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Preface

This book comprises both extended versions of papers presented at the 6th Interna-
tional Summit on Hurricanes and Climate Change: from Hazard to Impact, held in
Heraklion in June 2017, as well as some additional contributions. Talks presented at
this conference ranged from numerical simulation of tropical cyclones through
tropical cyclone hazard estimation to damage estimates and their implications for
commercial risk. This series of conferences has evolved over time to include a
substantial component on climate risk, and this shift in emphasis is reflected in the
content of this new volume. This book provides a source reference for both risk
managers and climate scientists for topics on the interface between tropical cyclones,
climate, and risk.

These topics are of particular interest to the insurance industry, and Chap. 1
provides an overview of the tropical cyclone risk issues that are of concern to the
industry, with a particular emphasis on the importance to industry of appropriate
time horizons for prediction and risk management. A review of the development and
processes of the reinsurance industry is also given, to provide useful background for
the technical and scientific work required to address industry-specific concerns.
Better estimates of tropical cyclone hazard are of course a key concern to industry
and policy makers, and Chap. 2 details new methods for assessing the damage
potential of tropical cyclones, a key input for estimates of tropical cyclone impacts.
Another measure for assessing the intensity of tropical cyclones that is relevant to
their total potential impact during a season, namely, their integrated kinetic energy,
is discussed in Chap. 3 along with the climatology and year-to-year variations of this
parameter. The links between tropical cyclone energy and wind hazards are inves-
tigated in Chap. 4, as a visualization tool for hazard impact assessment.

Accurate risk assessment of current tropical cyclone hazard involves an intimate
understanding of the specific risks in a particular location, and Chap. 5 gives a
detailed description of the current vulnerabilities in the Tampa Bay region, a location
that seems particularly at risk due to a combination of substantial hurricane hazard,
its geography and its vulnerable infrastructure. Studies of the year-to-year variations
in tropical cyclone occurrence and the reasons for this variation are important for
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understanding what leads to high-impact years, and Chap. 6 details the relationship
between the climate conditions during the tropical cyclone season in 2015 and the
observed tropical storm and hurricane occurrence in that year. There is a growing
body of work on the relationship between variations in climatically important
atmospheric conditions and tropical cyclone occurrence, and Chap. 7 investigates
the possibility of the influence of dust particles on tropical cyclone incidence in the
Australian region, since this continent is a considerable source of dust. While the
influence of Saharan dust on Atlantic tropical cyclones appears to be noticeable and
is a topic of active research, the effect in the Australian region appears to be
much less.

While there have been advances in our understanding of the links between
climate and tropical cyclones, we still do not have a general theory of the relationship
between climate and tropical cyclones that would enable us to predict the number of
tropical cyclones from the current climate, even to within an order of magnitude.
Chapter 8 discusses some of the main issues in establishing such a theory, with
particular relevance to the possible implications for tropical cyclone risk assessment.
Any such well-established theoretical relationship would have implications for
future predictions of tropical cyclones in a warmer world, and Chap. 9 provides
new estimates of the potential tropical cyclone damage and loss of life due to future
climate change. This chapter emphasizes the crucial role of adaptation to future
changes in hazards in minimizing the increase in tropical cyclone risk. A possible
outcome in a warmer world is the poleward movement of typical regions of tropical
cyclone occurrence, a scenario that has received some support from recent research.
Chapter 10 outlines some of the challenges for the built environment of this potential
risk, with a consideration of possible adaptation options. In addition to possible
effects of climate change on the land-based built environment, ocean infrastructure is
potentially vulnerable to future changes in hurricane climate. Chapter 11 quantifies
some of these future hazards for offshore infrastructure, with a focus on integrating
projections of future wave hazards with engineering design. Finally, a tool that is
increasingly being used for estimating the effects of climate change on tropical
cyclones is the climate model, as constantly improving computing resources enable
horizontal resolutions for these models to be increased to the point where their
simulations of tropical cyclones are becoming more realistic. Chapter 12 outlines a
method whereby very fine resolution simulations of tropical cyclones can be
designed to test the hypothesized impact of climate change, including the possible
effect on hurricanes of the global and regional warming that has already occurred
to date.

Tampa, FL, USA Jennifer Collins
Parkville, VIC, Australia Kevin Walsh
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Chapter 1
Issues of Importance to the (Re)insurance
Industry: A Timescale Perspective

Tom Philp, Tom Sabbatelli, Christina Robertson, and Paul Wilson

Abstract Of any single weather or climate peril, tropical cyclones constitute the
largest annual average loss to the global insurance and reinsurance industry, and in
any given year are often the drivers of the largest catastrophic losses to the entire
industry. These losses come in the form of payments covering insurance claims,
initiated through damage caused by a tropical cyclone’s physical effects. They are
thus looked upon within the industry as hugely important perils for study and
analysis. This chapter provides an introduction to traditional methods for pricing
risk, with an emphasis on hurricanes, and how the catastrophe modeling industry has
arisen out of limitations with those traditional methods specifically when looking at
extreme, relatively rarely occurring perils that have the potential to cause
catastrophic loss.

Keywords Insurance · Catastrophe · Modeling · Hurricane

Of any single weather or climate peril, tropical cyclones constitute the largest annual
average loss to the global insurance and reinsurance (henceforth “re/insurance”)
industry, and in any given year are often the drivers of the largest catastrophic losses
to the entire industry. Initial estimates of the insured loss caused by Hurricanes
Harvey, Irma, and Maria in 2017 total approximately US$92 billion. Another trio of
hurricanes – Katrina, Rita, and Wilma – struck the U.S. in 2005, causing losses
(trended to 2017 dollars) in excess of US$110 billion (Swiss Re 2018).

These losses come in the form of payments covering insurance claims, initiated
through damage caused by a tropical cyclone’s physical effects. They are thus
looked upon within the re/insurance industry as hugely important perils for study
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and analysis. Although tropical cyclones in all basins are of large concern, those that
form in the Atlantic basin usually come in for the highest scrutiny due to the large
concentration of insured assets that exist in that basin – particularly along the high
population density sections of the U.S. coastline. This chapter will therefore focus on
Atlantic hurricanes as its fundamental basis, but the concepts introduced here are
easily transferrable to any other basin that experiences tropical cyclones.

In order to give the unacquainted reader a general overview of the industry, a very
brief historical background of re/insurance is first provided, before some important
operational practices and market dynamics are introduced. The chapter then goes on
to provide an introduction to traditional methods for pricing risk, and how the
catastrophe modeling industry has arisen out of limitations with those traditional
methods specifically when looking at extreme, relatively rarely occurring perils that
have the potential to cause catastrophic loss. From this point, the chapter will focus
on one of the key debates that is taking place within the industry at present: how to
best build a view of Atlantic hurricane frequency risk. This section will constitute the
main body of the chapter. It will then provide a discussion on new innovations within
re/insurance with regard to alternative risk transfer mechanisms, before concluding
with a brief review of ways in which climate change impacts are being explicitly
incorporated into industry risk assessments at present.

1.1 An Introduction to the Re/insurance Industry

Insurance, as a concept, can be described as the quantification and securitization
(usually via monetization) of a risk, and the subsequent transfer (ceding) of that risk
from one party to another, in order that the (re)insured is indemnified from any loss
resulting from that risk. It is known to have existed in one form or another since
around 2250 B.C., with the Babylonians using it to indemnify traders from losses in
cases where they were found to be non-negligent (Trennery 1926). In its more
modern form of insurance-specific contracts, the earliest existing (or, at least,
surviving) documents provided indemnity to traders susceptible to maritime risk in
and around Genoa shortly before 1300 A.D. (Briys and Joos de ter Beerst 2006).

Reinsurance, the concept of an insurer itself ceding the already taken-on risk to
another party, was first documented shortly afterward, again in a contract emanating
from Genoa in 1340, in which the risk during the most hazardous part of a voyage
was ceded to another insurer (Holland 2009). The principles developed in Genoa
spread across the Mediterranean and Europe, finding root during the 1600s in
Edward Lloyd’s coffee house in the City of London, later growing into the Lloyd’s
of London insurance market. With global marine exploration becoming competitive
at this time, the ideas quickly spread throughout the world, leading to the global
re/insurance industry.

2 T. Philp et al.



Today, re/insurance covers all types of risk, from specific natural perils such as
hurricanes, to general life insurance and even war and terrorism risk. Policies are
sold to individuals, businesses, and governments alike, with insurance products
being created for any insurable interest that can be quantified and compensated
should deleterious events occur. The transfer of risk from one party to another
generally has to involve a “consideration” – effectively, something of value passing
from any potential policyholder to a re/insurer – in order for the insurance contract to
become active. This consideration usually takes the form of an insurance
“premium”.

On a simplistic level, it is intuitive to think that the frequency and magnitude of
any risk can be directly translated into a fair insurance premium. This type of
analysis leads to what is known as a “pure risk” premium, or our best evaluation
of the price for the pure risk at a given location. This is, unsurprisingly, known
within the industry as insurance pricing, and will be introduced in further detail in the
next section.

Before delving into pricing methods, however, it is important to understand that,
in reality, premiums are susceptible to market dynamics and business strategies,
which can influence the final price – both negatively and positively – that the
customer sees. These influences will be introduced below as they have extremely
important impacts for the re/insurance industry.

1.1.1 Insurance Cycles

One of the most important of the market dynamics to understand is the concept of
insurance cycles. These cycles, although often complex and with influences origi-
nating from many sources, can be generally said to exist because of the flow of
capital into and out of the re/insurance industry. This capital flow results in changes
in supply and demand for insurance products (or vice versa), which drives alternat-
ing “hard” and “soft” market conditions. The cycles between the two states are often
cited as the top challenge the re/insurance market faces (Lloyd’s 2008), mostly due
to the potential need to quickly vary business strategy without disrupting client
relationships; methods to deal explicitly with minimizing the effects of these cycles
have become prevalent within the risk pricing and capital reserving communities in
the past 10 years or so following recommendations made by the General Insurance
Reserving Issues Taskforce to the Institute of Actuaries (Jones et al. 2006).

Figure 1.1 provides a schematic to describe the cycle and the points of the hard
and soft market. In this example, we can see that shortly after a catastrophe, market
conditions “harden”. This is driven by a flow of capital out of the industry due to
claims paid by re/insurers at the point of catastrophe, and of related shareholder
losses/lack of return causing a withdrawal of investment. This leads to a less
competitive underwriting environment, and thus premium rates increase. However,
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as time goes on without large, industry-impacting catastrophes, returns on invest-
ments from shareholders tend to be good, and thus capital begins to flow back into
the industry. This leads to more competition, and a general driving down of
insurance premiums. It is worth noting that, although the occurrence of catastrophes
may cause a shift to hard market conditions, this is not always the case; on a related
note, the shift to hard market conditions can also be driven by capital-impacting
events other than a catastrophe. Finally, there is an argument to be made that because
of recent alternative capital pathways to the market (see later section), the re/insur-
ance market may be shifting away from these cycles. However, in the present, it is
necessary to at least acknowledge their historical existence.

1.1.2 Expense Loading

The work done to quantify, price, and then underwrite a risk obviously requires
skilled practitioners, processes, and systems, as do claims when they are made.
These contribute to what is known as “expense loading” of the pure risk premium.
Due to the high level of competition in financial markets, these are usually driven
down to as an affordable level as possible and, at present, there are also attempts to
minimize these costs through innovative alternative risk transfer solutions, such as
insurance-linked securities – these alternative solutions are introduced in more detail
later in the chapter.

Background competition and innovation are not the only mechanism through
which loading costs of expenses are driven down. Re/insurance brokers, often tasked
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Fig. 1.1 Schematic of the insurance cycle through time
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with the placing a risk for a customer, effectively act as well-informed intermediaries
to assess the needs of a customer, and to find them the most appropriate coverage
terms and most competitive rates.

1.1.3 Regulation and Market Control

Alongside brokers being a key part of many re/insurance policy chains, regulation
has increasingly become an important part of re/insurance practice. Regulation of the
insurance industry takes place through multiple regional, national, and international
bodies, and exists in order to protect policyholders in two key ways.

The first is through rate regulation which, although not universal, aims to help to
protect customers against excessive premiums. Here, the regulator is tasked with
independently producing a view on any manner of a risk, and defining appropriate
bounds for the pricing of that risk. If re/insurers flaunt those guidelines, they may
face financial penalties, or may even be unable to gain access to the market over
which the regulator has licensing authority, though these types of penalties are
typically only seen for some insurance products (e.g. property and casualty insurance
for individuals).

The second way regulation aims to protect policyholders is through solvency
capital requirements. Here, regulators require re/insurers to prove, as far as is
deemed possible, that they will be able to remain resilient to losses and to pay out
insured claims up to a probability that is considered reasonable by the regulator. The
meaning of the word “reasonable” can differ between regulators, but the recent EU’s
Solvency II insurance requirement is that insurers be able to pay out with a 99.5%
probability – or, effectively, that in any given year there is only a 1 in 200 chance that
the insurer will become insolvent and unable to pay claims. These guidelines are
expected to find equivalence in U.S. law in the near future.

A key issue for re/insurers on the regulation front arises from the fact that not all
regulators hold the same opinion on best-practice for pricing risk. This can leave
re/insurers in difficult situations if a local regulator in one jurisdiction advocates a
contradictory method for pricing the risk than a different regulator in another
jurisdiction. With specific regard to North Atlantic hurricane risk, this has been a
topic of debate within the industry for a number of years. As an example, the Florida
Commission on Hurricane Loss Projection Methodology (FCHLPM) has histori-
cally approved catastrophe models with a view of Atlantic hurricane frequency risk
different from the stance adopted by Lloyd’s of London over the past few years.
Although Lloyd’s isn’t strictly an independent regulator, its requirement that syndi-
cates operating within it follow its guidelines effectively means that it has the same
effect on re/insurance entities as a regulator.

As this issue on differing views of frequency risk is the focus of the main body of
this chapter, these issues will be delved into in more detail later. However, before
doing that, let us conclude this section with two more key factors that play a role in
re/insurance decision-making.

1 Issues of Importance to the (Re)insurance Industry: A Timescale Perspective 5



1.1.4 Ratings Agencies

Although independent of regulators, ratings agencies have a similar effect on
re/insurers: in assessing an insurer’s ability to remain resilient and profitable, and
assigning ratings to those companies based on those assessments, ratings agencies
effectively add a second layer of regulation. This again adds more complication to
the overall picture, as these assessments are not standardized between ratings
agencies, and one ratings agency may have different requirements and techniques
for assigning ratings.

However, as re/insurance companies are ultimately accountable to their share-
holders, they must operate in a manner that is thought to generally positively impact
share prices. As higher ratings from ratings agencies tends to attract capital from
market investors, it clearly makes intuitive sense that most re/insurers must align
with these independent assessments enough that their ratings will be seen positively.

With these governing market dynamics and practices introduced, it is important to
understand how these issues come together from a business planning strategy, and
how they impact the decisions that re/insurers make as to how best to operate within
the market.

1.1.5 Business Planning: Finding Appropriate Stability

The ultimate purpose of re/insurance is to remove the volatility of loss that could
otherwise have long-lasting negative impacts on economic and broader societal
development. This implicitly suggests a desire on the part of any potential insured
parties to remove the risk of volatility from their business or assets, which in turn
suggests that a reasonably stable premium would be anticipated and desired by
potential clients. Finding such a stable premium for any risk is indeed something
that is often looked upon as a sign of proficiency in the market.

In reality, however, the market dynamics and practices described above make
finding and setting a stable premium very difficult. However, the concept of a
“pure risk” premium (as mentioned in Fig. 1.1) free from these influences does
allow one, at least theoretically, to find a reasonable baseline to work from;
this pure risk premium can be loosely thought of as a best estimate of the
“current” risk.

With this concept of current risk in mind, it is worth introducing two time-horizon
aspects of risk management that are of importance to a re/insurance company
building a view of risk; namely, to what timescale would re/insurers ideally:

(i) Price risk?
(ii) Plan broader business operations?

Regarding (i) – although re/insurers typically underwrite policies on an annual
basis, it may appear evident, given the description above, that an annually changing
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view of the risk is not ideal for traditional re/insurance pricing because of the
premium (and also the consequent operational) volatility that such a method would
introduce. This issue may be more or less important for some re/insurers than others,
dependent on business structure and strategy, and also likely varies depending on
whether the risk is a direct insurance cover placed with an insurer, or a reinsurance
cover placed with a reinsurer. For an insurer, clients not well-accustomed to risk
modeling may look on premium stability as desirable for their business and cost
planning; yet reinsurers, with clients who themselves are already re/insurers and thus
are likely to have direct expertise in risk modeling, may be much less concerned by
year-to-year premium volatility and may even seek it.

However, on the assumption that minimizing premium volatility on current risk is
an important issue from at least a general insurance perspective, there is a need to
define a multi-annual time window that can smooth year-to-year variability in the
risk. The question therefore evolves to the following: over what multi-annual time
period should insurers (and any similarly concerned reinsurers) look at to price risk?
This is a tricky question to answer and, in reality, the time horizon for “current” risk
pricing differs between catastrophe models.

For hurricane risk, the minimum length of the multi-year time window is thought
to be approximately 5 years, as this is around the time needed to smooth out fairly
well known inter-annual effects on Atlantic hurricane activity driven by the El Niño-
Southern Oscillation (ENSO) and other short-term climate influences. Defining the
maximum length of the window introduces some difficult choices, however, with
each carrying benefits and detriments. For example, pricing risk from very long-term
historical data (i.e. the entire HURDAT2 record) may not be entirely appropriate
given knowledge of a changing climate coupled with potential multi-annual vari-
ability, and issues with record certainty as one goes back in time. Yet, in limiting the
data to more recent years, we would be shrinking an already small dataset further,
while potentially removing useful historical information and extreme event behavior
from pricing. Thus, questions arise around whether it should be seen as most
appropriate to utilize ideas such as 10–20 year persistence (i.e. beginning to
approach levels of multi-decadal variability) or merely just the long-term
(i.e. ~100 year) average in order to avoid influence from occasionally uncertain
scientific theories.

In reality, there are currently no best-practice answers to the above challenges,
and this is a theme which should be encouraged as an area for active research within
the scientific community. The catastrophe modeling industry has begun to attempt to
answer some of those questions; some of these specific attempts are detailed later in
the chapter, including detailing attempts to take forward-looking, multi-year fore-
casts of the risk.

Before moving forward, however, it is important to introduce the distinction
between questions (i) and (ii) above due to the issue of climate change, and how
its impact is viewed differently in pricing and business planning.

With regard to question (i): as re/insurance pricing is concerned with the present,
climate change research as currently undertaken by the academic community
(i.e. projections typically out to 2030, 2050, or even 2100) may not be well-aligned
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with that needed by the re/insurance pricing community, which is focused chiefly on
the present day, and perhaps only looks forward up to 5 years into the future.

However, with regard to question (ii), from a long-term business planning
perspective, re/insurers are very mindful of the potentially changing risk landscape,
and how they should be evolving their business accordingly. To borrow the language
of climate science policy, the re/insurance industry is asking, “What can or should I
be doing now to mitigate the impacts of climate change on my business, if any
exist?” and secondly, “What can or should I be doing now and in the future to adapt
my business to account for the challenges and possible opportunities these changes
may represent?”

Thus, there is definite need for explicit climate change work with a more
traditional insurance-pricing timeline view in mind. Regarding the business-
planning aspect, a secondary issue here arises when we consider explicitly what
time horizons are appropriate. From discussions raised at past industry workshops
carried out by the SECTEUR project acting on behalf of the Copernicus Climate
Change Project (C3S), it is generally believed that the maximum forward looking
timescale for appropriate business planning lies at around 10 years (Caron 2017).
Longer than this and views of the risk become too abstract and detached from
re/insurance practices and strategies that change on an annual basis. The re/insurance
industry has contributed to studies related to climate change impacts, to be described
later in this chapter, but to date they have been exploratory in nature.

In conclusion to this section, it can be seen that there are many complexities
introduced by market dynamics, operations, and business practices that must be
taken into account when building the most appropriate view from which to price risk.
Although it is hoped that some of the drivers of pricing variability have been
elucidated, it is clear that the already complex task becomes even more complicated
for risks originating from a background climate that is inherently non-linear and
ever-changing. The next section will briefly introduce the traditional framework that
has traditionally been used for pricing risk, before it progresses to describe the
reasons for, and evolution of, the growth of the catastrophe modeling industry.

1.2 An Introduction to Actuarial Pricing

An insurance entity can loosely be envisaged as having three main components
(although a number of other vital functions also exist):

• An actuarial department, in which risks are given a technical price and appropri-
ate financial reserves are calculated.

• An underwriting department, in which risk selection is made, the final price is
quoted, and business is written.

• A claims department, in which claims management takes place should deleterious
events occur.
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Of paramount significance to the understanding of issues of importance to the
re/insurance industry is a comprehensive understanding of the interface between the
actuarial departments of re/insurance companies, and the research centers that
control and produce scientific hazard data.

Actuarial science has a long and storied history, establishing itself shortly after
the first published work on probability theory (Huygens 1657). Edmond Halley’s
“life tables”, in which he devised appropriate premiums for life annuities based upon
the historical probability of mortality given a person’s age (Halley 1693) have
provided the blueprint for actuarial science ever since.

Still today, actuaries use mathematical methods to analyze past claims and
relevant risk data to build up a representative view of probabilities of loss from
which to calculate appropriate premiums. These methods often rely on building
ideas about the distribution of losses and perils in order to accurately capture the
likelihood of events happening.

However, within the past 30 or so years, the industry has begun to reassess the
appropriateness of some of these methods for risks that have not necessarily occurred
before, or that have the potential to cause catastrophic losses given the changing
demographics, wealth, and insured assets of societies that have the potential to be
impacted. A comprehensive evaluation and pricing of tropical cyclone risk, specif-
ically, out to the probability required by many regulators (e.g. 1 in 200 years), would
ideally utilize a record much longer than the length of the historical Atlantic
hurricane record (HURDAT2), but traditional pricing methods – typically
constrained by purely historical data – are somewhat limited in their ability to
overcome these issues.

Ideas for progress on these concerns were originally hinted at in decision and
policy papers (e.g. Kunreuther and Miller 1985), but did not fully materialize in a
very practical way until the foundation of the catastrophe modeling industry in the
late 1980s and early 1990s.

1.3 From Actuarial Pricing Models to Hurricane
Catastrophe Models

The first catastrophe modeling firm, AIR Worldwide, was founded in 1987 and
introduced the re/insurance industry’s first catastrophe model devoted to Atlantic
tropical cyclones. RMS, a company first established with a focus on earthquake
modeling, soon followed in 1989. In the 30 years that followed, other firms and data
providers have strived to enhance industry practices through the use of catastrophe
models.

During the infancy of catastrophe models, the re/insurance industry, recovering
from the 1989 Loma Prieta earthquake in California, primarily focused its attention
on natural hazard risk from earthquakes. That focus quickly shifted in 1992 when
Hurricane Andrew became a major catastrophe for the re/insurance industry.
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Following a long stretch of quiet Atlantic activity, the industry was overwhelmed
from a lack of preparedness for such a severe hurricane loss. In the wake of
Andrew’s devastation, nine companies became insolvent (Towers Watson 2013),
leading to a demand for comprehensive hurricane modeling solutions.

Andrew served as the catastrophe modeling industry’s first major opportunity to
learn from a real-time hurricane and helped define the present-day hurricane model
framework. Discoveries from subsequent hurricanes have inspired expanded func-
tionality. While Andrew and other landfalling hurricanes in the 1990s predominantly
caused property damage with high winds, a number of hurricanes making landfall in
the 2000s, including Ivan, Katrina, Ike, and Sandy, highlighted the importance of
capturing loss associated with storm surge. Destructive storm surges caused by these
events revealed difficulties in distinguishing between wind and surge damage in the
settlement of insurance claims covering only wind damage. Even further still,
Hurricane Harvey in 2017 demonstrated that a hurricane’s main source of damage
could be rainfall-induced inland flooding, rather than the more traditional sources of
wind or storm surge. With each event, catastrophe modeling firms expand their
archives of data that serve to calibrate, validate, and expand model functionality.

A considerable amount of external oversight ensures the scientific credibility of
commercially available hurricane models, particularly in Florida, a U.S. state subject
to high annual hurricane risk where insurance rates often permeate political dis-
course. As discussed previously, an insurance regulator seeks to protect a policy-
holder through key considerations. The Florida Office of Insurance Regulation
(OIR) in part seeks to achieve this goal by relying heavily on the expertise of the
FCHLPM to evaluate hurricane risk. Established in 1995, in response to the
industry’s adoption of hurricane catastrophe models following Hurricane Andrew,
the FCHLPM sets standards to rigorously evaluate model methodologies used to
calculate insurance premiums. FCHLPM rigorously reviews model methodologies
and revises its standards by which it evaluates hurricane catastrophe models every
two years. These revisions lead to a regular cycle of frequent updates that ensure a
model’s timeliness. For model vendors, FCHLPM standards are not mere sugges-
tions; the Florida OIR requires that insurance companies use a catastrophe model
certified by FCHLPM when filing insurance rates. Insurance regulators in other
hurricane-prone states also survey catastrophe models for robustness but largely rely
on the stringent FCHLPM process as an indicator of a model’s capability.

In the years after Hurricane Andrew, the use of hurricane catastrophe models
became standard practice for most of the re/insurance industry. The industry would
not see such devastating losses again until the active 2004 and 2005 hurricane
seasons. RMS calculates that insured losses from the 2004 to 2005 hurricanes,
trended to 2017, total more than two times the insured loss incurred during Hurricane
Andrew, trended in the same manner. However, only one insured company failed
under the weight of these losses (Grace and Klein 2009), demonstrating the powerful
impact of models on the re/insurance industry’s catastrophe preparedness.
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1.4 Contemporary Catastrophe Modeling

A vast majority of catastrophe models –whether built for hurricanes, earthquakes, or
other perils – follow the same basic framework and include the same components, as
illustrated in Fig. 1.2 below.

Each model contains “stochastic” events (1) – a suite of thousands of simulated,
physically realistic events designed to expand upon a limited historical data record.
This step effectively attempts to negate the aforementioned issue of a short historical
record, as the historical record does not provide enough years to sufficiently calcu-
late return periods required by re/insurers and regulators. An important point to note
here is that, although the Atlantic hurricane record is shorter than would be ideal, it is
much longer and more robust than any other tropical cyclone record for any other
basin worldwide; in actuality, HURDAT2 is likely by far the most comprehensive
historical record of any natural climate peril that has potentially catastrophic impacts
for the re/insurance industry. Thus, these techniques are applicable, and often
deemed necessary, for many other extreme perils.

Thus, modelers use statistical techniques to extrapolate the historical record,
generating a set of stochastic storm tracks from genesis to lysis with similar
characteristics and parameters to past hurricanes. Stochastic storms realistically
fluctuate in strength with changes in sea surface temperature while over water and
weaken while over land. The modelers’ aim is to represent the full distribution of
hurricanes that could realistically occur, including hurricanes of intensity or landfall
location that have yet to occur.

In catastrophe modeling, “hazard” (2) refers to the means by which a stochastic
event can cause damage to each location in a re/insurance portfolio. Commercially
available hurricane models measure hazard in the form of high winds, at a minimum,
but some also measure storm surge and rainfall-driven flood depths. Much like
stochastic track modeling, hazard modeling creates a realistic wind field for each
stochastic event based upon observed relationships of parameters (e.g. maximum
wind, radius of maximum wind, shape parameters) that defined historical wind
fields. As a stochastic event’s wind field crosses over land, models approximate
wind speeds experienced at the surface through the consideration of man-made or
natural friction. This translation occurs at grid cells that span the entire over-land

Fig. 1.2 Typical catastrophe model framework. (Image provided by RMS)

1 Issues of Importance to the (Re)insurance Industry: A Timescale Perspective 11



domain. Data identifying the local and upstream land use and topography at each cell
can inform modelers on the degree to which surface winds should slow down or
accelerate, relative to speeds at upper levels. Thus, models can assign surface winds
incurred at each property within a re/insurer’s portfolio.

Among the commercially available hurricane models, hydrodynamical or statis-
tical modeling evaluates the buildup of storm surge caused by a hurricane’s wind
stress. Ground elevation and local flood defense data helps define the extent of storm
surge inundation as water crosses the shoreline. Model users can further enhance
storm surge modeling with property-specific flood mitigation information (e.g. stilts
or sea walls).

The susceptibility to property damage caused by a specific hazard is commonly
referred to as a structure’s “vulnerability” (3), which varies at each property
according to its underlying structural components. The most common components
that determine a building’s vulnerability include:

• Construction type: The material used to construct the building’s exterior
(e.g. wood, concrete), including possible reinforcement. During hurricanes, con-
crete and steel buildings tend to perform better than wood and light metal
buildings.

• Occupancy type: The building’s primary use (e.g. residential, commercial, indus-
trial), used to indicate the predominant type and sensitivity of contents stored
within the building.

• Number of stories: The building’s height. For example, taller buildings tend to be
built to rigid structural standards.

• Year of construction: A building’s date of construction typically indicates the
standards to which it was built, as catastrophe modelers document historical
changes in local and regional building codes over time.

• Floor area: The size of the building’s physical footprint. Larger buildings typi-
cally tend to be built to better standards than smaller buildings.

Catastrophe models contain relationships, typically stored in “vulnerability
curves,” that relate wind speeds and storm surge depths to average damage levels,
and an uncertainty around that average, for combinations of the aforementioned
components.

A number of data sources inform the vulnerability curves embedded within
catastrophe models. In some countries and regions, modelers have collected insur-
ance claims that represent billions of dollars in insured losses from past hurricanes.
These claims, when used in conjunction with reconstructions of historical hurricane
wind and storm surge fields, serve as the “gold standard” in building vulnerability
curve relationships. In areas where insurance claims may be unavailable, engineer-
ing studies and building codes provide indications of expected amounts of damage.

Although an increasing volume of claims data collected across a number of past
hurricanes and varying wind speeds can improve the accuracy of a vulnerability
curve, the robustness of damage estimates relies upon the catastrophe model user’s
understanding of each building. In general, a more complete account of every
structure at risk increases the damage estimate accuracy. In some cases, users collect
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detailed structural data from engineering reports, including features installed to
mitigate hurricane damage (e.g. wind shutters, wind-resistant glass panes).

In a final step, financial algorithms translate damage levels into loss (4) incurred
at each property and accumulate this loss for the entirety of a company’s insurance
portfolio. This final step produces a loss distribution, one for each stochastic event,
for every property in an insurance portfolio.

These losses constitute a loss distribution, called an exceedance probability
(EP) curve, that defines the probability of annual catastrophe losses exceeding loss
thresholds. These distributions can define loss probabilities associated with a single
event or multiple events in a given year.

Several risk metrics that insurance and reinsurance companies use in their
business processes are drawn directly from EP curves. These metrics include:

• Average annual loss (AAL) – the expected value of the loss distribution or, in
other words, the average expected loss per year to an asset over the long term. The
AAL is frequently used in pricing algorithms that calculate the policy premium
charged by an insurer. Since the AAL represents only an average, the actual
annual losses will fluctuate around this value in any given year, including years
with no losses whatsoever.

• A return period, which corresponds to a point on the EP curve, relating a financial
loss to its probability of exceedance in a single year. Each return period is defined
as a number of years that is the reciprocal of each loss probability. For example, a
10-year return period corresponds to a loss with a 10% probability of exceedance
in 1 year, a 100-year return period with a 1% probability, and a 1000-year with a
0.1% probability. The larger the return period, the higher the loss. These long
return periods typically indicate losses to a company’s portfolio caused by the
severest of catastrophes.

To construct an exceedance probability curve, a catastrophe model must define
the likelihood with which stochastic events and their associated losses are expected
to occur over time. Loss metrics highly depend on how often events are expected to
occur. For example, a loss distribution’s AAL would be expected to increase with an
increase in hurricane frequency: more landfalling hurricanes each year would
increase annual re/insurance losses. Thus, event frequency plays a critical role in
the output of a catastrophe model and the use of this output by the insurance industry
in business decisions.

1.5 Building a View of Atlantic Hurricane Frequency Risk

Choosing the most appropriate view of hurricane event frequency, however, perhaps
remains one of the most contentious and debatable issues in catastrophe modeling. A
limited, uncertain history and a continually changing climate open up a number of
possible ways to represent frequency risk.
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An examination of historical hurricane observations over the past century or more
reveal periods lasting up to a few decades of Atlantic basin hurricane frequency
higher and lower than the historical average (Goldenberg et al. 2001). The
2004–2005 seasons remain notable in the insurance industry not only for their
catastrophic losses, but also for calling the re/insurance industry’s attention to the
heightened state of Atlantic hurricane activity in the late 1990s and early 2000s. As
mentioned earlier, the industry began adopting catastrophe models in the final years
of a prolonged period of below average Atlantic hurricane genesis and landfalls.

Up until 2004–2005, catastrophe modelers offered only one view of event
frequency in hurricane models: a long-term, historical average. However, this
average ignores potential medium-term and multidecadal trends in hurricane activity
that may well be of significant interest to re/insurers due to the previously mentioned
desire for an outlook that covers the period approximately 5–10 years ahead.
Therefore, there is demand for models to consider this multi-annual variability in
hurricane frequency.

Multiple theories within the peer-reviewed literature, sometimes conflicting,
attempt to connect climatological influences with fluctuations in the mean frequency
state. The literature most commonly ties multidecadal trends in cyclogenesis to
influence from sea surface temperatures and the Atlantic Multidecadal Oscillation
(Goldenberg et al. 2001; Sutton and Hodson 2005), but research describing their
impact on hurricane steering and landfall patterns remains less mature (Wang et al.
2011; Kossin 2017). Hindsight allows for modelers to draw correlations between
climate indices and historical frequency fluctuations, yet uncertainty exists in fore-
casting and anticipating future fluctuations (Klotzbach et al. 2015). Less certain are
the potential impacts of longer-term climate change on hurricane frequency and
severity (Landsea 2005; Emanuel 2005; Webster et al. 2005; Hoyos et al. 2006;
Mann and Emanuel 2006; Knutson et al. 2010).

This section will thus focus on summarizing current approaches and debates
ongoing within the insurance and catastrophe modeling industries surrounding this
topic, in the hope that it will enable the scientific community to become better
aligned in order to have direct impacts to these modes of thinking.

1.5.1 Long-Term View

A long-term view represents the viewpoint that current risk can reasonably be
assumed stationary, operating around a mean frequency calculated from a significant
period of the historical record. This behavior is defined as the observed average of
hurricane landfall position and intensity over the most reliable period of past
hurricane data. Modelers will commonly count historical hurricane landfalls and
intensity in segments of less than 100 miles that divide a country’s coastline. A long-
term view of frequency risk is calibrated and validated on the resulting landfall
distribution.
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A vast majority of models construct this average from HURDAT2 data (Jarvinen
et al. 1984; Landsea and Franklin 2013) beginning in 1900, a point at which
confidence in hurricane landfall information significantly increases. Thus, a long-
term view is built from over 100 years of available storm track and intensity data.
Confidence in open-water hurricane data in the North Atlantic basin does not extend
back as far and begins with the advent of aircraft and satellite reconnaissance in the
1950s and 1960s.

As the HURDAT2 database typically provides historical hurricane intensity
measurements in six-hourly increments, track points rarely coincide with a storm’s
landfall. At present, HURDAT2 assigns specific landfall intensity measurements to
only a subset of historical storms. This opens up a number of potential methods of
determining the intensity of a tropical cyclone as it crosses a landfall segment.
Common methods include drawing from the six-hourly observation point prior to
landfall or an interpolation of the observations before and after landfall. A hurricane
catastrophe model must also include the loss contribution of bypassing storms (those
that cause damaging onshore winds but do not physically make landfall) to capture
the full distribution of possible hurricane losses. A modeler’s choice in intensity
measurement therefore plays a critical role in understanding the construction of a
long-term frequency view.

As mentioned previously, although one of the more robust historical datasets
available across any geography and peril, a distribution of hurricane landfall location
and intensity constructed from the HURDAT2 record cannot represent a complete
view of current or future landfall risk. For example, in the United States, parts of the
coastline exist where no past hurricanes have historically made landfall, and counts
become sparser with increasing intensity. Calibrating a long-term view of the future
solely on the historical record introduces potential overfitting to data; a segment with
no recorded landfalls since 1900 remains at risk to a future landfall. Modelers
therefore use varying techniques to spatially distribute regional landfall counts in a
manner that preserves relative risk by segment but also assigns risk to segments with
no historical landfalls. Stochastic events in a hurricane model are tuned to occur with
a frequency to meet this final distribution.

As an average over this relatively long period, long-term projections of frequency
risk and insured loss should not change significantly (i.e. a few percent) annually on
a national or regional basis with the additions of future seasons to the record. Some
in the insurance industry appreciate the relative stability provided by a long-term
view as the historical record expands with time based on the perceived business
benefits it can provide, as mentioned previously in this chapter.

1.5.2 Near-Term View

That being said, there are others that believe that varying their view from this long-
term history is more likely to capture the potential activity of the near future. This has
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resulted in alternative views of frequency risk being built, often called near-term
views.

