after its evaluation because the
environment may modify variables on which it depends. However, if the rely
condition r of the process maintains b, i.e. b ∧ r � b′, it will remain true under
interference satisfying r , e.g. the rely condition x ≤ x ′ maintains the condition
0 ≤ x . Note that if r maintains b, it may not necessarily maintain its complement
¬ b, e.g. x ≤ x ′ does not maintain x < 0.

Recursion. Recursive programs can be built on top of the fixed point calculus.
Showing termination of a recursive program can be handled via well founded
induction (10). To show a terminating specification s is refined by a recursive
program μ f , one can use well founded relation ≺ on a variant expression v of
type T .

(∀ k ∈ T • (∀ j ∈ T • j ≺ k ⇒ ({v = j}; s � μ f)) ⇒ ({v = k}; s � μ f))
⇒ (∀ k ∈ T • ({v = k}; s � μ f)).

This may be simplified to the following.

(∀ k ∈ T • ({v ≺ k}; s � μ f) ⇒ ({v = k}; s � μ f)) ⇒ (s � μ f).

This approach can be adapted to concurrent processes in a straightforward man-
ner.

Because a while loop is defined as a least fixed point of a conditional, the rule
for a while loop can be derived from the rules for recursion and conditionals.

Local Variables. A local variable block (local x · c) introduces a new local vari-
able x for the duration of c. In the context of concurrency a local variable is
not subject to any interference. To model this we make use of the command
(demand r) that allows any program steps but only environment steps satisfy-
ing r .

demand r =̂ (π � ε(r))ω

16 I. J. Hayes

The command (demand x ′ = x) only allows environment steps that do not
modify x . If the variable x is fresh then a local block could be modelled by
(demand x ′ = x) � c but that does not cope with the case where there is a
(non-local) variable x in the outer scope already. To handle that one needs to
take the behaviour of (demand x ′ = x)� c but liberate x , where the liberation
operator c\x for any variable x and command c behaves exactly like c except
the value of x in every state is liberated, i.e. x can take on any value. Note
that we take each trace of c and then liberate x in every state of the trace to
get a set of liberated traces. Finally the local variable block does not modify a
non-local occurrence of x . That can be modelled by a guarantee (guar x ′ = x)
and completes our definition of a local variable block.

local x · c =̂ (c � (demand x ′ = x))\x � (guar x ′ = x)

Note that in the definition, x is liberated before the guarantee is enforced on
any outer x . The definition of a local variable block requires a new primitive
liberation operator (\) but the other constructs used in its definition are already
part of our theory.

11 Conclusions

A common theme throughout this paper is that developing a theory of (con-
current) programming is greatly facilitated if one can build the theory from a
set of primitive operators and primitive commands, which have simple algebraic
properties.

Our theory has a basis of lattice theory in which the lattice order (�) is
refinement, its meet (�) is nondeterministic choice ans its join (�) is conjunc-
tion. To this we add sequential composition (;), parallel composition (‖), weak
conjunction (�), and the liberation operator (\). We identify two subsets of com-
mands that correspond to tests and atomic steps, respectively; both these subsets
form boolean algebras. We also identify two subsets of atomic steps that repre-
sent program and environment steps, respectively; both these subsets also form
boolean algebras. An advantage of this approach is that it allows reuse of the
rich theory of boolean algebra many times over, which saves one proving many
straightforward properties of tests and atomic commands that are available from
boolean algebra.

Another theory that we make use of multiple times is the theory of syn-
chronising operators (⊗), which is instantiated three times for parallel (‖), weak
conjunction (�) and conjunction (�). That allows the properties common to
these operators, of which there are many relevant to our concurrent refinement
algebra, to be proven once and reused multiple times.

The theory we have developed is rich enough to develop a fully fledged con-
current refinement calculus that supports the rely/guarantee approach of Jones.
But if we instantiate our atomic steps with sets of events rather than relations,
we also have a foundation for a process algebra such as Milner’s SCCS. The
theories have been encoded in Isabelle/HOL making significant use of its class

Engineering a Theory of Concurrent Programming 17

and locale constructs to structure the theory, and a trace-based semantics has
been developed to show our axiomatisations are consistent.

Acknowledgements. This research was supported Australian Research Council Dis-
covery Grant DP130102901. Thanks are due to Joakim von Wright for introducing us
to program algebra and Robert Colvin, Cliff Jones, Larissa Meinicke, Patrick Meiring,
Kim Solin, Andrius Velykis, and Kirsten Winter, for their input on ideas presented
here.

References

1. Aarts, C., et al.: Fixed-point calculus. Inf. Process. Lett. 53, 131–136 (1995). Math-
ematics of Program Construction Group

2. Abrial, J.R.: The specification language Z: basic library. Internal report, Program-
ming Research Group, Oxford University (1982)

3. Abrial, J.R., Schuman, S.A., Meyer, B.: Specification language and on the construc-
tion of programs: an advanced course. In: McKeag, R.M., Macnaghten, A.M. (eds.)
On the Construction of Programs: An Advanced Course, pp. 343–410. Cambridge
University Press, Cambridge (1980)

4. Back, R.-J.R., von Wright, J.: Refinement Calculus: A Systematic Introduction.
Springer, New York (1998). https://doi.org/10.1007/978-1-4612-1674-2

5. Bauer, F.L., Broy, M., Gnatz, R., Hesse, W., Krieg-Brückner, B.: A wide spectrum
language for program development. In: 3rd International Symposium Program-
ming, Paris, pp. 1–15 (1978)

6. Blikle, A.: Specified programming. In: Blum, E.K., Paul, M., Takasu, S. (eds.)
Mathematical Studies of Information Processing. LNCS, vol. 75, pp. 228–251.
Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09541-1 29

7. Cohen, E.: Separation and reduction. In: Backhouse, R., Oliveira, J.N. (eds.) MPC
2000. LNCS, vol. 1837, pp. 45–59. Springer, Heidelberg (2000). https://doi.org/10.
1007/10722010 4

8. Colvin, R.J., Hayes, I.J., Meinicke, L.A.: Designing a semantic model for a wide-
spectrum language with concurrency. Formal Aspects Comput. 29, 853–875 (2016)

9. Dijkstra, E.W.: Guarded commands, nondeterminacy, and a formal derivation of
programs. CACM 18, 453–458 (1975)

10. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Upper Saddle River
(1976)

11. Floyd, R.W.: Assigning meanings to programs. In: Proceedings of Symposia in
Applied Mathematics: Mathematical Aspects of Computer Science, vol. 19, pp.
19–32 (1967)

12. Hayes, I.J.: Generalised rely-guarantee concurrency: an algebraic foundation. For-
mal Aspects Comput. 28(6), 1057–1078 (2016)

13. Hayes, I.J., Colvin, R.J., Meinicke, L.A., Winter, K., Velykis, A.: An algebra of
synchronous atomic steps. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou,
A. (eds.) FM 2016. LNCS, vol. 9995, pp. 352–369. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-48989-6 22

14. Hayes, I.J., Jones, C.B., Colvin, R.J.: Laws and semantics for rely-guarantee refine-
ment. Technical report CS-TR-1425, Newcastle University, July 2014

15. Hayes, I. (ed.): Specification Case Studies. Second edn. Prentice Hall International,
Upper Saddle River (1993)

https://doi.org/10.1007/978-1-4612-1674-2
https://doi.org/10.1007/3-540-09541-1_29
https://doi.org/10.1007/10722010_4
https://doi.org/10.1007/10722010_4
https://doi.org/10.1007/978-3-319-48989-6_22
https://doi.org/10.1007/978-3-319-48989-6_22

18 I. J. Hayes

16. Hayes, I.J., Meinicke, L.A., Winter, K., Colvin, R.J.: A synchronous program alge-
bra: a basis for reasoning about shared-memory and event-based concurrency. For-
mal Aspects Comput. (2018). https://doi.org/10.1007/s00165-018-0464-4

17. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969). 583

18. Hoare, C.A.R., et al.: Laws of programming. Commun. ACM, 30(8), 672–686
(1987). Corrigenda: CACM 30(9):770

19. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall, Upper
Saddle River (1998)

20. Jones, C.B.: Development Methods for Computer Programs including a Notion
of Interference. Ph.D. thesis, Oxford University, June 1981. Available as: Oxford
University Computing Laboratory (now Computer Science) Technical Monograph
PRG-25

21. Jones, C.B.: Specification and design of (parallel) programs. In: Proceedings of
IFIP 1983, pp. 321–332. North-Holland (1983)

22. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM ToPLaS 5(4), 596–619 (1983)

23. Jones, C.B.: Systematic Software Development Using VDM, Second edn. Prentice
Hall International, Upper Saddle River (1990)

24. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997)

25. Milner, R.: Calculi for synchrony and asynchrony. Theoret. Comput. Sci. 25(3),
267–310 (1983)

26. Morgan, C.C.: The specification statement. ACM Trans. Program. Lang. Syst.
10(3), 403–419 (1988)

27. Morgan, C.C.: Programming from Specifications, Second edn. Prentice Hall, Upper
Saddle River (1994)

28. Morgan, C.C., Vickers, T.N.: Types and invariants in the refinement calculus. Sci.
Comput. Program. 14, 281–304 (1990)

29. Morris, J.M.: A theoretical basis for stepwise refinement and the programming
calculus. Sci. Comput. Program. 9(3), 287–306 (1987)

30. Schwarz, J.: Generic commands–a tool for partial correctness formalisms. Comput.
J. 20(2), 151–155 (1977)

31. von Wright, J.: Towards a refinement algebra. Sci. Comput. Program. 51, 23–45
(2004)

https://doi.org/10.1007/s00165-018-0464-4

Formal Models

Behaviour-Driven Formal Model
Development

Colin Snook1(B) , Thai Son Hoang1 , Dana Dghyam1 , Michael Butler1 ,
Tomas Fischer2, Rupert Schlick3 , and Keming Wang4

1 ECS, University of Southampton, Southampton, UK
{cfs,t.s.hoang,D.Dghaym,mjb}@ecs.soton.ac.uk

2 Thales Austria GmbH, Vienna, Austria
tomas.fischer@thalesgroup.com

3 AIT Austrian Institute of Technology GmbH, Vienna, Austria
Rupert.Schlick@ait.ac.at

4 Southwest Jiaotong University, Chengdu, China
kmwang@swjtu.edu.cn

Abstract. Formal systems modelling offers a rigorous system-level anal-
ysis resulting in a precise and reliable specification. However, some issues
remain: Modellers need to understand the requirements in order to for-
mulate the models, formal verification may focus on safety properties
rather than temporal behaviour, domain experts need to validate the
final models to ensure they fit the needs of stakeholders. In this paper
we discuss how the principles of Behaviour-Driven Development (BDD)
can be applied to formal systems modelling and validation. We propose a
process where manually authored scenarios are used initially to support
the requirements and help the modeller. The same scenarios are used to
verify behavioural properties of the model. The model is then mutated
to automatically generate scenarios that have a more complete coverage
than the manual ones. These automatically generated scenarios are used
to animate the model in a final acceptance stage. For this acceptance
stage, it is important that a domain expert decides whether or not the
behaviour is useful.

Keywords: Formal modelling · Scenarios · Mutation testing
Acceptance testing

1 Introduction

For highly dependable systems, formal modelling offers a rigorous system-level
analysis to ensure that the specification is consistent with important properties
such as safety and security. Using theorem provers, such properties can be proven
to hold generically without instantiation and testing. However, modellers need

All data supporting this study are openly available from the University of Southamp-
ton repository at https://doi.org/10.5258/SOTON/D0604.

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 21–36, 2018.
https://doi.org/10.1007/978-3-030-02450-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_2&domain=pdf
http://orcid.org/0000-0002-0210-0983
http://orcid.org/0000-0003-4095-0732
http://orcid.org/0000-0002-2196-2749
http://orcid.org/0000-0003-4642-5373
http://orcid.org/0000-0002-5644-1679
https://doi.org/10.5258/SOTON/D0604

22 C. Snook et al.

to understand the requirements in order to formulate correct and useful models.
The human centric processes of understanding a natural language or semi-formal
requirements document and representing it in mathematical abstraction is sub-
jective and intellectual, leading to misinterpretation. Formal verification may
then focus on safety properties rather than desired behaviour which is more
difficult to verify as a proof obligation. Even if these difficulties are averted,
the requirements may not represent the customer’s needs. Domain experts need
to validate the final models to show that they capture the informally specified
customer requirements and ensure they fit the needs of stakeholders.

A widely-used and reliable validation method is acceptance testing, which
with adequate coverage, provides assurance that a system, in our case embodied
by a formal model, represents the informal customer requirements. Acceptance
tests describe a sequence of simulation steps involving concrete data examples
to exhibit the functional responses of the system. However, acceptance tests
can also be viewed as a collection of scenarios providing a useful and definitive
specification of the behavioural requirements of the system. The high level nature
of acceptance tests, which are both human-readable and executable, guarantees
that they reflect the current state of the product and do not become outdated.
They are also necessarily precise and concise to ensure that the acceptance tests
are repeatable. As such, the acceptance test may be seen as the single reference
or source of truth.

Behaviour-Driven Development (BDD) [15] is a software development pro-
cess based on writing precise semi-formal scenarios as a behavioural specification
and using them as acceptance tests. In this paper we discuss how the principles
of BDD can be applied to formal systems modelling and validation. We pro-
pose a process where manually authored scenarios are used initially to support
the requirements and help the modeller. The same scenarios are used to verify
behavioural properties of the model. However, the manually written tests may
have limited coverage. To address this, the model is mutated to automatically
generate further scenarios that have a more complete coverage than the man-
ual ones. The additional scenarios should be accepted or rejected by domain
experts to ensure they, and hence the model, represent the desired behaviour.
These automatically generated scenarios are used to animate the model in a
final acceptance stage. For this acceptance stage, it is important that a domain
expert decides whether or not the behaviour is desirable.

Customer requirements are typically based on a domain model, which is often
expressed in terms of entities with attributes and relationships. State-machines
and activity diagrams can be used to describe the behaviour. On the other hand,
a formal model (such as Event-B) is based on set theory and predicate logic [1].
In a creative process, the modelling engineer uses ingenuity to translate the
domain model into appropriate formal structures. The mismatch between the
semi-formal models understood by the domain experts and the mathematical
notations used for formal modelling leads to a conflict. The acceptance tests need
to be expressed in terms of the formal model, but they also need to be understood
by the domain experts who are not familiar with the formal notations. It would

Behaviour-Driven Formal Model Development 23

be more desirable to express the acceptance tests in terms of the domain model
so that domain experts can easily create and validate them.

iUML-B [13,16] provides a UML-like diagrammatic modelling notation,
including class diagrams and state-machines, with automatic generation of
Event-B formal models. Hence, iUML-B is a formal notation which is intuitive
to write and understand and is much closer to the domain model.

Gherkin [18, Chap. 3] is a structured language for describing scenarios and
expected behaviour in a readable but executable form. In this paper we show how
Gherkin supported by the Cucumber tool, can be used to encode and execute
acceptance tests for validating Event-B and iUML-B formal models. This helps
domain experts by allowing them to define acceptance tests without requiring
expertise in formal modelling. It also helps the formal experts by providing means
to systematically validate formal models via input from domain experts.

The remainder of the paper is structured as follows. In Sect. 2 we introduce
the “Lift” examples used throughout the paper. In Sect. 3 we provide an overview
of the Cucumber framework and Gherkin notation for executing scenarios, the
formal methods Event-B and iUML-B that we use and MoMuT which we use as
a scenario generation tool. In Sect. 4 we introduce our approach to behaviour-
driven formal model development and then, in Sect. 5, demonstrate how to use
Gherkin and Cucumber for testing formal models written in Event-B and iUML-
B. Section 6 describes related work and Sect. 7 concludes.

2 Running Examples

This section gives a brief overview of our running examples. The main running
example in this paper is a single-shaft lift controller. In Sect. 5.2, we extend this
example to a multi-shaft lift controller to illustrate our contribution on linking
Gherkin/Cucumber with iUML-B.

A Single-Shaft Lift. First we consider a single shaft lift operating between several
floors, Fig. 1. The cabin has request buttons for each floor and each floor has an
up and down request button. The cabin is moved up and down by winding, resp.
unwinding, a motor. The cabin door may only open when the lift is not moving.
The full requirements of the single-shaft lift are given in [4]. The cabin should
only move to respond to requests and should only change direction when there
are no requests ahead in its direction of travel. Any requests associated with the
current floor are cleared when the door begins to open.

A Multi-Shaft Lift. This system manages multiple lifts with a single cabin in
each shaft. The behaviour of the cabin motor and door is similar to the single-
shaft lift. Similarly, the cabin floor requests are dealt with internally by each lift.
The main difference is in the up/down requests at the floor levels. The up/down
floor requests are assigned by a central controller to the nearest serving cabin.
The nearest cabin is determined by calculating the ‘figure of suitability’ of each
lift, which depends on the direction of the lift, the direction of the call and the

24 C. Snook et al.

distance to the calling floor. Once a request is assigned to a lift, the cabin will
serve the request similar to the single shaft example. The full requirements of
the multi-shaft lift are given in [4].

3 Background and Technologies

0

1

2

3

4

5

6

7

0 1

2 3

4 5

6 7

Fig. 1. A lift system

In this section, we first review the Gherkin/Cucum-
ber approach to BDD, followed by a short descrip-
tion of the Event-B method and its iUML-B dia-
grammatic notation.

3.1 Behaviour-Driven Development with
Gherkin/Cucumber

The BDD principle aims for pure domain oriented
feature description without any technical knowledge.
In particular, BDD aims for understandable tests
which can be executed on the specifications of a sys-
tem. BDD is important for communication between
the business stakeholders and the software develop-
ers. Gherkin/Cucumber [18] is one of the various
frameworks supporting BDD [17].

Gherkin. Gherkin [18, Chap. 3] is a language
that defines lightweight structures for describing the
expected behaviour in a plain text, readable by both stakeholders and devel-
opers, which is still automatically executable. Each Gherkin feature starts with
some description, followed by a list of scenarios. The feature is often written as
a story, e.g.,

“As a �role�I want �feature�so that �business value�”.

Scenario. Each scenario represents one use case. There are no technical restric-
tions about the number of scenarios in a feature; yet they all should be related
to the feature being described.

In the simplest case the scenario also contains the test data and thus repre-
sents an individual test case. It is however advantageous to separate the general
requirement description from the concrete test cases and to describe a group of
similar use cases at once. For this purpose, a scenario outline with a placeholder
for the particular test data specified separately as a list of examples can be used.
In the following, we focus on different scenario steps.

Behaviour-Driven Formal Model Development 25

Steps. Every scenario consists of steps starting with one of the keywords: Given,
When, Then, And or But.

– Keyword Given is used for writing test preconditions that describe how to
put the system under test in a known state. This should happen without any
user interaction. It is good practice to check whether the system reached the
specified state.

– Keyword When is used to describe the tested interaction including the pro-
vided input. This is the stimulus triggering the execution.

– Keyword Then is used to test postconditions that describe the expected out-
put. Only the observable outcome should be compared, not the internal sys-
tem state. The test fails if the real observation differs from the expected
results.

– Keywords And and But can be used for additional test constructs.

Cucumber. Cucumber is a framework for executing acceptance tests written in
Gherkin language and provides Gherkin language parser, test automation as well
as report generation. In order to make such test cases automatically executable,
the user must supply the actual step definitions providing the gluing code, which
implements the interaction with the System Under Test (SUT). The steps shall
be written in a generic way, i.e. serving multiple features. This keeps the number
of step definitions much smaller than the number of tests. It is an antipattern to
supply feature-coupled step definitions which cannot be re-used across features
or scenarios.

Compound steps may encapsulate complex interaction with a system caused
by a single domain activity, thus decoupling the features from the technical inter-
faces of the SUT. This defines a new domain-related testing language, which may
simplify the feature description. The description of the business functionality is,
however, still contained in the features.

An example of a scenario for the single-shaft lift system is shown in Listing 1.

3.2 Event-B

Event-B [1] is a formal method for system development. An Event-B model con-
tains two parts: contexts and machines. Contexts contain carrier sets s, constants
c, and axioms A(c) that constrain the carrier sets and constants. Note that the
model may be underspecified, e.g., the value of the sets and constants can be
any value satisfying the axioms. Machines contain variables v, invariants I(v)
that constrain the variables, and events. An event comprises a guard denoting
its enabling-condition and an action describing how the variables are modified
when the event is executed. In general, an event e has the following form, where
t are the event parameters, G(t, v) is the guard of the event, and v := E(t, v) is
the action of the event.

any twhere G(t,v) then v := E(t,v) end

26 C. Snook et al.

Scenario: Press a DOWN button

Given can press DOWN button at floor ”2”
When press DOWN button at floor ”2”
Then DOWN button at floor ”2” is lit
And can wind the lift motor
And cannot open door

When motor starts winding
Then lift can move up
And cannot open door

When lift moves up
Then floor is ”1”
And lift can move up

Listing 1. A test scenario for single-shaft lift

Actions in Event-B are, in the most general cases, non-deterministic [7], e.g.,
of the form v : E(v) (v is assigned any element from the set E(v)) or v : P(v,v’)
(v is assigned any value satisfying the before-after predicate P(v,v’)). A special
event called INITIALISATION without parameters and guards is used to put the
system into the initial state.

A machine in Event-B corresponds to a transition system where variables
represent the state and events specify the transitions. Event-B uses a mathe-
matical language that is based on set theory and predicate logic.

Contexts can be extended by adding new carrier sets, constants, axioms, and
theorems. Machines can be refined by adding and modifying variables, invari-
ants, events. In this paper, we do not focus on context extension and machine
refinement.

Event-B is supported by the Rodin Platform (Rodin) [2], an extensible open
source toolkit which includes facilities for modelling, verifying the consistency
of models using theorem proving and model checking techniques, and validating
models with simulation-based approaches.

3.3 MoMuT

MoMuT is a test case generation tool able to derive tests from behaviour models.
The behaviour model represents a system specification, the generated tests can
be used as black box tests on an implementation. They help to ensure that every
behaviour that is specified, is also implemented correctly.

In contrast to other model based testing tools, the generated test cases do not
target structural coverage of the model, but target exposing artificial faults sys-
tematically injected into the model. These faults are representatives of potential
faults in the implementation; a test finding them in the model can be assumed

Behaviour-Driven Formal Model Development 27

to find its direct counterpart as well as similar, not only identical problems in
the implementation [6].

As input models, MoMuT accepts Object Oriented Action Systems
(OOAS) [9], an object oriented extension of Back’s Action systems [3]. The
underlying concepts of Action systems and Event-B are both closely related
to Dijkstra’s guarded command language [5]. For a subset of UML, for some
Domain Specific Languages (DSLs) and for a subset of Event-B, transforma-
tions into OOAS are available.

MoMuT strives to produce effective tests, i.e. tests exposing faults, as well
as efficient tests i.e. keeping the test suite’s size close to the necessary minimum.
Thereby, the tests are also suitable as manually reviewed acceptance tests.

3.4 iUML-B

iUML-B [13,16], an extension of the Rodin Platform, provides a ‘UML like’
diagrammatic modelling notation for Event-B in the form of class-diagrams
and state-machines. The diagrammatic elements are contained within an Event-
B model and generate or contribute to parts of it. The iUML-B makes the formal
models more visual and thus easier to comprehend. We omit the description of
state-machines and focus on class-diagrams, which are used in the example in
Sect. 5.2.

Class diagrams provide a way to visually model data relationships. Classes,
attributes and associations are linked to Event-B data elements (carrier sets,
constants, or variables) and generate constraints on those elements. Methods
elaborate Event-B events and contribute additional parameter representing the
class instance.

4 Behaviour-Driven Formal Model Development

In this section, we present our approach for behaviour-driven formal model devel-
opment. We assume that a natural language description of the requirements is
available and this is supported by a number of manually written scenarios. The
process, shown in Fig. 2, consists of the following steps.

1. In the modelling step, the model is produced from the requirements and
the manually written scenarios. The output of the modelling step is a safe
model, in the sense that it is fully proven to be consistent with respect to its
invariants. (We use ‘safe’ in a wide sense to include any important properties).
In this paper, we use Event-B/iUML-B as our modelling method.

2. The safe model is behaviourally verified against the manually written scenar-
ios. The purpose is to verify that the safe model exhibits the behaviour speci-
fied in the requirements which cannot be expressed via invariants. The output
of this step is a (safe and) behaviourally verified model. In this paper, we use
Cucumber for Event-B/iUML-B (see Sect. 5) for verifying the behaviour of
our model written in Event-B/iUMLB.

28 C. Snook et al.

Requirements

1. Modelling

Manual
scenarios

Safe
Model

2. Behaviour
Verification

Behavioural-
verified
model

3. Scenario
generator

Generated
scenarios

4. Acceptance
Testing

Fig. 2. A behaviour-driven formal model development method

3. The behaviourally-verified model is used as the input for a scenario genera-
tor, which automatically produces a collection of generated scenarios. In this
paper, we use an Event-B-enabled version of MoMuT (see Sect. 3) as the sce-
nario generator. The generated scenarios should be reviewed to ensure they
represent desired behaviour. If the model still contains undesirable behaviour,
that was not detected in the previous step, this will be reflected in the gen-
erated scenarios.

4. The generated scenarios are used for acceptance testing of the behaviourally
verified model. Acceptance testing allows stakeholders to assess the usefulness
of the model by watching its behaviour. We again use Cucumber for Event-
B/iUML-B to automatically illustrate the generated scenarios to different
stakeholders. The scenarios are in “natural language” and it is easy to see the
correspondence between the scenarios and the requirements.

Our hypotheses about our approach are as follows.

H1 In the modelling step, scenarios help to improve the validity of the model.
H2 Scenarios are useful for verifying temporal properties.
H3 Generated scenarios are more complete than manually written scenarios.

In the following sections, we analyse the steps of the process in more detail
with experiments to verify the above hypotheses.

4.1 Modelling

To validate Hypothesis H1, we perform an experiment using the single-shaft lift
controller introduced in Sect. 2. The requirements of the system are given to two
developers who are expert in Event-B modelling. To one developer, we also gave
a set of desirable scenarios of the system. The full scenarios can be seen in [4].
The summary of the scenarios is as follows.

Scenario 1 User 1 enters the lift from Floor 0 and presses the button for Floor
2. User 2 presses the up button on Floor 1. The lift will go from Floor 0 to
Floor 2, in between stop at Floor 1 to serve User 2’s request.

Behaviour-Driven Formal Model Development 29

Scenario 2 User 1 enters the lift from Floor 0 and presses the button for Floor
2. User 2 presses the down button on Floor 1. The lift will first go from Floor
0 to Floor 2, before changing the direction to go down to Floor 1 to serve
User 2’s request.

Scenario 3 User 1 enters the lift from Floor 0 and presses the button for Floor
2. User 2 presses the down button on Floor 1. The lift will first go from Floor
0 to Floor 2, before changing the direction to go down (still at Floor 2) to
serve User 2’s request.

Afterwards, we compare the models produced by the two developers in terms of
their validity with respect to the requirements and the scenarios. The comparison
is done by executing the scenarios on the models and reviewing their behaviour.

We did not find much difference in terms of valid behaviour between the
two models. This may be due to tacit knowledge of the lift example. However,
we found that the scenarios have some effect on the form of the models. The
model developed with scenarios aligns more closely with the details presented
in the scenario: The lift responses directly to the buttons pressed by the users.
In the model developed without scenarios, an abstract notion of “requests” is
introduced, which are eventually linked with the buttons. Having such a strong
example of actual behaviour seems to reduce the inclination to make abstractions.
On the one hand, the model without abstraction has less refinement steps and is
more obviously valid since it directly correlates with the acceptance criteria. On
the other hand, the model with abstraction has principles that can be adapted to
different concrete implementations and hence may be more reusable. Scenarios
help with validation of the models but may reduce their reusability. A possible
mitigation is to develop “abstract” scenarios from the original concrete scenarios.
We consider this as a direction for our future work.

4.2 Behaviour Verification

In this section, we describe our experiment to validate Hypothesis H2. The
purpose of the behaviour verification step is to ensure that our safe model also
satisfies behaviours which are specified using the scenarios. We use versions of
the single-shaft lift model that has been seeded with several faults as follows.

1. (Fault 1) The lift is prevented from moving to the top floor. Event MovesUp’s
guard is changed from floor<TOP FLOOR to floor<TOP FLOOR− 1.

2. (Fault 2) The up requests are not cleared after the door is open. Here the
action to clear the up button for floor f, i.e., up buttons := up buttons \ {floor},
is omitted in the faulty version of event UpButtonCleared.

3. (Fault 3) The down requests are ignored by the door, i.e., the door will
not open if there is only a down request at a floor. Here, a guard of event
DoorClosed2Half is changed from

direction=DOWN⇒ floor∈ floor buttons ∪ down buttons

30 C. Snook et al.

to

direction=DOWN⇒ floor∈ floor buttons

These type of faults are typical in developing system models using Event-B
and are not detected by verification using invariant proofs. In other words, the
models with temporal faults are still fully proved to be consistent with their
safety invariants.

In these experiments the manual scenarios found two of the seeded faults.
Fault 2 is found by all scenarios, while Fault 3 is found by Scenario 2 and
Scenario 3. Since none of the manual scenarios get the lift cabin to the top
floor, Fault 1 is not discovered. Nevertheless, our experiment confirms that the
scenarios are useful for verifying behaviours of the system, which cannot be
directly expressed and verified using invariants. In general, scenarios must also
be verified and validated to ensure that they represent desirable behaviours of
the system.

4.3 Scenario Generator

In this section, we verify Hypothesis H3 by comparing the scenarios generated
automatically by MoMuT with the manually written scenarios. We use MoMuT
as our scenario generator on the model of the lift example. The generator explores
a subset of the model’s state space and checks where mutations, like exchanged
operators or conditions set to a fixed value, cause the externally visible behaviour
to differ from the original model. This information is used to build test scenarios
that succeed on the original model, but fail on a model containing the mutation.

For the exploration, we tried three strategies: (a) random exploration, (b)
exploration using rapidly expanding random trees (RRT) and (c) full exploration
up to depth 12 (BFS12). The exploration depth for BFS12 was limited by the
memory of the computer we used.

Table 1. Comparison of scenario sets

Scenario set Fault 1 Fault 2 Fault 3 Coverage Steps

Manual No Yes Yes 72% 87

Random Yes Yes Yes 63% 305

RRT Yes Yes Yes 67% 204

BFS12 No Yes Yes 79% 82

Table 1 shows, for each generation strategy, which of the manually seeded
faults was detected, what percentage of the automatically generated model muta-
tion faults were detected and the length in steps of the generated scenarios. A
mutant is found when, during the exploration of the model, the modelling ele-
ment (here the Event-B event) containing the mutant is executed. As a result,

Behaviour-Driven Formal Model Development 31

the (mutant) coverage criteria is a property of the scenario sets with respect to
the formal model.

As can be seen in Table 1, the manual set already achieves a high mutation
coverage of 72% of the 616 inserted mutations, and is only outperformed by
the BFS12 scenarios, achieving higher coverage (79%) with even fewer steps.
Nonetheless, both the manual set and BFS12 fail to catch our first seeded fault,
because both do not try to go to the third floor. The scenarios from the two
other strategies catch the first seeded fault, but perform less well regarding
overall coverage number and coverage achieved in relation to steps needed.

Analysis of the generated scenarios shows that the different groups of scenar-
ios do not subsume each other. Thus, putting all automatically generated sce-
narios together, an even higher mutation coverage score of 83% can be reached.
Although the gap is smaller than expected, the experimental results support
Hypothesis H3.

Since the overall size of the scenario sets is not too much bigger than the man-
ual scenarios, manual review of the generated scenarios is feasible. Automated
reduction of the tests or more optimised generation techniques would improve
that even more. Longer random scenarios could increase the fault-finding capac-
ity, but at the cost of review feasibility. The problem with random tests is not
only the length of the scenarios. The more random a generated scenario is, the
more tiresome it is to work through during acceptance testing, because there is
no intention recognisable.

5 Scenario Automation for Event-B/iUML-B

In this section, we present our Cucumber step definitions for Event-B and iUML-
B. Cucumber for Event-B/iUML-B allows us to execute the Gherkin scenario
directly on the Event-B/iUML-B models.

5.1 Automation: Cucumber for Event-B

‘Cucumber for Event-B’ allows Cucumber to execute Gherkin scenarios on an
Event-B model. It is a collection of step definitions which defines a traversal of
the Event-B state space. Below we intersperse the Gherkin step definitions with
comments to explain how to interpret them.

Given machine with ”�formula�”
// Setup constants with the given constraints and initialize the machine.

When fire event ”�name�”with ”�formula�”
// Fire the given event with the given parameter constraints.

Then event ”�name�”with ”�formula�”is enabled
// Check if the given event with the given parameter constraints is enabled.

Then event ”�name�”with ”�formula�”is disabled
// Check if the given event with the given parameter constraints is disabled.

Then formula ”�formula�”is TRUE
// Check if the given formula evaluates to TRUE.

Then formula ”�formula�”is FALSE
// Check if the given formula evaluates to FALSE.

32 C. Snook et al.

An essential property of acceptance tests is reproducibility. Therefore all
step definitions check whether the specified event can be unambiguously chosen
(using given parameters constraints). The user should make sure that the tested
machine is deterministic and, if not, refine it further. Also abstract constants
may lead to non-reproducible tests; however, they do not need to be specified
by the model refinement, but can also be provided by the test case as test data.

The scenario to test the functionality of a single-shaft lift system in Listing 1
can be rewritten for the Event-B model as shown in Listing 2.

Scenario: Press the DOWN button

Given machine with ”TopFloor = 3”
When fire event ”DownButtonPresses” with ”f = 2”
Then formula ”2 : down buttons” is TRUE
And event ”MotorWinds” is enabled
And event ”DoorClosed2Half” is disabled

When fire event ”MotorWinds”
Then formula ”motor = WINDING” is TRUE
And event ”MovesUp” is enabled
And event ”DoorClosed2Half” is disabled

When fire event ”MovesUp”
Then formula ”floor = 1” is TRUE
And event ”MovesUp” is enabled

Listing 2. Test scenario using plain step definitions

Such an acceptance test is fairly straightforward in terms of syntax but is
couched in terms of the relatively low-level formalism of Event-B. Domain engi-
neers are often more used to higher-level modelling representations such as UML.
In Sect. 5.2 we go further towards meeting the BDD approach which advocates
minimising the language barriers between domain and system engineers.

5.2 Cucumber for iUML-B

Cucumber for iUML-B provides a Gherkin syntax based on the iUML-B diagram-
matic modelling notation. iUML-B class diagrams and state-machines resemble
the equivalent notations of UML and should feel more familiar for domain engi-
neers. For the multi-shaft lift example, we have used iUML-B class diagrams to
illustrate scenario testing of behaviour ‘lifted’ to a set of instances (i.e. a class).
Although not shown here, Cucumber for iUML-B also supports scenario testing
of state-machines including state-machines that are owned (i.e. contained) by a
class in a class diagram.

Cucumber for iUML-B consists of iUML-B based step definitions which are
translated into the corresponding underlying Event-B model elements for exe-
cution. Clearly, the translation of Cucumber for iUML-B scenarios must match

Behaviour-Driven Formal Model Development 33

the corresponding translation of the actual target model under test. Therefore
Cucumber for iUML-B must access attributes of the iUML-B model in order
to infer the proper Event-B events and variables and to derive implicit event
parameters (e.g. ‘self name’ representing the class instance).

Cucumber for Class Diagrams. The following Gherkin syntax is be defined
for validating class diagrams.

Given class ”�name�:�inst�”
// Preset the given class with the given instance.

When call method ”�name�”with ”�formula�”
// Call the given class instance method.

Then method ”�name�”with ”�formula�”is enabled
// Check if the given class instance method is enabled.

Then method ”�name�”with ”�formula�”is disabled
// Check if the given class instance method is disabled.

Then attribute ”�attr�”is ”�value�”
// Check if the given class instance attribute is equal to the given value.

Then association ”�assoc�”is ”�value�”

// Check if the given class instance association is equal to the given value.

In general, class attributes and associations can be any binary relation (i.e.,
not necessarily functional), hence further checks can be defined accordingly.

Multi-shaft Lift System in iUML-B Class Diagrams. Figure 3 represents the class
diagram of the lift requests, before introducing the motor and door behaviour.
Class Bldg Lift is a constant representing the lift cabins in a building. Each
lift has two attributes lift status and lift direction to indicate whether the lift is
moving or not and the lift direction (up/down). Floors is a constant representing
the different floors in a building.

Fig. 3. iUML-B class diagram of the multi shaft lift: requests

The associations upRequests and downRequests between the Bldg Lift and
Floors are variables that represent the floors to be served by the lift, and whether

34 C. Snook et al.

they are above or below the current position of the lift, while curr floor repre-
sents the current floor position of the lift. floorUp and floorDown are variable
sets of type Floors, that respectively represent floor up and down requests, these
requests are generated by the events press up button and press down button. At
this stage the floor requests are not assigned to a specific lift, once the controller
finds the nearest serving lift (find nearest cabin up, find nearest cabin down),
these requests will be assigned to the nearest lift in the Bldg Lift events
assign floor up request and assign floor down request. The Bldg Lift has other
local events e.g. cabin up request, lift move up etc.

The Scenario of Listing 3 tests the action of requesting a floor from within
a cabin of the multi-shaft lift system modelled in Fig. 3. Note that we use with
”�formula�” to instantiate the additional parameter f to specify the requested
floor for the given building lift L1.

Scenario: Request cabin floor

Given class ”Bldg Lift:L1”
Then method ”cabin up request” with ”f = 1” is enabled
And method ”cabin down request” with ”f = 1” is disabled
And attribute ”lift status” is ”STATIONARY”
And attribute ”lift direction” is ”UP”

When call method ”cabin up request” with ”f = 1”
Then association ”upRequests” is ”{1}”
And method ”lift start moving” is enabled

When call method ”lift start moving”
Then attribute ”lift status” is ”MOVING”

Listing 3. Test scenario for iUML-B class diagram

6 Related Work

Our approach is inspired by the behaviour-driven development methods [15] of
agile methods. Siqueira, deSousa and Silva [14] also propose using BDD with
Event-B. However, they use Event-B to support the BDD process by provid-
ing it with better analyses whereas we retain focus on formal modelling using
‘BDD-like’ techniques to improve our model development process. The concept
of acceptance testing of a formal model is perhaps unusual, however it builds
on the idea of model validation via animation which has been supported for
some time particularly in Event-B, with tools such as ProB [11] and BMotion
Studio [10,12]. Acceptance testing is a more specific use of such validation tools
where the goal is not only to validate the model but to allow the end-user or
similar stakeholder to assess and accept the model as suitable for their needs.

Behaviour-Driven Formal Model Development 35

7 Conclusion

We have developed an approach to formal modelling based on ideas from
Behaviour Driven Development. We use scenarios to drive the formal model con-
struction, verification and acceptance. We have shown how to enhance Cucumber
in order to apply the acceptance tests written in the Gherkin language to the
Event-B formal model and also to a model formulated using iUML-B notation.
For efficient coverage we use a model-mutation based test case generator to gen-
erate scenarios for acceptance testing. Our experiments support the ideas but
were somewhat neutral in the case of H1: ‘scenarios help to improve the validity
of the model’. Further experiments will be carried out in this area on larger and
less familiar applications where tacit knowledge is less likely to confound results.
For example a different modeller could develop a new feature to assess whether
scenarios help to identify the scope of impact of the change in a situation where
the style of the overall model is already fixed. We would also like to explore the
relationship between scenario testing and verification of temporal properties such
as ‘does the lift eventually reach a requested floor’. This could be explored in
relation to ‘lifted’ behaviours such as found in the multi-shaft lift where we might
want to examine local liveness properties of classes. The test case generation,
while having greater coverage than the manually written scenarios, did miss part
of the seeded bugs depending on the selected search strategy. We believe this can
be addressed by tuning the MoMuT tools and will carry out further work and
experiments in this area. Our prototype tool can be found under https://github.
com/tofische/cucumber-event-b. Further work is needed to develop the methods
and tools to support the use of Cucumber for iUML-B. Our next applications
will be in the railway domain on the Hybrid ERTMS/ETCS Level 3 [8] and in
the avionics domain on an aircraft turn-around security authentication system,
which are real industrial applications.

Acknowledgements. This work has been conducted within the ENABLE-S3 project
that has received funding from the ECSEL Joint Undertaking under Grant Agree-
ment no. 692455. This Joint Undertaking receives support from the European Unions
HORIZON 2020 research and innovation programme and Austria, Denmark, Germany,
Finland, Czech Republic, Italy, Spain, Portugal, Poland, Ireland, Belgium, France,
Netherlands, United Kingdom, Slovakia, Norway.

ENABLE-S3 is funded by the Austrian Federal Ministry of Transport, Innovation
and Technology (BMVIT) under the program “ICT of the Future” between May 2016
and April 2019. More information is at https://iktderzukunft.at/en/.

We also thank Thorsten Tarrach (Austrian Institute of Technology, Vienna, Aus-
tria) for his assistance with MoMuT.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)

https://github.com/tofische/cucumber-event-b
https://github.com/tofische/cucumber-event-b
https://iktderzukunft.at/en/

36 C. Snook et al.

3. Back, R.J.R., Sere, K.: Stepwise refinement of action systems. In: van de Snep-
scheut, J.L.A. (ed.) MPC 1989. LNCS, vol. 375, pp. 115–138. Springer, Heidelberg
(1989). https://doi.org/10.1007/3-540-51305-1 7

4. Dghyam, D., Hoang, T.S., Snook, C.: Requirements document, scenarios, and mod-
els for lift examples, May 2018. https://doi.org/10.5258/SOTON/D0604

5. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of pro-
grams. Commun. ACM 18(8), 453–457 (1975)

6. Fellner, A., Krenn, W., Schlick, R., Tarrach, T., Weissenbacher, G.: Model-based,
mutation-driven test case generation via heuristic-guided branching search. In:
Proceedings of the 15th ACM-IEEE International Conference on Formal Methods
and Models for System Design, pp. 56–66. ACM (2017)

7. Hoang, T.S.: An introduction to the Event-B modelling method. In: Romanovsky,
A., Thomas, M. (eds.) Industrial Deployment of System Engineering Methods, pp.
211–236. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33170-1

8. Hoang, T.S., Butler, M., Reichl, K.: The hybrid ERTMS/ETCS level 3 case study.
In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol.
10817, pp. 251–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91271-4 17

9. Krenn, W., Schlick, R., Aichernig, B.K.: Mapping UML to labeled transition sys-
tems for test-case generation. In: de Boer, F.S., Bonsangue, M.M., Hallerstede, S.,
Leuschel, M. (eds.) FMCO 2009. LNCS, vol. 6286, pp. 186–207. Springer, Heidel-
berg (2010). https://doi.org/10.1007/978-3-642-17071-3 10

10. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising Event-B models with B-
motion studio. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS,
vol. 5825, pp. 202–204. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04570-7 17

11. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method.
Softw. Tools Technol. Transf. (STTT) 10(2), 185–203 (2008)

12. Ladenberger, L.: BMotion studio for ProB project website, January 2016. http://
stups.hhu.de/ProB/w/BMotion Studio

13. Said, M.Y., Butler, M., Snook, C.: A method of refinement in UML-B. Softw. Syst.
Model. 14(4), 1557–1580 (2015). https://doi.org/10.1007/s10270-013-0391-z

14. Siqueira, F.L., de Sousa, T.C., Silva, P.S.M.: Using BDD and SBVR to refine
business goals into an Event-B model: a research idea. In: 2017 IEEE/ACM 5th
International FME Workshop on Formal Methods in Software Engineering (For-
maliSE), pp. 31–36, May 2017

15. Smart, J.F.: BDD in Action: Behavior-Driven Development for the Whole Software
Life cycle. Manning Publications Company, Shelter Island (2014)

16. Snook, C., Butler, M.: UML-B: formal modeling and design aided by UML.
ACM Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006). https://doi.org/10.1145/
1125808.1125811

17. Solis, C., Wang, X.: A study of the characteristics of behaviour driven development.
In: 2011 37th EUROMICRO Conference on Software Engineering and Advanced
Applications, pp. 383–387, August 2011

18. Wynne, M., Hellesøy, A.: The Cucumber Book: Behaviour-Driven Development for
Testers and Developers. Pragmatic Programmers LLC, Raleigh (2012)

https://doi.org/10.1007/3-540-51305-1_7
https://doi.org/10.5258/SOTON/D0604
https://doi.org/10.1007/978-3-642-33170-1
https://doi.org/10.1007/978-3-319-91271-4_17
https://doi.org/10.1007/978-3-319-91271-4_17
https://doi.org/10.1007/978-3-642-17071-3_10
https://doi.org/10.1007/978-3-642-04570-7_17
https://doi.org/10.1007/978-3-642-04570-7_17
http://stups.hhu.de/ProB/w/BMotion_Studio
http://stups.hhu.de/ProB/w/BMotion_Studio
https://doi.org/10.1007/s10270-013-0391-z
https://doi.org/10.1145/1125808.1125811
https://doi.org/10.1145/1125808.1125811

The Foul Adversary: Formal Models

Naipeng Dong1(B) and Tim Muller2

1 National University of Singapore, Singapore, Singapore
dcsdn@nus.edu.sg

2 University of Oxford, Oxford, UK

Abstract. In classical notions of privacy in computer security, users
attempt to keep their data private. A user that is bribed, extorted or
blackmailed (i.e., coerced) may not do so. To get a general model of
coercion, we strengthen the Dolev-Yao adversary with the ability to
coerce others, to the foul adversary. We show that, depending on the
setting, subtly different abilities should be assigned to the adversary –
whereas existing approaches are one-size-fits-all. The variations of the
foul adversary are formalised and we provide a hierarchical relation in
their strength. We further interpret the adversary models using several
examples.

1 Introduction

Privacy is increasingly important in Internet-based services. A new privacy
notion - enforced privacy - arose, which assumes users reveal private informa-
tion due to coercion, e.g., bribery or extortion [14]. Vote-buying, bribed doctors
and rigged auctions are real-life examples of voters/doctors/bidders revealing
information that should be private, which harm the system’s desired properties
e.g., fairness [12,15,17]. In domains like e-voting, e-auction and e-health, coer-
cion must be prevented [3,10,20]; the systems should enforce a user’s privacy
even when the user reveals his private information. The basic idea is that if a
system provides a way for the coerced user to mislead the attacker, then the
adversary cannot distinguish whether the provided information is true, and thus
the system enforces privacy of the user [12,16,24]. Note that bribed, extorted
or blackmailed users differ from compromised users (e.g., [5]) - a coerced user
is assumed to lie to the attacker if possible whereas a compromised user is an
extension of the attacker, and thus totally controlled by the attacker.

There are cryptographic protocols that ensure enforced privacy [3,10,20,26,
27]. As the design of cryptographic protocols is well-known to be error-prone
and flaws in such protocols are often subtle and counter-intuitive, formal verifi-
cation is an important step before implementation. There are multiple ways to
formalise enforced privacy. Currently, a standard method (proposed by Benaloh
and Tuinstra [6] and later symbolically formalised by Delaune et al. [12]) is to
encode a privacy property as the formal equivalent of “even if the user gives up
his private information, the (Dolev-Yao [13]) adversary cannot be sure that this

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 37–53, 2018.
https://doi.org/10.1007/978-3-030-02450-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_3&domain=pdf

38 N. Dong and T. Muller

really is his private information”. This method does not generalise to security
properties other than privacy. We propose an alternative method, which is to
keep the security/privacy property unaltered (“the adversary cannot know the
user’s private information”), but to verify it under an adversary that has the
power to coerce; the foul adversary.

Our approach philosophically differs from the existing approaches. The exist-
ing approaches enhance the security requirements (privacy becomes enforced
privacy) of the system in question. Our approach is the first to allow reasoning
about coercion even in absence of a concrete security system or protocol. We
give the attacker the ability to (try to) coerce whenever he desires. Like any
attacker, he has the capability of reasoning about his knowledge, and inserting
it into a protocol; the only difference is that there may now be coerced data
in his knowledge. Our approach is rooted in similar formal techniques, meaning
automated verification is also feasible.

The main advantage of the standard method [12] is that it already has some
tool support (e.g., ProVerif [7]), and there are various case-studies using the
method [4,15,17]. The advantages of our proposed method are: (1) it generalises
to security properties other than privacy, (2) it allows a greater degree of fine-
tuning, and (3) it makes the assumptions of coercion explicit. To illustrate why it
pays to have assumptions explicit: The voting protocol in [12] makes an implicit
assumption that it suffices to keep the vote of the user enforced private. However,
as Küsters et al. [24] point out, the fact that a person voted at all may need to
be enforced private. Küsters et al. [24] have an alternative proposal for enforced
privacy. We discuss both methodologies in Sect. 2.

To motivate our alternative approach to coercion, take a frivolous example
(more technical and relevant examples are given later) where residents are to
be protected against potentially violent burglars. At a burglary, a burglar may
threaten a resident to enter a code to disable the alarm. A duress code (or
panic code) is a code that disables the sirens and lights, making it appear the
alarm is disabled, but in reality notifies the police that a burglar is coercing a
resident. When the system ensures that the residents have the code, then the
alarm is coercion resistant1 [8]. The precise details matter when the system allows
cases where the residents never received the duress code, or where the residents
never configured the duress code. We refer to this issue as the user knowledge
aspect, as the crucial question is whether it is sufficient when a user could know
something, or whether he actually needs to know it. Moreover, if the burglars
are sufficiently notorious, then residents may forgo using their duress code, as
they fear retribution from the burglar even after their arrest. We refer to this
issue as the dynamics aspect, as the crucial question is how potential futures

1 Or at least somewhat coercion resistant. If the burglar is aware of the existence of a
duress code, he could elicit two codes that turn off the alarm, knowing that one of
the two must be the real code, and decrease the odds of a silent alarm from 100% to
50%. A burglar would typically still be deterred with a 50% probability of a silent
alarm going off. We do not further investigate probabilistic scenarios.

The Foul Adversary: Formal Models 39

influence the present. The user knowledge aspect and the dynamics aspect are
orthogonal issues, which can be individually fine-tuned in our approach.

Contributions. We formalise and investigate a family of adversaries – foul adver-
saries – that extend the Dolev-Yao adversary with the ability to coerce. There
are two orthogonal aspects that determine the strength of the foul adversaries,
the user knowledge aspect (weak or strong) and the dynamic aspect (static, con-
servative, aggressive or extended). We prove a hierarchy of these 8 (2×4) different
foul adversaries, and illustrate the foul adversaries using practical examples.

Paper Organization. In Sect. 2, we introduce the context of our approach. In
Sect. 3, we define the core of our foul adversary in the form of knowledge and
reasoning. In Sect. 4, we introduce the notion of security systems and further
formalise the variants of the foul adversary. Then we introduce examples to
illustrate our approach and to concretely link it to security systems, in Sect. 5.
Finally, we conclude in Sect. 6.

2 Coercion

Coercion involves an adversary forcing a user to say (or do) something against
their will. However, unlike a controlled user, these coerced users may say (or
do) something else without the adversary noticing. All definitions explicitly deal
with the fact that users only actually say (or do) what the adversary demands
when the adversary can distinguish if the user does not comply.

Currently, there is research on coercion in the literature and defending against
coercion in protocol design. We discuss these approaches and their successes
below, in Existing Methods. The approaches have in common that they see coer-
cion as part of the security requirements. In Foul Adversary, we discuss the exact
differences resulting from making coercion part of the adversary’s abilities.

Existing Methods. The requirement to prevent coercion was first proposed in e-
voting systems [6]. Cryptographic e-voting protocols have been proposed to meet
this requirement (e.g., [26,27]). To formally verify these protocols, formalisa-
tions of enforced privacy in e-voting were proposed to capture the requirements,
for instance quantitative receipt-freeness and coercion-resistance [22], coercion-
resistance in game-based provable security style [25], coercion-resistance using
epistemic approach [24], and receipt-free and coercion-resistance using process
algebras, e.g., in the applied pi calculus [10] and in CSP [21]. Later, the enforced
privacy requirements have been found in other domains, such as e-auctions [3]
and e-health [10]. Formalisations of enforced privacy properties in e-auctions
and e-health have also been proposed, following the framework in the applied
pi calculus [15,17,22]. Thus, systems wherein coercion may occur are a growing
phenomenon, occurring in many new security domains.

The definition of enforced privacy by Delaune et al. [11] is particularly influ-
ential, as it is the first symbolic formal definition of enforced privacy that is

40 N. Dong and T. Muller

generalised over protocols. The definition, however, did not generalise nicely
over different domains, as it was specifically intended for e-voting. Voters may
be bribed to vote for a certain candidate, and receive benefits only if they can
prove that they voted for that candidate. Thus, it is not sufficient that the adver-
sary cannot invade your privacy and obtain a proof of your vote, but the protocol
must prevent users from providing the proof to the adversary.

Assume that there is a user that honestly forwards all data honestly and
correctly to the adversary. Presumably the user’s privacy is broken if he actually
does this. If there exists an alternative behaviour for the user, that looks exactly
the same to the adversary but now it does not break the user’s privacy, then
the user can “cheat” the adversary. By behaving in the alternative way, the user
does not break its privacy, but the adversary cannot tell that the user is not
being honest. Therefore, the user cannot prove that it broke its own privacy,
and the adversary has no reason to believe that the user actually broke his own
privacy. When this is the case, Delaune et al. say that enforced privacy holds.
As pointed out by Backes et al. [4] and Küsters et al. [24], the definition by
Delaune et al. does not capture certain protocols (such as [23,26]) and certain
attacks (abstention attacks). To tackle the problem, Backes et al. [4] improved
the definition. However, these definitions depend on specific protocol structures
(as pointed out by Küsters et al. [24]). Küsters et al. [24] proposed a more
general epistemic definition following the same basic idea. This approach requires
reasoning on voter’s goals and strategies. In addition, the above mentioned work
focuses on a specific domain - e-voting.

Foul Adversary. We have the following assumption: Users only want to cooperate
with the foul adversary when it is impossible to merely pretend to cooperate. This
is a high-level assumption shared by all of the variations of the foul adversary
model (and shared by the existing enforced properties [4,12,15,17]). The exact
meaning of that abstract assumption is difficult to pin down. In fact, we argue
that the precise interpretation depends on the context, and that a variety of
models is necessary.

Another assumption is a standard assumption, namely that a system is secure
if and only if no attacker can perform an attack. This means that we can ignore,
without loss of generality, those attackers that are strictly weaker than some
other attackers. Concretely, we can ignore attackers that coerce at the wrong
time, for the wrong data, or do not realise they can coerce for data. For example,
a foul adversary may not know whether a user knows some coercible data, but
choose to try to coerce anyway, and gain knowledge if the user does (and punish
unfairly if he does not).

There are two aspects on which we divide the foul adversaries: On the require-
ments for a user to cheat, and on the role of time in coercion. First, we use the
duress code example from the introduction to illustrate the first aspect. Then,
we introduce an informal example to illustrate the time aspect (see Sect. 5.1). We
formalise the distinctions between the foul adversaries in the following sections.

The Foul Adversary: Formal Models 41

3 Knowledge

In modern formalisms (such as Tamarin [29], the applied pi calculus [2], etc.), for
the analysis of security properties under the Dolev-Yao adversary, it is possible
but not necessary to reason explicitly about the knowledge of users (or even
about users at all). Here, we explicitly model the users and their knowledge, to
make the assumptions explicit.

Moreover, the fact that we explicitly reason about adversary knowledge is
a core concept in our approach. We argue that some subtleties simply cannot
be captured by a model that does not take knowledge into account. In this
section, we create a model of knowledge and reasoning using coercion. We do
not take learning (dynamic knowledge) into account, until Sect. 4. Our model of
knowledge is similar to other definitions in symbolic security (e.g., [9,29]).

3.1 Preliminaries

A common way to reason about knowledge is epistemic modal logic [19]. How-
ever, an epistemic agent has perfect reasoning capabilities, allowing him to solve
computationally hard problems. The (Dolev-Yao or foul) adversary is not capa-
ble of solving computationally hard problems. Hence, in the context of security
protocol modelling, we need an alternative model of knowledge. We take Cortier
and Kremer [9]’s model of the Dolev-Yao knowledge and reasoning as our start-
ing point. In their model, a user knows something iff he can derive it from one
of the facts in his core knowledge.

We adopt a symbolic approach [2,13,29], meaning that we adopt the ideal
properties of the cryptographic primitives. Messages that a user and an adversary
know can be modelled as the following (e.g. in [2,9]):

– There exists a countable set of names N , an countable set of variables V, and
a countable set of signatures Σ – a set of function symbols with arities.

– A term in T (N ,V, Σ) is either a name from N , a variable from V, or
f(M1, . . . ,Mn) where f is an n-ary function in Σ and all Mi (0 ≤ i ≤ n)
are terms in T (N ,V, Σ).

– The variables in a term M are denoted by δ(M). A term is ground when
δ(M) = ∅. Ground terms are called data and denoted as T (N , Σ). Replacing
a variable x in term M with a ground term d is an instantiation, denoted
by M{d/x}. We use θ to represent instantiation of a set of variables, δ(θ) to
denote the variables, and ϕ(θ) to denote the data to replace the variables2.

– Properties of cryptographic primitives are captured by an equational theory
E, where E is a set of equations of terms of the form M =

E
N , where M,N ∈

T (N ,V, Σ).

The derivation rules are provided by an axiomatization, such as found in [30]
and in [1,9]. We axiomatize the reasoning of the users (the Dolev-Yao adversary

2 Only our notion of instantiation differs from the standard, as we disallow names to
be substituted, and we disallow variables to be substituted into a formula.

42 N. Dong and T. Muller

A
x ∈ X
X x

B
X y x =

E
y

X x
F

X x0, . . . , xn f ∈ Σ

X f(x0, . . . , xn)

Fig. 1. Standard knowledge reasoning rules.

in particular) with the rules in Fig. 1. We may refer to axiom A as the axiom
of core knowledge, to axiom B as the axiom of equality and to axiom F as the
axiom of function application. If there exists a derivation with premise X and
conclusion y under axioms A, B and F , and a specified equational theory E,
then we may write X �DY y. The statement X �DY y means that an agent with
core knowledge X has y in his knowledge. �DY models the reasoning ability of
the Dolev-Yao adversary. Let X be a set of sets of knowledge, and Y be a set of
knowledge, we may write X �DY Y to mean ∀y∈Y ∃X∈X (X �DY y).

3.2 Weak Coercion

As mentioned before, one of the two aspects on which we distinguish the adver-
sary’s power, is user knowledge. The distinction between the weak and strong
variants is that the former uses weak coercion, and the latter uses strong coer-
cion. The definitions of weak coercion and strong coercion are similar, but weak
coercion is simpler. Here, we define weak coercion, and in Sect. 3.3 we show how
strong coercion differs.

Weak coercion is based on a notion of verifiability and a notion of elicitation.
Given an equation which can only be satisfied with data d, then d is called verifi-
able under that equation. Elicitation models obtaining information by coercion.
In particular, if d is verifiable under an equation that the foul adversary can con-
struct, and a user has d, then the foul adversary can ask the user to provide d,
which he must provide as the foul adversary can verify it. Elicitation is modelled
as a derivation rule, where the adversary elicits data whenever necessary.

Verifiability. Verifiability is a property of data. For example, if you receive a
hashed message, then there is only one original message that would give you
that hash (assuming an idealised hash function without collision). In this case,
we say that the original message is verifiable under the hashed message. More
precisely, let the hashed message be h(m) and m the original, then the equation
h(x) =

E
h(m) can only be satisfied when x =

E
m. Thus h(x)θ =

E
h(m)θ holds, only

if θ replaces x by m (note that m is not a variable, and cannot be instantiated).
This forms the basis of the definition.

We obtain the following formal definition of verifiability of D (a set of data)
under two given terms M,N :

V M,N (D) iff ∃θ:ϕ(θ)=D∧Mθ=
E

Nθ

(
� ∃θ′:δ(θ′)=δ(θ)∧D �=

E
ϕ(θ′) (Mθ′ =

E
Nθ′)

)
.

The formula states that D is verifiable under M,N , when there exists an instan-
tiation θ (of D onto variables that occur in M,N), such that M and N are

The Foul Adversary: Formal Models 43

C
CK(D), A DY M, A DY N, V M,N (D)

(A,K) ζ D

Fig. 2. Knowledge reasoning rule concerning elicitation.

equivalent and there is no instantiation θ′ (of other data than D onto the same
variables) that equates M and N . Thus, if the user is challenged to give the
correct data to equate M and N , then the user cannot provide any other data
than D (or data that equates to D)3.

Elicitation. The foul adversary can gain knowledge by coercion – elicitation. A
set of data D is elicitable if the coercible users can derive it (i.e., when the users
know it). Formally, given the set of core knowledge K of coercible users, that a
set of data D is elicitable (denoted as CK(D)) is defined as:

CK(D) iff ∀d ∈ D,∃K∈K(K �DY d).

When D is elicitable and the adversary can derive some terms under which
D is verifiable, then the user has no choice but to provide D truthfully. This is
the intuition behind the elicitation rule, which is modelled as a derivation rule,
meaning that elicitation is just a way for the adversary to gain knowledge.

Since the question of whether D is elicitable depends on the knowledge of
the users, it is unavoidable that the elicitation rule does not merely depend
on the adversary’s (core) knowledge. The premises of elicitation are the core
knowledges of the users, and the core knowledge of the adversary. If the adversary
can construct terms M,N , such that data d is verifiable under M,N , then the
adversary can coerce d from users that know the data d. This is directly codified
in the coercion rule, in Fig. 2.

In Fig. 2, CK(D) ensures that D can actually be provided by the coerced
users, A �DY M (or N) ensures that the adversary can actually construct two
terms M (or N) from his core knowledge A – note that he uses variables here
– and finally V M,N (D) ensures that misrepresenting D is impossible for the
coerced users. Then the adversary with knowledge A can coerce the users with
knowledge K for data D. Note that as mentioned in Sect. 2, to coerce for d, the
adversary need not know that the coerced user knows d.

3.3 Strong Coercion

Strong coercion is highly similar to weak coercion. The verification rule is lib-
eralised, and some data which is not verifiable in weak coercion may now be
3 The domain of θ has not been restricted in the formula. Note that we can add a

condition δ(θ) ⊆ δ(M) ∪ δ(N) without loss of generality. If there were a variable
x ∈ δ(θ), x �∈ δ(M) ∪ δ(N), then Mθ =

E
Nθ implies Mθ′ =

E
Nθ′, for all θ′ that are

equal to θ except on where x maps to. In that case, the condition � ∃ . . . is trivially
false. Therefore, we can limit our θ to those with only variables also in M or N .

44 N. Dong and T. Muller

Cs

CK(D), A DY M, A DY N, V M,N
K (D)

(A,K) ζs D

Fig. 3. Knowledge reasoning rule concerning strong coercion.

verifiable. The verification rule now takes into account the core knowledge(s) of
the user(s) that need to cheat the adversary. If the users do not actually know
the data needed to cheat the adversary, then they cannot cheat the adversary,
meaning the data remains verifiable.

More precisely, data D may not be verifiable under M,N , due to the existence
of some D′ �=

E
D that fits the same equation. In reality, the existence of such D′

may not help the user, if he is unable to construct it. For example, if h(k) =
E

h(k′), then the adversary, who saw the hash h(k), may construct M = h(k) and
N = h(x), and is not able to coerce for k this way, since k′ satisfies the equation
too. However, if the user cannot actually derive k′, then he still has no choice but
to provide k to satisfy the equation. In this section, we make minimal changes
to weak coercion to obtain strong coercion.

Verifiability. Using the notion of instantiation, we obtain the formal definition
of verifiability of D under M,N for coerced users with core knowledges K:

V M,N
K (D) iff ∃θ:ϕ(θ)=D∧Mθ=

E
Nθ(

� ∃θ′:δ(θ′)=δ(θ)∧D �=
E

ϕ(θ′)

(
K �DY ϕ(θ′) ∧ Mθ′ =

E
Nθ′

))
.

Strong verifiability is identical to weak verifiability, except for the additional
expression K �DY ϕ(θ′) in the not-exists, which expresses the additional require-
ment that the user actually knows how to construct the deception.

Proposition 1. V M,N (D) implies V M,N
K (D).

Proof. If θ′ exists in strong verifiability, then it exists in weak verifiability.

Elicitation. Strong coercion is a simple adaptation from weak coercion, where
we use strong verifiability rather than weak verifiability; see Fig. 3.

4 Behaviour

In this section, we use a crude model of the dynamics of the systems. We assert
that all users follow some protocol, which determines what actions they may
perform. The adversary can also perform actions, depending on his knowledge.
The effect of the actions is deterministic, meaning that the consequences of an
action are fixed. This allows us to use the extensive form (explicit) representation
of a system, where traces and states are equivalent notions. We formalise this
representation in Sect. 4.1.

In Sect. 4.2, we introduce the four variations of the dynamic aspect: static,
conservative, aggressive and extended foul adversaries. We show the relationships
between the different adversaries that we have introduced, in Sect. 4.3.

The Foul Adversary: Formal Models 45

4.1 Preliminaries

A system is (S,A, I, s0, U,K0) where S is a set of states, A is a set of actions of
the form keyword(u, v, d) where keyword ∈ {public, private, block, insert}, u is the
(alleged) sender, v is the (alleged) receiver, d : T (N ,V, Σ) is the communicated
data, I : S × A × S is a deterministic4 set of transitions forming a tree5, s0 is
the initial state at the root of the tree, U is a set of users (coerced users UC are
a subset of U) and K0 : U ∪ {e} → ℘(T (N ,V, Σ)) is an assignment of initial
core knowledge to the users. As a consequence of this definition, every state
is uniquely identified by the sequence of actions leading to it. Hence, we may
simply write [a1, . . . , an] to refer to the state sn which has the property that
s0

a1−→ s1, . . . , sn−1
an−−→ sn.

Users behave according to some protocol specification, which dictates their
actions. Users can send s(w, d) and receive r(w, d) public messages d to/from
w, and send ps(w, d) and receive pr(w, d) privately messages d to/from w under
certain circumstances. Users do not introduce variables, only terms, if a user
sends a variable, it is a variable it received by the adversary. Let πu(s) be a
projection of the global state to the user state, and let ρs

u(a) mean that action
a is enabled at user state πu(s). A transition

– s
public(u,v,τ)−−−−−−−−→ t exists iff ρs

u(s(v, τ)), ρs
v(r(u, τ)),

– s
private(u,v,τ)−−−−−−−−→ t exists iff ρs

u(ps(v, τ)), ρs
v(pr(u, τ)),

– s
block(u,v,τ)−−−−−−−→ t exists iff ρs

u(s(v, τ)), and

– s
insert(u,v,τ)−−−−−−−→ t exists iff ρs

v(r(u, τ)) and the adversary knows τ with τ ∈
T (N ,V, Σ) (That the adversary knows τ is later formally defined as a series of
s � τ distinguished by the superscripts of � which depends on the adversary
model).

Thus, in the extensive form representation, a private communication can happen
only if both parties can privately communicate. Similarly for public communi-
cation. However, in addition, the adversary can block a public communication
– pretending to be the receiver – or insert a public communication (provided
the adversary knows the content of the communication) – pretending to be the
sender. These are standard assumptions in the Dolev-Yao model, which is our
starting point.

At every state, the users and the adversary have some knowledge. The knowl-
edge consists of a core knowledge, and the ability to reason. We define κu(s) as
a function that gives the core knowledge of u in state s.

– κu(s0) = K0(u), for all users;

– κv(t) = κv(s) ∪ {τ} when s
public(u,v,τ)−−−−−−−−→ t, s

private(u,v,τ)−−−−−−−−→ t or s
insert(u,v,τ)−−−−−−−→ t;

4 Given state s and action a, there is at most one state t such that s
a−→ t.

5 Due to knowledge monotonicity, it is important that the system is represented in
the extensive form of a tree (potentially infinite).

46 N. Dong and T. Muller

– κe(t) = κe(s) ∪ {τ} when s
public(u,v,τ)−−−−−−−−→ t or s

block(u,v,τ)−−−−−−−→ t; and
– κv(t) = κv(s) for all other users.

Due to the fact that we use extensive form representation, we have uniquely
defined the knowledge of all users in all states. We write a−→D if the message in
a is data; i.e. if it does not contain variables.

4.2 Formal Models of Foul Adversaries

Here we introduce the static, conservative, aggressive and extended foul adver-
saries, that differ in how they treat the dynamic aspect.

Static Foul Adversary. The static foul adversary models a situation in which the
foul adversary only has power over the coerced users in the present. An example
is a street robber that wants to obtain your PIN code, if you manage to cheat
the street robber, then he cannot punish you later. All that matters is that the
data is not currently verifiable.

Let �S
S be the weakest relationship satisfying,

1. in state s ∈ S, for K = {κui(s)|ui ∈ UC}) and A = κe(s), if (A,K) �ζs d, then
s �S

Sd; and
2. ∀s → s′ ∈ I, s �S

Sd =⇒ s′ �S
Sd.

The strong static foul adversary (SSFA) is an adversary that uses �S
S as deriva-

tion relation.
Condition 1 simply encodes that the static foul adversary can elicit informa-

tion in a state that allows him to elicit information. Condition 2 is a modelling
trick. Without condition 2, it is possible that data d becomes unverifiable due
to the user learning a cheat. However, we can assume without loss of generality
that the adversary had sufficient foresight to elicit d when it was possible. We
address this issue by simply defining the reasoning to be monotonic.

The relation �W
S is defined similarly, using �ζ rather than �ζs . The weak static

foul adversary (WSFA) is an adversary that uses �W
S as derivation relation. Here,

the monotonicity condition (condition 2) is superfluous, as the adversary knowl-
edge is trivially monotonic using only condition 1 (since data cannot become
unverifiable).

Conservative Foul Adversary. The conservative foul adversary models a situation
in which the foul adversary is not willing to coerce unless it is sure it can follow
up on its threats. An example is a mafioso who values his reputation of following
up on threats more than breaking the security property. This typically occurs in
scenarios where the stakes of the individual users are relatively low.

Let �S
C be the weakest relationship satisfying,

1. in state s ∈ S, for K = {κui(s)|ui ∈ UC} and A = κe(s), if (A,K) �ζs d, then
s �S

Cd;

The Foul Adversary: Formal Models 47

2. ∀s → s′ ∈ I, s �S
Cd =⇒ s′ �S

Cd; and
3. ∀s →D s′ ∈ I and CK({d}) for K = {κui(s)|ui ∈ UC}, s′ �S

Cd =⇒ s �S
Cd.

The strong conservative foul adversary (SCFA) is an adversary that uses �S
C as

derivation relation.
Condition 3 states that if for all (non-imaginary) futures, the foul adversary

can verify data d, then the user has no choice to surrender d, provided he has d.
The subscript D (in →D) ensures that the future is not imaginary, as it disallows
variables in the messages – restricting to communications with actual data.

The relation � W
C is defined similarly, using �ζ rather than �ζs . The weak

conservative foul adversary (WCFA) is an adversary that uses �W
C as derivation

relation. Again, monotonicity is superfluous here.

Aggressive Foul Adversary. The aggressive foul adversary models a situation in
which the user wants to avoid crossing the foul adversary at all costs. This is
the typical dynamic version of the foul adversary, applicable to voting systems,
where the foul adversary may punish users after the results came in.

Let �S
A be the weakest relationship satisfying,

1. in state s ∈ S, for K = {κui(s)|ui ∈ UC}) and A = κe(s), if (A,K) �ζs d, then
s �S

Ad;
2. ∀s → s′ ∈ I, s �S

Ad =⇒ s′ �S
Ad; and

3. ∃s →D s′ ∈ I and CK({d}) for K = {κui(s)|ui ∈ UC}, s′ �S
Ad =⇒ s �S

Ad.

The strong aggressive foul adversary (SAFA) is an adversary that uses � S
A as

derivation relation.
Condition 3 is changed to an existential property, which states that if in some

(non-imaginary) futures, the foul adversary can verify data d, then the user has
no choice to surrender d, provided he has d. Again, we are only considering real
data, not imaginary communications.

The relation � W
A is defined similarly, using �ζ rather than �ζs . The weak

aggressive foul adversary (WAFA) is an adversary using �W
A as derivation rela-

tion.

Extended Foul Adversary. The aggressive foul adversary also models a situation
in which the user wants to avoid crossing the foul adversary at all costs, but
furthermore, the adversary cares more about not being cheated than about the
actual security property at hand. In particular, it involves scenarios where the
adversary coerces for data which he can only verify because he coerced for the
data in the first place.

Let �S
E be the weakest relationship satisfying,

1. in state s ∈ S, for K = {κui(s)|ui ∈ UC}) and A = κe(s), if (A,K) �ζs d, then
s �S

Ed;
2. ∀s → s′ ∈ I, s �S

Ed =⇒ s′ �S
Ed; and

3. ∃s → s′ ∈ I and CK({d}) for K = {κui(s)|ui ∈ UC}, s′ �S
Ed =⇒ s �S

Ed.

48 N. Dong and T. Muller

DY
WSFA WCFA WAFA WEFA

SSFA SCFA SAFA SEFA

Thm 1.
Thm 3. Thm 4. Thm 5.

Thm 3. Thm 4. Thm 5.

Thm 2. Thm 2. Thm 2. Thm 2.

Fig. 4. Relations of adversary models.

The strong extended foul adversary (SEFA) is an adversary that uses � S
E as

derivation relation.
Condition 3 is changed to allow imaginary futures. In addition to non-

imaginary future states, it may be useful for the adversary to send a variable
(imaginary communication). The users process the received variable, and out-
put a function of that variable. The adversary can then use that output term to
construct an equation to verify the data.

The relation � W
E is defined similarly, using �ζ rather than �ζs . The weak

extended foul adversary (WEFA) is an adversary using �W
E as derivation relation.

4.3 Hierarchy

The relations between the foul adversaries are shown in Fig. 4. We say adversary
A is stronger than adversary B (denoted as B → A), if a protocol satisfies a
property w.r.t. A, then protocol satisfies the property w.r.t. B, i.e., B � d =⇒
A � d. In Fig. 4, from left to right the adversary is getting stronger, because the
ability of a stronger adversary contains all the ability of a weaker adversary. The
adversaries in the second row is stronger than the corresponding one in the first
row. The theorems in the figure and their proofs can be found in [18].

5 Example Systems

The notions that we have introduced were, by design, of a high level of abstrac-
tion. In this section, we introduce examples to make the ideas more concrete, and
to link our approach to security systems and protocols. Our notion of coercion
allows other security properties than privacy, in Sect. 5.1, we use the common
property of secrecy. We also apply out approach to privacy, in Sect. 5.2. In this
section, we do not encode all properties formally into the formalism, for brevity’s
sake. We merely codify the relevant elements of the examples, and rely on com-
mon sense for the details. Even fairly simple systems and protocols would require
pages of specification, when defined rigorously.

5.1 Examples on (Enforced) Secrecy

Special Symmetric Encryption. Let the equational theory support a special sym-
metric encryption, meaning that enc(dec(m, k), k) =

E
m and dec(enc(m, k), k) =

E

m are in the equational theory. There are two honest (and coercible) users, the

The Foul Adversary: Formal Models 49

sender u and the receiver v communicating on public channels, and a foul adver-

sary e. The user u contains states su, s′
u and the transition (su

s(v,enc(m,k))−−−−−−−−→ s′
u)

and user v contains at least the states sv, s′
v and the transition (sv

r(u,x)−−−−→ s′
v).

The system at least contains the transition s → s′ where in state s′, v gains
knowledge enc(m, k). Furthermore, a state s′′ exists with (s → s′′) where in
state s′′, the adversary gains knowledge enc(m, k). The reasoning abilities of u
and v are �DY and that of the adversary depends on the foul adversary model,
e.g., �S

S in the case of static foul adversary. The initial knowledge is f, such that
f(u) = {m, k}, f(v) = {k} and f(e) = ∅.

We are interested in the secrecy of m, meaning that the correctness of the
protocol is determined by the reachability of a state t where t �S

Sm.
The core knowledge of the adversary is initially empty, and the adversary

receives at most one message, enc(m, k) in state s′′. The largest core knowledge
that the adversary can achieve is, therefore, {enc(m, k)}. We can neither coerce
for m nor for k, since the user can generate m′ and k′, such that enc(m, k) =

E

enc(m′, k′). In particular for arbitrary k′, let m′ = dec(enc(m, k), k′), in which
case enc(m′, k′) =

E
enc(dec(enc(m, k), k′), k′) =

E
enc(m, k). Formally, m or k can-

not be verified: since encryption and decryption are the only functions, whenever
two terms Mθ =

E
Nθ holds for m and k, it also holds for some m′ and k′, due

to the equational theory.

Encryption of Natural Language. Take the same scenario as sketched in the
previous example. We add a constant c and a unary function e to the equa-
tional theory, with e(m) =

E
c only for a subset of terms T (m ∈ T), rep-

resenting those messages that are valid English texts. Dissimilar to the pre-
vious example, we cannot conclude that the protocol that sends enc(m, k)
(with m ∈ T) is safe under the foul adversary, as the fact that enc(m, k) =

E

enc(dec(enc(m, k), k′), k′) is no longer sufficient to prevent coercion, due to that
an arbitrary k′ leads to non-readable messages, assuming the probability of
k′ ∈ T is negligible. The foul adversary can add a test e() =

E
c, which holds

for m, but not for an arbitrary m′ =
E
dec(enc(m, k), k′). Formally, there exists

e(dec(enc(y, x), x)){k/x}{m/y} =
E
c (serving as the relation Mθ =

E
Nθ in rule

C in Fig. 2 or rule Cs in Fig. 3), that only holds for m and k, but not holds for
arbitrary m′ and k′.

Interestingly, together the last two examples imply that the same encryption
method is coercion resistant when containing random data, but not coercion
resistant when it contains natural language.

Note that under Dolev-Yao adversary, secrecy of m is satisfied, because there
is no way for the Dolev-Yao adversary to obtain the key. Thus, this example
shows that static foul adversary is strictly stronger than Dolev-Yao adversary.

Coercion with Delayed Verification. Take the same scenario as in the previous
example, but let the adversary initially know m′. Furthermore, upon receiving
the first term x, the receiver will respond with dec(x, k). In an honest run, the
received term will be enc(m, k), meaning that the response is m.

50 N. Dong and T. Muller

Suppose the adversary wants to replace m in the message with m′. That is,
the adversary needs to insert the message enc(m′, k) to the receiver, and thus
he needs to know enc(m′, k) before the receiver outputs anything. Since the
static foul adversary cannot look ahead, the adversary cannot know k (and thus
enc(m′, k)) before the receiver sending the response, as the adversary does not
have enough information to verify them. It means that the static foul adversary
cannot insert the message enc(m′, k) to the receiver before the receiver outputs
anything. The dynamic foul adversary, however, can look ahead. Since there is a
trace where the adversary will know m, and be able to verify k using enc(m,) =
enc(m, k). That, in turn, means that the adversary can coerce for k in the initial
state. Hence, the adversary knows k in the initial state, and can construct and
insert enc(m′, k) before the receiver outputs anything.

5.2 Examples on (Enforced) Privacy

Enforced privacy properties such as receipt-freeness and coercion-resistance are
important requirements in e-voting. We use a simplified well-known e-voting
protocol to show how enforced privacy properties can be formalised with respect
to the foul adversary. This simplified protocol is the voting phase of the Okamoto
e-voting protocol [28]6.

Two voters V1 and V2 have initial knowledge {V1, V2, C, v1, r1} and
{V1, V2, C, v2, r2} respectively, where v1 and v2 are their votes, r1 and r2 are
two random numbers for the commitment, C is the vote-collector. The two vot-
ers send the committed votes first over public channels, then send privately
the opening information (r1 and r2 respectively), and finally receive the voting
result; modelled as follows.

s0V1

s(C,(com(v1,r1)))−−−−−−−−−−−→ sV1

ps(C,(com(v1,r1),r1))−−−−−−−−−−−−−→ s′
V1

r(C,((v1,v2),(m1,m2)))−−−−−−−−−−−−−−→ s′′
V1

,

s0V2

s(C,(com(v2,r2),r2))−−−−−−−−−−−−−→ sV2

ps(C,(com(v2,r2),r2))−−−−−−−−−−−−−→ s′
V2

r(C,((v1,v2),(m1,m2)))−−−−−−−−−−−−−−→ s′′
V2

.

The vote-collector C’s initial knowledge is {V1, V2, C}. C reads in the votes and
the opening information, and sends out the voting results. One possible trace of
C is as follows.

s0C
r(V1,com(v1,r1))−−−−−−−−−−→ s1C

pr(V1,(com(v1,r1),r1))−−−−−−−−−−−−−−→ s2C
r(V2,(com(v2,r2))−−−−−−−−−−−→ s3C

pr(V2,(com(v2,r2),r2))−−−−−−−−−−−−−−→ s4C
s(V1,((v1,v2),(m1,m2)))−−−−−−−−−−−−−−−→ s5C

s(V2,((v1,v2),(m1,m2)))−−−−−−−−−−−−−−−→ s6C .

Assuming s0 is the initial state, with κe(s0) = {V1, V2, C}. The follow-

ing transitions are eligible: s0
block(V1,C,(com(v1,r1)))−−−−−−−−−−−−−−−→ s1

insert(V1,C,(com(v1,r1)))−−−−−−−−−−−−−−−→
s2

private(V1,C,(com(v1,r1),r1))−−−−−−−−−−−−−−−−−−→ s3
public(V2,C,(com(v2,r2)))−−−−−−−−−−−−−−−−→ s3

private(V2,C,(com(v2,r2),r2))−−−−−−−−−−−−−−−−−−→
s5

block(C,V1,((v1,v2),(m1,m2)))−−−−−−−−−−−−−−−−−−−→ s6. The adversary knowledge in state s1 is κe(s1) =
κe(s0) ∪ {com(v1, r1)}, since the public message from V1 to C is blocked by e.
6 For the simplicity of presentation, we ignore some functionalities, such as signature,

registration and verifiability, and focus only on the critical part for enforced privacy.

The Foul Adversary: Formal Models 51

Vote privacy is formalized as V1{c1/v1}|V2{c2/v2} ∼ V1{c2/v1}|V2{c1/v2},
where ‘∼’ is indistinguishability of left side (V1 votes for c1 and V2 votes for
c2) and right side (V1 votes for c2 and V2 votes for c1) and ‘|’ denotes parallel
composition (following the definition in [12]). When v1 �= v2, the property is
satisfied - the left situation and right situation of ‘∼’ lead to the same voting
result, and the adversary cannot distinguish.

However, if the adversary can coerce V1 for the vote v1 and the random
number r1, then the property does not hold anymore. In state s1 we have (K =
{V1, V2, C, v1, r1}, κe(s1) = {V1, V2, C,M1} and M1 = com(v1, r1)),

CK({v1, r1}), A �DY M1,∃{v1/x}{v2/y}∧M1=
E
com(x,y) � ∃v′,r′(M1 =

E
com(v′, r′))

(A,K) �ζ {v1, r1}
.

Hence, in the left side situation, the adversary can verify that V1 votes for c1,
since v1 is substituted with c1, whereas at the right side, the adversary verifies
that V1 votes for c2 (since {c2/v1}). That is, enforced privacy is broken.

By replacing bit commitment with trap-door bit commitment tdcom(v, r, td),
the rule does not hold anymore, because for M1 =

E
com(v1, r1, td),∃r′ : M1 =

E

com(v1, r′, td′). When the adversary coerces for both r1 and td1, although the
adversary can elicit r1 and td1 for the case of V1 voting for c1, since V1 can also
derive r′ and td′ such that M1 =

E
com(v2, r′, td′), the adversary can also elicit r′

and td′ for the case of V1 voting for c2. Hence, M1 can be opened as c1 and c2.
This holds on both sides of the equations; thus enforced privacy is not broken
in this way. Of course, to prove the enforced privacy property is satisfied in this
case, one needs to consider all branches and all states, often using tool support.

6 Conclusions

In the paper, we propose the idea of modelling an adversary with the ability to
coerce – the foul adversary. This contrasts the standard approach of modelling
coercion resistance as a security requirement. Knowledge and reasoning are key
points in the foul adversary, which is highlighted by the fact that elicitation is
the main power of the foul adversaries. Elicitation is built upon the notion of
verification, if only one piece of data fits the equation, then the foul adversary
obtains the data. We show that reasoning about coercion itself can be just as
important, as we have shown by example that different contexts may require
different models of the adversary. For the next step, we are planning to implement
a verification tool that embedded the foul adversary to facilitate the automatic
verification of enforced privacy of complex case studies.

52 N. Dong and T. Muller

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theor. Comput. Sci. 367(1–2), 2–32 (2006)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proceedings of 28th Symposium on Principles of Programming Languages, pp.
104–115. ACM (2001)

3. Abe, M., Suzuki, K.: Receipt-free sealed-bid auction. In: Chan, A.H., Gligor,
V. (eds.) ISC 2002. LNCS, vol. 2433, pp. 191–199. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-45811-5 14

4. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. In: Proceedings of 21st IEEE Computer
Security Foundations Symposium, pp. 195–209. IEEE CS (2008)

5. Basin, D., Cremers, C.: Modeling and analyzing security in the presence of compro-
mising adversaries. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 340–356. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15497-3 21

6. Benaloh, J., Tuinstra, D.: Receipt-free secret-ballot elections (extended abstract).
In: Proceedings of 26th Symposium on Theory of Computing, pp. 544–553. ACM
(1994)

7. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
Proceedings of 14th IEEE Computer Security Foundations Workshop, pp. 82–96.
IEEE CS (2001)

8. Clark, J., Hengartner, U.: Panic passwords: authenticating under duress. HotSec
8, 8 (2008)

9. Cortier, V., Kremer, S.: Formal models and techniques for analyzing security pro-
tocols: a tutorial. Found. Trends Program. Lang. 1(3), 151–267 (2014)

10. De Decker, B., Layouni, M., Vangheluwe, H., Verslype, K.: A privacy-preserving
ehealth protocol compliant with the belgian healthcare system. In: Mjølsnes, S.F.,
Mauw, S., Katsikas, S.K. (eds.) EuroPKI 2008. LNCS, vol. 5057, pp. 118–133.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69485-4 9

11. Delaune, S., Kremer, S., Ryan, M.: Coercion-resistance and receipt-freeness in elec-
tronic voting. In: Proceedings of 19th IEEE Computer Security Foundations Work-
shop, pp. 28–42. IEEE CS (2006)

12. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. J. Comput. Secur. 17(4), 435–487 (2009)

13. Dolev, D., Yao, A.C.-C.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–207 (1983)

14. Dong, N., Jonker, H., Pang, J.: Challenges in eHealth: from enabling to enforcing
privacy. In: Liu, Z., Wassyng, A. (eds.) FHIES 2011. LNCS, vol. 7151, pp. 195–206.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32355-3 12

15. Dong, N., Jonker, H., Pang, J.: Formal analysis of privacy in an ehealth protocol. In:
Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp.
325–342. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33167-
1 19

16. Dong, N., Jonker, H., Pang, J.: Enforcing privacy in the presence of others:
notions, formalisations and relations. In: Crampton, J., Jajodia, S., Mayes, K.
(eds.) ESORICS 2013. LNCS, vol. 8134, pp. 499–516. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40203-6 28

https://doi.org/10.1007/3-540-45811-5_14
https://doi.org/10.1007/978-3-642-15497-3_21
https://doi.org/10.1007/978-3-642-15497-3_21
https://doi.org/10.1007/978-3-540-69485-4_9
https://doi.org/10.1007/978-3-642-32355-3_12
https://doi.org/10.1007/978-3-642-33167-1_19
https://doi.org/10.1007/978-3-642-33167-1_19
https://doi.org/10.1007/978-3-642-40203-6_28

The Foul Adversary: Formal Models 53

17. Dong, N., Jonker, H.L., Pang, J.: Formal modelling and analysis of receipt-free
auction protocols in the applied pi. Comput. Secur. 65, 405–432 (2017)

18. Dong, N., Muller, T.: The foul adversary: formal models. https://sites.google.com/
view/foul-adversary/home

19. Fagin, R.: Reasoning About Knowledge. MIT Press, Cambridge (1995)
20. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale

elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1 66

21. Heather, J., Schneider, S.: A formal framework for modelling coercion resistance
and receipt freeness. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS,
vol. 7436, pp. 217–231. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32759-9 19

22. Jonker, H.L., Pang, J., Mauw, S.: A formal framework for quantifying voter-
controlled privacy. J. Algorithms Cogn. Inform. Log. 64(2–3), 89–105 (2009)

23. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In:
Proceedings of 4th ACM Workshop on Privacy in the Electronic Society, pp. 61–70.
ACM (2005)

24. Küsters, R., Truderung, T.: An epistemic approach to coercion-resistance for elec-
tronic voting protocols. In: Proceedings of 30th IEEE Symposium on Security and
Privacy, pp. 251–266. IEEE CS (2009)

25. Küsters, R., Truderung, T., Vogt, A.: A game-based definition of coercion-
resistance and its applications. In: Proceedings of 23rd IEEE Computer Security
Foundations Symposium, pp. 122–136. IEEE CS (2010)

26. Lee, B., Boyd, C., Dawson, E., Kim, K., Yang, J., Yoo, S.: Providing receipt-
freeness in mixnet-based voting protocols. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC
2003. LNCS, vol. 2971, pp. 245–258. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-24691-6 19

27. Okamoto, T.: An electronic voting scheme. In: Terashima, N., Altman, E. (eds.)
Advanced IT Tools. IFIPAICT, pp. 21–30. Springer, Boston (1996). https://doi.
org/10.1007/978-0-387-34979-4 3

28. Okamoto, T.: Receipt-free electronic voting schemes for large scale elections. In:
Christianson, B., Crispo, B., Lomas, M., Roe, M. (eds.) Security Protocols 1997.
LNCS, vol. 1361, pp. 25–35. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0028157

29. Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: Proceedings of 25th IEEE
Computer Security Foundations Symposium, pp. 78–94. IEEE CS (2012)

30. Schneider, S.: Security properties and CSP. In: Proceedings of IEEE Symposium
on Security and Privacy, pp. 174–187. IEEE CS (1996)

https://sites.google.com/view/foul-adversary/home
https://sites.google.com/view/foul-adversary/home
https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1007/978-3-642-32759-9_19
https://doi.org/10.1007/978-3-642-32759-9_19
https://doi.org/10.1007/978-3-540-24691-6_19
https://doi.org/10.1007/978-3-540-24691-6_19
https://doi.org/10.1007/978-0-387-34979-4_3
https://doi.org/10.1007/978-0-387-34979-4_3
https://doi.org/10.1007/BFb0028157
https://doi.org/10.1007/BFb0028157

The Miles Before Formal Methods -
A Case Study on Modeling and Analyzing

a Passenger Lift System

Teck Ping Khoo1(B) and Jun Sun2

1 TÜV SÜD Asia Pacific Pte Ltd, Singapore, Singapore
teckping khoo@mymail.sutd.edu.sg

2 Singapore University of Technology and Design, Singapore, Singapore

Abstract. Cyber-Physical Systems (CPS) pervade our everyday lives.
As users, we need assurances that such systems satisfy requirements on
safety, reliability, security and interoperability. CPS presents a major
challenge for formal analysis because of their complexity, physical depen-
dencies and non-linearity, and for smart CPS - the ability to improve
their behavior over time. Existing approaches on analyzing CPS (e.g.,
model checking and model-based testing) often assume the existence of
a system model. Such approaches have limited application in practice
as the models often do not exist. In this work, we report our experi-
ence on applying a three-step approach to analyzing a practical CPS:
a passenger lift system in a commercial building. The three steps are
(1) determining the right level of system abstraction, (2) building the
model automatically using grammatical inference, and (3) analyzing the
model. The inferred model is in the form of a probabilistic determinis-
tic real time automaton, which allows us to verify the system against
properties demanded by the lift requirement. The resulting models form
the basis of formal analysis and potentially other approaches. We believe
that our approach and experience are applicable to other CPSs.

1 Introduction

Recently, intensive research has been directed at Cyber-Physical Systems (CPS).
CPS are systems which harness closed loop feedback from physical processes via
a communication network to computational resources running smart algorithms
[1]. Examples of CPS include autonomous vehicles, smart medical services, and
smart manufacturing. Increasingly, these systems pervade our everyday lives and
as users, we need assurances that such systems have been properly analyzed to
exacting standards for safety, reliability, security and interoperability.

As these modern industrial and consumer systems become more complex,
the practice of analyzing such systems for conformance to specific properties
needs to evolve in tandem. For instance, smart CPS often have machine learning
capabilities and therefore their operation can improve over time. Conventional
analysis approaches break down for such systems due to the high complexity of
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 54–69, 2018.
https://doi.org/10.1007/978-3-030-02450-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_4&domain=pdf

The Miles Before Formal Methods 55

Fig. 1. Cyber-physical systems

the systems. For instance, Model Based Testing (MBT) [2] is the modeling of
systems for the purpose of testing, and it is an accepted testing methodology.
However, it is not applicable unless we can build a model of the system. Simi-
larly, alternative system analysis techniques like model checking [3] and theorem
proving [4] require the availability of a system model. Current modeling meth-
ods are highly systems-specific and manual. Significant time and effort must be
invested to build a proper model of the system. Furthermore, whenever a change
is made to the system, the model must be updated or re-built. This limits the
widespread adoption of model-based system analysis techniques.

While it might be possible to manually model conventional systems, mod-
eling CPS is extremely challenging if not impossible. Figure 1 shows an overall
architecture of a typical CPS. In order to analyze the system, we must model
the cyber-domain (i.e., the digital control algorithms implemented in the con-
trol software or programmable logic controllers) and, with greater difficulty, the
physical-domain (i.e., the continuous evolution of physical processes like air pres-
sure and temperature). Existing literatures [5] on manual modeling and then
analyzing CPS are thus limited to simple CPS which are far from real-world sys-
tems. In order to achieve industrial adoption of model-based analysis techniques,
it is desirable to have a systematic process of modeling (which ideally could be
automated) which is applicable across a wide range of CPS. Furthermore, there
must be a way of convincing users that the system model truly represents the
system (via some form of validation).

In this work, we report our experience on applying a structured approach to
obtain a model of a real-world lift system automatically, which is subsequently
subject to formal analysis. Our approach has three main steps. Firstly, we deter-
mine the level of system abstraction, which is essential for model building. The
right level of abstraction is derived based on the analysis objective with the help
from domain experts. Secondly, once important features and variables are iden-
tified in the first step, we develop data-driven approaches of obtaining values of
features and variables from the actual system, based on sensing techniques. We
remark that sensors provide only low-level system information (like instant accel-
eration or air pressure). To derive high-level features and variables, often domain
expertise is required. Lastly, we validate the model so as to have certain confi-
dence that the model reflects the actual system. Applying the above-mentioned
approach, we are able to build a model of the lift system which is now in place
for model-based testing and model checking in a commercial company in Singa-

56 T. P. Khoo and J. Sun

pore. We believe that our experience is useful for modeling other systems and
our approach is applicable across a variety of systems.

The rest of this paper is organized as follows. Section 2 presents the back-
ground and objectives of the project. Section 3 describes how to determine the
right level of abstraction. Section 4 describes how to obtain the values of the
relevant features and variables and how to obtain the model through machine
learning. Section 5 presents our effort on validating the obtained model. Section 6
provides details of how we used the model to verify some lift properties. Section 7
reviews related work. Lastly, Sect. 8 concludes with a discussion on how to gen-
eralize our approach to other systems.

2 Background and Objectives

Our study was motivated by news of frequent elevator breakdowns in Singapore
over the past year. According to [6], there are more than 60,000 elevators in
Singapore. About 24,000 are in high-rise public housing. Many of these elevators
were installed more than 20 years ago and are likely to require more maintenance.
Elevator maintenance has not been able to keep up with the failure rate. The
problem is exacerbated by the shortage of skilled technicians in this sector.
Conventional elevator maintenance is conducted at fixed intervals, e.g., at least
once a month as legally required by Singapore [7]. This may not be enough to
prevent elevators with latent faults from breaking down.

According to [8], in the years 2013 to 2016, there were about 20 to 30 reported
lift breakdowns in Singapore public housing estates out of every 1,000 lifts per
month. This works out to an average of 480 lift breakdowns a month, and this
figure does not include breakdowns in commercial and private lifts. Such break-
downs lead to downtime, and unfortunately, casualties in some cases. In most
cases, the breakdown is due to wear and tear. For others, the lifts fail due to
misuse, for example due to passengers jamming of the lift doors to keep them
open [9]. It is therefore valuable to design a system which can continuously mon-
itor the main mechanical characteristics of a lift. More importantly, it would be
invaluable if we could obtain certain kind of the lift model (based on the mon-
itored data) so that we can analyze the lift status (e.g., check whether vital
properties are satisfied) or even “predict” lift breakdowns.

We seek a model with the following capabilities:

1. It must be able to provide predictions about future states of the system. We
must be able to infer meaningful system states from the model and be able
to somehow extend them into the future.

2. The level of abstraction of the model must be well-chosen, such that the use
of existing tools for model analysis poses no issues.

3. It must be suitably acceptable for human comprehension and belief that the
model is indeed representative of the real system. There is no point deriving
an incomprehensible model of an already complex system. Such a model poses
difficulties for system stakeholders to believe that it truly represents the real
system.

The Miles Before Formal Methods 57

4. Some means to derive the model fully or semi automatically must be devel-
oped, without which the entire model building exercise cannot be scaled to a
realistic large number of real systems for widespread adoption. This automa-
tion can be achieved only after doing the needed ground work to capture
meaningful events from the CPS. The model should be easy to update based
on the latest available data as well.

The system under test is a fully operational passenger lift in a commercial
building. We determined the key system parameters to model, mounted sensors
in the lift to capture raw data, and investigated how to infer the needed param-
eters from the raw data. Concurrently, we validated the model and adjusted the
way the data was collected, to achieve the highest possible correlation between
the model and the real system. We made use of Real Time Identification from
Positive Samples (RTI+) [16], an algorithm to construct a Probabilistic Deter-
ministic Real Time Automata (PDRTA) [16] from timed words. RTI+ was
applied to the lift data to construct a PDRTA, which was subsequently used to
verify some lift properties using a model checker called Process Analysis Toolkit
(PAT) [18]. We found these results to be realistic and consistent, and believe
that this approach can be generalized to other systems. Although properties
can be verified directly on the traces obtained, using a model checker to verify
properties on the model provides the probability that a specific property hold.
Abstracting traces into a model at various points of time also provides a snap-
shot of the system over time. This opens up the possibility of model comparison
for anomaly detection or predictive maintenance.

3 Determining the Right Level of Abstraction

Lift modeling is a complex endeavor due to the large numbers of inter-connected
systems working together. The lift controller accepts inputs from all the call
buttons on all the lift landings, as well as from within the lift car. An appropriate
program runs within the lift controller to command the lift to go to specific floors
based on the sequence of floor requests. Safeguards need to be built into the lift
controller to prevent unsafe situations, such as allowing the lift car to stop in
between floors or allowing the lift doors to open while the lift is traveling. It is
therefore critical that key system parameters are identified for the purpose of
system modeling - to prevent missing the right parameters which reflect system
status, and to avoid capturing unimportant ones which obfuscate the model.

This work aims to automate model-building based on expert knowledge, i.e.
digitizing the expert. Indeed, zooming in on the key system parameters is not
a trivial task, as only professional lift inspectors or technicians have this knowl-
edge. The layman will not have any knowledge of specific lift components which
are system-critical but are usually hidden within the system. Identifying the
right level of abstraction is a general problem in system modeling. It is common
to fall into the trap of aiming to “model everything”. A good model must cap-
ture the key system parameters and yet remain as simple as possible - this is a

58 T. P. Khoo and J. Sun

Table 1. Determining the key parameters via areas of maintenance

Area of maintenance Lift motion status Door state

1. Door open control X

2. Door protective devices X

3. Lift car doors and lift landing doors X

7. Movement of lift car X

16. Controller and electrical system X X

17. Guide shoes or rollers of lift car and
counterweight

X

18. Safety gear X

19. All lift parts X X

common aim for all forms of modeling. Available sources of knowledge for sys-
tem abstraction are expert knowledge, and system standards. Expert knowledge
is often built on a thorough knowledge and understanding of the system design
and operation, whether in normal or exceptional modes. System standards are
important as a way of knowing what to abstract, as the standards indicate which
aspect of the system needs regular monitoring or standard conformance.

From a standard checklist for lift inspection [10], lift speed and door opening
and closing speeds are important certification parameters as they are measured
in many checks. Lift doors cause the majority of lift issues as they open and close
at least twice with every trip. This is corroborated by news of lift breakdowns
[11]. In the Singapore context, in view of the numerous lift incidents mentioned
earlier, the Singapore Government strengthened the Building Maintenance and
Strata Management (Lift, Escalator and Building Maintenance) Regulations in
2016 [12]. This lift safety standard stipulates 20 areas of maintenance for lifts
and 10 for escalators. The first area of maintenance for lifts pertains to “Door
open control” [13]. The standard specifies that “When lift car doors and lift
landing doors are opened and the button controlling the opening of those doors
is pressed, the opened lift car doors and lift landing doors must stay open.” It
goes on to specify that “When lift car doors and lift landing doors are partially
closed and the button controlling the opening of those doors is pressed, the
partially closed lift car doors and lift landing doors must reopen.” Nine out of
these 20 areas of maintenance points to the need to monitor the lift motion
status and door states. Table 1 provides an indication of how monitoring these
parameters can address the nine areas of maintenance.

Internal institutional lift experts have also provided a list of lift parameters to
monitor, with the lift motion status and door states having the highest priorities.
Given that lift motion status and door status are important, we need some
means to define and capture events representing these parameters from the lift
sensor data. Based on Table 1, the following events which represents the system
parameter changes are defined:

The Miles Before Formal Methods 59

Fig. 2. Key events to capture

– a = lift starts moving, b = lift stops moving, c = doors start opening
– d = doors stop opening, e = doors start closing, f = doors stop closing

The definition of these events form the inputs to available tools for model-
building, which shall be covered in a later section. These events are also shown
in the state transition diagram in Fig. 2 for illustration. These events effectively
define the level of abstraction, i.e., we aim to build a model which precisely
captures the system behaviors in terms of these critical events.

4 Obtaining the Model Automatically

In this section, we present our approach on obtaining the model automatically. As
established, the model must include lift motion status and door states. The Ver-
tical Transportation Handbook [14] provides the up peak traffic scenario, where
all passengers arrive at the lobby and wish to go up. If the model is to represent
such a scenario, the lift and doors speeds need to be precisely captured, as this
scenario mostly comprise lift and door motion. Modern lift systems are digital
and readily store this information. However, systems which are already installed,
and which are most likely to give problems, may have already been installed for
over a decade. Such systems are likely to be analog systems and it is difficult to
capture such info from such systems. Moreover, for model-based verification to
be widely adopted, access to the system logs cannot be assumed. Non-intrusive
sensing technology is therefore the best way to get these data from a wide variety
of systems.

4.1 Lift Motion Inference

In this case study, we do not have access to the lift controller. This is typical as
such access is usually restricted to the lift manufacturer or maintenance crew.
Therefore system logs cannot be used for analysis. Sensors must be mounted
in the lift to capture data which can be used to infer the needed parameters.
The first identified key system parameter is lift motion status. Motion is usually

60 T. P. Khoo and J. Sun

Fig. 3. The raw and smoothed air pressure as measured from the lift

detected using linear accelerometers. When vertical linear acceleration is zero, it
can mean that the lift speed is not changing (constant speed, can be zero speed
or non-zero speed). Positive vertical acceleration means that the lift is changing
its speed from 0 to non-zero (starting from rest). Negative values mean the speed
is changing from non-zero to 0 (coming to a rest). In practice, it was discovered
that noise in the readings is severe. We make the simple observation that the
lift only moves vertically, and select the barometer as the sensor of choice. The
barometer measures air pressure, which decreases as the lift is moving upwards
and increases as it is moving downwards. It remains level when the lift is at
rest, as long as the weather conditions remain constant. The barometer was
observed to be able to measure a change in air pressure even when only one floor
is traveled.

To infer lift motion from air pressure, we make use of the physical law that air
pressure is constant at a fixed height. The sensed raw air pressure is noisy, and
we make use of exponential weighted smoothing with a smoothing factor α = 0.1
to get a smoother curve, which is needed for accurate lift motion inference. This
is illustrated in Fig. 3.

An algorithm was used to infer whether the lift is moving or not. A moving
window of air pressure values is maintained. if the difference between the max-
imum and minimum values is less than a set threshold, the lift is taken to be
stationary, otherwise it is taken to be moving. Based on inspection of the inferred
lift motion state superimposed on the air pressure, we compensate the motion
detection by some time for more accurate motion detection. This is illustrated in
Fig. 4. In this figure, the high value of motion inference indicates lift is moving,
while the low value indicates that the lift is not moving.

4.2 Door State Inference

The second identified key system parameter is the door state. The magnetometer
is the sensor of choice. This sensor needs to be mounted on the lift door frame

The Miles Before Formal Methods 61

Fig. 4. Timing compensation for more accurate motion inference. Note that the motion
inference on the top appears to be delayed - therefore we compensate the timing by 2 s
based on inspection to get the more accurate motion inference on the bottom

close to a magnet which was mounted on the lift door. An algorithm was devised
to derive the door states from the magnetic field along the x-axis. A moving
window of magnetic field values is maintained. If the difference between the
maximum and minimum values is less than a set threshold, the door is either
fully closed or fully opened. This depends on whether the magnetic field value is
close to a fixed threshold selected in the middle of the two fully opened and fully
closed levels. The trend (whether rising or falling) of the magnetic field is used
to differentiate door opening or closing. Figure 5 shows the derived door states
based on this approach.

While the inference of the door states using the algorithm appears to be
accurate, validating that the inference is correct has to be done. Photographic
evidence of the door states was used to compensate for timing differences between
the sensed door state and actual door states. A Windows PC and its web-cam

62 T. P. Khoo and J. Sun

Fig. 5. Inferring the lift door state from the magnetic field along the x-axis

Fig. 6. Setup to connect magnetic field-inferred door states to actual door states

was used to take one picture of the doors with each data sample, and to name the
image using the time-stamp and inferred door state. Figure 6 describes the setup.
The average timing compensations for lift door state inference were discovered
after comparing the photos with the inferred door states. Figure 7 shows the
discovered timing compensations.

With the above-described set up, we are now able to systematically monitor
the relevant lift status, i.e., in terms of the events defined in the previous section,
which subsequently allows us to build a model of the system.

4.3 Constructing a Probabilistic Deterministic Real Time
Automata (PDRTA)

The passenger lift system must be suitably modeled. The selected model must
be expressive enough to characterize the system’s parameters, such as the time
needed for the lift to start moving and then to stop moving. Another such param-
eter is the door opening and closing times. Therefore, the model must provide
at least one clock which keeps track of the time delay from one event to the
next. Timed Automata (TA [15]) with clocks are suitable in this aspect. Given
that the data to create the model is from real systems, they will contain noise.

The Miles Before Formal Methods 63

Fig. 7. Discovered timing compensations for the door state inference

The model must therefore include probabilities of specific sequences of events to
handle this noise, and to perform statistical reasoning.

The automated construction of a model from event logs is the subject of
study in the field of grammatical induction. Verwer et al. in [16] developed the
Real Time Identification from Positive Samples (RTI+) algorithm to construct a
Probabilistic Deterministic Real Time Automata (PDRTA) from timed strings.
RTI+ first constructs a Timed Augmented Prefix Tree Acceptor (TAPTA) from
all the samples. The traces of each sample follow a unique path in the TAPTA.
The goal of the algorithm is to reduce the TAPTA such that the resulting model
maximizes the likelihood of observing the samples, and is the smallest possible.
RTI+ performs state merging, splitting and coloring using a red-blue framework.
At each iteration of the algorithm, hypothesis testing is conducted at a specific
level of significance to decide if state merging, splitting or coloring should be
done. The timing guards are derived from state splitting. A Likelihood Ratio test
is used to determine if a merge/split is to be performed at every iteration. A Like-
lihood Ratio test statistic is evaluated and hypothesis testing is conducted at a
specific level of significance. The probability of a transition is derived by assign-
ing a probability distribution over time, which is modeled using histograms. The
reader is encouraged to refer to [16] for details. The use of a PDRTA to model the
lift is suitable, and we applied the PDRTA learning algorithm for this project.

Time stamped events labeled as a, b, c, d, e, f were collected over five full days
from Tuesday 3 October to Saturday 7 October 2017. A typical event trace is
a, b, c, d, e, f, a, b, c, d, a, b, c, d, e, f . It is important that each timed word starts
with the same initial state and does not stop abruptly, as far as possible. For
example the word a, b, c captures the door starting to open but no events about
the door closing. In line with these requirements, a timed word must start with
the symbol a and contains only one a. A timed word therefore represents the
lift moving, then stopping, then having its doors doing an arbitrary number of
actions, all before it starts moving again.

There are 6,518 timed words in the data. 1,025 words were randomly chosen
to build the PDRTA using RTI+. Software in the form of a C++ implemen-
tation of RTI+ was downloaded from [17]. This software was used to run the
RTI+ algorithm using the likelihood ratio method 5% level of significance. The

64 T. P. Khoo and J. Sun

Fig. 8. Part of the discovered PDRTA

resulting PDRTA contains 18 states and 42 transitions. On a Windows 7 note-
book with an Intel i5 processor at 2.3 GHz and 16 GB of RAM, the execution
time was short, at less than 5 s. Figure 8 shows part of the discovered PDRTA.
Only outgoing transitions from State 0 are shown. Each transition shows the
symbol, delay range and probability.

5 Validating the Obtained Model

The proposed approach learns a model from data - it is important that the model
is validated. This is in contrast to models which are created from pure expert
understanding as the experts’ knowledge of the system should already provide
some basis to conclude that the model is valid.

We see threats to validity on two fronts - the data used to build the model
must be validated to ensure that it connects to reality, and inferred system
parameters from the data must be checked to at least ensure that it makes
sense. As mentioned in the previous sections, the data was validated as part
of the model building process. The lift motion was validated empirically with
domain knowledge. In this case, it can be assumed that air pressure is sufficiently
constant at a constant height above sea level. The lift door states inferred by
magnetic field were validated by photographic evidence.

Key lift parameters were evaluated over five days from Tuesday 3 October
2017 to Saturday 7 October 2017. The results are tabulated in Table 2.

From Table 2, we see that the number of trips on Tuesday to Friday, which
were all working days, were fairly consistent averaging at around 1550. There
is a noticeable and expected smaller number of trips of 268 on the Saturday,
which was a non-working day. Similarly, the number and proportion of normal
and abnormal door cycles were consistent across all the weekdays. A normal
operation cycle is the event trace abcdef, which corresponds to a lift moving,
then stopping, and then the doors opening and closing without any interruption.
The mean and median door opening times were all very close, with a very low
standard deviation of about 70 ms. The same applies for the door closing times.
This provides confidence that the setup were able to capture the door states
robustly and consistently.

The Miles Before Formal Methods 65

Table 2. Key lift parameters over five days

Tue
3/10/17

Wed
4/10/17

Thu
5/10/17

Fri
6/10/17

Sat
7/10/17

Number of traces (Trips) 1623 1551 1575 1503 268

Number of normal operation
cycles (abcdef)

1339 1309 1314 1246 197

Number of abnormal
operation cycles

284 242 261 257 71

Mean door opening time/ms 2290 2288 2281 2290 2271

Median door opening
time/ms

2299 2299 2298 2299 2285

Standard deviation door
opening time/ms

76 71 79 70 69

Mean door closing time/ms 2832 2827 2828 2831 2832

Median door closing time/ms 2805 2805 2805 2803 2812

Standard deviation door
closing time/ms

94 101 116 85 61

6 Verifying Properties

With the model built after the previous steps, we are now ready to verify the built
model so as to check whether crucial properties correlated to lift safety standards
are satisfied. Note that our model contains not only realtime but also probability.
The Process Analysis Toolkit (PAT) [18] is thus adopted to perform model veri-
fication on the PDRTA. PAT is a framework which supports composing, simulat-
ing and reasoning of concurrent, real-time systems and other possible domains.
It comes with a well-designed GUI, featured model editor and animated simula-
tor. Additionally, PAT implements various model checking techniques supporting
different properties such as deadlock-freeness, divergence-freeness, reachability,
LTL properties with fairness assumptions, refinement checking and probabilistic
model checking.

We use the PTCSP module in PAT, which supports a modeling language
expressive enough to capture PDRTA models. In order to model check a property,
we must model the property precisely in PAT as well. For instance, in order to
verify the property “the lift door must not open while the lift is moving”, we
design the following process.

Property = a → c → b → fail → Skip

where fail is a special event denoting violation of the property. The system is
modeled as a parallel composition of the PDRTA model and process Property.
PAT is then applied to compute the probability of fail occurring, which in this
case is the probability of the violation of the property. We similarly model a set
of other 5 safety properties.

66 T. P. Khoo and J. Sun

Table 3. Summary of verification results by PAT

Property Results Time (s) Memory (KB)

1 Invalid <1 32776

2 Invalid <1 32686

3 0.13267 < p < 0.13268 <1 32817

4 Invalid <1 32661

5 Invalid <1 33014

6 0.86644 < p < 0.86644 <1 33169

7 Invalid <1 33055

Table 3 summarizes the verification results where the first column shows the
property number, the second column shows the verification results using PAT’s
verification engine for Markov Decision Processes (MDP) with time abstraction,
the third column shows the verification time needed, and the last column shows
PAT’s estimated consumed memory. Note that the result could be a probability
range if the property could be satisfied.

For all verification results, the process for modeling the property captures the
negation of the property, i.e., unwanted behavior. PAT thus returns invalid if the
property is always satisfied. Property 1 pertains to passenger safety, i.e., the lift
door must not start opening while the lift is traveling. Property 2 pertains to lift
travel, i.e., the lift must start and stop within one second. Property 4 pertains
to lift door functionality, i.e., the lift door opening time must not be less than
2 s. Property 5 pertains to lift door functionality, i.e., the lift door opening time
must not be more than 2.4 s. Property 7 pertains to lift door functionality, i.e.,
the lift door closing time must not be more than 3 s. All of these safety properties
have been verified.

Property 3 pertains to the duration from the lift start moving to the lift
stop moving, i.e., we test if this duration can take longer than 100 s, which is a
realistic upper bound for a building with five levels. PAT returns a probability of
0.13267 that this property is violated. We account for this result by inspecting
the model, and discovered that there is one transition with the symbol a having a
delay of between 0 and 1542806 with probability of 0.0741463. Indeed, the delay
of 1542806 occurs in many of the other transitions and appear to be the result
of RTI+ being unable to find those transitions with delays less than this value.
This behavior is consistent with RTI+ inferring the PDRTA using a top-down
approach. The low probability of violation of 0.13267 is accounted for by the low
probability of this transition (0.0741463). This suggests that this property is the
result of imprecise learning, i.e., a kind of false alarm.

Property 6 pertains to lift door functionality, i.e., the lift door closing time
must not be less than 2 s. PAT’s results suggest that there is a probability of
0.8664 that this property is violated. We account for this result by inspecting the
model, and discovered that there are two high probability transitions with the

The Miles Before Formal Methods 67

symbol f having a delay between 0 and 1542806. The transition probabilities
are both high at 0.96092 and 0.981818. The high probability of violation of
0.86644 is accounted for by the high probability of these transitions (0.96092
and 0.981818). We note that in this instance, while RTI+ inferred the model
correctly, RTI+ could have inferred the PDRTA with more timing precision, as
the delay window is between 0 and 1542806 is the largest possible in the entire
model. This is thus found to be a false alarm.

7 Related Work

In this work, we report our experience in applying a structured approach to mod-
eling a passenger lift for the purpose of model-based verification. The resulting
model is to be used for verifying expected properties of the lift as recovered from
the relevant lift safety and maintenance standards, for the lift owners to decide
if the lift is about to fail, and if so, the probability. This section covers related
work about modeling techniques for creating models with similar use cases.

Related work exists which applies formal techniques to CPS. In [5], the
authors developed a methodology for formally verifying a CPS. Physical mea-
surements were compared against a formal description of required CPS behavior,
in an attempt to discover bugs.

In [20], predictive maintenance of a railroad network was done using large
amounts of sensor data. These sensors include temperature, strain, vision,
infrared, weight and impact, sensors. This was combined with failure informa-
tion, servicing records and information about the types of trains using the net-
work. Techniques applied correlation analysis, causal analysis, time series analy-
sis. Machine learning, in this case, Support Vector Machine (SVM) was applied
to automatically derive rules to build models capable of predicting failures.

In [21], the authors used a multi-classifier machine learning approach for
predictive maintenance, and applied it to semiconductor manufacturing. The
authors put forth the point that in predictive maintenance, maintenance is car-
ried out using a gauge of the health of machinery. This gauge is derived from
past data, specifically defined health factors, statistic inference methods, and
specific engineering approaches.

As far as we know, we are the first to apply the RTI+ algorithm on a passen-
ger lift system, and to use the model to verify some expected system properties.
In [16], Verwer created the RTI+ algorithm to learn a model of driving behavior,
in an effort to recommend the right engine settings to optimize fuel efficiency.
Elevators are not commonly targeted for modeling research. An example is [21],
where the authors used differential equations to model the mechanical properties
of an elevator, in a bid to discover the optimal elevator settings by simulation.

68 T. P. Khoo and J. Sun

8 Conclusion

With the successful application of the proposed approach to model a lift, we
believe that this approach can be applied to CPSs. Care needs to be exercised
on identifying the right events to capture, be they from the cyber or from the
physical domain. Once the right events are identified, the rest of the modeling
effort rests mainly on applying sound engineering practices to capture the data
robustly. The positive data (meaning the system is operating normally) should
then be fed into the algorithm with the right settings to derive the system model.

One key step towards generalizing the approach to other CPS is to further
automate the model validation process. Using the case study presented here as
an example, the lift motion can be captured by linear accelerometer and cross
validated with motion inferred by air pressure field. The door states can be
inferred by computer vision and cross validated with states inferred by magnetic
field. After cross validation, the discovered model must be updated if necessary
based on the findings of these tests.

Acknowledgement. We thank Dr. Martin Saerbeck, Dr. Kenneth Zhu, Ms. Sohyeon
Jin and Ms. Yifan Jia for their support in the technical aspects of this paper. We thank
Mr Sanjay Kharb for his expert views on actual lift operations and legal requirements.

References

1. Lee, E.A.: The past, present and future of cyber-physical systems: a focus on
models. Sensors 15, 4837–4869 (2015). https://doi.org/10.3390/s150304837

2. Pretschner, A.: Model-based testing. In: Proceedings of 27th International Con-
ference on Software Engineering, ICSE 2005, Saint Louis, MO, USA, pp. 722-723
(2005). https://doi.org/10.1109/ICSE.2005.1553582

3. Clarke, E.M.: The birth of model checking. In: Grumberg, O., Veith, H. (eds.) 25
Years of Model Checking. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-69850-0 1

4. Klein, G., Gamboa, R.: J. Autom. Reason. 56, 201 (2016). https://doi.org/10.
1007/s10817-016-9363-7

5. Woehrle, M., Lampka, K., Thiele, L.: Conformance testing for cyber-physical sys-
tems. ACM Trans. Embed. Comput. Syst. 11(4), 1–23 (2012). Article 84. https://
doi.org/10.1145/2362336.2362351

6. Building and Construction Authority (2018). Lift Safety. https://www.bca.gov.sg/
LiftSafety/lift.html. Accessed

7. The Government Gazette, Electronic Edition Building Maintenance and Strata
Management Act (Chapter 30c) Building Maintenance and Strata Manage-
ment (lift, escalator and building maintenance) regulations 2016 arrangement
of regulations. https://www.bca.gov.sg/LiftSafety/others/BMSM(Lift Escalator
BM)Regs 2016.pdf. Accessed 21 May 2018

8. Ming, T.E.: Town councils to set aside more money for lift maintenance (2016).
http://www.todayonline.com/singapore/average-monthly-lift-breakdown-rate-has
-fallen-lawrence-wong. Accessed 19 Jan 2018

9. Heng, L.: Parliament Discusses... Lift breakdowns (2016). http://www.tnp.sg/
news/singapore/parliament-discusses-lift-breakdowns. Accessed 12 Jan 2018

https://doi.org/10.3390/s150304837
https://doi.org/10.1109/ICSE.2005.1553582
https://doi.org/10.1007/978-3-540-69850-0_1
https://doi.org/10.1007/s10817-016-9363-7
https://doi.org/10.1007/s10817-016-9363-7
https://doi.org/10.1145/2362336.2362351
https://doi.org/10.1145/2362336.2362351
https://www.bca.gov.sg/LiftSafety/lift.html
https://www.bca.gov.sg/LiftSafety/lift.html
https://www.bca.gov.sg/LiftSafety/others/BMSM(Lift_Escalator_BM)Regs_2016.pdf
https://www.bca.gov.sg/LiftSafety/others/BMSM(Lift_Escalator_BM)Regs_2016.pdf
http://www.todayonline.com/singapore/average-monthly-lift-breakdown-rate-has-fallen-lawrence-wong
http://www.todayonline.com/singapore/average-monthly-lift-breakdown-rate-has-fallen-lawrence-wong
http://www.tnp.sg/news/singapore/parliament-discusses-lift-breakdowns
http://www.tnp.sg/news/singapore/parliament-discusses-lift-breakdowns

The Miles Before Formal Methods 69

10. Testing and Commissioning Procedure for Lift, Escalator and Passenger Con-
veyor Installation in Government Buildings of the Hong Kong Special Adminis-
trative Region 2012 Edition. https://www.archsd.gov.hk/media/11431/e212.pdf.
Accessed 16 May 2018

11. Lim, M.Z.: Lift issues plague BTO premium flats (2017). http://www.tnp.sg/news/
singapore/lift-issues-plague-bto-premium-flats. Accessed 12 Jan 2018

12. Ong, J.: BCA tightens requirements for lift and escalator maintenance (2016).
https://www.channelnewsasia.com/news/singapore/bca-tightens-requirements-
for-lift-and-escalator-maintenance-7901654. Accessed 22 Jan 2018

13. Building and Construction Authority: BCA announces details of tightened lift
maintenance regime and new escalator safety regulations (2016). https://www.bca.
gov.sg/newsroom/others/Release LiftEscalator Regulations 080716.pdf. Accessed
21 May 2018

14. Strakosch, G.R., Caporale, R.S.: 4. Incoming Traffic, The Vertical Transportation
Handbook. Wiley, Hobokent (2010)

15. Alur, R., Dill, D.: The theory of timed automata. In: de Bakker, J.W., Huizing,
C., de Roever, W.P., Rozenberg, G. (eds.) REX 1991. LNCS, vol. 600, pp. 45–73.
Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0031987

16. Verwer, S.: Efficient identification of timed automata: theory and practice.
Ph.D. dissertation. TU Delft, Delft University of Technology, July 2010.
https://repository.tudelft.nl/islandora/object/uuid:61d9f199-7b01-45be.../down
load Accessed 14 May 2018

17. Sicco Verwer, July 2010. http://www.cs.ru.nl/sicco/software.htm Accessed 14 May
2018

18. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 59

19. National University of Singapore: PAT: Process Analysis Toolkit (2014). http://
pat.comp.nus.edu.sg/ Accessed 17 May 2018

20. Li, H.: Improving rail network velocity: a machine learning approach to predictive
maintenance. Transp. Res. Part C: Emerg. Technol. 50(1), 17–26 (2014). https://
doi.org/10.1145/1188913

21. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine learning for
predictive maintenance: a multiple classifier approach. IEEE Trans. Ind. Inform.
11(3), 812–820 (2015)

22. Vladic, J., Djokic, R., Kljajin, M., Karakasic, M.: Modelling and simulations of
elevator dynamic behaviour, March 2011. ISSN 1330-3651. https://hrcak.srce.hr/
file/107016. Accessed 16 July 2018

https://www.archsd.gov.hk/media/11431/e212.pdf
http://www.tnp.sg/news/singapore/lift-issues-plague-bto-premium-flats
http://www.tnp.sg/news/singapore/lift-issues-plague-bto-premium-flats
https://www.channelnewsasia.com/news/singapore/bca-tightens-requirements-for-lift-and-escalator-maintenance-7901654
https://www.channelnewsasia.com/news/singapore/bca-tightens-requirements-for-lift-and-escalator-maintenance-7901654
https://www.bca.gov.sg/newsroom/others/Release_LiftEscalator_Regulations_080716.pdf
https://www.bca.gov.sg/newsroom/others/Release_LiftEscalator_Regulations_080716.pdf
https://doi.org/10.1007/BFb0031987
https://repository.tudelft.nl/islandora/object/uuid:61d9f199-7b01-45be.../download
https://repository.tudelft.nl/islandora/object/uuid:61d9f199-7b01-45be.../download
http://www.cs.ru.nl/ sicco/software.htm
https://doi.org/10.1007/978-3-642-02658-4_59
http://pat.comp.nus.edu.sg/
http://pat.comp.nus.edu.sg/
https://doi.org/10.1145/1188913
https://doi.org/10.1145/1188913
https://hrcak.srce.hr/file/107016
https://hrcak.srce.hr/file/107016

PAR: A Practicable Formal Method
and Its Supporting Platform

Jinyun Xue(B), Yujun Zheng, Qimin Hu, Zhen You, Wuping Xie,
and Zhuo Cheng

State International S&T Cooperation Base of Networked Supporting Software,
Jiangxi Normal University, Nanchang 330022, China

jinyun@vip.sina.com

Abstract. The use of formal methods can significantly improve the reli-
ability, correctness and efficiency of software development. Although for-
mal methods has been invented for more than 40 years, but academia
and industry do not have a unified understanding of what are formal
methods and its essential characteristics. Formal methods has not been
recognized and widely applied by academia and industry. The authors
of this paper have long been engaged in the study of the essential fea-
tures of Formal methods. The authors propose a new definition: Formal
methods are a strict technology based on mathematics and tool
support for software and hardware system, including high-level
abstract specification, modeling language and different levels
of model transformation tools. Based on this definition, this paper
develops a practicable formal methods and its supporting platform, called
PAR method and PAR platform , short for PAR. PAR consists of the
following elements: requirement modeling language SNL, algorithm mod-
eling language Radl, abstract program modeling language Apla, a set of
rules for the model transformation and a set of automatic transformation
tools from requirement models to algorithm models, to abstract program
models and to executable programs. The goal of the transformations is to
generate executable program. The elements embody 6 innovative ideas
given in Sect. 2. There are two kinds of applications of PAR. One is that
many nontrivial algorithms and programs have been developed formally.
Another is formal developing several safety-critical information systems.

Keywords: Formal methods · Par platform · Modeling language
Model transformation · Formal specification

1 Introduction

The use of Formal methods can significantly improve the reliability, correct-
ness and efficiency of software development [4]. Although Formal methods has

This work was funded by the NSF of China under Grant No. 61662036, 61472167,
61462041, 61272075, 61020106009, 60773054, 60573080, 60273092, 69983003,
69783006; MOST of China Grant No. 2008DFA11940, 2003CCA02800.

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 70–86, 2018.
https://doi.org/10.1007/978-3-030-02450-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_5&domain=pdf

PAR: A Practicable Formal Method and Its Supporting Platform 71

been invented for more than 40 years [1,3,5,14], but academia and industry
do not have a unified understanding of what is Formal methods and its essen-
tial characteristics. Woodcock [22] thought “formal methods are mathematical
techniques, often sup-ported by tools, for developing software and hardware sys-
tems”. Bjørners opinion [4] is “by a formal method we shall understand a method
whose techniques and tools can be explained in mathematics”. The definition
by Wikipedia [45] is “formal methods are a particular kind of mathematically
based techniques for the specification, development and verification of software
and hardware systems”. For these reasons, Formal methods has not been rec-
ognized and widely applied by academia and industry. Gargantini [8] thought
“many practitioners are still reluctant to adopt formal methods. Besides the
well-known lack of training, this skepticism is mainly due to: the complex nota-
tions; the lack of easy to-use tools supporting a developer during the life cycle
activities of system development”. Bjørner said [4] that when ask ourselves the
question: Have formal methods for software development in the current sense
been successful? Our answer is, regretfully, no! He thought “The academic and
industry obstacles can be overcome. Still, a main reason for formal methods
not being picked up, and hence “more” successful, is the lack of scalable and
practical tool support.”

