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Integrated Kinetic Energy in North Atlantic
Tropical Cyclones: Climatology, Analysis,
and Seasonal Applications
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Abstract Integrated Kinetic Energy (IKE) is a recently developed metric that
measures the destructive potential of tropical cyclones (TCs) by integrating the
square of the surface winds across these powerful storms. In this chapter, the
previous literature is reviewed to provide insights on the factors that make IKE a
desirable metric. IKE complements existing scales and metrics by considering a
TC’s entire wind field, in lieu of just focusing on the maximum intensity of a storm.
Using a dataset of six-hourly IKE estimates for two decades of North Atlantic TC
activity, the climatology of IKE in individual storms is explored, with emphasis on
seasonal and spatial variability. The driving mechanisms for IKE variability during
the lifetime of a TC are also reviewed to determine which environmental and storm-
scale features promote IKE growth. The historical record of IKE can also be
aggregated to a seasonal metric, called Track Integrated Kinetic Energy (TIKE),
which is shown to offer a comprehensive overview of seasonal TC activity and can
be used to explore interannual TC variability over the last two to three decades.
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3.1 Introduction

In the first two decades of the twenty-first century, a series of North Atlantic tropical
cyclones (TCs) with large wind fields made landfall in the United States. These
expansive storms – including Hurricanes Ivan (2004), Katrina (2005), Ike (2008),
Irene (2011), Sandy (2012), and Irma (2017) – served as further evidence that
damage potential is tied to much more than just the oft-reported maximum sustained
wind intensity metric. Irene and Sandy, in particular, had top wind speeds that would
not rank highly on the Saffir-Simpson Hurricane Wind Scale (SSHWS) just before
they came ashore (Fig. 3.1), yet both storms caused considerable wind and surge
damage, exceeding what is typically expected for storms of a similar intensity.

Certainly, intensity metrics are still quite useful, as there is clear indication that
wind damage from TCs is connected to inner core wind speeds (e.g. Kantha 2006;
Pielke and Landsea 1998; Murnane and Elsner 2012). Specifically, Murnane and
Elsner (2012) indicate that losses and maximum sustained wind speeds are expo-
nentially related, with an increase of loss at a rate of 5% per m s�1 of peak winds.
However, beyond these high inner core wind speeds, a common meteorological
feature that is relevant to the damage caused by some of these recent landfalling
hurricanes is the overall size and structure of their wind field. For instance, a wide
swath of tropical storm strength winds (�17 m s�1) in larger TCs contributes to an
increased volume of destruction and a more widespread wind threat to the popula-
tion. Zhai and Jiang (2014) indicate that using a combination of storm size and
maximum wind speed explains a larger portion of the variance in losses caused by a
landfalling hurricane than using intensity (or size) alone. In an illuminating example,
they suggest that economic losses from the landfall of Hurricane Sandy would have
been approximately 20 times smaller if its size were comparable to an average sized
TC, leaving its maximum sustained winds unchanged as observed.

Fig. 3.1 Relative frequency distribution of six-hourly Vmax measurements in Atlantic TCs between
1990 and 2011. This sample includes 5498 fixes from 291 storms. Vertical lines are shown to
indicate Vmax values for selected hurricanes just prior to a US landfall. The times of these Vmax

measurements are as follows: Ike 9/13/08 00Z; Irene 8/28/11 06Z; Sandy 10/29/12 18Z. The three
storm points would fall in the top 45% of all TCs points in terms of Vmax from 1990 through 2011.
(Adapted from Kozar and Misra 2014)
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Furthermore, storm surge from landfalling TCs continues to be a significant threat
and has caused considerable damage historically (Pielke and Landsea 1998). Irish
et al. (2008) found that there is a significant direct relationship between the size of a
TC’s wind field and the resulting peak surge, especially in regions with mildly
sloping coastal bathymetry. Given that coastal developments continue to expand and
become more densely populated (Crosset 2004), society is becoming more at risk to
the wind and water from landfalling TCs. Given these increasing risks and the
importance of storm size to the amount of lives and property exposed to the hazards
associated with TCs, there is a rising interest in understanding and predicting the size
and structure of TC wind fields (Cangialosi and Landsea 2016; Knaff et al. 2016).

In an effort to better evaluate the damage potential of TCs as a function of winds
across the entirety of a TC, Powell and Reinhold (2007) introduced a novel,
alternative metric called Integrated Kinetic Energy (IKE). This metric is proportional
to a simple integration of one-half of the square of the 10-m wind field over a
one-meter depth out to the radius of 34-knot winds:

IKE ¼
Z
v

1
2
ρU2dV ð3:1Þ

IKE is tied to physical processes that cause damage, as it scales with wind stress
on the ocean and the wind load forcing on structures (Powell and Reinhold 2007).
Furthermore, given its integrated nature, IKE takes into account both inner core
winds (i.e. TC intensity) and the size of hurricane wind fields, giving it potential
advantages over more limiting intensity metrics which do not consider storm size at
all. This is clearly demonstrated by hurricanes Irene, Ike, and Sandy, which each
made landfall with IKE values that rank in the top 7.5% of historical values from
1990 to 2015, in contrast to their somewhat lower maximum sustained wind
placement (Figs. 3.1 and 3.2).

Fig. 3.2 Relative frequency distribution of six-hourly IKE measurements in Atlantic TCs between
1990 and 2011. This sample includes 5498 fixes from 291 storms. Vertical lines are shown to
indicate IKE values for selected hurricanes just prior to a US landfall. The times of these IKE
measurements are as follows: Ike 9/13/08 00Z; Irene 8/28/11 06Z; Sandy 10/29/12 18Z. The three
storm points would fall in the top 7.5% of TCs in terms of IKE from 1990 through 2011. (Adapted
from Kozar and Misra 2014)
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The next section of this chapter will focus on the analysis of historical IKE values
across the North Atlantic basin with a focus on how the metric can be measured or
approximated, followed by a discussion on the climatology of IKE in North Atlantic
tropical cyclones. Afterward, a series of sensitivity tests is presented to explore
relationships between the environment, storm-scale features, and IKE, which might
offer some guidance on how IKE could respond in a changing climate. Finally, an
application will be presented in which IKE can be used to evaluate interannual TC
activity (Sect. 3.4), with a discussion on how seasonal sums of IKE vary with
changes in climate processes.