Seeking to address the re/insurance industry’s concern about a period of poten-
tially higher-than-average Atlantic basin activity, catastrophe modelers solicited
opinions from the global insurance industry following the destructive 2004–2005
hurricane seasons. Much of the feedback sought to strike the proper balance between
scientific insight and premium price stability. Many re/insurance contract renewals
occur in January but forecasts of an upcoming season’s activity typically lack
significant skill at this point. Furthermore, changes in inter-annual climate influences
(e.g. ENSO) may lead to substantial changes in hurricane activity year over year
(Sabbatelli and Mann 2007). A hurricane model tuned to such changes could
produce largely varying losses for the same insurance contracts each year and thus
introduce price instability.

In 2006, catastrophe modelers introduced these solutions addressing the height-
ened hurricane risk to the market. Two prominent approaches emerged:

• One approach follows the long-term average method but limits the historical
record to a subset of hurricane seasons featuring above-average sea surface
temperatures. While the use of historical data introduces stability, this approach
reduces an already statistically limited dataset and may overlook potential trends
in future activity not fully evident in this dataset.

• A second approach attempts to independently forecast future medium-term activ-
ity, relative to the long-term average, based on the influence of the current climate
state. Although this approach is more responsive to present-day and future
changes in climate, this responsiveness may introduce changes to risk metrics
that are larger and more frequent than a view of risk based on historical data.

This second approach aims to capture the interaction of hurricanes and climate
variability in a way that can then be used to quantify hurricane risk for the insurance
and reinsurance market.

Much of the discussion in the scientific community regarding hurricane variabil-
ity in the Atlantic basin focuses on storm counts. For this to be of real value to the
re/insurance industry, it must be translated into an estimation of potential loss. The
nature of landfalling hurricanes, their locations, and likely intensities needs to be
captured and, thus, the impact of climate variability on the spatial distribution of
hurricanes is particularly important.

A challenge facing catastrophe modelers when considering a near- to medium-
term view of risk is to assess whether any of the proposed drivers of hurricane
variability can be incorporated into a catastrophe model, how this can best be
achieved, and, most importantly, if it will add value to the resulting assessment
of risk.

When considering whether to include a driver or not, the two key points need to
be addressed.
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1. What is the consensus within the scientific community? There are many different
theories to explain the variability in hurricane activity in the Atlantic, with some
attracting much more agreement than others.

As an example, RMS has chosen sea surface temperatures (SSTs) as one of the
proxies for climate variability when making predictions for hurricane risk in a near-
term view. This is in large part due to the depth of the discussion regarding
fluctuations in SSTs and their impact on Atlantic hurricane activity. In addition,
raised SSTs have been repeatedly linked to both the frequency and severity of events
(Webster et al. 2005; Elsner and Jagger 2006; Hoyos et al. 2006; Mann and Emanuel
2006; Elsner et al. 2008; Saunders and Lea 2008). There is also research into
mechanisms through which increased SSTs in the Pacific Ocean can inhibit hurri-
cane activity in the Atlantic (Vecchi and Soden 2007; Swanson 2008; Vecchi et al.
2008).

A major factor when evaluating hurricane risk in the near- to medium-term,
therefore, is how the SSTs in both the Atlantic and Pacific Oceans are expected to
behave over the relevant time-period. By using SSTs as one of the inputs to run the
stochastic model described earlier, it is possible to create multiple sets of stochastic
events, with each set representing an alternative forecast of the SSTs under different
scenarios driven by the various theories. These can then be combined to create an
overall view of risk.

2. Is the predictability of the driver sufficient, and with appropriate lead-time, for it
to be used in a forecast for the insurance industry?

ENSO provides an interesting example of a pattern of climatic variability whose
impact on hurricanes is well known, but nevertheless creates a challenge for catas-
trophe modelers. ENSO is described as having a positive phase, ‘El Niño’, which is
defined by anomalously warm SSTs in the eastern equatorial Pacific Ocean, and a
negative phase, ‘La Niña’, when the SSTs in the eastern equatorial Pacific Ocean are
colder than usual. A review of historical records has shown a link between ENSO
and tropical cyclone activity in the Atlantic, with El Niño phases typically
corresponding to a decrease in Atlantic hurricane counts, and conversely, La Niña
events are related to an increase (Gray 1984; Bove et al. 1998).

It is also possible to seasonally forecast ENSO with at least moderate skill
(Barnston et al. 2012), and it is a major factor considered when producing seasonal
forecasts of hurricane activity. Skillful forecasts, however, are extremely difficult
more than a few months in advance of the hurricane season (Lloyd-Hughes et al.
2004), by which point work on most re/insurance renewals will already be well
underway, if not fully completed. It is therefore not possible to explicitly include
ENSO when creating a forecast for use within the re/insurance industry. Its link to
hurricane activity is widely recognized, however, that catastrophe modelers
endeavor to find a way to consider it somehow.

One approach is to consider the timescale of ENSO; as a short timescale phe-
nomenon, it lasts for 1 or 2 years at irregular 2 to 7-year intervals. By producing a
view of risk for a 5-year period, a complete cycle of ENSO is likely to occur within

1 Issues of Importance to the (Re)insurance Industry: A Timescale Perspective 17



this time, alternating between phases of suppressed and enhanced hurricane activity.
Hurricane variability over this period can therefore be captured independently of
ENSO, removing the need to forecast it explicitly.

Given fundamental uncertainties that exist in explicit forecast data, however,
alternatives to using SST forecasts to drive near-term views of the risk have been
investigated. One simplistic approach, using only general knowledge about current
(and most likely future) climate has been to subset the historical data to just include
hurricane statistics from hurricane seasons that have seen warmer than average SSTs
– given that climate change will likely cause warming into the future – and thus to
create a stochastic set from these data. This has the upside that it is not beholden to
any scientific narrative other than a well-understood climate change narrative, but its
downside is that it assumes that sea surface temperature is the sole key driver of
variability in hurricane activity. In addition, its simplicity may mean that much
information is lost from the cool-SST half of the catalogue.

1.5.3 Alternative View

So far, we have only discussed frequency risk from a traditional re/insurance
perspective, which has given rise to the above discussion surrounding the need for
a multi-year perspective of the risk. As mentioned earlier in the chapter, however,
there is increasing investment by the industry to find more creative and innovative
ways to produce risk transfer solutions that may be able to utilize potentially skillful
forecasts at numerous lead times. This innovation has primarily been driven by a
large amount of available capital in the market looking for better returns on invest-
ments in what has been a soft market environment over the past few years.

One such mechanism for alternative risk transfer is via Insurance-Linked Secu-
rities (ILS), which are effectively financial instruments to transfer risk into alterna-
tive markets –most importantly, into ones that don’t require a capital structure that a
traditional re/insurer has to take due to regulation. This opens up investment from
many alternative sources, with one class of ILS being particularly topical when
discussing hurricane risk: the catastrophe (or cat) bond market.

Cat bonds are typically high risk, high reward products that exist in order for
re/insurers to shift risk of extreme losses off their books, and are often based on
much more simplistic processes than traditional re/insurance and catastrophe model-
ing. These bonds can be based on simple triggers such as: number of events; number
of landfalls; losses exceed a certain figure; or, in reality, any theoretical trigger that
can be held to account in practice. In the event that a catastrophe occurs, the bonds
pay to the re/insurance company, but if not, investors can expect high rates of return.
It is expected that, with the catastrophic events of 2017s Q3 causing around $100
billion of total insured loss, the alternative capital market may be picking up
approximately $25 billion of that loss (Artemis 2017), a much larger proportion
than has ever been seen in history. This area is therefore ripe for research as to how
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best structure these alternative risk covers and how to most appropriately use
scientific predictions. The fact that the securities can be structured to be sold and
paid within days means the issue of appropriate time horizons discussed above may
well disappear in the future, and the question may eventually be reversed – instead of
“how can scientific research be best directed to fit to re/insurance timeframes”, the
question may become “how can ILSs be appropriately structured to best utilize
scientific information”. Whether ILS, and cat bonds specifically, will remain rela-
tively stable and attractive propositions for investors, however, remains to be seen,
and it is therefore strongly encouraged that both questions are investigated by
research and industry communities alike.

1.6 Catastrophe Models and Climate Change

As discussed in the previous sections, the definition of “current” hurricane risk can
differ in catastrophe models produced by different companies. A changing climate
compounds the challenge of representing the “current” risk, given evidence of
change that has already occurred and projections of change that is yet to occur.

While long-term and near-term views seek to address current hurricane frequency
risk, commercial catastrophe models incorporate present-day effects of climate
change where evidence is most certain. For example, most hurricane models calcu-
late storm surge risk based on the most recent sea levels, thus incorporating climate
change to date. In contrast, historic average sea levels would fall below present
levels; all other things being equal, use of historic levels would underestimate the
financial risk of storm surge.

Few, if any, commercial catastrophe models are specifically designed to represent
the potential impacts of mid- to end-of-century climate change on Atlantic hurricane
risk, which are far more uncertain. Any approach to include the impact of future,
long-term climate change would need to consider the consequences of a warmer
world beyond simply hurricane frequency and intensity, including changes in sea
levels and the spatial distribution of hurricane landfalls, among other effects. Mul-
tiple studies, however, have used catastrophe models or similar methods as tools to
explore these potential impacts by combining a catastrophe model with projections
of the future climate.

Such projects of this nature include:

• The Risky Business project in 2014 looked at the impacts of climate change on
the U.S. economy using a version of the RMS North Atlantic Hurricane Models,
modified to account for both increased sea levels and hurricane landfalls, to
estimate expected damages under Intergovernmental Panel on Climate Change
scenarios (Hsiang et al. 2017; Houser et al. 2014; Kopp et al. 2014). The results of
this study were later used by the U.S. Congressional Budget Office to understand
the implications of increases in hurricane damages for the federal budget (Dinan
2016; Dinan 2017).
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• As part of the World Bank’s Pacific Catastrophe Risk Assessment and Financing
Initiative, an AIR Worldwide tropical cyclone model, modified based on the
output from 11 general circulation models provided by Geoscience Australia,
was used to assess how changing tropical cyclone risk would impact 15 Pacific
islands (Lloyd’s 2014).

• The UK Met Office and AIR Worldwide collaborated on an Association of
British Insurers report to measure the impact of global temperature increases on
the UK insurance industry, specifically as it related to several domestic and
international natural perils (Robinson et al. 2017).

These studies address public policy concerns and typically reflect the longer
timescales common in climate change studies. However, as discussed previously,
these timescales typically exceed the timescales currently evaluated by the re/insur-
ance industry for business planning. Thus, catastrophe modeler involvement in
climate change research remains limited to these preliminary studies at present.

1.7 Conclusions

In a perpetual effort to illustrate the “current” hurricane risk facing the insurance
industry, commercial catastrophe models will continue to evolve as the effects of a
changing climate unfold. Although tropical cyclones already cause the largest annual
insured losses of any natural peril, the effects of a warmer world may serve to make
these losses more frequent or severe. The calculation of these losses will consider
data gathered from future landfalling Atlantic hurricanes, in the same way that
hurricanes like Ike, Sandy, and Harvey inform present-day catastrophe models.
Each future hurricane serves as an opportunity to add a data point to a statistically
limited record. As the debate between long-term and near-term views of frequency
risk continues, catastrophe modelers and re/insurers will no doubt pay attention to
this expanding record to determine which view best represents the industry’s
“current” hurricane risk.
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Chapter 2
Global Tropical Cyclone Damage Potential

Greg J. Holland, James M. Done, Rowan Douglas, Geoffrey R. Saville,
and Ming Ge

Abstract An approach to assessing the damage potential of tropical cyclones (TCs)
is developed using a combination of physical reasoning and results of previous
studies. The key TC damage parameters of intensity, size, and translational speed are
incorporated into a single index of Cyclone Damage Potential (CDP). The CDP is
developed to represent offshore wind, wave, and current damage. Further testing is
needed to establish the importance of each TC parameter for onshore wind and
coastal surge damage. The CDP is applicable to individual TCs and to seasonal,
global, and climatological assessments. Global climatological summaries reveal
high damage potential pathways and the dominant contribution of the Northwest
Pacific to total global damage potential. Assessing actual impact requires an addi-
tional step of combining the CDP with an exposure and vulnerability assessment
derived from a range of local factors.
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2.1 Introduction

There is a growing need for objective and timely information on the damage caused
by tropical cyclones (TCs) for both response and planning purposes. This has led to
the development of a number of indices that estimate the potential for TCs to cause
damage (hereafter damage potential) from available TC data. Such indices include
(Table 2.1): the Saffir-Simpson Scale (SSS, Simpson and Riehl 1981); the Power
Dissipation Index (PDI, Emanuel 2005); the Kantha (2006) Hurricane Intensity
Index (HII), and Hurricane Hazard Index (HHI); the Hurricane Severity Index
(HSevI, Hebert and Weinzapfel 2006); the Chicago Mercantile Exchange Hurricane
Index, formerly Carvill Hurricane Index (CHI, Smith 2010); and the Integrated
Kinetic Energy (IKE, Powell and Reinhold 2007; Kozar and Misra 2014). Basin-
wide summaries of seasonal TC activity that can be used as a basis for assessing
damage potential include the Hurricane Destruction Potential (HDP, Gray and
Landsea 1992), the Accumulated Cyclone Energy (ACE, Bell et al. 2000); and the
Revised Accumulated Cyclone Energy (RACE, Yu et al. 2009).

As shown in Table 2.1, all indices use storm intensity in various forms: one uses
just the maximum wind speed; six the maximum wind speed squared; and three use
wind-speed cubed. Of these, six rely entirely on maximum wind speed, four include
size in some form and one includes translation speed. These intensity relationships
have been used in wind engineering (Pita et al. 2015), and to assess future changes in
TC damage (Pielke 2007; Emanuel 2011; Schmidt et al. 2010).

The goal of this study is to develop an approach for assessing the damage
potential of TCs that incorporates intensity, size, and wind duration, and is applica-
ble individually, seasonally, and globally for a range of societal purposes. The
resulting index of Cyclone Damage Potential (CDP) is based primarily on physical
principles and utilizes only information readily available in the warnings from TC
warning centers. It is developed to be applicable to offshore damage from wind,
waves, and currents. For onshore direct wind and coastal surge damage, the relative
importance of each parameter will differ, and the applicability of the CDP to onshore
losses needs to be tested against suitable loss data. The CDP is not necessarily
applicable to damage resulting from rainfall or to indirect damage such as business
interruption or demand surge (Olsen and Porter 2011).

We emphasize that the CDP does not refer to actual damage in any specific
circumstance. It is intended to provide easily understood indications of the relative
damage potential for individual storms, or for collections of storms over, for
example, basins and seasons. Actual impact assessment and prediction requires an
assessment of exposure, E, and vulnerability, V, with a typical relationship being:

Damage ¼ CDP � E � V ð2:1Þ

Exposure may be defined a number of different ways, such as population or the
numbers or value of structures. Vulnerability may also be defined in various ways,
such as the location of structures or population relative to the storm track, elevation,
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topography that can act to channel winds into low-level jets (Walker et al. 1988),
coastal bathymetry that can enhance or impede storm surge (e.g. Chavas et al. 2013),
or structural response to downbursts and other factors creating streaks of enhanced
damage (Pita and de Schwarzkopf 2016; Miller et al. 2013). In addition, prior TC
experiences of the local population, TC warning time, and pre-landfall weather
conditions may also affect local vulnerability. Assessing exposure and vulnerability
across these multiple factors is beyond this study. In broad terms, the CDP can be
used as a baseline from which to benchmark more detailed impact or damage
assessments.

The data used are described in the next section. Details of the CDP development
are then described in Sect. 2.3, followed by a demonstration of global historical CDP
and the use of CDP in forecasting in Sect. 2.4.

2.2 Data

TC nomenclature varies substantially around the globe. Here, “TC” is used to refer to
all named storms with maximum 1-min sustained wind speed >34 kt, and “hurri-
cane” for all named storms with maximum 1-min sustained winds >64 kt. TC data
are taken from the IBTrACS archive (Knapp et al. 2010), a compilation and
standardization of 6-hourly archives from worldwide TC warning centers. Unfortu-
nately, some World Meteorological Organization (WMO) designated TC warning
centers do not archive size, despite this being included in the WMO standard for
archives. For the North Atlantic, size is included using the mean radius of hurricane
force winds obtained from US National Hurricane Center advisory archives collated
by Demuth et al. (2006) and known as the Extended Best Track Dataset. The archive
at the Joint Typhoon Warning Center (JTWC, http://www.usno.navy.mil/NOOC/
nmfc-ph/RSS/jtwc/best_tracks/) is used for assessing size in the other TC basins.

The CDP components and full index are tested against the Willis Energy Loss
Database (WELD, Willis, unpublished data 2009), an archive of losses to the
offshore energy industry, including offshore and onshore physical property damage
(platforms, rigs, pipelines, storage systems, refineries, loading terminals) and oper-
ator costs. Loss data are available for seven historical hurricanes that traversed the
main rig area (Andrew 1992; Lili 2002; Ivan 2004; Katrina and Rita 2005; Gustav
and Ike 2008) and are adjusted to 2008 values using the Chemical Engineering Plant
Cost Index (Arnold and Chiltern 1963; Vatavuk 2002). The tracks of these hurri-
canes are shown in Fig. 2.1 together with the locations of offshore facilities.

Although the WELD data is limited to only seven storms, it has a key advantage
in that the recorded damage occurred in a quasi-uniform distribution of facilities
across the Northern Gulf of Mexico with roughly similar vulnerability characteris-
tics. All hurricanes are therefore assumed to impact similar exposure and vulnera-
bility, leaving damage differences attributable to TC parameters.

One source of potential error may arise from new facilities and increased pro-
duction that has occurred over the period of the cyclone impacts used. From 1992
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through 2003, oil production in the Gulf increased from approximately 23 million
barrels per month to approximately 50 million barrels. After 2005, it declined to
about 40 million barrels (U.S. Energy Information Administration, www.eia.gov).
However, due to a lack of suitable data, we do not correct for change in exposure. It
is likely that some of these changes may have stemmed from change in levels of
operations at existing facilities. It is also likely that most of the damage referred to
here came from older rigs that had been in place for substantial lengths of time.

2.3 The Cyclone Damage Potential Index

2.3.1 Selection of Parameters

That damage increases with cyclone intensity is well established (Geiger et al. 2016;
Murnane and Elsner 2012). Cyclone intensity is emphasized in warnings, and
intensity-based indices such as the Saffir-Simpson Scale (Simpson and Riehl
1981) are widely adopted.

It also is intuitively obvious that size can contribute to damage potential since a
larger storm extends damaging winds over a larger area, and previous studies
confirm this. Zhai and Jiang (2014) found using maximum wind speed and size
together captures more variance in normalized TC losses than using maximum wind
speed or size alone. Czajkowski and Done (2014) found TC size (in terms of radial

Fig. 2.1 Platform locations in the Gulf of Mexico as of 02/03/15 (black dots) and tracks of seven
hurricanes for which offshore loss data are available (colored lines). Note that there are two tracks
for Ivan as this hurricane passed through the region twice. Loss and hurricane analyses are done for
the area between the dashed lines (26� N, 88� W) and the coast. (Data sources: Bureau of Ocean
Energy Management, IBTrACS)
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extent of strong winds) to be important in controlling the size of the impacted area,
the duration of damaging winds, and the likelihood of wind directional change.
Further examination by Done et al. (2018) found duration was only important for
weaker TCs (peak wind speeds less than 95 knots). Size, in terms of the radius of
closed isobar, also appears to correlate with rainfall extent (Matyas 2010).

Increasing damage with duration can arise from several factors, including
increased ocean waves and currents, increased rainfall, fatigue, and flying debris.
The longer gusty winds impact a structure, the more likely there will be a failure in a
critical component due to fatigue. The potential for further catastrophic failure then
increases rapidly with continuing wind duration. Airborne debris is a major cause of
damage. The longer the wind blows, the more likely it is that debris will strike a
vulnerable building component. The importance of duration and directional change
in wind was demonstrated using insured losses (Done et al. 2018). Jain (2010) also
found increased insurance losses for storm-strength wind-duration events >10 h
compared to those of <10 h. For offshore losses, wind extent and duration (a com-
bination of translation speed and size) drive ocean waves, and ocean currents that are
a major influence on offshore damage (e.g., Holland 2012).

For storm surge, TC intensity and TC size correlate with surge height (Grinsted
et al. 2012; Lin et al. 2012). TC size also correlates with areal coverage of surge
(Rego and Li 2009). The effects of TC forward speed on surge are less clear. While
linear theory and numerical simulations show that slower-moving storms dampen
the peak surge height (Proudman 1953; Irish et al. 2008), there is evidence that
slower moving storms drive larger volumes of water inland (Rego and Li 2009).

Having established the physical basis for incorporating intensity, size, and dura-
tion in the damage index, it is instructive to examine their relative importance for
reproducing the observed damage from the WELD database (Fig. 2.2). Here,
intensity is defined as the maximum 1-min mean wind speed anywhere in the
cyclone at 10 m above the surface. We start by exploring linear correlations between
damage and individual terms. Intensity variation, alone, has the weakest relationship
with these losses (R2 ¼ 0.23, Fig. 2.2a), and similar results are found for the square
or the cube of the maximum winds (not shown). Next in importance is the radius of
hurricane winds (R2 ¼ 0.48, Fig. 2.2a). The inverse of the translation speed explains
the majority of the variance in hurricane damage (R2¼ 0.71, Fig. 2.2b). This relative
ordering is robust to removal of individual cyclones. However, there is a substantial
correlation between size and translational speed (R2 ¼ 0.52 for the data in Fig. 2.2).
Previous work has shown that this relationship is at least partly due to translational
speed responding to size variations through asymmetrical circulations induced by
the TC itself (known as the beta effect, Holland 1983).

We next explore relationships between combinations of terms and damage.
Assuming that the inverse of the translation speed is a crude indicator of the duration
of impact, then an indication of the importance of duration for both the maximum
winds and surrounding damaging winds may be obtained by dividing the intensity
and the hurricane extent by the translational speed. Including duration of the
maximum winds explains 81% of the WELD damage variance compared to 23%
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Fig. 2.2 Relationships between TC components and offshore insurance losses in the Gulf of
Mexico: (a) mean maximum intensity and extent as defined by radius of hurricane winds, (b)
mean translation speed, and (c) duration index for intensity and extent. Means are over all 6-hourly
hurricane data points in the region shown in Fig. 2.1. Linear lines of best fit and variance explained
are also indicated



for intensity alone (Fig. 2.2c). Adding duration to the extent of hurricane winds
increases the linear variance explained from 48% to 65% (Fig. 2.2c).

Offshore losses are primarily driven by the sea state, which is highly sensitive to
TC size and translation speed through wind duration and wind fetch effects. We
therefore expect the importance of size and translation speed to be less for onshore
losses (in those onshore regions away from the coastal surge zone) than for offshore
losses. The lack of readily available spatial onshore loss data precludes a thorough
analysis here, but as discussed earlier in this section, previous work suggests
duration explains additional variance for onshore losses.

2.3.2 The Index

The prior work discussed in the previous section, plus the evidence from the small
selection of offshore observations from the WELD data, point towards a damage
potential index made up of some combination of the two terms used for Fig. 2.2c:

CDP ¼ a

vm
vm0

� �aa

vcit
þ b

Rh
Rh0

� �bb

vcrt
, ð2:2Þ

where vm is the maximum 1-min wind speed (kt) at 10 m above the surface, Rh is the
radius the hurricane force (64 kt) winds, vt is the translation speed (kt), a, b, aa, bb,
ci, cr are constants to be determined, and vm0, Rh0 are normalization factors. The first
term on the right-hand side represents the magnitude and duration of intense winds,
and the second term is the extent and duration of hurricane winds. A summation
rather than multiplication is based on the following reasoning: it enables different
weighting of each term; it reduces the influence that sharp changes in any one term
may have on the overall index; it reduces the influence of errors in individual terms;
and, it better represents the individual damage mechanisms at work due to wind
speed and duration. Sufficient and consistent damage data are not available to enable
empirical determination of all of the constants in Eq. 2.1, so these are estimated
largely on physical grounds. The sensitivity of the CDP to the final choices is
established a posteriori.

Previous damage indices (Table 2.1) have used an exponent of aa ¼ 1, 2, or
3. The static force of wind on an object aligned perpendicular to the wind, such as an
individual building, varies with the square of the wind speed, as can readily be seen
from Bernoulli’s equation (pressure ¼ ρv2/2). But the work done by the wind in
directly damaging a collection of buildings and generating storm surge, currents, and
waves varies with the wind speed cubed (Emanuel 2005). Additional dynamic
effects such as the gustiness in the wind and vortex shedding also contribute
(Davenport 1967), but these are impossible to assess with available warning data.
Other collateral effects, for example the disruption to major facilities leading to a rise
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in fuel costs, as occurred after Katrina and Rita in 2005, and increases in building
costs due to expertise and supply shortages after a major disaster, are best handled as
a component of the separate exposure and vulnerability assessment. Hence, follow-
ing Emanuel (2005), we set aa ¼ 3. The normalization value is taken as vm0 ¼ 65 kt
for consistency, with the choice of radius of hurricane force winds for the wind field
extent. Note that nautical units are used to ensure global consistency, as these are the
only units used in all cyclone basins.

For parameter ci, Fig. 2.2b indicates a potential quadratic relationship of damage
to the inverse of translation speed, but this is largely due to there being several
storms of different sizes and intensities at translation speeds of around 10 kt. There is
little change in variance explained by setting ci¼ 1 or 2. Therefore, in the absence of
additional information, ci is set to 1. For similar reasons, cr is set to 1. Further work is
needed to assess the implications of this choice. To remove problems with the
inverse of vt for slow moving hurricanes, a minimum value of vt is arbitrarily set
at 5 kt.

The azimuthal mean radius of hurricane force winds, Rh, is used to indicate
hurricane extent, since this parameter can be readily obtained from available data.
There are associated uncertainties in its analysis, its azimuthal variability, and the
variety of wind-field shapes that occur. One logical physical basis is to set bb ¼ 2 to
represent the areal coverage of the storm. However, the variance explained is not
overly sensitive to the value of bb, as shown later. Therefore, to keep the index as
simple as possible, bb is set to 1 with a reference value of Rh0 ¼ 50 nm.

This leaves two parameters, a and b. Sensitivity analysis indicates rapidly
increasing overall scatter for a > 1 (partially due to the sensitivity arising from
setting aa ¼ 3), so a is set to 1. Much less sensitivity is found to the choice of b,
provided it is substantially > 1, so b is set to 5. The sensitivity analysis discussed later
(Table 2.2) supports these choices.

Finally, CDP is limited to hurricane force systems. This is consistent with all
other indices summarized in Table 2.1. The resulting CDP is:

CDP ¼ 4

vm
65

� �3 þ 5
Rh

50

� �� 	

vt

, for vm > 65, and if vt < 5, set vt ¼ 5: ð2:3Þ

As noted earlier, the HHI (Kantha 2006) also combines intensity, size, and
forward speed into a single index. Nevertheless, the summation of terms in the
CDP permits different weighting of terms and stability to sharp changes or error in a
component term. The coefficient of 4 is introduced to scale the CDP across the
approximate range of 0–10, and within this range we recommend rounding to one
decimal place. By comparison, operational cyclone categories are based on five
intensity levels (e.g. NHC 2017; BOM 2017). This integer intensity scale has been
remarkably successful, but the relatively large step between categories means a small
actual intensity change can result in a large jump to a new category of quite different
TCs. A more continuous scale is recommended here as it enables objective
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application to analysis methods or direct industry and societal applications. Our
approach is consistent with the Moment magnitude scale used in earthquake
assessment.

2.3.3 CDP Assessment

The sensitivity of the CDP (Eq. 2.3) to parameter choice is shown in Table 2.2,
where each constant and exponent is varied while keeping the others constant, and
the resulting change in variance explained for the WELD data is noted (last row of
Table 2.2). In all cases, there is a substantially dampened response of the CDP to
relatively large changes in the constants or exponents. The lowest sensitivity is for
intensity and the highest for translation speed. Most importantly, there is low
sensitivity in total variance explained arising from parameter variation. The sensi-
tivity of CDP to changes in the normalizing values for each hurricane in WELD
(Table 2.3) also indicates a dampened response. The CDP is thus relatively robust
both to the choice of parameters and to reasonable levels of observational uncer-
tainty. While this analysis indicates robustness, it also indicates that the choice of
parameter values is rather arbitrary.

2.4 Example Applications of CDP

The CDP is suitable for use in a variety of contexts, including real-time forecasting,
seasonal assessments, and understanding and predicting impacts arising from cli-
mate variability and change. Examples of its use are examined using historical
events together with seasonal and basin summaries.

Table 2.3 CDP sensitivity to changes in the normalizing values for each hurricane in WELD

Parameter Rh0 ¼ 75 Rh0 ¼ 25 vmo ¼ 95

% change 50% �50% 46%

Andrew 11% 1% �5%

Lili 18% 2% �8%

Ivan �5% �1% 2%

Katrina 14% 2% �6%

Rita 1% 0% �1%

Gustav �7% �1% 3%

Ike �32% �4% 14%

Variance explained �11% 0% �8%

The top two lines show the Eq. 2.2 parameter changes and percentage changes. The next block
shows the relative percentage changes in CDP. The bottom row indicates the changes to variance
explained for all cyclones
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2.4.1 Historical Events

A summary of CDP and damage estimates for selected historical TCs just prior to
landfall is provided in Table 2.4. While Needham et al. (2015) showed that surge
potential is best described using data at 18 h prior to landfall, TC winds often
decrease in the 18 h prior to landfall. To capture more accurate landfalling winds
while capturing a portion of the potential surge, we use the closest 6-hourly track
point to landfall. The CDP column is in descending order, yet the damage values are
widely scattered. This, again, emphasizes that while the CDP provides an objective
estimate of the relative damage potential of TCs worldwide, the actual damage is
very much dependent on exposure and vulnerability at the impact site.

Table 2.4 CDP of selected TCs at the available 6-hourly track point prior to landfall together with
published damage

Country
Storm
name Year CDP

Vm
(knots)

R64
(nm)

Vt
(knots)

Total economic damage
(nonadjusted USD bn)

Mexico Wilma 2005 10.7 120 71 5 5

USA Katrina 2005 6.6 140 80 11 81

Philippines Haiyan 2013 5.9 170 41 15 10

USA Ivan 2004 5 110 83 11 14.2

USA Ike 2008 4.6 95 84 10 19.3

India Phailin 2013 4.3 125 25 9 0.7

Philippines Fengshen 2008 4.3 100 38 7 0.3

Honduras Mitch 1998 4.2 85 30 5 3.8

Australia Tracy 1974 4.1 102 12 5 0.8

Australia Yasi 2011 3.9 135 55 15 2.5

USA Rita 2005 3.5 100 59 11 10

Philippines Bopha 2012 3.5 140 33 15 0.95

Myanmar Nargis 2008 3.4 115 30 10 4

Bangladesh Sidr 2007 3.3 130 43 15 2.3

Taiwan Morakot 2009 3.3 80 30 6 3.3

USA Sandy 2012 3 80 95 15 50

USA Andrew 1992 2.9 130 29 15 24

USA Dennis 2005 2.4 120 23 14 2.2

USA Charley 2004 2.3 125 15 15 13.5

Australia Larry 2006 2 115 15 14 1.2

For TCs with multiple landfalls the landfall at the region of maximum damage is shown. All values
are for the year of cyclone landfall and no adjustments are made for inflation, increasing populations
and value of infrastructure, or engineering and code changes. Note that Sandy and Mitch are
included for comparison only, since Sandy was a hybrid and for Mitch the damage largely resulted
from rainfall. Total economic damage data are sourced from http://www.icatdamageestimator.com
and, where italicized, the Emergency Events Database (EM-DAT): http://www.emdat.be
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2.4.2 Seasonal Basin Summaries

Scaling up to seasonal and basin summaries provides insight into the spatial vari-
ability of damage potential for the major cyclone basins (Fig. 2.3, limited size data
precludes a climatological analysis over the North Indian Ocean). CDP data are
visualized by binning the 6-hourly track data into equal-area hexagons, following
Elsner et al. (2012).

High CDP pathways follow the major belts of recurving storms off the US East
Coast, arcing towards southwest Japan, and down the Northwest and Northeast
Australian coasts. Other damage pathways track from the Caribbean into the Gulf
of Mexico, off the West Coast of Mexico up into Baja California, and east of
Madagascar. These summaries thus show a rich spatial texture that is masked by a
consideration of TC intensity alone. For example, in the North Atlantic basin, the
Yucatan and North Carolina are highlighted as hotspots for cyclones with high
damage potential, but this does not show if intensity, alone, is used.

All basins have been able to generate maximum CDP values of 10 (right side of
Fig. 2.3), with the Northwest Pacific containing the widest area and most frequent
occurrences of maximum damage potential cyclones.

A 26-year time series from 1988 to 2012 of seasonal (August to October)
accumulated CDP for the North Atlantic (Fig. 2.4) indicates no real trend for the
entire basin but a small (but not statistically significant) increase for land falling
storms. There also is a large interannual variability for which TC lifetime and
frequency are additional contributors to the three component terms of the CDP.
For example, the high frequency years of 1995 and 2005 have the highest seasonal
CDP – reflecting a contribution from TC frequency – yet the high frequency period
of 2010–2012 is not a period of high CDP – reflecting contributions from other
processes.

The El Niño Southern Oscillation (ENSO) appears to modulate seasonal, basin-
wide Atlantic CDP, with a correlation that is statistically significant (p < 0.04). No
significant ENSO relationship is observed for the land falling storms.

2.4.3 Real-Time Forecasting

The final use explored here is real-time forecasting of damage potential. Hurricane
Wilma (2005) is a chosen case study because of the large changes in the component
terms of CDP along the hurricane track.

Real-time hurricane forecasts issued by TC warning centers are combinations of
ensemble dynamical and statistical model output and subjective assessment. Here,
we explore an ensemble real-time forecast generated by the Advanced Research
Weather Research and Forecasting model (Davis et al. 2008). The ensemble
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comprises six real-time forecasts of Hurricane Wilma, initialized every 12 h from
00Z Oct 20 to 12Z Oct 22 2005, with lead times of 72–96 h. An outer 12 km fixed
domain, initialized with the Geophysical Fluid Dynamics Laboratory model at 1/6�

Fig. 2.3 Median (left) and maximum (right) seasonal accumulated CDP for (a) the Eastern North
Pacific (2001–2013), (b) the Western North Pacific (2004–2013), (c) the North Atlantic
(1988–2013), and (d) the Southern Hemisphere (2004–2013)
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grid spacing, contains a 4 km movable nest centered over the vortex. Further details
of the model setup are available in Davis et al. (2008).

The observed hurricane attained peak CDP of 10.7 as a slow moving, intense
hurricane in the Caribbean (Fig. 2.5a, b) and maintained peak CDP as it made landfall
in Mexico late on Oct 21, resulting in 5bn USD damages (Table 2.4). The hurricane
slowed further, tracked North over the Yucatán Peninsula over 24 h with a weakening
and reduction in the area of damaging winds, resulting in a CDP of 3 as it emerged
into the Gulf of Mexico. Crossing the Gulf, the hurricane re-intensified and increased
in size, yet these changes were offset by a forward acceleration, maintaining CDP
values around 3 at landfall in South Florida with US damages of $21bn.

All forecasts capture the general hurricane track (Fig. 2.5a), although the earliest
forecast missed the landfall in South Florida. All forecasts were initialized with a
cyclone of high damage potential but, whereas the observed cyclone maintained
peak CDP until Mexico landfall, the forecast CDP fluctuated between 10 and 5 with
an overall decreasing trend (Fig. 2.5b). This lower CDP results from a combination
of a smaller size and a faster forward translation speed leading to earlier landfall in
Mexico (Fig. 2.5d, e). The forecasts performed much better as the hurricane emerged
into the Gulf of Mexico, capturing the increase in intensity, size, and forward speed,
and the observed CDP at US landfall 3 days in advance.

Application of CDP to ensemble real-time hurricane forecasts offers an alterna-
tive presentation of the forecast information that is more closely related to damage
potential than consideration of intensity alone. Real-time CDP forecasts issued
during the active 2017 North Atlantic hurricane season provided new views of
potential damage, and were compared to the CDP of historical hurricanes to better
communicate potential damage. Moreover, CDP may be inherently more predictable
than maximum wind speeds alone due to the dampening effect of the less volatile
size and forward speed components (as suggested by the small range of forecast
CDP values compared to intensity prior to US landfall for the case of Hurricane
Wilma).

Fig. 2.4 Time series of seasonal accumulated CDP (1988–2012) for (left) the entire North Atlantic
basin, and (right) land falling storms at the 6-hourly track points prior to landfall. Years with
Oceanic Niño Index (ONI, 3 month running mean SST anomalies in the Niño 3.4 region 5 �N–5 �S,
120�–170 �W) for August-September-October >0.5 K (El Niño) are indicated in red, and ONI
<0.5 K (La Niña) are indicated in blue. (ONI data source: NOAA/CPC)
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2.5 Summary

A Cyclone Damage Potential (CDP) index has been developed that represents
offshore damage. Previous studies together with physical reasoning and an analysis
of limited historical cyclone and offshore loss data indicate that intensity, cyclone
size, and translation speed all contribute substantially to cyclone damage. Given the
importance of wind duration and fetch effects for the sea state, we expect the
importance of size and translation speed to be greater for offshore losses than for
onshore losses (away from the coastal surge zone). The three parameters of cyclone
intensity, size, and translation speed have been combined into the CDP to provide a
first order assessment of damage potential.