The above situation shows that the main reason for the failure of Formal
methods to be applied in large scale is that the language provided by the existing
formal methods is very complex and difficult to learn. The tools for supporting
formal methods are simple and cannot provide effective help for the users of the
methods. We think the main reason for this is that the degree of abstraction-level
of formal languages is not high enough. On formal methods support tool, people
are not clear about its main goal. At present, the support tool of formal methods
can only form a formal verification for the related components developed by
software (program). It’s far from enough.

The authors of this paper have long been engaged in the study of the essen-
tial features of formal methods. The authors propose a new definition: Formal
methods are a strict technology based on mathematics and tool sup-
port for software and hardware system, including high-level abstract
specification, modeling language and different levels of model trans-
formation tools. The specification and modeling language should be as
abstract as possible and reflect different levels of abstraction according
to the characteristics of software and hardware. All models and model
transformation tools should be verified formally or automatically.

Based on this definition, this paper develops a practicable formal methods
and its supporting platform, called PAR method and PAR platform, short for
PAR. PAR consists of the following elements: requirement modeling language
SNL, algorithm modeling language Radl, abstract program modeling language
Apla, a set of rules for the model transformation and a set of automatic trans-
formation tools between requirement model, algorithm model, abstract program
model and executable program. The goal of the transformations is to generate
executable program. One of the distinct features of the PAR platform is the

72 J. Xue et al.

agile genericity mechanisms. In PAR not only a value, a data type and an ADT
can be generic parameter, and a computing-action (including operator, method,
function and procedure, transaction, subsystem and web service, etc.) can be
generic parameter also. The elements embody 6 innovative ideas given in the
Sect. 2.

The first one is that many nontrivial algorithms and programs have been
developed formally, formal derivation or formal proof, including graph algorithms
[29], travel tree algorithms [32], array section algorithms [25,26], Knuths famous
hard problem of cyclic permutation [10,24,33]. The abstract Hopcroft-Tarjan
planarity algorithm was described in Apla. The Apla program was transformed
by PAR platform to C++ code that can correctly test the planarity and generate
improved planar embedding [10]. A more convincing example is formal develop-
ment of Knuth’s challenging program that converts a binary fraction to decimal
fraction with certain condition [13,27,28].

The second one is to develop several safety-critical information systems,
including shuttle transportation problems [36], discrete optimization algorithm
design [37], fire evacuation [38], population classification in earthquakes [39],
Emergency railway transportation planning [40], active services support for dis-
aster rescue [41], Airline passenger profiling [42] and Industrial Accident Early
Warning [43], etc. A general distributed transaction processing system is imple-
mented in PAR and used in student information management system [23].

In Sect. 2, we give a brief description of key ideas and innovative techniques of
PAR. The third Section describes the main elements of PAR method and PAR.
Two kinds of applications of PAR and two cases study described in Sect. 4.
Related work is described in Sect. 5. Finally, conclusions and future research are
presented.

2 Key Ideas and Innovative Techniques of PAR

Compared with other formal methods and program generating system, say
B method [1], RAISE [18], Kestrelwares [19], Orc [6,12,16], rCOS, [15,21],
NDAUTO [44] and NDADAS [44], etc.,s the PAR method and PAR platform
have following innovative techniques.

2.1 A Unified Approach for Designing Algorithm
Based on Quantifier Transformation

The efficiency of an algorithm is mainly influenced by the method of algorithm
design and implementation, the data structures and programming language of
describing algorithm. In PAR [26], we put emphasis on the method of algorithm
design and implementation. In general, it is easier to design algorithms using
enumeration or exhaustive search, but the algorithms have low efficiency; in
contrast, it is more difficult to design efficient algorithm using effective design
method. Generally speaking, using traditional method, e.g. dynamic program-
ming, greedy, divide-and-conquer, etc., one can get efficient algorithm, but the

PAR: A Practicable Formal Method and Its Supporting Platform 73

difficult is in choosing suitable one. Since implementing algorithm using itera-
tion has higher efficiency than using recursion, we stick to iteration rather than
recursion in our methodology. We generalize the recurrence relation concept of
a sequence of numbers (difference equation) to problem solving sequence and
propose a unified approach for designing algorithmic program [26]. It covers sev-
eral existed algorithm design techniques including divide-and-conquer, dynamic
programming, greedy, enumeration and some nameless methods. The designer of
algorithms using PAR method can partly avoid the difficulty in making choice
among various existed design methods. Using the approach, we have formally
developed many nontrivial algorithmic programs, including graph algorithms
[29], travel tree algorithms [32].

2.2 A New Representation of Algorithms

The most important notion in PAR is recurrence relation of problem solving
sequence, short for recurrence. Based on the recurrence relation, the structure
of an algorithm is defined as follows [23,24]:

ALGORITHM: 〈algorithm name〉
SPECIFICATION: 〈algorithm specification〉
BEGIN: 〈initialization of variables and function in the recurrence〉
TERMINATION: 〈termination condition of the recurrence〉
A I: 〈algorithm invariant〉
RECUR: 〈set of recurrences〉
END

We get a new representation of algorithm, mainly a set of recurrences and
initiations. That is exactly a set of mathematical formulae and is easy for for-
mal proof and derivation. It characterizes main idea of an efficient algorithm
and is more precise and simple than the representation of algorithm in natural
language, flowchart and program. The Radl expressions have referential
transparency and make the formal derivation of algorithms possible.
The particular merit of the new representation of algorithm is easiness
of understanding and demonstrating the ingenuity and correctness of
an algorithm.

2.3 The New Techniques About Loop Invariants

The recursive program corresponding to recursive algorithm can be developed
directly based on the recurrence relation. We just pay main attention on devel-
oping the program corresponding to iterative algorithm. The key for developing
correct iterative program is loop invariant. This is recognized by not only the
advocator of formal methods of design algorithms and programs but also some
specialist of algorithm design, for example, Kingston, Baase, etc. However, the
existing standard strategies for developing loop invariants are only suitable for
some simple problems. There are many complicated algorithms and programs
that cannot get satisfying loop invariants using these techniques. This leads to

74 J. Xue et al.

that many computer scientists doubt the possibility of deriving or proving algo-
rithms and programs using loop invariant. In [25], we exposed new properties of
loop invariant and presented the new definition of loop invariant and two new
strategies for developing it. Following is the new definition and one of the two
new strategies.

The new definition and strategies are quite powerful, especially in using the
recursive definition technique of new strategy to develop the loop invariant of an
iteration program with inherent recursive property. Using the new techniques, we
have formally proved and derived many nontrivial algorithmic programs, includ-
ing graph algorithms, travel tree algorithms, sorting algorithms, array section
algorithms and some numeric algorithms. A convincing example is formal devel-
opment of Knuth’s challenging program that converts a binary fraction to deci-
mal fraction with certain conditions [13,27,28].

2.4 Genericity for Modeling

The generic mechanisms in executable programming languages such as Java and
C++ play an important role in increasing the reusability and reliability of soft-
ware and efficiency of software development. However, how to apply genericity
to modeling language is rarely successful, although generic mechanism such as
classifier templates, operation templates and package templates is provided in
Unified Modeling language. Due to the complexity of UML itself and the diffi-
culty of use, the wide application of genericity in MDE is seriously affected. To
solve the above problems, the author of this paper proposes a generic modeling
language mechanism implexmented in PAR [34]. One of the distinct features of
the PAR platform is the agile genericity mechanisms. In PAR not only a value,
a data type and an ADT can be generic parameter, and a computing-action
(including operator, method, function and procedure, transaction, subsystem
and web service, etc.) can be generic parameter too.

2.5 The New Techniques for Generating Database Application
Program

In Radl and Apla, accessing to database is an expression of abstract operations
rather than SQL statements. The expression is much simpler and shorter than
SQL statement. It gives us one methodology to develop the database application
system with high reliability and productivity. This makes formal derivation or
proof of a database application program possible.

2.6 Distributed Transaction Processing in PAR

The popularization and application of advanced technologies such as cloud com-
puting, big data and information system make computer software more and
more complex, and the reliability and development efficiency of software cannot
be guaranteed. The distributed transaction processing technology can be widely

PAR: A Practicable Formal Method and Its Supporting Platform 75

used in software development. Here, an abstract language mechanism of con-
current distributed transaction processing is proposed and integrated into the
Apla modeling language. The expanded Apla language of the platform is called
Apla+. Based on Apla+, a general transaction processing system is implemented
[23]. It is very easy and convenient to build abstract general transaction process-
ing programs and then convert them into Java and other executable language
programs. Because the strict correctness of abstract programs can be proved by
the standard program proving method, the reliability of the transaction process-
ing system is improved. This paper introduces the whole process of transaction
processing program design and code generation through a typical example.

3 Main Elements in PAR

PAR method given in [25,26] is a formal methods. It provides the methodology
that supports formal development of algorithmic programs described using some
executable language; say Ada, Java, C++ and C#, from their formal specifica-
tion. The Forming of PAR is a long term research plan and been supported
by a series of national research foundations including NSFC and 863 High-Tech
program.

3.1 Data Type and Action in PAR

3.1.1 Standard Data Type
The standard data type referred to in this article is the data type set in the
common executable programming language such as C++ and Java, character
type, floating-point type, Boolean type and so on.

3.1.2 Predefined Composed Data Type
These type types are stored in the component library in the form of abstract data
type (ADT) designed by the system designer, and can be used as standard data
types. The system predefines set, List, bag, binary tree, graph, relational data
and other predefined data types. The two implementations of each predefined
data were predefined.x

3.1.3 Self-defined Abstract Data Type (ADT)
The PAR platform provides an abstract data type language mechanism defined
self for building system models. The above three data types can be used as
generic parameters of modeling language.

3.1.4 Standard Action
Standard actions are operators in common executable programming language.

� Numeric operators: +,−, ∗, /,%
� Logic operators: ∧,∨,≡, �,�
� Comparison Operator>,≥, <,≤,=

76 J. Xue et al.

3.1.5 Self-defined Action
User defined action self: Subprogram, function, procedure, method, subsystem,
transaction, service, thread, etc.

The above two actions can be used as generic parameters of modeling lan-
guage.

3.1.6 Pre-defined Action
In PAR, the predefined action including several quantifiers. See Sect. 3.3.

3.2 Formal Modeling Language Radl

3.2.1 Requirement Modeling
Using the data types and actions provided in the Radl modeling language, we can
describe the formal requirements of various typical algorithms and applications.
Based on these formalized requirements, we can make use of the change rules of
quantifier and other logical expressions to realize the system function refinement
and data refinement, and get a system model which is closer to the executable
program language model. That is the algorithm model and the abstract program
design model.

3.2.2 Algorithm Modeling
Radl was designed for the description of algorithm specifications, transformation
rules for deriving algorithms and algorithms itself. We presented a set of abstract
notations for expressing pre-defined abstract data type, say array, set, sequence,
binary tree and graph, etc. The motivation of developing these mathematics-
oriented notations is aimed at making specification transformation, algorithm
derivation and program proof like operating traditional mathematical formula.
The most important notion in PAR method is recurrence relation of problem
solving sequence, short for recurrence. Based on the recurrence, the core of an
algorithm is defined as a set of recurrences, see Sect. 2.2.

The Radl expressions have referential transparency that makes the formal
derivation of algorithms possible. Radl was designed for the description of algo-
rithm specifications, transformation rules for deriving algorithms and algorithms
itself. We presented a set of abstract notations for expressing pre-defined data
type, say array, set, list, tree, graph and database, etc. Radl provides a user-
defined mechanism for abstract data type.

3.3 Rules of Specification Transformation

Most of specification transformation rules are quantifier properties and are
proved in [15,16]. Following are used in this paper. Let θ be an binary oper-
ator and big θ be the quantifier of operator θ, then,

(θ i : r(i) : f(i)) (1)

Means the quantity of f(i) where i range over r(i). We write the quantifier
of binary operator +, •, ∧, ∨, ♦ (minimum), � (maximum), ∩ (intersection),

PAR: A Practicable Formal Method and Its Supporting Platform 77

∪ (union) and ↑ as
∑

,
∏

, ∀, ∃, ♦, �, ∩, ∪ and ↑. Obviously operator
+, •, ∧, ∨, ♦, �, ∩, ∪ are associative and commutative and their quantifier θ
have following properties:

(a) Multi-dummies

(θ i, j : r(i) ∧ s(i, j) : f(i, j)) = (θ i : r(i) : (θ j : s(i, j) : f(i, j))) (2)

(b) Split with no overlap

(θ i : r(i) : f(i)) = (θ i : r(i) ∧ b(i) : f(i)) θ (θ i : r(i)∧ �b(i) : f(i)) (3)

(c) One point split

(θ i : 0 ≤ i < n + 1 : f(i)) = (θ i : 0 ≤ i < n : f(i)) θ f(n) (4)

(d) Generalized Associativity and Commutativity

(θ i : r(i) : s(i)θ f(i)) = (θ i : r(i) : s(i)) θ (θ i : r(i) : f(i)) (5)

3.4 Modeling Language Apla

The purpose of developing Apla is to implement functional abstract and data
abstract in program development perfectly, so that any Apla program is simple
enough and is ease for understanding, formal derivation or proof. It is also ease
to transform into some OOP language programs, say C++, C#, and Java, etc.

Apla is a object-based programming with convenient generics. The purpose
of developing Apla is to implement functional abstract and data abstract in
program development perfectly so that any Apla program is simple enough and
is ease for understanding, formal derivation or proof. It is also ease to transform
into some OOP language programs, say C++, Java, C# etc... Apla and Radl
have same standard procedures and functions. The data types and Pre-defined
ADTs and are also same. We borrow some control structure from Dijkstras
Guarded Command Language, but restrict the nondeterminism.

3.5 Generic Constructions [34]

3.5.1 Type Region and Type Variable
In Radl and Apla, we define the set of types that satisfy some properties as type
region and a type parameter in a program unit as type variable. The syntax of
the type region declaration is as follows:

some type = {set of types satisfied some properties};

3.5.2 Action Region and Action Variable
We define the set of all action that satisfy some properties as action region and an
action parameter in a program unit as action variable. The syntax of the action

78 J. Xue et al.

region declaration is similar with type region. The action can be the predefined
operators of Apla and defined procedures, functions and services by users.

Action region : someaction = {set of actions satisfied some properties};

3.5.3 ADT Region and ADT Variable
The ADT consists of the set of data and the set of operations. The model of
ADT can be a algebra system. We define the set of all ADT that satisfy some
properties as ADT region and an ADT parameter in a program unit as ADT
variable. The syntax of the action region declaration is similar with type region.

ADT region : someadt = {set of ADT satisfied some properties};

3.6 Mechanism of Distributed Transaction Processing

Following is two components described using Java, where running of Transaction-
Thread will make PAR enter concurrent and distributer environment, DistTrans-
action is used to implement distributed transaction process. Following operation
appeared in Radl and Apla that make PAR implement simply Distributed Trans-
action Processing.

TransactionThread: component of transaction processing thread;
DistTransaction: distributed transaction processing component;

commit
rollback
exception

TransactionThread: component of transaction processing thread;

3.7 Automatic Model Transformation Tools

Radl algorithms and Apla programs are simple enough and ease for formal
derivation and proof. But, it cannot be executed in a computer. Therefore, we
developed the PAR platform that consists of 5 automatic transformation tools
of algorithms or programs. One of them would be able to transform a Radl algo-
rithm into Apla program. Others may transform Apla programs to the programs
of target language, says C++ and Java, etc. Based on the PAR platform, the
efficiency of developing algorithms and program and reliability of the programs
are increased obviously.

3.8 Correctness of Model and Correctness of Model Transformation

3.8.1 Correctness of Model
The model defined in this paper can be refined by manual refinement of the
requirement model, and then the algorithm model, abstract program model and
executable language program model can be obtained in turn. These models can
also be automatically generated by model automatic converters. Such models
can be based on the definition of loop invariant and development strategy given

PAR: A Practicable Formal Method and Its Supporting Platform 79

Fig. 1. Architecture of PAR platform

by Xue [25], using Dijkstra-Gries standard algorithm and program correctness
proof method, formalized or automatically proved the relevant algorithms and
program correctly. It can also be calculated the reliability of the program by
software testing method.

3.8.2 Correctness of Model Transformation
The correctness of model transformation directly affects the correctness of the
model. The correctness of model transformation can guarantee the correctness
of the algorithm and program generated by the transformation. To prove the
correctness of the model transformation, it is necessary to use the knowledge of
category theory.

3.9 Architecture of PAR Platform

The architecture of PAR Platform is show in Fig. 1. There are two ways to gener-
ate codes. The first way is for processing quantification problem. PAR Platform
can transform SNL requirement model to Radl specification model, then to Radl
algorithm model, and to Apla abstract program model, finally to executable pro-
gram. The second way is for processing non-quantification problem. Users can
directly design Apla program manually and give it’s formal proof, then transform
it to executable program.

4 Applications and Case Studies

4.1 There are Two Kinds of Applications of PAR

The first one is that many nontrivial algorithms and programs have been devel-
oped formally, formal derivation or formal proof, including graph algorithms
[29], travel tree algorithms [32], array section algorithms [25,26], Knuths famous
hard problem of cyclic permutation [10,24,33]. The abstract Hopcroft-Tarjan
planarity algorithm was described in Apla. The Apla program was transformed
by PAR platform to C++ code that can correctly test the planarity and generate

80 J. Xue et al.

improved planar embedding [10]. A more convincing example is formal develop-
ment of Knuths challenging program that converts a binary fraction to decimal
fraction with certain condition [13,27,28].

The second one is to develop several safety-critical information systems,
including shuttle transportation problems [36], discrete optimization algorithm
design [37], fire evacuation [38], population classification in earthquakes [39],
Emergency railway transportation planning [40], active services support for dis-
aster rescue [41], Airline passenger profiling [42] and Industrial Accident Early
Warning [43], etc. A general distributed transaction processing system is imple-
mented in PAR and used in student information management system [23].

4.2 Case Studies

The case studies consists of two typical nontrivial examples. One is a simple
problem, but the solution in not. Another is one Apla program section that
comes from a student information management system.

The Cubes of the First n Natural Numbers. Given is an integer n, 0 ≤ n.
Develop a program to store in array b[0 . . . n− 1] the cubes of the first n natural
numbers. Thus, upon termination, for each i, 0 ≤ i < n, a[i] = i3. The program
may not use exponentiation, multiplication, or division, only use addition and
subtraction.

The problem seems quite simple but in my teaching experience no student
is be able to solve the problem correctly. Even more, no student is able to
understand the correctness of the program after we show them the final solution.
Here, we develop the algorithm and the program based on PAR method.

� Step 1. Describe the formal functional specification of an algorithmic
problem using Radl;

AQ1: Given is an integer n, 0 ≤ n
AR1: (i : 0 ≤ i < n : a(i) = i3)

For satisfying the postcondition AR2, we repeat following two steps:
� Step 2. Partition the problem into a couple of subproblems each of which

has the same structure with the original problem;
� Step 3. Formally derive the algorithm from the formal functional speci-

fication. The algorithm is described using Radl and represented by recurrences
and initialization;

Based on the postcondition AR2 and algebra law, we have
a(i + 1) = (i + 1)3 = i3 + 3i2 + 3i + 1 [Partition the problem]
Let a(i) = i3

Then a(i + 1) = a(i) + 3i2 + 3i + 1 [Derive the recurrence]
For computing 3i2

Let b(i) = 3i2

Then b(i + 1) = 3(i + 1)2 = 3i2 + 6i + 3 [Partition the problem]
= b(i) + 6i + 3 [Derive the recurrence]

For computing 6i
Let c(i) = 6i

PAR: A Practicable Formal Method and Its Supporting Platform 81

Then c(i + 1) = 6(i + 1) = 6i + 6 = c(i) + 6...............(1)
b(i + 1) = b(i) + c(i) + 3...............(2)

For computing 3i
Let d(i) = 3i
Then d(i + 1) = 3i + 3 = d(i) + 3...............(3)

a(i + 1) = a(i) + b(i) + d(i) + 1...............(4)

Obviously, the algorithm invariant AI1 is
AI1: a(i) = i3 ∧ b(i) = 3i2 ∧ d(i) = 3i ∧ c(i) = 6i ∧ 0 ≤ i < n

Combining recurrence (1)–(4), then assign the initial value to each function,
we got the algorithm for solving the problem:

ALGORITHM: Cube
SPECIFICATION: {AQ1;AR1}
{AI1}
RANGE: 0 ≤ i < n
BEGIN: i := 0 : a(i) = 0 : b(i) = 0 : c(i) = 0 : d(i) = 0;
RECUR: a(i + 1) = a(i) + b(i) + d(i) + 1;

b(i + 1) = b(i) + c(i) + 3
c(i + 1) = c(i) + 6;
d(i + 1) = d(i) + 3;

END

� Step 4. Develop loop invariant directly based on our new strategy [23]
straightforward; Considering the algorithm, we need an array variable, say a, to
store the cube of integer i ; simple b, c, d to store the value of function b(i),
c(i), d(i). According to our definition [23], the loop invariant of a loop program
is an assertion that reflects verification law of each variable in the loop. Thus,
we have the loop invariant:

LI.1: a(i) = i3 ∧ b(i) = 3i2 ∧ d(i) = 3i ∧ c(i) = 6i ∧ 0 ≤ i < n
� Step 5. Based on the loop invariant, transform the Radl algorithm and

algorithm specification to Apla program and program specification mechanically
or automatically;

In this example, the program specification {PQ1;PR1} is same as the algo-
rithm specification {AQ1;AR1}. We transform the algorithm and algorithm
invariant into Apla program as follows:

PROGRAM: Cube
{PQ1;PR1}
i := 0 : a(i) = 0 : b(i) = 0 : c(i) = 0 : d(i) = 0;
{LI.1}
DO i �= n − 1 → a(i + 1) = a(i) + b + d + 1;

b = b + c + 3
c = c + 6;
d = d + 3;

OD

This program was described using Extended Guarded Command Language
(Apla), but it cannot be run on a computer. For getting an executable program,
we must do:

� Step 6. Transform the Apla program to an executable language program,
say Ada, C++, Java, etc. mechanically or automatically.

Apla Program Section for Information Processing. The problem is to
connect the student database and to get student name from the database, to
store the names into an array, then to store and sort the data in the array to
the binary tree according to inorder and dictionary order.

82 J. Xue et al.

Fig. 2. Apla and C++ Program section for accessing and sorting student names

The Apla program of solving the problem is in the left part of the Fig. 2. The
right part of the Fig. 2 is the corresponding C++ code generated by automatic
model transforming tools. Observing the Apla program is quite short, only 32
lines, but C++ code has 330 lines. The Apla program access the student name
from student database, then to build the binary tree stored by inorder, then to
store the node data according to inorder tree walk. The student name in the
array is ordered according a nondecreasing sequence.

This example show us 3 points: the abstract lever of Apla is very high; the
Apla program is ease to read; the correctness of Apla program is quite ease to
verifying. The details showed in [32].

5 Related Work

The PAR method and PAR platform is a unified and systematic approach for
formal development of algorithm and programs. There are some similar formal
approaches with ours.

Program calculus, this approach is the most famous formal methods for
developing algorithm and program, which was created by Dijkstra [7] and devel-
oped into practical techniques by Gries [9], Backhouse et al. [3]. The approach
treats program and algorithm as same thing. A program is developed hand-in-
hand with its loop invariant and proof of correct-ness. Our development of the
algorithm and program has some similarity with theirs. However our emphasis
is different: we separate algorithm, represented by recurrence, from program,
then pay special attention on formal derivation of algorithm rather than pro-
gram calculus. The algorithm represented by recurrence relation is exactly a set
of mathematical formula and has mathematical transparency. Therefore, it can
be produced directly by formal derivation based on some simple mathematical
tools. After getting correct algorithm represented by recurrence, trans-forming it
into correct program is a trivial work. The work can be done mechanically. It is

PAR: A Practicable Formal Method and Its Supporting Platform 83

possible to develop a software system to finish it automatically. However, using
calculus approach, one derive program by weakening program specification. The
program statement cannot be produced directly by formal derivation because it
has no mathematical transparency. There is a big gap between weakened pro-
gram specification and program. It is difficult to remove the gap mechanically
and automatically.

B method [1], RAISE [18], Kestrelwares [19], Orc [6,12,16], rCOS,
[15,21], NDAUTO [44] and NDADAS [44], etc., Comparing with those for-
mal methods and program generating system, PAR method and PAR platform
have following innovative techniques that described in Sect. 2: 2.1 A Unified App-
roach for Designing Algorithm Based on Quantifier Transformation; 2.2 A New
Representation of Algorithms; 2.3 The New Techniques About Loop Invariants;
2.4 Generosity for Modeling; 2.5 The new techniques for generating database
application program; 2.6 Distributed Transaction Processing In PAR.

6 Conclusion and Future Work

1. On the basis of the study of the essential features of formal methods, this
paper focuses on overcoming complex, difficult to understand and inconve-
nient for application in the existing formal methods specification and design
language. We put forward a new formal methods definition. Based on the
definition, we research successful and practical formal methods and support
platform, namely the PAR method and PAR Platform. PAR method and the
PAR platform have been successfully applied in the formal development of
complex algorithms and information processing software. The effect is remark-
able, which proves the correctness and effectiveness of the new definition of
formal method proposed in this paper.

2. The paper describes the effectiveness of the 6 innovative theories and tech-
niques given in Sect. 2.2. These innovative theories and techniques, which
guarantee the advanced and innovative nature of the PAR and PAR plat-
forms, and become the theoretical and technical basis for the realization of
the PAR platform, and can also effectively carry out the development and
promotion of the development of formal software.

3. The formal methods proposed and implemented by PAR have been applied
in the formalized development of complex algorithms and programs. It has
solved a number of international problems and has important theoretical
value. Using the PAR method and the PAR platform, many Safety-Critical
information processing systems have been developed, in the actual earth-
quake, fire, and aviation accidents. The success of disaster rescue work proves
that PAR has great practical application value.

4. The formal methods of software development and the model driven engineer-
ing MDE have their own advantages and disadvantages in practical appli-
cation. Combining these two methods can serve as a complement to each
other and will effectively promote the renewal and development of software
development methods. We will work in this area.

84 J. Xue et al.

Acknowledgments. At first, our thanks go to anonymous reviewers for helpful sug-
gestion and comments that changed the presentation of this paper.

Our warm thanks go also to Prof. David Gries for his kind encouragement and
suggestions. His academic thought deeply influenced our research team.

We would like to thank Xu Wensheng, Zuo Zhengkang, Shi Haihe, Wang ChangJing,
who attended the previous work of the project.

References

1. Abrial, J.-R.: The B Book - Assigning Programs to Meanings. Cambridge Univer-
sity Press, Cambridge (1996)

2. Adesina, O.: Integrating formal methods with model-driven engineering. In:
International Conference on Model-Driven Engineering Languages and Systems,
Ottawa, Canada (2015)

3. Backhouse, R.C.: Program Construction and Verification. Prentice Hall Interna-
tional, London (1986)

4. Bjørner, D., Havelund, K.: 40 years of formal methods: some obstacles and some
possibilities? In: Jones, C., Pihlajasaari, P., Sun, J. (eds.) FM 2014. LNCS,
vol. 8442, pp. 42–61. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06410-9 4

5. Clarke, E.M., Wing, J.M.: Formal methods: state of the art and future directions.
ACM Comput. Surv. 28(4), 626–643 (1996)

6. Cook, W., Misra, J.: Structured interacting computations. In: Wirsing, M.,
Banâtre, J.-P., Hölzl, M., Rauschmayer, A. (eds.) Software-Intensive Systems and
New Computing Paradigms. LNCS, vol. 5380, pp. 139–145. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-89437-7 9

7. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall, Upper Saddle River
(1976)

8. Gargantini, G., Riccobene, A.E., Scandurra, P.: Combining formal methods and
MDE techniques for model-driven system design and analysis. Int. J. Adv. Softw.
3(1 and 2), 1–18 (2010)

9. Gries, D.: The Science of Programming. Springer, New York (1981). https://doi.
org/10.1007/978-1-4612-5983-1

10. Gries, D., Xue, J.: Generating a random permutation. In: BIT28, vol. 10 pp. 569–
572 (1988)

11. Gries, D., Xue, J.: The hopcroft-tarjan plannarity algorithm presentations and
improvements. TR88-906, CS Department of Cornell University, pp. 1–20 (1988)

12. Kitchin, D., Quark, A., Cook, W., Misra, J.: The Orc programming language. In:
Lee, D., Lopes, A., Poetzsch-Heffter, A. (eds.) FMOODS/FORTE -2009. LNCS,
vol. 5522, pp. 1–25. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-02138-1 1

13. Knuth, D.: A simple program whose proof isn’t. In: Beauty is Our Business. A
Birthday Salute to E.W. Dijkstra (1990). (Ed. by, W.H.J. Feijen et al.)

14. Jones, C.B.: Systematic Software Development Using VDM. Prentice-Hall Inter-
national, New York (1986)

15. Liu, Z., Morisset, C., Stolz, V.: rCOS: Theory and tool for component-based model
driven development. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961,
pp. 62–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11623-
0 3

https://doi.org/10.1007/978-3-319-06410-9_4
https://doi.org/10.1007/978-3-319-06410-9_4
https://doi.org/10.1007/978-3-540-89437-7_9
https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1007/978-1-4612-5983-1
https://doi.org/10.1007/978-3-642-02138-1_1
https://doi.org/10.1007/978-3-642-02138-1_1
https://doi.org/10.1007/978-3-642-11623-0_3
https://doi.org/10.1007/978-3-642-11623-0_3

PAR: A Practicable Formal Method and Its Supporting Platform 85

16. Misra, J., Cook, W.R.: Computation orchestration: a basis for wide-area comput-
ing. J. Softw. Syst. Model. (2017)

17. Paull, M.C.: Algorithm Design—A Recursion Transformation Framework. Wiley,
New York (1987)

18. RAISE. http://spd-web.terma.com/Projects/raise
19. Smith, D.R.: KIDS: a semiautomatic program development system. IEEE Trans.

Softw. Eng. 16(9), 1024–1043 (1990)
20. Spivey, J.M.: Introducing Z: A Specification Language and Its Formal Semantics.

Combridge University Press, New York (1988)
21. Ke, W., Li, X., Liu, Z., Stolz, V.: rCOS: A formal model-driven engineering method

for component-based software. Fronti. Comput. Sci. China 6(1), 17–39 (2012)
22. Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice

and experience. ACM Comput. Surv. 41(4), 19 (2009)
23. Xia, J., Xue, J.: Design and implementation of concurrent distributed transaction

in modeling language Apla. In: NCTCS (2018, to appear)
24. Xue, J., Gries, D.: Developing a linear algorithm for cubing a cycle permutation.

Sci. Comput. Program. 11, 161–165 (1988)
25. Xue, J.: Two new strategies for developing loop invariants and its applications. J.

Comput. Sci. Technol 8(3), 147–154 (1993)
26. Xue, J.: A unified approach for developing efficient algorithmic programs. J. Com-

put. Sci. Technol. 12(4), 314–329 (1997)
27. Xue, J., Davis, R.: A simple program whose derivation and proof is also. In: First

IEEE International Conference On Formal Engineering Method (1997)
28. Xue, J., Davis, R.: A derivation and proof of Knuths binary to decimal program.

In: Software: Concepts and Tools, vol. 12, pp. 149–156 (1997)
29. Xue, J.: Formal derivation of graph algorithmic programs using partition and recur.

J. Comput. Sci. Technol. 13(6), 553–561 (1998)
30. Xue, J.: A practicable approach for formal development of algorithmic pro-

grams. In: International Symposium on Future Software Technology (ISFST-1999),
Masami Noro, October 1999

31. Xue, J.Y.: Developing the generic path algorithmic program and its instantiations
using PAR method. In: The Second Asia Workshop On Programming Languages
and Systems, Korea (2001)

32. Xue, J.: PAR method and its supporting platform. In: International Workshop on
Formal Method for Developing Software, Annual Report, Macao: UNU-IIST, no.
348 (2006)

33. Xue, J., Yang, B., Zuo, Z.: A linear in-situ algorithm for the power of cyclic permu-
tation. In: Preparata, F.P., Wu, X., Yin, J. (eds.) FAW 2008. LNCS, vol. 5059, pp.
113–123. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69311-
6 14

34. Xue, J.: Genericity in PAR platform. In: Liu, S., Duan, Z. (eds.) SOFL+MSVL
2015. LNCS, vol. 9559, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-31220-0 1

35. Xue, J.: PAR: a model driven engineering platform for generating algorithms and
software. In: Symposium on Programming: Logics, Models, Algorithms and Con-
currency to recognize Jayadev Misra’s Accomplishments, University of Texas, 29th
and 30th April 2016. https://www.cs.utexas.edu/symposium

36. Zheng, Y.J., Xue, J.Y.: A simple Greedy algorithm for a class of shuttle trans-
portation problems. Opt. Lett. 3(4), 491–497 (2009)

37. Zheng, Y.J., Xue, J.Y.: A problem reduction based approach to discrete optimiza-
tion algorithm design. Computing 88(1–2), 31–54 (2010)

http://spd-web.terma.com/Projects/raise
https://doi.org/10.1007/978-3-540-69311-6_14
https://doi.org/10.1007/978-3-540-69311-6_14
https://doi.org/10.1007/978-3-319-31220-0_1
https://doi.org/10.1007/978-3-319-31220-0_1
https://www.cs.utexas.edu/symposium

86 J. Xue et al.

38. Zheng, Y.J., Ling, H.F., Xue, J.Y., Chen, S.Y.: Population classification in fire
evacuation: a multiobjective particle swarm optimization approach. IEEE Trans.
Evol. Comput. 18(1), 70–81 (2014)

39. Zheng, Y.J., Ling, H.F., Chen, S.Y., Xue, J.Y.: A hybrid neuro-fuzzy network based
on differential biogeography-based optimization for online population classification
in earthquakes. IEEE Trans. Fuzzy Syst. 23(4), 1070–1083 (2014)

40. Zheng, Y.J., Zhang, M.X., Ling, H.F., Chen, S.Y.: Emergency railway transporta-
tion planning using a hyperheuristic approach. IEEE Trans. Intell. Transp. Syst.
16(1), 321–329 (2015)

41. Zheng, Y.J., Chen, Q.Z., Ling, H.F., Xue, J.Y.: Rescue wings: mobile computing
and active services support for disaster rescue. IEEE Trans. Serv. Compt. 9(4),
594–607 (2016)

42. Zheng, Y.J., Sheng, W.G., Sun, X.-M., Chen, S.Y.: Airline passenger profiling
based on fuzzy deep machine learning. IEEE Trans. Neural Netw. Learn. Syst.
28(12), 2911–2923 (2017)

43. Zheng, Y.J., Chen, S.-Y., Yu, X., Xue, J.-Y.: A pythagorean-type fuzzy deep de-
noising auto-encoder for industrial accident early warning. IEEE Trans. Fuzzy Syst.
25(6), 1561–1575 (2017)

44. Xu, J.: The Automation of software. IEEE Trans. Syst. (1993). Qinghua Published
Company

45. Formal methods C Wikipedia. https://en.wikipedia.org/wiki/Formal methods

https://en.wikipedia.org/wiki/Formal_methods

Verification

Deductive Verification of Hybrid Control
Systems Modeled in Simulink

with KeYmaera X

Timm Liebrenz(B), Paula Herber, and Sabine Glesner

Software and Embedded Systems Engineering, Technische Universität Berlin,
Berlin, Germany

{timm.liebrenz,paula.herber,sabine.glesner}@tu-berlin.de

Abstract. Hybrid control systems are, due to their ever-increasing com-
plexity, more and more developed in model-driven design languages
like Simulink. At the same time, they are often used in safety-critical
applications like automotive or medical systems. Ensuring the correct-
ness of Simulink models is challenging, as their semantics is only infor-
mally defined. There exist some approaches to formalize the Simulink
semantics, however, most of them are restricted to a discrete subset. To
overcome this problem, we present an approach to map the informally
defined execution semantics of hybrid Simulink models into the formally
well-defined semantics of differential dynamic logic (dL). In doing so,
we provide a formal foundation for Simulink, and we enable deductive
formal verification of hybrid Simulink models with an interactive the-
orem prover for hybrid systems, namely KeYmaera X. Our approach
supports a large subset of Simulink, including time-discrete and time-
continuous blocks, and generates compact and comprehensible dL mod-
els fully-automatically. We show the applicability of our approach with
a temperature control system and an industrial case study of a multi-
object distance warner.

Keywords: Hybrid systems · Formal verification
Model-driven development

1 Introduction

The complexity of embedded systems is steadily increasing. To cope with this
problem, model-driven design is widely used for their development. One com-
monly used model-based design language for hybrid control systems is Simulink
[15]. Simulink enables fast and efficient design of dynamic systems, and comes
with mature tool support for graphical editing, simulation, and automated code
generation. While simulation enables validation of the system behavior for a
given set of input scenarios, it is not sufficient for safety-critical systems, such
as cars or medical devices, where faulty behavior can cause injuries or even
threaten human lives. Formal verification can provide guarantees about crucial
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 89–105, 2018.
https://doi.org/10.1007/978-3-030-02450-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_6&domain=pdf

90 T. Liebrenz et al.

system properties for all possible input scenarios. However, the semantics of
Simulink is only informally defined, which impedes formal verification. There
exist some approaches to formalize the Simulink semantics and thus to enable
formal verification [2,11,22]. However, most of them are restricted to a discrete
subset. The few approaches that support both time-discrete and time-continuous
behavior are restricted to very special classes of hybrid systems [5].

In this paper, we present an approach for deductive formal verification of
hybrid control systems modeled in Simulink. The key idea of our approach is
that we map the informally defined semantics of Simulink into the formally well-
defined semantics of differential dynamic logic (dL) [21]. This has four major
advantages: First, with our mapping, we precisely and unambiguously capture
the Simulink semantics and thus define a formal semantics for Simulink. Sec-
ond, we enable a fully-automatic transformation of given Simulink models into
dL models. Third, our transformation supports both time-discrete and time-
continuous Simulink blocks, and thus is applicable to a broad range of hybrid
control systems modeled in Simulink. Fourth, the resulting dL models enable
the machine-assisted deductive verification of safety properties of given Simulink
models for all possible input scenarios using the interactive theorem prover KeY-
maera X [9]. Our transformation keeps the structure of the Simulink model trans-
parent to the designer by mapping stateful Simulink blocks into equivalent dL
variables.

The rest of this paper is structured as follows: In Sect. 2, we introduce
Simulink and dL. We discuss related work in Sect. 3. In Sect. 4, we present our
transformation from Simulink into dL. We illustrate our approach with a hybrid
temperature control system in Sect. 5 and demonstrate its practical applicability
with an industrial case study in Sect. 6. In Sect. 7, we conclude our paper.

2 Preliminaries

In this section, we introduce the preliminaries for the remainder of this paper.

2.1 Simulink

MATLAB/Simulink [15] enables modeling and simulation of hybrid control sys-
tems. The basic building elements are blocks that have input and output ports.
Signals connect these ports. There are different kinds of blocks, e.g., direct
feedthrough, time-discrete, time-continuous, and control flow blocks.

Figure 1 shows a temperature control system modeled in Simulink. It is
designed for an operation room and allows fine-granular temperature control:
it takes a heating value (HeatOn) and a cooling value (HeatOff) as input, which
are real values that represent the temperature gradient, and adjusts the current
temperature accordingly. The desired temperature is defined as a constant block
Tdes. In a feedback loop, a Switch block determines whether a heating or cooling
value is used. The output temperature (Tout) is calculated by integrating the
input values over (continuous) time with the Integrator block, and the result is

Deductive Verification of Hybrid Control Systems Modeled in Simulink 91

1
HeatOn

2
HeatOff

1 > 0

Switch

1
s

IntegratorSum

19

Tdes
Relay

Tout

Fig. 1. Simulink model

used to control the Switch. The control signal is relayed (Relay) to avoid rapid
switching, i.e. only if the output temperature deviates from the desired temper-
ature by more than a given min or max value, the control signal changes. We
use this example in Sect. 5 to illustrate our approach.

2.2 KeYmaera X

KeYmaera X is a theorem prover for deductive verification of hybrid systems
that are modeled in differential dynamic logic (dL). Systems in dL are modeled
as hybrid programs, which can model time-discrete as well as time-continuous
behavior. The main language elements of a hybrid program α are the following:
Let α and β be hybrid programs, x a variable, θ an arithmetic expression and
H a first-order formula. The sequential composition α;β connects two hybrid
programs so that α is executed before β. The nondeterministic choice α ∪ β (or
α ++ β) allows for a branch in the execution, where either α or β can be executed.
A nondeterministic repetition α∗ repeats an inner program α an arbitrary num-
ber of times. With a discrete assignment x := θ a value given by θ is assigned
to variable x. A nondeterministic assignment x := ∗ assigns an arbitrary value
to the variable x. In a continuous evolution (x′

1 = θ1, . . . x
′
n = θn &H), the vari-

ables xi evolve according to the given gradient θi as long as the invariant H
holds, which is also called the evolution domain. Note that the evolution may
stop at any time. If a test formula ?H is given, the execution continues only if
it holds.

To specify requirements, dL supports the modality operators [α]φ and 〈α〉φ,
where φ is a dL formula. The modality [·] is true if φ is true after all runs of α.
The modality 〈·〉 is true if φ is true after at least one run of α.

Listing 1.1 shows a hybrid program that models a person on an escalator [18].
The variable x denotes the position of the person and v the speed of the escalator.
The person can step down (x := x−1) if it is not already at the bottom (x > 1),
or move up with speed v for an arbitrary time (x′ = v). This can be repeated
an arbitrary number of times ({·}∗). The specification [·] requires that under the
precondition x ≥ 2 ∧ v ≥ 0, after all possible executions, x ≥ 0.

92 T. Liebrenz et al.

x >= 2 & v >= 0 ->

{[{?(x > 1); x := x - 1; ++ {x’ = v}}∗] x >= 0}

Listing 1.1. A Hybrid Program of an Escalator

3 Related Work

In this section, we first discuss approaches for formal verification of general
hybrid systems. Then, we discuss formal verification approaches for Simulink.

Hybrid System Verification. A widely used formalism for the verification
of hybrid systems are hybrid automata [1]. Hybrid automata have gained wide
attention in the hybrid systems community, and many verification approaches
for hybrid systems have been based upon this formalism [8,10]. The disadvan-
tage of all model checking techniques is, however, the construction of the state
space of the underlying model, which is exponential in the number of concurrent
processes. As a consequence, model checking approaches typically do not scale
for larger systems. In [19,20], the authors present a contract-based approach
for the verification of hybrid systems. System components together with their
contracts are specified in dL and are then semi-automatically verified using KeY-
maera X. By providing deductive verification techniques, KeYmaera X provides
a promising approach that scales better than model checking based approaches
for many systems. In particular, by arguing with invariants as an abstraction
of the complete system behavior, KeYmaera X has the potential to avoid an
exhaustive exploration of the state space. However, the system design and the
contracts must be provided as a formal model in dL, which typically requires
a high expertise as well as a high manual effort. In practice, complex systems
are often developed in languages like Simulink, where the semantics is infor-
mally defined. This impedes the verification process and requires either a manual
development of a formal model or a transformation into a formally well-defined
language.

Simulink Formalization and Verification. Most existing approaches for
formal verification of Simulink transform Simulink models into some formal rep-
resentation. For example, in [2], the authors present a transformation of Simulink
models into Why3 to enable deductive verification [7]. In [11], Simulink models
are transformed into the UCLID verification system [13], and thus enable Satis-
fiability Modulo Theory (SMT) solving for the verification of safety properties.
In [22], Boogie [3] is used as formal representation, and the SMT solver Z3 [6]
for formal verification. However, all of these approaches only consider a discrete
subset of Simulink and are not applicable for hybrid systems. In [23], a toolbox
for the simulation of hybrid equations in Simulink is presented. However, this
approach only allows the simulation of systems and does not provide means to

Deductive Verification of Hybrid Control Systems Modeled in Simulink 93

formally verify them for arbitrary input scenarios. In [5], the tool CheckMate
for modeling and verification of hybrid automata in Simulink is presented. They
provide special blocks to model and verify polyhedral invariant hybrid automata
(PIHA). However, this approach can only be applied for a special class of hybrid
systems and requires the use of specialized blocks. Thus, it is not applicable for
most industrial Simulink models. Most closely related to our approach is the
approach presented in [17], where a transformation from Simulink into a specific
hybrid automata dialect (SpaceEx) is proposed. This enables the use of reach-
ability algorithms for hybrid automata. However, concurrency is modeled using
parallel composition of hybrid automata, so the state space is exponential in the
number of concurrent blocks. In the work of [4], a synchronous language that
incorporates the use of ordinary differential equations is presented. They present
how different Simulink blocks can be expressed in the Zelus language. However,
they do not provide means to verify systems models. Finally, The MathWorks
provides the Simulink Design Verifier [16], which provides model checking as
well as abstract interpretation techniques. However, the Design Verifier is only
applicable for time-discrete Simulink models, and its scalability is limited [11],
as it is based on an exploration of exponential state spaces.

With our approach, we enable deductive (and thus potentially scalable) veri-
fication of hybrid control systems modeled in Simulink with the hybrid theorem
prover KeYmaera X.

4 From Simulink to Differential Dynamic Logic

In this section, we present our mapping from the informal execution semantics of
Simulink into the formally well-defined semantics of dL, and an automatic trans-
formation from Simulink models into equivalent dL representations. With our
fully-automatic transformation, the developer only needs to provide a Simulink
model and a requirements specification (in dL), and can then use KeYmaera X
to interactively prove safety properties, as shown in Fig. 2.

Our approach for the transformation from Simulink to dL is twofold: First,
we define transformation rules that map the semantics of individual Simulink
blocks to dL. Second, we compose the individual blocks into a dL representation
that precisely captures the semantics of the original model. Our key idea to
faithfully model the exact data, control, and timing dependencies of the original
model is to introduce discrete state variables for time-discrete blocks that keep
an inner state, continuous evolutions to model time-continuous blocks, and to
use a sophisticated macro mechanism to represent stateless behavior, e.g. port
connections, arithmetic calculations, and, in particular, control flow. Since all
macros are fully expanded during the transformation, our macro mechanism
does not introduce additional variables in the final dL model, and since we keep
the structure of the original model transparent to the designer using prefixing,
the resulting models are compact and comprehensible.

In the following subsection, we define the Simulink subset we support with our
approach. Then, in Sect. 4.2 we present our transformation rules for individual
blocks. In Sect. 4.3, we present our algorithm for automatic system composition.

94 T. Liebrenz et al.

Fig. 2. Verification approach

4.1 Assumptions

We require a given Simulink model to fulfill the following assumptions.

1. No algebraic loops are used.
2. No S Function blocks are used.
3. No external scripts or libraries are used.

If all three assumptions are met, we can automatically transform a given
hybrid control system in Simulink into a hybrid program in dL. Note that many
industrial Simulink models meet these requirements. Note also that some addi-
tional assumptions on the concrete block set are imposed by the current state
of our implementation, which can be easily extended with further blocks, i.e., a
transformation rule for a (continuous) integrator block is conceptually the same
as that for a (continuous) sine wave block.

4.2 Transformation Rules

In this subsection, we define transformation rules for individual blocks and illus-
trate our approach with showcases for different block groups. Each transforma-
tion rule defines the semantics of a given block as a tuple (M,β), where M is a
set of macros, and β a hybrid program that describes the behavior of the block.
Each macro m ∈ M consists of an expression id that is replaced by another
expression e during the transformation process. To denote that such a macro is
applied to a hybrid program α, we write α[id ← e]. A hybrid program β con-
sists of assignments and continuous evolutions as introduced in Sect. 2.2. Note
that the hybrid programs for individual blocks may be incomplete in the sense
that some variables are undefined (e.g., the input of the current block). These
undefined variables are replaced by macros of other blocks during the trans-
formation process. As a preparation for our transformation rules, we assign a
unique identifier to each output port of every block. These identifiers are also
used for the input ports to which the output ports are connected. Note that
we add all transformed behavior in a nondeterministic loop. This enables us to
consider the behavior of changing streams of values and not only single values.

Inports. Inports connect a system to an environment and provide incoming
signals. Our transformation rule for Inports is shown in the first row of Table 1.

Deductive Verification of Hybrid Control Systems Modeled in Simulink 95

Table 1. Showcase transformation rules

There, we introduce a dL variable input for the provided signal, and define a
macro that replaces all occurrences of the unique identifier assigned to the output
port of a given Inport block (out) with input. The hybrid program β that models
an Inport block consists of two parts: First, to model arbitrary inputs, we use
a nondeterministic assignment. Second, if the requirements contain information
on bounds for input signals, a test formula is added to the hybrid program,
which defines the range of the possible values.

Direct Feedthrough Blocks. Direct feedthrough blocks, e.g. arithmetic or
logic blocks, do not have an inner state and write their results directly to their
output ports. To model this, we create a macro that performs the operation
defined by the semantics of a given block. As an example, the transformation
rule of the Sum block is shown in the second row of Table 1. Note that all macros
are fully expanded in the final dL model, that is, for the Sum block rule shown
in the second row of Table 1, all occurrences of out will be replaced by the
combination of all inputs ini with the operators opi defined by the parameter

96 T. Liebrenz et al.

of the block (which might be ‘+’ or ‘−’ for a Sum block). Note that the input
variables ini are replaced by other expressions resulting from the transformation
rules of the preceding blocks during the transformation process.

Time-Discrete Blocks. Blocks with time-discrete behavior, e.g. Unit Delay
and Discrete Integrator, are blocks with an inner state that changes only at given
sample times. The transformation rule for the Unit Delay block is shown in the
third row of Table 1. There, the input value in is stored in an inner state and
yielded at the output with a delay of one cycle. The variable state represents
the inner state of the Unit Delay block, and output the delayed output. To
model discrete steps, we introduce a constant STEPSIZE that captures a given
sample time and a continuous variable steptime. Discrete state variables are only
updated if steptime is equal to STEPSIZE, otherwise no behavior is added. To
model time, we add steptime to the continuous evolution of the system with a
derivative of 1. To consider each discrete step, we add steptime <= STEPSIZE
to the evolution domain. We update all outputs of time-discrete blocks at the
beginning of the evaluation of discrete steps. After all discrete assignments, we
reset steptime to zero, if steptime >= STEPSIZE.

Control Flow Blocks. Control flow blocks, e.g. the Switch block, change the
control flow of the system. This may create a discrete jump in time-continuous
behavior. To transform control flow blocks, we introduce a new kind of macro,
namely conditional macros. The idea of a conditional macro is that we make
the macro mechanism dependent on control flow conditions. To this end, we
first define an extended replacement function α[id ← e, c], which replaces id
with e in a hybrid program α as above and additionally adds the condition
c to all evolution domains (invariants) in α. A conditional macro is given by
α[id ⇐ CM], where id is the identifier that should be replaced and CM is a
set of conditional replacements (ei, ci) The expansion of a conditional macro is
defined as follows:

A conditional macro creates a nondeterministic choice, where a hybrid pro-
gram α that contains id is split into multiple cases (one case for each condition
ci). In each case with condition ci, id is replaced by the corresponding ei. We
illustrate the use of conditional macros with the transformation rule for a Switch
block in the fourth row of Table 1. The Switch has three input signals, namely
a control input cin and two data inputs c1 and c2, one output signal out, and
an internal condition cswitch. If the control input cin fulfills the condition cswitch

the first data input in1 is written to out, otherwise the second data input in2

is written to out. Note that the switch condition cswitch is of the form cin ∼ C
with ∼ ∈ {>,≥, �=} and C a constant Simulink expression. This concept to han-
dle control flow can be easily adapted for other control flow blocks. Note that
our conditional macro mechanism may introduce more cases than necessary.

Deductive Verification of Hybrid Control Systems Modeled in Simulink 97

To increase the readability of the transformed program, our implementation of
conditional macros only creates nondeterministic choices for assignments and
evolutions where id actually occurs.

Time-Continuous Blocks. According to the Simulink simulation semantics,
time-continuous blocks, e.g. Integrator, Ramp and Sine Wave blocks, are exe-
cuted concurrently. To capture this in our transformation, we combine the evo-
lution of all state variables of all time-continuous blocks into one continuous
evolution. Note that this continuous evolution also contains a variable for the
simulation time. Note also that the continuous evolutions may be split by con-
ditional macros. Still, each choice then contains all continuous state variables.
We illustrate our transformation rule for time-continuous blocks with the Inte-
grator block in the bottom row of Table 1. The Integrator block takes the input
signal in and integrates it over time. This means that it models the differential
equation s(t) =

∫ t

0
in(τ) dτ , which is equivalent to ds(t)

dt = in(t), where s is the
inner state of the integrator.

4.3 Model Composition

In the previous subsections, we have defined transformation rules for a
broad range of Simulink blocks, including blocks with time-discrete and time-
continuous behavior. In this subsection, we present our approach for the trans-
formation of hybrid control systems that may consist of an arbitrary number of
direct feedthrough, time-discrete, control flow and time-continuous blocks into
dL. The main challenge in combining the individual block transformation rules
defined above is to precisely capture the interactions between blocks.

To capture the combined behavior of a given hybrid control system modeled
in Simulink, we introduce one global simulation loop, which is modeled as a
nondeterministic repetition in dL, and comprises both discrete assignments and
continuous evolutions, as shown in Listing 1.2. The Variable Declarations con-
tain all variables and constants that are used in the system. Preconditions are
derived from the system requirements. In the Initializations section, initial values
are assigned to variables and constants. The global simulation loop comprises the
transformed system behavior, namely time-discrete behavior, additional assign-
ments, e.g. assignments to variables that are used to influence the control flow
and the time-continuous behavior, and continuous evolutions. Lastly, the Post-
condition captures the properties that should be met according to the require-
ments specification. Note that in dL, whenever a loop is left, it may or may not
be executed again. Whenever the loop may terminate, all verification goals must
hold to ensure correct system behavior. Thus, we verify that the postconditions
always hold, independent of the number of system runs.

98 T. Liebrenz et al.

Transformation Algorithm. Our transformation algorithm walks through
a given Simulink model, applies the transformation rules defined above, and
incrementally builds a hybrid program. During the transformation process, each
block is translated into a set of macros and a hybrid program consisting of
assignments and/or continuous evolutions. The macros are collected, while the
hybrid program is appended sequentially to the program in the simulation loop.
When all blocks are translated, the macros are expanded. To ensure that all
dependencies are correctly considered, we handle all time-discrete stateful blocks
in the correct order, i.e. we start with blocks that have no inputs and then
recursively handle all blocks where all input blocks have already been translated.
Since direct feedthrough and stateless blocks are transformed using our macro
mechanism, the transformation is not dependent on the order of these blocks.
With our assumption that the system does not contain algebraic loops, each
feedback loop in the original Simulink model contains at least one stateful block
and this algorithm always terminates. Note that we flatten all subsystems at the
beginning of the transformation and use prefixing to keep the structure of the
original Simulink model transparent to the developer.

Discrete Jumps in Continuous Evolutions and Zero-Crossing Seman-
tics. In Simulink, blocks are executed in time steps and the signals are calcu-
lated for each step. If the results of a calculation indicate a zero-crossing that
causes a change in the system behavior, e.g. the condition at a Switch changes,
smaller time-steps are used to find the best approximation of the time where
the Switch block switches. In dL, the default continuous evolutions can evolve
an arbitrary amount of time. To enable the detection of switch points in contin-
uous evolutions, we provide two additional rules for conditional macros: First,
we create a new nondeterministic choice for each continuous evolution. Second,
we add the corresponding conditions to the evolution domain. Together, this
ensures that the continuous evolutions can only evolve as long as this control
flow does not change. We extend the continuous evolutions in our transforma-
tion with smallStep ≤ EPS to ensure that control flow changes are evaluated
with at most a delay of a given ε (EPS). Note that we also add the condition
steptime ≤ STEPSIZE to the evolution domain of all continuous evolutions to
ensure that discrete assignments take place each time the steptime elapses.

5 Illustrating Example: Temperature Control System

In this section, we illustrate our transformation from Simulink to dL using the
temperature control system shown in Fig. 1. We have fully implemented our
transformation from Simulink to dL in Java using the MeMo framework [12],
which provides a parser for Simulink and an intermediate representation that
enables easy access to elements of Simulink models. We have fully automatically
transformed the temperature control system into an equivalent dL representation
in only a few seconds. For this model we have verified two crucial properties using
KeYmaera X, namely that it keeps the temperature in a certain range and that

Deductive Verification of Hybrid Control Systems Modeled in Simulink 99

we avoid rapid switching, i.e. there is a minimal distance between each switching.
The interactive verification within KeYmaera X took approximately 2 hours
for the correct temperature range and approximately 8 hours for the absence
of rapid switching. The necessary manual interactions include the addition of
preconditions as well as the definition of loop invariants. Thanks to the tactics
available in KeYmaera X, a re-execution of these proofs just takes a few minutes
(if we provide the necessary conditions and invariants).

In the following, we first present the dL model resulting from the fully-
automatic transformation process. Then, we illustrate the interactive verification
process in KeYmaera X and discuss the necessary manual interactions.

5.1 Transformation to dL
The transformation of our example system (Fig. 1) yields three simple and two
conditional macros:

Integrator out ←Integrator state

Sum out ←Tdes out − Integrator out

Tdes out ←Tdes

Switch out ⇐{(HeatOn out,Relay out > 0), (HeatOff out, Relay out ≤ 0)}
Relay out ⇐{(Relay state, Sum out > Relay max),

(Relay state, Sum out < Relay min),
(Relay state, Sum out ≥ Relay min ∧ Sum out ≤ Relay max)}

Note that the conditional macro for the Relay block uses identical replacements
in all three cases. This is due to the semantics of the Relay block, which pre-
scribes that in all cases, the internally kept state is forwarded to its output. Still,
the distinction between the three cases is necessary in order to enforce correct
switching behavior. It is complemented with a discrete assignment to the internal
state of the Relay block with 0 or 1, depending on the input value.

The full hybrid program in dL (without initial conditions and variable dec-
larations) is shown in Listing 1.3. For brevity and simplicity of presentation, we
omit prefixing and refer to the internal state of stateful blocks and to the output
of stateless blocks with the block name (i.e., we use Integrator for Integrator s
and HeatOn for HeatOn out).

The only discrete assignments (Lines 2–6) are generated for the Relay block,
whose internal state is set to 1.0 or 0.0 depending on the deviation of the current
temperature from the desired value of 19.0 degree celsius. For the continuous
evolution (Lines 7–29), we distinguish all cases where the switching or relay
behavior of the system changes. We use the corresponding conditions both as
conditions in the evolution and as evolution domain. This ensures that whenever
a switching or relay condition changes, the simulation loop is restarted and all
conditions are newly evaluated. Note that we disjunct the evolution domain with
smallStep ≤ EPS to allow for numerical approximations, i.e. to allow values to

100 T. Liebrenz et al.

evolve a small step further than defined by the sample time. In each case, we
have three continuous evolutions (e.g. Line 9): the simulation time simTime and
the smallStep time evolve with a gradient of 1, and the Integrator evolves with
HeatOn or HeatOff, depending on the current control flow conditions.

5.2 Verification with KeYmaera X

To illustrate the interactive verification process in KeYmaera X, we have verified
that our temperature control system keeps the temperature, which is given by
the output value of Integrator, in a certain range around the desired temperature,
and that we avoid rapid switching.

Correct Temperature Range. To show that the temperature control system
keeps the temperature in a certain range of Δ ∈ R around the desired value
Tdes ∈ R, we have defined the following property:

[·]Tdes − Δ ≤ Integrator ≤ Tdes + Δ

Deductive Verification of Hybrid Control Systems Modeled in Simulink 101

We use the modal box operator to prove that this property holds after each
simulation step. In the following, we set Tdes = 19 and Δ = 1. To verify that
our desired property holds as a loop invariant, we use loop induction. This yields
the following proof goals:

HeatOn·t + Integrator ≥ 18,HeatOn · t + Integrator ≤ 20
HeatOff·t + Integrator ≥ 18,HeatOff · t + Integrator ≤ 20

where t ∈ R is a small step, e.g. defined for the first subgoal as: t ≥ 0 ∧ ∀τ(0 ≤
τ ≤ t → 19.0 − (HeatOn · τ + Integrator) ≥ 0.5|τ + smallStep ≤ EPS).

These proof goals show us that the input values HeatOn and HeatOff need
to provide a non-negative heating value respectively a negative cooling value. To
resolve these goals and finally, to prove the desired property, we have manually
added the following preconditions:

0 ≤ HeatOn ≤ 20 ∧ −20 ≤ HeatOff ≤ 0

This means that we can verify that the system keeps the temperature in the
desired range for all possible input scenarios where the values of HeatOn and
HeatOff are restricted by 20 respectively −20. The desired property can be
shown automatically using the Auto tactic in KeYMaera X. Overall, the only
manual interactions necessary are the introduction of the desired property as
loop invariant and two additional preconditions.

Absence of Rapid Switching. To show that our temperature control sys-
tem avoids rapid switching we have defined a constant MIN, which defines the
required minimal distance between two switching actions. In addition, we have
introduced two additional time variables relayOnTime and relayOffTime, which
are reset whenever the Relay is set to 1.0 or 0.0, respectively. Then, we have
defined the absence of rapid switching with the following property:

[·]Relay = 0.0 → relayOnTime ≥ MIN ∧ Relay = 1.0 → relayOffTime ≥ MIN

Again, the modal box operator defines that the property should be true after
all runs of a given hybrid program. We have again introduced the property as a
loop invariant to ensure that it holds before and after each simulation step. In
addition, we have manually inserted the following loop invariants:

Tdes − Integrator + HeatOff · relayOffTime ≤ −0.5
Tdes − Integrator + HeatOn · relayOnTime ≥ 0.5

Relay = 1.0 → Tdes − Integrator > −0.5
Relay = 0.0 → Tdes − Integrator < 0.5

Note that we do not assume that these loop invariants hold, but rather verify
them as an intermediate verification step to help KeYmaera X find a proof for

102 T. Liebrenz et al.

our desired property. We have included all loop invariants also as preconditions.
In addition, we have manually added the following preconditions:

MIN = 0.01
relayOnTime ≥ MIN ∧ relayOffTime ≤ MIN

(−1.0/MIN) ≤ HeatOff < 0.0 ∧ 0.0 < HeatOn ≤ (1.0/MIN)

This means that we can verify the absence of rapid switching for all possible input
scenarios where the values of HeatOn and HeatOff are restricted to a certain
range. For example, if the minimal distance between two switching actions is 0.01,
HeatOn should be lower than 100 and HeatOff greater than −100. Again, the
desired property can be shown using the Auto tactic. Overall, the only manual
interactions necessary are the introduction of the postcondition as loop invariant,
four additional loop invariants, and four additional preconditions.

6 Evaluation

To evaluate the applicability of our approach, we have used a multi-object dis-
tance warner system provided by our partners from the automotive industry. A
time-discrete variant of this case study was also used in [11], but they were not
able to cope with the original hybrid version. In our evaluation, we have used the
original hybrid version, and used our transformation for the core component of
the system, namely a distance calculator, which comprises 18 blocks (including
5 time-discrete, 1 time-continuous, and 3 control flow blocks) and 23 signal lines.
We have used KeYmaera X to prove two properties of the system, namely that
no overflow can occur and that the distance increases if a positive relative speed
is measured and decreases if a negative relative speed is measured.

Absence of Overflows. To verify the absence of overflows, we have introduced
global constants MINVAL and MAXVAL. As shown in [11], the original model
actually produces an overflow. To produce a counter-example that demonstrates
this faulty behavior, we used the following requirements specification:

< · > Integrator < MINVAL ∨ Integrator > MAXVAL

For the interactive verification with KeYmaera X, we were able to produce a
counter-example in 20 min. An automatic execution of the generated proof rules
takes 5 min. To prevent the overflow, we have changed the integrator in the model
to a bounded integrator, which holds its output value if it would rise above or
fall below specified values. With the corrected model, we have then shown the
absence of overflows using the following requirements specification:

[·] Integrator ≥ MINVAL ∧ Integrator ≤ MAXVAL

We have verified this specification interactively in KeYmaera X in 21 min. An
automatic execution of the generated proof rules takes 11 min.

Deductive Verification of Hybrid Control Systems Modeled in Simulink 103

Increasing and Decreasing Distance. A major advantage of our approach
is that we can not only verify static properties like the absence of overflows, but
also dynamic properties, i.e., dynamic relations between inputs and outputs. To
illustrate this, we have verified that, under the condition that there is no zero
crossing during the current measurement cycle time, a positive relative speed
measurement causes an increase in the calculated distance at the output.

[·] gainPrevious > 0 ∧ noZeroCrossing =⇒ relativeDistance ≥ 0

An analogous formula can be used for a negative relative speed and a decreasing
distance. To enable the proof, we have added state variables, which store the
current sign and detect whether a zero crossing occurred. To not change the
system behavior, we only add hybrid programs that are assignments to these new
variables or nondeterministic choices of the form {?(c);α; ++?(!c);β; }, where c
is a condition, and α and β are hybrid programs of the just defined form or empty.
We were able to prove the desired properties with KeYmaera X interactively in
7 h. An automatic execution of the generated proof rules takes 76 min.

7 Conclusion

In this paper, we have presented a novel approach for the deductive formal verifi-
cation of hybrid control systems modeled in Simulink. The key idea is threefold:
Firstly, we map the informally defined Simulink semantics to the formally well-
defined semantics of differential dynamic logic (dL). Secondly, we use an expres-
sive macro mechanism to efficiently capture stateless behavior and arithmetic
or logic expressions. Thirdly, we precisely capture discrete as well as continuous
behavior in a nondeterministic repetitive simulation loop that combines discrete
assignments and continuous evolutions. By using the box modality [.], we ensure
that all possible behaviors are captured. We have presented a fully-automatic
transformation from Simulink into dL, and we have shown how the resulting dL
model can semi-automatically be verified with the interactive theorem prover
KeYmaera X. With the use of KeYmaera X, we are able to prove safety and
correctness properties of hybrid control systems for all possible input scenarios.

The main idea of our transformation is twofold: (1) We provide transfor-
mation rules for individual blocks, which precisely capture the block semantics
in dL. (2) We provide a transformation algorithm that takes a Simulink model
as input and yields a semantically equivalent dL representation. Our transfor-
mation approach supports true hybrid systems, i.e. it supports time-discrete,
time-continuous and control flow blocks and takes their timing and interactions
into account. To cope with discrete jumps in continuous behavior, we intro-
duce a small time step behavior to model a maximum delay between the change
of a value and the next step in which the control flow is updated. We have
demonstrated the applicability of our approach by verifying crucial properties
of a hybrid temperature control system and an industrial case study, namely a
multi-object distance warner, using KeYmaera X.

104 T. Liebrenz et al.

In future work, we plan to increase the scalability of our approach by using
contracts together with a service-oriented design approach for Simulink [14].
Furthermore, we plan to automatically generate verification goals for the absence
of some industrially relevant error classes, e.g. overflows and division by zero.

References

1. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57318-6 30

2. Araiza-Illan, D., Eder, K., Richards, A.: Formal verification of control systems’
properties with theorem proving. In: 2014 UKACC International Conference on
Control (CONTROL), pp. 244–249. IEEE (2014)

3. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192 17

4. Bourke, T., Carcenac, F., Colaço, J.L., Pagano, B., Pasteur, C., Pouzet, M.: A syn-
chronous look at the Simulink standard library. In: ACM Transactions on Embed-
ded Computing Systems (TECS), vol. 16, p. 176. ACM (2017)

5. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verifica-
tion. IEEE Trans. Autom. Control 48, 64–75 (2003)

6. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

7. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen,
M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-37036-6 8

8. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. In:
Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-2 17

9. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

10. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HyTech: a model checker for hybrid
systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 460–463. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6 48

11. Herber, P., Reicherdt, R., Bittner, P.: Bit-precise formal verification of discrete-
time MATLAB/Simulink models using SMT solving. In: 2013 Proceedings of the
International Conference on Embedded Software (EMSOFT), pp. 1–10. IEEE
(2013)

12. Hu, W., Wegener, J., Stürmer, I., Reicherdt, R., Salecker, E., Glesner, S.: MeMo-
methods of model quality. In: MBEES, pp. 127–132 (2011)

13. Lahiri, S.K., Seshia, S.A.: The UCLID decision procedure. In: Alur, R., Peled,
D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 475–478. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27813-9 40

https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-540-31954-2_17
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/3-540-63166-6_48
https://doi.org/10.1007/978-3-540-27813-9_40

Deductive Verification of Hybrid Control Systems Modeled in Simulink 105

14. Liebrenz, T., Herber, P., Göthel, T., Glesner, S.: Towards service-oriented design
of hybrid systems modeled in Simulink. In: 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC), vol. 2, pp. 469–474. IEEE
(2017)

15. MathWorks: MATLAB Simulink (www.mathworks.com/products/simulink.html)
16. MathWorks: White Paper: Code Verification and Run-Time Error Detection

Through Abstract Interpretation. Technical report (2008)
17. Minopoli, S., Frehse, G.: SL2SX translator: from Simulink to SpaceEx models. In:

Proceedings of the 19th International Conference on Hybrid Systems: Computation
and Control, pp. 93–98. ACM (2016)

18. Mitsch, S., Platzer, A.: The KeYmaera X proof IDE: concepts on usability in hybrid
systems theorem proving. In: 3rd Workshop on Formal Integrated Development
Environment. Electronic Proceedings in Theoretical Computer Science, vol. 240,
pp. 67–81. Open Publishing Association (2017)

19. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: A
component-based approach to hybrid systems safety verification. In: Ábrahám,
E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 441–456. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-33693-0 28

20. Müller, A., Mitsch, S., Retschitzegger, W., Schwinger, W., Platzer, A.: Change and
delay contracts for hybrid system component verification. In: Huisman, M., Rubin,
J. (eds.) FASE 2017. LNCS, vol. 10202, pp. 134–151. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54494-5 8

21. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41,
143–189 (2008)

22. Reicherdt, R., Glesner, S.: Formal verification of discrete-time MATLAB/Simulink
models using Boogie. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS,
vol. 8702, pp. 190–204. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10431-7 14

23. Sanfelice, R., Copp, D., Nanez, P.: A toolbox for simulation of hybrid systems in
MATLAB/Simulink: Hybrid Equations (HyEQ) toolbox. In: Proceedings of the
16th International Conference on Hybrid Systems: Computation and Control, pp.
101–106. ACM (2013)

www.mathworks.com/products/simulink.html
https://doi.org/10.1007/978-3-319-33693-0_28
https://doi.org/10.1007/978-3-662-54494-5_8
https://doi.org/10.1007/978-3-319-10431-7_14
https://doi.org/10.1007/978-3-319-10431-7_14

Verification of Strong Nash-equilibrium
for Probabilistic BAR Systems

Dileepa Fernando1(B), Naipeng Dong1, Cyrille Jegourel2, and Jin Song Dong1,3

1 National University of Singapore, Singapore, Singapore
fdileepa@comp.nus.edu.sg, {dcsdn,dcsdjs}@nus.edu.sg

2 Singapore University of Technology and Design, Singapore, Singapore
jegourelcyrille@yahoo.fr

3 Griffith University, Nathan, Australia

Abstract. Verifying whether rational participants in a BAR system
(a distributed system including Byzantine, Altruistic and Rational par-
ticipants) would deviate from the specified behaviour is important but
challenging. Existing works consider this as Nash-equilibrium verification
in a multi-player game. If the game is probabilistic and non-terminating,
verifying whether a coalition of rational players would deviate becomes
even more challenging. There is no automatic verification algorithm to
address it. In this article, we propose a formalization to capture that
coalitions of rational players do not deviate, following the concept of
Strong Nash-equilibrium (SNE) in game-theory, and propose a model
checking algorithm to automatically verify SNE of non-terminating prob-
abilistic BAR systems. We implemented a prototype and evaluated the
algorithm in three case studies.

1 Introduction

In general, most real-world systems involve collaboration of many distributed
parties, e.g., Internet routing [20], peer-to-peer file sharing [3], cooperative
backup [14], etc. In these systems, agents are assumed to follow the rules or
specifications in the system designs. These rules/specifications may have to be
followed over infinite times, e.g. in operating systems [17] and medical computing
[7].

In such non-terminating concurrent multi-agent systems a particular agent
may deviate from the system specifications to maximise its self-interest. Follow-
ing the motto “Unity makes strength”, self-interested agents may also deviate
as coalitions to improve their individual rewards simultaneously. For example,
miners in block-chain form coalitions to reduce the cost of breaking block-chain
security (i.e. increase profit) [11]. It is thus natural to consider the system as
a game1 in which self-interested agents are rational players, implying that an
agent cooperates only if it improves her benefit.
1 Here, game refers to the atomic concept of Game Theory, defined as the study of

mathematical models of conflict and cooperation between intelligent and rational
decision-maker agents.

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 106–123, 2018.
https://doi.org/10.1007/978-3-030-02450-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_7&domain=pdf

Verification of Strong Nash-equilibrium for Probabilistic BAR Systems 107

However, rational behaviours are not the only source of deviation from the
specifications. Some devices may not work properly for other reasons than self-
interest. The interacting components of a large system may be designed by dif-
ferent companies, that increases the probability of incompatibility or misconfig-
uration. Some devices may also have been intentionally designed to be malicious,
in the sense that they aim more at the failures of other agents than the maximi-
sation of their own rewards. Such agents/devices are named as Byzantine players
in the game. Though a system is unlikely to work correctly in the presence of
misconfigured agents, little has been done to verify such “damaged” system.

Byzantine-Altruistic-Rational (BAR)2 models have been introduced in [2] in
order to analyse the systems with selfish and “broken” agents. Later it has been
extended in two directions: (1) Applying to probabilistic systems (PBAR) [9];
(2) Considering coalitions of rational players [16]. In this work we consider the
combination - coalition of rational players in PBAR systems.

Verifying whether rational players deviate from the system specification in a
BAR system is challenging due to the exhaustive strategy space of rational play-
ers. In PBAR, verification becomes even more challenging as the introduction of
probabilities makes the calculations more complex. Moreover, in non-terminating
PBAR, the convergence of rewards is not guaranteed. Especially, we consider the
coalitions of rational players which require to reason about both group interest
and individual interest.

Verification techniques like model checking have been used to guarantee
whether a system satisfies some arbitrary properties derived from the specifi-
cations. For example, in the secret sharing protocol [10], model checking is used
to guarantee that a secret is fairly distributed among entities that cooperate
according to specified rules. Model checking algorithms are proposed to verify
BAR [15], PBAR with stopping games [9] and BAR with a specific coalition [16].
However, there is no algorithm to automatically analyse coalitions in PBAR sys-
tems.

Contributions. We propose a formalization of Strong Nash Equilibrium (SNE)
[19] to capture that any rational player or their coalition would not deviate from
the specified behaviour in non-terminating probabilistic BAR systems (Sect. 5).
We propose an approximation algorithm to automatically verify SNE (Sect. 6).
We implement the algorithm as a prototype and evaluate the algorithm using
case studies (Sect. 7).

2 Related Work

Nash-equilibrium. We observe two directions of research on Nash-equilibrium
(NE): (1) Learning NE-strategy, e.g., in planning [18] and social behaviour analy-
sis [13], where the environment and other players are dynamic; (2) analysing NE,
where the environment and player behaviours are pre-defined, such as a PBAR
2 In BAR model, the agents are divided in three categories, altruistic, rational or

Byzantine. Only altruistic agents follow the system specification.

108 D. Fernando et al.

system in this work. In analysing NE, we observe 3 sub-directions, namely, com-
puting NE, e.g., PRALINE [4], finding optimal strategy of rational players, e.g.,
PRISM-games [5] and verifying NE, e.g. EAGLE [21]. Verifying NE is further
divided into two categories: applying to games with 0 or 1 rewards e.g., [21], and
applying to games with cumulative reward objectives e.g., [15]. BAR system
verification resides in the later category.

Model Checking for NE. The tool EAGLE [21] and PRALINE [4] only han-
dle non-probabilistic games. The closest to our work is PRISM-games 2.0 [12],
which performs multi-objective optimal strategy synthesis for rational coali-
tions in probabilistic games. However, PRISM-games 2.0 does not handle non-
terminating games with discounted long-run rewards (A detailed comparison is
presented in Sect. 7.1).

Verification of BAR Systems. The approach in [15] is only applicable for non-
probabilistic BAR systems. Later, the work [9] extends it for probabilistic BAR
systems stopping with probability 1; while the work [16] extends it with coalition
but only considering coalitions with an agreed group reward. Our work combines
both extensions in the concept level and further extends them to (1) probabilistic
BAR systems in general (without the constraint to stop with probability (1) and
(2) considering multi-objectives (individual interests in a coalition) rather than
simply considering them as one agent/player.

3 Running Example

We illustrate a PBAR system using a simplified/artificial version of pricing game
that is well-known in economics. Assume that sellers simultaneously set their
prices for one type of product for an year. Buyers buy from the sellers who offer
the cheapest price. The market share is thus divided equally between the sellers
who offer the cheapest price. The profit of a seller in an year is the price times
his market share for the year. The sellers make an agreement to reset the prices
at the beginning of each year according to an agreed probabilistic distribution. A
seller is altruistic if she follows the agreement, Byzantine if she chooses her price
non-deterministically, rational if he chooses the price that maximizes her long-
term profit. This game is played for infinite long time and the profit decreases
each year at a rate β (to simulate the inflation or product depreciation).

For simplicity, we assume there are 3 sellers (d1, d2 and d3) and 3 prices (p,
2p and 3p), where p is a positive number. Initially, the sellers’ prices are empty
denoted as 〈⊥,⊥,⊥〉 respectively. The agreed price distribution is: resetting the
price at p with probability 0.9 and resetting the price at 2p and 3p with prob-
ability 0.05 respectively. We assume d1 and d2 can be altruistic or rational and
d3 is Byzantine.

Reward Calculation Illustration. In the scenario that d1 and d2 are both ratio-
nal, for a given year, assume d1 and d2 decide to set the price at p and d3

Verification of Strong Nash-equilibrium for Probabilistic BAR Systems 109

decides to set the price at 2p, then the prices for the first year are 〈p, p, 2p〉.
Since buyers choose to buy at the lowest price, the buyers buy from d1 and d2.
Assuming the total market share is 1, the market share for d1, d2 and d3 is
thus 1/2, 1/2, and 0 respectively. Hence, the profits for the sellers for the first
year is 〈1/2 × p, 1/2 × p, 0 × p〉 = 〈p/2, p/2, 0〉. The profits of other years can be
calculated in the same way. Given a trace specifying the price decisions of the
sellers of each chronological year, we can calculate the profit of a seller, denoted
as profit1 , profit2 , profit3 , · · · . Since in the long-run, the actual profit for each
seller decreases by β, the long-term profit for a seller following the trace is

profit1 + profit2 ∗ β + profit3 ∗ β2 + · · · = Σ∞
t=1profitt ∗ βt.

4 PBAR System Specification

Given n players, we denote the set of Byzantine players as Z and denote the
non-Byzantine set as Z ′. A PBAR-system can be formally represented as follows.

Definition 1. Given a set of n players and a subset Z of Byzantine players, a
PBAR-system is a tuple M = (S, I,A, T, P,H), where

– S is a set of states,
– I is the set of initial states,
– A = Γ1 × Γ2 × · · · × Γn is a set of actions, where Γi is player i’s local action

set.
– T : S × A → S specifies the transition function,
– P : S × A × P(Z ′) → [0, 1] specifies the probability of taking an action at

a state, given a set of altruistic players, which is a subset of non-Byzantine
players. P(Z ′) is the power set of Z ′. A subset of non-Byzantine players is
an element in P(Z ′).

– H : 〈H1(s, a), . . . , Hn(s, a)〉 where, Hi : S × A → R is the reward function of
player i.

Running Example Specification. According to the example specification, we have
n = 3 and Z = {d3}. A state represents the price combination of the sellers.
Therefore there are 28 states in total, including {〈t1, t2, t3〉|t1, t2, t3 ∈ {p, 2p, 3p}}
(27 states) and the initial state 〈⊥,⊥,⊥〉. The actions represent the chosen price
A = {〈γ1, γ2, γ3〉|γ1, γ2, γ3 ∈ {p, 2p, 3p}}. Since from any state it is possible to
choose a price combination to go to any other state, the state transitions are
edges in the complete graph of the 27 states, plus the edges from the initial state
to each other states. The probability function is as follows: Since d3 is Byzantine,
the possible sets of altruistic players are ∅, {d1}, {d2} and {d1, d2}. According to
the probabilistic distribution of altruistic players’ actions (only altruistic players
follow the probabilistic distribution), we have for any s ∈ S and 〈γ1, γ2, γ3〉 ∈ A,
when only d1 is altruistic3,

P (s, 〈γ1, γ2, γ3〉, {d1}) =
{
0.9 if γ1 = p

0.05 if γ1 = 2p or γ1 = 3p.

3 We do not need to consider the case of ∅ as there is no probability in this case.

110 D. Fernando et al.

By replacing γ1 with γ2, d1 with d2 in the above equation, we obtain
P (s, 〈γ1, γ2, γ3〉, {d2}). When both d1 and d2 are altruistic,

P (s, 〈γ1, γ2, γ3〉, {d1, d2}) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.81 if γ1 = p ∧ γ2 = p

0.045 if γ1 = p ∧ γ2 = 2p or γ1 = 2p ∧ γ2 = p or

γ1 = p ∧ γ2 = 3p or γ1 = 3p ∧ γ2 = p

0.0025 otherwise (4 cases).

The pay-off function H is defined as 〈H1(s, a),H2(s, a),H3(s, a)〉 where a =
〈γ1, γ2, γ3〉,

Hi(s, 〈γ1, γ2, γ3〉) =

⎧
⎪⎨

⎪⎩

γi ∗ 1
m if γi = min{γ1, γ2, γ3}

m is the number of minimum prices in 〈γ1, γ2, γ3〉
0 otherwise.

5 Formalizing Strong Nash-equilibrium

On top of the specification of a PBAR system, which captures the behaviour
of altruistic, rational and Byzantine players, we now formalise the concept of
Strong Nash-equilibrium (SNE) [19], capturing that coalition of rational players
would not deviate from the specified altruistic behaviour for better pay-off in a
PBAR system.

Intuitively, given a set of Byzantine players Z, for any coalition C (C ⊆ Z ′),
we compare the pay-off gained by the players in the coalition when they behave
altruistically, named as the altruistic game-reward, and the maximum pay-off
gained by the players in the coalition when they deviate, named as the ratio-
nal game-reward. Only if a coalition’s rational game-reward is better than the
altruistic game-reward (i.e. at least one player in the coalition gets better reward
while the other do not lose reward), then the coalition would deviate from the
altruistic behaviours. In the following part, we show how to formalise/calculate
the two types of rewards.

Given a PBAR system M = (S, I,A, T, P,H), a path is an action sequence
π = π0

a, . . . , π
|π|−1
a (|π| can be infinite) where, πl

a ∈ A is the action at step l. π

corresponds to a valid state sequence π0
s , . . . , π

|π|−1
s where validity is captured

by transition function T (T (πl
s, π

l
a) = πl+1

s 0 ≤ l ≤ |π| − 1). We denote the set
of paths starting from a state s with length k as Πk(s).

In non-terminating systems, both altruistic game-reward and rational game-
reward are accumulated in infinite steps starting from the same initial state.
To avoid the reward getting infinite and thus not comparable, we use the dis-
counted pay-off, as shown in calculating the long-term pay-off in the running
example. Thus, the pay-off of player i following path π is Ri(π) = Hi(π0

s , π0
a) +

Hi(π1
s , π1

a)β + . . . + Hi(πk−1
s , πk−1

a)βk−1.
However, Ri(π) cannot be directly used in the formalisation of SNE. First, we

need to consider the Byzantine players in the context of PBAR. Since Byzantine
players behave arbitrarily, for a given sequence of joint actions of players in C (a
strategy of C), there may be various paths due to the Byzantine players’ s choices.
Among these paths, we assume that the coalition always consider its minimum

Verification of Strong Nash-equilibrium for Probabilistic BAR Systems 111

pay-off, which captures the guaranteed pay-off of the coalition no matter how
the Byzantine players behave. To calculate the guaranteed pay-off, we define
two basic concepts: (1) a joint action sequence of a set of players Λ following
a path π is Pπ

Λ = p(π0
a, Λ), · · · , p(π|π|−1

a , Λ) with p(〈γ1, . . . , γn〉, {λ1, . . . , λl}) =
〈γλ1 , . . . , γλl

〉, Λ = {λ1 . . . , λl} (λi is the index of the player)4; and (2) a joint
action choice of length k (possibly infinite) for a set of players Λ = {λ1 . . . , λl}
is defined as Σk

Λ = α1, . . . , αk, where αl = 〈γl
λ1

, . . . , γl
λl

〉 is the joint action
choice at step l. Given a starting state s and a joint action choice Σk

Λ, there
may be a set of multiple paths adhering the joint action choice, denoted as
Φ(s,Σk

Λ) = {π|π ∈ Πk(s),Pπ
Λ = Σk

Λ}. Given a starting state s, if we fix a joint
action choice of non-Byzantine players Z ′, the resulting subset of paths will only
contain the paths that vary due to the choices of Byzantine players, denoted
as Φ(s,Σk

Z′) (i.e., Λ = Z ′). In the set Φ(s,Σk
Z′), for a player i ∈ Z ′, we first

calculate its pay-off of each path and then choose the minimum pay-off. The
result is the guaranteed pay-off of i starting from s of length k, given a fixed
non-Byzantine players’ choice Σk

Z′ . Formally,

ui,Z(s, Σk
Z′) = min{Ri(π)|π ∈ Φ(s, Σk

Z′)}.

Second, due to the probabilistic behaviour of altruistic players, the system is
probabilistic with multiple paths, and thus the pay-off of a player is always the
expected pay-off, i.e., the pay-off of a path weighted by the probability of the path
being taken. That is, if we release the constrain of fixing non-Byzantine players’
choice to only fixing the rational/coalition5 players’ choice (Σk

C), for each player

i, we will obtain a set of guaranteed pay-offs {ui,Z(s,Σk
Z′)|PΣk

Z′
C = Σk

C}. Since
the values in the set vary due to the probabilistic choice of altruistic players,
they follow the same probabilistic distribution of altruistic players’ joint choice.
Thus we calculate the expected the pay-off of i by multiplying each value in the
set with its corresponding probability and then adding up the results. Formally,
the expected guaranteed pay-off of player i is

vi,Z(s, Σk
C) = E(ui,Z(s, Σk

Z′)|PΣk
Z′

C = Σk
C).

This prepares us to calculate the altruistic and the rational game-reward for
players in a coalition. We finally release the constraint of a specified joint action
choice of players in the coalition, and there will be the following two cases.

– Altruistic: When the players in C behave altruistically, due to their proba-
bilistic behaviour, when releasing the constraint of a given joint action choice
of C, there is a set of vi,Z(s,Σk

C) values which follow a probabilistic distribu-
tion. We calculate the expected value of them, which captures the player i’s
reward starting from state s with length k, when considering all the possible
behaviours of Byzantine and altruistic players’ behaviours,

Uk
i,Z(s) = E(vi,Z(s, Σk

C)|∀Σk
C).

4 Essentially, Pπ
Λ projects each action to a part of it.

5 Note that the rational players are exactly players in the coalition, capturing that the
rational players assume the unknown players (not in C) are altruistic by default.

112 D. Fernando et al.

– Rational: When the players in C are rational, they follow a joint action choice
(the best strategy) that leads to the best rewards, denoted as Υ . When the
coalition only contains one player i, Υ can be easily calculated as the max-
imum value in the set O = {vi,Z(s,Σk

C)|∀Σk
C}, capturing that i chooses her

actions that lead to the best rewards. When the coalition contains multiple
players, we will need to find the best pay-off which is non-trivial, since the
best choice for one player may not be the best choice for other players in
the coalition (discussed in the next Section). No matter which case, Υ is one
value in the set O, i.e., Υ = vi,Z(s,Σk

C) for some Σk
C .

To summarise, when s is an initial state and k is infinite, Uk
i,Z(s) is i’s altruistic

game-reward; and the player i’s ration game-reward will be Υ = vi,Z(s,Σk
C) for

some Σk
C .

Note that differing from the coalition in [16], we do not consider the entire
coalition as a single agent/player. That is, if, to achieve the best rational game-
reward, it requires some players to sacrifice their pay-off (i.e., some players lose
pay-off following the coalition while others in the coalition gain), this coalition
will not be valid, since each player in the coalition is rational. In this work, we
say a coalition would deviate if for every player in the coalition, the rational
game-reward is no less than the altruistic game-reward, i.e., all players do not
lose. One last point is that, we introduce a parameter ε to quantify the least
significant reward gain for deviation (i.e., a player in a coalition gains if his
rational game-reward in the coalition is greater than ε plus his altruistic game-
reward). This allows us to capture a variety of SNE parametrised by ε(> 0).
As a side effect, we can achieve better termination of automatic verification by
enlarging ε [15].

Therefore, a system satisfying ε-SNE is formalised as follows, capturing that
there is NOT a joint action (Σ∞

C) choice such that the coalition would deviate.

Definition 2 (ε-Strong Nash Equilibrium). Let ε > 0. A PBAR system
M = (S, I,A, T, P,H) with Byzantine players Z is ε-SNE if ∀C ⊆ Z ′, �Σ∞

C , s.t.
∀i′ ∈ C, ∀s ∈ I,

U∞
i′,Z(s) + ε < vi′,Z(s,Σ∞

C).

SNE in the Running Example. We illustrate the above ideas using the
running example, by calculating the reward for the first year and the entire
game-reward for two cases: coalition with size 1 and with size 2.

Calculating First Year Profits. As shown in Sect. 3, in the first year, given a
fixed choice of d1 and d2 (non-Byzantine players), there are three pay-offs of d1
(respectively d2), depending on the choice of d3. We choose the minimum value,
i.e., the guaranteed pay-off of d1 (respectively d2). The guaranteed pay-offs of
d1 and d2 and their corresponding action choices are shown in Table 16.
6 In this example, it happens (uncommonly) that given any fixed choice of d1 and d2,

that d3 chooses the lowest price p leads to the guaranteed pay-off of d1 and d2 in
every case.

Verification of Strong Nash-equilibrium for Probabilistic BAR Systems 113

Table 1. Guaranteed profit of d1

Action choice 〈2p, 2p, p〉 〈2p, 3p, p〉 〈2p, p, p〉
Guaranteed pay-offs (〈d1, d2, d3〉) 〈0, 0, p〉 〈0, 0, p〉 〈0, p/2, p/2〉
Action choice 〈3p, 2p, p〉 〈3p, 3p, p〉 〈3p, p, p〉
Guaranteed pay-offs (〈d1, d2, d3〉) 〈0, 0, p〉 〈0, 0, p〉 〈0, p/2, p/2〉
Action choice 〈p, 2p, p〉 〈p, 3p, p〉 〈p, p, p〉
Guaranteed pay-offs(〈d1, d2, d3〉) 〈p/2, 0, p/2〉 〈p/2, 0, p/2〉 〈p/3, p/3, p/3〉

Consider d1, we first calculate her pay-off when she is altruistic. Since altru-
istic sellers’ behaviour is probabilistic, we calculate the expected guaranteed
pay-off of d1, i.e., d1’s pay-off for each action choice (see Table 1) times its prob-
ability, p/2 × 0.9 × 0.05 + p/2 × 0.9 × 0.05 + p/3 × 0.9 × 0.9 = 0.315p. That is,
U1
1,{3}(〈⊥,⊥,⊥〉) = 0.315p.

Second, we calculate the pay-off of d1 when she is rational. In this case, she
plays the action which gives her the maximum profit. For example, since d3’s
action is always p, if d2 also chooses p, there are three choices for d1 (the first
column in Table 1). d1 chooses action p which gives pay-off p/2, since the other
actions provide 0 pay-off. In this example, it happens that the best strategy for
d1 is always playing p, no matter how d2 acts. Since d2 is altruistic, the choice of
d2 is probabilistic. Therefore, the pay-off of d1 is the expected pay-off depending
on the choice of d2, which is p/2 × 0.05 + p/2 × 0.05 + p/3 × 0.9 = 0.35p. That
is for any Σ1

{1}, v1,{3}(〈⊥,⊥,⊥〉, Σ1
{1}) ≤ 0.35p.

Since d1 and d2 are symmetric, the pay-off of d2 is exactly the same as d1.
When d2 is altruistic, her pay-off is U1

2,{3}(〈⊥,⊥,⊥〉) = 0.315p; and when d2 is
rational, ∀Σ1

{2}, v2,{3}(〈⊥,⊥,⊥〉, Σ1
{2}) ≤ 0.35p.

Therefore, when ε ≤ 0.035p, U1
i,{3}(〈p, p, p〉) + ε < vi,{3}(〈p, p, p〉, Σ1

{i}) for
both d1 and d2. That is, d1 and d2 would deviate and thus the game is not a
SNE for coalitions of size 1 with path of length 1.

Coalition of d1 and d2. According to Table 1, both d1 and d2 choosing the action
p in which d1 and d2 gain p/3 individually, which is better than being altruistic
which gains 0.315p. When ε ≤ (p/3 − 0.315p), d1 and d2 both deviate. In this
particular case, the coalition deviation corresponds to their individual deviation.

Calculating Game Profits. Assuming β = 0.5, in this example, since the pay-offs
for each year are the same as in the first year, the long-term game-reward for d1
and d2 when they are altruistic and rational (without coalition) are as follows (i ∈
{1, 2} to indicate d1 and d2 respectively): Ui,{3}(〈⊥,⊥,⊥〉) = 0.315p+0.315pβ+
. . . = 0.315p

1−β , and ∀Σ∞
{i}, vi,{3}(〈⊥,⊥,⊥〉, Σ∞

{i}) ≤ 0.35p + 0.35pβ + . . . = 0.35p
1−β .

Thus SNE with ε ≤ 0.035p
1−β is violated for coalitions size 1. When d1 and d2 form

a coalition, similarly, the best joint action is both d1 and d2 choosing p. Each
seller’s long-term game-reward is vi,{3}(〈⊥,⊥,⊥〉, Σ∞

{1,2}) = p/3
1−β for i ∈ {1, 2}.

114 D. Fernando et al.

The coalition would deviate when ε ≤ (p/3−0.315p)
1−β , since Ui,{3}(〈⊥,⊥,⊥〉) + ε ≤

vi,{3}(〈⊥,⊥,⊥〉, Σ∞
{1,2}).

Note that in this example, it happens that the actions maximizing the game-
reward coincide with the best actions in each year. However, this is not always
true in general. In many cases, the best strategy leading to the best long-term
game-reward may not be the best action in each step. Automated verification is
particularly useful in such cases.

6 Verification Algorithm

6.1 Reduction

Verifying ε-SNE is equivalent to finding the negation of the ε-SNE conditions
defined in Definition 2, i.e., finding a joint action choice of some coalition so
that the players in the coalition deviate. If such a joint action choice exists,
then ε-SNE is violated. Thus the verification problem can be reduced to a multi-
objective optimization problem of finding the existence of feasible joint action
choices.

The negation of Definition 2 is as follows: For some coalitions C ⊆ Z ′ there
exist Σ∞

C , for all i ∈ C, s ∈ I, vi,Z(s,Σ∞
C) − Ui,Z(s) > ε. The verification of the

above inequality can be reduced to the following multi-objective optimization
problem:

maximize
Σ∞

C

objective: vi,Z(s, Σ∞
C) − Ui,Z(s) ∀i ∈ C

subject to constraints: vi,Z(s, Σ∞
C) − Ui,Z(s) > ε ∀i ∈ C

Given a fixed Σ∞
C and s ∈ I, the objectives of players in C form an objective

vector of n-dimensions (n = |C|) where each dimension represents each player’s
objective. Depending on different Σ∞

C and s ∈ I, there is a set of objective
vectors. In multi-objective optimization, we say that vector x dominates vector
y if the value of each dimension of x is no less than the corresponding value of
y. Thus the constraints can be represented by a vector x dominates the vector
〈ε, . . . , ε〉. The verification of ε-SNE is now reduced to find whether there exists a
vector which dominates 〈ε, . . . ε〉 or not. Non-existence of this vector is equivalent
to SNE. To find the vector satisfying the constraint, it is sufficient to compare
〈ε, . . . , ε〉 with the set of vectors which are not dominated by any other vectors,
which is exactly finding a solution for the optimization problem. Each vector
can be considered as a point in a n-dimensional space. The set of vectors that
are not dominated by any other vectors form a curve, called Pareto-curve in the
n-dimensional space. Verification of ε-SNE can be reduced to checking whether
or not a point in the Pareto-curve dominates 〈ε, . . . , ε〉.

Verification of Strong Nash-equilibrium for Probabilistic BAR Systems 115

6.2 Approximation

In order to find a point which dominates 〈ε, . . . , ε〉, one has to enumerate
the points on the Pareto curve w.r.t all the strategy combinations (poten-
tially infinite), which may not be feasible in some cases. For simplicity, we
choose only the coalition strategies corresponding to the optimal value of a
single objective function which can be proven to be Pareto optimal strategies
in multi-objective function [6]. The single objective function is a linear com-
bination of each player’s individual objectives parametrised by α as follows:
α = 〈α1, . . . α|C|〉 such that αi ∈ [0, 1] and Σ

|C|
i=1αi = 1. Thus the linear combi-

nation is Σ
|C|
i=1αi(vi,Z(s,Σ∞

C) − Ui,Z(s)). The Pareto-curve is approximated by
the optimal objective vectors (corresponding to linear combinations) generated
by various α values.

Since Ui,Z(s) is a constant for a given i, s and Z, we can simplify the previous
linear combination formula into Σ

|C|
i=1αi(vi,Z(s,Σ∞

C)), which is named as the
joint objective function. With a configuration C,Z and s, given an α, there is
an optimal joint action that maximizes the joint objective function which can
be denoted as σm = argmax{Σ

|C|
i=1αi(vi,Z(s,Σ∞

C))}. With a joint action choice
σm, we can reverse to the original vector representing vi,Z(s,Σ∞

C) − Ui,Z(s) for
each player i in C. This vector corresponds to a point in the Pareto curve. If the
vector dominates 〈ε, . . . , ε〉, this joint action choice is a strategy for the coalition
to deviate.

α1x + α2y = Rupper
∞α1x + α2y = Rlower

∞

l

t

x = V1 − U1

y
=

V
2
−

U
2

Fig. 1. Uncertain regions

Yet, another issue is that in gen-
eral, the pay-off of each player (one
value in each vector) cannot be cal-
culated as an exact value due to the
infinite length. Therefore, we approxi-
mate the pay-offs in a vector with some
error bound (Ξu,i(t) + Ξv,i(t)) (uncer-
tainty level) which leads to a region
(named as uncertain region) rather
than a point in the Pareto curve. For
example, Fig. 1, given a joint action
choice σm for t steps (dot t), there
is the shaded area between two paral-
lel dotted lines (the gradient is deter-
mined by α) representing the possible
joint action choices that lead to the optimal rewards in infinite steps. Each point
in this area is a vector 〈V ∞

1,Z,C,α(s)-U1,Z(s), . . . , V ∞
i,Z,C,α(s)-Ui,Z(s)〉(i ∈ C). For

each i, we find the points that correspond to the lowest V ∞
i,Z,C,α(s)-Ui,Z(s). For

each such point (l), we calculate the uncertainty region that contains the points
that dominate l (the triangular darker region). This region must contain some
point which is not dominated by any point in the shaded area (For proofs see [8]).
This region decreases when increasing t. We can choose k = min(t) s.t. every

116 D. Fernando et al.

dimension i of a point in the uncertainty region is bounded by parameter δ. We
provide details about finding k in our proof [8].

6.3 Calculation of Rewards

We calculate the rewards for all players i ∈ C in k steps as follows. Let L = Z ′\C,
we first initialize the reward for 0 steps: V 0

i,Z,C,α(s) = 0, and U0
i,Z(s) = 0. Then

we iteratively calculate the guaranteed state-reward (we refer to the game-reward
starting from a state s as a state reward) for player i for a given non-Byzantine
action combination 〈aC , aL〉7 in t + 1-steps starting from state s for a joint-
objective function parameterized by α, in order to determine the optimal action
combination. The above guaranteed state-reward is denoted by gt

i,Z,α, thus

gt+1
i,Z,α(s, 〈aC , aL〉) = {minaZ∈AZ

(
(Hi(s, a) + βiV

t
i,Z,C,α(s

′))|a = 〈aC , aZ , aL〉, T (s, a) = s′)}.

Expected guaranteed state-reward of player i for joint action aC for the last
action in t+1-step action sequence is vt+1

i,Z,α(s, aC) = EaL∈AL
(gt+1

i,Z,α(s, 〈aC , aL〉)).
We define expected guaranteed state-reward of player i in rational coalition

C for t + 1-step action sequence as,

V t+1
i,Z,C,α(s) = vt+1

i,Z,α(s, am
C),

where am
C = argmax{{Σ

|C|
i=1αi(vi,Z,α(s, a′

C))} | a′
C is enabled at s}.

We define expected guaranteed state-reward of i when all coalitions C are altru-
istic for t + 1-step action sequence as,

U t+1
i,Z (s) = EaZ′∈AZ′ (g

t+1
i,Z,α(s, aZ′)).

6.4 Algorithm

Given a regret value ε and parameter δ, we propose Algorithm 1 to decide
whether a given model M with Byzantine players Z satisfies SNE. Line 1–6
calculates the state rewards for each player i (not in Z) in k steps from the
initial states (i.e., V k

i,Z,C,α(s0) and Uk
i,Z(s0), s0 ∈ I). Using the results, we

calculate the maximum gain of deviating in k steps (denoted as Δi,α), i.e.,
max(V k

i,Z,C,α(s0) − Uk
i,Z(s0)) (line 7). Then we use Δi,α and the error bound

Ξu,i(k) + Ξv,i(k) to approximate the gain of deviating in infinite steps and
obtain its lower and upper bounds (line 8). The final step is to decide the relation
between the bounds and ε according to Definition 1. Given an α, the bounds of
all players form the uncertainty region like in Fig. 1. If all points in the uncer-
tainty region dominate 〈ε, . . . , ε〉, we have ε1(i, α) > ε,∀i, meaning that there
is a strategy for C to deviate and gain more than ε, then M does not satisfy
ε-SNE (line 9–10). If all the points in the uncertainty region are dominated by
〈ε, . . . , ε〉 (ε2(i, α) ≤ ε,∀i), then there is no joint action choice of C can deviate
and gain, and thus the algorithm returns SNE (line 11–12). Otherwise, we are

7 aC is short for p(a, C), aL is short hand for p(a, L).

Verification of Strong Nash-equilibrium for Probabilistic BAR Systems 117

Algorithm 1. isSNE(game M, set Z, double ε, δ)
1: Let s ∈ S, C ∈ Z′ aC ∈ AC ,L = Z′ \ C, i ∈ C
2: Let k, 2(Ξu,i(k) + Ξv,i(k)) ≤ δ, αi ∈ (0, 1)

3: V 0
i,Z,C,α(s) ← 0;U0

i,Z(s) ← 0;

4: for t=1 to k do
5: Update Ut

i,Z(s),V t
i,Z,C,α(s)

6: end for
7: Δi,α ← max{V k

i,Z,C,α(s) − Uk
i,Z(s)|s ∈ I}

8: ε1(i, α) ← Δi,α − Ξu,i(k) − Ξv,i(k); ε2(i, α) ← Δi,α + Ξu,i(k) + Ξv,i(k)
9: if (ε1(i, α) > ε ∀i ∈ C) then
10: return NOT SNE
11: else if (ε2(i, α) ≤ ε,∀i ∈ C) then
12: return ε-SNE
13: else if ((ε1(i, α) ≤ ε ∀i ∈ C),

(∃i ∈ C ε1(i, α) ≤ ε ≤ ε2(i, α))) then
14: return ε + δ-SNE
15: else
16: δ∗ ← max{(ε2(i) − ε)1(ε2(i) > ε)|i ∈ C}
17: return UNDECIDED
18: end if

uncertain about the domination relation, therefore we enlarge the regret value
by δ, which will lead to an easier decision (line 13–14). If by refining regret value,
we still cannot decide, we try a different α value (line 15–18). Given β and δ,
the algorithm has complexity O(|S| ∗ |A|) where |S| and |A| are the sizes of state
space and the action space.

7 Evaluation

In this section we evaluate our model and algorithm in three aspects: efficiency,
scalability and applicability. (1) We illustrate the efficiency of our algorithm
by comparing with existing tools - PRISM-games in particular. We use the job
scheduling as an example as it is representative of many real-world problems
while being easy to illustrate. (2) To show the scalability of our algorithm, we
take the apple-picking game as an illustration. The apple-picking game is a prac-
tical game that has been used to perform analysis in the game theory domain.
Especially, it engages all elements that we would like to illustrate - probabilistic
infinite game with rational players that may potentially form coalitions. (3) We
apply our algorithm to a real-world scenario - analysing a probabilistic secret
sharing scheme. The secret sharing scheme is an important building block in
many security critical systems. Being a multi-party computation scheme, ratio-
nal and Byzantine participants are key concepts. Moreover, it has been proved
that probability is essential in the secret sharing scheme to counter the rational
behaviour of participants [1]. Particularly, the secret sharing scheme we analyse
considers coalitions.

7.1 Comparison with PRISM-games - Job Scheduling Case Study

As mentioned in Sect. 2, the most relevant work to ours is PRISM-games 2.0 [12],
since it also handles NE in probabilistic game with coalitions under adversarial

118 D. Fernando et al.

behaviour. However, it does not support infinite games. Moreover, it does not
directly support SNE verification. In order to be able to adopt PRISM-games
for PBAR verification, one has to apply some modelling tricks. We make the
following modelling effort in using PRISM-games for verifying PBAR: first, we
limited the game length/steps and encoded the discount factor in each state;
second, we model different player configurations separately and each forms a
model. In each model, we compute the optimal rational/altruistic rewards for
the limited length using PRISM-games. Then we compare the rewards for all
models to see whether SNE is satisfied. We use the following job scheduling
game (adapted from [15] by adding probability) to show the comparison with
our algorithm.

Job Scheduling. Suppose there are m jobs J = {J1, · · · , Jm} each of which con-
sists of a set of tasks; and there are q tasks T = {T0, · · · , Tq}. A system, compris-
ing n workers, specifies a sequence of tasks for each worker. A task sequence for
worker i is denoted as Ti = 〈τ(i, 0), · · · , τ(i, li)〉, where li +1 is the length of the
task sequence. A set of tasks form a job, denoted by the function η : J → P(T).
Once a job is completed, the rewards are granted to the workers who finished
the tasks that compose the job. When a worker finishes a task, she can choose
to wait for her reward with probability 0.6 and not to wait with probability 0.4.
Once she gets the rewards or decides not to wait, she can start the next task with
probability 0.6, take a rest with probability 0.2 or skip the next task with prob-
ability 0.2. After finishing all tasks in the sequence (i.e., after finishing τ(i, li)),
a worker repeats the sequence of tasks from the beginning (i.e., task τ(i, 0)).
Taking a task consumes the rewards (i.e., getting negative rewards). If more
than one worker finish the same task which finishes some job, all of them will be
rewarded. A worker deviates from the system by not following the probabilistic
distribution.

Experimental Results. Given a set of Byzantine players Z, let ε = 1.1 and δ =
0.1, we verify SNE for different configurations of jobs and players. We run the
verification using our algorithm and PRISM-games using a 64-bit x-86 Intel
machine with 2.40 GHz processor and 8 GB RAM. The experimental results are
shown in Table 2. For the simplicity of representation, we use |Z| to represent
all the possible configurations with the same length of Z in Table 2, since in this
example, the verification results for the same |Z| are the same, due to symmetry
of players’ behaviour. For PRISM-games, we set the game length of each model
as 9. From Table 2, we can see that PRISM-games throws out-of memory error
in the model building phase even with a limited game length of 9 (with the same
corresponding the values of ε and δ in each test configuration). The PRISM-
games model can be found in [8]. As PRISM-games is not designed for PBAR,
auxiliary variables are needed in modelling, which makes the model complicated
and thus causes the out-of memory errors in generating the model.

Verification of Strong Nash-equilibrium for Probabilistic BAR Systems 119

Table 2. Experimental results for job assignment

Configuration Coalition

#1-ε

Coalition

#1-ε + δ

Coalition

#2-ε

CPU

(sec)

Our algorithm PRISM-games

Players Jobs |Z| States Transitions States Transitions

3 2 1 FAIL PASS PASS 0.891 36 39 451625 OutofMemory

3 3 1 FAIL PASS PASS 0.971 36 39 554134 OutofMemory

4 2 1 FAIL PASS PASS 40.453 38 312 OutofMemory OutofMemory

4 2 2 FAIL PASS PASS 31.046 38 312 OutofMemory OutofMemory

4 3 1 FAIL PASS PASS 49.53 38 312 OutofMemory OutofMemory

4 3 2 FAIL PASS PASS 37.507 38 312 OutofMemory OutofMemory

7.2 Evaluating Scalability - Apple-Picking Game

The apple-picking game is initially proposed in [13]. This game is easy to under-
stand while has large state space. We use this game to test the scalability of
our algorithm, by setting the parameter values that lead to certain limit of the
algorithm execution.

Apple-Picking Game. Assume there are 3 players, each player has 2 life points.
In each round, there is a set of apples (fixed to 4 for the evaluation) and the
number decreases with a discount in each round. The number needs not to be
an integer (i.e., this is an infinite game). In each round, a player chooses to
shoot others or not. The set of apples are equally shared among the survivors
at the end of each round. If a player is shot once, her life point decreases by 1.
When a player’s life point reaches 0, the player dies, but will reborn in 3 rounds.
Each player i also has a confidence value towards another player j, denoted as
cij . cij reduces by 1 when j shoots i, and increases by 1 every 3 rounds with
the cap 2. This case study is a general abstraction of many real-world systems
in which agents must find compromise between sharing limited resources, e.g.,
price fighting. In this game, an analyst may want to know whether a strategy
is optimal for every player, for example, shooting based on trust - a player i
chooses not to shoot with probability w/q, where w is her maximum confidence
value (Max(cij), i �= j) and q is her total confidence value (Σcij , i �= j), and
chooses to shoot with 1−w/q. Player i chooses to shoot j with probability cij/q.

Experimental Results. We model apple picking game as a PBAR-system (defined
in Sect. 4). The model contains 315 states and 43 transactions. We verified it
using the proposed algorithm with ε = 1.1 and δ = 0.1, and the result is shown
in Table 3.

In the experiment, we considered two scenarios: the presence (|Z| = 1 one
of the players is Byzantine) or absence (|Z| = 0) of a Byzantine player. The
algorithm returns “PASS” for ε-SNE at the presence of Byzantine player and
returns FAIL at the absence of Byzantine player. This result suggests that coali-
tion deviation is only profitable when no player is Byzantine. Moreover, when
there is no Byzantine player, the system satisfies ε + δ-SNE when coalition size
is 1 but fails when coalition size is 2. This suggests that it is profitable to form a

120 D. Fernando et al.

Table 3. Experimental results for apple game

|Z| Coalition size ε-SNE ε + δ-SNE No. states No. transactions

1 1 PASS PASS 315 43

0 1 FAIL PASS 315 43

1 2 PASS PASS 315 43

0 2 FAIL FAIL 315 43

coalition, when there is no Byzantine players. With the CPU configuration 10-
core Intel Xeon E5-2630 v4 machine with 2.2 GHz processor and 64GB RAM,
the verification time for each of the test cases exceeds 4 h, which indicates the
practical limit of the scalability in terms of states and transitions.

7.3 Applicability - Secret Sharing Protocol ADGH06

A secret sharing protocol is a scheme for distributing a secret among a group
of participants, each of whom has a share of the secret, and only a sufficient
number of shares together can reconstruct the secret. It has been widely used
in security related systems e.g., homomorphic secure computation. The most
well-known secret sharing protocol is Shamir’s secret sharing scheme. However,
it is has been proved to not work when there are rational agents, and thus a
new scheme with probability is introduced to counter the rational-fault [10].
However, this scheme only considers a single agent’s deviation. Hence a new
version of the probabilistic secret sharing protocol (ADGH06) is proposed which
is able to tolerant to k coalitions of rational agents [1].

Description. In the ADGH06 secret sharing protocol, a secret is encoded as g(0)
of an m−1 degree polynomial g (defined by a mediator), and it’s shares are g(i)
which are distributed to each agent i (i �= 0). In order to reconstruct the secret,
agents broadcast their secret shares and use interpolation to recover g(0). In
details, the protocol repeats the following actions in a stage t until all of agents
know the secret.

Each stage consists of 3 phases.
phase 1. A mediator collects ack from each agent for stage t.
phase 2. The mediator calculates a binary random variable bt at stage t (the
probability of bt = 1 is α and the probability of bt = 0 is 1 − α), produces
lt = bt.g + ht (ht is a random polynomial s.t. ht(0) = 0), and sends lt(i) to
agent i.
phase 3. All the agents broadcast their shares to other agents.

Agent i’s altruistic strategy is sending its share to all the other agents and
reconstruct lt(0). If i does not receive sufficient number of shares from other
agents, then cheating is detected and protocol stops. If lt(0) �= 0 then lt(0) is
the secret and i gets the reward. If lt(0) = 0 meaning that this round does
not count for that the mediator chose meaningless shares (the secret cannot be

Verification of Strong Nash-equilibrium for Probabilistic BAR Systems 121

initstart s0 s1

s2

s3

s4

s5

s6

s7 win

fno

set secret comm 〈ack1, . . . , ackn〉

bt = 0/1 − α

bt = 1/α

cal lt1, . . . , ltn

cal lt1, . . . , ltn

comm 〈lt1, . . . , ltn〉

comm 〈lt1, . . . , ltn〉
comm 〈lt21 , . . . , lt

1
n 〉 comm 〈ltn1 , . . . , lt

n−1
n 〉

comm 〈lt21 , . . . , lt
1

n 〉 comm 〈ltn1 , . . . , lt
n−1

n 〉

next stage

new input

Fig. 2. All altruistic configuration.

reconstructed even with all the shares), then i proceeds to the next stage (re-
running the above actions). When all the agents follow the protocol, all of them
can reconstruct g(0) with 1

α expected number of stages.
In better evaluate our algorithm, we introduce Byzantine agent and extend

the protocol to a non-terminating one (i.e. secret sharing procedure is repeated).
We also introduce a discount factor to capture that the value of the secret
decreases over time.

Modelling. Due to space limit, it is impossible to show the entire model of
the protocol, which captures all configurations. Here in Fig. 2, we show a pro-
jection/part of the model representing the configuration when all agents are
altruistic. Probabilities α and 1 − α are for mediator producing a meaningful
polynomial or not. Probabilities of the other transitions is 1. Reward is only
given when there is a transition to a win state, where each agent receive all the
shares. The rational and Byzantine agents deviate by not sharing or sharing a
wrong share. In addition, the rational agents deviate by guessing the secret when
not all shares are received and when the mediator chooses meaningless shares,
instead of stopping the protocol or restarting the protocol in the altruistic set-
ting. The probability of an rational agent guess correct is p1, while guessing
wrong is 1 − p1 (due to the design of the polynomial g). Each rational player
has one chance to use the guessed result to obtain the reward. Therefore, the
larger the coalition size is, the bigger the chance of getting reward. The rational
deviation is defined in [1].

Verification Results. Let the discount factor be β = 0.5 and the number of
agents be n = 4, we verified the system using the same configuration as in
Sect. 7.1. We considered two cases, with a Byzantine agent (|Z| = 1) and without
Byzantine agents (|Z| = 0) (The original scheme does not claimed to be resilient
to Byzantine faults). When there is no Byzantine players, the verification result
(Table 4) shows that with higher regret allowance (ε), rational deviations become
less profitable (with the same δ and α). Adding a Byzantine agent does not
change the result in current parameters.

122 D. Fernando et al.

Table 4. Secret sharing verification results

|Z| ε δ α ε-SNE ε + δ-SNE CPU-time (s) States Transitions

0 0 0.1 0.3 FAIL PASS .658 734 11365

0 0 0.1 0.7 FAIL PASS .620 734 11365

0 1.1 0.1 0.3 PASS PASS .598 734 11365

0 1.1 0.1 0.7 PASS PASS .654 734 11365

1 0 0.1 0.3 FAIL PASS .576 734 11365

1 0 0.1 0.7 FAIL PASS .585 734 11365

1 1.1 0.1 0.3 PASS PASS .665 734 11365

1 1.1 0.1 0.7 PASS PASS .626 734 11365

8 Conclusion

We aim to decide whether a rational agent in a probabilistic system would fol-
low the specified behaviour in the presence of mis-configured agents. We express
this problem as verifying whether the system is a SNE. We proposed a ver-
ification algorithm for non-terminating games and proved its correctness. We
implemented our algorithm and evaluated using three case studies. Having a
running time linear to the size of the state space times the action space, large
number of players may consequently slow down the termination of our algorithm.
We plan to provide in a future work optimisation and alternative methods to
overcome this problem.

Acknowledgement. This research is supported by the National Research Founda-
tion, Prime Minister’s Office, Singapore under its Corporate Laboratory@University
Scheme, National University of Singapore, and Singapore Telecommunications Ltd.

References

1. Abraham, I., Dolev, D., Gonen, R., Halpern, J.: Distributed computing meets game
theory: robust mechanisms for rational secret sharing and multiparty computation.
In: Proceedings of 25th Annual ACM Symposium on Principles of Distributed
Computing, pp. 53–62 (2006)

2. Aiyer, A., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: BAR fault
tolerance for cooperative services. In: Proceedings of 20th ACM Symposium on
Operating Systems Principles, pp. 45–58 (2005)

3. Backes, M., Ciobotaru, O., Krohmer, A.: RatFish: a file sharing protocol prov-
ably secure against rational users. In: Gritzalis, D., Preneel, B., Theoharidou, M.
(eds.) ESORICS 2010. LNCS, vol. 6345, pp. 607–625. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15497-3 37

4. Brenguier, R.: PRALINE: a tool for computing nash equilibria in concurrent games.
In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 890–895.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 63

https://doi.org/10.1007/978-3-642-15497-3_37
https://doi.org/10.1007/978-3-642-39799-8_63

Verification of Strong Nash-equilibrium for Probabilistic BAR Systems 123

5. Chen, T., Forejt, V., Kwiatkowska, M., Parker, D., Simaitis, A.: PRISM-games: a
model checker for stochastic multi-player games. In: Piterman, N., Smolka, S.A.
(eds.) TACAS 2013. LNCS, vol. 7795, pp. 185–191. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36742-7 13

6. Coello, C.C.: A comprehensive survey of evolutionary-based multiobjective opti-
mization techniques. Knowl. Inf. Syst. 1(3), 129–156 (1999)

7. Diamond, G., Rozanski, A., Steuer, M.: Playing doctor: application of game theory
to medical decision-making. J. Chron. Diseases 39, 669–677 (1986)

8. Fernando, D., Dong, N., Jegourel, C., Dong, J.: Verification of strong Nash-
equilibrium in probabilistic BAR systems(extended with proof). https://sites.
google.com/view/verify-pbar

9. Fernando, D., Dong, N., Jegourel, C., Dong, J.: Verification of Nash-equilibrium
for probabilistic BAR systems. In: ICECCS, pp. 53–62 (2016)

10. Halpern, J., Teague, V.: Rational secret sharing and multiparty computation:
extended abstract. In: Proceedings of 36th Annual ACM Symposium on Theory of
Computing, pp. 623–632 (2004)

11. Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining
games. In: Proceedings of 2016 ACM Conference on Economics and Computation,
pp. 365–382 (2016)

12. Kwiatkowska, M., Parker, D., Wiltsche, C.: PRISM-games 2.0: a tool for multi-
objective strategy synthesis for stochastic games. In: Tools and Algorithms for the
Construction and Analysis of Systems, pp. 560–566 (2016)

13. Leibo, J., Zambaldi, V., Lanctot, M., Marecki, J., Graepel, T.: Multi-agent rein-
forcement learning in sequential social dilemmas. In: Proceedings of 16th Confer-
ence on Autonomous Agents and MultiAgent Systems, pp. 464–473 (2017)

14. Lillibridge, M., Elnikety, S., Birrell, A., Burrows, M., Isard, M.: A cooperative inter-
net backup scheme. In: Proceedings of the General Track: 2003 USENIX Annual
Technical Conference, pp. 29–41 (2003)

15. Mari, F., et al.: Model checking Nash equilibria in MAD distributed systems. In:
Formal Methods in Computer-Aided Design, pp. 1–8 (2008)

16. Mari, F., et al.: Model checking coalition Nash equilibria in MAD distributed
systems. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 531–
546. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05118-0 37

17. McNaughton, R.: Infinite games played on finite graphs. Ann. Pure Appl. Log.
65(2), 149–184 (1993)

18. Mouaddib, A.I., Boussard, M., Bouzid, M.: Towards a formal framework for multi-
objective multiagent planning. In: Proceedings of 6th International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, p. 123 (2007)

19. Shinohara, R.: Coalition-proof equilibria in a voluntary participation game. Int. J.
Game Theory 39(4), 603–615 (2010)

20. Shneidman, J., Parkes, D.C.: Specification faithfulness in networks with rational
nodes. In: Proceedings of 23rd Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 88–97 (2004)

21. Toumi, A., Gutierrez, J., Wooldridge, M.: A tool for the automated verification of
Nash equilibria in concurrent games. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 583–594. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25150-9 34

https://doi.org/10.1007/978-3-642-36742-7_13
https://sites.google.com/view/verify-pbar
https://sites.google.com/view/verify-pbar
https://doi.org/10.1007/978-3-642-05118-0_37
https://doi.org/10.1007/978-3-319-25150-9_34
https://doi.org/10.1007/978-3-319-25150-9_34

Model Checking of C++ Programs Under
the x86-TSO Memory Model

Vladimı́r Štill(B) and Jǐŕı Barnat

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xstill,xbarnat}@mail.muni.cz

Abstract. In this work, we present an extension of the DIVINE model
checker that allows for analysis of C and C++ programs under the
x86-TSO relaxed memory model. We use an approach in which the pro-
gram to be verified is first transformed, so that it itself encodes the
relaxed memory behavior, and after that it is verified by an explicit-
state model checker supporting only the standard sequentially consistent
memory. The novelty of our approach is in a careful design of an encod-
ing of x86-TSO operations so that the nondeterminism introduced by
the relaxed memory simulation is minimized. In particular, we allow for
nondeterminism only in connection with memory fences and load oper-
ations of those memory addresses that were written to by a preceding
store. We evaluate and compare our approach with the state-of-the-art
bounded model checker CBMC and stateless model checker Nidhugg. For
the comparison we employ SV-COMP concurrency benchmarks that do
not exhibit data nondeterminism, and we show that our solution built
on top of the explicit-state model checker outperforms both of the other
tools. The implementation is publicly available as an open source soft-
ware.

1 Introduction

Almost all contemporary processors exhibit relaxed memory behavior, which is
caused by cache hierarchies, instruction reordering, and speculative execution.
This, together with the rise of parallel programs, means that programmers often
have to deal with the added complexity of programming under relaxed mem-
ory. The behavior of relaxed memory can be highly unintuitive even on x86
processors, which have stronger memory model than most other architectures.
Therefore, programmers often have to decide whether to stay relatively safe with
higher level synchronization constructs such as mutexes, or whether to tap to
the full power of the architecture and risk subtle unintuitive behavior of relaxed
memory accesses. For these reasons, it is highly desirable to have robust tools
for finding bugs in programs running under relaxed memory.

This work has been partially supported by the Czech Science Foundation grant
No. 18-02177S and by Red Hat, Inc.

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 124–140, 2018.
https://doi.org/10.1007/978-3-030-02450-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_8&domain=pdf

Model Checking of C++ Programs Under the x86-TSO Memory Model 125

Our aim is primarily to help with the development of lock-free data structures
and algorithms. Instead of using higher level synchronization techniques such as
mutexes, lock-free programs use low-level atomic operations provided by the
hardware or programming language to ensure correct results. This way, lock-free
programs can exploit the full power of the architecture they target, but they
are also harder to design, as the ordering of operations in the program has to
be considered very carefully. We believe that by providing a usable validation
procedure for lock-free programs, more programmers will find courage to develop
fast and correct programs.

Sadly, conventional validation and verification techniques often fail to detect
errors caused by relaxed memory. Many of these techniques work best for deter-
ministic, single-threaded programs, and techniques applicable to parallel pro-
grams often assume the memory is sequentially consistent. With sequentially
consistent memory, any memory action is immediately visible to all processors
and cores in the system, there is no observable caching or instruction reordering.
That is, an execution of a parallel program under sequential consistency is an
interleaving of actions of its threads [25]. Recently, many techniques for analysis
and verification which take relaxed memory into account have been developed,
and research in this field is still pretty active. In this work, we are adding a
new technique which we hope will make the analysis of C and C++ programs
targeting x86 processors easier.

Our technique is built on top of DIVINE, an explicit-state model checker for
C and C++ programs [8]. DIVINE targets both sequential and parallel programs
and can check a range of safety properties such as assertion safety and memory
safety. We extend DIVINE with the support for the x86-TSO memory model
[34] which describes the relaxed behavior of x86 and x86 64 processors. Due to
the prevalence of the Intel and AMD processors with the x86 64 architecture,
the x86-TSO memory model is a prime target for program analysis. It is also
relatively strong and therefore underapproximates most of the other memory
models – any error which is observable on x86-TSO is going to manifest itself
under the more relaxed POWER or ARM memory models.

To verify a program under x86-TSO, we first transform it by encoding the
semantics of the relaxed memory into the program itself, i.e. the resulting trans-
formed program itself simulates nondeterministically relaxed memory opera-
tions. To reveal an error related to the relaxed memory behavior, it is then
enough to verify the transformed program with a regular model checker sup-
porting only the standard sequentially consistent memory.

In this paper we introduce a new way of encoding the relaxed memory
behaviour into the program. Our new encoding introduces low amount of non-
determinism, which is the key attribute that allows us to tackle model checking
of nontrivial programs efficiently. In particular, we achieve this by delaying non-
deterministic choices arising from x86-TSO as long as possible. Our approach is
based on the standard operational semantic of x86-TSO with store buffers, but
it removes entries from the store buffer only when a load or a fence occurs (or
if the store buffer is bounded and full). Furthermore, in loads we only remove

126 V. Štill and J. Barnat

those entries from store buffers that relate to the address being loaded, even if
there are some older entries in the store buffer.

The rest of the paper is structured as follows: Sect. 2 contains preliminaries
for our work, namely information about relaxed memory models in general and
the x86-TSO memory model in particular, and about DIVINE. Section 3 then
presents our contribution, details about its implementation, and integration with
the rest of DIVINE. Section 4 provides evaluation results which compare DIVINE
to Nidhugg [1] and CBMC [14] on a range of benchmarks from SV-COMP [9].
Section 5 summarizes related work and Sect. 6 concludes this work.

2 Preliminaries

2.1 Relaxed Memory Models

The relaxed behavior of processors arises from optimizations in cache consistency
protocols and observable effects of instructions reordering and speculation. The
effect of this behavior is that memory-manipulating instructions can appear to
be executed in a different order than the order in which they appear in the
binary, and their effect can even appear to be in different order on different
threads. For efficiency reasons, virtually all modern processors (except for very
simple ones in microcontrollers) exhibit relaxed behavior. The extent of this
relaxation is dependent on the processor architecture (e.g., x86, ARM, POWER)
but also on the concrete processor model. Furthermore, the actual behavior
of the processor is often not precisely described by the processor vendor [34].
To abstract from the details of particular processor models, relaxed memory
models are used to describe (often formally) behavior of processor architectures.
Examples of relaxed memory models of modern processors are the memory model
of x86 and x86 64 CPUs described formally as x86-TSO [34] and the multiple
variants of POWER [27,33] and ARM [5,19,31] memory models.