3.2 Analysis of IKE

3.2.1 Estimating Observed IKE

The biggest strength of the IKE metric is its consideration of the distribution and
strength of surface winds across the entirety of a TC’s wind field. However, by
considering winds across such a large area, calculating IKE exactly in either a real-
time or historical setting poses some potential challenges. Observations from aircraft
reconnaissance serve as the most useful source of information when assessing storm
size and structure. Other observational platforms such as buoys, ships, radar, and
surface-based anemometers along the coast can also be of great use to measure the
size and structure of TC wind fields, as demonstrated by the HRD real-time
hurricane wind analysis system (H*Wind; Powell et al. 1998). When available,
observationally-based gridded wind fields from analyses such as these are the
preferred framework for calculating IKE directly (Powell and Reinhold 2007).

However, the critically important aircraft reconnaissance flights are not necessar-
ily continuous in the Atlantic. For instance, Rappaport et al. (2009) reported that the
coverage of these data is for only about 30% of all TC fixes in the North Atlantic. In
other basins across the globe (e.g. West Pacific, Southern Hemisphere, and Indian
Ocean), flight data may be absent altogether. The dearth of in situ observations in
some locations has forced forecasters, analysts, and researchers alike to rely more
heavily on wind field estimates from satellites (Knaff et al. 2016). These satellite-
based winds may come from multiple sources, including microwave radiometers
(Demuth et al. 2004, 2006), scatterometers (e.g. Atlas et al. 2011; Holmlund et al.
2001), and cloud drift winds (Velden et al. 2005). Ultimately, spaceborne retrievals
are quite useful for filling gaps where surface data might not otherwise exist, but
these techniques still have their own limitations. For instance, scatterometers often
underestimate the inner core wind speeds within intense TCs (e.g. Brennan et al.
2009), and retrievals are susceptible to contamination from high rain rates through-
out the storm (e.g. Weissman et al. 2012). As technology improves and new
observation platforms become available in the coming years (e.g. GOES-16,
CYGNSS, etc.), it is likely that measurements of hurricane wind structure will
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improve both in quality and duration, allowing for better estimation of IKE (Morris
and Ruf 2016).

In the meantime, given the inconsistent coverage and quality of hurricane wind
measurements around the world, it may be difficult to compute IKE directly from
observations in all cases. Other gridded datasets such as numerical reanalysis
provide another option for estimating historical values of IKE across the globe in a
more consistent framework. However, gridded wind reanalyses continue to show a
persistent weak TC bias and often are unable to resolve smaller TCs (Manning and
Hart 2007; Schenkel and Hart 2012; Buchanan et al. 2018), making them less than
ideal for directly calculating the IKE of a TC’s wind field in most cases.

Given the challenges of calculating IKE directly, Misra et al. (2013) offered an
alternative method for approximating IKE through an empirical relationship between
reported operational wind radii. Estimates of storm size are already provided by
many of the TC warning centers (e.g. National Hurricane Center [NHC], Central
Pacific Hurricane Center [CPHC], Joint Typhoon Warning Center [JTWC]) in their
regular advisories. These operational values are often stored and/or reanalyzed after
the season in research and operational datasets such as the Automated Tropical
Cyclone Forecast System (ATCF) b-decks or the NHC’s HURDAT2 database and
the Extended Best Track (Demuth et al. 2006). Size is typically reported in datasets
such as these by providing approximations of the maximum radial extent of 34-kt
(tropical storm force), 50-kt (storm force by Beaufort wind scale; WMO 1970) and
64-kt (hurricane force) winds in cardinal geographic quadrants (northwest, south-
west, southeast, and northeast) from available data platforms. The aforementioned
data quality and coverage inconsistencies surely affect the accuracy of the opera-
tional radii metrics (e.g. Landsea and Franklin 2013). Furthermore, Vigh et al.
(2012) specifically notes that some parameters such as the radius of maximum
winds often do not match actual aircraft measurements particularly well in the
early portions of the Extended Best Track data (i.e. pre-2001). Nonetheless, Knaff
et al. (2016) indicate that the best track wind radii from the NHC provide useful
estimates of TC wind radii for developing new techniques.

Table 3.1 details the algorithm to compute IKE from discretized wind radii data
adapted from Misra et al. (2013). These formulas may be used in conjunction with
the HURDAT2 and the Extended Best Track dataset to provide a continuous
estimate of IKE for all storms in the Atlantic basin, going back almost three decades
in a reasonably consistent framework. Such a dataset of IKE values, while inexact,
would still be useful for analyzing the climatology of IKE in storms across the North
Atlantic basin.

3.2.2 Climatology of IKE in the North Atlantic Basin

Applying the algorithm in Table 3.1 to the radii data in HURDAT2 and the Extended
Best Track dataset yields a historical dataset containing IKE estimates for more than
5600 six-hourly fixes for nearly 300 storms between 1990 and 2011 in the North
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Atlantic Basin. Only fixes for subtropical storms and TCs are used in this dataset, but
certainly some of the included fixes will correspond to storms that are ongoing but
have not completed extratropical transition. Across this wide sample of IKE fixes
(of which the distribution is plotted in Fig. 3.2), the mean six-hourly IKE value is
35.4 TJs. The distribution is skewed towards lower values with more than 57% of the
fixes containing less than 25 TJ of IKE. Consequently, the standard deviation of IKE
values is relatively high (43.6 TJ), and there is a long tail of high IKE values in the
record. Sandy in 2012 and Igor in 2010 are two recent members of this long tail, as
both obtained more than ten times the mean IKE value by the end of their lifetime.
Overall, the shape of the distribution for this large number of IKE samples resembles
a log-normal distribution (Kozar and Misra 2014), which was also proposed as a
good fit for the distribution of storm size as measured by the radius of vanishing
wind (Dean et al. 2009).

Further dissection of the historical dataset reveals that over the course of a storm’s
lifetime, it will peak at approximately 50 TJ of IKE on average. More than a quarter
of the 291 storms in the record never grow past 10 TJ of IKE at any one time, with
only a fifth of the historical storms ever reaching 100 TJs during their lifetime.