(a)

(b)

(c)

(d)

(e)

Fig. 2.5 (a) Hurricane Wilma tracks. The black dashed line indicates the observations (IBTrACS)
and the colored lines indicate real-time forecasts initialized every 12 h from 00Z Oct 20 to 12Z Oct
22, 2005. Filled circles indicate 6-hourly track locations. (b–e) Observed and forecast time series of
CDP, maximum wind speed, radius of hurricane force winds, and translational speed
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Because the CDP is robust to both the choice of parameters and to reasonable
levels of observational uncertainty, it is therefore suitable for a variety of applica-
tions from individual events and real-time forecasts to seasonal and global summa-
ries. An advantage of the CDP is that it can be used to provide assessments relative to
other events, regions, or periods, and as an aid to interpreting and comparing
historical cyclones. Actual quantitative damage assessment or prediction requires
an additional step of developing a vulnerability transfer function based on a user’s
specific exposure and risk. This might address, for example, business vulnerability
through an insurance portfolio, vulnerability of local cultural groups, and vulnera-
bility of infrastructure.

The value of the approach developed here for cyclone damage potential has only
been demonstrated using a small number of storms for a single economic sector – the
offshore energy sector – whose primary exposure is offshore. It is therefore neces-
sary to explore this potential limitation to understand the extent of its applicability.
The lack of readily available spatial onshore loss data precludes a thorough analysis
here, but a follow-on study using recently acquired onshore loss data will examine
the applicability of CDP to onshore losses in more detail.

Potential application to landfalling storms has been explored using historical data.
For landfalling storms there are cases of intense, yet small and fast moving, cyclones
that have lower CDP than others that are less intense but larger and slower moving.
The CDP, therefore, may provide an objective approach to assessing relative damage
potential of such TCs and for use in what-if scenarios. For example, there was
potential for much higher losses in the Miami area had Hurricane Andrew been
larger or slower moving. For a specific cyclone impact, the CDP concept may be
used in ensemble forecast mode and immediately after impact to provide a first-order
damage assessment.

Climatological summaries reveal global damage potential pathways co-located
with belts of recurving storms, damage potential hotspots east of the Philippines and
across the north Australian coast, and the dominant contribution of the Northwest
Pacific to total global damage potential. No trend in damage potential is seen for the
entire North Atlantic basin, but a small (but not statistically significant) trend is
found in the landfalling damage potential for North Atlantic basin landfalling storms.

The approach developed here for cyclone damage potential is transferable to
developing damage potential indices for other high-impact weather and climate
phenomena such as hail, floods, drought, and sea-level rise. The approach is also
extendable to developing damage potential indices on large-scale environmental
parameters rather than on the TC characteristics themselves. Done et al. (2015), for
example, developed an index of seasonal damage potential for the North Atlantic.
Using the same concept, Tippett et al. (2012, 2014) developed the Tornado Envi-
ronment Index, and Allen et al. (2015) developed the Hail Environment Index. Such
indices have broad societal applications, including real-time warnings and emer-
gency management, long-term planning, providing a first order assessment of the
potential for insurance claims, and cost-benefit assessments of engineering advances
and adaptation measures.
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Chapter 3
Integrated Kinetic Energy in North Atlantic
Tropical Cyclones: Climatology, Analysis,
and Seasonal Applications

Michael E. Kozar and Vasubandhu Misra

Abstract Integrated Kinetic Energy (IKE) is a recently developed metric that
measures the destructive potential of tropical cyclones (TCs) by integrating the
square of the surface winds across these powerful storms. In this chapter, the
previous literature is reviewed to provide insights on the factors that make IKE a
desirable metric. IKE complements existing scales and metrics by considering a
TC’s entire wind field, in lieu of just focusing on the maximum intensity of a storm.
Using a dataset of six-hourly IKE estimates for two decades of North Atlantic TC
activity, the climatology of IKE in individual storms is explored, with emphasis on
seasonal and spatial variability. The driving mechanisms for IKE variability during
the lifetime of a TC are also reviewed to determine which environmental and storm-
scale features promote IKE growth. The historical record of IKE can also be
aggregated to a seasonal metric, called Track Integrated Kinetic Energy (TIKE),
which is shown to offer a comprehensive overview of seasonal TC activity and can
be used to explore interannual TC variability over the last two to three decades.
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3.1 Introduction

In the first two decades of the twenty-first century, a series of North Atlantic tropical
cyclones (TCs) with large wind fields made landfall in the United States. These
expansive storms – including Hurricanes Ivan (2004), Katrina (2005), Ike (2008),
Irene (2011), Sandy (2012), and Irma (2017) – served as further evidence that
damage potential is tied to much more than just the oft-reported maximum sustained
wind intensity metric. Irene and Sandy, in particular, had top wind speeds that would
not rank highly on the Saffir-Simpson Hurricane Wind Scale (SSHWS) just before
they came ashore (Fig. 3.1), yet both storms caused considerable wind and surge
damage, exceeding what is typically expected for storms of a similar intensity.

Certainly, intensity metrics are still quite useful, as there is clear indication that
wind damage from TCs is connected to inner core wind speeds (e.g. Kantha 2006;
Pielke and Landsea 1998; Murnane and Elsner 2012). Specifically, Murnane and
Elsner (2012) indicate that losses and maximum sustained wind speeds are expo-
nentially related, with an increase of loss at a rate of 5% per m s�1 of peak winds.
However, beyond these high inner core wind speeds, a common meteorological
feature that is relevant to the damage caused by some of these recent landfalling
hurricanes is the overall size and structure of their wind field. For instance, a wide
swath of tropical storm strength winds (�17 m s�1) in larger TCs contributes to an
increased volume of destruction and a more widespread wind threat to the popula-
tion. Zhai and Jiang (2014) indicate that using a combination of storm size and
maximum wind speed explains a larger portion of the variance in losses caused by a
landfalling hurricane than using intensity (or size) alone. In an illuminating example,
they suggest that economic losses from the landfall of Hurricane Sandy would have
been approximately 20 times smaller if its size were comparable to an average sized
TC, leaving its maximum sustained winds unchanged as observed.

Fig. 3.1 Relative frequency distribution of six-hourly Vmax measurements in Atlantic TCs between
1990 and 2011. This sample includes 5498 fixes from 291 storms. Vertical lines are shown to
indicate Vmax values for selected hurricanes just prior to a US landfall. The times of these Vmax

measurements are as follows: Ike 9/13/08 00Z; Irene 8/28/11 06Z; Sandy 10/29/12 18Z. The three
storm points would fall in the top 45% of all TCs points in terms of Vmax from 1990 through 2011.
(Adapted from Kozar and Misra 2014)
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Furthermore, storm surge from landfalling TCs continues to be a significant threat
and has caused considerable damage historically (Pielke and Landsea 1998). Irish
et al. (2008) found that there is a significant direct relationship between the size of a
TC’s wind field and the resulting peak surge, especially in regions with mildly
sloping coastal bathymetry. Given that coastal developments continue to expand and
become more densely populated (Crosset 2004), society is becoming more at risk to
the wind and water from landfalling TCs. Given these increasing risks and the
importance of storm size to the amount of lives and property exposed to the hazards
associated with TCs, there is a rising interest in understanding and predicting the size
and structure of TC wind fields (Cangialosi and Landsea 2016; Knaff et al. 2016).

In an effort to better evaluate the damage potential of TCs as a function of winds
across the entirety of a TC, Powell and Reinhold (2007) introduced a novel,
alternative metric called Integrated Kinetic Energy (IKE). This metric is proportional
to a simple integration of one-half of the square of the 10-m wind field over a
one-meter depth out to the radius of 34-knot winds:

IKE ¼
Z
v

1
2
ρU2dV ð3:1Þ

IKE is tied to physical processes that cause damage, as it scales with wind stress
on the ocean and the wind load forcing on structures (Powell and Reinhold 2007).
Furthermore, given its integrated nature, IKE takes into account both inner core
winds (i.e. TC intensity) and the size of hurricane wind fields, giving it potential
advantages over more limiting intensity metrics which do not consider storm size at
all. This is clearly demonstrated by hurricanes Irene, Ike, and Sandy, which each
made landfall with IKE values that rank in the top 7.5% of historical values from
1990 to 2015, in contrast to their somewhat lower maximum sustained wind
placement (Figs. 3.1 and 3.2).

Fig. 3.2 Relative frequency distribution of six-hourly IKE measurements in Atlantic TCs between
1990 and 2011. This sample includes 5498 fixes from 291 storms. Vertical lines are shown to
indicate IKE values for selected hurricanes just prior to a US landfall. The times of these IKE
measurements are as follows: Ike 9/13/08 00Z; Irene 8/28/11 06Z; Sandy 10/29/12 18Z. The three
storm points would fall in the top 7.5% of TCs in terms of IKE from 1990 through 2011. (Adapted
from Kozar and Misra 2014)

3 Integrated Kinetic Energy in North Atlantic Tropical Cyclones. . . 45



The next section of this chapter will focus on the analysis of historical IKE values
across the North Atlantic basin with a focus on how the metric can be measured or
approximated, followed by a discussion on the climatology of IKE in North Atlantic
tropical cyclones. Afterward, a series of sensitivity tests is presented to explore
relationships between the environment, storm-scale features, and IKE, which might
offer some guidance on how IKE could respond in a changing climate. Finally, an
application will be presented in which IKE can be used to evaluate interannual TC
activity (Sect. 3.4), with a discussion on how seasonal sums of IKE vary with
changes in climate processes.

3.2 Analysis of IKE

3.2.1 Estimating Observed IKE

The biggest strength of the IKE metric is its consideration of the distribution and
strength of surface winds across the entirety of a TC’s wind field. However, by
considering winds across such a large area, calculating IKE exactly in either a real-
time or historical setting poses some potential challenges. Observations from aircraft
reconnaissance serve as the most useful source of information when assessing storm
size and structure. Other observational platforms such as buoys, ships, radar, and
surface-based anemometers along the coast can also be of great use to measure the
size and structure of TC wind fields, as demonstrated by the HRD real-time
hurricane wind analysis system (H*Wind; Powell et al. 1998). When available,
observationally-based gridded wind fields from analyses such as these are the
preferred framework for calculating IKE directly (Powell and Reinhold 2007).

However, the critically important aircraft reconnaissance flights are not necessar-
ily continuous in the Atlantic. For instance, Rappaport et al. (2009) reported that the
coverage of these data is for only about 30% of all TC fixes in the North Atlantic. In
other basins across the globe (e.g. West Pacific, Southern Hemisphere, and Indian
Ocean), flight data may be absent altogether. The dearth of in situ observations in
some locations has forced forecasters, analysts, and researchers alike to rely more
heavily on wind field estimates from satellites (Knaff et al. 2016). These satellite-
based winds may come from multiple sources, including microwave radiometers
(Demuth et al. 2004, 2006), scatterometers (e.g. Atlas et al. 2011; Holmlund et al.
2001), and cloud drift winds (Velden et al. 2005). Ultimately, spaceborne retrievals
are quite useful for filling gaps where surface data might not otherwise exist, but
these techniques still have their own limitations. For instance, scatterometers often
underestimate the inner core wind speeds within intense TCs (e.g. Brennan et al.
2009), and retrievals are susceptible to contamination from high rain rates through-
out the storm (e.g. Weissman et al. 2012). As technology improves and new
observation platforms become available in the coming years (e.g. GOES-16,
CYGNSS, etc.), it is likely that measurements of hurricane wind structure will
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improve both in quality and duration, allowing for better estimation of IKE (Morris
and Ruf 2016).

In the meantime, given the inconsistent coverage and quality of hurricane wind
measurements around the world, it may be difficult to compute IKE directly from
observations in all cases. Other gridded datasets such as numerical reanalysis
provide another option for estimating historical values of IKE across the globe in a
more consistent framework. However, gridded wind reanalyses continue to show a
persistent weak TC bias and often are unable to resolve smaller TCs (Manning and
Hart 2007; Schenkel and Hart 2012; Buchanan et al. 2018), making them less than
ideal for directly calculating the IKE of a TC’s wind field in most cases.

Given the challenges of calculating IKE directly, Misra et al. (2013) offered an
alternative method for approximating IKE through an empirical relationship between
reported operational wind radii. Estimates of storm size are already provided by
many of the TC warning centers (e.g. National Hurricane Center [NHC], Central
Pacific Hurricane Center [CPHC], Joint Typhoon Warning Center [JTWC]) in their
regular advisories. These operational values are often stored and/or reanalyzed after
the season in research and operational datasets such as the Automated Tropical
Cyclone Forecast System (ATCF) b-decks or the NHC’s HURDAT2 database and
the Extended Best Track (Demuth et al. 2006). Size is typically reported in datasets
such as these by providing approximations of the maximum radial extent of 34-kt
(tropical storm force), 50-kt (storm force by Beaufort wind scale; WMO 1970) and
64-kt (hurricane force) winds in cardinal geographic quadrants (northwest, south-
west, southeast, and northeast) from available data platforms. The aforementioned
data quality and coverage inconsistencies surely affect the accuracy of the opera-
tional radii metrics (e.g. Landsea and Franklin 2013). Furthermore, Vigh et al.
(2012) specifically notes that some parameters such as the radius of maximum
winds often do not match actual aircraft measurements particularly well in the
early portions of the Extended Best Track data (i.e. pre-2001). Nonetheless, Knaff
et al. (2016) indicate that the best track wind radii from the NHC provide useful
estimates of TC wind radii for developing new techniques.

Table 3.1 details the algorithm to compute IKE from discretized wind radii data
adapted from Misra et al. (2013). These formulas may be used in conjunction with
the HURDAT2 and the Extended Best Track dataset to provide a continuous
estimate of IKE for all storms in the Atlantic basin, going back almost three decades
in a reasonably consistent framework. Such a dataset of IKE values, while inexact,
would still be useful for analyzing the climatology of IKE in storms across the North
Atlantic basin.

3.2.2 Climatology of IKE in the North Atlantic Basin

Applying the algorithm in Table 3.1 to the radii data in HURDAT2 and the Extended
Best Track dataset yields a historical dataset containing IKE estimates for more than
5600 six-hourly fixes for nearly 300 storms between 1990 and 2011 in the North
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Atlantic Basin. Only fixes for subtropical storms and TCs are used in this dataset, but
certainly some of the included fixes will correspond to storms that are ongoing but
have not completed extratropical transition. Across this wide sample of IKE fixes
(of which the distribution is plotted in Fig. 3.2), the mean six-hourly IKE value is
35.4 TJs. The distribution is skewed towards lower values with more than 57% of the
fixes containing less than 25 TJ of IKE. Consequently, the standard deviation of IKE
values is relatively high (43.6 TJ), and there is a long tail of high IKE values in the
record. Sandy in 2012 and Igor in 2010 are two recent members of this long tail, as
both obtained more than ten times the mean IKE value by the end of their lifetime.
Overall, the shape of the distribution for this large number of IKE samples resembles
a log-normal distribution (Kozar and Misra 2014), which was also proposed as a
good fit for the distribution of storm size as measured by the radius of vanishing
wind (Dean et al. 2009).

Further dissection of the historical dataset reveals that over the course of a storm’s
lifetime, it will peak at approximately 50 TJ of IKE on average. More than a quarter
of the 291 storms in the record never grow past 10 TJ of IKE at any one time, with
only a fifth of the historical storms ever reaching 100 TJs during their lifetime.

The seasonal cycle of the IKE values in this record follows somewhat closely the
seasonal cycle of TC frequencies in the North Atlantic, except it is skewed a little bit

Table 3.1 Algorithm to compute IKE from discretized wind radii data (e.g. Extended Best Track
data Demuth et al. 2006) (From Misra et al. 2013)

Quadrant IKE
contribution Criteria

Mean wind (m s
�1) Area

IKE18–26 R26 >0 20 1/4 π (R18
2
–R26

2)

No R26, VMS>26,
R18>Rmax

20 1/4 π (R18
2
–

(0.75Rmax)
2)

No R26, VMS<26,
R18>Rmax

1/4 VMS + 3/4
(18)

1/4 π (R18
2
–

(0.75Rmax)
2)

No R26, Rmax¼R18 18 1/4 π (R18
2
–(0.5R18)

2)

IKE26–33 R33>0 27.75 1/4 π (R26
2
–R33

2)

no R33, VMS>33,
R26>Rmax

27.75 1/4 π (R26
2

�(0.75Rmax)
2)

no R33, VMS<33,
R26>Rmax

.25 VMS+.75
(26)

1/4 π (R26
2
–

(0.75Rmax)
2)

no R33, R26<¼Rmax 26 1/4 π [R26
2�(.5R26)

2]

IKEH Max R33 Quadrant,
R33>Rmax

.25VMS +.75
(33)

1/4 π (R33
2
–

(0.75Rmax)
2)

Max R33 Quadrant, R33¼
Rmax

.25VMS +.75
(33)

1/4 π (R33
2
–(.75 R33)

2

)

R33<Rmax .1VMS + .9(33) 1/4 π (R33
2
–(.75 R33)

2

)

Not max R33 Quadrant .1VMS + .9(33) 1/4 π (R33
2
–

(0.75Rmax)
2)Rmax ¼ R33

R18, R26, R33, refer to radius of wind speeds of 18, 26, 33 ms�1, Rmax is radius of maximum winds
and VMS is speed of maximum sustained wind speed of the TC
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more towards the end of the typical hurricane season. The mean monthly IKE value
peaks in September at 44 TJ, or approximately 25% higher than the overall mean
(not shown). Mean six-hourly IKE values are higher in October and November than
they are in June, July, or August, indicating a preference for storms with higher IKE
values later in the season.

Looking now at the spatial climatology of IKE across the Atlantic, it becomes
evident that storms climatologically obtain higher IKE values as they move pole-
ward in the northern part of the basin (Fig. 3.3). This is consistent with the higher
IKE values found later in the season, as many TCs that form in October and
November occur in the western half of the basin and follow a more meridional
track toward the pole. Meanwhile, TCs over the main development region in the
central Atlantic and Caribbean typically have less IKE, with a few other localized
maxima appearing in the Gulf of Mexico and over the Bahamas. Focusing on only
IKE values that exceed 100 TJ in the historical record, it becomes even more
apparent that the western and northern parts of the basin are preferred regions for
high IKE values (Fig. 3.4). Furthermore, storms tend to obtain their lifetime peak
IKE value at the end of their tracks either in the northern part of the basin as they
recurve or just before making landfall in the western edges of the basin (Fig. 3.5).
This tendency for IKE to maximize in the northwest part of the basin does not
necessarily overlap with where one might expect the most intense storms to be
located, which would likely be further south.
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Fig. 3.3 Map showing historical mean IKE values for all fixes from 1990 to 2011 spatially across
3� 3� bins in the North Atlantic. The distribution of mean IKE suggests that storms have higher
IKE on average in the northern most latitudes of the basin. Please note that the grid cells in the
higher latitudes will be smaller in area than the grid cells over the deep tropics in this figure and the
two that follow
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Indeed, the northwestern part of the basin does not necessarily include the most
favorable conditions for traditional TC development throughout most of the year.
With the exception of areas along the Gulf Stream, sea surface temperatures (SSTs)
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Fig. 3.4 Map showing where tropical cyclones between 1990 and 2011 had IKE exceeding 100TJ,
gridded into 3� 3� bins
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Fig. 3.5 Map showing where tropical cyclones reached their maximum lifetime IKE values from
1990 to 2011, gridded into 3� 3� bins
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are often cooler in the northern part of the basin, and vertical wind shear also tends to
be higher, suggesting that baroclinic effects or trough interactions in the
mid-latitudes may be vital for creating and sustaining high IKE storms. All of this
suggests that the factors that govern IKE variability are complex and likely regional,
with the northern part of the basin likely impacted by more than just the processes
that govern traditional intensification. Maclay et al. (2008) indicated that observed
intensity and kinetic energy metrics from observations across the basin fit reasonably
well to a power law function, with kinetic energy increasing by an order of (Vmax)
1.872. However, a scatter plot of intensity and IKE shows two different relationships
for storms north or south of 30�N latitude (Fig. 3.6). In the southern part of the basin,
IKE is tied to intensity, with the two quantities having a correlation of 0.65
(significant at the p ¼ 0.01 level). In contrast, IKE and intensity are less correlated
in the northern part of the basin, with the highest IKE values all occurring in an
intensity sweet spot centered on the lowest Saffir-Simpson Scale category or two.

The evolution of kinetic energy and intensity has been explored at length previ-
ously. Musgrave et al. (2012) suggested that the lifecycle for a TC contains three
stages—incipient, deepening, and mature—with intensification occurring in the first
two phases and kinetic energy growth occurring throughout all phases. The incipient
phase includes more gradual increases in kinetic energy and intensity, before
intensity begins to increase more rapidly during the deepening phase. Maclay et al.
(2008) found that intensifying storms over warm waters and with low shear typically
saw less kinetic energy growth than would be expected by the aforementioned power
law KE-Vmax relationship, as these wind speed increases are more confined to the
inner core. Putting this all together helps to explain why mean IKE values in the
southern half of the basin tend to be more moderate—increasing a little bit more as
storms reach the western Caribbean and Gulf of Mexico—as traditional intensifica-
tion mechanisms typically only increase IKE so far.

However, as Musgrave et al. (2012) points out, kinetic energy continues to
increase during the mature phase of a TC, long after the storm reaches its maximum
lifetime intensity. In fact, many storms gain IKE quite rapidly as they turn poleward,
which likely can be attributed to external forcing from baroclinic influences, trough
interactions, and extratropical transitions, which can help to promote increased
angular momentum, wind field expansion, and some inner core intensification
simultaneously (e.g. Maclay et al. 2008). An IKE-Vmax diagram of Hurricane Igor
in 2010 (Fig. 3.7) serves as a good example that fits closely to the idealized lifecycle
for a TC as detailed by Musgrave et al. (2013). IKE increased throughout much of
the Igor’s lifecycle with the most drastic increase in IKE occurring as Igor interacted
with a trough in the mid-latitudes prior to becoming extratropical, causing its lifetime
maximum IKE value to be at the end of its life as a tropical cyclone.

Of course, there are many additional processes that can interrupt the idealized
evolution of IKE during a TC’s lifecycle (and thus the climatological preferences of
IKE in the basin) that have not been discussed above. Land interactions are one obvious
and noteworthy event that often results in large changes across a TC’s structure
(e.g. potentially increasing the radius of maximum winds and the general decay of
wind speeds over land), which of course will impact IKE. In addition, Sitkowski et al.
(2011) found that concentric eyewall replacement cycles also greatly affect the IKE in a
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Fig. 3.6 (a) Plot of integrated kinetic energy (TJ) versus maximum intensity (kts) for 3896 Atlantic
TCs located south of 30�N latitude between 1990 and 2011 (blue dots). The black line represents a
linear regression fit for the data. Considering the large sample of storm fixes, the linear correlation is

52 M. E. Kozar and V. Misra



TC’s wind field, with an average increase of 28% in a sample of 24 events. Musgrave
et al. (2012) visualized these eyewall replacement cycles in the IKE-Vmax diagram as a
brief excursion to lower intensities with continued IKE growth.

3.3 Statistical-Dynamical Sensitivity Tests for Studying
IKE Variability

As was summarized in the previous section, IKE has some notable climatological
preferences, some strong ties to environmental conditions, and the tendency to
increase throughout a TC’s lifetime. All of these factors can be leveraged to model

⁄�

Fig. 3.6 (continued) easily significant at the p ¼ 0.01 level. (b) Plot of integrated kinetic energy
(TJ) versus maximum intensity (kts) for 735 Atlantic TCs located north of 35�N latitude between
1990 and 2011. The correlation between VMAX and IKE in this figure is r ¼ 0.28
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Fig. 3.7 Evolution of integrated kinetic energy (TJ) versus maximum intensity (kts) throughout the
lifetime of Hurricane Igor in September of 2010 following Musgrave et al. (2012). The first point on
the plot temporally (green circle) occurred on September 9, 2010, shortly after Igor obtained
Tropical Storm intensity for the first time. Each of the subsequent cyan circles signals a 00Z
storm fix, indicating the passage of a day’s time, with the final fix occurring on September
21, 2010 (red circle) when Igor completed its extratropical transition over the North Atlantic

3 Integrated Kinetic Energy in North Atlantic Tropical Cyclones. . . 53



IKE variability using a statistical-dynamical model of atmospheric and oceanic
parameters. Kozar and Misra (2014) and Kozar et al. (2016) offered a proof of
concept that IKE can be modeled skillfully relative to persistence and climatology.
These models might be used not only for future forecasting applications (with
dynamically forecasted predictors), but can also be quite useful for further analyzing
the relationships between IKE and the environment, as is done here using a set of
sensitivity tests.

For these sensitivity tests, we utilize the system of artificial neural networks
presented by Kozar et al. (2016). This statistical-dynamical system, named the
Statistical Prediction of IKE Version 2 (SPIKE2), was designed to analyze and
hindcast IKE variability in North Atlantic TCs. It builds upon the linear regression
techniques used in the first version of SPIKE (Kozar and Misra 2014), by incorpo-
rating the intrinsic nonlinear map of weights within the neural networks, which
allowed SPIKE2 to anticipate the nonlinearities within the environment-TC system.
For example, in traditional TC development, wind shear is typically negatively
correlated with inner core intensity and IKE; however, in the mid-latitudes, an
increase in shear (to an extent) might benefit outer wind field expansion as
extratropical transition often causes wind fields to increase in size (e.g. Evans and
Hart 2008). In a linear regression approach, it would be impossible to tease out these
complex signals, but the neural networks used for SPIKE2 possess the flexibility to
potentially anticipate these signals within the training dataset.

To best estimate how the SPIKE2 neural networks would perform in a forecast
realm, Kozar et al. (2016) focused on neural networks that were calibrated and
evaluated using reanalysis and hindcast data from the second generation GEFS
reforecast project (Hamill et al. 2013). Despite the predictors containing some degree
of modeling uncertainty and forecast error, SPIKE2 performed well and was skillful
relative to both climatology and persistence out to 72 h. In fact, for a 24-h hindcast,
SPIKE2 explained more than 80% of the variance in the IKE record. Despite the
impressive hindcast results, this section will move the neural networks back into the
perfect prognostic space using historical predictors. The historical predictors in the
perfect prognostic space do not contain forecast errors and are better suited for an
exercise seeking to best understand how the environment modulates IKE in observed
North Atlantic TCs.

In this perfect prognostic setup, SPIKE2 is calibrated and evaluated with eighteen
predictors (Table 3.2) to estimate 36-h changes of IKE. The input predictors include
metrics relevant to large scale atmospheric/oceanic dynamics and thermodynamics
(e.g. deep layer wind shear, upper atmospheric temperatures, relative humidity, sea
surface temperatures, and upper level divergence), storm specific parameters (min-
imum central pressure, maximum wind speed, center position, time since genesis,
etc.), and a series of persistence parameters (past 12-h change of intensity and 36-h
IKE persistence). Ultimately, these parameters were chosen from a larger pool of
candidate predictors based on their physical relationship to storm size and strength,
and their significance for statistically modeling IKE. The neural networks were
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constructed with an optimal number of nodes for these predictors to minimize the
chances of overfitting. Kozar et al. (2016) offers a more complete discussion on the
construction of the neural network and the selection of the predictors in greater
detail. For brevity, each of these parameters will be referred to by its abbreviation in
Table 3.2 throughout the remainder of this section.

Most of the eighteen parameters are extracted directly from the Statistical Hurri-
cane Intensity Prediction Scheme (SHIPS)’s developmental dataset (DeMaria and
Kaplan 1999), while others are taken from the NOAA Optimum Interpolation SST
(“OI SST”; Reynolds et al. 2007) dataset and the NHC best track dataset
(Jarvinen and Neumann 1979, Jarvinen et al. 1984). In the end, all predictors are
normalized by the mean and standard deviation of the observed sample, which is
comprised of more than 15 years of Atlantic TC data. Of course, the corresponding
IKE targets used in calibration of the neural networks are taken from the wind radii-
based historical record that has been described at length in the previous sections.
Overall, the neural networks are trained on these 18 parameters for more than 3000
six-hourly storm fixes between 1995 and 2011.

The resulting statistical fit between SPIKE2’s estimates of IKE and the historical
record of IKE is a correlation greater than 0.90. The observed distribution of 36-h
IKE tendency is also modeled reasonably well when given historical parameters
(Fig. 3.8), albeit the modeled IKE tendency values are skewed more towards small

Table 3.2 List of eighteen predictors used to calibrate the perfect prognostic version of the SPIKE2
neural networks that is used in the sensitivity tests

Variable Definition Units

PIKE 36 h persistence of IKE TJ

dIKE12 Previous 12 h change of IKE TJ

VMAX Maximum sustained wind speed kts

VMPI Difference between maximum potential intensity and VMAX kts

LAT Latitude of storm’s center �N
LON Longitude of storm’s center ��W
MSLP Minimum sea level pressure hPa

PENV Average surface pressure (averaged from r ¼ 200–800 km) hPa

VORT 850 hPa vorticity (r ¼ 0–1000 km) 10�7 s�1

D200 200 hPa divergence (r ¼ 0–1000 km) 10�7 s�1

SHRD 850–200 hPa shear magnitude (r ¼ 200–800 km) kts

SHTD 850–200 hPa shear direction (r ¼ 200–800 km) �

RHLO 850–700 hPa relative humidity (r ¼ 200–800 km) %

RHMD 700–500 hPa relative humidity (r ¼ 200–800 km) %

T150 150 hPa temperatures (r ¼ 200–800 km) �C
SST Sea surface temperatures �C
SDAY Time after tropical storm genesis days

PDAY Time from peak of season (Sept. 10) days
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increases of IKE than is observed. Given SPIKE2’s ability to recreate the historical
record of IKE, we are interested in learning how sensitive the modeled IKE estimates
are to each predictor. As such, we will use a run of SPIKE2 with the unaltered
historical parameters as the control run, and then each parameter will be perturbed
one at a time by �1σ and �2σ for all of the 3000 fixes in the training dataset to
examine how the nonlinear statistical model responds to perturbations in the envi-
ronment. The distributions of IKE tendency as predicted by SPIKE2 in each
perturbation run will be plotted against the control to best approximate how changes
in the storm or the environment are likely to influence IKE tendency in an Atlantic
TC (Fig. 3.9). Furthermore, the median of the distributions from each perturbation
run is compared to the control run to see whether or not the distributions of IKE
tendency systematically shift towards more negative or positive values (Table 3.3).
The results of this sensitivity test are discussed at length by Kozar (2015), with the
most significant results discussed in the remainder of this section.

Overall, the modeled distribution of IKE is most sensitive to the persistence and
intensity parameters, with a few dynamical, thermodynamical, and positional param-
eters also having a significant impact on IKE variability. The significance of the
persistence parameter is not entirely surprising. The positive shift in the distribution
for the negative IKE perturbation test indicates that smaller developing TCs with less
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Fig. 3.8 Probability distribution of 36-h IKE change from the control run of the SPIKE2 neural
network system and from the historical record. Approximately 3000 storm fixes from 1995 to 2011
are included in this distribution
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IKE are more likely to gain IKE, as long as other conditions are not too prohibitive,
which is consistent with the theory that TCs gain IKE for most of their lifetime over
the open ocean, even as intensity fluctuates, such that they obtain their maximum
value of IKE prior to landfall or the completion of ET (Musgrave et al. 2012). In
addition, this negative relationship between PIKE and IKE tendency is influenced by
the fact that a storm with higher values of IKE obviously has more IKE to lose than
does a smaller storm. Therefore, a storm with 100 TJs could theoretically lose or gain
a large amount of IKE, causing the distribution of modeled IKE tendency to become
broader for the positive PIKE perturbations.

Both intensity-related metrics – maximum sustained winds and minimum central
pressure – have significant relationships with the modeled IKE tendency values. As
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Fig. 3.9 The results of the sensitivity exercise are presented by showing how variations of each
input parameter affect the probability distribution of a 36-h deterministic projection of IKE change
from SPIKE2 for nearly 3000 TC fixes in the North Atlantic basin. The probability distribution for
the control run is shown in each panel with a grey shaded polygon. The red curves show the
distribution of projected IKE change from SPIKE2 when a single predictor is increased by one
standard deviation (light red curve) or two standard deviations (dark red curve) for all historical TC
fixes. The blue curves show the distribution of projected IKE change from SPIKE2 when each
observed predictor is decreased by one standard deviation (light blue curve) or two standard
deviations (dark blue curve) for all historical TC fixes
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intensity increases, IKE growth tends to be more prevalent, causing the distributions
in Fig. 3.9 to shift to the right as VMAX is perturbed upward and MSLP downward.
This result is not surprising, considering that Musgrave et al. (2012) showed the
greatest gains in IKE to occur during the deepening and mature phases of a TCs life
cycle. Despite their similarities, MSLP and VMAX interestingly affect the distribu-
tion of modeled IKE tendency values in vastly different manners. For instance, the
negative VMAX perturbation runs have a broader distribution than the control run
and any other VMAX or MSLP perturbation run. Therefore, a low intensity in terms
of VMAX at the valid forecast time does not prevent SPIKE2 from projecting IKE to
increase if other environmental parameters are favorable. In contrast, the distribution
for the positive MSLP perturbation runs is shaped very similarly to the control run,
albeit shifted to the left. This makes it less likely for TCs to gain an appreciable
amount of IKE when its MSLP is high, as storms with higher central pressures are
typically in their incipient phases (and not gaining IKE rapidly yet) or are
approaching the end of their lifetime following decay in prohibitive environments
(e.g. high shear or movement over land).

Table 3.3 Percent changes for median SPIKE2 projections of IKE tendency in each perturbation
run relative to a control simulation

Perturbations to Variables
�2σ �1σ +1σ +2σ

Perturbed Input Parameter PIKE 268% 150% �177% �406%

dIKE12 �13% �8% 11% 25%

VMAX �215% �61% 34% 59%

RHLO 75% 45% �39% �71%

RHMD �37% �20% 21% 32%

VMPI 43% 36% �17% �11%

SHRD �2% �3% 11% 31%

SST �21% �16% 18% 1%

D200 �6% �4% 10% 26%

T150 �23% �9% 19% 46%

MSLP 157% 79% �62% �133%

VORT �86% �42% 49% 97%

LAT �62% �33% 23% 12%

LON �69% �25% 20% 28%

PENV 23% 14% �7% �17%

SHTD 24% 12% �5% 0%

PDAY 43% 17% �4% �9%

SDAY �16% 0% �1% �19%

As discussed in Sect. 3.3, each perturbation run adjusts exactly one variable (leftmost column) up or
down by either one or two standard deviations (topmost row). The resulting changes of IKE were
tested for significance with a two-sample bootstrapping exercise. Those that are deemed significant
at the two-sided 95% level are displayed in a italic font
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The differences between the distribution of the runs with negative VMAX and the
distribution with positive MSLP perturbations arise because VMAX does not have a
truly linear relationship with MSLP, with many operationally used pressure-wind
relationships taking storm size and other environmental parameters into account
(e.g. Knaff and Zehr 2007). For example, in the historical record, there are plenty of
storms that have anomalously low minimum pressure levels, despite modest maxi-
mum wind speeds, especially in the mid-latitudes (e.g. Hurricane Sandy). Likewise,
there are plenty of TCs that have modest values of VMAX (~50 to 70 kts) and
anomalously high values of IKE (>100 TJ). As a result, it is not a surprise that the
negative VMAX perturbation runs have a broader distribution to capture the possi-
bility for high and low IKE storms depending on the other environmental and
positional parameters.

On the subject of positional parameters, SPIKE2 also suggests that increasing
latitude will result in IKE growth more often than not. The positive LAT perturba-
tion runs have distributions that are skewed to the right when compared to the control
run (Fig. 3.9). As a result, the median of the distribution for the +1σ and +2σ LAT
perturbation tests is significantly greater than that of the control run at the 99%
confidence level based on simple two-sample bootstrapping tests (Table 3.3). Inter-
estingly, the distribution is not shifted quite as far away from the control run when
compared with the MSLP, VMAX, and PIKE perturbation runs. This is not terribly
surprising, considering that geographical positions are often overruled by the actual
environmental conditions near the storm. As a result, the distribution of the positive
LAT perturbation tests is somewhat broader than in the control run. This ultimately
allows for a storm to have decreasing IKE when entering higher latitudes if the storm
is not likely to undergo expansion from extratropical transition or trough interac-
tions. In that regard, if a TC is over the high latitudes (LAT¼ +1σ), with cold oceans
(SSTs ¼ �2σ), with moderately low intensity (MSLP ¼ +1σ; VMAX ¼ �1σ), and
its IKE has already begun to fall (dIKE ¼ �2σ), SPIKE2 will project IKE to
continue falling.

Dynamical predictors such as low-level vorticity also show some significant
sensitivity to IKE variability (Table 3.3). Indeed, VORT has a strong positive
relationship with modeled IKE tendency. Positive perturbations of VORT shift the
distribution towards positive SPIKE2 projections, and the negative VORT pertur-
bation runs result in a shift towards more negative IKE changes (Fig. 3.9). Overall,
storm growth is projected to occur more frequently when VORT increases, and
storm decay becomes more likely when a storm has either a small or weak vorticity
signature, which is not surprising given that a stronger and larger circulation with
high vorticity is indicative of high relative angular momentum and a strong cyclonic
wind field.