For the description of a memory model, it is sufficient to consider operations
which affect the memory. These operations include loads (reading of data from
the memory to a register in the processor), stores (writing of data from a register
to the memory), memory barriers (which constrain memory relaxation), and
atomic compound operations (read-modify-write operations and compare-and-
swap operation).

2.2 The x86-TSO Memory Model

The x86-TSO is very similar to the SPARC Total Store Order (TSO) memory
model [35]. It does not reorder stores with each other, and it also does not
reorder loads with other loads. The only relaxation allowed by x86-TSO is that
store can appear to be executed later than a load which succeeds it. The memory
model does not give any limit on how long a store can be delayed. An example
of non-intuitive execution of a simple program under x86-TSO can be found in
Fig. 1.

Model Checking of C++ Programs Under the x86-TSO Memory Model 127

Fig. 1. A demonstration of the x86-TSO memory model. The thread 0 stores 1 to
variable y and then loads variables x and y. The thread 1 stores 1 to x and then loads
y and x. Intuitively, we would expect it to be impossible for a = 0 and b = 0 to both
be true at the end of the execution, as there is no interleaving of thread actions which
would produce such a result. However, under x86-TSO, the stores are cached in the
store buffers (marked red). A load consults only shared memory and the store buffer
of the given thread, which means it can load data from the memory and ignore newer
values from the other thread (blue). Therefore a and b will contain old values from the
memory. On the other hand, c and d will contain local values from the store buffers
(locally read values are marked green). (Color figure online)

The operational semantics of x86-TSO is described by Sewell et al. in [34].
The corresponding machine has hardware threads (or cores), each with associ-
ated local store buffer, a shared memory subsystem, and a shared memory lock.
Store buffers are first-in-first-out caches into which store entries are saved before
they are propagated to the shared memory. Load instructions first attempt to
read from the store buffer of the given thread, and only if they are not suc-
cesful, they read from the shared memory. Store instructions push a new entry
to the local store buffer. Atomic instructions include various read-modify-write
instructions, e.g. atomic arithmetic operations (which take memory address and
a constant),1 or compare-and-swap instruction.2 All atomic instructions use the
shared memory lock so that only one such instruction can be executed at a given
time, regardless of the number of hardware threads in the machine. Furthermore,
atomic instructions flush the store buffer of their thread before they release the
lock. This means that effects of atomic operations are immediately visible, i.e.,
atomics are sequentially consistent on x86-TSO. On top of these instructions,
x86-TSO has a full memory barrier (mfence) which flushes the store buffer of
the thread that executed it.3

1 These instructions have the lock prefix in the assembly, for example lock xadd for
atomic addition.

2 lock cmpxchg.
3 There are two more fence instructions in the x86 instruction set, but according to [34]

they are not relevant to normal program execution.

128 V. Štill and J. Barnat

To recover sequential consistency on x86, it is necessary to make memory
stores propagate to the main memory before subsequent loads execute. This is
most commonly done in practice by inserting memory fence after each store. An
alternative approach would be to use atomic exchange instruction (lock xchg)
which can atomically swap value between a register and a memory slot.

One of the specifics of x86 is that it can handle unaligned memory oper-
ations.4 While the x86-TSO paper does not give any specifics about handling
unaligned and mixed memory operations (e.g., writing a 64-bit value and then
reading a 16-bit value from inside it) it seems from our own experiments that
such the operations are not only fully supported, but they are also correctly syn-
chronized if atomic instructions are used. This is in agreement with the afore-
mentioned operational semantics of x86-TSO in which all the atomic operations
share a single global lock.

2.3 DIVINE

DIVINE is an explicit-state model checker for C and C++ code that utilizes the
clang compiler to translate the input program into the LLVM bitcode. This bit-
code is then instrumented and interpreted by DIVINE’s execution engine, DiVM.
The complete workflow is illustrated in Fig. 2. DIVINE focuses on both parallel
and sequential programs and is capable of finding a wide range of problems such
as memory corruptions, assertion violations, and deadlocks caused by improper
use of mutexes. DIVINE also has very good support for C and C++, which it
achieves by employing of the standard clang compiler, and the libc++ standard
library. Moreover, a few custom-built libraries are provided to enable full sup-
port of C++14 and C11 [8,37]. To efficiently handle parallel programs, DIVINE
employs state space reductions and has a graph based representation of program
memory. More details about the internal architecture of DIVINE can be found
in [32].

Fig. 2. Verification workflow of DIVINE when it is given a C++ file as an input. Boxes
with rounded corners represent stages of input processing.

4 Other architectures, for example ARM, require loaded values to be aligned, usually
so that the address is divisible by the value size.

Model Checking of C++ Programs Under the x86-TSO Memory Model 129

2.4 Relaxed Memory in C/C++ and LLVM

There are several ways in which C and C++ code can use atomic instructions
and fences. These include inline assembly, compiler-provided intrinsic functions,
and (since C11 and C++11) standard atomic variables and operations. While
the constructs used to define atomic variables differ between C and C++, the
memory model itself is the same for C11 and C++11. The C and C++ atomics
are designed so that programmers can use the full potential of most platforms:
the atomic operations are parametrized by a memory order which constrains how
instructions can be reordered. The compiler is responsible for emitting assembly
code which makes sure these ordering requirements are met. From the point
of x86-TSO, all memory orderings except for sequential consistency amount to
unconstrained execution, as such they exhibit non-atomic memory accesses.

When the C or C++ code is compiled to LLVM bitcode, the intrinsic functions
and the standard atomic operations of the high-level programming language are
mapped in the very same way to the corresponding LLVM instructions. The
semantics of LLVM memory operations mostly copies the C++ memory model
and behavior of the C++ atomic operations.

3 x86-TSO in DIVINE

DIVINE does not natively support relaxed memory, and we decided not to com-
plicate the already complex execution engine and memory representation with
a simulation of relaxed behavior. Instead, we encode the relaxed behavior into
the program itself on the level of LLVM intermediate representation. The mod-
ified program running under sequential consistency simulates all x86-TSO runs
of the original program, up to some bound on the number of stores which can
be delayed. The program transformation is rather similar to the one presented
in our previous work in [36]. The main novelty is in the way of simulation of
x86-TSO which produces significantly less nondeterminism and therefore sub-
stantial efficiency improvements.

3.1 Simulation of the x86-TSO Memory Model

The most straight-forward way of simulating x86-TSO is to add store buffers to
the program and flush them nondeterministically, for example using a dedicated
flusher thread which flushes one entry at a time and interleaves freely with all
other threads. We used this technique in [36]. This approach does, however,
create many redundant interleavings as the flusher thread can flush an entry
at any point, regardless of whether or not it is going to produce a run with a
different memory access ordering, i.e. without any respect to the fact whether
the flushed value is going to be read or not.

To alleviate this problem, it is possible to delay the choice whether to flush an
entry from a store buffer to the point when the first load tries to read a buffered
address. Only when such a load is detected, all possible ways the store buffers

130 V. Štill and J. Barnat

could have been flushed are simulated. In this case, the load can trigger flushing
from any of the store buffers, to simulate that they could have been flushed
before the load. To further improve the performance, only entries relevant to
the loaded address are be affected by the flushing. These are the entries with
matching addresses and any entries which precede them in the corresponding
store buffers (that are flushed before them to maintain the store order).

A disadvantage of this approach is that there are too many ways in which
a store buffer entry can be flushed, especially if this entry is not the oldest in
its store buffer, or if there are entries concerning the same addresses in multiple
store buffers. All of these cases can cause many entries to be flushed, often with
a multitude of interleavings of entries from different store buffers which has to
be simulated.

Therefore, we propose a delayed flushing : entries in the store buffers can be
kept in the store buffer after newer entries were flushed if they are marked as
flushed. Such the entries behave as if they were already written to the main
memory, but can still be reordered with entries in other store buffers. That is,
when there is a flushed entry for a given location in any store buffer, the value
stored in the memory is irrelevant as any load will either read the flushed entry
or entry from the other store buffer (which can be written after the flushed
entry). Flushed entries make it possible to remove store buffer entries out of
order while preserving total store order. This way a load only affects entries
from the matching addresses and not their predecessors in the store order. This
improvement is demonstrated in Figs. 3, 4 and 5.

DIVINE handles C and C++ code by translating it to LLVM and instrument-
ing it (see Fig. 2 for DIVINE’s workflow). The support for relaxed memory is
added in the instrumentation step, by replacing memory operations with calls
to functions which simulate relaxed behavior. Essentially, all loads, stores, atomic
instructions, and fences are replaced by calls to the appropriate functions.

All of the x86-TSO-simulating functions are implemented so that they are
executed atomically by DIVINE (i.e., not interleaved). The most complex of
these is the load operation. It first finds all entries with overlap the loaded
address (matching entries) and out of these matching entries, it nondetermin-
istically selects entries which will be written before the load (selected entries).
All matching entries marked as flushed have to be selected for writing. Similarly,
all matching entries which occur in a store buffer before a selected entry also
have to be selected. Out of the selected entries, one is selected to be written
last – this will be the entry read by the load. Next, selected entries are written,
and all nonmatching entries which precede them are marked as flushed. Finally,
the load is performed, either from the local store buffer if matching entry exists
there, or from the shared memory.

The remaining functions are relatively straightforward – stores push a new
entry to the store buffer, possibly evicting the last entry from the store buffer
if the store buffer exceeds its size bound; fences flush all entries from the store
buffer of the calling thread; atomic operations are basically a combination of a
load, store, and a fence. The only intricate part of these operations is that if an

Model Checking of C++ Programs Under the x86-TSO Memory Model 131

Fig. 3. Suppose thread0

is about to execute with
the displayed contents of
store buffers of two other
threads and suppose it
had nondeterministically
chosen to load value 2
from y (denoted by green
in the figure). The entries
at the top of the store
buffers are the oldest
entries. (Color figure
online)

Fig. 4. At this point,
x entries of store buffer
1 are marked as flushed
(orange) and the y ←
1 entry was removed
as it was succeeded by
the used entry y ← 2.
The thread had nonde-
terministically selected
to load x from store
buffer 2. (Color figure
online)

Fig. 5. In the load of x,
all x entries were evicted
from the buffers – all the
flushed entries for x (which
were not selected) had to be
dropped before x ← 3 was
propagated to the memory.
The last entry (y ← 3) will
remain in the store buffer if
y will never be loaded in the
program again.

entry is flushed out of the store buffer, the entries from other store buffers which
involve the same memory location can also be non-deterministically flushed (to
simulate they could have been flushed before the given entry). This flushing is
similar to flushing performed in load. An example which shows a series of loads
can be found in Figs. 3, 4 and 5.

We will now argue that this way of implementing x86-TSO is correct. First,
the nondeterminism in selecting entries to be flushed before a load serves the
same purpose as the nondeterminism in the flusher thread of the more conven-
tional implementation. The only difference is that in the flusher-thread scenario
the entries are flushed in order, while in our new approach we are selecting only
from the matching entries. Therefore, the difference between the two approaches
is only on those entries which are not loaded by the load causing the flush, hence
cannot be observed by the load. However, any entry which would be flushed
before the selected entries in the flusher-thread approach is now marked with
the flushed flag. This flag makes sure that such an entry will be flushed before an
address which matches it is loaded, and therefore it behaves as if it was flushed.
This way, the in-thread store order is maintained.

132 V. Štill and J. Barnat

3.2 Stores to Freed Memory

As x86-TSO simulation can delay memory stores, special care must be taken
to preserve memory safety of the program. More precisely, it is necessary to
prevent the transformed program from writing into freed memory. This problem
occurs if a store to dynamically allocated memory is delayed after the memory
is freed, or if a store to stack location is delayed after the corresponding function
had returned. This problem does not require special handling in normal program
execution as both stack addresses as well as dynamic memory addresses remain to
be writable for the program even after they are freed (except for memory mapped
files, but these have to be released by a system call which includes sufficiently
strong memory barrier).

To solve the problem of freed memory, it is necessary to evict store buffer
entries which correspond to the freed memory just before the memory is freed.
For entries not marked as flushed, this eviction concerns only store buffer of the
thread which freed the memory. If some other thread attempted to write to the
freed memory, this is an error as there is insufficient synchronization between
the freeing and the store to the memory. However, corresponding entries marked
as flushed should be evicted from all store buffers, as these entries correspond to
changes which should have been already written to the shared memory. The pro-
gram transformation takes care of inserting code to evict entries corresponding
to freed memory from the store buffer.

3.3 Integration with Other Parts of DIVINE

The integration of x86-TSO simulation with the rest of DIVINE is rather straight-
forward. No changes are required in the DIVINE’s execution engine or state space
exploration algorithms. As for the libraries shipped with DIVINE, only minor
tweaks were required. The pthread implementation had to be modified to add
full memory barrier both at the beginning and at the end of every synchroniz-
ing functions. This corresponds to barriers present in the implementations used
for normal execution, pthread mutexes and other primitives have to guaran-
tee sequential consistency of the guarded operations (provided all accesses are
properly guarded).

The DIVINE’s operating system, DiOS, is used to implement low-level thread-
ing as well as simulation of various filesystem APIs [8]. We had to add memory
barrier into the system call entry which hands control to DiOS. DiOS itself does
not use relaxed memory simulation – the implementation of x86-TSO operations
detects that the code is executed in the kernel mode and bypasses store buffers.
In this way, the entire DiOS executes as if under sequential consistency. This
synchronization is easily justifiable – system calls require a memory barrier or
kernel lock in most operating systems.

3.4 Improvements

We have implemented two further optimizations of our x86-TSO simulation.

Model Checking of C++ Programs Under the x86-TSO Memory Model 133

Static Local Variable Detection. Accesses of local variables which are not accessi-
ble to other threads need not use store buffering. For this reason, we have inserted
a static analysis pass which annotates accesses to local memory before the
x86-TSO instrumentation. The instrumentation ignores such annotated accesses.
The static analysis can detect most local variables which are never accessed using
pointers.

Dynamic Local Memory Detection. DIVINE can also dynamically detect if the
given memory object is shared between threads (i.e., it is accessible from global
variables or stacks of more then one thread). Using this information, it is possi-
ble to dynamically bypass store buffers for operations with non-shared memory
objects. This optimization is correct even though the shared status of memory
can change during its lifetime. A memory object o can become shared only when
its address is written to some memory object s which is already shared (or o
can become shared transitively through a series of pointers and intermediate
objects). For this to happen, there has to be a store to the already shared object
s, and this store has to be propagated to other threads. Once the store of the
address of o is executed and written to the store buffer, o becomes shared, and
any newer stores into it will go through the store buffer. Furthermore, once this
store is propagated, any store which happened before turning o into a shared
object also had to be propagated as x86-TSO does not reorder stores. Therefore,
there is no reason to put stores to o through the store buffer if o is not shared.
This optimization is not correct for memory models which allow store reordering
– for such memory models, we would need to know that the object will never be
shared during its lifetime.

3.5 Bounding the Size of Store Buffers

The complexity of analysis of programs under the x86-TSO memory model is
high. From the theoretical point of view, we know due to Atig et al. [6] that
reachability for programs with finite-state threads which run under TSO is decid-
able, but non-primitive recursive (it is in pspace for sequential consistency). The
proof uses the so called SPARC TSO memory model [35] that is very similar to
x86-TSO. However, the proof of decidability does not translate well to an effi-
cient decision procedure, and real-world programs are much more complex than
the finite-state systems used in the decidability proof.

For this reason, we would need to introduce unbounded store buffers to prop-
erly verify real-world programs. Unfortunately, this can be impractical, especially
for programs which do not terminate. Therefore, our program transformation
inserts store buffers of limited size, limiting thus the number of store operations
that can be delayed at any given time. The size of the store buffers is fully
configurable, and it currently defaults to 32, a value probably high enough to
discover most bugs which can be observed on a real hardware.

Our implementation also supports the store buffers of unlimited size (when
size is set to 0). In this mode, programs with infinite loops that write into shared
memory will not have finite state space. Therefore, DIVINE will not terminate

134 V. Štill and J. Barnat

unless it discovers an error in the program. Verification with unbounded buffers
will still terminate for terminating programs and for all programs with errors.

4 Evaluation

The implementation is available at https://divine.fi.muni.cz/2018/x86tso/,
together with information about how to use it. We compared our implemen-
tation with the stateless model checker Nidhugg [1] and the bounded model
checker CBMC [14,24]. For evaluation we used SV-COMP benchmarks from the
Concurrency category [9], excluding benchmarks with data nondeterminism5 as
our focus is on performance of relaxed memory analysis, not on handling of
nondeterministic values. Furthermore, due to the limitation of stateless model
checking with DPOR, Nidhugg cannot handle data nondeterminism at all. There
are 55 benchmarks in total.

The evaluation was performed on a machine with 2 dual core Intel Xeon 5130
processors running at 2 GHz with 16 GB of RAM. Each tool was running with
memory limit set to 10 GB and time limit set to 1 h. The tools were not limited
in the number of CPUs they can use.

We have used CBMC version 5.8 with the option --mm tso. Since there is no
official release of Nidhugg, we have used version 0.2 from git, commit id 375c554
with -tso option to enable relaxed memory support and inserted a definition of
the VERIFIER error function. For DIVINE, we have used the --svcomp option
to enable support for SV-COMP atomic sections (which are supported by default
by CBMC and Nidhugg), and we disabled nondeterministic memory failure by
using the divine check command (SV-COMP does not consider the possibility
of allocation failure). To enable x86-TSO analysis, --relaxed-memory tso is
used for DIVINE.6 The buffer bound was the default value (32) unless stated
otherwise.

Table 1. Comparison of the default configuration of DIVINE with CBMC and Nidhugg.

CBMC Nidhugg DIVINE

Finished 21 25 27

TSO bugs 3 3 9

Unique 5 3 5

Table 1 compares performance of the default configuration of DIVINE with
the remaining tools. The line “finished” shows the total number of benchmarks
for which the verification task finished with the given limits. From these the line
5 I.e., all the benchmarks which contain calls to functions of the VERIFIER nondet *

family were excluded.
6 The complete invocation is divine check --svcomp --relaxed-memory tso

BENCH.c.

https://divine.fi.muni.cz/2018/x86tso/

Model Checking of C++ Programs Under the x86-TSO Memory Model 135

“TSO bugs” shows the number of errors caused by relaxed memory in bench-
marks which were not supposed to contain any bugs under sequential consistency.
All discovered errors were manually checked to really be observable under the
x86-TSO memory model. Finally, “unique” shows the number of benchmarks
solved only by the given tool and not the other two. There were only 8 bench-
marks solved by all three tools, all of them without any errors found.

Table 2. Comparison of various configurations of DIVINE. The “base” version uses
none of the improvements from Sect. 3.4. The configurations marked with “s” add the
static local variable optimization, while the configurations marked with “d” add the
dynamic detection of non-shared memory objects. The “+sdu” configuration has both
optimizations enabled and it has unbounded buffers. Finally, the “+sd4” has buffer
bound set to 4 entries instead of the default 32 entries. The default version is “+sd”.

Base +s +d +sd +sdu +sd4

Finished 26 26 27 27 27 27

TSO bugs 8 8 9 9 9 9

Table 3. Comparison of various versions of DIVINE on benchmarks on the 26 which
all the versions finished. For the description of these versions, please refer to Table 2.

Base +s +d +sd +sdu +sd4

States 252 k 263 k 250 k 231 k 206 k 296 k

Time 2:14:49 2:17:13 1:09:23 1:05:05 0:58:28 1:24:59

Table 2 shows effects of buffer size bound and improvements described in
Sect. 3.4. It can be seen that all versions perform very similarly, only one more
benchmark was solved by the versions with dynamic shared object detection
(the remaining solved benchmarks were the same for all versions). The number
of solved benchmarks remains the same regardless of used store buffer bound.

Table 3 offers more detailed look at the 26 benchmarks solved by all versions
of DIVINE. It shows the aggregate differences in state space sizes and solving
times. It can be seen that the dynamic shared object detection improves perfor-
mance significantly. Interestingly, we can see that of the 3 versions which differ
only in store buffer size (“+sd”, “+sdu”, and “+sd4”), the unbounded version
performs the best. We expect this to be caused by the nondeterminism in flush-
ing the excessive entries out of the store buffer when the bound is reached – this
can trigger flushing of matching entries from other store buffers and therefore
increase nondeterminism.

136 V. Štill and J. Barnat

5 Related Work

There are numerous techniques for analysis of programs with respect to relaxed
memory.

Verification of Absence of SC Violations. For these methods, the question is
whether a program, when running under a relaxed memory model, exhibits
any runs not possible under sequential consistency. This problem is explored
under many names, e.g. (TSO-)safety [12], robustness [11,16], stability [4], and
monitoring of sequential consistency [13]. A similar techniques are used in [40]
to detect data races in Java programs. A related problem of correspondence
between a parallel and sequential implementation of a data structure is explored
in [29]. Some of these techniques can also be used to insert memory fences into
the programs to recover sequential consistency.

Neither of these techniques is directly comparable to our method. For these
techniques, a program is incorrect if it exhibits relaxed behavior, while for us, it is
incorrect if it violates specification (e.g., assertion safety and memory safety). In
practice, the appearance of relaxed behavior is often not a problem, provided the
overall behavior of the data structure or algorithm matches desired specification.
In many lock-free data structures, a relaxed behavior is essential to achieving
high performance.

Direct Analysis Techniques. There are multiple methods for analysis of relaxed
memory models based on program transformation. In [3] a transformation-based
technique for the x86, POWER, and ARM memory models is presented. Another
approach to program transformation is taken in [7], in this case, the transforma-
tion uses context switch bounding but not buffer bounding, and it uses additional
copies for shared variables for TSO simulation. In [2] the context-bounded anal-
ysis using transformation is applied to the POWER memory model. Our work
in [36] presents a transformation of LLVM bitcode to simulate buffer-bounded
x86-TSO runs; compared to this work it has significantly less efficient implemen-
tation of the x86-TSO simulation.

A stateless model checking [20] approach to the analysis of programs run-
ning under the C++11 memory model (except for the release-consume synchro-
nization) is presented in [28]. In [41] the authors focus mostly on modeling of
TSO and PSO and its interplay with dynamic partial order reduction (DPOR,
[18]). They combine modeling of thread scheduling nondeterminism and memory
model nondeterminism using store buffers to a common framework by adding
shadow thread for each store buffer which is responsible for flushing contents
of this buffer to the memory. Another approach to combining TSO and PSO
analysis with stateless model checking is presented in [1]. The advantage of this
approach is that for a program without relaxed behavior it should produce no
additional traces compared to sequential consistency. Another approach to state-
less model checking is taken in [23], which uses execution graphs to explore all
behavior of a C/C++ program under a modified C++11 memory model without
exploring its interleaving directly.

Model Checking of C++ Programs Under the x86-TSO Memory Model 137

So far, all of the described techniques used some kind of bounding to achieve
efficiency – either bounding number of reordered operations, number of context
switches, or number of iterations of loops. An unbounded approach to verifica-
tion of programs under TSO is presented in [26]. It uses store buffers represented
by automata and leverages cycle iteration acceleration to get a representation
of store buffers on paths which would form cycles if values in store buffers were
disregarded. It does not, however, target any real-world programming language.
Instead, it targets a modified Promela language [21]. Another unbounded app-
roach is presented in [10] – it introduces TSO behaviors lazily by iterative refine-
ment, and while it is not complete, it should eventually find all errors.

Other Methods. In [30], the SPARC hierarchy of memory models (TSO, PSO,
RMO) is modeled using encoding from assembly to Murϕ [17]. In [22] an explicit
state model checker for C# programs (supporting subset of C#/.NET bytecode)
which uses the .NET memory model is presented. The verifier first verifies pro-
gram under SC and then it explores additional runs allowed under the .NET
memory model. The implementation of the exploration algorithm uses a list of
delayed instructions to implement instruction reordering. The work [15] presents
verification of (potentially infinite state space) programs under TSO and PSO
(with bounded store buffers) using predicate abstraction.

A completely different approach is taken in [38]. This work introduces a
separation logic GPS, which allows proving properties about programs using (a
fragment of) the C11 memory model. That is, this work is intended for manual
proving of properties of parallel programs, not for automatic verification. The
memory model is not complete; it lacks relaxed and consume-release accesses.
Another fragment of the C11 memory model is targeted by the RSL separation
logic introduced in [39].

6 Conclusion

We showed that by careful design of simulation of relaxed memory behaviour we
can use the standard model checker supporting only the sequential consistency to
efficiently detect relaxed memory errors in programs that are otherwise correct
under sequentially consistent memory. Moreover, according to our experimental
evaluation, our explicit-state model checking approach outperforms a state-of-
the-art stateless model checker as well as bounded model checker, which is actu-
ally quite an unexpected result. We also show that many of the used benchmarks
can be solved only by one or two of the three evaluated tools, which highlights
the importance of employing different approaches to analysis of programs under
relaxed memory. Finally, we show that for terminating programs, our approach
is viable both with bounded and unbounded store buffer size.

138 V. Štill and J. Barnat

References

1. Abdulla, P.A., Aronis, S., Atig, M.F., Jonsson, B., Leonardsson, C., Sagonas, K.:
Stateless model checking for TSO and PSO. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 353–367. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 28

2. Abdulla, P.A., Atig, M.F., Bouajjani, A., Ngo, T.P.: Context-bounded analysis for
POWER. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp.
56–74. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5 4

3. Alglave, J., Kroening, D., Nimal, V., Tautschnig, M.: Software verification for weak
memory via program transformation. In: Felleisen, M., Gardner, P. (eds.) ESOP
2013. LNCS, vol. 7792, pp. 512–532. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37036-6 28

4. Alglave, J., Maranget, L.: Stability in weak memory models. In: Gopalakrishnan,
G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 50–66. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22110-1 6

5. Alglave, J., Maranget, L., Tautschnig, M.: Herding cats: modelling, simulation,
testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst.
36(2), 7:1–7:74 (2014)

6. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification
problem for weak memory models. In: POPL, pp. 7–18. ACM, New York (2010)

7. Atig, M.F., Bouajjani, A., Parlato, G.: Getting rid of store-buffers in TSO analysis.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 99–115.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 9

8. Baranová, Z., et al.: Model checking of C and C++ with DIVINE 4. In: D’Souza, D.,
Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 201–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 14

9. Beyer, D.: Software verification with validation of results. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 331–349. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 20

10. Bouajjani, A., Calin, G., Derevenetc, E., Meyer, R.: Lazy TSO reachability. In:
Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp. 267–282. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-9 18

11. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp.
533–553. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-
6 29

12. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70545-1 12

13. Burnim, J., Sen, K., Stergiou, C.: Sound and complete monitoring of sequential
consistency for relaxed memory models. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 11–25. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-19835-9 3

14. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

15. Dan, A.M., Meshman, Y., Vechev, M., Yahav, E.: Predicate abstraction for relaxed
memory models. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol.
7935, pp. 84–104. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
38856-9 7

https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1007/978-3-642-37036-6_28
https://doi.org/10.1007/978-3-642-37036-6_28
https://doi.org/10.1007/978-3-642-22110-1_6
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/978-3-319-68167-2_14
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-46675-9_18
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-540-70545-1_12
https://doi.org/10.1007/978-3-642-19835-9_3
https://doi.org/10.1007/978-3-642-19835-9_3
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-642-38856-9_7
https://doi.org/10.1007/978-3-642-38856-9_7

Model Checking of C++ Programs Under the x86-TSO Memory Model 139

16. Derevenetc, E., Meyer, R.: Robustness against power is PSpace-complete. In:
Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014.
LNCS, vol. 8573, pp. 158–170. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-43951-7 14

17. Dill, D.L.: The Mur φ verification system. In: Alur, R., Henzinger, T.A. (eds.) CAV
1996. LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-61474-5 86

18. Flanagan, C., Godefroid, P.: Dynamic partial-order reduction for model checking
software. In: POPL, pp. 110–121. ACM, New York (2005)

19. Flur, S., et al.: Modelling the ARMv8 architecture, operationally: concurrency and
ISA. In: POPL, pp. 608–621. ACM, New York (2016)

20. Godefroid, P.: Model checking for programming languages using VeriSoft. In:
POPL, pp. 174–186. ACM, New York (1997)

21. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997)

22. Huynh, T.Q., Roychoudhury, A.: A memory model sensitive checker for C#. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 476–491.
Springer, Heidelberg (2006). https://doi.org/10.1007/11813040 32

23. Kokologiannakis, M., Lahav, O., Sagonas, K., Vafeiadis, V.: Effective stateless
model checking for C/C++ concurrency. In: Proceedings of the ACM on Pro-
gramming Languages, vol. 2, pp. 17:1–17:32, December 2017

24. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

25. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comput. 28(9), 690–691 (1979)

26. Linden, A., Wolper, P.: An automata-based symbolic approach for verifying pro-
grams on relaxed memory models. In: van de Pol, J., Weber, M. (eds.) SPIN 2010.
LNCS, vol. 6349, pp. 212–226. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16164-3 16

27. Mador-Haim, S., et al.: An axiomatic memory model for POWER multiprocessors.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 495–512.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 36

28. Norris, B., Demsky, B.: CDSchecker: checking concurrent data structures written
with C/C++ atomics. In: OOPSLA, pp. 131–150. ACM, New York (2013)

29. Peizhao, O., Demsky, B.: Checking concurrent data structures under the C/C++11
memory model. SIGPLAN 52(8), 45–59 (2017)

30. Park, S., Dill, D.L.: An executable specification, analyzer and verifier for RMO
(Relaxed Memory Order). In: SPAA, pp. 34–41. ACM, New York (1995)

31. Pulte, C., Flur, S., Deacon, W., French, J., Sarkar, S., Sewell, P.: Simplifying ARM
concurrency: multicopy-atomic axiomatic and operational models for ARMv8. In:
Proceedings of the ACM on Programming Languages, vol. 2, pp. 19:1–19:29,
December 2017

32. Ročkai, P., Štill, V., Černá, I., Barnat, J.: DiVM: model checking with LLVM and
graph memory. J. Syst. Softw. 143, 1–13 (2018)

33. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding
POWER multiprocessors. In: PLDI, pp. 175–186. ACM, New York (2011)

34. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: X86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7),
89–97 (2010)

https://doi.org/10.1007/978-3-662-43951-7_14
https://doi.org/10.1007/978-3-662-43951-7_14
https://doi.org/10.1007/3-540-61474-5_86
https://doi.org/10.1007/3-540-61474-5_86
https://doi.org/10.1007/11813040_32
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1007/978-3-642-16164-3_16
https://doi.org/10.1007/978-3-642-16164-3_16
https://doi.org/10.1007/978-3-642-31424-7_36

140 V. Štill and J. Barnat

35. CORPORATE SPARC International, Inc.: The SPARC Architecture Manual (Ver-
sion 9). Prentice-Hall Inc, Upper Saddle River (1994)

36. Štill, V., Ročkai, P., Barnat, J.: Weak memory models as LLVM-to-LLVM trans-
formations. In: Kofroň, J., Vojnar, T. (eds.) MEMICS 2015. LNCS, vol. 9548, pp.
144–155. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29817-7 13

37. Štill, V., Ročkai, P., Barnat, J.: Using off-the-shelf exception support components
in C++ verification. In: QRS, pp. 54–64. IEEE, July 2017

38. Turon, A., Vafeiadis, V., Dreyer, D.: GPS: navigating weak memory with ghosts,
protocols, and separation. In: OOPSLA, pp. 691–707. ACM, New York (2014)

39. Vafeiadis, V., Narayan, C.: Relaxed separation logic: a program logic for C11 con-
currency. In: OOPSLA, pp. 867–884. ACM, New York (2013)

40. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: Memory-model-sensitive data race
analysis. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol.
3308, pp. 30–45. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
30482-1 11

41. Zhang, N., Kusano, M., Wang, C.: Dynamic partial order reduction for relaxed
memory models. In: PLDI, pp. 250–259. ACM, New York (2015)

https://doi.org/10.1007/978-3-319-29817-7_13
https://doi.org/10.1007/978-3-540-30482-1_11
https://doi.org/10.1007/978-3-540-30482-1_11

Network Systems

Modeling and Verifying NDN Access
Control Using CSP

Yuan Fei and Huibiao Zhu(B)

Shanghai Key Laboratory of Trustworthy Computing,
School of Computer Science and Software Engineering,

East China Normal University, Shanghai, China
hbzhu@sei.ecnu.edu.cn

Abstract. Named Data Networking (NDN) is a new promising architec-
ture of information-centric networking. NDN could not reuse the exist-
ing access control solutions designed for the IP architecture due to their
fundamental difference of design, as well as NDNs caching property. As
a result, several access control solutions have been proposed for NDN.
One of them is specially for both closed and open environment. In this
paper, we make the very first attempt to model and verify several impor-
tant properties of NDN access control. We adopt CSP (Communicat-
ing Sequential Processes) to model the NDN access control proposed by
Hamdane et al., as well as their security properties. By feeding the models
into the model checker PAT (Process Analysis Toolkit), we have verified
that the NDN access control cannot prevent the NK key pair faking and
the data leakage with the appearance of intruders. We introduce a new
method to solve these issues. Considering the situation when the entities
are invaded, we also improve our method to make the NDN access con-
trol strong enough to maintain the property of key authenticity and data
security in this vulnerable situation. We hope that our study would help
enhancing the adaptability and robustness of the NDN access control.

Keywords: Modeling · Verification · Named Data Networking (NDN)
Access control

1 Introduction

Named Data Networking (NDN) [20] is one of the leading architectures in
Information-Centric Networking (ICN) that aims to resolve the existing prob-
lems in TCP/IP Internet [1,3]. Although TCP/IP-based network has shown
great resilience over the years, it cannot support the newly evolving content dis-
tribution model successfully, as users gradually pay more attention to named
content rather than its location. NDN emerges as one of the promising archi-
tectures in ICN, where each packet does not carry an IP address but a data
name. The data producers mean publishers and the data consumers represent
subscribers in NDN. When a data consumer needs a data, it sends out an Inter-
est packet with a required name of the data. According to the name, routers
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 143–159, 2018.
https://doi.org/10.1007/978-3-030-02450-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_9&domain=pdf

144 Y. Fei and H. Zhu

forward the packets over the network, and a Data packet with a matching name
will be returned to the consumer when it is produced by some data producer.

As an fundamental aspect of network security, access control is strongly corre-
lated with other security services such as authenticity, auditing and authorizations
[16]. Generally, the main purpose of access control is to regulate who can view or
use resources in a computing environment. Traditional mechanisms of access con-
trol focus on the IP addresses of end hosts. Such host-centric access control models
cannot be easily adapted into NDN. As Data packets are cached in ContentStore
at NDN routers for effective data delivery, they may be obtained by the consumers
without access right. New access control models are called for NDN.

Some solutions have been proposed for ICN architectures including NDN
with several limits. Using data encryption is a natural and intuitive approach
for building access control. Chen et al. [5] proposed an encryption and probabil-
ity based access model for NDN. The bloom-filter data structure applied in this
model is suitable for video streaming service, but may reduce the efficiency in
other scenarios. In Misra et al. [12], content are encrypted by a symmetric data
key whose dissemination is supported by Broadcast Encryption (BE). However,
BE is limited to a context where the number of users is not infinite. As the
prototype of NDN, CCNx introduced a simple access control solution [7], which
allows the control of the rights of reading, writing and management. Unfortu-
nately, its lazy revocation produces a possible situation where a revoked entity
reads protected content. To address these limits, Hamdane et al. [8] introduced
a new encryption-based NDN access control.

We found that the verification of the security of NDN access control is still
challenging. In this paper, we made the very first step to model and verify the
NDN access control proposed in [8] using classical process algebra language CSP
(Communicating Sequential Processes) [4,9]. Moreover, we also choose the model
checker tool PAT (Process Analysis Toolkit) [13,18] to verify several safety and
liveness properties, including deadlock freedom, data availability, key authen-
tication and data security. The verification results demonstrate that when the
intruder eavesdrops and modifies messages, the models built from the original
NDN access control cannot resist the NK (node key) key pair faking and the
data leakage. By introducing the digital signature method, our modified models
can satisfy key authentication and data security properties. Then we introduce
the scenario of invaded entity to our model, and find out that the two prop-
erties can no longer be maintained. We propose the digital certificate method
and apply it in our model. Then the verification results show that our updated
models regain the two properties again. Our work provides security for access
control, and makes it be more adaptive to complicated network environment.

The rest of the paper is organized as follows. Section 2 gives a brief intro-
duction of NDN access control, as well as the introduction of CSP. Section 3
is devoted to the modelling of NDN access control. In Sect. 4, we apply model
checker PAT to verify deadlocks, data availability, key authentication and data
security, and also give the improvement for better safety performance. Finally,
Sect. 5 concludes and discusses future work.

Modeling and Verifying NDN Access Control Using CSP 145

2 Background

In this section, we introduce the NDN access control [8]. We also give a brief
introduction to CSP.

2.1 NDN Access Control

Hamdane et al. propose an access control solution for NDN based on data
encryption, which is valid both in closed and opened environment. Symmet-
ric data key DK is used to encrypt the data produced by a writer. A pair of keys
(NK encryption, NKdecryption) is specially used to encrypt DK. Similar to public
and private keys, NK encryption is used for encryption and NK decryption does the
decryption job. However, both of them are secret.

The establishment of this access control solution is mainly based on the
entities as below:

• Readers and writers: They correspond to users with the read and write
rights respectively. Readers want to read the encrypted data. Writers are
responsible for producing the encrypted data.

• Access Control Manager (ACM): It is introduced to control the man-
agement of the access control policy.

• Network Nodes (NN): They guarantee content delivery to transit message
between entities and ACM.

We simplify some steps of read and write operations in [8] and only retain the
processing related with keys and data. Fig. 1 illustrates the packet propagation
of read and write operations in closed environments. As NN is only responsible
to transit message to ACM, Readeri and Writeri are communicating with ACM
essentially.

• Read Operation Process: Readeri sends the required Data name to ACM
(step a.1). ACM replies Readeri with Data packet including Data encrypted
with data key DK (step a.2). Readeri knows the name of data key DK and
sends the Interest to ACM (step a.3). ACM uses NKencryption to encrypt DK
and creates a Data packet to send back to Readeri (step a.4). Readeri sends
the Interest packet carrying name of key pair (NKencryption, NKdecryption)
to ACM (step a.5). ACM returns all the hash value of public keys (step a.6).
Readeri gives ACM with NK name and its hash value of public key (step
a.7). ACM uses the related public key to encrypt NKdecryption to produce a
Data packet for ACM (step a.8).

• Write Operation Process: Assuming that Writeri knows the name of key
pair (NKencryption, NKdecryption) in advance, it sends an Interest packet
containing NK name to ACM (step b.1). ACM returns a Data packet with
all the hash values of public keys that ACM has already known (step b.2).
Then Writeri recognizes its own hash and transmits it together with NK
name as a new Interest to ACM (step b.3). ACM recognizes which writer
it is communicating with, and uses Writeri’s public key to encrypt key pair

146 Y. Fei and H. Zhu

Fig. 1. Packet propagation of read and write operations in closed environments

(NKencryption, NKdecryption). This is added to a new Data packet which is
fed back to ACM (step b.4). Then Writeri sends Data encrypted with data
key DK to ACM (step b.5). ACM learns DK name and sends the Interest
to Writeri (step b.6). Writeri then uses NKencryption to encrypt DK and
produces a new Data packet as a reply (step b.7).

2.2 A Brief Introduction of CSP

In this subsection, we give a short introduction to CSP (Communicating Sequen-
tial Processes) [4,9]. It is a process algebra proposed by Hoare in 1978. As one
of the most mature formal methods, it is tailored for describing the interaction
between concurrency systems by mathematical theories. Because of its well-
known expressive ability, CSP has been widely used in many fields [6,11,14,15].

CSP processes are constituted by primitive processes and actions. We use
the following syntax to define the processes in this paper, whereby P and Q
represent processes, the alphabets α(P) and α(Q) mean the set of actions that
the processes P and Q can take respectively, and a and b denote the atomic
actions and c stands for the name of a channel.

P,Q = Skip | Stop | a → P | c?x → P | c!e → P | P�Q | P‖Q | P|||Q | P � b � Q | P;Q

where:

• Skip stands for a process which only terminates successfully.
• Stop represents that the process does nothing and its state is deadlock.
• a → P first performs action a, then behaves like P.
• c?x → P receives a message by the channel c and assigns it to a variable x,

then does the subsequent behavior like P.

Modeling and Verifying NDN Access Control Using CSP 147

• c! e → P sends a message e through the channel c, then performs P.
• P�Q acts like either P or Q and the environment decides the selection.
• P ‖ Q shows the parallel composition between P and Q.
• P|||Q indicates the process chooses to perform actions in P and Q randomly.
• P � b � Q denotes if the condition b is true, the process behaves like P,

otherwise, like Q.
• P;Q executes P and Q sequentially.

3 Modeling NDN Access Control

3.1 Sets, Messages and Channels

In order to model the behavior between the writers/readers and the ACM in
Fig. 1, we need to give the fundamental information about sets, messages and
channels. We assume the existence of some sets used in the models. Entity set
represents entities including writers, readers and ACM. Name set denotes NK
names, Data names and DK names. Key set is constituted by keys. Content
set contains the content to be encrypted. Ack set consists of acknowledgments.

Interest and Data packets transmitted between entities and internal process-
ing procedures of entities are two core elements of modeling. With the help of the
previously defined sets, we abstract them into different messages. Each message
includes a tag from the set {msgint,msgdat,msgack,msgpro}. In addition, we use
the form E (k) and H (k) to represent the encryption and the hash of key k. The
definition of messages is given as below.

MSGint = {msgint.a.b.n,msgint.a.b.n.H(k) | a, b ∈ Entity,n ∈ Name, k ∈ Key}
MSGdat1 = {msgdat.a.b.n.H(k),msgdat.a.b.n.E(k, c),msgdat.a.b.n.c |

a, b ∈ Entity,n ∈ Name, k ∈ Key, c ∈ Content}
MSGdat2 = {msgdat.a.b.n.H(k).E(k, c) | a, b ∈ Entity,n ∈ Name, k ∈ Key, c ∈ Content}
MSGack = {msgack.x | x ∈ Ack}
MSGpro = {msgpro.E(k1, c1).k,msgpro.E(k1, c1).E(k2, c2).k,

msgpro.E(k1, c1).E(k2, c2).E(k3, c3).k |
k, k1, k2, k3 ∈ Key, c1, c2, c3 ∈ Content}

MSGout = MSGint ∪ MSGdat1∪dat2 MSGin = MSGack ∪ MSGpro

MSG = MSGin ∪ MSGout

MSG int and MSGdat1∪dat2 represent Interest packets and Data packets
respectively. MSGpro denotes the messages sent to the process specially for inter-
nal processing and MSGack represents the feedbacks produced by the process.
MSGout represents messages transmitted between entities. MSG in denotes inter-
nal processing messages of entities.

We also give the three definitions of channels to model the communications
between processes.

– channels between readers (writers) and ACM, denoted by COM PATH :
ComWM, ComRM

148 Y. Fei and H. Zhu

– channels of intruders who intercept readers, writers and ACM, represented
by INTRUDER PATH :

FakeWM1, FakeWM2, FakeRM1, FakeRM2
– channels of processing messages, depicted by PROCESS PATH :

CheckNK, GetData
The declarations of channels are as below.

Channel COM PATH, INTRUDER PATH : MSGout

Channel PROCESS PATH : MSGin

INTUDER

ComRM
ACM_RREADER

SystemRI

FakeRM1 FakeRM2

CheckNK

SystemR

PROCESS

GetData
ComRM

ACM_RREADER

CheckNK

PROCESS

GetData

INTUDER

ComRM
ACM_WWRITER

SystemWI

FakeRM1 FakeRM2

CheckNK

SystemW

PROCESS

GetData

ACM_WWRITER

CheckNK

PROCESS

GetData

ComRM

Fig. 2. Interprocess communication between processes in models

3.2 Overall Modeling
We formalize the read and write operations and consider the existence of intrud-
ers. The models are built as below.

SystemR =df READER(R,M,K,NN,ND,NDK)[|PROCESS PATH|]PROCESS

[|COM PATH|]ACM R(R,M,DK,DATA,NK e,NK d,HL)

SystemW =df WRITER(W,M,K,NN,DK,DATA)[|PROCESS PATH|]PROCESS

[|COM PATH|]ACM W(W,M,HL,NK e,NK d,NDK)

SystemRI =df SystemR[|INTRUDER PATH|]INTUDER

SystemWI =df SystemW[|INTRUDER PATH|]INTUDER

READER and WRITER, as their names imply, represent the reader and the
writer. ACM R and ACM W denote the behavior of ACM when it communicates
with readers and writers respectively. PROCESS denotes the internal processing
procedure. Considering the situation when intruders exist, we also build process
INTRUDER to simulate the behavior of intruders who eavesdrop and modify
messages.

We use P [|A|]Q to denote the parallel composition of P and Q, synchronizing
on the events in set A. Fig. 2 illustrates interprocess communication between
processes in four models. There are several constants appeared in models, we
give their meanings and their relationship with pre-defined sets in Table 1. We
also list the significance of variables used in our models in Table 2.

Modeling and Verifying NDN Access Control Using CSP 149

Table 1. The relationship between involved constants and pre-defined sets

Set Constants

Entity R(reader), W(writer), M(ACM)

Name NN(NK key pair name), NDK(data key name), ND(data name)

Key K(public key), K−1(private key), DK(data key), NK e(NKencryption),
NK d(NKdecryption), NK e f(fake NKencryption), NK d f(fake NKdecryption)

Content DATA(data), HL(hash list), NK e(NKencryption), NK d(NKdecryption),
NK e f(fake NKencryption), NK d f(fake NKdecryption)

Ack YES(positive feedback), NO(negative feedback)

Table 2. The relationship between involved variables and pre-defined sets

Set Variables

Entity r(reader), w(writer), m(ACM)

Name nn(NK key pair name), ndk(data key name), nd(data name)

Key k,k1,k2(public key), k−1,k1−1,k2−1(private key), dk,dk1(data key),
nk e,nk e1(true/fake NKencryption), nk d(true/fake NKdecryption)

Content data(data), hl(hash list), nk e,nk e1(true/fake NKencryption),
nk d(true/fake NKdecryption)

Ack ack,ack1(positive/negative feedback)

3.3 Reader Modeling

We first formalize process READER0 to describe the behavior of a reader.

READER0(r,m, k,nn,nd,ndk) =df

Initialization{n = false; d = false} → ComRM!msgint.r.m.nd →
ComRM?msgdat.m.r.nd.E(dk, data) → ComRM!msgint.r.m.ndk →
ComRM?msgdat.m.r.ndk.E(nk e, dk1) → ComRM!msgint.r.m.nn →
ComRM?msgdat.m.r.nn.hl → ComRM!msgint.r.m.nn.H(k1) →
ComRM?msgdat.m.r.nn.H(k1).E(k1,nk d) →
CheckNK!msgpro.E(k1,nk d).k

−1 → CheckNK?msgack.ack →(
(NKFakingSuccess{n = true} → SKIP)
�(ack == YES) � (NKFakingError{n = false} → SKIP)

)
;

GetData!msgpro.E(dk, data).E(nk e, dk1).nk d → GetData?msgack.ack1 →(
(DataAcquisitionSuccess{d = true} → SKIP)
�(ack1 == YES) � (DataAcquisitionError{d = false} → SKIP)

)
;

READER0(r,m, k,nn,nd,ndk)

Boolean variable n and d indicate that NK key pair faking and data acquisi-
tion are successful or not. First, READER0 initializes the two variables. The fol-
lowing eight actions on channel ComRM correspond to a.1–a.8 steps of Readeri
in Fig. 1 in order. By channel CheckNK, we check whether the value carried by

150 Y. Fei and H. Zhu

nk d is faked or not. We also learn whether Data is obtained successfully using
channel GetData.

In order to allow the possibility of intruder action, we need to allow the
message on channel ComRM to be intercepted or faked. We do this via renaming.
In addition, {|c|} denotes the set of all communications over channel c.

READER(r,m, k,nn,nd,ndk) =df

READER0(r,m, k,nn,nd,ndk)[[

ComRM?{|ComRM|} ← ComRM?{|ComRM|},ComRM?{|ComRM|} ← FakeRM2?{|ComRM|},
ComRM!{|ComRM|} ← ComRM!{|ComRM|},ComRM!{|ComRM|} ← FakeRM2!{|ComRM|}]]

READER will perform either an action on channel ComRM or channel
FakeRM2 whenever READER0 performs a corresponding action on channel
ComRM. Besides, READER and READER0 perform the same action.

3.4 Writer Modeling

Process WRITER0 catches the behavior of a writer.

WRITER0(w,m, k,nn,nd, dk, data) =df

Initialization{n = false} → ComWM!msgint.w.m.nn → ComWM?msgdat.m.w.nn.hl →
ComWM!msgint.w.m.nn.H(k1) → ComWM?msgdat.m.w.nn.H(k1).E(k1, (nk e,nk d)) →
ComWM!msgdat.w.m.nd.E(dk, data) → ComWM?msgint.m.w.ndk →
ComWM!msgdat.w.m.ndk.E(nk e, dk) →
CheckNK!msgpro.E(k1, (nk e,nk d)).k

−1 → CheckNK?msgack.ack →(
(NKFakingSuccess{n = true} → SKIP)
�(ack == YES) � (NKFakingError{n = false} → SKIP)

)
;

WRITER0(w,m, k,nn,nd, dk, data)

After initializing the variable, WRITER0 performs seven actions on chan-
nel ComWM which correspond to b.1–b.7 steps of Writeri in Fig. 1 orderly.
WRITER0 checks whether the NK key pair is faked or not by channel CheckNK.

Using renaming, process WRITER supports the message on channel ComWM
to be intercepted or faked.

WRITER(w,m, k, nn, nd, dk, data) =df

WRITER0(w,m, k, nn, nd, dk, data)[[

ComWM?{|ComWM|} ← ComWM?{|ComWM|},ComWM?{|ComWM|} ← FakeWM2?{|ComWM|},
ComWM!{|ComWM|} ← ComWM!{|ComWM|},ComWM!{|ComWM|} ← FakeWM2!{|ComWM|}]]

WRITER and WRITER0 perform the same action except for the actions on
channel ComWM. When WRITER0 performs an action on channel ComWM,
WRITER will perform either a corresponding action on channel ComWM or
channel FakeWM2.

Modeling and Verifying NDN Access Control Using CSP 151

3.5 ACM Modeling

Modeling of ACM can be divided into two processes ACM R0 and ACM W0 to
simulate the function of the ACM for a reader and a writer respectively.

ACM R0(r,m, dk, data,nk e,nk d, hl) =df

ComRM?msgint.r.m.nd → ComRM!msgdat.m.r.nd.E(dk, data) → ComRM?msgint.r.m.ndk →
ComRM!msgdat.m.r.ndk.E(nk e, dk) → ComRM?msgint.r.m.nn → ComRM!msgdat.m.r.nn.hl →
ComRM?msgint.r.m.nn.H(k) → ComRM!msgdat.m.r.nn.H(k).E(k,nk d) →
ACM R0(r,m, dk, data,nk e,nk d, hl)

ACM W0(w,m, hl,nk e,nk d,ndk) =df

Initialization{d = false} → ComWM?msgint.w.m.nn → ComWM!msgdat.m.w.nn.hl →
ComWM?msgint.w.m.nn.H(k) → ComWM!msgdat.m.w.nn.H(k).E(k, (nk e,nk d)) →
ComWM?msgdat.w.m.nd.E(dk, data) → ComWM!msgint.w.m.ndk →
ComWM?msgdat.m.w.ndk.E(nk e1, dk1) →
GetData!msgpro.E(dk, data).E(nk e1, dk1).nk d → GetData?msgack.ack →(

(DataAcquisitionSuccess{d = true} → SKIP)
�(ack == YES) � (DataAcquisitionError{d = false} → SKIP)

)
;

ACM W0(w,m, hl,nk e,nk d,ndk)

For process ACM R0, the eight actions on channel ComRM correspond to
a.1–a.8 steps of ACM in Fig. 1 in order. In process ACM W0, the seven actions
on channel ComWM correspond to b.1–b.7 steps of ACM in Fig. 1 in turn.
ACM W0 also checks whether the data can be obtained by channel GetData.

For simulating the intercepting and faking of messages, we apply the renam-
ing to ACM R0 and ACM W0.

ACM R(r,m, dk, data, nk e, nk d, hl) =df

ACM R0(r,m, dk, data, nk e, nk d, hl)[[

ComRM?{|ComRM|} ← ComRM?{|ComRM|},ComRM?{|ComRM|} ← FakeRM1?{|ComRM|},
ComRM!{|ComRM|} ← ComRM!{|ComRM|}, ComRM !{|ComRM|} ← FakeRM1!{|ComRM|}]]
ACM W(w,m, hl, nk e, nk d, ndk) =df

ACM W0(w,m, hl, nk e, nk d, ndk)[[

ComWM?{|ComWM|} ← ComWM?{|ComWM|},ComWM?{|ComWM|} ← FakeWM1?{|ComWM|},
ComWM!{|ComWM|} ← ComWM!{|ComWM|},ComWM!{|ComWM|} ← FakeWM1!{|ComWM|}]]

Whenever ACM R0 does an action on channel ComRM, ACM R will does
a corresponding action on channel ComRM or channel FakeRM1. ACM W and
ACM W0 perform the same action on channel GetData. ACM W will perform
either an action on channel ComWM or channel FakeWM1 whenever ACM W0

performs a corresponding action on channel ComWM.

3.6 PROCESS Modeling

In order to simulate the internal processing, we use PROCESS to deal with
decrypting messages and checking the decrypted messages.

152 Y. Fei and H. Zhu

PROCESS() =df

CheckNK?msgpro.E(k1, nk d).k2
−1 →(

(checkNK!msgack.YES → PROCESS())

�((k1 == k2)&&(nk d == NK d f)) � (CheckNK!msgack.NO → PROCESS())

)

�CheckNK?msgpro.E(k1, (nk e, nk d)).k2
−1 →(

(CheckNK?msgack.YES → PROCESS())

�((k1 == k2)&&(nk e == NK e f)&&(nk d == NK d f)) � (CheckNK!msgack.NO → PROCESS())

)

�GetData?msgpro.E(dk1, data).E(nk e, dk2).nk d →⎛
⎜⎝

(GetData!msgack.YES → PROCESS())

�((((nk e == NK e)&&(nk d == NK d))||((nk e == NK e f)&&(nk d == NK d f)))

&&(dk1 == dk2)) � (GetData!msgack.NO → PROCESS())

⎞
⎟⎠

PROCESS receives one encrypted message with a decryption key by channel
CheckNK. Then it judges whether the decryption key can decrypt the message
and the decrypted message is faked or not.

Using channel GetData, PROCESS obtains two encrypted messages and a
decryption key. Then it determines whether the two encrypted messages can
both be decrypted orderly to get the data.

3.7 Intruder Modeling

We also consider the intruder as a process. It can intercept or fake messages in
the communication on channel ComRM and ComWM. First, we define the set
of facts which intruders might learn.

Fact =df {R,W,M} ∪ {NN,NDK,ND} ∪ MSGout ∪ {K,K
−1

,DK,NK e,NK d,NK e f,NK d f}
∪ {H(K)} ∪ {E(key, content) | key ∈ {K,DK,NK e,NK e f},

content ∈ {Data,DK,NK d,NK d f, (NK e,NK d), (NK e f,NK d f)}}

We also need to define how the intruder can deduce from the facts that it
has already learned. We write F �→ f if fact f can be deduced from the set of
facts F.

{K−1
,E(K, content)} �→ content {DK,E(DK, content)} �→ content

{NK d,E(NK e, content)} �→ content {NK d f,E(NK e f, content)} �→ content

{K, content} �→ E(K, content) {DK, content} �→ E(DK, content)

{NK e, content} �→ E(NK e, content) {NK e f, content} �→ E(NK e f, content)

F �→ f ∧ F ⊆ F’ ⇒ F’ �→ f

The first four rules represent decryption and the next four rules represent
encryption. The final rule denotes that if the intruder can deduce fact f from
the set of facts F, then f can also be deduced from a lager set F’.

We also give the definitions of how the intruders get new facts form messages:

Modeling and Verifying NDN Access Control Using CSP 153

Info(msgint.a.b.n) =df {a, b, n} Info(msgint.a.b.n.H(k)) =df {a, b, n,H(k)}
Info(msgdat.a.b.n.H(k)) =df {a, b, n,H(k)} Info(msgdat.a.b.n.E(k, c)) =df {a, b, n,E(k, c)}
Info(msgdat.a.b.n.c) =df {a, b, n, c} Info(msgdat.a.b.n.H(k).E(k, c)) =df {a, b, n,H(k),E(k, c)}

where a,b ∈ Entity, n ∈ Name, k ∈ Key, c ∈ Content.
At last, we define a channel Deduce to support deducing new facts.

Channel Deduce : Fact.P(Fact)

The intruder can overhear all the messages transmitted between entities. It
can deduce a new fact from ones it has already known. It can also fake some
special messages to disturb communication between entities. We now give the
formalization of INTRUDER0 as below.

INTRUDER0(F) =df

��m∈MSGout
FakeRM1?m → FakeRM2!m → INTRUDER0(F ∪ Info(m))

��m∈(MSGout\MSGdat2)FakeRM2?m → FakeRM1!m → INTRUDER0(F ∪ Info(m))

��m∈MSGdat2
FakeRM2?m → FakeRM1!m[[nk d ← NK d f]] → INTRUDER0(F ∪ Info(m))

��m∈MSGout
FakeWM1?m → FakeWM2!m → INTRUDER0(F ∪ Info(m))

��m∈(MSGout\MSGdat2)FakeWM2?m → FakeWM1!m → INTRUDER0(F ∪ Info(m))

��m∈MSGdat2
FakeWM2?m → FakeWM1!m[[(nk e, nk d) ← (NK e f,NK d f)]] → INTRUDER0(F ∪ Info(m))

��f∈Fact,f/∈F,F �→fInitialization{l = false} → Deduce.f.F →(
(DataLeakageSuccess{l = true} → INTRUDER0(F ∪ {f}))
�(f == Data) � (DataLeakageError{l = false} → INTRUDER0(F ∪ {f}))

)

When INTRUDER0 receives a message in MSGdat2, it replaces some contents
in the message to imitate a fake message and sends it to the original recipient.
When INTRUDER0 receives other message, it just eavesdrops the message and
transmits it to the original recipient. Then we can give the initial knowledge of
the intruder IK as the parameter of INTRUDER0 to build INTRUDER.

INTRUDER =df INTRUDER0(IK)

IK =df {R,W,M,K,NK e f,NK d f}

4 Verification and Improvement

In this section, we show how we will verify the four properties (deadlock freedom,
data availability, key authentication and data security) with the help of the
model checker PAT [13,18], which has been applied in various places [10,17,19].
To perform the verification, we have implemented the formal models in PAT.
According to the verification results, we also improve our models twice for better
safety performance.

154 Y. Fei and H. Zhu

4.1 Properties Verification

One of the four properties is the liveness property and the remaining are safety
properties. Some of them are described in Linear Temporal Logic (LTL) formula,
which is commonly used to describe linear-time properties. Because the four
properties will be verified for all the models in this paper, we use System() to
represent the models. PAT supports LTL formula by using the assertion #assert
P() |= F to check whether system P() satisfies LTL formula F.
Property 1: Deadlock Freedom
#assert System() deadlockfree;

We must guarantee that our models should not run into a deadlock state.
PAT owns a primitive to describe this situation.
Property 2: Data Availability
#define Data Acquisition Success d==true;
#assert System() |= <>Data Acquisition Success;

The property of data availability is a liveness property. Using the “eventually”
operator <> in LTL, we describe the situation that we need to confirm that the
data can be transmitted to the entity requiring for it.
Property 3: Key Authentication
#define NK Faking Success n==true;
#assert System() |= []!NK Faking Success;

Once the NK key pair is faked, other security issues may appear. So we use
this assertion to check whether the NK key pair can be faked successfully, using
the “always” operator [] in LTL.
Property 4: Data Security
#define Data Leakage Success l==true;
#assert System() |= []!Data Leakage Success;

The security of data should be maintained, as the leakage of data will produce
a bad effect. The assertion is built to check whether the data can be obtained
by intruders.

Verification Result. From Table 3 we learn that model SystemR, SystemW,
SystemRI and SystemW I satisfy the property of deadlock freedom. This means
that our four models will not run into a deadlock state.

The verification results of data availability are valid for SystemR and Sys-
temW. We can say that our models without intruders can assure that the entity
requiring for data can get it. The verification results of data availability for Sys-
temRI and SystemW I are invalid. These illustrate that once an intruder inter-
feres the communication between writers/readers and the ACM, the writers and
the readers cannot obtain the data any more.

The verification results of key authentication and data security for SystemR
and SystemW are valid. They show that the property of key authentication
and data security can be maintained without intruders. The verification results
of key authentication are not valid for SystemRI and SystemW I . These mean
that the NK key pair can be faked successfully in our models with intruders.

Modeling and Verifying NDN Access Control Using CSP 155

Attack 1 is the counterexample of the invalid assertion result of key authen-
ticity for SystemWI . For simplicity, we only present the messages on channel
INTRUDER PATH in all the counterexamples.

Attack1 :

A1. W → I : W.M.NN A2. I → M : W.M.NN

A3. M → I : M.W.NN.HL A4. I → W : M.W.NN.HL

A5. W → I : W.M.NN.H(K) A6. I → M : W.M.NN.H(K)

A7. M → I : M.W.NN.H(K).E(K,(NK e,NK d)) A8. I → W : M.W.NN.H(K).E(K,(NK e f,NK d f))

At first, the intruder just intercepts messages between the writer and the
ACM (A1–A6). Then it produces a dummy message (A8) including a fake NK
key pair according to the intercepted message (A7). The writer will obtain the
fake NK key pair after receiving this message.

For the data security in Table 3, SystemW I obtains the invalid result. That
is to say, the intruder can get data in SystemW I . Attack 2 shows the counterex-
ample of the invalid assertion result of the data security for SystemWI .

Attack2 :

A1. W → I : W.M.NN A2. I → M : W.M.NN

A3. M → I : M.W.NN.HL A4. I → W : M.W.NN.HL

A5. W → I : W.M.NN.H(K) A6. I → M : W.M.NN.H(K)

A7. M → I : M.W.NN.H(K).E(K,(NK e,NK d)) A8. I → W : M.W.NN.H(K).E(K,(NK e f,NK d f))

A9. W → I : W.M.ND.E(DK,Data) A10. I → M : W.M.ND.E(DK,Data)

A11. M → I : M.W.NDK A12. I → W : M.W.NDK

A13. W → I : W.M.NDK.E(NK e f,DK)

A1–A8 are the same as those in Attack 1. Then the intruder keeps on inter-
cepting messages between the writer and the ACM (A9–A12). Because the writer
has obtained the fake NK key pair, the intruder can acquire the data key DK
from A13. The data key DK can be applied to E(DK,Data) acquired from A9
to get Data.

4.2 First Model Improvement

In order to maintain the key authentication and the data security, we introduce a
method similar to digital signature. The ACM creates a special pair of key: public
key KM and private key K−1

M . We assume that KM is known by readers and writ-
ers. When producing message a.8 and message b.4 in Fig. 1, ACM uses its private
key K−1

M to encrypt (NKencryption, NKdecryption) and NKdecryption at first, like
creating a digital signature. This happens before (NKencryption, NKdecryption)
and NKdecryption are encrypted by the public key of readers and writers. When
readers and writers receive these messages, they apply KM to decrypt the digital
signature in them. If the operation succeeds, we can learn that this message is
sent by the ACM. The improved models are called SystemR Sig, SystemW Sig,

156 Y. Fei and H. Zhu

Table 3. Verification results of models

Model Property

Deadlock freedom Data availability Key authentication Data security

SystemR Valid Valid Valid Valid

SystemRI Valid Not Valid Not Valid Valid

SystemW Valid Valid Valid Valid

SystemWI Valid Not Valid Not Valid Not Valid

SystemR Sig Valid Valid Valid Valid

SystemR SigI Valid Not Valid Valid Valid

SystemW Sig Valid Valid Valid Valid

SystemW SigI Valid Not Valid Valid Valid

SystemR Sig C Valid Not Valid Valid Valid

SystemR Sig CI Valid Not Valid Not Valid Valid

SystemW Sig C Valid Not Valid Valid Valid

SystemW Sig CI Valid Not Valid Not Valid Not Valid

SystemR Dig Valid Valid Valid Valid

SystemR DigI Valid Not Valid Valid Valid

SystemW Dig Valid Valid Valid Valid

SystemW DigI Valid Not Valid Valid Valid

SystemR Dig C Valid Not Valid Valid Valid

SystemR Dig CI Valid Not Valid Valid Valid

SystemW Dig C Valid Not Valid Valid Valid

SystemW Dig CI Valid Not Valid Valid Valid

SystemR SigI and SystemW SigI . Meanwhile, the specific definitions of them
are in the appendix [2] due to the space limit.

According to the results in Table 3, the invalid verification results of data
availability for SystemR SigI and SystemW SigI illustrate that intruders will
affect the acquisition of data for entities. Besides, other verification results of
these four properties for SystemR Sig, SystemW Sig, SystemR SigI and Sys-
temW SigI are valid. These mean that this method can effectively guarantee
that the NK key pair will not be faked and the data will not be leaked.

Another situation we considered is that the public key KM known by readers
and writers is replaced by the intruder’s public key K I . The models become more
vulnerable in this situation. The modified models with invaded entities are called
SystemR Sig C, SystemW Sig C, SystemR Sig CI and SystemW Sig C I , which
are defined in the appendix [2].

From Table 3, the assertions of SystemR Sig C, SystemW Sig C, Sys-
temR Sig C I and SystemW Sig C I for data availability are invalid. These illus-
trate that the invaded reader and writer cannot get the data whether an
intruder exists or not. While verifying key authentication, the assertions of Sys-
temR Sig C I and SystemW Sig C I are invalid. This means that the NK key pair
can be faked successfully when the reader and the writer are invaded. Attack 3

Modeling and Verifying NDN Access Control Using CSP 157

illustrates the counterexample of the invalid assertion result of key authentica-
tion for SystemW Sig C I .

Attack3 :

A1. W → I : W.M.NN A2. I → M : W.M.NN

A3. M → I : M.W.NN.HL A4. I → W : M.W.NN.HL

A5. W → I : W.M.NN.H(K) A6. I → M : W.M.NN.H(K)

A7. M → I : M.W.NN.H(K). A8. I → W : M.W.NN.H(K).

E(K,E(K
−1
M ,(NK e,NK d))) E(K,E(K

−1
I ,(NK e f,NK d f)))

In the beginning, the intruder just intercepts messages between the writer and
the ACM (A1–A6). With A7 intercepted from the ACM, the intruder creates a
dummy message (A8) including the fake NK key pairs private key K−1

I . Because
the writer is invaded, it decrypts A8 successfully and gets the fake NK key pair.

The assertion of SystemW Sig C I for data security is not valid, which indi-
cates that the intruder can get data when the writer is invaded. Attack 4 dis-
plays the counterexample of the invalid assertion result of data security for Sys-
temW Sig C I .

Attack4 :

A1. W → I : W.M.NN A2. I → M : W.M.NN

A3. M → I : M.W.NN.HL A4. I → W : M.W.NN.HL

A5. W → I : W.M.NN.H(K) A6. I → M : W.M.NN.H(K)

A7. M → I : M.W.NN.H(K). A8. I → W : M.W.NN.H(K).

E(K,E(K
−1
M ,(NK e,NK d))) E(K,E(K

−1
I ,(NK e f,NK d f)))

A9. W → I : W.M.ND.E(DK,Data) A10. I → M : W.M.ND.E(DK,Data)

A11. M → I : M.W.NDK A12. I → W : M.W.NDK

A13. W → I : W.M.NDK.E(NK e f,DK)

A1–A8 are the same as those in Attack 3. So the writer has obtained the
fake NK key pair. Then the intruder continues intercepting messages between
the writer and the ACM (A9–A12). Due to A13, the intruder can acquire the
data key DK. Finally, the data key DK can be applied to E(DK,Data) acquired
from A9 to get Data.

4.3 Second Model Improvement

The solution for the situation above is to update the previous method by adding
digital certificates. Specifically, ACM provides its public key KM to the certifi-
cate authority (CA). CA uses its private key K−1

A to encrypt KM , which creates
a digital certificate E ((K−1

A),KM). After doing the same operations as those in
the first model improvement, we add this digital certificate to the end of message
a.8 and message b.4. Assuming that readers and writers know CA’s public key
KA, they will fetch the digital certificates at first when dealing with these two
messages. Then they decrypt the digital certificates using KA to get KM , which

158 Y. Fei and H. Zhu

will be compared with the public key of the ACM known by the reader/writer.
If the two keys are the same, we can conclude that the public key of the ACM
known by the reader/writer is the real key. Otherwise, the key is faked.

The improved new models are SystemR Dig, SystemW Dig, SystemR DigI
and SystemW DigI . We also give the corresponding models when the readers
and the writers are invaded: SystemR Dig C, SystemW Dig C, SystemR Dig C I

and SystemW Dig C I . These eight models are defined in the appendix [2].
All the verification results for the eight models are valid in Table 3, except the

verification results of data availability in SystemR Dig C and SystemW Dig C.
The property of data availability cannot be satisfied once the entity is invaded.
We can conclude that this new method can guarantee the property of key authen-
tication and data security no matter whether the entity is invaded or not.

5 Conclusion and Future Work

In this paper, we have conducted a formal modelling and verifying NDN access
control. We have formalized the read and write operations in closed environments
of NDN access control using the CSP process algebra, as well as the intruders.
We have used assertions to specify and verify four properties (deadlock free-
dom, data availability, key authentication and data security) for these models.
The verification results indicate that NDN access control cannot guarantee key
authentication and data security when the intruder appears. As a result, we have
introduced a method similar to digital signature and verified the updated models
with respect to the four properties. The new verification results turn out that
our method can prevent the NK key pair faking and the data leakage. Then, we
have discussed the situation that the readers and the writers are invaded, and
found out that the method cannot maintain the property of key authentication
and data security any more. Hence, we have updated our method by adding
digital certificates. The verification results indicate that our method can avoid
the fake of the NK key pair and the leakage of the data, even though the readers
and the writers are invaded. Our results would hopefully help to improvement
the adaptability and robustness of NDN access control. As for future work, we
would like to focus on the read and write operations in open environments of the
NDN access control, and consider modeling and verifying other access control
solutions of NDN.

Acknowledgement. This work was partly supported by Shanghai Collaborative
Innovation Center of Trustworthy Software for Internet of Things (No. ZF1213).

References

1. Ahlgren, B., Dannewitz, C., Imbrenda, C., Kutscher, D., Ohlman, B.: A survey of
information-centric networking. IEEE Commun. Mag. 50(7), 26–36 (2012)

2. Appendix of Modeling and Verifying NDN Access Control Using CSP. https://
github.com/asunafy/NDNAccessControl

https://github.com/asunafy/NDNAccessControl
https://github.com/asunafy/NDNAccessControl

Modeling and Verifying NDN Access Control Using CSP 159

3. Bari, M.F., Chowdhury, S.R., Ahmed, R., Boutaba, R., Mathieu, B.: A survey of
naming and routing in information-centric networks. IEEE Commun. Mag. 50(12),
44–53 (2012)

4. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential
processes. J. ACM 31(3), 560–599 (1984)

5. Chen, T., Lei, K., Xu, K.: An encryption and probability based access control model
for named data networking. In: IEEE 33rd International Performance Computing
and Communications Conference, IPCCC 2014, Austin, TX, USA, 5–7 December
2014, pp. 1–8 (2014)

6. Fei, Y., Zhu, H., Wu, X., Fang, H., Qin, S.: Comparative modelling and verification
of Pthreads and Dthreads. J. Softw.: Evol. Process 30(3), e1919 (2018)

7. Golle, J., Smetters, D.: CCNx access control specifications. Technical report, Xerox
Palo Alto Research Center-PARC (2010)

8. Hamdane, B., Boussada, R., Elhdhili, M.E., Fatmi, S.G.E.: Towards a secure access
to content in named data networking. In: 26th IEEE International Conference
on Enabling Technologies: Infrastructure for Collaborative Enterprises, WETICE
2017, Poznan, Poland, June 21–23, 2017, pp. 250–255 (2017)

9. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Upper Saddle
River (1985)

10. Liu, Y., Sun, J., Dong, J.S.: Developing model checkers using PAT. In: Bouaj-
jani, A., Chin, W.-N. (eds.) ATVA 2010. LNCS, vol. 6252, pp. 371–377. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15643-4 30

11. Lowe, G., Roscoe, A.W.: Using CSP to detect errors in the TMN protocol. IEEE
Trans. Softw. Eng. 23(10), 659–669 (1997)

12. Misra, S., Tourani, R., Majd, N.E.: Secure content delivery in information-centric
networks: design, implementation, and analyses. In: ICN 2013, Proceedings of the
3rd, 2013 ACM SIGCOMM Workshop on Information-Centric Networking, August
12, 2013, Hong Kong, China, pp. 73–78 (2013)

13. PAT: Process Analysis Toolkit. http://pat.comp.nus.edu.sg/
14. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice Hall, Upper

Saddle River (1997)
15. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science.

Springer, London (2010). https://doi.org/10.1007/978-1-84882-258-0
16. Samarati, P., de Vimercati, S.C.: Access control: policies, models, and mechanisms.

In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 137–196.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45608-2 3

17. Si, Y., et al.: Model checking with fairness assumptions using PAT. Front. Comput.
Sci. 8(1), 1–16 (2014)

18. Sun, J., Liu, Y., Dong, J.S.: Model checking CSP revisited: introducing a process
analysis toolkit. In: Margaria, T., Steffen, B. (eds.) ISoLA 2008. CCIS, vol. 17, pp.
307–322. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88479-
8 22

19. Sun, J., Liu, Y., Dong, J.S., Liu, Y., Shi, L., André, É.: Modeling and verifying
hierarchical real-time systems using stateful timed CSP. ACM Trans. Softw. Eng.
Methodol. 22(1), 3 (2013)

20. Zhang, L., et al.: Named data networking (NDN) project. Technical report, NDN-
0001, PARC (2010)

https://doi.org/10.1007/978-3-642-15643-4_30
http://pat.comp.nus.edu.sg/
https://doi.org/10.1007/978-1-84882-258-0
https://doi.org/10.1007/3-540-45608-2_3
https://doi.org/10.1007/978-3-540-88479-8_22
https://doi.org/10.1007/978-3-540-88479-8_22

The Power of Synchronisation: Formal
Analysis of Power Consumption in

Networks of Pulse-Coupled Oscillators

Paul Gainer , Sven Linker(B) , Clare Dixon, Ullrich Hustadt ,
and Michael Fisher

University of Liverpool, Liverpool, UK
{p.gainer,s.linker,cldixon,u.hustadt,mfisher}@liverpool.ac.uk

Abstract. Nature-inspired synchronisation protocols have been widely
adopted to achieve consensus within wireless sensor networks. We anal-
yse the power consumption of such protocols, particularly the energy
required to synchronise all nodes across a network. We use the model of
bio-inspired, pulse-coupled oscillators to achieve network-wide synchro-
nisation and provide an extended formal model of just such a protocol,
enhanced with structures for recording energy usage. Exhaustive analy-
sis is then carried out through formal verification, utilising the PRISM
model-checker to calculate the resources consumed on each possible sys-
tem execution. This allows us to investigate a range of parameter instan-
tiations and the trade-offs between power consumption and time to syn-
chronise. This provides a principled basis for the formal analysis of a
broader range of large-scale network protocols.

Keywords: Probabilistic verification · Synchronisation
Wireless sensor nets

1 Introduction

Minimising power consumption is a critical design consideration for wireless
sensor networks (WSNs) [1,20]. Once deployed a WSN is generally expected
to function independently for long periods of time. In particular, regular bat-
tery replacement can be costly and impractical for remote sensing applications.
Hence, it is important to reduce the power consumption of the individual nodes
by choosing low-power hardware and/or energy efficient protocols. However, to
make informed choices, it is also necessary to have good estimations of the power

This work was supported by the Sir Joseph Rotblat Alumni Scholarship at Liver-
pool, the EPSRC Research Programme EP/N007565/1 Science of Sensor Systems
Software and the EPSRC Research Grant EP/L024845/1 Verifiable Autonomy. The
authors would like to thank the Networks Sciences and Technology Initiative (NeST)
of the University of Liverpool for the use of their computing facilities and David
Shield for the corresponding technical support.

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 160–176, 2018.
https://doi.org/10.1007/978-3-030-02450-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_10&domain=pdf
http://orcid.org/0000-0002-5323-8501
http://orcid.org/0000-0003-2913-7943
http://orcid.org/0000-0002-0455-0267
http://orcid.org/0000-0002-0875-3862

The Power of Synchronisation 161

consumption for individual nodes. While the general power consumption of the
hardware can be extracted from data sheets, estimating the overall power con-
sumption of different protocols is more demanding.

Soua and Minet provided a general taxonomy for the analysis of wireless
network protocols with respect to energy efficiency [21] by identifying the con-
tributing factors of energy wastage, for instance packet collisions and unneces-
sary idling. These detrimental effects can be overcome by allocating time slots
for node communication. That is, nodes in a network need to synchronise their
clocks and use time slots for communication to avoid packet collisions [19,23].

Biologically inspired synchronisation protocols are well-suited for WSNs
since centralised control is not required to achieve synchrony. The protocols
build on the underlying mathematical model of pulse-coupled oscillators (PCOs)
[15,17,18]; integrate-and-fire oscillators with pulsatile coupling, such that when
an oscillator fires it induces some phase-shift response determined by a phase
response function. Mutual interactions can lead to all oscillators firing syn-
chronously.

In previous work [9] we used a population model [5,6,8] to encode informa-
tion about groups of oscillators sharing the same configuration. Furthermore,
we introduced broadcast failures where an oscillator may fail to broadcast its
message. Since WSNs operate in stochastic environments under uncertainty we
encoded these failures within a probabilistic model. Here, we extend our model
with reward structures to associate different current draws with its states, thus
enabling us to measure the energy consumption of the overall network. We
employ the probabilistic model checker Prism [14] to analyse the average and
worst-case energy consumption for both the synchronisation of arbitrarily con-
figured networks, and restabilisation of a network, where a subset of oscilla-
tors desynchronised. We derive a metric from the complex order parameter of
Kuramoto [13]. Since exact time synchronisation in real-world scenarios is not
possible, it is sufficient for all oscillators to fire within some defined time win-
dow [3].

The structure of the paper is as follows. In Sect. 2 we discuss related work,
and in Sect. 3 we introduce the general PCO model, from which we derive pop-
ulation models. Section 4 introduces the derived synchronisation metric. The
construction of the formal model used for the analysis is presented in Sect. 5.
Subsequently, in Sect. 6 we evaluate the results for certain parameter instantia-
tions and discuss their trade-offs with respect to power consumption and time
to synchronise. Section 7 concludes the paper.

2 Related Work

Formal methods, in particular model checking, have been successfully used to
model and analyse protocols for wireless sensor systems. Heidarian et al. used
model checking to analyse clock synchronisation for medium access protocols
[11]. They considered both fully-connected networks and line topologies with
up to four nodes. Model checking of biologically inspired coupled oscillators

162 P. Gainer et al.

has also been investigated by Bartocci et al. [2]. They present a subclass of
timed automata suitable to model biological oscillators, and a model checking
algorithm. However, their analysis was restricted to a network of three oscillators.

We introduced a formal population model for a network of PCOs [9], and
investigated both the probability and expected time for an arbitrarily configured
population of oscillators to synchronise. For very small devices with limited
resources, it is important to minimise the cost of low-level functionalities, such
as synchronisation. Even a floating point number may need too much memory,
compared to an implementation with, for example, a four-bit vector. Hence, in
our model the oscillators synchronise over a finite set of discrete clock values.

The oscillation cycle includes a refractory period at the start of the oscilla-
tion cycle where an oscillator cannot be perturbed by other firing oscillators.
This corresponds to a period of time where a WSN node enters a low-power
idling mode. In this work we extend this approach by introducing a metric for
global power consumption and discuss refinements of the model that allows us
to formally reason about much larger populations of oscillators.

Wang et al. proposed an energy-efficient strategy for the synchronisation
of PCOs [22]. In contrast to our work, they consider real-valued clocks and
delay-advance phase response functions, where both positive and negative phase
shifts can occur. A result of their choice of phase response function is that
synchronisation time is independent of the length of the refractory period, in
contrast to our model. Furthermore, they assume that the initial phase difference
between oscillators has an upper bound. They achieve synchrony for refractory
periods larger than half the cycle, while our models do not always synchronise
in these cases, as we do not impose a bound on the phase difference of the
oscillators. We consider all possible differences in phase since we examine the
energy consumption for the resynchronisation of a subset of oscillators.

Konishi and Kokame conducted an analysis of PCOs where a perceived pulse
immediately resets oscillators to the start of their cycle [12]. Their goal was to
maximise refractory period length, while still achieving synchronisation within
some number of clock cycles. Similarly to our work, they restricted their analysis
to a fully coupled network. They assumed that the protocol was implemented as
part of the physical layer of the network stack by using capacitors to generate
pulses, therefore their clocks were continuous and had different frequencies. We
assume that the synchronisation protocol resides on a higher layer, where the
clock values are discretised and oscillate with the same frequency.

3 Oscillator Model

We consider a fully-coupled network of PCOs with identical dynamics over dis-
crete time, since homogeneous wireless sensor networks are prevalent. The phase
of an oscillator i at time t is denoted by φi(t). The phase of an oscillator pro-
gresses through a sequence of discrete integer values bounded by some T ≥ 1.
The phase progression over time of a single uncoupled oscillator is determined
by the successor function, where the phase increases over time until it equals T ,

The Power of Synchronisation 163

at which point the oscillator will fire in the next moment in time and the phase
will reset to one. The phase progression of an uncoupled oscillator is therefore
cyclic with period T , and we refer to one cycle as an oscillation cycle.

When an oscillator fires, it may happen that its firing is not perceived by
any of the other oscillators coupled to it. We call this a broadcast failure and
denote its probability by μ ∈ [0, 1]. Note that μ is a global parameter, hence
the chance of broadcast failure is identical for all oscillators. The occurrences
of broadcast failures are statistically independent, since, the parameter μ repre-
sents detrimental effects on the communication medium itself, for example fog
impairing vision, or static electricity interfering with radio messages.

When an oscillator fires, and a broadcast failure does not occur, it perturbs
the phase of all oscillators to which it is coupled; we use αi(t) to denote the
number of all other oscillators that are coupled to i and will fire at time t. The
phase response function is a positive increasing function Δ : {1, . . . , T} × N ×
R

+ → N that maps the phase of an oscillator i, the number of other oscillators
perceived to be firing by i, and a real value defining the strength of the coupling
between oscillators, to an integer value corresponding to the perturbation to
phase induced by the firing of oscillators where broadcast failures did not occur.

We can introduce a refractory period into the oscillation cycle of each oscil-
lator. A refractory period is an interval of discrete values [1, R] ⊆ [1, T] where
1 ≤ R ≤ T is the size of the refractory period, such that if φi(t) is inside the
interval, for some oscillator i at time t, then i cannot be perturbed by other
oscillators to which it is coupled. If R = 0 then we set [1, R] = ∅, and there is
no refractory period at all. The refractory function ref : {1, . . . , T} × N → N is
defined as ref(Φ, δ) = Φ if Φ ∈ [1, R], or ref(Φ, δ) = Φ + δ otherwise, and takes
as parameters δ, the degree of perturbance to the phase of an oscillator, and Φ,
the phase, and increases the phase by δ if Φ is outside of the refractory period.

The phase evolution of an oscillator i over time is then defined as follows,
where the update function and firing predicate, respectively denote the updated
phase of oscillator i at time t in the next moment in time, and the firing of
oscillator i at time t,

updatei(t) = 1 + ref(φi(t),Δ(φi(t), αi(t), ε)), firei(t) = updatei(t) > T,

φi(t + 1) =

{
1 if firei(t)
updatei(t) otherwise.

3.1 Population Model

Let Δ be a phase response function for a network of N identical oscillators, where
each oscillator is coupled to all other oscillators, and where the coupling strength
is given by ε. Each oscillator has a phase in 1, . . . , T , and a refractory period
defined by R. The probability of broadcast failure in the network is μ ∈ [0, 1]. We
define a population model of the network as S = (Δ,N, T,R, ε, μ). Oscillators in
our model have identical dynamics, and two oscillators are indistinguishable if
they share the same phase. We therefore encode the global state of the model
as a tuple 〈k1, . . . , kT 〉 where each kΦ is the number of oscillators with phase Φ.

164 P. Gainer et al.

A global state of S is a T -tuple σ ∈ {0, . . . , N}T , where σ = 〈k1, . . . , kT 〉
and

∑T
Φ=1 kΦ = N . We denote by Γ (S) the set of all global states of S, and

will simply use Γ when S is clear from the context. Figure 1 shows four global
states of a population model of N = 8 oscillators with T = 10 discrete values
for their phase and a refractory period of length R = 2. For example σ0 =
〈2, 1, 0, 0, 5, 0, 0, 0, 0, 0〉 is the global state where two oscillators have a phase of
one, one oscillator has a phase of two, and five oscillators have a phase of five.
The starred node indicates the number of oscillators with phase ten that will
fire in the next moment in time, while the shaded nodes indicate oscillators with
phases that lie within the refractory period (one and two). If no oscillators have
some phase Φ then we omit the 0 in the corresponding node.

We distinguish between states where one or more oscillators are about to fire,
and states where no oscillators will fire at all. We refer to these states as firing
states and non-firing states respectively. Given a population model S, a global
state 〈k1, . . . , kT 〉 ∈ Γ is a firing state if, and only if, kT > 0. We respectively
denote the sets of firing and non-firing states of S by Γ F(S) and ΓNF(S).

3.2 Successor States

We now define how the global state of a population model evolves over time. Since
our population model encodes uncertainty in the form of broadcast failures, firing
states may have more than one possible successor state. We denote the transition
from a firing state σ to a possible successor state σ′ by σ → σ′. With every firing
state σ ∈ Γ F we associate a non-empty set of failure vectors, where each failure
vector is a tuple of broadcast failures that could occur in σ. A failure vector is
a T -tuple where the Φth element denotes the number of broadcast failures that
occur for all oscillators with phase Φ. If the Φth element is
 then no oscillators
with a phase of Φ fired. We denote the set of all possible failure vectors by F .
Oscillators with phase less than T may fire due to being perturbed by the firing
of oscillators with a phase of T . This is discussed in detail later in this section.
We refer the reader to [9] for a detailed description of failure vector calculations.

A non-firing state will always have exactly one successor state, as there is
no oscillator that is about to fire. Therefore, the phase of every oscillator is
simply updated by one in the next time step, until one or more oscillators fire
and perturb the phase of other oscillators. Given a sequence of global states
σ0, σ1, . . . , σn−1, σn where σ0, . . . σn−1 ∈ ΓNF and σn ∈ Γ F, we omit transitions
between σi and σi+1 for 0 ≤ i < n, and instead introduce a direct transition
from the first non-firing state σ0 to the next firing state σn in the sequence. This
is a refinement of the model presented in [9]. While the state space remains the
same the number of transitions in the model is substantially decreased. Hence
the time and resources required to check desirable properties are reduced. We
denote the single successor σ′ of a non-firing state σ by

�
succ(σ). For example, in

Fig. 1 we have
�

succ(σ0) = σ1.
For real deployments of protocols for synchronisation the effect of one or more

oscillators firing may cause other oscillators to which they are coupled to fire in

The Power of Synchronisation 165

Fig. 1. Evolution of the global state over four discrete time steps.

turn. This may then cause further oscillators to fire, and so forth, and we refer to
this event as a chain reaction. When a chain reaction occurs it can lead to multi-
ple groups of oscillators being triggered to fire and being absorbed by the initial
group of firing oscillators. These chain reactions are usually near-instantaneous
events. Since we model the oscillation cycle as a progression through a number
of discrete states, we choose to encode chain reactions by updating the phases
of all perturbed oscillators in a single time step. Since we only consider fully-
connected topologies, any oscillators sharing the same phase will always perceive
the same number of other oscillators firing.

For the global state σ1 of Fig. 1 we can see that five oscillators will fire in
the next moment in time. In the successor state σ2, the single oscillator with
a phase of seven in σ1 perceives the firing of the five oscillators. The induced
perturbation causes the single oscillator to also fire and therefore be absorbed
by the group of five. The remaining two oscillators with a phase of six in σ1

perceive six oscillators to be firing, but the induced perturbation is insufficient
to cause them to also fire, and they instead update their phases to ten.

With every firing state we have by definition that at least one oscillator is
about to fire in the next time step. Since the firing of this oscillator may, or may
not, result in a broadcast failure we can see that at least two failure vectors will
be associated with any firing state, and that additional failure vectors will be
associated with firing states where more than one oscillator is about to fire. Given
a firing state σ and a failure vector F associated with that state, we can compute
the successor of σ. For each phase Φ ∈ {1, . . . ,T} we calculate the number
of oscillators with a phase greater than Φ perceived to be firing by oscillators
with phase Φ. We simultaneously calculate updateΦ(σ, F), the updated phase of
oscillators with phase Φ, and fireΦ(σ, F), the predicate indicating whether or not
oscillators with phase Φ fired. Details of these constructions are given in [9].

We can then define the function that maps phase values to their updated val-
ues in the next moment in time. Since we do not distinguish between oscillators
with the same phase we only calculate a single updated value for their phase.
The phase transition function τ : Γ F ×{1, . . . ,T}×F → N maps a firing state σ,
a phase Φ, and a failure vector F for σ, to the updated phase in the next moment
in time, with respect to the broadcast failures defined in F , and is defined as
τ(σ, Φ, F) = 1 if fireΦ(σ, F), and τ(σ, Φ, F) = updateΦ(σ, F) otherwise.

Let UΦ(σ, F) be the set of phase values Ψ where all oscillators with phase
Ψ in σ will have the updated phase Φ in the next time step, with respect to

166 P. Gainer et al.

the broadcast failures defined in F . Formally, UΦ(σ, F) = {Ψ | Φ ∈ {1, . . . , T} ∧
τ(σ, Ψ, F) = Φ}. We can now calculate the successor state of a firing state σ and
define how the model evolves over time. Observe that the population model does
not encode oscillators leaving or joining the network, therefore the population
N remains constant. The firing successor function

→
succ : Γ F × F → Γ maps

a firing state σ and a failure vector F to a global state σ′, and is defined as→
succ(〈k1, . . . , kT 〉, F) = 〈k′

1, . . . , k
′
T 〉, where k′

Φ=
∑

Ψ∈UΦ(σ,F) kΨ for 1 ≤ Φ ≤ T .

3.3 Transition Probabilities

We now define the probabilities that will label the transitions in our model. Given
a global state σ ∈ Γ , if σ is a non-firing state then it has exactly one successor
state. If σ is a firing state then to construct the set of possible successor states
we must first construct Fσ, the set of all possible failure vectors for σ. Given a
global state σ ∈ Γ we define next(σ), the set of all successor states of σ, as

next(σ) =

{
{ →
succ(σ, F) | F ∈ Fσ} if σ ∈ Γ F

{ �
succ(σ)} if σ ∈ ΓNF.

For every non-firing state σ ∈ ΓNF we have |next(σ)| = 1, since there is always
exactly one successor state

�
succ(σ), and we label the transition from σ to

�
succ(σ)

with probability one. We now consider each firing state σ = 〈k1, . . . , kn〉 ∈ Γ F,
and for every successor

→
succ(σ, F) ∈ next(σ), we calculate the probability that

will label σ → →
succ(σ, F). Recalling that μ is the probability of a broadcast

failure occurring, let PMF : {1, . . . ,N}2 → [0, 1] be a probability mass function
where PMF(k, f) = μf (1−μ)k−f

(
k
f

)
is the probability that f broadcast failures

occur given that k oscillators fire. Then let PFV : Γ F×F → [0, 1] be the function
mapping a firing state σ = 〈k1, . . . , kT 〉 and a failure vector F = 〈f1, . . . , fT 〉 ∈ F
to the probability of the failures in F occurring in σ, given by

PFV(σ, F) =
∏T

Φ=1

{
PMF(kΦ, fΦ) if fΦ �=

1 otherwise.

We can now describe the evolution of the global state over time. A run of a
population model S is an infinite sequence σ0, σ1, σ2, · · · , where σ0 is called the
initial state, and σi+1 ∈ next(σi) for all i ≥ 0.

4 Synchronisation and Metrics

Given a population model S = (Δ,N, T,R, ε, μ), and a global state σ ∈ Γ , we
say that σ is synchronised if all oscillators in σ share the same phase. We say
that a run of the model σ0, σ1, σ2, · · · synchronises if there exists an i > 0 such
that σi is synchronised. Note that if a state σi is synchronised then any successor
state σi+1 of σi will also be synchronised.

The Power of Synchronisation 167

We can extend this binary notion of synchrony by introducing a phase coher-
ence metric for the level of synchrony of a global state. Our metric is derived from
the order parameter introduced by Kuramoto [13] as a measure of synchrony for
a population of coupled oscillators. If we consider the phases of the oscillators as
positions on the unit circle in the complex plane we can represent the positions
as complex numbers with magnitude 1. The function pC : {1, . . . , T} → C maps
a phase value to its corresponding position on the unit circle in the complex
plane, and is defined as pC(Φ) = eiθΦ , where θΦ = 2π

T (Φ − 1).

Fig. 2. Argand diagram of the
phase positions for global state
σ1 = 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉.

A measure of synchrony r can then
be obtained by calculating the mag-
nitude of the complex number corre-
sponding to the mean of the phase
positions. A global state has a max-
imal value of r = 1 when all oscil-
lators are synchronised and share the
same phase Φ, mapped to the position
defined by pC(Φ). It then follows that
the mean position is also pC(Φ) and
|pC(Φ)| = 1. A global state has a min-
imal value of r = 0 when all of the
positions mapped to the phases of the
oscillators are uniformly distributed
around the unit circle, or arranged
such that their positions achieve mutual counterpoise. The phase coherence func-
tion PCF : Γ → [0, 1] maps a global state to a real value in the interval [0, 1],
and is given by

PCF(〈k1, . . . , kT 〉) =
∣∣∣ 1
N

∑T
Φ=1 kΦpC(Φ)

∣∣∣ .

Note that for any synchronised global state σ we have that PCF(σ) = 1, since
all oscillators in σ share the same phase.

Figure 2 shows a plot on the complex plane of the positions of the phases for
N = 8, T = 10, and the global state σ1 = 〈0, 0, 0, 0, 0, 2, 1, 0, 0, 5〉. The phase
positions are given by pC(6) = eiπ for 2 oscillators with phase 6, pC(7) = e

6iπ
5 for

1 oscillator with phase 7, and pC(10) = e
9iπ
5 for 5 oscillators with phase 10. We

can then determine the phase coherence as PCF(σ) = |18 (2eiπ + e
6iπ
5 + 5e

9iπ
5)| =

0.4671. The mean phase position is indicated on the diagram by Φ.

5 Model Construction

We use Prism [14] to formally verify properties of our model. Given a proba-
bilistic model of a system, Prism can be used to reason about temporal and
probabilistic properties of the input model, by checking requirements expressed
in a suitable formalism against all possible runs of the model. We define our input
models as discrete time Markov chains (DTMCs). A DTMC is a tuple (Q,σI ,P)

168 P. Gainer et al.

where Q is a set of states, σI ∈ Q is the initial state, and P : Q × Q → [0, 1]
is the function mapping pairs of states (q, q′) to the probability with which a
transition from q to q′ occurs, where

∑
q′∈Q P(q, q′) = 1 for all q ∈ Q.

Given a population model S = (Δ,N, T,R, ε, μ) we construct a DTMC
D(S) = (Q,σI ,P). We define the set of states Q to be Γ (S) ∪ {σI}, where
σI is the initial state of the DTMC. In the initial state all oscillators are uncon-
figured. That is, oscillators have not yet been assigned a value for their phase.
For each σ = 〈k1, . . . , kT 〉 ∈ Q \ {σI} we define

P(σI , σ) =
1

TN

(
N

k1, . . . , kT

)

to be the probability of moving from σI to a state where ki arbitrary oscillators
are configured with the phase value i for 1 ≤ i ≤ T . The multinomial coefficient
defines the number of possible assignments of phases to distinct oscillators that
result in the global state σ. The fractional coefficient normalises the multinomial
coefficient with respect to the total number of possible assignments of phases to
all oscillators. In general, given an arbitrary set of initial configurations (global
states) for the oscillators, the total number of possible phase assignments is TN .

We assign probabilities to the transitions as follows: for every σ ∈ Q \ {σI}
we consider each σ′ ∈ Q \ {σI} where σ′ =

→
succ(σ, F) for some F ∈ Fσ, and set

P(σ, σ′) = PFV(σ, F). For all other σ ∈ Q \ {σI} and σ′ ∈ Q, where σ �= σ′ and
σ′ �∈ next(σ), we set P(σ, σ′) = 0.

To facilitate the analysis of parameterwise-different population models we
provide a Python script that allows the user to define ranges for N , T , R, ε, and μ.
The script then automatically generates a model for each set of parameter values,
checks given properties in the model using Prism, and writes user specified
output to a file which can be used by statistical analysis tools.1

5.1 Reward Structures

We can annotate DTMCs with information about rewards (or costs) by using
a reward structure. A reward structure is a pair of functions, ρQ : Q → R and
ρP : Q × Q → R, that respectively map states and transitions to real values. By
calculating the expected value of these rewards we can reason about quantitative
properties of the models. For a network of WSN nodes we are interested in the
time taken to achieve a synchronised state and the power consumption of the
network. Given a population model S = (Δ,N, T,R, ε, μ), and its corresponding
DTMC D(S) = (Q,σI ,P), we define the following reward structures:

Synchronisation Time. We are interested in the average and maximum time
taken for a population model to synchronise. By accumulating the reward along
a path until some synchronised global state is reached we obtain a measure of

1 The scripts, along with the verification results, can be found at https://github.com/
PaulGainer/mc-bio-synch/tree/master/energy-analysis.

https://github.com/PaulGainer/mc-bio-synch/tree/master/energy-analysis
https://github.com/PaulGainer/mc-bio-synch/tree/master/energy-analysis

The Power of Synchronisation 169

the time taken to synchronise. Recall that we omit transitions between non-firing
states; instead a transition is taken to the next global state where one or more
oscillators do fire. For each transition from a firing state σ to some successor
state σ′, we define ρP(σ, σ′) = 1

T . Given a non-firing state σ, let δ be the highest
phase of any oscillator in that state. Hence, T − δ is the number of omitted
transitions where no oscillators fire. Then, for each transition from σ to some
successor state σ′, we define ρP(σ, σ′) = T−δ

T . In this way we obtain a measure
of synchronisation time in cycles for a population model.

Power Consumption. Let Iid, Irx, and Itx be the current draw in amperes for
the idle, receive, and transmit modes, V be the voltage, C be the length of the
oscillation cycle in seconds, and Mt be the time taken to transmit a synchroni-
sation message in seconds. The power consumption in Watt-hours of one node
for one discrete step within its refractory period, that is, the oscillator is in the
idle mode, is Wid = IidV C

3600T . Similarly, if the oscillator is outside of the refractory
period, that is, it is in the receive mode, the corresponding power consumption
is defined by Wrx = IrxV C

3600T . Finally, let Wtx = ItxV Mt

3600 be the power consumption
in Watt-hours to transmit one synchronisation message. The power consumption
of the network consists of the power necessary to transmit the synchronisation
messages, and that of the oscillators in the idle and receive modes.

For synchronisation messages, we consider each firing state σ, and assign
a reward of ρP(σ, σ′) = k1Wtx to every transition from σ to a successor state
σ′ = 〈k1, . . . , kT 〉. This corresponds to the total power consumption for the trans-
mission of k1 synchronisation messages. For each firing state σ = 〈k1, . . . , kT 〉,
the total power consumption for oscillators in the idle and receive modes is

ρQ(σ) =
R∑

Φ=1

kΦWid +
T∑

Φ=R+1

kΦWrx ,

where R denotes the length of the refractory period. From a non-firing state σ
the power consumed by the network to reach the next firing state is equivalent
to the accumulation of the power consumption of the network in σ and any
successive non-firing states that are omitted in the transition from σ to

�
succ(σ).

For a non firing state σ = 〈k1, . . . , kT 〉 and maximal phase δ = max{Φ | Φ ∈
{1, . . . T} ∧ kΦ > 0} of any oscillator in that state, we define the reward as

ρQ(σ) =
(T−δ)−1∑

j=0

⎛
⎝R−j∑

Φ=1

kΦWid +
δ∑

Φ=(R+1)−j

kΦWrx

⎞
⎠ .

The formula accumulates the power consumption over σ and subsequent (T −
δ)−1 non-firing states, where the left and right summands accumulate the power
consumption of nodes within, and outside of the refractory period, respectively.

5.2 Restabilisation

A network of oscillators is restabilising if it has reached a synchronised state,
synchrony has been lost due to the occurrence of some external event, and

170 P. Gainer et al.

Fig. 3. Power/time per node to achieve synchronisation

the network must then again achieve synchrony. We could, for instance, imag-
ine the introduction of additional nodes with arbitrary phases to an estab-
lished and synchronised network. While such a change is not explicitly encoded
within our model, we can represent it by partitioning the set of oscillators into
two subsets. We define the parameter U to be the number of oscillators with
arbitrary phase values that have been introduced into a network of N − U
synchronised oscillators, or to be the number of oscillators in a network of
N oscillators whose clocks have reset to an arbitrary value, where U ∈ N

and 1 ≤ U < N . Destabilising U oscillators in this way results in config-
urations where at least N − U oscillators are synchronised, since the desta-
bilised oscillators may coincidentally be assigned the phase of the synchronised
group. We can restrict the set of initial configurations by identifying the set
ΓU = {〈k1, . . . , kT 〉 | 〈k1, . . . , kT 〉 ∈ Γ and ki ≥ N − U for some 1 ≤ i ≤ T},
where each σ ∈ ΓU is a configuration for the phases such that at least N − U
oscillators share some phase and the remaining oscillators have arbitrary phase
values. As we decrease the value of U we also decrease the number of initial
configurations for the phases of the oscillators. Since our model does not encode
the loss or addition of oscillators we can observe that all global states where
there are less than N − U oscillators sharing the same phase are unreachable by
any run of the system beginning in some state in ΓU .

6 Evaluation

In this section, we present the model checking results for instantiations of the
model given in the previous section. To that end, we instantiate the phase
response function presented in Sect. 3 for a specific synchronisation model,
and vary the length of the refractory period R, coupling constant ε, and the
probability μ of broadcast failures. We use a synchronisation model where the
perturbation induced by the firing of other oscillators is linear in the phase
of the perturbed oscillator and the number of firing oscillators [15]. That is,
Δ(Φ,α, ε) = [Φ·α·ε], where [] denotes rounding of a value to the nearest integer.
The coupling constant determines the slope of the linear dependency.

The Power of Synchronisation 171

Fig. 4. Power consumption in relation to broadcast failure probability and average
power consumption for resynchronisation to network size

For many experiments we set ε = 0.1 and μ = 0.2. We could have conducted
analyses for different values for these parameters. For a real system, the proba-
bility μ of broadcast failure occurrence is highly dependent on the deployment
environment. For deployments in benign environments we would expect a rela-
tively low rate of failure, for instance a WSN within city limits under controlled
conditions, whilst a comparably high rate of failure would be expected in harsh
environments such as a network of off-shore sensors below sea level. The coupling
constant ε is a parameter of the system itself. Our results suggest that higher val-
ues for ε are always beneficial, however this is because we restrict our analysis to
fully connected networks. High values for ε may be detrimental when considering
different topologies, since firing nodes may perturb synchronised subcomponents
of a network. However we defer such an analysis to future work.

As an example we analyse the power consumption for values taken from the
datasheet of the MICAz mote [16]. For the transmit, receive and idling mode,
we assume Itx = 17.4 mA, Irx = 19, 7 mA, and Iid = 20µA, respectively.
Furthermore, we assume that the oscillators use a voltage of 3.0 V. To analyse
our models, we use the model checker Prism [14] and specify the properties of
interest in PCTL [10] extended with reward operators, allowing us to compute
expected rewards for the reward structures defined in Sect. 5.1. For simplicity,
we will omit the name of the reward structures when expressing properties.

Synchronisation of a Whole Network. We analyse the power consumption and
time for a fully connected network of eight oscillators with a cycle period of
T = 10 to synchronise. Increasing the granularity of the cycle period, or the
size of the network, beyond these values leads to models where it is infeasible to
check properties due to time and memory constraints2. However, compared to
our previous work [9], we were able to increase the network size.

Figures 3a and b show both the average and maximal power consumption per
node (in mWh) and time (in cycles) needed to synchronise, in relation to the

2 While most individual model checking runs finished within a minute, the cumulative
model checking time over all analysed models was very large. The results shown in
Fig. 3a already amount to 80 distinct runs.

172 P. Gainer et al.

Fig. 5. Avg. (Max.) power consumption to Avg. (Max.) time for synchrony

phase coherence of the network with respect to different lengths of the refractory
period, where ε = 0.1 and μ = 0.2. That is, they show how much power is con-
sumed (time is needed, resp.) for a system in an arbitrary state to reach a state
where some degree of phase coherence has been achieved. The corresponding
PCTL properties are Ravg

=? [F coherentλ] and Rmax
=? [F coherentλ], where coherentλ

is a predicate that holds for any state σ with PCF(σ) ≥ λ, and Ravg and Rmax

refer to the average and maximal reward accumulation respectively3.
The much larger values obtained for R = 1 and phase coherence ≥0.9 are

not shown here, to avoid distortion of the figures. The energy consumption for
these values is roughly 2.4mWh, while the time needed is around 19 cycles.
Observe that we only show values for the refractory period R with R < T

2 . For
larger values of R not all runs synchronise [9], resulting in an infinitely large
reward being accumulated for both the maximal and average cases. We do not
provide results for the minimal power consumption (or time) as it is always zero,
since we consider all initial configurations (global states) for oscillator phases. In
particular, we consider the runs where the initial state is already synchronised.

As expected when starting from an arbitrary state, the time and power con-
sumption increases monotonically with the order of synchrony to be achieved.
On average, networks with longer refractory periods require less power for syn-
chronisation, and take less time to achieve it. The only exception is that the
average time to achieve synchrony with a refractory period of four is higher than
for two and three. However, if lower phase coherence is sufficient then this trend
is stable. In contrast, the maximal power consumption of networks with R = 4
is consistently higher than of networks with R = 3. In addition, the maximal
time needed to achieve synchrony for networks with R = 4 is higher than for
lower refractory periods, except when the phase coherence is greater than or
equal to 0.9. We find that networks with a refractory period of three will need
the smallest amount of time to synchronise, regardless of whether we consider
the maximal or average values. Furthermore, the average power consumption for
full synchronisation (phase coherence one) differs only slightly between R = 3
and R = 4 (less than 0.3 mWh). Hence, for the given example, R = 3 gives the
best results. These relationships are stable even for different broadcast failure

3 Within Prism this can be achieved by using the filter construct.

The Power of Synchronisation 173

probabilities μ, while the concrete values increase only slightly, as illustrated in
Fig. 4a, which shows the power consumption for different μ when ε = 0.1.

The general relationship between power consumption and time needed to
synchronise is shown in Figs. 5a and b. Within these figures, we do not distin-
guish between different coupling constants and broadcast failure probabilities.
We omit the two values for R = 1, ε = 0.1 and μ ∈ {0.1, 0.2} in Fig. 5b to
avoid distortion of the graph, since the low coupling strength and low probabil-
ity of broadcast failure leads to longer synchronisation times and hence higher
power consumption. While this might seem surprising it has been shown that
uncertainty in discrete systems often aids convergence [7,9].

The relationship between power consumption and time to synchronise is lin-
ear, and the slope of the relation decreases for higher refractory periods. While
the linearity is almost perfect for the average values, the maximal values have
larger variation. The figures again suggest that R = 3 is a sensible and reli-
able choice, since it provides the best stability of power consumption and time
to synchronise. In particular, if the broadcast failure probability changes, the
variations are less severe for R = 3 than for other refractory periods.

Resynchronisation of a Small Number of Nodes. We now analyse the power con-
sumption if the number of redeployed nodes is small compared to the size of the
network. The approach presented in Sect. 5.2 allows us to significantly increase
the network size. In particular, the smallest network we analyse is already larger
than that in the analysis above, while the largest is almost five times as large.
This is possible because the model has a much smaller number of initial states.

The average power consumption per node for networks of size 10, 15, . . . , 35,
where the oscillators are coupled with strength ε = 0.1, and broadcast failure
probability μ = 0.2, is shown in Fig. 4b. The corresponding PCTL property
is Ravg

=? [F coherent1], that is, we are only interested in the power consumption
until the system is fully synchronised. The solid lines denote the results for
a single redeployed node, while the dashed lines represent the results for the
redeployment of two and three nodes, respectively. As expected, the more nodes
need to resynchronise, the more energy is consumed. However, we can also extract
that for higher refractory periods, the amount of energy needed is more or less
stable, in particular, in case R = 4, which is already invariant for more than
ten nodes. For smaller refractory periods, increasing the network size, decreases
the average energy consumption. This behaviour can be explained as follows.
The linear synchronisation model implies that oscillators with a higher phase
value will be activated more and thus are more likely to fire. Hence, in general a
larger network will force the node to resynchronise faster. The refractory period
determines how large the network has to be for this effect to stabilise.

7 Conclusion

We presented a formal model to analyse power consumption in fully connected
networks of PCOs. To that end, we extended an existing model for synchrony

174 P. Gainer et al.

convergence with a reward structure to reflect the energy consumption of wireless
sensor nodes. Furthermore, we showed how to mitigate the state-space explosion
typically encountered when model-checking. In particular, the model can be
reduced by collapsing sequences of transitions where there are no interactions
between oscillators. When investigating the restabilisation of a small number of
oscillators in a network we can reduce the state space significantly, since only a
small subset of the initial states needs to be considered. We used these techniques
to analyse the power consumption for synchronisation and restabilisation of a
network of MICAz motes, using the pulse-coupled oscillator model developed by
Mirollo and Strogatz [17] with a linear phase response function. By using our
model we were able to extend the size of the network compared with previous
work [9] and discuss trade-offs between the time and power needed to synchronise
for different lengths of the refractory period (or duty cycle).

Results obtained using these techniques can be used by designers of WSNs
to estimate the overall energy efficiency of a network during its design phase.
Unnecessary energy consumption can be identified and rectified before network
deployment. Also, our results provide guidance for estimating the battery life of
a network depending on the anticipated frequency of restabilisations. Of course,
these considerations only hold for the maintenance task of synchronisation. The
energy consumption of the functional behaviour has to be examined separately.

It is clear that our approach is inhibited by the usual limitation of exact prob-
abilistic model checking for large-scale systems. We could overcome this by using
approximated techniques, such as statistical model checking, or approaches based
on fluid-flow approximation extended with rewards [4]. This would, of course,
come at the expense of precision. An investigation of such a trade-off is deferred
to future work. Our current approach is restricted to fully connected networks of
oscillators. While this is sufficient to analyse the behaviour of strongly connected
components within a network, further investigation is needed to assess different
network topologies. To that end, we could use several interconnected population
models thus modelling the interactions of the networks subcomponents. Fur-
thermore, topologies that change over time are of particular interest. However,
it is not obvious how we could extend our approach to consider such dynamic
networks. The work of Lucarelli and Wang may serve as a starting point for fur-
ther investigations [15]. Stochastic node failure, as well as more subtle models of
energy consumption, present significant opportunities for future extensions. For
example, in some cases, repeatedly powering nodes on and off over short periods
of time might use considerably more power than leaving them on throughout.

References

1. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)
2. Bartocci, E., Corradini, F., Merelli, E., Tesei, L.: Detecting synchronisation of

biological oscillators by model checking. Theor. Comput. Sci. 411(20), 1999–2018
(2010)

3. Bojic, I., Lipic, T., Kusek, M.: Scalability issues of firefly-based self-synchronization
in collective adaptive systems. In: Proceedings of SASOW 2014, pp. 68–73. IEEE
(2014)

The Power of Synchronisation 175

4. Bortolussi, L., Hillston, J.: Efficient checking of individual rewards properties in
Markov population models. In: QAPL 2015. EPTCS, vol. 194, pp. 32–47. Open
Publishing Association (2015)

5. Donaldson, A.F., Miller, A.: Symmetry reduction for probabilistic model checking
using generic representatives. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol.
4218, pp. 9–23. Springer, Heidelberg (2006). https://doi.org/10.1007/11901914 4

6. Emerson, E.A., Trefler, R.J.: From asymmetry to full symmetry: new techniques for
symmetry reduction in model checking. In: Pierre, L., Kropf, T. (eds.) CHARME
1999. LNCS, vol. 1703, pp. 142–157. Springer, Heidelberg (1999). https://doi.org/
10.1007/3-540-48153-2 12

7. Fatès, N.: Remarks on the cellular automaton global synchronisation problem.
In: Kari, J. (ed.) AUTOMATA 2015. LNCS, vol. 9099, pp. 113–126. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-47221-7 9

8. Gainer, P., Dixon, C., Hustadt, U.: Probabilistic model checking of ant-based posi-
tionless swarming. In: Alboul, L., Damian, D., Aitken, J.M.M. (eds.) TAROS 2016.
LNCS (LNAI), vol. 9716, pp. 127–138. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-40379-3 13

9. Gainer, P., Linker, S., Dixon, C., Hustadt, U., Fisher, M.: Investigating parametric
influence on discrete synchronisation protocols using quantitative model checking.
In: Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 224–239.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66335-7 14

10. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. FAC
6(5), 512–535 (1994)

11. Heidarian, F., Schmaltz, J., Vaandrager, F.: Analysis of a clock synchronization
protocol for wireless sensor networks. Theor. Comput. Sci. 413(1), 87–105 (2012)

12. Konishi, K., Kokame, H.: Synchronization of pulse-coupled oscillators with a refrac-
tory period and frequency distribution for a wireless sensor network. Chaos: Inter-
disciplinary J. Nonlinear Sci. 18(3) (2008)

13. Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators.
In: Araki, H. (ed.) International Symposium on Mathematical Problems in Theo-
retical Physics. LNP, vol. 39, pp. 420–422. Springer, Heidelberg (1975)

14. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

15. Lucarelli, D., Wang, I.J., et al.: Decentralized synchronization protocols with near-
est neighbor communication. In: Proceedings of SenSys 2004, pp. 62–68. ACM
(2004)

16. MEMSIC Inc.: MICAz datasheet. www.memsic.com/userfiles/files/Datasheets/
WSN/micaz datasheet-t.pdf. Accessed 15 Jan 2018

17. Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscilla-
tors. SIAM J. Appl. Math. 50(6), 1645–1662 (1990)

18. Peskin, C.: Mathematical aspects of heart physiology. Courant Lecture Notes ,
Courant Institute of Mathematical Sciences, New York University (1975)

19. Rhee, I.K., Lee, J., Kim, J., Serpedin, E., Wu, Y.C.: Clock synchronization in
wireless sensor networks: an overview. Sensors 9(1), 56–85 (2009)

20. Rhee, S., Seetharam, D., Liu, S.: Techniques for minimizing power consumption
in low data-rate wireless sensor networks. In: Proceedings of WCNC 2004, pp.
1727–1731. IEEE (2004)

21. Soua, R., Minet, P.: A survey on energy efficient techniques in wireless sensor
networks. In: Proceedings of WMNC 2011, pp. 1–9. IEEE (2011)

https://doi.org/10.1007/11901914_4
https://doi.org/10.1007/3-540-48153-2_12
https://doi.org/10.1007/3-540-48153-2_12
https://doi.org/10.1007/978-3-662-47221-7_9
https://doi.org/10.1007/978-3-319-40379-3_13
https://doi.org/10.1007/978-3-319-40379-3_13
https://doi.org/10.1007/978-3-319-66335-7_14
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf
www.memsic.com/userfiles/files/Datasheets/WSN/micaz_datasheet-t.pdf

176 P. Gainer et al.

22. Wang, Y., Nuñez, F., Doyle, F.J.: Energy-efficient pulse-coupled synchronization
strategy design for wireless sensor networks through reduced idle listening. IEEE
Trans. Sig. Process. 60(10), 5293–5306 (2012)

23. Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw.
52(12), 2292–2330 (2008)

CDGDroid: Android Malware Detection
Based on Deep Learning Using CFG

and DFG

Zhiwu Xu1,2(B), Kerong Ren1, Shengchao Qin3,1, and Florin Craciun4

1 College of Computer Science and Software Engineering, Shenzhen University,
Shenzhen, China

xuzhiwu@szu.edu.cn, renkerong99@foxmail.com
2 National Engineering Laboratory for Big Data System Computing Technology,

Shenzhen University, Shenzhen, China
3 School of Computing, Media and the Arts, Teesside University, Middlesbrough, UK

shengchao.qin@gmail.com
4 Faculty of Mathematics and Computer Science, Babes-Bolyai University,

Cluj-Napoca, Romania
craciunf@cs.ubbcluj.ro

Abstract. Android malware has become a serious threat in our daily
digital life, and thus there is a pressing need to effectively detect or
defend against them. Recent techniques have relied on the extraction
of lightweight syntactic features that are suitable for machine learning
classification, but despite of their promising results, the features they
extract are often too simple to characterise Android applications, and
thus may be insufficient when used to detect Android malware. In this
paper, we propose CDGDroid, an effective approach for Android malware
detection based on deep learning. We use the semantics graph represen-
tations, that is, control flow graph, data flow graph, and their possible
combinations, as the features to characterise Android applications. We
encode the graphs into matrices, and use them to train the classification
model via Convolutional Neural Network (CNN). We have conducted
some experiments on Marvin, Drebin, VirusShare and ContagioDump
datasets to evaluate our approach and have identified that the classi-
fication model taking the horizontal combination of CFG and DFG as
features offers the best performance in terms of accuracy among all com-
binations. We have also conducted experiments to compare our approach
against Yeganeh Safaei et al.’s approach, Allix et al.’s approach, Drebin
and many anti-virus tools gathered in VirusTotal, and the experimen-
tal results have confirmed that our classification model gives a better
performance than the others.

1 Introduction

According to a report from IDC [1], Android is the most popular platform for
mobile devices, with almost 85% of the market share in the first quarter of

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 177–193, 2018.
https://doi.org/10.1007/978-3-030-02450-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_11&domain=pdf

178 Z. Xu et al.

2017. Unfortunately, the increasing adoption of Android comes with the grow-
ing prevalence of Android malware. A report from security firm G DATA [2]
shows that a new instance of Android malware pops up nearly every 10 seconds.
Consequently, Android malware has become a serious threat for our daily life,
and thus there is a pressing need to effectively mitigate or defend against them.

To protect legitimate users from the threat, many approaches and tools
to detect Android malware have been proposed over the past decade. These
approaches can be summarised into two categories, namely, the approach based
on program analysis techniques and the approach based on machine learning
techniques. The first approach aims to identify the malicious code patterns in
Android applications, through either static analysis [3–5] or dynamic analysis [6–
8]. But the high overhead and the rapid evolution of Android malware make this
approach no longer effective. Recently, various machine learning techniques like
support vector machine, decision tree and deep learning have been proposed for
detecting Android malware [9–14]. This approach constructs a learning-based
classification model through a (big) dataset. The key of this approach is to seek
out an appropriate feature set, such as permissions, APIs, and opcodes. However,
despite of their promising results, the features that are considered by most exist-
ing work based on machine learning are often too simple to characterise Android
applications (e.g., lack of either control flow information or data flow informa-
tion) or non-robust (e.g., prone to suffering from the poisoning attack) [15], and
thus may be insufficient to help detect Android malware.

In this paper, we propose CDGDroid, an effective approach to detecting
Android malware based on deep learning. Different from most existing work
based on machine learning, we use two classic semantic representations of pro-
grams in program analysis techniques, namely, control flow graphs and data
flow graphs, as the features to characterise Android applications. Generally,
graphs offer a natural way to model the sequence of activities that occur in
a program. Hence they serve as amenable data-structures for detecting mal-
ware through identifying suspicious activity sequences. In particular, a control
flow graph reflects what a program intends to behave (e.g., opcodes) as well as
how it behaves (e.g., possible execution paths), such that malware behaviour
patterns can be captured easily by this feature. For example, Geinimi samples
share the similar control flow graphs. On the other hand, a data flow graph
represents the data dependencies between a number of operations, and thus can
help in detecting malware involving sensitive or network data, like HippoSMS
and RogueSppush that send and block SMS message in the background.

Our approach consists of two phases: the first phase aims to learn a classi-
fication model from an existing dataset; and the second phase uses this model
to detect new, unseen malicious and normal applications. In detail, we extract
control flow graphs and data flow graphs in the instruction level from applica-
tions, which are collected through static analysis on the smali files (i.e., Dalvik
executions) in applications. Both intra-procedural analysis and inter-procedural
analysis are considered for these two graphs. We then encode control flow graphs
and data flow graphs into matrices, where only the opcodes are preserved. Mean-

CDGDroid: Android Malware Detection 179

while, their possible combination modes of control flow graph and data flow
graph are considered as well: two graphs are combined either via the matrix
addition (called the vertical mode) or via the matrix extension (called the hori-
zontal mode). Finally, the encoded matrices are fed into the classification model
for training or testing. We use a convolutional neural network (CNN for short),
a new frontier in machine learning that has successfully been applied to analyse
visual imagery (i.e., matrix data), to build our model.

Several experiments have been conducted to evaluate our approach. We first
conduct 10-fold cross validation experiments to see the effectiveness of CFG and
DFG in malware detection. We have found that the classification model with the
horizontal combination of CFG and DFG as features performs the best, with the
F1 score (a measure of a test’s accuracy, see Sect. 3.1) 98.722%. We also run our
model on datasets consisting of new, unknown samples. The experimental results
have shown that our classification model is capable of detecting some fresh mal-
ware. Finally, we also conduct some experiments to compare our approach with
Yeganeh Safaei et al.’s approach [14], Allix et al.’s approach [12], Drebin [16] and
most of anti-virus tools gathered in VirusTotal [17]. The results have confirmed
that our classification model has a better performance in terms of accuracy than
the others.

In summary, our contributions are as follows:

– We have proposed an approach to detecting Android malware based on deep
learning, using two classic semantic representations in program analysis tech-
niques, namely, control flow graph and data flow graph.

– We have conducted several experiments, which demonstrate that our app-
roach is viable and effective to detect Android malware, and has a better
performance than a number of existing anti-virus tools in terms of accuracy.

The remainder of this paper is organised as follows. Section 2 describes our
approach, followed by the experimental results in Sect. 3. Section 4 presents the
related work, followed by some concluding remarks in Sect. 5.

2 Approach

In this section, we present our approach CDGDroid, an effective approach to
detecting Android malware based on deep learning, using control flow graph
(CFG for short) and data flow graph (DFG for short). Figure 1 shows the frame-
work of our approach, which consists of two phases: the training phase (marked
by arrows with solid line) and the testing phase (marked by arrows with broken
line). The training phase aims to train a classification model from an existing
dataset containing normal applications and malware samples, and the testing
phase uses the trained model to detect malware from new, unseen Android appli-
cations. In detail, we first use Apktool [18] to disassemble the applications in the
given dataset and collect the smali files from each application. We then perform
static analysis on these smali files to extract CFGs and DFGs, which are fur-
ther encoded into matrices with known categories, yielding a training data set.

180 Z. Xu et al.

Fig. 1. Framework of our approach

Based on this training set, we train a classification model via CNN. Next, we per-
form the similar analysis on unseen Android applications to extract their feature
matrices and then use the trained model to learn their categories. To conclude,
our approach involves three tasks: (i) graph extracting; (ii) graph encoding; (iii)
model training. In what follows, we depict each task of our approach in detail.

2.1 Graph Extracting

This section is devoted to CFG and DFG extraction from an application in the
instruction level, which consists of three steps: pre-processing, CFG extraction,
and DFG extraction.

Pre-processing. Android applications are distributed in markets in the form
of APK. An APK is a compressed archive of Dalvik bytecode for execution,
resources, assets, certificates, and an XML manifest file. Among them, the Dalvik
bytecode for execution, namely, the file named classes.dex1, will be extracted for
further analysis.

For ease of extracting CFGs and DFGs, we leverage the disassembler Apk-
tool [18] to disassemble the dex files. After disassembling, the dex files are con-
verted to smali files, which give us the readable code in the smali language. We
use smali code, instead of Java code, is because the disassembling is lossless in
that the smali files support the full functionality of the original dex files.

CFG Extracting. There are several tools for generating CFGs for smali files,
such as androguard and Smali-CFGs. Unfortunately, the CFGs generated by
these existing tools are either lack of inter-procedural control flow, or not suitable
for further analysis for us (e.g., it is not easy to analyse CFG in the xgmml or

1 There may be several additional dex files with the name “classesi.dex” in large
APKs.

CDGDroid: Android Malware Detection 181

PNG format). Therefore we implement CDGDroid with the CFG extracting
based on the smali files.

To begin with, we give a definition of graph, which is used to describe both
CFG and DFG.

Definition 1. A graph G is a quadruple (N,E, S, F), where N is a finite set of
nodes, E ⊆ N × N is a finite set of edges, S ⊆ N is the set of starting nodes,
and F ⊆ N is the set of exiting nodes.

Generally, a smali file contains the definition of a separate class, either a
general class or an inner class, in the Java source code. So we construct the
CFGs method by method for each smali file.

To do this, we first identify all the instructions in a method, yielding a graph
cfg with the instructions as nodes and the first instruction as the starting node.
This is different from existing tools, which take blocks (i.e., a straight-line piece
of code without any jump instructions or jump targets) as basic nodes. Next, we
complete this graph cfg by connecting the control flows (e.g., a jump instruction
and its targets) and identifying all the exiting nodes (i.e., the reachable nodes
without any out edges).

For inter-procedural analysis, we first construct a function call graph fcg
by identifying the instructions starting with “invoke” or “execute”2. Based on
this graph, we then connect the calling node with the start node of the callee
method’s CFG as well as the exiting nodes of the callee method’s CFG with the
successors of the calling node.

DFG Extracting. The DFG extracting is based on the CFG we extracted
above. It is known that Dalvik is a register-based virtual machine, where most
of the values are moved from memory into registers for access. So we will con-
sider for DFG the data dependence relations between instructions via registers,
including parameter registers.

Our construction of DFG is based on a variant of classic reaching definition
analysis on smali, which is shown in Algorithm 1. This algorithm takes the CFG
of a function f as input and then returns the reaching definition mapping D,
which records the entry definitions (i.e., in) and the exit definitions (i.e., out) for
each instruction. Note that, due to the inter-procedural analysis, we also take the
initial definitions of parameters (i.e., instructions starting with “.parameter”)
into account (Line 5).

Next, we extract the def-use relations as the edges of DFG, that is, if an
instruction i uses a register r, whose value may come from the definition in the
instruction j, then there is an edge from i to j. Algorithm 2 gives the detail of
extracting. This algorithm takes the CFG of a function f as input and then
returns the DFG for f , where Algorithm 1 is invoked to gather the def-use rela-
tions.

Similar to the CFG extracting, we also take the inter-procedural analysis
into account via the function call graph fcg . In more detail, we connect the
2 For simplicity, Java reflection, callbacks and multi-threading are not considered at

present.