The seasonal cycle of the IKE values in this record follows somewhat closely the
seasonal cycle of TC frequencies in the North Atlantic, except it is skewed a little bit

Table 3.1 Algorithm to compute IKE from discretized wind radii data (e.g. Extended Best Track
data Demuth et al. 2006) (From Misra et al. 2013)

Quadrant IKE
contribution Criteria

Mean wind (m s
�1) Area

IKE18–26 R26 >0 20 1/4 π (R18
2
–R26

2)

No R26, VMS>26,
R18>Rmax

20 1/4 π (R18
2
–

(0.75Rmax)
2)

No R26, VMS<26,
R18>Rmax

1/4 VMS + 3/4
(18)

1/4 π (R18
2
–

(0.75Rmax)
2)

No R26, Rmax¼R18 18 1/4 π (R18
2
–(0.5R18)

2)

IKE26–33 R33>0 27.75 1/4 π (R26
2
–R33

2)

no R33, VMS>33,
R26>Rmax

27.75 1/4 π (R26
2

�(0.75Rmax)
2)

no R33, VMS<33,
R26>Rmax

.25 VMS+.75
(26)

1/4 π (R26
2
–

(0.75Rmax)
2)

no R33, R26<¼Rmax 26 1/4 π [R26
2�(.5R26)

2]

IKEH Max R33 Quadrant,
R33>Rmax

.25VMS +.75
(33)

1/4 π (R33
2
–

(0.75Rmax)
2)

Max R33 Quadrant, R33¼
Rmax

.25VMS +.75
(33)

1/4 π (R33
2
–(.75 R33)

2

)

R33<Rmax .1VMS + .9(33) 1/4 π (R33
2
–(.75 R33)

2

)

Not max R33 Quadrant .1VMS + .9(33) 1/4 π (R33
2
–

(0.75Rmax)
2)Rmax ¼ R33

R18, R26, R33, refer to radius of wind speeds of 18, 26, 33 ms�1, Rmax is radius of maximum winds
and VMS is speed of maximum sustained wind speed of the TC
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more towards the end of the typical hurricane season. The mean monthly IKE value
peaks in September at 44 TJ, or approximately 25% higher than the overall mean
(not shown). Mean six-hourly IKE values are higher in October and November than
they are in June, July, or August, indicating a preference for storms with higher IKE
values later in the season.

Looking now at the spatial climatology of IKE across the Atlantic, it becomes
evident that storms climatologically obtain higher IKE values as they move pole-
ward in the northern part of the basin (Fig. 3.3). This is consistent with the higher
IKE values found later in the season, as many TCs that form in October and
November occur in the western half of the basin and follow a more meridional
track toward the pole. Meanwhile, TCs over the main development region in the
central Atlantic and Caribbean typically have less IKE, with a few other localized
maxima appearing in the Gulf of Mexico and over the Bahamas. Focusing on only
IKE values that exceed 100 TJ in the historical record, it becomes even more
apparent that the western and northern parts of the basin are preferred regions for
high IKE values (Fig. 3.4). Furthermore, storms tend to obtain their lifetime peak
IKE value at the end of their tracks either in the northern part of the basin as they
recurve or just before making landfall in the western edges of the basin (Fig. 3.5).
This tendency for IKE to maximize in the northwest part of the basin does not
necessarily overlap with where one might expect the most intense storms to be
located, which would likely be further south.
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Fig. 3.3 Map showing historical mean IKE values for all fixes from 1990 to 2011 spatially across
3� 3� bins in the North Atlantic. The distribution of mean IKE suggests that storms have higher
IKE on average in the northern most latitudes of the basin. Please note that the grid cells in the
higher latitudes will be smaller in area than the grid cells over the deep tropics in this figure and the
two that follow
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Indeed, the northwestern part of the basin does not necessarily include the most
favorable conditions for traditional TC development throughout most of the year.
With the exception of areas along the Gulf Stream, sea surface temperatures (SSTs)
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Fig. 3.4 Map showing where tropical cyclones between 1990 and 2011 had IKE exceeding 100TJ,
gridded into 3� 3� bins
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Fig. 3.5 Map showing where tropical cyclones reached their maximum lifetime IKE values from
1990 to 2011, gridded into 3� 3� bins
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are often cooler in the northern part of the basin, and vertical wind shear also tends to
be higher, suggesting that baroclinic effects or trough interactions in the
mid-latitudes may be vital for creating and sustaining high IKE storms. All of this
suggests that the factors that govern IKE variability are complex and likely regional,
with the northern part of the basin likely impacted by more than just the processes
that govern traditional intensification. Maclay et al. (2008) indicated that observed
intensity and kinetic energy metrics from observations across the basin fit reasonably
well to a power law function, with kinetic energy increasing by an order of (Vmax)
1.872. However, a scatter plot of intensity and IKE shows two different relationships
for storms north or south of 30�N latitude (Fig. 3.6). In the southern part of the basin,
IKE is tied to intensity, with the two quantities having a correlation of 0.65
(significant at the p ¼ 0.01 level). In contrast, IKE and intensity are less correlated
in the northern part of the basin, with the highest IKE values all occurring in an
intensity sweet spot centered on the lowest Saffir-Simpson Scale category or two.

The evolution of kinetic energy and intensity has been explored at length previ-
ously. Musgrave et al. (2012) suggested that the lifecycle for a TC contains three
stages—incipient, deepening, and mature—with intensification occurring in the first
two phases and kinetic energy growth occurring throughout all phases. The incipient
phase includes more gradual increases in kinetic energy and intensity, before
intensity begins to increase more rapidly during the deepening phase. Maclay et al.
(2008) found that intensifying storms over warm waters and with low shear typically
saw less kinetic energy growth than would be expected by the aforementioned power
law KE-Vmax relationship, as these wind speed increases are more confined to the
inner core. Putting this all together helps to explain why mean IKE values in the
southern half of the basin tend to be more moderate—increasing a little bit more as
storms reach the western Caribbean and Gulf of Mexico—as traditional intensifica-
tion mechanisms typically only increase IKE so far.