Additionally, T150 also shows a significant relationship with the modeled IKE
tendency distribution. The metric was used by Maclay et al. (2008) to examine
kinetic energy variability, with the upper tropospheric temperatures standing in as a
proxy for the tropopause height. Higher T150 values are indicative of a lower
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tropopause, which is a characteristic of the higher latitudes. Given the tendency for
the largest IKE changes to occur in the mid-latitudes (large gains from trough
interactions, and large drops from storm decay over prohibitively cold waters), the
negative T150 perturbations produce a narrower distribution, while the positive
perturbations produce a wider distribution. The increase in moderate to large IKE
gains in the positive T150 runs are consistent with the observed rapid growth in
storms like Sandy and Igor.

On the other hand, some other predictors well known to influence TC develop-
ment like SHRD and SST do not cause a systematic shift in the distribution of IKE
tendency. This is likely due to the complexity of the nonlinear signals between these
predictors and IKE. Through further testing it becomes clear that many of these
predictors affect IKE variability in different environmental regimes. For instance, an
extra perturbation test over the lower latitudes with negatively perturbed LAT and
negatively perturbed T150 shows that IKE has a tendency to grow with increasing
SST and decreasing SHRD, which is not true in higher latitudes where non-tropical
mechanisms such as trough interactions and baroclinic forcing can allow storms to
grow in size while possibly also increasing intensity briefly as storms begin to
transition (e.g. Maclay et al. 2008).

Ultimately, the results presented from these sensitivity tests offer some clues on
how the IKE of Atlantic TCs may respond to our changing climate. Some recent
literature has suggested that stronger storms are migrating northward (e.g. Kossin
et al. 2014; Baldini et al. 2016) as warm sea surface temperatures expand poleward.
The sensitivity tests indicate that IKE growth is promoted when storms are more
intense and in regions of higher latitude. As such, one could hypothesize that, all else
being equal, a poleward shift in TC activity could promote greater increases in IKE
on a per storm basis, as storms approach the Mid-Atlantic United States and interact
with mid-latitude features. However, when focusing on just the North Atlantic, this
poleward trend might be less significant and might even be negative in the basin
(Moon et al. 2015; Kossin et al. 2016).

Other studies have also indicated that the global tropics are expanding (Lucas
et al. 2014) and that baroclinicity could become weaker in the mid-latitudes, which
could affect the extratropical transition process (Ito et al. 2016). All of these factors,
along with long-term variability in cyclogenesis and steering currents, could have
ramifications for where TCs are most likely to gain IKE. Given all of the complex-
ities within the dynamics and thermodynamics of a changing climate, more work is
clearly needed to evaluate whether or not higher IKE storms will become propor-
tionally more common in the future, and/or whether or not the regions for IKE gain
will shift across the basin at all.
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3.4 Lower Frequency IKE Variability and Seasonal
Applications of IKE

The six-hourly historical IKE record in the Atlantic can also be used to investigate
whether or not any longer-term trends exist for IKE in the Atlantic basin. Powell and
Kozar (2015) presented some initial findings that focused on interannual IKE
variability. There is some slight evidence of increased IKE values for storms in the
North Atlantic basin over a 25-year sample from 1990 to 2014 (Powell and Kozar
2015). Linear trend lines for the frequency of storms that exceed 25 TJs and 50 TJs
are both positive during this timeframe, but they were not significant by any
measure. In fact, much of this positive trend can be attributed to the lower number
of TCs in the early 1990s, relative to the high annual counts seen afterwards. The
peak instantaneous IKE value observed in any storm for a given year, which is less
dependent on TC frequencies, also contains a positive trend (Powell and Kozar
2015). However, it is important to note that this sample is relatively short for
investigating variability on interannual and longer scales, allowing for anomalous
years (2005) and anomalously high-IKE storms (e.g. Igor, Sandy) to dominate the
longer-term signal. As such, further work and a longer historical record are both
clearly needed to better understand longer-term variability of IKE in Atlantic.
tropical cyclones.

The record of IKE values can also be extended to monitor seasonal TC activity by
aggregating IKE values across the lifetime of all TCs in a given year. To this end,
Misra et al. (2013) proposed the Track Integrated Kinetic Energy (TIKE), the sum of
IKE over the TC lifetime, which has some similarity to Accumulated Cyclone
Energy (ACE; Bell et al. 2000) and Power Dissipation Index (PDI; Emanuel 2005,
2007). However, these latter indices are critically dependent on the intensity, with
ACE and PDI proportional to the second and third power of the maximum sustained
wind speed of a TC, and ignore the size aspect of the TC. In contrast, TIKE is
comprehensive, in that it integrates the size, the wind speed, and the life span of the
TC. Misra et al. (2013) computed TIKE for each named TC in the North Atlantic
between 1990 and 2011 by summing the IKE values every 6 h over the lifetime of
the TC.

Analysis of average monthly TIKE values reveals a peak in September (Fig. 3.10)
coinciding with the corresponding peak in larger and longer-living TCs in the same
month (Misra et al. 2013). Meanwhile, annual TIKE values exhibit significant
interannual variations that are comparable to variations in other metrics that measure
seasonal Atlantic TC activity (Fig. 3.11). The correlation over the North Atlantic
between TIKE and ACE is 0.86, between TIKE and number of storms is 0.61, and
between ACE and number of storms is 0.78. There are some notable differences
between TIKE and the other metrics, however. Yu et al. (2009) and later Yu and
Chiu (2012) noted that the differences between seasonal metrics that incorporate
storm size and those that are intensity-based will grow exponentially as storm
intensities increase. As such, comparisons between TIKE and ACE, as well as
annual TC counts, are quite illuminating (Fig. 3.11). For example, the 2005 season,
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Fig. 3.10 Monthly climatology of TIKE and the number of tropical storms in the North Atlantic
basin between 1990 and 2011. (From Misra et al. 2013)

Fig. 3.11 Time series of TIKE, ACE and number of tropical storms in the North Atlantic basin
from 1990 to 2011. (Adapted from Misra et al. 2013)
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with its 28 named Atlantic TCs, appeared as a highly anomalous year in terms of
ACE and the number of TCs in a season. However, TIKE proved to be far less
anomalous in 2005. With the exception of a few notable storms such as Katrina, this
comparison reveals that 2005 was not characterized by as many large-sized and
long-lived TCs as other active seasons, such as 1995. Overall, the most anomalously
high TIKE years were 1995 followed by 1996, 1999, and 2012, with 1993 and 2013
being the two least active years since 1990 as measured by TIKE.

Misra et al. (2013) also examined interannual variations of TIKE with global SST
variations. Like most other indices of Atlantic TC activity (e.g. ACE), TIKE exhibits
a robust relationship with SST variations in the equatorial Pacific associated with the
El Niño Southern Oscillation (ENSO). Figure 3.12 suggests that a warm (cold)
ENSO phase is associated with anomalously small (large) Atlantic TIKE. This is
consistent with earlier studies which indicated that cold ENSO events are associated
with not only increased TC activity as a whole, but also more recurving and
landfalling TCs in the Atlantic (Bove et al. 1998; Kossin et al. 2010; Colbert and
Soden 2012). In other words, cold ENSO events are associated with more TCs in the
western tropical Atlantic and northern (extra-tropical) Atlantic, such that the exis-
tence of longer-lived and higher IKE storms is promoted, leading to a higher
accumulation of TIKE throughout the course of a La Niña hurricane season.

Similarly, Misra et al. (2013) also investigated ties between interannual variations
of TIKE and Atlantic Warm Pool (AWP) variability. The AWP is defined as the area
enclosed by the 28.5 �C isotherm in the tropical-subtropical Atlantic Ocean and is a
robust seasonal phenomenon that coincides with the Atlantic hurricane season
(Wang and Enfield 2001). Ultimately, a positive correlation of 0.43 exists between
TIKE of Atlantic TCs and the area covered by the AWP from August through
October. In other words, large AWP seasons are associated with increased likelihood
of larger values of TIKE and small AWP seasons are associated with smaller annual
accumulations of TIKE.

Physically, this positive relationship between the size of the AWP and TIKE is
consistent with the findings of earlier research. For instance, the AWP’s interannual
variability corresponds well with variations of the North Atlantic Subtropical High
(NASH; Wang and Enfield 2001; Wang et al. 2006), which has implications for TC
behavior in the entire basin. More specifically, a large (small) seasonal mean AWP is
associated with a weakened (strengthened) NASH and increased (decreased) atmo-
spheric convection and cloud cover over the AWP region. Furthermore, large
seasonal AWPs correspond to weaker tropospheric vertical wind shear and a deep
warm upper ocean, thus making the large-scale environment conducive for an active
Atlantic TC season, with the opposite being true for small AWP seasons. Wang et al.
(2011) also show that the AWP has a significant bearing on the steering flow of
Atlantic TCs through its connections with the NASH, resulting in the likelihood of
fewer United States landfalling TCs along the eastern seaboard during large AWP
years. Putting all of this together, during large AWP years, the overall frequency of
TC events is increased and storms tend to have longer life spans with larger radial
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extents as they form further east and recurve away from the United States more
frequently into an area that climatologically promotes higher IKE values. All of this
ultimately ties back to an unsurprising positive relationship between interannual
variations of TIKE and the AWP.

3.5 Summary and Conclusions

This chapter provides a review of IKE-related studies. The majority of these studies
are confined to the North Atlantic basin, where aircraft observations are most
prevalent and IKE can be consistently estimated from the historical record extending
back to the 1990s. The other tropical basins are less data rich with fewer observations
and more limited historical datasets. With the help of remotely sensed wind data the
gaps in many of the world’s oceans are being filled to some extent, and in a few
years, it appears that IKE could be studied more extensively in all tropical basins.

IKE is demonstrably a very useful metric to characterize TCs. Its emphasis on
size and wind structure around the azimuth of the TC provides a realistic estimate of
the potential damage that TCs can cause upon landfall. IKE scales very well with
wind stress over ocean and wind load forcing on structures that in turn relate to storm
surge and wind damage respectively. Therefore, pursuing IKE as a complementary
metric to existing practices to monitor and forecast TCs would be prudent, especially
in efforts to guide in mitigating and avoiding risks from landfalling TCs.

IKE is intrinsically related to intensity metrics in a TC. The incipient, develop-
ment, mature, and decay stages of a TC characterized in terms of its intensity metrics
have distinct IKE tendency features as well. Although IKE typically increases
through a storm’s lifetime from traditional TC development mechanisms, the most
rapid increase in IKE is often seen later in a storm’s lifecycle as storms undergo
expansion of their outer wind fields around the time of their extratropical transition.
Modeling IKE and a series of environmental parameters offers some evidence
regarding how the kinetic energy of a storm varies physically. As expected, IKE
tends to increase with increasing lower-level vorticity and decreasing central pres-
sure. However, the relationships between IKE and other metrics such as ocean
thermodynamics and upper level winds can be more complex.

If there is a growing trend of intense TCs migrating northward over time, this
could imply the potential for a corresponding growing trend in IKE across the North
Atlantic, as IKE growth is promoted both when storms intensify and while storms
move into the mid-latitudes. With all of the nonlinearities in the system, such as the
fact that moderate shear can be both a hindrance and a supporting mechanism for
storm growth, it may be difficult to estimate how IKE variability will change in a
future climate, and future work is quite clearly needed. The over two decades of
wind radii data for the North Atlantic with their associated uncertainties may be
insufficient to conduct a rigorous trend analysis of IKE. However, statistical-
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dynamical models like SPIKE2 can be integrated with model simulations of the
future climate to better assess projected IKE changes in the future.

Beyond individual storms, IKE estimates can be aggregated into a seasonal
metric, TIKE, which offers a unique evaluation of a season’s activity level. TIKE
is appealing because of its comprehensive nature to capture size, duration, intensity,
and number of TCs in a particular season. Given a longer record of wind structure,
these seasonal TIKE estimates can build upon the initial results presented here to
better understand how climate cycles affect the interannual variability of more than
just storm intensity and frequency.

Overall, the review above clearly shows that the studies on IKE are still in their
infancy, and there is yet a lot to be understood and derived from them. Much of the
current work is focused in utilizing IKE for operational use. In the meanwhile, the
community would be well served to pursue further progress in understanding and
predicting the variability of IKE and the overall TC wind field structure, given the
significance of both storm size and intensity to hurricane damage. More specifically,
model- and observationally-based case studies specifically focused on IKE and
storm structure would be helpful to better understand how storm-specific dynamics
and environmental forcings modulate IKE during the lifetime of a TC. On longer
timescales, additional research clearly is needed to better understand historical
interannual and multi-decadal IKE variability, since most of the work presented
here is limited to just the past 20–30 years. By understanding the long-term historical
trends, and by improving future climate projections, it should be possible to better
understand how IKE might vary in a future climate. Finally, as mentioned earlier in
this section, nearly all of the research on IKE is limited to the North Atlantic. As data
quality and coverage improves around the globe, studies should expand to other
basins to get a more comprehensive global perspective on IKE and its variability.
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Chapter 4
Mapping Tropical Cyclone Energy as an
Approach to Hazard Assessment

Yi-Jie Zhu and Stephen G. Evans

Abstract Tropical cyclones (TCs), specifically their higher energy equivalents of
hurricanes or typhoons, are the focus of great concern over their destructive impacts
on coastal regions; this concern was enhanced as the trio of hurricanes (Harvey,
Irma, and Maria) imposed spectacular damage and economic losses to parts of the
United States and the Caribbean in 2017. We investigated historical TC events from
the Western North Pacific and North Atlantic basins and introduced a new energy-
based approach to mapping and spatially assessing TC hazards in both basins. By
combining the energy index (EI) simplified from the power dissipation index (PDI)
with a weighted density mapping tool, we defined a spatial energy cell which
delineated a zone of intense TC energy loss. The energy cell we identified from
the TC hazard map represents historical hot spots of TC events with reference to both
frequency and intensity. We show that as TCs in Western North Pacific move
westward from the source energy cell, energy is dissipated very rapidly over the
Philippine land mass forming a dramatic energy discontinuity which we term an
energy cliff. The migration of energy cells in the North Atlantic reflects inter-decadal
variations of TC activity. Finally, the concept of energy dissipation discussed in this
paper could be employed as a basis for the energy-based comparison of the magni-
tudes of all categories of natural hazards and help illuminate the nature of hazard-
impact relationships.
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4.1 Introduction

Tropical cyclones (TCs) are known as one of the most destructive natural hazards in
the world (Emanuel 2005a). They are common phenomena and have caused exten-
sive damage and significant life loss in many regions of the tropics encountered in
their path (e.g., Jonkman et al. 2009; Zhang et al. 2009; Peduzzi et al. 2012; Lin et al.
2013). A TC system reaching 65 knots is generally termed a Typhoon in the Western
North Pacific, or a Hurricane in the North Atlantic (definition in NOAA: http://
www.aoml.noaa.gov/hrd/tcfaq/A1.html). In the North Atlantic (NA), the trio of
major hurricanes in 2017 (Harvey, Irma, and Maria) have re-awakened the aware-
ness of the power conveyed by such natural hazards in causing tragic life loss and
massive economic impacts along the US coastline and in Puerto Rico (Oldenborgh
et al. 2017; Shuckburgh et al. 2017; Halverson 2018; Pullen 2018). In the Western
North Pacific (WNP), Typhoon Haiyan caused considerable damage to the central
Philippines and brought at least 6200 deaths (Esteban et al. 2015; Nakamura et al.
2015; Takagi et al. 2017) in 2013.

In recent decades, an increasing amount of research has explored the linkage
between the potential destructiveness and the characteristics of powerful TC systems
(e.g., Emanuel 2005b; Kubota and Chan 2009; Wing et al. 2007; Misra et al. 2013;
Pun et al. 2013). With regards to hazards assessment and emergency preparations,
the intensity and frequency are two key components of defining hazard characteris-
tics that reflect either how destructive a typical hurricane could be or how frequently
a place could suffer from cyclone hazards during a given period.

Typically, a quantitative hazard assessment involves an analysis of magnitude
and temporal frequency. We note that hazard assessment is best developed in
relation to earthquakes where earthquake magnitude is well constrained by an
instrumental measure of magnitude, an expression of the amount of energy released
during the seismic event, and a well-developed magnitude-frequency relation. Our
view of catastrophic natural hazards as being energy-release events provides a
convenient framework for hazard assessment based on magnitude, but also in
terms of evaluating destructiveness. From the perspective of TC hazard impact
assessment, wind speed, storm surges, and extremely heavy rainfall are three main
factors of the destructiveness. The maximum sustained surface wind speed defined
by the highest 1-min average wind has been used as the dominant metric for the TC
intensity measurement since 1974 when Saffir-Simpson scale (SS) was proposed for
potential destructive level of TCs under five wind speed categories (Simpson and
Saffir 1974). Bister and Emanuel (1998) has given an estimate of the power
dissipated by a TC using a maximum wind speed function. The energy function of
the TC was then simplified to the power dissipation index (PDI) with assumptions of
constant environmental factors (Emanuel 2005b).

This study explores a new approach to assessing TC hazards in the WNP and the
NA by translating PDI as an energy function of TCs into an energy cell with a newly
defined energy index in an attempt to spatially visualize TC hazard. We also make a
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hypothetical comparison of the magnitude of energy dissipation between TCs and
earthquakes as a step toward understanding the relationship between hazard charac-
teristics and the type and magnitude of impacts.

4.2 The Energy Function of a Tropical Cyclone

In 1974, the SS described hurricane wind speed by five categories of potential
destructiveness (Simpson and Saffir 1974). Climatologists in the next few decades
developed alternative measures such as Accumulated Cyclone Energy (ACE; Bell
et al. 2000) and the PDI (Emanuel 2005b) to quantitatively define hurricane intensity
on a wind speed basis over the storm lifetime. In other work, Integrated Kinetic
Energy (IKE; Powell and Reinhold 2007) and Track Integrated Kinetic Energy
(TIKE; Misra et al. 2013) are two interpretations of the energy function of TCs
that takes storm size into account to indicate potential damage that could be inflicted
by storms’ impact area. Due to the fact that fewer factors are required to calculate the
value of ACE and PDI (ACE using the square and PDI using the cube of the
maximum sustained wind speed at 6 h intervals), they are routinely used to describe
seasonal hurricane activities in terms of intensity and frequency in response to, for
example, changes in sea surface temperatures (Camargo and Sobel 2005; Villarini
and Vecchi 2012).

While both ACE and PDI have been used to investigate seasonal TC intensities
with correlations and responses to environmental factors, the PDI reanalyzed by
Emanuel (2007) showed empirical and statistical relationships with environmental
factors that help simulate future TC activity in a changing climate. The PDI also
shows significant correlations with sea surface temperature in the NA between
Africa and the Caribbean Sea during the hurricane season (Emanuel 2005b, 2007).

Related studies applying PDI to hurricane analysis are mostly concerned with
temporal statistical trends and correlations with environmental change (e.g., Wu
et al. 2008; Murakami et al. 2014; Liu and Chan 2017), but lack any component of
spatial analysis with reference to hazard mapping. Hence, we employed PDI as our
TC intensity index (Kn3) in this study for energy cell mapping in the WNP and the
NA basin. The PDI in the original form is defined as (Emanuel 2005b)

PDI ¼
Z τ

0
Vmax

3dt ð4:1Þ

where (Vmax) is the maximum sustained wind speed (in knots) measured in any given
period (which in this study is taken as 6 h); and (τ) denotes the duration of the TC
event (in hours). For the purpose of mapping historical TC tracks from an energy
approach, we disaggregated the PDI function by the storm lifetime, defining an
Energy Index (EI) as
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EI ¼ Vmax
3 ð4:2Þ

where it is used for the weight coefficient in the Kernel density algorithm of
historical TC track points as explained in details in Sect. 4.2.

For the purpose of energy comparisons among different categories of geohazards,
the Power Dissipation function (PD) expressing the amount of dissipated energy,
which integrates more factors, is also used in this study. The PD was proposed by
Emanuel (2005b) as follows:

PD ¼ 2π
Z τ0

0
dt

Z r0

0
ρCDV

3rdr ð4:3Þ

where the drag coefficient (CD) ¼ 2 � 10�3 is assumed to be constant, regardless of
the variability induced by sea surface roughness and wind speed (Powell et al. 2003);
air density (ρ)¼1 kg/m3. and (V ) is the 6-h maximum sustained wind speed. Since
accurate storm dimensions (r0) in meters are sometimes difficult to obtain, we
assumed the average radius of maximum wind speed to be 50 km for this paper
(cf. Emanuel 2005b) and assume that the wind speed is constant over this radius at its
maximum value.

4.3 Hybrid Complexity of Tropical Cyclones: Multi-hazard
Systems

The impact assessment of TC hazards concerns destructive wind, storm surge, and
extremely heavy rainfall as the physical processes that generate damage that cumu-
latively may produce disaster events. A typical landfall of a TC usually generates all
three hazard components in some degree, the effects of which may be amplified by
steep topography (that could generate landslides) or the failure of defensive infra-
structure by storm surge loading (exceedance of design loads) that could cause coastal
flooding. Multi-hazards, or hybrid hazards, is a useful term that describes TC threats
and which addresses the complexity of TC hazards in terms of impact assessment. A
conceptual expression of TC’s impact (I ) from a physical perspective could be:

I ¼ a1W þ a2Sþ a3R ð4:4Þ

where W, S, and R denote elements of wind speed, storm surge, and rainfall brought
by a TC to a region respectively. The three components (Eq. 4.4) are not evenly
distributed in TC events but are potentially higher in summation from stronger TCs.
(a1), (a2) and (a3) are three response factors describing the degree of impacts that the
corresponding components (W, S, R) could actually impose on an impacted region.
The three components (W, S, R) are TC dependent while response factors (a1 � 3) are
region dependent and may reflect geography and topography. The combination of
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TC’s physical properties, together with variations of regional response, form the
complexity of hybrid TC hazards.

4.4 Data and Method

4.4.1 Data Sources for North Atlantic and Western North
Pacific Tropical Cyclones

The NA basin TC data source for this study is the International Best Track Archive
for Climate Stewardship (IBTrACS) maintained by the National Centers for Envi-
ronmental Information1 (Knapp et al. 2010). The maximum wind speed obtained
from this data set is the 10-min average sustained value measured in 6-h intervals.
The data set is pre-filtered for TC events that occurred in the NA basin. Only TC
events between 1982 and 2017 are employed due to having a sufficient number of
data points available (a 36 year period) but lower uncertainties of Vmax (Eq. 4.1)
recordings after the 1980s. The filter of the Vmax is set to equal or larger than 35 knots
(�17 ms�1) to meet the minimum threshold of the tropical storm intensity as
suggested by the National Hurricane Center (see more details on https://www.nhc.
noaa.gov/aboutgloss.shtml).

Data for the TCs in the WNP basin are obtained from the Annual Tropical
Cyclone Report published by US Navy Joint Typhoon Warning Center (JTWC)2

spanning a 55-year period from 1959 to 2013, with the data available for
downloading from http://weather.unisys.com/hurricane/index.php. Table 4.1 gives
a summary of wind speed data by TCs that have been employed in this study. The
wind speed catalogue is constructed following the SS (Simpson and Saffir 1974).

Table 4.1 Fact sheet of investigated wind speed data sets

SS wind speed catalogue

Data point
count Avg. (Knots)

Annual frequency of
data points

NA WNP NA WNP NA WNP

Tropical storm (<65 Knots) 6688 15,909 45.50 46.00 186 289

Category 1 (65 � 85 Knots) 2302 7219 72.35 73.26 64 131

Category 2 (90 � 100 Knots) 671 2970 94.28 94.16 19 54

Category 3 (105 � 115 Knots) 417 1806 110.22 110.20 12 33

Category 4 (120 � 135 Knots) 281 1617 125.07 126.21 8 29

Category 5 (>135 Knots) 79 654 146.33 146.61 2 12

1National Center for Environmental Information is operated by the National Oceanic and Atmo-
spheric Administration https://www.ncdc.noaa.gov
2Joint Typhoon Warning Center (JTWC) is a combined Air Force/Navy organization operating
under the command of the Commanding Officer, U.S. Naval Pacific Meteorology and Oceanogra-
phy Center West /Joint Typhoon Warning Center, Guam.
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4.4.2 Delineation of Spatial Clusters

The Weighted Density Map (WDM), also called the ‘weighted heat map’ tool, is
utilized in this study for the cluster analysis that is the basis for mapping the energy
dissipation topography of TCs. The open-source geographic information system
QGIS version 2.18 is used for mapping purposes. We applied quartic Kernel density
estimating algorithm for generating concentration values of historical TC tracks. The
number of TC track point occurrences is counted in a designated searching radius
where in this study we used 1.2� 1.2� for mapping Hurricane Maria and 4� 4� for
the NA and WNP basin. The search radius parameter in the Kernel density algorithm
decreases the output values by the distance from the center and thus depicts the
approximate profile of the storm radius. The EI value is defined as a weighted input
where, for example, a geospatial point representing an EI value of 1� 106 (Kn3)
counts 1� 106 times when conducting the density calculation.

4.5 Energy Cell Detection and Tracking: The Example
of Hurricane Maria in the Vicinity of Puerto Rico, 2017

Hurricane Maria was first recognized as a tropical depression on 16 September 2017,
but rapidly intensified from SS Category 1 to Category 5 in the next 24 h. During the
morning on 20 September, the massive storm system made landfall on the island of
Puerto Rico with wind speeds reaching SS Category 4. Maria ran across the island of
Puerto Rico during the next 12 h accompanied by fierce wind, extreme rainfall, and
flash flooding. Maria caused catastrophic property damage and significant life loss
until the hurricane degraded after moving offshore (NOAA 2017). The Maria event
illustrated the manner in which hurricane intensity changes before, during, and after
landfall. By combining the EI with the spatial clustered weighted density map tool,
the energy-based approach to Maria’s activity/behaviour is mapped in Fig. 4.1.

A rapid intensification that occurred near Dominica indicated a process of strong
energy sink within the hurricane system. After a series of repeated pulse-like energy
gain and energy dumping processes that formed a distended rod-like red cell, a
parcel of energy (see details in zoomed-in inset in Fig. 4.1) moved toward the east
coast of Puerto Rico and rapidly dissipated after landfall. This implies the occurrence
of energy transformation during the landfall process that converted heat energy into
another form of mechanical energy such as wind and precipitation. The structure and
formation of TCs are well understood by physicists and meteorologists, wherein a
mature hurricane can be compared to an idealized heat engine (Emanuel 1986, 1991;
Willoughby 1999). In the case of Hurricane Maria, the land surface of Puerto Rico
acted as a trigger for sudden energy loss. To develop the idea further, the conceptual
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energy cell approach is now applied to broader regions to describe the spatial density
of historical energy parcels and dissipation phenomena.

4.6 Application of Energy Cell Mapping to Tropical
Cyclone Basins (North Atlantic and Western North
Pacific)

The NA and WNP frequently generate TCs; it is of importance to visualise the
distribution of TCs in these breeding oceans. The energy function PDI has been used
to quantitatively summarize the annual TC activities due to its advantages of
expressing both TC lifetime and magnitude (e.g., Mestre and Hallegatte 2009).
Here, we use the energy-cell-based conceptual approach developed above with
reference to Hurricane Maria (Fig. 4.1) to shed light on the spatial characteristics
of TC intensity and frequency.

Energy cells in the NA are spread unevenly and are concentrated along the
southeast – northwest corridors of prevailing TC tracks (Fig. 4.2). Regions with a
relatively higher value of EI density correspond to those with more frequent and
intense TC activities during the period 1982–2017.

Fig. 4.1 Conceptual energy map of Hurricane Maria by EI weighted density. Search radius is set to
1.2� 1.2� with the Kernel Quartic Shape Density applied
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Puerto Rico is shown immediately to the west (down track) of an energy hot spot
(the Anguilla energy cell) and lies in a vast area of energy concentration (Fig. 4.2).
Areas of Central America such as East Mexico, Honduras, Belize, and Nicaragua are
exposed to a hot spot cell margin (the Belize cell), and have suffered major impacts
from historical TCs. Notably, Hurricane Mitch passed through this region in 1998,
when houses and their inhabitants were swept away in torrents, floods, and land-
slides; Mitch claimed over 11,000 deaths in Honduras and Nicaragua (NOAA 2009).
The Belize cell extends northward to the Gulf of Mexico shoreline of the United
States; the 2005 hurricane season was the main contributor to the energy concentra-
tion on coast of Louisiana.

By using 55 years of TC track data from 1959 to 2013, the energy cell in theWNP
can be identified as a well-defined cluster of dissipation parcels immediately to the
east of the central and north Philippine archipelago, and Taiwan (Fig. 4.3).

The parcels of energy release represent a relatively high frequency of high
intensity TCs that have passed through the area (Fig. 4.3).

Fig. 4.2 Distribution of conceptual TC energy cells in the North Atlantic by EI weighted Kernel
density algorithm with 4� 4� search radius (NTC ¼ 439, NPoints ¼ 10,081). Dash lines in black
show TC tracks as a reference with top ten greatest lifetime PDI during the year 1982–2017. PDI
calculated with wind speed of 35 knots and above
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4.7 Interpretation of the Energy Cell and Implication
for Hazard Assessment

The theoretical description of a TC event can be conceptualized as a Carnot heat
engine (as first suggested by Emanuel (1986)), in which the system is a transforma-
tion of the thermal energy and the mechanical energy. The warm sea surface
temperature together with favorable environmental factors, such as low vertical
wind shear, are the recipe for TC formation. The heat brought into the TC system
by water vapor from a warm sea surface is a major energy source, while the wind
force is a form of energy dissipation. The greater the maximum wind speed recorded,
the larger amount of energy that has been transferred.

By mapping the energy cell using EI density, the energy dissipation stage of the
TC mechanism is spatially visualized by the form and distribution of the energy cell
topography formed by the contours of energy dissipation. High values from the

Fig. 4.3 Distribution of conceptual TC energy cells in the Western North Pacific by EI weighted
Kernel density algorithm with 4� 4� search radius (NTC ¼ 1411, NPoints ¼ 30,175) Dash lines in
black show TC tracks as a reference with top ten greatest lifetime PDI during the year 1959–2013.
PDI calculated with wind speed of 35 knots and above
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energy cell mapping locate areas of large (cumulative) but also frequent energy sinks
that occurred during the designated time period. Energy cell mapping using EI
density opens up the opportunity of visualizing hazard hot spots from historical
TC occurrence and characteristics. In the WNP, Luzon, the largest island in the
Philippines in the north region of the archipelago, is found immediately west of the
Philippine energy cell, where the dissipation of energy was at its maximum crossing
125�E, but is seen to decrease sharply when passing over the island (Fig. 4.4).

The rapid loss of energy from TCs (which we term an energy cliff; Fig. 4.4)
implies a lack of energy transfer from the landmass to the TC system. i.e., the land
surface represents an empty energy source. The topography of the energy surface
thus provides insight into TC hazard.

The distribution of TC wind speed is shown in Fig. 4.5; similar to the PDI
weighted density map (Fig. 4.4), wind speeds recorded over 120 knots are clustered
to the east of Luzon. The annual frequency does decrease with increasing wind
speed, but shows a turning point at 140 knots as indicated by the locally weighted
curve (LOESS; Fig. 4.5). This implies the existence of a physical threshold that
limits the maximum value of the surface wind speed (Fig. 4.5).

Fig. 4.4 Regional map of conceptual energy cell surrounding the Philippine archipelago. 4� 4�

searching radius on EI weighted density. The energy profile shows the cumulative EI value with 1�

increment of longitude from 15�N to 20�N
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4.8 Migration of Energy Cell, Changing Climate
and Energy Cell Mobility

The change in the frequency and intensity of TCs with time, especially with respect to
climate change, has been much discussed in recent research (e.g., Knutson et al. 2010;
Walsh et al. 2016; Collins and Roache 2017; Scoccimarro et al. 2017). The sea surface
temperature (SST) as an ingredient of TC formation has been suggested as an indicator
of potential TC occurrence and is shown to increase in high-resolution models of
climate change (e.g., Yoshimura et al. 2006; Johnson and Xie 2010). A practical
threshold of cyclone formation globally was suggested to lie between 25.5 and
26.5 �C, without a detected shift through the years (Dare andMcBride 2011). Emanuel
(2005b) showed an increasing destructiveness potential of hurricanes since 1970 by
warming SSTs, while some other studies provide evidence of an oscillation of annual
and decadal variations of TC occurrence and intensity (e.g., Chen et al. 1998; Camargo
and Sobel 2005; Webster et al. 2005). However, research on the convection theory
basis suggests the deviation between local and tropical mean SST would be a much
more precise approach to examine TC responses to SST changes. He et al. (2015)

Fig. 4.5 Spatial distribution of Philippines TC tracking points over 65 knots from 1959 to 2013.
Annual frequency profile of 6-h wind speed points in log-log scale
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spatially analyzed and discussed the TC track density from the WNP in the late 1990s,
where a decadal increasing trend of the genesis and track densities is shown in the
north region of the WNP, while a decreasing trend is present in the south region of the
WNP. The northward migration of TC genesis in the WNP together with SST changes
implies a potential northward expansion of the Philippine energy cell, contributing a
much wider impact area of the TC and its stronger phase, the typhoon.

In the NA, the TCs in the period 1982–2017 from our study also showed
non-constant conditions from the energy approach and spatial perspectives. We
split 36 years into three time slices of 12 years in width (1982–1993, 1994–2005,
and 2006–2017), and generated EI weighted density of each slice (Fig. 4.6). The
energy cell as expressed by EI weighted density, migrated with changing intensity
through the 36 years. The years 1982–1993 (Fig. 4.6a) was the quietest period
regarding the EI density when comparing to the other two time periods
(1994–2005 in Fig. 4.6b, and 2006–2017 in Fig. 4.6c). Decadal variations of TC
activity are indicated, with the years 1994 to 2005 the strongest.

By employing a statistical box plot for all three time slices (Fig. 4.6d), the major
contribution to high energy dissipation for years 1994–2005 and 2006–2017 is the

Fig. 4.6 EI weighted density map with 4� 4� search radius for years from 1982 to 1993 (a),
1994–2005 (b), and 2006–2017 (c). The statistical box plot for TC incidents from three time slices
(d), with the box set from 5% to 95%, whiskers to 99%, and asterisks denote maximum value
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occurrence of mega hurricanes with extremely high wind speed and long-lasting
lifetime; frequency plays a subordinate role. The total number of TCs with maximum
wind speed over 35 knots for 1982–1993, 1994–2005, and 2006–2017 is 109, 176,
and 173, respectively. However, the corresponding total PDI is rounded to
658, 1670, and 1188 (�106 Kn3); note that in 1994–2005 and 2006–2017, almost
the same number of TCs occurred, but the differences in intensity resulted in a huge
difference in total PDI. The energy dissipation topography derived from our energy-
based approach is thus mainly controlled by the occurrence of TCs reaching high
levels of wind speed that is sustained over long time periods.

4.9 Discussion: Energy and Impact

The dissipation of energy from TCs reflects the degree of potential destructiveness
from the dynamic TC system. In 2013, Typhoon Haiyan, with a maximum wind
speed of 170 knots, lashed the Philippines and brought about extensive devastation
on its pathway through the archipelago, largely by a massive storm surge that
contributed to a high death toll (Lagmay et al. 2015). By employing the PD equation
(Eq. 4.3), the 2013 Typhoon Haiyan involved approximately 6.5� 1013 watts of
energy dissipation, which, if integrated over the storm lifetime, is equal to 6.8� 1019

joules.
We compared the energetics of Typhoon Haiyan with that of a major Philippine

earthquake in 1976; an earthquake’s energy can be expressed as a function of a
measured magnitude (Gutenberg and Richter 1942, 1956a, b; Kanamori 1977). The
M 8.0 Mindanao earthquake in 1976 according to the National Geophysical Data
Center,3 caused over 8000 fatalities in the Philippines from its devastating structural
damages and tsunamis. The corresponding energy release in this fatal event was
6.3� 1016 joules. Thus, the comparison of the two most destructive hazard events in
recent decades in the Philippines shows that the magnitude of energy dissipation in
Typhoon Haiyan is three orders of magnitude greater than 1976 Mindanao
Earthquake.

Although a greater energy capacity exists for the typhoon, this does not directly
contribute to a greater number of fatalities as a number of other factors are at play.
For example, in the case of typhoons, a buffer exists during the onset of development
(preparation time) of the hazard that typically does not occur for earthquakes.
Genesis of TCs, in most cases, occurs within some distance from the mainland.
TCs move landward at a speed that allows adequate time for the prediction of
potential track and storm intensity, and in the event of a direct threat, allows
preparation time for evacuation. Fatalities are also related to population density
and emergency preparedness. The population exposed to the hazards is a key factor

3National Geophysical Data Center/World Data Service (NGDC/WDS): Significant Earthquake
Database. National Geophysical Data Center, NOAA. doi:https://doi.org/10.7289/V5TD9V7K
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in mortality. At a constant natural hazard magnitude, the larger exposure is expected
to bring greater fatalities to the residents. The growth of population in the world will
result in an increase of exposure to TCs (Peduzzi et al. 2012). Under the circum-
stances of a steady growth in population density, the total death toll by TC hazards in
the Philippines experienced three major increases in the three calamitous years
(1970, 1991, and 2013) (Fig. 4.7). Tropical Storm Thelma in 1991, as an example,
scourged the Philippines leaving the death toll over 6000 (JTWC report 1991). The
storm’s slow movement was accompanied by torrential rains (150 mm in 24 h over
the central Philippines) that were concentrated in a narrow area, resulting in land-
slides, dam failure, and unprecedented flash flooding (JTWC report 1991). The
potential destructiveness was underestimated and low preparedness resulted in
high fatalities.