182 Z. Xu et al.

Algorithm 1. Reaching Definition Algorithm RD(cfg)
Input: CFG cfg of a target function f
Output: the reaching definition mapping D
1: for each node n ∈ cfg .N do
2: D(n).in = ∅ and D(n).out = ∅
3: end for
4: for each starting node e ∈ cfg .S do
5: enqueue e in q and add the initial definition of each parameter pi into D(e).in
6: end for
7: while q �= ∅ do
8: n = dequeue q
9: if n is a definition with r then

10: D(n).out = {(r : n)} ∪ (D(n).in − {(r :)})
11: else
12: D(n).out = D(n).in
13: end if
14: for all nodes s in successors(n) do
15: (oi, ou) = D(s) and D(s).in = D(s).in ∪ D(n).out
16: if D(s).in �= oi and s not in q then
17: enqueue s into q
18: end if
19: end for
20: end while
21: return D

Algorithm 2. DFG Extracting Algorithm DFG(cfg)
Input: CFG cfg of a target function
Output: DFG dfg of the function
1: D = RD(cfg)
2: dfg .N = cfg .N , dfg .E = ∅, dfg .S = ∅ and dfg .F = ∅
3: for each node n ∈ cfg .N do
4: for each register r used by n do
5: for each definition d of r in D(n).in do
6: dfg .E = dfg .E ∪ {(d, n)}
7: if d is the initial definition of a parameter then
8: dfg .S = dfg .S ∪ {n}
9: end if

10: if n is the exiting node then
11: dfg .F = dfg .F ∪ {d}
12: end if
13: end for
14: end for
15: end for
16: return dfg

CDGDroid: Android Malware Detection 183

instructions that involved the definitions of arguments in the calling node with
the start nodes of the callee method’s DFG as well as the exiting nodes of the
callee method’s DFG with the special successor of the calling node (i.e., an
instruction starting with “move-result”) if it exists.

2.2 Graph Encoding

It is straightforward to represent a graph as a matrix, such as the adjacency
matrix. For a (simple) method, the adjacency matrix of the CFG is fine, but
it could be very large for an application, even a small one. This is mainly
due to the large number of nodes. Similar to existing work [14], we abstract
each instruction as its opcode, for example, the instruction “invoke-virtual v0,
Ljava/lang/Object;->toString();” is abstracted as “invoke-virtual”. In particu-
lar, we consider all the 222 opcodes in total listed in Android Dalvik-bytecode
list [19].

In more detail, given a CFG (or DFG) g, we encode it into a matrix A
with size 222 × 222 as follows: for each edge (n1, n2) ∈ g.E, we add the element
A[op(n1)][op(n2)] by 1, where A is initialised as a zero matrix with size 222×222
and op(n) returns the opcode of the node n. Similarly, we accumulatively add all
the encoded matrices of CFGs (resp. DFG) extracted from an application as its
CFG matrix (resp. DFG matrix), denoted as Acfg (resp. Adfg). Moreover, due
to the sparseness, we also add the matrix encoded from the control-flow (resp.
data-flow) edges connected by the inter-procedural analysis (i.e., the function
call graph fcg) into Acfg (resp. Adfg). The resulting matrix is denoted as Ascfg

(resp. Asdfg), so as to differentiate from the matrix Acfg (resp. Adfg) above.
We also consider the combination of CFG and DFG. Firstly, as a program

dependence graph, we combines these two graphs together into a graph. So the
first mode, called the vertical one, is to combine these two graphs together via
the matrix addition (denoted as Acfg + Adfg), that is, the vertical combination
of Acfg and Adfg is a matrix A such that for each i ∈ [1, 222] and j ∈ [1, 222]

A[i][j] = Acfg [i][j] + Adfg [i][j]

Secondly, we also would like to use them as different features, just like multi-
views [20]. So the second mode, called the horizontal one, combines them via
the matrix extension (denoted as Acfg ⊕Adfg). The resulting matrix A is of size
444 × 2223 instead, and satisfies that for each i ∈ [1, 444] and j ∈ [1, 222]

A[i][j] =
{
Acfg [i][j] if1 ≤ i ≤ 222
Adfg [i − 222][j] otherwise

2.3 Model Training

CNN is a new frontier in machine learning that has successfully been applied to
analyse visual imagery (i.e., matrix data). So we use CNN to train our model.
3 The alternative extension with size 222 × 444 is fine as well.

184 Z. Xu et al.

Fig. 2. Structure of our network model

In detail, we use the Sequential container to build our network model, which
consists of 4 main layers, namely, a convolution layer with a reshape, a pooling
layer and two fully connected layers, and uses the negative log likelihood criterion
to compute a gradient. Note that, the reshape prior to convolution is used to
reduce the number of parameters and thus save the training time. Figure 2 shows
the structure of our network model.

3 Experiments

In this section, we conduct a series of experiments to evaluate our approach.
Firstly, we conduct a set of cross-validation experiments to see the effectiveness
of CFG and DFG in malware detection. Secondly, to test our approach’s ability
to detect unknown samples, we run our model on a dataset consisting of fresh
samples. Finally, we also conduct some experiments to compare our approach
with some existing Android malware detecting tools.

3.1 Dataset and Evaluative Criteria

We collect the samples mainly from four datasets, namely, Marvin [21],
Drebin [16], VirusShare [22], and ContagioDump [23]. The Marvin dataset con-
tains a training set (with 50501 benign samples and 7406 malware samples) and
a testing set (with 25495 benign samples and 3166 malware samples). The other
three datasets, Drebin, VirusShare and ContagioDump4, contain only malware
samples, with 5560, 11080 and 1150 samples, respectively. We also collect 1771
applications from Mi App Store [24], which pass the detecting of most anti-virus
tools gathered in VirusTotal [17] and thus are considered as benign samples.

To quantitatively validate the experimental results, we use the following per-
formance measures. Accuracy is the most intuitive performance measure and it
4 Only the malware samples whose creation dates are in 2018 are collected.

CDGDroid: Android Malware Detection 185

is simply a ratio of correctly predicted observation to the total observations.
Precision is the ratio of correctly predicted positive observations to the total
predicted positive observations, and Recall is the ratio of correctly predicted
positive observations to all observations in actual class. F1 score is the weighted
average of Precision and Recall, that is, (2·Precision·Recall)/(Precision+Recall).
AUC is the area under ROC curve, which is (arguably) the best way to sum-
marize its performance in a single number. Intuitively, the higher the measures
above, the better the classifier.

3.2 Experiments on Different Features

In this section, we first conduct experiments to evaluate how CFG and DFG
contribute to the effectiveness of malware detection. We then run experiments
to see how the combination modes affect the malware detection.

CFG and DFG. We separately use the feature matrices Acfg , Ascfg , Adfg and
Asdfg to train the classification model on the dataset consisting of the training set
of Marvin, Drebin and VirusShare, where 10-fold cross validation is employed. In
addition, we also consider traditional CFGs 5 based on blocks and encode them
into matrices (called as Atcfg) in a similar way, where all the blocks without
jumps are abstracted as a special node. More specifically, only nodes involving
“control” are preserved in Atcfg , yielding a matrix with size 32 × 32 (i.e., 31
“control” opcodes and 1 special node for the other nodes). The experimental
results are given in Table 1.

Table 1. Results on different feature matrices

Feature Precision Accuracy Recall F1 Score AUC

Acfg 99.833% 99.400% 94.691% 97.195% 0.999

Ascfg 100.000% 99.194% 92.704% 96.214% 0.999

Adfg 99.869% 99.613% 96.620% 98.218% 0.999

Asdfg 99.835% 99.470% 95.370% 97.552% 0.999

Atcfg 99.842% 95.568% 59.981% 74.941% 0.993

The results show that all the features are effective in detecting malware,
with accuracy larger than 95.5%, precision larger than 99.8%, and AUC larger
than 0.99. Compared with CFG, the feature DFG performs better, both for
intra-procedural analysis (1.053% higher in F1 score) and inter-procedural anal-
ysis (1.391% higher in F1 score). A possible reason is that DFGs are built
on CFGs such that DFGs would, in some sense, contain some “control flow”
information. Rather surprisingly, the graphs with inter-procedural analysis per-
form worse than the ones without. More specifically, the F1 score of Acfg is

5 For convenience, we do not consider the inter-procedural analysis for traditional
CFGs, since the instructions for method calling are abstracted as the special node.

186 Z. Xu et al.

1.020% higher than the one of Ascfg , although the precision of Acfg is better
than the one of Ascfg ; and Adfg is 0.683% better than Asdfg in term of F1 score.
There are two possible reasons behind this: (1) the ignoring of callbacks and
multi-threading makes the function call graphs incomplete; (2) accumulating
the matrices extracted from inter-procedural analysis and the ones from intra-
procedural analysis together might have lost the differences between them, thus
make against the model.

In addition, we have found that the AUC of Atcfg is 0.993, which is pretty
high, and thus also demonstrates that “control flow” information is capable of
facilitating detect malware. Moreover, the precision and the accuracy of Atcfg

are quite close to the ones of Acfg and Adfg , although the recall and F1 score are
not so high. We may take blocks into account to improve Atcfg as shown in [12],
which is left as future work. As Atcfg is much simpler than Acfg and Adfg , we
believe that Atcfg can be used as a feature of models on-device.

Combination Modes. In these experiments, we use the feature matrix Acfg +
Adfg and Acfg ⊕ Adfg to train the model on the same dataset as above, respec-
tively. Note that, as shown in the experiments above, the graphs without inter-
procedural analysis perform better, so we do not consider Ascfg and Asdfg here.
The experimental results are shown in Table 2.

Table 2. Results on different modes

Feature Precision Accuracy Recall F1 Score AUC

Acfg + Adfg 99.770% 99.536% 96.020% 97.859% 0.999

Acfg ⊕ Adfg 99.903% 99.721% 97.568% 98.722% 0.999

From the results, we can see that the horizontal combination Acfg ⊕ Adfg

performs better than both Acfg and Adfg , and thus the horizontal combination
can improve the detection. While the vertical combination Acfg +Adfg performs
better than Acfg but worse than Adfg . That is to say, the vertical combination
may make against the detecting model. Similar to inter-procedural analysis, a
possible reason is that the vertical combination, i.e., adding CFGs and DFGs
together, could lose their differences.

3.3 Experiments on Unknown Samples

To test the viability of the proposed approach to detect unknown samples, we
run our model trained with the feature matrix Acfg ⊕ Adfg respectively on two
datasets: the first one comes from the testing set of Marvin, and the second one
consists of the new malware samples from ContagioDump, whose creation date
is in 2018. The experimental results are shown in Table 3.

It can be seen from the results that the proposed CDGDroid is capable of
detecting some fresh malware. In detail, CDGDroid performs on the testing set of

CDGDroid: Android Malware Detection 187

Table 3. Results on other dataset

Dataset Precision Accuracy Recall F1 Score

Marvin 99.649% 99.822% 98.737% 99.191%

ContagioDump 100.000% 72.870% 72.870% 84.301%

Marvin quite well, with the precision 99.649%, the accuracy 99.822%, the recall
98.737% and the F1 score 99.191%. And for ContagioDump dataset, there are
72.870% malware samples that can be detected by CDGDroid. ContagioDump
comprises only malware samples, so the precision of detection is 100%. Compared
with the testing set of Marvin, the performance of CDGDroid is a little worse.
One main reason is that the samples in ContagioDump are collected later than
the ones in the training set (i.e., Marvin, Drebin and VirusShare), that is, the
samples in ContagioDump are genuinely new.

3.4 Comparison Against Malware Detecting Tools

In this section, we present experiments to compare our approach with some
recent tools, namely, Yeganeh Safaei et al.’s approach [14] (based on CNN),
Allix et al.’s approach [12] (using CFG), Drebin [16] (using 8 other features),
and VirusTotal [17] (gathering a variety of anti-virus tools).

DODroid. Yeganeh Safaei et al. [14] recently proposed an Android malware
detection system based on a deep convolutional neural network, using the raw
opcode sequence as features. We dub this system “DODroid” (Deep Opcode).
As both CDGDroid and DODroid use CNN to build the classification model,
we conduct experiments to compare CDGDroid against DODroid. In detail, we
use the same training dataset (i.e., the training set of Marvin) to train both
CDGDroid and DODroid, and then use the same testing dataset (i.e., the testing
set of Marvin) to test these two models. The experimental results are shown in
Table 4.

Table 4. Comparison against DODroid

Tool Precision Accuracy Recall F1 Score

CDGDroid 99.903% 99.721% 97.568% 98.722%

DODroid 98.396% 99.067% 93.137% 95.695%

It can be seen from the results that CDGDroid outperforms DODroid.
Regardless of the slight differences of two CNN models, the results also show
that CFG and DFG are more effective than opcodes in malware detection, that
is, control flows and data flows can help in detecting malware.

188 Z. Xu et al.

CSBD. Allix et al. [12] proposed another scalable approach using structural
features, namely textual representations of the CFGs. Here we compare our
approach against the re-implementation of Allix et al.’s approach from [25],
where Random Forest is used to train the classifier and this approach is referred
as CFG-Signature Based Detection (CSBD). So we also refer this approach as
CSBD here. The experiments are similar to the ones of DODroid. The experi-
mental results are shown in Table 5.

Table 5. Comparison against CSBD

Tool Precision Accuracy Recall F1 Score

CDGDroid 99.903% 99.721% 97.568% 98.722%

CSBD 92.151% 99.033% 99.747% 95.799%

We can see that CSBD has a better recall, while CDGDroid gets a better
precision. A main reason is that CSBD takes blocks of CFGs as features, while
CDGDroid focuses on control flow and data flow information, plus a simple block
information (i.e, the adjacency information of nodes). In short, CDGDroid gets
a better F1 score than CSBD, so we conclude that CDGDroid performs better
than CSBD.

Drebin. Drebin [16] is a lightweight Android malware detecting tool based on
SVM, which uses 8 different types of features, namely, hardware components,
requested permissions, app components, filtered intents, restricted API calls,
used permissions, suspicious API calls, and network addresses. We also conduct
experiments to compare against Drebin, where we use the re-implementation
of Drebin from [25] as well. The experiments are performed on the malware
samples from Drebin and the benign samples from Marvin and from Mi App
Store. Table 6 gives the experimental results.

Table 6. Comparison against Drebin

Tool Precision Accuracy Recall F1 Score

CDGDroid 99.781% 99.870% 98.273% 99.021%

Drebin 91.000% 99.123% 96.000% 94.000%

The results show that CDGDroid performs better than Drebin, which also
indicates that the features we consider (i.e. CFG and DFG) are quite effective
in malware detection, with respective to the 8 features used in Drebin.

VirusTotal. VirusTotal [17] is a free online malware detecting website, which
gathers a variety of anti-virus tools. For comparison, we design a crawler to
automatically upload the samples in the testing set of Marvin into VirusTotal

CDGDroid: Android Malware Detection 189

for further detecting by those anti-virus tools, which lasts almost one week.
The results are shown in Table 7, where those tools with too few responds from
VirusTotal are filter out.

Table 7. Comparison against anti-virus tools in VirusTotal

Tool Precision Accuracy Recall F1 Score Tool Precision Accuracy Recall F1 Score

CDGDroid 99.649% 99.822% 98.737% 99.191% Kaspersky 98.434% 99.789% 99.683% 99.050%

Avast 98.509% 99.746% 99.201% 98.850% DrWeb 96.427% 99.370% 98.025% 97.220%

Jiangmin 97.682% 99.318% 96.134% 96.900% Qihoo-360 96.013% 99.490% 97.556% 96.780%

GData 94.057% 99.252% 99.553% 96.730% Emsisoft 94.050% 99.250% 99.550% 96.720%

TrendMicro 97.900% 99.198% 94.694% 96.270% Sophos 91.998% 98.956% 99.169% 95.450%

BitDefender 94.049% 98.831% 95.431% 94.740% Alibaba 89.973% 99.121% 98.793% 94.180%

F-Secure 90.808% 98.480% 96.151% 93.400% QuickHeal 88.296% 98.433% 99.055% 93.370%

NOD32 87.182% 98.277% 99.621% 92.990% Ikarus 86.414% 98.250% 99.743% 92.600%

Arcabit 89.076% 98.607% 92.393% 90.700% K7GW 85.283% 98.414% 96.400% 90.500%

Tencent 83.100% 98.447% 98.843% 90.290% Comodo 92.557% 97.777% 86.808% 89.590%

Symantec 92.101% 97.776% 87.198% 89.580% VBA32 99.960% 97.791% 80.152% 88.970%

Fortinet 85.522% 97.414% 92.254% 88.760% AVware 77.629% 97.791% 99.627% 87.260%

Avira 77.929% 97.528% 96.038% 86.040% Antiy-AVL 89.085% 96.807% 81.067% 84.890%

AegisLab 76.108% 97.182% 94.857% 84.450% Microsoft 99.956% 96.990% 72.820% 84.260%

NANO 70.888% 96.648% 97.934% 82.240% Cyren 65.584% 95.868% 99.737% 79.130%

VIPRE 93.002% 95.590% 65.046% 76.550% F-Prot 78.086% 94.639% 71.920% 74.880%

McAfee 80.799% 93.392% 53.167% 64.130% AVG 81.474% 93.337% 51.707% 63.260%

AhnLab-V3 85.445% 92.747% 49.817% 62.940% McAfee-GW 92.244% 93.216% 42.424% 58.120%

TotalDefense 99.810% 92.399% 33.228% 49.860%

From the results, we can see that our tool CDGDroid outperforms most
of anti-virus tools. In particular, our tool CDGDroid gets the best accuracy
(99.822%) and the best F1 score (99.191%). Although there are 3 (resp. 12) tools
having a better precision (resp. recall) than CDGDroid, the gaps of precision
(resp. recall) between CDGDroid and these tools are quite small.

4 Related Work

Over the past decade, there are a lot of research work for Android malware
detection. Here we only review some related and recent ones, namely, graph
based detection and deep learning based detection.

Graph Based Detection. Sahs and Khan [9] proposed a machine learning-
based system which extracts features from control flow graphs of applications.
Allix et al. [12] devised several machine learning classifiers that rely on a set of
features which are textual representations of the control flow graphs of appli-
cations. DroidMiner [10] digs malicious behavioral patterns from a two-level
behavioural graph representation built on control-flow graphs and call graphs.

190 Z. Xu et al.

AppContext [26] extracts the contextual information of security-sensitive activ-
ities along with structural information through reduced inter-procedure control-
flow graphs, and CWLK [25] is a similar approach, which extracts the informa-
tion through call graphs and inter-procedural control-flow graphs. DroidOL [13]
is an online machine learning based framework, which extracts features from
inter-procedural control-flow sub-graphs. MKLDroid [20] integrates context-
aware multiple views to detect Android malware, where all views are built from
inter-procedural control flow graphs. However, most of these approaches only
consider control flow properties, leaving data flow properties out of considera-
tion.

Data flow analysis is also adopted in malware detection. Flowdroid [3] and
Amandroid [4] are two state-of-the-art data flow analysis tools for Android.
Andriatsimandefitra and Tong [27] proposed to use system flow graphs, con-
structed from the log of an information flow monitor, to characterise malware
samples. DroidSIFT [28] takes a weighted contextual (security-related) API
dependency graph as semantics feature sets and use graph similarity metrics to
detect malware. DroidADDMiner [11] is a machine learning based system that
extracts features based on data dependency between sensitive APIs. However,
all these tools rely on heavyweight data flow analyses.

There are some approaches that take both control flow and data flow proper-
ties into account. Apposcopy [29] and ASTROID [30] detect Android malware via
signature matching on program graphs, including certain control- and data-flow
properties. CASANDRA [31] extracts features from contextual API dependency
graphs, containing structural information and contextual information. Different
from these approaches, we use deep learning to build our classification model.

Some other graphs are used to detect Android malware as well, such as
function call graphs [32–34], permission event graphs [35], component topology
graph [36].

Deep Learning Based Detection. Droid-Sec [37] and DroidDetector [38] used
the deep belief network (DBN) to build the classification model, taking required
permission, sensitive API and dynamic behaviour as features. Droiddeep [39]
built the model by DBN as well, but used some more features (e.g., actions
and components). DroidDelver [40] and DroidDeepLearner [41] are another two
models built on DBN, where permissions and API calls were taken as features.
Mclaughlin [14] designed the detection systems by Convolutional Neural Net-
work (CNN), using opcode sequences as features. Nix and Zhang [42] and Mal-
Dozer [43] also built the system by CNN, but used system API call sequences
as features. Deep4MalDroid [44] is a deep learning framework (i.e., Stacked
AutoEncoders) resting on the system call graphs extracted by dynamic analy-
sis from Android applications. Nauman et al. [45] applied several deep learning
models including fully connected, convolutional and recurrent neural networks as
well as autoencoders and deep belief networks to detect Android malware, using
the eight features proposed in [16]. DeepFlow [46] identified malware directly
from the data flows in the Android application based deep learning.

CDGDroid: Android Malware Detection 191

Most of these approach consider neither control flow nor data flow informa-
tion (except DeepFlow), while our approach takes both control and data flow
graphs into account.

5 Conclusion

In this work, we have proposed an Android malware detection approach based
on CNN, using control flow graph (CFG) and data flow graph (DFG). To eval-
uate the proposed approach, we have carried out some interesting experiments.
Through experiments, we have found that the classification model with the hor-
izontal combination of CFG and DFG as features performs the best. The exper-
imental results have also demonstrated that our classification model is capable
of detecting some fresh malware, and has a better performance than Yeganeh
Safaei et al.’s work, Drebin and most of anti-virus tools gathered in VirusTotal.

As for future work, we may consider a better function call graph to improve
the approach. We can use other program graphs, such as program dependence
graphs, to train the model. We can also leverage N -Gram to extract program
traces with length N as features. More experiments on malware anti-detecting
techniques (i.e., obfuscation techniques) are under consideration.

Acknowledgements. The authors would like to thank the anonymous reviewers for
their helpful comments. This work was partially supported by the National Natural
Science Foundation of China under Grants No. 61502308 and 61772347, Science and
Technology Foundation of Shenzhen City under Grant No. JCYJ20170302153712968,
Project 2016050 supported by SZU R/D Fund and Natural Science Foundation of SZU
(Grant No. 827-000200).

References

1. Report from IDC. http://www.idc.com/promo/smartphone-market-share/os
2. Report from G DATA (2017). https://www.gdatasoftware.com/blog/2017/04/

29712-8-400-new-android-malware-samples-every-day
3. Arzt, S., et al.: Flowdroid: precise context, flow, field, object-sensitive and lifecycle-

aware taint analysis for android apps. In: PLDI 2014, pp. 259–269 (2014)
4. Wei, F., Roy, S., Ou, X.: Amandroid: a precise and general inter-component data

flow analysis framework for security vetting of android apps. In: CCS 2014, pp.
1329–1341 (2014)

5. Enck, W., et al.: TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. In: OSDI 2014, pp. 393–407 (2014)

6. Enck, W., Ongtang, M., Mcdaniel, P.: On lightweight mobile phone application
certification. In: CCS 2009, pp. 235–245 (2009)

7. Felt, A., et al.: Android permissions demystified. In: CCS 2011, pp. 627–638 (2011)
8. Grace, M., et al.: Riskranker: scalable and accurate zero-day android malware

detection. In: MobiSys 2012, pp. 281–294 (2012)
9. Sahs, J., Khan, L.: A machine learning approach to android malware detection. In:

EISIC 2012, pp. 141–147 (2012)

http://www.idc.com/promo/smartphone-market-share/os
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day
https://www.gdatasoftware.com/blog/2017/04/29712-8-400-new-android-malware-samples-every-day

192 Z. Xu et al.

10. Yang, C., Xu, Z., Gu, G., Yegneswaran, V., Porras, P.: DroidMiner: automated
mining and characterization of fine-grained malicious behaviors in android appli-
cations. In: Kuty�lowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8712, pp.
163–182. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9 10

11. Li, Y., Shen, T., Sun, X., Pan, X., Mao, B.: Detection, classification and char-
acterization of android malware using API data dependency. In: Thuraisingham,
B., Wang, X.F., Yegneswaran, V. (eds.) SecureComm 2015. LNICST, vol. 164, pp.
23–40. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28865-9 2

12. Allix, K., et al.: Empirical assessment of machine learning-based malware detectors
for android. Empirical Softw. Eng. 21(1), 183–211 (2016)

13. Narayanan, A., Liu, Y., Chen, L., Liu, J.: Adaptive and scalable android malware
detection through online learning. In: IJCNN 2016, pp. 157–175 (2016)

14. Mclaughlin, N., et al.: Deep android malware detection. In: CODASPY 2017, pp.
301–308 (2017)

15. Chen, S., et al.: Automated poisoning attacks and defenses in malware detection
systems: an adversarial machine learning approach. Comput. Secur. 73, 326–344
(2017)

16. Arp, D., et al.: DREBIN: effective and explainable detection of android malware
in your pocket. In: NDSS 2014 (2014)

17. VirusTotal. https://www.virustotal.com
18. Wiśniewski, R., Tumbleson, C.: Apktool: a tool for reverse engineering Android

APK files. https://ibotpeaches.github.io/Apktool/
19. Dalvik Bytecode. https://source.android.com/devices/tech/dalvik/dalvik-

bytecode
20. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y.: A multi-view context-aware

approach to android malware detection and malicious code localization. Empirical
Softw. Eng. 23(3), 1222–1274 (2017)

21. Lindorfer, M., Neugschwandtner, M., Platzer, C.: Marvin: Efficient and compre-
hensive mobile app classification through static and dynamic analysis. In: ComSAC
2015, pp. 422–433 (2015)

22. VirusShare. https://virusshare.com/
23. Contagiodump. http://contagiodump.blogspot.com/
24. Mi App Store. https://dev.mi.com/en
25. Narayanan, A., et al.: Contextual Weisfeiler-Lehman graph kernel for malware

detection. In: IJCNN 2016, pp. 4701–4708 (2016)
26. Yang, W., et al.: Appcontext: differentiating malicious and benign mobile app

behaviors using context. In: ICSE 2015, pp. 303–313 (2015)
27. Andriatsimandefitra, R., Tong, V.V.T.: Capturing android malware behaviour

using system flow graph. In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS
2014. LNCS, vol. 8792, pp. 534–541. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11698-3 43

28. Zhang, M., Duan, Y., Yin, H., Zhao, Z.: Semantics-aware android malware clas-
sification using weighted contextual API dependency graphs. In: CCS 2014, pp.
1105–1116 (2014)

29. Feng, Y., Anand, S., Dillig, L., Aiken, A.: Apposcopy: semantics-based detection
of android malware through static analysis. In: FSE 2014, pp. 576–587 (2014)

30. Feng, Y., et al.: Automated synthesis of semantic malware signatures using maxi-
mum satisfiability. CoRR, abs/1608.06254 (2016)

31. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y.: Context-aware, adaptive
and scalable android malware detection through online learning (extended version).
CoRR, abs/1706.00947 (2017)

https://doi.org/10.1007/978-3-319-11203-9_10
https://doi.org/10.1007/978-3-319-28865-9_2
https://www.virustotal.com
https://ibotpeaches.github.io/Apktool/
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://virusshare.com/
http://contagiodump.blogspot.com/
https://dev.mi.com/en
https://doi.org/10.1007/978-3-319-11698-3_43
https://doi.org/10.1007/978-3-319-11698-3_43

CDGDroid: Android Malware Detection 193

32. Gascon, H., Yamaguchi, F., Arp, D., Rieck, K.: Structural detection of android
malware using embedded call graphs. In: AISec 2013, pp. 45–54 (2013)

33. Du, Y., Wang, J., Li, Q.: An android malware detection approach using community
structures of weighted function call graphs. IEEE Access PP(99), 1 (2017)

34. Fan, M., et al.: Frequent subgraph based familial classification of android malware.
In: ISSRE 2016, pp. 24–35 (2016)

35. Chen, K., et al.: Contextual policy enforcement in android applications with per-
mission event graphs. Heredity 110(6), 586 (2013)

36. Shen, T., et al.: Detect android malware variants using component based topology
graph. In: TrustCom 2014, pp. 406–413 (2014)

37. Yuan, Z., Lu, Y., Wang, Z., Xue, Y.: Droid-Sec: deep learning in android malware
detection. In: SIGCOMM 2014, pp. 371–372 (2014)

38. Yuan, Z., Lu, Y., Xue, Y.: Droiddetector: android malware characterization and
detection using deep learning. Tsinghua Sci. Technol. 21(1), 114–123 (2016)

39. Su, X., Zhang, D., Li, W., Zhao, K.: A deep learning approach to android malware
feature learning and detection. In: TrustCom 2016, pp. 244–251 (2016)

40. Hou, S., Saas, A., Ye, Y., Chen, L.: DroidDelver: an android malware detection
system using deep belief network based on API call blocks. In: Song, S., Tong, Y.
(eds.) WAIM 2016. LNCS, vol. 9998, pp. 54–66. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-47121-1 5

41. Wang, Z., Cai, J., Cheng, S., Li, W.: Droiddeeplearner: identifying android malware
using deep learning. In: Sarnoff 2016, pp. 160–165 (2016)

42. Nix, R., Zhang, J.: Classification of android apps and malware using deep neural
networks. In: IJCNN 2017, pp. 1871–1878 (2017)

43. Karbab, E., Debbabi, M., Derhab, A., Mouheb, D.: Maldozer: automatic frame-
work for android malware detection using deep learning. Digit. Invest. 24, S48–S59
(2018)

44. Hou, S., Saas, A., Chen, L., Ye, Y.: Deep4maldroid: a deep learning framework
for android malware detection based on Linux kernel system call graphs. In: WIW
2017, pp. 104–111 (2017)

45. Nauman, M., Tanveer, T., Khan, S., Syed, T.: Deep neural architectures for large
scale android malware analysis. Cluster Comput. 1–20 (2017)

46. Zhu, D., et al.: Deepflow: deep learning-based malware detection by mining android
application for abnormal usage of sensitive data. In: ISCC 2017, pp. 438–443, July
2017

https://doi.org/10.1007/978-3-319-47121-1_5
https://doi.org/10.1007/978-3-319-47121-1_5

Type Theory

Strongly Typed Numerical Computations

Matthieu Martel(B)

Laboratoire de Mathématiques et Physique (LAMPS),
Université de Perpignan Via Domitia, Perpignan, France

matthieu.martel@univ-perp.fr

Abstract. It is well-known that numerical computations may some-
times lead to wrong results because of roundoff errors. We propose an
ML-like type system (strong, implicit, polymorphic) for numerical com-
putations in finite precision, in which the type of an expression carries
information on its accuracy. We use dependent types and a type infer-
ence which, from the user point of view, acts like ML type inference.
Basically, our type system accepts expressions for which it may ensure
a certain accuracy on the result of the evaluation and it rejects expres-
sions for which a minimal accuracy on the result of the evaluation cannot
be inferred. The soundness of the type system is ensured by a subject
reduction theorem and we show that our type system is able to type
implementations of usual simple numerical algorithms.

1 Introduction

It is well-known that numerical computations may sometimes lead to wrong
results because of the accumulation of roundoff errors [8]. Recently, much work
has been done to detect these accuracy errors in finite precision computations [1],
by static [6,9,18] or dynamic [7] analysis, to find the least data formats needed
to ensure a certain accuracy (precision tuning) [11,12,17] and to optimize the
accuracy by program transformation [5,14]. All these techniques are used late
in the software development cycle, once the programs are entirely written.

In this article, we aim at exploring a different direction. We aim at detect-
ing and correcting numerical accuracy errors at software development time, i.e.
during the programming phase. From a software engineering point of view, the
advantages of our approach are many since it is well-known that late bug detec-
tion is time and money consuming. We also aim at using intensively used tech-
niques recognized for their ability to discard run-time errors. This choice is moti-
vated by efficiency reasons as well as for end-user adoption reasons.

We propose an ML-like type system (strong, implicit, polymorphic [15]) for
numerical computations in which the type of an arithmetic expression carries
information on its accuracy. We use dependent types [16] and a type inference

This work is supported by the Office for Naval Research Global under Grant
NICOP N62909-18-1-2068 (Tycoon project). https://www.onr.navy.mil/en/Science-
Technology/ONR-Global.

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 197–214, 2018.
https://doi.org/10.1007/978-3-030-02450-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_12&domain=pdf
https://www.onr.navy.mil/en/Science-Technology/ONR-Global
https://www.onr.navy.mil/en/Science-Technology/ONR-Global

198 M. Martel

which, from the user point of view, acts like ML [13] type inference [15] even if
it slightly differs in its implementation. While type systems have been widely
used to prevent a large variety of software bugs, to our knowledge, no type
system has been targeted to address numerical accuracy issues in finite precision
computations. Basically, our type system accepts expressions for which it may
ensure a certain accuracy on the result of the evaluation and it rejects expressions
for which a minimal accuracy on the result of the evaluation cannot be inferred.

Let us insist on the fact that we use a dependent type system. Consequently,
the type corresponding to a function of some argument x depends on the type
of x itself. The soundness of our type system relies on a subject reduction the-
orem introduced in Sect. 4. Based on an instrumented operational semantics
computing both the finite precision and exact results of a numerical computa-
tion, this theorem shows that the error on the result of the evaluation of some
expression e is less than the error predicted by the type of e. Obviously, as any
non-trivial type system, our type system is not complete and rejects certain pro-
grams that would not produce unbounded numerical errors. Our type system has
been implemented in a prototype language Numl and we show that, in practice,
our type system is expressive enough to type implementations of usual simple
numerical algorithms [2] such as the ones of Sect. 5. Let us also mention that our
type system represents a new application of dependent type theory motivated by
applicative needs. Indeed, dependent types arise naturally in our context since
accuracy depends on values.

This article is organized as follows. Section 2 introduces informally our type
system and shows how it is used in our implementation of a ML-like programming
language, Numl. The formal definition of the types and of the inference rules
are given in Sect. 3. A soundness theorem is given in Sect. 4. Section 5 presents
experimental results and Sect. 6 concludes.

2 Programming with Types for Numerical Accuracy

In this section, we present informally how our type system works throughout a
programming sequence in our language, Numl. First of all, we use real numbers
r{s, u, p} where r is the value itself, and {s, u, p} the format of r. The format of
a real number is made of a sign s ∈ Sign and integers u, p ∈ Int such that u is
the unit in the first place of r, written ufp(r) and p the precision (i.e. the number
of digits of the number). For inputs, p is either explicitly specified by the user
or set by default by the system. For outputs, p is inferred by the type system.
We have Sign = {0,⊕,�,�} and sign(r) = 0 if r = 0, sign(r) = ⊕ if r > 0 and
sign(r) = � if r < 0. The set Sign is equipped with the partial order relation
≺⊆ Sign × Sign defined by 0 ≺ ⊕, 0 ≺ �, ⊕ ≺ � and � ≺ �. The ufp of a
number x is

ufp(x) = min
{
i ∈ N : 2i+1 > x

}
= �log2(x)�. (1)

The term p defines the precision of r. Let ε(r) be the absolute error on r,
we assume that ε(r) < 2u−p+1. The errors on the numerical constants arising
in programs are specified by the user or determined by default by the system.

Strongly Typed Numerical Computations 199

Fig. 1. Basic binary IEEE754 formats.

The errors on the computed values can be inferred by propagation of the initial
errors. Similarly to Eq. (1), we also define the unit in the last place (ulp) used
later in this article. The ulp of a number of precision p is defined by

ulp(x) = ufp(x) − p + 1. (2)

For example, the type of 1.234 is real{+, 0, 53} since ufp(1.234) = 0 and
since we assume that, by default, the real numbers have the same precision as
in the IEEE754 double precision floating-point format [1] (see Fig. 1). Other for-
mats may be specified by the programmer, as in the example below. Let us also
mention that our type system is independent of a given computer arithmetic.
The interpreter only needs to implement the formats given by the type system,
using floating-point numbers, fixed-point numbers [10], multiple precision num-
bers1, etc. in order to ensure that the finite precision operations are computed
exactly. The special case of IEEE754 floating-point arithmetic, which introduces
additional errors due to the roundoff on results of operations can also be treated
by modifying slightly the equations of Sect. 3.

> 1.234 ;; (* precision of 53 bits by default *)
- : real{+,0,53} = 1.234000000000000

> 1.234{4};; (* precision of 4 bits specified by the user *)
- : real{+,0,4} = 1.2

Notice that, in Numl, the type information is used by the pretty printer to display
only the correct digits of a number and a bound on the roundoff error.

Note that accuracy is not a property of a number but a number that states
how closely a particular finite-precision number matches some ideal true value.
For example, using the basis β = 10 for the sake of simplicity, the floating-point
value 3.149 represents π with an accuracy of 3. It itself has a precision of 4. It
represents the real number 3.14903 with an accuracy of 4. As in ML, our type
system admits parameterized types [15].

> let f = fun x -> x + 1.0 ;;
val f : real{’a,’b,’c} -> real{<expr>,<expr>,<expr>} = <fun>

> verbose true ;;
- : unit = ()

> f ;;
- : real{’a,’b,’c} -> real{(SignPlus ’a ’b 1 0),((max ’b 0) +_ (sigma+ ’a 1)),
((((max ’b 0) +_ (sigma+ ’a 1)) -_ (max (’b -_ ’c) -53))-_ (iota (’b -_ ’c) -53))} = <fun>

1 https://gmplib.org/.

https://gmplib.org/

200 M. Martel

In the example above, the type of f is a function of an argument whose
parameterized type is real{’a, ’b, ’c}, where ’a, ’b and ’c are three type
variables. The return type of the function f is Real{e0,e1,e2} where e0, e1
and e2 are arithmetic expressions containing the variables ’a, ’b and ’c. By
default these expressions are not displayed by the system (just like higher order
values are not explicitly displayed in ML implementations) but we may enforce
the system to print them. In Numl, we write +, -, * and / for the operators over
real numbers. Integer expressions have type int and we write + , - , * and /
for the elementary operators over integers. The expressions arising in the type
of f are explained in Sect. 3. As shown below, various applications of f yield
results of various types, depending on the type of the argument.

> f 1.234 ;;
- : real{+,1,53} = 2.234000000000000

> f 1.234{4} ;;
- : real{+,1,5} = 2.2

If the interpreter detects that the result of some computation has no signifi-
cant digit, then an error is raised. For example, it is well-known that in IEEE754
double precision (1016+1)−1016 = 0. Our type system rejects this computation.

> (1.0e15 + 1.0) - 1.0e15 ;;
- : real{+,50,54} = 1.0

> (1.0e16 + 1.0) - 1.0e16 ;;
Error: The computed value has no significant digit. Its ufp is 0 but the ulp of the
certified value is 1

Last but not least, our type system accepts recursive functions. For example, we
have:

> let rec g x = if x < 1.0 then x else g (x * 0.07) ;;
val g : real{+,0,53} -> real{+,0,53} = <fun>

> g 1.0 ;;
- : real{+,0,53} = 0.07000000000000

> g 2.0 ;;
Error: This expression has type real{+,1,53} but an expression was expected of type
real{+,0,53}

In the above session, the type system unifies the return type of the function
with the type of the conditional. The types of the then and else branches also
need to be unified. Then the return type is real{+,0,53} which corresponds to
the type of the value 1.0 used in the then branch. The type system also unifies
the return type with the type of the argument since the function is recursive.
Finally, we obtain that the type of g is real{+,0,53} -> real{+,0,53}. As
a consequence, we cannot call g with an argument whose ufp is greater than
ufp(1.0) = 0. To overcome this limitation, we introduce new comparison opera-
tions for real numbers. While the standard comparison operator < has type ’a ->
’a -> bool, the operator <{s,u,p} has type real{s,u,p} -> real{s,u,p} ->
bool. In other words, the compared value are cast in the format {s, u, p} before
performing the comparison. Now we can write the code:

Strongly Typed Numerical Computations 201

> let rec g x = if x <{*,10,15} 1.0 then x else g (x * 0.07) ;;
val g : real{*,10,15} -> real{*,10,15} = <fun>

> g 2.0 ;;
- : real{*,10,15} = 0.1

> g 456.7 ;;
- : real{*,10,15} = 0.1

> g 4567.8 ;;
Error: This expression has type real{+,12,53} but an expression was expected of
type real{*,10,15}

Interestingly, unstable functions (for which the initial errors grow with the
number of iterations) are not typable. This is a desirable property of our system.

> let rec h n = if (n=0) then 1.0 else 3.33 * (h (n -_ 1)) ;;
Error: This expression has type real{+,-1,-1} but an expression was expected of
type real{+,-3,-1}

Stable computations should be always accepted by our type system. Obvi-
ously, this is not the case and, as any non-trivial type system, our type system
rejects some correct programs. The challenge is then to accept enough programs
to be useful from an end-user point of view. We end this section by showing
another example representative of what our type system accepts. More exam-
ples are given later in this article, in Sect. 5. The example below deals with the
implementation of the Taylor series 1

1−x =
∑

n≥0 xn. The implementation gives
rise to a simple recursion, as shown in the programming session below.

> let rec taylor x{*,-1,25} xn i n = if (i > n) then 0.0{*,10,20}
else xn + (taylor x (x * xn) (i +_ 1) n) ;;

val taylor : real{*,-1,25} -> real{*,10,20} -> int -> int -> real{*,10,20} = <fun>

> taylor 0.2 1.0 0 5;;
- : real{*,10,20} = 1.2499 +/- 0.0009765625

Obviously, our type system computes the propagation of the errors due to
finite precision but does not take care of the method error intrinsic to the imple-
mented algorithm (the Taylor series instead of the exact formula 1

1−x in our case.)
All the programming sessions introduced above as well as the additional exam-
ples of Sect. 5 are fully interactive in our system, Numl, i.e. the type judgments are
obtained instantaneously (about 0.01 s in average following our measurements)
including the most complicated ones.

3 The Type System

In this section, we introduce the formal definition of our type system for numer-
ical accuracy. First, in Sect. 3.1, we define the syntax of expressions and types
and we introduce a set of inference rules. Then we define in Sect. 3.2 the types
of the primitives for the operators among real numbers (addition, product, etc.)
These types are crucial in our system since they encode the propagation of the
numerical accuracy information.

202 M. Martel

Fig. 2. Typing rules for our language.

3.1 Expressions, Types and Inference Rules

In this section, we introduce the expressions, types and typing rules for our
language. For the sake of simplicity, the syntax introduced hereafter uses nota-
tions à la lambda calculus instead of the ML-like syntax employed in Sect. 2. In
our system, expressions and types are mutually dependent. They are defined
inductively using the grammar of Eq. (3).

Expr � e ::= r{s, u, p} ∈ Realu,p | i ∈ Int | b ∈ Bool | id ∈ Id
| if e0 then e1 else e2 | λx.e | e0 e1 | rec f x.e | t

Typ � t ::= | int | bool | real{i0, i1, i2} | α | Πx : e0.e1

IExp � i ::= | int | op ∈ IdI | α | i0 i1

(3)

In Eq. (3), the e terms correspond to expressions. Constants are integers i ∈ Int,
booleans b ∈ Bool and real numbers r{s, u, p} where r is the value itself, s ∈ Sign
is the sign as defined in Sect. 2 and u, p ∈ Int the ufp (see Eq. (1)) and precision
of r. For inputs, the precision p is given by the user by means of annotations or
chosen by default by the system. Then p is inferred for the outputs of programs.
The term p defines the precision of r. Let ε(r) be the absolute error on r, we
assume that

ε(r) < 2u−p+1. (4)

The errors on the numerical constants arising in programs are specified by the
user or determined by default by the system. The errors on the computed values
can be inferred by propagation of the initial errors.

In Eq. (3), identifiers belong to the set Id and we assume a set of pre-defined
identifiers +, −, ×, ≤, =, . . . related to primitives for the logical and arithmetic
operations. We write +, −, × and ÷ the operations on real numbers and + , − ,
× and ÷ the operations among integers. The language also admits conditionals,
functions λx.e, applications e0 e1 and recursive functions rec f x.e where f is
the name of the function, x the parameter and e the body. The language of

Strongly Typed Numerical Computations 203

Fig. 3. The sub-typing relation � of Eq. (6).

expressions also includes type expressions t defined by the second production of
the grammar of Eq. (3).

The definition of expressions and type is mutually recursive. Type variables
are denoted α, β, . . . and Πx : e0.e1 is used to introduce dependent types [16].
Let us notice that our language does not explicitly contain function types t0 → t1
since they are encoded by means of dependent types. Let ≡ denote the syntactic
equivalence, we have

t0 → t1 ≡ Πx : t0.t1 with x not free in t1. (5)

For convenience, we also write λx0.x1 . . . xn.e instead of λx0.λx1 . . . λxn.e and
Πx0 : t0.x1 : t1 . . . xn : tn.e instead of Πx0 : t0.Πx1 : t1 . . . Πxn : tn.e.

The types of constants are int, bool and real{i0, i1, i2} where i0, i1 and i2
are integer expressions denoting the format of the real number. Integer expres-
sions of IExpr ⊆ Expr are a subset of expressions made of integer numbers, inte-
ger primitives of IdI ⊆ Id (such as + , × , etc.), type variables and applications.
Note that this definition restricts significantly the set of expressions which may
be written inside real types.

The typing rules for our system are given in Fig. 2. These rules are mostly
classical. The type judgment Γ � e : t means that in the type environment Γ ,
the expression e has type t. A type environment Γ : Id → Typ maps identifiers
to types. We write Γ x : t the environment Γ in which the variable x has type t.
The typing rules (Int) and (Bool) are trivial. Rule (Real) states that the type
of a real number r{s,u,p} is real{s, u, p} assuming that the actual sign of r is
less than s and that the ufp of r is less than u. Following Rule (Id), an identifier
id has type t if Γ (id) = t. Rules (Cond), (Abs) and (Rec) are standard rules
for conditionals and abstractions respectively. The rule for application, (App),
requires that the first expression e1 has type Πx : t0.t1 (which is equivalent to
t0 → t1 if x is not free in t1) and that the argument e2 has some type t2 � t0.
The sub-typing relation � is introduced for real numbers. Intuitively, we want to
allow the argument of some function to have a smaller ulp than what we would
require if we used t0 = t2 in Rule (App), provided that the precision p remains
as good with t2 as with t0. This relaxation allows to type more terms without
invalidating the type judgments. Formally, the relation � is defined by

real{s1, u1, p1} � real{s2, u2, p2} ⇐⇒ s1 � s2 ∧ u2 ≥ u1 ∧ p2 ≤ u2 − u1 + p1. (6)

204 M. Martel

In other words, the sub-typing relation of Eq. (6) states that it is always correct
to add zeros before the first significant digit of a number, as illustrated in Fig. 3.

3.2 Types of Primitives

In this section, we introduce the types of the primitives of our language. As
mentioned earlier, the arithmetic and logic operators are viewed as functional
constants of the language. The type of a primitive for an arithmetic operation
among integers ∗ ∈ {+ ,− ,× ,÷ } is

t∗ = Πx : int.y : int.int. (7)

The type of comparison operators ��∈ {=, �=, <,>,≤,≥} are polymorphic with
the restriction that they reject the type real{s, u, p} which necessitates special
comparison operators:

t�� = Πx : α.y : α.bool α �= real{s, u, p}. (8)

For real numbers, we use comparisons at a given accuracy defined by the oper-
ators ��{u,p}∈ {<{u,p}, >{u,p}}. We have

t��{u,p} = Πs : int, u : int, p : int.real{s, u, p + 1} → real{s, u, p + 1} → bool.

Notice that the operands of a comparison ��{u,p} must have p+1 bits of accuracy.
This is to avoid unstable tests, as detailed in the proof of Lemma3 in Sect. 4.
An unstable test is a comparison between two approximate values such that the
result of the comparison is altered by the approximation error. For instance,
if we reuse an example of Sect. 2, in IEEE754 double precision, the condition
1016 + 1 = 1016 evaluates to true. We need to avoid such situations in our
language in order to preserve our subject reduction theorem (we need the control-
flow be the same in the finite precision and exact semantics). Let us also note
that our language does not provide an equality relation ={u,p} for real values.
Again this is to avoid unstable tests. Given values x and y of type real{s, u, p},
the programmer is invited to use |x − y| < 2u−p+1 instead of x = y in order to
get rid of the perturbations of the finite precision arithmetic.

The types of primitives for real arithmetic operators are fundamental in
our system since they encode the propagation of the numerical accuracy infor-
mation. They are defined in Figs. 4 and 5. The type t∗ of some operation
∗ ∈ {+,−,×,÷} is a pi-type with takes six arguments s1, u1, p1, s2, u2 and p2 of
type int corresponding to the sign, ufp and precision of the two operands of ∗ and
which produces a type real{s1, u1, p1} → real{s2, u2, p2} → real{S∗(s1, s2),
U∗(s1, u1, s2, u2),P∗(u1, p1, u2, p2)} where S∗, U∗ and P∗ are functions which com-
pute the sign, ufp and precision of the result of the operation ∗ in function of
s1, u1, p1, s2, u2 and p2. These functions extend the functions used in [12].

The functions S∗ determine the sign of the result of an operation in function
of the signs of the operands and, for additions and subtractions, in function of
the ufp of the operands. The functions U∗ compute the ufp of the result. Notice
that U+ and U− use the functions σ+ and σ−, respectively. These functions are

Strongly Typed Numerical Computations 205

Fig. 4. Types of the primitives corresponding to the elementary arithmetic operations
∗ ∈ {+, −, ×, ÷}. The functions S∗ and σ∗ are defined in Fig. 5.

defined in the bottom right corner of Fig. 5 to increment the ufp of the result of
some addition or subtraction in the relevant cases only. For example if a and b
are two positive real numbers then ufp(a+ b) is possibly max

(
ufp(a), ufp(b)

)
+1

but if a > 0 and b < 0 then ufp(a + b) is not greater than max
(
ufp(a), ufp(b)

)
.

The functions P∗ compute the precision of the result. Basically, they compute
the number of bits between the ufp and the ulp of the result.

We end this section by exhibiting some properties of the functions P∗. Let
ε(x) denote the error on x ∈ Realu,p. We have ε(x) < 2u−p+1 = ulp(x). Let
us start with addition. Lemma1 relates the accuracy of the operands to the
accuracy of the result of an addition between two values x and y. Lemma 2 is
similar to Lemma 1 for product.

Lemma 1. Let x and y be two values such that ε(x) < 2u1−p1+1 and ε(y) <
2u2−p2+1. Let z = x + y, u = U+(s1, u1, s2, u2) and p = P+(s1, u1, p1, s2, u2, p2).
Then ε(z) < 2u−p+1.

Proof. The errors on addition may be bounded by e+ = ε(x) + ε(y). Then
the most significant bit of the error has weight ufp(e+) and the accuracy of
the result is p = ufp(x + y) − ufp(e+). Let u = ufp(x + y) = max(u1, u2) +
σ+(s1, s2) = U+(s1, u1, s2, u2). We need to over-approximate e+ in order to
ensure p. We have ε(x) < 2u1−p1+1 and ε(y) < 2u2−p2+1 and, consequently,
e+ < 2u1−p1+1 + 2u2−p2+1. We introduce the function ι(x, y) also defined in
Fig. 4 and which is equal to 1 if x = y and 0 otherwise. We have

ufp(e+) < max(u1 − p1 + 1, u2 − p2 + 1) + ι(u1 − p1, u2 − p2)
≤ max(u1 − p1, u2 − p2) + ι(u1 − p1, u2 − p2)

Let us write p = max(u1 − p1, u2 − p2) − ι(u1 − p1, u2 − p2) =
P+(s1, u1, p1s2, u2, p2). We conclude that u = U+(s1, u1, s2, u2), p =
P+(s1, u1, p1s2, u2, p2) and ε(z) < 2u−p+1. �

206 M. Martel

Fig. 5. Operators used in the types of the primitives of Fig. 4.

Lemma 2. Let x and y be two values such that ε(x) < 2u1−p1+1 and ε(y) <
2u2−p2+1. Let z = x × y, u = U×(s1, u1, s2, u2) and p = P×(s1, u1, p1, s2, u2, p2).
Then ε(z) < 2u−p+1.

Proof. For product, we have p = ufp(x × y) − ufp(e×) with e× = x · ε(y) + y ·
ε(x)+ε(x) ·ε(y). Let u = u1 +u2 +1 = U×(s1, u1, s2, u2). We have, by definition
of ufp, 2u1 ≤ x < 2u1+1 and 2u2 ≤ y < 2u2+1. Then e× may be bounded by

e× < 2u1+1 · 2u2−p2+1 + 2p2+1 · 2u1−p1+1 + 2u1−p1+1 · 2u2−p2+1

= 2u1+u2−p2+2 + 2u1+u2−p1+2 + 2u1+u2−p1−p2+2.
(9)

Since u1+u2−p1−p2+2 < u1+u2−p1+2 and u1+u2−p1−p2+2 < u1+u2−p2+2,
we may get rid of the last term of Eq. (9) and we obtain that

ufp(e×) < max(u1 + u2 − p1 + 2, u1 + u2 − p2 + 2) + ι(p1, p2)
≤ max(u1 + u2 − p1 + 1, u1 + u2 − p2 + 1) + ι(p1, p2).

Let us write p = max(u1 + u2 − p1 + 1, u1 + u2 − p2 + 1) − ι(p1, p2) =
P×(s1, u1, p1s2, u2, p2). Then u = U×(s1, u1, s2, u2), p = P×(s1, u1, p1s2, u2, p2)
and ε(z) < 2u−p+1. �

Note that, by reasoning on the exponents of the values, the constraints result-
ing from a product become linear. The equations for subtraction and division

Strongly Typed Numerical Computations 207

Fig. 6. Operational semantics for our language.

are almost identical to the equations for addition and product, respectively. We
conclude this section with the following theorem which summarize the properties
of the types of the result of the four elementary operations.

Theorem 1. Let x and y be two values such that ε(x) < 2u1−p1+1 and ε(y) <
2u2−p2+1 and let ∗ ∈ {+,−,×,÷} be an elementary operation. Let z = x ∗ y,
u = U∗(s1, u1, s2, u2) and p = P∗(s1, u1, p1, s2, u2, p2). Then ε(z) < 2u+p−1.

Proof. The cases of addition and product correspond to Lemmas 1 and 2, respec-
tively. The cases of subtraction and division are similar. �

Numl uses a modified Hindley-Milner type inference algorithm. Linear con-
straints among integers are generated (even for non linear expressions). They
are solved space limitation reasons, the details of this algorithm are out of the
scope of this article.

4 Soundness of the Type System

In this section, we introduce a subject reduction theorem proving the consistency
of our type system. We use two operational semantics →F and →R for the finite
precision and exact arithmetics, respectively. The exact semantics is used for

208 M. Martel

proofs. Obviously, in practice, only the finite precision semantics is implemented.
We write → whenever a reduction rule holds for both →F and →R (in this case,
we assume that the same semantics →F or →R is used in the lower and upper
parts of the same sequent). Both semantics are displayed in Fig. 6. They concern
the subset of the language of Eq. (3) which do not deal with types.

EvalExpr � e ::= r{s, u, p} ∈ Realu,p | i ∈ Int | b ∈ Bool | id ∈ Id
| if e0 then e1 else e2 | λx.e | e0 e1 | rec f x.e| e0 ∗ e1

.

(10)
In Eq. (10), ∗ denotes an arithmetic operator ∗ ∈ {+,−,×,÷,+ ,− ,× , ÷ }.
In Fig. 6, Rule (FVal) of →F transforms a syntactic element describing a real
number r{s, u, p} in a certain format into a value vF. The finite precision value
vF is an approximation of r with an error less than the ulp of r{s, u, p}. In
the semantics →R, the real number r{s, u, p} simply produces the value r
without any approximation by Rule (RVal). Rules (Op1) and (Op2) evaluate
the operands of some binary operation and Rule (Op) performs an operation
∗ ∈ {+,−,×,÷,+ ,− ,× ,÷ } between two values v0 and v1.

Rules (Cmp1), (Cmp2) and (ACmp) deal with comparisons. They are similar
to Rules (Op1), (Op2) and (Op) described earlier. Note that the operators <
, >, =, �= concerned by Rule (ACmp) are polymorphic except that they do not
accept arguments of type real. Rules (FCmp) and (RCmp) are for the comparison
of real values. Rule (FCmp) is designed to avoid unstable tests by requiring
that the distance between the two compared values is greater than the ulp of
the format in which the comparison is done. With this requirement, a condition
cannot be invalidated by the roundoff errors. Let us also note that, with this
definition, x <u,p y �⇒ y >u,p x or x >u,p y �⇒ y <u,p x. For the semantics →R,
Rule (RCmp) simply compares the exact values.

The other rules are standard and are identical in →F and →R. Rules (App1),
(App2) and (Red) are for applications and Rule (Rec) is for recursive functions.
We write e〈v/x〉 the term e in which v has been substituted to the free occur-
rences of x. Rules (Cond), (CondTrue) and (CondFalse) are for conditionals.

The rest of this section is dedicated to our subject reduction theorem. First
of all, we need to relate the traces of →F and →R. We introduce new judgments

Γ |= (eF, eR) : t. (11)

Intuitively, Eq. (11) means that expression eF simulates eR up to accuracy t. In
this case, eF is syntactically equivalent to eR up to the values which, in eF, are
approximations of the values of eR. The value of the approximation is given by
type t.

Formally, |= is defined in Fig. 7. These rules are similar to the typing rules
of Fig. 2 excepted that they operate on pairs (eF, eR). They are also designed for
the language of Eq. (10) and, consequently, deal with the elementary arithmetic
operations +, −, × and ÷ as well as the comparison operators. The difference
between the rules of Figs. 2 and 7 is in Rule (VReal) which states that a real
value vR is correctly simulated by a value vF up to accuracy real{s, u, p} if

Strongly Typed Numerical Computations 209

Fig. 7. Simulation relation |= used in our subject reduction theorem.

|vR − vF| < 2u−p+1. It is easy to show, by examination of the rules of Figs. 2 and
7 that

Γ |= (eF, eR) : t =⇒ Γ � eF : t. (12)

We introduce now Lemma 3 which asserts the soundness of the type system
for one reduction step. Basically, this lemma states that types are preserved by
reduction and that concerning the values of type real, the distance between the
finite precision value and the exact value is less than the ulp given by the type.

Lemma 3 (Weak subject reduction). If Γ |= (eF, eR) : t and if eF →F e′
F

and eR →R e′
R
then Γ |= (e′

F
, e′

R
) : t.

Proof. By induction on the structure of expressions and case examination on the
possible transition rules of Fig. 6.

– If eF ≡ eR ≡ r{s, u, p} then Γ |= (r{s,u,p}, r{s,u,p}) : real{s, u, p} and,
from the reduction rules (FVal) and (RVal) of Fig. 6, r{s, u, p} →F vF and
r{s, u, p} →R vR with |vF − vR| < 2u−p+1. So Γ |= (vF, vR) : real{s, u, p}.

210 M. Martel

– If eF ≡ e0F ∗ e1F and eR ≡ e0R ∗ e1R then several cases must be distinguished.
• If eF ≡ v0F ∗ v1F and eR ≡ v0R ∗ v1R then, by induction hypothesis,

Γ |= (v0F, v0R) : real{s0, u0, p0}, Γ |= (v1F, v1R) : real{s1, u1, p1} and,
consequently, from Rule (VReal),

|v0R − v0F| < 2u0−p0+1 and |v1R − v1F| < 2u1−p1+1. (13)

Following Fig. 4, the type t of e is

t =
(
Πs1 : int, u1 : int, p1 : int, s2 : int, u2 : int, p2 : int.
real{s1, u1, p1} → real{s2, u2, p2} →
→ real{S∗(s1, u1, s2, u2),U∗(s1, u1, s2, u2),P∗(s1, u1, p1, s2, u2, p2)})
s1 u1 p1 s2 u2 p2,

= real{S∗(s1, u1, s2, u2),U∗(s1, u1, s2, u2),P∗(s1, u1, p1, s2, u2, p2)}
= real{s, u, p}

By Rule (Op), e →F vF and e →R vR and, by Theorem 1, with the
assumptions of Eq. (13), we know that |vR − vF| < 2u−p+1. Consequently,
Γ |= (vF, vR) : real{s, u, p}.

• If eF ≡ v0F ∗ v1F and eR ≡ v0R ∗ v1R with Γ |= (v0, v1) int then, by
Rule (Op), e → (v, v) and, by Eq. (7), Γ � v int. If e ≡ e0 ∗ e1 then, by
Rule (Op1), e → e0 ∗ e′

1 and we conclude by induction hypothesis. The
case e ≡ e0 ∗ v1 is similar to the former one.

– If eF ≡ e0F ��u,p e1F and eR ≡ e0R ��u,p e1R then several cases have to be
examined.

• If eF ≡ v0F ��u,p v1F and eR ≡ v0R ��u,p v1R then by rules (FCmp) and
(RCmp) eF →F bF, eR →R bR with bF = v0F − v1F ��{u,p} 2u−p+1 and bR =
v0R −v1R ��{u,p} 0. By rule (RCmp) of Fig. 7, Γ |= (v0F, v1F) real{s, u, p}
and Γ |= (v0R, v1R) real{s, u, p}. Consequently, |v0R −v0F| < 2u−p+1 and
|v1R − v1F| < 2u−p+1. By combining the former equations, we obtain that
|(v0R −v1R)− (v0F −v1F)| < 2u−p. Consequently, bF = bR and we conclude
that Γ |= (bF, bR) bool.

• The other cases for eF ≡ e0F ��u,p e1F are similar to the cases eF ≡ v0F ∗ v1F

examined previously.
– The other cases simply follow the structure of the terms, by application of

the induction hypothesis. �

Let →∗
F

(resp. →∗
R
) denote the reflexive transitive closure of →F (resp. →R).

Theorem 2 expresses the soundness of our type system for sequences of reduction
of arbitrary length.

Theorem 2 (Subject reduction). If Γ |= (eF, eR) : t and if eF →∗
F

e′
F
and

eR →∗
R

e′
R
then Γ |= (e′

F
, e′

R
) : t.

Proof. By induction on the length of the reduction sequence, using Lemma3.�

Theorem 2 asserts the soundness of our type system. It states that the eval-
uation of an expression of type real{s, u, p} yields a result of accuracy 2u−p+1.

Strongly Typed Numerical Computations 211

5 Experiments

In this section, we report some experiments showing how our type system
behaves in practice. Section 5.1 presents Numl implementations of usual mathe-
matical formulas while Sect. 5.2 introduce a larger example demonstrating the
expressive power of our type system.

5.1 Usual Mathematical Formulas

Our first examples concern usual mathematical formulas, to compute the volume
of geometrical objects or formulas related to polynomials. These examples aim at
showing that usual mathematical formulas are typable in our system. We start
with the volume of the sphere and of the cone.

> let sphere r = (4.0 / 3.0) * 3.1415926{+,1,20} * r * r * r ;;
val sphere : real{’a,’b,’c} -> real{<expr>,<expr>,<expr>} = <fun>

> sphere 1.0 ;;
- : real{+,7,20} = 4.188

> let cone r h = (3.1415926{+,1,20} * r * r * h) / 3.0 ;;
val cone : real{’a,’b,’c} -> real{’a,’b,’c}

-> real{<expr>,<expr>,<expr>} = <fun>

> cone 1.0 1.0 ;;
- : real{+,4,20} = 1.0472

We repeatedly define the function sphere with more precision in order to
show the impact on the accuracy of the results. Note that the results now have
15 digits instead of the former 5 digits.

> let sphere r = (4.0 / 3.0) * 3.1415926535897932{+,1,53} * r * r * r ;;
val sphere : real{’a,’b,’c} -> real{<expr>,<expr>,<expr>} = <fun>

> sphere 1.0 ;;
- : real{+,7,52} = 4.1887902047863

The next examples concern polynomials. We start with the computation of
the discriminant of a second degree polynomial.

> let discriminant a b c = b * b - 4.0 * a * c ;;
val discriminant : real{’a,’b,’c} -> real{’d,’e,’f} -> real{’g,’h,’i}

-> real{<expr>,<expr>,<expr>} = <fun>

> discriminant 2.0 -11.0 15.0 ;;
- : real{+,8,52} = 1.000000000000

Our last example concerning usual formulas is the Taylor series development
of the sine function. In the code below, observe that the accuracy of the result
is correlated to the accuracy of the argument. As mentioned in Sect. 2, error
methods are neglected, only the errors due to the finite precision are calculated
(indeed, sin π

8 = 0.382683432 . . .).

212 M. Martel

let sin x = x - ((x * x * x) / 3.0) + ((x * x * x * x * x) / 120.0) ;;
val sin : real{’a,’b,’c} -> real{<expr>,<expr>,<expr>} = <fun>

> sin (3.14{1,6} / 8.0) ;;
- : real{*,0,6} = 0.3

> sin (3.14159{1,18} / 8.0) ;;
- : real{*,0,18} = 0.37259

5.2 Newton-Raphson Method

In this section, we introduce a larger example to compute the zero of a function
using the Newton-Raphson method. This example, which involves several higher
order functions, shows the expressiveness of our type system. In the program-
ming session below, we first define a higher order function deriv which takes
as argument a function and computes its numerical derivative at a given point.
Then we define a function g and compute the value of its derivative at point
2.0. Next, by partial application, we build a function computing the derivative
of g at any point. Finally, we define a function newton which searches the zero
of a function. The newton function is also an higher order function taking as
argument the function for which a zero has to be found and its derivative.

> let deriv f x h = ((f (x + h)) - (f x)) / h ;;
val deriv : (real{<expr>,<expr>,<expr>} -> real{’a,’b,’c})

-> real{<expr>,<expr>,<expr>} -> real{’d,’e,’f}
-> real{<expr>,<expr>,<expr>} = <fun>

> let g x = (x*x) - (5.0*x) + 6.0 ;;
val g : real{’a,’b,’c} -> real{<expr>,<expr>,<expr>} = <fun>

> deriv g 2.0 0.01 ;;
- : real{*,5,51} = -0.9900000000000

> let gprime x = deriv g x 0.01 ;;
val gprime : real{<expr>,<expr>,<expr>} -> real{<expr>,<expr>,<expr>} = <fun>

> let rec newton x xold f fprime = if ((abs (x-xold))<0.01{*,10,20}) then x
else newton (x-((f x)/(fprime x))) x f fprime ;;

val newton : real{*,10,21} -> real{0,10,20} -> (real{*,10,21} -> real{’a,’b,’c})
-> (real{*,10,21} -> real{’d,’e,’f}) -> real{*,10,21} = <fun>

> newton 9.0 0.0 g gprime ;;
- : real{*,10,21} = 3.0001

We call the newton function with our function g and its derivative computed
by partial application of the deriv function. We obtain a root of our polynomial g
with a guaranteed accuracy. Note that while Newton-Raphson method converges
quadratically in the reals, numerical errors may perturb the process [4].

6 Conclusion

In this article, we have introduced a dependent type system able to infer the
accuracy of numerical computations. Our type system allows one to type non-
trivial programs corresponding to implementations of classical numerical analysis

Strongly Typed Numerical Computations 213

methods. Unstable computations are rejected by the type system. The consis-
tency of typed programs is ensured by a subject reduction theorem. To our
knowledge, this is the first type system dedicated to numerical accuracy. We
believe that this approach has many advantages going from early debugging to
compiler optimizations. Indeed, we believe that the usual type float proposed
by usual ML implementations, and which is a simple clone of the type int, is
too poor for numerical computations. We also believe that this approach is a
credible alternative to static analysis techniques for numerical precision [6,9,18].
For the developer, our type system introduces few changes in the programming
style, limited to giving the accuracy of the inputs of the accuracy of comparisons
to allow the typing of certain recursive functions.

A first perspective to the present work is the implementation of a compiler
for Numl. We aim at using the type information to select the most appropriate
formats (the IEEE754 formats of Fig. 1, multiple precisions numbers of the GMP
library when needed or requested by the user or fixed-point numbers.) In the
longer term, we also aim at introducing safe compile-time optimizations based on
type preservation: an expression may be safely (from the accuracy point of view)
substituted to another expression as long as both expressions are mathematically
equivalent and that the new expression has a greater type than the older one in
the sense of Eq. (6). Finally, a second perspective is to integrate our type system
into other applicative languages. In particular, it would be of great interest
to have such a type system inside a language used to build critical embedded
systems such as the synchronous language Lustre [3]. In this context numerical
accuracy requirements are strong and difficult to obtain. Our type system could
be integrated naturally inside Lustre or similar languages.

References

1. ANSI/IEEE: IEEE Standard for Binary Floating-point Arithmetic (2008)
2. Atkinson, K.: An Introduction to Numerical Analysis, 2nd edn. Wiley, Hoboken

(1989)
3. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.: LUSTRE: a declarative language

for programming synchronous systems. In: POPL, pp. 178–188. ACM Press (1987)
4. Damouche, N., Martel, M., Chapoutot, A.: Impact of accuracy optimization on the

convergence of numerical iterative methods. In: Falaschi, M. (ed.) LOPSTR 2015.
LNCS, vol. 9527, pp. 143–160. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-27436-2 9

5. Damouche, N., Martel, M., Chapoutot, A.: Improving the numerical accuracy of
programs by automatic transformation. STTT 19(4), 427–448 (2017)

6. Darulova, E., Kuncak, V.: Sound compilation of reals. In: POPL 2014, pp. 235–248.
ACM (2014)

7. Denis, C., de Oliveira Castro, P., Petit, E.: Verificarlo: checking floating point accu-
racy through Monte Carlo arithmetic. In: ARITH 2016, pp. 55–62. IEEE (2016)

8. Franco, A.D., Guo, H., Rubio-González, C.: A comprehensive study of real-world
numerical bug characteristics. In: ASE, pp. 509–519. IEEE (2017)

https://doi.org/10.1007/978-3-319-27436-2_9
https://doi.org/10.1007/978-3-319-27436-2_9

214 M. Martel

9. Goubault, E.: Static analysis by abstract interpretation of numerical programs
and systems, and FLUCTUAT. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013.
LNCS, vol. 7935, pp. 1–3. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38856-9 1

10. Mentor Graphics Algorithmic C Datatypes, Software Version 2.6 edn. (2011).
http://www.mentor.com/esl/catapult/algorithmic

11. Lam, M.O., Hollingsworth, J.K., de Supinski, B.R., LeGendre, M.P.: Automatically
adapting programs for mixed-precision floating-point computation. In: Supercom-
puting, ICS 2013, pp. 369–378. ACM (2013)

12. Martel, M.: Floating-point format inference in mixed-precision. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 230–246. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 16

13. Milner, R., Harper, R., MacQueen, D., Tofte, M.: The Definition of Standard ML.
MIT Press, Cambridge (1997)

14. Panchekha, P., Sanchez-Stern, A., Wilcox, J.R., Tatlock, Z.: Automatically improv-
ing accuracy for floating point expressions. In: PLDI, pp. 1–11. ACM (2015)

15. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
16. Pierce, B.C. (ed.): Advanced Topics in Types and Programming Languages. MIT

Press, Cambridge (2004)
17. Rubio-Gonzalez, C., et al.: Precimonious: tuning assistant for floating-point preci-

sion. In: HPCNSA, pp. 27:1–27:12. ACM (2013)
18. Solovyev, A., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous estima-

tion of floating-point round-off errors with symbolic taylor expansions. In: Bjørner,
N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 532–550. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-19249-9 33

https://doi.org/10.1007/978-3-642-38856-9_1
https://doi.org/10.1007/978-3-642-38856-9_1
http://www.mentor.com/esl/catapult/algorithmic
https://doi.org/10.1007/978-3-319-57288-8_16
https://doi.org/10.1007/978-3-319-19249-9_33

Type Capabilities for Object-Oriented
Programming Languages

Xi Wu1(B) , Yi Lu2 , Patrick A. Meiring1 , Ian J. Hayes1 ,
and Larissa A. Meinicke1

1 School of ITEE, The University of Queensland, Brisbane 4072, Australia
{xi.wu,p.meiring,l.meinicke}@uq.edu.au, Ian.Hayes@itee.uq.edu.au

2 Oracle Labs, Brisbane 4000, Australia
yi.x.lu@oracle.com

Abstract. Capabilities are used to control access to system resources. In
modern programming languages that execute code with different levels of
trust in the same process, the propagation of such capabilities must be
controlled so that they cannot unintentionally be obtained by unautho-
rised code. In this paper, we present a statically-checked type system for
object-oriented programming languages which guarantees that capabili-
ties are restricted to authorised code. Capabilities are regarded as types
that are granted to code based on a user-defined policy file (similar to that
used by Java). In order to provide a finer-grained access control, the type
system supports parameterised capabilities to more precisely identify sys-
tem resources. The approach is illustrated using file-access examples.

Keywords: Capability-based security · Access control
Authorisation · Parameterisation · Programming language

1 Introduction

The concept of capability-based security [5,16], in which a capability is regarded
as a communicable and unforgeable token of authority, has been used in operat-
ing systems. A process inside the system, which possesses a capability, is autho-
rised to use the referenced object according to the operations that are specified
on that capability. In this model, the acquisition of capabilities is limited by
authorisation at the process-level, and forgery is prevented by storing capabil-
ities in a memory region protected from direct application writes. Capabilities
can be shared, but only through operating system APIs, which can enforce the
correct passing of capabilities based on the Principle Of Least Privilege (POLP)
[15]. In operating systems, processes are mostly isolated (i.e., run in different
memory spaces and can only communicate via restricted channels), and so it is
relatively straight-forward to ensure that capabilities are not leaked to unautho-
rised processes.

The goal of our work is provide access control at the programming-language
level using a capability-based approach. However, although capabilities may also
be used at the application (i.e. programming language) level to control access to
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 215–230, 2018.
https://doi.org/10.1007/978-3-030-02450-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_13&domain=pdf
http://orcid.org/0000-0001-5795-9798
http://orcid.org/0000-0001-6097-100X
http://orcid.org/0000-0003-4463-3582
http://orcid.org/0000-0003-3649-392X
http://orcid.org/0000-0002-5272-820X

216 X. Wu et al.

resources, their use in this context is complicated by the fact that both trusted
and untrusted code may be executing within the same process, and so it is
necessary to control the flow of capabilities within the same process itself. This
is challenging because of the use of shared memory and pointers, and the level of
interaction between trusted and untrusted code. In this context, language-based
security [7,14] approaches may be used to prevent vulnerabilities that are not
addressed by process-based access control at the operating system level.

One of the main approaches to handling capabilities in programming lan-
guages is the object capability model. It was first proposed by Dennis and
Horn [1] and is currently supported by secure programming languages such as
E [11], Joe-E [9,10] and Caja [12,17]. In this model, a capability is regarded as
a reference to an object, which may be used to invoke operations on that object.
Such capabilities can only be obtained through a pre-existing chain of references.
It provides modularity in code design and ensures reliable encapsulation in code
implementation. However, this references-as-capabilities model does not provide
an explicit authorisation mechanism or enforce security guarantees.

Java [3] is an object-oriented programming language. It has an access control
model for guarding access to resources which relies on programmer discipline to
insert security checks, which are then performed at runtime [2,8]. It makes use
of a capability-like notion for access to some resources. For example, the class
FileOutputStream in the Java Class Library (JCL) is like a capability to write
to a file in the sense that permission-checking is performed in the constructor of
the class. After the class has been instantiated, no further permission checks are
required to use the operations of the class, like the write method. The Java access
control model provides an approach to prevent confused deputy attacks [4] (e.g.,
unauthorised code accesses security-sensitive code by calling authorised code).
However, it is not sufficient to track the propagation of capabilities, which means
that Java does not guarantee that capabilities are not obtained and used by
unauthorised code.

Capability-based access to Java resources was proposed recently by Hayes
et al. [6] with the aim of preventing security flaws as well as tightening security
management for access to resources both within JCL and Java applications. In
this work, a capability can be viewed as an object with a restricted interface,
which contains a set of operations that can be invoked by holders of the capabil-
ity. In other words, a capability encapsulates what one can do with a resource.
For example, a capability OutCap with a method write for output access to a
stream is declared as follows:

capability OutCap { void write (int b); }
Access to this capability is restricted to code that has a corresponding permis-
sion, e.g. permission write. The philosophy behind capabilities is that code can
only access a resource if it is given an explicit capability to do so: no other access
is permitted. Once a capability is created, it has a more restrictive dynamic type
than its implementing class and access to the full facilities of the implementing
class (e.g., via down casting) is precluded. Thus, classes implementing capabili-
ties are not directly accessible to users and hence cannot be overridden. In this
way, only capabilities are open to exploit by untrusted code.

Type Capabilities for Object-Oriented Programming Languages 217

In the original approach proposed by Hayes et al. [6], no solutions were pro-
posed for controlling the propagation of capabilities. The example in Listing 1
demonstrates how this can lead to capabilities escaping to unauthorised code.
In the listing, the class AuthorisedCode is assumed to have the permissions
required to use the file access capability (FileAccessCap), and to write to out-
put streams (OutCap), while the class UnauthorisedCode does not. Because
UnauthorisedCode does not have the permission to write to streams it can-
not directly request the capability OutCap. However, this does not prevent the
authorised code passing an instance of this capability to the unauthorised code
as a parameter in a method call.

Listing 1. Capabilities may escape to unauthorised code

pub l i c c l a s s Author i s edCode {
pub l i c s t a t i c vo id main (S t r i n g [] a r g s) throws Excep t i on {

F i l eAcce s sCap f i l e A c c e s s = new RandomAccessFi leManager () ;
Unauthor i sedCode uc = new Unauthor i sedCode () ;
OutCap out = f i l e A c c e s s . requestOutCap (f i l e n ame) ;
uc . use (out) ;

}
}
pub l i c c l a s s Unauthor i sedCode {

pub l i c vo id use (OutCap out) {
out . w r i t e (temp) ;

}
}

In practice, permissions granted to a class are parameterised using the targets
on which a certain action is allowed. For example, a class that has the permission
to write to files may either have: unlimited access to modify any file on the system
(denoted “*”); access to modify only files in a particular directory (e.g. “dir/*”);
or only a particular file, (e.g. “dir/a.txt”) etc. In the original Capability model
proposed in [6], there was no mechanism to limit a capability to be used on
a particular target. For example, in Listing 1, either the capability OutCap is
granted to a class, or it is not. There is no way to restrict OutCap to only be
used to write to a particular file.

Contributions. In this paper, our aim is to adapt capabilities to object-oriented
programming languages in a way that (i) controls their propagation, and (ii)
allows them to be parameterised in a way that limits their use to particular
targets, so that they more closely correspond to the fine-grained permissions
that are typically granted to classes.

We use the term “type capabilities” to analogize the term “object capa-
bilities” that restrict capabilities at runtime. The key insight of our work is
that, by providing explicit code-level authorisation via a user-defined policy file,
we enforce a security guarantee at compile time that capabilities can only be
obtained by authorised code. The main contributions are summarized as fol-
lows:

218 X. Wu et al.

Table 1. Syntax of a Java-like language with parameterised capabilities

CB ::= capability cb(ñ) extends cb(ñ) {dec} (capabilities)

C ::= class c(ñ) extends c(ñ) implements cb(ñ) {τ f ;M } (classes)

M ::= dec{s} (methods)

dec ::= m(τ x () declarations)

s ::= x = e | x .f = x | s; s | x .m(x) | if x then s else s (statements)

e ::= x | x.f | new c(σ̃) | (τ) e (expressions)

τ ::= int | c(σ̃) | cb(σ̃ () types)

σ ::= n | κ (parameters)

∗ We present a type system to enforce the proper use of capabilities by type
checking. Capabilities are regarded as types so that we can control the prop-
agation of capabilities by controlling the visibility of their types.
∗ We provide a security guarantee statically at compile time, reducing the
possibility of errors in code as well as runtime overhead. In particular, we
guarantee that a method on an object can only be invoked if: (1) the static
type of that object is granted to the calling class, and (2) the runtime type
of the object is a subtype of its static type.
∗ We introduce capability types that are parameterised by strings, denoting
the targets on which they can be used. It provides a finer-grained access
control and identifies system resources more precisely.

Organization. Section 2 gives the abstract syntax of parameterised capabilities
for a Java-like core language. In Sect. 3, we illustrate how to enforce the proper
use of capabilities statically by a type system and apply our approach on an
example of Java file access. Section 4 presents the big-step operational semantics
as well as the subject reduction theorem with a security guarantee before we
conclude our paper and point out some future directions in Sect. 5.

2 A Java-Like Language with Parameterised Capabilities

Built on the model of capabilities described by Hayes et al. [6], a Java-like
core language with parameterised capabilities is shown in Table 1. We choose
a minimal set of features that still gives a Java-like feel to the language, i.e.,
classes, capabilities, inheritance, instance methods and fields, method override,
dynamic dispatch and object creation.

In the syntax, the metavariables cb and c range over capability names and
class names respectively; f and m range over field names and method names;
x ranges over variables, n ranges over final string variables as type parameter
names and κ stands for string literals. Names for capabilities, classes, fields and

Type Capabilities for Object-Oriented Programming Languages 219

variables are unique in their corresponding defining scopes. For simplicity, we
use the notation x as a shorthand for the sequence x1; ...;xn, in which n stands
for the length of the sequence and we use semicolon to denote the concatenation
of sequences. A sequence can be empty.

A capability CB , defined by a new keyword capability, consists of a set of
method declarations and it may extend other capabilities. A class C is composed
of a sequence of fields f as well as a sequence of methods M . We abbreviate
sequences of pairs as τ f for τ1 f1; ...; τn fn. A class has one super class and
may implement a sequence of capabilities. Both capabilities and classes can
be parameterised by a string parameter, which limits the targets that these
capabilities or classes can be used on. The notation ñ (a sequence containing zero
or one element) represents that the parameter n is optional: if the parameter is
absent then the capabilities or classes can be used on any target.

A method M is a declaration dec, representing the method signature, followed
by a method body s. A method declaration dec with the form of m(τ x) contains
the method name m as well as a list of parameters with types. We assume
methods are not overloaded, that is, they are distinguished via their names
rather than their signatures.

A statement s is distinguished from an expression since it does not contain
return values. It can be an assignment x = e, a field assignment x.f = x, a
sequential composition s; s, a conditional choice if x then s else s or a param-
eterised method invocation x.m(x). An expression e can be a variable x, a class
field x.f or a creation expression new c(σ̃), which creates a new object of class
c with a type parameter σ̃. It can also be a type cast (τ) e, which stands for
casting the type of the expression e into type τ . A type τ can be an integer int,
a class type c(σ̃) or a capability type cb(σ̃). σ is a string type parameter, which
may be a final string variable or a string literal.

A program P is a triple (CT ,CBT , s) of a class table, a capability table and a
statement used as the program entry point. A class table CT is a mapping from
class names to class declarations. Similarly, a capability table CBT is a mapping
from capability names to capability declarations. For simplicity, the semantic
rules in Sects. 3 and 4 are written with respect to a fixed program P including a
fixed class table CT and a fixed capability table CBT . We assume that for every
class c (including class Object) appearing in CT , we have c ∈ dom(CT) and
we simply write“class c(ñ)...” to abbreviate CT (c) = class c(ñ).... Likewise,
for every capability cb appearing in CBT , we have cb ∈ dom(CBT) and we use
“capability cb(ñ)...” to abbreviate CBT (cb) = capability cb(ñ)....

Example. The parameterised capability for output access to a stream is given
in Listing 2, as well as its implementing class and an application class.

Classes implementing a parameterised capability are also parameterised with
the same string variable. Class OutCapImp(n) in Listing 2 implements the capa-
bility OutCap(n), which provides a method to write a file. We assume the imple-
menting class always has at least one constructor (maybe by default) taking n
as its parameter, hence the instantiation of the class is restricted to the specific
target file name. For example, in Listing 2, the class Application instantiates

220 X. Wu et al.

Listing 2. The parameterised capability for file output stream

c a p a b i l i t y OutCap (n) { w r i t e (i n t b) }

c l a s s OutCapImp (n) implements OutCap (n) {
OutCapImp (n) { . . . } ; // open the f i l e on path ‘ n ’
w r i t e (i n t b) { . . . }

}
c l a s s App l i c a t i o n {

main () {
OutCap (” d i r /A . t x t ”) out = new OutCapImp (” d i r /A . t x t ”)

}
}

OutCap with the string “dir/A.txt”, restricting the instance out to only write
to the text file “A.txt” under the directory dir.

3 Static Semantics

In this section, we give a set of inference rules to formalize the static semantics
of our type system. Based on a user-defined policy file, we control type visibility
to avoid capabilities escaping to unauthorised code, and to restrict the targets
that these capabilities can be used on.

Table 2. Subtyping rules

τ <: τ

cb′
i(ñ ′

i) ∈ cb′(ñ ′) capability cb(ñ) extends cb′(ñ ′) {...}
|σ̃| = |ñ| σ̃′

i = truncate(σ̃, |ñ ′
i |)

cb(σ̃) <: cb′
i(σ̃′

i)

τ1 <: τ2 τ2 <: τ3

τ1 <: τ3

c �= Object class c(ñ) extends c′(ñ ′) ... {...}
|σ̃| = |ñ| σ̃′ = truncate(σ̃, |ñ ′|)

c(σ̃) <: c′(σ̃′)

cbi(ñi) ∈ cb(ñ) class c(ñ) extends c′(ñ ′) implements cb(ñ) {...}
|σ| = |n| σi = truncate(σ, |ni |)

c(σ) <: cbi(σi)

3.1 Subtyping Rules and Look up Functions

Subtyping rules are given in Table 2. They include the reflexive and transitive
closure of the direct subclass (and subcapability) relations. If a class c(ñ) imple-
ments a capability cb(ñ), for all instantiations σ̃ of parameter ñ, c(σ̃) is also a

Type Capabilities for Object-Oriented Programming Languages 221

Table 3. Look up functions on fields and methods

fields(Object) = • methods(Object) = • methodsigs(Object) = •

class c(ñ) extends c′(ñ ′) {τ0 f ; m(τ x){s}} c �= Object σ̃′ = truncate(σ̃, |ñ ′|)
fields(c(σ̃)) = fields(c′(σ̃′)) ⊕ {f �→ τ0[˜n\σ]

}
methods(c(σ̃)) = methods(c′(σ̃′)) ⊕ {m �→ (c(σ̃), (τ

[˜n\σ]
x){s

[˜n\σ]
})}

methodsigs(c(σ̃)) = methodsigs(c′(σ̃′)) ⊕ {m �→ (τ
[˜n\σ]

)}

capability cb(ñ) extends cb′(ñ ′) {m(τ x)} σ̃′ = truncate(σ̃, |ñ ′|)
methodsigs(cb(σ)) = methodsigs(cb′(σ′))⊕ {m �→ (τ

[n\σ]
)}

subtype of cb(σ̃). Here, the sequence of the substitution value σ̃ has the same
length as the one of the string parameter ñ (denoted as |σ̃| = |ñ|). The rules
use the function truncate, which shortens a sequence to the given length, to gen-
eralise instantiation to cases where classes (or capabilities) extend other classes
(or capabilities) with fewer (i.e., zero) type parameters.

Table 3 gives the look up functions for accessing field and method definitions
and declarations. The function fields is used to look up all field definitions (as
a mapping from field names to types) in a class, including any field inherited
from its superclass(es). The functions methodsigs and methods return mappings
from method names to the method signatures and declarations (respectively) of
methods in a type. Specifically, the function methods provides a tuple for each
method, which is composed of the class type (c(σ̃)) that defined the method
body as well as the method definition (of form (τ x){s}). We use the operator ⊕
to denote the addition of two mappings, where elements in the right-hand side
mapping override (take precedence over) elements in the left-hand side mapping.
The notation t

[˜n\σ]
denotes the substitution of any reference to type parameter

n for σ within the preceding term t.

3.2 Well-Formedness and Typing Rules

A user-defined policy file Σ is a mapping from a class c (or a capability cb) to
the set G of permissions (i.e., well-formed capabilities and well-formed classes)
granted to that class (or capability). The transitive closure G+ of the set G can
be found in Definition 1. It is defined with respect to �, which is a partial order
relation on strings. For example, “dir/A.txt” � “dir/*” and “dir/*” � “*”.

Definition 1 (Transitive Closure of G). For the permission set G of a class
(or a capability), class c, capability cb, types τ and τ ′, string literals κ and κ′,
and type parameter name n, the transitive closure of G, denoted as G+, is defined
as follows: (1) if τ ∈ G, then we have τ ∈ G+; (2) if τ ∈ G and τ <: τ ′, then

222 X. Wu et al.

Table 4. Well-formedness rules for program, capabilities and classes

we have τ ′ ∈ G+; (3) if c(κ) ∈ G and κ′ � κ, then we have c(κ′) ∈ G+; (4) if
cb(κ) ∈ G and κ′ � κ, then we have cb(κ′) ∈ G+; (5) if c(“*”) ∈ G, then we have
c(n) ∈ G+; (6) if cb(“*”) ∈ G, then we have cb(n) ∈ G+.

Example. Let G = {OutCap(“dir/*”)}, then we have OutCap(“dir/*”) ∈ G+.
Because the relation on strings “dir/A.txt” � “dir/*” is satisfied, according to
Definition 1, we have that OutCap(“dir/A.txt”) ∈ G+. Intuitively, if the user
allows the code to write any file in the directory dir through OutCap, then it
implicitly allows the code to write the specific text file A.txt in that directory.

A typing environment Γ is a finite sequence of bindings x : τ of variables to
types. For the variables in the domain of Γ , Γ (x) is the type bound to the variable
x. The typing judgement for an expression is of the form G Γ � e : τ , which

Type Capabilities for Object-Oriented Programming Languages 223

means the expression e with type τ is well-formed in the typing environment Γ ,
according to the permission set G granted to the current executing class. The
type judgement for a statement is of the form G Γ � s, which is used for checking
whether a statement s is well-formed or not according to the permission set G.

Well-formedness rules for program, capabilities and classes are shown in
Table 4. A program P , composed of classes and capabilities, is well-formed
based on the user-defined policy file Σ (denoted as Σ � P) only if all classes
and capabilities are well-formed (denoted as ∀ c ∈ dom(CT) · Σ � CT (c) and
∀ cb ∈ dom(CBT) · Σ � CBT (cb) respectively), as well as the entry point state-
ment of the program is well-formed (denoted as G � s, and G stands for the
permission set granted to the class containing the entry point statement).

The other two group rules in Table 4 are used for checking the well-formedness
of capabilities and classes respectively. Traditional well-formedness checking con-
siders that statements of the method body are well-formed, signatures of over-
riding methods are compatible and there are no cycles in the transitive closure of
extension relations. It also checks that the only type variable referenced inside
a class or capability is the class or capability parameter n (e.g., through the
function referencedtypevars). Besides these traditional criteria, we add the fol-
lowing additional criteria (highlighted in boldboldbold) which state a class (or capability)
is well-formed only if:

∗ types of parameters in all method signatures are granted;
∗ types of all fields in the class are granted;
∗ capability parameters (or class parameters) should remain the same in
extension (or implementation) relations.

If a type τ is granted to a capability cb (or a class c) based on the user-defined
policy file Σ, then we have τ ∈ Σ(cb) (or τ ∈ Σ(c)).

The typing rules for expressions and statements are shown in Table 5. As
before, we highlight our additions in boldboldbold. The first group of rules are used for
expressions. We can obtain the types of variables directly from the typing envi-
ronment Γ according to the first rule (VAR) and look up the types of fields using
rule (FID). Types of variables and fields are granted to the current executing
class if they are given in the set G, which stands for the set of permissions granted
to the current executing class based on the user-defined policy file. Note that
we leave the situation that the type of the expression is a subtype of a variable
or a field to be covered by the subsumption rule (SUB). The rule (NEW) for
the object creation may create an object with the parameter σ̃ to instantiate
the type parameter. The derived type of the expression should be the same as
the class type (i.e., c(σ̃)). The last rule (CAST) in the first group for expres-
sions is used to deal with the type casting in the object-oriented programming
languages, which allows an expression to be cast to a granted subtype.

The next group of typing rules in Table 5 covers the rules for statements.
Rule (AGN) and rule (FIDAGN) for variable assignment and field assignment
are typed by ensuring that the derived type of the expression is the same as the
type of the variable x or the field f . For the rule (IF), if the variable x has the
type int, and statements s1 and s2 are well-formed under the typing environment

224 X. Wu et al.

Table 5. Typing rules for expressions and statements

Γ and the permission set G, then the whole statement is also well-formed under
Γ and G. To type a sequential composition, each statement needs to be typed
in the typing environment Γ under the permission set G, which is shown in rule
(SEQ). The last rule (CALL) looks up the method signature and checks whether
the types of the method arguments (i.e., the types of y) are the same as the ones
of the method parameters (e.g., τp).

3.3 Example Revisited

We revisit the example of Java file output access used in Sect. 2 to demonstrate
the applicability of the proposed model. The capability OutCap and its imple-
mentation class are given in Listing 2. A combined capability InOutCap for
both input and output access, and an application class are given in Listing 3.

The class Application is granted the type InOutCap(“dir/*”) and the type
OutCapImp(“dir/A.txt”) as permissions by the user, thus we have that:

G = Σ(Application) = {InOutCap(“dir/*”), OutCapImp(“dir/A.txt”)}

Type Capabilities for Object-Oriented Programming Languages 225

Listing 3. Application class using file stream capabilities

capability InOutCap (n) extends OutCap(n) {
wr i t e (int b) ;

read ()

}
// grant : InOutCap(” d i r /∗”) and OutCapImp(” d i r /A. t x t ”)

class Appl i ca t ion {
main () {

OutCap(” d i r /A . t x t ”) out = new OutCapImp(” d i r /A . t x t ”) ;

InOutCap (” d i r /A . t x t ”) inOut = (InOutCap (” d i r /A . t x t ”)) out ;

OutCap(”∗”) out2 = (OutCap(”∗”)) inOut // i n v a l i d

}
}

We check the following three statements based on our typing rules and illus-
trate why the third statement in the main method is invalid. The first state-
ment creates an instance of capability OutCap(“dir/A.txt”), which passes the
type checking using rules (NEW), (SUB) and (AGN) from Table 5. The infer-
ence steps are illustrated below. According to Definition 1, we have both
OutCap(“dir/A.txt”) ∈ G+ and OutCapImp(“dir/A.txt”) ∈ G+.

OutCapImp(“dir/A.txt”) ∈ G+

G Γ � new OutCapImp(“dir/A.txt”) : OutCapImp(“dir/A.txt”)
OutCapImp(“dir/A.txt”) <: OutCap(“dir/A.txt”) OutCap(“dir/A.txt”) ∈ G+

G Γ � new OutCapImp(“dir/A.txt”) : OutCap(“dir/A.txt”)
Γ (out) = OutCap(“dir/A.txt”)

G Γ � out = new OutCapImp(“dir/A.txt”)

The second statement casts the type of the instance out to capability InOutCap
with the parameter “dir/A.txt”. The following inference steps are given based
on the rules (VAR), (CAST) and (AGN) in Table 5. Also, based on Definition
1, we can deduce that InOutCap(“dir/A.txt”) ∈ G+.

Γ (out) = OutCap(“dir/A.txt”) OutCap(“dir/A.txt”) ∈ G+

G Γ � out : OutCap(“dir/A.txt”) InOutCap(“dir/A.txt”) ∈ G+

G Γ � (InOutCap(“dir/A.txt”))out : InOutCap(“dir/A.txt”)
Γ (inOut) = InOutCap(“dir/A.txt”)

G Γ � inOut = (InOutCap(“dir/A.txt”))out

However, the third statement cannot pass the type checking as we cannot
deduce OutCap(“*”) ∈ G+, based on Definition 1 and the types granted to
Application.

226 X. Wu et al.

Through controlling the type visibility, we avoid capabilities escaping to
unauthorised code and restrict the targets that capabilities can access, based
on a user-defined policy file. Revisiting and applying our approach to the moti-
vating example in Sect. 1, we can find that the UnauthorisedCode is granted
neither the type OutCap(“dir/B.txt”) nor the type OutCap(“dir/*”), thus the
declaration itself of class UnauthorisedCode cannot pass the well-formedness
check at compile time.

4 Dynamic Semantics

In this section, we present the dynamic semantics and security-related subject
reduction theorem of the type system. We show that the type-correctness of the
runtime state and the security invariant are preserved over the evaluation of
expressions and statements.

4.1 Operational Semantics

The dynamic semantics is devised using the big-step style operational semantics.
We start by adding some additional notations to represent runtime values and
states as follows.

e ::= ... | v

v ::= lc(κ̃) | null | num

v is a runtime value, denoting the result of evaluating an expression. It can be
an integer num, a location l labeled with its dynamic type c(κ̃), or null .

We use S to stand for the stack, mapping from local variables to values (e.g.,
S(x) = v denotes that the variable x contains the value v), and H represents
the heap, mapping from locations and fields to values (e.g., H(lc(κ̃))(f) = v
describes that the field f of class c(κ̃) which is allocated at the location l on
the heap contains the value v). The notation A denotes a list recording method
invocation actions taken by the program. Each action is recorded as a quadruple
(c, ci(κ̃i), τr,m), in which c stands for the class name of the current calling
class, ci(κ̃i) is the class that contains the implementation of the method we are
calling, τr is the runtime type of the object on which we are calling the method
and m is the method name. The evaluation rule for expressions is of the form
c � 〈e | S H A〉 → 〈v | S′ H ′ A′〉, which represents that in a given class c, an
expression e can make a transition into a value v, and the evaluation of their
side effects is shown on the stack, heap and action list. The evaluation rule for
statements is in the form of c � 〈s | S H A〉 → 〈S′ H ′ A′〉, which denotes that
statements are evaluated for their side effects only.

We proceed with a detailed explanation of the semantic rules for expressions
and statements in Table 6. The notation S[x �→ v] represents the update of the
stack S that maps the variable x to the value v, which is similar with the update
of the heap H with the form of H[lc(κ̃) �→ [f �→ v]]. We use notations dom(S)

Type Capabilities for Object-Oriented Programming Languages 227

Table 6. Dynamic semantics for expressions and statements

and dom(H) to stand for the domain of the stack S and the heap H, respectively.
The notation H ′ = H, {lc(κ̃) �→ ...} is used to represent an extension of heap H
where lc(κ̃) /∈ dom(H), and A′ = A, {...} is used for the extension of list A.

The first two rules (T-VAL) and (T-LOAD) evaluate variables and fields
from the stack and the heap respectively. The rule (T-CAST) describes the
downcasting between objects or capability variables if the runtime type is a
subtype of the type to be converted to. The last rule (T-NEW) is used for
an object creation, which extends the heap with the new object. All fields are
initially set to null.

The remaining rules are used for statement evaluations. The rules (T-AGN)
and (T-FLD) are used to update the stack and the heap respectively. Method

228 X. Wu et al.

invocation in (T-CALL) dynamically looks up the target method to be called
based on the dynamic type of the object. A record of the method invocation
action will be added into the action list A. The rules (T-THEN) and (T-ELSE)
describe the transitions performed by the conditional choice. In particular, the
rule (T-THEN) accounts for the case where the condition is true (indicated by the
value of the variable x is greater than zero); whereas the rule (T-ELSE) accounts
for the case where it is false. The last rule (T-SEQ) is used for evaluating the
sequential composition of two statements in order, which means that statement
s2 is evaluated based on the output configuration of statement s1.

4.2 Subject Reduction

In this section, we prove that well-formed programs are safe over subject reduc-
tion [13], which means that the type-correctness of the program state and the
security invariant are preserved under evaluations.

(CORR)

(∀x ∈ dom(Γ), τ · Γ (x) = τ ∧ τ ∈ (Σ(c))+τ ∈ (Σ(c))+τ ∈ (Σ(c))+ =⇒
x ∈ dom(S) ∧ ∃v · S(x) = v ∧ H � v : τ

)

(∀lc
′(κ̃) ∈ dom(H), f, τ · fields(c′(κ̃))(f) = τ =⇒

f ∈ dom(H(lc
′(κ̃))) ∧ ∃v · H(lc

′(κ̃))(f) = v ∧ H � v : τ

)

Σ(c) Γ � A

Σ(c) Γ � S H A

An additional rule (CORR) is given to illustrate the correspondence between
the typing environment Γ of type system and the configuration, including stack
S and heap H, under the user-defined policy file Σ and the current executing
class c. It requires that for every variable x in Γ , a value v exists for variable
x on the stack S such that v is type-correct to Γ (x). Similarly, for every object
on the heap, both the fields present, and their values, must match the object’s
type information. Lastly, the security invariant on the action list A must be
maintained.

Definition 2 (Security Invariant). For the action list A, user-defined policy
file Σ, calling class c, class ci(κ̃i) containing the method body that is called,
runtime type c′(κ̃) of the object on which the method is called and method name
m, the security invariant (represented as Σ(c) Γ � A) says that:

∀(c, ci(κ̃i), c′(κ̃),m) ∈ A,∃τ · τ ∈ (Σ(c))+ ∧ c′(κ̃) <: τ ∧
c′(κ̃) <: ci(κ̃i) ∧ methodsigs(τ)(m) = methodsigs(ci(κ̃i))(m)

The security invariant says that for all method invocation actions in A, there
exists a type τ granted to the current calling class c, of which the runtime type
c′(κ̃) is a subtype. Also, the runtime type is a subtype of the type of class ci(κ̃i)
which contains the implementation of the method we invoked and the method
signature looked up based on τ and ci(κ̃i) should be the same. It provides a
guarantee that each well-formed method invocation action in the action list A

Type Capabilities for Object-Oriented Programming Languages 229

can only use the types (i.e., capabilities and classes) granted to its invoking
class based on the user-defined policy file, restricting capability types only to
authorised code.

In order to accommodate runtime values, we add three more rules to extend
our static inference rules for checking the runtime values are type correct in the
context of heap H.

(NULL) H � null : τ
(NUM) H � num : int (LOC)

lc(κ̃) ∈ dom(H) c(κ̃) <: τ

H � lc(κ̃) : τ

The preservation theorem for subject reduction is given in Theorem1, which
presents the preservation of well-formedness and security invariant on state-
ments. Preservation for expressions is trivial as expressions only look up values
from well-formed stack or heap, thus we omit it. Theorem 1 can be proved by
structural induction on the semantic derivation.

Theorem 1 (Preservation). For any typing environment Γ , stack S, heap H,
action list A, statement s, current executing class c, user-defined policy file Σ
and the well-formed program P :

Σ � P
Σ(c) Γ � s

Σ(c) Γ � S H A
c � 〈s|S H A〉 → 〈S′ H ′ A′〉

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=⇒ Σ(c) Γ � S′ H ′ A′

5 Conclusion and Future Work

Existing authorisation mechanisms used in programming languages like Java are
not effective in controlling interactions between different parts of code within
the same process. In this paper, we tackled the problem of adapting capabili-
ties to programming languages for providing authorisation to code. We regarded
capabilities as types and presented a statically-checked type system to enforce
the proper use of capabilities by controlling the type visibility at compile time,
providing a security guarantee that restricts capabilities (i.e., the access to
resources) only to authorised code. We also introduced parameterised capability
types to provide a finer-grained access control and to identify system resources
more precisely. We applied our model on file-access examples.

Future directions for our research include building a prototype implementa-
tion of the type system, and validating its usability by applying it to real-world
case studies. Other possible directions include extending the language with even
richer parameterisation to increase its expressiveness, and adding more language
features (e.g., method overloading, return values and exceptions) to improve the
quality of our formalism.

Acknowledgements. The research presented here is supported by Australian
Research Council Linkage Grant LP140100700 in collaboration with Oracle Labs
Australia.

230 X. Wu et al.

References

1. Dennis, J.B., van Horn, E.C.: Programming semantics for multiprogrammed com-
putations. Commun. ACM 9(3), 143–155 (1966)

2. Gong, L., Ellison, G., Dageforde, M.: Inside Java 2 Platform Security: Architecture,
API Design, and Implementation, Second edn. Addison Wesley, Boston (2003)

3. Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A., Smith, D.: The Java
language specification: Java SE 10 edition, 20 February 2018. https://docs.oracle.
com/javase/specs/jls/se10/html/index.html. Accessed 27 Sept 2018

4. Hardy, N.: The confused deputy: (or why capabilities might have been invented).
SIGOPS Oper. Syst. Rev. 22(4), 36–38 (1988)

5. Hardy, N.: KeyKOS architecture. Oper. Syst. Rev. 19(4), 8–25 (1985)
6. Hayes, I.J., Wu, X., Meinicke, L.A.: Capabilities for Java: secure access to resources.

In: Chang, B.-Y.E. (ed.) APLAS 2017. LNCS, vol. 10695, pp. 67–84. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-71237-6 4

7. Kozen, D.: Language-based security. In: Kuty�lowski, M., Pacholski, L., Wierzbicki,
T. (eds.) MFCS 1999. LNCS, vol. 1672, pp. 284–298. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48340-3 26

8. Gong, L., Mueller, M., Prafullchandra, H., Schemers, R.: Going beyond the sand-
box: an overview of the new security architecture in the Java development Kit 1.2.
In: Proceedings of 1st USENIX Symposium on Internet Technologies and Systems,
USITS 1997. USENIX (1997)

9. Mettler, A., Wagner, D.: The Joe-E language specification, version 1.0. Technical
report EECS-2008-91, University of California, Berkeley, August 2008

10. Mettler, A., Wagner, D., Close, T.: Joe-E: a security-oriented subset of Java. In:
Proceedings of the Symposium on Network and Distributed System Security, NDSS
2010. The Internet Society (2010)

11. Miller, M.S.: Robust composition: towards a unified approach to access control and
concurrency control. Ph.D. thesis, Johns Hopkins University (2006)

12. Miller, M.S., Samuel, M., Laurie, B., Awad, I., Stay, M.: Caja: safe active content
in sanitized JavaScript, 7 June 2008. https://storage.googleapis.com/google-code-
archive-downloads/v2/code.google.com/google-caja/caja-spec-2008-06-07.pdf.
Accessed 27 Sept 2018

13. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
14. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.

Areas Commun. 21(1), 5–19 (2003)
15. Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems.

Proc. IEEE 63(9), 1278–1308 (1975)
16. Shapiro, J.S., Smith, J.M., Farber, D.J.: EROS: a fast capability system. In: Pro-

ceedings of 17th ACM Symposium on Operating System Principles, SOSP 1999,
pp. 170–185. ACM (1999)

17. Google Caja Team: Google-Caja: a source-to-source translator for securing
JavaScript-based web. http://code.google.com/p/google-caja/. Accessed 27 Sept
2018

https://docs.oracle.com/javase/specs/jls/se10/html/index.html
https://docs.oracle.com/javase/specs/jls/se10/html/index.html
https://doi.org/10.1007/978-3-319-71237-6_4
https://doi.org/10.1007/3-540-48340-3_26
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/google-caja/caja-spec-2008-06-07.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/google-caja/caja-spec-2008-06-07.pdf
http://code.google.com/p/google-caja/

Capabilities: Effects for Free

Aaron Craig1, Alex Potanin1(B) , Lindsay Groves1, and Jonathan Aldrich2

1 School of Engineering and Computer Science, Victoria University of Wellington,
Wellington, New Zealand

{aaron.craig,alex,lindsay}@ecs.vuw.ac.nz
2 School of Computer Science, Carnegie Mellon University, Pittsburgh, USA

jonathan.aldrich@cs.cmu.edu

Abstract. Object capabilities are increasingly used to reason informally about
the properties of secure systems. But can capabilities also aid in formal reason-
ing? To answer this question, we examine a calculus that uses effects to capture
resource use and extend it to support capability-based reasoning. We demonstrate
that capabilities provide a way to reason about effects: we can bound the effects
of an expression based on the capabilities to which it has access. This reason-
ing is “free” in that it relies only on type-checking (not effect-checking), does
not require the programmer to add effect annotations within the expression, and
does not require the expression to be analysed for its effects. Our result sheds
light on the essence of what capabilities provide and suggests ways of integrating
lightweight capability-based reasoning into languages.

1 Introduction

Capabilities have been recently gaining attention as a promising mechanism for control-
ling access to resources, particularly in object-oriented languages and systems [4–6,16].
A capability is an unforgeable token that can be used by its bearer to perform some oper-
ation on a resource [3]. In a capability-safe language, all resources must be accessed
through object capabilities, and a resource-access capability must be obtained from an
object that already has it: “only connectivity begets connectivity” [16]. For example, a
logger component that provides a logging service would need to be initialised with an
object capability providing the ability to append to the log file.

Capability-safe languages prohibit the ambient authority [17] that is present in non-
capability-safe languages. An implementation of a logger in Java, for example, does
not need to be initialised with a log file capability, as it can simply import the appro-
priate file-access library and open the log file for appending by itself. But critically, a
malicious implementation could also delete the log, read from another file, or exfiltrate
logging information over the network. Other mechanisms such as sandboxing can be
used to limit the damage of such malicious components, but recent work has found that
Java’s sandbox (for instance) is difficult to use and therefore often misused [1,11].

In practice, reasoning about resource use in capability-based systems is mostly done
informally. But if capabilities are useful for informal reasoning, shouldn’t they also aid
in formal reasoning? Recent work by Drossopoulou et al. [6] sheds some light on this
question by presenting a logic that formalizes capability-based reasoning about trust
c© Springer Nature Switzerland AG 2018

J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 231–247, 2018.
https://doi.org/10.1007/978-3-030-02450-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_14&domain=pdf
http://orcid.org/0000-0002-4242-2725
http://orcid.org/0000-0003-0631-5591

232 A. Craig et al.

between objects. Two other trains of work, rather than formalise capability-based rea-
soning itself, reason about how capabilities may be used: Dimoulas et al. [5] developed
a formalism for reasoning about which components may use a capability and which
may influence (perhaps indirectly) the use of a capability, while Devriese et al. [4] for-
mulate an effect parametricity theorem that limits the effects of an object based on the
capabilities it possesses, and then use logical relations to reason about capability use in
higher-order settings. Overall, this prior work presents new formal systems for reason-
ing about capability use, or reasoning about new properties using capabilities.

We are interested in a different question: can capabilities be used to enhance formal
reasoning that is currently done without relying on capabilities? In other words, what
value do capabilities add to existing formal reasoning approaches?

To answer this question, we decided to pick a simple and practical formal reason-
ing system, and see if capability-based reasoning could help. A natural choice for our
investigation is effect systems [18]. Effect systems are a relatively simple formal rea-
soning approach, which augment type systems with the ability to reason about dynamic
effects—and keeping things simple will help to highlight the difference made by capa-
bilities. Effects also have an intuitive link to capabilities: in a system that uses capa-
bilities to protect resources, an expression can only have an effect on a resource if it is
given a capability to do so.

One challenge to the wider adoption of effect systems is their annotation over-
head [19]. For example, Java’s checked exception system, which is a kind of effect
system, is often criticised for being cumbersome [8]. While effect inference can be used
to reduce the annotations required [9], understanding error messages that arise through
effect inference requires a detailed understanding of the internal structure of the code,
not just its interface. Capabilities are a promising alternative for reducing the overhead
of effect annotations, as suggested by the following example:

Fig. 1. Declaring an effect

Our examples are written in a capability-safe language supporting first-class, object-
like modules, similar to Wyvern [14], in which expressions declare what capabilities
they need to execute. In this case, an expression e must be passed a function of type
String → Unit,1 which incurs no more than the effect File.write when invoked.
This function is bound to the name log inside e.

What can we say about the effects that evaluating e will have on resources, such
as the file system or network? Because we are in a capability-safe language, e has no
ambient authority, so the only way it could have any effects is via the log function
given to it. Since the log function is annotated as having no more than the File.write
effect, this is an upper-bound on the effects of e. Note we only required that e obeys the
rules of capability safety. We did not require it to have effect annotations, and we didn’t

1 Unit is a singleton type, like void in C and Java.

Capabilities: Effects for Free 233

analyse its structure, as an effect inference would. Also note that e might be arbitrarily
large, perhaps consisting of an entire program we have downloaded from a source we
trust enough to write to a log, but not enough to access any other resources. Thus in this
scenario, capabilities can be used to reason “for free” about the effects of a large body
of code (e), based on a few annotations on the components it imports (log).

This example illustrates the central intuition of this paper: in a capability-safe set-
ting, the effects of an unannotated expression can be bounded by the effects latent in
the variables that are in scope. In the remainder of this paper, we formalise these ideas
in a capability calculus (CC; Sect. 2). Along the way we must generalise this intuition:
what if log takes a higher-order argument? If e evaluates, not to unit, but to a function,
what can we say about its effects? We then show how CC can model practical situations
by encoding a range of Wyvern-like programs Sect. 3). A more thorough discussion,
including a proof of soundness is given in an accompanying technical report [2].

2 Capability Calculus (CC)

While the current resurgence of interest in capabilities is primarily focused on object-
oriented languages, for simplicity our formal definitions build on a typed lambda cal-
culus with a simple notion of capabilities and their operations. CC permits the nest-
ing of unannotated code inside annotated code in a controlled, capability-safe manner
using the import form from Fig. 1. This allows us to reason about unannotated code by
inspecting what capabilities are passed into it from its unannotated surroundings.

Allowing effect-annotated and unannotated code to be mixed helps reduce the cog-
nitive overhead on developers, allowing them to prototype in the unannotated sublan-
guage and incrementally add annotations as they are needed. Reasoning about unan-
notated code is difficult in general. Figure 2 demonstrates why: apply takes a function
f as input and executes it, but the effects of f depend on its implementation. Without
more information, there is no way to know what effects might be incurred by apply.

Fig. 2. What effects can apply incur?

Consider another scenario, where a developer must decide whether or not to use
the logger functor defined in Fig. 3. This functor takes two capabilities as input, File
and Socket.2 It instantiates an object-like module that has a single, unannotated log
method with access to these capabilities. The type of this object-like module is Logger,
which is assumed to be defined elsewhere.

How can we determine what effects will be incurred if Logger.log is invoked? One
approach is to manually3 examine its source code, but this is tedious and error-prone.

2 Note that the resource literal is File, while the type of the resource literal is {File}.
3 or automatically—but if the automation produces an unexpected result we must fall back to

manual reasoning to understand why.

234 A. Craig et al.

Fig. 3. In a capability-safe setting, logger can only exercise authority over the File and Socket

capabilities given to it.

In many real-world situations, the source code may be obfuscated or unavailable. A
capability-based argument can do better, since a Logger can only exercise the authority
it is explicitly given. In this case, the logger functor must be given File and Socket,
so an upper bound on the effects of the Logger it instantiates will be the set of all
operations on those resources, {File.∗, Socket.∗}. Knowing the Logger could per-
form arbitrary reads and writes to File, or communicate with Socket, the developer
decides this implementation cannot be trusted and does not use it.

To model this situation in CC, we add a new import expression that selects what
authority εs the unannotated code may exercise. In the above example, the expected
least authority of Logger is {File.append}, so that is what the corresponding import
would select. The type system can then check whether the capabilities being passed
into the unannotated code exceed εs. If it accepts, then εs is a safe upper bound on the
effects of the unannotated code. This is the key result: when unannotated code is nested
inside annotated code, capability-safety enables us to make a safe inference about its
effects by examining what capabilities are being passed in by the annotated code.

2.1 Grammar (CC)

The grammar of CC has rules for annotated code and analogous rules for unannotated
code. To distinguish the two, we put a hat above annotated types, expressions, and
contexts. ê, τ̂ , and Γ̂ are annotated, while e, τ , and Γ are unannotated. The rules for
unannotated programs and their types are given in Fig. 4. Unannotated types τ are built
using → and sets of resources {r̄}. An unannotated context Γ maps variables to unan-
notated types. The syntax for invoking an operation on a resource is e.π. Resource
literals and operations are drawn from fixed sets R (containing, e.g. File, Socket) and
Π (containing, e.g. write, read).

Because our focus is on tracking what effects happen, i.e. whether particular oper-
ations are invoked on particular resources, we make the following simplifying assump-
tions: first, any operation may be called on any resource literal; and second, all opera-
tions take no inputs and return unit.

Rules for annotated programs and their types are shown in Fig. 5. The first main
difference is that the →ε type constructor has a subscript ε, which is a set of effects
that functions of that type may incur. The other main difference is the new expres-
sion form, import(εs) x = ê in e, where e is some unannotated code and ê is a
capability being passed to it; we call ê an import. For simplicity, we assume there
is only ever one import. Note the definition not only allows resource literals to be
imported, but also effectful functions. Inside e, ê is bound to the variable x. εs is
the maximum authority that e is allowed to exercise (its “selected authority”). For

Capabilities: Effects for Free 235

Fig. 4. Unannotated programs and types in CC.

Fig. 5. Annotated programs and types in CC.

example, suppose an unannotated Logger, which requires File, is expected to only
append to a file, but has an implementation which writes. This would be the expression
import(File.append) x = File in λy : Unit. x.write. The import expression is
the only way to mix annotated and unannotated code, because it is the only situation in
which we can say something interesting about the effects of unannotated code. For the
rest of our discussion of CC, we will only be interested in unannotated code when it is
encapsulated by an import expression.

Capability safety prohibits ambient authority. CC meets this requirement by forbid-
ding the use of resource literals directly inside an import expression (though they can
still be passed in as a capability via the binding variable x). We could have enforced
this syntactically, but we choose to do it using the typing rule for import in Sect. 2.3.

2.2 Semantics (CC)

The rules for CC are natural extensions of the simply-typed lambda calculus, so for
brevity we only give the rules for import (see Fig. 6). Reductions are defined on anno-
tated expressions, using the notation ê −→ ê′ | ε′, which means that ê is reduced to ê′ in
a single step, incurring the set of effects ε′. To execute the unannotated code inside an
import expression, we recursively annotate its components with the selected authority
εs. While it is meaningful to execute unannotated code, we only care about it inside
import expressions, so do not bother to give rules for this.

236 A. Craig et al.

E-IMPORT1 reduces the capability being imported. When it has been reduced to a
value v̂, E-IMPORT2 annotates e with the selected authority ε—this is annot(e, ε)—
and substitutes the import v̂ for its name x in e—this is [v̂/x]annot(e, ε).

annot(e, ε) is the expression obtained by recursively annotating the parts of e with
the set of effects ε. A definition is given in Fig. 7, with versions defined on expressions
and types. Later we will need to annotate contexts, so the definition is given here. Note
that annot operates on a purely syntatic level. Nothing prevents us from annotating a
program with something unsafe, so any use of annot must be justified.

Fig. 6. New single-step reductions in CC.

Fig. 7. Definition of annot.

2.3 Static Rules (CC)

Terms can be annotated or unannotated, so we need to be able to recognise when either
is well-typed. We do not reason about the effects of unannotated code directly, so judge-
ments involving them only ascribe a type to an expression, with the form Γ � e : τ .
Subtyping judgements have the form τ <: τ . Because these rules are essentially those
of the simply-typed lambda calculus, we do not list them here.

Judgements involving annotated terms have the form Γ̂ � ê : τ̂ with ε, mean-
ing that when ê is evaluated, it reduces to a value of type τ̂ , incurring no more than
the effects in ε. Most of the rules are analogous to those of the simply-typed lambda
calculus; these ones are given in Fig. 8. Note that the rule for typing an operation call,

Capabilities: Effects for Free 237

Fig. 8. Type-and-effect and subtyping judgements in CC.

Fig. 9. Definition of erase.

ε-OPERCALL, types the expression as Unit, following our simplifying assumption that
all operations return Unit.

There is one rule left, for typing import. Since it is a complicated rule, we will start
with a simplified (but incorrect) version, and spend the rest of the section building up to
the final version.

To begin, typing import(εs) x = ê in e in a context Γ̂ requires us to know that ê
is well-typed, so we add the premise Γ̂ � ê : τ̂ with ε1. e is only allowed to use what
authority has been explicitly given to it (i.e. the capability ê, bound to x). To ensure this,
we require that e can be typechecked using only one binding, x : τ̂ , which binds x to
the type of the capability being imported. Typing e in this restricted environment means
it cannot use any other capabilities, thus prohibiting the exercise of ambient authority.

There is a problem though: e is unannotated, while τ̂ is annotated, and there is no
rule for typechecking unannotated code in an annotated context. To get around this, we
define a function erase in Fig. 9, which removes the annotations from a type. We can
then add x : erase(τ̂) � e : τ as a premise.

The first version of ε-IMPORT is given in Fig. 10. Since import(εs) x = v̂ in e
reduces to [v̂/x]annot(e, εs) by E-IMPORT2, its ascribed type is annot(τ, ε), which is
the type of the unannotated code e, annotated with its selected authority εs. The effects
of reducing the import are ε1 ∪ εs—the former happens when the imported capability

238 A. Craig et al.

Fig. 10. A first (incorrect) rule for type-and-effect checking import expressions.

is reduced to a value, while the latter happens when the body of the import expression
is annotated and executed.

This first rule is incomplete, since any capability can be passed to the unannotated
code e, even if it has effects that weren’t declared in εs. To avoid this, we define
a function effects, which collects the set of effects that an (annotated) type cap-
tures. For example, {File} captures every operation on File, so effects({File}) =
{File.∗}. A first (but not yet correct) definition of this is given in Fig. 11. We then add
the premise effects(τ̂) ⊆ εs, which restricts imported capabilities to only those with
effects selected in εs. The updated rule for typing import is given in Fig. 12.

Fig. 11. A first (incorrect) definition of effects.

Fig. 12. A second (still incorrect) rule for type-and-effect checking import expressions.

There are still issues with this second rule, as the annotations on one import can
be broken by another import. To illustrate, consider Fig. 13 where two4 capabilities are
imported. This program imports a function go which, when given a Unit →∅ Unit
function with no effects, will execute it. The other import is File. The unannotated
code creates a Unit → Unit function which writes to File and passes it to go, which
subsequently incurs File.write.

Fig. 13. Permitting multiple imports will break ε-IMPORT2.

4 Our formalisation only permits a single capability to be imported, but this discussion leads to
a generalisation needed for the rules to be safe when multiple capabilities can be imported. In
any case, importing multiple capabilities can be handled with an encoding of pairs.

Capabilities: Effects for Free 239

In the world of annotated code, it is not possible to pass a file-writing function to
go, but because the judgement x : erase(τ̂) � e : τ discards the annotations on go, and
since the file-writing function has type unit → unit, the unannotated world accepts it.
Although the unannotated code is allowed to incur this effect, since its selected authority
is {File.∗}, this nonetheless violates the type signature of go. We want to prevent this.

If go had the type Unit →{File.write} Unit, Fig. 13 would be safely rejected. How-
ever, a modified program where a file-reading function is passed to go would have the
same issue. go is only safe when it expects every effect that the unannotated code might
pass to it. To ensure this is the case, we shall require imported capabilities to have the
authority to incur every effect in εs. To achieve greater control in how we say this, we
split the definitions of effects into two separate functions, effects and ho-effects.
The latter is for higher-order effects, which are those effects not captured directly in the
function body, but rather are possible because of what is passed into the function as an
argument. If values of τ̂ possess a capability that can be used to incur the effect r.π, then
r.π ∈ effects(τ̂). If values of τ̂ can incur r.π, but need to be given the capability (as
a function argument) by someone else to do so, then r.π ∈ ho-effects(τ̂). Definitions
are given in Fig. 14.

Fig. 14. Effect functions (corrected).

Both effects and ho-effects are mutually recursive, with base cases for
resource types. Any effect can be directly incurred by a resource on itself, hence
effects({r̄}) = {r.π | r ∈ r̄, π ∈ Π}. A resource cannot be used to indirectly
invoke some other effect, so ho-effects({r̄}) = ∅. The mutual recursion echoes the
subtyping rule for functions: recall that functions are contravariant in their input type
and covariant in their output; likewise, both functions recurse on the input-type using
the other function, and recurse on the output-type using the same function.

In light of these new definitions, we still require effects(τ̂) ⊆ εs—unannotated
code must select any effect its capabilities can incur—but we add a new premise
εs ⊆ ho-effects(τ̂), which requires any higher-order effect of the imported capa-
bilities to be declared in εs. Put another way, the imported capabilities must be expect-
ing every effect they could be given by the unannotated code (which is at most εs).
The counterexample from Fig. 13 is now rejected, because ho-effects((Unit →∅

Unit) →∅ Unit) = ∅, but effects(File) = {File.∗} �⊆ ∅.
This is still not sufficient! Consider εs ⊆ ho-effects(τ̂1 →ε′ τ̂2). Expanding the

definition of ho-effects, this is the same as εs ⊆ effects(τ̂1) ∪ ho-effects(τ̂2).
Let r.π ∈ εs and suppose r.π ∈ effects(τ̂1), but r.π /∈ ho-effects(τ̂2). Then

240 A. Craig et al.

εs ⊆ effects(τ̂1) ∪ ho-effects(τ̂2) is still true, but τ̂2 is not expecting r.π. If τ̂2 is
a function, unannotated code could violate its annotations by passing it a capability for
r.π, even though r.π is not a higher-order effect of τ̂2.

The cause of this issue is that ⊆ does not distribute over ∪. We want a relation like
εs ⊆ effects(τ̂1)∪ho-effects(τ̂2), which also implies εs ⊆ effects(τ̂1) and εs ⊆
effects(τ̂2). Figure 15 defines this: safe is a distributive version of εs ⊆ effects(τ̂)
and ho-safe is a distributive version of εs ⊆ ho-effects(τ̂). An amended version of
ε-IMPORT is given in Fig. 16, with a new premise ho-safe(τ̂ , εs), capturing the notion
that imported capabilities must be expecting the effects they could be passed by the
unannotated code (which is at most εs).

Fig. 15. Safety judgements in CC.

Fig. 16. A third (still incorrect) rule for type-and-effect checking import expressions.

The premises so far restrict what authority can be selected by unannotated code,
but consider the example ê = import(∅) x = unit in λf : File. f.write. The
unannotated code selects no capabilities and returns a function which takes File and
incurs File.write. This satisfies the premises in ε-IMPORT3, but its type would be the
pure function {File} →∅ Unit.

Speaking more generally, suppose the unannotated code evaluates to a function of
type f , which is annotated to annot(f, εs). Suppose annot(f, εs) is invoked at a later
point, back in the annotated world, incurring r.π. What is the source of r.π? If r.π was
selected by the import expression surrounding f , it is safe for annot(f, εs) to incur
this effect. Otherwise, annot(f, εs) may have been passed, as an argument, a capability
to do r.π, in which case r.π is a higher-order effect of annot(f, εs). If the argument
is a function, then r.π ∈ εs by the soundness of our calculus. But if the argument is a
resource literal r, then annot(f, εs) could exercise r.π without declaring it in εs—this
we do not yet account for.

Capabilities: Effects for Free 241

To make εs contain every effect captured by resources passed into annot(f, εs)
as arguments, we inspect f for resource types. For example, if the unannotated code
evaluates to a function of type {File} → Unit, we need {File.∗} ∈ εs. To do this,
we add a new premise ho-effects(annot(τ, ∅)) ⊆ εs. Because ho-effects is only
defined on annotated types, we first annotate τ with ∅, and since we are only inspecting
the resources passed into f as arguments, our choice of annotation doesn’t matter.

Now we can handle the example from before. The unannotated code types via the
judgement x : Unit � λf : {File}. f.write : {File} → Unit. Its higher-order
effects are ho-effects(annot({File} → Unit, ∅)) = {File.∗}, but {File.∗} �⊆
∅, so the example is safely rejected.

The final version of ε-IMPORT is given in Fig. 17. With it, we can now model the
example from the beginning of this section, where the Logger selects the File capabil-
ity and exposes an unannotated function log with type Unit → Unit and implementa-
tion e. The expected least authority of Logger is {File.append}, so its corresponding
import expression would be import(File.append) f = File in λx : Unit. e. The
imported capability is f = File, which has type {File}, and effects({File}) =
{File.∗} �⊆ {File.append}, so this example safely rejects: Logger.log has authority
to do anything with File, and its implementation e might be violating its stipulated
least authority {File.append}.

Fig. 17. The final rule for typing imports.

3 Applications

In this section, we examine a number of scenarios to show how capabilities can help
developers reason about the effects and behaviour of code. In each story we will discuss
some Wyvern code before translating it to CC and explaining how its rules apply. By
doing this, we hope to convince the reader of the benefits of capability-based reasoning,
and that CC captures the intuitive properties of capability-safe languages like Wyvern.

3.1 Unannotated Client

A logger module, when given File, exposes a log function which incurs the
effect File.append. The client module, possessing the logger module, exposes
an unannotated function run. While logger has been annotated, client has not. If
client.run is executed, what effects might it have? Code for this example is given
below.

242 A. Craig et al.

1 module def logger(f: {File}):Logger
2 def log(): Unit with {File.append} =
3 f.append(‘‘message logged’’)

1 module def client(logger: Logger)
2 def run(): Unit =
3 logger.log()

1 require File
2 instantiate logger(File)
3 instantiate client(logger)
4 client.run()

A translation into CC is given below. Lines 1–3 and 5–8 define MakeLogger and
MakeClient, which instantiate the logger and client modules respectively (rep-
resented as functions). Lines 10–14 define MakeMain, which returns a function which,
when executed, instantiates all other modules and invokes the code in the body of main.
Program execution begins on line 16, where main is given the initial capabilities (just
File in this case).