However, as Musgrave et al. (2012) points out, kinetic energy continues to
increase during the mature phase of a TC, long after the storm reaches its maximum
lifetime intensity. In fact, many storms gain IKE quite rapidly as they turn poleward,
which likely can be attributed to external forcing from baroclinic influences, trough
interactions, and extratropical transitions, which can help to promote increased
angular momentum, wind field expansion, and some inner core intensification
simultaneously (e.g. Maclay et al. 2008). An IKE-Vmax diagram of Hurricane Igor
in 2010 (Fig. 3.7) serves as a good example that fits closely to the idealized lifecycle
for a TC as detailed by Musgrave et al. (2013). IKE increased throughout much of
the Igor’s lifecycle with the most drastic increase in IKE occurring as Igor interacted
with a trough in the mid-latitudes prior to becoming extratropical, causing its lifetime
maximum IKE value to be at the end of its life as a tropical cyclone.

Of course, there are many additional processes that can interrupt the idealized
evolution of IKE during a TC’s lifecycle (and thus the climatological preferences of
IKE in the basin) that have not been discussed above. Land interactions are one obvious
and noteworthy event that often results in large changes across a TC’s structure
(e.g. potentially increasing the radius of maximum winds and the general decay of
wind speeds over land), which of course will impact IKE. In addition, Sitkowski et al.
(2011) found that concentric eyewall replacement cycles also greatly affect the IKE in a

3 Integrated Kinetic Energy in North Atlantic Tropical Cyclones. . . 51



200

180

160

140

120

100

80

60

40

20

0
40

350

300

250

200

150

100

50

0

60 80

Maximum Sustained Wind Speed (kts)

a

b

In
te

g
ra

te
d

 K
in

et
ic

 E
n

er
g

y 
(T

J)
In

te
g

ra
te

d
 K

in
et

ic
 E

n
er

g
y 

(T
J)

100

r=0.65

r=0.28

120 140 160

4030 50

Maximum Sustained Wind Speeds (kts)

60 70 80 90 120100 110

Fig. 3.6 (a) Plot of integrated kinetic energy (TJ) versus maximum intensity (kts) for 3896 Atlantic
TCs located south of 30�N latitude between 1990 and 2011 (blue dots). The black line represents a
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TC’s wind field, with an average increase of 28% in a sample of 24 events. Musgrave
et al. (2012) visualized these eyewall replacement cycles in the IKE-Vmax diagram as a
brief excursion to lower intensities with continued IKE growth.

3.3 Statistical-Dynamical Sensitivity Tests for Studying
IKE Variability

As was summarized in the previous section, IKE has some notable climatological
preferences, some strong ties to environmental conditions, and the tendency to
increase throughout a TC’s lifetime. All of these factors can be leveraged to model

⁄�

Fig. 3.6 (continued) easily significant at the p ¼ 0.01 level. (b) Plot of integrated kinetic energy
(TJ) versus maximum intensity (kts) for 735 Atlantic TCs located north of 35�N latitude between
1990 and 2011. The correlation between VMAX and IKE in this figure is r ¼ 0.28
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Fig. 3.7 Evolution of integrated kinetic energy (TJ) versus maximum intensity (kts) throughout the
lifetime of Hurricane Igor in September of 2010 following Musgrave et al. (2012). The first point on
the plot temporally (green circle) occurred on September 9, 2010, shortly after Igor obtained
Tropical Storm intensity for the first time. Each of the subsequent cyan circles signals a 00Z
storm fix, indicating the passage of a day’s time, with the final fix occurring on September
21, 2010 (red circle) when Igor completed its extratropical transition over the North Atlantic
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IKE variability using a statistical-dynamical model of atmospheric and oceanic
parameters. Kozar and Misra (2014) and Kozar et al. (2016) offered a proof of
concept that IKE can be modeled skillfully relative to persistence and climatology.
These models might be used not only for future forecasting applications (with
dynamically forecasted predictors), but can also be quite useful for further analyzing
the relationships between IKE and the environment, as is done here using a set of
sensitivity tests.

For these sensitivity tests, we utilize the system of artificial neural networks
presented by Kozar et al. (2016). This statistical-dynamical system, named the
Statistical Prediction of IKE Version 2 (SPIKE2), was designed to analyze and
hindcast IKE variability in North Atlantic TCs. It builds upon the linear regression
techniques used in the first version of SPIKE (Kozar and Misra 2014), by incorpo-
rating the intrinsic nonlinear map of weights within the neural networks, which
allowed SPIKE2 to anticipate the nonlinearities within the environment-TC system.
For example, in traditional TC development, wind shear is typically negatively
correlated with inner core intensity and IKE; however, in the mid-latitudes, an
increase in shear (to an extent) might benefit outer wind field expansion as
extratropical transition often causes wind fields to increase in size (e.g. Evans and
Hart 2008). In a linear regression approach, it would be impossible to tease out these
complex signals, but the neural networks used for SPIKE2 possess the flexibility to
potentially anticipate these signals within the training dataset.

To best estimate how the SPIKE2 neural networks would perform in a forecast
realm, Kozar et al. (2016) focused on neural networks that were calibrated and
evaluated using reanalysis and hindcast data from the second generation GEFS
reforecast project (Hamill et al. 2013). Despite the predictors containing some degree
of modeling uncertainty and forecast error, SPIKE2 performed well and was skillful
relative to both climatology and persistence out to 72 h. In fact, for a 24-h hindcast,
SPIKE2 explained more than 80% of the variance in the IKE record. Despite the
impressive hindcast results, this section will move the neural networks back into the
perfect prognostic space using historical predictors. The historical predictors in the
perfect prognostic space do not contain forecast errors and are better suited for an
exercise seeking to best understand how the environment modulates IKE in observed
North Atlantic TCs.