Fig. 4.7 Cumulative death toll by TCs in the Philippines with reference to the population density
from 1959 to 2013. Fatality data source accessed from EM-DAT Database (EM-DAT: The
Emergency Events Database – Université catholique de Louvain (UCL) – CRED, D. Guha-Sapir,
www.emdat.be, Brussels, Belgium); Population density from the World Bank Database (Food and
Agriculture Organization and World Bank population estimates. Population density is midyear
population divided by land area in square kilometers. https://data.worldbank.org/country/
philippines)
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4.10 Conclusions

In this paper, we introduced a new energy-based approach to historical TC activity as
a visualization tool for hazard impact assessment. The mapping of energy cells by
the weighted density of the EI spatially illustrates the dissipation of energy from a
TC system and identifies hotspots of TC activity in both the NA and WNP basins.
The spatial distribution of energy cells is a response to both TC historical frequency
and intensity. Energy cells migrate in time and are not static features of the energy
dissipation topography in a region. Results from the 12-year time-slice analysis in
the NA show variations in the spatial distribution, and the density of energy cells is
determined by the occurrence of those TCs with large PDI values (high wind speeds
sustained for long periods). Migration of energy cells in the NA basin indicates the
changing environment between the 12-year time slices; however, a significant signal
of a continuous increase in cell density, indicating a greater magnitude and fre-
quency of TCs, was not detected.

We compared the energy-impact relations of TCs and earthquakes in the Philip-
pines. In the archipelago, for a given magnitude of energy dissipation, typhoons
obtain a higher annual frequency. By considering the fatalities induced by the two
hazards, there is no simple relationship between the energy released and the death
toll, but greater energy release by TCs is offset by a lower dissipation rate which acts
as a hazard buffer providing for effective warning, preparation time, and evacuation.
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Chapter 5
Overview of Potential Hurricane Death
and Damage in the Tampa Bay Region

Charles H. Paxton

Abstract The Tampa Bay area has not been impacted by a direct major hurricane
landfall since 1921, but nearly every year the Tampa Bay region suffers effects from
tropical storms and weak hurricanes brushing by the area. These weaker storms, like
Hurricane Irma in 2017, still create significant damage. A stronger storm would be
catastrophic. This chapter draws comparisons between past storms in the Tampa Bay
area and elsewhere that have caused death and destruction, and discusses potential
ecological, sociological, and human health disasters within the Tampa Bay area
during a major hurricane landfall.

Keywords Tampa Bay · Hurricane · Storm surge · Evacuation · Hazardous
materials

5.1 Introduction

This chapter describes a potentially disastrous situation. Tampa Bay has not been
impacted by a direct major hurricane landfall since 1921, but nearly every year the
Tampa Bay region suffers effects from tropical storms and weak hurricanes brushing
by the area. These weaker storms, like Hurricane Irma in 2017, still create significant
damage. A stronger storm would be catastrophic. This chapter draws comparisons
between past storms in the Tampa Bay area and elsewhere that have caused death
and destruction, and discusses potential ecological, sociological, and human health
disasters within the Tampa Bay area during a major hurricane landfall.
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5.2 Tampa Bay Area Characteristics

The five coastal counties of Pasco, Pinellas, Hillsborough, Manatee, and Sarasota,
(Fig. 5.1) encompass an area about 9500 km2 (3700 mi2) and have a population of
3.6 million (Census 2015). Within that population lies vulnerability. About 30% of
the population is at least 65 years old (1 million people) with a similar percentage
living in the FEMA floodplain (28 %), and around 800,000 (23 %) living in poverty.

Tampa Bay (Fig. 5.2) is Florida’s largest open-water estuary at 1010 km2 (390 mi2)
(TBEP 2017) and over four million people reside in the watershed. The northern part
of Tampa Bay has several distinct areas that include Old Tampa Bay to the west and
Hillsboro Bay to the east, of which McKay Bay is in the northeast reaches. Tampa Bay
was designated an “Estuary of National Significance” in 1990. Tampa Bay and other
coastal waters are home to fish, birds, mangroves, and charismatic megafauna that

Fig. 5.1 Map of Florida and counties of interest
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include manatees, dolphins, and sea turtles. Sea grass areas, noted within the Tampa
Bay Water Atlas (2018), grow around the shores within Tampa Bay with the greatest
coverage within the nearshore gulf waters north of Tampa Bay.

5.3 Past Storms Affecting the Tampa Bay Area

The area has had many close brushes with tropical cyclones through the years. In the
historical record that goes back to the mid-1800s, three major hurricanes stand out.

The Great Gale of 1848, when the population of the Tampa Bay region was
around 1000, occurred from a hurricane that was in the area roughly from September
23 to 28. Upon landfall it was estimated to be in the Category 3–4 range with winds
around 215 kph (134 mph). This hurricane created a storm tide of 4.6 m (15 ft) with a
rise and fall in 6–8 h (NWS 1848 2017).

In 1921, the Tampa Bay area population was only 135,000 when a hurricane
moved ashore near Tarpon Springs. The hurricane was weakening from a Category
3 to a Category 2 at landfall but had been a Category 4 only 24 h prior (NWS 1921
2017). At landfall the winds were 180 kph (100 mph). The storm surge was
estimated at 3–3.5 m (10–12 ft) in the northern part of Tampa Bay with major
flooding, and the most notable damage, along the populated Bayshore Boulevard
and downtown Tampa. The hurricane caused three confirmed fatalities. In Pinellas
County the hurricane flooded Pass-a-Grille, destroyed the wooden Casino in

Fig. 5.2 A view of the Tampa Bay region looking from southwest to northeast. (Tihansky et al.
2011)
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Gulfport, and damaged the Municipal Pier in St. Petersburg. Honeymoon Island was
split in two, forming what was to become Caladesi Island (Davis and Elko 2003).
The hurricane caused between 5 and 10 million dollars in damages to crops,
including a thriving citrus industry in Pinellas County, throughout the state’s
midsection.

More recently, Hurricane Elena caused a major disruption to life in 1985. Elena stalled
for 30 h about 160 km (100 miles) northwest of Tampa beginning early Saturday, August
31. Elena’s sustained Category 3winds were 200 kph (125mph) (NHC 1985). Elena never
came closer than 80 miles to Tampa Bay but still produced tides 2.1 m (7 ft) above normal.
Around 300,000 people evacuated the Tampa Bay Area and about 1.25 million evacuated
statewide. At the time, it was the largest evacuation in Florida’s history. Pinellas County
took most of the impact, where Elena destroyed 256 homes and damaged 7707 homes, and
nearly 120,000 people were situated in shelters (Pinellas EOC 2008). By Saturday evening,
all escape routes out of the county were closed due to flooding or debris. After Elena was
nearly stationary offshore for 30 h, the storm turned westward, away from the coast on
Sunday. The storm resulted in no direct fatalities, but four victims died of indirect causes.

5.4 Storm Surge Potential

The Tampa Bay region is now a disaster waiting to happen. Storm surge estimates
are astounding when considering the highly populated, low-lying land areas. A
Category 1 storm can create a surge up to 3 m inside Tampa Bay. According to
the Tampa Bay Regional Planning Council (TBRPC 2006), the impacts of a 3 m
(10 ft) rise in water level in the Tampa Bay region, similar to the surge from a
Category 1 hurricane, would inundate almost 18% of the land within Pasco, Pinellas,
Hillsborough, and Manatee Counties. This would impact 805,000 people in 428,000
dwelling units. A Category 2 hurricane (Fig. 5.3) could generate this 3 m (10 ft)
storm surge, which would begin to cut off Pinellas County from the mainland as the
Lake Tarpon area is inundated in the northern part of Tampa Bay. Pinellas County is
also cut in two across Cross Bayou that runs across the central county from Tampa
Bay to the Gulf barrier islands.

Figure 5.4 shows the surge evacuation zones based on different hurricane cate-
gories. Those major hurricanes could potentially create these surge heights: Cate-
gory 3 up to 6.5 m (21 ft), Category 4 up to 9 m (29.5 ft), Category 5 greater than 9 m
(29.5 ft). As the surge increases, the waters inside the bay get deeper and can support
larger wind-driven battering waves that create more damage.

5.5 Demographics

The population density is highest (1000–10,000 people per 2.59 km2 permi2) near the coast
where the greatest storm surge threat exists (Fig. 5.5). The median age of the population
within the area (Fig. 5.6) is notably older, more than 65 years of age, within some of the
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more vulnerable areas near the gulf coast, particularly along the barrier islands and coastal
Sarasota County. The youngest populations are most noticeable in inland areas to the east
and typically over higher ground (U.S. Census 2010).

5.6 Housing

Figure 5.7 shows the age of houses in the area, with the oldest homes ranging from
those built before 1950 to those built after 2000. The oldest home sites in Pinellas
County were mostly built in the two sections of the county with high ground. More
recent construction has been in some of the most vulnerable areas, including the
barrier islands and near Cross Bayou. The Shore Acres area of northeast
St. Petersburg has a network of dredged canals and low-lying fingers of land exposed
to Tampa Bay, where nuisance rainfall flooding at high tide is common and storm

Fig. 5.3 Maximum surge heights expected with a Category 2 storm. (FDEM 2018)
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surge flooding from minor storm systems is not uncommon. In Tampa, some of the
older upscale neighborhoods such as Seminole Heights were built on high ground,
but much of the older housing in both richer and poorer areas was built on lower
ground on the Interbay Peninsula. In Manatee County, the oldest homes were built
along and near low-lying parts of the Manatee River where storm surge flooding can
be a problem. In Sarasota County, much of the early development was in lower lying
coastal locations on the mainland side of Sarasota Bay.

Much of the housing in the Tampa Bay region is modest. Over 120,000 mobile
homes are spread through the area, mostly clustered in trailer parks. The newer
mobile homes are typically stronger than the older models. The older models are

Fig. 5.4 Surge zones for hurricane Categories 1–5. (FDEM 2018)

94 C. H. Paxton



sometimes not secured by straps that hold the mobile home to the ground. Most
mobile homes have flimsy aluminum attachments such as awnings and carports that
tend to fly and cause supplemental roof damage when the winds reach over 80 kph
(50 mph). The median home value by zip code (Fig. 5.8) within the five-county area
is greatest, over $600k, along the vulnerable barrier islands and near the downtown
areas of Tampa, St. Petersburg, Bradenton, and Sarasota – much of which is on low
ground.

The barrier islands are also where repetitive losses due to flooding from rainfall or
surge or sometimes a combination have occurred (Fig. 5.9). These areas are mainly
along the gulf coastal barrier islands along and south of Tampa Bay and within salt

Fig. 5.5 Population density per square mile. (U.S. Census 2010)
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marsh areas north of Tampa Bay. Other repetitive loss locations are along the inside
of Tampa Bay and along the several surge and freshwater flooding prone rivers that
feed into Tampa Bay.

5.7 Reconstruction Costs

According to Corelogic (2018), the Tampa metropolitan area, which is comprised of
Hillsborough and Pinellas counties, ranks number 3, behind Miami and New York,
in the top 15 metropolitan areas for storm surge risk from Category 1–5 storms. In
the metropolitan area, 459,082 total homes are at risk of storm surge flooding with a
total estimated reconstruction cost value of $79.2 billion. At the south end of Tampa
Bay, the Bradenton metropolitan area, comprised of Manatee and Sarasota counties,

Fig. 5.6 Median age of population. (Trulia 2018)
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ranks number 8. This area has 254,535 homes in Category 1–5 storm surge zones
with a reconstruction cost value of $49.2 billion.

5.8 Evacuation Routes

The main north-south evacuation route is Interstate 75 with a segment, I-275,
passing over the Sunshine Skyway Bridge across the southern part of Tampa Bay
directly through the St. Petersburg area and across the northern part of Tampa Bay
over the Howard Frankland Bridge and through Tampa (Fig. 5.10). Most evacuees
on I-275 will be travelling in the northbound lanes – away from any storm coming
from a southerly direction. Evacuees from around the Tampa Bay area will likely be
merging with evacuees from the Naples and Fort Myers metro areas. North of Tampa

Fig. 5.7 Median year of construction. Older areas denoted in purple shades. (Trulia 2018)
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Bay I-75 goes from three northbound lanes to two, which could create a bottleneck at
the merge point. During Hurricane Irma, the inside shoulder lane was used to limit
the congestion through that stretch. The primary east-west evacuation route is
Interstate 4, which would be used for people evacuating to Orlando or to the Florida
east coast.

Fig. 5.8 Median home value by zip code 2014. (ESRI 2014)
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When the time comes to evacuate, Pinellas County by far will have the most
difficulty with the longest evacuation times. Pinellas County is on a peninsula with a
narrow strip of land on the north end that connects to the mainland. Pinellas County
evacuees will first be evacuating, mostly over bridges, into counties that are also
facing evacuation. People from those counties will likely be merging onto I-75 or I-4
with evacuees from counties to the south, including Manatee and Sarasota,

Fig. 5.9 Repetitive loss properties. (Coastal Resilience 2018)
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Fig. 5.10 Tampa Bay area primary evacuation routes over evacuation zones. (FDEM 2018)
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particularly if the storm is coming from the south along the coast. According to
TBPRC (2010), with the approach of a Category 3 hurricane, 70% of the Pinellas
population in evacuation zones would evacuate. This evacuation would take 30 h
just to leave Pinellas County into one of three adjacent counties that would also be
evacuating. One major traffic incident would increase evacuation times even further.
During the worst of Hurricane Irma in 2017, the county only cared for about 24,000
residents and 2000 pets in shelters (Pinellas EOC 2018). It is unknown how many
evacuated out of the county as Irma approached.

Pinellas evacuees that leave too late may be following evacuation route signs that
lead to flooded roads or low-lying bridges that may already be closed. Bridges across
Tampa Bay are closed when winds are expected to reach tropical storm force, so the
four major bridges across Tampa Bay from Pinellas County to the mainland will be
closed. This will cause significant problems for those people hoping to evacuate late
in the game. The evacuation signs, which are fixed in place, will still lead to the
closed bridges.

Interestingly, the Sunshine Skyway Bridge that crosses the southern part of
Tampa Bay is not considered an evacuation route. With a roadway nearly 200 ft
above the bay, the Skyway Bridge is typically closed due to high winds sooner than
the other three bridges that span the northern realms of Tampa Bay. The general rule
that emergency managers state is for evacuees to go to the closest safest location.

5.9 Roadways and Evacuation Scenarios

Nearly every hurricane evacuation scenario seems nightmarish. Emergency man-
agement officials wonder how a region with daily backed up rush-hour traffic even in
good weather will deal with the realities of a major hurricane evacuation, particularly
for a storm that has either developed or intensified nearby giving little time to prepare
or evacuate.

5.10 Emergency Services

Important infrastructure (Fig. 5.11), such as police stations and fire stations, and
Fig. 5.12 showing hospitals, are laced among the housing areas and often built in
surge-prone areas. In a major storm situation, this will limit the access and response
time to resident emergencies. In advance of a major storm, resources will need to be
repositioned to safer areas.
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Fig. 5.11 Law enforcement offices (bold) and fire stations (faded). (FDEMGeoportal 2018). Evac-
uation zones as in Fig. 5.10
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Fig. 5.12 Hospitals and trauma centers. (FAHCA 2018)
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5.11 Medical Facilities

Figure 5.12 shows locations of Agency for Health Care Administration (FAHCA
2018) licensed hospitals and trauma center facilities. Many of the major medical
facilities are within the surge zone, which will limit or exclude their use during and
after a major hurricane. Tampa General Hospital and Manatee Memorial Hospital
are two where access will be impacted by surge even from weaker hurricanes.
TBRPC (2010) suggests that after a Category 5 storm, most bay area medical
facilities will be unusable for up to or over 1 year.

5.12 Bridges

Hurricanes in other places along the Gulf of Mexico coast have revealed what could
be potential problems for the bridges and causeways across Tampa Bay. In 2004,
Hurricane Ivan’s storm surge and wave action, upon landfall near Mobile, Alabama,
displaced sections of the I-10 bridge roadway in the east- and west-bound lanes that
only had a 4 m (12 ft) clearance above the mean water level. A temporary steel
bridge was erected, and two new three-lane bridges were built during the next
32 months to replace the old bridges. The total cost to replace the I-10 bridges that
stretched for 4.2 km (2.6 mi) was $243M or $93M per mile (Road Traffic Technol-
ogy 2018).

The total cost of all bridges damaged by Hurricane Katrina in 2005 was around $1
billion and included two three-lane bridges along I-10 that were 9.1 m (30 ft) above
Lake Ponchartrain. More than $2.4 billion was spent to rebuild the region’s infra-
structure (Lee and Hall 2011). Padgett et al. (2008) studied 44 bridges damaged by
Hurricane Katrina and found high storm surge contributed the most to damage, but
some bridges where storm surge was less were damaged by debris impact.

Four bridges stretch across Tampa Bay (Fig. 5.13) and include the 4.8 km (3.0 mi)
I-275 Howard Frankland Bridge, the 4.5 km (2.8 mi) Gandy Bridge, and the 1 km
(0.6 mi) Courtney Campbell Bridge that add up to around 10 km (6.5 mi). A rough
estimate based on construction coasts after Katrina is around $160M per km ($100M
per mile) to rebuild if the bridges in Tampa Bay are destroyed.

The I-275 Howard Frankland Bridge center spans are 13.1 m and 14.9 m (43 and
49 ft) while the roadway approaches on the causeway are at an elevation about 2.1 m
(7 ft) (NAVD88), while the 100-year floodplain is at about 2.7 m (9 ft) (NAVD88)
elevation (HFBS 2017). The low member elevation on the approach spans of the
existing northbound bridge is about 3.0 m (10 ft). The Gandy and Courtney
Campbell Bridge center spans are also elevated above potential storm surges, so it
is unlikely that they would be destroyed by roadway displacement, but the approach
bridge sections and low-lying causeways at each end of the bridges are vulnerable.
The fourth bridge, the 9 km (5.6 mi) Skyway Bridge, is elevated well above the water
level, but again, the low-lying causeways at each end of the bridge would suffer
significant damage from storm surge.
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Fig. 5.13 Florida Department of Transportation bridges. Each red dot or red line is a bridge.
(FDOT 2017)
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5.13 The Power Grid

Figure 5.14 shows the locations of electric generation plants and main transmission
lines to distribute the electricity (HIFLD 2017). A major hurricane could impact
most of the area’s electric generation plants, which are typically in surge evacuation
zones. One critical impact would be the inability of workers to return to the plants
due to road closures or obstructions. Most of the plants run on natural gas, but the
Big Bend power plant on the east side of Tampa Bay is one of the few coal powered
plants in operation in Florida. A major hurricane, either local or distant, could impact
barge delivery of coal to the plant. Although a conversion of this plant to natural gas
is planned, it could take 10 years to complete (McGrory and Danielson 2018). In
2009, a 60-megawatt natural gas- and fuel oil-fired peaking unit was installed at the
Big Bend plant. This unit can provide power during periods of peak customer
demand and can be used when catastrophic weather causes the electric grid to lose
power. It is the only peaking unit deployed in the Tampa Bay region. The peaking
unit can start the Big Bend’s larger generating units in a blackout when power from
the grid is not available (TECO 2018).

Suspended power lines are vulnerable to wind, and particularly wind-felled trees.
On the local level, many new communities have underground electrical utilities, but
older communities do not. After the 2004 hurricane season, electrical utilities made
an effort to keep trees near power lines trimmed to minimize damage during the next
storm. The tree trimming continued even though hurricane activity subsided for
10 years after Hurricane Wilma (TECO 2017; FPL 2018). Ultimately, though, when
a major hurricane impacts the Tampa Bay region, some residents will be without
power for weeks or longer.

5.14 Waste Water Facilities

Thirty percent of the residents live in surge zones, so it is not surprising that 30% of
water treatment facilities are also in the surge zone (Fig. 5.15). Storm surge can
inundate wells and water mains, creating breakage and contamination. Electricity
loss prevents water and sewage pumping, interrupting the supply of fresh drinking
water and leaving waste to accumulate. Human and pet water will require boiling
before consumption following a major storm.

After Hurricane Hermine passed the region in 2016, the ground was saturated
with rain water and St. Petersburg’s aging and cracked pipes allowed water into the
sanitary sewer system. The combined impacts from Hermine created a scenario
where over 110 million liters (29 million gallons) of sewage spilled into Tampa
Bay (Frago 2016). Hurricane Irma created a similar scenario, but this time in
Hillsborough County, where 1.3 million liters (329,000 gal) of sewage spilled into
the bay (Frago and Danielson 2017).
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Fig. 5.14 Electrical power generating plants and main transmission lines. (HIFLD 2017)
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5.15 Port Tampa Bay

Port Tampa Bay is Florida’s largest port by tonnage, handling over 33.6 mt (37 mil-
lion tons) of cargo per year, and Florida’s largest port in terms of physical size,
encompassing over 20.2 km2 (5000 acres). The port activity ranges from cruise ships
to bulk cargo. To gain insight into potential problems at Port Tampa Bay, we
consider circumstances from the past and from other ports in the region. Port
Manatee in Manatee County, which is closer to the Gulf of Mexico, is a smaller
but growing facility and shares the risk of storm impact.

After Hurricane Katrina ripped through Empire, Louisiana on August 29, 2005,
many vessels became unmoored drifting battering rams that came to rest on land
after the surge retreated. Vessels Sea Wolf and Sea Falcon were found in the middle

Fig. 5.15 National Pollutant Discharge Elimination System wastewater facilities. (WAFR 2017)
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of a major roadway and presented a removal problem (Fig. 5.16). Large barges were
also pushed well inland which made removal difficult. Loose vessels are a major
problem in a busy port, particularly where hazardous materials such as gasoline and
ammonia are offloaded or stored.

In the past, ships have had serious accidents within the narrow channel that
stretches for 64 km (40 mi) from Port Tampa Bay to the open waters of the Gulf
of Mexico. In 1980, a major ship collision occurred near the Sunshine Skyway
Bridge when the USCG Blackthorn collided with the vessel Capricorn, leaving
23 sailors dead. Also in 1980, another catastrophe occurred when the vessel Summit
Venture hit the original Sunshine Skyway Bridge and knocked out the center span,
leaving 35 dead from vehicles plummeting off the bridge. Thirteen years later, in
1993, three vessels, the freighter Balsa, and barges Bouchard and Ocean 255, col-
lided near the Sunshine Skyway Bridge. The Bouchard spilled an estimated 1.3
million liters (336,000 gal) of No.6 fuel oil into Tampa Bay. All these collisions had
an impact on vessel traffic in and out of Tampa Bay. Since then, vessel tracking
systems have make collisions less likely.

To limit damage to port structures, vessels larger than 454 mt (500 tons) moored
in Port Tampa Bay must leave 24 h prior to hurricane-force winds. Keep in mind,
though, the ship channel is long and narrow. Any ship hastily leaving port through
the ship channel that runs aground has the potential to block other vessels from
leaving. If ships cannot evacuate and are stuck in port during a major storm, they can
become a peril to port facilities that store dangerous materials.

Fig. 5.16 Vessels Sea Wolf and Sea Falcon in the middle of a major roadway following Hurricane
Katrina in 2005. (U.S. Coast Guard photo by Petty Officer 2nd Class Jennifer Johnson)
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Several businesses refurbish vessels on dry docks that operate within the port
boundaries. This creates a more difficult scenario with an approaching storm because
the vessels cannot be relocated. Scuttling or sinking the ship and drydock could be
required to reduce the chance of a loose vessel from acting as a battering ram within
the port.

More refined petroleum comes through Port Tampa Bay than any other Florida
port. The storage tanks hold about 5–7 days of fuel, so they are constantly refueled
by ship and barges carrying petroleum. Prior to tropical impacts, the demand for fuel
resources increases as people top off the fuel in their vehicles. During the 2004
hurricane season, the rapid succession of four different tropical systems interrupted
petroleum deliveries and created a fuel shortage along the west coast of Florida.
Petroleum storage units have been damaged as the result of storm surge in other
locations. Godoy (2007) found that wind pressures damaged tanks along the path of
Hurricane Katrina and Hurricane Rita. He found that most of the damage was due to
flooding that caused tanks to dislodge from their foundations. If the fuel depots at
Port Tampa Bay are compromised during a storm, then recovery will be significantly
hampered. State and U.S. Coast Guard authorities have placed the highest priority on
filling the fuel tanks prior to the storm and opening the ship channel post storm to
keep fuel flowing (Mark Luther, personal communication, 6 April 2018).

5.16 Hazardous Materials in the Surge Zone

Some of Tampa Bay’s thriving commerce uses hazardous materials or creates
hazardous waste. This is a particular concern when those industries are in the
surge zone. Hazardous waste and used oil facilities that are vulnerable and noted
as Hurricane Facilities of Concern by the Florida Department of Environmental
Protection (FDEP 2005) are shown in Fig. 5.17. This includes treatment, storage,
and disposal facilities (TSDs) that are permitted to manage hazardous waste; haz-
ardous waste transfer facilities where hazardous waste may be stored or staged for up
to 10 days; used oil transfer facilities where used oil may be stored or staged for up to
35 days; and large quantity generators (LQGs) of hazardous waste that generate
more than 1000 kg (2200 lb) of hazardous waste in any 1 month and may store their
hazardous waste on-site for up to 90 days. Most of these entities in the counties of
interest are within surge evacuation zone locations.

5.17 The Phosphate Industry

The phosphate industry digs phosphate rock from the ground in interior Florida as
one of the key ingredients to manufacture fertilizer. Fertilizers added to soil contain
three key nutrients used by plants: nitrogen, phosphorus, and potassium. The
phosphate rock is processed with sulfuric acid, producing phosphoric acid. The
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Fig. 5.17 Facilities that are permitted to manage hazardous waste; hazardous waste transfer
facilities, used oil transfer facilities, and large quantity hazardous waste generators. (FDEP 2018)
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phosphoric acid is then combined with ammonia to create ammonium phosphate,
and is then typically blended and granulated with ammonium nitrate, potassium
chloride, and triple superphosphate (madehow.com 2018). The accumulated
byproduct of fertilizer processing called phosphogypsum, a slightly radioactive
waste material, is then dumped into massive wide piles up to 67 m (200 ft) in height
over an area up to 2.6 km2. The surface of these stacks is slightly depressed. In these
depressions atop the gypsum stacks are large pools, up to 1.6 km2 (400 acres) of very
acidic mineralized water (about pH 1.5) for processing ore (Pittman 2017). The
processing plants are mostly located inland near the mines, but one processing plant
exists next to Tampa Bay along the Alafia River (Fig. 5.18). Another processing
plant near Tampa Bay (to the south in Manatee County) that belonged to a defunct
processing operation was removed and partially cleaned up with 140 million in
taxpayer dollars.

Figure 5.19 shows the large extent of the mining in inland areas adjacent to the
Tampa Bay region, indicated by the teal blue manmade polygonal water areas. The
figure also shows the phosphate processing facilities and gypsum stacks in red
(FDEM 2011), most of which are located at the headwaters of several major Florida
Rivers, shown in yellow.

Phosphate processing disasters have occurred on a somewhat regular basis,
sometimes related to moderate weather systems. A major, slow-moving hurricane,
similar to Hurricane Harvey (2017) that dumped more than 1.3 m (50 in.) of rain near
Houston, Texas, or Hurricane Easy (1950) that dropped over 1 m (38 in.) of rain in
just 24 h north of Tampa Bay in Yankeetown, Florida, could create a scenario where

Fig. 5.18 Two gypsum stacks (indicated by yellow arrows) situated adjacent to Tampa Bay and the
Alafia River. (Google Maps)
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phosphate processing facilities have simultaneous failures. When a facility has a
gypsum stack failure, it has been repeatedly shown that any secondary containment,
such as earthen berms, is inadequate, and the release goes into one of the rivers, and
eventually into bays and the Gulf of Mexico. These releases are particularly deadly
to life in the rivers. These past phosphate-related disaster scenarios indicate the
magnitude of the problem with containment failures:

• Mar. 1, 1967, Polk County, Florida, USAMobil Chemical. A phosphate retention
failure released 250,000 m3 of phosphatic clay slimes which reached the Peace
River creating a fish kill. (Patagonia Alliance 2014). Over 125 mm (5 in.) had
fallen in the previous 30 days.

• Dec. 3, 1971, Polk County, Florida, Cities Service Co. A phosphate pond dam
failure released 9 million m3 of clay water tailings that traveled 120 km down-
stream on the Peace River, creating a large fish kill (Patagonia Alliance 2014).
Upwards of 175 mm (7 in.) of rain had fallen in the vicinity during the since the
beginning of November.

• Mar. 30, 1987 Hillsborough County, Florida, during heavy rains Gardinier
phosphate processing leaked 13.7 million gallons of acidic waste from a gypsum
stack into the Alafia River and Tampa Bay. The leak resulted in a massive fish kill
(Paulson et al. 1991). Upwards of 100 mm (4 in.) of rain had fallen in the previous
24 h

Fig. 5.19 Phosphate mining areas (blue), waterways (yellow) and gypsum stacks (red). (FDEP
2011)
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• May 1, 1988: Hillsborough County, Florida, Gardinier phosphate. Three hundred
five metric tons (336 tons) of PFS fertilizing solution of 75% phosphoric acid
(Patagonia Alliance 2014) was released from one of Gardinier’s 4990 mt (5500-
ton) tanks. The release killed an unknown number of fish in the Alafia River that
feeds into Tampa Bay. Weather is not suspected as a contributor to this release.

• Oct. 12, 1993: Hillsborough County, Florida, Cargill phosphate. Fish were killed
when acidic water spilled into Archie Creek and into Tampa Bay (Patagonia
Alliance 2014). Over 254 mm (10 in.) of rain had fallen from the beginning of
September up to that date.

• Jan. 2, 1994: Polk County, Florida, USA Cargill phosphate. Seventy six thousand
cubic meter of water spilled into the Peace River near Fort Meade (Patagonia
Alliance 2014). Precipitation was only moderate leading up to the spill.

• Jun. 15, 1994: Polk County, Florida, IMC-Agrico phosphate. A sinkhole opens in
phosphogypsum stack resulting in a release of acidic water into groundwater
(Patagonia Alliance 2014). Upwards of 254 mm (10 in.) of rainfall had fallen
during the previous 30 days.

• Oct. 2, 1994: Polk County, Florida, USA IMC-Agrico phosphate. Payne Creek
Mine dam failed releasing 6.8 million m3 of water from a clay settling pond. The
majority of the spill was contained on the adjacent mining area but 500,000 m3

escaped into Hickey Branch, a tributary of Payne Creek (Patagonia Alliance
2014). Over 280 mm (11 in.) of rain had fallen in the previous month over
the area.

• Nov. 19, 1994: Hillsborough County, Florida, USA IMC-Agrico. A phosphate
dam failure at the Hopewell Mine with nearly 1.9 million m3 of water from a clay
settling pond spilled into nearby wetlands and the Alafia River, (Patagonia
Alliance 2014). Upwards of 125 mm (5 in.) of rain had fallen during the previous
2 weeks.

• Dec. 7, 1997: Mulberry Phosphates. A rainstorm compromised a gypsum stack
and 56 million gallons of highly acidic wastewater containing phosphoric acid
escaped. This release killed all fish and marine life along 42 mi of the Alafia River
before flowing into Tampa Bay (Pittman 2017). Some nearby locations had
received over 254 mm (10 in.) of rain during the previous month and up to the
event.

• Sep. 5, 2004: Hillsborough County, Florida, Cargill Crop Nutrition. As
178–254 mm (7–10 in.) of rain fell, a dike at the top of a 30 m (100-ft)- high
gypsum stack holding 5.7 million liters (150-million gallons) of polluted water
broke after waves driven by Tropical Storm Frances bashed the dike’s southwest
corner causing a gypsum stack breach released 60 million gallons (227,000 m3) of
acidic liquid into Archie Creek and Tampa Bay (Patagonia Alliance 2014).
Cargill Crop Nutrition and IMC Global Inc. merged in October 2004 and
operated as Mosaic.

• Dec. 14, 2005: A leaky pipeline at Mosaic’s Riverview, Florida plant spills
40,000 gal of hazardous waste material. Hundreds of small fish die in Archie
Creek. (Stein 2006). This occurrence did not appear to be weather related.
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• Aug. 27, 2016: Polk County, Florida, Mosaic Inc. A sinkhole developed under a
gypsum stack and drained 215 million gallons of contaminated water into the
aquifer. A similar occurrence happened in 1994 at the same facility (Pittman
2017). During the month of August 2016 several locations in the vicinity received
upwards of 254 mm (10 in.) of rain.

Ammonia is used in the production of fertilizer and a pipeline transporting
ammonia stretches from Port Tampa Bay through the populated parts of eastern
Hillsborough County to the inland processing plants. The pipeline has typically been
operating without incident except for the following two human-caused breaches:

• In 2003, a person compromised the pipeline near the upscale Fish Hawk Ranch
subdivision and two schools. The school officials moved 2000 elementary and
middle school students to other schools. The ammonia was strong enough where
a work crew was “throwing up”. Nearly 100 firefighters used hoses to help
disperse the plume of vapors (Firehouse.com 2003).

• In 2007, A 16-year-old male drilled into the ammonia pipeline along the Alafia
River bridge at U.S. Highway 301. It took almost 2 days to stop the gas leak as
hundreds of residents were evacuated (Catalanello 2008).

The scenario in a major hurricane could be worse than anything previously
encountered if the Port Tampa Bay storage facilities, or the pipeline attached to
the Alafia River bridge, is compromised by battering hurricane debris or loose
vessels carried by the storm surge. Other incidents below provide a hint at what
could happen in association with wind or surge from a major hurricane. The extreme
wind, rain, and water currents could also help to disperse any releases.

• In 2005 a molten sulfur storage tank ruptured at the Port of Tampa and leaked
about 4082 mt (4500 tons) of molten sulfur, of which, 2.7–3.6 mt (3–4) tons went
into the Sparkman Canal at the port (Sulphuric-acid.com 2008).

• In 2008 sulfur dioxide leaked at Mosaic Phosphates in Mulberry, Florida causing
injury to 29 workers, of which, 18 contractors were hospitalized with respiratory
problems with one person admitted in serious condition. A company spokes-
woman said the plant routinely emits sulfur dioxide, but weather conditions
during this release caused the noxious cloud to hug the ground instead of drifting
away (Sulphuric-acid.com 2008).

• In 2013, another sulfur dioxide release occurred at Port Tampa Bay when a fire
started during “routine maintenance” to a sulfur storage silo. The sulfur is kept
warm by a system of heated coils that are installed around the tank. As firefighters
sprayed water onto the fire, it created sulfur dioxide. In less than a week another
fire occurred at the same sulfur tank. After the second fire the tank was thoroughly
inspected (Sulphuric-acid.com 2008).

• In 2013, a train carrying thousands of gallons of ethanol derailed tipping 11 rail
cars – 3 of which contained 30,000 gal of highly flammable ethanol. Wind and
rain complicated efforts to contain the spill and 4500 gal leaked out. (no citation?)
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5.18 Deadly Cyclones of the Past Around the World

Impacts of tropical cyclones in other places around the world can provide insight into
potential impacts in the Tampa Bay area. Every location is different by geographical
factors, building standards, industry, historical factors, culture, and governmental
response. This is a look at tropical cyclones that have impacted areas around the
world, and lessons to be learned for future impacts to the Tampa Bay area. The list is
organized by the number of deaths for the storms presented.

• Hurricane Andrew struck south Florida and then Louisiana in 1992 and caused
26 direct and 43 indirect deaths. The surge was up to 5.2 m (16.9 ft). Although the
number of deaths was relatively low for a Category 5 storm striking a populated
area, Andrew destroyed 28,066 homes and damaged 107,380 homes, leaving
180,000 people homeless. Livelihoods were also taken away with 82,000 busi-
nesses destroyed or damaged and 32,900 acres of farmland were damaged. Other
damage included: 31 public schools destroyed/damaged, 59 health facilities
damaged, 9500 traffic signs and signals, 3300 miles of power lines destroyed,
3000 water mains damaged, 1.4M residents without electric power and 80,000
without phone service (Godschalk 1999). Since then, building codes in Florida
have been strengthened but in the Tampa Bay region many structures are older
and have not been tested by major hurricane winds.

• Hurricane Audrey struck the Texas/Louisiana border in 1957 leaving 416 people
dead. It was the seventh deadliest hurricane in the U.S. with a storm surge of up to
3.7 m (12 ft). In Cameron Louisiana, with a population of 3000, 370 perished –

12% of the population. In the 35 km (22 mi) from Cameron to Grand Chenier,
60–80 % of the buildings were destroyed or significantly damaged (Hurricane
Science Audrey 2017). Twelve percent of the population dying in any one of the
Tampa Bay area counties would be devastating.

• Hurricane Katrina was a large Category 3 storm at landfall and created a storm
surge of up to 8.5 m (27.8 ft) in 2005. The storm created $81 billion in property
damages. The surge was largely responsible for the death toll of 1836 people.
Sadly, more than half of the deaths in Louisiana were senior citizens over the age
of 75 (Brunkard et al. 2008). The Tampa Bay region has a large population of
elderly people that is mostly situated in coastal areas.