1 let MakeLogger =
2 (λf: File.
3 λx: Unit. f.append) in
4

5 let MakeClient =
6 (λlogger: Unit →{File.append} Unit.
7 import(File.append) l = logger in
8 λx: Unit. l unit) in
9

10 let MakeMain =
11 (λf: File.
12 let loggerModule = MakeLogger f in
13 let clientModule = MakeClient loggerModule in
14 clientModule unit) in
15

16 MakeMain File

The interesting part is on line 7, where the unannotated code selects {File.append}
as its authority. This matches the effects of logger, i.e. effects(Unit →{File.append}
Unit) = {File.append}. The unannotated code typechecks by ε-IMPORT, approxi-
mating its effects as {File.append}.

3.2 Unannotated Library

The next example inverts the roles of the last scenario. Now, the annotated client
wants to use the unannotated logger, which captures File and exposes a single func-
tion log, which incurs the File.append effect. The implementation of client.run
executes logger.log; it is annotated with ∅, so this violates its interface.

Capabilities: Effects for Free 243

1 module def logger(f: {File}): Logger
2 def log(): Unit =
3 f.append(‘‘message logged’’)

1 module def client(logger: Logger)
2 def run(): Unit with {File.append} =
3 logger.log()

1 require File
2 instantiate logger(File)
3 instantiate client(logger)
4 client.run()

The translation is given below. On lines 3–4, the unannotated code is wrapped in an
import expression selecting {File.append} as its authority. The implementation of
logger actually abides by this, but since it captures File it could, in general, do any-
thing to File; therefore, ε-IMPORT rejects this example. Formally, the imported capa-
bility has the type {File}, but effects({File}) = {File.∗} �⊆ {File.append}.
The only way for this to typecheck would be to annotate client.run as having every
effect on File.

1 let MakeLogger =
2 (λf: File.
3 import(File.append) f = f in
4 λx: Unit. f.append) in
5

6 let MakeClient =
7 (λlogger: Logger.
8 λx: Unit. logger unit) in
9

10 let MakeMain =
11 (λf: File.
12 let loggerModule = MakeLogger f in
13 let clientModule = MakeClient loggerModule in
14 clientModule unit) in
15

16 MakeMain File

3.3 Higher-Order Effects

Here, Main gains its functionality from a plugin. Plugins might be written by third-
parties, so we may not be able to view their source code, but still want to reason about
the authority they exercise. In this example, plugin has access to File, but its interface
does not permit it to perform any operations on File. It tries to subvert this by wrapping
File inside a function and passing it to malicious, which invokes File.read in a
higher-order manner in an unannotated context.

1 module malicious
2 def log(f: Unit → Unit): Unit
3 f()

244 A. Craig et al.

1 module plugin
2 import malicious
3 def run(f: {File}): Unit with ∅

4 malicious.log(λx:Unit. f.read)

1 require File
2 import plugin
3 plugin.run(File)

This example shows how higher-order effects can obfuscate potential security risks.
On line 3 of malicious, the argument to log has type Unit → Unit. The body of log
types with the T-rules, which do not approximate effects. It is not clear from inspecting
the unannotated code that a File.read will be incurred. To realise this requires one to
examine the source code of both plugin and malicious.

A translation is given below. On lines 2–3, the malicious code selects its authority
as ∅, to be consistent with the annotation on plugin.run. ε-IMPORT safely rejects this:
when the unannotated code is annotated with ∅, it has type {File} →∅ Unit, but the
higher-order effects of this type are {File.∗}, which are not contained in the selected
authority ∅.

1 let malicious =
2 (import(∅) y=unit in
3 λf: Unit → Unit. f()) in
4

5 let plugin =
6 (λf: {File}.
7 malicious(λx:Unit. f.read)) in
8

9 let MakeMain =
10 (λf: {File}.
11 plugin f) in
12

13 MakeMain File

To get this example to typecheck, the program would have to be rewritten to explic-
itly say that plugins can exercise arbitrary authority over File, by changing the selected
authority of import and the annotation on plugin.run.

3.4 Resource Leak

This is another example which obfuscates an unsafe effect by invoking it in a higher-
order manner. The setup is the same, except the function which plugin passes to
malicious now returns File when invoked. malicious uses this function to obtain
File and directly invokes read upon it, violating the declared purity of plugin.

1 module malicious
2 def log(f: Unit → File):Unit
3 f().read

Capabilities: Effects for Free 245

1 module plugin
2 import malicious
3 def run(f: {File}): Unit with ∅

4 malicious.log(λx:Unit. f)

1 require File
2 import plugin
3 plugin.run(File)

The translation is given below. The unannotated code in malicious is on lines
5–6. It has selected authority is ∅, to be consistent with the annotation on plugin.
Nothing is being imported, so the import binds y to unit. This example is rejected
by ε-IMPORT because the premise ε = effects(τ̂)∪ho-effects(annot(τ, ε)) is not
satisfied. In this case, ε = ∅ and τ = (Unit → {File}) → Unit. Then annot(τ, ε) =
(Unit →∅ {File}) →∅ Unit and ho-effects(annot(τ, ε)) = {File.∗}. Thus, the
premise cannot be satisfied and the example is safely rejected.

1 let malicious =
2 (import(∅) y=unit in
3 λf: Unit → {File}. f().read) in
4

5 let plugin =
6 (λf: {File}.
7 malicious(λx:Unit. f)) in
8

9 let MakeMain =
10 (λf: {File}.
11 plugin f) in
12

13 MakeMain File

4 Conclusions

We introduced CC, a lambda calculus with a simple notion of resources and their oper-
ations, which allows unannotated code to be nested inside annotated code with a new
import construct. Its capability-safe design enables us to safely reason about the effects
of unannotated code by inspecting what capabilities are passed into it by its anno-
tated surroundings. Such an approach allows code to be incrementally annotated, giving
developers a balance between safety and convenience, alleviating the verbosity that has
discouraged widespread adoption of effect systems [19].

More broadly, our results demonstrate that the most basic form of capability-based
reasoning—that you can infer what code can do based on what capabilities are passed
to it—is not only useful for informal reasoning, but can improve formal reasoning about
code by reducing the necessary annotation overhead.

4.1 Related Work

While much related work has already been discussed as part of the presentation, here
we cover some additional strands related to capabilities and effects.

246 A. Craig et al.

Capabilities were introduced by [3] to control which processes had permission to
access which resources in an operating system. These ideas were adapted to the pro-
gramming language setting, particularly by Miller [17], whose object-capability model
constrains how permissions may proliferate among objects in a distributed system. [13]
formalised the notion of a capability-safe language and showed that a subset of Caja
(a Javascript implementation) is capability-safe. Miller’s object-capability model has
been applied to more heavyweight systems, such as [6], which formalises the notion of
trust in a Hoare logic. Capability-safety parallels have been explored in the operating
systems literature, where similar restrictions on dynamic loading and resource access
[7] enable static, lightweight analyses to enforce privilege separation [12].

The original effect system by [10] was used to determine what expressions could
safely execute in parallel. Subsequent applications include determining what functions a
program might invoke [21] and what regions in memory might be accessed or updated
during execution [20]. In these systems, “effects” are performed upon “regions”; in
ours, “operations” are performed upon “resources”. CC also distinguishes between
unannotated and annotated code; only the latter will type-and-effect-check. Another
capability-based effect system is the one by [4], who use effect polymorphism and
possible world semantics to express behavioural invariants on data structures. CC is
not as expressive, since it only inspects how capabilities are passed around a program,
but the resulting formalism and theory is much more lightweight. Ongoing work with
the Wyvern programming language includes an effect system which partially builds on
ideas from this paper [15].

4.2 Future Work

Our system only models capabilities which manipulate system resources. This defi-
nition could be generalised to track other sorts of effects, such as stateful updates.
Resources and their operations are fixed throughout runtime, but we could imagine
them being created and destroyed at runtime. Finally, other future work could incorpo-
rate polymorphic types and effects.

References

1. Coker, Z., Maass, M., Ding, T., Le Goues, C., Sunshine, J.: Evaluating the flexibility of the
Java sandbox. In: Proceedings of the 31st Annual Computer Security Applications Confer-
ence, ACSAC 2015, USA, pp. 1–10 (2015)

2. Craig, A., Potanin, A., Groves, L., Aldrich, J.: Capabilities: effects for free. Technical report,
School of Engineering and Computer Science, Victoria University of Wellington, Welling-
ton, New Zealand (2018). https://ecs.victoria.ac.nz/Main/TechnicalReportSeries

3. Dennis, J.B., Van Horn, E.C.: Programming semantics for multiprogrammed computations.
Commun. ACM 9(3), 143–155 (1966)

4. Devriese, D., Birkedal, L., Piessens, F.: Reasoning about object capabilities with logical
relations and effect parametricity. In: IEEE European Symposium on Security and Privacy
(2016)

5. Dimoulas, C., Moore, S., Askarov, A., Chong, S.: Declarative policies for capability control.
In: Computer Security Foundations Symposium (2014)

https://ecs.victoria.ac.nz/Main/TechnicalReportSeries

Capabilities: Effects for Free 247

6. Drossopoulou, S., Noble, J., Miller, M.S., Murray, T.: Reasoning about risk and trust in an
open world. In: ECOOP, pp. 451–475 (2007)

7. Hunt, G., et al.: Sealing OS processes to improve dependability and safety. SIGOPS OS Rev.
41(3), 341–354 (2007)

8. Kiniry, J.R.: Exceptions in Java and Eiffel: two extremes in exception design and appli-
cation. In: Dony, C., Knudsen, J.L., Romanovsky, A., Tripathi, A. (eds.) Advanced Topics
in Exception Handling Techniques. LNCS, vol. 4119, pp. 288–300. Springer, Heidelberg
(2006). https://doi.org/10.1007/11818502 16

9. Leijen, D.: Koka: programming with row polymorphic effect types. In: Mathematically
Structured Functional Programming 2014. EPTCS, March 2014

10. Lucassen, J.M., Gifford, D.K.: Polymorphic effect systems. In: POPL, POPL 1988, USA,
pp. 47–57 (1988)

11. Maass, M.: A theory and tools for applying sandboxes effectively. Ph.D. thesis, Carnegie
Mellon University (2016)

12. Madhavapeddy, A., et al.: Unikernels: library operating systems for the cloud. SIGPLAN
Not. 48(4), 461–472 (2013)

13. Maffeis, S., Mitchell, J.C., Taly, A.: Object capabilities and isolation of untrusted web appli-
cations. In: Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP 2010, pp.
125–140. IEEE Computer Society (2010)

14. Melicher, D., Shi, Y., Potanin, A., Aldrich, J.: A capability-based module system. In: 31st
European Conference on Object-Oriented Programming (ECOOP 2017), pp 20:1–20:27
(2017). Article No. 20

15. Melicher, D., Shi, Y., Zhao, V., Potanin, A., Aldrich, J.: Using object capabilities and effects
to build an authority-safe module system: poster. In: Proceedings of the 5th Annual Sympo-
sium and Bootcamp on Hot Topics in the Science of Security, HoTSoS 2018, Raleigh, North
Carolina, USA, 10–11 April 2018

16. Miller, M., Yee, K.P., Shapiro, J.: Capability myths demolished. Technical report SRL2003-
02, Systems Research Laboratory, Johns Hopkins University (2003)

17. Miller, M.S.: Robust composition: towards a unified approach to access control and concur-
rency control. Ph.D. thesis, Johns Hopkins University (2006)

18. Nielson, F., Nielson, H.R.: Type and effect systems. In: Olderog, E.-R., Steffen, B. (eds.)
Correct System Design. LNCS, vol. 1710, pp. 114–136. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48092-7 6

19. Rytz, L., Odersky, M., Haller, P.: Lightweight polymorphic effects. In: Noble, J. (ed.)
ECOOP 2012. LNCS, vol. 7313, pp. 258–282. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31057-7 13

20. Talpin, J.P., Jouvelot, P.: The type and effect discipline. Inf. Comput. 111(2), 245–296 (1994)
21. Tang, Y.M.: Control-flow analysis by effect systems and abstract interpretation. Ph.D. thesis,

Ecole des Mines de Paris (1994)

https://doi.org/10.1007/11818502_16
https://doi.org/10.1007/3-540-48092-7_6
https://doi.org/10.1007/3-540-48092-7_6
https://doi.org/10.1007/978-3-642-31057-7_13
https://doi.org/10.1007/978-3-642-31057-7_13

Theorem Proving

A Framework for Interactive Verification
of Architectural Design Patterns

in Isabelle/HOL

Diego Marmsoler(B)

Technische Universität München, Munich, Germany
diego.marmsoler@tum.de

Abstract. Architectural design patterns capture architectural design
experience and are an important tool in software engineering to support
the conceptualization and analysis of architectures. They constrain differ-
ent aspects of an architecture and usually guarantee some corresponding
properties for architectures implementing them. Verifying such patterns
requires proving that the constraints imposed by the pattern indeed lead
to architectures which satisfy the corresponding guarantee. Due to the
abstract nature of patterns, verification is often done by means of inter-
active theorem proving and requires detailed knowledge about the under-
lying model, limiting its application to experts of this model. Moreover,
proving properties for different patterns usually involves repetitive proof
steps, leading to proofs which are difficult to maintain. To address these
problems, we developed a framework that supports the interactive verifi-
cation of architectural design patterns in Isabelle/HOL. The framework
implements a model for dynamic architectures as well as a corresponding
calculus in terms of two Isabelle/HOL theories and consists of roughly
3 500 lines of Isabelle/HOL proof script. To evaluate our framework, we
applied it for the verification of four different architectural design pat-
terns and compared the overall amount of proof code to the code con-
tributed by the framework. Our results suggest that the framework has
the potential to significantly reduce the amount of proof code required for
the verification of patterns and thus to address the problems mentioned
above.

Keywords: Architectural design pattern
Interactive theorem proving · Architecture verification
Configuration trace · Co-inductive list · Isabelle/HOL

1 Introduction

Architectural design patterns (ADPs) are an important tool in software engi-
neering for the conceptualization and analysis of software systems. They capture
architectural design experience and are regarded as the ‘Grand Tool’ for design-
ing a software systems architecture [1]. ADPs usually constrain the design of an
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 251–269, 2018.
https://doi.org/10.1007/978-3-030-02450-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_15&domain=pdf
http://orcid.org/0000-0003-2859-7673

252 D. Marmsoler

Behavior Specification
Activation Specification
Connection Specification

Architecture
Specification

Behavior Properties
Activation Properties
Connection Properties

Architecture
Property

Temporal
Logic

Configuration
Traces

(Step 1)

(Step 2)

(Step 3)

Fig. 1. Interactive verification of architectural design patterns.

architecture: the types of components, the activation/deactivation of components
of a certain type, and connections between active components. In return, they
guarantee certain safety/liveness properties for architectures implementing the
pattern [2]. Verifying ADPs requires to verify whether the constraints imposed
by them indeed lead to the claimed guarantees. Due to the abstract nature of
patterns, verification is often done by means of interactive theorem proving [3].
The corresponding process is summarized in Fig. 1: The specification of an ADP
is given in terms of temporal logic formulæ to express the constraints on the
behavior of components as well as on their activation/deactivation and intercon-
nection. In addition, the pattern’s guarantee is specified in terms of a temporal
logic formula over the architecture as a whole. To verify the pattern, one has to
interpret the specification at the model level in terms of different sets of config-
uration traces (Step 1) and show that the intersection of these properties leads
to a property (Step 2) which corresponds to the claimed guarantee (Step 3).

Problem Description. First attempts to verify different patterns revealed that
reasoning about a pattern’s specification imposes the following challenges:

– The interpretation of the specification (Step 1) and verification results (Step 3)
requires deep knowledge about the model of configuration traces.

– The proof of the guarantee itself (Step 2) requires many repetitive steps which
are similar for every ADP.

These problems have two negative consequences on the verification of ADPs:

– The required expertise limits the practical applicability of the approach: ver-
ification is restricted to experts of the model.

– The repetitive nature of the proofs increases the effort to verify a pattern in
the first place as well as to maintain verification results in the long run.

Approach. In order to address the problems identified above, we developed a
framework to support the interactive verification of patterns at a more abstract
level: we implemented the model of configuration traces [4,5] as well as a cor-
responding calculus [6,7] to support reasoning about component behavior, in
Isabelle/HOL [8]. The implementation consists of two theories amounting to
roughly 3 500 lines of Isabelle/HOL proof script and is available online via the
archive of formal proofs [9].

A Framework for Interactive Verification of Architectural Design Patterns 253

Evaluation. To evaluate the framework, we first applied it for the verification
of four different ADPs: a variant of the Singleton, the Publisher-Subscriber, and
the Blackboard pattern as well as a pattern for Blockchain architectures. Then,
we calculated the overall number of proof lines for each of the patterns and com-
pared it to the number of lines contributed by the framework. The corresponding
theories are again available online as a separate entry in the archive of formal
proofs [10] and consist of another 3 500 lines of Isabelle/HOL proof script.

Contributions. With this paper, we report on the results obtained from our devel-
opment. Thus, its major contributions can be summarized as follows:

– It describes the framework itself: the major definitions and corresponding
theorems as well as its interface in terms of an Isabelle/HOL locale [11].

– It demonstrates the use of the framework in terms of a running example.
– It presents and discusses the data obtained from the evaluation of the frame-

work.

Overview. The remainder of the paper is organized as follows: In Sect. 2, we
provide some background for our work. Therefore, we first describe our formal
model of architectures (Sect. 2.1). Then, we introduce the Blackboard pattern
as our running example (Sect. 2.2). Finally, we provide some general background
on Isabelle/HOL for readers who are not familiar with it (Sect. 2.3). In Sect. 3,
we then present our framework. Therefore, we first provide an overview of the
major definitions and theorems and then we demonstrate its usage in terms of
our running example. We continue with a discussion about the evaluation of the
framework and the obtained results in Sect. 4. Finally, we discuss related work
in Sect. 5 and conclude with a brief outlook and a description of next steps in
Sect. 6.

2 Background

In the following, we provide some background for our work. Therefore, we first
introduce the formal model of architectures on which our approach is based on.
Then, we introduce a variant of the Blackboard pattern which serves as a running
example. Finally, we provide some background on Isabelle/HOL for readers not
familiar with it.

2.1 A Model of Dynamic Architectures

Since some architectural patterns involve dynamic aspects, such as component
activation and deactivation, as well as architecture reconfiguration, our frame-
work is based on a model of dynamic architectures. In our model, such an
architecture is represented by a set of so-called configuration traces [4,5], i.e.,
streams [12] of architecture snapshots. An architecture snapshot represents the
state of an architecture at some point in time: active components with their ports
valuated by messages and connections between the ports of these components.

254 D. Marmsoler

Figure 2 depicts the first three snapshots of a conceptual representation of an
exemplary configuration trace: components are represented by gray rectangles
and their ports by empty (input) and filled (output) circles, port valuations are
represented by assignments of sets of messages (numbers or characters) to the
corresponding port, and connections between ports are represented by solid lines
between the ports.

c1o0{9}
i0{5} o1

{C}

o2 {5}

c2〈q=A〉
i0{Z}
o0{9} i1

{C}

i2
{8}

c3〈p=5〉
i0 {X}
o0 {9}i1

{5}

o1

{8}

,

c1o0{1}
i0{8} o1

{F}

o2 {7}

c4i0{2} i1

{F}

o0 {8}

,

c1o0{4}
i0{6} o1

{K}

o2 {9}

c4i0{1} i1

{W}

o0 {6}

c3〈p=5〉
i0 {T}
o0 {4}i1

{4}

o1

{1}

,

Fig. 2. Conceptual representation of a configuration trace.

Composition is modeled in terms of behavior projection which can be used
to extract the behavior of a single component out of a given configuration trace.
Given valid behavior for each component in terms of streams of valuations of the
component’s ports, composition of components results in a set of configuration
traces, such that the behavior of each component (obtained through projection)
is a valid behavior for that component.

2.2 A Pattern for Blackboard Architectures

Throughout the paper, we shall use a variant of the Blackboard pattern [1,2,13]
to demonstrate our ideas. Blackboard architectures are usually found in systems
which work on some collaborative problem solving task. Thereby, it is desired
to design an architecture which can solve a complex problem (such as solving a
logical equation composed of several sub formulas connected by logical operators)
by breaking it down into simpler sub problems (such as solving the corresponding
sub formulas) which can be solved and assembled to a solution for the original
problem.

In the following, we specify the pattern in terms of sets of configuration traces.
Therefore, we first specify the types of involved messages in terms of abstract
data types [14,15]. Then, we specify component types in two steps: first, we
graphically specify a set of interfaces using so-called configuration diagrams [16].
Then, we specify assertions about the behavior of components in terms of so-
called behavior trace assertions, i.e., linear temporal logic formulæ [17] using
port names as free variables. Finally, we add architectural assertions to spec-
ify component activation and deactivation as well as connection reconfiguration.
Architectural assertions are specified using so-called configuration trace asser-
tions, i.e., linear temporal logic formulæ using component variables and some

A Framework for Interactive Verification of Architectural Design Patterns 255

designated predicates to express component activation (‖_‖) and connections
between ports of components (_._ � _._).

Data Types. Blackboard architectures work with problems and solutions for
them. Figure 3a provides an algebraic specification for the corresponding data
types. We denote by PROB the set of all problems and by SOL the set of all solu-
tions. Complex problems consist of subproblems which can be complex them-
selves. To solve a problem, its subproblems have to be solved first. Therefore, we
assume the existence of a subproblem relation ≺ ⊆ PROB × PROB. For complex
problems, this relation may not be known in advance. Indeed, one of the bene-
fits of a Blackboard architecture is that a problem can be solved also without
knowing this relation in advance. However, the subproblem relation has to be
well-founded (a partial order with no infinite decreasing chains) (Eq. (1)) for a
problem to be solvable. In particular, we do not allow for cycles in the transi-
tive closure of ≺. While there may be different approaches to solve a problem
(i.e. several ways to split a problem into subproblems), we assume that the final
solution for a problem is always unique. Thus, we postulate the existence of a
function solve : PROB → SOL which assigns the correct solution to each problem.
Note, however, that this function is not known in advance and it is one of the
reasons of using this pattern to calculate this function.

Component Types. Two types of components are common for Blackboard
architectures: blackboards and knowledge sources. The corresponding interfaces
are specified by the configuration diagram depicted in Fig. 3c. The types of data
which can be exchanged through each of the ports is given by the corresponding

DTSpec ProbSol imports SET

≺ : PROB × PROB

solve : PROB → SOL

well-founded(≺) (1)

(a) Data Type Specification.

PSpec BBPorts imports ProbSol

rp : PROB × ℘(PROB)

ns , cs : PROB × SOL

op, prob : PROB

(b) Port Specification.

Diagram Blackboard

KS 〈prob〉
op cs rp ns

BB
bb:γ(bb),γ′(bb)

op cs rp ns

γ(bb)=true

γ′(bb)=∀bb′:‖bb′‖−→bb′=bb

(c) Configuration Diagram.

Fig. 3. Specification of a Blackboard architecture.

256 D. Marmsoler

port specification (Fig. 3b). Since each component of type knowledge sources can
solve only certain problems, knowledge sources are parametrized by a problem
prob. In the following, we specify the behavior of components of each of the two
types.

Blackboard Components. A Blackboard provides the current state towards solv-
ing the original problem and forwards problems and solutions from knowledge
sources. Figure 4 provides a specification of the blackboard’s behavior in terms
of three behavior trace assertions1:

– if a solution to a subproblem is received on its input, then it is eventually
provided at its output (Eq. 2).

– if solving a problem requires a set of subproblems to be solved first, those
problems are eventually provided at its output (Eq. (3)).

– a problem is provided as long as it is not solved (Eq. (4)).

BSpec Blackboard for BB of Blackboard

flex p : PROB
P : PROB SET

rig p′ : PROB
s′ : SOL

(p′, s′) ∈ ns −→ ♦ (p′, s′) ∈ cs
)

(2)

(p, P) ∈ rp −→ ∀p′ ∈ P : (♦(p′ ∈ op))
)

(3)

p′ ∈ op −→ p′ ∈ op W (p′, solve(p′)) ∈ cs (4)

Fig. 4. Specification of behavior for blackboard components.

Knowledge Source Components. A knowledge source receives open problems via
op and solutions for other problems via cs. It might contribute to the solution
of the original problem by solving subproblems. Figure 5 provides a specification
of the knowledge source’s behavior in terms of three behavior trace assertions:

– if a knowledge source gets correct solutions for all the required subproblems,
then it solves the problem eventually (Eq. (5)).

– to solve a problem, a knowledge source requires solutions only for smaller
problems (Eq. (6)).

– a knowledge source will eventually communicate if it is able to solve a problem
(Eq. (7)).

1 Note that the specification uses flexible and rigid variables: while the former are
newly interpreted at each point in time, the latter keep their value over time. More-
over, it uses the weak until operator which is defined as follows: γ′ W γ

def
=�(γ′) ∨ (γ′ U γ).

A Framework for Interactive Verification of Architectural Design Patterns 257

Fig. 5. Specification of behavior for knowledge source components.

Architectural Constraints. Architectural constraints for the Black-
board pattern are described by the configuration diagram in Fig. 3c: The
‘�bb : γ(bb), γ′(bb)�’ annotation for a blackboard interface provides lower and
upper bounds for the activation of blackboard components

– With γ(bb) = true, we require that a blackboard component is always acti-
vated.

– With γ′(bb) = ∀bb′ : ‖bb′‖ −→ bb′ = bb, we require that a blackboard com-
ponent is unique.

Thus, we require a unique blackboard component to be always activated. The
absence of annotations for KS interfaces, on the other hand, allows knowledge
source components to be de-/activated over time. The solid connections between
the ports denote a constraint requiring that the ports of a knowledge source com-
ponent are connected with the corresponding ports of a blackboard component
as depicted, whenever both components are active. Note that many knowledge
sources may be active at each point in time, in which case every knowledge
source is connected to the blackboard as depicted in the diagram.

The constraints introduced by the configuration diagram are refined by an
additional configuration trace assertions provided in Fig. 6: By Eq. (8) we require
that whenever a knowledge source obtains a request to solve a problem which
it is able to solve, the knowledge source will stay active until that problem is
solved (ks ′

p′ denotes a knowledge source which is able to solve problem p′).

Fig. 6. Specification of activation constraints for Blackboard architectures.

258 D. Marmsoler

2.3 Isabelle/HOL

Isabelle is an LCF-style [18] theorem prover based on Standard ML [19].
It provides a so-called meta-logic on which different object logics are based.
Isabelle/HOL is one of them, implementing higher-order logic for Isabelle. It inte-
grates a prover IDE and comes with an extensive library of theories from various
domains. New theories are then developed by defining terms of a certain type
and deriving theorems from these definitions. To support the specification of the-
ories, Isabelle/HOL provides tools for the specification of (co)datatypes [20] and
(co)recursive functions. To support the verification of theorems, Isabelle/HOL
provides a structured proof language called Isabelle/Isar [21] and a set of logical
reasoners to verify correctness of single proof steps. For the development of our
framework, two additional features of Isabelle are important: coinductive lists
and locales.

Coinductive Lists. In order to implement the model of configuration traces
in Isabelle/HOL, we relied on Lochbihler’s theory of coinductive (lazy) lists [22].
In his theory, Lochbihler formalized lazy lists using Isabelle/HOL’s coinductive
datatype package and provides definitions and properties for many important
concepts such as filtering elements from infinite lists to create new lists.

Locales. In Isabelle, modularization of theories is supported through the notion
of locales [11]. A locale consists of a list of type and function parameters and
corresponding assumptions about them. Locales can extend other locales and
may be instantiated by concrete definitions of the corresponding parameters.

3 IPV: A Framework for Interactive Pattern Verification

Figure 7 provides an overview of our framework for the interactive verification
of architectural design patterns: The framework consists of two Isabelle/HOL
theories which are available through the archive of formal proofs [9]:

Configuration_Traces imports theory Coinductive_List and provides
a formalization of the model described in Sect. 2.1 in terms of lazy lists.

Dynamic_Architecture_Calculus imports theory Configuration_
Traces, provides operators for the specification of component behavior, and
implements a calculus to reason about component behavior [7] specified using
these operators.

Moreover, the framework provides an interface to these theories in terms of
an Isabelle/HOL locale [11] dynamic_component. The locale requires defini-
tions for certain concepts of the model (Step 1) and then provides customized
operators for the specification of component behavior (Step 2) and rules to sup-
port reasoning about such specifications (Step 3). A pattern theory may use the
framework by instantiating the locale for every type of component involved in

A Framework for Interactive Verification of Architectural Design Patterns 259

the pattern. Then, the behavior of each component type is specified using the
specification operators provided by the corresponding instantiation. Moreover,
activation and connection constraints are specified for components of the dif-
ferent types. Finally, the pattern can be verified by using the verification rules
provided by the framework.

Model

- Projection Operator
- Activation Operators
- Mapping Operators

Configuration_Traces.thy

Calculus

- Evaluation Operator
- Specification Operators
- Rules of Calculus

Dynamic_Architecture_Calculus.thy

In
te
rf
ac
e

d
y
n
a
m
i
c
_
c
o
m
p
o
n
e
n
t

Pattern
Theory

- Instantiate locale
for each type
of component

- Specify behavior
for types of
components

- Specify activation
of components

- Verify architecture
using calculus

model definitions

(Step 1)

extends

specification operators

(Step 2)

verification rules

(Step 3)

Fig. 7. Overview of IPV framework.

In the following, we demonstrate the different steps in more detail in terms
of our running example. Thereby, we specify the Blackboard pattern introduced
in Sect. 2.2 in Isabelle/HOL and verify a characteristic property of such architec-
tures using the verification rules provided by the framework. The corresponding
Isabelle/HOL script is provided in this paper’s electronic supplementary mate-
rial [23].

3.1 Creating the Theory

As a first step, we create a new Isabelle/HOL theory which imports theory
Dynamic_Architecture_Calculus [9] from the Archive of Formal Proofs:
theory Blackboard imports DynamicArchitectures.Dynamic-Architecture-Calculus

Note that importing theory Dynamic_Architecture_Calculus is cru-
cial here, since it provides access to locale dynamic_component which is used
in Sect. 3.3 to specify the pattern.

3.2 Specifying Data Types

Next, we specify Isabelle/HOL datatypes for the data types required by the
Blackboard pattern (specified in Fig. 3a):

260 D. Marmsoler

typedecl PROB
consts sb :: (PROB × PROB) set
axiomatization where sbWF : wf sb
typedecl SOL
consts solve:: PROB ⇒ SOL

First, we introduce a new type PROB for the problems to be solved by the
architecture. Moreover, we specify a corresponding constant sb which relates
such problems with corresponding subproblems. Then, we require the well-
foundedness constraint for subproblem relations (specified by Eq. (1) of Fig. 3a)
by a corresponding axiom sbWF . Finally, we introduce another type SOL for
solutions to the problems and a corresponding constant solve which assigns the
correct solution to a given problem.

3.3 Specifying Component Types

Now, we specify the types of components involved in a Blackboard architecture.
Therefore, we create an Isabelle/HOL locale for the pattern which imports locale
dynamic_component (from the framework) for each type of component. Then,
we add locale parameters for each type of port according to the pattern’s port
specification. Finally, we use the operators provided by the framework to specify
the assertions about the behavior of components of the corresponding types.

Creating the Pattern’s Locale. According to Sect. 2.2, a Blackboard archi-
tecture has two types of components: blackboards and knowledge sources.
Thus, we create a locale blackboard with two instantiations of locale
dynamic_component: bb and ks, respectively.
locale blackboard =
bb: dynamic-component bbcmp bbactive +
ks: dynamic-component kscmp ksactive
for bbactive :: ′bid ⇒ cnf ⇒ bool (‖-‖-)
and bbcmp :: ′bid ⇒ cnf ⇒ ′BB (σ-(-))
and ksactive :: ′kid ⇒ cnf ⇒ bool (‖-‖-)
and kscmp :: ′kid ⇒ cnf ⇒ ′KS (σ-(-)) +

Note that locale dynamic_component requires two parameters for each
type of component: a function to denote activation of a component of the cor-
responding type within a given architecture snapshot, and another function to
obtain a certain component from a given architecture snapshot. Thus, we spec-
ify corresponding functions to denote activation and component selection for
blackboards (bbactive and bbcmp) as well as for knowledge sources (ksactive and
kscmp) and pass them to the corresponding locale import. To foster readability,
we also provide concrete syntax for these functions: ‖_‖ for activation and σ(_)
for selection.

Importing the locale for blackboards and knowledge sources provides us with
custom specification mechanisms for these types of components:

A Framework for Interactive Verification of Architectural Design Patterns 261

– Evaluation functions bb.eval and ks.eval, to evaluate component behavior
specifications for blackboards and knowledge sources, respectively.

– Specification operators for common linear temporal logic operators such as
next (bb.nxt/ks.nxt), globally (bb.glob/ks.glob), eventually (bb.evt/ks.evt),
until (bb.until/ks.until), and weak until (bb.wuntil/ks.wuntil).

Moreover, importing the locale also provides us with rules to support reasoning
about specifications involving these operators (in terms of Isabelle/HOL lem-
mata). In essence, the framework provides introduction and elimination rules for
all the temporal operators combined with corresponding specifications of compo-
nent activation (this amounts to roughly 35 rules for each type of component).

Specifying Ports and Parameters. As described in Sect. 2.2, each component
type specifies 4 ports to exchange data with its environment. Thus, for each
instance of the port types specified in Fig. 3b by one of the component types, we
create one corresponding locale parameter:

fixes bbrp :: ′BB ⇒ (PROB × PROB set) set
and ksrp :: ′KS ⇒ PROB × PROB set
and bbns :: ′BB ⇒ (PROB × SOL) set
. . .

The parameters are modeled as functions which take a snapshot of a component
of the corresponding type (’BB or ’KS) and return a set of elements according
to the ports data type.

As mentioned in Sect. 2.2, each knowledge source is parametrized by a prob-
lem which it can solve. Thus, we first add a corresponding locale parameter
which associates a problem with each knowledge source:

and prob :: ′kid ⇒ PROB

Moreover, we add a locale assertion which ensures that at least one knowledge
source exists for each possible problem:
assumes
ks1 : ∀ p. ∃ ks. p=prob ks

Specifying Component Behavior. Next we can specify the assertions about
the behavior of the blackboard or knowledge sources as specified in Figs. 4 and
5, respectively. Note that assumptions about component behavior are specified
in terms of behavior trace assertions (without considering component activation
or deactivation). Thus, the specification of the corresponding locale assumptions
need to be formulated using the temporal logic operators provided by the frame-
work and described above:

262 D. Marmsoler

and bhvbb1 :
∧
t t ′ bid p s. [[t ∈ arch]] =⇒ bb.eval bid t t ′ 0

(�b (bb.ba (λ bb. (p,s)∈bbns bb) −→b (�b (bb.ba (λ bb. (p,s) ∈ bbcs bb)))))
. . .
and bhvks1 :

∧
t t ′ kId p P . [[t∈arch; p = prob kId]] =⇒ ks.eval kId t t ′ 0

(�b ((ks.ba (λ ks. (p, P) = ksrp ks)) ∧b

(∀ b q . ((ks.pred (q∈P)) −→b (�b (ks.ba (λ ks. (q ,solve(q)) ∈ kscs ks)))))
−→b (�b (ks.ba (λ ks. (p,solve(p)) ∈ ksns(ks))))))

. . .

bhvbb1 , for example, formalizes Eq. (2): with bb.eval bid t t′ 0, we require that
the subsequent formula is to be interpreted for a component of type blackboard
(since we are using the blackboard variant of eval) with a certain identifier bid
for a configuration trace t at time point 0. The specification of the formula itself
then uses the corresponding temporal operators from the framework: bb.glob for
globally, bb.evt for eventually, and bb.ass for basic assertions about the state of a
blackboard component. Note that such basic assertions specify states of concrete
components in terms of a function which take a component’s state as input and
returns whether it is valid or not for the time point given by the surrounding
temporal specification.

bhvks1 formalizes Eq. (5): again, we use the evaluation function to access the
framework and use the corresponding temporal operators to formulate the prop-
erty. Since this time, however, we are formalizing a specification for knowledge
sources, we need to use the corresponding instantiation for knowledge sources
(ks).

3.4 Specifying Architectural Constraints

Finally, we can finalize the specification of the pattern by adding architectural
constraints imposed by the pattern as described in Sect. 2.2. Since architectural
assertions can be directly expressed over configuration traces, we do not need to
use the operators provided by the framework for their specification.

Specifying Assertions About Component Activation. First, we specify
assertions about the activation of blackboards and knowledge sources:

and alwaysActive:
∧
k. ∃ id:: ′bid. ‖id‖k

and unique: ∃ id. ∀ k. ∀ id ′:: ′bid. ‖id ′‖k −→ id = id ′

and actks:
∧
t n kid p. [[t ∈ arch; ‖kid‖t n; p=prob kid; p∈ksop (σkid(t n))]]

=⇒ (∃ n ′≥n. ‖kid‖t n ′ ∧ (p, solve p) ∈ ksns (σkid(t n
′)) ∧ (∀ n ′′≥n. n ′′<n ′ −→ ‖kid‖t n ′′))

∨ (∀ n ′≥n. (‖kid‖t n ′ ∧ (¬(p, solve p) ∈ ksns (σkid(t n
′)))))

The first two assumptions formalize the activation of blackboard components as
specified by the configuration diagram in Fig. 3c: with alwaysActive and unique
we require a unique blackboard component to be always activated. The third
assertion specifies activation of knowledge source components as expressed by
the configuration trace assertion shown in Fig. 6: With actks we require that,

A Framework for Interactive Verification of Architectural Design Patterns 263

whenever a knowledge source obtains a request to solve a problem which it is
able to solve, the knowledge source will stay active until that problem is solved.

Specifying Assertions About Component Connection. Finally, we specify
assertions about connections between component ports:

and conn1:
∧
k bid. ‖bid‖k =⇒ bbns (σbid(k)) = (

⋃
kid∈{kid. ‖kid‖k}. ksns (σkid(k)))

. . .

Connections between component ports are modeled in terms of conditional equal-
ities between the connected ports (the condition requires the components to be
activated). conn1 , for example, specifies a required connection between ports ns
of a blackboard and ns of a knowledge source.

3.5 Verifying Blackboard Architectures

Finally, we can use the framework to verify the specification of the Blackboard
pattern. Therefore, we first specify a desired property for Blackboard architec-
tures as an Isabelle/HOL theorem and prove it using the verification rules pro-
vided by the framework.

A Characteristic Property for Blackboard Architectures. In the fol-
lowing, we specify a characteristic property for Blackboard architectures as an
Isabelle/HOL theorem:
theorem pSolved :
fixes t and t ′::nat ⇒ ′BB and p and t ′′::nat ⇒ ′KS
assumes t∈arch and ∀n. ∀ p∈bbop(σthe-bb(t n)). ∃n ′≥n. ‖sKs p‖t n ′
shows ∀n. p∈bbop(σthe-bb(t n)) −→ (∃m≥n. (p,solve(p)) ∈ bbcs (σthe-bb(t m)))

The property states that, if for each open (sub-)problem, a knowledge source
which is able to solve the corresponding problem will be eventually activated,
then the architecture guarantees that the original problem is indeed solved.

Verifying the Property. In the following, we demonstrate how the rules of
the framework can be used to support the verification process. Therefore, we
present a small excerpt from the overall proof of the above property2. However,
since the proof relies on rule evtEA, we first briefly describe this rule and then
we show how it was used in the proof.

Eventually Elimination. In general, the rule has the following form:

evtEA (t, t′, n) t
k|=(c)♦γ

∃n′ ≥ 〈c n∨ t〉 : (t, t′, n′) t
k|=(c)γ

∃i ≥ n : ‖c‖t(i)

2 The full proof is provided in [23].

264 D. Marmsoler

It allows to eliminate an eventually operator from a behavior specification
♦γ for a component c at time point n and conclude that γ holds sometimes after
the last activation (before n) of component c. However, in order to be applied,
the rule requires that component c is again activated in the future.

Proof Excerpt. In the following excerpt we show how the above rule is used to
eliminate the eventually operator available in locale assumption bhvks1 , obtained
from Eq. (5):
. . .
ultimately have ks.eval (sKs p) t t ′′ nr (b (ks.ba (λ ks. (p,solve(p))∈ksns(ks)))) 1
using ks.impE[of sKs p t t ′′ nr] by blast 2

with 〈∃ i≥nr. ‖sKs p‖t i〉 obtain ns where ns≥〈sKs p → t〉nr and 3
(∃ i≥ns. ‖sKs p‖t i ∧ (∀ n ′′≥〈sKs p ⇐ t〉ns . n ′′ ≤ 〈sKs p → t〉ns −→ 4
ks.eval (sKs p) t t ′′ n ′′ (ks.ba (λ ks. (p,solve(p))∈ksns(ks))))) ∨ 5

¬ (∃ i≥ns. ‖sKs p‖t i) ∧ ks.eval (sKs p) t t ′′ ns (ks.ba (λ ks. (p,solve(p))∈ksns(ks))) 6
using ks.evtEA[of nr sKs p t] by blast 7
. . .

The excerpt starts with the fact that for a knowledge source with identifier
sKs p, at some time point nr, problem p and its solution solve(p) are eventually
provided at sKs p′s output port ns (lines 1 and 2). It then uses rule evtEA to
obtain time point ns for which problem p and its solution solve(p) are actually
provided at sKs p′s output port ns (lines 3–7). In order to do so, it uses another
fact, which ensures that component sKs p is indeed eventually activated, to
discharge the side condition of rule evtEA (line 3).

4 Evaluation

In order to evaluate the framework, we used it to specify and verify four archi-
tectural design patterns: versions of the Singleton, Publisher-Subscriber, and
Blackboard pattern, as well as a pattern for Blockchain architectures. The cor-
responding Isabelle/HOL theories are available via the archive of formal proofs
and can be accessed online [10].

To investigate the frameworks potential to support the verification of archi-
tectural design patterns, we then calculated the normalized amount of proof code
for the verification of each pattern and classified it into proof code attributed by
the framework and additional proof code specific to the pattern. The collected
raw data is available online [23] and summarized in Fig. 8. Figure 8a depicts
the absolute amount of framework code (black) and proof code specific to the
pattern (gray) for each of the four patterns. It already suggests that the frame-
work contributes a significant amount of proof code to the overall verification.
To investigate this suspicion in more detail, Fig. 8b depicts the relative amount
of framework code vs. proof code specific to the pattern. It shows that, except
for the Publisher-Subscriber pattern, the amount of proof code contributed by
the framework amounts to at least two-thirds of the overall proof code used to

A Framework for Interactive Verification of Architectural Design Patterns 265

verify the patterns. The data obtained for the Publisher-Subscriber pattern can
be explained by the absence of behavioral constraints imposed by the pattern.
For the pattern was specified in a way such that it requires only certain restric-
tions about the activation of components and connection between them, but
no restrictions on the components actual behavioral was imposed. In summary,
the data suggests that for patterns which do indeed involve constraints about
component behavior, the proposed framework has the potential for significant
reductions of the proof code required to verify them.

ST

PS

BB

BC

3,123

0

4,596

11,592

145

31

516

5,016

(a) Comparison of absolute values.

ST PS BB BC
0

50

100

(b) Relative comparision.

Fig. 8. Contribution of framework to overall verification.

5 Related Work

To the best of our knowledge, the framework presented in this paper is the first
of its kind. Nevertheless, related work can be found in two related areas: applica-
tions of interactive theorem proving to software architectures and formalizations
of temporal logics.

5.1 Interactive Theorem Proving for Software Architectures

Over the last decades, some attempts were made to apply interactive theo-
rem proving to software architectures. One of the first attempts in this direc-
tion was done by Bergner [24]. The author proposes an approach to specify
component networks and verify whether a given (runtime) component network
satisfies its specification. The approach was implemented in Spectrum [25], a
functional programming language which allows for axiomatic specifications of
functions. Another approach comes from Fensel and Schnogge [26], which apply
the KIV interactive theorem prover [27] to verify concrete architectures in the
area of knowledge-based systems. Another example in this areas is the work of
Spichkova [28] which provides a mapping from a Focus [29] specification to a

266 D. Marmsoler

corresponding Isabelle/HOL [8] theory. More recently, some attempts were made
to apply interactive theorem proving to the verification of architectural connec-
tors. Li and Sun [30], for example, apply the Coq proof assistant [31] to verify
connectors specified in Reo [32].

While all these approaches apply interactive theorem proving to the verifica-
tion of different aspects of software architectures, there is one major difference
to our work: The above approaches mainly focus on the specification of static
architectures. However, as argued in the introduction of this paper, dynamic
architectures are becoming increasingly important. Thus, the work presented in
this paper, complements these approaches by extending their scope to dynamic
architectures.

5.2 Formalization of Temporal Logic

The framework proposed in this paper uses temporal logics as means to spec-
ify the behavior of dynamic components. Thus, formalizations of temporal log-
ics in Isabelle/HOL represent another source for related work. First attempts
in this direction focused on the formalization of Lamport’s Temporal Logic of
Actions [33]. An initial formalization of TLA is provided by Merz [34]. Then,
Grov and Merz [35] elaborated on that work and formalized TLA* [36] in
Isabelle/HOL. Later on, a formalization of temporal interval logic for real time
systems is described by Mattolini and Nese [37]. A first formalization of LTL [17]
in Isabelle/HOL is provided by Schimpf et al. [38] and then refined by Sickert [39].

While the above approaches all provide valuable insights into the process
of formalizing temporal logics, the scope of this work is different: we are inter-
ested in combining a given temporal logic specification with a specification of
component activations. To this end, we provide a calculus in terms of a set of
rules which allows to reason about temporal specifications taking into considera-
tion that states may be active or not. Thus, with our work we also complement
existing work in this area.

6 Conclusion

In this paper, we described our results obtained by implementing a frame-
work for the interactive verification of architectural design patterns (ADPs) in
Isabelle/HOL:

– We described the major definitions and corresponding theorems as well as
the interface to the framework.

– We demonstrate usage of the framework in terms of a running example: a
dynamic version of the Blackboard pattern.

– We present and discuss the framework’s evaluation in which the framework
was used to specify and verify four different ADPs: a variant of the Singleton,
the Publisher-Subscriber, and the Blackboard pattern as well as a pattern for
Blockchain architectures.

A Framework for Interactive Verification of Architectural Design Patterns 267

Results. Our evaluation showed that for those patterns which involve the speci-
fication of component behavior, the framework contributed at least 75% of the
proof code required for their verification. Moreover, the evaluation also suggested
that using the framework allows reasoning at a more abstract level, thus reducing
the amount of knowledge of the underlying model required for the verification
of ADPs.

Implication. Based on our results, we conclude that the framework proposed in
this paper has the potential to significantly reduce the amount of proof code
required to verify ADPs, thus reducing the effort to develop and maintain ver-
ification results for ADPs. Moreover, reducing the necessary knowledge of the
underlying model may increase practical applicability of the interactive verifica-
tion of ADPs.

Vision and Outlook. Our overall research aims towards bringing interactive the-
orem proving closer to the software architecture community [40]. With the work
presented in this paper, we provide another, important cornerstone towards this
overall research agenda. However, additional work remains to be done in order to
fully achieve our overall goal. In particular, future work should focus on the devel-
opment of tools to support the interactive verification of patterns. Therefore, we
are currently working on an implementation of our approach in Eclipse/EMF
which uses the framework presented in this paper to support the interactive
verification of ADPs.

Acknowledgments. We would like to thank all the people from the Isabelle mailing-
list for their fast support. In particular, we would like to thank Andreas Lochbihler
for his valuable support. Moreover, we would like to thank Ondřej Kunčar, Veronika
Bauer, and all the anonymous reviewers of ICFEM 2018 for their comments and helpful
suggestions on earlier versions of this paper.

References

1. Taylor, R.N., Medvidovic, N., Dashofy, E.M.: Software Architecture: Foundations,
Theory, and Practice. Wiley, Hoboken (2009)

2. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System of Patterns. Wiley, West Sussex (1996)

3. Marmsoler, D.: Hierarchical specification and verification of architecture design
patterns. In: Proceedings of Fundamental Approaches to Software Engineering,
FASE 2018, Thessaloniki, Greece, 14–20 April 2018 (2018)

4. Marmsoler, D., Gleirscher, M.: Specifying properties of dynamic architectures
using configuration traces. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS,
vol. 9965, pp. 235–254. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46750-4_14

5. Marmsoler, D., Gleirscher, M.: On activation, connection, and behavior in dynamic
architectures. Sci. Ann. Comput. Sci. 26(2), 187–248 (2016)

6. Marmsoler, D.: On the semantics of temporal specifications of component-behavior
for dynamic architectures. In: 2017 International Symposium on Theoretical
Aspects of Software Engineering (TASE), pp. 1–6. IEEE (2017). https://doi.org/
10.1109/tase.2017.8285638

https://doi.org/10.1007/978-3-319-46750-4_14
https://doi.org/10.1007/978-3-319-46750-4_14
https://doi.org/10.1109/tase.2017.8285638
https://doi.org/10.1109/tase.2017.8285638

268 D. Marmsoler

7. Marmsoler, D.: Towards a calculus for dynamic architectures. In: Hung, D., Kapur,
D. (eds.) ICTAC 2017. LNCS, vol. 10580, pp. 79–99. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67729-3_6

8. Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL, vol. 2283. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

9. Marmsoler, D.: Dynamic architectures. Archive of Formal Proofs, July 2017. http://
isa-afp.org/entries/DynamicArchitectures.html

10. Marmsoler, D.: A theory of architectural design patterns. Archive of Formal Proofs,
March 2018. http://isa-afp.org/entries/Architectural_Design_Patterns.html

11. Ballarin, C.: Locales and locale expressions in Isabelle/Isar. In: Berardi, S., Coppo,
M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 34–50. Springer, Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-24849-1_3

12. Broy, M.: A logical basis for component-oriented software and systems engineering.
Comput. J. 53(10), 1758–1782 (2010)

13. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Disci-
pline, vol. 1. Prentice Hall, Englewood Cliffs (1996)

14. Broy, M.: Algebraic specification of reactive systems. In: Wirsing, M., Nivat, M.
(eds.) AMAST 1996. LNCS, vol. 1101, pp. 487–503. Springer, Heidelberg (1996).
https://doi.org/10.1007/BFb0014335

15. Wirsing, M.: Algebraic specification. In: van Leeuwen, J. (ed.) Handbook of Theo-
retical Computer Science, vol. B, pp. 675–788. MIT Press, Cambridge (1990)

16. Marmsoler, D., Degenhardt, S.: Verifying patterns of dynamic architectures using
model checking. In: Formal Engineering Approaches to Software Components and
Architectures, FESCA@ETAPS 2017, Uppsala, Sweden, 22 April 2017, pp. 16–30
(2017)

17. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems.
Springer, New York (1992). https://doi.org/10.1007/978-1-4612-0931-7

18. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78.
Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09724-4

19. Milner, R., Tofte, M., Harper, R.: The Definition of Standard ML. MIT Press,
Cambridge (1990). Literaturverz. S. [87]–89

20. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.:
Truly modular (co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.)
ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-08970-6_7

21. Wenzel, M.: Isabelle/Isar - a generic framework for human-readable proof docu-
ments. From Insight to Proof - Festschrift in Honour of Andrzej Trybulec 10(23),
277–298 (2007)

22. Lochbihler, A.: Coinduction. The Archive of Formal Proofs. http://afp.sourceforge.
net/entries/Coinductive.shtml (2010)

23. Marmsoler, D.: A framework for interactive verification of architectural design
patterns in Isabelle/HOL. Electronic Supplementary Material. http://www.
marmsoler.com/docs/ICFEM18/

24. Bergner, K.: Spezifikation großer Objektgeflechte mit Komponentendiagrammen.
Ph.D. thesis, Technische Universität München (1996)

25. Broy, M., Facchi, C., Grosu, R., et al.: The requirement and design specification
language spectrum - an informal introduction. Technical report, Technische Uni-
versität München (1993)

26. Fensel, D., Schnogge, A.: Using KIV to specify and verify architectures of
knowledge-based systems. In: Automated Software Engineering, pp. 71–80, Novem-
ber 1997

https://doi.org/10.1007/978-3-319-67729-3_6
https://doi.org/10.1007/3-540-45949-9
http://isa-afp.org/entries/DynamicArchitectures.html
http://isa-afp.org/entries/DynamicArchitectures.html
http://isa-afp.org/entries/Architectural_Design_Patterns.html
https://doi.org/10.1007/978-3-540-24849-1_3
https://doi.org/10.1007/BFb0014335
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/978-3-319-08970-6_7
https://doi.org/10.1007/978-3-319-08970-6_7
http://afp.sourceforge.net/entries/Coinductive.shtml
http://afp.sourceforge.net/entries/Coinductive.shtml
http://www.marmsoler.com/docs/ICFEM18/
http://www.marmsoler.com/docs/ICFEM18/

A Framework for Interactive Verification of Architectural Design Patterns 269

27. Reif, W.: The KIV-approach to software verification. In: Broy, M., Jähnichen, S.
(eds.) KORSO: Methods, Languages, and Tools for the Construction of Correct
Software. LNCS, vol. 1009, pp. 339–368. Springer, Heidelberg (1995). https://doi.
org/10.1007/BFb0015471

28. Spichkova, M.: Specification and seamless verification of embedded real-time sys-
tems: FOCUS on Isabelle. Ph.D. thesis, Technical University Munich, Germany
(2007)

29. Broy, M., Stolen, K.: Specification and Development of Interactive Systems: Focus
on Streams, Interfaces, and Refinement. Springer, New York (2012)

30. Li, Y., Sun, M.: Modeling and analysis of component connectors in Coq. In:
Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 273–290.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07602-7_17

31. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development:
Coq’Art: The Calculus of Inductive Constructions. Springer, Heidelberg (2013)

32. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(03), 329–366 (2004)

33. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
(TOPLAS) 16(3), 872–923 (1994)

34. Merz, S.: Mechanizing TLA in Isabelle. In: Workshop on Verification in New Ori-
entations, pp. 54–74. Citeseer (1995)

35. Grov, G., Merz, S.: A definitional encoding of TLA* in Isabelle/HOL. Archive of
Formal Proofs, November 2011. http://isa-afp.org/entries/TLA.html

36. Merz, S.: A more complete TLA. In: Wing, J.M., Woodcock, J., Davies, J. (eds.)
FM 1999. LNCS, vol. 1709, pp. 1226–1244. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48118-4_15

37. Mattolini, R., Nesi, P.: An interval logic for real-time system specification. IEEE
Trans. Softw. Eng. 27(3), 208–227 (2001)

38. Schimpf, A., Merz, S., Smaus, J.-G.: Construction of Büchi Automata for LTL
model checking verified in Isabelle/HOL. In: Berghofer, S., Nipkow, T., Urban,
C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 424–439. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_29

39. Sickert, S.: Linear temporal logic. Archive of Formal Proofs, March 2016. http://
isa-afp.org/entries/LTL.html

40. Marmsoler, D.: Towards a theory of architectural styles. In: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering
- FSE 2014, pp. 823–825. ACM Press (2014)

https://doi.org/10.1007/BFb0015471
https://doi.org/10.1007/BFb0015471
https://doi.org/10.1007/978-3-319-07602-7_17
http://isa-afp.org/entries/TLA.html
https://doi.org/10.1007/3-540-48118-4_15
https://doi.org/10.1007/3-540-48118-4_15
https://doi.org/10.1007/978-3-642-03359-9_29
http://isa-afp.org/entries/LTL.html
http://isa-afp.org/entries/LTL.html

Formalization of Symplectic Geometry
in HOL-Light

Guohui Wang1,2,4(B), Yong Guan1,3,5, Zhiping Shi3,4,5(B), Qianying Zhang1,4,
Xiaojuan Li1,3, and Yongdong Li1

1 Beijing Advanced Innovation Center for Imaging Technology,
Capital Normal University, Beijing, China

{ghwang,guanyong,qyzhang,lixj}@cnu.edu.cn, lydbeijing@163.com
2 School of Mathematical Science, Capital Normal University, Beijing, China
3 Beijing Key Laboratory of Light Industrial Robot and Safety Verification,

College of Information Engineering, Capital Normal University, Beijing, China
shizp@cnu.edu.cn

4 Beijing Center for Mathematics and Information Interdisciplinary Sciences,
Capital Normal University, Beijing, China

5 National International Science and Technology Cooperation Demonstration
Base of Interdisciplinary of Electronic System Reliability and Mathematics,

Capital Normal University, Beijing, China

Abstract. Symplectic geometry is a versatile geometric theory widely
used in many disciplines such as analytical mechanics, geometric topol-
ogy and Lie group. However, when symplectic geometry is applied in
practice, the satisfaction of its preconditions is often not formally veri-
fied. Therefore, it is necessary to make verifications on symplectic geom-
etry and its applications. The purpose of the present work is to conduct
such verifications by establishing a formal theorem library in HOL-Light.
For this purpose, seven basic concepts are formalized at first. Then, the
properties of symplectic vector spaces and symplectic matrices are for-
mally verified. To validate the correctness of the formalized symplectic
geometry and to demonstrate its applications, formal analysis is finally
made on the symplectic features of matrix optics. The present work not
only lays a necessary foundation for formal verifications in this field but
also extends the library of theories of the HOL-Light system. Based on
this foundation, some more sophisticated symplectic geometry theories
and their engineering applications can be further formalized and verified.

Keywords: Formalization · Theorem proving · Symplectic geometry
Higher-order logic · HOL-Light

1 Introduction

There are three parallel branches of geometric theories, namely algebraic geome-
try, differential geometry and symplectic geometry. Different from the former two
ones, the symplectic geometry mainly formulates the geometric and topological
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 270–283, 2018.
https://doi.org/10.1007/978-3-030-02450-5_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_16&domain=pdf

Formalization of Symplectic Geometry in HOL-Light 271

properties of symplectic manifolds, which are the foundations of the Hamilto-
nian mechanics. As an elegant mathematical theory, the symplectic geometry
was originally initiated by Hamilton in his geometrics-based formulation of ana-
lytical mechanics.

After its continuous development in the past more than one and a half cen-
turies, the symplectic geometry has become a versatile theory. Now, it has been
extended into geometric topology, Lie group and other related theories [4,5].
Besides its classical application in analytical mechanics, it is widely used in
multi-disciplines such as the geometrical optics, celestial mechanics, elasticity
mechanics, fluid mechanics, the mechanics-based optimal control and the sym-
plectic algorithm based numerical computation. Different from the conventional
theories in these fields, the symplectic theories provide more powerful theoretical
formulations for describing physical phenomena that are related to symplectic
manifolds [2,11]. For example, in the field of numerical computation, all con-
servative physical processes without dissipation cannot be numerically solved
by the conventional Runge-Kutta algorithms, but they can be solved by the
symplectic Runge-Kutta methods [1,14,17], because all these physical processes
have symplectic structures, which cannot be kept unchanged by the conventional
Runge-Kutta algorithms.

The symplectic geometry is a sophisticated mathematical theory. In engi-
neering practices, it is often applied with its preconditions being satisfied incom-
pletely or by default. Therefore, it is necessary to perform verification on its
applications in the related fields. Generally, the available verification meth-
ods include experiments, simulations and formal proof. Compared with exper-
iments and simulations, formal proof is a more rigorous verification technique,
because it has completeness in logic. Now, there are two main formal proof
approaches [7,22]. One is theorem proving [10,13,20] and the other is model
checking [15,19]. As their names imply, theorem proving is more suitable for
the problems that can be represented as formal theorems, while model checking
is more applicable for those that can be described as formal models. Because
the symplectic geometry contains a series of mathematical theorems, it is better
to verify it through theorem proving. Now, there are several available theo-
rem provers such as HOL-Light [8], HOL4 [16,21], Isabelle/HOL [3], ACL2 [9],
Coq [12], Mizar [18], PVS [6], etc. In each prover, theorem proving can be con-
ducted only when the associated formal theorem libraries have been established.
To our knowledge, the formal theorem library of symplectic geometry has not
been constructed in any existing theorem provers. Therefore, the formalization
of symplectic geometry is required by the related verification work.

In the present work, a basic formalization of the symplectic geometry is
established in HOL-Light. Because the symplectic vector space and symplectic
transform are two representative parts of the symplectic geometry, they and their
properties are formalized here. To demonstrate the application and validness of
the present formalization, formal verification is further performed on some basic
theories of matrix optics.

272 G. Wang et al.

2 Preliminaries

In this section, the symplectic geometry is compared with the Euclidean geome-
try at first. Then, a brief introduction is given for the theorem prover HOL-Light.
Finally, the formalization framework of the symplectic geometry is constructed.

2.1 Comparison Between Symplectic Geometry and Euclidean
Geometry

Different from the Euclidean geometry that is mainly based on the concept of
length, the symplectic geometry is established in the phase space and principally
describes the area. In the Euclidean space, the scalar product of two vectors has
the form of symmetry. However, in the symplectic space, each symplectic form
is always anti-symmetric. In addition, Table 1 shows more specific differences
between their properties.

Table 1. The properties of Euclidean and symplectic geometric theories.

Properties Euclidean geometry Symplectic geometry

Elements Rn R2n

x = (x1, x2, ..., xn) x = (x1, x2, ..., xn;xn+1, xn+2, ..., x2n)

Inner product (x, y) =
n∑

i=1

xi yi [x, y] =
n∑

i=1

(xi
yn+i −xn+i yi)

Bilinear Yes Yes

Alternating (x, y) = (y, x) [x, y] = −[y, x]

Non-degenerate Yes Yes

Vanishing property No Yes

(x, x) = |x| > 0 [x, x] = 0

Metric characteristics Length Area

2.2 HOL-Light

HOL-Light is an interactive theorem prover that performs theorem proving in
terms of higher order logic. It was developed by John Harrison when he was at
the computer lab of Cambridge University. It belongs to the HOL family, whose
first version HOL88 was developed by Mike Gordon at Cambridge in the 1980s.
After HOL88, other versions including HOL90, HOL 98 and HOL4 were also
issued successively. Compared with all other versions, HOL-Light is simpler but
meanwhile more practical. Its core only consists of five basic axioms and eight
primitive inference rules, which provide a necessary foundation for theorem prov-
ing. Besides, it implemented the objective CAML (OCAML) language, which is
a variant of the ML programming language. By using OCAML, a large number

Formalization of Symplectic Geometry in HOL-Light 273

of mathematical theorems have been formalized and the corresponding theorem
libraries have also been constructed in these years.

Except for HOL-Light, there are several other prevailing theorem provers
such as Coq, Isabell/HOL, Mizar and PVS. Because the Euclidean vector theory
has been formalized in HOL-Light and the associated theorem library is the
foundation for the formalization of symplectic geometry, HOL-Light is selected
as the theorem prover here.

2.3 Formalization Framework for Symplectic Geometry

In HOL-Light, although the n-dimensional Euclidean space has been formalized,
the formalization of the symplectic geometry is absent. Symplectic geometry is
a versatile geometric theory widely used in many disciplines such as analytical
mechanics, geometric topology and Lie group. Therefore, it will be formalized
here.

The formalization framework of the symplectic geometry is shown in Fig. 1.
It is seen that the theorem library of the formalized Euclidean geometry is the
basic precondition for formalizing the symplectic geometry. Because the formal-
ization of the Euclidean geometry has been provided by HOL-Light, the sym-
plectic geometry can be directly formalized. In the present work, the symplectic
vector space and matrix are formalized successively, because the former is the
theoretical foundation of the latter.

Fig. 1. The formalization framework of the symplectic geometry.

3 Formalization of Symplectic Vector Space

A symplectic vector space is a set of vectors defined over a number field, F , that
has the following symplectic bilinear form: ω: V × V → F . It has four main
properties:

– Bilinearity: This means that each parameter has the property of linearity.
For u1, u2 and v ∈ V , there exist a, b ∈ R, such that
ω(au1 + bu2, v) = aω(u1, v) + bω(u2, v)
For u, v1 and v2 ∈ V , there also exist a, b ∈ R, such that
ω(u, av1 + bv2) = aω(u, v1) + bω(u, v2)

274 G. Wang et al.

– Zero: For v ∈ V, ω(v, v) = 0.
– Skew-symmetry: For u and v ∈ V , ω(u, v) = −ω(v, u).
– Nondegeneracy: For any vector v ∈ V , if ω(u, v) = 0, then u = 0.

Furthermore, each symplectic form is a symmetric form, but not vice versa.
When the basis vectors are given, each symplectic form ω can be expressed as a
matrix, which is skew-symmetric, non-singular and concave. It deserves noting
that the symplectic matrix here is different from the matrix that represents the
transformation of a symplectic space.

The symplectic form of a standard symplectic space R2n is generally a skew-
symmetric and non-singular block matrix J as below

J = [
0 In

−In 0] (1)

where In is the n × n identity matrix. Obviously, the inverse matrix of J can be
represented as J−1 = JT = −J . Each element of J generally has even dimen-
sions. For example, (x1, x2, ..., xn; y1, y2, ..., yn) is an element of J .

3.1 Formalization of the Basic Operations of Symplectic Vector
Space

In HOL-Light, each column of an n-dimensional real-number matrix is a vector
Rn. Therefore, all operations on vectors can be transformed as matrix manip-
ulations. As indicated by Table 1, the basic elements of the Euclidean space
constitute an n-dimensional vector Rn. However, those of the symplectic space
constitute a 2n-dimensional vector R2n. So, in HOL-Light, each symplectic vec-
tor has the type real∧(N,N)finite sum to express an (n+n)-dimensional vector,
which was defined by John Harrison through finite Cartesian products.

In order to facilitate the understanding of the rest of the paper, some
definitions of the type transformations such as Rm → Rn → R(m+n) and
R(m+n) → Rm → Rn are introduced here

Definition 1. The definition Pastecart is given by
� (pastecart : A∧M → A∧N → A∧(M,N)finite sum) f g =

λ i. if i ≤ dimindex(: M) then f$i
else g$(i − dimindex(: M))

Where the function Pastecart has an m-dimensional vector and another n-
dimensional vector as inputs and then it returns an (m+n)-dimensional vector.
In this paper, this function is used to construct a 2n-dimensional symplectic
vector from two n-dimensional vectors. The operator $ is defined to represent
the location in the vector of the element.

Definition 2. The definition Fstcart is given by
� (fstcart : A∧(M,N)finite sum → A∧M) f = λ i. f$i

Formalization of Symplectic Geometry in HOL-Light 275

Definition 3. The definition Sndcart is given by
� (sndcart : A∧(M,N)finite sum → A∧N) f = λ i. f$(i + dimindex(: M))

Where the functions Fstcart and Sndcart have the same structure. They are
used to extract an m-dimensional vector and another n-dimensional vector from
an (m+n)-dimensional vector. Specifically, for each (m+n)-dimensional vector,
one can take out its first part, i.e., an m-element vector, using the function
Fstcart, or get its second part, i.e., an n-element vector, using the function
Sndcart.

Based on the theory of symplectic vector space described above, the sym-
plectic inner product can be defined as

[x, y] =
n∑

i=1

(xi
yn+i −xn+i yi) (2)

Equation (2) can be formalized in HOL-Light as

Definition 4. The definition Symplectic Inner Product is given by
� ∀x y. sym dot x y =

sum(1..dimindex(: N))(λi .(fstcart x$i ∗ sndcart y$i
−sndcart x$i ∗ fstcart y$i))

Where the symbol ∗ represents the multiplication between two real num-
bers. The function sym dot has two 2n-dimensional vectors as inputs. In the
present work, sym dot is used as an infix operator. For example, sym dot x y is
equal to x sym dot y. Here, sym dot outputs a real number that represents the
symplectic inner product of x and y.

As indicated by Eq. (2), each symplectic structure can be represented by
a block matrix J2n. Because ω(xi, yj) = −ω(yi, xj) = δij and ω(xi, xj) =
−ω(yi, yj) = 0, the formalization of ω is

Definition 5. The definition Symplectic Structure ω is given by
� omega Jmat : real∧(N,N)finite sum∧(N,N)finite sum =

λ i j. if (1 ≤ i ∧ i ≤ dimindex(: N)
∧ (j = (i + dimindex(: N)))) then &1

else if ((dimindex(: N) + 1) ≤ i
∧ i ≤ dimindex(: (N,N)finite sum)
∧ (j = (i − dimindex(: N)))) then − −&1

else &0

Where the symbol, −−, denotes negative numbers, while the symbol, &,
means real numbers.

276 G. Wang et al.

3.2 Formal Verification of the Properties of Symplectic Vector
Spaces

In this section, definition 4 is employed to verify the four main properties of
symplectic vector spaces which were given at the beginning of Sect. 3 at first.
For this purpose, four formal theorems are constructed as below

Theorem 1. (Bilinearity) Each parameter has the property of linearity.

� ∀ a b x1 x2 y : real∧(N,N)finite sum.

(a % x1 + b % x2) sym dot y = a ∗ (x1 sym dot y) + b ∗ (x1 sym dot y) ∧
∀ a b x y1 y2 : real∧(N,N)finite sum.

x sym dot (a % y1 + b % y2) = a ∗ (x sym dot y1) + b ∗ (x sym dot y2)

Where the symbol % denotes the product between a number and a vector
and the symbol ∗ represents the multiplication between two real numbers. The
Bilinearity property is named SYMPLECTIC BILINEAR, which is proved by
following tactics.

let SYMPLECTIC BILINEAR = prove
(‘(!a b x1 x2 y : real ∧ (N,N)finite sum. (a % x1 + b % x2) sym dot y =

a ∗ (x1 sym dot y) + b ∗ (x2 sym dot y)) /\
(!a b x y1 y2 : real ∧ (N,N)finite sum. x sym dot (a % y1 + b % y2) =

a ∗ (x sym dot y1) + b ∗ (x sym dot y2))‘,
CONJ TAC THEN REPEAT GEN TAC THEN REWRITE TAC[sym dot]
THEN REWRITE TAC[GSYM SUM LMUL] THEN
SIMP TAC[FINITE NUMSEG;GSYM SUM ADD]
THEN MATCH MP TAC SUM EQ THEN BETA TAC THEN
REWRITE TAC[FSTCART ADD;FSTCART MUL; SNDCART ADD]
THEN REWRITE TAC[SNDCART MUL;VECTOR ADD COMPONENT]
THEN REWRITE TAC[VECTOR MUL COMPONENT]
THEN REAL ARITH TAC); ;

The other three properties are given as following. The main tactics used in the
certification process include REWRITE TAC, SIMP TAC, MATCH MP TAC
and etc.

Theorem 2. (Zero) ω(v, v) = 0 holds for all v ∈ V .
� ∀ x : real∧(N,N)finite sum. x sym dot x = &0

Theorem 3. (Skew-symmetry) ω(u, v) = −ω(v, u) holds for all u, v ∈ V .
� ∀ x y : real∧(N,N)finite sum. (x sym dot y) = − −(y sym dot x)

Theorem 4. (Nondegeneracy) ω(u, v) = 0 for all v ∈ V implies u is zero.
� ∀ y.(∀x : real∧(N,N)finite sum. x sym dot y = &0) =⇒ y = vec 0

Formalization of Symplectic Geometry in HOL-Light 277

The verification of the four properties demonstrates that the definition of
the symplectic inner product is correct. In addition, some other key properties of
symplectic vector spaces are also verified in Table 2. All the properties formalized
here will be applied in the formal verification of Sect. 5.

Table 2. Some other key properties of symplectic vector spaces.

Properties HOL Formalization Mathematical Expressions

SYM DOT LADD ∀ x y z. (x + y) sym dot z = [(x+y),z] = [x,z] + [y,z]x sym dot z + y sym dot z

SYM DOT RADD ∀ x y z. x sym dot (y + z) = [x,(y+z)] = [x,y] + [x,z]x sym dot y + x sym dot z

SYM DOT LSUB ∀ x y z. (x − y) sym dot z = [(x-y),z] = [x,z] - [y,z]x sym dot z − y sym dot z

SYM DOT RSUB ∀ x y z. x sym dot (y − z) = [x,(y-z)] = [x,y] - [x,z]x sym dot y − x sym dot z

SYM DOT LMUL ∀ c x y. (c % x) sym dot y = [c×x,y] = c × [x,y]c ∗ (x sym dot y)

SYM DOT RMUL ∀ c x y. x sym dot (c % y) = [x,c×y] = c × [x,y]c ∗ (x sym dot y)

SYM DOT LNEG ∀ x y. (− − x) sym dot y = [-x,y] = -[x,y]− −(x sym dot y)

SYM DOT RNEG ∀ x y. x sym dot (− − y) = [x,-y] = -[x,y]− −(x sym dot y)
SYM DOT LZERO ∀ x. (vec 0) sym dot x = &0 [0,x] = 0
SYM DOT RZERO ∀ x. x sym dot (vec 0) = &0 [x,0] = 0

SYM DOT LREQ EQ0 ∀ x y . x = y ⇒ ∀ x y. x = y ⇒ [x,y] = 0x sym dot y = &0

SYM DOT EQ0

∀ x.(∀ y. x sym dot y = &0) ∀ x.(∀ y. [x,y] = 0)⇔
⇔ x = vec 0 ∧ x = vec 0 ∧
∀ y.(∀ x. x sym dot y = &0) ∀ y.(∀ x. [x,y] = 0)
⇔ y = vec 0 ⇔ y = vec0

4 Formalization of Symplectic Transformation

Consider a linear transform S defined in (V, ω). If [Sa, Sb] = [a, b] with a, b ∈
R2n, S is a symplectic transform. It can be formalized as

Definition 6. The definition Symplectic Transformation is given by
� is symplectic matrix

(S : real∧(N,N)finite sum∧(N,N)finite sum) ⇔
∀ a b : real∧(N,N)finite sum.(S ∗ ∗ a) sym dot (S ∗ ∗ b) = a sym dot b

Where the symbol ∗∗ denotes the multiplication between a matrix and a
vector or two matrices.

278 G. Wang et al.

The symplectic matrix S has real entries, i.e., S ∈ R2n×2n. It satisfies the
condition STJS = J , where ST denotes the transposition of S and J is a non-
singular and skew-symmetric matrix that has 2n × 2n elements (see Eq. (1)).

Definition 6 is formalized as the following theorem:

Theorem 5. Necessary and Sufficient Conditions for a Symplectic matrix.
� ∀ S : real∧(N,N)finite sum∧(N,N)finite sum

is symplectic matrix S ⇔ transp S ∗ ∗ omega Jmat ∗ ∗ S = omega Jmat

In engineering applications, S is frequently a block matrix having the fol-

lowing form S =
[

A B
C D

]
where A,B,C,D ∈ Rn×n. In this case, we say that S

belongs to a symplectic group sp(2n), i.e., S ∈ sp(2n).

In addition, the inverse matrix of S is S−1 = J−1STJ =
[

DT − BT

−CT AT

]
.

The symplectic block matrix is then formally defined as

Definition 7. The definition Symplectic Block Matrix is given by
� (blockmatrix : real∧N∧N → real∧N∧N → real∧N∧N → real∧N∧N →

real∧(N,N)finite sum∧(N,N)finite sum) A B C D =
λ i j. if (1 ≤ i ∧ i ≤ dimindex(: N) ∧ 1 ≤ j ∧ j ≤ dimindex(: N)) then Aij

else if (1 ≤ i ∧ i ≤ dimindex(: N) ∧ (dimindex(: N) + 1) ≤ j ∧
j ≤ (dimindex(: N) + dimindex(: N))) then Bi(j − dimindex(: N))

else if ((dimindex(: N) + 1) ≤ i ∧ i ≤ (dimindex(: N) + dimindex(: N))∧
1 ≤ j ∧ j ≤ dimindex(: N) then C$(i − dimindex(: N))$j

else if ((dimindex(: N) + 1) ≤ i ∧ i ≤ (dimindex(: N) + dimindex(: N))∧
(dimindex(: N) + 1) ≤ j ∧ j ≤ (dimindex(: N) + dimindex(: N)))
then D$(i − dimindex(: N))$(j − dimindex(: N))

else &0

It can be inferred from Definition 7 and Theorem 6 that the necessary and
sufficient conditions of the symplectic block matrix are

• ABT = BAT , CDT = DCT and ADT − BCT = I
• ATC = CTA,BTD = DTB and ATD − CTB = I

When n = 1, these conditions reduce to det(S) = 1.
After formalization, these conditions can be represented as the following the-

orem

Formalization of Symplectic Geometry in HOL-Light 279

Theorem 6. Necessary and sufficient conditions for a symplectic block matrix.
� ∀ A B C D : real∧N∧N.is symplectic matrix blockmatrix A B C D ⇔

(A ∗ ∗ transp B = B ∗ ∗ transp A ∧
C ∗ ∗ transp D = D ∗ ∗ transp C ∧
A ∗ ∗ transp D − B ∗ ∗ transp C = mat 1) ∨
(transp A ∗ ∗ C = transp C ∗ ∗ A ∧
transp B ∗ ∗ D = transp D ∗ ∗ B ∧
transp A ∗ ∗ D − transp C ∗ ∗ B = mat 1)

The key properties of symplectic matrices have also been formalized in
Table 3. They are useful in formal verification, because they can reduce the
difference between the mathematical and formal models in reasoning.

Table 3. Formalized key properties of symplectic matrices.

Properties HOL Formalization Mathematical Expressions

SYM MAT DET EQ1 ∀ S.is symplectic matrix S ⇒ S ∈ sp(2n) ⇒ detS = 1
det S = &1

SYM MAT INV

∀ S.is symplectic matrix S
⇒ matrix inv S = − − omega Jmat S ∈ sp(2n) ⇒
∗ ∗ transp S ∗ ∗ omega Jmat ∧
matrix inv S = matrix inv omega Jmat S−1 = −JS J = J−1S J
∗ ∗ transp S ∗ ∗ omega Jmat

SYM MAT INVM N

∀ MN.is symplectic matrix
(matrix inv M ∗ ∗ N) ⇔ S = M−1N ∈ sp(2n)
tranps M ∗ ∗ omega Jmat ∗ ∗ M∧ ⇔ M JM = N JN
tranps N ∗ ∗ omega Jmat ∗ ∗ N

SYM MAT BOLCK B

∀ B : real∧N∧N.
is symplectic matrix blockmatrix I B

0 I ∈ sp(2n) ⇔ B = B(mat 1) B (mat 0) (mat 1) ⇔
transp B = B

SYM MAT BOLCK C

∀ C : real∧N∧N.
is symplectic matrix blockmatrix I 0

C I ∈ sp(2n) ⇔ C = C(mat 1) (mat 0) C (mat 1) ⇔
transp C = C

SYM MAT BOLCK AD

∀ AD : real∧N∧N.
is symplectic matrix blockmatrix A 0

0 D ∈ sp(2n) ⇔ A = (D)−1

A (mat 0) (mat 0) D ⇔
A = matrix inv (transp D)

5 Application: Formal Analysis of Matrix Optics

As an application of the formalized symplectic geometry theory, formal analysis
is conducted on the matrix optics in this section. The verification flowchart is
shown in Fig. 2, which illustrates that three main steps are involved in the formal
analysis. Firstly, the formal model is constructed for the system of matrix optics;
secondly, the verification goal is set up; thirdly, theorem proving is performed to
judge the consistency between the model and the specifications. The application

280 G. Wang et al.

Fig. 2. The verification flowchart for the matrix optics.

not only verifies the symplectic properties of matrix optics but also validates the
correctness of the present formalization of symplectic geometry.

Generally, each optical system is described by a 4 × 4 matrix as below
⎡

⎢⎢⎣

x2

y2
n2x

′
2

n2y
′
2

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

a11 a12 b11 b12
a21 a22 b21 b22
c11 c12 d11 d12
c21 c22 d21 d22

⎤

⎥⎥⎦

⎡

⎢⎢⎣

x1

y1
n1x

′
1

n1y
′
1

⎤

⎥⎥⎦ (3)

where (x1; y1) is the incident plane and (x2; y2) is the ejection plane. n1 and n2

represent the refractive indices of the incident and ejection spaces, respectively.
Equation (3) can be rewritten into the following vector form

[
r2

n2 p2

]
=

[
A B
C D

] [
r1

n1 p1

]
(4)

Assume that det(B) �= 0. Then, Eq. (5) can be further recast into
[

n1 p1
n2 p2

]
=

[−B−1A B−1

C − DB−1A DB−1

] [
r1
r2

]
(5)

The optical path function L(γ) is

L(γ) = Laxis +
1
2
[−n1(x1x

′
1 + y1y

′
1) + n2(x2x

′
2 + y2y

′
2)] (6)

where Laxis is the optical path along the optical axis between the incident and
ejection planes.

Based on Eq. (5), one can rewrite Eq. (6) into the following vector form

L(γ) = Laxis +
1
2
[r1 r2]

[−n1 p1
n2 p2

]
(7)

Formalization of Symplectic Geometry in HOL-Light 281

Equation (7) can be further expressed as

L(γ) = Laxis +
1
2
[r1 r2]

[
B−1A −B−1

C − DB−1A DB−1

] [
r1
r2

]
(8)

where
[

B−1A −B−1

C − DB−1A DB−1

]
is the transformation matrix of the optical path.

Denote it as M and then it is inferred that LT = L and MT = M , because L(γ)
is a scalar. Finally, the following relations can be obtained

⎧
⎨

⎩

(B−1A)T = B−1A;
DB−1)T = DB−1;
(−B−1)T = C − DB−1A.

In order to prove whether the transformation matrix M satisfy the symplectic
properties or not, a formal theorem is established as below

Theorem 7. Sufficient condition for a symplectic optical matrix.
� ∀ A B C D : real∧N∧N. invertible B ⇒

is symplectic matrix (blockmatrix
(matrix inv B ∗ ∗A) (−matrix inv B)
(C − D ∗ ∗matrix inv B ∗ ∗A) (D ∗ ∗matrix inv B))

This is the verification goal of the formal analysis. Some important details
of the verification process are explained as below

– The assumption, det(B) �= 0, is adopted here to assure that matrix inv B
always holds true.

– Theorem 7 is reduced by using the necessary and sufficient conditions for a
symplectic block matrix in Theorem 6.

– The derivation of Theorem 7 is made quite straightforward by using the smart
tactic. Such as REWRITE TAC, ASM SIMP TAC, MESON TAC and etc.

– Some theorems of matrices and vectors, including SYMMETRIC MATRIX
INV LMUL, MATRIX INV MUL INNER, MATRIX INV INV and etc.,
which were developed by Marco Maggesi and John Harrison, are also
employed in the derivation process.

Based on the above techniques, the verification goal is finally proved. This
demonstrates that the transformation matrix M of the optical path formula
really has a symplectic structure, or in other words, the symplectic transforma-
tion is indeed applicable for the matrix optics. The formal verification of matrix
optics indicates that the formalized symplectic geometry is useful in engineering
practices.

282 G. Wang et al.

6 Conclusions

In the present work, a theorem library of symplectic geometry is established by
using the vector library in HOL-light. Seven formal definitions are developed to
introduce the corresponding basic concepts, based on which four typical prop-
erties of symplectic vector spaces and the necessary and sufficient conditions
and some key properties of symplectic matrices are formalized. For the pur-
pose of application, the formalized symplectic geometry is further employed to
make formal analysis on matrix optics. The formal analysis not only verifies the
symplectic properties of matrix optics but also validates the correctness of the
present formalization of symplectic geometry.

In our future work, on one hand, some automatic reasoning tactics will be
developed for the convenience of symplectic geometry based formal verification,
and on the other hand, some new mathematical theorem libraries such as the
theory of Poissons Bracket will be built based on the formalized symplectic
geometry for the purpose of more advanced applications.

Acknowledgment. This work was supported by the National Natural Science Foun-
dation of China (61472468, 61572331, 61602325, 61702348), the National Key Technol-
ogy Research and Development Program (2015BAF13B01), National Key R&D Plan
(2017YFC0806700, 2017YFB130253), the Project of the Beijing Municipal Science &
Technology Commission (LJ201607) and Capital Normal University Major (key) Nur-
turing Project.

References

1. Antoñana, M., Makazaga, J., Murua, A.: Reducing and monitoring round-off error
propagation for symplectic implicit Runge-Kutta schemes. Numer. Algorithms
76(4), 861–880 (2017). https://doi.org/10.1007/s11075-017-0287-z. ISSN: 1572-
9265

2. Besana, A., Spera, M.: On some symplectic aspects of knot framings. J. Knot
Theory Ramifications 15(07), 883–912 (2006)

3. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in
Isabelle/HOL. In: Tinelli, C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS
(LNAI), vol. 6989, pp. 12–27. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24364-6 2

4. Calvaruso, G., Ovando, G.P.: From almost (para)-complex structures to affine
structures on lie groups. Manuscripta Math. 155, 89–113 (2016)

5. Frejlich, P., Torres, D.M., Miranda, E.: A note on the symplectic topology of b-
manifolds. J. Symplectic Geom. 15, 719–739 (2017)

6. Gottliebsen, H., Hardy, R., Lightfoot, O., Martin, U.: Applications of real number
theorem proving in PVS. Formal Aspects Comput. 25(6), 993–1016 (2013)

7. Guo, X.L., Dutta, R.G., Mishra, P., Jin, Y.E.: Automatic code converter enhanced
PCH framework for SoC trust verification. IEEE Trans. Very Large Scale Integr.
Syst. 25(12), 3390–3400 (2017)

8. Harrison, J.: HOL light: an overview. In: Berghofer, S., Nipkow, T., Urban, C.,
Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 60–66. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03359-9 4

https://doi.org/10.1007/s11075-017-0287-z
https://doi.org/10.1007/978-3-642-24364-6_2
https://doi.org/10.1007/978-3-642-24364-6_2
https://doi.org/10.1007/978-3-642-03359-9_4

Formalization of Symplectic Geometry in HOL-Light 283

9. Hunt, J.W., Kaufmann, M., Moore, J.S., Slobodova, A.: Industrial hardware and
software verification with ACL2. Philos. Trans. 375(2104), 20150399 (2017)

10. Jeannin, J.B., et al.: A formally verified hybrid system for safe advisories in the
next-generation airborne collision avoidance system. Int. J. Softw. Tools Technol.
Transf. 230(1), 1–25 (2015)

11. Karshon, Y., Ziltener, F.: Hamiltonian group actions on exact symplectic manifolds
with proper momentum maps are standard. Trans. Am. Math. Soc. 370, 1409–1425
(2016)

12. Li, Y., Sun, M.: Modeling and verification of component connectors in Coq, vol.
113. Elsevier North-Holland, Inc. (2015)

13. Ma, S., Shi, Z.P., Shao, Z.Z., Guan, Y., Li, L.M., Li, Y.D.: Higher-order logic
formalization of conformal geometric algebra and its application in verifying a
robotic manipulation algorithm. Adv. Appl. Clifford Algebras 26(4), 1305–1330
(2016)

14. Mei, L.J., Wu, X.Y.: Symplectic exponential Runge Kutta methods for solving
nonlinear Hamiltonian systems. J. Comput. Phys. 338, 567–584 (2017)

15. Monteiro, F., Cordeiro, L., Filho, E.: ESBMC-GPU: a context-bounded model
checking tool to verify CUDA programs. Sci. Comput. Program. 152(1), 63–69
(2017)

16. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7 6

17. Tang, W., Zhang, J.: Symplecticity-preserving continuous-stage Runge Kutta
nyström methods. Appl. Math. Comput. 323, 204–219 (2018)

18. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar
formalizations. J. Autom. Reason. 50(2), 229–241 (2013)

19. Wei, Q.X., Jiao, J., Zhao, T.D.: Flight control system failure modeling and verifi-
cation based on spin. Eng. Fail. Anal. 82(1), 501–513 (2017)

20. Zhao, C.N., Shi, L.K., Guan, Y., Li, X.J., Shi, Z.P.: Formal modeling and verifica-
tion of fractional order linear systems. ISA Trans. 62, 87–93 (2016)

21. Zhao, C.N., Li, S.S.: Formalization of fractional order PD control systems in HOL4.
Theoret. Comput. Sci. 706(1), 22–34 (2017)

22. Zheng, X., Julien, C., Kim, M., Khurshid, S.: Perceptions on the state of the art in
verification and validation in cyber-physical systems. IEEE Syst. J. PP(99), 1–14
(2015)

https://doi.org/10.1007/978-3-540-71067-7_6

Using Theorem Provers to Increase
the Precision of Dependence Analysis for

Information Flow Control

Bernhard Beckert, Simon Bischof, Mihai Herda(B), Michael Kirsten,
and Marko Kleine Büning

Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
{beckert,simon.bischof,herda,kirsten}@kit.edu, marko@kleinebuening.de

Abstract. Information flow control (IFC) is a category of techniques
for enforcing information flow properties. In this paper we present the
Combined Approach, a novel IFC technique that combines a scalable
system-dependence-graph-based (SDG-based) approach with a precise
logic-based approach based on a theorem prover. The Combined App-
roach has an increased precision compared with the SDG-based approach
on its own, without sacrificing its scalability. For every potential illegal
information flow reported by the SDG-based approach, the Combined
Approach automatically generates proof obligations that, if valid, prove
that there is no program path for which the reported information flow
can happen. These proof obligations are then relayed to the logic-based
approach.

We also show how the SDG-based approach can provide additional
information to the theorem prover that helps decrease the verification
effort. Moreover, we present a prototypical implementation of the Com-
bined Approach that uses the tools JOANA and KeY as the SDG-based
and logic-based approach respectively.

Keywords: Information flow control · Noninterference
System dependence graph · Deductive verification

1 Introduction

When sensitive information leaks to unauthorized parties, it is often the result
of bugs and errors introduced into the system during software development. An
effective measure to reveal potential sources for such leakages are formal meth-
ods, which can provably detect any program instruction that may lead to such
a violation of confidentiality. Whereas formal methods already experience suc-
cessful applications for verifying functional properties, their adoption to security
properties in larger programs still either lacks precision or scalability.

Noninterference. An established property guaranteeing confidentiality on code
level is noninterference. Noninterference holds if no information flow from a
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 284–300, 2018.
https://doi.org/10.1007/978-3-030-02450-5_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_17&domain=pdf

Using Theorem Provers to Increase the Precision of Dependence Analysis 285

secret input (of high security) to a public output (of low security) of the system
is possible, i.e., if and only if no secret input of a program may influence its
public output. Research on secure information flow dates back to the works of
Denning and Denning [5,6] and later Goguen and Meseguer [8]. In the following,
we formally define the noninterference property that we want to prove using the
approach described within this work. We distinguish high variables containing
secret data, which should be protected, from low variables, which are publicly
readable, and introduce the low-equivalence relation (∼L) to characterize pro-
gram states that are indistinguishable for any potential attacker. A program
state s is an assignment of values to program variables and program locations.
We assume that the input of a program is included in the program’s initial state
and that the output of a program is included its final state. Two states, s and
s′, are low-equivalent iff all low variables in s have the same value as in s′.

Definition 1 (Noninterference). A program P is noninterferent iff, for any
initial states s1 and s2, the statement

s1 ∼L s2 ⇒ s′
1 ∼L s′

2

holds, where s′
1 and s′

2 are final program states after executing P in the initial
states s1 and s2, respectively.

This means that two program executions starting in two low-equivalent states
must terminate in two low-equivalent states. This guarantees that low outputs
are not influenced by high inputs. Note that we restrict ourselves to terminating
programs. In the rest of this work, we will refer to noninterference with respect
to a given high input and a given low output simply as noninterference.

Existing Approaches. There exist various approaches and tools for checking the
noninterference property of a program. In what follows, we describe the types of
approaches, which we will combine in our approach.

Approaches that are based on System Dependence Graphs (SDGs) syn-
tactically compute the dependences between program statements and check
whether any low output syntactically depends on high input (see, for exam-
ple, the JOANA tool [10]). Whereas this scales very well, such approaches over-
approximate the actual dependences in the program, which may result in false
alarms, since the analysis only works on the syntactical level of the program.
For example, in a program such as “l=l+h; l=l-h;”, a syntactical approach
will identify a dependence between the variables l and h, even though there is
in fact no (semantical) dependence between them.

Logic-based approaches (e.g., using dynamic logic for Java [3]), on the
other hand, have a higher precision, i.e., they produce less false alarms,
because they also consider the semantics of program statements. However, those
approaches have a lower scalability. Using a logical proof calculus, the logic-
based approaches’ proof obligation is to show that the terminating states of two
program executions are low-equivalent, assuming their two initial states are low-
equivalent. False alarms only occur when the system fails to find a proof in the

286 B. Beckert et al.

allotted time even though the proof obligation is valid. Proving noninterference
using this approach involves simultaneously checking all execution paths for two
program executions. This makes the noninterference proof harder than proving a
functional property as the number of execution paths to be checked is quadratic.

Our Contribution. In this paper we present the Combined Approach, a novel
IFC technique that combines an SDG-based approach with a logic-based app-
roach, and in consequence achieves a higher precision than the solely SDG-
based approach. The Combined Approach analyzes the dependences from secu-
rity violations reported by the SDG-based approach and proves the absence of
these dependences (given the program actually is noninterferent) using a theo-
rem prover. While the deduction steps in the theorem prover may require user
interaction, we automatically generate its proof obligations from the reported
dependences.

Furthermore, we reduce the verification effort by enriching the generated
proof obligations with information obtained from the SDG-based approach. The
information relayed to the theorem prover consists of information flow contracts
for the called methods, (partial) loop invariants for loops inside the verified code,
and preconditions generated by a points-to analysis.

Structure of the Paper. We organize the paper as follows. Sections 2 and 3 define
the SDG-based and logic-based information flow analysis techniques, respec-
tively, used by the Combined Approach. Section 4 presents the Combined App-
roach. A prototypical implementation of the Combined Approach is presented
in Sect. 5. Related work is discussed in Sect. 6. Finally, Sect. 7 concludes.

2 SDG-Based Information Flow Control

SDG-based information flow analyses are purely syntactic, highly scalable, and
sound. However, some of the reported noninterference violations may be false
alarms. While Program Dependence Graphs (PDGs) [7] and System Dependence
Graphs (SDGs) [15] have been developed during the eighties, their usefulness in
the context of information-flow security has been first noticed by Snelting [24]
in the nineties. Decades of research in this area have resulted in JOANA, a tool
that statically analyzes Java programs of up to 100k lines of code for integrity
and confidentiality [9,13]. We have used JOANA for a prototype implementation
of our approach.

Without loss of generality, we use the JOANA tool as an example to explain
the functionality of SDG-based information-flow analysis, but our approach
applies to other SDG-based analysis tools as well. The following explanation is
partially based on [14], where SDG-based analysis is also used as a preprocessing
step (see Sect. 6). We define SDGs for deterministic inter-procedural programs
with variable assignments, branchings, loops, and function calls. Moreover, we
assume that a control-flow graph (CFG) for such programs exists.

The desired noninterference property is specified by annotating which pro-
gram parts correspond to sensitive (high) information and the parts where public

Using Theorem Provers to Increase the Precision of Dependence Analysis 287

(low) output occurs. Given these annotations, JOANA automatically builds an
SDG for the program. An SDG is a directed graph consisting of interconnected
Program Dependence Graphs (PDGs), where a PDG represents a single program
procedure as a directed graph. More details on SDGs can be found in [15].

Nodes in the SDG represent program statements, conditions, or input param-
eters, and edges represent dependences between the nodes, i.e., an edge between
two nodes exists if and only if the value or execution of one node may depend
on the outcome of the other node. Whether an edge exists between two nodes in
the SDG is determined syntactically by analyzing the control-flow graph of the
analyzed program. There are roughly three types of edges in an SDG: (1) data
dependence edges, representing possible direct dependences, (2) control depen-
dences, which represent possible indirect dependences, and (3) interprocedu-
ral dependences, which represent dependences between nodes of different PDGs
(other dependences have been introduced to support object orientation and mul-
tithreading, see [11]). Formal definitions for the three types of dependences can
be found in [11, Chap. 2]. In the following, we give informal definitions.

A node n′ is data-dependent on n if there is a program variable v that is used
in n′ and defined in n, and there is a path from n to n′ in the CFG such that
v is not redefined on any node between n and n′ on that path. The standard
definition of a control dependence between two nodes states that a node n′ is
control-dependent on a node n if the choice of the outgoing edge from n in the
CFG determines whether node n′ is reached. Note that it is undecidable whether
a CFG path represents an actual execution path of the program, i.e., some
paths in the CFG may represent executions that cannot actually take place. The
CFG is thus an over-approximation of the actual program behavior. Since the
dependences are defined using CFG paths, they too are an over-approximation
of the actual (semantical) dependences in the program. In the rest of the paper,
we refer to the program execution described by a CFG path as execution path.
Note that an SDG path may also represent one or more actual execution paths.

Method calls are represented by special formal-in and formal-out nodes in the
SDG. Formal-in nodes represent direct inputs that influence the method execu-
tion. These are the input parameters, used fields, and other classes called during
execution and the class in which the method is executed. Moreover, formal-out
nodes represent the influence of the method. In most cases, a formal-out node rep-
resents the method’s return value. Other possibilities are that the method influ-
ences global variables, fields in other classes, or terminates with an exception.

int f(int x, int y) { return x; } void caller() { ... f(a,b); ...}
Listing 1. Method call

As example, for function f in Listing 1, we have two formal-in nodes for
x and y, and one formal-out node for the return value of f. At each method
call site, there are actual-in nodes representing the arguments and actual-out
nodes representing the return values. For a given method site, each actual-in
node corresponds to a formal-in node of the callee and vice versa; the same

288 B. Beckert et al.

holds for actual-out and formal-out nodes. Interprocedural dependences connect
actual-in nodes to the corresponding formal-in nodes, and formal-out nodes to
the corresponding actual-out nodes. For the call in Listing 1, there are actual-in
nodes for a and b, corresponding to f’s formal-in nodes for x and y, respectively.
The actual-out node representing the return value of f corresponds to the single
formal-out node of f. For every method call we also have so-called summary
edges in the SDG from any actual-in to any actual-out node of the method
whenever the tool finds a flow from the formal-in to the formal-out node of the
called method. In Listing 1, we have a flow in f from x to the return value,
thus a summary edge is inserted at call site, namely from a’s actual-in to the
single actual-out node. For a method involving many objects, there can be a
huge number of actual-in and actual-out nodes and an even greater number of
summary edges.

SDG-based information-flow analysis approaches, such as the one imple-
mented by JOANA, detect illegal information flows through graph analysis, using
a special form of conditional reachability analysis – slicing and chopping – at the
SDG level. A forward slice of a node s consists of all nodes in SDG paths starting
in s. Conversely, a backward slice of a node s consists of all nodes in SDG paths
ending in s. A chop from a node s to a node t consists of all nodes on paths from
s to t in the SDG and is commonly computed by calculating the backward slice
for t, and then computing the forward slice for s within the subgraph induced by
it. When the slicer or chopper encounters a method call site, it descends into the
called method without ascending back up. However, this cannot miss any poten-
tial information flow, since for every flow through that method, a summary edge
was inserted at the call site, which can be taken as a shortcut. JOANA reports
a security violation whenever there exists a path from a node in the SDG that
is annotated as high to a node annotated as low, i.e., when the chop of these
two nodes is not empty. It has been proven that this approach may not miss any
potential information flow, i.e., that JOANA is sound, and that any illegal infor-
mation flow in the program can occur only in the execution paths determined
by an SDG path from a high node to a low node [27]. Since the dependences in
the SDG are over-approximations of actual dependences in the program, if no
SDG path for the illegal flow is found, the program is guaranteed to be nonin-
terferent. However, whenever there is an SDG path between a high input and a
low output, the program may still be noninterferent.

3 Logic-Based Information Flow Control

Logic-based information flow analysis takes the semantics of the program lan-
guage into account. The semantics of modern program languages provide a high
degree of expressiveness, which must be considered when sources of illegal infor-
mation leaks may be exploiting features of the program semantics. Logic provides
a means for abstraction and can capture such features and moreover, using logi-
cal calculi, enables reasoning about their –direct or indirect, explicit or implicit–
effects on any low program variables or locations. However, this requires a log-
ical representation of the program together with the precise property we want

Using Theorem Provers to Increase the Precision of Dependence Analysis 289

to prove. Using dynamic logic [4] together with symbolic values, we can express
the functional property of partial correctness of a program P for a precondition
φ and a postcondition ψ by the following formula:

φ → [
P

]
ψ

This means that ψ holds in all possible states in which P terminates. Since
we analyze only deterministic programs, this means that either P terminates
and ψ holds afterwards, or the program never terminates. Since we restrict our-
selves to terminating programs, we only need to prove partial correctness in the
following. Applying a logical calculus with a deductive theorem prover, we can
hence symbolically execute P and attempt to prove the formula.

On this basis, we state the noninterference property based on value indepen-
dence for a high variable h, a low variable l and a program P in the following
way:

Definition 2 (Noninterference as value independence). When starting P

with arbitrary values l, then the value r of l – after executing P – is independent
of the choice of h (note the order of the quantifiers).

∀l ∃r ∀h [
P
]

r = l

However, instantiating existential quantifiers hinders automation and
requires user interaction. As a mitigation, [2] established a noninterference for-
malization based on self-composition, effectively reducing it to a safety property.
Using self-composition, the noninterference property of a program P translates
to a safety property of a new program which consists of P composed with a
renaming of P .

Furthermore, we need to introduce the concept of state updates [1], which
capture the effects of symbolically executing program statements. We denote
updates by variable assignments enclosed by curly braces, which are applied to
logical terms and formulae, and thus change the program state.

We can now, based on the low-equivalence in Definition 1 from Sect. 1, extend
our formalization of noninterference in Definition 3.

Definition 3 (Noninterference as self-composition with state updates).

∀inl ∀in1
h ∀in2

h ∀out1l ∀out2l {l := inl}(

{h := in1
h}[P] out1l = l

∧ {h := in2
h}[P] out2l = l

→ out1l = out2l)

Therein, we have two executions of P , one where the (high) program variable
h is renamed to in1

h, and another one where it is renamed to in2
h. The (low)

output variable l is captured in the variable out1l after the first execution and in
variable out2l after the second one. Finally, we need to prove that both outputs

290 B. Beckert et al.

out1l and out2l are equivalent in the final state and assume equivalent low inputs
via the variable inl. The self-composition formula can hence be enclosed with
purely universal quantifiers over the renaming variables for input and output.
When trying to prove noninterference for a program P , theorem provers can now
skolemize these variables and greatly reduce the necessary user interaction.

Now, when dealing with object-orientation, it is sometimes too strict to
require all (low) variables and locations in the final state to be equivalent. For
this matter, [23] developed a variation of noninterference using a different seman-
tics of low-equivalence based on an object isomorphism as defined in Definition
4. Therein, for any two states s1 and s2, and two isomorphisms π1 and π2,
π1(o) = π2(o) holds if o is observable in both states s1 and s2.

Definition 4 (Low-equivalence with isomorphism). Two states s, s′ are
low-equivalent iff they assign the same values to low variables (with L denoting
the set of all low variables in state s).

s �π
L s′ ⇔ ∀ v ∈ L (π(vs) = vs′

)

The techniques described above together with this semantics are defined and
implemented in the deductive program verification tool KeY for Java [1]. It
furthermore allows for more efficient noninterference proofs using modulariza-
tion via the design-by-contract concept with an extension of the Java Modeling
Language (JML) [18]. Such a contract specifies the low program variables and
locations for the initial and the final state of the specified program part. The
proof obligation hence requires the low elements in the final state to depend
at most on the low elements in the initial state. When using the semantics for
object isomorphisms, these contracts may also contain a list of fresh objects to
be included in the isomorphism.

In general, the problem is undecidable and verification sometimes requires
some user interaction. KeY is capable of verifying noninterference for Java pro-
grams and covers a wide range of Java features. With this toolkit, powerful
specification elements are given for proving noninterference, also allowing for
declassification.

4 The Combined Approach

In the following, we describe our Combined Approach on the example of proving
noninterference for a given program P . The first step of the Combined Approach
consists of running the SDG-based analysis to check the noninterference property
for P . If there is no illegal information flow for P , we need no further action as
noninterference is guaranteed to hold. If – however – the automatic SDG-based
approach detects an illegal information flow, we apply the second step of the
Combined Approach in order to check whether this information flow is a false
positive or a genuine leak. Since the SDG-based analysis is performed as the first
step, the results provided by our approach are at least as good as those of the
SDG-based analysis.

Using Theorem Provers to Increase the Precision of Dependence Analysis 291

The SDG-based analysis creates an SDG that models the syntactic depen-
dences between the program parts of P . However, as explained in Sect. 2, these
dependences represent an over-approximation of the actual program depen-
dences. The goal of the Combined Approach is to use a logic-based IFC approach
to prove that certain syntactic dependences in the SDG do not represent real
dependences. If all syntactic dependences between the high inputs and the low
outputs reported by the SDG-based analysis are proven, using the logic-based
approach, to not exist semantically, then the analyzed noninterference property
is proven to hold for P . We assume that the SDG-nodes corresponding to high
inputs and low outputs are annotated as high and low respectively. Let Nh denote
the set of all nodes annotated as high, and N� the set of all nodes annotated as
low.

The SDG-based approach then returns a set of violations. A violation is a
pair (nh, n�) of a high node nh ∈ Nh and a low node n� ∈ N� such that there is a
path from nh to n� in the SDG of P . We then call the set of all nodes lying on a
path from nh to n� the violation chop c(n�, nh). To keep the notation simple, we
will also use c(nh, n�) for the subgraph induced by those nodes. If the set of all
violation chops, denoted by CV , is empty, the SDG-based approach guarantees
noninterference. If – however – there is a false positive, CV contains at least
one chop. The idea of the Combined Approach is then to validate each violation
chop c(nh, n�) ∈ CV and attempt to prove that the chop does not exist on the
semantic level in program P . We prove this by showing that each violation chop
is interrupted (see Definition 5) with the help of a logic-based approach.

Definition 5 (Unnecessary summary edge, Interrupted violation
chop). A summary edge e = (ai, ao) is called unnecessary if there is no infor-
mation flow from the formal-in node fi to the formal-out node fo corresponding
to ai and ao, respectively.

A violation chop is interrupted, if we find a non-empty set S of unnecessary
summary edges on this chop, such that after deleting the edges in S from the
SDG, no path exists between the source and the sink of the violation chop.

In order to show that a summary edge e = (ai, ao) is unnecessary, a proof
obligation is generated for the theorem prover of the logic-based approach. This
proof obligation states that there is no information flow from the formal-in node
fi to the formal-out node fo corresponding to the summary edge e (Sect. 5.1
contains a more precise description of the proof obligation). The proof is done
for all possible contexts of the called method. If the proof is successful, we
have proven that the summary edge was only inserted as a result of the over-
approximation, and we can soundly delete this edge.

Note that for checking whether a violation chop is interrupted, we rely on the
way the chopper works on method call sites: When deleting a summary edge,
the chopper still finds the corresponding information flow in the called method
because no dependence edges have been deleted there. However, since it does
not ascend back to the caller and relies on the (now deleted) summary edge, the
chopper proceeds in the caller as if it did not find that corresponding information
flow.

292 B. Beckert et al.

Data: Set of violation chops S
Result: Noninterference guarantee or failed verification attempt
foreach Violation chop CV ∈ S do

Build queue Q of summary edges in CV , ordered by heuristics;
while CV not interrupted and Q not empty do

Pop summary edge e from Q;
Generate proof obligation PO for proving that e is unnecessary;
if PO proved with theorem prover then

Delete e from CV ;
end

end

end
Algorithm 1. The Combined Approach

Our approach, shown in Algorithm1, attempts to interrupt each violation
chop in CV . For each violation chop a summary edge is taken, the appropriate
information flow proof obligation is generated for the method corresponding to
the summary edge, and a proof attempt is made using the theorem prover. If the
proof is successful, the summary edge can then be deleted from the SDG, based
on Definition 5. The order in which the summary edges are checked is established
by a heuristic which is explained towards the end of this section. Note that we
only need to consider summary edges that belong to a chop between high and
low. Thus, it is sufficient to regard only a smaller subset of all summary edges.
We then check whether this violation chop is interrupted. In this case we can
proceed to analyze the remaining violation chops until all of them are inter-
rupted. In case the violation chop is still not interrupted, or the proof attempt
is not successful, another summary edge from the violation chop is chosen. If
we are able to interrupt every violation chop by deleting unnecessary edges, our
approach guarantees noninterference.

Theorem 1 (Noninterference Combined Approach). The Combined App-
roach guarantees noninterference.

Proof. Let S be the set of unnecessary summary edges that interrupt a violation
chop c(nh, n�) ∈ CV . Using the logic-based approach, we have shown for each
summary edge e = (ai, ao) ∈ S that the actual-out node ao does not depend
on the actual-in node ai of that summary edge. Since each path from nh to
n� contains one such summary edge we have in fact shown that the potential
dependences from nh to n�, represented by the violation chop, do not represent
real dependences. The soundness of the SDG-based approach guarantees that
there are no other potential dependences from nh to n� than the ones in the chop.
Thus, proving all violation chops to be interrupted proves that the program is
noninterferent. ��

Note that each violation chop is guaranteed to contain at least one summary
edge, namely the one corresponding to the main method. Generating a proof

Using Theorem Provers to Increase the Precision of Dependence Analysis 293

obligation for the main method – however – is equivalent to verifying the entire
program with the theorem prover. In practice, however, programs are inter-
procedural and thus there are plenty of summary edges for our approach to
check. Nevertheless, the verification of the main method with the theorem prover
is still the worst case of our approach and can occur in case not enough summary
edges of inner method calls can be proved to be unnecessary.

public int test(int high, int low) {
int result = identity(high, low);
return result;

}

public int identity(int h, int l) {
l = l + h;
l = l − h;
return l;

}
Listing 2. Example program

For the example in Listing 2, when trying to show that there is no information
flow from the parameter high to the return value of the method test, the SDG-
based approach reports an illegal information flow, because the return value of
the method identity is data-dependent on the parameter h of the same method.
This is, however, a mere syntactic dependence and the reported violation is a
false alarm. The reported violation chop contains only one path which contains
the actual-in SDG-node representing parameter h and the actual-out SDG-node
representing the return value of identity, connected by a summary edge as
explained in Sect. 2. The Combined Approach automatically generates a proof
obligation for the logic-based approach which states that the return value of
identity does not depend on parameter h. By proving this, we also prove that
the return value of the method test does not depend on the parameter high
and thus show the noninterference of test. This simple example showcases a
major advantage of our approach: the logic-based approach does not need to
analyze the entire program, but only those parts that cannot be handled with
the SDG-based approach.

Proofs with the theorem prover are often performed fully automatically, but
may sometimes need auxiliary specification and user interaction. Therefore, we
want to minimize the theorem prover usage as much as possible. The order in
which the summary edges of the violation chops are checked has a major impact
on the performance of the Combined Approach. Ideally we want to avoid proof
attempts of methods that do have an information flow or of very large methods
that would overwhelm the theorem prover (for example the main method). In
order to achieve these goals, we developed several heuristics for establishing the
order in which we check the summary edges with the logic-based approach. A
first category of heuristics searches the code for code patterns that are likely to
cause false positives by the SDG-based approach. Such patterns include code
that contains array handling, arithmetic operations, or code that can throw
runtime exceptions. SDG-based approaches are particularly prone to report false
positives for such code, because they neither distinguish between the different
array fields nor do they take the values of variables and semantics of operators

294 B. Beckert et al.

into account. The second category of heuristics attempts to identify the methods
that are likely to run through the theorem prover automatically. Earlier, we
mentioned that it is difficult to create precise loop-invariants and thus methods
without loops are assigned a higher priority. Additionally, depending on the tools
used, we can exclude methods that contain programming language features that
are not supported by the logic-based approach, or library methods from the
analysis. A third category of heuristics tries to identify the methods that, if
proven noninterferent, would bring the greatest benefit to the goal of proving
the entire program noninterferent. We assign a high priority to summary edges
which are bridges in the SDG, i.e., an edge whose removal from the SDG would
result in two unconnected graphs. In case no bridge exists within the SDG, we
prefer the method with the highest number of connections, i.e., the most often
called method.

Due to its low scalability, the logic-based approach is more likely to handle
methods that are deeper in the call graph (i.e., that call few other methods) than
methods which are high in the call graph. However, the parts of the program
that can disprove a reported security violation may be present in a high level
method. In order to still be able to handle such cases, we automatically generate
information flow contracts for the method calls occurring inside the analyzed
method based on the results of the SDG-based analysis. These method calls
have actual-in and actual-out SDG-nodes connected by summary edges. The
generated information flow contracts state that the program parts corresponding
to the actual nodes of the method call site depend at most on the actual-out
nodes of the respective method call site. Due to the soundness of the SDG-
based analysis, this information flow contract is also sound. However, the over-
approximation done by the SDG-based analysis is also present in the contracts
generated this way. Thus, using such contracts does not guarantee that the logic-
based approach will successfully disprove the reported security violation, but it
allows for an analysis of higher-level methods.

5 Implementation

We implemented1 the Combined Approach using JOANA as the dependence-
graph analysis tool and KeY as the theorem prover. In this section, we show
how we generate the proof obligations for KeY in the form of specified Java code
and also present the results of running the Combined Approach on a collection
of examples that cannot be handled by JOANA alone.

5.1 Specification Generation

For the method corresponding to the summary edge selected by the heuristics, we
generate an information flow method contract such that a successful proof would
show that there is in fact no dependence from the formal-in to the formal-out
node of the summary edge.
1 Code available at https://git.scc.kit.edu/py8074/keyjoana.

https://git.scc.kit.edu/py8074/keyjoana

Using Theorem Provers to Increase the Precision of Dependence Analysis 295

Thus, in order to show that a summary edge se(ai, ao) is unnecessary, we
prove that there is no information flow between the corresponding formal-in node
fi and formal-out node fo. In order to achieve this, we generate a JML specifi-
cation for the appropriate method stating that fo is determined by all formal-in
nodes other than fi, as explained in Definition 6. Note that the determines
clause used in Definitions 7 and 8 is not part of the JML standard, and is only
supported by KeY. The clause requires the expressions before the by keyword,
evaluated in the post-state, to depend at most on the expressions after the by
keyword, evaluated in the pre-state.

Definition 6 (Generation of the determines clause). Let se(ai, ao) be the
summary edge to be checked, and let fi and fo be the formal nodes corresponding
to the actual nodes ai and ao. Let Li be a list of all formal-in nodes f ′

i other than
fi of the method belonging to the call site of ai and ao. The following determines
clause is added to the method contract: determines fo \by Li.

Should the proof of this property succeed then it would show that fo does
not depend on fi and therefore ao does not depend on actual-in parameter ai.
Since there is no dependence between ai and ao the summary edge can be safely
deleted from the violation chop.

To increase its precision, JOANA uses a points-to analysis which keeps track
of the objects a reference o may point to (the points-to set of o). This information
is useful, since it may show that two references cannot be aliased. We use the
results of the points-to analysis to generate preconditions for the method con-
tracts, as shown in Definition 7, thus transferring information about the context
from JOANA to KeY and increasing the likelihood of a successful proof.

Definition 7 (Generation of preconditions). Let o be a reference and Po

its points-to set. We generate the following precondition:
∨

o′∈Po
o = o′

The method contracts generated this way are necessary for proving a sum-
mary edge is unnecessary, however in the general case they are not sufficient for
a successful proof. If the method contains loops of any kind, the theorem prover
needs loop-invariants. The automatic generation of loop-invariants is an active
research field, see for example [16,21]. These approaches focus on functional
loop-invariants and do not consider information flow loop-invariants.

The determines clause generated for method contracts, can be used to specify
the allowed information flows of a loop. The determines clause generated for a
loop invariant is similar to the one for method contracts. Because the variables
from the formal-in and formal-out nodes may not directly occur in the loop
some adjustments are necessary. Definition 8 shows what determines clauses are
generated for loop invariants:

Definition 8 (Generation of the determines clause for loop invariants).
Let se(ai, ao) be the summary edge to be checked, and let fi and fo be the formal
nodes corresponding to the actual nodes ai and ao. Let Li be a list of all formal-
in nodes f ′

i other than fi of the method belonging to the call site of ai and ao.
Let Vi be the set of all variables in the loop and let Ii be a list of variables in the

296 B. Beckert et al.

method that influence fo. The following determines clause is added to the loop
invariant: determines fo, Vi \by Li, Ii.

Note that the sets Vi and Ii can be constructed by analyzing the SDG.

5.2 Evaluation

We considered eleven examples, which cover different program structures and
reasons for false positives. Each of these examples is not solvable by automated
graph based approaches like JOANA. In Table 1 we have listed the eleven exam-
ples. The evaluation is split into automatic mode and interactive mode. In the
automatic mode, an attempt is made to prove the generated proof obligations
automatically. In the interactive mode, the theorem prover is called for all proof
obligations in interactive mode. In this mode, the user can perform automatic
or interactive steps and can add auxiliary specification. The column KeY Calls
represents the number of times KeY was called to show that a summary edge is
unnecessary. As can be seen in the table, in interactive mode sometimes fewer
calls to KeY are necessary, as the user can better recognize which summary edges
are more likely to be successfully proven as unnecessary.

The eleven examples are again divided into two groups. First, there are indi-
vidual methods that cause false positives. In the method Identity, the high
value is added and subtracted to the low variable such that the low value remains
the same. There is a dependence from high to low on a syntactical level, but in
reality there is none. In the method Precondition there is an if-condition that
can never be true and the method Excluding Statements contains if-statements
that can not both be true at the same program execution. The example Loop
Override contains a loop which overrides the low value in the last loop exe-
cution. For this example the noninterference loop-invariant was not enough for
an automated proof and further functional information had to be given by the
user. The last simple method Array Access contains array handling code. The
second group consists of programs that include these problems in different pro-
gram structures. Based on the possible SDG, we regard simple flows, branching,
nested summary edges and a combination of all.

The example programs are in the range of 5 to 30 lines of code. They show
that the combined approach can prove programs automatically for which JOANA
would generate false positives.

6 Related Work

There exist many different approaches for proving noninterference. A survey on
approaches for IFC is found in [22]. In what follows, we describe some approaches
that are similar to ours.

The Hybrid Approach [17] also aims to combine automatic dependence-graph
analysis and theorem proving. The user first attempts to show noninterference
using JOANA. If the user suspects the reported violation to be a false alarm, he

Using Theorem Provers to Increase the Precision of Dependence Analysis 297

Table 1. List of examples

Program Automatic Mode Interactive Mode

Provable KeY Calls Time Provable KeY Calls

Individual methods

Identity Yes 1 5 s Yes 1

Precondition Yes 1 5 s Yes 1

Excluding statements Yes 1 5 s Yes 1

Loop override No 1 7 s Yes 1

Array access Yes 1 6 s Yes 1

Whole programs

KeY example Yes 1 7 s Yes 1

Single flow Yes 1 6 s Yes 1

Branching Yes 2 10 s Yes 2

Nested methods Yes 2 10 s Yes 2

Mixture Yes 4 19 s Yes 3

Mixture with loops No 7 20 s Yes 5

must identify the cause of the alarm and extend the program such that the low
output is overwritten with a value that does not depend on the high input. The
extended program is rechecked by JOANA, and if deemed noninterferent, KeY
is used to show that the extended program computes the same low output as the
original. This approach improves the precision provided by JOANA. However,
there is no assistance in finding the causes of the false alarms, and the program
extension must be done manually.

SDG-based approaches can also be used to identify program statements that
do not contribute to a potential information flow or program execution paths
that are guaranteed to not lead to an illegal information flow. This is done in [14],
where the SDG-based approach is used to generate a simplified program that
can then be more easily verified or tested. The approach is orthogonal to the
Combined Approach presented in this paper, and the two approaches can be
combined by using the approach in [14] to simplify the program for which we
attempt to show that a summary edge is unnecessary.

Another combination of SDG-based approaches and theorem provers is by
checking the satisfiability of the path conditions for the execution paths deter-
mined by the reported security violation [12,25]. If a path condition is unsatis-
fiable, then that execution path cannot lead to an illegal information flow.

Another class of approaches for information flow control are based on type
systems [19,26]. They can have the same scalability and precision as SDG-based
approaches [20], though most type systems have higher scalability but lower
precision. They enforce secure information flow by assigning a security type (e.g.,

298 B. Beckert et al.

high or low) to the program variables and then checking whether the expressions
in the program conform to the type system.

7 Conclusion

In this work, we introduced a new combined approach to prove noninterference
with less user interaction while keeping the same precision. Our approach com-
bines an automated SDG-based technique with a deductive theorem prover. We
demonstrated that the noninterference properties guaranteed by the two tools
are compatible and, thus, that our approach is sound. The Combined Approach
has been developed tool-independently, but implemented and evaluated on a
selection of examples as well as a small case study. Although the programs cov-
ered in our evaluation do not exceed 100 lines of code and could – as such – also
be proven without the help of SDG-based IFC, they could – however – also be
embedded in much bigger programs, which – as such – may be clearly too big
for the analysis with a theorem prover.

Acknowledgements. We are grateful to the student Holger Klein for implementing
the prototype. This work was supported by the German Research Foundation (DFG)
under the project DeduSec (BE 2334/6-3) in the priority program “Reliably Secure
Software Systems” (RS3, SPP 1496).

References

1. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book: From Theory to Practice. LNCS,
vol. 10001. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-49812-
6

2. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: 17th IEEE Computer Security Foundations Workshop, CSFW-17 2004, pp.
100–114. IEEE Computer Society (2004)

3. Beckert, B., Bruns, D., Klebanov, V., Scheben, C., Schmitt, P.H., Ulbrich, M.:
Information flow in object-oriented software. In: Gupta, G., Peña, R. (eds.) LOP-
STR 2013. LNCS, vol. 8901, pp. 19–37. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-14125-1 2

4. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS,
vol. 3450, pp. 193–209. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-32004-3 20

5. Denning, D.E.: A lattice model of secure information flow. Commun. ACM 19(5),
236–243 (1976)

6. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Commun. ACM 20(7), 504–513 (1977)

7. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. ACM Trans. Program. Lang. Syst. 9(3), 319–349 (1987)

8. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Symposium
on Security and Privacy (SP), pp. 11–20 (1982)

https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-14125-1_2
https://doi.org/10.1007/978-3-319-14125-1_2
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-540-32004-3_20

Using Theorem Provers to Increase the Precision of Dependence Analysis 299

9. Graf, J., Hecker, M., Mohr, M.: Using JOANA for information flow control in
Java programs - a practical guide. In: Wagner, S., Lichter, H. (eds.) Conference on
Programming Languages (ATP). LNI, vol. 215, pp. 123–138. Springer, Heidelberg
(2013)

10. Graf, J., Hecker, M., Mohr, M.: Using JOANA for information flow control in Java
programs-a practical guide. In: Wagner, S., Lichter, H. (eds.) Software Engineering,
Fachtagung des GI-Fachbereichs Softwaretechnik. LNI, vol. 215, pp. 123–138. GI
(2013)

11. Hammer, C.: Information flow control for java - a comprehensive approach based
on path conditions in dependence graphs. Ph.D. thesis, Universität Karlsruhe
(TH), Fak. f. Informatik, July 2009. http://digbib.ubka.uni-karlsruhe.de/volltexte/
1000012049

12. Hammer, C., Krinke, J., Snelting, G.: Information flow control for Java based on
path conditions in dependence graphs. In: Symposium on Secure Software Engi-
neering, pp. 87–96 (2006)

13. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Sec.
8(6), 399–422 (2009)

14. Herda, M., Tyszberowicz, S., Beckert, B.: Using dependence graphs to assist veri-
fication and testing of information-flow properties. In: Dubois, C., Wolff, B. (eds.)
TAP 2018. LNCS, vol. 10889, pp. 83–102. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-92994-1 5

15. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
Trans. Program. Lang. Syst. 12(1), 26–60 (1990)

16. Kapur, D.: Automatically generating loop invariants using quantifier elimination.
In: Baader, F., Baumgartner, P., Nieuwenhuis, R., Voronkov, A. (eds.) Deduc-
tion and Applications, 23-28 October 2005. Dagstuhl Seminar Proceedings, vol.
05431. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI),
Schloss Dagstuhl, Germany (2005)

17. Küsters, R., Truderung, T., Beckert, B., Bruns, D., Kirsten, M., Mohr, M.: A
hybrid approach for proving noninterference of Java programs. In: Fournet, C.,
Hicks, M.W., Viganò, L. (eds.) 28th Computer Security Foundations Symposium
(CSF), pp. 305–319. IEEE Computer Society (2015)

18. Leavens, G.T., Kiniry, J.R., Poll, E.: A JML tutorial: modular specification and
verification of functional behavior for Java. In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 37–37. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-73368-3 6

19. Lortz, S., Mantel, H., Starostin, A., Bähr, T., Schneider, D., Weber, A.: Cassandra:
towards a certifying app store for Android. In: ACM Workshop on Security and
Privacy in Smartphones & Mobile Devices (SPSM), pp. 93–104. ACM (2014)

20. Mantel, H., Sudbrock, H.: Types vs. PDGs in information flow analysis. In: Albert,
E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 106–121. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38197-3 8

21. Rodŕıguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple
loops. J. Symbolic Comput. 42(4), 443–476 (2007)

22. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
A. Commun. 21(1), 5–19 (2006)

23. Scheben, C., Schmitt, P.H.: Verification of information flow properties of Java
programs without approximations. In: Beckert, B., Damiani, F., Gurov, D. (eds.)
FoVeOOS 2011. LNCS, vol. 7421, pp. 232–249. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31762-0 15

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000012049
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000012049
https://doi.org/10.1007/978-3-319-92994-1_5
https://doi.org/10.1007/978-3-319-92994-1_5
https://doi.org/10.1007/978-3-540-73368-3_6
https://doi.org/10.1007/978-3-540-73368-3_6
https://doi.org/10.1007/978-3-642-38197-3_8
https://doi.org/10.1007/978-3-642-31762-0_15

300 B. Beckert et al.

24. Snelting, G.: Combining slicing and constraint solving for validation of measure-
ment software. In: Cousot, R., Schmidt, D.A. (eds.) SAS 1996. LNCS, vol. 1145, pp.
332–348. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61739-6 51

25. Snelting, G., Robschink, T., Krinke, J.: Efficient path conditions in dependence
graphs for software safety analysis. ACM Trans. Softw. Eng. Methodol. 15(4),
410–457 (2006)

26. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow anal-
ysis. J. Comput. Secur. 4(2/3), 167–188 (1996)

27. Wasserrab, D., Lohner, D.: Proving information flow noninterference by reusing
a machine-checked correctness proof for slicing. In: Aderhold, M., Autexier, S.,
Mantel, H. (eds.) Verification Workshop (VERIFY). EPiC Series in Computing,
vol. 3, pp. 141–155 (2010)

https://doi.org/10.1007/3-540-61739-6_51

Logic and Semantics

Preserving Liveness Guarantees
from Synchronous Communication
to Asynchronous Unstructured

Low-Level Languages

Nils Berg(B), Thomas Göthel, Armin Danziger, and Sabine Glesner

Technische Universität Berlin, Berlin, Germany
n.berg@tu-berlin.de

Abstract. In the implementation of abstract synchronous communica-
tion in asynchronous unstructured low-level languages, e.g. using shared
variables, the preservation of safety and especially liveness properties is a
hitherto open problem due to inherently different abstraction levels. Our
approach to overcome this problem is threefold: First, we present our
notion of handshake refinement with which we formally prove the cor-
rectness of the implementation relation of a handshake protocol. Second,
we verify the soundness of our handshake refinement , i.e., all safety and
liveness properties are preserved to the lower level. Third, we apply our
handshake refinement to show the correctness of all implementations that
realize the abstract synchronous communication with the handshake pro-
tocol. To this end, we employ an exemplary language with asynchronous
shared variable communication. Our approach is scalable and closes the
verification gap between different abstraction levels of communication.

Keywords: Unstructured Code · Liveness properties
Handshake protocol · Formal verification · Refinement

1 Introduction

In the rigorous model-driven design of low-level implementations, formal spec-
ifications are iteratively refined until an implementation model is reached. In
the subsequent transition to executable code, correctness is mostly subject to
informal reasoning due to the different abstraction levels. In this paper, we con-
sider unstructured low-level languages that are required to preserve safety and
liveness properties from the formal specification. The formal verification of the
relation between specification and implementation of communicating low-level
code can be split in two parts: (1) State transformations and control flow, and
(2) communication. While we have presented an approach for (1) in [7,8], in this
paper we focus on the low-level implementation of communication. In particu-
lar, we do not consider the general question whether it is possible to implement
synchronous communication with asynchronous means, as this was shown in
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 303–319, 2018.
https://doi.org/10.1007/978-3-030-02450-5_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_18&domain=pdf

304 N. Berg et al.

e.g. [3]. In contrast, we propose a methodology to verify that a specification
using abstract synchronous communication and a concrete implementation in a
low-level language using asynchronous shared variable communication have the
same safety and liveness properties based on a simple handshake protocol.