In this perfect prognostic setup, SPIKE2 is calibrated and evaluated with eighteen
predictors (Table 3.2) to estimate 36-h changes of IKE. The input predictors include
metrics relevant to large scale atmospheric/oceanic dynamics and thermodynamics
(e.g. deep layer wind shear, upper atmospheric temperatures, relative humidity, sea
surface temperatures, and upper level divergence), storm specific parameters (min-
imum central pressure, maximum wind speed, center position, time since genesis,
etc.), and a series of persistence parameters (past 12-h change of intensity and 36-h
IKE persistence). Ultimately, these parameters were chosen from a larger pool of
candidate predictors based on their physical relationship to storm size and strength,
and their significance for statistically modeling IKE. The neural networks were
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constructed with an optimal number of nodes for these predictors to minimize the
chances of overfitting. Kozar et al. (2016) offers a more complete discussion on the
construction of the neural network and the selection of the predictors in greater
detail. For brevity, each of these parameters will be referred to by its abbreviation in
Table 3.2 throughout the remainder of this section.

Most of the eighteen parameters are extracted directly from the Statistical Hurri-
cane Intensity Prediction Scheme (SHIPS)’s developmental dataset (DeMaria and
Kaplan 1999), while others are taken from the NOAA Optimum Interpolation SST
(“OI SST”; Reynolds et al. 2007) dataset and the NHC best track dataset
(Jarvinen and Neumann 1979, Jarvinen et al. 1984). In the end, all predictors are
normalized by the mean and standard deviation of the observed sample, which is
comprised of more than 15 years of Atlantic TC data. Of course, the corresponding
IKE targets used in calibration of the neural networks are taken from the wind radii-
based historical record that has been described at length in the previous sections.
Overall, the neural networks are trained on these 18 parameters for more than 3000
six-hourly storm fixes between 1995 and 2011.

The resulting statistical fit between SPIKE2’s estimates of IKE and the historical
record of IKE is a correlation greater than 0.90. The observed distribution of 36-h
IKE tendency is also modeled reasonably well when given historical parameters
(Fig. 3.8), albeit the modeled IKE tendency values are skewed more towards small

Table 3.2 List of eighteen predictors used to calibrate the perfect prognostic version of the SPIKE2
neural networks that is used in the sensitivity tests

Variable Definition Units

PIKE 36 h persistence of IKE TJ

dIKE12 Previous 12 h change of IKE TJ

VMAX Maximum sustained wind speed kts

VMPI Difference between maximum potential intensity and VMAX kts

LAT Latitude of storm’s center �N
LON Longitude of storm’s center ��W
MSLP Minimum sea level pressure hPa

PENV Average surface pressure (averaged from r ¼ 200–800 km) hPa

VORT 850 hPa vorticity (r ¼ 0–1000 km) 10�7 s�1

D200 200 hPa divergence (r ¼ 0–1000 km) 10�7 s�1

SHRD 850–200 hPa shear magnitude (r ¼ 200–800 km) kts

SHTD 850–200 hPa shear direction (r ¼ 200–800 km) �

RHLO 850–700 hPa relative humidity (r ¼ 200–800 km) %

RHMD 700–500 hPa relative humidity (r ¼ 200–800 km) %

T150 150 hPa temperatures (r ¼ 200–800 km) �C
SST Sea surface temperatures �C
SDAY Time after tropical storm genesis days

PDAY Time from peak of season (Sept. 10) days
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increases of IKE than is observed. Given SPIKE2’s ability to recreate the historical
record of IKE, we are interested in learning how sensitive the modeled IKE estimates
are to each predictor. As such, we will use a run of SPIKE2 with the unaltered
historical parameters as the control run, and then each parameter will be perturbed
one at a time by �1σ and �2σ for all of the 3000 fixes in the training dataset to
examine how the nonlinear statistical model responds to perturbations in the envi-
ronment. The distributions of IKE tendency as predicted by SPIKE2 in each
perturbation run will be plotted against the control to best approximate how changes
in the storm or the environment are likely to influence IKE tendency in an Atlantic
TC (Fig. 3.9). Furthermore, the median of the distributions from each perturbation
run is compared to the control run to see whether or not the distributions of IKE
tendency systematically shift towards more negative or positive values (Table 3.3).
The results of this sensitivity test are discussed at length by Kozar (2015), with the
most significant results discussed in the remainder of this section.

Overall, the modeled distribution of IKE is most sensitive to the persistence and
intensity parameters, with a few dynamical, thermodynamical, and positional param-
eters also having a significant impact on IKE variability. The significance of the
persistence parameter is not entirely surprising. The positive shift in the distribution
for the negative IKE perturbation test indicates that smaller developing TCs with less
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Fig. 3.8 Probability distribution of 36-h IKE change from the control run of the SPIKE2 neural
network system and from the historical record. Approximately 3000 storm fixes from 1995 to 2011
are included in this distribution
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IKE are more likely to gain IKE, as long as other conditions are not too prohibitive,
which is consistent with the theory that TCs gain IKE for most of their lifetime over
the open ocean, even as intensity fluctuates, such that they obtain their maximum
value of IKE prior to landfall or the completion of ET (Musgrave et al. 2012). In
addition, this negative relationship between PIKE and IKE tendency is influenced by
the fact that a storm with higher values of IKE obviously has more IKE to lose than
does a smaller storm. Therefore, a storm with 100 TJs could theoretically lose or gain
a large amount of IKE, causing the distribution of modeled IKE tendency to become
broader for the positive PIKE perturbations.