• Super Typhoon Haiyan struck the city of Tacloban, Leyte province, Philippines
in 2013 with 230 kph (145 mph) winds and gusts to 315 kph (195 mph) pushing a
storm surge up to 7 m (23 ft). The storm surge tore eight ships from their
moorings that created more damage onshore. The storm resulted in 7361 dead
or missing (Masters 2014). Historically, residents faced impacts from typhoons
several times per year but were not prepared for this worst-case scenario.

• The Galveston Hurricane storm surge in 1900, estimated at 15 ft, killed upwards
of 10,000 people (Murname 2017). The storm came at a time when communica-
tion, construction, and response was primitive by today’s standards. The lack of
warning and location left the population vulnerable.
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• Cyclone Nargis, a Category 3 or 4 storm with 209 kph (130 mph) winds and gusts
to 258 kph (160 mph), struck Myanmar in 2008, killing over 140,000 people after
a 24-h intensification from Category 1 to a Category 4 storm. The landfall was at
the mouth of the Irrawaddy River with a surge of up to 3.7 m (12 ft) and inundated
the flat land up to 40 km (25 mi) inland. Between 400 and 500 mm (15.7–19.7 in.)
of rain fell. To exacerbate a dire situation, after the storm struck, foreign aid was
declined by the governmental regime. The rapid intensification was due to a
transient, deep, warm ocean feature in the Bay of Bengal increasing energy
available to the cyclone (Yu and McPhaden 2011). Similar features in the Gulf
of Mexico influenced the rapid intensification of Hurricanes Katrina and Rita in
2005 and could occur within hurricanes destined for the Tampa Bay area.

• Super Cyclonic Storm BoB (Bay of Bengal) 1 struck Bangladesh in 1991 with
258 kph (160 mph) winds that created a storm surge of up to 6 m (20 ft) with
80–90 % of all structures destroyed resulting in the deaths of 140,000 people,
most of whom drowned (USAID 2017). Chowdhury et al. (1993) mentioned that
elderly and socioeconomically disadvantaged were at greater risk and the death
toll could have been 20% more without shelters. A similar 6 m storm surge would
devastate a huge portion of the Tampa Bay region.

• The Bhola Cyclone in 1970 was the deadliest recorded tropical cyclone with up to
500,000 fatalities in the part of then Pakistan, which became Bangladesh. The
storm’s highest winds were estimated at 240 kph (150 mph) creating a surge of up
to 6 m (20 ft). This was a poor country with poor communication, where 35% of
the area is less than 6 m (20 ft) above sea level (Hurricane Science Bhola 2017).
At the time, the governmental junta delayed relief to the stricken country.

5.19 Deaths After the Storm

In the past, many of the fatalities occurred after the storms. In 2004 and 2005, the
eight hurricanes that struck Florida in 2004 led to 59 direct deaths and 85 deaths after
the storm. In 2005, 27 people succumbed to the direct storm influences and 42 died
after the storm. Therefore, about 60% of the deaths occurred after each storm. The
bulk of the post-storm causes of death were linked to trauma, drowning, electrocu-
tion, and carbon monoxide poisoning (Ragan et al. 2008).

5.20 Project Phoenix

The Tampa Bay Regional Planning Council Tampa Bay Catastrophic Plan (2010)
described the potential effects from “Hurricane Phoenix”, a Category 5 storm that
hits the Tampa Bay area. The damage assessment from the 258 kph (160 mph)
winds, 8 m (26 ft) storm surge, was a $250 billion-dollar price tag. The human toll
was calculated with these assumptions: no evacuation by 10% of the barrier islands

5 Overview of Potential Hurricane Death and Damage in the Tampa Bay Region 117



population and an additional 30% of the vulnerable population leaving two million
people in a surge zone. It was suggested that 2000 people (1/1000) would lose their
lives as a direct result of the storm (primarily due to non-evacuation of storm surge
areas and mobile homes). It was also suggested that an additional 200 people
(1/10,000) could lose their lives following the storm. Based on the significant storms
that struck Florida during 2004 and 2005, where 60% of the deaths occurred after the
storm, those estimates seem far too low. The Phoenix scenario would leave two
million people displaced from dwellings that are not habitable and could take weeks
or months to rebuild. The study also estimated that over one million pets would be
displaced.

5.21 Concluding Remarks

Tampa Bay area residents are vulnerable to storm surge but have no experience with
a significant storm. There is little difference between outcomes of those people who
do not receive a warning to those who receive a warning and ignore it. The net result
is the potential for a greater loss of life. Those that do not understand the potential
threat will eventually face the reality of a horrific event, but not until they run out of
excuses. With over 30 years as a meteorologist in the Tampa Bay area, the author has
heard various versions of these excuses for complacency as storms approach,
including:

• We never get it that bad.
• I don’t live near the coast.
• I don’t want to leave my pets.
• I evacuated for Charley (Irma) and I will never do that again!
• If I leave I won’t be able to come back home and take care of damage for several

days to weeks.
• I’ll wait to see what the storm is doing before I evacuate.

The storm itself, is just the beginning of a post-storm survival story, followed by
the long road to restoration or, potentially, total abandonment of a home or
community.
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Chapter 6
The 2015 Hurricane Season in the North
Atlantic: An Analysis of Environmental
Conditions

Jennifer M. Collins and David R. Roache

Abstract The 2015 North Atlantic hurricane season was particularly inactive, this
inactivity occurring in the presence of a near-record El Niño, the strongest since
1997. When analyzing large-scale environmental conditions utilizing NCEP/NCAR
Reanalysis 2, we show that the Caribbean was particularly inactive under very strong
wind shear and positive Omega conditions. While conditions generally were not
conducive in the North Atlantic, there were conducive conditions present at specific
times and specific locations, and these tended to be when and where we saw tropical
cyclone activity. Vorticity in particular showed large intraseasonal variability with
the location of the positive vorticity relating to storms such as Ana in May, Claudette
in July, multiple storms in August and September, and Joaquin in October. We
assess how the active and inactive periods observed during the 2015 hurricane
season were related to this month to month atmospheric variability.

Keywords Hurricanes · North Atlantic · 2015 season

6.1 Introduction

The North Atlantic is one of the most widely studied basins with regards to hurricane
activity, particularly due to a hurricane’s typical west-north -west track and the
basin’s location next to the densely populated eastern sea-board. There is therefore
much attention from various groups including the research community, reinsurance,
emergency management, and the public.

Several authors have provided explanations of why hurricanes form (Palmén
1948; Namias 1954; Gray 1979). Such explanations focus on both dynamic
(e.g. low wind shear and positive relative vorticity) as well as thermodynamic
(e.g. warm sea-surface temperatures and high mid-level relative humidity) factors.
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Some studies have examined particularly active or inactive seasons in different
basins. For instance, Collins and Roache (2010) examined the 2009 below normal
season in the North Atlantic and the unconducive conditions surrounding that
season. Collins et al. (2016) and Murakami et al. (2017) considered the hyperactive
season of the Eastern North Pacific in 2015 and the environmental variables con-
tributing to this activity. Considerable interannual variability occurs in the North
Atlantic and Knaff (1997), Elsner and Kara (1999), and Lupo et al. (2008) each
highlight the relationship between El Niño – Southern Oscillation (ENSO) and
North Atlantic tropical cyclone activity. This paper also focuses on the 2015 season
of the North Atlantic and the intraseasonal levels of activity that occurred there.

As shown in Table 6.1, in 2015, the North Atlantic had a total of 11 named storms
(maximum 1-min, 10-m sustained winds >¼ 34 knots), 4 of which reached hurricane
strength (maximum sustained winds >¼ 64 knots) and only 2 of which reached
major hurricane strength (maximum sustained winds >¼ 96 knots). The average for
the period 1981–2010 is 12.1, 6.4 and 2.7 respectively. The 2015 hurricane season in
the North Atlantic was the 18th weakest year in terms of Accumulated Cyclone
Energy (ACE; Bell et al. 2000), with 62.6850� 104 kt2 being generated. This
marked the third consecutive below average season in the North Atlantic, and
witnessed the continuation of the record streak of days since a major hurricane
made landfall in the United States, the last being Hurricane Wilma in 2005.

6.2 Data

Tropical cyclone data were collected from the HURDAT2 (HURricane DATa 2nd
generation) database (Landsea and Franklin 2013) for 1900–2015. These data are
available online at http://www.aoml.noaa.gov/hrd/hurdat/Data_Storm.html with
tropical cyclone records available at six-hourly intervals. Tropical cyclone numbers,
tropical cyclone days and ACE are used to access the season storm activity and ACE,
used as an overall measure of activity, is used for a comparison to past seasons as
well as a monthly comparison within the 2015 season. Bell et al. (2000) defines ACE
as the sum of the squares of the maximum sustained surface wind speed (knots)
measured every 6 h for all named systems while they are at least tropical storm
strength and not extratropical in phase.

For environmental variables examined, the National Centers for Environmental
Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis 2 is
utilized (Kanamitsu et al. 2002). The global data are available from https://www.esrl.
noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html. In the reanalysis, the data are

Table 6.1 2015 tropical cyclone statistics

Tropical
storms

Tropical
storm days Hurricanes

Hurricane
days

Major
hurricanes

Major
hurricane
days

ACE
(�104 kt2)

11 43.50 4 12 2 4 62.6850
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available from 1979-present, on a 2.5� by 2.5� latitude-longitude grid for six-hourly
and monthly time resolution, and for several vertical levels in the atmosphere (the
number of which depends on the examined variable). The NCEP/NCAR reanalysis
2 is suitable for this study due to the period covered and the comprehensive
observational database. Confidence in these data have previously been addressed
(Collins and Mason 2000; Kalnay et al. 1996). The climatology period of
1981–2010 was used for all environmental datasets. The monthly environmental
data were averaged over August to October to correspond with peak North Atlantic
tropical cyclone activity.

6.3 Analysis of the 2015 North Atlantic TC Season

Table 6.2 shows ACE by month. It can be seen that the ACE at the beginning of the
season in May came entirely from the one storm, Tropical Storm Ana. The peak in
ACE occurred in October, again entirely from one storm, Hurricane Joaquin, only
one of two major hurricanes of the season. The next highest months by ACE were
August and September. This is expected that August – October would yield the
highest ACE as these are the peak months historically. June was the least active
month by ACE.

A moderate and strengthening El Niño event was in place at the start of the
hurricane season, becoming a strong El Niño by the peak of the hurricane season.
Examining the Multivariate ENSO Index (MEI; Wolter and Timlin 1998), which
considers sea surface temperatures, surface pressure, cloud fraction, and meridional
and zonal winds, the July-October-averaged MEI was at its second highest level
since 1979, surpassed only by the 1997 El Niño event. Levine and McPhaden (2016)
discuss the factors which led up to the strong 2015 El Niño.

Considerable intraseasonal variability occurred, not only in terms of ACE, but
also in terms of the environmental factors known to influence the formation of
tropical cyclones. The location where hurricanes formed can be linked to the location
of these conducive factors, likewise we see no activity in locations where these
factors are unconducive. Figures 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, and 6.7 displays

Table 6.2 2015 Accumulated Cyclone Energy (ACE) by month, and the named storms (TS
tropical storm, H hurricane, MH major hurricane) that contributed to it

Month ACE (�104 kt2) Named storms

May 2.12 TS Ana

June 1.065 TS Bill

July 1.13 TS Claudette

August 15.8275 MH Danny, TS Erika, H Fred

September 12.3075 H Fred, TS Grace, TS Henri, TS Ida, MH Joaquin

October 26.58 MH Joaquin

November 3.655 H Kate

Storms listed in multiple months formed in the first and lasted into the second
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conditions throughout the basin. Anomalies in these environmental factors are
presented relative to the 1981–2010 climatology period.

6.3.1 May Activity

As noted, the total ACE in May was generated by Tropical Storm Ana which formed
on May 8. Figure 6.1 shows the strong positive vorticity (panel B) present in the
location of Ana’s development. It also shows a large area of strong negative wind
shear (panel A). The Main Development Region (MDR) of north Atlantic tropical
cyclones is identified on this and subsequent plots as bounded from 10 to 20� North
and 20 to 60� West.

6.3.2 June and July Activity

While June and July achieved the lowest ACE values of the season, this is to be
expected as these are not usually active months. Activity in 2015 in these months

Fig. 6.1 Mean atmospheric conditions in the North Atlantic basin during May 2015. Tropical
cyclone tracks plotted: a low depicted by black dots, a tropical depression by solid green, tropical
storm by solid yellow, sub-tropical storm by solid aqua, hurricane by solid orange, major hurricane
by solid purple, data from a previous month by solid grey

126 J. M. Collins and D. R. Roache



was average with one named storm each month. In June (Fig. 6.2), the Northwest
Caribbean exhibited particularly high vertical wind shear, a feature typical of an El
Niño year. These conditions are unconducive to storm development. In July
(Fig. 6.3), humidity is particularly low and unconducive in the MDR, and shear in
the Caribbean is likewise unfavorable for development. Where Claudette formed off
the eastern coast of the US, conditions were fairly conducive.

6.3.3 August Activity

August saw multiple storms form in the North Atlantic including Category 3 Hurri-
cane Danny. Figure 6.4 shows that there is strong positive vorticity (panel B) in the
Main Development Region (MDR). Hurricane Fred formed near the end of the
month, and was impacted by conditions during both August and September. Its
track during August only is shown in Fig. 6.4.

Fig. 6.2 Mean atmospheric conditions in the North Atlantic basin during June 2015. Tropical
cyclone tracks plotted: a low depicted by black dots, a tropical depression by solid green, tropical
storm by solid yellow, sub-tropical storm by solid aqua, hurricane by solid orange, major hurricane
by solid purple, data from a previous month by solid grey
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6.3.4 September Activity

Several storms formed in September. It can be observed from Fig. 6.5 that there is
strong positive vorticity (panel B) in the Central North Atlantic. There is also strong
positive vorticity in the eastern MDR where Fred, Grace, and Ida formed. The
absence of strong shear (panel A) where these storms formed was also a positive
contributor to their formation. Joaquin and Henri formed in a region of negative sea
level pressure (panel C). Joaquin formed in late September, although the majority of
this storm’s lifecycle was in early October when environmental conditions were very
different.

6.3.5 October Activity

Again strong positive vorticity marks the area of Joaquin’s presence (Fig. 6.6, panel
b). There is also negative SLP (panel C) off the Eastern Seaboard which is important
for Joaquin. While the atmosphere was dry all season (see Figs. 6.1, 6.2, 6.3, 6.4, 6.5,
6.6, and 6.7d), October was the least dry month and actually had some positive

Fig. 6.3 Mean atmospheric conditions in the North Atlantic basin during July 2015. Tropical
cyclone tracks plotted: a low depicted by black dots, a tropical depression by solid green, tropical
storm by solid yellow, sub-tropical storm by solid aqua, hurricane by solid orange, major hurricane
by solid purple, data from a previous month by solid grey
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relative humidity anomalies in Joaquin’s path (panel D). This change to favorable
environmental conditions from September to October was critical in Joaquin’s
development into a major hurricane. Despite strong positive vorticity anomalies
(panel B) in the MDR in October, no storms formed there largely due to the dry
atmospheric conditions (panel D), including some areas up to 10% more dry than
average.

6.3.6 November Activity

While the official hurricane season in the North Atlantic extends to November 30, it
is still rare to get a storm of hurricane force. Hurricane Kate however occurred in
November in an environment of strong negative wind shear (Fig. 6.7, panel a).
Furthermore, while the basin was particularly dry all season (Figs. 6.1, 6.2, 6.3, 6.4,
6.5, 6.6, and 6.7d), Hurricane Kate also formed in an environment of positive
relative humidity (panel D).

Fig. 6.4 Mean atmospheric conditions in the North Atlantic basin during August 2015. Tropical
cyclone tracks plotted: a low depicted by black dots, a tropical depression by solid green, tropical
storm by solid yellow, sub-tropical storm by solid aqua, hurricane by solid orange, major hurricane
by solid purple, data from a previous month by solid grey
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6.4 The Caribbean

No storms formed in the Caribbean and only one went into it as a tropical storm
(Erica). Erica then dissipated while in this region. The lack of storms in the
Caribbean contributes to the lack also observed in the Gulf of Mexico. The partic-
ularly high vertical wind shear throughout the Caribbean in the 2015 season, as
shown in Fig. 6.8b, explains the inactivity, and is responsible for the rapid dissipa-
tion of Erica as it moved into the Northern Caribbean. Such high shear is common
here in an El Niño due to the atmospheric circulation anomalies associated with El
Niño (Gray and Sheaffer 1991).

6.5 Conclusions

This article examines the large-scale environment that led to the 2015 North Atlantic
hurricane season. The focus of this manuscript was on the intraseasonal variation in
ACE and conducive and non-conducive conditions for hurricanes to form. It was

Fig. 6.5 Mean atmospheric conditions in the North Atlantic basin during September 2015.
Tropical cyclone tracks plotted: a low depicted by black dots, a tropical depression by solid
green, tropical storm by solid yellow, sub-tropical storm by solid aqua, hurricane by solid orange,
major hurricane by solid purple, extra tropical by dotted magenta, data from a previous month by
solid grey
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shown that vorticity was a big player in the month to month variability in 2015.
Other studies, such as Collins and Roache (2011), have likewise shown the impor-
tance of vorticity on intraseasonal hurricane activity. A very strong El Niño event
generated an environment of particularly strong shear in the Caribbean, resulting in
no tropical cyclones forming in this region for the entire season. This also impacted
storms in the Gulf. Storms in the MDR were weak and short-lived.

Other studies have noted the role of the Madden-Julian Oscillation (MJO) on
intraseasonal variability of hurricane activity (Maloney and Hartmann 2000; Collins
and Roache 2011; Klotzbach and Blake 2013). Indeed, it was shown to be an
important influence of intraseasonal variability for the 2015 season in the Eastern
North Pacific (Collins et al. 2016). However, an examination of a Hovmöller
diagram of 850-hPa zonal wind anomalies averaged from 7.5�S to 7.5�N (not
shown) indicates no discernable MJO influence for the intraseasonal variability
noted in 2015 for the North Atlantic basin, so the MJO was ruled out in this study
as a major factor for the 2015 tropical cyclone activity.

Knowledge of the state of ENSO appears to allow for predictability of
active vs. inactive seasons. The 2015 season in the North Atlantic behaved as
expected due to the El Niño event. However, it is worth noting that even in a
suppressed year, storms of substantial magnitude can form when local conditions

Fig. 6.6 Mean atmospheric conditions in the North Atlantic basin during October 2015. Tropical
cyclone tracks plotted: a low depicted by black dots, a tropical depression by solid green, tropical
storm by solid yellow, sub-tropical storm by solid aqua, hurricane by solid orange, major hurricane
by solid purple, extra tropical by dotted magenta, data from a previous month by solid grey
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conducive to that happening coincide, and that even in such weaker seasons vigi-
lance is needed because all it takes is one hurricane, as exemplified by Hurricane
Andrew in 1992.

Fig. 6.7 Mean atmospheric conditions in the North Atlantic basin during November 2015. Tropical
cyclone tracks plotted: a low depicted by black dots, a tropical depression by solid green, tropical
storm by solid yellow, sub-tropical storm by solid aqua, hurricane by solid orange, major hurricane
by solid purple, extra tropical by dotted magenta, data from a previous month by solid grey

Fig. 6.8 (a) Mean vertical wind shear (m s�1) from a composite of El Niño years (1965, 1972,
1982, 1987, 1997) and (b) mean vertical wind shear in 2015 compared to mean vertical wind shear
from a composite of El Niño years
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Chapter 7
Impact of Aerosols and Ocean Temperature
on Tropical Cyclone Days Near Australia

Rupsa Bhowmick and Jill C. Trepanier

Abstract Tropical cyclones (TCs) devastate nations around the world. Many dif-
ferent variables influence TC intensification or decay. Near Australia, one of those
influences may stem from the arid interior of the landmass. The influences of aerosol
optical depth (AOD), sea surface temperature (SST) and upper ocean temperature
(UOT) on monthly TC days over eastern Australia and the southwest Pacific Ocean
are examined using data from 1985 to 2015. The area experiences TCs in November
(Nov) through June with a peak in March. Variables occurring together in time are
considered as possible predictors of TC days, as well as lagged relationships between
them. Spearman rank correlation tests showcase the significant relationships
between all pairs of variables during a variety of months. A Poisson multiple
regression model is applied on TC-SST-AOD and TC-UOT-AOD to find the most
significant relationships between the variables throughout the season. Four signifi-
cant models are found without violating statistical assumptions. An increase in Nov
AOD and Dec SST leads to a significant increase in Jan TC days. Dec UOTs are
found to be negatively related to TC days in Jan. The difference in directions is
related to the difference in heating mechanisms associated with the surface condi-
tions and the lower subsurface in environments of relatively higher AOD. Probabil-
ities of monthly days during unfavorable and favorable conditions are found. Low to
moderate TC days are expected in Jan when both Nov AOD and Dec SSTs are low.
There is a chance of a higher number of Jan TC days in both high Nov AOD and Dec
SSTs. This study provides scenarios between the variables to aid in forecasting.
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7.1 Introduction

The northern half of eastern Australia (EA) is subjected to devastating tropical
cyclones (TCs) generated over the southwest Pacific Ocean (SWPO). The SWPO
spreads over an area of approximately 10 million square nautical miles from the Gulf
of Carpentaria (130�E) to 180�. The main cyclogenesis region exists over the Coral
Sea, adjacent to the northeastern and eastern coasts of Australia (Diamond et al.
2013). EA is considered one of the most populated and developed regions of the
country while also experiencing the fastest growth (Hall et al. 2001). TCs cause 76%
of the disasters in the EA/SWPO region and other nearby small islands (Bettencourt
et al. 2006), with total insured losses of $16.1 billion ($US) accumulating from 2000
to 2012 (Deloitte Economics 2013).

McBride and Keenan (1982) find that 49% of EA events form in the Coral Sea
within 300 km of the Australian coast. TC intensity, longevity of life cycle, and
dissipation largely depend on underlying sea surface temperature (SST) and the
temperature of the ocean’s mixed layer. During the past decade, research shows
aerosols can substantially influence the shortwave radiation and cloud microphysics
of an area and, consequently, the nearby SST and upper ocean temperature (UOT)
(Church et al. 2005; Foltz and McPhaden 2008). The SWPO has experienced
increasing temperatures in recent decades, and the trend might be related to atmo-
spheric temperature increases or changes in oceanic circulation (Salinger et al. 1993,
1995; Cortese et al. 2013; Barrows et al. 2007; Cai et al. 2005). Another possible
cause of SST variability is a change in the relationship between SSTs and atmo-
spheric aerosol, here defined by aerosol optical depth (AOD). Atmospheric aerosol is
a complex and dynamic mixture of solid and liquid particles from natural and
anthropogenic sources. AOD is a measure of the extinction of solar radiation by
aerosol particles. It is a dimensionless number related to the amount of aerosols in
the vertical column of the atmosphere over any observed location (Augustine et al.
2008).

Compared to other ocean basins around the world, this region is the most
understudied, possibly due to its relatively isolated location in the South Pacific
Ocean. The aim of this study is to estimate the influence of AOD on SST, UOT, and
the number of days in a month occupied by named TCs (at least 17 ms�1) over the
SWPO affecting EA and other nearby regions from 1985 to 2015. These variables
are assessed with time series analyses to identify trends through time. The results
presented can be used to better understand the range of past and present TC
variability related to atmospheric aerosols. This information is useful for the
advancement in seasonal TC forecasting, hazard assessment, and risk management
strategies by incorporating atmospheric aerosols as a cause of TC variability.
Researchers may be able to use real-time or predicted AOD levels (Abish and
Mohanakumar 2013) in forecast models to help better understand the expected
ocean temperature response and the resultant number of TC days.
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7.2 Study Area

The SWPO study region extends from the Gulf of Carpentaria, Australia (130�E) to
180�W and from the equator to 30�S. This includes the Gulf of Carpentaria and
Coral Sea. The Coral Sea is the marginal sea located in the SWPO adjacent to the
northeast coast of Queensland, Australia (142�E), bordered by the Solomon Islands
and Papua New Guinea to the north (9�S), New Caledonia and Vanuatu to the east
(170�E) and the Tasman Sea to the south (30�S) (see Fig. 7.1) (Jaffrés 2013). The
Coral Sea is the focus of this study as it is considered the main cyclogenesis location
for TCs affecting EA (Hall et al. 2001; Diamond et al. 2013).

Figure 7.1 shows the study region highlighting northeastern and eastern cities
heavily influenced by TCs and southeastern cities influenced by TC-induced pre-
cipitation. Also included are the major dust source areas throughout the continent,
which contribute to the aerosol amount over the SWPO (130�E to 180�). The largest

Fig. 7.1 Study region: EA and the SWPO (130�E to 180�, 0� to 30�S). Circles indicate major AOD
source regions, which contribute to the aerosol concentration over the SWPO. Squares indicate
major cities along the coast of EA. The region highlighted over central Australia is the Lake Eyre
Basin, the largest AOD source in Australia
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of these is the Lake Eyre Basin. TCs considered for this study are those originating
over the SWPO (west of 180�) following the path over the Coral Sea, Gulf of
Carpentaria, and Tasman Sea that both do or do not make landfall over northeastern
and eastern Australia. This study also includes TCs affecting New Zealand and other
smaller islands in the south, east and southeastern directions away from mainland
Australia (Fig. 7.2). The tracks in Fig. 7.2 are plotted with the available six-hourly
TC data from the Southwest Pacific Enhanced Archive for Tropical Cyclones
(SPEArTC) (Diamond et al. 2013). The tracks are color-coded based on the intensity
at the six-hourly observation point. Those in red are the most intense wind speeds.

Australian AOD is smaller in amount compared to Saharan AOD and contributes
an emission rate of around 100 Tg/year, or about 5% in the global AOD amount
(Mitchell et al. 2010). It is the largest source of AOD aerosols in the Southern
Hemisphere and an important atmospheric aspect modifying regional climate
through radiative impacts (Choobari et al. 2013). Australia contributes nearly 70%
of the atmospheric AOD load in the Southern Hemisphere (Rotstayn et al. 2009).
The Lake Eyre Basin extends 1.2 million km2 in the interior arid and semi-arid
region of the landmass and is one of the largest sources of AOD (Fig. 7.1) (Mitchell
et al. 2010).

Fig. 7.2 Track map showing the TCs included in this study (winds >17 ms�1) from 1985 to 2015.
Tracks are colored based on the Australian intensity categories

138 R. Bhowmick and J. C. Trepanier



Weather Research and Forecasting (WRF)-Chem model simulations and Moder-
ate Resolution Imaging Spectroradiometer (MODIS) data indicate the Lake Eyre
Basin as a major AOD path toward Northern Australia, the Coral Sea, Gulf of
Carpentaria, Arafura Sea and Tasman Sea due to post-frontal southwesterly winds
and associated anticyclonic circulation (Alizadeh Choobari et al. 2012). Bigg et al.
(1984) notes a seasonal cycle of biogenic AOD concentration over the SWPO
originating from Australia and identifies a summer maximum. PROSPERO and
UEMATSU (1989) found the highest AOD concentration in the SWPO simulta-
neously occurs with the maximum number of dust storms, also during summer in
Australia. Kristament et al. (1993) states the northeast and EA receive their peak of
rainfall in the summer away from the center of the landmass due to the placement of
the Hadley cell.

SST is one of the most important factors for tropical cyclogenesis. Evans (1993)
suggested SST provides the upper limit for TC intensity by supplying the available
energy in the system. Although Palmen (1948) set 26–27 �C as the threshold SST for
TC formation, Dare and McBride (2011) present a global climatology of SST
thresholds and find 7% of TCs form below 26.5 �C. The 27 �C isothermal line has
a mean position in the Coral Sea between 10 and 20�S providing the necessary
energy supply above the threshold for TC genesis.

The role of UOT in forcing TC variability is one of the critical areas to be
addressed by this study. Lin et al. (2013) states in order to explore more of the
ocean’s role in TC intensification, it is necessary to consider the upper ocean column
apart from SST because TCs also interact with upper ocean layers typically from the
surface down to 100–200 m. TC intensification, dissipation, and track direction also
closely depend upon UOT and the depth of the mixed layer. Over the Coral Sea, the
mixed layer depth (MLD) associated with UOT experiences a seasonality as a result
of larger seasonal variations and wind stress (Jaffrés 2013). MLDs are relatively
homogenous throughout the Coral Sea during summer and are the thickest during
July–August (Jaffrés 2013).

7.3 Data

Monthly TC days are derived from the SPEArTC (Diamond et al. 2013). SPEArTC
provides a complete list of TCs in the SWPO from 135�E (west of the Gulf of
Carpentaria) to 120�W and from the equator to 40� S. This record consists of the
six-hourly TC locations for individual storms back to 1841. The major benefits of
SPEArTC data are: (1) it integrates TC track information from various sources (e.g.,
the Australian Bureau of Meteorology and the Regional Specialized Meteorological
Centers in Nadi and Wellington); (2) it includes digitization of new tracks and any
post-1969 satellite era tracks; and (3) the data are readily available at a centralized,
secure location in line with the work of the International Best Tracks for Climate
Stewardship (IBTrACS) (Knapp et al. 2010). The SPEArTC dataset also was not
constrained by the World Meteorological Organization’s 160�E boundary as in
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IBTrACS (Diamond et al. 2013). In this way, SPEArTC provides a robust, holistic
TC data archive for the SWPO.

Storms included into one individual TC season are those that formed within the
EA/SWPO region between 1 November and 30 June of the following calendar year,
as the official Australian TC season spans over the passing of a new year. In the data
record, the beginning year of the season is used as the code (e.g., season 1985 spans
from November 1985 to June 1986) (Ramsay et al. 2017). For this present study,
TCs are included that exceeded 17 ms�1 (10-min) maximum sustained wind speed
(MSW). There are 329 TCs considered for this study. Any single day having at least
one TC is considered as one active TC day in this study. Computation of a monthly
TC day’s statistic was done by summing the total number of days when any named
SWPO TC was present over the study region.

A variety of satellite data is used in this study for the independent variables. The
monthly mean AOD is derived from the Advanced Very High Resolution Radiom-
eter (AVHRR) onboard a National Oceanic and Atmospheric Administration
(NOAA) satellite. It estimates AOD from backscatter radiation at a wavelength of
0.63 μm (Prospero 1997) at 0.1 * 0.1 degree spatial resolution. AVHRR AOD
retrieved from the NOAA PATHFINDER Atmospheres Extended (PATMOS-x)
satellite is one of the most reliable sources of satellite data, offering more than
30 years of daytime satellite aerosol data in cloud-free conditions on a monthly basis
with high spatial resolution.

As climatological trend analysis requires a minimum 30-year period, monthly
mean SST (�C) data products are derived from three different satellite sensors to
complete the period of record. The three datasets are the Pathfinder AVHRR,
Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI), and
Advanced Microwave Scanning Radiometer-2 (AMSR2). NOAA/NASA AVHRR
Ocean Pathfinder SST products provide gridded data with 0.08 * 0.08 degree spatial
resolution from November 1985 to May 2003. The data are considered a reliable
source of SST measurement as it has three SST measurement suitable infrared
channels (Vazquez et al. 1998). TMI provides gridded monthly mean microwave
SST (MWSST) data from June 2003 to June 2012 at 0.25 * 0.25� spatial resolution.
AMSRE2 provides microwave SST from 2012 to 2015 based on brightness temper-
ature (Gentemann and Hilburn 2015).

It is notable the combination of three SST data sets may present bias into the
study. As an attempt to check for this, two sample t-tests have been performed
between each different SST data set to confirm whether the data are significantly
different from one another. Non-significant p-values from each t-test support the null
hypothesis of no difference between three SST datasets.

Monthly mean gridded UOT (�C) values are derived from the Simple Ocean Data
Assimilation (SODA) version 3.3.1 reanalysis data set with 0.5 * 0.5� spatial
resolution taken over the upper 110 m of the ocean (Carton and Giese 2008). The
monthly and annual averages of AOD, SST, and UOT data over the study region are
considered as possible predictors of the number of TC days near EA.
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7.4 Descriptive Statistics

The analysis of AOD influence on TCs near EA begins with descriptive statistics
about the observed variables since 1985. Figure 7.3 shows the monthly occurrence
of TCs originating over the SWPO. TCs occur in this region from November (Nov)
to May with a maximum in March (Mar) and a minimum in June (Jun). Over 63% of
all TCs in this region occur from January (Jan) to Mar. During these months, the
conditions are most favorable and produce the most TC days influencing EA. The
northeast and east coastal land areas have such a close proximity to the main cyclone
development region (i.e., the Coral Sea) they are most vulnerable toward TC
associated wind damage, extreme rainfall, storm surge and coastal flooding during
these months (McBride and Keenan 1982).

Figure 7.4a shows the frequency distribution of SSTs in the SWPO region for the
entirety of the TC season. From Nov to May, SSTs are warm enough to support
cyclone formation, being very near or above the 26 �C threshold. The bulk of the
days have values between 27 and 28 �C. The highest values of SSTs are typically
found during February (Feb) and Mar, corresponding to the months with the highest
number of TC days. From Feb to April (Apr), the main development region for TCs
shifts toward the Coral Sea (Diamond et al. 2013), and the mean position of the
27 �C isothermal line falls between 10 and 20�S.

Figure 7.4b shows the frequency distribution of UOT in the SWPO region at the
110-m depth. Most UOT values are 24 �C or greater and the peak values occur in
Apr, May, then Jun, and are between 25 and 26 �C. It is interesting to note the
highest UOT months do not coincide with the highest SST months, perhaps due to
the barrier layer. The barrier layer is the layer between the mixed layer and the
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isothermal layer (Katsura et al. 2015). Here, the barrier layer can lead to high UOT
during the late summer and early winter months. This layer has a tendency to thicken
in the Coral Sea region during cooler months, leading to high UOT in the late TC
season while not in the middle (Jaffrés 2013).

The distribution of AOD over the SWPO region is shown in Fig. 7.4c. This is the
average AOD over the Gulf of Carpentaria, Coral Sea, and portions of the Arafura
and Tasman Seas. Much of the distribution falls between 0.1 and 0.17. The adjacent
arid and semi-arid portions of EA supply the dust leading to the recorded AOD
values over the SWPO. The months with the highest AOD levels coincide with the
months of highest SST and highest TC days (i.e., Feb and Mar).

To illustrate the change in the variables over time, seasonally averaged time series
of TC, SST, UOT, and AOD are included. Stationarity of the individual time series’
and trend direction are determined using the Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) test, where p-values <0.05 indicate non-stationarity. The KPSS test is based
on ordinary least squares regression, which defines the direction and stationarity of
linear trend. The time series’ are decomposed and the trends in each variable are
plotted in Fig. 7.5. The test results show three variables (TC days, SST, and AOD)
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have positive trends and UOT has a neutral trend (TC Days ¼ 0.17, SST ¼ 0.20,
UOT ¼ 0, and AOD ¼ 0.24).

Figure 7.5a shows SST has a significant, positive change over time
(p-value ¼ 0.01), while also showing decadal variability. The change in SST over
time is likely a result of the El Niño Southern Oscillation (ENSO). SWPO SST is
largely dominated by ENSO phases on both sides of the temperature gradient.
During El Niño years, positive SST anomalies occur eastward in the South Pacific.
In La Niña years, these anomalies shift toward the West Pacific. Based on the Ocean
Niño Index, El Niño years have lower SST than La Niña years in the SWPO.
Research suggests the SWPO has experienced a decadal increase in SST, possibly
due to more La Niña like conditions, which may be the cause of the significant
increase in SST (DeLong et al. 2012). Figure 7.5b shows the AOD trend in the
SWPO region. The change in AOD over time is not statistically significant. The
UOT time series in Fig. 7.5c shows a significant, positive trend over time
(p-value ¼ 0.01). This could also be related to ENSO, similar to SSTs in the region.
Figure 7.5d shows the positive, but insignificant trend in TC days (p-value ¼ 0.1).
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7.5 Correlation Between the Variables

Initial relationships between seasonal averages of AOD, SST, UOT, and the number
of TC days are estimated using correlation tests. Monthly averages are also consid-
ered to identify temporal variability in the relationships. Variables concurrently
occurring are compared as well as lagged relationships between them. For example,
Nov AOD is related to December (Dec) SST.

The variables are identified as not normally distributed using a Shapiro-Wilks
test, thus the Spearman Rank Correlation Coefficient test is used. The rank correla-
tion coefficient (rs), is generally expressed as,

rs ¼ 1� 6Σd2i
n n2 � 1ð Þ , ð7:1Þ

where n is the number of observations in each of the two variables in the correlation
and di is the ranked difference between the ith measurements for the two variables.
Monthly lagged relationships are considered to describe the predictive capability of
one variable on another. The lagged relationships might prove helpful to understand
feedback and interactions in complex climate systems (Elsner 2007).

The correlation coefficient of the seasonally averaged SST and AOD is 0.15
(p-value ¼ 0.00). However, there are no statistically significant relationships when
instead considering monthly pairs of SST and AOD. The relationship between AOD
and UOT proves to be insignificant on the seasonal and monthly level. In contrast,
Evan et al. (2009) found a strong negative relationship between AOD and MLD
temperature over the tropical North Atlantic Ocean because of scattering and
reduction in surface solar radiation associated with AOD. The relatively lower
AOD amount over the SWPO is one of the possible causes of the insignificant
relationship between AOD and UOT.