In synchronous communication, sender and receiver are determined at the
same time, whereas they are determined at different points in time in asyn-
chronous communication. Thus, asynchronous communication has more decision
points and a different branching behavior. The major problem is to prove preser-
vation of liveness properties for systems with different branching behavior. To
overcome this problem, we define the handshake refinement that enables the
construction and formal verification of implementation relations for the abstract
communication instruction. We show that this relation preserves safety and live-
ness properties. Finally, we use our notion of handshake refinement to show the
correctness of the implementation of abstract synchronous communication with
a handshake protocol in our generalized low-level language using shared variable
communication. Our theorem shows that all implementations with this protocol
are correct. This once-and-for-all approach is highly scalable and allows for com-
positional reasoning over shared variable communication. While the handshake
refinement is designed for this specific handshake protocol, its concepts can be
adapted to other protocols, which is left for future work.

2 Related Work

In [4], Broy and Olderog investigate the relationship between synchronous and
asynchronous communication, where asynchronous communication is buffered,
e.g. via an additional buffer process. However we do not consider high-level con-
structs such as buffers in our implementation language. Apart from the differ-
ent abstraction level used by Broy and Olderog, their transformation from syn-
chronous to asynchronous systems is to introduce buffers for all (previously syn-
chronous) communication. In doing so, they lose synchronicity and the “refusal
structure” of the synchronous specification, i.e. the transformation does not pre-
serve liveness properties.

Peeters [9] models hardware, where low-level communication is synchronous
(a wire from sender to recipient). They still use synchronization primitives for
the implementation, and thus, does not apply to the problem we consider.

Basu et al. [1] define synchronizability of asynchronous systems. We show a
similar relation, namely that it is appropriate to consider a synchronized version
of the asynchronous system. The use of modeled queues is too abstract for our
problem, as we aim at verifying the abstract communication construct (e.g. queue
in this case) itself.

The CSP++ framework from Gardner [6] constructs a communication back-
bone from a CSP (Communicating Sequential Processes) process, which can then
be enriched with C++ code. Although the idea of this framework is akin to correct
by construction design, the verification of this framework itself is not addressed.

Preserving Liveness Guarantees 305

In summary, all these approaches consider either a rather high level of
abstraction, or do not consider formal verification of safety and liveness proper-
ties.

Vertical Bisimulation by Rensink and Gorrieri [10] provides a congruence
relation for action refinements whose implementations can interleave. They do
not consider the refinement of the synchronization mechanism itself: Both source
language and target language use the same CSP-like synchronization. Their defi-
nition is different from the standard bisimulation in that it keeps track of started
executions of the implementations. This idea inspired our definition of the hand-
shake refinement .

de Frutos Escrig et al. [5] propose global bisimulations to achieve associativity
of nondeterministic choice. It has some similarity to our problem with split up
decisions (i.e. comparing two decisions at once to two consecutive decisions),
however our choices are deterministic. Moreover, it is specifically intended to be
a symmetric relation, and our problem is asymmetric, as we consider different
levels of abstraction. Therefore, the vertical bisimulation is a fitter candidate to
be adapted to our problem.

3 Background

In the following, we briefly introduce CSP and the low-level language CUC
(Communicating Unstructured Code) with synchronous communication which
we formerly presented. We base our notion of safety and liveness on CSP and
obtain compositionality for CUC by using CSP communication.

3.1 Communicating Sequential Processes (CSP)

For our specification language CUC, we consider CSP-like abstract synchronous
communication (without broadcast) throughout this paper. The advantage is
that we can perform proofs compositionally, which is inherited from CSP. In
CSP [11], a refinement (Spec � Impl) describes a subset relation of the behavior.
The trace semantics (T) records the traces and the trace refinement ensures the
preservation of safety properties. The stable failures semantics (SF) additionally
records the refused (and by negation the possible) events at each stable state,
thus allowing the stable failures refinement to ensure the preservation of liveness
properties. In CSP, the notion of refinement is compositional w.r.t. contexts (C),
i.e., when only a part of the system is refined, the whole system is also in a
refinement relation: A � B =⇒ C(A) � C(B). As parallel composition can also be
part of the context C, this allows for modular verification of concurrent systems.

3.2 Communicating Unstructured Code (CUC)

We aim at verifying safety and liveness properties of the shared variable imple-
mentation of abstract synchronous communication. To focus on the difference
between abstract synchronous and low-level asynchronous communication, we

306 N. Berg et al.

choose two languages which only differ in this aspect. As the implementation
language should be a low-level language with shared variable communication,
we choose a low-level language with abstract synchronous communication as a
specification language. To this end, we employ the language CUC. It is a generic
low-level language with an abstract communication instruction, using CSP’s
multi-way synchronization. We introduced its operational and trace semantics
in [7] and its stable failures semantics together with a Hoare calculus in [8].
The latter provides a framework to verify the stable failures refinement relation
between a CSP process and a CUC program, ensuring that the CUC program
preserves all safety and liveness properties of the CSP process.

We give a brief overview over CUC here, for details see [8]. The operational
semantics is depicted in Fig. 1. The state σ is split into its program counter σpc

and its register store σrs, code is a fixed set of labeled instructions. CUC has
three instructions: (1) A nondeterministic multiple assignment (do), which can
be instantiated to actual low-level instruction, e.g. arithmetic operations. (2) A
conditional branch (cbr) and (3) the communication primitive. It communicates
an event nondeterministically chosen from the result of fev and then changes the
state according to freg. The comm instruction modifies the register store to record
input data. The implementation of comm fev freg is the subject of this paper.
The communication of CUC is the same as communication in CSP: All programs
offer events (in their alphabets αi), and if multiple offer the same events, they
non-deterministically choose one of them and make a synchronous step (sync).
Non-synchronized events and τ are performed interleavingly (interleaving).

(σpc, do f) ∈ code σ′
rs ∈ f(σrs) σ′

pc = σpc + 1

σ
τ−→code σ′ do

(σpc, cbr b m n) ∈ code σ′
rs = σrs b σ ∧ σ′

pc = m ∨ ¬b σ ∧ σ′
pc = n

σ
τ−→code σ′ cbr

(σpc, comm fev freg) ∈ code ev ∈ fev(σrs) σ′
rs = freg(σrs, ev) σ′

pc = σpc + 1

σ
ev−→code σ′ comm

σ1
a−→c1 σ′

1 σ2
a−→c2 σ′

2 a ∈ α1 ∩ α2

σ1 ‖ σ2
a−→

c1α1‖α2c2

) σ′
1 ‖ σ′

2

sync

interleaving-left
σ1

a−→c1 σ′
1 a ∈ (α1 ∪ {τ}) \ α2

σ1 ‖ σ2
a−→

c1α1‖α2c2
σ′
1 ‖ σ2

interleaving-right
σ2

a−→c2 σ′
2 a ∈ (α2 ∪ {τ}) \ α1

σ1 ‖ σ2
a−→

c1α1‖α2c2

) σ1 ‖ σ′
2

Fig. 1. Operational semantics for CUC

In the transition from synchronous to asynchronous communication, we per-
form a refinement based on low-level communication protocols. In this paper,
we focus on a handshake protocol over shared variables and restrict the use of

Preserving Liveness Guarantees 307

CUC constructs accordingly, i.e., to use only a sender and a receiver version of
comm and exclude communication with the environment. Additionally, we illus-
trate our approach with a simple protocol here, and therefore prohibit the use of
external choice within a component. To restrict the communication to directed
communication, we consider two restricted variants of comm, as defined below.
Let c be a channel, xs and xr local registers, id the process id of the current
process and ID the set of all process ids. The event c.s.r.v is composed of the
channel c, the ids of the sender s and the receiver r, and the transferred data
value v. Finally, let val(c.s.r.v) = v extract the data value of an event.

: comms id c xs := comm
(
λσ. {c.id.r.σrs(xs) | r ∈ ID ∧ r �= id}

)(
λaσ. σ

)

: commr id c xr := comm
(
λσ. {c.s.id.v | s ∈ ID ∧ s �= id}

)(
λaσ. σ(xr := val(a))

)

comms offers events on its channel c, using its own id as sender, and all possible ids
as receiver. The data value is the value of its local storage at xs. After successful
communication, the sender does not change its local state. commr offers events
on its channel c, using its own id as a receiver, all possible ids as sender, and all
possible data values. After successful communication, the receiver updates its
local storage at xr to the value of the communicated event. By using events that
explicitly contain the id of the sender or the receiver respectively, we enforce that
senders cannot communicate among one another and the same for receivers.

In contrast to CSP and CUC, there is no environment in low-level shared
variable communication. Thus, a lone comm in CUC should not synchronize with
the environment but block. To enforce this in CUC, we only consider programs
with at least two components. Furthermore, the synchronization alphabet of each
concurrent program ci is given by αi = {c.s.r.v ∈ Σ | (s ∈ ids(Pi)∨r ∈ ids(Pi))}.

4 Shared Variable Semantics (SV)

In this section, we present the language Shared Variables (SV) and give its oper-
ational semantics. The intent of SV is to have a language with a pure interleaving
semantics (in contrast to CUC) and to implement synchronous communication
over shared variables with it. SV contains the instructions do f and cbr just like
CUC, but instead of the abstract communication instruction comm, it contains
the instructions needed for the low-level implementation of communication and
synchronization over shared variables: read, write and cas (Compare-and-Set).

The operational semantics for SV is depicted in Fig. 2. For each component,
there is a program counter σpc and a local register store σrs as in CUC. Fur-
thermore, there is a global state Γ , which holds the values of locks, signals, and
shared variables. do and cbr (as described in rules do and cbr) have basically
the same semantics as in CUC: They change the local state and the program
counter, but leave the global state Γ unchanged. cas (as described in rules cas-t
and cas-f) compares the value at a given address sv to a value v1 and, if they
are equal, writes the value v2 to that address. In either case, the comparison
result is written to the local register r. write and read (as described in rules
write and read) transfer values from local to global storage and vice versa.

308 N. Berg et al.

(σpc, do f) ∈ code σ′
rs ∈ f(σrs) σ′

pc = σpc + 1

(Γ, σ) code−−−→ (Γ, σ′)
do

(σpc, cbr b m n) ∈ code σ′
rs = σrs b σ ∧ σ′

pc = m ∨ ¬b σ ∧ σ′
pc = n

(Γ, σ) code−−−→ (Γ, σ′)
cbr

(σpc, cas r sv v1 v2) ∈ code
Γ (sv) = v1 Γ ′ = Γ (sv := v2) σ′

rs = σrs(r :=) σ′
pc = σpc + 1

(Γ, σ) code−−−→ (Γ ′, σ′)
cas-t

(σpc, cas r sv v1 v2) ∈ code Γ (sv)
= v1 σ′
rs = σrs(r := ⊥) σ′

pc = σpc + 1

(Γ, σ) code−−−→ (Γ, σ′)
cas-f

(σpc, write sv x) ∈ code Γ ′ = Γ (sv := σrs(x)) σ′
rs = σrs σ′

pc = σpc + 1

(Γ, σ) code−−−→ (Γ ′, σ′)
write

(σpc, read x sv) ∈ code σ′
rs = σrs(x := Γ (sv)) σ′

pc = σpc + 1

(Γ, σ) code−−−→ (Γ, σ′)
read

(Γ, σ1)
c1−→ (Γ ′, σ′

1)

(Γ, σ1 ‖ σ2)
c1‖c2−−−→ (Γ ′, σ′

1 ‖ σ2)
con-left

(Γ, σ2)
c2−→ (Γ ′, σ′

2)

(Γ, σ1 ‖ σ2)
c1‖c2−−−→ (Γ ′, σ1 ‖ σ′

2)
con-right

Fig. 2. Operational semantics for SV

Finally, the rules con-left and con-right define the interleaving semantics:
Whenever a component can take a step, the combination can take it, too. There
is no synchronous step. In the next section, we consider how to relate the comm
instruction and its implementation based on a simple handshake protocol.

4.1 Handshake Protocol in SV

In SV, many protocols realizing synchronous communication can be imple-
mented. In this paper, we focus on a handshake protocol over shared variables.

send: 1 : cas hlc mc free id
2 : cbr hlc 3 1
3 : write svc xs

4 : write src 	
5 : cas ssc frc 	 ⊥
6 : cbr ssc 7 5
7 : write mc free

receive: 1 : cas ssc src 	 ⊥
2 : cbr ssc 3 1
3 : read xr svc

4 : write frc 	

Fig. 3. Send and receive: implementations of the comms and commr instructions

comms and commr are implemented in SV by the constructs shown in Fig. 3
with a simple handshake protocol. The general idea is that send locks the channel

Preserving Liveness Guarantees 309

to protect the shared variable, and synchronizes over signals with receive. The
protocol flow is illustrated in Fig. 5. The shared variables representing the mutex
and the signals are assumed to be exclusive for each channel.1 We explain the
details of the implementations of the sender and the receiver line by line:

send. (1) checks if the mutex mc belonging to the channel is free, and if it is,
writes its id to it. (2) If it is not free, it checks again (busy loop). Otherwise it
proceeds to (3) write the data value to be sent (from the local register xs) to
the shared variable svc. Afterwards, it realizes a synchronization with the read
process: It (4) sets the signal src. Then it (5, 6) waits with a busy loop for the
signal fr c and finally (7) releases the mutex.

receive. (1, 2) waits with a busy loop for the signal src. If it received the signal,
it (3) reads the value from the shared variable and then (4) sets the signal frc.

Observe that deadlocks from CUC that are due to missing communication
partners are implemented as spinlocks in SV: send cannot exit the busy loop
(line 5, 6) without a receiver on the same channel, and receive cannot exit the
loop (lines 1, 2) without a sender in the channel.

4.2 Definitions to Relate comm and its Implementations

To formally capture that a CUC and an SV program are syntactically the same
apart from the implementation of the abstract communication, we define the
program label map. As the implementation of the abstract communication is
inserted, the following labels shift accordingly. We use this definition to define
the notion of an SV program fitting a CUC program.

Definition 1 (Program label map). A program label map ψ maps injectively
a program label in a CUC program cuc to a corresponding program label in an
SV program sv. For the formal requirements to ψ see Fig. 4.

(�, do f) ∈ cucid ⇐⇒ ψ(�), do f
) ∈ sv id ∧ ψ(� + 1) = ψ(�) + 1

(�, cbr b m n) ∈ cucid ⇐⇒ ψ(�), cbr b ψ(m) ψ(n)
) ∈ sv id

(�, comms id c xs) ∈ cucid ⇐⇒ ψ(�) + 0, cas mc free id) ∈ sv id

...
...

...
′′ ⇐⇒ ψ(�) + 6, write mc free

) ∈ sv id

′′ =⇒ ψ(� + 1) = ψ(�) + 7
(�, commr id c xr) ∈ cucid ⇐⇒ ψ(�) + 0, cas src 	 ⊥) ∈ sv id

...
...

...
′′ ⇐⇒ ψ(�) + 3, write frc) ∈ sv id

′′ =⇒ ψ(� + 1) = ψ(�) + 4

Fig. 4. Requirements to a program label map ψ

1 That mutexes and signals are only accessed from the corresponding send and receive
blocks can be checked syntactically.

310 N. Berg et al.

Definition 2 (Fitting program). We say that an SV program sv fits a CUC
program cuc, if there is a program label map ψ, mapping all the instructions from
cuc to sv. Furthermore, we require the state transforming functions f of do f
to only modify the variables available in cuc (i.e. not hlc and ssc). Similarly,
the boolean conditions b of cbr instructions in cuc may only depend on variables
present in cuc.

Channel constituents group all variables that belong to a channel.

Definition 3 (Channel constituents). The following local registers belong
to a channel c: hlc and ssc. The following shared variables belong to a channel
c: mc, svc sr c, and frc.

In the following, we assume that channel constituents are unique for each chan-
nel. The registers belonging to a channel are exactly the registers that are present
in sv but not in cuc. Thus, when comparing a local state of cuc and sv , we ignore
those registers. We can now define similarity of local state, which we use to relate
CUC states and SV states.

Definition 4 (Similarity w.r.t channel constituents). Let σ =̂ σ̂ denote
that σ and σ̂ are equal for all registers that do not belong to a channel. This
equality also does not include the program counter. We say σ is similar to σ̂.

Note that =̂ does include the register into which receive writes the value read
from the shared variable, thus receiving a value is visible to the =̂ relation.

Having defined CUC, SV and the protocol we want to verify, in the next
section we define our notion of handshake refinement to formally relate CUC
and SV programs, ensuring that safety and liveness properties are preserved.

5 Handshake Refinement

The idea of the handshake refinement is to extend usual behavioral relations of
two states or processes (as in bisimulations or refinements) with a third element
(the lockstate) to track the progress of the protocol execution. This enables
different treatment in the relation of the same CUC state at different stages of
the protocol execution. We use it to indicate which possible events of the CUC
state need to be answered by the SV state. The lockstate L is a function from
channel names to {free} � ID in � (ID × ID)in � (ID × ID)un � IDun . Every
channel has one of five states: It can be free, a sender or both a sender and a
receiver are in the channel, and after the communication happened, the channel
will be eventually unlocked, first with both a sender and a receiver still in the
channel, then only a sender. The states of the lockstate within the protocol flow
are illustrated in Fig. 5 in the rectangular boxes. For each channel, the SV states
and possible transitions of send (S, S1 to S6; on the left) and receive (R, R1 to
R3; on the right) are depicted, and in the upper right corner also those of do (D)
and cbr (C), as well as those pointing outside the code (O). N is a placeholder for
O, D, C, S, or R. Dotted lines indicate the transition to the next lockstate. The

Preserving Liveness Guarantees 311

dashed line marks the moment where the communication happens, i.e. all states
above are in a relation to the CUC state before the communication, and those
below to the CUC state after the communication has happened. The arrows over
(S1), (S5’), and (R2) denote whether cbr will jump back to the first label or
forward to the second label, based on the cas instruction before. Note that the
transitions of send from S4 to S4’ and S5 to S5’ happen without a step from
the sending component, but correspond to the transition of receive on the same
channel from R2 to R3. We define the following shorthands for the lockstate:
id /∈ L := ∀ c. L(c) �= idin/un∧

(
∀ id′. L(c) �= (id, id′)in/un)∧L(c) �= (id′, id)in/un

)

and L = ∅ := ∀ c. L(c) = free.

S←−
S1

cas mc = ⊥

cbr

−→
S1

cas mc = �

S2

cbr

S3

write sv c

S4

write src
←−
S5

cas frc = ⊥

cbr

R

←−
R1

cas src = ⊥

cbr

−→
R1

cas src = �

R2

cbr

R3

read sv c

N

write frc

S4’←−
S5’

cbr

−→
S5’

cas frc = �

S6

cbr

N

write mc free

L(c) �= free

L(c) = free

L(c) = sin

L(c) = (s, r)in

L(c) = (s, r)un

be
fo
re

co
m
m
un

ic
at
io
n

af
te
r
co
m
m
un

ic
at
io
n

L(c) = sun

L(c) = free

O D

N

do

N

do

N

do

C

N

cbr

Fig. 5. The flow of the handshake protocol

To define the stable failures on SV independently of the handshake refine-
ment, we cannot use the lockstate. In contrast to the vertical bisimulation [10],
the visible event in the protocol implementation is never at the beginning of the

312 N. Berg et al.

implementation (and cannot be, as neither sender nor receiver are determined at
the beginning). To overcome this problem, we introduce a special event for the
invisible steps of the implementation. As the “usual” invisible event τ is already
included (do, cbr), we denote the invisible instructions of the implementation of
communication with τc. This way, we can define stable states before the execu-
tion of the protocol implementation, but let the refusal sets refer to events dur-
ing the execution of the protocol implementation. This enables us to bridge the
gap between abstract synchronous semantics, where the event coincides with both
decision points, and the low-level asynchronous semantics, where the event hap-
pens after the second decision. To define stable failures semantics for SV, we define
a labeling function mapping transitions in sv to events. Transitions are identified
by the starting state and the executed instruction. Visible events are only mapped
to read, τc to the invisible instructions of the implementation of the communica-
tion. All other instructions (do and cbr) are invisible with the usual τ .

Definition 5 (Event labeling for sv). Let EL be a function from state, id of
the component executing the next instruction, and its next instruction to events
of cuc, τ , or τc.

EL
(
(Γ,), id, read svc

)
�→ c.s.r.v where s = Γ (mutex c), r = id, v = Γ (svc)

EL(, , ins) �→ τc if ins is part of send or receive (see Fig. 3)
EL(, ,) �→ τ otherwise

Using the labeling function EL, we can derive SV semantics with visible events:

Definition 6 (SV semantics with events).
: (Γ, σ) ev−→sv (Γ ′, σ′) :⇔ (Γ, σ) sv−→ (Γ ′, σ′) ∧

(
∃ id ins. ev = EL

(
(Γ, σ), id, ins

))

Here, the active component id is determined by the component whose program
counter changed, and ins is the instruction the program counter of the active
component points to. To ensure that every executed instruction changes the
program counter, we require that no cbr instruction jumps to its own label.

We define the handshake refinement in Fig. 6. It is a relation parametrized
over two programs cuc and sv fitting with ψ. The elements are triplets consisting
of a parallel CUC state σ, a lockstate L, and pair of global state Γ and parallel
local SV states σ̂. Our handshake refinement consists of two properties describ-
ing the states, and three describing the possible transitions. In each triplet, the
CUC states and the local SV states are similar. Furthermore, they fulfill the
protocol constraints Pcuc,sv ,ψ, which constrain the possible SV states and their
relation to CUC states. Pcuc,sv ,ψ is defined in Fig. 7 and explained below. The
possible transitions are described by the down-, up-, and unlocking-simulation.
The down-simulation relates transitions in CUC to one or more transitions
in SV. Observe that visible events only need to be answered, if the channel is
free. This precludes triplets where the sender in SV is already decided but the
CUC state still could choose a different sender. It is sound to ignore those SV
states in the down-simulation, as we are only interested if the implementation
(as a whole) allows and offers the same events. Although there is no “equiva-
lent” state in CUC, all other senders were possible right before this choice of a

Preserving Liveness Guarantees 313

∀ σ, L, (Γ, σ̂)
) ∈ Bcuc,sv,ψ. a can be visible or τ

Similar local states: σ =̂ σ̂

Protocol constraints: Pcuc,sv,ψ σ, L, (Γ, σ̂)
)
(see Figure 7)

Down-simulation:
∀ a σ′. a
= τ ∧ L(chan(a)) = free ∧ σ

a−→cuc σ′ =⇒
∃ Γ ′ σ̂′ ids idr L′. (Γ, σ̂) τc−→∗

sv
a−→sv (Γ ′, σ̂′) ∧ L′(chan(a)) = (ids, idr)un ∧

σ′, L′, (Γ ′, σ̂′)
) ∈ Bcuc,sv,ψ

∀ σ′. σ
τ−→cuc σ′ =⇒

∃ Γ ′ σ̂′ L′. (Γ, σ̂) τc−→∗
sv

τ−→sv (Γ ′, σ̂′) ∧ σ′, L′, (Γ ′, σ̂′)
) ∈ Bcuc,sv,ψ

Up-simulation:
∀(Γ ′, σ̂′). (Γ, σ̂) τc−→sv (Γ ′, σ̂′) =⇒ ∃ L′. σ, L′, (Γ ′, σ̂′)

) ∈ Bcuc,sv,ψ

∀ a (Γ ′, σ̂′). (Γ, σ̂) a−→sv (Γ ′, σ̂′) =⇒ ∃ σ′ L′. σ
a−→cuc σ′ ∧ σ′, L′, (Γ ′, σ̂′)

) ∈ Bcuc,sv,ψ

Unlocking-simulation:
∃ c ids. L(c) = (ids)un ∨ ∃ idr. L(c) = (ids, idr)un

)
=⇒

∃ Γ ′ σ̂′ L′. (Γ, σ̂) τc−→∗
sv (Γ ′, σ̂′) ∧ L′ = L(c := free) ∧ σ, L′, (Γ ′, σ̂′)

) ∈ Bcuc,sv,ψ

Fig. 6. Handshake refinement

particular sender, so we do not ignore different possible events, only the inter-
mediate states. The up-simulation relates transitions in SV to transitions in
CUC. τc events are related to zero transitions in CUC, all other events to one.
Finally, the unlocking-simulation ensures (under simple fairness) that, after
the communication has happened, the channel will be freed eventually. This
allows the down-simulation to only consider states, where the channel is free. In
the remainder of this paper, let Bcuc,sv,ψ denote a handshake refinement .

Figure 7 describes the protocol constraints Pcuc,sv ,ψ, which are specific to
the handshake protocol at hand. They also ensure that only SV states reachable
by protocol execution are included and that the lockstate reflects the current
progress of the protocol execution. The overall definition is that for every chan-
nel, if the lockstate is free, the belonging signals must be ⊥, and for each
component, the disjunction Pid

cuc,sv ,ψ must hold. The disjuncts describe triplets
(cuc, L, sv), providing sufficient conditions to the SV state (program counter and
channel related variables) and relating them to a CUC state (program counter)
via ψ with the appropriate lockstate. In Pid

cuc,sv ,ψ, the lockstate also “synchro-
nizes” the different components, i.e., excludes illegal state combinations. It fol-
lows a description of the disjuncts, from which we provide two formally.2

2 For a complete formal version we refer to our Technical Report [2].

314 N. Berg et al.

Pcuc,sv,ψ σ, L, (Γ, σ̂)
)
:= L(c)=free=⇒¬Γ (src)∧¬Γ (frc)

)∧∀ id.Pid
cuc,sv,ψ σ, L, (Γ, σ̂)

)
Pid

cuc,sv,ψ σ, L, (Γ, σ̂)
)
:= O∨D∨C∨S∨S1∨S2∨S3∨S4∨S5∨S4′∨S5′∨S6∨R∨R1∨R2∨R3

O, D, C Have a direct counterpart in CUC, channel variables are not a concern, id /∈ L
D do f instruction
C cbr
S At the beginning of send , id /∈ L

S1 Branch according to result of cas in S. If the component now has the mutex, than
also the signals must be inactive.

S2 From now on in this execution of the protocol, the id of the component is in the
mutex and in the lockstate.

S3 The data value to be communicated is in the shared variable.
S4 Start reading was set to 	 from S3 to S4. If the receiver did start, then start

reading will remain ⊥ from now on. In the first case the lockstate only contains the
sender, in the second also the receiver. The first row of the formula ensures, that
the SV state is mapped to a CUC state where the pc points to the appropriate comm.

(σid
pc, comms id c xs) ∈ cucid ∧ (σ̂id

pc, cas ssc frc 	 ⊥) ∈ sv id ∧ ψ(σid
pc) + 4 = σ̂id

pc

∧ Γ (mc) = id ∧ Γ (svc) = σ̂id
rs(xs) ∧ ¬Γ (frc)

∧ Γ (src) ∧ L(c) = idin ∨ ¬Γ (src) ∧ (∃ idr. L(c) = (id, idr)in)
)

S5 Branch back to S4, as the communication has not happened yet.
S4’ From now on, the communication already has happened. The lockstate is now set

to unlocking. Observe, that now the SV state is in a relation with the CUC state
that occurs after the communication. Therefore we need to substract 1 from the
pc of the SV state, to map with ψ to comm.

(σid
pc −1, comms id c xs) ∈cucid ∧ (σ̂id

pc, cas ssc frc 	 ⊥) ∈ sv id ∧ ψ(σid
pc −1) + 4 = σ̂id

pc

∧ Γ (mc) = id ∧ ¬Γ (src)
∧ Γ (frc) ∧ L(c) = idun ∨ ¬Γ (frc) ∧ (∃ idr.L(c) = (id, idr)un)

)
S5’ Branch according to the result of cas in S4’.
S6 The signals are ⊥, in the next step the mutex and the lockstate will be free.
R At the beginning of receive, id /∈ L

R1 Branch according to result of cas in R. If the component is now a receiver, both
sender and receiver ids are in the lockstate of the channel. The state of the signals
is already fixed in the disjunct of the sender where both are in the lockstate.

R2 The lockstate contains the sender and the receiver about to communicate.
R3 The lockstate still contains the sender and the receiver, but now about to unlock

the channel. The SV state is now in a relation with the CUC state after the
communication.

Fig. 7. Protocol restrictions

6 Preservation of Safety and Liveness Properties

In this section, we prove that our handshake refinement preserves safety and
liveness properties of the considered CUC program cuc to a fitting SV program
sv . This implies that sv only has behavior allowed by cuc (safety), and also
preserves the progress (liveness). To this end, we define traces and stable failures
semantics for both CUC and SV via an operational characterization and then

Preserving Liveness Guarantees 315

show the stable failures refinement between cuc and sv . First, we define traces
both for CUC and SV.

Definition 7 (Trace semantics). We write P
tr=⇒cuc/sv Q to describe that

there is an execution path from P to Q in cuc/sv, and during that execution the
visible events in tr occur exactly in that order. We call tr the trace from P to Q
over cuc/sv. Let T (P)cuc/sv be all traces starting in P over cuc/sv.

Not all possible SV states are legal in a handshake refinement , i.e., not all states
are reachable by execution of the handshake protocol. We consider SV states
(Γ0, σ̂0) as initial states, if all components of σ̂0 only point to the first instruction
of send or receive (or the second, which is cbr, if it jumps back) and all mutexes
are free and the signals are inactive (⊥). An empty lockstate in the handshake
refinement

(
σ0, ∅, (Γ0, σ̂0)

)
∈ Bcuc,sv,ψ implies those properties. Using induction

on the up-simulation, we can show that every trace in T (Γ0, σ̂0)sv leads to a
triplet in Bcuc,sv,ψ and the same trace is in T (σ0)cuc leading to the same triplet:

Lemma 1 (All sv traces and their cuc counterparts are in Bcuc,sv,ψ).(
σ0, ∅, (Γ0, σ̂0)

)
∈ Bcuc,sv,ψ ∧ (Γ0, σ̂0)

tr=⇒sv (Γ, σ̂)

=⇒ ∃ σ L′.
(
σ,L′, (Γ, σ̂)

)
∈ Bcuc,sv,ψ ∧ σ0

tr=⇒cuc σ

We can directly conclude the preservation of safety properties:

Theorem 1 (Preservation of safety properties).(
σ0, ∅, (Γ0, σ̂0)

)
∈ Bcuc,sv,ψ =⇒ T (Γ0, σ̂0)sv ⊆ T (σ0)cuc

Having shown that our handshake refinement preserves safety properties, we
proceed to show that it also preserves liveness properties. We capture liveness
properties using the notion of stable failures (inspired by CSP). To this end, we
define the notions of stable states and refusal sets to finally define the stable
failures, both for CUC and SV. We then show that the stable failures of sv are
included in the stable failures of cuc. Thus, all liveness properties from cuc are
preserved in sv . A state is stable if no internal transition is possible.

Definition 8 (Stable states in cuc). A state σ is stable in cuc (σ ↓cuc) if
all components either point outside the code, to comms, or to commr. Formally:
: σ ↓cuc := ∀ id.

(
� ∃ ins. (σ(id)pc, ins) ∈ cuc(id)

)
∨

:
(
∃ c. (σ(id)pc, comms id c xs) ∈ cuc(id) ∨ (σ(id)pc, commr id c xr) ∈ cuc(id)

)

Refusal sets and stable failures are defined similarly to their CSP counterparts.

Definition 9 (Refusal set in cuc). A state σ refuses a set of visible events
X in cuc, if it cannot perform any a ∈ X. Let X ⊆ Σ.
: σ refcuc X := ∀ a ∈ X. ¬

(
σ

a−→cuc

)

Definition 10 (Stable failures of cuc). A stable failure is a pair of a trace
tr and a refusal set X. It denotes that there is a stable state σ which can be
reached from the initial state init via the trace tr and refuses X.
: (tr,X) ∈ SFcuc(init) := ∃σ. init

tr=⇒cuc σ ∧ σ ↓cuc ∧ σ refcuc X

316 N. Berg et al.

Next, we define stable states, refusal sets, and stable failures for sv . The stable
states and failures are similar to the definitions for cuc. The refusal sets differ, as
they need to account for the invisible execution steps of the handshake protocol.

Definition 11 (Stable states in sv). A state (Γ, σ̂) is stable in sv ((Γ, σ̂) ↓sv)
if all components either point outside the code or to the first instruction of send
or receive. Formally:
: (Γ, σ̂) ↓sv := ∀ id.

(
� ∃ ins. (σ̂(id)pc, ins) ∈ sv(id)

)
∨

:
(
∃ c. (σ̂(id)pc, cas mc free id) ∈ sv(id) ∨ (σ̂(id)pc, cas src � ⊥) ∈ sv(id)

)

The stable states in sv coincide with the stable states in cuc (pointing to comms,
commr or outside of the code). They can neither make a visible event step nor
a τ step, but might be able to make a τc step. As the visible event (i.e. read)
occurs only in the middle of the execution of the handshake protocol, a finite
number of τc-steps is allowed before the visible event to consider it “enabled”.
Assuming fairness, i.e., at any point for any component, there is a finite number
of steps after which the component will make a step, possible communication
happens after a finite number of τc-steps. Conversely, if communication is not
possible, i.e., a deadlock occurs in the synchronous setting, the implementation
of the handshake protocol will stay in a busy loop, thus the visible event is not
reachable.

Definition 12 (Refusal set in sv). A state refuses a set of visible events in
sv, if they are not reachable after a finite number of τc steps. Let X ⊆ Σ.
: P refsv X := ∀ a ∈ X. ¬

(
P

τc−→∗
sv

a−→sv

)

Definition 13 (Stable failures of SV) A stable failure is a pair of a trace
tr and a refusal set X. It denotes that there is a stable state (Γ, σ̂) which can be
reached from the initial state init via the trace tr and refuses X.
: (tr,X) ∈ SFsv(init) := ∃(Γ, σ̂). init

tr=⇒sv (Γ, σ̂) ∧ (Γ, σ̂) ↓sv ∧ (Γ, σ̂) refsv X

To show the preservation of liveness properties, we first show two lemmas: That
stable states in sv imply stable states in cuc, and the key lemma, that refusals
of sv imply refusals of cuc.

Lemma 2 (Stable states in sv imply stable states in cuc and L = ∅).
:

(
σ,L, (Γ, σ̂)

)
∈ Bcuc,sv,ψ ∧ (Γ, σ̂) ↓sv =⇒ σ ↓cuc ∧ L = ∅

Proof. As Bcuc,sv,ψ is a handshake refinement , Pcuc,sv ,ψ

(
σ,L, (Γ, σ̂)

)
holds. In

Pcuc,sv ,ψ the cases where (Γ, σ̂) ↓sv holds imply σ ↓cuc and L = ∅.

Lemma 3 (Refusals in sv imply refusals in cuc).
:

(
σ,L, (Γ, σ̂)

)
∈ Bcuc,sv,ψ ∧ (Γ, σ̂) ↓sv =⇒ (Γ, σ̂) refsv X =⇒ σ refcuc X

Proof. Using Lemma 2, we can apply the down-simulation.3

3 A more detailed proof can be found in our Technical Report [2].

Preserving Liveness Guarantees 317

Theorem 2 (Preservation of liveness properties).
:

(
σ0, ∅, (Γ0, σ̂0)

)
∈ Bcuc,sv,ψ =⇒ SFsv(Γ0, σ̂0) ⊆ SFcuc(σ0)

Proof. Using the Lemmas 1, 2, and 3. (See Footnote 3)

Corollary 1 (Liveness properties without sender ID). An adaption of
the handshake protocol given in Fig. 3, where in the mutex only taken is stored
instead of the sender id, also preserves all safety and liveness properties.

Proof. As the behavior of the protocol does not depend on the sender id being
stored in the mutex, only whether the mutex is free or not, the behavior of
the original and adapted protocols is the same, thus also the same properties
are preserved. Note that the information about the sender is only needed for the
proofs to reconstruct who the sender was, when the receiver reads the value. ��

7 Handshake Refinement for Fitting Programs

In this section, we show that any cuc program and fitting sv program are in
a handshake refinement relation. More specifically, we show that all sensible
initial states are in a handshake refinement relation. This general theorem allows
for a scalable approach to the verification of shared variable communication.
The proof sketch can be found in [2] and is similar to bisimilarity proofs: all
possible transitions of one part can be answered by its counterpart. An important
difference is that the down-simulation needs to be shown (“has to answer”) only
in stable states, due to it being a refinement and not a bisimulation.

Theorem 3 (Fitting implies handshake refinement). Let sv be a program
fitting cuc with ψ. Then there is a handshake refinement Bcuc,sv,ψ containing
all initial pairs, i.e., similar CUC and SV states where the program counters of
each component match with ψ, all mutexes in Γ are free, all signals inactive.

As the handshake refinement implies preservation of safety (Theorem 1) and
liveness (Theorem 2) properties, we can now conclude with Theorem 3, that all
fitting programs preserve safety and liveness properties:

Theorem 4 (Fitting implies preservation). Let sv be a program fitting cuc
with ψ. Then all safety and liveness properties from cuc are preserved to sv.

8 Conclusion

In this paper, we have presented a method to relate abstract synchronous com-
munication with an asynchronous handshake implementation using shared vari-
able communication and have proved that this relation preserves safety and
liveness properties. To this end, we have introduced our novel notion of hand-
shake refinement , which is similar to strong bisimulation, apart from the protocol
implementation, which is a refinement. It explicitly captures the state of progres-
sion through the executions of the implementations of the protocol. Moreover,

318 N. Berg et al.

we have proved in the general Theorem 4, that all pairs of CUC and SV pro-
grams, where the SV program results from the CUC program by replacing the
abstract communication instructions with their handshake implementation, have
the same safety and liveness properties. Together with a compositional method
to show safety and liveness properties for CUC programs [8], we have a composi-
tional framework to prove the preservation of safety and liveness properties from
abstract specifications in CSP to down to low-level code, including asynchronous
communication mechanisms.

Although we have presented our method for a concrete (handshake) pro-
tocol, it provides the foundation for a more generalized notion of relations
between abstract synchronous and concrete asynchronous communication based
on other communication/synchronization protocols. The presented protocol can
be divided into four phases (which match with the four non-FREE lockstates):
(1) registration, (2) before communication, (3) after communication, (4) unreg-
istration. This is also the structure the handshake refinement relies upon. As the
presented handshake protocol is intentionally simple, the phases are very short.
Our approach can be extended to other protocols that fit in those four phases,
e.g. to verify a protocol which supports a “selection on channels” (external choice
in CSP). This “selection”, i.e. finding a channel with a present communication
partner, would happen in phase 1. This way, not only input guards, but also
output guards could be supported. Overall, we have shown the preservation of
liveness properties using the stable failures model. This does not consider live-
locks (divergences). However, as the related CUC and SV programs are the same
outside of the protocol implementation and jumps do not occur into our out
of the protocol implementation, no livelocks are introduced. Inside the protocol
implementation, livelocks in SV are only introduced when unsuccessfully waiting
for a communication partner, in which case the CUC program was deadlocked,
so no progress is eliminated.

In future work, we plan to investigate relations similar to the handshake
refinement for different communication protocols. We are currently working
on formalizing the entire presented approach in the interactive theorem prover
Isabelle/HOL to guarantee the correctness of proofs and to enable the reusability
of the formalization, e.g. for other protocols.

References

1. Basu, S., Bultan, T., Ouederni, M.: Synchronizability for verification of asyn-
chronously communicating systems. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI 2012. LNCS, vol. 7148, pp. 56–71. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-27940-9 5

2. Berg, N., Göthel, T., Glesner, S., Danziger, A.: Technical report accompanying:
preserving liveness guarantees from synchronous communication to asynchronous
unstructured low-level languages. DepositOnce (2018). https://doi.org/10.14279/
depositonce-7192

3. Brookes, S.D.: On the relationship of CCS and CSP. In: Diaz, J. (ed.) ICALP 1983.
LNCS, vol. 154, pp. 83–96. Springer, Heidelberg (1983). https://doi.org/10.1007/
BFb0036899

https://doi.org/10.1007/978-3-642-27940-9_5
https://doi.org/10.1007/978-3-642-27940-9_5
https://doi.org/10.14279/depositonce-7192
https://doi.org/10.14279/depositonce-7192
https://doi.org/10.1007/BFb0036899
https://doi.org/10.1007/BFb0036899

Preserving Liveness Guarantees 319

4. Broy, M., Olderog, R.: Trace-oriented models of concurrency. In: Handbook of
Process Algebra, chap. 2. Elsevier (2001)

5. de Frutos-Escrig, D., Gregorio-Rodŕıguez, C.: Process equivalences as global bisim-
ulations. JUCS 12(11), 1521–1550 (2006)

6. Gardner, W.B.: Bridging CSP and C++ with selective formalism and executable
specifications. In: Proceedings of the MEMOCODE 2003, p. 237. IEEE (2003)

7. Jähnig, N., Göthel, T., Glesner, S.: A denotational semantics for communicating
unstructured code. In: Proceedings of the FESCA 2015. EPTCS, vol. 178, pp. 9–21
(2015)

8. Jähnig, N., Göthel, T., Glesner, S.: Refinement-based verification of communicating
unstructured code. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763,
pp. 61–75. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8 5

9. Peeters, A.: Implementation of handshake components. In: Abdallah, A.E., Jones,
C.B., Sanders, J.W. (eds.) Communicating Sequential Processes. The First 25
Years. LNCS, vol. 3525, pp. 98–132. Springer, Heidelberg (2005). https://doi.org/
10.1007/11423348 7

10. Rensink, A., Gorrieri, R.: Action refinement as an implementation relation. In:
Bidoit, M., Dauchet, M. (eds.) CAAP 1997. LNCS, vol. 1214, pp. 772–786.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0030640

11. Roscoe, A.W.: Understanding Concurrent Systems. TCS. Springer, London (2010).
https://doi.org/10.1007/978-1-84882-258-0

https://doi.org/10.1007/978-3-319-41591-8_5
https://doi.org/10.1007/11423348_7
https://doi.org/10.1007/11423348_7
https://doi.org/10.1007/BFb0030640
https://doi.org/10.1007/978-1-84882-258-0

Deriving Mode Logic for Autonomous
Resilient Systems

Inna Vistbakka1(B), Amin Majd1, and Elena Troubitsyna1,2

1 Åbo Akademi University, Turku, Finland
{inna.vistbakka,amin.majd}@abo.fi

2 KTH, Stockholm, Sweden
elenatro@kth.se

Abstract. Ensuring system resilience – dependability in presence of
changes – is a complex engineering task. To achieve resilience, a system
should not only autonomously cope with non-deterministically chang-
ing internal state and external operating conditions but also proactively
reconfigure to maintain efficiency. To facilitate structuring and verifying
such complex system behavior, in this paper, we demonstrate how to
derive resilience-enhancing mode transition logic from the goals that the
system should achieve. Our approach is formalised in Event-B that allows
us to reason about resilience mechanisms at different architectural levels.
We illustrate the proposed approach by an example – safe and efficient
navigation of a swarm of drones.

1 Introduction

Resilience [6] is an ability of a system to deliver its services in a trustworthy
way despite changes. Often resilience is reasoned about using the notion of goals
– functional and non-functional objectives that a system should achieve [5].
Resilience can be seen as an ability of a system to reach its functional goals or
maintain a required level of satisfaction of non-functional goals (e.g., efficiency).

A resilient system should autonomously, i.e., without a human intervention,
recognise the changes, evaluate their impact on reachability and degree of satis-
faction of goals and adapt. The adaptation process, either triggered by failures
of system components or external changes, usually requires complex component
coordination and system reconfiguration. Due to highly non-deterministic nature
of the system and a large number of components (especially in such autonomous
systems as swarms of drones), ensuring correctness of component interactions
and the overall system resilience is a challenging and error-prone task.

In this paper, we propose an approach to a formal development of resilient
autonomous systems. Our approach allows a developer to derive a resilience-
enhancing mode logic in a structured disciplined way. We use modes [7] as a main
mechanism to structure system behaviour. The goals, which the system should ful-
fil, serve as a basis for defining the mode transition logic. We formally define reach-
ability conditions for functional goals and degree of satisfaction of non-functional
ones. Changes in complying to these conditions trigger mode transitions.
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 320–336, 2018.
https://doi.org/10.1007/978-3-030-02450-5_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_19&domain=pdf

Deriving Mode Logic for Autonomous Resilient Systems 321

We consider distributed autonomous systems that are composed of asyn-
chronously communicating heterogeneous components – agents. Each agent has
certain capabilities. Our goal reachability and degree of satisfaction conditions
are defined as corresponding functions over the agent capabilities.

Since mode transitions, in general, incur complex agent coordination and sys-
tem reconfiguration, we need a formal structured approach to ensure correctness
of mode transition logic. In this paper, we rely on Event-B [1] – a state-based
approach to correct-by-construction system development to specify and verify
mode logic. We propose a specification pattern for modelling mode transitions
triggered by changes in reachability and degree of satisfaction conditions.

The main development technique of Event-B – refinement – supports step-
wise construction and verification of complex specifications and allows us to
iteratively use the proposed pattern at different architectural levels. In the refine-
ment process, a high-level abstract specification is incrementally augmented to
unfold the entire multi-layered architecture and coordination between the com-
ponents at different levels of architectural hierarchy. The approach is illustrated
by an example – development of a resilient swarm of drones. Abstraction, refine-
ment and proofs as well as automated tool support allow us to scale the formal
development to such complex autonomous systems.

2 Modelling and Refinement in Event-B

Event-B is a state-based formal approach that promotes the correct-by-
construction development paradigm and formal verification by theorem proving.
In Event-B, a system model is specified using the notion of an abstract state
machine [1]. An abstract state machine encapsulates the model state, repre-
sented as a collection of variables, and defines operations on the state, i.e., it
describes the dynamic behaviour of a modelled system. The important system
properties to be preserved are defined as model invariants. A machine usually
has the accompanying component, called context. A context may include user-
defined carrier sets, constants and their properties (defined as model axioms).

The dynamic behaviour of the system is defined by a collection of atomic
events. Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, and (the event guard)
Ge is a predicate over the model state. The body of an event is defined by
a multiple (possibly nondeterministic) assignment to the system variables. In
Event-B, this assignment is semantically defined as the next-state relation Re.
The event guard defines the conditions under which the event is enabled, i.e.,
its body can be executed. If several events are enabled at the same time, any of
them can be chosen for execution nondeterministically.

Event-B employs a top-down refinement-based approach to system develop-
ment. A development starts from an abstract specification that nondeterminis-
tically models the most essential functional system behaviour. In a sequence of

322 I. Vistbakka et al.

refinement steps, we gradually reduce nondeterminism and introduce detailed
design decisions. In particular, we can add new events, refine old events as well
as replace abstract variables by their concrete counterparts.

The consistency of Event-B models – verification of model well-formedness,
invariant preservation as well as correctness of refinement steps – is demonstrated
by discharging the relevant proof obligations. The Rodin platform [17] provides
tool support for modelling and verification. In particular, it automatically gen-
erates all required proof obligations and attempts to discharge them. When the
proof obligations cannot be discharged automatically, the user can attempt to
prove them interactively using a collection of available proof tactics.

3 Resilience-Enhancing Mode Transition Logic

To achieve resilience, an autonomous system should be able to adapt to non-
deterministically changing internal state and external operating conditions. In
our work, we study reconfigurability as an essential mechanism of achieving
resilience of autonomous distributed systems. Since the collaborative aspect of
the component behaviour is important for our study, we adopt the agent-based
approach, i.e., we consider the system components as agents and the overall
system as a multi-agent system [10], correspondingly.

Agents are autonomous heterogeneous components that asynchronously com-
municate with each other. Each agent has a certain functionality within a sys-
tem and contributes to achieving system goals. Goals are the functional and
non-functional objectives of a system [5]. Goals constitute suitable basics for
reasoning about the system behaviour and its resilience. Resilience can be seen
as a property that allows the system to progress towards achieving its functional
goals or maintain a required level of satisfaction of non-functional goals.

The goal-oriented framework provides us with a suitable basis for reasoning
about reconfigurable autonomous systems. We formulate reconfigurability as an
ability of agents to redistribute their responsibilities to ensure goal reachability or
contribute to goal satisfaction. Next we discuss how notions of goals and agents
can be used to reason about behaviour of an autonomous resilient system.

3.1 Reasoning About Resilience-Enhancing Mode Transitions

We assume that there is a number of main (global) goals defined for the system.
Let G = {G1 ,G2 , . . . ,Gn} be a set of functional and non-functional goals that
system should achieve. Goals can be decomposed into a subset of corresponding
subgoals and organised hierarchically. In general, the goals can be independent
and might even be seen as conflicting.

The system consists of a number of agents (components, in general). Let
A = {a1 , a2 , , . . . , am} be a set of system agents. To contribute to goal achieve-
ment, the agents have to utilise their capabilities. Let C = {c1 , c2 , , . . . , ck} be
a set of all agent capabilities. Then, for each agent, we can define the set of its
capabilities as a structure AC – agent capabilities – with the following property:

∀ ai : ai ∈ A ⇒ AC (ai) ⊆ C .

Deriving Mode Logic for Autonomous Resilient Systems 323

Agent failures make their capabilities unavailable. In the similar way, the changes
in the operating environment might prevent an agent from utilising its capabil-
ities. Thus agent capabilities AC is a dynamic structure, i.e., during system
execution a set of current agent capabilities can vary.

Based on their capabilities, the agents perform the tasks contributing to
achieving the system goals. To associate such goals with the agent capabilities, we
define a logical function GC – goal reachability function over agent capabilities:

GC ∈ T × G × C → BOOL.

For every goal Gi ∈ G this function determines whether or not a certain capa-
bility ci ∈ C is required to achieve this goal Gi .

In general, a number and types of capabilities can vary depending on sys-
tem needs and overall goals. The examples of capabilities include “an ability
to collect data” or “an ability to send data”. As a result of agent failures or
change in operational conditions, some agent capabilities might become unavail-
able. “Degradation” of any agent capability might also slow down or aggravate
the goal achievement or goal maintenance process.

To detect any changes in overall goal achievement, we also introduce a fitness
function GS – goal satisfaction function – that evaluates the level (degree) of
the goal achievement during system functioning:

GS ∈ T × G × C → REAL.

This function is also dynamic, i.e., its value depends on time and current available
capabilities of agents that can vary during system execution.

A decrease in goal satisfaction function as well as changes of logical goal func-
tion indicate hindering achieving the desired system goals. To achieve resilience,
a system should monitor its goals and reconfigure to maintain the required level
of goal satisfaction. In our work we propose to use modes as the main mechanism
for structuring the behaviour of the system [7]. Modes define coarse-grained rep-
resentation of system behaviour. Changes in system states trigger a change of a
mode – a mode transition. In our work, we propose to connect the states of the
system agents with the goals and trigger a mode transition every time when the
level of satisfaction of system goals changes. Thus the goals, which the system
should fulfil, serve as a basis for defining the mode transition logic.

To achieve resilience, the system architecture should contain a monitor for
detecting internal and external changes and evaluating their impact on the logical
goal function or goal satisfaction function. As a result of impact evaluation, a
mode transition might be triggered. We say that a mode transition is triggered
whenever the following condition (*) holds:

(GC (t1 ,Gi , ci) = TRUE ∧ GC (t2 ,Gi , ci) = FALSE) ∨
(GS (t2 ,Gi , ci) < GS (t1 ,Gi , ci)),where t1 < t2 . (*)

Naturally, the condition (*) serves as a condition on a mode transition: when a
logical goal condition on the required capability for a goal has been broken or

324 I. Vistbakka et al.

a degree of goal satisfaction lowered from the previous monitored cycle, mode
transition is triggered.

In case of a logical goal condition violation (first part of (*)), a transition
to the nominal mode, will be triggered as soon as the logical goal condition on
capability will be re-established. In its turn, when the goal satisfaction function
again reaches the necessary (desired) level the transition back, to the nominal
mode, will be triggered.

As discussed earlier, we consider reconfiguration to be the essential mecha-
nism of achieving resilience of autonomous systems. It is triggered by the corre-
sponding mode transition. The reconfiguration is based on reallocation of respon-
sibilities between agents to ensure that the healthy (i.e., operational) agents can
either substitute the failed ones or be utilised more efficiently to partially cover
up for them. Obviously, reconfiguration requires a sophisticated agent coordina-
tion. To reason about correctness of agent coordination, we propose an Event-B
specification pattern for modelling mode transitions triggered by changes in goal
reachability and degree of satisfaction conditions.

3.2 Modelling Mode Transitions in Event-B

To derive a mode-structured coordination scheme for an autonomous resilient
system, we rely on formal modelling in Event-B. We represent the introduced
above notions and definitions in terms of the corresponding Event-B elements.
Then we derive a generic specification pattern that can be used to model
resilience mechanisms at different levels of abstraction.

Event-B separates the static and dynamic parts of a model, putting them into
distinct yet dependent components called a context and a machine. All the static
notions of our reasoning include the set of all possible goals, agents and capa-
bilities (G , A and C , respectively) as well as different static structures defining
various interdependencies between elements. The latter include (initial) values
for agent capabilities, logical goal function on capabilities and goal satisfaction
function (AC init, GC init and GS init, correspondingly). We introduce static
notions as sets and constants of a model context and define their properties as
a number of context axioms. The corresponding context is presented in Fig. 1.

Context ARSystem cnt

Sets G,A,C ,MODES , ...

Constants AC init,GC init,GS init, ...

Axioms
...
axm4: G �= ∅

axm5: A �= ∅

axm6: C �= ∅

axm7: AC init ∈ A → P(C)
axm8: GC init ∈ G × C → BOOL
...

Fig. 1. A generic structure of the specification pattern: context part

Deriving Mode Logic for Autonomous Resilient Systems 325

Machine ARSystem Abs Sees ARSystem cnt

Variables mode,AC,GC,GS prev,GS, status, ...

Invariants mode ∈ MODES ∧ AC ∈ A → P(C) ∧ GC ∈ G × C → BOOL ∧ ...

Events ...

AgentFailure ̂ noitcetederuliaftnega//=
any ai, ci
where ai ∈ A ∧ ci ∈ AC(ai) ∧ ...
then AC(ai) := AC(ai) \ {ci} || GC(gi, ci) := FALSE
end

ModeTransition ̂ edomnoitarugfinocercirenegaotnoitisnart//=
any ai, ci, gi
where mode=NOM ∧

(GC init(gi, ci) = TRUE ∧ GC(gi, ci) = FALSE) ∨ GS(gi, ci) < (GS prev(gi, ci)) ∨ ...

then mode:=RECONF
end

RestoreCapability =̂ // scheme of reconfiguration
any ai, gi, ci
where mode=RECONF ∧ (GC(gi, ci) = FALSE ∧ GC init(gi, ci) = TRUE)...
then AC(ai) := AC(ai) ∪ {ci} || GC(gi, ci) := TRUE
end

NominalModeTransition ̂ edomlanimonehtotkcabnoitisnart//=
any gi, ci
where mode=RECONF ∧ (GC init(gi, ci) = GC(gi, ci) ∧ GS prev(gi, ci) ≤ GS(gi, ci))...
then mode:=NOM
end

Fig. 2. A generic structure of the specification pattern: machine part

The system dynamics is modelled by the events in the machine of the Event-
B specification. The related notions – logical goal function and goal satisfaction
function, the mode transition conditions, mode transitions, agent failures etc. –
are represented as model variables, invariants, predicate expressions, or specific
events. GC and GS can be represented as the system variables whose values
might be changed during system functioning modelled as an execution of events.
The general structure of the abstract Event-B specification is shown in Fig. 2.

To model possible agent failure and, as a consequence, the loss of some agent
capability, we define an event AgentFailure. This event models non-deterministic
failure of ai agent. As a result of an event execution, a capability ci will be lost.
When the monitored component detects such a change as violation of logical goal
function, it triggers a dedicated mode transition. This behaviour is specified by
an event ModeTranstion. Here, in the event guard, we formulate a condition on
the event to fire (this condition is based on the logical expression (*) with small
modifications). We check that the capability ci, required to accomplish a goal
gi, is not available any more (or, in general, the level of fitness function has
been decreased). We store the current value for goal satisfaction function in GS
variable, while its previous value in the variable GS prev. Then RestoreCapability
and NominalModeTransition events model a simple case of agent reconfiguration
(as a restoring of the lost capability) and a transition back to the Nominal mode.

Let us note that in this specification pattern we consider a simple case of
reconfigurability – when an agent is able to restore its capability by itself (e.g.,
restoring communication after a transient communication failure). In more com-
plex cases (as we will discuss in Sects. 4 and 5), reconfiguration can be based on
agent cooperation, and might involve changes in relationships between agents.

326 I. Vistbakka et al.

The presented design Event-B pattern only reflects the main concepts of the
goal-based mode transition logic and represents generic modelling solutions that
can be reused in the development of resilient autonomous systems. In the next
section we demonstrate how to derive mode transition logic using the proposed
approach for a swarm of drones. Further, in Sect. 5, we present its Event-B
development relying on the generic specification pattern described above.

4 Autonomous Swarm-Based System

The swarms of drones are increasingly used for surveillance, shipping, rescue etc.
A swarm is a group of drones that, in a coordinated manner, executes a mission.
For instance, a mission can be “video surveillance of a certain area”. A video
surveillance mission can be represented by a (generic) goal:

G1 : Periodically send the images covering certain sectors of the monitored area.
For a swarm of drones, we can identify the following generic subgoals con-

tributing to achieving the overall goal G1 :
G2 : Produce the payload data (e.g., images) with the required quality level.
G3 : Guarantee survivability of drones allowing them to complete the mission.

To achieve G3 , we have to ensure that the following subgoals are satisfied:
G4 : The drones do not prematurely deplete their batteries, i.e., they are navi-
gated in an efficient way.
G5 : The drones do not collide with each other and static obstacles.
G6 : The drones do not collide with the unforeseen dynamically appearing objects.

The goals are interdependent and might even be seen as conflicting, e.g.,
the travel distance has to be increased to guarantee safety and produce the
payload data of the required quality. Hence, the controlling software should rely
on sophisticated coordination mechanisms to ensure that all the goals remain
satisfiable thought the mission execution.

The system architecture is presented in Fig. 3. The decision center (DC) – is
an intelligent component which is responsible for generating the efficient naviga-
tion strategies according to the mission goals and preventing unsafe behaviour,
i.e., it navigates the drones to avoid collisions with each other and static obsta-
cles. DC runs high-performance machine learning and evolutionary algorithms
proposed in our previous work [8,9]. They allow us to safely navigate the drones
and optimise travel distance, resource consumption and quality of payload data
ratio. The algorithms ensure inter-drone and drone-obstacle collision avoidance.

At each cycle DC receives the payload (e.g., imaging) and telemetry data
from the swarm and processes this information and if required, generates a new
routing for the swarm. The information obtained from the Dynamic Monitoring
component allows DC to detect the changes in the drone swarm and in the flying
zone. Such changes may invoke swarm reconfiguration and regeneration of the
drone routes.

The Navigation Centre (NC) communicates with the drones by sending them
the flying plan received from DC. In their turn, the drones periodically send their

Deriving Mode Logic for Autonomous Resilient Systems 327

Fig. 3. Overview of a system architecture

payload and telemetry data (current status, position, battery level, etc.) to NC,
which packages them, (sometimes) preprocesses and forwards to DC.

Drones communicate with NC and each other in order to achieve their indi-
vidual and common goals. Since communication with NC is typically long range,
it consumes significant energy. To alleviate the problem of fast energy depletion,
the swarm of the drones can be organised hierarchically and form a tree-structure
depending on its different capabilities: more powerful drones – the leaders and
less powerful drones – the slaves – that communicate with their leaders using less
power consuming means. Moreover, we distinguish a sink drone – a dedicated
leader drone – what besides area monitoring tasks transmits data between NC
and drones at the leader level. The drones of the leader level send data to the
sink. Each leader has a number of slave drones and periodically gathers infor-
mation from its corresponding slaves. Finally, drones of the slave level exchange
information with their leaders and receive new commands. Since some drones
might change their predefined routes or even fail, to maintain an efficient drone
configuration, at each cycle DC assesses the current state of the swarm and
might reconfigure the tree.

Moreover, each drone (at any level) has its own local collision avoidance
mechanism – drone reflexes computation module – a module that overrides the
goals received from DC and commands a drone to move away when a camera or
radar of a drone detects an obstacle. When a drone detects a possible collision
with an unforeseen obstacle, the reflexes computation module quickly computes
a reflex movement for a drone to prevent or mitigate the collision.

The top-most layer – DC – is responsible for achieving goals G3–G5 , i.e., it
controls the swarm to ensure quality, efficiency and implement preventive safety.
The on-board drone software is responsible for satisfying goal G2 and G6 , in
the latter case implementing defensive safety.

Next we discuss the coordination of drones and their collaborative behaviour
as well as the resilience aspect of controlling the swarm of drones.

328 I. Vistbakka et al.

4.1 Mode Transition Logic for a Swarm of Drones

Before deriving a mode transition logic for the discussed swarm of drones using
the approach presented in Sect. 3, let us now describe the capabilities of drones
of the different levels:

– The drones of the slave level have the capabilities to:
• collect data from the assigned sectors of the monitored area;
• send the collected data and house keeping data to the next drone level.

– The drones of the leader level have capabilities to:
• collect data from the assigned sectors of the monitored area;
• aggregate data received from the slave drone level;
• send all collected data to the sink level.

– Finally, the sink drone has capabilities to:
• collect data from the assigned sectors of the monitored area;
• aggregate data received from the drones of the leader level;
• send all collected data to NC.

Such capabilities allow a drone of any layer to achieve its goals and contribute
to the overall goal achievement and maintenance. However, failures of the drones,
communication loss as well as changes in the operating environment affect the
level of satisfaction of the system goals as discussed in Sect. 3.

In nominal situation (called Nominal mode), the drones fly according to the
plan issued by DC. Upon receiving new commands from DC the drones change
their current routes and perform reconfiguration if it is commanded by DC. In
this case, reconfiguration means that logical relationships between the drones
(i.e., sink-leader and leader-slave relationships) might be changed according to
a new update of a drone tree structure recalculated by DC.

Next we will analyse the factors affecting the goal satisfaction and define the
corresponding mode logic that allows the system to achieve the overall system
goals despite failures and deviations.

Appearing an Unpredictable Obstacle. Unpredictable obstacles appearing
in a drone flying zone might prevent a drone from achieving the goal G6. Thus,
when a drone detects a possible collision with an unforeseen obstacle, the mon-
itoring component evaluates the goal satisfaction function and issues a transi-
tion to the Reflection Activation mode. The drone reflexes computation module
quickly computes a reflex movement for a drone to prevent and mitigate the col-
lision. After the collision is avoided, the goal satisfaction function is recalculated
and a transition to the Nominal mode is triggered.

Local Communication Failure. Each drone has capabilities to identify its
local communication failure. Communication failure might prevent a drone from
achieving the goal G2. When a drone detects such a failure, the goal satisfaction
function is recalculated and a transition to the Local Communication Failure
mode is triggered. Upon this transition, every drone should move to reconnect
with NC and reunite with a swarm. This is a self-triggered mode transition, i.e.,
the drones perform it independently upon detection of a failure. When a drone

Deriving Mode Logic for Autonomous Resilient Systems 329

re-establish connection with a swarm, satisfaction function will be recalculated
and a transition to the Nominal mode is triggered.

Slave Failure. A slave failure prevents a drone from achieving the goal G2.
Upon detection a slave failure (by the corresponding leader drone), the satis-
faction function is recalculated and the Slave Failure mode is triggered. This is
a local leader-triggered mode transition meaning that it does not affect other
drones. The leader drone tries to re-establish connection with the failed slave
drone within the time bound period and, in case of unsuccessful outcome con-
siders this slave as failed. Further, the health status of every slave will be trans-
mitted to the sink drone and finally will reach DC. Let us note, that if the failed
slave was a candidate for the next leader then the new candidate is recalculated.

Leader Failure. In case of a leader failure (that affects achieving G2),
detectable by the sink drone, the sink should trigger the Leader Failure mode
transition. The corresponding reconfiguration procedure is performed to substi-
tute the failed leader by the predefined slave of the failed leader.

Sink Failure. NC is able to identify the health status of the sink drone. In case
of a sink failure, the satisfaction function will be recalculated and NC triggers a
transition to the Sink Failure mode. A sink failure can have severe consequences
and might prevent a system from achieving all G1–G6 goals. The reconfigura-
tion is triggered to substitute the failed sink by the predefined leader. In this
case, NC retransmits the DC commands to the “new” sink. Moreover, if the
leader drones detect a sink failure before NC does, all healthy leaders should
issue the commands to its corresponding slaves to slow down the flying speed.

Despite the small number of modes, the mode logic is complex due to the
highly non-deterministic nature of the conditions triggering mode transitions.
Ensuring correctness of coordinated behaviour of a collaborative swarm of drones
is a challenging engineering task. To approach it in a systematic rigorous way,
we rely on Event-B and its main development technique – refinement. In the
next Sect. 5, we will demonstrate how to derive and verify properties of the
multi-layered drone coordination in a structured rigorous way.

5 Formal Development of a Resilient Swarm of Drones

In this section, we outline the formal development of the coordinated mode logic
for the discussed swarm of drones in Event-B. The full development can be found
in [21]. We start from specifying the high-level general requirements and unfold
the entire coordination logic in the refinement process.

Abstract Model. The initial model represents the global control cycle spanning
over all layers of the architecture shown in Fig. 4. At each cycle, DC analyses the
telemetry data and either maintains the previously calculated routing or generate
a new one. The routing commands are transmitted from DC to NC and then
from NC to the sink. Next, the sink broadcasts the received information to all
the drones at the leader level. In its turn, upon receiving commands from the
sink each leader further distributes the commands to its corresponding slaves.

330 I. Vistbakka et al.

Fig. 4. System layered architecture

Once per cycle, the collected information about the monitored area and
housekeeping data (e.g., battery level) are sent by slaves to their correspond-
ing leaders. When all the required information is gathered by the leaders, they
transmit data to the sink. Then the sink drone sends this information to NC and,
NC forwards it to DC. DC analyses the received data and, if it is needed, issues
the new commands to the drones as well as triggers the drone reconfiguration.

Next we refine the abstract model to represent the coordination required to
model mode transitions in all possible nominal and off-nominal situations and
the corresponding data flow.

Introducing Drones and Drone Failures. In our first refinement, we intro-
duce a representation of the behaviour of the system components, in particular,
we augment the specification by representation of drones and their failures. We
model the impact of such failures on the system dynamics and resilience. In this
case, reconfiguration would involve changing the relationships between drones
(at every layer) in order to optimise routing, coverage, energy and safety ratio.

We distinguish the permanent drone failure (e.g., due to a physical drone
damage) and transient drone failure (e.g., due to loss of communication). If
a transient failure occurred then after some time a drone (of any layer) can
restore the connection with the swarm and continue to function. This behaviour
is modelled by the transition to the Local Communication Failure mode and
then returning back to the Nominal mode.

In the case of a permanent drone failure (of any layer), the corresponding
drone of the upper layer or NC will detect this failure and, eventually, DC
will be notified about the loss in the swarm. In this case, the transition to the
corresponding Sink Failure, Leader Failure or Slave Failure mode is triggered.

In case of a leader failure, as a part of reconfiguration, some predefined slave
drone associated with the failed leader will become a new leader. When the other
leaders detect a failure of a leader, they send the corresponding commands to
their slaves to slow down their speed of the flying, until the new commands
from the DC will be issued. The scheme of the leader failure reconfiguration is
presented in Fig. 5.

Deriving Mode Logic for Autonomous Resilient Systems 331

Fig. 5. Leader failure

As a result of a transition to the Sink Failure mode, reconfiguration of the
system is also activated. Namely, the predefined leader drone becomes a new sink
and the predefined slave drone replaces it by becoming a leader. The impact of
the sink failure on the system architecture is represented in Fig. 6.

To model the behaviour described above, we refine our initial model by intro-
ducing a number of new variables, events and refining some abstract events. In
particular, we define variables to specify the set of all drones, leaders and slaves
and the sink drone (by corresponding variables drones, leaders, slaves, sink):

{sink} ∪ leaders ∪ slaves = drones, drones ⊆ SWARM .

Here the swarm is represented by a finite non-empty set of drones SWARM . It
can be seen as a set that contains the ids of all drones in the swarm.

The new variable slaves of leaders established the relationship between a
leader and slaves it supervises:

slaves of leaders ∈ leaders → P(slaves).

To model the health state of the drones, we introduce a variable status. It is
defined as a function:

status ∈ drones → STATUSES ,

where STATUSES is a set consisting of the constants OK , FAILED and
DISCON representing correspondingly the nominal, failed and disconnected

Fig. 6. Sink failure

332 I. Vistbakka et al.

drone status. In the system implementation, the decision about the drone status
is made on the basis of the analysis of the currently received telemetry data and
the routing plan. Let us note that we intentionally introduce statuses instead of
modelling drones capabilities. Such an abstraction of drone statuses allows us to
avoid introducing all drones capabilities of the different layers and to have only
three states covering all the cases that might effect goal achievement.

Performing this refinement step we apply our modelling pattern proposed in
Sect. 3. A number of new events are introduce to model possible drones failures
as well as system reaction on them. We introduce SINK Failure, SINK discon,
LEADER Failure, etc. Upon execution of these events, the value of status variable
is changed. As soon as a leader failure is detected, as modelled by the new event
LEADER FailureMode, then the “new” leader should be chosen from one of its
slave drones (modelled by LEADER Failure Reconfiguration event). In this case,
slaves of leaders as well as leaders, slaves and leader alt variables are updated.
Similarly, new events are introduced to model a slave and sink failure as well
as events modelling reconfigurations and transitions back to the Nominal mode.
An excerpt from the first refinement step is presented in Fig. 7.

At this refinement step we formulate and prove the correctness of coordinated
reconfiguration involving all the layers of the architecture. For instance, we prove
that no slaves become dispatched from some leader:

∀ sl. sl ∈ slaves ⇒ (∃ ld. ld ∈ leaders ∧ sl ∈ slaves of leaders(ld)).

Multi-level Drone Communication. The goal of our second refinement is to
introduce a communication model between the sink and NC as well as between
the drones. Next we discuss a simple communication scheme that can be instan-
tiated to implement communication between the drones at any level.

Lets consider Sink-Leader communication. At every cycle, the sink initiates
the communication with a leader. The sink checks status of a leader and if it is
OK, then the sink sends the data via the inter-drone communication link. Upon
delivery of the message, a leader updates its route commands and sends the
acknowledgement to the sink. In its turn, the sink waits for the acknowledgement
from a leader. Upon receiving the acknowledgement, the sink considers the data
transition to be successfully completed. If no acknowledgement is received, the
sink triggers the transition to Leader Failure mode.

The communication between the leaders and their slaves as well as between
NC and the sink can be implemented in the similar way.

Data Flow Modelling and Introducing Reflexes Mechanisms. In the
further refinement steps, we model data flow between all system components at
the different layers and also specify the local drone safety reflex mechanisms.

The goal of the mission is to produce the payload data. As a part of the
mission, the drones periodically send the collected data to DC. Upon receiving
these data, DC makes a decision to recalculate the current route commands or
restructure drone tree-structure. To reflect the required data flow, we introduce
a number of events and variables and refine our model.

Deriving Mode Logic for Autonomous Resilient Systems 333

Machine SwarmOfDrones m1 refines SwarmOfDrones m0 Sees SwarmOfDrones c1

Variables phase,mode, drones, sink , leaders, slaves, status, slaves of leaders, sink alt, ...

Invariants phase ⊆ PHASES ∧ mode ⊆ MODES ∧ drones ⊆ SWARM ∧ leaders ⊆ drones ∧
slaves ⊆ drones ∧ sink ∈ drones ∧ sink alt ∈ drones ∧
slaves of leaders ∈ leaders → P(slaves) ∧
∀ sl. sl ∈ slaves ⇒ (∃ ld. ld ∈ leaders ∧ sl ∈ slaves of leaders(ld)) ∧
status ∈ drones → STATUSES ∧ ...

Events ...

SINK Failure Reconfiguration =̂
any ld alt,new ld alt, sls

where ... ∧ mode=SINK FAILURE RECONF ∧ status(sink)=FAILED ∧
status(sink alt) = OK ∧ sls=slaves of leader(sink alt) \ {ld alt} ∧
ld alt=leader alt(sink alt) ∧ new ld alt ∈ sls

then
sink := sink alt
sink alt := ld alt
leaders := (leaders \ {sink alt}) ∪ {ld alt}
slaves := slaves \ {ld alt}
leader alt(ld alt) := new ld alt
slaves of leader := ({sink alt} �− slaves of leader) ∪ {ld alt → sls}

end

LEADER Failure Reconfiguration =̂
any ld, ld alt,new ld alt, sls

where ... ∧ mode = LEADER FAILURE RECONF ∧ ld ∈ leaders ∧
sls = slaves of leader(ld) \ {ld alt} ∧ ld alt = leader alt(ld) ∧
new ld alt ∈ sls ∧ status(ld alt) = OK

then
slaves of leader := ({ld} �− slaves of leader) ∪ {ld alt → sls}
leader alt(ld alt) := new ld alt

end
...

Fig. 7. The machine SwarmOfDrones m1

Moreover, for each drone, we model possibility to react on particular haz-
ardous situations – an unexpected appearance of an obstacle in the drone flying
zone. In our proposed approach, when a drone detects a possible collision with
an unforeseen obstacle, the drone safety reflex computation module quickly com-
putes a reflex movement for the drone to prevent the collision.

To model drone safety reflex mechanisms, first we model possibility of appear-
ing an obstacle in a drone flying zone (at any level of hierarchy). Then, upon
detection an obstacle, a drone triggers mode transition to the Reflection Acti-
vation mode. Let us note that the drones perform this transition autonomously
and independently upon detection of an obstacle. Upon triggering a transition
to this “local” mode, a drone computes the best safe position and moves there.
The nominal mode is restored after DC receives the update about the current
drone positions and calculates the routing for the swarm. We introduce the new
events Unpredictable Obstacle and Reflection Activation and refine the number of
old events, e.g., Update Local Routes (omitted due to the lack of space).

6 Related Work and Conclusions

During last decades the problem of resilience and motion safety of autonomous
robotic systems attracts significant research attention. A comprehensive

334 I. Vistbakka et al.

overview of the problems associated with autonomous mobile robots is given
in [18]. The analysis carried out in [20], shows that the most prominent routing
schemes do not guarantee motion safety. Our approach resolves this issue and
ensures not only safety but also efficiency of routing.

A layered architectural solution for robot navigation has been proposed in [3].
The authors focus on a problem of safe navigation of a vehicle in an urban
environment. Similarly to our approach, they distinguish between a global route
planning and a collision avoidance control. However, in their work, they focus
on the safety issues associated with the navigation of a single vehicle and do
not consider the problem of route optimization that is especially acute in the
context of swarms of robots.

Modelling and verification of a system architecture using Event-B in the
context of multi-agent and multi-robotic systems has also been investigated in
works [12–14]. Moreover, in [15] we verified by proofs correctness and safety
of agent interactions. In [4] the interactions between agents have been studied
using goal-oriented perspective. In this work, the roles were defined as agent
capabilities to perform certain tasks in order to accomplish the entire mission.

In this paper, we have presented a novel approach to formal modelling of
resilient autonomous systems. Our approach allows a designer to derive the
resilience-enhancing mode logic from the goals that the system should fulfil.
We have considered both functional and non-functional goals and demonstrated
how to define the conditions for monitoring goal reachability or degree of goal
satisfaction. Using multi-agent modelling paradigm, we have demonstrated how
to define such monitoring conditions as the functions over the capabilities of the
system component – agents. Furthermore, we have proposed a generic Event-
B specification pattern for modelling mode transitions triggered by changes in
the monitored conditions at different architectural layers and demonstrated how
to derive the complex mode-transition logic by refinement. The approach was
illustrated by a case study – deriving mode logic of a resilient swarm of drones.

Our formal development was greatly facilitated by the Rodin platform.
Reliance of refinement, proofs and powerful tool support has allowed us to derive
a specification of a complex distributed system in a systematic rigorous way. The
proposed technique is not constrained by the number of the architectural layers
or of system components. Hence, it can potentially scale to the development of
realistic autonomous systems.

In the future work, we are planing to extend our approach and focus on its
communication model. Indeed, communication is a critical aspect in ensuring
correct coordination and safety of the autonomous swarms of drones. To extend
the communication model we can rely on our approach discussed in [19].

During the presented in this work refinement process we arrived at a cen-
tralised specification of the multi-layered swarm-based system. Our next goal
can also focus on deriving its distributed implementation by refinement. We
can employ modularisation facilities of Event-B [2,16] to achieve this. We can
further decompose a system-level model and derive the interfaces of the drones
and guarantee that their communication supports correct coordination despite

Deriving Mode Logic for Autonomous Resilient Systems 335

unreliability of the communication channel and drones failures. To achieve it our
current work can be complemented with our approaches proposed in [11,19].

References

1. Abrial, J.R.: Modeling in Event-B. Cambridge University Press, Cambridge (2010)
2. Iliasov, A., et al.: Supporting reuse in Event B development: modularisation app-

roach. In: Frappier, M., Glässer, U., Khurshid, S., Laleau, R., Reeves, S. (eds.)
ABZ 2010. LNCS, vol. 5977, pp. 174–188. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11811-1 14

3. Macek, K., Govea, D.A.V., Fraichard, T., Siegwart, R.: Safe vehicle navigation in
dynamic urban scenarios. In: Proceedings of 11th International IEEE Conference
on Intelligent Transportation Systems, pp. 482–489. IEEE (2008)

4. Laibinis, L., Pereverzeva, I., Troubitsyna, E.: Formal reasoning about resilient goal-
oriented multi-agent systems. Sci. Comput. Program. 148, 66–87 (2017)

5. van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
RE 2001, pp. 249–263. IEEE Computer Society (2001)

6. Laprie, J.: From dependability to resilience. In: 38th IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. G8–G9 (2008)

7. Leveson, N., Pinnel, L.D., Sandys, S.D., Koga, S., Reese, J.D.: Analyzing software
specifications for mode confusion potential. In: Human Error and System Devel-
opment, pp. 132–146 (1997)

8. Majd, A., Ashraf, A., Troubitsyna, E., Daneshtalab, M.: Integrating learning, opti-
mization, and prediction for efficient navigation of swarms of drones. In: PDP 2018.
IEEE (2018)

9. Majd, A., Troubitsyna, E.: Integrating safety-aware route optimisation and run-
time safety monitoring in controlling swarms of drones. In: ISSRE Workshops, pp.
94–95. IEEE Computer Society (2017)

10. OMG Mobile Agents Facility (MASIF). www.omg.org
11. Pereverzeva, I., Troubitsyna, E.: Formalizing goal-oriented development of resilient

cyber-physical systems. In: Alexander Romanovsky, F.I. (ed.) Trustworthy Cyber-
Physical Systems Engineering, chap. 6 (2017)

12. Pereverzeva, I., Troubitsyna, E., Laibinis, L.: A case study in formal development
of a fault tolerant multi-robotic system. In: Avgeriou, P. (ed.) SERENE 2012.
LNCS, vol. 7527, pp. 16–31. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33176-3 2

13. Pereverzeva, I., Troubitsyna, E., Laibinis, L.: Formal development of critical multi-
agent systems: a refinement approach. In: EDCC 2012, pp. 156–161. IEEE Com-
puter Society (2012)

14. Pereverzeva, I., Troubitsyna, E., Laibinis, L.: Formal goal-oriented development
of resilient MAS in Event-B. In: Brorsson, M., Pinho, L.M. (eds.) Ada-Europe
2012. LNCS, vol. 7308, pp. 147–161. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-30598-6 11

15. Pereverzeva, I., Troubitsyna, E., Laibinis, L.: A refinement-based approach to
developing critical multi-agent systems. IJCCBS 4(1), 69–91 (2013)

16. Rodin: Modularisation Plug-in. http://wiki.event-b.org/index.php/
Modularisation Plug-in

17. Rodin: Event-B platform. http://www.event-b.org/

https://doi.org/10.1007/978-3-642-11811-1_14
https://doi.org/10.1007/978-3-642-11811-1_14
https://www.omg.org/
https://doi.org/10.1007/978-3-642-33176-3_2
https://doi.org/10.1007/978-3-642-33176-3_2
https://doi.org/10.1007/978-3-642-30598-6_11
https://doi.org/10.1007/978-3-642-30598-6_11
http://wiki.event-b.org/index.php/Modularisation_Plug-in
http://wiki.event-b.org/index.php/Modularisation_Plug-in
http://www.event-b.org/

336 I. Vistbakka et al.

18. Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. MIT
Press, Cambridge (2004)

19. Tarasyuk, A., Pereverzeva, I., Troubitsyna, E., Latvala, T.: The formal derivation
of mode logic for autonomous satellite flight formation. In: Koornneef, F., van
Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9337, pp. 29–43. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24255-2 4

20. Fraichard, Th.: A short paper about motion safety. In: Proceedings of the IEEE
International Conference on Robotics and Automation. IEEE (2007)

21. Vistbakka, I., Majd, A., Troubitsyna, E.: Autonomous resilient systems: derivation
of mode logic using Event-B. Technical report 1199, Turku Centre for Computer
Science (2018)

https://doi.org/10.1007/978-3-319-24255-2_4

UTP Semantics for BigrTiMo

Wanling Xie1, Huibiao Zhu1(B), and Shengchao Qin2

1 Shanghai Key Laboratory of Trustworthy Computing,
School of Computer Science and Software Engineering,

East China Normal University, Shanghai, China
hbzhu@sei.ecnu.edu.cn

2 School of Computing, University of Teesside,

Middlesbrough, Tees Valley TS1 3BA, UK

Abstract. BigrTiMo [1], a process algebra that combines the rTiMo
calculus [2] and the Bigraph model [3], is capable of specifying a rich
variety of properties for structure-aware mobile systems. Compared with
rTiMo, our BigrTiMo calculus can specify not only time, mobility and
local communication, but also remote communication. In this paper, we
study the semantic foundation of this highly expressive modelling lan-
guage and propose a denotational semantic model for it based on Hoare
and He’s Unifying Theories of Programming (UTP) [4]. Compared to the
standard UTP model, in addition to the communication, the novelty of
the proposed UTP model in this paper covers time, location and global
shared variable. Moreover, we give an example to show the contribution
of BigrTiMo and illustrate how to use our semantic model and the trace-
merging definition proposed in our paper under this example. We also
demonstrate the proofs of some algebraic laws proposed in [1] based on
our denotational semantics.

1 Introduction

With the development of cloud computing, mobile applications play an impor-
tant role in modern distributed systems. Analyzing and verifying the increasing
complexity of mobile applications effectively is of great significance. Ciobanu
et al. [5] have first introduced a process algebra called TiMo (Timed Mobility)
model for mobile systems, where it is possible to add time constraints to the
basic actions (i.e., migration action and communication action) and the model
of time is based on local clocks. Aman et al. [2] have extended TiMo by intro-
ducing a real-time version named rTiMo in which a global clock is used. The
rTiMo processes can move between different locations of a mobile distributed
system and communicate locally with other processes.

The above calculi only can model the local communication (the two communi-
cation components should be at the same location), however, in real applications,
with the development of the internet, the two communication parties may not
only communicate locally, but also communicate remotely (the two components
can be at the different locations). In order to model the remote communications,
we have extended rTiMo into BigrTiMo [1] by introducing a Bigraph model [3].
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 337–353, 2018.
https://doi.org/10.1007/978-3-030-02450-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_20&domain=pdf

338 W. Xie et al.

Regarding a programming language, there are four well-known methods for
presenting semantics, including operational semantics, denotational semantics,
algebraic semantics and deductive semantics (originally called axiomatic seman-
tics) [6]. In [1], we have presented the operational semantics and algebraic
semantics for BigrTiMo. And in this paper, we will investigate the denotational
semantics which provides the mathematical meanings to programs. The app-
roach of denotational semantics is under a purely mathematical basis, thus, it
is more abstract. Compared with operational semantics, denotational semantics
expresses what a program does. Our approach is based on Unifying Theories of
Programming (UTP) proposed by Hoare and He in 1998 [4]. Compared to the
standard UTP model [4], in addition to communication, the novelty of the UTP
model in this paper covers time, location and global shared variable. Moreover,
we give an example to show the contribution of BigrTiMo and illustrate how
to use our semantic model and the trace-merging definition proposed in our
paper under this example. We also demonstrate the proofs of some algebraic
laws proposed in [1] based on our denotational semantics.

The remainder of this paper is organized as follows. Section 2 gives an intro-
duction to the BigrTiMo calculus. In Sect. 3, we first present the semantic model
and healthiness conditions that a BigrTiMo program should satisfy. We then
explore the denotational semantics of BigrTiMo. In Sect. 4, we demonstrate the
proofs of some algebraic laws based on the denotational semantics. Section 5
concludes the paper and discusses some possible future work.

2 BigrTiMo

In this section, we introduce BigrTiMo. In Sect. 2.1, we give a brief review of the
bigraph. In Sect. 2.2, we introduce the syntax of BigrTiMo and give an example
to show the contribution of our BigrTiMo calculus.

2.1 Review of Bigraph

A bigraph is a mathematical structure with two graphs, including a placing
graph and a linking graph [3]. The placing graph is a forest which is used to
model nested locality of components and the linking graph is a hypergraph that
represents connectivity between components. Figure 1 illustrates an example of a
bigraph. Figure 2 presents the corresponding placing and linking graphs of Fig. 1.

The encompassing rectangle represents a region and the grey rectangles are
used to represent holes. Region and hole are the root and leaf node respectively
in the placing graph, and enable the composition of placing graphs, e.g., a hole
of a bigraph can be replaced by a region of another bigraph with the aid of
composition operator defined in [3]. Ports are represented as black dots on the
node, and are used to connect the edges or names, i.e., the node m1 has two
ports which connect to the edge e and the outer name y. The edge e and inner
name x and outer name y are contained in the linking graph. We can also merge
inner names and outer names using the bigraph composition operator.

We below give the definition of a bigraph.

UTP Semantics for BigrTiMo 339

Fig. 1. Bigraph Fig. 2. Placing and linking graphs

Definition 1. A bigraph is a 5-tuple (V,E, nupt, prnt, link) where,

– V is the set of node identifiers and E is the set of edge identifiers.
– nupt : V → N is a map that assigns their numbers of ports (i.e., a natural

number) to nodes.
– prnt : m � V → V � n is the parent map which is used to assign a parent (i.e.,

a node or a region) to the children (i.e., a hole or a node). m = {0, . . . , |m|−1}
denotes the set of holes and n = {0, . . . , |n| − 1} denotes the set of regions.
The symbol � stands for the disjoint union of sets.

– link : X � P → E � Y is the link map which assigns edges and outer names
to inner names and ports. X and Y denote the set of inner names and the
set of outer names respectively. P denotes the set of ports of the bigraph and
is formalized as P = {(l, i)|i ∈ {0, 1, . . . , nupt(l) − 1}}, where l is a node in
the set V in a bigraph. For convenience, we introduce a map pts : V → P(N)
that takes a node and returns the set of ports of that node.

The bigraph stands for a specific snapshot of the world but there is no
information on how it can evolve to another bigraph. Bigraph Reaction Rules
(BRRs) are defined in [3] to create dynamics of bigraphs. A BRR is the form of
R → R′ where R and R′ are bigraphs called redex and reactum, respectively.
Let r = R → R′ be a BRR and B a bigraph. In order to execute rule r in B
we should first decompose B into C ◦ R ◦ d where C stands for the context and
d stands for the parameters inside the holes of R. We compose C with R′ and
with d to obtain the result B′, e.g., B = C ◦ R ◦ d ⇒ B′ = C ◦ R′ ◦ d.

Consider a BRR MOVE(pc0, room2) that moves a pc0 node from its cur-
rent location to a room2 node. Figure 3 describes the context C and parameters
d where the rule is applied. A bigraph B changed to B′ is illustrated at the top
of Fig. 3. At the bottom of this figure, we give the decomposition of each bigraph
in the context C, redex R, reactum R′ and parameters d.

2.2 The Syntax of BigrTiMo

We have presented the BigrTiMo calculus in [1]. Compared with rTiMo, our
BigrTiMo can model not only the location of components but also the con-
nectivity of components. Thus, a BigrTiMo process not only can communicate

340 W. Xie et al.

Fig. 3. Example of application of MOVE reaction rule

locally with other processes (like an rTiMo process), but also can communi-
cate remotely with other processes (if the locations of the two components are
connected, i.e., they share a communication link in the bigraph). In addition,
a BigrTiMo process can migrate from one location to another location (if the
desired location is contained in the bigraph and the current location of the pro-
cess is connected to the desired location), and perform the bigraph reaction rules
to update the bigraph.

The syntax of BigrTiMo is given in Table 1. In BigrTiMo, actions are con-
trolled by using real-time constraints. Timeouts are specified by a superscript
�t. The communication channels are point-point, i.e. each connecting two pro-
cesses, and synchronous. A synchronous channel with buffer size 0 sends/recieves
messages synchronously and a communication a.v takes place when both actions
a!〈v〉 and a?(v) are enabled simultaneously. We first introduce the process parts:

1. nil denotes the process that terminates without taking any time.
2. a�t!〈v〉 then P else Q stands for an output process. When the message v is

sent via channel a successfully within t time units, the next process is P . If
the communication does not happen before the timeout t, the communication
attempt is aborted and the next process is Q.

3. a�t?(u) then P else Q indicates an input process. When the process receives
a message within t time units, the next process is P . If the input action does
not occur before the deadline t, it gives up and switches to the process Q.
The input process binds the variable u within P (but not within Q).

4. go�tl then P else Q denotes a migration process. If the migration action
happens successfully after delaying t time units, then the next process is P

UTP Semantics for BigrTiMo 341

located at location l. Otherwise, it switches to the alternative process Q whose
location does not change.

5. control�t(r) then P is an update process where r is a BRR which is performed
to update the state of the shared bigraph. After delaying t time units, the
update action takes place and the next process is P .

6. P || Q stands for parallel composition.
7. l[[P]] specifies a process P running at location l.

Table 1. BigrTiMo syntax

Process P,Q ::= nil (termination)
| a�t!〈v〉 then P else Q (output)
| a�t?(u) then P else Q (input)
| go�tl then P else Q (move)
| control�t(r) then P (update)
| P || Q (parallel composition)

Located process L ::= l[[P]]
Network N ::= 0 | L | L || N
Configuration G ::= empty | 〈N,B〉 | 〈N,B〉 || G

We next introduce the network and configuration parts. 0 denotes an empty
network. A network can be a located process L or can be built via its component
L || N . empty denotes an empty configuration. A BigrTiMo configuration is a
tuple 〈N,B〉 denoted by G where N is a BigrTiMo network, B is a shared
bigraph and the locations in N are all contained in the set of the node identifiers
in the bigraph B. A configuration also can be built via component 〈N,B〉 || G.

The shared bigraph in BigrTiMo is globally accessible and it can be read
and written by different actions. In order to ensure the consistency of the shared
bigraph, it can only be updated in sequential programs (i.e., G1;G2 denotes the
behavior that runs G1 and G2 sequentially). Moreover, when programs execute
atomically, sequential programs from different configurations are not allowed to
execute simultaneously.

In order to support our algebraic expansion laws proposed in [1], we have
presented three types of guarded choice. And we can convert every BigrTiMo
program into the guarded choice form.

1. Instantaneous Guarded Choice
The notation 〈[]{g1 → N1, . . . , gn → Nn}, B〉 stands for an instantaneous
guarded choice, which executes its guard gi under the bigraph B initially and
then performs the corresponding program 〈Ni, B〉 afterward. The guard gi

is an instantaneous guard which means that it takes place without any time
delay, and it can be a communication guard or an event guard. A communi-
cation guard can be expressed as a!〈v〉@l, a?(u)@l or a. [v/u]@(l, l′), where

342 W. Xie et al.

a!〈v〉@l (or a?(u)@l) indicates that the output (or input) action happens at
location l, and a. [v/u]@(l, l′) denotes that the communication occurs where
one communication end is from the location l and the other is from the loca-
tion l′, and the variable u is replaced by the message v. The event guards
are go(l′)@l and control(r)@l which represent that the migration action and
update action happen at the location l, respectively.

2. Delay Guarded Choice
〈#t → N,B〉 is a delay guarded choice and #t means delaying t time units.

3. Hybrid Guarded Choice
The hybrid guarded choice has the following form where the notation ⊕
denotes the disjointness of timed behaviors.

〈[]i∈I{gi → Ni}, B〉
⊕ ∃t′ ∈ (0 . . . t) • (〈#t′ → []i∈I{gi → N ′

i}, B〉)
⊕ 〈#t → N ′, B〉

Example 1. Consider users with smartphones or personal computers communi-
cating with each other. A city may contain housing area, office area and subway
station and so on. Some areas may contain wireless hotspots which can be con-
nected to the internet. If a personal computer or a smartphone is contained in
a wireless hotspot it can connect to it. A user can walk from one location to
anther location if the two locations are connected.

Fig. 4. The example of bigraph b (Color figure online)

Figure 4 depicts a bigraph city named b. This figure shows a city with three
areas, namely home, office and subway. All areas are connected with a link
named road which models physical adjacency between the corresponding phys-
ical locations. A user can walk from home to subway (the two locations are
connected with a link road). Some areas contain nodes wlan0 and wlan1 (white
circles) which model the wireless hotspots, i.e., home contains wlan0 and office
contains wlan1. A smartphone modelled as a node sp (blue star) is contained
in wlan0. A personal computer modelled as a node pc (grey star) is contained
in wlan1. The nodes wlan0, wlan1, sp and pc all share a link named internet
modelling the connectivity of the corresponding entities to the internet.

UTP Semantics for BigrTiMo 343

The definition of the bigraph b is showed as below.

b = (V,E, nupt, prnt, link) where:
V = {home, office, subway,wlan0, wlan1, sp, pc}
E = {internet, road}
nupt(l) = 1where l ∈ V

prnt(l) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if l ∈ {home, office, subway};
home, if l = wlan0;
office, if l = wlan1;
wlan0, if l = sp;
wlan1, if l = pc.

link(p) =
{

internet, if p ∈ {(wlan0, 0), (wlan1, 0), (sp, 0), (pc, 0)};
road, if p ∈ {(home, 0), (office, 0), (subway, 0)}.

Consider two BigrTiMo processes appsf and appbs which are hosted at sp
and pc respectively. The role of each process is described as below.

– appsf is a process to give instructions to a staff to receive a message (this
message is used to inform the staff to go to a office) from a boss, then move
to subway, move to office, connect to the internet.

– appbs is a process to give instructions to a boss to send a message to a staff.

The BigrTiMo syntax of the whole mobile system is:

〈sp[[appsf]] || pc[[appbs]], b〉.

The BigrTiMo syntax of two processes is as below:

appsf = bs�1?(u1) then (control�3(r1) then control�2(r2) then

control�1(r3) then nil) else nil

appbs = bs�1!〈work〉 then nil else nil

where r1 = MOVE(sp, subway), r2 = MOVE(sp,office),
r3 = CONNECT(sp,wlan1). �

3 Denotational Semantics of BigrTiMo

In this section, we present the denotational semantics for BigrTiMo. We use
beh(〈l[[P]], B〉) to describe the behavior of a process P running at location l in
the given bigraph B after it is activated. In Sect. 3.1, we give the semantic model
for BigrTiMo. In Sect. 3.2, we explore the behaviors of the basic commands. In
Sect. 3.3, we investigate the behavior of the parallel composition.

344 W. Xie et al.

3.1 The Semantic Model

In this subsection, the denotational semantic model for BigrTiMo is investigated.
Similar to the semantic model for rTiMo [7], here, we also introduce a pair of
variables st and st′ into our semantic model in order to denote the execution
state of a program. st represents the initial execution state of a program before
its activation and st′ stands for the final execution state of the program during
the current observation. A program may have two execution states:

1. completed state: A program has reached the completed state when it ter-
minates successfully. “st = completed” indicates that the previous program
has terminated successfully and control passes to the current program.
“st′ = completed” indicates that the current program has terminated suc-
cessfully and control passes to the next program.

2. wait state: A program may wait for communicating with another program via
a specific channel. “st =wait” indicates that the predecessor of the current
program is in a waiting state. Thus, the current program cannot be activated.
“st′ = wait” indicates that the current program itself is in a waiting state.
Thus, the next program cannot be activated.

We describe the behavior of a program in terms of a trace of snapshots which
record the sequence of the actions. In our semantic model, we introduce a variable
tr to denote the trace for the sequence of the actions. Inspired by the semantic
model for CSP# [8] which covers both communication and shared variables, a
snapshot in our semantic model can be expressed as (t, loc, σ, κ) where:

– t indicates the time when the action takes place.
– loc records the locations at which the action takes place. And the form of loc

is (l1, l2) or a single location l, where (l1, l2) means that the two components
are located at l1 and l2 respectively (i.e., one communication end is from l1,
and the other one is from l2). For convenience, we have (l, l) = l.

– σ denotes the pre-state of the shared bigraph and the action is observed under
this state.

– κ denotes the observed action, including inputs/outputs, synchronous com-
munications, migration and update. Thus, κ has the following forms:
1. for an input/output or a synchronous communication, the form of κ is

a.v, where a indicates the communication channel and v is the message
transmitted. We define Chan(κ) to obtain the communication channel
and Mess(κ) to obtain the message, i.e., if κ = a.v, then Chan(a.v) = a
and Mess(a.v) = v.

2. for a migration action, κ is a desired location.
3. for an update action, κ is a bigraph σ′ which is a post-state recording the

final state of the global shared bigraph after the observation. And it is
used to record the observation for the sequential programs.

We use the following projections to select the components of a snapshot:

π1((t, loc, σ, κ)) =df t π2((t, loc, σ, κ)) =df loc

π3((t, loc, σ, κ)) =df σ π4((t, loc, σ, κ)) =df κ

UTP Semantics for BigrTiMo 345

In addition to the communication and global shared variable, our calculus has
other interesting features, including time constrains and location information.
Thus, the observations of a BigrTiMo program can be described by a tuple:

(time, time′, st, st′, tr, tr′) where,

– time and time′ respectively denote the start point and the end point of the
time interval over which the observation is recorded. We use δ to represent
the length of the time interval.

δ =df (time′ − time)

In our discrete model, we regard the length of a time interval as a non-negative
real number, i.e., δ is considered as a non-negative real number.

– st represents the initial execution state of the program before its activation
and st′ stands for its final execution state during the current observation.

– tr represents the initial trace of a program over the interval which is passed
by its predecessor. tr′ stands for the final trace of a program over the interval.
tr′ − tr denotes the sequence of snapshots contributed by the program itself
during the interval.

We use the notations head(s) and tail(s) to denote the first snapshot of the
trace s and the result of removing the first snapshot in the trace s, respectively.

Example 2. Let us consider the configuration in Example 1 in Sect. 2 again,

where N1 = sp[[appsf]], N2 = pc[[appbs]], G = 〈N1 || N2, b〉.
Figure 5 shows the execution trace over the respective BRRs, where b is the

initial bigraph and b3 is the final bigraph when the program terminates.

Fig. 5. Execution trace over the respective BRRs

Now we consider the trace of G. Assume that the activated time of G is at 0.
According to the syntax of BigrTiMo, we know that the communication action

346 W. Xie et al.

occurs at time 0 (the two locations of the two components are connected by
a communication link internet). After delaying three time units, the rule r1 is
performed to update the bigraph b into b1. After that, the rule r2 is performed
to update b1 into b2 after delaying two time units. Lastly, after delaying one
time unit, the rule r3 is performed to update b2 into b3.

A trace of 〈N1, b〉 is given as below:

〈(0, sp, b, bs.work), (3, sp, b, b1), (5, sp, b1, b2), (6, sp, b2, b3)〉.

A trace of 〈N2, b〉 is: 〈(0, pc, b, bs.work)〉.
Hence, the one trace of G is as follows:

〈(0, (sp, pc), b, bs.work), (3, sp, b, b1), (5, sp, b1, b2), (6, sp, b2, b3)〉. �

Every program will always satisfy some given healthiness conditions which
are defined as equations according to an idempotent function φ on predicates.
And for a predicate P denoting a healthy program, we have P = φ(P).

We next consider two healthiness conditions that BigrTiMo programs should
satisfy, and they are similar to the standard UTP theory [4]. In our semantic
model, the variable tr is used to record the execution trace of a program, so
it cannot be shortened. The variable time is used to record the progress of a
program and no program can ever make time go backwards, thus, it cannot be
smaller. The predicate P which describes a BigrTiMo program behavior must
therefore imply this fact. So it satisfies the healthiness condition R1.

R1 P = P ∧ Inv(tr, time), where
Inv(tr, time) =df tr tr′ ∧ time ≤ time′, which states that tr is a prefix of
tr′, and time is less than or equal to time′.

Because of the requirement for synchronisation, a program may wait for
communicating with another program via a specific channel. We take the output
command 〈l[[a�t!〈v〉 then P1 else P2]], B〉 as an example: if process P1 or P2

is asked to start in a waiting state of the output action a�t!〈v〉, then P1 or P2

keeps itself unchanged. And it satisfies the following healthiness condition.

R2 P = Π � st = wait 	 P
where Π =df (st′ = st) ∧ (time′ = time) ∧ (tr′ = tr)
and P � b 	 Q =df (b ∧ P) ∨ (¬b ∧ Q)

We denote all healthiness conditions satisfied by the BigrTiMo program using
the following H function. And function H is idempotent and monotonic [4].

H(X) =df Π � st = wait 	 (X ∧ Inv(tr, time))

From the definition of H function, we know that H(X) satisfies the healthi-
ness conditions R1 and R2. The H function is used to define the denotational
semantics for the BigrTiMo model.

UTP Semantics for BigrTiMo 347

3.2 Denotational Semantics of Basic Commands

We first investigate the denotational semantics of 〈0, B〉. It is an empty config-
uration and its execution state, terminal time and trace all keep unchanged.

beh(〈0, B〉) =df H
(
st′ = st ∧ δ = 0 ∧ tr′ = tr

)

G1;G2 denotes the behavior that runs G1 and G2 sequentially. We now define
the sequence operator for our semantic model.

Definition 2. G1;G2 =df

∃s, t, r • G1[s/st′, t/time′, r/tr′] ∧ G2[s/st, t/time, r/tr].

The semantics of sequential composition is given as below:

beh(G1;G2) =df beh(G1);beh(G2)

As mentioned earlier, the guarded choice has three types: instantaneous
guarded choice, delay guarded choice and hybrid guarded choice. Now we give
the denotational semantics for these three types of guarded choice.

Instantaneous Guarded Choice. An instantaneous guard can be a com-
munication guard or an event guard. The three types of the communication
guard are a!〈v〉@l, a?(u)@l and a. [v/u]@(l, l′). The event guards are go(l′)@l
and control(r)@l. The semantics of the communication guards is similar to the
one in [7]. Due to space limitations, we only take the semantics of a!〈v〉@l as
an example. And the semantics of the event guards go(l′)@l and control(r)@l is
novel in this paper.

beh(〈[]i∈I{gi → Ni}, B〉) =df

∨

i∈I
beh(〈gi → Ni, B〉), where

(1) if g = a!〈v〉@l, then

beh(〈a!〈v〉@l → N,B〉) =df beh(〈a!〈v〉@l, B〉);beh(〈N,B〉)
where beh(〈a!〈v〉@l, B〉) =df H

(
st′ = completed ∧ δ = 0 ∧
tr′ = tr̂〈(time′, l, B, a.v)〉

)

(2) if g = go(l′)@l, then

beh(〈go(l′)@l → N,B〉) =df beh(〈go(l′)@l, B〉);beh(〈N,B〉)
where beh(〈go(l′)@l, B〉) =df H

(
st′ = completed ∧ δ = 0 ∧
tr′ = tr̂〈(time′, l, B, l′)〉

)

(3) if g = control(r)@l, then

beh(〈control(r)@l → N,B〉) =df beh(〈control(r)@l, B〉);beh(〈N,B′〉)
where beh(〈control(r)@l, B〉) =df H

(
st′ = completed ∧ δ = 0 ∧
tr′ = tr̂〈(time′, l, B,B′)〉

)

and r = R → R′, B = C ◦ R ◦ d,B′ = C ◦ R′ ◦ d.

348 W. Xie et al.

In the semantic of 〈control(r)@l → N,B〉, the rule r is performed to update
the bigraph B into B′ without any time delay. Thus, time′ = time and a snap-
shot (time′, l, B,B′) contributed by the update action is attached to the end of
the program trace.

Delay Guarded Choice. It consists of only one time delay component.

beh(〈#t → N,B〉) =df beh(〈#t, B〉);beh(〈N,B〉)
where beh(〈#t, B〉) =df H

(
((st′ = wait ∧ δ < t) ∨

(st′ = completed ∧ δ = t)) ∧ tr′ = tr

)

Hybrid Guarded Choice. The hybrid guarded choice has the following form:

G = 〈[]i∈I{gi → Ni}, B〉
⊕∃t′ ∈ (0 . . . t) • (〈#t′ → []i∈I{gi → N ′

i}, B〉)
⊕〈#t → N ′, B〉

and the semantics of G is given below. The three branches are disjoint.

beh(G) =df

⎛

⎜
⎜
⎜
⎜
⎝

∨
i∈I beh(〈gi → Ni, B〉)∨

∃t′ ∈ (0 . . . t) • (beh(〈#t′, B〉);∨i∈I beh(〈gi → N ′
i , B〉))∨

beh(〈#t, B〉);beh(〈N ′, B〉)

⎞

⎟
⎟
⎟
⎟
⎠

We then investigate the behavior of 〈l[[go�tl′ then P else Q]], B〉, it indicates
that if the desired location l′ is contained in the set of the node identifiers in the
bigraph B (denoted by VB), as well as the location l and the desired location l′ are
connected in the bigraph B, then the migration action can happen successfully
after delaying t time units. If the migration action takes place successfully, then
the subsequent behavior of the program is the behavior of the process P at the
location l′ in the bigraph B. On the other hand, if the migration action does not
take place, then the subsequent behavior of the program is the behavior of the
process Q at the location l in the bigraph B.

beh(〈l[[go�tl′ then P else Q]], B〉) =df

beh(〈#t, B〉);
⎛

⎝
(beh(〈go(l′)@l, B〉);beh(〈l′[[P]], B〉))

�goflag�
beh(〈l[[Q]], B〉)

⎞

⎠

where goflag = l′ ∈ VB ∧ (∃p ∈ pts(l).∃p′ ∈ pts(l′).link(p) = link(p′))B .

In the above semantics definition, beh(〈#t, B〉) describes the behaviors of
delaying t time units. For t time units, its trace keeps unchanged. After delaying
t time units, if the boolean goflag is true, then the migration action takes place
and generates a snapshot attached to the end of the program trace.

UTP Semantics for BigrTiMo 349

The semantics of the output and input commands in our BigrTiMo is similar
to the one in rTiMo [7]. Due to space limitations, here, we only take the semantic
of the output command as an example.

beh(〈l[[a�t!〈v〉 then P else Q]], B〉) =df
⎛

⎜
⎜
⎜
⎜
⎝

beh(〈a!〈v〉@l, B〉);beh(l[[P]], B〉)∨

∃t′ ∈ (0 . . . t) • (beh(〈#t′, B〉);beh(〈a!〈v〉@l, B〉);beh(l[[P]], B〉))∨

beh(〈#t, B〉);beh(l[[Q]], B〉)

⎞

⎟
⎟
⎟
⎟
⎠

Compared to the commands proposed in [7], the novelty operator in this
paper is the control command which is used to update the global shared bigraph.
This command can only be executed in sequential programs, and when it
executes atomically, sequential programs from different configurations are not
allowed to execute simultaneously.

The control command 〈l[[control�t(r) then P]], B〉 performs the BRR r to
update the current bigraph B. After delaying t time units, the update action
takes place and the next process is P .

beh(〈l[[control�t(r) then P]], B〉) =df

beh(〈#t, B〉);beh(〈control(r)@l, B〉);beh(〈l[[P]], B′〉)

For t time units, the update action is in a waiting state and its trace is
unchanged. After delaying t time units, the update action takes place successfully
and a snapshot (time′, l, B,B′) contributed by the update action is attached to
the end of the program trace.

3.3 Denotational Semantics of Parallel Composition

The parallel composition 〈l[[P]] || l′[[Q]], B〉 executes the process P from l and
the process Q from l′ (l and l′ can be same or different) under the global shared
bigraph B in two ways: (1) synchronous channel output in one process takes place
simultaneously with the corresponding channel input in the other process; (2)
other actions of processes take place independently. The composition is described
by the following definition.

beh(〈l[[P]] || l′[[Q]], B〉) = beh(〈l[[P]], B〉) || beh(〈l′[[Q]], B〉) where,
beh(〈l[[P1]], B〉) || beh(〈l′[[P2]], B〉) =df
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

∃st1, st
′
1, st2, st

′
2, time1, time′

1, time2, time′
2, tr1, tr

′
1, tr2, tr

′
2 •

beh(〈l[[P1]], B〉)[st1, st′1, time1, time′
1, tr1, tr

′
1/

st, st′, time, time′, tr, tr′] ∧
beh(〈l′[[P2]], B〉)[st2, st′2, time2, time′

2, tr2, tr
′
2/

st, st′, time, time′, tr, tr′] ∧
Merge

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

350 W. Xie et al.

The first two predicates in the above definition describe the two independent
behaviors of the configurations 〈l[[P1]], B〉 and 〈l′[[P2]], B〉. The predicate Merge
mainly does the merging of the contributed traces of the two behavioral branches,
as well as the merging of the execution states and terminal times.

We now give the definition of Merge.

Merge =df

⎛

⎜
⎜
⎝

(st′1 = completed ∧ st′2 = completed) ⇒ st′ = completed ∧
(st′1 = wait ∨ st′2 = wait) ⇒ st′ = wait ∧

time′ = max{time′
1, time′

2} ∧
∃s ∈ (tr′

1 − tr1) || (tr′
2 − tr2) • tr′ = tr̂s

⎞

⎟
⎟
⎠

The final execution state of the behavior of the parallel composition is deter-
mined by the two parallel components together. And the terminal time of the
parallel composition is the maximum between the two terminal times of the par-
allel components. The merging of the contributed traces of the two behaviors
can be defined as follows. The result of merging two empty traces (represented
as ε) is still empty, which is illustrated in case-1. If one of the two traces is
empty and the other is nonempty, the result follows the nonempty one shown in
case-2. And case-3 shows that function || is symmetric.

case-1 ε || ε =df {ε} case-2 s || ε =df {s} case-3 s || t =df t || s

If both traces are nonempty, then we can use the following cases to merge the
two traces. We below obtain the first snapshot in the two traces respectively.

t1 = π1(head(s)), l1 = π2(head(s)), σ1 = π3(head(s)), κ1 = π4(head(s))
t2 = π1(head(t)), l2 = π2(head(t)), σ2 = π3(head(t)), κ2 = π4(head(t))

We first consider the case that t1 = t2 which means that the two actions κ1

and κ2 take place at the same time. The bigraph is a global shared variable, so
we have σ1 = σ2 = σ. In this case, neither of the two actions can be an update
action, since when the update action is executed, no other action can be executed
at this time. Thus, we only need to consider the following two cases: (1) the two
actions both are communication actions (denoted by case-4); (2) at least one of
the two actions is not a communication action: if κ1 is a communication action,
then κ2 should be a migration action, and if κ1 is a migration action, then κ2

can be a migration action or a communication action (denoted by case-5).

case-4 s || t =df

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝

(
sĉ(tail(s) || tail(t))

� Mess(κ1) = Mess(κ2) 	 ∅
)

� Chan(κ1) = Chan(κ2) 	 T

⎞

⎠ , if comflag = true;

T, otherwise.

where comflag = (l1 = l2) ∨ (∃p ∈ pts(l1) · ∃p′ ∈ pts(l2) · link(p) = link(p′))σ;
sc = 〈(t1, (l1, l2), σ, κ1)〉;

and T = 〈(t1, l1, σ, κ1)〉̂(tail(s) || t) ∪ 〈(t2, l2, σ, κ2)〉̂(s || tail(t)).

comflag = true means that the two communication components are at the
same location described by the first predicate l1 = l2, or the locations of the

UTP Semantics for BigrTiMo 351

two components are connected in the current bigraph σ described by the second
predicate. comflag = false means that the two components cannot communicate
with each other. If comflag = false, then we only need to attach head(s) or
head(t) to the end of the program trace (denoted by T). If comflag = true, then
we have the following descriptions.

– If Chan(κ1) equals to Chan(κ2) which means that the two channels are
same, then we consider the messages. If Mess(κ1) equals to Mess(κ2) which
means that the two messages are same, then a synchronization occurs and a
snapshot sc contributed by this communication is generated. On the other
hand, if the two messages are different, then the result of trace merging is
empty set ∅.

– If Chan(κ1) and Chan(κ2) are different, then a synchronization does not
happen and we only need to attach head(s) or head(t) to the end of the
program trace (denoted by T).

For the case that at least one of the two actions is not a communication
action, then a synchronization does not take place (denoted by T).

case-5 s || t =df T.

According to case-3, we know that function || is symmetric. Thus, we only
need to consider the case t1 < t2 which means that κ1 occurs before κ2 (denoted
by case-6). In this case, κ1 (or κ2) can be a communication action, a migration
action or an update action. And we only need to attach the first snapshot of s
to the end of the program trace.

case-6 s || t =df 〈(t1, l1, σ1, κ1)〉̂(tail(s) || t).

Example 3. Let us consider the configuration in Example 2 in Sect. 3.1 again,

where N1 = sp[[appsf]], N2 = pc[[appbs]], G = 〈N1 || N2, b〉.
As mentioned in Example 2, a trace of 〈N1, b〉 is given as below:

s = 〈(0, sp, b, bs.work), (3, sp, b, b1), (5, sp, b1, b2), (6, sp, b2, b3)〉.
A trace of 〈N2, b〉 is: t = 〈(0, pc, b, bs.work)〉.
According to the trace-merging definition case-4, we can obtain

s || t = 〈(0, (sp, pc), b, bs.work)〉̂(s′ || ε)
where s′ = 〈(3, sp, b, b1), (5, sp, b1, b2), (6, sp, b2, b3)〉.

According to case-2, we can obtain s′ || ε = {s′}.
Finally, we obtain one trace of G by merging s and t below:

〈(0, (sp, pc), b, bs.work), (3, sp, b, b1), (5, sp, b1, b2), (6, sp, b2, b3)〉. �

352 W. Xie et al.

4 Algebraic Properties

Program properties can be expressed as algebraic laws and equations. In [1], we
have presented a set of algebraic laws for BigrTiMo. Our denotational semantics
in this paper can support the proofs of these laws. From these proofs, we can
see that our semantics definitions are very rigorous. Due to space limitations, we
only take some representative laws as examples.
(Output1) 〈l[[a�t!〈v〉 then P else Q]], B〉

= 〈a!〈v〉@l → l[[P]], B〉
⊕ ∃t′ ∈ (0 . . . t) • (〈#t′ → a!〈v〉@l → l[[P]], B〉)
⊕ 〈#t → l[[Q]], B〉, where t > 0.

From the law (Output1), we can see that the output command can be
converted into a hybrid guarded choice. And in this guarded choice, the first
branch indicates that the output action occurs at the activation time of the
output command. The second branch indicates that the output action takes
place after delaying t′ time units, where t′ ∈ (0 . . . t). And the third branch
indicates that the output action does not happen before the timeout t.

Proof. By the semantics definitions for the output command and hybrid guarded
choice, we know that they have the same form. Thus, this law is correct. �

(Control1) 〈l[[control�t(r) then P]], B〉 = 〈#t → control(r)@l → l[[P]], B〉
where t > 0, r = R → R′, B = C ◦ R ◦ d and B′ = C ◦ R′ ◦ d.

From the law (Control1), we can see that the control command can be
converted into a delay guard followed by an instantaneous event guard, which
indicates that after delaying t time units, the control action occurs successfully.

Proof. By the semantics definitions for the delay guarded choice and the instan-
taneous guarded choice, we have that beh(〈#t → control(r)@l → l[[P]], B〉)
equals to beh(〈#t, B〉);beh(〈control(r)@l, B〉);beh(〈l[[P]], B′〉). According to
the definition of the semantics for the control command, we see that they have
the same form, so this law is correct. �

5 Conclusion

BigrTiMo is a process algebra for structure-aware mobile systems. In this paper,
we have studied the denotational semantics for BigrTiMo via the concept of
UTP. Compared to the standard UTP theory, in addition to communication,
the novelty in our UTP model covers time, location and global shared variable.
Moreover, we give an example to show the contribution of BigrTiMo and illus-
trate how to use our semantic model and the trace-merging definition proposed in
our paper under this example. We also demonstrate the proofs of some algebraic
laws based on the denotational semantics.

Recently, Hoare has proposed the challenging research topic for studying
semantic linking where the starting point is from the algebra semantics [9].

UTP Semantics for BigrTiMo 353

Hoare and He have studied the derivation of operational semantics from the
algebraic semantics [4,10]. For future work, we want to explore linking theory of
the semantics for BigrTiMo.

Acknowledgments. This work was partly supported by Shanghai Collaborative
Innovation Center of Trustworthy Software for Internet of Things (No. ZF1213).

References

1. Xie, W., Zhu, H., Xu, Q.: BigrTiMo - a process algebra for structure-aware mobile
systems. In: ICECCS 2017, Fukuoka, Japan, 6–8 November 2017, pp. 50–59 (2017)

2. Aman, B., Ciobanu, G.: Real-time migration properties of rTiMo verified in
Uppaal. In: Hierons, R.M., Merayo, M.G., Bravetti, M. (eds.) SEFM 2013. LNCS,
vol. 8137, pp. 31–45. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-40561-7 3

3. Milner, R.: The Space and Motion of Communicating Agents. Cambridge Univer-
sity Press, Cambridge (2009)

4. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice Hall Interna-
tional Series in Computer Science. Prentice Hall, Upper Saddle River (1998)

5. Ciobanu, G., Koutny, M.: Timed mobility in process algebra and Petri nets. J.
Log. Algebr. Program. 80(7), 377–391 (2011)

6. Hoare, T.: Unifying semantics for concurrent programming. In: Coecke, B., Ong,
L., Panangaden, P. (eds.) Computation, Logic, Games, and Quantum Foundations.
The Many Facets of Samson Abramsky. LNCS, vol. 7860, pp. 139–149. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38164-5 10

7. Xie, W., Xiang, S.: UTP semantics for rTiMo. In: Bowen, J.P., Zhu, H. (eds.) UTP
2016. LNCS, vol. 10134, pp. 176–196. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-52228-9 9

8. Shi, L., Zhao, Y., Liu, Y., Sun, J., Dong, J.S., Qin, S.: A UTP semantics for com-
municating processes with shared variables. In: Groves, L., Sun, J. (eds.) ICFEM
2013. LNCS, vol. 8144, pp. 215–230. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-41202-8 15

9. Hoare, T., van Staden, S.: In praise of algebra. Formal Aspects Comput. 24(4–6),
423–431 (2012)

10. He, J., Hoare, C.A.R.: From algebra to operational semantics. Inf. Process. Lett.
45(2), 75–80 (1993)

https://doi.org/10.1007/978-3-642-40561-7_3
https://doi.org/10.1007/978-3-642-40561-7_3
https://doi.org/10.1007/978-3-642-38164-5_10
https://doi.org/10.1007/978-3-319-52228-9_9
https://doi.org/10.1007/978-3-319-52228-9_9
https://doi.org/10.1007/978-3-642-41202-8_15
https://doi.org/10.1007/978-3-642-41202-8_15

Refinement and Transition Systems

Analysis on Strategies of Superposition
Refinement of Event-B Specifications

Tsutomu Kobayashi(B) and Fuyuki Ishikawa

National Institute of Informatics, Tokyo, Japan
{t-kobayashi,f-ishikawa}@nii.ac.jp

Abstract. The superposition refinement with the Event-B modeling
method is useful because it supports construction of models in multiple
abstraction levels, and thus mitigates the burden of constructing rigor-
ous models. With such a refinement mechanism, developers can choose
which subset of a target system’s elements is specified in each abstraction
level (refinement strategy). Although differences of refinement strategies
for a model affect the complexity of modeling and verification, the effect
has not been studied. We propose our automatic refinement refactoring
method, which constructs abstract versions of a given Event-B model
according to a refinement strategy different from the original one. We
applied the refactoring method to construct various refactored versions
of large Event-B models and compared them. As a result, we found that
the granularity and frequently used variables are important factors for
reducing the complexity. We consider the findings important to help
Event-B modelers to design and change refinement strategies.

Keywords: Event-B · Refinement · Formal specifications
Design exploration

1 Introduction

Event-B [1] has been attracting strong attention. The primary advantage of
Event-B is its flexible refinement mechanism to deal with the complexity of con-
temporary software. It supports superposition refinement, which enables devel-
opers to gradually introduce elements of target systems to models.

Although it is important to consider designing of Event-B refinement, existing
studies lack explicit discussions on it. Because of the flexibility of superposition
refinement, the design space of refinement in Event-B is large. Developers can
choose the granularity and the order of introducing elements of target systems
into models. Guides for designing Event-B refinement include a textbook showing
good refinement design examples [1] and domain-specific guidelines [13]. How-
ever, they do not explicitly discuss refinement strategies themselves nor explain
why some refinement strategies are better than others.

This work was supported by JST, ACT-I grant number JPMJPR17UA.

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 357–372, 2018.
https://doi.org/10.1007/978-3-030-02450-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_21&domain=pdf

358 T. Kobayashi and F. Ishikawa

In our previous research, we have proposed methods for planning good refine-
ment strategies before constructing models [6] and refactoring refinement strate-
gies of constructed models without breaking consistency [7]. For planning, it is
essentially difficult to plan concrete refinement strategies before starting model-
ing, and thus the support our method provides is limited. Moreover, developers
often have difficulties in making design decisions before constructing and end
up reconstructing models later. For refactoring, our refactoring method helps
developers to construct consistent refactored models through the use of a new
refinement strategy. However, developers must face the task of coming up with
that strategy. In addition, the method can only be partially automated.

We tackled the problem of analyzing how to design Event-B refinement strat-
egy by solving those problems of our previous work. First, we automated our
refactoring method to support easy and flexible refactoring of refinement strat-
egy. Second, we constructed variants of sample models by giving different refine-
ment strategies to our tool and compared various refinement strategies.

The problem we address is novel and important. Methods on verification of
refinement have been actively studied in formal methods area. However, as far as
we know, design analyses of refinement that take complexity and usability into
account have never been studied. From an engineering viewpoint, refinement
design is equally important as verification. In fact, there have been many studies
on this problem in other areas such as object-oriented design [11].

The contributions of this paper are as follows:

– Automation of our refactoring (generating additional predicates for consis-
tency, automating proof of refactored models, and handling Event-B models)

– Evaluation on automation of refactoring
– Evaluation on effectiveness of refactoring
– Discussion on preferable refinement strategies
– Proposal of a tool-assisted design space exploration of Event-B refinement

The rest of this paper is organized as follows. First, we provide a background
on Event-B in Sect. 2. Next, we explain our previous work on refactoring refine-
ment in Event-B and our new proposal on automation of refactoring in Sect. 3.
We then describe experiments for comparing various refinement strategies in
Sect. 4. In Sects. 5 and 6, we discuss our methods, experiments, threats to valid-
ity, and related work. Finally, we summarize this study in Sect. 7.

2 Superposition Refinement in Event-B

2.1 Event-B and Superposition Refinement

Event-B [1] is a formal modeling method with a flexible refinement mechanism,
which is designed to mitigate the complexity of contemporary software systems.
Specifically, Event-B supports a special style of refinement, which is called super-
position (horizontal) refinement. For mitigation of complexity in modeling and
verification, it enables developers to gradually introduce elements of a target

Analysis on Strategies of Superposition Refinement of Event-B Specifications 359

system to models. In other words, it helps developers to distribute the complex-
ity over several steps. An important point of superposition refinement is that
developers can design multiple ways of introduce elements.

Another style of refinement that is popular in classical formal methods is
called data (vertical) refinement. Event-B also supports this style. This is ori-
ented for deriving executable program codes from specifications. A typical exam-
ple is conversion from a set-theoretic operation to an operation on an array. In
contrast to superposition refinement, the design space of data refinement is lim-
ited. In fact, there is a semi-automated tool [9] to do data refinement.

2.2 Modeling in Event-B

In Event-B, a unit of a model (machine) consists of variables, invariants, and
events. An event basically consists of guards and actions, which are necessary
conditions for triggering the event and state transitions of the event, respectively.

After constructing a model, the development environment of Event-B (Rodin)
generates proof obligations (POs), which are formulae of consistency of the
model. A primary sort of PO is that an occurrence of event e does not vio-
late an invariant i (invariant preservation, written as e/i/INV).

If a developer declares that a model is a refinement of another model, other
sorts of POs are generated. Such POs include guard strengthening (GRD), which
requires guards of a concrete event to be stronger than guards of correspond-
ing events in the abstract model, and action simulation (SIM), which requires
that concrete behavior corresponds to abstract behavior. Guard strengthening
(eC/gA/GRD, where eC is an event in the concrete machine and gA is a guard of
the abstract event of eC in the abstract machine) demands that the conjunction
of guards of eC is stronger than a guard of the abstract event gA. The (simplified)
formula of eC/gA/GRD is IA ∧ IC ∧ GC ⇒ gA, where IA and IC are abstract
invariants and concrete invariants, and GC is guards of eC. Developers can be
confident with the consistency of the model by discharging all generated POs.

2.3 Example: Cars on the Bridge

We describe a variant of an Event-B example model “Cars on the Bridge” [1,
Chap. 2]. It is about traffic between a mainland and an island, which are con-
nected with a one-way bridge (Fig. 1, right). The requirements include: (R1) The
number of cars outside of the mainland should not exceed the capacity (constant
cap). (R2) When a car is going on the bridge towards the mainland, traffic lights
on the mainland should prevent cars on the mainland from departing.

In Event-B, a developer first constructs an abstract model that disregards
some elements of the target system. For example, Fig. 2 shows an abstract model
of Cars on the Bridge (Fig. 1, left). The variable nout is the number of cars on
the island or the bridge. The invariant inv A1 represents requirement (R1). The
event describes the behavior of a car’s departure from the mainland. Various
POs including mainland out abs/inv A1/INV are generated and proved.

360 T. Kobayashi and F. Ishikawa

Fig. 1. Cars on the bridge example

Fig. 2. MCarsA: part of abstract model of example

After constructing an abstract model, a concrete model with more elements is
constructed. For instance, Fig. 3 shows a concrete model of the example (Fig. 1,
right). The number of cars on the island is nIL, and the number of cars going
left and right are n← and n→, respectively. Those variables replace the abstract
variable nout (inv C1). Variables of traffic lights on the mainland and the island
(MLTL and ILTL) are also introduced into the model. The invariant inv C2
and the guard grd2 satisfies the requirement (R2). In this model, the PO
mainland out con/grd1/GRD is dischargeable because the its formula is:

(MLTL = green) ∧ (MLTL = green ⇒ n→ = 0)
∧ (n← + nIL + 1 < cap) ∧ (nout = n← + nIL + n→) ⇒ nout < cap.

Fig. 3. MCarsC: part of concrete model of example

Analysis on Strategies of Superposition Refinement of Event-B Specifications 361

The refinement in Event-B is done in this way. First, developers blackbox traf-
fic lights and state that “Somehow, the numbers of cars satisfy these invariants
and behave like these events.” They then construct a concrete model to describe
that “It turned out that the cars’ invariants and behaviors of the abstract model
are due to traffic lights.” This flexible refinement mechanism allows developers
to freely design the elements introduced in each refinement step. For example,
they can also introduce traffic lights before introducing cars.

Henceforth, we will use the term refinement strategy (RS) to mean a sequence
of introduced variables in each step. We will also use the term refinement chain
(RC) to mean a sequence of Event-B models [M0,M1, . . . ,Mn] such that Mi+1

refines Mi, where 0 ≤ i ≤ n − 1.