Both intensity-related metrics – maximum sustained winds and minimum central
pressure – have significant relationships with the modeled IKE tendency values. As
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Fig. 3.9 The results of the sensitivity exercise are presented by showing how variations of each
input parameter affect the probability distribution of a 36-h deterministic projection of IKE change
from SPIKE2 for nearly 3000 TC fixes in the North Atlantic basin. The probability distribution for
the control run is shown in each panel with a grey shaded polygon. The red curves show the
distribution of projected IKE change from SPIKE2 when a single predictor is increased by one
standard deviation (light red curve) or two standard deviations (dark red curve) for all historical TC
fixes. The blue curves show the distribution of projected IKE change from SPIKE2 when each
observed predictor is decreased by one standard deviation (light blue curve) or two standard
deviations (dark blue curve) for all historical TC fixes
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intensity increases, IKE growth tends to be more prevalent, causing the distributions
in Fig. 3.9 to shift to the right as VMAX is perturbed upward and MSLP downward.
This result is not surprising, considering that Musgrave et al. (2012) showed the
greatest gains in IKE to occur during the deepening and mature phases of a TCs life
cycle. Despite their similarities, MSLP and VMAX interestingly affect the distribu-
tion of modeled IKE tendency values in vastly different manners. For instance, the
negative VMAX perturbation runs have a broader distribution than the control run
and any other VMAX or MSLP perturbation run. Therefore, a low intensity in terms
of VMAX at the valid forecast time does not prevent SPIKE2 from projecting IKE to
increase if other environmental parameters are favorable. In contrast, the distribution
for the positive MSLP perturbation runs is shaped very similarly to the control run,
albeit shifted to the left. This makes it less likely for TCs to gain an appreciable
amount of IKE when its MSLP is high, as storms with higher central pressures are
typically in their incipient phases (and not gaining IKE rapidly yet) or are
approaching the end of their lifetime following decay in prohibitive environments
(e.g. high shear or movement over land).

Table 3.3 Percent changes for median SPIKE2 projections of IKE tendency in each perturbation
run relative to a control simulation

Perturbations to Variables
�2σ �1σ +1σ +2σ

Perturbed Input Parameter PIKE 268% 150% �177% �406%

dIKE12 �13% �8% 11% 25%

VMAX �215% �61% 34% 59%

RHLO 75% 45% �39% �71%

RHMD �37% �20% 21% 32%

VMPI 43% 36% �17% �11%

SHRD �2% �3% 11% 31%

SST �21% �16% 18% 1%

D200 �6% �4% 10% 26%

T150 �23% �9% 19% 46%

MSLP 157% 79% �62% �133%

VORT �86% �42% 49% 97%

LAT �62% �33% 23% 12%

LON �69% �25% 20% 28%

PENV 23% 14% �7% �17%

SHTD 24% 12% �5% 0%

PDAY 43% 17% �4% �9%

SDAY �16% 0% �1% �19%

As discussed in Sect. 3.3, each perturbation run adjusts exactly one variable (leftmost column) up or
down by either one or two standard deviations (topmost row). The resulting changes of IKE were
tested for significance with a two-sample bootstrapping exercise. Those that are deemed significant
at the two-sided 95% level are displayed in a italic font
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The differences between the distribution of the runs with negative VMAX and the
distribution with positive MSLP perturbations arise because VMAX does not have a
truly linear relationship with MSLP, with many operationally used pressure-wind
relationships taking storm size and other environmental parameters into account
(e.g. Knaff and Zehr 2007). For example, in the historical record, there are plenty of
storms that have anomalously low minimum pressure levels, despite modest maxi-
mum wind speeds, especially in the mid-latitudes (e.g. Hurricane Sandy). Likewise,
there are plenty of TCs that have modest values of VMAX (~50 to 70 kts) and
anomalously high values of IKE (>100 TJ). As a result, it is not a surprise that the
negative VMAX perturbation runs have a broader distribution to capture the possi-
bility for high and low IKE storms depending on the other environmental and
positional parameters.

On the subject of positional parameters, SPIKE2 also suggests that increasing
latitude will result in IKE growth more often than not. The positive LAT perturba-
tion runs have distributions that are skewed to the right when compared to the control
run (Fig. 3.9). As a result, the median of the distribution for the +1σ and +2σ LAT
perturbation tests is significantly greater than that of the control run at the 99%
confidence level based on simple two-sample bootstrapping tests (Table 3.3). Inter-
estingly, the distribution is not shifted quite as far away from the control run when
compared with the MSLP, VMAX, and PIKE perturbation runs. This is not terribly
surprising, considering that geographical positions are often overruled by the actual
environmental conditions near the storm. As a result, the distribution of the positive
LAT perturbation tests is somewhat broader than in the control run. This ultimately
allows for a storm to have decreasing IKE when entering higher latitudes if the storm
is not likely to undergo expansion from extratropical transition or trough interac-
tions. In that regard, if a TC is over the high latitudes (LAT¼ +1σ), with cold oceans
(SSTs ¼ �2σ), with moderately low intensity (MSLP ¼ +1σ; VMAX ¼ �1σ), and
its IKE has already begun to fall (dIKE ¼ �2σ), SPIKE2 will project IKE to
continue falling.

Dynamical predictors such as low-level vorticity also show some significant
sensitivity to IKE variability (Table 3.3). Indeed, VORT has a strong positive
relationship with modeled IKE tendency. Positive perturbations of VORT shift the
distribution towards positive SPIKE2 projections, and the negative VORT pertur-
bation runs result in a shift towards more negative IKE changes (Fig. 3.9). Overall,
storm growth is projected to occur more frequently when VORT increases, and
storm decay becomes more likely when a storm has either a small or weak vorticity
signature, which is not surprising given that a stronger and larger circulation with
high vorticity is indicative of high relative angular momentum and a strong cyclonic
wind field.

Additionally, T150 also shows a significant relationship with the modeled IKE
tendency distribution. The metric was used by Maclay et al. (2008) to examine
kinetic energy variability, with the upper tropospheric temperatures standing in as a
proxy for the tropopause height. Higher T150 values are indicative of a lower
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tropopause, which is a characteristic of the higher latitudes. Given the tendency for
the largest IKE changes to occur in the mid-latitudes (large gains from trough
interactions, and large drops from storm decay over prohibitively cold waters), the
negative T150 perturbations produce a narrower distribution, while the positive
perturbations produce a wider distribution. The increase in moderate to large IKE
gains in the positive T150 runs are consistent with the observed rapid growth in
storms like Sandy and Igor.

On the other hand, some other predictors well known to influence TC develop-
ment like SHRD and SST do not cause a systematic shift in the distribution of IKE
tendency. This is likely due to the complexity of the nonlinear signals between these
predictors and IKE. Through further testing it becomes clear that many of these
predictors affect IKE variability in different environmental regimes. For instance, an
extra perturbation test over the lower latitudes with negatively perturbed LAT and
negatively perturbed T150 shows that IKE has a tendency to grow with increasing
SST and decreasing SHRD, which is not true in higher latitudes where non-tropical
mechanisms such as trough interactions and baroclinic forcing can allow storms to
grow in size while possibly also increasing intensity briefly as storms begin to
transition (e.g. Maclay et al. 2008).