Table 7.1 shows the monthly lagged relationships between AOD and TC days.
The simultaneous correlation coefficient between seasonally averaged AOD and TC
days is 0.34 (p-value ¼ <0.00). Increased Feb AOD leads to a significant increase in
May TC days. Both indicate a higher AOD concentration leads to higher TC days.
Table 7.2 shows correlation statistics between lagged monthly SST values and TC

Table 7.1 Correlation
statistics between lagged
monthly AOD and TC days.
Significant relationships are
shown in bold (0.05 level)

Months Results

AOD TC days ρ p-value

Nov Jan 0.28 0.13

Dec Feb 0.33 0.07

Jan Mar 0.33 0.08

Feb Apr 0.02 0.93

Mar May 0.16 0.41

Feb May 0.36 0.05
Apr June 0.11 0.56
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days indicating no statistical significance. Table 7.3 shows correlation statistics for
UOT and TC days. There is no statistically significant relationship between monthly
pairs of UOT and TC days.

7.6 Poisson Model

To estimate the influence of AOD, SST, and UOT on the count of monthly TC days,
a multivariate Poisson regression model is employed. A Poisson regression model is
a form of generalized linear regression where the response variable is count data and
follows a Poisson distribution. This model is based on the assumption that the
response variable has a discrete, Poisson distribution defined on the non-negative
integers (Elsner and Jagger 2006). The logarithm of the expected value of the
response variable is modeled upon the linear combination of the independent vari-
ables (Elsner and Jagger 2013). In a Poisson model, the probability distribution, i.e.,
the probability of occurrence of exactly y (here, TC days) is given by:

Pr Yi ¼ yð Þ ¼ μ y
i exp

�μi

y!
, y ¼ 0, 1, 2, . . . ,1, ð7:2Þ

where μi is

Table 7.2 Correlation
statistics between lagged
monthly SST and TC days

Months Results

SST TC ρ p-value

Nov Nov �0.17 0.38

Dec Dec �0.19 0.31

Dec Jan 0.30 0.11

Jan Feb 0.09 0.64

Feb Mar 0.07 0.72

Mar Apr 0.04 0.82

Apr May �0.21 0.27

Table 7.3 Correlation
statistics between lagged
monthly UOT and TC days.
Significant months at the 0.1
level are shown in bold

Months Results

TC UOT ρ p-value

Nov Nov �0.30 0.11

Dec Dec �0.33 0.08
Jan Dec �0.22 0.24

Feb Jan �0.07 0.69

Mar Feb �0.09 0.63

Apr Mar 0.13 0.49

May Apr �0.16 0.41

June May �0.12 0.52
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μi ¼ expβ0þΣ jβ jXij , ð7:3Þ

where Xij is the data value for predictor j on observation i, and βj is the corresponding
Poisson regression coefficient for predictor j. It can be shown theoretically the
expected number of monthly TC days E(Y) ¼ Var(Y) ¼ μ, when Y has a Poisson
distribution (McDonnell and Holbrook 2004). The method to fit a Poisson regression
model is to use the Poisson model formulation to derive the maximum likelihood
function. It means for a given β (vector of Poisson regression coefficients), μ is
calculated for each set of predictors and the likelihood of the observed number of TC
days is estimated using Eq. (7.2).

Application of Poisson regression over a linear model is beneficial for modeling
discrete events such as the frequency of TC days in a month or in a season. Solow
and Nicholls (1990) used Poisson regression to build a statistical model of the
relationship between TC frequency and the Southern Oscillation Index near
Australia. A Poisson regression model was used by Elsner et al. (2001) to estimate
the statistical relationship between annual U.S. hurricane activity and the ENSO.
Poisson regression models are used to assess low-level relative vorticity, vertical
wind shear, ocean thermal energy, the saturated equivalent potential temperature
gradient, and the middle-tropospheric humidity as potential predictors of tropical
cyclogenesis over the EA/SWPO region (McDonnell and Holbrook 2004). Elsner
and Jagger (2006) used Poisson regression to model seasonal U.S. hurricane counts.
Most recently, Ellis et al. (2015) use a Poisson distribution to model annual extreme
hurricane frequency over the North Atlantic Basin.

Multivariate Poisson regression models are used to model the count of monthly
TC days over lagged monthly values of SST, UOT, and AOD. The model’s
goodness of fit is tested using an ANOVA and a chi-square test of the residual
deviance. Lagged correlation coefficients between SST and UOT show statistically
significant multicollinearity during the early and late TC season, thus they are not
both considered in the same regression model. Two different multivariate Poisson
models are considered, (1) the effect of monthly SST and AOD on TC days and
(2) the effect of monthly UOT and AOD on TC days.

7.6.1 Monthly Counts

Figure 7.6 shows the frequency of monthly TC days through time (first in each
monthly set) and the number of years with varying TC day amounts per month
(second in each monthly set). There are 329 individual TCs. The year-to-year
variability and the distribution of count appear to be consistent with a random
count process, thus supporting the use of Poisson regression. Nov, May, and Jun
have zero TC days for more than 15 years. These months are at the beginning and
end of the season, respectively. In the primary TC months, starting from Jan to Mar,
many of the years have over 15 TC days. Feb is the only month where TC days are
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always recorded. Table 7.4 shows the years with TC days during the most active and
least active seasons. The highest number of TC days (171) occurred in 1996, and the
lowest (32) occurred in 2011. The time series and distribution of count plots provide
a clear picture of how TC days vary over the season.

7.6.2 Bivariate Relationships

Figures 7.7 and 7.8 show the summaries of the covariate distributions for each TC
count. These plots show the mean, median, range, and quartile division of the
covariate for the particular month against TC days. The circles represent medians
and lines represent the length from the first/third quartile to the minimum/maximum
value. Each plot shows AOD is likely to be important in statistically explaining the
variability of monthly TC days as the variation is more systematic in counts across
their range of values. As the correlation coefficient shows a strong lagged relation-
ship between TC days and the covariates, the Poisson model should be appropriate to
define a particular month’s TC count based on one previous month’s SST and two
previous month’s AOD. The bivariate plot shows Nov AOD with Dec TC count,
Nov AOD with Jan TC count, and Feb AOD with Apr TC count have the clearest
variation across their range of values. SST and UOT have less clear variation for the
entire TC season. Although bivariate relationships do not necessarily explain the
exact relationship, they can indicate the strongest match between the response and
covariates to guide the model choices.

7.6.3 Model Results

Table 7.5 provides the Poisson regression model coefficients for the count of
monthly TC days with SST and AOD as covariates. The table also provides the
p-value of the model’s coefficients to determine statistical significance. A variety of
possible lagged combinations of the variables were tested. Only significant

Table 7.4 Top eight most
and least active years by
cumulative TC days from Nov
to Jun

Active years Non-active years

Years TC days Year TC days

1986 106 1987 59

1988 93 1994 50

1991 107 1999 60

1992 124 2001 58

1996 171 2008 54

1997 139 2009 57

2013 98 2011 32

2014 131 2012 61
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relationships are discussed. Nov AOD-Dec SST-Dec TC days and Nov AOD-Dec
SST-Jan TC days display robust, statistically significant scenarios of lagged relation-
ships between variables. In either model, the direction of the relationship between
SST and TC days differs. In the first scenario, Dec SST is negatively related to Dec
TC days whereas Dec SST is positively correlated with Jan TC days. This showcases
a lagged thermal response of TC occurrence to surface ocean temperature. The
negative relationship during Dec could be due to a lack of available energy so
early in the season. A Shapiro-Wilk’s test is applied on the residuals of the monthly
Poisson regression models to test the adequacy of the models. P-values greater than
0.05 indicate normally distributed residuals and adequate models. These two model
combinations are used for predicting the number of Dec and Jan TC days in differing
conditions.
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Fig. 7.8 Remaining bivariate relationships between covariates and Mar, Apr, and May TC days.
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Table 7.5 Poisson regression coefficients and residual p-values for lagged TC-SST-AOD models.
The bold highlights those used for prediction

Months Results

TC SST AOD
SST
estimate

AOD
estimate

SST
p-value

AOD
p-value

Residual
p-value

Nov Nov Nov �0.67 6.48 0.03 0.00 0.00

Dec Dec Nov �0.33 2.89 0.01 0.01 0.49
Jan Dec Nov 0.25 3.56 0.01 0.00 0.67
Feb Jan Dec 0.16 3.64 0.22 0.00 0.46

Mar Feb Jan 0.03 3.66 0.81 0.00 0.09

Apr Mar Feb 0.51 �1.97 0.06 0.29 0.18

May Apr Mar �1.00 2.55 0.00 0.28 0.00

June May Apr 0.97 �6.61 0.15 0.61 0.00
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Table 7.6 lists the coefficients of the Poisson regression model for the count of
monthly TC days with UOT and AOD as covariates and includes the same infor-
mation as Table 7.5. Similar significant monthly combinations of AOD-UOT-TC
days exist as compared to the SST covariate. The major difference is all concurrent
and lagged monthly UOT are negatively related to the count of monthly TC days.
Nov AOD is significantly, positively related to Dec and Jan TC days when Dec UOT
is held constant, and Dec UOT is significantly, negatively related to Dec and Jan
monthly TCs. This result suggests as AOD increases in NOV and UOT decreases in
Dec, TC days in both Dec and Jan increase.

To test whether large positive coefficients of AOD might influence the coeffi-
cients of SST, Poisson regression models using the single predictors SST and UOT
were run. Table 7.7 lists the coefficients of the Poisson regression model for the
count of monthly TC days with SST as the covariate. Model results represent similar
relationships, supporting the use of the multivariate Poisson model. The same is true
of the relationship between TC days and UOT (see Table 7.8).

The two above-mentioned tables provide a systematic description of the relation-
ships between the count of monthly TC days and the nearby SST, UOT, and AOD

Table 7.6 Poisson regression coefficients and residual p-values for lagged TC-UOT-AODmodels.
The bold highlights those used for prediction

Months Results

TC UOT AOD
UOT
estimate

AOD
estimate

UOT
p-value

AOD
p-value

Residual
p-value

Nov Nov Nov �0.66 6.63 0.00 0.00 0.00

Dec Dec Nov �0.38 3.02 0.00 0.01 0.83
Jan Dec Nov �0.33 2.56 0.00 0.01 0.52
Feb Jan Dec �0.02 3.44 0.85 0.00 0.43

Mar Feb Jan �0.12 3.46 0.15 0.00 0.22

Apr Mar Feb �0.03 �1.73 0.81 0.34 0.15

May Apr Mar �0.24 1.58 0.21 0.57 0.00

June May Apr �0.08 �8.61 0.89 0.47 0.00

Table 7.7 Poisson regression coefficients and residual p-values for lagged SST-TC model. Bold
models indicate significant results (0.05) in adequate models

Months Results

TC SST SST estimate SST p-value Residual p-value

Nov Nov �1.11 0.00 0.00

Dec Dec �0.40 0.00 0.35
Jan Dec 0.24 0.02 0.27
Feb Jan 0.13 0.33 0.47

Mar Feb 0.10 0.42 0.34

Apr Mar 0.48 0.07 0.11

May Apr �0.98 0.00 0.00

June May 1.02 0.13 0.00
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covariates. Only four models (two from model 1, and two from model 2) provide
statistically significant relationships between all variables.

The models show a difference in the direction of the results. In one case, positive
SST leads to more TC days. On the other hand, decreasing UOT leads to more TC
days. The first relationship is shown frequently in the literature, where increasing SSTs
lead to more TCs (Trepanier 2014). However, the UOT relationship requires further
explanation. Subsurface ocean water is typically colder than the surface. During the
forward movement of a TC, the intense wind mixes the colder subsurface water with
the warmer surface to reduce overall upper ocean temperature. This is referred to as the
TC-induced ocean cooling (coupling) effect (OCE). The stronger the OCE during a
TC’s intensification, the colder the resultant SST is during the TC’s lifespan, and the
smaller the available air-sea sensible and latent heat fluxes for TC intensification
(Huang et al. 2015). This suggests a TC may mix enough subsurface cold water to
lead to a relationship showing more TC days in a cooler UOT environment.

However, quantitatively adding AOD can reduce the surface ocean warming by
blocking solar radiation. Additional AOD in the atmosphere can reduce insolation,
but the existing heat remaining between the surface and AOD layer may provide a
temperature change to the subsurface waters and provide available energy for TC
genesis (Delworth et al. 2005). This could provide the positive relationship between
AOD and TC days when accounting for a decreasing UOT.

In contrast, considering the SST condition, when the season is becoming more
active, the relationships are positive between Nov AOD, Dec SST, and Jan TC days.
Based on the Poisson model results, these four pairs have been used for making pre-
dictions and discussing the physical relationship in those concurrent and lagged months.

Figure 7.9 plots the significant models with the plotmo package in R (Milborrow
2018). Figure 7.9a shows an increase in Dec SST causes a decrease in Dec TC days,
but the rate increases with Nov AOD. Figure 7.9b shows Jan TC days increase with
increasing Dec SST and with increasing Nov AOD. Figure 7.9c shows Dec TC days
decrease with increasing Dec UOT and increase with increasing Nov AOD.
Figure 7.9d shows Jan TC days decrease with increasing Dec UOT and increase
with increasing Nov AOD.

Table 7.8 Poisson regression coefficients and residual p-values for lagged UOT-TC model. Bold
models indicate significant results (0.05) in adequate models

Months Results

TC UOT UOT estimate UOT p-value Residual p-value

Nov Nov �0.79 0.00 0.00

Dec Dec �0.43 0.00 0.19
Jan Dec �0.37 0.00 0.28
Feb Jan �0.03 0.68 0.36

Mar Feb �0.14 0.08 0.57

Apr Mar 0.00 0.98 0.08

May Apr �0.27 0.16 0.00

June May �0.01 0.98 0.00
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Interpretation of the Poisson regression coefficients is different than the interpre-
tation of ordinary least squares regression. Given the other covariates in the model
are held in constant, exponentiations of one covariate’s coefficient provides a ratio of
the TC days for a unit change in the particular covariate. The results in Table 7.9
show that for every one-degree increase in December SST while holding Nov AOD
constant, Dec TC count decreases by a factor of 28%. Similarly, for every one-unit
increase in Nov AOD while holding Dec SST constant, Dec TC count will increase
and multiply by 18. For every one-degree increase in Dec SST, Jan TC count
increases by 29%, and for every one-unit increase in AOD in November, Jan TC
count increases and multiplies by 35. Similarly, in Table 7.10, for every one-degree
increase in Dec UOT while holding Nov AOD constant, Dec TC count decreases by
32%. For every one-unit increase in Nov AOD while holding Dec UOT constant,
Dec TC count will increase and multiply by 20.5.

A goodness of fit test has been conducted on the significant Poisson regression
models’ deviance residuals to see how much the observed outcome supports the
expected outcome. A chi-square test of the deviance of the residuals gives a low
p-value, providing strong evidence to reject the null hypothesis of no difference
between the expected and observed outcome. The validity of the model also depends
on the sample size. Models with large samples tend to provide a better fit than those
with small samples. To validate the chi-square test, another goodness of fit test is
considered: the ANOVA. The ANOVA test gives a large p-value, supporting the
acceptance of the null of no difference. Based on the outcome of the ANOVA
chi-square goodness of fit test, the Poisson regression models above are used for
TC monthly count prediction.

7.6.4 Predicting TC Count

Model predictions have been made using the months in the statistically significant
models. The prediction models can be used to change the amount of AOD, SST, and
UOT to see how much each can contribute to the change in TC days.

Table 7.9 Exponential
coefficients of covariates (SST
and AOD)

Exponential (exp) of coefficients

Months Results

TC SST AOD SST AOD

Dec Dec Nov 0.72 18.04

Jan Dec Nov 1.29 35.03

Table 7.10 Exponential
coefficients of covariates
(UOT and AOD)

Exponential (exp) of coefficients

Months Results

TC UOT AOD UOT AOD

Dec Dec Nov 0.68 20.52

Jan Dec Nov 0.72 12.91
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Figure 7.10 shows bar plots for each significant model discussed above.
Figure 7.10a–d shows a probability estimate of the monthly days during unfavorable
(UF) and favorable (F) conditions. Defining UF and F conditions depends on each
model. It is important to note that all references to low SST values are still values
well above the threshold for TC formation. The model may support a negative,
concurrent Dec relationship, but the values in these months are never below the
cyclogenesis threshold. F and UF conditions differ between the SST and UOT
models. UF/F conditions in the model using SST include low/high AOD and
low/high SST. UF/F conditions in the model using UOT include high/low UOT
and low/high AOD. Figure 7.10a–c shows the model for Dec TC days based on Dec
SST/UOT and Nov AOD. Figure 7.10b–d shows the model for Jan TC days based on
Dec SST/UOT and Nov AOD.

In Fig. 7.10a-UF, it shows a higher likelihood of fewer Dec TC days. In 10a-F
conditions, the expected probability of 15 or more Dec TC days is higher than 8%. In
Fig. 7.10b-UF conditions, there is moderate probability of more Jan TC days with
low SST and low AOD. In 10b-F conditions, there is an 8% probability of a higher
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Fig. 7.10 Prediction of TC counts based on Poisson models in unfavorable (UF) and favorable
(F) conditions. SST models are shown in (a, b). UF/F is a low/high AOD, low/high SST environ-
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number of Jan TC days in a high SST and high AOD environment. In Fig. 7.10c-UF
conditions, the expected probability of 10–13 Dec TC days is more than 14% but
then begins to decline. In 10c-F conditions, the expected probability of 24–28 Dec
TC days is between 6% and 8%. In Fig. 7.10d-UF conditions, low to moderate
numbers of TC days have higher than 14% probability. The 10d-F conditions show
more days of the month with TCs. Overall, the model predictions show an increasing
trend of monthly TC days in the F conditions for all models.

7.7 Discussion and Concluding Remarks

The statistical relationships between monthly mean SST, UOT, AOD, and TC days
were investigated for the period 1985–2015 in the SWPO TC development region
near EA (the Coral Sea and portions of the Gulf of Carpentaria). A Poisson
generalized linear model was used to determine the statistically significant links
between oceanic variables, AOD, and TC days over the SWPO.

A positive significant link has been found between AOD and TC days for the
entire TC season. Two different relationships were found regarding AOD, SST, and
TC days. In one instance, high Nov AOD and low Dec SST lead to increased Dec TC
days. In this instance, the temporal lag between the ocean temperature and the
atmospheric response is more apparent. High Nov AOD and high Dec SSTs lead
to high Jan TC days. In the first model, an increase in AOD causes an increase in the
heating of the lower troposphere by absorbing solar radiation, as well as cooling off
the surface by negative radiative forcing. A negative surface radiative forcing results
in a decrease in the meridional SST gradient. It results in a cooling down of SST but
the SST remains above the threshold level and high enough to contribute necessary
energy to the development or maintenance of a TC. As argued by Evan and Allen
(1992) and Evan et al. (2011), influences of AOD on ocean temperature through
surface radiative forcing would weaken the monsoon circulation, and reduce the
strength of vertical wind shear and ultimately promote TC development and activity.
The negative relationship between concurrent Dec TC days and Dec SST is similar
to the result presented in Zhao et al. (2018), where they found similar results over the
Western North Pacific.

The lagged positive relationship between SST and TC days explains the complex
ocean atmospheric interactions taking place over time. This lagged relationship
suggests time is needed for the sea surface to influence the thermodynamic and
dynamic factors required for TC genesis. Over the Australia region, Rotstayn et al.
(2011) found AOD-induced radiative heating can enhance ascent and moisture
convergence, leading to increased convection and precipitation in some situations.
These arguments support the findings of this study. Chiacchio et al. (2017) finds a
positive link between sea salt, organic aerosol, and TC frequency over the South
Pacific, which can be related to the increase in surface heat exchange between the
ocean’s surface and atmosphere, leading to larger latent and sensible heating. Higher
TC days associated with higher AOD could be explained by an increasing rate of
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clouds with increasing AOD over northern coastal Australia (Small et al. 2011).
Higher amounts of aerosols can act as cloud condensation nuclei (CCN). CCN
directly affect an initial environment of a pre-TC vortex through release of latent
heat and indirectly through rainband development (Zhang et al. 2009).

Eastern Australia, the adjoining Coral Sea, and Gulf of Carpentaria experience
seasonal AOD outbreaks from the arid and semi-arid regions of Australia. Major
AOD outbreaks typically occur from Sep to Mar. In contrast, starting from Apr to
July, the AOD outbreaks remain low. The Poisson model results show earlier TC
months have a more significant relationship with AOD than the later months. Lower
AOD activity during later months in the TC development region is one of the
possible causes of the insignificant relationships. Evans and Allan (1992) found an
increasing likelihood of tropical cyclogenesis over north Australia related to equa-
torward shifting of the monsoon trough. A weak monsoon trough coupled with an
upper-level anticyclone causes weak vertical wind shear, which increases TC devel-
opment (Meywerk and Ramanathan 1999; Evans et al. 2011).

UOT has a negative, significant relationship in the two earlier lagged monthly
combinations in the TC season. The relationships shown between UOT and the
frequency of TC days indicate a lack of direct interaction between subsurface ocean
temperature and the energy required for TC development. High positive coefficients
of AOD throughout the season may cancel out the UOT coefficients, or the high
amount of AOD loading may cause a decline of UOT through surface radiative
forcing. This may be leading to the minor role UOT plays in modulating the count of
monthly TC days.

The impact of aerosols on TC development, intensification, weakening, and
associated precipitation is widely studied over different ocean basins of the world
(Dunion and Velden 2004; Shu and Wu 2009; Gong et al. 2006; Zhang et al. 2007;
Evan et al. 2011; Levin et al. 2005). Evan et al. (2006) found North Atlantic TC
activity is strongly inversely correlated with mean AOD coverage. Shu and Wu
(2009) found AOD can affect TC intensity in both favorable (initial development)
and unfavorable (subsequent development) manners. Based on these previous find-
ings, this study was designed to identify the relationship between AOD and TC
activity over the EA/SWPO region. The results here do not indicate as strong a
relationship between these variables as over the North Atlantic. Some of the possible
reasons for this difference are the Coral Sea and Gulf of Carpentaria receive
considerably lower amounts of aerosols compared to the North Atlantic main TC
development region, which is adjacent to the Sahara Desert. In addition, Australian
aerosol particles more frequently travel to the southeast by prefrontal northwesterly
winds and to the northwest by southeasterly trade winds.

Rainfall is also one of the major factors for low AOD aerosol concentration over
the Coral Sea and northern Australia. The presence of the South Pacific Convergence
Zone during summer months causes a maximum in rainfall, which leads to a low
AOD over the region (Kristament et al. 1993). The SWPO region is also greatly
influenced by ENSO, where ENSO has a different influence on the SWPO compared
to any other basin around the world. The Madden Julian Oscillation also modulates
aerosol loading and TC development activity by modulating precipitation and cloud
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cover conditions. Each of these teleconnections and their influence on rainfall, AOD,
and TC genesis will be explored in future research.

This study is one of the first to establish a statistically significant relationship
between AOD, ocean temperature variables, and TC frequency over the EA/SWPO
region. The above models help to explain some of the variability in TC activity
influenced by AOD, SST, and UOT. However, there are many additional thermo-
dynamic and dynamic factors dictating the ultimate formation of TCs in this area.
Future research will focus on including other dynamic variables required for TC
development (e.g., relative humidity and vertical wind shear) and how AOD may
influence their modulation on TC variability. The benefit from this study is the
finding of a significant positive relationship between AOD and TC days with cooler
but above the threshold SST and UOT conditions in the month of, and warmer SSTs
in the month prior, to TC formation. This study provides scenarios that can be used
to better understand the range of past, present, and future TC day variability
influenced by AOD, SST, and UOT.
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Chapter 8
Climate Theory and Tropical Cyclone Risk
Assessment

Kevin Walsh

Abstract The links between the ability of general circulation models to simulate
tropical cyclones and the development of a climate theory of tropical cyclone
formation are explored, with an emphasis on the potential of general circulation
models (GCMs) and theory for tropical cyclone hazard and risk assessment. While
GCMs can now generate a reasonable simulation of the observed tropical cyclone
formation rates and intensity distributions, they are very expensive to run. Simpler
methods involving statistical relationships between climate variables and tropical
cyclone formation have been developed and have been used for hazard assessment,
but like other methods used for projections, such as downscaling or GCMs, they do
not constitute a theory of tropical cyclone formation. An outline is given of some of
the possible characteristics of such a theory and its potential utility for climate
science and risk.

Keywords Tropical cyclone · Tropical climate · Tropical cyclone formation

8.1 Introduction

Climate science and climate models are increasingly being used as tools for tropical
cyclone (TC) risk assessment. Recent reviews on this general topic are those of Cobb
and Done (2017) and Wehner et al. (2017). In principle, the main advantage of
climate models over the statistical models that have typically been used in hazard
estimation is that climate models are physically based and therefore can generate
climate conditions and TC characteristics that are outside the extremes in the
observed record. Statistical models can also do this, but the extreme tails of their
distributions outside of the observed record must be estimated. While climate models
still have considerable room for improvement, the current state of the art indicates
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that many aspects of TC climatology can be reasonably well simulated by fine
resolution climate models. Nevertheless, Cobb and Done (2017) recently concluded
that the use of general circulation model (GCM)-simulated TC climate output as a
direct input to risk models was unlikely at this stage, given the biases in climate
model simulations and the considerable cost in computer time of generating them.
Thus, the main use of GCMs at present is to make physical inferences of the possible
effects of climate variations that can then be used to constrain and modify the
predictions of risk models; that is, for the construction of climate variability and
climate change scenarios that might be applied to risk assessment methods
(e.g. TCRM, http://geoscienceaustralia.github.io/tcrm/).

Another method that could be used to constrain risk models is an improved
theoretical understanding of the relationship between climate and TC characteristics.
Initial advances in this field have included the successful theory of TC potential
intensity (PI; Emanuel 1986, 1988; Holland 1997; Bister and Emanuel 2002),
whereby well-tested concepts in the theory of thermodynamics are applied to the
problem of estimating the maximum energy available for TC intensification. Mod-
ifications to this theory have included the dynamic effects of vertical wind shear
(Tang and Emanuel 2012) and ocean coupling (Miyamoto et al. 2014), as these
processes can inhibit TCs from reaching their PI. Indeed, most TCs do not reach their
theoretical PI during their lifetimes (e.g. Emanuel 2000). In addition to helping to
constrain the maximum climatological intensity, the PI theory has been successfully
used as a component of short-term statistical forecasts of TC intensity (DeMaria and
Kaplan 1994).

Much less advanced is a climate theory of TC formation. The initial work of Gray
(1968, 1975, 1979) established statistical relationships between climate variables
and TC formation, termed by Gray as the Seasonal Genesis Parameter (SGP). The
SGP provided the foundation for the later development of a considerable number of
such statistical relationships, now known collectively as genesis potential indices
(GPIs; Menkes et al. 2012). These indices are based on environmental parameters
that are known to be important controls of TC activity, and thus in principle can be
used for diagnosing the relationship between climate and TC formation. However,
being based on statistical relationships rather than equations that represent physical
processes, they do not constitute a theory of TC formation. Nevertheless, it can be
easily argued that a strong statistical relationship between a climate variable and TC
formation rates is an indicator that this variable might be part of such a theory, if it
were to be constructed.

The general aim of this chapter is to draw links between GCM-based hazard
assessments and climate theory. Some of the arguments made in this chapter are
speculative, as one of the goals of this paper is to try to make suggestions regarding
productive areas of research that might give us more information on the fundamental
ways in which climate and TC formation are related. Section 8.2 discusses recent
developments in physical modeling of the climatology of TCs and its relation to risk
assessment. Section 8.3 discusses how GPIs can be used to illustrate the relationship
between climate and TC formation and gives an example of their use in risk
assessment. Finally, Sect. 8.4 considers the role of theory in this process.
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8.2 Recent Developments in Physical Modeling of Tropical
Cyclone Climatology

To be used as a credible tool for both hazard assessment and as a means of better
understanding the relationship between climate and TC formation, a GCM must
have a good simulation of both mean climate and TC formation. A recent review of
the capability of GCMs and regional climate models (RCMs) to simulate the
observed TC climatology is given in Camargo and Wing (2016). One of the main
uses of GCMs in this context is to simulate the possible effects of climate change on
TCs; a recent review is that of Walsh et al. (2016). Developments in this field can be
summarized by reference to a couple of key recent papers. Knutson et al. (2015) used
a GCM with a fine horizontal resolution (50 km), with each individual storm then
resimulated (or “downscaled”) with the GFDL hurricane model at a horizontal
resolution of 9 km. The combined modeling system is able to give a good simulation
of TC numbers and even a reasonable simulation of the total annual global number of
very intense TCs (Saffir-Simpson categories 4 and 5; Simpson and Saffir 1974), a
task that had previously been challenging for most modeling systems. These results
are very encouraging but a cautionary note is that such simulations are computa-
tionally expensive, requiring considerable resources on large supercomputers.
Another approach is taken by Yoshida et al. (2017), who run a moderately fine-
resolution (60 km) climate model in a large number of “ensembles”, simulations that
use slightly different initial conditions to capture the effect of stochastic variability
on the resulting climate state. In addition, due to known differences in the projections
of future sea surface temperatures (SSTs) by different GCMs, they simulate ensem-
bles using different future SST patterns from different GCMs. Contrary to a number
of other studies, they project a future decline in the number of very intense TCs,
although the native horizontal resolution of this study is considerably coarser than
that of Knutson et al. (2015). The use of ensembles enables this work to estimate the
uncertainty in future projections that might be due simply to the internal variability
of the climate system (see also Villarini and Vecchi 2012).

These fine-resolution GCM simulations usually use specified SSTs as lower
boundary conditions, with the SST fields being derived from lower-resolution
coupled ocean-atmosphere GCM simulations of changed climate conditions. Thus,
these simulations do not have two-way interaction between the atmosphere and the
ocean. Ideally, such coupling needs to be included in simulations of future TC
activity because it is well known that there are strong interactions between the
atmosphere and the ocean in TCs (e.g. Lin et al. 2013). For instance, TCs can cool
the ocean surface through increased mixing at the base of the mixed layer, and to a
lesser extent through large surface heat and moisture fluxes. A modest number of
GCM studies have used a high-resolution coupled ocean-atmosphere GCM to
simulate future TC behavior (Murakami et al. 2015; for a recent review, see
Camargo and Wing 2016). In general, the main results of the fixed-SST models –
the decrease in total TC models combined with an increase in intensities of the
strongest storms – are similar in the coupled model experiments, although more
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coupled model simulations are needed to make this conclusion more robust. With
increases in computing power, coupled model experiments will probably become
routine and replace the fixed SST experiments as the model system of choice for
simulating the effect of climate change on TCs (see also Haarsma et al. 2016).

A method of downscaling that is computationally efficient is that of Emanuel
(2017). In his method, weak tropical lows (or “seeds”) simulated by an economical
hurricane model are allowed to evolve in the climate conditions provided by a
coarse-resolution model. The ones that survive to intensify to TC strength constitute
the model’s simulated TC climatology. Emanuel (2017) describes a new, simplified
statistical dynamical model (the FAST model) that is a development of the CHIPS
model that was previously employed using a similar methodology (Emanuel 2006).
The FAST model relies on simpler equations for TC intensity. Both models include
the effect of air-sea interaction, shear and PI. The FAST model produces a reason-
able simulation of current climate tropical genesis rates and even of intensity
distributions over the North Atlantic, with the notable exception of genesis rates in
the main development region in this basin. The reason for this is unclear at present.

One issue with this method is that it requires a seeding rate to be specified so the
number of TC “survivors” is similar to the number of TCs in observations. The
maximum wind speed of the seeds is about 12 ms�1, or of tropical depression
strength, although note that the quantitative intensity lower threshold of “tropical
depression” is poorly defined. Nevertheless, the results of Tory et al. (2017; see the
next section) indicate that these tropical depressions share many of the relationships
to climate variables that TCs do. This poses the question of whether using them as a
starting point for a climate simulation is bypassing the initial and potentially
important stages of TC genesis. This is a potential issue for accurate simulation of
TC genesis in a different climate using this method. In contrast, this initial genesis
phase is not bypassed in GCMs, which generate their own TCs, although of course
given their relatively coarse resolution compared with physical processes that are
important in TCs, they have their own uncertainty issues for projections. In partic-
ular, the limited resolution of GCMs means that important aspects of the formation
process, such as aggregation (see Sect. 8.4), are poorly represented. It is not known
at present how important is a representation of these small-scale processes in any
climate theory of TC formation.

Downscaling is not the only way to compensate for the biases inherent in
GCM-based simulations of TC climatology. Increasingly, statistical bias correction
is being used as a method to extract information from GCMs, particularly for intense
TCs at the extreme upper end of the intensity distribution. Bias correction of
GCM-based TC climatology simulations has been used for some time. For instance,
some studies (e.g. Murakami et al. 2012) use a methodology where the threshold
values used in their TC detection scheme are tuned to guarantee that the number of
TCs generated globally equals that observed. This is a reasonable technique for
perturbation experiments, where one is more interested in the response of the
simulation of a climate model to, for instance, higher carbon dioxide content or
changed SSTs. The method is admittedly less justifiable as a means of determining if
the GCM is actually generating the correct number of TCs. Recent bias correction
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methods include that of Sugi et al. (2016), who correct the intensity distribution of
the TCs simulated by the GCMs to enable some inferences to be made about the high
intensity (Saffir-Simpson categories 4 and 5) TCs. This is the method used by
Yoshida et al. (2017) in their ensemble simulations. Note that this model’s ability
to simulate very intense TCs relies on this bias correction technique rather than the
native ability of the model to generate such intense TCs spontaneously. It could
therefore be argued that this result, while useful, is less confident than similar
predictions made by models that are able to simulate very intense TCs directly,
such as the results of Knutson et al. (2015). Another recent bias correction approach
is that of Gettelman et al. (2017), who input GCM-generated TCs directly into a
wind damage model, with the GCM winds scaled to obtain a wind-pressure rela-
tionship similar to observations. They find comparable damage results to those
calculated using input from the IBTrACS best track TC observations.

8.3 GPIs and a Climate Theory of Tropical Cyclone
Formation

An even more economical approach is to use GPIs, statistical relationships between
climate variables and TC formation rates. A considerable amount of the progress in
our understanding of the relationship between climate and TC formation has come
from the formulation and development of GPIs. The pioneering work of Gray (1968,
1975, 1979) has been followed by updated formulations that more realistically
represent the relationship between variations of their constituent variables and TC
formation through the inclusion of more physically-based predictors. For instance,
the original SGP developed by Gray relied on an excessively strong relationship
between SST variations and TC formation, and SST has typically been replaced in
subsequent GPIs by PI. Nevertheless, despite considerable work on this topic,
consensus has not yet been reached on the best formulation for a GPI. While
GPIs, by definition, give good results when applied to observed fields, when applied
to the large-scale climate fields produced by climate models, competing GPI formu-
lations give conflicting results for future climate conditions. For instance, Camargo
et al. (2014) compared the number of TCs generated directly by a fine-resolution
climate model to the GPI values diagnosed from the climate model’s simulated
climate variables under current and future climate conditions. They noted that few of
the GPIs that they used captured the future decrease in TC numbers directly
simulated in the GCMs. Since a decrease in the future numbers of TCs is a result
produced by the overwhelming majority of climate models, this may represent an
issue for the credibility of GPIs as a true representation of the relationship between
climate variables and TC formation. Another possibility is contamination of the
climate fields by the TCs themselves, due to (for instance) their very strong wind
fields (Swanson 2008).
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Alternatively, it is always possible that the GCMs are all incorrect due to a
common missing factor; e.g. model resolution, which is a crucial factor in the
realistic simulation of TCs. We speculate that the result of Camargo et al. (2014)
would also make sense if there were a stochastic, short timescale component to
formation that occurs in observations, is captured at least partially by direct GCM
simulation, and that responds differently to climate forcings than the relatively
intense TCs, since they have already travelled some way down the path of intensi-
fication. Camargo et al. (2014) also noted, though, that there was a combination of
GPI parameters, including saturation deficit (a quantity related to atmospheric
moisture content) and PI, that did give a decrease in TC numbers in future climate
simulations, which is in agreement with the results of direct GCM simulation. Thus,
there is reason to believe that a consistent response to future climate change forcing
between GPIs and GCMs may be achieved and that a consensus between GPI and
GCM climate responses might be developed.

GPIs have also been used in simulations of past climate, noting the important
reservation that GPIs tuned to the current climate will not necessarily give the correct
response in a considerably changed climate (of course, the same could be said about
climate models, but their representation of the relevant physical processes is more
comprehensive that those of GPIs). Korty et al. (2012a, b) addressed this issue for
simulations of the climate of the Holocene and the last Glacial Maximum by
examining the individual components of the GPIs to determine their response as
well. The rationale here is that presumably, even in a changed climate, an increase in
vertical wind shear or a decrease in atmospheric moisture content should not lead to
an increase in TC numbers unless there were a large change in another variable in a
direction expected to be favorable for TC formation. In general, their analysis
supported this argument. Note that TC formation is not necessarily expected to
decrease in a cooler climate; in fact, during the Last Glacial Maximum (about
26,000 years ago), GCM simulations suggest the opposite (Merlis 2014). The reason
is likely related to a general decrease in tropical stability with the lower surface
temperatures that occurred then (see Sect. 8.4 below). Yan et al. (2017) attempted to
diagnose TC formation from past climate simulations over about the past 1000 years
and compared variations in the formation rate with detailed historical records of
typhoon incidence from east Asia, but found discrepancies in Taiwan and southern
China, illustrating the current limitations of this technique.