3 Automated Refinement Refactoring

3.1 Refinement Refactoring

We will here describe our previous work on refinement refactoring [7].
Refinement refactoring aims to improve the value of given Event-B models

by changing the refinement strategy of given verified models. The refactored
models have a different refinement strategy than that of the given models. By
refactoring, the expression of models other than the most concrete model can be
changed without changing the most concrete model, because a refinement strat-
egy dominates the expression of models. In other words, refactoring corresponds
to obtaining projection of the most concrete model onto a new state space. For
example, we can improve the maintainability of a model by decomposing one
refinement step into several small steps. In addition, a reusable part of an exist-
ing model can be extracted with refactoring by obtaining a projection onto a
state space of reusable variables. Thus, refactoring facilitates engineering use of
constructed models by obtaining a new projection of the most concrete model.

Our refactoring method receives a concrete model M and a set of variables
V as input and manually produces a model M ′(V) (intermediate model) that is
an abstract version of M . The input V is a subset1 of all variables declared in
the given model M and its abstract models. The output model M ′(V) should
be consistent with M , and thus all POs (such as invariant preservation, guard
strengthening, and action simulation) of M ′(V) should be dischargeable. More-
over, the set of variables contained in M ′(V) should be V . Refactoring is achieved
with two operations: refinement merging and refinement decomposition. For a
given refinement chain [MA,MB ,MC], refinement merging constructs a model
MB+C , which refines MA and is constructed from MB and MC . For a given
refinement chain [MA,MC], refinement decomposition constructs a model MB

such that [MA,MB ,MC] is a refinement chain. By merging a refinement chain
[. . . ,M] and decomposing it into [. . . ,M ′(V),M], we can obtain a model M ′(V)
that is written with V and consistent with M .

1 V cannot be an arbitrary subset. See our previous work [7] for conditions of V .

362 T. Kobayashi and F. Ishikawa

The key challenge of refinement refactoring is guaranteeing consistency in
refinement decomposition. A näıve approach towards refinement decomposition
is slicing, namely constructing M ′(V) as a collection of parts of M that can
be written with V . For example, suppose that we try to construct a model of
the example disregarding the traffic lights (MLTL and ILTL). In other words,
we try to construct a model that describes properties and behavior relevant
to the number of cars on the bridge and the island that are controlled by
the traffic lights, without describing the behavior of traffic lights. By slicing,
we obtain the model M ′

CarsC({n←, nIL, n→}) shown in Fig. 4. Although the
model should refine MCarsA, this intermediate model lacks the consistency of
mainland out int/grd1/GRD, because it lacks the invariant inv C2 and the guard
grd2 , which were necessary hypotheses for the consistency in the original model.
Thus, slicing often drops predicates that are hypotheses of consistency proofs of
the original model.

Fig. 4. M ′
CarsC({n←, nIL, n→}): a part of intermediate model (obtained by slicing, not

consistent) of example.

Our refactoring method addresses this problem by supporting the construc-
tion and addition of new predicates, which we call complementary predicates
(CPs). CPs should be able to be expressed with variables of an intermediate
model and should function as a missing hypothesis of a proof of an intermediate
model. CPs can be found by analyzing a proof of the original model because
they correspond to lemmas in the original proof (Sect. 2.3). For instance, in the
proof of mainland out con/grd1/GRD in the original example model MCarsC,
there is a lemma n→ = 0, which can be derived from hypotheses inv C2 and
grd2 . This lemma can be expressed with variables {n←, nIL, n→} and we can
discharge the PO in the intermediate model (mainland out int/grd1/GRD) by
adding this lemma to the model as a new guard of event mainland out int. Thus,
our method achieves a consistent refinement decomposition by slicing and ana-
lyzing the original proof.

3.2 Automation with Heuristics

The method in our previous work, which include manual analysis on many proofs,
is demanding and difficult. Therefore, we propose an automation of refinement

Analysis on Strategies of Superposition Refinement of Event-B Specifications 363

refactoring by constructing the following three functionalities. Complemen-
tary Predicates Generator. Obtaining CPs is the most difficult and time-
consuming part of manual refinement refactoring. Our method uses heuristics
and Craig’s interpolation (with Z3 [5]) to automate this process. Proof Finder.
Automatic prover of Rodin cannot discharge all POs of refactored models. Our
method finds parts of the original proof that correspond to the proof of refac-
tored models and reuses them. Merger and Slicer. We have also developed
rule-based automation of merging and slicing.

Those functionalities are implemented as a plug-in of Event-B’s development
environment2. This automation enables us to analyze the effects of refinement
strategies on complexity of models and verification (Sect. 4).

Manually finding CPs is significantly difficult and demanding. To manually
find a CP for a PO, a developer must find a corresponding PO in the original
model, analyze the proof of it, and find hypotheses that are essential to discharge
the PO and written in variables of the intermediate model. Repeating this pro-
cess to find CPs for all POs of large-scale models is demanding. In addition,
developers need to repeat a difficult task of deeply understanding the proofs of
original models. Therefore, we made this process systematic and automatic.

Predicates sufficient for proofs in the original model can be systematically
obtained as interpolants of the formulae of POs. In other words, a formula X
that satisfies hypotheses ⇒ X ⇒ consequence is enough to derive consequence.
Thus, if such interpolants can be added to the intermediate model, the model
becomes consistent. However, such interpolants cannot always be added to the
model because X may use variables that are not in variables of the interme-
diate model. This is because the set of identifiers of X (an interpolant) is a
subset of identifiers used in both of hypotheses and consequence. For example,
mainland out con/grd1/GRD in MCarsC is as follows:

(MLTL = green ∧ n← + nIL + 1 < cap ∧ (MLTL = green ⇒ n→ = 0)
∧ nout = n← + nIL + n→) ⇒ nout < cap. (1)

The identifiers common in the hypotheses part and the consequence part are
{nout, cap}, but nout cannot be used in the intermediate model. Thus, an inter-
polant of the formula of a PO of the original model cannot always be a CP.

Our method provides heuristics to convert a formula of PO into an equivalent
formula such that an interpolant of the converted formula becomes a CP. The
heuristic for GRD converts the original formula IA ∧ IC ∧ GC ⇒ gA into:

IAB ∧ ĨC ∧ G̃C ⇒ gA ∨ ¬ĨA ∨ ¬IBC ∨ ¬GBC, (2)

where ĨA, ĨC, and G̃C are abstract invariants, concrete invariants, and concrete
guards that contain dropped variables, and IAB, IBC, GBC are those that do not
contain dropped variables (i.e., they are obtained by slicing). We also defined

2 https://github.com/trarse-nii/SliceAndMerge.

https://github.com/trarse-nii/SliceAndMerge

364 T. Kobayashi and F. Ishikawa

heuristics for SIM and INV. For example, the heuristic converts (1) into:

(MLTL = green ∧ n← + nIL + 1 < cap ∧ (MLTL = green ⇒ n→ = 0))
⇒ (nout < cap ∨ ¬(nout = n← + nIL + n→)). (3)

The heuristics are designed so that (a) interpolants of converted formulae are
always written with identifiers of the intermediate model (i.e., the interpolants
can be added to the intermediate model) and (b) adding the interpolants to
the intermediate model makes the model consistent. Let VA, VB, and VC be
variables of the abstract model, the intermediate model, and the concrete model,
respectively. By definitions, variables of (VA\VB) do not occur in the hypotheses
part of (2) and variables of (VC\VB) do not occur in the consequence part. Thus,
the set of variables common in the hypotheses part and the consequence part is
guaranteed to be a subset of VB. Therefore, the interpolant can be added to the
intermediate model. For instance, predicate n← + nIL + n→ + 1 < cap can be
obtained as an interpolant of (3). In addition, by (2), X ⇒ gA ∨ ¬ĨA ∨ ¬IBC ∨
¬GBC. By strengthening the hypotheses part of this formula,

IA ∧ IB ∧ GB ∧ X ⇒ gA ∨ ¬ĨA ∨ ¬IBC ∨ ¬GBC,

where IB and GB are invariants and guards of the intermediate model. Since
IA ⇒ ĨA, IB ⇒ IBC, and GB ⇒ GBC,

IA ∧ IB ∧ GB ∧ X ⇒ gA.

Thus, by adding X to the corresponding event as a guard, the GRD of the inter-
mediate model becomes dischargeable. Therefore, our tool makes intermediate
models consistent by adding interpolants of formulae converted from POs.

The proof finder aims to reuse proofs on the original model. Predicates of a
model (invariants, guards, actions, etc.) related to a PO dominate the contents
of the generated PO. However, the POs of a refactored model are generated from
a mixture of multiple steps of original models because refactoring decomposes
after merging of multiple models. Hence, it is not straightforward to find which
proof on the original model should be reused to discharge POs of a refactored
model. To address this problem, we added traceability information, which shows
the predicates of original models used to generate a PO of a refactored model
to the refactored model. The proof finder uses this traceability information to
find corresponding proof in the original model and follows the same proof tree
for proving a PO in the refactored model. Although the proof finder does not
work for arbitrary proofs, we did not find any problems in our experiments
(Sect. 4). Thus, we automated reusing the proof of an original model for verifying
a refactored model by adding traceability.

4 Experiments on Models Constructed with Refactoring

4.1 Evaluation Criteria

We considered that good strategies would effectively mitigate development com-
plexity in Event-B because the primary goal of the Event-B refinement mecha-

Analysis on Strategies of Superposition Refinement of Event-B Specifications 365

nism was to mitigate such complexity. We focused on two kinds of complexities:
the complexity of model itself and the complexity of verification.

Local Model Complexity. We checked the numbers of variables, invariants,
and events of each step to evaluate the complexity of the model of each step. If a
step is small, it tends to be easy to understand the step because developers can
focus on a small number of elements. Therefore, we considered that the numbers
should be well-distributed over multiple steps if developers follow a good strategy.

Proof Complexity. We checked the number of all generated POs and the num-
ber of POs that failed to be discharged by automatic provers (manually discharged
POs) to evaluate the proof complexity. The number of manually discharged POs
are checked to evaluate actual burden of proving because Rodin has automatic
provers, which discharge most of the relatively simple proofs. In addition, we
also considered the local model complexity informative to evaluate this complex-
ity. If there is a non-dischargeable PO in a model, making modifications to a
part of the model affects multiple POs. This is because POs and the contents of
Event-B models are interrelated. For instance, if an invariant i needs to be mod-
ified, not only preservation of i by all events, but also GRD and SIM of related
events should be checked again. Therefore, distributing model contents and POs
limits the range of modification propagation, and thus reduces complexity. The
number of invariants and events also affects the number of generated POs. Thus,
we considered that effective strategies distribute number of variables, invariants,
events, and POs well.

4.2 Comparison Settings and Hypotheses

As the materials, we used models [2] of a train system [1, Chap. 17] and models
of an autonomous satellite flight formation system [12]. Both were constructed
by modelers experienced in Event-B.

There are two important characteristics of RSs: granularity and order. For
example, an RS [{a, b, c}], which introduces three variables in one step and
another RS [{a}, {b}, {c}], which introduces them one-by-one are different in
granularity. An RS [{a}, {b}, {c}] and another RS [{c}, {b}, {a}] are different in
order of variable introduction. In an experiment we conducted, we compared
strategies that differed in granularity and order to check the evaluation criteria.

To examine differences of granularity, we made the following comparisons:

Original vs. Merged. Comparison with a model constructed by merging
the original models. For example, when an RC [M1,M2,M3] followed an RS
[{nIL}, {n←, n→}, {MLTL}], we constructed a model M1+2+3 that followed an
RS [{nIL, n←, n→,MLTL}] and compared [M1,M2,M3] and [M1+2+3].

Hypothesis 1: The number of POs of the merged model is less than that of
the original models. This is because there is no need of checking consistencies
between several steps (e.g., GRD and SIM) in the merged model. This means
that decomposition adds several POs but mitigates the local model complexity.

366 T. Kobayashi and F. Ishikawa

Original vs. Decomposed. Comparing a step of original models and models
constructed by decomposing the step of original models. Complementary predi-
cates are generated and added to the model through refinement decomposition,
and the complexity is affected by CPs. Therefore, to eliminate the effect of
CPs, we compared decomposed models and a model constructed by re-merging
the decomposed model. For instance, when the RC [M1,M2,M3] was given, we
decomposed M2 to construct another RC [M1,M21,M22,M3] that follows an RS
[{nIL}, {n←}, {n→}, {MLTL}]. We then constructed a model M2∗ by merging
M21 and M22, and then compared (M21,M22) and M2∗. Since there are multiple
ways of decompositions, we compared several of them.

Hypothesis 2: Although the sum of the number of invariants may increase
due to the introduction of typing invariants3, invariants are distributed over sev-
eral steps. This also means decomposition mitigates the local model complexity.
Hypothesis 3: The number of CPs (new guards and actions) affects the num-
ber of POs because GRD and SIM should be checked for them. However, the
new GRDs and SIMs are relatively simple because CPs correspond to lemmas
of original proof and thus proofs for CPs are simpler than the original proofs.
This means that decomposition adds several POs, which are easily discharged by
automatic provers. Hypothesis 4: The number of POs of the re-merged model is
almost the same as that of the original model. This is because CPs are introduced
as guards and actions, which do not affect the number of INVs. This means that
the comparison of original models and re-merged models is fair.

To examine differences of order, we made the following comparisons:

Swapping Two Steps. Comparison with models constructed by swap-
ping two continuous steps in the original strategy. By the same reason as
Original vs. Decomposed, we used models constructed by swapping twice
instead of the original models. For example, when the RC [M1,M2,M3] was
given, we constructed another RC [MS121,MS122,M3] that follows an RS
[{n←, n→}, {nIL}, {MLTL}]. We then re-swapped them to construct another RC
[MSS121,MSS122,M3] that follows an RS [{nIL}, {n←, n→}, {MLTL}], and then
compared [MS121,MS122,M3] and [MSS121,MSS122,M3]. We calculated stan-
dard deviation of the number of POs to compare distributions of them.

Hypothesis 5: Swapping may change the distribution of number of invariants
and POs. This is because some variables are frequently used in invariants and
others are rarely used. For instance, let us assume that we are going to con-
struct models with variables {a, b} and invariants {f(a), g(a, b)}. If we construct
models by following [{a}, {b}], we can distribute the invariants because f(a) is
introduced in the first step and g(a, b) is introduced in the second step. In con-
trast, if we construct models by following [{b}, {a}], both f and g are introduced
in the second step because both depend on a. The sum of number of invariants
may slightly increase due to the introduction of typing invariants. This means
that orders of RSs are important.

3 Rodin requires variables’ typing information. Although typing information is usually
inferred from normal invariants, slicing may remove such invariants. In this case,
invariants of typing information (e.g., MLTL ∈ COLOR) must be newly provided.

Analysis on Strategies of Superposition Refinement of Event-B Specifications 367

Table 1. Merging and decomposing of results obtained for Train example.

Models ΔV I ΣI E CP PO ΣPO MPO ΣMPO Auto%

Tr 4, 3, 1, 1 8, 9, 3, 4 24 6,8,8,8 - 35, 63, 16, 13 127 7, 18, 6, 5 36 72%

TrM 9 24 24 8 - 110 110 32 32 71%

Tr1 4 8 8 6 - 35 35 7 7 80%

Tr1DA 1, 1, 1, 1 1, 2, 4, 5 12 3, 4, 4, 6 0, 0, 1, 0 0, 0, 13, 25 38 0, 0, 2, 5 7 82%

Tr1DMA 4 12 12 6 1 35 35 7 7 80%

Tr1DB 1, 1, 1, 1 1, 4, 3, 4 12 4, 5, 5, 6 1, 7, 1, 0 2, 26, 7, 17 52 0, 6, 1, 0 7 87%

Tr1DMB 4 12 12 6 9 36 36 8 8 78%

Reversing Multiple Steps. Comparison with models constructed by reversing
steps in the original strategy. Again, we used models constructed by reversing
twice instead of the original models. For instance, when the RC [M1,M2,M3]
was given, we constructed another RC [MR1,MR2,MR3] that follows an RS
[{MLTL}, {n←, n→}, {nIL}]. We then did reversing again to construct another
RC [MRR1,MRR2,MRR3] that follows an RS [{nIL}, {n←, n→}, {MLTL}], and
then compared [MR1,MR2,MR3] and [MRR1,MRR2,MRR3]. The hypothesis is
the same as that of swapping.

4.3 Results

Due to space limitations, we omitted the results on Flight Formation Systems
models, which tend to be similar to those for the Train example. The Train
model and additional information are available on the Web4.

With our automated refactoring tool, we succeeded in constructing all models
and discharging all POs. This means our tool generated correct CPs. Combined
with the SMT solvers plug-in of Rodin, our proof finder discharged all POs.
Therefore, we conclude that our tool is appropriate for this experiment.

Table 1 shows the experiment results we obtained on granularity. Each row
lists the numbers of a set of models (i.e., an RS). For example, in the original
Train example (the first row “Tr”), there are four steps that introduce 4, 3, 1, and
1 variables (ΔV). Each step has 8, 9, 3, and 4 invariants (I), 24 invariants in total
(ΣI). E shows events in each step, CP shows the numbers of CPs introduced in
each step, PO shows the number of all POs, MPO shows manually discharged
POs, and Auto% shows the rate of automatically discharged POs.

Row 2 (TrM) in Table 1 shows the results obtained for the merged model.
Columns ΔV , I, and E show that TrM introduces things introduced through four
steps in the original machines in one-shot. ΣPO shows that the number of POs
decreased from 127 to 110 through merging. This result supports Hypothesis 1.

Rows 3–7 (Tr1*) in Table 1 show the results obtained on decomposition of
the first step of the original model (the numbers are those of the first step of
Tr). The first step of Tr introduces four variables: resrt, resbl, rsrtbl, and OCC.
Row 4 (Tr1DA) shows the results obtained for a decomposed strategy that intro-
duces resrt, resbl, rsrtbl, and OCC one-by-one. Row 6 (Tr1DB) shows the results
4 http://tkoba.jp/publications/icfem2018/.

http://tkoba.jp/publications/icfem2018/

368 T. Kobayashi and F. Ishikawa

Table 2. Results obtained in swapping and reversing the Train example.

Models ΔV I ΣI E CP PO σPO MPO σMPO Auto%

Tr 4, 3, 1, 1 8, 9, 3, 4 24 6, 8, 8, 8 - 35, 63, 16, 13 19.9 7, 18, 6, 5 5.2 72%

TrS12 3, 4, 1, 1 4, 15, 3, 4 26 6, 8, 8, 8 0, 0, 0, 0 8, 85, 33, 13 30.5 1, 23, 9, 5 8.3 73%

TrSS12 4, 3, 1, 1 8, 13, 3, 4 28 6, 8, 8, 8 0, 0, 0, 0 36, 53, 33, 13 14.2 7, 16, 9, 5 4.1 71%

TrS23 4, 1, 3, 1 8, 2, 10, 4 24 6, 7, 8, 8 0, 5, 0, 0 35, 25, 61, 15 17.1 7, 6, 19, 6 5.5 72%

TrSS23 4, 3, 1, 1 8, 9, 3, 4 24 6, 8, 8, 8 0, 9, 0, 0 35, 65, 16, 23 18.7 7, 16, 5, 10 4.2 73%

TrS34 4, 3, 1, 1 8, 9, 1, 6 24 6, 8, 8, 8 0, 0, 4, 0 28, 45, 5, 19 20.0 7, 18, 2, 10 5.8 72%

TrSS34 4, 3, 1, 1 8, 9, 2, 6 25 6, 8, 8, 8 0, 0, 4, 0 35, 63, 7, 25 20.3 7, 18, 2, 9 5.8 72%

TrR 1, 1, 3, 4 1, 3, 6, 17 27 2, 2, 7, 8 0, 0, 1, 0 2, 7, 13, 94 37.7 0, 2, 2, 28 11.6 72%

TrRR 4, 3, 1, 1 8, 11, 5, 3 27 7, 8, 8, 8 0, 0, 1, 0 36, 49, 19, 6 16.3 9, 15, 5, 2 4.9 72%

obtained for another decomposed strategy that introduces OCC, rsrtbl, resbl,
and resrt one-by-one (i.e. in the reversed order of Tr1DA). Rows 5 and 7
(Tr1DMA and Tr1DMB) show the results obtained for a strategy constructed
by merging the four steps of Tr1DA and Tr1DB, respectively.

By comparing Tr1 and others, we see no difference in the total numbers
of variables and events, but an increasing number of invariants. From ΣPO,
we see no significant difference from Tr1 except for Tr1DB. This is because 9
CPs (as guards) and related POs were generated by following the RS of Tr1DB
([{OCC}, {rsrtbl}, {resbl}, {resrt}]). As column MPO shows, these new POs
were simple enough for automatic provers to discharge. We can see that we
succeeded in distributing variables, invariants, and POs over several steps by
decomposition. Therefore, we consider that the results support Hypotheses 2–4.

Table 2 shows the experiment results on the order in which variables are
introduced. In this table, standard deviations of PO and MPO (σPO and σMPO)
are shown. Row 1 (Tr) shows the results obtained with the original strategy.
Rows 2–3, 4–5, 6–7 (TrSn(n + 1), TrSSn(n + 1)) show the results obtained by
swapping steps 1–2, 2–3, and 3–4, respectively. Rows 8–9 (TrR, TrRR) show the
results obtained by reversing. ΔV of the swapped or reversed models’ strategy
are simply swapped or reversed numbers of ΔV of Tr.

We see no significant differences in ΣI. It is interesting that there are steps
with a large number of invariants in TrS12 (second step) and TrR (fourth step).
Both of them introduce four variables introduced in the first step of the orig-
inal strategy ({resrt, resbl, rsrtbl, OCC}). This is because those variables are
frequently used in the invariants. It is also found that the steps with a large
number of invariants (the second step of TrS12 and the fourth step of TrR) have
a large number of POs (PO and MPO), and result in high standard deviations
of those strategies. Thus, we consider that the result supports Hypothesis 5.

Summary. (1) Strategies with more steps have more POs in total but distribute
POs well, especially if strategies are carefully chosen taking dependence into con-
sideration. This is preferable as discussed in Sect. 4.1. (2) Due to the dependence
of invariants on variables, the order in which variables are introduced affects vari-
ance of invariants and POs. In general, important variables that are written in
many invariants should be introduced in early steps.

Analysis on Strategies of Superposition Refinement of Event-B Specifications 369

5 Discussion

5.1 Effects of Refactoring to POs

Refactoring adds several POs to the original models and also removes several
POs from the original models. Generating CPs by refinement decomposition
results in the generation of new POs related to the CPs. However, as CPs can
be seen as lemmas, the generation of CPs helps automatic provers to discharge
difficult POs. In addition, as we saw in Sect. 4.3, refinement merging removes
several GRDs and SIMs.

Although changing the order of a strategy (such as swapping and reversing)
involves slicing and generation of CPs, several POs are removed through it. In
fact, TrR (reversed) has 116 POs but Tr (original) has 127 POs. We found that
several POs about consistency between two models (such as GRD and SIM) are
removed through the changing order. This is because concrete and strong guards
(which were originally introduced in later steps) are introduced in early steps
after changing order, and thus there is no need to strengthen them in later steps.

5.2 Dependence of Invariants on Variables

As we saw in experiments on the order of refinement strategies, dependence of
invariants on variables is important for detailed analyses on complexity mit-
igation with refinement. The dependence is obviously problem specific. Thus,
changing the order of strategy will not have much effect if the dependence is not
strong.

The dependence also strongly affects whether an invariant is dropped in
slicing (i.e., whether CP is generated). To analyze this, not only variables in an
invariant but also the structure of the invariant is important. For example, an
invariant inv1: f ∈ a → b, which means that “f is a total function from a to
b”, limits the value of f . Although variables a and b appear in inv1, the values
of them are not limited by inv1. Therefore, inv1 can be a hypothesis in a proof
related to f but it cannot be a hypothesis in a proof related to a or b. Because
CP is generated by a lack of hypothesis in a proof, we need to consider whether
the value of a variable is limited by an invariant.

Our future work will include detailed analyses on refactoring while taking
dependence into consideration.

5.3 Use of Automated Refactoring in Development

We also consider that search for a good refinement strategy is important in
development process. Automated refinement refactoring can be used to search
for a desirable strategy to improve flexibility against change and actually refactor
models. However, CPs generated by the current method are sometimes redun-
dant or non-human-friendly. Therefore, we are planning to improve our CP gen-
erator so that it will not only generate correctly but also be easy to understand.
Possible approaches include applying metrics of formula understandability and
a method to generate simple interpolants [3].

370 T. Kobayashi and F. Ishikawa

5.4 Threats to Validity

Internal Validity Threats. Our analyses rely on artificial data constructed
with our method. Thus the method, in particular the CPs it generates, may have
affected the obtained results. However, we carefully designed the experiment
to eliminate the effect of CPs (such as double-reversing). We also discussed
how refactoring would affect POs (Sect. 5.1). Therefore, although user studies
for further analyses are included in our future direction, we conclude that the
analyses given in this paper are valid.

Additionally, from the experiment results obtained on changing the order
of the refinement strategy, we concluded that introducing important variables
in early steps is effective in reducing complexity. Although this claim seems
natural, the complexity increased by refactoring in every case we examined. In
other words, we didn’t see any mitigation of complexity with refactoring. This
is because the original models were constructed by experienced modelers in an
ideal order (i.e., important variables were introduced in early steps). Therefore,
we are planning to use models in which variables were introduced in a bad order
to confirm the method’s validity.

External Validity Threats. In terms of generalization, there may be a concern
about the variations and practicality of the materials we used in the experiments.
For variations, we believe our findings about granularity and order are general
enough and not domain-specific. In terms of practicality, in fact, the models
were constructed by experienced modelers. Although we believe the models are
appropriate for examining our general findings, analyses on models constructed
by inexperienced modelers would be an interesting subject for future work.

Construct Validity Threats. For the sake of simplicity, we used local model
complexity and proof complexity as evaluation criteria. However, we were aware
that strategies that have atomic steps (e.g., those that introduce only one vari-
able in one step) are not optimal. Too much decomposition of refinement often
causes models that lack conceptual integrity and have many meaningless POs.
Thus, although our findings show that decomposing refinement steps tend to be
effective, we will also consider costs of long refinement chains in our future work.

6 Related Work

There have been studies to connect Event-B models with other modeling meth-
ods and requirement analysis methods, such as UML [10] and KAOS [8]. Because
such modeling methods are widely used, there have been analyses that studied
the design of such models, such as decomposition into components and refine-
ment in KAOS. In particular, in the area of object-oriented design, such stud-
ies [11] have been very active. However, by connecting Event-B models and other
modeling methods and analyze models in other notations, the expressiveness of

Analysis on Strategies of Superposition Refinement of Event-B Specifications 371

model is limited to that of other modeling notations. More importantly, analy-
sis methods do not consider proof obligations, which need to be considered for
formal refinement. Therefore, Event-B’s flexible and rigorous formalism cannot
be handled with such methods.

There have been case studies of Event-B modeling by experts [1,4]. The
study in [4] is particularly interesting because multiple researchers have con-
structed different Event-B models for the same subject problem. Their models
are sophisticated and good learning materials for other developers. However,
they do not explain why the strategies they used are better than other possible
strategies. There are also guidelines of Event-B modeling for subjects of a par-
ticular domain [13]. Although their guides are detailed, they are domain-specific
and not applicable to other areas. It will be interesting to analyze more subjects
of their models with our method because they are good examples of experts’
models.

Our previous work [6] proposed evaluation criteria of refinement strategy
based on the number of variables, and a planning method to distribute intro-
duction of variables as much as possible. However, it is not applicable in realistic
situation because the planner requires a list of invariants and variables before
constructing models. In addition, the planning method is conceptual, and cannot
handle details of model and POs, which are necessary in empirical analyses.

Our approach in this paper establishes a method to construct a consistent
models and analyze them by automating our refactoring method. By using the
automatic refactoring, we succeeded in comparing and discussing refinement
strategies, considering predicates and POs by using actual Event-B models. As
a result, general and domain-independent findings about refinement strategies
were obtained. Our method also enables developers to search the design space
of Event-B models constructed in development.

7 Conclusion and Future Work

Our goal was exploration and analysis on the design space of Event-B’s flexi-
ble superposition refinement, which have never studied in the formal methods
area. To this end, we provided an automatic method to construct a consistent
refactored model from given models according to given refinement strategies.
We defined heuristics and applied Craig’s interpolation to generate predicates
to resolve inconsistencies occurring through the changing of a refinement strat-
egy. As this enabled us to flexibly change the refinement strategy of a given
model, we conducted an experiment in which we compared models constructed
by following various refinement strategies from the viewpoint of complexity. As
a result, we found that doing fine-grained refinement and introducing frequently
used variables to the model earlier are effective to reduce complexity of modeling
and verification of each step. In addition, we discussed the effects that refactor-
ing would have on complexity and dependence between predicates and variables.
We conclude that our method and experiments will benefit Event-B modelers
designing refinement strategies.

372 T. Kobayashi and F. Ishikawa

Our future work will primarily proceed in two directions. The first will be to
analyze the relationship between dependence and refinement strategies to make
our design space exploration more sophisticated. The second will be to conduct
user studies and compare the result with that of our experiment to check the
validity.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.-R.: Train system. http://deploy-eprints.ecs.soton.ac.uk/124/
3. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith,

H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39799-8 22

4. Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Wiels, V.,
Ait Ameur, Y., Schewe, K.-D. (eds.) ABZ 2014. CCIS, vol. 433, pp. 1–18. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07512-9 1

5. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

6. Kobayashi, T., Ishikawa, F., Honiden, S.: Understanding and planning Event-B
refinement through primitive rationales. In: Ait Ameur, Y., Schewe, K.D. (eds.)
Abstract State Machines, Alloy, B, TLA, VDM, and Z. LNCS, vol. 8477, pp. 277–
283. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43652-3 24

7. Kobayashi, T., Ishikawa, F., Honiden, S.: Refactoring refinement structure of
Event-B machines. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 444–459. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 27

8. Matoussi, A., Gervais, F., Laleau, R.: A goal-based approach to guide the design
of an abstract Event-B specification. In: 16th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS), pp. 139–148. IEEE (2011)

9. Requet, A.: BART: a tool for automatic refinement. In: Börger, E., Butler, M.,
Bowen, J.P., Boca, P. (eds.) ABZ 2008. LNCS, vol. 5238, pp. 345–345. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87603-8 33

10. Said, M.Y., Butler, M., Snook, C.: Language and tool support for class and state
machine refinement in UML-B. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009.
LNCS, vol. 5850, pp. 579–595. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-05089-3 37

11. Subramanyam, R., Krishnan, M.S.: Empirical analysis of CK metrics for object-
oriented design complexity: implications for software defects. IEEE Trans. Softw.
Eng. 29(4), 297–310 (2003)

12. Tarasyuk, A., Pereverzeva, I., Troubitsyna, E., Latvala, T.: The formal derivation
of mode logic for autonomous satellite flight formation. In: Koornneef, F., van
Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9337, pp. 29–43. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24255-2 4

13. Yeganefard, S., Butler, M., Rezazadeh, A.: Evaluation of a guideline by formal
modelling of cruise control system in Event-B. In: Proceedings of the Second NASA
Formal Methods Symposium (NFM 2010), pp. 182–191. NASA, April 2010

http://deploy-eprints.ecs.soton.ac.uk/124/
https://doi.org/10.1007/978-3-642-39799-8_22
https://doi.org/10.1007/978-3-319-07512-9_1
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-662-43652-3_24
https://doi.org/10.1007/978-3-319-48989-6_27
https://doi.org/10.1007/978-3-319-48989-6_27
https://doi.org/10.1007/978-3-540-87603-8_33
https://doi.org/10.1007/978-3-642-05089-3_37
https://doi.org/10.1007/978-3-642-05089-3_37
https://doi.org/10.1007/978-3-319-24255-2_4

Formalising Extended Finite State
Machine Transition Merging

Michael Foster(B) , Ramsay G. Taylor , Achim D. Brucker ,
and John Derrick

Department of Computer Science, The University of Sheffield,
Regent Court, Sheffield S1 4DP, UK

{jmafoster1,r.g.taylor,a.brucker,j.derrick}@sheffield.ac.uk

Abstract. Model inference from system traces, e.g. for analysing legacy
components or generating security tests for distributed components, is
a common problem. Extended Finite State Machine (EFSM) models,
managing an internal data state as a set of registers, are particularly
well suited for capturing the behaviour of stateful components however
existing inference techniques for (E)FSMs lack the ability to infer the
internal state and its update functions.

In this paper, we present the underpinning formalism for an EFSM
inference technique that involves the merging of transitions with updates
to the internal data state. Our model is formalised in Isabelle/HOL,
allowing for the machine-checked validation of transition merges and
system properties.

Keywords: Model inference · State machine models · EFSM

1 Introduction

Accurate behavioural models of software systems are very valuable for develop-
ment and maintenance. They are particularly useful during the testing phase
where they have acted as oracles for regression testing [9] and can be used to
automatically generate tests [10]. Such models are also useful in requirements
engineering [5], aiding the understanding of systems.

Despite their value, models are often neglected during development. It
is therefore useful to reverse engineer them from existing systems. There is
substantial work on reverse engineering Finite State Machine (FSM) models
from observations of systems including [11,13,18,20]. Most modern inference
approaches begin by building a Prefix Tree Acceptor (PTA) [18], a tree-shaped
automaton accepting exactly the traces observed. States and transitions are then
merged where they are thought to represent the same system component.

The models produced by classical FSM inference struggle with complex sys-
tems, especially those exhibiting behaviour dependant on an internal state.
Extended Finite State Machine (EFSM) inference is a promising solution to
this problem. EFSM models extend traditional FSMs by providing control flow
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 373–387, 2018.
https://doi.org/10.1007/978-3-030-02450-5_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_22&domain=pdf
http://orcid.org/0000-0001-8233-9873
http://orcid.org/0000-0002-4036-7590
http://orcid.org/0000-0002-6355-1200
http://orcid.org/0000-0002-6631-8914

374 M. Foster et al.

decisions based on input values as well as persistent data storage [17]. Current
EFSM inference approaches [15,19] tend to focus on guard expressions – func-
tions that make control flow decisions based on input or data-state values – but
overlook how individual transitions mutate the data state. The inference of data
update functions is a key technical challenge in EFSM inference but significantly
complicates the merging process.

The primary contributions of this work are as follows:

1. A formal process by which EFSM transitions with update functions may be
merged.

2. The introduction of contexts, a scheme by which constraints on data values
may be traced through EFSMs.

3. The use of contexts to prove properties and equivalence of EFSM models.

The rest of the paper is structured as follows: After a brief motivating exam-
ple, Sect. 2 fixes our definition of EFSMs. Our formalism for merging EFSM
transitions with update functions is introduced in Sect. 3, as is the concept of
contexts. Section 4 discusses transition subsumption and how it is used in the
merging process. Section 5 shows how contexts may be used to analyse proper-
ties of EFSM models. Finally, Sect. 6 concludes the paper, discussing related and
future work.

1.1 Motivating Example

The inference process starts with a black-box system and observes its behaviour
when presented with different inputs. From these observations, a model can be
produced which reflects the observed behaviour. For example, consider a simple
vending machine whose traces are exemplified in Fig. 1.

In the actual system the select operation takes one parameter: the desired
drink. The coin operation allows the user to insert coins to pay for their drink.
The output of each coin operation is the total amount inserted so far. Once
the value reaches 100, the vend operation triggers the drink to be dispensed.
Pressing vend when the total coinage inserted is less than 100 yields no output.

select(coke) → coin(50)/[50] → coin(50)/[100] → vend()/[coke]

select(coke) → coin(100)/[100] → vend()/[coke]

select(pepsi) → coin(50)/[50] → vend() → coin(50)/[100] → vend()/[pepsi]

Fig. 1. Some observed traces of a drinks machine in which an event has the format
label(arguments)/[outputs]. The output component is omitted if none is produced.

FSM inference processes use traces to construct a candidate model. This is
done by constructing an initial PTA and iteratively merging states and transi-
tions until an FSM model of the system similar to the one in Fig. 2 is obtained.

Formalising Extended Finite State Machine Transition Merging 375

q0

q1 q3 q4

q2 q5 q6

q7

sele
ct(co

ke)

select(pepsi)

coin(50)/[50] coin(50)/[100]

coin(100)/[100]

vend()/[coke]

coin(50)/[50]

vend()

coin(50)/[100] ven
d()/

[peps
i]

Fig. 2. A classical FSM model reflecting the traces in Fig. 1

The Problem with FSM Inference: Classical FSM inference processes produce
models of the system like the one in Fig. 2. Note that transition labels are
atomic so, for example, the select(coke) transition does not represent an event
with label select and input coke, rather the transition is labelled by the literal
string “select(coke)” making it a completely separate entity from the transition
“select(pepsi)”. This is a major problem as it means that information such as the
selected drink and accrued funds must be encoded as part of the control state.
Increasing product choice or the coins accepted quickly causes an explosion in
model size disproportionate to the change in observable behaviour.

EFSM Inference: The FSM in Fig. 2 looks promising but is flawed because of
its atomic labels. It is preferable to generate an EFSM model such as the one
in Fig. 3. Here, the selected drink is stored in a register r1 for later use in the
output of the vend transition. A second register r2 (initialised with 0 by the
select transaction) keeps track of the money inserted so far. Drinks are only
dispensed once this value reaches 100. This enables customers to pay for their
drink with any coin in any order. This is a much more concise and faithful model
of the real system.

q0 q1 q2
select : 1/[r1 := i1, r2 := ‘0’]

coin : 1/o1 := r2 + i1[r2 := r2 + i1]

vend : 0[r2 < 100]

vend : 0[r2 ≥ ‘100’]/o1 := r1

Fig. 3. An EFSM model of the simple vending machine in which transitions have the
general form label : arity [guards]/outputs[updates]. Where a particular transition lacks
guards, outputs, or updates, the relevant components are omitted.

376 M. Foster et al.

State of the Art: EFSM inference techniques have been developed to produce
models with parametrised guarded inputs and a separate data state. Notable
works include the GK-tails algorithm [15] and the MINT algorithm [19].

GK-tails builds on top of the well established k-tails [2] algorithm. Each
transition is annotated with a set of variable values at the current point of
execution. When transitions are merged, their sets of variable values are also
merged. The algorithm uses Daikon [9] to infer properties of variables which are
used to ascertain whether a pair of states is compatible for merging.

The MINT approach [19] also has strong foundations but uses classifiers to
determine, based on current data values, the labels of subsequent events. A
key difference to GK-tails is that here data values are globally accessible so the
classifiers have more data to work with. Classifiers are used not only to determine
the validity of transition merges, but to detect and resolve nondeterminism.

While these techniques are valuable contributions and perform well for cer-
tain tasks, both fall short in that they fail to capture how data values are changed
by individual transitions and are therefore unable to generate the EFSM in
Fig. 3. Including data update functions as part of each transition significantly
complicates the process of transition merging. This work presents a method of
comparing two transitions to assess their compatibility for merging. The actual
inference process is the intended subject of future work.

2 Extended Finite State Machines

To define our method, we first need to fix the format of our EFSM model. Var-
ious EFSM models are presented in the literature [4,14] as well as similar ideas
under different names [3,8]. Since the aim is to automatically infer data update
functions, our model affords them a more detailed treatment, combining desir-
able aspects of various existing models. As with classical FSM models, EFSMs
are usually presented graphically like in Fig. 3.

Definition 1. An EFSM is a tuple, (S, s0, T) where S is a finite non-empty
set of states, s0 ∈ S is the initial state, and T is the transition matrix T :
(S × S) → P(L × N × G × F × U) with rows representing origin states and
columns representing destination states. In T , L is a set of transition labels. N
gives the transition arity (the number of input parameters) which may be zero.
G is a set of Boolean guard functions G : (I × R) → B. F is a set of output
functions F : (I × R) → O. U is a set of update functions U : (I × R) → R.

In G, F , and U , I is a tuple [i1, i2, . . . , im] of values, representing the inputs
of a transition which is empty if the arity is zero. Inputs do not persist across
states or transitions. R is a mapping from variables [r1, r2, . . .], representing
each register of the machine, to their values. Registers are globally accessible
and persist throughout the operation of the machine. All registers are initially
undefined until explicitly set by an update expression. O is a tuple [o1, o2, . . . , on]
of values, which may be empty, representing the outputs of a transition.

Formalising Extended Finite State Machine Transition Merging 377

A little syntactic sugar allows an EFSM transition from anterior state Sm to
posterior state Sn to take the general form

Sm
label:arity[g1,...,gn]/f1,...,fn[u1,...,un]−−−−−−−−−−−−−−−−−−−−−−−−→ Sn

The first part of the transition is an atomic label which is the name of the
event. This is followed by a colon and the arity of the transition, a natural
number indicating the number of input parameters taken. Guard expressions g1
to gn are enclosed in square brackets. Next comes a slash, after which expressions
f1 to fn define the outputs. Finally, update expressions u1 to un, enclosed in
square brackets, define the posterior data state. There should be at most one
update function per register per transition in order to maintain consistency. For
transitions without guards, outputs, or updates, the corresponding components
are omitted.

Guard expressions take the current data state and a tuple of inputs and
are satisfied if the specified conditions are met. If this is the case, the EFSM
is said to have accepted the input. A transition cannot be taken if its guard is
not satisfied. Guards operate over literals, inputs, and registers, the latter two
collectively being referred to as “variables”. Literals are enclosed in single quotes
in order to distinguish them from variable names. Numeric values are assumed
to be parsed automatically when required. Absence of a guard corresponds to
the literal guard true which accepts any input with any data state.

Functions to compute the outputs and updates use expressions over literals
and variables evaluated from the anterior data state. Assignment syntax :=
is used to identify the value being computed. As with guards, literal values are
enclosed in single quotes and numeric values are parsed automatically. Regis-
ters not explicitly updated by a transition remain unchanged and are initially
undefined, so cannot be used before they have been assigned.

3 A Formalism for Merging EFSM Transitions

During the inference process, a PTA is generated containing fragments such as
in Fig. 4a. States with similar outgoing transitions are then merged to create
a more concise model. This will likely introduce nondeterminism to the model,
which can be resolved by merging the destination states of offending transitions
and then the transitions themselves, arriving at something like the fragment
shown in Fig. 4b. This section describes a method for merging EFSM transitions,
introducing the concept of contexts as a record of constraints on the possible
values of variables and expressions.

3.1 Method Overview

Our method uses the idea of subsumption (adapted from [15]) together with
contexts, our scheme for recording constraints on the data state of EFSMs. The
method of merging transitions with identical origin and destination states can be

378 M. Foster et al.

q0

q1

q2

q3

q4

select
: 1[i1 = ‘coke’

]

select : 1[i1 = ‘pepsi’]

coin : 1[i1 = ‘50’]/o1 := ‘50’

coin : 1[i1 = ‘50’]/o1 := ‘50’

(a) A fragment of the PTA built from the traces in Figure 1

q0 q{1,2} q{3,4}
select : 1/[r1 := i1] coin : 1[i1 = ‘50’]/o1 := ‘50’

(b) After merging state q1 with q2. The resulting nondeterminism is resolved by
merging q3 with q4 and then merging the coin transitions.

Fig. 4. An EFSM model fragment before and after merging states and transitions

roughly described as follows. Firstly, the transitions must have the same label and
arity, otherwise they represent different behaviours and cannot be merged. Next,
the guard of one transition should be implied by that of the other. In this way, one
transition accepts a subset of inputs of the other. In cases where both transitions
may be taken, their output should be identical otherwise there is an observable
difference between the transitions and they cannot be merged. Additionally, the
data updates performed by the two transitions should be consistent with each
other such that the output of subsequent transitions is not affected by the merge.
If these conditions are met, the transition with the more specific guard is said
to be an instance of the one with the more general guard. It can therefore be
trivially deleted without affecting the observable behaviour of the model.

To implement this method, we need to define a way to determine when tran-
sitions are merged. Subsumption allows us to do this but it is necessary to
introduce the idea of contexts to relate the internal data state of the system to
observable output values of transitions.

3.2 Contexts

One may be tempted to use observational equivalence when merging transitions
since two transitions exhibiting the same observable behaviour can be thought of
as equivalent. Two transitions are observationally equivalent if, when presented
with the same input, they produce the same output. The transitions may make
different updates to the data state but register values are not directly observable
so the difference is hidden. Since registers may be used as part of the output of
subsequent transitions, the use of observational equivalence on a per-transition
basis is likely to cause an observable difference at a later point in model execu-
tion. While observational equivalence must certainly be maintained, it is not a
strong enough criterion for transition merging.

A stronger test would be trace equivalence. Trace equivalence extends obser-
vational equivalence to a sequence of inputs. If two EFSMs produce identical

Formalising Extended Finite State Machine Transition Merging 379

output sequences for all given sequences of inputs, they are trace equivalent.
Since more than one transition is considered, differences in update functions
may manifest themselves if affected register values are used in subsequent out-
put. The problem is that trace equivalence is only in terms of concrete traces so
is not conducive to the generalisation of transitions.

What needs to be used is contextual equivalence. This relates possible register
values to observable output and is a generalisation of trace equivalence. Consider
the transitions vend : 0/o1 := ‘coke’ and vend : 0/o1 := r1. At first glance, the
two transitions look quite different, but there is a circumstance where they are
observationally equivalent: when r1 holds the value ‘coke’ . In this context, there
is no observable difference between the two transitions.

In our EFSM inference method, transitions have three contexts during their
evaluation. The exact values of registers may not always be known but guard
and update expressions allow certain constraints to be inferred. If a transition is
taken then its guard must have been satisfied. A transition with guard i1 = 50
may only be taken when i1 holds the value fifty. If an update expression then
assigns the value of i1 to a register, it is now known that the value of that register
is fifty. Similarly, if the value of a register is known to be greater than five before
a transition is taken and an update function increments it by five then it is now
known that the value of that register must be greater than ten.

Definition 2. A context is a mapping from expressions in terms of inputs and
registers to constraints on their values.

The exact typing is dependent on the types of the inputs and registers. For
integers, a context is a mapping from operations on integers (addition, multipli-
cation, etc.) to constraints such as less than, greater than, and equality. When
working with lists, contexts map operations such as concatenation, length, and
folding to appropriate constraints.

Contexts are written as maps enclosed in double square brackets and use
“curried” notation to record constraints on the values of expressions. For example
�r1 + i1 �→= 6� represents the context where the value of r1 + i1 is equal to six.
The key is “r1 + i1” and the constraint is “= 6”. This corresponds to the guard
r1 + i1 = 6. Most constraints can be viewed as guards, the exceptions being
the literals true and false which represent unrestrictedness and inconsistency
respectively.

Uninitialised register values map to a special “undefined” constraint. This
constraint is not satisfiable as it is impossible to access a register without a value,
but cannot lead to inconsistent reasoning, since unassigned registers cannot be
used in computation. This is not the same as having an explicitly unrestricted
register which has been assigned a value about which nothing is known. Inputs
which are not explicitly constrained map to literal true since nothing about their
value is known but if presented, they are known to have a value.

A transition t will have three contexts during its evaluation. The anterior
context, A(t), is the set of constraints which is known before the transition is
taken. This context contains only expressions concerned with registers since the

380 M. Foster et al.

transition has not yet received any input. The medial context, M(t), is the set
of constraints immediately after the guard has been applied. This includes con-
straints on input values as these are currently in scope. The posterior context,
P (t), is the set of constraints after the update function has been executed. This
does not include constraints on inputs since they do not persist. This context
forms the anterior context for the next transition. In this way, contexts flow
through an EFSM tracing constraints on register values.

Constraints do not relate variables. The reason for this is best illustrated
with an example. If r1 is known to be greater than i1 for a particular transition,
but nothing is known about the value of i1 then nothing meaningful is known
about r1 either. To say that it is greater than an unknown value is meaningless
since there is always a possible valuation of the pair such that the property holds.
Only when something more concrete about one of the two variables is known
can this constraint be of use.

3.3 Computing Contexts

Algorithm 1 describes how to compute the posterior context of a transition. Line
2 applies the guards of the transition to the anterior context to form the medial
context. If the medial context is consistent, the update functions can be applied,
looking up constraints from the medial context as necessary. Any constraints
on expressions involving input values are then removed. To say that a context
is consistent is to say that all of the constraints are satisfiable simultaneously.
An inconsistent medial context means that the guard was not satisfied and the
transition cannot be taken with the given anterior context.

Algorithm 1. Computing the posterior context
1: function posterior(Transition t, AnteriorContext c)
2: c′ ← medial(c, t.guards)
3: if consistent(c′) then
4: return applyUpdates(c′, t.updates)
5: else
6: return false
7: end if
8: end function

A key step when building the medial context is the rearrangement of expres-
sions. If a guard states that r1 must be greater than i1 then it is also the case
that i1 is less than r1. Both must be added to the context at this stage as the
constraint affects both variables. Similarly, if it is known that r1 = i1 + r2 then
it is also known that i1 = r1 − r2 and that r2 = r1 − i1. If constraints on two of
the variables are known then constraints on the third can be calculated.

Formalising Extended Finite State Machine Transition Merging 381

4 Subsumption and Generalisation

In this section we use contexts to solve the problem of merging transitions in
EFSMs. The inference process begins by observing the outputs of a system when
presented with particular inputs. An initial PTA is constructed to reflect this
behaviour and states are iteratively merged to create a more concise and general
model of the system.

States with similar outgoing transitions, such as q1 and q2 in Fig. 4a, are
good candidates for merging but the resulting model is often nondeterministic.
This can be resolved by merging subsequent states and transitions, however
this requires some notion of transition equality and generalisation. The idea of
subsumption presented in [15] deals nicely with guards but does not consider data
update functions. With the help of a running example, this section uses contexts
to extend the idea of subsumption to output and update functions, ensuring that
observational equivalence is maintained when transitions are merged.

Observe the EFSM in Fig. 5 and note transitions q1 → q2 and q2 → q2 labelled
with coin which will be referred to as c1 and c2 respectively. The merging process
now merges state q1 with state q2 into a new state, q{1,2}, which introduces
nondeterminism to the model since there are two outgoing coin transitions, c1
and c2, from q{1,2} either of which may be taken when i1 is 50. This can be
resolved by merging the two transitions into one.

q0 q1 q2 q3
select : 1/[r1 := i1] coin : 1[i1 = ‘50’]/o1 := ‘50’ [r2 := ‘50’]

coin : 1/o1 := r2 + i1[r2 := r2 + i1]

vend : 0[r2 < 100]

vend : 0[r2 ≥ ‘100’]/o1 := r1

Fig. 5. An EFSM with a transition to be merged

Transitions may not always be compatible for merging so how exactly do we
know if two transitions are compatible? Firstly they must have the same label
and arity, otherwise they represent different behaviour. Lorenzoli et al. [15] dis-
cuss the idea of subsumption of guards, where one transition subsumes another
if its guard is more general. Applying this principle to the example has the
transition with no guard (corresponding to the literal guard true) subsuming
the transition with guard i1 = ‘50’ . This looks promising but the outputs and
updates need to be considered too. The principle of subsumption must therefore
be extended to take these into account.

Definition 3. Transition t2 can be said to subsume transition t1 if

1. The guard of t1 implies that of t2
2. In the cases where it is possible to take t1, the output of t2 is identical
3. The posterior data state of t2 is consistent with that of t1.

382 M. Foster et al.

The general idea is similar to refinement [6], the aim being to widen the
precondition and reduce nondeterminism. Subsuming transitions are allowed to
accept more inputs but under circumstances where either transition may be
taken, it is important that the output of both is identical. If this is not the case,
the two transitions are observably different and cannot be merged. Even though
data registers are not directly observable – it is not possible to ask “what is the
value of register r?” – they may be used as part of output functions so have
the potential to affect observable behaviour of future transitions. It is therefore
important that any register updates performed by the subsuming transition are
consistent with those performed by the one being subsumed.

Contexts are used in our inference method when determining if one tran-
sition subsumes another because they help to place restrictions on the values
of expressions. Algorithm 2 describes the conditions which must be satisfied for
transition t2 to subsume t1. Line 2 checks to see if each condition in the medial
context of t2 is implied by that of t1. In other words, that each condition in
M(t2) is more general than its counterpart in M(t1). The second conjunct, on
line 3, ensures that the output of both transitions is equal in every case where
it is possible to take t1. This is the check for observational equivalence. The
conjunct on line 4 ensures that the posterior context of t2 is more specific than
that of t1 in the cases where t1 may be taken. This means that the restrictions
on the values of expressions in P (t2) are at least as tight as those in P (t1). The
final conjunct, on line 5, enforces that the posterior context of the subsuming
transition is consistent whenever that of the subsumed transition is. This ensures
that subsuming transitions don’t perform spurious updates involving previously
uninitialised registers.

Algorithm 2. Transition subsumption in context
1: function subsumes(Transition t2, t1, AnteriorContext c)
2:
3:
4:

return ∀x. medial(t1, c)[x] =⇒ medial(t2, c)[x] ∧
∀i r. canTake(t1, i, r) =⇒ outputs(t1, i, r) = outputs(t2, i, r) ∧
∀x. posterior(t2,medial(t1, c))[x] =⇒ posterior(t1, c)[x] ∧
consistent(posterior(t1, c)) =⇒ consistent(posterior(t2, c))5:

6: end function

The concept of subsumption is used in our method when merging transitions
since, in a given pair of nondeterministic transitions, one will often subsume the
other. Algorithm 3 describes the process in detail. Lines 1–4 describe the sim-
plest merging case. If one transition subsumes the other directly, the subsumed
transition can be trivially deleted without causing a contextual difference.

Lines 5–10 describe the case where one transition subsumes the other in
a different context, for example if a register held a particular value. The
obtainAnterior function tries to modify update functions of incoming transi-
tions to accommodate this. Usually this involves assigning a value to a previously
undefined register. If this is achieved, one transition then subsumes the other
and we are back to the simple case.

Formalising Extended Finite State Machine Transition Merging 383

Algorithm 3. Merging two transitions
Input: Transition t1, t2, AnteriorContext c, EFSM e, State s
1: if subsumes(t1, t2, c) then
2: t2 can simply be deleted, leaving t1 as the result of the merge
3: else if subsumes(t2, t1, c) then
4: t1 can be deleted, leaving t2 as the result of the merge
5: else if ∃c′. subsumes(t2, t1, c′) ∨ subsumes(t1, t2, c

′) then
6: if obtainAnterior(c′, e, s) then
7: Delete either t1 or t2 as appropriate
8: else
9: The transitions cannot be merged

10: end if
11: else
12: The transitions cannot be merged
13: end if

If it is not possible to modify update functions of incoming transitions, for
example if a relevant register value is already set by an update function, then
no subsumption exists and the merge fails. This is also the case if no anterior
context exists in which one transition may subsume the other directly.

Example 1. Let us now apply our method to the running drinks machine example
from Fig. 5 and carry out the process with the nondeterministic coin transitions
from state q{1,2}. Intuitively, c2 should subsume c1 because it has no guard.
Running Algorithm 3 should verify this.

The anterior context of both transitions is �r1 �→ true� since the only way to
reach state q{1,2} from the initial state is to take the select transition which
assigns a value to r1 but places no restriction on it. The guard of c1 gives
M(c1) = �r1 �→ true, i1 �→= 50�. Since there is only one guard expression which
restricts a single variable, i1, to a literal value, there is no rearranging step here.

The medial context of c2 is equal to the anterior context since c2 has no
guard. There is no explicit restriction on i1 in this context so, as discussed in
Sect. 3, it’s constraint is literal true. In this case, since true =⇒ true and
= 50 =⇒ true condition one of Algorithm2 has been met.

Now to investigate condition two. The only case where it is possible to take
c1 is when i1 = 50. In this case the output of c1 is literal 50. Transition c2 cannot
produce an output since r2 has not been initialised, hence condition two fails.
This means that c2 does not subsume c1 directly.

If, in the anterior context, r2 was equal to zero then the outputs of the two
transitions would be identical in the case where i1 = 50. The posterior contexts
of the two transitions would also be identical and consistent, satisfying conditions
three and four of Algorithm2. In this case, the addition of the update r2 := ‘0’
to the select transition produces the desired anterior context, allowing transition
c2 to subsume c1. This may take place without breaking contextual equivalence
since r2 was previously undefined in the posterior context of select. With the

384 M. Foster et al.

new anterior context, c2 subsumes c1 directly meaning that c1 may be trivially
deleted, resulting in the EFSM in Fig. 3. �

When faced with two transitions to merge, it may be the case that nei-
ther subsumes the other directly but there exists a transition which subsumes
both. Consider the transitions coin : 1[i1 = ‘20’]/o1 := ‘20’ [r2 := ‘20’] and
c1. Clearly they are instances of the same behaviour but neither subsumes the
other. If presented with a candidate for a subsuming transition, contexts may
be applied in the same way to establish the validity of the candidate. How such
candidates are obtained is outside the scope of this paper and is the intended
subject of future work but the method presented here can be used to validate
such candidates.

5 Analysing System Properties

Another benefit of introducing contexts is the following. Having created an
EFSM model of a system, it is possible to use it to prove properties of that
model. With the drinks machine example, it is desired that a user will always
receive the drink they originally selected. Another desirable property, for the pro-
prietors at least, is that customers only receive their drinks if they have inserted
enough money. Contexts allow us to prove properties like these.

Example 2. Consider the drinks machine model in Fig. 3. Looking only at the
labels, as would be provided by a classical FSM model, it appears to be possible
to go straight from q1 to q2 without inserting any coins. The trace select(coke) →
vend()/[coke] seems like a valid option, meaning that a user could get their drink
for free. Contexts help to show that this is not the case.

The vend transition can only be triggered from state q1. The only way to
reach this state from the initial state is to do a select transition. This transition
produces a posterior context of �r1 �→ true, r2 �→= 0�. Triggering vend with this
anterior context will only allow the one which dispenses nothing to fire, since r2
holds value zero which is less than 100. The only way to obtain a drink from
vend is if r2 holds a value greater than or equal to 100. The only transition from
q1 with an update function which increases r2 is the coin transition. This means
that the customer must insert at least one coin to receive their drink. �

The exact proof strategy varies depending on the property being proven but
the general idea is to use the constraints of a particular context to prove that
a transition may or may not be taken. In the case of Example 2, the guard of
the vend transition with the desired output cannot be satisfied with an anterior
context in which the value of r2 is less than 100.

Another technique is to analyse update functions to see if any have the poten-
tial to affect variables of interest in the desired way. In Example 2, the variable
of interest is r2 and needs to be increased. The coin transition has no guard so
may be taken with any anterior context and produces a posterior context with
r2 incremented by the value of the input. Assuming that coins have a positive

Formalising Extended Finite State Machine Transition Merging 385

value, this increases the value of r2. The destination state is equal to the origin,
so the transition may be taken again if the input value was insufficient.

Contexts can also help prove observable equivalence of EFSM models. Con-
sider the EFSM shown in Fig. 6, an alternative model of the drinks machine in
Fig. 3. Contexts can be used to prove equivalence of the two models.

q0 q1 q2 q3
select :1/[r1:=i1, r2:=0]

vend : 0

coin : 1/o1 := r2 + i1[r2 := r2 + i1]

coin :1/o1:=r2+i1[r2:=r2+i1]

vend : 0[r2 < 100]

vend : 0[r2 ≥ ‘100’]/o1 := r1

Fig. 6. A model which is observationally equivalent to the one in Fig. 3

The idea here is similar to bisimulation with the aim being to form a relation
between the states of two machines such that for all inputs, if one machine in a
given state can accept an input, the other machine accepts the same input and
produces the same output. The models must not only be trace equivalent but
also contextually equivalent since register values may be used as part of output
functions, potentially exposing differences in the data state. The model in Fig. 6,
M1, can be proven to be contextually equivalent to the model in Fig. 3, M2, as
follows.

Example 3. Starting both machines off in their respective initial states, it is only
possible to do a select transition. Both machines are now in their respective q1
states from which it is possible to do a coin or a vend transition. The context
of M1 at this point is �r1 �→ true, r2 �→= 0� and the context of M2 is �r1 �→
true, r2 �→= 0�. Both machines can do an unguarded coin transition to produce
the context �r1 �→ true, r2 �→ true�. Both may do a vend transition which
outputs nothing and leaves the context and state unchanged. M2 also has a
second outgoing vend transition but this may not be taken as r2 is less than
100.

After having done a coin transition, M1 is in state q2 and M2 is in state
q1. Subsequent coin transitions leave the state and context unchanged but allow
a choice of either vend transition since nothing is known about the value of
r2. The guards on the two transitions are mutually exclusive so determinism
is maintained. If r2 is greater than or equal to 100 then adding further coins
is futile but continues to be observationally equivalent. Alternatively, the vend
transition which outputs the selected drink may be taken. This is the value of
r1 in both machines, set as the input of the select transition and not changed so
identical inputs produce identical outputs. If r2 is less than 100 then the vend
transition in both cases leaves the state unchanged but produces a posterior
context of �r1 �→ true, r2 �→< 100�. Subsequently, the same vend transition may
be repeated indefinitely or another coin transition may be taken. �

386 M. Foster et al.

These are just some of the ways context can be used to prove properties of
systems. A full methodological breakdown is left for future work.

6 Conclusions

This paper presents contexts, a way of recording constraints on data values at
different points during the execution of an EFSM model. The concept of sub-
sumption is extended to EFSM transitions which include data update functions
and is used as part of a technique to merge EFSM transitions. Contexts also aid
in proving certain properties of EFSM models, notably equivalence of models.
Algorithms 1 and 2 have been formalised in Isabelle/HOL [16] and together with
representations of EFSMs and contexts have been used to validate possible tran-
sition merges and prove the properties of the drinks machine example discussed
in Sect. 5. It is the intention of the authors to submit these theory files to the
AFP (https://www.isa-afp.org/).

The task of inferring a model from a set of software execution traces has been
an active area of research since the 1960s [11]. Most inference algorithms fit into
one of two categories: active and passive. Active techniques such as [1,7,12] allow
the user to guide the inference process by categorising possible actions as possible
or impossible from the current state. Most modern techniques (including the one
presented in this work) tend to be more passive, inferring a generalised system
model from observed system traces without reference to the user.

Classical FSM inference techniques produce models with atomic labels which
struggle with systems exhibiting value-dependent behaviour. EFSM models fea-
ture parametrised inputs and a separate data state which solves this problem.
EFSM inference techniques such as [14,19] build on classical techniques to infer
EFSMs from program execution traces by state and transition merging. These
approaches do not attempt to infer register update functions so do not have to
consider the merging of transitions which feature them. The inference of register
update functions is a key challenge in EFSM inference, so a technique to merge
such transitions is required. This work presents such a technique.

Future work includes the identification and prioritisation of potential EFSM
state and transition merges as well as the provision of candidate transitions as
discussed in Sect. 4. The inference of register and input types from traces is also
an area of interest.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75, 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

2. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput. C-21(6), 592–597 (1972). https://
doi.org/10.1109/TC.1972.5009015

3. Börger, E., Stärk, R.: Abstract State Machines. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-642-18216-7

https://www.isa-afp.org/
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1007/978-3-642-18216-7

Formalising Extended Finite State Machine Transition Merging 387

4. Cheng, K.T., Krishnakumar, A.S.: Automatic functional test generation using the
extended finite state machine model. In: International Design Automation Confer-
ence (DAC), pp. 86–91. ACM Press, New York (1993). https://doi.org/10.1145/
157485.164585

5. Damas, C., Lambeau, B., Dupont, P., Van Lamsweerde, A.: Generating annotated
behavior models from end-user scenarios. IEEE Trans. Softw. Eng. 31(12), 1056–
1073 (2005). https://doi.org/10.1109/TSE.2005.138

6. Derrick, J., Boiten, E.A.: Refinement in Z and Object-Z, 2nd edn. Springer, London
(2014). https://doi.org/10.1007/978-1-4471-5355-9

7. Dupont, P., Lambeau, B., Damas, C., Van Lamsweerde, A.: The QSM algorithm
and its application to software behavior model induction. Appl. Artif. Intell. 22(1–
2), 77–115 (2008). https://doi.org/10.1080/08839510701853200

8. Eilenberg, S.: Automata, Languages, and Machines. Academic Press Inc., Orlando
(1974)

9. Ernst, M.D., Cockrell, J., Griswold, W.G., Notkin, D.: Dynamically discovering
likely program invariants to support program evolution. IEEE Trans. Softw. Eng.
27(2), 99–123 (2001). https://doi.org/10.1109/32.908957

10. Fraser, G., Walkinshaw, N.: Behaviourally adequate software testing. In: Interna-
tional Conference on Software Testing, Verification and Validation, pp. 300–309,
April 2012. https://doi.org/10.1109/ICST.2012.110

11. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
12. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free app-

roach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV
2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11164-3 26

13. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo one DFA
learning competition and a new evidence-driven state merging algorithm. In:
Honavar, V., Slutzki, G. (eds.) ICGI 1998. LNCS, vol. 1433, pp. 1–12. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054059

14. Lorenzoli, D., Mariani, L., Pezzè, M.: Inferring state-based behavior models. In:
International Workshop on Dynamic Systems Analysis (WODA), p. 25. ACM
Press, New York (2006). https://doi.org/10.1145/1138912.1138919

15. Lorenzoli, D., Mariani, L., Pezzè, M.: Automatic generation of software behavioral
models. In: International Conference on Software Engineering (ICSE), p. 501. ACM
Press, New York (2008). https://doi.org/10.1145/1368088.1368157

16. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

17. Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing.
IEEE Trans. Softw. Eng. 30(1), 29–42 (2004). https://doi.org/10.1109/TSE.2004.
1265734

18. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA:
a competition to encourage the development and assessment of software model
inference techniques. Empir. Softw. Eng. 18(4), 791–824 (2013). https://doi.org/
10.1007/s10664-012-9210-3

19. Walkinshaw, N., Taylor, R., Derrick, J.: Inferring extended finite state machine
models from software executions. Empir. Softw. Eng. 21(3), 811–853 (2016).
https://doi.org/10.1007/s10664-015-9367-7

20. Weyuker, E.J.: Assessing test data adequacy through program inference. ACM
Trans. Program. Lang. Syst. 5(4), 641–655 (1983)

https://doi.org/10.1145/157485.164585
https://doi.org/10.1145/157485.164585
https://doi.org/10.1109/TSE.2005.138
https://doi.org/10.1007/978-1-4471-5355-9
https://doi.org/10.1080/08839510701853200
https://doi.org/10.1109/32.908957
https://doi.org/10.1109/ICST.2012.110
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/BFb0054059
https://doi.org/10.1145/1138912.1138919
https://doi.org/10.1145/1368088.1368157
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1109/TSE.2004.1265734
https://doi.org/10.1109/TSE.2004.1265734
https://doi.org/10.1007/s10664-012-9210-3
https://doi.org/10.1007/s10664-012-9210-3
https://doi.org/10.1007/s10664-015-9367-7

Checking Activity Transition Systems
with Back Transitions Against Assertions

Cunjing Ge1,3, Jiwei Yan2(B), Jun Yan1,2,3, and Jian Zhang1,3(B)

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

{gecj,yanjun,zj}@ios.ac.cn
2 Technology Center of Software Engineering, Institute of Software,

Chinese Academy of Sciences, Beijing, China
yanjw@ios.ac.cn

3 University of Chinese Academy of Sciences, Beijing, China

Abstract. The Android system is in widespread use currently, and
Android apps play an important role in our daily life. How to specify and
verify apps is a challenging problem. In this paper, we study a formalism
for abstracting the behaviour of Android apps, called Activity Transition
Systems (ATS), which includes back transitions, value assignments and
assertions. Given such a transition system with a corresponding Activity
Transition Graph (ATG), it is interesting to knowwhether it violates some
value assertions. We first prove some theoretical properties of transitions
and propose a state-merging strategy. Then we further introduce a post-
reachability graph technique. Based on this technique, we design an algo-
rithm to traverse an ATG that avoids path cycles. Lastly, we also extend
our model and our algorithm to handle more complicated problems.

1 Introduction

The Android system, which provides rich and flexible features to ease the devel-
opment of applications (apps), is one of the most popular mobile operating
systems currently. Various Android apps are developed and released to the app
market, which attracts high downloads due to the convenient interaction, user-
friendly windows, and event-driven nature.

In Android system, the major component, activity, is a container which
consists of various GUI widgets (e.g., button). Users can interact with widgets
on an activity and trigger transitions between activities to perform a certain job.
Thus activity transition model for event-driven callbacks is a fundamental model
for analysis of Android apps. This serves as a cornerstone for many clients, such
as vulnerability detection [6,9,12–15,19,20], malware detection and mitigation
[10,11,19], GUI model generation [22,23], and GUI testing [3–5,16,17].

This work is partially supported by the National Key Basic Research (973) Program
of China (Grant No.2014CB340701), the National Natural Science Foundation of
China (Grant No. 61672505), and the Key Research Program of Frontier Sciences,
CAS (Grant No. QYZDJ-SSW-JSC036).

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 388–403, 2018.
https://doi.org/10.1007/978-3-030-02450-5_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_23&domain=pdf

Checking ATS with Back Transitions Against Assertions? 389

All launched activities are arranged in the back stack in the order in which
each activity is opened. Take a short message (SMS) manager app as an example,
which may have an activity to show the list of contacts. When the user selects
a contact person, a new activity is opened to view all the messages from or to
the person. At the same time, the system will add the new activity to the back
stack. Then if the user presses the back button on the bottom of the screen,
that new activity is finished and popped off the stack. By default, activities in
the stack can only be rearranged by push and pop operations. This back-stack
mechanism is so flexible that a developer has to carefully inspect the status of the
back stack when developing the transitions between activities. An activity with
different back stacks may lead to different program behaviors, which brings the
difficulty to the modeling of apps. When the launch-mode of activity is involved,
the task will be more complicated.

Recent works [3,21,23,24] construct transition models of apps and traverse
models to generate transition paths or even sequences to guide the GUI testing,
some of them discuss the influences brought by the stack mechanism. These
works adopt the same assumption that when the back operation is triggered, the
model will roll back to the previous state. However, the assignments of global
variables will not roll back. For example, the operations in the setting activity
are also impossible to be rollback. As shown in Fig. 1, when the app TippyTipper

are transited in the order of main
OpenSetting−−−−−−−−→ setting1 ClickCheckbox−−−−−−−−−−→ setting2

Back−−−→ main, the global variables that are changed in setting2 will not roll back
by simply pressing the back button.

(a) main (b) setting1 (c) setting2

Fig. 1. Tippy tipper application

Because the back transition will lead to state change, in this paper, we con-
sider a problem of determining if there exists a path that violates one of the
assertions in the ATG with back transitions.

The main contributions of this work are summarized as follows:

390 C. Ge et al.

– We propose an Activity Transition Graph (ATG) model with back transitions,
value assignments and assertions, to describe the activity relations of Android
apps in detail.

– We introduce a post-reachability graph and an algorithm to traverse an ATG
that avoids path cycles.

– We extend our model and our algorithm to handle more complicated and also
more interesting tasks.

The rest of this paper is organized as follows. Background and preliminary
material is in Sect. 2, the algorithm in Sect. 3, several extensions of our model
and approach in Sect. 4, related works in Sect. 5, and finally, concluding remarks
in Sect. 6.

2 Background

Definition 1. An Activity Transition System (ATS) (X,V, V0,A, A0, T)
consists of a set X of Boolean-valued variables, a set V of domains of variables
in X, an initial assignment V0, a set A of activities, an initial activity A0 ∈ A
and a set T of transitions.

Each transition τ ∈ T is a tuple (A,A′) where A and A′ are activities. Each
activity or transition corresponds to a set of statements such as assignment
statements like x := 0 and assertions like x = 1 → y = 0.

Definition 2. Given an ATS (X,V, V0,A, A0, T), the Activity Transition
Graph (ATG) is a digraph which is constructed in the following way:

1. For each activity in A, introduce a vertex Ai.
2. For each transition τ = (Ai, Aj), introduce an edge from Ai to Aj.

We introduce a special back transition τb which transits from the latest
visited activity Ak to Ak−1. The statements of activity Ak−1 will not be executed
after back transition. Back transition not only rolls back activity, but also the
part of assignments.

Definition 3. A variable is global if it does not roll back its assignment during
back transitions. Otherwise, it is a local variable.

Assume X consists of n global variables XG = {xG
1 , . . . , xG

n } and m local
variables XL = {xL

1 , . . . , xL
m}. We use V G and V L to represent the assignments of

XG and XL respectively. So back transition generates the k+1 step 〈Ak+1, Vk+1〉
that V G

k+1 = V G
k , V L

k+1 = V L
k−1 and Ak+1 = Ak−1. We extend the ATS and ATG

with such back transitions.
In this paper, we consider a problem of determining if there exists a path

that violates one of the assertions in the ATG with back transitions.

Checking ATS with Back Transitions Against Assertions? 391

Fig. 2. An example of an ATG

Path:
〈A0, (0, 0)〉 T1−−→ 〈A3, (1, 0)〉 back−−−→
〈A0, (1, 0)〉 T3−−→ 〈A1, (1, 1)〉

Statements:

A0 x := 0

A0 y := 0

T1 y := 0

A3 Assert x = 1 -> y = 0

A3 x := 1

BACK y roll back 0

A1 y := 1

A1 Assert x = 0

Fig. 3. Statements of a path

Example. Figure 2 presents an example of the ATG with back transitions. It
has 6 activities, 9 forward transitions and 2 boolean variables (one of them is
global and another one is local). The initial values for variable x and y are both
zero. Activity A1 and A3 contain assertions. The ATG starts from A0. There
exists a path that violates the assertion in A1: 〈A0, (0, 0)〉 T1−−→ 〈A3, (1, 0)〉 back−−−→
〈A0, (1, 0)〉 T3−−→ 〈A1, (1, 1)〉. Concatenating the blocks of statements in transi-
tions and activities, this path can be represented as Fig. 3. So a path can be
considered as a sequence of statements. Since the initial assignment is deter-
mined, the assignment of variables on each statement is determined.

Relation with Pushdown Automata. There is a straightforward way to trans-
form the assertion violation problem of an ATG with back transitions into a
reachability problem of a pushdown automata:

– Let Q denote the set of states and Γ denote the stack alphabet. Since the
assignments at an activity are finite, Q and Γ are also finite. We introduce
an input symbol Iτ for the forward transition τ and an additional symbol
BACK to represent back transitions.

– Consider a pair (A, V) where A is an activity and V is an assignment. For
(A, V), we introduce a state q(A,V) ∈ Q and a symbol S(A,V).

– We introduce a transition from q(A1,V1) to q(A2,V2) for a transition τ from
activity A1 to A2 in the original ATG, where V2 is the assignment result
after executing statements of τ and A2 with input V1. This transition can
be simulated by (q(A1,V1), Iτ , S∗, q(A2,V2), S(A1,V1)S

∗), where S∗ represents an
arbitrary stack symbol in Γ and S(A1,V1)S

∗ indicates that this transition
pushes symbol S(A1,V1) into stack.

– Consider a back transition from (A2, V2) to the previous state (A1, V1) in
the stack. Let V0 represent the assignment after the back transition. We

392 C. Ge et al.

first introduce two states q(A2,V2) and q(A1,V0). Then we introduce a tran-
sition (q(A2,V2), BACK,S(A1,V1)S

∗, q(A1,V0), S
∗) to simulate this back transi-

tion, where S∗ ∈ Γ and S(A1,V1)S
∗ indicates that this transition pops S(A1,V1).

3 Approach

We use a 3-tuple (A, V, S) to represent a state, where A is an activity, V is an
assignment of variables and S is a stack that stores history information. Note
that the stack S is a set of states which are previously visited, instead of a set
of pairs like (A, V). Therefore, states containing different stacks are considered
to be different in our model. A state contains necessary information for forward
and back transitions. We can transit forward from one state to another and can
also transit back to the previous state with the stack S.

3.1 A Straightforward Method

Algorithm 1 is the basic framework of breadth-first-search over the given ATG.
It employs a queue Q to store states in this BFS algorithm. At the beginning,
it adds the initial state (A0, V0, Φ) into Q. Then it visits every state in Q. For
an unvisited element q = (A, V, S) in Q, it enumerates each forward transition
τ = (A,Anext) from A. After that it executes statements and checks assertions
on τ and the next activity Anext to obtain the new assignment Vnext. After copy
stack S to Snext and push state q into stack Snext, the algorithm adds the new
state (Anext, Vnext, Snext) into Q. After forward transitions, we consider the back
transition at the state q. The algorithm pops the stack S to obtain the previous
state (Aback, Vback, Sback). Since the assignment of global variables remains, we
assign V G to V G

back. Then the algorithm adds the new state (Aback, Vback, Sback)
into Q. At last, it visits another unvisited state in Q.

3.2 Post-reachability Graphs

The straightforward method may not terminate since it cannot handle cycle.
Consider the example in Fig. 2, assume that we have already obtained a
sequence of states: 7 : (A0, (1, 0), Φ) T1−−→ 15 : (A3, (1, 0), {7}) T6−−→ S1 :
(A4, (1, 0), {7, 15}) T4−−→ S2 : (A0, (0, 0), {7, 15, S1}). It is a sequence starting
from state 7 to state S2 (states 7 and 15 are obtained in real execution of our
algorithm while S1 and S2 are not, for details, see Fig. 6). Since the assignments
of state 7 and state S2 are different, the sequence is not a cycle. However, if we
start from state S2 through transition T2 and a back transition, we obtain a
new state S4 : (A0, (1, 0), {7, 15, S1}). Then we find a cycle from state 7 to S4.
The straightforward method will keep visiting activities starting from state S4,
since S4 is different with state 7 in the perspective of stacks. In this example,
it is also not sufficient to avoid cycles by only checking the existence of the pair
(A0, (1, 0)), since it lacks path information. So, in this section, we introduce a

Checking ATS with Back Transitions Against Assertions? 393

Algorithm 1: Straightforward Version
1 function
2 Q ← {(A0, V0, Φ)};
3 while Q not all visited do
4 pick an unvisited element q = (A, V, S) in Q;
5 for each τ = (A, Anext) start from A do
6 execute statements on τ and Anext and obtain Vnext;
7 if assertions on τ or Anext violated then return false;
8 Snext ← S, Snext.push(q);
9 Q ← Q ∪ {(Anext, Vnext, Snext)};

10 if S �= Φ then
11 (Aback, Vback, Sback) ← S.pop();

12 V G
back ← V G;

13 Q ← Q ∪ {(Aback, Vback, Sback)};
14 set q visited;

post-reachability graph for each activity to store sufficient history information
for cycle avoidance.

Consider two states (A, V, S) and (A, V, S′) on same activity A. They contain
same variable assignment V , but different stacks S and S′. Intuitively, the for-
ward transitions starting from these two states will lead to similar results, since
in this case, stacks of history states only affect back transitions. So we could
merge these two states into a virtual state with variable assignment V for the
exploration of forward transitions. In other words, given a new state (A, V, S′′),
it is unnecessary to explore forward transitions starting from it. However, we
have to store S, S′ and S′′ as they represent different path traces which are
useful for the exploration of back transitions. To precisely describe the previous
strategy, we introduce following lemmas and Theorem 1.

Lemma 1. Given two states (A, V, S) and (A,U,R) on the same activ-
ity A. Consider a transition τ = (A,Anext), let (Anext, Vnext, Snext) and
(Anext, Unext, Rnext) denote the states after transition τ . Then V = U ⇒ Vnext =
Unext.

Lemma 2. Given two states (A, V, S) and (A,U,R) on the same activity A.
Let (Alast, Vlast, Slast) and (Alast, Ulast, Rlast) denote the last element of S and
R respectively. Consider two states (Alast, Vback, Slast) and (Alast, Uback, Rlast)
after a back transition. Then V = U, Vlast = Ulast ⇒ Vback = Uback.

Proof. Recall the definition of roll back operation on variable assignments, we
know that V G

back = V G, V L
back = V L

last, UG
back = UG and UL

back = UL
last. Since

V = U and Vlast = Ulast, it is obvious that V G = UG and V L
last = UL

last. As a
result, Vback = Uback. ��

394 C. Ge et al.

Theorem 1. Given two states (A0, V0, S0) and (A0, U0, R0) on the same activ-
ity A0 and a sequence of normal and back transitions τ1 . . . τk. There are two
sequences of states (A0, V0, S0) . . . (Ak, Vk, Sk) and (A0, U0, R0) . . . (Ak, Uk, Rk).
Then ∀i ∈ {1, . . . , k}, V0 = U0, S0 ⊂ Si, R0 ⊂ Ri ⇒ Vk = Uk.

Proof. (Mathematical Induction)

Basis: τ1 should be a forward transition as S0 ⊂ S1 and R0 ⊂ R1. From
Lemma 1, we obtain V1 = U1 as V0 = U0.

Inductive Step: Show that Vn = Un if V0 = U0, V1 = U1, . . . , Vn−1 = Un−1.
Assume τn is a forward transition. From Lemma1, we obtain Vn = Un

as Vn−1 = Un−1. Assume τn is a back transition. We observe that stacks
Sn−1 and Rn−1 are parts of sequences (A0, V0, S0) . . . (An−2, Vn−2, Sn−2) and
(A0, U0, R0) . . . (An−2, Un−2, Rn−2). So the last elements of Sn−1 and Rn−1

should be a pair of states
(
(Al, Vl, Sl), (Al, Ul, Rl)

)
from two sequences, where

0 ≤ l ≤ n−2. From induction hypothesis, we know that Vl = Ul. From Lemma 2,
we obtain Vn = Un as Vn−1 = Un−1 and Vl = Ul. ��

Theorem 1 shows that two states with same variable assignments are always
equivalent after a sequence of transitions (the number of forward transitions is
not less than back transitions) in perspective of variable assignments. When the
number of back transitions is more than forward transitions, we only have to con-
sider the stacks of two states respectively. To apply such strategy in algorithm,
we introduce the following concepts of post-reachable state and post-reachability
graph.

Definition 4. Given a state (A0, V0, S0). After a sequence of normal and back
transitions τ1 . . . τk, we obtain a sequence of states (A0, V0, S0) . . . (Ak, Vk, Sk)
that ∀i ∈ {1, . . . , k}, S ⊂ Si. If Ak = A0 and Sk = S0, the state (Ak, Vk, Sk) is
called a post-reachable state of (A0, V0, S0).

Definition 5. Given a set of states S = {(A, V1, S1), . . . , (A, Vn, Sn)} on an
activity A. Then the Post-Reachabilitiy Graph (PRG) over S is a digraph
which is constructed in the following steps:

1. For each different variable assignment Vi in S, introduce a vertex vi.
2. For each vertex vi, introduce the set of stacks

⋃
Vi=Vj

{Sj} as its vertex value.
3. If (A, Vj , Sj) is a post-reachable state of (A, Vi, Si), where Vj �= Vi, introduce

an edge from vi to vj.

In general, the PRG merges states with same variable assignment, and also
stores different stacks for the exploration of back transitions. Figure 4 shows an
example of a PRG over 8 states

S = {(A, (1, 0, 0), {1}), (A, (1, 0, 0), {3}), (A, (1, 0, 1), {3}), (A, (0, 1, 1), {1, 2}),
(A, (0, 1, 1), {3}), (A, (1, 1, 1), {7}), (A, (0, 0, 0), {1, 2}), (A, (0, 0, 0), {7})}.

There are 5 different value assignments in S, so there are 5 vertices in this PRG.
Each vertex corresponds to a set of stacks, e.g., vertex (0, 1, 1) corresponds to

Checking ATS with Back Transitions Against Assertions? 395

stacks Σ(0,1,1) = {{1, 2}, {3}}. The edges present the post-reachability between
vertices. Besides the state-merging feature, the PRG also has a propagation
property. We present this property in the following theorem.

activity A

(1, 0, 0)
(1, 1, 1)

{1}, {3}
{7}

(1, 0, 1)

(0, 1, 1) (0, 0, 0)

{1, 2}, {3}

{3}

{1, 2}, {7}

Fig. 4. An example of a PRG over 8
states

activity A

(1, 0, 0)
(1, 1, 1)

{1}, {3}
{7}

(1, 0, 1)

(0, 1, 1) (0, 0, 0)

{1, 2}, {1}, {3}, {7}

{1}, {3}

{1, 2}, {1}, {3}, {7}

Fig. 5. Propagate values of vertices on
the left PRG

Theorem 2. Consider two vertices in a PRG of an activity A, e.g., v1 and
v2. Let Σ1 and Σ2 denote the values of v1 and v2 (i.e., two sets of stacks),
respectively. If there exists an edge from v1 to v2 in this PRG, we have Σ1 ⊂ Σ2.

Proof. Since there exists an edge from v1 to v2, from the property of the post-
reachable state, we could find a sequence of transitions that will transit (A, V1, S)
into (A, V2, S), ∀S ∈ Σ1. Then each stack in Σ1 also belongs to Σ2. ��

Theorem 2 indicates that we could propagate values of vertices on an PRG.
In the example of Fig. 4, we find that the stacks in Σ(1,0,0) should also belong to
Σ(1,0,1), i.e., Σ(1,0,1) = {{1}, {3}}, from Theorem 2. As a result, we obtain the
new PRG presented in Fig. 5 by such value propagation, which contains 5 more
states.

3.3 The Algorithm with PRGs

Based on the PRG technique, we introduce our improved algorithm, which is also
a BFS procedure. The pseudo-code is presented in Algorithm2. It maintains a
PRG GA for each activity A. The value of the vertex V in GA is denoted as
ΣGA,V . Similar to the straightforward method, the improved BFS exploration
also contains two parts: the exploration of forward transitions from line 5 to 11
and back transitions from line 12 to 15. Q is the queue of states to explore.

Algorithm 2 contains two sub-functions InsertState() and AddEdge(). In
the function InsertState(A, V, S), we introduce a new vertex if V is different

396 C. Ge et al.

Algorithm 2: Improved Version with PRGs
1 function
2 Q ← InsertState(A0, V0, Φ);
3 while Q not all visited do
4 pick an unvisited element q = (A, V, S) in Q;
5 if vertex V in GA is not visited then
6 for each τ = (A, Anext) start from A do
7 execute statements on τ and Anext and obtain Vnext;
8 if assertions on τ or Anext violated then return false;
9 Snext ← S, Snext.push(q);

10 Q ← Q ∪ InsertState(Anext, Vnext, Snext);

11 set V in Ga visited;

12 if s �= Φ then
13 (Aback, Vlast, Sback) ← S.pop();

14 V L
back ← V L

last, V G
back ← V G;

15 Q ← Q ∪ InsertState(Aback, Vback, Sback) ∪ AddEdge(Aback, Vlast,
Vback);

16 set q in Q visited;

17 function InsertState(A, V , S)
18 if V is not yet a vertex in GA then
19 add vertex V into GA and set ΣGA,V ← {S};
20 else
21 ΣGA,V ← ΣGA,V ∪ {S};
22 propagate on GA and obtain new states S;
23 return {(A, V, S)} ∪ S;
24 function AddEdge(A, U , V)
25 add an edge 〈U, V 〉 into GA;
26 propagate on GA and obtain new states S;
27 return S;

with the existing vertices in GA, otherwise, we only have to update ΣGA,V with
the new stack S. Then we apply propagation procedure on GA and return new
states which are obtained in InsertState(). In the function AddEdge(A,U, V),
we add a new edge from vertex U to vertex V (U �= V) in GA. Then it also
propagates values on GA and returns these new states.

The algorithm starts from the initial state (A0, V0, Φ). It invokes the function
InsertState() to build the PRG with the initial state and generates the initial
queue Q. Then the algorithm repeatedly enumerates unvisited states in Q.

For an unvisited state q = (A, V, S), we first explore forward transitions
starting from q. Recall the state-merging strategy over PRGs, we only have to
explore the forward transition once for each variable assignment. So at line 5, the
algorithm checks whether vertex V in GA is already considered. Then it explores
each forward transition τ = (A,Anext). After that it executes statements and

Checking ATS with Back Transitions Against Assertions? 397

checks assertions on τ and the next activity Anext to obtain the new assignment
Vnext. Then it copies stack S to Snext and pushes the state q into the stack Snext.
At last, it obtains the new state (Anext, Vnext, Snext) and invokes InsertState()
for it.

After the forward transitions, we consider the back transition at state
q. Note that different with the forward transitions, the back transition is
always explored. At first, our approach pops S to obtain the previous state
(Aback, Vlast, Sback). From the definition of back transitions, we know that V L

back

is equal to V L
last and V G

back is equal to V G. Thus our approach obtains the new
state (Aback, Vback, Sback). Then it invokes InsertState() and AddEdge() to
update GA and Q. Recall the definition of post-reachable state that stacks of
two states should be same, so there is no new edge during the exploration of
forward transitions. However, since the algorithm has already explored a path
from (Aback, Vlast, Sback) to (Aback, Vback, Sback), the new state with Vback is the
post-reachable state of the last state Vlast when Vback �= Vlast. Thus AddEdge()
is invoked at line 15. At last, the algorithm visits another unvisited state in Q.

PRG of A0

PRG of A3

PRG of A1

PRG of A4

PRG of A5

PRG of A6

(0, 0) (1, 0)

(1, 0) (1, 1)

(0, 0) (0, 1)

(0, 1) (1, 1)

(1, 0)

(0, 0)

(1, 1)

(0, 1)

(0, 0)

1: {}
11: {1, 2, 5}

27: {1, 2, 19}

7: {}
12: {1, 2, 5}

28: {1, 2, 19}

2: {1}
15: {7}

3: {1}
16: {7}

30: {1}
31: {7}

32: {1}
33: {7}

4: {1}
34: {7}

17: {7}
18: {1}

5: {1, 2}
8: {1, 3}

10: {1, 4}
25: {7, 17}
35: {1, 30}
39: {1, 32}

19: {1, 2}
20: {1, 3}
21: {1, 4}

26: {7, 17}
36: {1, 30}
40: {1, 32}

6: {1, 2}
9: {1, 3}

37: {1, 30}
41: {1, 32}

13: {1, 2, 5}
23: {1, 2}
24: {1, 3}

29: {1, 2, 19}
38: {1, 30}
42: {1, 32}

14: {1, 2, 6}
22: {1, 2, 5, 13}

Fig. 6. All PRGs for activities in the example in Fig. 2 (Color figure online)

Example. Consider the cycle mentioned in Sect. 3.2: 7 : (A0, (1, 0), Φ) T1−−→ 15 :
(A3, (1, 0), {7}) T6−−→ S1 : (A4, (1, 0), {7, 15}) T4−−→ S2 : (A0, (0, 0), {7, 15, S1}) T2−−→
S3 : (A3, (1, 1), {7, 15, S1, S2}) back−−−→ S4 : (A0, (1, 0), {7, 15, S1}). It is a cycle
from A0 to A0. Since the vertex (1, 0) in GA0 has already been visited at state

398 C. Ge et al.

7, it is easy to see that our algorithm will not explore forward transitions from
S4. In practice, the algorithm stops exploration of forward transitions earlier
at S2, as the vertex (0, 0) in GA0 has already been visited at the initial state
(A0, (0, 0), Φ). Figure 6 presents the PRGs for all activities in the example in
Fig. 2, which are generated by Algorithm 2. There are 42 states in total. Note
that 12 of them (states in red) are generated by value propagation in PRGs.

4 Extensions

The model of ATG with back transitions is sometimes not sufficient for practical
analysis over Android apps. However, our approach is flexible to extend to handle
more complicated problems. In this section, we present several extensions to the
ATG model and also our algorithm. Some extensions are orthogonal to each
other, i.e., they could be employed at the same time.

4.1 Construct Paths for States

Our approach is designed for enumerating all possible different pairs of the activ-
ity and the variable assignment (A, V). Each (A, V) corresponds to a reach-
able state (A, V, S), i.e., there exists a path from the initial state to (A, V, S).
Although Algorithm 2 guarantees that states are reachable, it does not store suf-
ficient information to construct such path. Note that the path can be represented
by a sequence of transitions. Thus we store the sequence of transitions T along
with the stack, e.g., extend the state (A, V, S) to a 4-tuple (A, V, S, T).

For states obtained by forward and back transitions, it is simple to update T
for this new state. But there are some states obtained by propagation in PRGs,
whose sequences are not trivial to obtain. We introduce the following technique
to handle such cases. First, for an edge 〈V, V ′〉 in GA, we store a sequence of
transitions T〈V,V ′〉 that will transit state (A, V, S) to (A, V ′, S) for all possible
S. Then, when propagating (A, V, S, T) to (A, V ′, S, T ′) via edge 〈V, V ′〉 in GA,
we could construct the new sequence T ′ by concatenating T with T〈V,V ′〉.

For example, in PRG of A0 in Fig. 6, there is an edge 〈(0, 0) to (1, 0)〉 and
T〈(0,0),(1,0)〉 = {T1, back}. Consider a state (A0, (0, 0), {1, 2, 5}, {T1, T6, T4}) at
vertex (0, 0), where {T1, T6, T4} is the sequence of transitions that forms a
path from the initial state (A0, (0, 0), Φ) to it. So we can obtain a new state
(A0, (1, 0), {1, 2, 5}, {T1, T6, T4, T1, back}) by propagation.

4.2 Enumerated Variables and Arithmetic Expressions

We only consider Boolean-valued variables so far. However, it is easy to extend
our approach to handle enumerated variables. For enumerated variables, our
approach will still terminate in finite steps. Moreover, the results and techniques
presented in previous sections will still work with this modification.

Since our approach only relies on sequential executions over statements
instead of the satisfiability checking over constraints, it is easy to extend our

Checking ATS with Back Transitions Against Assertions? 399

approach to support statements with complex expressions, such as, arithmetic
expressions, comparison between variables, etc. In general, it supports extensions
to expressions that return definite values after substituting values of variables.
For example, x := x + y, assert x > y, x := (y > 0).

4.3 Conditional Transitions

Transitions in the ATG do not contain any conditions. However, it is common
that transitions between activities contain conditions in practical Android apps,
e.g., transit from a Log-in activity to another unless users fill in correct pass-
words. For problems with such conditional transitions, it is sufficient to modify
our approach by checking conditions before exploring transitions.

4.4 Self Loops

The self transition is a forward transition τ = (A,A). It also contains statements,
but the statements of activity A will not be executed after τ . Note that the roll
back operation is also enabled after τ . Self loops are generated by such self
transitions. In practice, there are Android apps contain self loops. For example,
in a video play activity, switching between the horizontal screen and the vertical
screen is a self loop. Exploring a self transition is just like exploring a normal
forward transition, except that the algorithm may have to introduce a new edge
in a PRG during the exploration of a self transition. Based on this observation,
we could extend our approach for self loops.

4.5 Overloading and Disabling Back Transitions

Overloading roll back function is common in practical Android apps, e.g., over-
load a back transition as a program exit. Moreover, overloading is so flexible
that the overloaded transition may be very complicated. It may contain multi-
ple functions. However, after some modifications, our approach still works. For
example, in Fig. 7, the back transition on A3 is overloaded by a transition from
A3 to EXIT . In this case, we have to disable the roll back operation at activity
A3. Then we introduce a forward transition from A3 to EXIT to simulate this
overloading back transition.

Obviously, disabling a back transition can be viewed as a special case of
overloading a back transition which does not introduce a new transition.

4.6 Activity Launch Modes

In Android, a parent activity can start a child activity by invoking, e.g., start-
Activity() as a form of an inter-component communication (ICC) call, passing
it an intent that describes the child activity to be launched. In addition, an
instance of an activity class A can be launched in one of the four launch modes,
standard, singleTask, singleTop and singleInstance, either configured in

400 C. Ge et al.

Fig. 7. An example of overloading back transitions

AndroidManifest.xml or specified in the intent passed to startActivity().
The first one is the default while the other three are known as special launch
modes. These launch modes affect which activity instances are launched and
their transitions.

standard. For the default launch mode, standard always creates a new activity
instance of A and pushes the new instance into the back-stack. In our model,
the default mechanism of forward transitions is exactly same as standard. Thus
our algorithm naturally supports this mode.

singleTop. If the activity to be started has the same type as the top activity,
then the top activity is reused. Otherwise, we handle it identically as in the case
of standard. It is trivial to prove Theorem1 for problems with singleTop. It
shows that the state-merging strategy still works. However, the PRG technique
is no longer working since forward transitions may pop element from stack. As
a result, problems with this mode can be handled by Algorithm1 with state-
merging strategy, which also has termination guarantee.

singleTask. This mode is similar to singleTop, except that the activity instance
closest to the top of the back-stack will be reused if it has the same type as the
new activity to be started. Otherwise, we fall back to the case where standard
is handled. For example, consider a forward transition τ = (A,Anext) with
singleTask and a state (A, V, S). Then we tries to find a state on activity Anext

in S. If a state (Anext, Vold, Sold) ∈ S is found, we adopt it as the next state and
pops all state above it in S. Otherwise, we obtain the state (Anext, Vnext, Snext)
like standard. Similar to singleTop, the state-merging strategy still works, but
the PRG technique is no longer working. Intuitively, transitions with singleTask
will always generate states no more than standard. Therefore, Algorithm 1 with
state-merging strategy also has termination guarantee.

Checking ATS with Back Transitions Against Assertions? 401

singleInstance. This mode is similar to singleTask, except that only one
instance of its activity class resides in its task. To simulate singleInstance, we
have to maintain more than one stack for each state. Thus it is not trivial to
extend our algorithm to this mode.

5 Related Work

An existing work [18] defines operational semantics for a fragment of Android
that includes its Dalvik bytecode and intercommunication mechanism of the
activities. It considers the Android specific activity stack and back operation.
However, this work does not define GUI static models or give any analysis
algorithms. Another work [7] proposes a formal model, Android Stack Machine
(ASM), to capture key mechanisms of Android multi-tasking such as activities,
back stacks, launch modes, as well as task affinities.

Aiming to describe real-world apps precisely, some static models are designed
by researchers. Azim et al. [3] extract the Static activity Transfer Graph (SATG)
for a given app, and use dynamic GUI exploration to handle dynamic activities
layouts to complement the SATG. They also implement a tool A3E which can
explore real-world Android apps and construct models for them. S. Yang et
al. [23] design a model called Window Transition Graph (WTG), with compre-
hensive behavior analysis for the key aspects of GUI behavior: widgets, event
handlers, callback sequences, and especially the window stack changes. Based on
the modeling of window stack, they develop analysis algorithms for WTG con-
struction and traversal. And a recent work [24] constructs more precise activity
Transition Graph with consideration of the launch-mode of each activity, which
is more precise in capturing activity transitions. With help of the statically con-
structed activity Transition Model (ATM), Mirzaei et al. [17] give an approach
to reduce the number of test cases by extracting the dependencies of GUI ele-
ments, which achieves a comparable coverage under exhaustive GUI testing using
significantly fewer test cases.

Some researchers leverage dynamic techniques to construct transition model
for Android apps. Amalfitano et al. [1,2] implemented a tool called AnroidRipper
which builds model using a depth-first search over the user interface. When
visiting a new state, it keeps a list of events belongs to the current state and
systematically triggers them. And it restarts the exploration from the entry state
when no new state can be detected in the current exploration. SwiftHand [8]
builds an approximate model for the application under test, which could guide
the test execution into unexplored parts of the state space while maximizing the
code coverage and fault revelation. These works do not take into consideration
the Android specific back stack. Yan et al. [21] make use of dynamic techniques to
construct a labeled transition model (LATTE), which considers the information
of activity back stack. They also implement a tool LAND to systematically
explore real-world Android apps and construct the widget-sensitive and back-
stack-aware models.

402 C. Ge et al.

6 Conclusion

In this paper, an ATG with back transitions, value assignments and assertions,
is introduced. It is a formalism for abstracting the behaviour of Android apps.
Based on the PRG technique, we propose an algorithm for assertion checking
over our formalism model, which has termination guarantee. Lastly, we study
interesting extensions of our model and our algorithm. In the future, we would
like to apply our algorithm to analyze Android apps with more activities and
more states. On the other hand, automated modeling technique is also an inter-
esting and challenging direction of our future works.

Acknowledgements. The authors are grateful to the reviewers for helpful comments
and suggestions, and to Ping Wang for reading a preliminary version of this paper
carefully.

References

1. Amalfitano, D., Fasolino, A.R., Tramontana, P., De Carmine, S., Memon, A.M.:
Using GUI ripping for automated testing of Android applications. In: Proceedings
of of ASE, pp. 258–261 (2012)

2. Amalfitano, D., Fasolino, A.R., Tramontana, P., Ta, B.D., Memon, A.M.: Mobi-
guitar: automated model-based testing of mobile apps. IEEE Softw. 32(5), 53–59
(2015)

3. Azim, T., Neamtiu, I.: Targeted and depth-first exploration for systematic testing
of Android apps. In: Proceedings of of OOPSLA, pp. 641–660 (2013)

4. Baek, Y.M., Bae, D.: Automated model-based android GUI testing using multi-
level GUI comparison criteria. In: Proceedings of of ASE, pp. 238–249 (2016)

5. Bhoraskar, R., et al.: Brahmastra: driving apps to test the security of third-party
components. In: Proceedings of USENIX, pp. 1021–1036 (2014)

6. Chen, Q.A., Qian, Z., Mao, Z.M.: Peeking into your app without actually seeing
it: UI state inference and novel android attacks. In: Proceedings of USENIX, pp.
1037–1052 (2014)

7. Chen, T., He, J., Song, F., Wang, G., Wu, Z., Yan, J.: Android stack machine. In:
Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 487–504.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2 29

8. Choi, W., Necula, G.C., Sen, K.: Guided GUI testing of android apps with minimal
restart and approximate learning. In: Proceedigns of OOPSLA, pp. 623–640 (2013)

9. Do, L.N.Q., Ali, K., Livshits, B., Bodden, E., Smith, J., Murphy-Hill, E.R.: Just-
in-time static analysis. In: Proceedings of SIGSOFT, pp. 307–317 (2017)

10. Feng, Y., Anand, S., Dillig, I., Aiken, A.: Apposcopy: semantics-based detection
of android malware through static analysis. In: Proceedings of FSE, pp. 576–587
(2014)

11. Feng, Y., Bastani, O., Martins, R., Dillig, I., Anand, S.: Automated synthesis
of semantic malware signatures using maximum satisfiability. In: Proceedings of
NDSS (2017)

12. Gordon, M.I., Kim, D., Perkins, J.H., Gilham, L., Nguyen, N., Rinard, M.C.: Infor-
mation flow analysis of android applications in DroidSafe. In: Proceedings of NDSS
(2015)

https://doi.org/10.1007/978-3-319-96142-2_29

Checking ATS with Back Transitions Against Assertions? 403

13. Huang, W., Dong, Y., Milanova, A., Dolby, J.: Scalable and precise taint analysis
for android. In: Proceedings of ISSTA, pp. 106–117 (2015)

14. Li, L., et al.: IccTA: detecting inter-component privacy leaks in android apps. In:
Proceedings of ICSE, pp. 280–291 (2015)

15. Lu, L., Li, Z., Wu, Z., Lee, W., Jiang, G.: CHEX: statically vetting android apps for
component hijacking vulnerabilities. In: Proceedings of CCS, pp. 229–240 (2012)

16. Mahmood, R., Mirzaei, N., Malek, S.: Evodroid: segmented evolutionary testing of
android apps. In: Proceedings of FSE, pp. 599–609 (2014)

17. Mirzaei, N., Garcia, J., Bagheri, H., Sadeghi, A., Malek, S.: Reducing combinatorics
in GUI testing of Android applications. In: Proceedings of ICSE, pp. 559–570
(2016)

18. Payet, E., Spoto, F.: An operational semantics for android activities. In: Proceed-
ings of PEPM, pp. 121–132 (2014)

19. Shao, Y., Luo, X., Qian, C., Zhu, P., Zhang, L.: Towards a scalable resource-
driven approach for detecting repackaged android applications. In: Proceedings of
ACSAC, pp. 56–65 (2014)

20. Wei, F., Roy, S., Ou, X., Robby: Amandroid: a precise and general inter-component
data flow analysis framework for security vetting of android apps. In: Proceedings
of SIGSAC, pp. 1329–1341 (2014)

21. Yan, J., Wu, T., Yan, J., Zhang, J.: Widget-sensitive and back-stack-aware GUI
exploration for testing android apps. In: Proceedings of QRS, pp. 42–53 (2017)

22. Yang, S., Yan, D., Wu, H., Wang, Y., Rountev, A.: Static control-flow analysis of
user-driven callbacks in android applications. In: Proceedings of ICSE, pp. 89–99
(2015)

23. Yang, S., Zhang, H., Wu, H., Wang, Y., Yan, D., Rountev, A.: Static window
transition graphs for Android(T). In: Proceedings of ASE, pp. 658–668 (2015)

24. Zhang, Y., Sui, Y., Xue, J.: Launch-mode-aware context-sensitive activity transi-
tion analysis. In: ICSE (2018, accepted)

Emerging Applications of Formal
Methods

Towards Trustworthy AI for Autonomous
Systems

Hadrien Bride2, Jin Song Dong1,2, Zhé Hóu2(B), Brendan Mahony3,
and Martin Oxenham3

1 School of Computing, National University of Singapore, Singapore, Singapore
2 Institute for Integrated and Intelligent Systems, Griffith University,

Brisbane, Australia
z.hou@griffith.edu.au

3 Defence Science and Technology Group, Edinburgh, Australia

Abstract. Trust remains a major challenge in the development, imple-
mentation and deployment of artificial intelligence and autonomous sys-
tems in defence and law enforcement industries. To address the issue,
we follow the verification as planning paradigm based on model checking
techniques to solve planning and goal reasoning problems for autonomous
systems. Specifically, we present a novel framework named Goal Rea-
soning And Verification for Independent Trusted Autonomous Systems
(GRAVITAS) and discuss how it helps provide trustworthy plans in
uncertain and dynamic environment.

1 Introduction

Planning is a central and hard computer science problem that is essential in
the development of autonomous systems. Many existing solutions require a con-
trolled environment in order to function correctly and reliably. However, there
are situations where adaptive autonomous systems are required to run for a long
period of time and cope with uncertain events during the deployment. Our work
is motivated by the requirements of next generation autonomous underwater
vehicles (AUV) in law enforcement and defence industries. Particularly, we are
currently developing a decision making system suitable for an AUV designed to
stay underwater for up to 6 months with very limited communication with the
outside world. The AUV is expected to carry out survey missions on its own and
report details of its surveillance at semi-regular intervals. During the mission,
the AUV may encounter underwater currents, deep ocean terrain, fishing boats,
objects and places of interest, hostile vehicles etc., each of which may affect its
ability to achieve its goals. The AUV must be able to decide which goals to
pursue when such uncertain events occur and plan tasks to achieve the goals in
an agile manner.

In the face of uncertain events in execution, planning becomes an even harder
problem. In this case, the agent’s goal may be affected and thus both selecting
a new goal and re-planning are necessary. This generally follows a note-assess-
guide procedure, where note detects discrepancies, assess hypothesises causes for
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 407–411, 2018.
https://doi.org/10.1007/978-3-030-02450-5_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_24&domain=pdf

408 H. Bride et al.

discrepancies, and guide performs a suitable response. Differing from classical
planning where the goal is fixed, when a discrepancy is detected, it is often
necessary to change the current goal. Goal reasoning is about selecting a suitable
goal for the planning process. There have been various formalisms that attempt
to solve planning problems in a dynamic environment, including hierarchical
planning methods, such as hierarchical task networks (HTN) [3] and hierarchical
goal networks (HGN) [8], and goal reasoning systems such as the Metacognitive
Integrated Dual-Cycle Architecture (MIDCA) [2].

Although some of the above formalisms have been successfully applied to
solve real life problems, the verification aspect of the problem remains to be
addressed. Usually planning is solved by heuristic search, but this approach does
not confer a sufficient level of trust. The correctness, safety, and security issues
of autonomous systems are particularly important in mission-critical use cases
such as our AUV example. To tackle this problem, we turn to formal methods,
which have been used to solve planning problems in the literature. For example,
Giunchiglia et al. proposed to solve planning problems using model checking [4]
and Kress-Gazit et al.’s framework translates high-level tasks defined in linear
temporal logic (LTL) to hybrid controllers [5].

Following the above ideas, in this short paper we introduce a new system
called Goal Reasoning And Verification for Independent Trusted Autonomous
Systems (GRAVITAS). This novel planning and goal reasoning framework has
the ability to produce verifiable and explainable plans for autonomous systems.
It is build upon the model checker Process Analysis Toolkit (PAT) [9], which is
a self-contained tool that supports composing, simulating and reasoning about
concurrent, probabilistic and timed systems with non-deterministic behaviours.
The benefits of the proposed approach notably include the capacity to formulate
inconsistency and incompatibility of plans as reachability/LTL properties and
the ability to verify them on the fly. For instance, when a new goal is generated
during execution, we can check whether the new goal conflicts with existing goals,
and select the subset of goals that are compatible with each other. Finally, we
can also verify the planning model itself, such that a given planning model does
not output plans that may lead to undesired events.

2 Planning and Goal Reasoning via PAT

The plan and goal reasoning problems to be solved are expressed and formally
defined as Goal task networks (GTNs) – an extension and unification of hierar-
chical task networks and hierarchical goal networks [8]. GTNs explicitly models
the hierarchy among tasks and goals in ways that generally mirrors well the
hierarchical structure of many real-world planning applications. This hierarchy
can then be used during the planning phase following the well know divide and
conquer scheme. Due to this, GTNs planners are much more scalable and per-
formant than classical planners in practice.

In GRAVITAS, the verification and resolution of plan and goal reasoning prob-
lems expressed as GTNs is based on their translation to CSP# – one of the input
language of PAT. This translation is fully automated and notably considers the

Towards Trustworthy AI for Autonomous Systems 409

autonomous system capabilities as well as its environments. The translated CSP#
code models all the elementary actions that the autonomous system can per-
form together with their effects on its environment. Furthers, it also considers
resource constraints and goal reasoning (e.g., prioritization of goals). To do so,
it assigns economic values to both its resources and its goals in order to leverage
economic reasoning. By doing so, we leverage PAT optimisation features to for-
mulate plans that incentivises the completion of goals providing the most rewards
while compromising with the resources they require to be completed. These eco-
nomic notions therefore lead to the formulation of highly cost-effective plan. Addi-
tionally, when multi-agents missions are considered, they provide further benefits
as market-based mechanisms [1] can be leveraged to obtain greater collaboration
among agents as well as to optimise resources and tasks allocation.

Since tasks and goals are both translated into processes in CSP#, it is
straightforward to check properties for tasks and goals using PAT. For instance,
using we can verify that the proposed plans respect predefined safety and live-
ness properties (e.g., the autonomous system does not collide with obstacles, the
autonomous system has the ability to join the recovery area).

3 A Trustworthy Framework for Planning and Goal
Reasoning

Compared with traditional AI techniques, the planning and goal reasoning meth-
ods in our work are realised by model checking, which is an automated reasoning
technique that has been successfully applied in formal verification tasks. Hence
an advantage of our approach is that we can use model checking to verify cor-
rectness, safety, and security properties of the underlying model.

Fig. 1. Overall workflow of GRAVITAS.

410 H. Bride et al.

To demonstrate the strengths of such approach we are developing Goal Rea-
soning And Verification for Independent Trusted Autonomous Systems (GRAV-
ITAS) – a fully automated system enabling unmanned agents such as AUVs to
autonomously operate with a high level of trust in a dynamic environment.

GRAVITAS follows a cyclic pattern composed of four main phases: Moni-
tor, Interpret, Evaluate and Control. Figure 1 is a UML activity diagram of the
overall control flow of GRAVITAS.

The main operative cycle of GRAVITAS begins with the Monitor (1). This
component perceives the environment through the signal processing and fusion
of the raw outputs of available sensors. It is also in charge of processing this data
in order to provide information such as the estimated position and speed of the
agent to the Interpreter (2). Once the Interpreter (2) receives the required infor-
mation, it updates the agent’s local model of the system and its environment.
This formally defined local model is then forwarded to the Evaluator (3) – a
component in charge of assessing the validity of the previously established plan
with respect to pre-defined specifications. If the Evaluator assesses the plan to
be valid, the Controller (5) is tasked with executing the plan. Alternatively, if
the Evaluator (3) finds the plan invalid e.g. an uncertain event creates inconsis-
tencies in the previously established plan and the mission requirements, a new
plan needs to be formulated. The formulation of a new plan is accomplished by
the joint operation of the Planner and Goals Manager components (4). After
a new plan is formulated, the Controller (5) is tasked with executing this plan.
This step involves processing based on control theory [6] which we do not discuss
here.

In the developed framework, the components in the lower loop in Fig. 1 are
orchestrated via the Mission Oriented Operating Suite [7] (MOOS) – a middle-
ware mainly in charge of the communication. The main computational workload
of the Evaluator (3), The Planner and Goal Manager (4) components are pow-
ered by PAT. Note that although conceptually the planner and the goal manager
are two separated components, in our implementation they are concretized as a
single PAT model. Also, note that, to achieve high efficiency in real-life applica-
tions, we use a hybrid approach to implement planning and goal reasoning: the
PAT model performs high-level goal reasoning and planning, and we implement
an external actuator to derive a low-level plan from a high-level plan, the former
will then be sent to hardware for execution.

References

1. Clearwater, S.H.: Market-Based Control: A Paradigm for Distributed Resource Allo-
cation. World Scientific, Singapore (1996)

2. Cox, M.T., Alavi, Z., Dannenhauer, D., Eyorokon, V., Munoz-Avila, H., Perlis,
D.: MIDCA: a metacognitive, integrated dual-cycle architecture for self-regulated
autonomy. In: AAAI, pp. 3712–3718 (2016)

3. Erol, K., Hendler, J.A., Nau, D.S.: UMCP: a sound and complete procedure for
hierarchical task-network planning. In: AIPS, vol. 94, pp. 249–254 (1994)

Towards Trustworthy AI for Autonomous Systems 411

4. Giunchiglia, F., Traverso, P.: Planning as model checking. In: Biundo, S., Fox, M.
(eds.) ECP 1999. LNCS (LNAI), vol. 1809, pp. 1–20. Springer, Heidelberg (2000).
https://doi.org/10.1007/10720246 1

5. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009)

6. Lee, E.B., Markus, L.: Foundations of optimal control theory. Technical report,
Minnesota University Minneapolis Center for Control Sciences (1967)

7. Newman, P.M.: MOOS-mission orientated operating suite (2008)
8. Shivishankar, V.: Hierarchical goal network planning: formalisms and algorithms for

planning and acting. Ph.D. thesis, Department of Computer Science, University of
Maryland College Park (2015)

9. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under fair-
ness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 59

https://doi.org/10.1007/10720246_1
https://doi.org/10.1007/978-3-642-02658-4_59

Towards Dependable and Explainable
Machine Learning Using Automated

Reasoning

Hadrien Bride2, Jie Dong3, Jin Song Dong1,2, and Zhé Hóu2(B)

1 School of Computing, National University of Singapore, Singapore, Singapore
2 Institute for Integrated and Intelligent Systems, Griffith University,

Brisbane, Australia
z.hou@griffith.edu.au

3 Dependable Intelligence, Brisbane, Australia
jacob@depintel.com

Abstract. The ability to learn from past experience and improve in the
future, as well as the ability to reason about the context of problems and
extrapolate information from what is known, are two important aspects
of Artificial Intelligence. In this paper, we introduce a novel automated
reasoning based approach that can extract valuable insights from classi-
fication and prediction models obtained via machine learning. A major
benefit of the proposed approach is that the user can understand the rea-
son behind the decision-making of machine learning models. This is often
as important as good performance. Our technique can also be used to
reinforce user-specified requirements in the model as well as to improve
the classification and prediction.

1 Introduction

Philip Wadler once wrote that “powerful insights arise from linking two fields of
study previously thought separate” [6]. This paper, although does not provide a
similar correspondence relation between two fields such as logic and computation,
aims at finding an interesting application that combines machine learning and
automated reasoning. There have been various attempts at applying machine
learning in automated reasoning. For instance, the automated reasoning tool
Sledgehammer, which is a subsystem of the proof assistant Isabelle/HOL, has a
module named MaSh [3] which uses machine learning to rank the relevance of
known facts in the proof context based on previous successful proofs and select a
subset of facts that is estimated most helpful in proving the existing goals. The
other direction, i.e., applying automated reasoning in machine learning, has not
seen an application as far as we are aware of.

Recently, eXplainable Artificial Intelligence (XAI) has been gaining atten-
tion. The prestigious International Joint Conference on Artificial Intelligence
(IJCAI) has notably been running a workshop specialised in this topic. From the
automated reasoning community, Bonacina recently envisaged that automated
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 412–416, 2018.
https://doi.org/10.1007/978-3-030-02450-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_25&domain=pdf

Towards Dependable and Explainable Machine Learning 413

reasoning could be the key to the advances of XAI and machine learning [1]. To
this end, she posed several questions and challenges in this direction. Specifically,

“How can we bridge the gap between the statistical inferences of machine
learning and the logical inferences of reasoning, applying the latter to
extract, build, or speculate and test, explanations of the former?” [1]

This paper addresses the above challenge by proposing a novel framework
which enables the application of automated reasoning in machine learning. First,
we study a range of machine learning techniques and identify that models pro-
duced by (ensemble) decision trees based techniques are suitable for formal anal-
ysis and automated reasoning. We then propose to use satisfiability modulo the-
ories (SMT) solvers to perform analysis on classification and prediction models
given by machine learning. We discuss some preliminary results using a new
machine learning tool called Silas [4].

2 Machine Learning Techniques Reviewed

To solve a problem one has to choose the right tool. In our context, to fully
support the integration of automated reasoning techniques and to build towards
a machine learning approach that is explainable and dependable, we require
efficient machine learning techniques (in term of both memory and time) that
produce interpretable models.

Linear regressions (LR), while being easily interpretable, often fall short in
performance compared to other approaches [7].

Support vector machines (SVM) are popular and efficient tools, which, thanks
to a large number of kernels, can be applied to a variety of classification problems.
However, interpreting the models produced by SVM is far from trivial, especially
when non-linear kernels are used. Hence, SVM is often used as black-boxes.

Neural networks (NN) and deep learning (DL) techniques have been excep-
tionally successful in analysing both structured and unstructured data, but the
models they produce are intricate, hence NN and DL are often used as black-
boxes, too. Also, NN and DL are often computationally expensive.

In contrast to SVMs and NNs, decision trees (DT) based techniques such as
random forests (RF) and gradient boosting machines (GBM) are capable of pro-
ducing interpretable and explainable models due to the formal semantics associ-
ated with there underlying tree structures. Moreover, when analysing structured
data, RF and GBM often outperform other approaches including DL [5,7].

Given all the above observations, we conclude that a decision tree based
machine learning approach fits our needs. The formal semantics of decision trees
offers an ideal support for the application of formal methods.

3 Model Analysis and Engineering Using SMT

This sections briefly presents some of the ideas we are actively developing. They
provide the basic building blocks for the application of automated reasoning
tools such as SMT solvers to perform the analysis of decision tree based models.

414 H. Bride et al.

Obtaining Model Predicates: Given a classification or a prediction model
that consists of a set of decision trees, we first need to extract logical formulae
from the trees. A decision tree in this context is a data structure in which every
non-leaf node is associated with a logical formula that splits the data entries into
two subsets. Assuming that A,B, · · · are the classes to be classified or predicted
in a data set. Each leaf node contains a subset of data entries labelled by the
classes. An algorithm such as majority voting is then needed to obtain the final
decision. There are multiple ways to obtain logical formulae for model analysis.
One can collect all the formulae from the root of a tree to a leaf node with decision
A, and the conjunction of these formulae, called the branch formula, gives the
reason why the subset of data entries in the leaf node are classified/predicted
as A. There could be multiple leaf nodes whose decisions are all class A. The
disjunction of all branch formulae which lead to class A represents the overall
decision-making of the tree with respect to class A. We refer to this disjunction
as the decision formula for class A. The decision formula for a class can then be
used in the analysis to check inconsistencies and extract the core reason behind
the decision-making. For a set of decision trees, we can extract the decision
formula for class A on each tree and perform analysis on the conjunction of
multiple decision formulae.

Model Anlaysis and Engineering: Once the logical formulae are extracted,
we can perform a number of analyses on the formulae using automated reasoning
techniques. We list some of the specific techniques we have been successfully
using so far.

Maximum Satisfiable Subset (MSS): To obtain the MSS, we assign a weight to
each sub-formula, and try to maximise the accumulated weight in the MAX-
SMT optimisation problem. This can be achieved by certain SMT solvers such
as Z3 and MathSAT 5. The weight assigned to each formula can be optimised
to reflect the predictive performance of the decision node or the decision tree.
For instance, a decision node with more information gain may have more weight,
and a decision tree with higher predictive accuracy may have more weight. The
resulting MSS can give an indication of the core attributes and the range of the
attributes that lead to the decision-making of the classification and prediction
model. Note that a similar analysis is to extract maximal satisfiable subsets,
which is computationally cheaper, but we prefer the maximum subset because
it may give more insight about the decision-making.

Minimal Unsatisfiable Core (MUC): Solvers such as Z3 provide a straightfor-
ward way to compute the MUC of a set of formulae. We can use this functionality
to obtain the inconsistencies in the model and use this information to fine-turn
the model by trimming the decision tree. This can form a recursive procedure in
which we repeatedly find the MUCs in a decision tree and trim the tree accord-
ingly until the tree becomes a consistent model. Another application is to use
the MUC in boosting. A boosting algorithm usually consists of iterative learning
steps in which weak classifiers are introduced to compensate the shortcomings
of existing weak learners. The MUC can be effectively used as the shortcomings

Towards Dependable and Explainable Machine Learning 415

of multiple learners, because it represents the disagreements of multiple decision
trees. We can then build weak classifiers around the MUC to boost the model
performance.

Model Verification: In certain applications, the user may specify some require-
ments that a decision making procedure must satisfy. For instance, if machine
learning is applied to classify whether a node in a network cluster is secure, our
method may produce a logical condition for deciding network security. If the user
has other security requirements that must be satisfied, we can use SMT solving
and model checking to verify that the requirements hold in the learned model. If
this is not true, then the MUC analysis can pinpoint the reason why the learned
condition fails and we can use the MUC to tweak the model by inserting decision
nodes that reinforce the user requirements and obtain machine learning results
that conform the user’s specifications.

4 Discussion

The model analysis and engineering component for machine learning can provide
several benefits to users at different levels: (1) The analysis can pinpoint the
reason behind the classification and prediction. This will help the user (e.g.,
decision maker) understand what the key attributes are and how they lead to
the result. Therefore, the user can use the analytical information provided by
this approach to make the final decision based on their discretion. Moreover, the
analytical information can help transform the machine learning algorithm into a
transparent process in which every decision can be inspected and verified. (2) The
analysis can also provide the reason why some models have good performance
while others have bad performance. Data scientists can use this information to
improve the learning process and perform hyperparameter tuning. (3) Machine
learners can use the MUC to fine-tune the models and improve classification
and prediction results. They can also use the MSC to build new and consistent
models that potentially have better results. (4) Model verification helps obtain
machine learning results that conform with user-specified requirements. This is
vital in providing a machine learning technique that can be trusted.

We have implemented and experimented with the approach introduced in
this paper. We have produced a module for the machine learning tool Silas [4].
As an example, on a diabetes data set [2], we are able to analyse a random forest
model and obtain a set of “core reasons” behind each class (negative/positive
diabetes). By comparing the core reasons, we derive that 30 ≤ age ≤ 34 and
0 < number of times pregnant ≤ 2 are among the key indicators for classifying
positive diabetes, whereas 21 ≤ age ≤ 22 and number of times pregnant ≤ 0
strongly indicate negative diabetes. On the other hand, we were able to deduce
that 2-hour serum insulin is not a strong indicator for either classes, which
implies that data scientists can perform certain feature engineering on the data
set to improve the results. Note that the data set only contains 768 data entries
(patients), so the analysis may not be representative for a large population.

416 H. Bride et al.

Nonetheless, our implementation demonstrates the feasibility of the proposed
method and shows that the combination of machine learning and automated
reasoning has the potential to provide a new explainable and dependable data
analysis technology.

References

1. Bonacina, M.P.: Automated reasoning for explainable artificial intelligence. In:
ARCADE Workshop (in association with CADE-26), Gothenburg, Sweden (2017)

2. Dheeru, D., Taniskidou, E.K.: UCI machine learning repository (2017)
3. Kühlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: MaSh: machine learning

for Sledgehammer. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013.
LNCS, vol. 7998, pp. 35–50. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-39634-2 6

4. Dependable Intelligence Pty Ltd., Silas (2018). https://depintel.com/silas/
5. Pafka, S.: A minimal benchmark for scalability, speed and accuracy of commonly

used open source implementations of the top machine learning algorithms for binary
classification (2018). https://github.com/szilard/benchm-ml

6. Wadler, P.: Propositions as types. Commun. ACM 58(12), 75–84 (2015)
7. Zhang, C., Liu, C., Zhang, X., Almpanidis, G.: An up-to-date comparison of state-

of-the-art classification algorithms. Expert Syst. Appl. 82, 128–150 (2017)

https://doi.org/10.1007/978-3-642-39634-2_6
https://doi.org/10.1007/978-3-642-39634-2_6
https://depintel.com/silas/
https://github.com/szilard/benchm-ml

Doctoral Symposium

Modeling and Verification of Component
Connectors

Xiyue Zhang(B)

Department of Informatics and LMAM, School of Mathematical Sciences,
Peking University, Beijing, China

zhangxiyue@pku.edu.cn

Abstract. Connectors have shown their great potential for coordination
of different components in the large-scale distributed systems. Formal
modeling and verification of connectors becomes more critical due to
the rapid growth of the size of connectors. In this paper, we present
a novel modeling and verification approach of Reo connectors in Coq,
including the timed and probabilistic extensions of Reo. When failing to
prove whether a property is satisfiable or not with Coq, Z3 solver can be
used to generate counterexamples automatically. To promote automated
theorem proving in Coq, we proposed an approach based on recurrent
neural networks (RNNs) to predict tactics in the proving process.

Keywords: Connector · Verification · Coq

1 Introduction

Most modern software systems are distributed over large networks of compo-
nents. The coordination of interactions among these components should be
carefully dealt with to avoid safety problems. Coordination models introduce
a formalization of connectors that integrate a number of heterogeneous compo-
nents together and organize the mutual interactions among them. Reo [1,3], as
a coordination model, provides a powerful mechanism for the implementation of
such coordinating connectors. It is a channel-based coordination model where
complex connectors are constructed from channels via composition operators.

The reliability of component-based systems highly depends on the correctness
of connectors, which makes formal modeling and verification of connectors much
more significant. This report presents part of the work in my PhD focusing on
a modeling and verification framework for Reo and its two extensions based on
the interactive theorem prover Coq [7].

Firstly, we developed a modeling and verification framework in Coq for prim-
itive Reo, which is different from [11] in modeling method and expressive power.
When failing to prove the satisfiability of connector properties in Coq, we resort
to Z3 [5] to generate counterexamples automatically. Then we extended the mod-
eling framework to cover timed channels and timed connectors as those provided
in [2]. We also developed an approach based on RNNs for tactic prediction to
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 419–422, 2018.
https://doi.org/10.1007/978-3-030-02450-5_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_26&domain=pdf

420 X. Zhang

promote automated theorem proving, and proposed the concept timed data dis-
tribution streams (TDDS) to facilitate the representation of probabilistic behav-
ior of connectors in Coq. Based on this concept, we implemented the model of
probabilistic connectors and further demonstrated refinement and equivalence
checking between probabilistic connectors in Coq.

2 Related Work

The coordination model Reo has been widely studied in the last decade. A
comparison of various formal semantics for Reo can be found in [8].

An operational semantics for Reo using Constraint Automata (CA) was pro-
vided by Baier et al. [3] and different extensions of the CA model have been
investigated in the past years. Another approach is to take advantage of existing
verification tools by translating Reo to other formal models such as mCRL2 [10]
and UTP [13]. In recent years, the increasing growth in the complexity of coor-
dination connectors has made the verification of connector properties more chal-
lenging. All the automata-based or state-based modeling approaches are faced
with an inherent problem: state space explosion. But this is not a problem in our
framework. The formalization of Reo encoded in Coq can support specification
of infinite behavior co-inductively and the properties can be verified through
constructive proofs based on high-order logic.