Ultimately, the results presented from these sensitivity tests offer some clues on
how the IKE of Atlantic TCs may respond to our changing climate. Some recent
literature has suggested that stronger storms are migrating northward (e.g. Kossin
et al. 2014; Baldini et al. 2016) as warm sea surface temperatures expand poleward.
The sensitivity tests indicate that IKE growth is promoted when storms are more
intense and in regions of higher latitude. As such, one could hypothesize that, all else
being equal, a poleward shift in TC activity could promote greater increases in IKE
on a per storm basis, as storms approach the Mid-Atlantic United States and interact
with mid-latitude features. However, when focusing on just the North Atlantic, this
poleward trend might be less significant and might even be negative in the basin
(Moon et al. 2015; Kossin et al. 2016).

Other studies have also indicated that the global tropics are expanding (Lucas
et al. 2014) and that baroclinicity could become weaker in the mid-latitudes, which
could affect the extratropical transition process (Ito et al. 2016). All of these factors,
along with long-term variability in cyclogenesis and steering currents, could have
ramifications for where TCs are most likely to gain IKE. Given all of the complex-
ities within the dynamics and thermodynamics of a changing climate, more work is
clearly needed to evaluate whether or not higher IKE storms will become propor-
tionally more common in the future, and/or whether or not the regions for IKE gain
will shift across the basin at all.
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3.4 Lower Frequency IKE Variability and Seasonal
Applications of IKE

The six-hourly historical IKE record in the Atlantic can also be used to investigate
whether or not any longer-term trends exist for IKE in the Atlantic basin. Powell and
Kozar (2015) presented some initial findings that focused on interannual IKE
variability. There is some slight evidence of increased IKE values for storms in the
North Atlantic basin over a 25-year sample from 1990 to 2014 (Powell and Kozar
2015). Linear trend lines for the frequency of storms that exceed 25 TJs and 50 TJs
are both positive during this timeframe, but they were not significant by any
measure. In fact, much of this positive trend can be attributed to the lower number
of TCs in the early 1990s, relative to the high annual counts seen afterwards. The
peak instantaneous IKE value observed in any storm for a given year, which is less
dependent on TC frequencies, also contains a positive trend (Powell and Kozar
2015). However, it is important to note that this sample is relatively short for
investigating variability on interannual and longer scales, allowing for anomalous
years (2005) and anomalously high-IKE storms (e.g. Igor, Sandy) to dominate the
longer-term signal. As such, further work and a longer historical record are both
clearly needed to better understand longer-term variability of IKE in Atlantic.
tropical cyclones.

The record of IKE values can also be extended to monitor seasonal TC activity by
aggregating IKE values across the lifetime of all TCs in a given year. To this end,
Misra et al. (2013) proposed the Track Integrated Kinetic Energy (TIKE), the sum of
IKE over the TC lifetime, which has some similarity to Accumulated Cyclone
Energy (ACE; Bell et al. 2000) and Power Dissipation Index (PDI; Emanuel 2005,
2007). However, these latter indices are critically dependent on the intensity, with
ACE and PDI proportional to the second and third power of the maximum sustained
wind speed of a TC, and ignore the size aspect of the TC. In contrast, TIKE is
comprehensive, in that it integrates the size, the wind speed, and the life span of the
TC. Misra et al. (2013) computed TIKE for each named TC in the North Atlantic
between 1990 and 2011 by summing the IKE values every 6 h over the lifetime of
the TC.

Analysis of average monthly TIKE values reveals a peak in September (Fig. 3.10)
coinciding with the corresponding peak in larger and longer-living TCs in the same
month (Misra et al. 2013). Meanwhile, annual TIKE values exhibit significant
interannual variations that are comparable to variations in other metrics that measure
seasonal Atlantic TC activity (Fig. 3.11). The correlation over the North Atlantic
between TIKE and ACE is 0.86, between TIKE and number of storms is 0.61, and
between ACE and number of storms is 0.78. There are some notable differences
between TIKE and the other metrics, however. Yu et al. (2009) and later Yu and
Chiu (2012) noted that the differences between seasonal metrics that incorporate
storm size and those that are intensity-based will grow exponentially as storm
intensities increase. As such, comparisons between TIKE and ACE, as well as
annual TC counts, are quite illuminating (Fig. 3.11). For example, the 2005 season,
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Fig. 3.10 Monthly climatology of TIKE and the number of tropical storms in the North Atlantic
basin between 1990 and 2011. (From Misra et al. 2013)

Fig. 3.11 Time series of TIKE, ACE and number of tropical storms in the North Atlantic basin
from 1990 to 2011. (Adapted from Misra et al. 2013)
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with its 28 named Atlantic TCs, appeared as a highly anomalous year in terms of
ACE and the number of TCs in a season. However, TIKE proved to be far less
anomalous in 2005. With the exception of a few notable storms such as Katrina, this
comparison reveals that 2005 was not characterized by as many large-sized and
long-lived TCs as other active seasons, such as 1995. Overall, the most anomalously
high TIKE years were 1995 followed by 1996, 1999, and 2012, with 1993 and 2013
being the two least active years since 1990 as measured by TIKE.

Misra et al. (2013) also examined interannual variations of TIKE with global SST
variations. Like most other indices of Atlantic TC activity (e.g. ACE), TIKE exhibits
a robust relationship with SST variations in the equatorial Pacific associated with the
El Niño Southern Oscillation (ENSO). Figure 3.12 suggests that a warm (cold)
ENSO phase is associated with anomalously small (large) Atlantic TIKE. This is
consistent with earlier studies which indicated that cold ENSO events are associated
with not only increased TC activity as a whole, but also more recurving and
landfalling TCs in the Atlantic (Bove et al. 1998; Kossin et al. 2010; Colbert and
Soden 2012). In other words, cold ENSO events are associated with more TCs in the
western tropical Atlantic and northern (extra-tropical) Atlantic, such that the exis-
tence of longer-lived and higher IKE storms is promoted, leading to a higher
accumulation of TIKE throughout the course of a La Niña hurricane season.