Recently, machine learning has been applied to theorem proving. A compari-
son between the performance of a set of machine learning methods (e.g. support
vector machines (SVM), gaussian processes (GP), etc.) towards automation of
first-order logic proofs was provided in [4]. It has been demonstrated that deep
learning based guidance in the proof search of theorem provers can gain a better
performance in [12]. Kaliszyk et al. launched the first experiments with learning
proof dependencies and compared various machine learning methods on a dataset
from the CoRN repository [9]. Our work presented an approach of tactic-level
automation for Coq based on RNN, which can guide the selection of appropriate
tactics instead of manual intervention.

3 Modeling and Verification of Reo Connectors in Coq

The unified modeling and verification framework in Coq for Reo and its timed
and probabilistic extensions looks like this: Basic channels, i.e. the simplest con-
nectors, and the composition operators are specified as the basis of the mod-
eling architecture. Complex connectors can be further constructed by channels
and composition operators according to the topological structures. Connector
properties under analysis are specified as lemmas or theorems in Coq as the
verification goals. We then use different tactics and strategies provided in Coq
to construct the proofs of the goals. Once the proof is completed, we will obtain
a machine-checked proof for the properties.

The behaviors of Reo connectors (including the two extensions) are all char-
acterized by observations on their source nodes and sink nodes. But the observa-
tions are specified through different models in different extensions. For primitive

Modeling and Verification of Component Connectors 421

Reo and the timed extension of Reo, the observations are captured by the notion
of timed data streams. In the works of primitive Reo [15] and the timed extension
[6], a set of basic channels and timed channels are specified by means of logical
predicates which illustrate the relation between the timed data streams for input
and output, respectively. Three types of composition operators are modeled with
different methods according to their function. Some examples are provided to
demonstrate how to reason about connector properties especially time-related
ones and prove refinement/equivalence relations between connectors in Coq. The
main difficulty of modeling probabilistic Reo lies in the representation of prob-
ability in Coq. We proposed the concept of TDDS capturing the observations
of probability connectors to meet the challenge in [14]. A family of probabilis-
tic channels were specified based on the relation characterization by means of
TDDS. Compared with the formalization for non-probabilistic Reo connectors,
the probabilistic properties connected closely with the uncertainty in real life
coordination scenarios can be captured in this probabilistic extension and fur-
ther verified in Coq [16].

4 Counterexample Generation and Tactic Prediction

Verification in Coq is capable of proving the satisfaction of properties. However,
when failing to construct a proof for some property, Coq cannot automatically
provide a counterexample. In such cases, we resorted to Z3, an SMT solver,
to search for counterexamples automatically as a complement of property ver-
ification in Coq. Especially, we developed an algorithm for refinement relation
checking. Some experiments were conducted to evaluate the performance of the
approach for counterexample generation.

Property proving in Coq requires a lot of human interaction. We designed
a RNN-based network architecture for tactic prediction to promote automated
theorem proving in Coq. We performed experiments using two kinds of hidden
units in recurrent layers and defined an evaluation standard. The comparison
results between the two hidden units were collected and the network using LSTM
(Long Short Term Memory) units demonstrated a better performance.

5 Conclusion and Future Work

In this paper, we summarized the main results of our research on modeling and
verification of Reo and its two extensions in Coq, together with counterexample
generation in Z3 solver and tactic-level automation based on RNN. Up to now,
our research on this topic has led to three publications, one accepted paper and
two journal submissions under the second round review.

In the future, we plan to investigate more applications of Reo to real life
scenarios, such as blockchain, IoT, and deal with more properties users care
about in these applications. We also want to investigate the hybrid extension
of Reo which captures both discrete and continuous behavior of cyber-physical
systems as well.

422 X. Zhang

Acknowledgement. The work was partially supported by the National Natural Sci-
ence Foundation of China under grant no. 61772038, 61532019, 61202069 and 61272160.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. Comput. Sci. 14(3), 329–366 (2004)

2. Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and temporal logics for timed
component connectors. In: Cuellar, J.R., Liu, Z. (eds.) Proceedings of SEFM 2004,
pp. 198–207. IEEE Computer Society (2004)

3. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in
Reo by constraint automata. Sci. Comput. Program. 61, 75–113 (2006)

4. Bridge, J.P., Holden, S.B., Paulson, L.C.: Machine learning for first-order theorem
proving - learning to select a good heuristic. J. Autom. Reason. 53(2), 141–172
(2014)

5. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

6. Hong, W., Nawaz, M.S., Zhang, X., Li, Y., Sun, M.: Using Coq for formal modeling
and verification of timed connectors. In: Cerone, A., Roveri, M. (eds.) SEFM 2017.
LNCS, vol. 10729, pp. 558–573. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-74781-1 37

7. Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant a tutorial. Rap-
port Technique, vol. 178 (1997)

8. Jongmans, S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci.
Ann. Comput. Sci. 22(1), 201–251 (2012)

9. Kaliszyk, C., Mamane, L., Urban, J.: Machine learning of coq proof guidance: first
experiments. In: Proceedings of SCSS 2014. EPiC Series in Computing, vol. 30,
pp. 27–34. EasyChair (2014)

10. Kokash, N., Krause, C., de Vink, E.: Reo+mCRL2: a framework for model-checking
dataflow in service compositions. Form. Asp. Comput. 24, 187–216 (2012)

11. Li, Y., Sun, M.: Modeling and verification of component connectors in Coq. Sci.
Comput. Program. 113(3), 285–301 (2015)

12. Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
In: Proceedings of LPAR 2017. EPiC Series in Computing, vol. 46, pp. 85–105.
EasyChair (2017)

13. Sun, M., Arbab, F., Aichernig, B.K., Astefanoaei, L., de Boer, F.S., Rutten, J.:
Connectors as designs: modeling, refinement and test case generation. Sci. Comput.
Program. 77(7–8), 799–822 (2012)

14. Sun, M., Zhang, X.: A relational model for probabilistic connectors based on timed
data distribution streams. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018.
LNCS, vol. 11022, pp. 125–141. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00151-3 8

15. Zhang, X., Hong, W., Li, Y., Sun, M.: Reasoning about connectors in Coq. In:
Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 172–
190. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57666-4 11

16. Zhang, X., Sun, M.: Towards formal modeling and verification of probabilistic
connectors in Coq. In: Proceedings of SEKE 2018, pp. 385–390. KSI Research Inc.
and Knowledge Systems Institute Graduate School (2018)

https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-74781-1_37
https://doi.org/10.1007/978-3-319-74781-1_37
https://doi.org/10.1007/978-3-030-00151-3_8
https://doi.org/10.1007/978-3-030-00151-3_8
https://doi.org/10.1007/978-3-319-57666-4_11

Model Based Testing of Cyber-Physical
Systems

Teck Ping Khoo(B)

Singapore University of Technology and Design, Singapore, Singapore
teckping khoo@mymail.sutd.edu.sg

https://sutd.edu.sg/

Abstract. Testing, inspection, and certification (TIC) are essential
activities on consumer and industrial systems. The conformance to sys-
tem specifications and standards can then provide assurances on system
safety, security, reliability, and interoperability. TIC needs to evolve in
tandem with growing system size and complexity. Common modern sys-
tems such as autonomous vehicles and smart health-care systems take the
form of Cyber Physical Systems (CPSs). Model Based Testing (MBT)
is one promising approach to test CPSs. An MBT framework for test-
ing CPSs will be useful to systems testers and can raise the standard of
systems testing as a whole.

Keywords: Model Based Testing · Cyber-Physical Systems
Testing framework

1 Introduction

Testing is classically done manually - A system expert will determine the right
properties to be tested, derive the test cases, and carry out the tests. This well
accepted approach has served the industry well. For large systems, test cases can
be set up for automatic execution - this provides repeatability and productivity.

This classical approach breaks down as systems grow in scale and complexity.
A Cyber-Physical System (CPS) straddles both the physical and cyber space
and its output can become smarter with more inputs over time. To test CPSs,
the industry needs to evolve to automatically create test cases, and not just
automatically execute them. Model Based Testing (MBT) has been identified as
an ideal approach for such systems. The research goal is the development of a
testing framework for CPS based on MBT.

The rest of this paper is organized as follows. Section 2 provides the problem
statement and motivations of the research. Section 3 provides the current devel-
opment and related work. Section 4 provides the proposed solutions, approaches,
methodology and their significance. Section 5 provides some current results and
assessment. Section 6 provides directions for future work.

Supported by TÜV SÜD Asia Pacific Pte Ltd.

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 423–426, 2018.
https://doi.org/10.1007/978-3-030-02450-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_27&domain=pdf

424 T. P. Khoo

2 Problem Statement and Motivations

CPSs are systems which harness closed loop feedback from physical processes via
a communication network to computational resources running smart algorithms.
Such systems are integrated with the real environment, via digital control and
sensing. Examples of CPSs include autonomous vehicles, smart medical services,
smart manufacturing, and robotics systems. Conventional testing breaks down
for such systems. Software Based Testing and virtual testing approaches have
been proposed to test CPSs.

A good example of such an approach is MBT, which tests the system imple-
mentation against a model of the system specification. A system model serves as
input to MBT. This model abstracts the system input and defines the expected
output. A test case generator then uses the model to automatically create test
cases. Should the system requirement change (and this happens often in the
industry), the model can be readily updated and new test cases created.

MBT has not achieved widespread industry adoption despite its obvious value
to the testing process, as well as the availability of tools. This is due to the
challenging system modeling process. A clear and easy-to-use testing framework,
which defines clearly how systems should be modeled, can make MBT a viable
approach to testing CPSs for industry practitioners.

3 Current Development and Related Work

Related work exists which applies formal techniques to CPS. In [1], the authors
developed a methodology for formally verifying a CPS. Measurements were com-
pared against a formal description of required CPS behavior, in an attempt to
discover bugs. In [2], predictive maintenance of a railroad network was done
using voluminous sensor data. These sensors include temperature, strain, vision,
infrared, weight and impact. This was combined with failure information, ser-
vicing records and information about the types of trains using the network. In
[3], the authors used a multi-classifier machine learning approach for predic-
tive maintenance, and applied it to semiconductor manufacturing. The authors
opined that in predictive maintenance, maintenance is carried out using a gauge
of the health of machinery. These works either model the system manually and
then apply formal methods on the model, or build a model of the system using
sensor data and use the model for prediction. A testing framework based on
MBT can support the TIC activities for CPSs in these cases and is the goal of
this research.

4 Proposed Approach and Significance

Our approach has three main steps. Firstly, we determine the level of system
abstraction, which is essential for model building. The right level of abstraction
is derived based on the analysis objective with the help from domain experts
and the related standards. Secondly, once important features and variables are

Model Based Testing of Cyber-Physical Systems 425

Fig. 1. Part of the PDRTA. Each transition is labeled with the event name, a timing
guard, and the transition probability

identified in the first step, we develop data-driven approaches of obtaining values
of features and variables from the actual system, based on sensing techniques.
We remark that sensors provide only low-level system information (like instant
acceleration or air pressure). To derive high-level features and variables, often
domain expertise is required. Lastly, we validate the model so as to have certain
confidence that the model reflects the actual system.

5 Current Results and Assessment

Applying the above-mentioned approach, we were able to model a passenger lift
system in a commercial building. Sensors were installed in the lift to measure air
pressure and magnetic field. The lift motion and door states were derived from
these sensor readings using purpose-built inference algorithms. These data are
time-stamped and becomes system events. Therefore the system is abstracted to
just the lift motion and door activity. Model validation is conducted by checking
that the events collected as described co-relate to reality as far as possible. Video
of the door state was captured and compared to the event timings. Adjustments
to event timings were made for each of the four door states of “fully closed”,
“opening”, “fully opened” and “closing”.

The processed data was fed into the Real Time Identification from Positive
Samples (RTI+) algorithm [4]. The resulting model is a Probabilistic Deter-
ministic Real Time Automata (PDRTA). Figure 1 shows part of the PDRTA.
This PDRTA was subjected to model checking by the Process Analysis Toolkit
(PAT) [5]. The properties to be checked are determined by lift safety standards.
The model checking results fall within expectations, and variances were prop-
erly accounted for. We believe that our experience is useful for modeling other
systems and our approach is applicable across a variety of systems.

6 Future Work

The current case study on lift modeling is heavily focused on a very physical
CPS, as the lift’s controller, which is the cyber part of the system, cannot be

426 T. P. Khoo

accessed due to safety and legal liability issues. The next best arrangement is
to continue the research on a scaled-down test lift which faithfully reproduces
as many functionalities of a real lift as possible. This setup allows control of the
lift, and provides the possibility of emulating lift faults - something that cannot
be easily done on a real lift. Moreover, model validation is straightforward - by
comparing the lift’s control logic with the model built using sensor data.

To cover more on the cyber part of CPSs, a future case study can involve
a Smart Healthcare System. This is essentially an advanced web application
which supports safe healthcare delivery among distributed healthcare consumers,
providers and medical devices. In this case, manual modeling of the system using
accepted languages, such as UML, can be done. The completed model provides a
detailed specification of the system, from which test cases can be automatically
generated using commercially-available tools. System logs collected at various
parts of the system can be consolidated and used to model the system. These
models can then be compared to the manually-derived models for accuracy. Iter-
ation of this model, run and compare process will improve the testing framework
and may lead to unexpected research insights into MBT or CPSs.

Additionally, there is no need to mount sensors into this system to collect
data and convert them to system events - such a system should be able to create
and store system logs readily. This makes the model-building process easier and
less prone to errors. Finally, inputs to such a system can be more readily sent as
compared to a real lift. The ability to iterate through a variety of inputs should
make model validation more straightforward.

References

1. Woehrle, M., Lampka, K., Thiele, L.: Conformance testing for cyber-physical sys-
tems. ACM Trans. Embed. Comput. Syst. 11(4), 1–23 (2012). Article 84. https://
doi.org/10.1145/2362336.2362351

2. Li, H., et al.: Improving rail network velocity: a machine learning approach to pre-
dictive maintenance. Transp. Res. Part C: Emerg. Technol. 50(1), 1726 (2014).
https://doi.org/10.1145/1188913.1188915

3. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: Machine learning
for predictive maintenance: a multiple classifier approach. IEEE Trans. Ind. Inform.
11(3), 812–820 (2015)

4. Verwer, S.: Efficient identification of timed automata: theory and practice.
Ph.D. dissertation. TU Delft, Delft University of Technology, July 2010. https://
repository.tudelft.nl/islandora/object/uuid:61d9f199-7b01-45be.../download.
Accessed 14 May 2018

5. National University of Singapore. PAT: Process Analysis Toolkit (2014). http://pat.
comp.nus.edu.sg/. Accessed 17 May 2018

https://doi.org/10.1145/2362336.2362351
https://doi.org/10.1145/2362336.2362351
https://doi.org/10.1145/1188913.1188915
https://repository.tudelft.nl/islandora/object/uuid:61d9f199-7b01-45be.../download
https://repository.tudelft.nl/islandora/object/uuid:61d9f199-7b01-45be.../download
http://pat.comp.nus.edu.sg/
http://pat.comp.nus.edu.sg/

Service-Oriented Design and Verification
of Hybrid Control Systems

Timm Liebrenz(B)

Software and Embedded Systems Engineering, Technische Universität Berlin,
Berlin, Germany

timm.liebrenz@tu-berlin.de

1 Introduction

Hybrid control systems combine discrete and continuous behavior. They switch
between discrete control states and influence continuous values that evolve
according to differential equations. Such systems often contain multiple inter-
acting components that fulfill specific subtasks. To cope with the increasing
complexity of the resulting systems, they are increasingly designed with model-
driven development and tools like Matlab Simulink [1]. At the same time, appli-
cation of these systems in safety-critical areas, like in the automotive industry
or medical context, require high safety standards. Simulink is widely used in
the system design in these areas and allows the design and simulation of hybrid
systems. While simulation and testing can be used to validate the system for
selected inputs, formal verification can ensure the correct behavior for all possi-
ble inputs.

However, the means of Simulink to use and reuse verified components in the
design process is limited. While subsystems and blocks enable component-based
and structural modeling in Simulink, the variability that can be modeled is lim-
ited to parameters and choosing simple functionality (e.g., whether an arithmetic
block performs addition or subtraction). Furthermore, Simulink only provides
limited means to verify properties for hybrid control systems. The semantics of
Simulink is only informally defined, and most existing formal verification tech-
niques are limited to a discrete subset. Additionally, most existing approaches
for the formal verification of Simulink suffer from scalability issues.

In this thesis, we propose a formally well-founded, service-oriented design and
verification approach for Simulink. Our approach enables flexible and reusable
modeling, and compositional formal verification of hybrid control systems.

2 Related Work

Approaches that model variability in Simulink introduce elements that capture
the differences between variants of the model. These differences can be captured
by different representations, e.g. variability operators [2] or deltas [3]. However,
these approaches are limited by the provided operators and they provide no
means to describe how the changes influence the interface behavior.
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 427–431, 2018.
https://doi.org/10.1007/978-3-030-02450-5_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_28&domain=pdf

428 T. Liebrenz

Model

System
Verification

Customizable
Services

Simulink Differential
Dynamic Logic

System
Requirements

Formal
Service

Representation

Contracts for
Compositional

Verification

Automated
Transformation

Fig. 1. Service oriented modeling and verification

The semantics of Simulink is only informally defined and this impedes the
verification. Some approaches provide a formal foundation for Simulink [4], but
do not provide a verification of transformed systems. Other approaches that aim
for the verification of Simulink models also transform the model into a formal
representation. A limitation is that they only consider a subset of blocks that can
be transformed. In most approaches [5–7], only a discrete subset is considered.
An extension by continuous blocks is not easily possible. Other approaches [8,9]
support hybrid behavior, but only for a very special class of hybrid systems.

There also exists a few approaches that use the concept of contracts in the
context of Simulink to describe the interface behavior of blocks or components.
The authors of [10] present a type contract system for Simulink, which is appli-
cable to hybrid systems. However, they only provide checks for the signal types
for block outputs and inputs, and no further verification of other properties is
possible. In [11], a more general approach for contracts for Simulink is presented.
However, this approach only considers time-discrete components.

3 Proposed Solution

In this thesis, we propose a formally founded approach for service-orientation in
Simulink to cope with the previously stated problems. The general approach is
depicted in Fig. 1. We have introduced a concept of services for Simulink in [12],
which extends components by structural variability, abstract functionality, and
an abstract behavioral interface. Services can be customized with means of fea-
ture modeling, by adding, removing, and changing functionality, and applying
structural changes. To provide a formal foundation for the verification of services
and general Simulink models, we provide an automatic transformation into dif-
ferential dynamic logic dL [13]. Our transformation, which is presented in [14],
enables us to transform Simulink models that have hybrid behavior into a dL rep-
resentation and allows us to use the interactive theorem prover KeYmaera X [15]
for semi-automated formal verification. In [12], we have sketched a preliminary
idea for hybrid contracts, which provide a formal foundation for the descrip-
tion of the interface behavior of services. They capture both the discrete and

Service-Oriented Design and Verification of Hybrid Control Systems 429

the continuous dynamic behavior of services. A contract provides guarantees for
the behavior of outgoing signals if assumptions for incoming signals hold. The
major advantage of contracts is that we can use them for compositional verifi-
cation. The idea is that we replace subsystems (i.e. services) in a given complex
Simulink model by their contracts and thus reduce the complexity of the model
and the verification effort. To achieve this, we plan to extend our transforma-
tion from Simulink to dL [14] to use hybrid contracts instead of the inner block
structure for services. There are some challenges in the introduction of contracts
into the transformation. First, the contract behavior needs to be integrated into
the data-flow oriented behavior of Simulink. Second, the parallel execution of
different services in the contract composition must be considered, since hybrid
programs in dL are combined with a sequential operator. Third, it is necessary
to capture different behavior in the assumptions and guarantees of a contract,
e.g., value bounds, discrete values, or continuous behavior.

Overall, we propose a service-oriented design and verification methodology
for Simulink and a framework for efficient design and formal analysis of Simulink
services. This enables compositional verification of hybrid systems that are con-
structed from various services. To demonstrate the applicability of our approach,
we aim to apply the compositional verification approach to larger case studies
with interacting components. So far, we applied our transformation to a compo-
nent of a distance warner system, which was provided by an industrial partner,
and were able to prove crucial properties. Previously, properties could only be
verified for an adapted discrete version of this model [6]. In 21 min with inter-
active verification, we could show that no overflows occur in the hybrid version
of the system and in 7 h we could show that according to the continuous input
signal a correct time-discrete value for the distance difference is calculated. We
aim to reuse these verification results in our next steps for the compositional
verification of the whole distance warner system. This means that the verifica-
tion of components is only done once and verification results can be reused in a
compositional verification of systems that contain the respective component.

4 Conclusion and Future Work

With this thesis, we aim at providing a formally well-founded, service-oriented
design and verification approach for Simulink. The key ideas of our approach
are threefold: First, we have presented a service-oriented design approach for
Simulink in [12], where we introduce services for Simulink, hybrid contracts
to cleanly define these services, and feature models to model their variability.
Second, to enable formal verification, we have presented a transformation of
Simulink models in dL and means to verify properties for simple models in [14].
Third, to overcome scalability issues, we intend to enable compositional verifi-
cation, in which the block structure of services is abstracted by their contracts.
We have demonstrated the applicability of our service-oriented design approach
and of our transformation from Simulink to dL with small and industrial case
studies. In future work, we plan to integrate our service-oriented approach with

430 T. Liebrenz

our transformation into dL to enable compositional verification. Therefore, we
intend to develop a formal representation of hybrid contracts and plan to inte-
grate them into our transformation from Simulink to dL. Furthermore, we aim to
extend our contracts to consider the different variabilities provided by the feature
models of services. We intend to investigate combined Simulink and Stateflow
models to extend the set of supported systems.

References

1. MathWorks: MATLAB Simulink. www.mathworks.com/products/simulink.html
2. Alalfi, M.H., Rapos, E.J., Stevenson, A., Stephan, M., Dean, T.R., Cordy,

J.R.: Semi-automatic identification and representation of subsystem variability in
simulink models. In: 2014 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 486–490. IEEE (2014)

3. Haber, A., Kolassa, C., Manhart, P., Nazari, P.M.S., Rumpe, B., Schaefer, I.:
First-class variability modeling in Matlab/Simulink. In: Proceedings of the Seventh
International Workshop on Variability Modelling of Software-intensive Systems, p.
4. ACM (2013)

4. Bourke, T., Carcenac, F., Colaço, J.L., Pagano, B., Pasteur, C., Pouzet, M.: A
synchronous look at the simulink standard library. ACM Trans. Embed. Comput.
Syst. (TECS) 16, 176 (2017)

5. Araiza-Illan, D., Eder, K., Richards, A.: Verification of control systems imple-
mented in simulink with assertion checks and theorem proving: a case study. In:
2015 European Control Conference (ECC), pp. 2670–2675. IEEE (2015)

6. Herber, P., Reicherdt, R., Bittner, P.: Bit-precise formal verification of discrete-
time MATLAB/Simulink models using SMT solving. In: 2013 Proceedings of the
International Conference on Embedded Software (EMSOFT), pp. 1–10. IEEE
(2013)

7. Reicherdt, R., Glesner, S.: Formal verification of discrete-time MATLAB/Simulink
models using boogie. In: Giannakopoulou, D., Salaün, G. (eds.) SEFM 2014. LNCS,
vol. 8702, pp. 190–204. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10431-7 14

8. Sanfelice, R., Copp, D., Nanez, P.: A toolbox for simulation of hybrid systems in
Matlab/Simulink: hybrid equations (HyEQ) toolbox. In: Proceedings of the 16th
International Conference on Hybrid Systems: Computation and Control, pp. 101–
106. ACM (2013)

9. Chutinan, A., Krogh, B.H.: Computational techniques for hybrid system verifica-
tion. IEEE Trans. Autom. Control. 48, 64–75 (2003)

10. Roy, P., Shankar, N.: SimCheck: a contract type system for Simulink. Innov. Syst.
Softw. Eng. 7, 73–83 (2011)

11. Boström, P., Wiik, J.: Contract-based verification of discrete-time multi-rate
Simulink models. Softw. Syst. Model. 15, 1141–1161 (2016)

12. Liebrenz, T., Herber, P., Göthel, T., Glesner, S.: Towards service-oriented design
of hybrid systems modeled in simulink. In: 2017 IEEE 41st Annual Computer
Software and Applications Conference (COMPSAC), vol. 2, pp. 469–474. IEEE
(2017)

13. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41,
143–189 (2008)

https://www.mathworks.com/products/simulink.html
https://doi.org/10.1007/978-3-319-10431-7_14
https://doi.org/10.1007/978-3-319-10431-7_14

Service-Oriented Design and Verification of Hybrid Control Systems 431

14. Liebrenz, T., Herber, P., Glesner, S.: Deductive verification of hybrid control sys-
tems modeled in simulink with KeYmaera X. In: 20th International Conference on
Formal Engineering Methods (ICFEM) (to appear)

15. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

https://doi.org/10.1007/978-3-319-21401-6_36

Developing Reliable Component-Based
Software in Mediator

Yi Li(B)

LMAM and Department of Informatics, School of Mathematical Sciences,
Peking University, Beijing, China

liyi math@pku.edu.cn

Abstract. Component-based development is widely used to reduce the
development cost of complex systems. In this pattern, software features
are organized, encapsulated and reused as components. In this report, we
present a component-based modeling framework based on the modeling
language Mediator that aims to build formally verified software, both on
model-level and code-level. This work is the core part of a Ph.D. thesis.

Keywords: Component-based · Modeling language · Mediator

1 Introduction

Modern software systems are becoming more and more complex. To simplify
the development phase, software developers encapsulate the features in smaller
components that are easier to be developed and tested. The correctness of com-
ponents are important since they are often reused by other software, hence any
small vulnerabilities may lead to dozens of potential bugs. In this report, we
present a formal modeling and code-generation framework based on Mediator
where Mediator is a new modeling language proposed in [12]. With this frame-
work, we can easily design high-level models and specify their properties, auto-
matically generate runnable codes and verify both of them.

Part of this work has been published, including the modeling language Medi-
ator and its formal semantics [12], and a code generator to C language [13].
We have also built a model checking integration with help of NuSMV [5] and
another code generator to System C. These two works have been developed but
still unpublished.

2 Related Work

Component-based software engineering has been prospering for decades.
Currently, there are various tools, both formal and informal, that sup-
ports component-based modeling. For example, NI LabVIEW [16], MATLAB
Simulink [7] and Ptolemy [9] provide powerful modeling platforms and a large
number of built-in component libraries to support commonly-used platforms.
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 432–435, 2018.
https://doi.org/10.1007/978-3-030-02450-5_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_29&domain=pdf

Developing Reliable Component-Based Software in Mediator 433

Fig. 1. The reliable development framework based on Mediator

However, due to the complexity of models, such tools mainly focus on synthesis
and simulation, instead of formal verification. There is also a set of formal tools
that prefer simple but verifiable model, e.g. Esterel SCADE [1] and rCOS [14]
(Fig. 1).

In the recent years, formal method has shown its power in industrial
use [8,10,15]. These works proved that formal verification techniques are capa-
ble of handling large-scale component-based embedded systems. However, the
unfamiliarity of formal specifications is still one of the main obstacles hamper-
ing programmers from using formal tools. For example, even in the most famous
formal modeling tools with perfect graphical user interfaces (like UPPAAL [2]
and PRISM [11]), sufficient knowledge about automata theory is necessary to
properly encode the models.

Importance of code generation has also been uncovered for a long time. A
large number of formal and industrial code generation tools have been built for
different target platforms. For example, Rodin for Event-B [4] and SCADE [3]
are very popular formal tools that can generate executable codes from abstract
models.

3 Mediator

Mediator is a component-based modeling language [12], which provides proper
formalism for both high-level system layouts and low-level automata-based
behavior units. Both automata and systems are encapsulated with a set of input
or output ports (which we call an interface) and a set of template parameters so
that they can be easily reused in multiple applications.

Mediator is designed to serve both software engineers and formal researchers.
On the one hand, the behavior of automata is captured by guarded transitions,
whose semantics is clear and self-contained. On the other hand, interfaces of
automata and systems are precisely defined by ports and their types, where

434 Y. Li

engineers can easily design reliable software systems through reusing. For exam-
ple, a widely-used data structure queue, a popular leader election algorithm in
distributed computing and a controller for Arduino-based wheeled vehicles are
encoded as Mediator models in [12] and [13].

4 Design of the Framework

4.1 Automatic Code Generation

Manual encoding is exceedingly time consuming and error prone, and has become
a huge obstacle between reliable software models and trustworthy computer pro-
grams. To deal with this problem, we present a code generation framework for
Mediator .

The first code generator in this framework aims to generate Arduino C pro-
grams that can be directly downloaded to the hardware without any manual
adaption [13]. As an open-sourced embedded hardware platform, various Arduino
motherboards are applied in different domains, robots and quad-copters, for
example. Another code generator for System C is already developed by not pub-
lished yet. The framework is designed to be extensible so that users can easily
develop code generators themselves.

4.2 Verification

The presented framework plans to support multi-level verification on both high-
level models and low-level codes. For high-level models, we can specify properties
as CTL* formulae to both automata and systems. Mediator models and these
properties are exported into NuSMV and checked. For low-level source codes, we
plan to transform the property formulae to code notations that are supported
by many code-level verifiers, such as Frama-C [6], etc.

5 Conclusion and Future Work

In this report, we summarize the current status of our research on Mediator
and its corresponding component-based modeling and verification framework
which forms the core part of the presented Ph.D. thesis. Driven by this topic, we
have two publications [12,13] and another two submitted. At least three more
publications on this topic are planned.

In the remaining years, we will complete this framework, mainly the code-
level verification part and work on more practical case studies. We are investigat-
ing the notation language of Frama-C [6], and plan to generate these notations
directly from our models and CTL* properties.

Acknowledgements. The work is supervised by Prof. Meng Sun, and partially sup-
ported by the National Natural Science Foundation of China under grant no. 61532019,
61202069, 61272160 and 61772038.

Developing Reliable Component-Based Software in Mediator 435

References

1. Abdulla, P.A., Deneux, J., St̊almarck, G., Ågren, H., Åkerlund, O.: Designing
safe, reliable systems using scade. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004.
LNCS, vol. 4313, pp. 115–129. Springer, Heidelberg (2006). https://doi.org/10.
1007/11925040 8

2. Amnell, T., et al.: UPPAAL - now, next, and future. In: Cassez, F., Jard, C.,
Rozoy, B., Ryan, M.D. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 99–124. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45510-8 4

3. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992)

4. Cataño, N., Rivera, V.: EventB2Java: a code generator for Event-B. In:
Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 166–171.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40648-0 13

5. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

6. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012.
LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33826-7 16

7. Hahn, B., Valentine, D.T.: SIMULINK toolbox. In: Essential MATLAB for Engi-
neers and Scientists, pp. 341–356. Academic Press (2016)

8. Jeannin, J., et al.: Formal verification of ACAS X, an industrial airborne collision
avoidance system. In: Proceedings of EMSOFT 2015, pp. 127–136. IEEE (2015)

9. Kim, H., Lee, E.A., Broman, D.: A toolkit for construction of authorization service
infrastructure for the internet of things. In: Proceedings of IoTDI 2017, pp. 147–
158. ACM (2017)

10. Klein, G., et al.: seL4: formal verification of an OS kernel. In: Proceedings of SOSP
2009, pp. 207–220. ACM (2009)

11. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

12. Li, Y., Sun, M.: Component-based modeling in mediator. In: Proença, J., Lumpe,
M. (eds.) FACS 2017. LNCS, vol. 10487, pp. 1–19. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-68034-7 1

13. Li, Y., Sun, M.: Generating arduino C codes from mediator. In: de Boer, F., Bon-
sangue, M., Rutten, J. (eds.) It’s All About Coordination. LNCS, vol. 10865, pp.
174–188. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90089-6 12

14. Liu, Z., Morisset, C., Stolz, V.: rCOS: theory and tool for component-based model
driven development. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961,
pp. 62–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11623-
0 3

15. Miller, S.P., Whalen, M.W., Cofer, D.D.: Software model checking takes off. Com-
mun. ACM 53(2), 58–64 (2010)

16. National Instruments: Labview. http://www.ni.com/zh-cn/shop/labview.html

https://doi.org/10.1007/11925040_8
https://doi.org/10.1007/11925040_8
https://doi.org/10.1007/3-540-45510-8_4
https://doi.org/10.1007/978-3-319-40648-0_13
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-33826-7_16
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-68034-7_1
https://doi.org/10.1007/978-3-319-68034-7_1
https://doi.org/10.1007/978-3-319-90089-6_12
https://doi.org/10.1007/978-3-642-11623-0_3
https://doi.org/10.1007/978-3-642-11623-0_3
http://www.ni.com/zh-cn/shop/labview.html

Model Checking Nash-Equilibrium -
Automatic Verification of Robustness

in Distributed Systems

Dileepa Fernando(B)

National University of Singapore, Computing 1, 13 Computing Drive,
Singapore 117417, Singapore
fdileepa@comp.nus.edu.sg

Abstract. Verifying whether rational participants in a BAR system (a
distributed system including Byzantine, Altruistic and Rational partici-
pants) would deviate from the specified behaviour is important but chal-
lenging. Existing works consider this as Nash-equilibrium verification
in a multi-player game. There is no automatic verification algorithm to
address it in probabilistic settings. In this work, we introduce PBAR sys-
tem and propose model checking algorithms to verify Nash-equilibrium.
We perform case studies to validate the algorithms.

1 Introduction

In general, most real-world systems involve collaboration of many distributed
parties, e.g., Internet routing [15], peer-to-peer file sharing [4], cooperative
backup [12], etc. In these distributed systems, agents are assumed to follow the
rules or specifications in the system designs to achieve system correctness. How-
ever, even if distributed systems are designed correctly, errors can be introduced
in implementation and real operation. Hence, a system is not only expected to be
correct but also to be robust in the sense that system should be able to withstand
and recover the implementation and operation errors. Verification of robustness
has become necessary but challenging with the increasing complexity of systems
and the uncertainty of the errors e.g. Incompatibility with new systems.

Verification of robustness has been explored in physical systems and soft-
ware systems. Simulation and software testing are conventional methods used
to verify robustness in both physical and software systems respectively. With
the increasing criticality, researchers are interested on more rigorous verification
methodologies. As a result, model checking based verification algorithms have
been developed [1].

Currently, profit motivated design has been popular in distributed systems,
which reward agents based on their contribution towards system goals (i.e. block
chain [8]). In this setting, rational agents may deviate from the system rules to
improve their profit. Hence, a new source of error is added to a system which
is named as rational fault. Another source of error is the adversarial agents

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 436–440, 2018.
https://doi.org/10.1007/978-3-030-02450-5_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_30&domain=pdf

Model Checking Nash-Equilibrium 437

aiming more at the failures of other agents than the maximisation of their own
profits which is named as Byzantine fault. This fault can also be introduced from
misconfigured agents. Agents who follow the system rules are called ‘Altruistic’.
This model was introduced in [3] and called BAR system. In a BAR system, it is
important that system goals are achieved irrespective of the existence of rational
and Byzantine agents. The above property is named as BAR-tolerance and it is
an important sub area of ensuring system robustness.

Rigorous verification of BAR-tolerance is studied in [2,5,11] where game the-
oretic property Nash-equilibrium is used to formalise BAR-tolerance property
in most approaches. However, all of the above work used manual proof for prop-
erty verification which is infeasible in complex BAR system analysis. Mari et.
al. proposes automatic verification algorithms for BAR-tolerance in [13]. These
automatic BAR-tolerance verification algorithms are limited to non probabilis-
tic BAR systems. We observe that automatic verification of probabilistic BAR
(PBAR) tolerance has not yet been studied and is of high importance.

Problem Statement. Therefore, we aim to develop a framework to automatically
verify PBAR-tolerance.

The above aim can be achieved by the following objectives.

1. Formalize PBAR system.
2. Formalize PBAR-tolerance property as Nash-equilibrium.
3. Develop verification algorithm to automatically verify Nash-equilibrium of

PBAR system.
4. Validate the algorithm using case studies.

2 Nash Equilibrium Verification of PBAR [6]

In order to meet our objectives we first formalize the PBAR system as a prob-
abilistic finite state machine where operations are defined as probabilistic state
transitions. We assume a set of agents with Byzantine faults named as the set of
Byzantine agents Z. For each non-Byzantine agent, we analyse whether the agent
would deviate from the specification. That is, given a non-Byzantine agent i, we
consider i as rational, having the choice of following or deviating from the spec-
ification, while considering other non-Byzantine agents as altruistic-following
specification. We consider the important class of PBAR systems in which the
protocol termination with probability 1 is necessary (e.g.: Randomized secret
sharing [2]). To verify the PBAR-tolerance property we calculate non Byzantine
agent i’s maximum rational reward from initial state in k-steps V k

i (init) and his
altruistic reward from initial state in k-steps Uk

i (init). If Uk
i (init) ≥ V k

i (init)
remains true after k ≥ m for some m ≥ 0 then we say that the protocol is PBAR-
tolerant. This exactly captures Nash-equilibrium in game-theory that given a
Byzantine set, a rational and remaining set of altruistic agents there is no better
choice for the rational agent. i.e. following the specification is Nash-equilibrium
strategy.

438 D. Fernando

We propose an efficient verification algorithm to verify Nash-equilibrium of
the PBAR system. Finally, we apply the algorithm in two case studies, Rock-
paper-scissors and Shamir’s secret sharing. For the best of our knowledge, this
is the first attempt of verifying Nash-equilibrium of PBAR systems.

In this work we only consider games terminating with probability 1. However,
there is a class of PBAR systems in which the protocols never end (i.e.blockchain
[8]). In addition, we verify PBAR tolerance by considering individual deviations.
This is not sufficient for PBAR systems as agents may not be profitable by
individual deviation but may be profitable by forming a group. We introduce in
our second work, an extended PBAR model and a new formalization of PBAR-
tolerance which addresses the coalition of rational agents in non-terminating
game.

3 ε-Strong Nash Equilibrium Verification of PBAR [7]

The extended PBAR system in this work represents non-terminating protocol
and its reward is discounted with discount factor β for convergence in long-run.
In the extended PBAR system, the non-termination is addressed by discounting
the reward with factor β for convergence in the long-run.

Since we consider group deviations, the rational strategy is defined for infinite
length for a group of agents (Σ∞

C). We also define regret value (ε) to specify the
minimum significant reward gain of rational reward over altruistic reward. For
any non Byzantine group C, If agents in C has no strategy Σ∞

C from initial
state s which gives rational reward (vi′,Z(s,Σ∞

C)) that is significantly (ε) larger
than altruistic reward (U∞

i′,Z(s)), we say that the protocol is PBAR-tolerant
with ε. The above PBAR-tolerance property follows the concept of strong Nash-
equilibrium [14].

We propose an approximate verification algorithm by allowing a precision
value δ (to approximate the reward value for infinite steps) verify strong Nash-
equilibrium of the extended PBAR system. We also performed three case studies
job scheduling [13], apple picking game [10] and secret sharing [2] to validate the
algorithm. Our algorithm worked more efficiently compared to the state-of-art
optimal strategy computing tools [9]. The apple picking game case study revealed
that there is need for improving the scalability of the algorithm.

Currently developed automatic PBAR-tolerance verification algorithms can
be efficiently applied to real systems such as shamir’s secret sharing. However,
when finer details are considered, system can be complex (e.g. blockchain [8]).
In this scenario current verification algorithm is not scalable. In the next work,
we consider improving the scalability of algorithms.

4 Nash Equilibrium Verification for Large PBAR
Systems

As highlighted in the previous section, we propose methods to improve scalability
of the verification algorithms in this work. Since the algorithms perform a state

Model Checking Nash-Equilibrium 439

space exploration in the finite state machine, the efficiency is highly dependant
on the size of state space. We plan to apply statistical model checking to neglect
the states which provide minor rewards. In order to choose such states we plan
to introduce heuristic functions that can provide estimations of long-run rewards
in short steps.

5 Future Directions

As future work, we plan to aggregate all our algorithms in a tool and integrate
to Process Analysis Toolkit (PAT) model checker [16]. We will also design a
specification language for more intuitive specification of PBAR systems. In addi-
tion, we only considered PBAR-tolerance aspect which is a sub area of ensuring
system robustness as mentioned in Sect. 1. In order to ensure the robustness,
error recoverability should also be considered. Formalizing PBAR-recoverability
as Nash-equilibrium stability (i.e. ensuring that small deviation of one rational
agent is not profitable and do not encourage another rational agent to deviate),
opens an interesting research direction.

References

1. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
35–48. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 3

2. Abraham, I., Alvisi, L., Halpern, J.Y.: Distributed computing meets game theory:
combining insights from two fields. SIGACT News 42(2), 69–76 (2011)

3. Aiyer, A., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: BAR fault
tolerance for cooperative services. In: Proceedings of 20th ACM Symposium on
Operating Systems Principles 2005, pp. 45–58 (2005)

4. Backes, M., Ciobotaru, O., Krohmer, A.: RatFish: a file sharing protocol prov-
ably secure against rational users. In: Gritzalis, D., Preneel, B., Theoharidou, M.
(eds.) ESORICS 2010. LNCS, vol. 6345, pp. 607–625. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-15497-3 37

5. Clement, A., Li, H.C., Napper, J., Martin, J.P., Alvisi, L., Dahlin, M.: Bar primer.
In: International Conference on Dependable Systems and Networks, vol. 8, pp.
287–296. Citeseer (2008)

6. Fernando, D., Dong, N., Jegourel, C., Dong, J.: Verification of Nash-equilibrium for
probabilistic bar systems. In: International Conference on Engineering of Complex
Computer Systems, pp. 53–62. IEEE (2016)

7. Fernando, D., Dong, N., Jegourel, C., Dong, J.: Verification of strong Nash-
equilibrium for probabilistic bar systems. In: International Conference on Formal
Engineering Methods (2018, to appear)

8. Kiayias, A., Koutsoupias, E., Kyropoulou, M., Tselekounis, Y.: Blockchain mining
games. In: Proceedings of 2016 ACM Conference on Economics and Computation,
pp. 365–382. ACM (2016)

9. Kwiatkowska, M., Parker, D., Wiltsche, C.: PRISM-games 2.0: a tool for multi-
objective strategy synthesis for stochastic games. In: Chechik, M., Raskin, J.-F.
(eds.) TACAS 2016. LNCS, vol. 9636, pp. 560–566. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49674-9 35

https://doi.org/10.1007/978-3-540-28644-8_3
https://doi.org/10.1007/978-3-642-15497-3_37
https://doi.org/10.1007/978-3-662-49674-9_35

440 D. Fernando

10. Leibo, J., Zambaldi, V., Lanctot, M., Marecki, J., Graepel, T.: Multi-agent rein-
forcement learning in sequential social dilemmas. In: Proceedings of 16th Confer-
ence on Autonomous Agents and MultiAgent Systems, pp. 464–473. ACM (2017)

11. Li, H., et al.: BAR gossip. In: 7th Symposium on Operating Systems Design and
Implementation, pp. 191–204 (2006)

12. Lillibridge, M., Elnikety, S., Birrell, A., Burrows, M., Isard, M.: A cooperative inter-
net backup scheme. In: Proceedings of the General Track: 2003 USENIX Annual
Technical Conference, pp. 29–41. USENIX (2003)

13. Mari, F.: Verification and synthesis for discrete time linear hybrid systems. Ph.D.
thesis, Universita di Roma (2009)

14. Shinohara, R.: Coalition-proof equilibria in a voluntary participation game. Int. J.
Game Theory 39(4), 603–615 (2010)

15. Shneidman, J., Parkes, D.C.: Specification faithfulness in networks with rational
nodes. In: Proceedings of 23rd Annual ACM Symposium on Principles of Dis-
tributed Computing, pp. 88–97. ACM (2004)

16. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 59

https://doi.org/10.1007/978-3-642-02658-4_59

Analyzing Security and Privacy in Design
and Implementation of Web
Authentication Protocols

Kailong Wang(B)

National University of Singapore, Singapore, Singapore
dcswaka@nus.edu.sg

Abstract. Web authentication protocols have become the basis in safe-
guarding the users’ sensitive data managed by the web services. Provided
the critical role of web authentication protocols, their security and pri-
vacy properties deserve rigorous analysis. In this work, the target is to
formally analyze both security and privacy properties of web authenti-
cation protocol designs and implementations.

1 Introduction

Web authentication protocols (e.g. Single Sign-on protocol) serve as a crucial
safe-guard of the sensitive data (such as private communication contents, photos,
browsing history, banking information, etc.) from millions of individuals and
organizations against the malicious activities (such as data modification, identity
spoofing) over the Internet.

However, previous research has continually revealed that the web authenti-
cation is vulnerable and prone to security attacks [1,5,15]. The commonly used
informal techniques such as program analysis is efficient to identify security flaws
in the web authentication protocols yet impossible to prove the correctness of
the security property. Moreover, privacy has become a critical concern for the
web users who are easily exposed to the malicious activities over the Internet.
The recent notorious privacy leakage from Facebook has affected as many as 87
million people [9]. Nonetheless, few of the prior work has focused on the pri-
vacy property of web authentication protocols. Given the important role of the
web authentication protocols, it is imperative to rigorously analyze and formally
verify the security and privacy properties before they are practically deployed.

The challenge for rigorously assessing and formally verifying web authenti-
cation protocols is at least three fold. First, an accurate formal model of the
complex web infrastructure utilized by web authentication protocols is required.
The web infrastructure includes at least web servers, web browsers and vari-
ous communication channels. Second, web authentication protocols are exposed
to a large attack surface (i.e. attacks from malicious communicating entities,
network, etc.), therefore, a comprehensive set of security and privacy attacker
behaviors should be formalized. Third, abstraction or reduction techniques need

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 441–445, 2018.
https://doi.org/10.1007/978-3-030-02450-5_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_31&domain=pdf

442 K. Wang

to be applied to the complex designs and implementations of web authentication
protocols, before the state-of-the-art formal analysis tools can be used.

In order to address the challenges, this work consists of three following
steps. First, at the protocol design level, cryptographic protocol design is noto-
riously known as error prone. Additionally, some web authentication protocols
are designed without privacy in mind. Therefore, it is desirable to develop a
framework to facilitate the formal analysis of the security and privacy proper-
ties of the web authentication protocol design. Second, at the implementation
level, security and privacy vulnerabilities can still be introduced even with a
correct protocol design. Therefore, it is desirable to propose a framework to
formally analyze the security and privacy properties of the web authentication
protocol implementation. Last, I aim to propose and implement a more pow-
erful web authentication protocol (e.g. a new single sign-on protocol) that is
both security- and privacy-preserving. At the same time, the proposed protocol
design and implementation should be verified utilizing the previously proposed
two frameworks.

2 Related Work

Security Property Analysis. Many prior work facilitates the security anal-
ysis of web authentication protocols using program analysis (including static
program analysis and dynamic program analysis such as whitebox and blackbox
testing) directly on the web authentication protocol implementations [10,13]. In
addition to program analysis presented earlier, some formal analysis approaches
have been applied on the analysis of security properties of web authentication
protocol designs [1,14]. Bansal et al. [4] analyzed the OAuth2.0 protocol using
the applied pi-calculus and the WebSpi library which facilitates the modeling of
web applications and web-based attackers.

Privacy Property Analysis. Few work has focused on the privacy of web
authentication protocols. Fett et al. [5,6] manually analyzed the privacy property
of BrowserID using trace indistinguishability. They construct a comprehensive
BrowserID protocol model and the web infrastructure model but they are too
complex to be analyzed using the state-of-the-art formal verification tools.

Web Infrastructure Modeling. Prior work [11] considers a very limited web
model. TrustFound [2,8] has included a model for network attacker. Bansal et
al. [3,4] have proposed a more comprehensive web infrastructure model in the
applied pi calculus named WebSpi. Fett et al. [5–7] have constructed a complete
web infrastructure model following the published standards and specifications
for the web.

3 Preliminary Work

The following work I have completed [12] is to formally analyze the security
and privacy properties on the design level of single sign-on (SSO) protocols

Analyzing Security and Privacy of Web Authentication Protocols 443

which are the well-known and widely-deployed web authentication protocols.
We have proposed a framework facilitating formal modeling of SSO protocols
and analysis of their security and privacy properties. Our framework incorpo-
rates a formal model of the web infrastructure that is relevant to SSO protocols
(network channels including HTTP and HTTPS channels, client browser and
web servers), a set of attacker models (three types of malicious IDPs (identity
providers): honest-but-curious IDP which can sniff traffic and infer user activity
information, malicious IDP server which can send fake responses and malicious
IDP client which resides in the client’s browser and is able to invoke browser
APIs) and formalizations of the security and privacy properties with respect to
SSO protocols. The modeling language used in this work is the applied pi calcu-
lus which can be automatically verified by the tool ProVerif. The authentication
(the security property considered in this work) of SSO protocol is formalized as
correspondence and privacy property is formalized as observational equivalence.

I formally analyzed four well-known SSO protocols: SPRESSO, BrowserID,
OAuth1.0a and OAuth2.0. Each of the analysis requires an SSO model consist-
ing of sub models of the IDP, the RPs (relying parties which are the third party
websites the user logs in to), the web browser, the web infrastructure and the
attackers. I first manually modeled the RPs, IDPs and web browser as paralleled
processes according to the SSO protocol specifications. The web infrastructure is
provided by the framework. Then, I transformed the honest IDP into the mali-
cious IDP according to the attacker model in the framework. Last, the security
and privacy properties were queried against the SSO model in ProVerif. A new
type of privacy attack has been identified that allows malicious participants to
learn which websites the victim users have logged in to. This type of attacks
occur even for the declared privacy-respecting SSO protocols such as SPRESSO
and BrowserID.

4 Future Work

Analyzing Security and Privacy Properties on Web Authentication
Protocol Implementations. For the next step, I target at the formal analysis
of the web authentication protocol implementations on the source code which is
assumed to be available to the web service providers. Software model checking
can be used to directly check the security and privacy properties against certain
attack models on the protocol implementation. Similar to the traditional model
checking, software model checking performs exhaustive search on the protocol
implementation state space for the property violations. One prominent chal-
lenge is the state-explosion problem in software model checking especially when
analyzing large-scale and complicated programs. This can possibly be mitigated
using reduction and program abstraction techniques.

Design and Implementation of a Secure and Privacy-Respecting Web
Authentication Protocol. The aim is to provide a solution towards a secure
and privacy-respecting web authentication protocol. A possible solution is to

444 K. Wang

introduce a proxy server in the original three-participant architecture. The proxy
server is acting as the “sorting and delivery center” that accepts the user login
requests and delivers the requests to the corresponding relying parties or the
identity providers, and vice versa. Further, the traffic through the proxy adds a
randomized but acceptable delay to eliminate the corresponding timestamps of
the incoming and outgoing network packets to form anonymous communication. I
plan to design the protocol following this idea and then implement the protocol.
I will apply the formal analysis on the security and privacy properties of the
proposed protocol at both design level and implementation level utilizing the
framework proposed previously.

References

1. Bai, G., et al.: AuthScan: automatic extraction of web authentication protocols
from implementations. In: NDSS (2013)

2. Bai, G., Hao, J., Wu, J., Liu, Y., Liang, Z., Martin, A.: Trustfound: towards a
formal foundation for model checking trusted computing platforms. In: FM, pp.
110–126 (2014)

3. Bansal, C., Bhargavan, K., Delignat-Lavaud, A., Maffeis, S.: Keys to the cloud: for-
mal analysis and concrete attacks on encrypted web storage. In: Basin, D., Mitchell,
J.C. (eds.) POST 2013. LNCS, vol. 7796, pp. 126–146. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36830-1 7

4. Bansal, C., Bhargavan, K., Maffeis, S.: Discovering concrete attacks on website
authorization by formal analysis. In: CSF, pp. 247–262 (2012)

5. Fett, D., Küsters, R., Schmitz, G.: An expressive model for the web infrastructure:
definition and application to the BrowserID SSO system. In: IEEE S&P (2014)

6. Fett, D., Küsters, R., Schmitz, G.: Analyzing the BrowserID SSO system with pri-
mary identity providers using an expressive model of the web. In: Pernul, G., Ryan,
P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol. 9326, pp. 43–65. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-24174-6 3

7. Fett, D., Küsters, R., Schmitz, G.: SPRESSO: a secure, privacy-respecting single
sign-on system for the web. In: CCS, pp. 1358–1369 (2015)

8. Hao, J., Liu, Y., Cai, W., Bai, G., Sun, J.: vTRUST: a formal modeling and
verification framework for virtualization systems. In: ICFEM, pp. 329–346 (2013)

9. Reuters: Facebook says data leak hits 87 million users, widening privacy scandal.
https://www.reuters.com/article/us-facebook-privacy/facebook-says-data-leak-
hits-87-million-users-widening-privacy-scandal-idUSKCN1HB2CM

10. Sciarretta, G., Carbone, R., Ranise, S., Armando, A.: Anatomy of the Facebook
solution for mobile single sign-on: security assessment and improvements (2017)

11. Sun, S.T., Hawkey, K., Beznosov, K.: Systematically breaking and fixing openID
security: formal analysis, semi-automated empirical evaluation, and practical coun-
termeasures. Comput. Secur. 31(4), 465–483 (2012)

12. Wang, K., Bai, G., Dong, N., Dong, J.S.: A framework for formal analysis of pri-
vacy on SSO protocols. In: Lin, X., Ghorbani, A., Ren, K., Zhu, S., Zhang, A.
(eds.) SecureComm 2017. LNICST, vol. 238, pp. 763–777. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-78813-5 41

13. Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through Facebook
and Google: a traffic-guided security study of commercially deployed single-sign-on
web services. In: IEEE S&P (2012)

https://doi.org/10.1007/978-3-642-36830-1_7
https://doi.org/10.1007/978-3-319-24174-6_3
https://www.reuters.com/article/us-facebook-privacy/facebook-says-data-leak-hits-87-million-users-widening-privacy-scandal-idUSKCN1HB2CM
https://www.reuters.com/article/us-facebook-privacy/facebook-says-data-leak-hits-87-million-users-widening-privacy-scandal-idUSKCN1HB2CM
https://doi.org/10.1007/978-3-319-78813-5_41

Analyzing Security and Privacy of Web Authentication Protocols 445

14. Wang, R., Zhou, Y., Chen, S., Qadeer, S., Evans, D., Gurevich, Y.: Explicating
SDKs: uncovering assumptions underlying secure authentication and authoriza-
tion. In: USENIX Security, pp. 399–414 (2013)

15. Ye, Q., Bai, G., Wang, K., Dong, J.S.: Formal analysis of a single sign-on protocol
implementation for Android. In: ICECCS, pp. 90–99 (2015)

Combining Deep Learning
and Probabilistic Model Checking

in Sports Analytics

Kan Jiang(B)

School of Computing, National University of Singapore, Singapore, Singapore
jiangkan@comp.nus.edu.sg

Abstract. Deep Learning (DL) is good at finding the patterns hidden
in big data, while Markov Decision Process (MDP) is good at modeling
the dynamics in a complex system for formal analysis, e.g. Probabilistic
Model Checking (PMC). The two models complement each other. Unlike
the black box DL-Only model, the combined model is interpretable.
Unlike the MDP-Only model, the combined model is able to draw deep
insights from the data. Both interpretability and capability of finding
deep insights are desirable in many applications, including sports ana-
lytics. In this paper, we propose to combine DL and PMC, and apply it in
sports analytics to find an accurate and interpretable winning strategy.

Keywords: Machine learning · Model checking
Markov Decision Process · Sports strategy analytics

1 Background, Motivation and Our Approach

The recent development in Artificial Intelligence (AI) has been considered as
the fourth industrial revolution [1]. Much of this development is due to the
rapid progress of Deep Learning (DL). DL is a class of algorithms designed to
discover the patterns hidden in big data by using many layers of computing
units, also known as Deep Neural Network (DNN). DNN has already exceeded
the human experts performance in specific fields. For example, in the task of
detecting pneumonia using chest X-Rays, a Deep Neural Network which achieved
higher accuracy than human radiologists was reported by [2]. However, such
high performance DNNs are often too complex to be interpretable, because they
consist of many neurons, and many more connections between the neurons [3].
The lack of interpretability restricts the usage of DNN in many domains, for
example, in sports analytics, where the goal is to find an interpretable strategy
to improve the winning chance.

Traditionally, sports analytics uses the approach in Fig. 1(a), i.e. DL-Only
model. For example, in this approach, a tennis game is modelled as a black
box with several input features such as player rankings, court surface, ace rates,
double fault rates, etc. and with winning chance as the output. Although this
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 446–449, 2018.
https://doi.org/10.1007/978-3-030-02450-5_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_32&domain=pdf

Combining DL and PMC in Sports Analytics 447

Fig. 1. (a), (b) and (c) represent the 3 ways of using DL and MDP. A diagram shows
the many options of Data, DL, MDP and Results applicable in the (c) approach. PAT
is a software for probabilistic model checking.

model can predict the winning chance quite well [4], it cannot suggest inter-
pretable strategy to improve the winning chance. For example, suggestion such
as “improve your ranking will improve your winning chance” is correct, but does
not really help the players.

To overcome the interpretability issue, we look beyond DL. Traditionally,
Markov Decision Process (MDP) is used in formal analysis for software, computer
system, and protocols. In 2015, the authors in [5] proposed an innovative idea
of modeling the tennis game using MDP. The goal is to model every shot in the
tennis game and to find interpretable strategies to improve the winning chance.
Essentially, each shot moves the game into the next state. The choice made by
the player, such as forehand or backhand, and the direction of the shot, such
as cross court or downline, represent the player’s strategy. The strategy, in the
form of a set of probability distributions, is the input to the MDP model. Using
probabilistic model checker, e.g. PAT [6,7], one can calculate the winning chance
associated with the input.

One challenge of this model is how to find the input parameters from the raw
data for all pairs of players. If we assume the strategy between a pair of players
remains the same, and if we have enough historical matches between this exact
pair, we can count the frequencies of the different types of shots, and use that
as the strategy between these 2 players. However, it is difficult to find enough
matches with sufficient details for every pair of players.

We plan to solve this problem based on a reasonable assumption that the
strategy is related to both players in the pair, although the relation can be
complex.

Y = f(P1, P2) + ε (1)

448 K. Jiang

Y is the strategy, i.e. a set of probability distributions of the different types
of shots; P1 is a feature vector representing player1; P2 is another feature vector
representing player2; and ε is a catch all term representing effects contributed
from unknown features and random errors. Function f can be complex. DL is
the right tool to estimate f by a large amount training data consisting {P1, P2,
Y}. This is the approach shown in Fig. 1(c).

In this combined model, the purpose of the DL is to discover the strategies
hidden in the raw data, i.e. to profile the players. The purpose of MDP-PAT is
to model the game shot-by-shot and to find interpretable winning strategies.

2 Related Work

In the white-box tennis MDP model proposed by [5], the input parameter to the
model, i.e. a set of distributions, was calculated using simple average based on
the historical matches. It followed the approach shown in Fig. 1(b). In our work,
we applied deep learning to calculate these distributions.

Like the traditional approach, The work in [4] models a tennis game as a
black-box. Players or coaches cannot use this kind of model to find an inter-
pretable strategy. In our work, we use white-box MDP model, hence are able to
find an interpretable winning strategy.

In [8], the authors focused on predicting 1st serve pattern using Hawk-Eye
data. Hawk-Eye is a high speed camera system, which constantly captures the
tennis ball and player positions and movements. Their paper used un-supervised
machine learning technique to cluster the large amount of Hawk-Eye data to
find the patterns. In our work, we use supervised learning based on a smaller
amount of labelled data, without relying on Hawk-Eye data.

3 Challenges and Research Plan

Since the goal is to find an interpretable winning strategy, we should start by con-
structing a suitable MDP model for the intended game. Once the MDP model is
available, we then know what input parameters, i.e. a set of probability distribu-
tions, are needed, consequently, we can build DNN to discover these parameters.
If the required training data for the DL is readily available, we can start the DL
right away. However, in case the required data is missing, we will apply computer
vision and multimedia analysis techniques to source for the data.

We have already conducted several experiments following the above men-
tioned steps in the tennis analytics. The tennis MDP model was proposed by
[5]. Having experimented with several DNNs, we are able to discover a set of
probability distributions for every pair of players. However, the accuracy of the
predicted final match result is not good enough. We need to re-design the DNN
in order to achieve better result.

Combining DL and PMC in Sports Analytics 449

In summary, our plan is:

– We will apply PMC to a wider range of sports analytics. For example, we are
building MDP models to model cricket, which is a team-based sport requiring
many decisions to be made. In particular, we aim to identify best practices
to balance the MDP model complexity, interpretability and its accuracy.

– We will further experiment how to best design DNNs to discover the parame-
ters for the MDP model. In particular, we aim to achieve high accuracy with
limited data.

– We will apply video and audio recognition techniques to acquire the missing
data or to improve the quality of existing data.

References

1. The Fourth Industrial Revolution: what it means and how to respond. World
Economic Forum. http://www.weforum.org/agenda/2016/01/the-fourth-industrial-
revolution-what-it-means-and-how-to-respond/. Accessed 16 May 2018

2. Rajpurkar, P., et al.: CheXNet: radiologist-level pneumonia detection on chest x-
rays with deep learning. arXiv preprint arXiv:1711.05225 (2017)

3. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learn-
ing. arXiv preprint arXiv:1702.08608 (2017)

4. Sipko, M.: Machine learning for the prediction of professional tennis matches. MEng
Computing - Final Year Project, Imperial College London (2015)

5. Dong, J.S., Shi, L., Chuong, L.V.N., Jiang, K., Sun, J.: Sports strategy analytics
using probabilistic reasoning. In: Proceedings of the 2015 20th International Con-
ference on Engineering of Complex Computer Systems (ICECCS) (ICECCS 2015),
pp. 182–185. IEEE Computer Society, Washington, DC (2015)

6. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under fair-
ness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–714.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 59

7. Song, S., Sun, J., Liu, Y., Dong, J.S.: A model checker for hierarchical probabilistic
real-time systems. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol.
7358, pp. 705–711. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
31424-7 53

8. Wei, X., Lucey, P., Morgan, S., Carr, P., Reid, M., Sridharan, S.: Predicting serves
in tennis using style priors. In: Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 2207–2215. (2015)

http://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/
http://www.weforum.org/agenda/2016/01/the-fourth-industrial-revolution-what-it-means-and-how-to-respond/
http://arxiv.org/abs/1711.05225
http://arxiv.org/abs/1702.08608
https://doi.org/10.1007/978-3-642-02658-4_59
https://doi.org/10.1007/978-3-642-31424-7_53
https://doi.org/10.1007/978-3-642-31424-7_53

Security Analysis of Smart Home
Implementations

Kulani Mahadewa(B)

National University of Singapore, Singapore, Singapore
kulani41@comp.nus.edu.sg

Abstract. A key feature of the emerging smart home is the integration
of heterogeneous technologies, including multiple standards, protocols,
and platforms. However, the integration may introduce critical security
vulnerabilities, due to the customizations, unsatisfied assumptions and
incompatibilities of the technologies. Hence, it is necessary to address
the security problems in smart home systems from an integration per-
spective, as a complement to existing studies that focus on the analysis
of individual system components or technologies. As part of an ongoing
Ph.D. research project, this paper presents the author’s current work
which is a framework for security analysis of implementation of smart
home integrations, and future work which is a standalone tool automat-
ing the framework and applying it on smart home systems for elderly
healthcare and wellbeing. Applying on three real-world smart home sys-
tems, the proposed framework identifies twelve security vulnerabilities.

1 Introduction

Internet of Things (IoT) is rapidly evolving and applied extensively in smart
home systems to realize a low-cost and convenient solution. With the help of
heterogeneous technologies, smart home systems connect nearly all devices and
appliances at home environment, and allow remote control over Local Area Net-
work (LAN) or Internet. As reported by Deloitte, more than half (52%) of con-
sumers own connected household devices [2]. The statistics also show that the
worldwide market size of smart home has reached $27.5 billion, and will grow to
$53.45 billion by 2022 [1].

Researchers have made efforts to address security issues in smart home sys-
tems. In previous work, several aspects of security in smart home systems have
been studied, i.e., smart devices [3,10], protocols [8,9], platforms and applica-
tion frameworks [4–6]. In the literature, the author observes that the security
research only considers the security of individual components or technologies
of a smart home system. However, the integration of them may introduce new
security implications. Hence, there exists a gap in the literature on the security
analysis of the smart home systems.

In a typical smart home system, the controls are initiated from hand-held
trigger devices such as smart phones, tablets, and voice sensors, forwarded by

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 450–454, 2018.
https://doi.org/10.1007/978-3-030-02450-5_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_33&domain=pdf

Security Analysis of Smart Home Implementations 451

intermediate relays such as wireless routers, gateways, Sensor Interface Units
(SIU) and hubs, and finally executed by the end devices such as bulbs, cam-
eras, and locks. These subsystems communicate with each other over wired or
wireless standards such as Bluetooth, Z-Wave, ZigBee, and Wi-Fi. Due to the
involvement of such heterogeneous technologies and smart devices manufactured
by diverse vendors, the integration of them in to a secure system is challenging.
The challenges may be the incompatibilities, unsatisfied assumptions, or cus-
tomizations of the technologies used by the smart home system.

The motivation for this research project is that, despite the challenges, it is
essential to integrate multiple technologies ensuring security of a smart home
system. In this paper, the author presents the results of the investigation on
security of smart home systems from an integration perspective.

2 Approach

In this section, the author first presents background of a smart home system,
then an overview of the methodology and finally the results of applying the
methodology on real-world smart home systems.

2.1 Background

Fig. 1. An example of a smart home system con-
taining a control point, hub and a smart device

A smart home system consists of
three subsystems, i.e., a control
point (denoted by CP) which
interacts with the end users
and issues the controls, sev-
eral smart devices (denoted by
SD) which are operable elec-
tronic end devices, and sev-
eral relays (denoted by hub)
which bridge the communica-
tions. Covering from configuration to control, the working procedure of the smart
home is divided into three stages, i.e., discovery, authentication and control.
Figure 1 is an example of a smart home, which comprises of four subsystems,
i.e., a CP, a SD, and a hub with an HTTP server (denoted by HS) and a ZigBee
Front End (denoted by ZFE). The CP and the HS communicates over Wi-Fi,
and the SD and the ZFE communicates over ZigBee. The arrows in the Fig. 1
shows the information exchanged between the subsystems in each stage.

2.2 Methodology

In order to analyze the security of a smart home from the integration perspec-
tive, it is required to extract the end-to-end application-layer specification from
the input smart home. Next, the extracted specification is formally verified to
identify security flaws of the system. We propose a framework which includes
three steps, i.e., pre-processing, specification extraction, and flaw identification,
to address the security problem.

452 K. Mahadewa

Pre-processing. This step takes the smart home implementation as input,
and runs the system to generate traffic traces of communication between the
subsystems. The objective is to extract a preliminary abstraction of the infor-
mation exchanged between the subsystems of the smart home. For each mes-
sage exchanged between the subsystems, the extracted information includes the
sender, receiver, communication channel, and message components. The message
components are represented as a set of values.

Specification Extraction. The input to this step is the abstract information
extracted by the pre-processing. The objective is to infer the semantics of the
extracted set of values and security-relevant internal behaviors of each subsys-
tem. However, challenges stem from the incomplete availability of the imple-
mentations. First, unavailability of the source code, while only the executables
and/or libraries are provided by the vendors. Second, the communication is not
apparent, due to the use of cryptographic protocols. To overcome the challenges,
the framework uses a hybrid analysis including whitebox analysis and trace anal-
ysis. In particular, the whitebox analysis analyzes the available source code to
identify semantics, and the trace analysis infers the semantics of a value by
the association relation between that value and an already identified seman-
tics, a participant, or a session. In order to formally verify the specification, it
is required to formally represent the specification. Hence, the specification is
represented using Labelled Transition Systems (LTS)s, where each subsystem is
modeled as an LTS.

Flaw Identification. The LTS representation of the smart home system is
taken as an input for flaw identification. The framework uses an inference algo-
rithm to check IoT-specific security properties against predefined attack models.
The framework uses two types of attack models i.e. malicious participant and net-
work attacker. The malicious participant violates access security properties (i.e.,
authentication and authorization) by pretending to be a honest participant to
collect sensitive information or send control commands. The network attacker
violates data security (i.e., confidentiality and integrity) and association secu-
rity properties by eavesdropping, intercepting, and modifying messages on the
network.

2.3 Results

The effectiveness of the framework was evaluated by applying it to three real-
world smart home systems i.e., Philips Hue, LIFX, and Chromecast. The frame-
work identifies twelve security flaws from the three systems, i.e., 5 from Philips
Hue, 4 from LIFX, and 3 from Chromecast. In the following, the author describes
the impacts of several flaws.

First, in the Philips Hue system, misuse of ZigBee Light Link (ZLL) protocol
allows a malicious hub to hijack a victim SD, and lack of control to administration
commands result in uncontrolled CP authentication, and denial-of-service at HS

Security Analysis of Smart Home Implementations 453

and SD. Second, in the LIFX system, unprotected SD’s Wi-Fi hotspot allows
a malicious SD with a fake hotspot to steal the password of the victim’s home
Wi-Fi. Finally, in the Chromecast system, lack of device or user authentication
allows a malicious CP to obtain the identity of a private YouTube video of the
victim, and misresponse to discovery request allows a malicious CP to obtain
the identity of the TV screen and casting a video to the TV.

3 Future Work

Currently, the framework is implemented as a semi-automatic approach and
applied on smart home systems. As future work, the author plans to fully auto-
mate the framework as a standalone tool and apply the tool on smart home for
elderly healthcare systems.

3.1 Automatic Tool

This tool takes the pre-processed data which was extracted from traffic traces,
and additionally, available programs and attack models as input, and returns
whether this system has any vulnerabilities as output.

Specification Extraction. The author plans to develop an algorithm to auto-
matically infer the semantics of the input pre-processed data and internal behav-
iors of the subsystems, and generate the LTS representation of the end-to-end
system.

Flaw Identification. This component takes two inputs, i.e., the LTS model of
the system and the attacker’s LTS model. This component uses a model checker
called (PAT) [11] as the inference engine. However, the author plans to extend
the PAT tool to support verification of the extracted specification, since the
current LTS module of PAT tool does not allow verification of a set of LTS
having internal communication.

3.2 Smart Home for Elderly Healthcare (SHEH)

Smart Home for Elderly Healthcare (SHEH) is an emerging research area. In
contrast to typical smart homes, SHEH [7] allows remote monitoring of phys-
iological signs (e.g., heart rate, body temperature, blood pressure and blood
oxygen level) and activities of the occupants, and communication with remote
healthcare facilities and caregivers. Hence, the SHEH is a complex smart home
system with additional attributes and functionalities than a typical smart home
system. The author plans to apply the proposed tool on SHEH and extend (e.g.,
adding new attack models) it to find new security problems.

454 K. Mahadewa

References

1. Forecast market size of the global smart home market from 2016 to 2022. https://
www.statista.com/statistics/682204/global-smart-home-market-size/

2. Deloitte: Switch on to the connected home: the Deloitte consumer review. https://
www2.deloitte.com/content/dam/Deloitte/uk/Documents/consumer-business/
deloitte-uk-consumer-review-16.pdf

3. Fawaz, K., Kim, K.H., Shin, K.G.: Protecting privacy of BLE device users. In:
USENIX Security, pp. 1205–1221 (2016)

4. Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M., Prakash, A.:
Flowfence: practical data protection for emerging IoT application frameworks. In:
USENIX Security, pp. 531–548 (2016)

5. Fernandes, E., Rahmati, A., Jung, J., Prakash, A.: Security implications of permis-
sion models in smart-home application frameworks. IEEE S&P 15, 24–30 (2017)

6. Jia, Y.J., Chen, Q.A.W.S., Rahmati, A., Fernandes, E., Mao, Z.M., Prakash, A.:
ContexIoT: towards providing contextual integrity to appified IoT platforms. In:
NDSS (2017)

7. Majumder, S.: Smart homes for elderly healthcare recent advances and research
challenges. Sensors 7(11), 2496 (2017)

8. Michalevsky, Y., Nath, S., Liu, J.: MASHaBLE: mobile applications of secret hand-
shakes over bluetooth LE. In: MobiCom, pp. 387–400 (2016)

9. Ronen, E., Shamir, A., Weingarten, A.O., O’Flynn, C.: IoT goes nuclear: creating
a ZigBee chain reaction. In: IEEE S&P, pp. 195–212 (2017)

10. Simpson, A.K., Roesner, F., Kohno, T.: Securing vulnerable home IoT devices with
an in-hub security manager. In: IEEE PerCom Workshop, pp. 551–556 (2017)

11. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 59

https://www.statista.com/statistics/682204/global-smart-home-market-size/
https://www.statista.com/statistics/682204/global-smart-home-market-size/
https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/consumer-business/deloitte-uk-consumer-review-16.pdf
https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/consumer-business/deloitte-uk-consumer-review-16.pdf
https://www2.deloitte.com/content/dam/Deloitte/uk/Documents/consumer-business/deloitte-uk-consumer-review-16.pdf
https://doi.org/10.1007/978-3-642-02658-4_59

Principled Greybox Fuzzing

Yuekang Li(B)

Nanyang Technological University, Singapore, Singapore
yli044@e.ntu.edu.sg

Abstract. Greybox fuzzing has become one of the most effective
approaches for detecting software vulnerabilities. Various new techniques
have been continuously emerging to enhance the effectiveness and/or effi-
ciency by incorporating novel ideas into different components of a grey-
box fuzzer. However, there lacks a modularized fuzzing framework that
can easily plugin new techniques and hence facilitate the reuse and inte-
gration of different techniques.

To address this problem, we propose a fuzzing framework, namely
Fuzzing Orchestration Toolkit (FOT). FOT is designed to be versa-
tile, configurable and extensible. With FOT and its extensions, we have
found 111 new bugs from 11 projects. Among these bugs, 18 CVEs were
assigned.

Keywords: Fuzzing · Software testing · Software vulnerability

1 Problem Statement and Motivation

Greybox fuzzing is recognized as one of the most effective approaches to detect-
ing vulnerabilities in a program under test (PUT). Compared with whitebox and
blackbox fuzzing, greybox fuzzing strikes a balance between execution speed and
effectiveness. In recent years, a number of greybox fuzzers have been proposed,
e.g., AFL [7], libFuzzer [5], and honggfuzz [3], followed by their various exten-
sions [4,6] to enhance their effectiveness and/or efficiency. Notably, most of the
variants are based on AFL.

However, there lacks a modularized fuzzing framework to easily reuse, inte-
grate and compare different fuzzing techniques and experiment with new ideas.
Taking AFL as an example, the fuzzer is implemented all in one file with around
8K LOC, which contains around 100 global variables. Hence, the implementation
of one feature often involves modifications in many places. In short, AFL is com-
pact and concrete but also highly coupled because AFL is designed for requiring
essentially no configuration [7]. In fact, like AFL, most of the existing fuzzers are
designed for easy deployment and usage, but not easy extension. Therefore, it is
desirable to have a fuzzing framework that can allow the easy plugin-and-play
of a variety of features, easy configuration of them and easy extension for new
features.

c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 455–458, 2018.
https://doi.org/10.1007/978-3-030-02450-5_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_34&domain=pdf

456 Y. Li

Fig. 1. Overview of the fuzzer in FOT. (Color figure online)

2 Approach

To tackle the aforementioned problems, we developed a configurable, extensible
and versatile fuzzing framework, namely Fuzzing Orchestration Toolkit (FOT).
Figure 1 shows the overall structure of the fuzzer. The blue rectangles are the
main components of the fuzzer, which are configurable and extensible.

Overall Manager. As FOT is designed to support multi-threaded parallel
fuzzing, it contains an overall manager in the fuzzer. This overall manager is
in charge of managing the workload of each worker thread. Specifically, it can
listen to a special directory to actively import seed inputs from external sources
such as symbolic executors like KLEE [1]. This part is configurable as the user
can choose different strategies for the overall management. It is extensible as it
can inter-operate with other seed generation tools.

Seed Scorer. The seed scorer is in charge of selecting a seed from the queue for
mutation (seed prioritization) and determining how many new inputs should be
generated based on the selected seed (power scheduling). This part is configurable
as the users can select from several built-in scoring strategies to evaluate seeds.
It is extensible as the users can implement their own strategies with the provided
modules in FOT.

Mutation Manager. The mutation manager is in charge of incorporating dif-
ferent mutation operators. It can mutate the seeds in a pure random manner
or according to some predefined grammar. This part is configurable as FOT
provides various mutation operators for the users to choose from. This part is
extensible as the users can implement their own mutation operators with the
provided library.

Executor. The executor takes charge of executing the PUT. This part is con-
figurable as the default executor in FOT allows the user to choose to enable or
disable the usage of forkserver [7]. This part is extensible as the users can extend
the executor for different scenarios. For example, they may add a secondary
executor to execute a secondary PUT to perform differential testing.

Principled Greybox Fuzzing 457

Table 1. Selected trophies and the projects

Project name 0-day bugs Time since release GitHub stars KLOC

mjs 21 1y7m 787 16.5

liblnk 20 8y9m 42 56.9

GNU bc 18 26y8m – 31.4

radare2 10 9y4m 7645 857.1

Espruino 10 4y9m 1395 1392.6

libsass 10 6y5m 3813 43.8

libpff 7 3y8m 85 137.7

Oniguruma 6 5y8m 556 119.1

apcalc 4 19y – 98.7

FLIF 3 2y9m 2989 43.6

diffutils 2 29y7m – 147.4

Feedback Collector. The feedback collector collects the feedback emitted by
the instrumented PUT. The exact feedback often corresponds to the instru-
mented information. This part is configurable as the users are allowed to select
from the default feedback options provided by FOT. The default feedbacks cur-
rently include basic-block level feedback (like AFL) and function level feedback.
It is extensible as the users can specify their customized types of feedbacks for
collection.

3 Assessment

Till now, FOT has been used to fuzz more than 100 projects. Table 1 lists some
of the 0-day vulnerabilities we found with FOT. Among them, 6 CVEs have been
assigned to Oniguruma, 9 CVEs have been assigned to Espruino and 3 CVEs
have been assigned to radare2.

4 Related Work

Table 2 shows a comparison of supported features between FOT and existing
popular greybox fuzzers. We can clearly see that FOT supports the most features.
Specifically, FOT is highly modularized, making it easy to add new features and
extensions.

458 Y. Li

Table 2. Comparisons between different fuzzers (�: not supported; ��: partially sup-
ported; �: fully supported)

5 Future Work

In the future, we plan to embed several extensions into FOT. For example, we
can integrate static analysis with fuzzing. With various vulnerability metrics
(e.g., calls to unsafe functions and cyclomatic complexity), we can calculate a
vulnerability score for each function. Then we can modify the seed scorer in Fig. 1
so that it can utilize the static analysis results for seed evaluation and eventually
guide the fuzzer towards more vulnerable code. Another possible extension is
directed fuzzing like Hawkeye [2]. Directed fuzzer will try to execute towards
user defined targets. An ideal directed fuzzer requires modifications in the seed
scorer as well as mutation manager shown in Fig. 1.

To summarize, we present a configurable, extensible and versatile fuzzing
framework named FOT. With FOT as the basic framework, we can design various
extensions and embed novel techniques. Finally, with FOT and all its extensions,
we can uncover numerous real-world vulnerabilities.

References

1. Cadar, C., Dunbar, D., Engler, D.: Klee: unassisted and automatic generation of
high-coverage tests for complex systems programs. In: OSDI 2008, pp. 209–224
(2008)

2. Chen, H., et al.: Hawkeye: towards a desired directed grey-box fuzzer. In: CCS
(2018)

3. Google: honggfuzz (2018). https://github.com/google/honggfuzz
4. Li, Y., Chen, B., Chandramohan, M., Lin, S.W., Liu, Y., Tiu, A.: Steelix: program-

state based binary fuzzing. In: ESEC/FSE 2017, pp. 627–637. ACM (2017)
5. LLVM: libfuzzer (2018). https://llvm.org/docs/LibFuzzer.html
6. Wang, J., Chen, B., Wei, L., Liu, Y.: Skyfire: data-driven seed generation for fuzzing,

pp. 579–594, May 2017. https://doi.org/10.1109/SP.2017.23
7. Zalewski, M.: American fuzzy lop (2014). http://lcamtuf.coredump.cx/afl/.

Accessed 01 Apr 2018

https://github.com/google/honggfuzz
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1109/SP.2017.23
http://lcamtuf.coredump.cx/afl/

Engineering Software for Modular
Formalisation and Verification of STV

Algorithms

Milad K. Ghale(B)

Research School of Computer Science, ANU, Canberra, Australia
milad.ketabghale@anu.edu.au

Abstract. We introduce new software for provably correct computation
with Single Transferable Voting (STV) algorithms. The software is engi-
neered as a framework for modular formalisation, verification, extraction
of executable certifying programmes, and verified certificate checking for
various STV algorithms. We demonstrate functionality and effectiveness
of our approach by evaluating the software on some real-size elections.

1 Introduction

STV is a family of vote counting algorithms, where voters express their prefer-
ences by ranking candidates, widely used in various elections in several countries
such as Ireland, New Zealand, and Australia.

There are many subtleties hidden in details of particular STV schemes. Due
to such complexities, mistakes have happened in both hand counting methods
and computerised counting [2], where the election was re-run or a wrong candi-
date was declared a winner. Moreover, these programmes merely output winners
of the election without providing any detail as through what computational
steps the end result is obtained. Also, the source code of the programmes are
kept secret with excuses of commercial and intellectual property protection, so
that outsiders cannot analyse or test them. Consequently, voters have no choice
but to lay huge trust in authorities that tallying is processed correctly.

The above mistakes adversely effect trust in authorities and elections which
are cornerstones of democratic processes. Methods currently employed for vote
counting stand in sharp contrast with universal verifiability [13], which requires
an election result to be verifiable by any member of the public.

Our approach frames electronic vote counting as certified computation [5–
7]. Here each execution of the counting algorithms on a given input, produces
an output and a trace of computation, called certificate, preformed by the exe-
cution to obtain the output. Such a certificate consists of all of the necessary
information to understand how the counting has progressed from the input value
to terminate at the corresponding output. Any voter can independently check
a certificate for correctness to ascertain that the execution computes the final
result correctly. Certificates, along with a component of our software explained
shortly afterwards, contribute to satisfaction of the universal verifiability prop-
erty.
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 459–463, 2018.
https://doi.org/10.1007/978-3-030-02450-5_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_35&domain=pdf

460 M. K. Ghale

We use formal engineering tools and techniques of certifying algorithms for
producing verified software that provably correctly computes winners of elec-
tions, outputs a certificate for independent verification by scrutineers and offers
a verified certificate checker to provide the voter with means of verifying correct-
ness of tallying. Our software1 is a framework where variety of STV algorithms
can be formally specified and then verified with respect to some desired proper-
ties in the theorem prover Coq [3]. It facilitates extraction of provably correct
Haskell programmes for actual computations. Each of these programmes out-
puts a run-time certificate for each execution. The software also has a second
standalone component, formalised in HOL [9] and synthesised by CakeML [1],
for checking certificates independent of means used in producing them.

2 Extraction of Verified Programmes for STV Algorithms

Variants of STV share a large set of data structure. For example, the counting
progresses in a finite sequence of discrete states. These states encapsulate all
essential information needed to know in order to realise how the counting has
proceeded up to that stage of the computation. We abstract this underlying
common data to specify a data type in Coq whose values formally represent
states of the computation.

Additionally, STV schemes have a common mechanism to advance the count-
ing by using transitions whose names are invariably called count, elect, transfer,
eliminate, and a step for finishing the counting by declaring the winners. We
formalise the transitions as parameters to be instantiated later. Furthermore,
there are repeated patterns of when those transitions may apply and in what
order. We distil the recurring algorithmic patterns into a minimal set of rules
for specifying when a transition is legitimately applicable.

The abstracted data type and parametric transitions respectively form the
states and transition labels for a generic formalisation of STV as an abstract
machine. The minimal applicability criteria above operate as a small-step seman-
tics for the machine. We demonstrate that the generic machine satisfies some
properties such as termination. Moreover, we prove that for any input to the
machine, a sequence of machine states and transitions taken to terminate exists.
This trace, which is the certificate, is output upon each execution of extracted
Haskell programmes on an input.

We formalise the generic STV in a parent module, developed once and for
all, consisting of about 2500 lines of code. Concrete cases of STV are formalised
in separate modules (each about 500 lines) by instantiation of the parametric
transitions and discharging applicability criteria above. These modules have zero
level of coupling among themselves and only depend on the parent.

3 Synthesis of Verified Checkers for Various STV

There can be several implementations for an algorithm. To check which ones are
correct realisations of the algorithm, it is sufficient and efficient to require those
1 Source codes are at https://github.com/MiladKetabGhale.

https://github.com/MiladKetabGhale

Engineering Software for Modular Formalisation 461

programmes to output a certificate. Then examine their correctness by synthe-
sising a verified certificate checker, instead of verifying each single programme.

We use the theorem prover HOL to formalise the STV vote counting scheme,
and obtain a fully verified certificate checker inside HOL. By the trustworthy
mechanisms of connecting HOL with the verified compiler CakeML, we then
extract an executable checker that is guaranteed to behave correctly with respect
to the formal specification of the STV down to machine code.

Synthesis of executable checker happens in four steps. We first formally spec-
ify in HOL what a certificate and certificate checker are. Second, we define
boolean-valued functions in HOL that are expected to be the computational
counterpart of the declarative assertions in the previous step. Third, we prove
inside HOL that indeed the specification and boolean-value functions match.
Fourth and last, by using the verified CakeML translator, we translate the HOL
computational definitions of step two into equivalent CakeML functions. There-
fore we lift all of the proofs established in HOL to CakeML level. Then by using
the verified proof-synthesis mechanism of CakeML, we obtain an executable
checker that is guaranteed to behave as the specification of the first step expects.

Evaluations. We have already formalised some STV algorithms used in sen-
ate, parliamentary, and union elections in Australia. Formalised modules are
automatically extractable into the Haskell language for provably correct com-
putations. Figure 1 illustrates evaluation of the extracted module for the STV
employed in the ACT state of Australia for the lower house elections. The certifi-
cation column demonstrates the amount of time taken for the Haskell programme
to terminate with a certificate output. On the other hand, the checking column
depicts how much time the checker consumes to verify the certificates.

4 Future and Related Work

Future Work. There are some possibilities for further engineering and research
on STV which interest us. We need to perform code refactoring to modularise
the certificate checker. We would create a base of the formalisation containing
common features of checkers for different STV and encode distinctive aspects of
each scheme into separate modules.

Our framework accommodates a large class of various STV algorithms. How-
ever, one may wish to extend it further to include radically divergent instances
such as Meek STV. Also current development does not support versions of STV
which use randomness in determining which set of surplus ballots to transfer.

Fig. 1. ACT legislative assembly 2012 (time in seconds)

462 M. K. Ghale

Another dimension is analysis of STV algorithms for computing margin of
victory to determine what is the smallest set of votes that if changed results in
divergence of election winners. Moreover, one can study STV algorithms from
the social choice theory perspective to mathematically measure how fair they
are compared to each other and different multi-seated voting schemes.

Related Work. Employing heavy weight formal methods for vote counting is
fairly recent and there is much work to come. DeYoung and Schurmann [4]
use Linear Logic [8] to formally specify a STV scheme and then discharge
proofs inside the logical framework of Celf. Technical knowledge of linear logic is
required to understand how the textual description of the protocol matches with
the formal one. Pattinson and Shurmann [10], and Verity and Pattinson [12]
formalise a simple version of STV and First-past-The-Post elections in Coq.
They prove properties such as existence of winners in every formal execution.
Then they extract certifying executable in Haskell which can compute large size
elections. Pattinson and Tiwari [11] tackle verification of Schultz method by
the similar approach of specifying the algorithm in Coq, discharging proofs and
extracting executables in Haskell and OCaml. Their extracted executable per-
forms effectively and outputs run-time certificates. They implement a certificate
checker in the Haskell language. However as the implementation is unverified, it
does not add to reliability of the computation.

References

1. CakeML: A Verified Implementation of ML. https://cakeml.org/
2. Conway, A., Blom, M., Naish, L., Teague, V.: An analysis of New South Wales

electronic vote counting. In: Proceeding of ACSW 2017, pp. 24:1–24:5 (2017)
3. The Coq Theorem Prover. https://coq.inria.fr/
4. DeYoung, H., Schürmann, C.: Linear logical voting protocols. In: Kiayias, A., Lip-

maa, H. (eds.) Vote-ID 2011. LNCS, vol. 7187, pp. 53–70. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-32747-6 4

5. Ghale, M.K., Goré, R., Pattinson, D.: A formally verified single transferable vot-
ing scheme with fractional values. In: Krimmer, R., Volkamer, M., Braun Binder,
N., Kersting, N., Pereira, O., Schürmann, C. (eds.) E-Vote-ID 2017. LNCS, vol.
10615, pp. 163–182. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68687-5 10

6. Ghale, M.K., Gore, R., Pattinson, D., Tiwari, M.: Modular formalisation and ver-
ification of STV algorithms. In: Forthcoming E-Vote-ID 2018. LNCS. Springer,
Heidelberg (2018)

7. Ghale, M.K., Pattinson, D., Kummar, R., Norrish, M.: Verified certificate checking
for counting votes. In: Forthcoming VSTTE 2018. LNCS. Springer, Heidelberg
(2018)

8. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987)
9. HOL Interactive Theorem Prover. https://hol-theorem-prover.org/

10. Pattinson, D., Schürmann, C.: Vote counting as mathematical proof. In: Aus-
tralasian Conference on Artificial Intelligence, pp. 464–475 (2015)

11. Pattinson, D., Tiwari, M.: Schulze voting as evidence carrying computation. In.:
Proceedings of ITP, pp. 410–426 (2017)

https://cakeml.org/
https://coq.inria.fr/
https://doi.org/10.1007/978-3-642-32747-6_4
https://doi.org/10.1007/978-3-319-68687-5_10
https://doi.org/10.1007/978-3-319-68687-5_10
https://hol-theorem-prover.org/

Engineering Software for Modular Formalisation 463

12. Verity, F., Pattinson, D.: Formally verified invariants of vote counting schemes. In:
ACSW, pp. 31:1–31:10 (2017)

13. Cortier, V., Galindo, D., Küsters, R., Müller, J., Truderung, T.: Verifiability
notions for E-Voting protocols. IACR Cryptology ePrint Archive 2016: 287 (2016)

Towards Building a Generic Vulnerability
Detection Platform by Combining
Scalable Attacking Surface Analysis

and Directed Fuzzing

Xiaoning Du(B)

Nanyang Technological University, Singapore, Singapore
duxi0002@ntu.edu.sg

1 Introduction

Vulnerabilities are one of the major threats to software security. Usually, they are
hunted by security experts via manual code audits, or with some automated tools
like fuzzers (e.g., [1,5,12]) and symbolic execution (e.g., [4,7,10,13]), which can
provide concrete inputs to trigger and validate the vulnerabilities. As fuzzy static
scanners usually flag a list of potential vulnerable codes or functions with high
rate of false positive, we deem them in the spectrum of attack surface identifi-
cation approaches. The scalability of symbolic execution is extremely restricted
by the path exploration problem and solver capability, which makes it not a
preferable choice for large scale vulnerability detection. Coverage-based undi-
rected fuzzing is hardly scalable and effective in general due to the large size of
the program and the lack of good seeds to trigger various behaviors or execu-
tions. Faced with the fact that all existing static and dynamic detection tools
are concerned with the trade-off problem between scalability and precision, a
generic and scalable vulnerability detection platform is desirable.

As only a few vulnerabilities are scattered across a large amount of code,
vulnerability hunting is a challenging task that requires intensive knowledge and
skills and is comparable to finding “a needle in a haystack” [17]. Identifying
potentially vulnerable locations in a code base is critical as a pre-step for effec-
tive vulnerability assessment. Metric-based techniques, inspired by bug predic-
tion [11], leverage machine learning to predict vulnerable code at the granularity
level of a source file. It cannot work well due to the severe imbalance between
non-vulnerable and vulnerable code as well as the lack of features to reflect char-
acteristics of vulnerabilities. Pattern-based use patterns of known vulnerabilities
to identify potentially vulnerable code through static analysis. The patterns are
formulated by security experts using their domain knowledge, e.g., missing secu-
rity checks on security-critical objects [16], security properties [14], and vulner-
ability specifications [15]. Due to the requirement on prior knowledge of known
vulnerabilities, it can only identify similar but not new types of vulnerabilities.

Among the automated assessment tools, directed fuzzing [5,8] stands out for
its ability to reach a target program location efficiently and fuzz it effectively.
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 464–468, 2018.
https://doi.org/10.1007/978-3-030-02450-5_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_36&domain=pdf

Towards Building a Generic Vulnerability Detection Platform 465

Experimentally fed with a limited portion of heuristically selected attack sur-
face, AFLGo [5] is reported to outperform directed symbolic-execution-based
whitebox fuzzing and undirected fuzzing. We believe its vulnerability-hunting
power can be further boosted with wisely identified attack surface. Currently,
the guiding in AFLGo is achieved just via power scheduling, which can be obtuse
and insensitive. Much improvement can be done to make the guiding strategy
more swift and intelligent.

In this study, we aim at combining attack surface identification and directed
fuzzing for building a generic and scalable vulnerability detection platform.

2 Our Approach

Fig. 1. An overview of the proposed framework

An overview of our proposed framework is shown in Fig. 1. Given an applica-
tion’s source code, the attack surface identification component is used to generate
a list of potential vulnerable functions based on the complexity and vulnerability
metrics of the application. These functions can be directly fed to the directed
fuzzing tool as targets to confirm the vulnerability with concrete triggering input.
Within the fuzzing tool, we use the function-directed fuzzing to reach the target
function, and combine with path-directed method to penetrate the target func-
tion to trigger the vulnerability. Note that finished components of the framework
are drawn with solid lines and explained below, and unfinished ones are drawn
with dashed lines as explained in next section.

We have proposed and implemented a generic, lightweight and extensible
framework, named Leopard, to identify attack surfaces at the function level
through program metrics. Leopard does not require any prior knowledge about
known vulnerabilities. It works in two steps by combining two sets of systemat-
ically derived metrics. Complexity metrics capture the complexity of a function
in two dimensions: the control structures in the function, and the loop structures
in the function. Vulnerability metrics reflect the characteristics of vulnerabili-
ties in three dimensions: the constants, pointers, and coupling level of predicates
in a function. Details about the metrics and some supplementary experimental

466 X. Du

results are available at our website [2]. First, it uses complexity metrics to group
the functions in a target application into a set of bins. Then, it leverages vul-
nerability metrics to rank the functions in each bin and identifies the top ones
as potentially vulnerable. Experimental results on nine real-life projects have
demonstrated that Leopard can cover 74% of vulnerable functions by identi-
fying 25% of functions as vulnerable; and Leopard can outperform machine
learning-based techniques. Based on the identified vulnerable functions in the
current stable release of PHP, a security expert discovered six zero-day vulnera-
bilities.

For the directed fuzzing, we have integrated the attack surface identification
framework with some off-the-shell directed fuzzing tools. We choose FOT [3],
which is a versatile, configurable and extensible fuzzing framework. It provides a
basic function-level directed fuzzing interface, requiring only a list of target func-
tions. The initial evaluation of the combined approach of using attack surface
identified by Leopard and feeding it to FOT demonstrates very encouraging
results with tens of crashes and zero-day vulnerabilities identified in popular
libraries like MJS, GNU bc, GNU diffutils, gpac, radare2, FLIF, libsass, libpff,
liblnk and jsmn. For the path-condition directed fuzzing, we have developed the
first penetration fuzzer by guiding the fuzzing to focus on the useful program exe-
cutions related to the vulnerable code, which by only considering the statements
with the positive effectiveness to the vulnerable code. The initial experiments
has shown positive results on CGC benchmark with complicated program logics,
where most existing fuzzers have failed. More investigation is needed to evalu-
ate the efficiency of different combination strategies of the two directed fuzzing
techniques, which have been further discussed in next section.

3 Future Work and Conclusion

3.1 Metrics Extension

The set of complexity and vulnerability metrics can be refined and extended, by
adjusting scores of existing metrics or incorporating new metrics, to highlight
interesting functions via capturing different perspectives. To this end, we have
identified the following information to be vital to further improve our findings.

Taint Information. Leveraging taint information will help an analyst to iden-
tify the functions that process the external (i.e., taint) input.

Vulnerability History. In general, recently patched functions are straightfor-
ward attack surface due to the verified reachability, with considerable risks of
incomplete patch or introducing new issues, but functions that are patched long
before the release of the current version tend to involve no vulnerabilities.

Domain Knowledge. Domain knowledge can play a vital role in prioritizing
the interesting functions for further assessment. Information such as the modules
that are currently fuzzed by others can be used to refine the ranking. It is also

Towards Building a Generic Vulnerability Detection Platform 467

interesting to explore what information can be mined from mailing list, twitters
and security blogs.

Architecture. Strong correlations between bug/vulnerability-prone files and
architecture design flaws [6,9] can also be considered in to light up attack surface
identification with some high level information.

3.2 Directed Fuzzing

To enhance the directed fuzzing for the effective usage of the potential vulnerable
functions, we are looking at two directions. Firstly, we want to investigate how to
combine the two directed fuzzing techniques into one holistic approach. Function-
level directed fuzzing is good at reaching target vulnerable functions, however to
trigger the vulnerability in the vulnerable function requires further penetration.
Therefore we can conduct the directed fuzzing in two steps by invoking the
two directed techniques sequentially. However, function-level directed fuzzing
may stuck in some code to reach the target function due to the lack of low-
level penetration in local path conditions. To address this, we need to invoke the
path-condition directed fuzzing together with the function-level directed fuzzing.
These phenomenons require a better interplay between the two techniques and
dynamic scheduling of them based on the progress. We are planning to propose
a runtime scheduler to orchestrate the two techniques dynamically.

Secondly, the metrics used to generated during the attack surface identifica-
tion step is statically calculated, which may not be precise. Hence the ranking
of vulnerable functions is less ideal. To address this, we can combine the fuzzer
deeper with the metrics calculation and vulnerable function ranking so that we
use the runtime information generated by fuzzer and adjust ranking of the vul-
nerable function dynamically. For example, this approach can directly remove
the easily reachable functions with high vulnerability metrics hence improving
the effectiveness of the approach.

3.3 Conclusion

This paper presented a generic framework for effectively finding vulnerabilities
in source code level. The key idea is to combine the scalable static analysis and
directed fuzzing to balance the trade off between scalability and accuracy.

References

1. American fuzzy lop. http://lcamtuf.coredump.cx/afl/ (2017)
2. Leopard. https://sites.google.com/site/leopardsite2017/ (2017)
3. FOT. https://sites.google.com/view/fot-the-fuzzer (2018)
4. Babić, D., Martignoni, L., McCamant, S., Song, D.: Statically-directed dynamic

automated test generation. In: ISSTA, pp. 12–22 (2011)
5. Böhme, M., Pham, V.T., Nguyen, M.D., Roychoudhury, A.: Directed greybox

fuzzing. In: CCS, pp. 2329–2344 (2017)

http://lcamtuf.coredump.cx/afl/
https://sites.google.com/site/leopardsite2017/
https://sites.google.com/view/fot-the-fuzzer

468 X. Du

6. Cai, Y., Xiao, L., Kazman, R., Mo, R., Feng, Q.: Design rule spaces: a new model
for representing and analyzing software architecture. TSE (2018)

7. Cha, S.K., Woo, M., Brumley, D.: Program-adaptive mutational fuzzing. In: SP,
pp. 725–741 (2015)

8. Chen, H., et al.: Hawkeye: towards a desired directed grey-box fuzzer. In: CCS
(2018)

9. Feng, Q., Kazman, R., Cai, Y., Mo, R., Xiao, L.: Towards an architecture-centric
approach to security analysis. In: WICSA, pp. 221–230 (2016)

10. Godefroid, P., Levin, M.Y., Molnar, D.A.: Automated whitebox fuzz testing. In:
NDSS (2008)

11. Malhotra, R.: A systematic review of machine learning techniques for software fault
prediction. Appl. Soft Comput. 27(C), 504–518 (2015)

12. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: Vuzzer:
application-aware evolutionary fuzzing. In: NDSS (2017)

13. Stephens, N., et al.: Driller: augmenting fuzzing through selective symbolic execu-
tion. In: NDSS (2016)

14. Vanegue, J., Lahiri, S.K.: Towards practical reactive security audit using extended
static checkers. In: SP, pp. 33–47 (2013)

15. Yamaguchi, F., Golde, N., Arp, D., Rieck, K.: Modeling and discovering vulnera-
bilities with code property graphs. In: SP, pp. 590–604 (2014)

16. Yamaguchi, F., Wressnegger, C., Gascon, H., Rieck, K.: Chucky: exposing missing
checks in source code for vulnerability discovery. In: CCS, pp. 499–510 (2013)

17. Zimmermann, T., Nagappan, N., Williams, L.: Searching for a needle in a haystack:
predicting security vulnerabilities for windows vista. In: ICST, pp. 421–428 (2010)

Formalising Performance Guarantees
in Meta-Reinforcement Learning

Amanda Mahony(B)

Institute for Integrated Intelligent Systems, Griffith University, Brisbane, Australia
amanda.mahony3@griffithuni.edu.au

Abstract. Reinforcement learning has had great empirical success in
different domains, which has left theoretical foundations, such as perfor-
mance guarantees, lagging behind. The usual asymptotic convergence to
an optimal policy is not strong enough for applications in the real world.
Meta learning algorithms aim to use experience from multiple tasks to
increase performance on all tasks individually and decrease time taken
to reach an acceptable policy. This paper proposes to study the provable
properties of meta-reinforcement learning.

1 Introduction

Some of the most popular recent successes in machine learning have come from
reinforcement learning, including human level results in playing Go [7] and
Atari games [6]. Reinforcement learning considers an agent that learns primarily
through direct interaction with the environment [8]. In this setting, an agent
must learn to perform a task without explicit guidance from a user or expert
on the correct action to take at any given time or state. They simply receive a
reward signal indicating how well they performed. Recent successes in complex
domains make use of deep neural networks. While one-hidden-layer nets are uni-
versal approximators, performance guarantees in terms of convergence rate are
not well formalised.

The focus of maximising the final performance leads to ignoring other impor-
tant factors. Practices such as low number of empirical tests due to time consid-
erations or cherry picking the top few runs that performed well do not adequately
display the general performance of deep reinforcement learning algorithms, or
the hidden difficulties in reproducing an algorithm’s reported performance. For
some applications, time spent learning, variability in performance, and safety
are just as important as maximising final performance.

For Reinforcement Learning to be accepted and used in critical applications,
such as health care, it’s performance must be consistent and predictable. Bounds
on regret can help users measure the cost of learning a policy by reinforcement
learning. Explicitly including safety considerations in the reward signal is a com-
mon method of inducing safety in an agent. This project aims to formalise the
performance of meta-learning. This can provide insights to guide design of future
algorithms, as well as provide criteria to aid in the choice of algorithm for certain
problems.
c© Springer Nature Switzerland AG 2018
J. Sun and M. Sun (Eds.): ICFEM 2018, LNCS 11232, pp. 469–472, 2018.
https://doi.org/10.1007/978-3-030-02450-5_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02450-5_37&domain=pdf

470 A. Mahony

2 Background

2.1 Reinforcement Learning

The environment of a learning agent is modelled by a Markov Decision Process.
In an episodic setting, the agent interacts with the environment for a fixed
horizon of H steps, which is repeated over T episodes. The agents’ actions are
guided by a policy π that determines the action choice in each state. The current
policy is evaluated, J(π), commonly using the expected total or average return.
The agent uses the history of explored trajectories and J to improve their policy.

Temporal difference is a simple method of policy improvement that makes a
prediction about the average return of a state then continually bootstrap updates
this prediction based on how unexpected the experienced reward is. Q-learning
is such a method that updates state-action pair value predictions, commonly
referred to as Q-values, to find an optimal policy. For each state-action pair,
the Q-value details the expected future reward when taking an action in a given
state. This induces a policy by choosing an action greedily at every state.

Tabular Q-learning (i.e. a finite table of updated Q-values) works well for
simple problems with small state and action spaces. The majority of interesting
problems have state and action spaces large enough that tabular methods are
infeasible. Function approximation is used in these cases. Deep reinforcement
learning uses deep neural networks as universal function approximators. The
success of deep neural networks is poorly understood and occurs despite the lack
of theoretical foundations and guarantees on their performance. The performance
of various learning algorithms can vary greatly across different architectures and
environments, with high levels of parameter tuning being the greatest cause of
performance gains.

2.2 Meta-Learning

Meta-learning uses data to learn a better method for learning a policy. A useful
meta-task is learning over a distribution of tasks. For tasks which are concep-
tually similar to a human observer, such as walking and running, it is reason-
able that experience with one task may help with other tasks. There are a few
approaches to learning in a setting of a distribution of task MDPs. Transfer
learning, Multi-task, learning to learn and life-long learning all attempt to solve
learning over multiple tasks.

Temporal difference methods in reinforcement learning behave similarly to
the role of dopamine for learning in the brain. A form of meta-learning takes
inspiration from learning in the pre-frontal cortex [9], modelled using recurrent
neural networks such as long short-term memory. Meta-reinforcement learning
has also lead to methods for dealing with acting in a dynamic system that
changes over time in a dependent manner [1]. In N-shot learning, experience
from a distribution of tasks is used to increase performance in unseen tasks after
a small number of episodes worth of learning [4].

Formalising Performance Guarantees in Meta-Reinforcement Learning 471

2.3 Performance Guarantees

The common frameworks for performance measures on reinforcement learning
algorithms are comparisons of performance to an optimal policy. First is Prob-
ably Approximately Correct (PAC) learning. Given small (ε, δ), an algorithm
is PAC if it gives a policy with expected returns ε-close to the optimal return,
with probability 1− δ, with a polynomial bound on the sample complexity. Sec-
ond is the total regret over the whole learning process. The regret of a learning
algorithm is the loss in returns compared with having acting according to the
optimal policy from the start.

These two settings are not directly comparable without weakening their
bounds and each has limitations. PAC learning algorithms often stop improve-
ments once ε-close to optimal policy, while regret bounds provide no knowledge
about the distribution of errors. There can be many small errors or a few large
errors, which may require different responses in applications such as healthcare.

The setting of performance guarantees for life-long learning has been studied
under the framework of transfer learning for multiple tasks [3]. Meta-learning is
usually used in environments with large state and action spaces, typically using
function approximation methods. Currently function approximation methods
only have PAC analysis for MDPs and function classes of low Bellman Rank [5].

3 Approach

To study the performance of meta-reinforcement learning, we first examine a
set of tasks over finite state and action spaces, with tabular Q-learning as the
within task algorithm and the meta-agent learning how to initialise the Q-values
for the within task learning.

Optimistic exploration of the space is induced by optimistic initialisations of
the Q-values. For goals in a common space, this shared structure could provide
knowledge to leverage a better Q-value initialisation for all goals. The meta-
agent learning such an initialisation can be viewed as an extension of infinite
armed bandits [2] to a multidimensional action space.

The meta-agent initialises the Q-values and the learner performs N episodes
of Q-learning receiving an average reward 1

N

∑N
n

∑H
h rn,h. This is the reward

received by the meta-learner for their choice of initialisation. These actions are
explored until confidence bounds on the reward have tightened sufficiently. This
will result in a sample complexity bound dependant on the within task algorithm.
The sample complexity of the meta-agent is in terms of number of tasks sampled.
As each episode for the meta-agent on a task is of fixed N episodes, this gives
a bound on the total number of within task actions required to learn a good
initialisation. This will then be compared with the total sample complexity of
learning all tasks individually.

In N -shot learning, the agent continuously learns in a single environment
for at most N episodes. The meta-agent uses this experience to create a new
agent that will have better performance on future unseen tasks. We begin by
considering task distributions of different reward in a fixed environment. For

472 A. Mahony

example a set of navigation tasks in a finite grid world with fixed obstacles,
requiring navigating to different end states. Other distributions of tasks that are
of interest are tasks with different transition probabilities, for example navigation
under different conditions like winds of varying strengths or differing obstacles,
or sequences of tasks that represent an environment changing over time.

This only studies Q-learning for episodic finite MDP tasks. Further work
includes higher dimensional, continuous MDPs, as well as function approxi-
mation reinforcement learning. This meta architecture and sample complexity
bound will be formalised in the theorem prover Isabelle, as well as previous
results for performance guarantees in the single task settings.

References

1. Al-Shedivat, M., Bansal, T., Burda, Y., Sutskever, I., Mordatch, I., Abbeel, P.:
Continuous adaptation via meta-learning in nonstationary and competitive envi-
ronments, pp. 1–21, March 2017

2. Aziz, M., Anderton, J., Kaufmann, E., Aslam, J.: Pure exploration in infinitely-
armed bandit models with fixed-confidence, pp. 1–22 (2018)

3. Brunskill, E.: PAC continuous state online multitask reinforcement learning with
identification. In: AAMAS 2016, pp. 438–446 (2016)

4. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks (2017)

5. Jiang, N., Krishnamurthy, A., Agarwal, A., Langford, J., Schapire, R.E.: Contextual
decision processes with low Bellman rank are PAC-learnable, pp. 1–42 (2016)

6. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518, 529 (2015)

7. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree
search. Nature 529, 484 (2016)

8. Sutton, R.S., Barto, A.G.: Reinforcement learning: an introduction. UCL, Computer
Science Department, Reinforcement Learning Lectures, p. 1054 (2017)

9. Wang, J.X., et al.: Prefrontal cortex as a meta-reinforcement learning system. Nat.
Neurosci. 21(6), 860–868 (2018)

Author Index

Aldrich, Jonathan 231

Barnat, Jiří 124
Beckert, Bernhard 284
Berg, Nils 303
Bischof, Simon 284
Bride, Hadrien 407, 412
Brucker, Achim D. 373
Butler, Michael 21

Cheng, Zhuo 70
Craciun, Florin 177
Craig, Aaron 231

Danziger, Armin 303
Derrick, John 373
Dghyam, Dana 21
Dixon, Clare 160
Dong, Jie 412
Dong, Jin Song 106, 407, 412
Dong, Naipeng 37, 106
Du, Xiaoning 464

Fei, Yuan 143
Fernando, Dileepa 106, 436
Fischer, Tomas 21
Fisher, Michael 160
Foster, Michael 373

Gainer, Paul 160
Ge, Cunjing 388
Ghale, Milad K. 459
Glesner, Sabine 89, 303
Göthel, Thomas 303
Groves, Lindsay 231
Guan, Yong 270

Hayes, Ian J. 3, 215
Herber, Paula 89
Herda, Mihai 284
Hoang, Thai Son 21
Hóu, Zhé 407, 412

Hu, Qimin 70
Hustadt, Ullrich 160

Ishikawa, Fuyuki 357

Jegourel, Cyrille 106
Jiang, Kan 446

Khoo, Teck Ping 54, 423
Kirsten, Michael 284
Kleine Büning, Marko 284
Kobayashi, Tsutomu 357

Li, Xiaojuan 270
Li, Yi 432
Li, Yongdong 270
Li, Yuekang 455
Liebrenz, Timm 89, 427
Linker, Sven 160
Lu, Yi 215

Mahadewa, Kulani 450
Mahony, Amanda 469
Mahony, Brendan 407
Majd, Amin 320
Marmsoler, Diego 251
Martel, Matthieu 197
Meinicke, Larissa A. 215
Meiring, Patrick A. 215
Muller, Tim 37

Oxenham, Martin 407

Potanin, Alex 231

Qin, Shengchao 177, 337

Ren, Kerong 177

Schlick, Rupert 21
Shi, Zhiping 270

Snook, Colin 21
Štill, Vladimír 124
Sun, Jun 54

Taylor, Ramsay G. 373
Troubitsyna, Elena 320

Vistbakka, Inna 320

Wang, Guohui 270
Wang, Kailong 441
Wang, Keming 21
Wu, Xi 215

Xie, Wanling 337
Xie, Wuping 70
Xu, Zhiwu 177
Xue, Jinyun 70

Yan, Jiwei 388
Yan, Jun 388
You, Zhen 70

Zhang, Jian 388
Zhang, Qianying 270
Zhang, Xiyue 419
Zheng, Yujun 70
Zhu, Huibiao 143, 337

474 Author Index

	Preface
	Organization
	Abstracts from Keynotes and Invited Talks
	Algebra, Logic, Geometry at the Foundation of Computer Science
	Security Protocols: Model Checking Standards
	Scaling Up Formal Engineering
	Security Analysis in the Real World
	Contents
	Invited Keynote Paper
	Engineering a Theory of Concurrent Programming
	1 Introduction
	2 Nondeterminism
	2.1 Verification
	2.2 Nondeterminism in Programming Languages
	2.3 Lattice Theory and Fixed Points

	3 Specification Languages
	4 Refinement Calculus
	5 Program Algebra
	6 Tests (Guards)
	6.1 Relational Algebra
	6.2 Refinement Calculus
	6.3 Kleene Algebra with Tests

	7 Well-Founded Relations
	8 Shared Memory Concurrency
	9 Concurrent Program Algebras
	10 Concurrent Refinement Calculus
	11 Conclusions
	References

	Formal Models
	Behaviour-Driven Formal Model Development
	1 Introduction
	2 Running Examples
	3 Background and Technologies
	3.1 Behaviour-Driven Development with Gherkin/Cucumber
	3.2 Event-B
	3.3 MoMuT
	3.4 iUML-B

	4 Behaviour-Driven Formal Model Development
	4.1 Modelling
	4.2 Behaviour Verification
	4.3 Scenario Generator

	5 Scenario Automation for Event-B/iUML-B
	5.1 Automation: Cucumber for Event-B
	5.2 Cucumber for iUML-B

	6 Related Work
	7 Conclusion
	References

	The Foul Adversary: Formal Models
	1 Introduction
	2 Coercion
	3 Knowledge
	3.1 Preliminaries
	3.2 Weak Coercion
	3.3 Strong Coercion

	4 Behaviour
	4.1 Preliminaries
	4.2 Formal Models of Foul Adversaries
	4.3 Hierarchy

	5 Example Systems
	5.1 Examples on (Enforced) Secrecy
	5.2 Examples on (Enforced) Privacy

	6 Conclusions
	References

	The Miles Before Formal Methods - A Case Study on Modeling and Analyzing a Passenger Lift System
	1 Introduction
	2 Background and Objectives
	3 Determining the Right Level of Abstraction
	4 Obtaining the Model Automatically
	4.1 Lift Motion Inference
	4.2 Door State Inference
	4.3 Constructing a Probabilistic Deterministic Real Time Automata (PDRTA)

	5 Validating the Obtained Model
	6 Verifying Properties
	7 Related Work
	8 Conclusion
	References

	PAR: A Practicable Formal Method and Its Supporting Platform
	1 Introduction
	2 Key Ideas and Innovative Techniques of PAR
	2.1 A Unified Approach for Designing Algorithm Based on Quantifier Transformation
	2.2 A New Representation of Algorithms
	2.3 The New Techniques About Loop Invariants
	2.4 Genericity for Modeling
	2.5 The New Techniques for Generating Database Application Program
	2.6 Distributed Transaction Processing in PAR

	3 Main Elements in PAR
	3.1 Data Type and Action in PAR
	3.2 Formal Modeling Language Radl
	3.3 Rules of Specification Transformation
	3.4 Modeling Language Apla
	3.5 Generic Constructions bib34
	3.6 Mechanism of Distributed Transaction Processing
	3.7 Automatic Model Transformation Tools
	3.8 Correctness of Model and Correctness of Model Transformation
	3.9 Architecture of PAR Platform

	4 Applications and Case Studies
	4.1 There are Two Kinds of Applications of PAR
	4.2 Case Studies

	5 Related Work
	6 Conclusion and Future Work
	References

	Verification
	Deductive Verification of Hybrid Control Systems Modeled in Simulink with KeYmaera X
	1 Introduction
	2 Preliminaries
	2.1 Simulink
	2.2 KeYmaera X

	3 Related Work
	4 From Simulink to Differential Dynamic Logic
	4.1 Assumptions
	4.2 Transformation Rules
	4.3 Model Composition

	5 Illustrating Example: Temperature Control System
	5.1 Transformation to dL
	5.2 Verification with KeYmaera X

	6 Evaluation
	7 Conclusion
	References

	Verification of Strong Nash-equilibrium for Probabilistic BAR Systems
	1 Introduction
	2 Related Work
	3 Running Example
	4 PBAR System Specification
	5 Formalizing Strong Nash-equilibrium
	6 Verification Algorithm
	6.1 Reduction
	6.2 Approximation
	6.3 Calculation of Rewards
	6.4 Algorithm

	7 Evaluation
	7.1 Comparison with PRISM-games - Job Scheduling Case Study
	7.2 Evaluating Scalability - Apple-Picking Game
	7.3 Applicability - Secret Sharing Protocol ADGH06

	8 Conclusion
	References

	Model Checking of C++ Programs Under the x86-TSO Memory Model
	1 Introduction
	2 Preliminaries
	2.1 Relaxed Memory Models
	2.2 The x86-TSO Memory Model
	2.3 DIVINE
	2.4 Relaxed Memory in C/C++ and LLVM

	3 x86-TSO in DIVINE
	3.1 Simulation of the x86-TSO Memory Model
	3.2 Stores to Freed Memory
	3.3 Integration with Other Parts of DIVINE
	3.4 Improvements
	3.5 Bounding the Size of Store Buffers

	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	Network Systems
	Modeling and Verifying NDN Access Control Using CSP
	1 Introduction
	2 Background
	2.1 NDN Access Control
	2.2 A Brief Introduction of CSP

	3 Modeling NDN Access Control
	3.1 Sets, Messages and Channels
	3.2 Overall Modeling
	3.3 Reader Modeling
	3.4 Writer Modeling
	3.5 ACM Modeling
	3.6 PROCESS Modeling
	3.7 Intruder Modeling

	4 Verification and Improvement
	4.1 Properties Verification
	4.2 First Model Improvement
	4.3 Second Model Improvement

	5 Conclusion and Future Work
	References

	The Power of Synchronisation: Formal Analysis of Power Consumption in Networks of Pulse-Coupled Oscillators
	1 Introduction
	2 Related Work
	3 Oscillator Model
	3.1 Population Model
	3.2 Successor States
	3.3 Transition Probabilities

	4 Synchronisation and Metrics
	5 Model Construction
	5.1 Reward Structures
	5.2 Restabilisation

	6 Evaluation
	7 Conclusion
	References

	CDGDroid: Android Malware Detection Based on Deep Learning Using CFG and DFG
	1 Introduction
	2 Approach
	2.1 Graph Extracting
	2.2 Graph Encoding
	2.3 Model Training

	3 Experiments
	3.1 Dataset and Evaluative Criteria
	3.2 Experiments on Different Features
	3.3 Experiments on Unknown Samples
	3.4 Comparison Against Malware Detecting Tools

	4 Related Work
	5 Conclusion
	References

	Type Theory
	Strongly Typed Numerical Computations
	1 Introduction
	2 Programming with Types for Numerical Accuracy
	3 The Type System
	3.1 Expressions, Types and Inference Rules
	3.2 Types of Primitives

	4 Soundness of the Type System
	5 Experiments
	5.1 Usual Mathematical Formulas
	5.2 Newton-Raphson Method

	6 Conclusion
	References

	Type Capabilities for Object-Oriented Programming Languages
	1 Introduction
	2 A Java-Like Language with Parameterised Capabilities
	3 Static Semantics
	3.1 Subtyping Rules and Look up Functions
	3.2 Well-Formedness and Typing Rules
	3.3 Example Revisited

	4 Dynamic Semantics
	4.1 Operational Semantics
	4.2 Subject Reduction

	5 Conclusion and Future Work
	References

	Capabilities: Effects for Free
	1 Introduction
	2 Capability Calculus (CC)
	2.1 Grammar (CC)
	2.2 Semantics (CC)
	2.3 Static Rules (CC)

	3 Applications
	3.1 Unannotated Client
	3.2 Unannotated Library
	3.3 Higher-Order Effects
	3.4 Resource Leak

	4 Conclusions
	4.1 Related Work
	4.2 Future Work

	References

	Theorem Proving
	A Framework for Interactive Verification of Architectural Design Patterns in Isabelle/HOL
	1 Introduction
	2 Background
	2.1 A Model of Dynamic Architectures
	2.2 A Pattern for Blackboard Architectures
	2.3 Isabelle/HOL

	3 IPV: A Framework for Interactive Pattern Verification
	3.1 Creating the Theory
	3.2 Specifying Data Types
	3.3 Specifying Component Types
	3.4 Specifying Architectural Constraints
	3.5 Verifying Blackboard Architectures

	4 Evaluation
	5 Related Work
	5.1 Interactive Theorem Proving for Software Architectures
	5.2 Formalization of Temporal Logic

	6 Conclusion
	References

	Formalization of Symplectic Geometry in HOL-Light
	1 Introduction
	2 Preliminaries
	2.1 Comparison Between Symplectic Geometry and Euclidean Geometry
	2.2 HOL-Light
	2.3 Formalization Framework for Symplectic Geometry

	3 Formalization of Symplectic Vector Space
	3.1 Formalization of the Basic Operations of Symplectic Vector Space
	3.2 Formal Verification of the Properties of Symplectic Vector Spaces

	4 Formalization of Symplectic Transformation
	5 Application: Formal Analysis of Matrix Optics
	6 Conclusions
	References

	Using Theorem Provers to Increase the Precision of Dependence Analysis for Information Flow Control
	1 Introduction
	2 SDG-Based Information Flow Control
	3 Logic-Based Information Flow Control
	4 The Combined Approach
	5 Implementation
	5.1 Specification Generation
	5.2 Evaluation

	6 Related Work
	7 Conclusion
	References

	Logic and Semantics
	Preserving Liveness Guarantees from Synchronous Communication to Asynchronous Unstructured Low-Level Languages
	1 Introduction
	2 Related Work
	3 Background
	3.1 Communicating Sequential Processes (CSP)
	3.2 Communicating Unstructured Code (CUC)

	4 Shared Variable Semantics (SV)
	4.1 Handshake Protocol in SV
	4.2 Definitions to Relate comm and its Implementations

	5 Handshake Refinement
	6 Preservation of Safety and Liveness Properties
	7 Handshake Refinement for Fitting Programs
	8 Conclusion
	References

	Deriving Mode Logic for Autonomous Resilient Systems
	1 Introduction
	2 Modelling and Refinement in Event-B
	3 Resilience-Enhancing Mode Transition Logic
	3.1 Reasoning About Resilience-Enhancing Mode Transitions
	3.2 Modelling Mode Transitions in Event-B

	4 Autonomous Swarm-Based System
	4.1 Mode Transition Logic for a Swarm of Drones

	5 Formal Development of a Resilient Swarm of Drones
	6 Related Work and Conclusions
	References

	UTP Semantics for BigrTiMo
	1 Introduction
	2 BigrTiMo
	2.1 Review of Bigraph
	2.2 The Syntax of BigrTiMo

	3 Denotational Semantics of BigrTiMo
	3.1 The Semantic Model
	3.2 Denotational Semantics of Basic Commands
	3.3 Denotational Semantics of Parallel Composition

	4 Algebraic Properties
	5 Conclusion
	References

	Refinement and Transition Systems
	Analysis on Strategies of Superposition Refinement of Event-B Specifications
	1 Introduction
	2 Superposition Refinement in Event-B
	2.1 Event-B and Superposition Refinement
	2.2 Modeling in Event-B
	2.3 Example: Cars on the Bridge

	3 Automated Refinement Refactoring
	3.1 Refinement Refactoring
	3.2 Automation with Heuristics

	4 Experiments on Models Constructed with Refactoring
	4.1 Evaluation Criteria
	4.2 Comparison Settings and Hypotheses
	4.3 Results

	5 Discussion
	5.1 Effects of Refactoring to POs
	5.2 Dependence of Invariants on Variables
	5.3 Use of Automated Refactoring in Development
	5.4 Threats to Validity

	6 Related Work
	7 Conclusion and Future Work
	References

	Formalising Extended Finite State Machine Transition Merging
	1 Introduction
	1.1 Motivating Example

	2 Extended Finite State Machines
	3 A Formalism for Merging EFSM Transitions
	3.1 Method Overview
	3.2 Contexts
	3.3 Computing Contexts

	4 Subsumption and Generalisation
	5 Analysing System Properties
	6 Conclusions
	References

	Checking Activity Transition Systems with Back Transitions Against Assertions
	1 Introduction
	2 Background
	3 Approach
	3.1 A Straightforward Method
	3.2 Post-reachability Graphs
	3.3 The Algorithm with PRGs

	4 Extensions
	4.1 Construct Paths for States
	4.2 Enumerated Variables and Arithmetic Expressions
	4.3 Conditional Transitions
	4.4 Self Loops
	4.5 Overloading and Disabling Back Transitions
	4.6 Activity Launch Modes

	5 Related Work
	6 Conclusion
	References

	Emerging Applications of Formal Methods
	Towards Trustworthy AI for Autonomous Systems
	1 Introduction
	2 Planning and Goal Reasoning via PAT
	3 A Trustworthy Framework for Planning and Goal Reasoning
	References

	Towards Dependable and Explainable Machine Learning Using Automated Reasoning
	1 Introduction
	2 Machine Learning Techniques Reviewed
	3 Model Analysis and Engineering Using SMT
	4 Discussion
	References

	Doctoral Symposium
	Modeling and Verification of Component Connectors
	1 Introduction
	2 Related Work
	3 Modeling and Verification of Reo Connectors in Coq
	4 Counterexample Generation and Tactic Prediction
	5 Conclusion and Future Work
	References

	Model Based Testing of Cyber-Physical Systems
	1 Introduction
	2 Problem Statement and Motivations
	3 Current Development and Related Work
	4 Proposed Approach and Significance
	5 Current Results and Assessment
	6 Future Work
	References

	Service-Oriented Design and Verification of Hybrid Control Systems
	1 Introduction
	2 Related Work
	3 Proposed Solution
	4 Conclusion and Future Work
	References

	Developing Reliable Component-Based Software in Mediator
	1 Introduction
	2 Related Work
	3 Mediator
	4 Design of the Framework
	4.1 Automatic Code Generation
	4.2 Verification

	5 Conclusion and Future Work
	References

	Model Checking Nash-Equilibrium - Automatic Verification of Robustness in Distributed Systems
	1 Introduction
	2 Nash Equilibrium Verification of PBAR FDJD16
	3 -Strong Nash Equilibrium Verification of PBAR FDJD18
	4 Nash Equilibrium Verification for Large PBAR Systems
	5 Future Directions
	References

	Analyzing Security and Privacy in Design and Implementation of Web Authentication Protocols
	1 Introduction
	2 Related Work
	3 Preliminary Work
	4 Future Work
	References

	Combining Deep Learning and Probabilistic Model Checking in Sports Analytics
	1 Background, Motivation and Our Approach
	2 Related Work
	3 Challenges and Research Plan
	References

	Security Analysis of Smart Home Implementations
	1 Introduction
	2 Approach
	2.1 Background
	2.2 Methodology
	2.3 Results

	3 Future Work
	3.1 Automatic Tool
	3.2 Smart Home for Elderly Healthcare (SHEH)

	References

	Principled Greybox Fuzzing
	1 Problem Statement and Motivation
	2 Approach
	3 Assessment
	4 Related Work
	5 Future Work
	References

	Engineering Software for Modular Formalisation and Verification of STV Algorithms
	1 Introduction
	2 Extraction of Verified Programmes for STV Algorithms
	3 Synthesis of Verified Checkers for Various STV
	4 Future and Related Work
	References

	Towards Building a Generic Vulnerability Detection Platform by Combining Scalable Attacking Surface Analysis and Directed Fuzzing
	1 Introduction
	2 Our Approach
	3 Future Work and Conclusion
	3.1 Metrics Extension
	3.2 Directed Fuzzing
	3.3 Conclusion

	References

	Formalising Performance Guarantees in Meta-Reinforcement Learning
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Meta-Learning
	2.3 Performance Guarantees

	3 Approach
	References

	Author Index