Similarly, Misra et al. (2013) also investigated ties between interannual variations
of TIKE and Atlantic Warm Pool (AWP) variability. The AWP is defined as the area
enclosed by the 28.5 �C isotherm in the tropical-subtropical Atlantic Ocean and is a
robust seasonal phenomenon that coincides with the Atlantic hurricane season
(Wang and Enfield 2001). Ultimately, a positive correlation of 0.43 exists between
TIKE of Atlantic TCs and the area covered by the AWP from August through
October. In other words, large AWP seasons are associated with increased likelihood
of larger values of TIKE and small AWP seasons are associated with smaller annual
accumulations of TIKE.

Physically, this positive relationship between the size of the AWP and TIKE is
consistent with the findings of earlier research. For instance, the AWP’s interannual
variability corresponds well with variations of the North Atlantic Subtropical High
(NASH; Wang and Enfield 2001; Wang et al. 2006), which has implications for TC
behavior in the entire basin. More specifically, a large (small) seasonal mean AWP is
associated with a weakened (strengthened) NASH and increased (decreased) atmo-
spheric convection and cloud cover over the AWP region. Furthermore, large
seasonal AWPs correspond to weaker tropospheric vertical wind shear and a deep
warm upper ocean, thus making the large-scale environment conducive for an active
Atlantic TC season, with the opposite being true for small AWP seasons. Wang et al.
(2011) also show that the AWP has a significant bearing on the steering flow of
Atlantic TCs through its connections with the NASH, resulting in the likelihood of
fewer United States landfalling TCs along the eastern seaboard during large AWP
years. Putting all of this together, during large AWP years, the overall frequency of
TC events is increased and storms tend to have longer life spans with larger radial
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Fig. 3.12 Correlation of (a) TIKE and (b) ACE in the North Atlantic basin with contemporaneous
seasonal mean SST anomalies from OISSTv2. Hashed regions show significance at the 95%
confidence interval according to Student’s t-test. (From Misra et al. 2013)
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extents as they form further east and recurve away from the United States more
frequently into an area that climatologically promotes higher IKE values. All of this
ultimately ties back to an unsurprising positive relationship between interannual
variations of TIKE and the AWP.

3.5 Summary and Conclusions

This chapter provides a review of IKE-related studies. The majority of these studies
are confined to the North Atlantic basin, where aircraft observations are most
prevalent and IKE can be consistently estimated from the historical record extending
back to the 1990s. The other tropical basins are less data rich with fewer observations
and more limited historical datasets. With the help of remotely sensed wind data the
gaps in many of the world’s oceans are being filled to some extent, and in a few
years, it appears that IKE could be studied more extensively in all tropical basins.

IKE is demonstrably a very useful metric to characterize TCs. Its emphasis on
size and wind structure around the azimuth of the TC provides a realistic estimate of
the potential damage that TCs can cause upon landfall. IKE scales very well with
wind stress over ocean and wind load forcing on structures that in turn relate to storm
surge and wind damage respectively. Therefore, pursuing IKE as a complementary
metric to existing practices to monitor and forecast TCs would be prudent, especially
in efforts to guide in mitigating and avoiding risks from landfalling TCs.

IKE is intrinsically related to intensity metrics in a TC. The incipient, develop-
ment, mature, and decay stages of a TC characterized in terms of its intensity metrics
have distinct IKE tendency features as well. Although IKE typically increases
through a storm’s lifetime from traditional TC development mechanisms, the most
rapid increase in IKE is often seen later in a storm’s lifecycle as storms undergo
expansion of their outer wind fields around the time of their extratropical transition.
Modeling IKE and a series of environmental parameters offers some evidence
regarding how the kinetic energy of a storm varies physically. As expected, IKE
tends to increase with increasing lower-level vorticity and decreasing central pres-
sure. However, the relationships between IKE and other metrics such as ocean
thermodynamics and upper level winds can be more complex.

If there is a growing trend of intense TCs migrating northward over time, this
could imply the potential for a corresponding growing trend in IKE across the North
Atlantic, as IKE growth is promoted both when storms intensify and while storms
move into the mid-latitudes. With all of the nonlinearities in the system, such as the
fact that moderate shear can be both a hindrance and a supporting mechanism for
storm growth, it may be difficult to estimate how IKE variability will change in a
future climate, and future work is quite clearly needed. The over two decades of
wind radii data for the North Atlantic with their associated uncertainties may be
insufficient to conduct a rigorous trend analysis of IKE. However, statistical-
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dynamical models like SPIKE2 can be integrated with model simulations of the
future climate to better assess projected IKE changes in the future.

Beyond individual storms, IKE estimates can be aggregated into a seasonal
metric, TIKE, which offers a unique evaluation of a season’s activity level. TIKE
is appealing because of its comprehensive nature to capture size, duration, intensity,
and number of TCs in a particular season. Given a longer record of wind structure,
these seasonal TIKE estimates can build upon the initial results presented here to
better understand how climate cycles affect the interannual variability of more than
just storm intensity and frequency.

Overall, the review above clearly shows that the studies on IKE are still in their
infancy, and there is yet a lot to be understood and derived from them. Much of the
current work is focused in utilizing IKE for operational use. In the meanwhile, the
community would be well served to pursue further progress in understanding and
predicting the variability of IKE and the overall TC wind field structure, given the
significance of both storm size and intensity to hurricane damage. More specifically,
model- and observationally-based case studies specifically focused on IKE and
storm structure would be helpful to better understand how storm-specific dynamics
and environmental forcings modulate IKE during the lifetime of a TC. On longer
timescales, additional research clearly is needed to better understand historical
interannual and multi-decadal IKE variability, since most of the work presented
here is limited to just the past 20–30 years. By understanding the long-term historical
trends, and by improving future climate projections, it should be possible to better
understand how IKE might vary in a future climate. Finally, as mentioned earlier in
this section, nearly all of the research on IKE is limited to the North Atlantic. As data
quality and coverage improves around the globe, studies should expand to other
basins to get a more comprehensive global perspective on IKE and its variability.
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