Recent research using these tools has even examined the likelihood of TCs on
extrasolar planets. Bin et al. (2018) used an atmospheric GCM combined with a slab
ocean to simulate the climate of a synchronously-rotating ocean world, similar to
conditions for the ocean planets expected to be found in considerable numbers
orbiting the small but very numerous M-type stars. Bin et al. (2018) used the GPI
approach of Emanuel and Nolan (2004) instead of directly simulating the TCs due to
the coarse resolution of their GCM. One could argue again that the statistical
parameters for this GPI, being based on Earth’s climate, might not be completely
valid for the very different climate of a tidally-locked M-star ocean world. It would
be preferable to re-run their experiments using a GCM at much finer horizontal
resolution so that TCs could be generated directly, and then the analysis would not
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have to rely on the GPI technique working well in a different climate. Even so, their
approach is novel and shows another potential application of this type of experiment.
The relevance for terrestrial climate is that this type of result could be potentially
used to say something about the relationship of climate variations or differences in
planetary orography to TC formation, although the observations of TCs on extrasolar
planets required to confirm these experiments will not be available for many
decades, if ever.

Another potential application of the GPI approach is illustrated by Lavender et al.
(2018). Here, very long (>1000 year) current climate GCM simulations are analyzed
to determine the distribution in the current climate of year-to-year variations in TC
formation over the Atlantic basin. Since the GCMs are relatively coarse resolution,
their TC climatology is diagnosed using several different GPI representations. An
example of this kind of result is shown in Fig. 8.1, for three different GPIs (see
Appendix for technical details of several GPIs). Before comparison to the 2005
observations, the variance of these GPIs is rescaled to match the variance and mean
of the best track formation rate over the Atlantic, excluding the year 2005, an event
that is a clear outlier in the observed record. The results are then compared with the
record high year of TC formation in the well-observed recent period since 1944 in
the Atlantic, the year 2005 when there were 27 TCs in that basin. The results show
that it is unlikely that the TC numbers observed in 2005 would be considerably
exceeded over a period of more than 1000 years. This suggests that the year 2005
could be used as a benchmark for the potential maximum TC formation in the
Atlantic basin, for risk management purposes.

A recent model that combines the Emanuel seeding method with a GPI approach
is that of Lee et al. (2018). Here, the seeding rate for an Emanuel-type seed model is
set by the Tippett et al. (2011) GPI, and the seeding locations are randomly specified.
The model uses a similar method for generating tracks as Emanuel (2006) but uses a
different intensity model, using an efficient autoregressive equation that uses mete-
orological variables such as PI as inputs (Lee et al. 2015). The model is able to
generate a good simulation of many characteristics of observed TC formation
patterns and intensity distributions in the current climate. Of interest to the relation-
ship between climate and TCs is that this model is able to simulate the observed
bi-modal TC intensity distribution, which further analysis ascribes to the presence of
a percentage of TCs that undergo rapid intensification. Note that it is possible that the
bimodal distribution may be an artifact of the Dvorak TC intensity estimation
technique (Dvorak 1975), which has low resolution at higher TC intensities (Torn
and Snyder 2012; Kossin et al. 2013). Nevertheless, the ability of the Lee et al.
(2018) model to simulate the bimodal distribution argues for a physical explanation
of the bimodality, although this is a considerable modeling challenge.

One potential issue with the GPI approach is that since a GPI is calculated from
climate means, it is implicitly assumed that the distribution of formation probability
around that mean is known. Presumably, a climate theory of TC formation that
related formation to climate mean fields would also implicitly assume such a
distribution. This is a potential issue for such a theory because of the stochastic
nature of TC formation that takes place at small spatial and time scales. Even so,
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GPIs can capture both the interannual variation of TC numbers in the formation
basins as well as the spatial patterns of formation, despite being tuned on global
numbers (e.g. Camargo et al. 2007).

Tory et al. (2017) tried a different approach, using climate parameters to inves-
tigate the geographical limits on regions of TC formation (see also McGauley and
Nolan 2011). Tory et al. (2017) established good relationships between geographical
boundaries of TC formation regions and various threshold parameters of climate
variables, as expected from previous work, but they also examined the performance
of a novel parameter, the south-north (i.e. meridional) gradient of absolute vorticity.
The rationale for the use of this variable is its relationship to the onset of barotropic
instability, a known criterion for TC formation that refers to the generation of
unstable waves by horizontal differences in wind speed and direction (e.g. Ferreira
and Schubert 1997; Frank 2008). They combined this with the 850 hPa absolute
vorticity, and this new combination was found to be important for defining the
equatorward boundary of TC formation. The method of Tory et al. (2017) can both
be used as an evaluation method for climate simulations and also for suggesting
combinations of variables that might be important in a climate theory of TC
formation based on the concept that, for instance, land distribution and amount
must be an important factor in determining annual mean TC formation and that
variations in land amount and location will cause changes in TC formation rates.

Parenthetically, the influence of land amount could change TC formation rates in
unexpected ways. For example, the number of TCs that form annually in the
Northern Hemisphere is about double the number in the Southern Hemisphere,
despite the fact that the Northern Hemisphere has about five times as much land as
the Southern Hemisphere. Naively, one would expect this relationship to be the other
way around, since TCs form only over the ocean. One factor that is related to land
amount, however, is climatological vertical wind shear in the summer season in each
hemisphere, which is when the great majority of TCs form. In the Northern Hemi-
sphere, climatological vertical shear is lower in this season than in the corresponding
summer season in the Southern Hemisphere due to the presence of large land masses
in the Northern Hemisphere that heats the mid-latitude regions of the Northern
Hemisphere. This reduces the meridional temperature gradient and thereby the
summer climatological vertical wind shear through the thermal wind relationship.
This relationship between Northern Hemisphere land amount and TC formation has
not yet been tested in a series of GCM simulations to our knowledge, however. Land
regions can also generate precursor disturbances for TCs, such as easterly waves in
the Atlantic (e.g. Daloz et al. 2012), thus affecting the climatology of TC formation.

8.4 Theoretical Techniques in Support of Risk Assessment

A discussion of GPIs leads naturally on to the search for more fundamental theoret-
ical concepts that might assist us in understanding and better constraining the
relationship between climate and TC formation rates and their geographical
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distribution. For example, PI is a well-accepted theory that has been used not only
for climate science but also for weather forecasting (DeMaria and Kaplan 1994).
There is, however, no equivalent climate theory for TC formation. One possible
reason may relate to the processes by which TCs form. TC formation is likely a
two-stage process, broadly termed here as aggregation and intensification (see, for
instance, Frank 1987). In the aggregation (or genesis) stage, the convective elements
undergo a process of merging that creates a larger, more coherent tropical low. In the
intensification stage, the tropical low intensifies to a TC. Note that it is likely that the
defined observed low-level wind speed threshold for TC formation (about 17 ms�1

for winds at an altitude of 10 m) occurs after the start of the intensification stage, so
numbers of TCs are likely dictated, to a degree, by PI. In this context, for the 17 ms�1

threshold to have a special meaning for a climate theory of TC formation, there
would ideally need to be some kind of difference in kind between tropical lows with
intensities less than 17 ms�1 and TCs with higher intensities. In contrast, there is
actually nothing climatologically special about 17 ms�1 as a wind speed threshold;
this threshold was originally set purely due to the fact that storms with at least this
wind speed are defined to have winds of gale force or stronger. Thus, there is likely a
need for identification and analysis of tropical depressions (TDs) at an earlier stage
of development, during their initial intensification, to gain a more complete picture
of the effect of climate on TCs.

Tory et al. (2017) tried doing this but was hampered by the lack of an objective
threshold definition for TDs. For instance, the standard Dvorak technique (Dvorak
1975) for deducing TC intensity from the appearance of a circulation feature in a
satellite image is vague when defining the various stages of TD development (see
also Duvel et al. 2017). Tory et al. (2017) calculate that their TD threshold corre-
sponds roughly to a 10 m wind speed of 12 ms�1, versus about 17 ms�1 for the
observed TC threshold. Note that this 12 ms�1 intensity threshold is the same as that
used in the Emanuel seeding methodology discussed above. Tory et al. (2017)
investigate the variation in the “failure rate” of these TDs, the percentage of TDs
that fail to reach TC status, and find some variations in failure rates between basins.
The main variation in failure rate, though, is with latitude; TDs are much more likely
to fail to reach TC status poleward of 15� latitude than equatorward of this latitude.
At latitudes closer to the equator than 15�, 65–80% of TDs intensify to TCs. Since
the interannual and seasonal variation of TDs is also well correlated with that of TCs,
this suggests that these TDs are not actually different in kind from TCs, rather just
different in intensity. It is important to note, however, that there appears to be clear
differences in the effect of vertical wind shear on TDs versus TCs, with shear having
a greater effect on TC numbers than on TD numbers. In summary, Tory et al. (2017)
found that shear, PI and their barotropic instability diagnostic were related to the TD
failure rate, while 850 hPa absolute vorticity and 700 hPa relative humidity were not.
They point out that this is consistent with Bruyère et al. (2012), who considered these
latter two quantities to be threshold parameters only.

What aspects of TC formation should a climate theory explain? Clearly, any
climate theory must have consistent relationships between climate variables and TC
formation between basins. This idea was recently investigated by Sharmila and
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Walsh (2017), who found that vertical shear has the most consistent relationship to
TC formation during the times of the year in each basin where TC formation is a
maximum. Low-relative vorticity was also important, whereas relative humidity and
potential intensity have more inconsistent relationships between basins. This empha-
sizes, again, the likely role of relative humidity as only being a threshold parameter
for formation. Given the numerous issues yet to be addressed, it is possibly easier at
this stage to say what a climate theory of TC formation will not contain. For instance,
it will likely not involve a specific tropical wave mechanism, as TCs appear to be
able to gain the convection required for formation from many different types of
waves and convective disturbances (e.g. Tory and Frank 2010; Patricola et al. 2018).

Insight into the relative roles of aggregation versus intensification can be obtained
from idealized simulations of climatological TC formation, whereby models are run
with simplified geography or climate to restrict the number of variables that might
affect TC formation. Khairoutdinov and Emanuel (2013) show that, in their idealized
“TC-world” simulations, the number of TCs decreases with increasing SSTs. Their
proposed mechanism is that the convective mass flux decreases due to the fact that
precipitation increases considerably slower with SST than does the atmospheric
water vapor content, a mechanism that is well accepted (e.g. Held and Soden
2006). Since the TCs become larger and more intense as SST increases, they have
more convective mass flux per cyclone, thus leading to a decrease in total numbers
due to the decrease in total convective mass flux (see also Sugi et al. 2002; Merlis
et al. 2016). This is also accompanied by an increase in tropical stability, a mech-
anism likely related to a climate theory of TC formation. The “TC-world” experi-
ments of Khairoutdinov and Emanuel (2013) take place in an environment where
there are essentially no constraints on TC formation, but even in the real world where
such constraints exist (e.g. land, regions of high vertical wind shear, regions of low
relative humidity over the oceans), a decrease in overall convective mass flux should
still lead to a decrease in TC numbers.

The results of Khairoutdinov and Emanuel (2013) show that self-aggregation of
convection, the tendency of large convective systems to agglomerate from smaller
ones, is clearly a relevant issue for TC formation in its initial stages (see also Wing
et al. 2017). At present, the relative contributions of the likely contributing factors to
self-aggregation rates – radiation, surface fluxes, clouds and water vapor – are
currently unknown. The fluid mechanical process of vortex merger also clearly
plays a role (Montgomery and Smith 2017), but again a quantitative theory related
to TC formation rates is lacking.

Some insight into quantitative relationships between these mechanisms and TC
formation rate may be obtained from idealized GCM simulations, whereby aspects
of terrestrial planetary characteristics are retained but variations in certain climate
variables are removed. The results of coordinated experiments (e.g. Walsh et al.
2015) suggest some systematic responses to changes in SSTs and atmospheric CO2

concentration that are in general agreement with the role of the vertical circulation in
changes in TC numbers established by Sugi et al. (2002) and Held and Soden (2006).

A more radical approach, in which all land is removed in the GCM simulation and
various SST values are specified, is the “aquaplanet” simulation (Hayashi and Sumi
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1986). Ballinger et al. (2015) used some aquaplanet simulations at 50 km resolution
to show that the poleward extent of the region of maximum SST was important for
rates of TC formation: if this region were further poleward, more TCs were gener-
ated. Viale and Merlis (2017) show that the typical response to increase CO2 alone is
a decrease in TC numbers due to weaker vertical circulation and drier air. Chavas
et al. (2017) show that for an aquaplanet with uniform tropical-like SSTs and
non-zero rotation, TCs migrate towards the poles, giving a much larger incidence
of TCs there than in the latitudinally-defined “tropical” regions of such a simulation.

Snapshots from the same time interval of two different aquaplanet runs using the
UK Met Office Unified Model, V8.5 are shown in Fig. 8.2 (Pope et al. 2007). Here,
the SSTs are specified at 30 �C everywhere (top panel) or 25 �C everywhere (bottom
panel). In this simulation, the rotation rate is the same as that of the observed Earth,
so the resulting poleward beta drift (Holland 1983) causes a strong concentration of
TCs in the higher latitudes. There are noticeably more TCs in the run with the lower
SSTs, in agreement with the paleoclimate results of Korty et al. (2012a, b) and
Khairoutdinov and Emanuel (2013). These simulations are part of a project that aims
to constrain the effects of climate and orography on TC formation rates, through a
systematic series of experiments that vary such quantities as SST, land fraction, and
vertical stability. Analysis of these simulations is ongoing.

Some more basic theoretical insights might be obtained by contrasting baroclinic
instability, the well-established theory of mid-latitude cyclone formation (Charney
1947; Eady 1949), with barotropic instability (a limiting case of baroclinic instabil-
ity), whose relationship to TC formation is likely (but much less quantitatively)
established. Mid-latitude lows act to gradually reduce the meridional temperature
gradient via meridional heat transport, and the period of time for this to occur
(known as the limit cycle) dictates the lifetime of mid-latitude cyclones. The theory
of baroclinic instability also gives the spatial dimensions of mid-latitude cyclones,
where the most unstable mode typically is of wavenumber 7 or 8 (that is, a cyclone
diameter of 1000–2000 km). Mid-latitude lows form much more frequently than
TCs, suggesting a much stronger relationship between formation rate and the
available instability in the extratropics than in the tropics. Thus, if we knew a
threshold criterion for mid-latitude cyclone formation, since we already know their
typical spatial scale, their typical energy production (based on their size and typical
integrated wind speeds), and their lifetimes, the annual number of mid-latitude
cyclones could be estimated approximately from the current climate conditions in
the midlatitudes. No calculation at present is possible for TCs because, although we
have some idea of the available energy (as indicated by PI), and we know their
typical spatial scales, energy production, and lifetimes, there is no known sufficient
climate-related threshold condition for TC formation, whereby satisfaction of this
condition would lead to TC formation most of the time. If that were known, it is
possible that an estimate of the annual number of TCs could be made from climate
conditions. This could be done by noting that the lifetimes of TCs are dictated by the
length of time that they typically stay within climatically hospitable regions (Tory
et al. 2017), a quantity that can be estimated from their typical speed of movement as
dictated by steering winds, beta drift, and the geographical extent of those regions.
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Discussion of this topic might seem quite esoteric, except for the fact that it has
relevance to TC hazard assessment. Developments in a climate theory of TC
formation have the potential to provide a more fundamental explanation of year-
to-year variations in TC numbers than might be gained purely from statistical
relationships, with obvious implications for prediction and analysis.

Fig. 8.2 Snapshot of tropical aquaplanet simulations of mean sea level pressure (in Pa) for (top)
constant SST of 30 �C; and (bottom) 25 �C. Continental outlines are indicative only and do not
represent the actual orography
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8.5 Conclusion

The current state of climate models indicates that they can simulate the climatology
of intense TCs, but they are very expensive to run. Downscaling approaches can
show considerable skill while being more economical to produce results, but they
have only been tested against historical storms and there is no guarantee that they can
handle global climate change. Statistical methods such as bias correction and the use
of GPIs are even more economical and can be useful, but are approximations and
have their own uncertainties. While GPIs give a good indication of what climate
variables are important for TC formation and have been applied to TC hazard
assessment, they do not constitute a theory (neither do GCM simulations). In
addition, to be useful in a changed climate, GPIs need to give the same climate
response as very high-resolution GCM experiments, and the exact formulation of a
GPI required to guarantee that is presently unknown. GCM experiments also need
finer resolution, improved model physics, and coupled ocean-atmosphere interaction
to improve our confidence that they are achieving the correct response for the effects
of climate change on TCs. GCM experiments can be used to gain insight into the
relationship between climate and TC formation and, given the recent improvement
in the ability of GCMs to simulate the climatology of TCs, this area of research is
promising. However, GCMs still do not have simulations of TC climate that are
good enough to feed directly into risk models. An analytical theory of TC formation
analogous to the established analytical theory of mid-latitude cyclone formation does
not exist but would be useful for risk analysis if it were to be developed.
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Appendix: Formulation of GPIs

Emanuel and Nolan (2004):

GP ¼ 105η
�� ��

3
2

H

50

� �3 Vpot

70

� �3

1þ 0:1Vshearð Þ�2

η ¼ absolute vorticity at 850 hPa (s�1)
H ¼ Relative humidity at 700 hPa (%)
Vpot ¼ potential intensity (m s�1) calculated using a routine provided by Emanuel

(http://eaps4.mit.edu/faculty/Emanuel/)
Vshear ¼ vertical shear from 850 to 200 hPa (m s�1)

Emanuel (2010):
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GP ¼ ηj j3χ�4
3max Vpot � 35

� �
; 0

� �2
25þ Vshearð Þ�4

χ ¼ saturation deficit
Tippett et al. (2011):

TCS ¼ exp bþ bηηþ bHH þ bTT þ bVV þ log cosϕð Þ� �

η ¼ clipped absolute vorticity at 850 hPa in 105 s�1 (η ¼ min (η, 3.7))

T ¼ SST � SST
20�S�20�N½ �

in �C
ϕ ¼ latitude
H ¼ Relative humidity at 600 hPa (%)
V ¼ vertical shear from 850 to 200 hPa (m s�1)

The constants used are those from line 6 of Tippett et al. (2011)’s Table 1 and are
those used by Menkes et al. (2012):

b ¼ �5:8; bη ¼ 1:03; bH ¼ 0:05; bT ¼ 0:56; bV ¼ �0:15

Bruyere et al. (2012):

CGI ¼ Vpot

70

� �3

1þ 0:1Vshearð Þ�2

Since the CGI does not include a vorticity term to remove TCs that form close to
the equator, its values are set to zero between 0 and 5�N.
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Chapter 9
Global Tropical Cyclone Damages
and Fatalities Under Climate Change: An
Updated Assessment

Laura A. Bakkensen and Robert O. Mendelsohn

Abstract Although it is well known that climate change will alter future tropical
cyclone characteristics, there have been relatively few studies that have measured
global impacts. This paper utilizes new insights about the damage caused by tropical
cyclones from Bakkensen and Mendelsohn (J Assoc Env Res Econ 3:555–587,
2016) to update the original methodology of Mendelsohn et al. (Nat Clim Change
2:205–209, 2012). We find that future cyclone losses are very sensitive to both
adaptation and development. Future development (higher income) is predicted to
sharply reduce future fatalities. However, damage may take two distinct paths. If
countries follow the United States and adapt very little, damage is predicted to
increase proportionally with income, rising 400% over the century. However, if
development follows the remaining OECD countries, which have done a lot of
adaptation, future cyclone damage will only increase slightly.

Keywords Tropical cyclone damage and fatalities · Adaptation

9.1 Motivation

Tropical cyclones (hurricanes, typhoons) cause significant damage to many coastal
communities across the globe (Shultz et al. 2005; World Bank 2010; IPCC 2012)
with average losses of $26 billion per year (Mendelsohn et al. 2012). It is well
acknowledged that future cyclones will be affected by climate change (Emanuel
2005; Ranson et al. 2014). Although the number of hurricanes may not increase, it is
expected that the intensity of the largest storms may well increase (Emanuel 2005;
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IPCC 2012; Ranson et al. 2014). This may have especially harmful consequences
because damage increases nonlinearly with intensity (Hallegatte 2007; Pielke 2007;
Narita et al. 2009; Nordhaus 2010; Bakkensen et al. 2018). The potential impacts of
tropical cyclones can be a major factor in the social cost of carbon depending on how
quickly tropical cyclone damage rises (Pearce 2003; Stern 2007; Tol 2008). Ranson
et al. (2014) provides an excellent review of the current state of future tropical and
extra-tropical cyclone damage estimates.

Many initial studies of tropical cyclone damage assumed that global cyclones
would uniformly increase in intensity (Pielke 2007; Narita et al. 2009; Nordhaus
2010). However, climate change is likely to lead to much more complicated changes
in future tropical cyclones (Emanuel et al. 2008; IPCC 2013; Walsh et al. 2016).
There is some evidence that only larger storms will get stronger (Emanuel et al.
2008). There is also evidence that storm intensity may vary by ocean basin (Emanuel
et al. 2008; IPCC 2012). One advantage of the Tropical Cyclone Integrated Assess-
ment Model (TCIAM) is that the model captures alternative predictions of how
cyclones might change in each basin (Mendelsohn et al. 2012). This model used
simulated cyclone data to track cyclone intensity, position, and frequency in each
basin in alternative climate scenarios so that it could predict how these changes
might affect human communities.1

However, an important weakness of the TCIAM is that the damage function was
heavily dependent on outcomes in the United States (Nordhaus 2010; Dinan 2017).
At the time the model was built, the only available damage functions were based on
American damage. New empirical research has broadened damage estimates to
capture tropical cyclone impacts on not just the United States, but also other wealthy
countries and the rest of the world (Bakkensen and Mendelsohn 2016). This paper
explores how these new damage estimates alter the results of the original TCIAM.

The new damage research examines how tropical cyclone damage depends not
only on storm intensity, but also on the income and the population density of the
place that is struck by each storm (Bakkensen and Mendelsohn 2016). The results
reveal that the damage caused by storms that hit the United States increase propor-
tionally with income and increase very rapidly with intensity. The storms that hit
other wealthy countries, in contrast, increase very slowly with income and are much
less sensitive to intensity. Holding everything else constant, a storm that hits the
United States causes ten times more damage than a storm that hits other wealthy
countries. Looking across all countries, higher income monotonically decreases
fatalities but has a hill-shaped effect on damage. As countries go from poor towards
middle class, damage rises, but as they enter middle class, damage starts to fall (with
the exception of the United States). Damage also depends on whether the region that
is hit by the storm is urban or rural. Surprisingly, damage and fatalities do not rise

1Hallegatte (2007) also utilizes simulation data to estimate future cyclone damages, thereby
capturing sophisticated underlying distribution dynamics.
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with population density because most urban centers do more to protect themselves.
Additional literature on damage and fatality determinants identifies the importance
of factors including institutions and economic growth (see reviews by Cavallo and
Noy 2011; Kousky 2014). Similar to the climate change analyses, there are also
many country-specific studies on damage and fatality determinants that we do not
review here.

The chapter proceeds as follows: the theoretical foundations are explained in
Sect. 9.2. Section 9.3 describes the empirical methodology followed by a list of data
sources in Sect. 9.3.1. Section 9.4 presents and discusses the results, and Sect. 9.5
offers concluding remarks. The References and Appendix sections are presented at
the end.

9.2 Theoretical Foundation

The theoretical foundation is based on Mendelsohn et al. (2012). In this paper, the
authors note that the economic damage from a tropical cyclone (D) is equal to the
total of all property losses caused by the tropical cyclone. A parallel theory follows
for fatalities as well. The expected value of damages from tropical cyclones can be
calculated by:

E D½ � ¼
X

j

X

j

π Xij;C
� �

D Xij; Zi

� � ð9:1Þ

where π(Xij,C) is the probability that tropical cyclone j will make landfall at location
i, given tropical cyclone characteristics X and climate conditions C. D(Xij,Zi)
represents the damages from tropical cyclone j at location i, given tropical cyclone
characteristics Xij and local socioeconomic conditions Zi. Expected damages are a
summation of the probability of a landfall at a given location multiplied by the
damages from the tropical cyclones, summed across all locations and tropical
cyclones. Atmospheric experts are key to estimating the probability function,
while economists specialize in the damages portion (Mendelsohn et al. 2012).

The impact of socioeconomic change, or a change in human communities from
current socioeconomic conditions, Z0, to new socioeconomic conditions, Z1, while
holding climate fixed at level C0, on tropical cyclone damages can be calculated by:

SC ¼ E D Z1;X C0ð Þð Þ½ � � E D Z0;X C0ð Þð Þ½ � ð9:2Þ

which is the difference between the expected damage of each society, holding all
other factors constant.
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The impact of climate change, or a change in atmospheric conditions from current
climate, C0, to a new climate, C1, on tropical cyclone damages can be calculated by:

CC ¼ E D Z1;X C1ð Þð Þ½ � � E D Z1,X C0ð Þð Þ½ � ð9:3Þ

which is the difference between the expected damages of each climate holding all
other factors constant, including socioeconomic conditions at their future level.

9.3 Methodology

We start with the insights about tropical cyclone damage and fatality functions
gained from global data (Bakkensen and Mendelsohn 2016). We conduct a few
additional analyses using ordinary least squares regressions of historical global
hurricane and socioeconomic panel data. These new damage and fatality functions
capture the heterogeneity of outcomes across levels of development. We estimate
separate coefficients in the damage function for the United States, for the other
wealthy countries of the Organization of Economic Cooperation and Development
(OECD), and for Non-OECD countries (Bakkensen and Mendelsohn 2016).2 The
damage function has a log-log functional form to account for the count-data nature of
the dependent variables. This functional form is easy to interpret and easy to
incorporate into the integrated assessment model. The damage function of tropical
cyclones is:

Dij ¼ β0 þ β1Xij þ β2Zij þ εij ð9:4Þ

where Dij is the tropical cyclone damage from storm j in country i. Xij represents the
tropical cyclone intensity (either the minimum sea level barometric pressure (MSLP)
or the maximum sustained wind speed upon landfall) as well as distance of closest
approach of the cyclone (Mendelsohn et al. 2012; Bakkensen and Mendelsohn
2016).3 Zij represents a vector of socioeconomic variables describing the conditions
in location i where the cyclone j landed, and includes the average country-level
population density and per capita income. We estimate this equation for a sample of
all countries and for a sample of just the United States, all other rich countries

2In our dataset, the following is the fraction of OECD country landfalls by member state: Australia
(11.7%), Canada (2.26%), Japan (26.8%), South Korea (10.6%), New Zealand (1.13%) and the
United States (45.7%). France, Germany, Ireland, and the United Kingdom together receive 1.9% of
OECD cyclone landfalls.
3If a tropical cyclone does not make landfall in a country and damages were observed in the
historical evidence, characteristics were used from the storm when it was at its closest point to the
given country.
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(members of the Organization for Economic Cooperation and Development (OECD)
excluding the United States), and a sample of other countries (Non-OECD).

Following Bakkensen and Mendelsohn (2016), we estimate the following log-log
tropical cyclone fatality function:

Fij ¼ α0 þ α1Xij þ α2Zij þ uij ð9:5Þ

where Fij is a record of tropical cyclone fatalities from storm j in country i. Similar to
the damage function, we include cyclone intensity characteristics (MSLP or wind
speed) and distance of closest approach of the cyclone, as well as socioeconomic
characteristics (population density and per capita income). We estimate this regres-
sion on all countries. We also estimate the regression for all OECD countries
(including the US) and for Non-OECD countries. We combine the United States
and other OECD countries in the fatality regression because there is no difference in
fatality regression for the United States and other OECD countries. A fatality
function using a negative binomial estimator was found to have qualitatively similar
results as the log-log functional form employed here (Bakkensen and Mendelsohn
2016).

The underlying emission scenario in all model runs is the IPCC AR4 A1B
emissions scenario (IPCC 2007) stabilizing carbon dioxide equivalent atmospheric
concentrations at 720 ppm by the year 2100 (Emanuel et al. 2008).4 The emissions
scenario is then translated to changes in global climate through four general circu-
lation models: CNRM (Gueremy et al. 2005), ECHAM (Cubasch et al. 1997), GFDL
(Manabe et al. 1991), and MIROC (Hasumi and Emori 2004).5 By exploring
alternative climate models, the TCIAM provides the reader with a sense of the
uncertainty coming from the climate forecasts.

Simulated storms are randomly seeded across the globe and then allowed to
develop and move by the cyclone simulator. Each track contains the simulated
cyclone location and characteristics at 6-h intervals for the lifetime of the storm. A
total of 5000 tracks are simulated for the Atlantic basin and 3000 for each of the
Western and Eastern Pacific, Indian Ocean, and Southern Hemisphere basins, for
each of four climate models, for both current (1980–2000) and future (2080–2100)

4This emission scenario is similar to RCP 6.0 in IPCC (2013).
5The baseline simulated tracks reflect climate from 1980 to 2000. Using a more severe climate
change assumption (IPCC AR5 RCP8.5), Emanuel (2013) finds only minor increases in cyclone
power from 1995 to 2015, thus these tracks are still arguably a relevant baseline for the climate from
2000 to 2020. Climate signals can take up to a few decades to impact cyclones given the complex
responses across ocean and atmosphere dynamics. In addition, by employing these simulation
tracks, we can directly compare across the Mendelsohn et al. (2012) earlier results and the present
results. All differences between these two papers are driven by assumptions of the damage caused
by each simulation track since the tracks have not changed.
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climate, resulting in a total of 136,000 storms. The TCIAM then calculates when a
simulated cyclone track intersects with land. The intensity of the storm and the
location of landfall is then recorded for that storm. Socioeconomic characteristics of
that location are matched with the storm.

Cyclone outcomes in each basin are predicted for both the current climate and
future climates for all storms. Note that many storms do not make landfall and
therefore cause no damage. The predictions of cyclones in the current climate are
similar to observed outcomes in all but the GFDL climate model (Emanuel et al.
2008).

We then calculate the consequence of socioeconomic change (population and
income) on future baseline cyclone damage and fatality, holding climate constant at
its current level. We then examine how changes in cyclones caused by climate
change alter future cyclone damage and fatalities. That is, we compare the future
outcome with the current climate with the future outcome with the new climate, all at
the future baseline income and population. The impact of climate change is the
difference between the expected outcome from the future climate and the current
climate, given future baseline socioeconomic projections.

9.3.1 Data

The analysis utilizes data from multiple sources. The first part of the analysis relies
on country-level historical tropical cyclone damage and fatality data, as well as
affiliated historical country population and income data. Data on tropical cyclone
damages and fatalities are from Bakkensen and Mendelsohn (2016) and the sources,
processing, and considerations of measurement error are more fully explained and
explored in the previous paper. Altogether, more than 1400 landfalls are included
from 1960 to 2010 and account for approximately $0.75 trillion in damages and
400,000 fatalities. Note that this represents the full history of storms for which
damage or fatalities are publicly recorded and can be linked with cyclone and
local socioeconomic data. Damage and fatality reports are obtained from
EM-DAT, the International Disaster Database managed by the Center for Research
on the Epidemiology of Disasters, as well as Nordhaus (2010) for the United States.
The EM-DAT database includes information on over 17,000 natural and technolog-
ical disasters, and is sponsored in part by the United Nations and United States
Agency for International Development. Data on historical country population and
income data are gathered from the Penn World Table v7.1, the USDA ERS Inter-
national Macroeconomic Data, the CIAWorld Factbook, and Columbia University’s
CIESIN’s Gridded Population of the World v3. Further, we collect local data at the
county-level for six large countries across the globe, including Australia, China,
India, Japan, Philippines, and United States. In addition, we collect data at the state
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level for Mexico. Future Gross Domestic Product (GDP) by country are projected
from current (real observed) levels assuming a 2% constant growth rate for highly
developed countries, 2.7% for transitioning countries, and 3.3% for developing
countries (Mendelsohn et al. 2012). Projections of population are compiled by the
United Nations (2018). GDP per capita are estimated by the ratio of future GDP to
future population. We assume land area is constant over time to estimate population
density.

Historical tropical cyclone data are collected from several sources including the
National Oceanic and Atmospheric Administration’s International Best Track
Archive for Climate Stewardship (IBTrACS; Knapp et al. 2010), the U.S. Navy’s
Joint Typhoon Warning Center’s Tropical Cyclone Reports, and Nordhaus (2010).
These sources include variables such as location, wind speed, and minimum baro-
metric pressure at 6-h intervals for each hurricane since the mid-1800s (NOAA
2010). Affiliated tropical cyclone characteristics from these sources were matched
by hand with the country level damages data and affiliated socioeconomic data to
complete the historical data set (Bakkensen and Mendelsohn 2016). Simulated storm
tracks are detailed in Sect. 9.3.

9.4 Results

9.4.1 Historical Global Damage and Fatality Functions

In this section, we present and discuss our historical damage and fatality functions.
Note that these regressions mirror the work of Bakkensen and Mendelsohn (2016) in
their Sect. 3.5 (including Table 7) for damages and their Appendix Section F
(including Table 16) for fatalities. However, in this analysis, we present all three
specifications (all countries, OECD versus Non-OECD, and USA versus Non-USA
OECD versus Non-OECD) in this section and in the Appendix.

Table 9.1 presents our historical global damage functions partitioned between
United States, OECD, and Non-OECD countries for both minimum sea level
pressure in columns 1 through 3, respectively, and maximum wind speed in columns
4 through 6, respectively. Appendix Table 9.7 presents the results for all countries
and the OECD versus Non-OECD specifications for both minimum pressure and
wind speed. Due to the log-log functional form, the estimated coefficients are
elasticities (the percent change in damage or fatalities for a percent change in the
explanatory variable). Looking first at the socioeconomic coefficients, we find the
United States to be significantly different than the rest of the world. Specifically, we
find the estimated income coefficient of 1.15 in the pressure specification and 1.64 in
the wind specification, indicating that damages scale at least proportionately with
economic growth. The Non-OECD countries have a lower income elasticity of
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between 0.23 and 0.29. The income elasticity for the other OECD countries is less
than one, but not significantly different from zero, implying that damage does not
increase as their incomes rise. This is a striking difference compared to the United
States. It is also important to note that damages do not scale proportionately with
population density, meaning damages are not much larger, and in some cases lower,
in highly urban areas.6 This could be reflective of better building codes, or higher
resilience in cities relative to more sparsely populated rural regions.

Turning to the cyclone characteristic coefficients, we again find the United States
to be a large outlier in terms of damage, with damage scaling to the –84th power of
pressure and the 5th power of wind speed. This is much larger than the intensity
coefficients for other OECD and Non-OECD countries. For example, damage
increases with the square of wind speed in other OECD countries and 1.4 times

Table 9.1 Historical damage functions

(1) (2) (3) (4) (5) (6)

Ln
damages

Ln
damages

Ln
damages

Ln
damages

Ln
damages

Ln
damages

MSLP MSLP MSLP Wind Wind Wind

USA
OECD
(non-USA)

Non-
OECD USA

OECD
(non-USA)

Non-
OECD

Ln income
per capita

1.148** �0.624 0.285*** 1.636*** �0.459 0.229**

(0.577) (0.472) (0.0976) (0.607) (0.579) (0.0991)

Ln popula-
tion density

�0.300* 0.298*** 0.0980 �0.342** 0.309** 0.0677

(0.162) (0.0821) (0.0783) (0.169) (0.137) (0.0776)

Ln MSLP �84.75*** �34.35*** �23.70***

(9.254) (12.45) (3.631)

Ln wind 5.069*** 2.005** 1.425***

(0.616) (1.005) (0.235)

Ln distance �0.135 �0.690*** �0.351*** �0.0339 �0.680*** �0.322***

(0.271) (0.123) (0.0406) (0.247) (0.132) (0.0406)

Constant 592.1*** 260.0*** 177.9*** �17.07** 13.88** 9.737***

(63.37) (86.73) (25.03) (7.245) (6.806) (1.227)

Observations 108 95 653 110 81 652

R-squared 0.498 0.334 0.171 0.446 0.315 0.155

Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. Note that these regression results
are identical to the specification in estimation Eq. 9.4 but are formatted as separate regressions here
for ease of presentation and comparison

6This finding is empirically tested and discussed in Bakkensen and Mendelsohn (2016). In their
analysis, they estimate damage and fatality functions using country-level data and, in a separate
regression, county-level data for six large countries (plus Mexico at the state level). The results are
qualitatively similar across the two geographic scales yet have important nuance to the interpreta-
tion. The country-level analysis examines the differences driven by more densely populated versus
less densely populated countries. The county-level analysis explores the differences between urban
and rural locations hit by storms.
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wind speed in Non-OECD countries. Most of the literature assumes damage
increases with the cube of wind speed. Finally, as expected, we find that the closer
a cyclone comes to land, the larger the damages, all else equal. Using an F-Test
comparing the joint equivalency of all estimated coefficients across the models, we
can reject that the USA is the same as OECD and Non-OECD countries at the
0.001% level. We find the OECD to be different from Non-OECD countries at the
2.5% level. Thus, we find systematic differences in cross-country determinants of
cyclones damage.

Table 9.2 presents the results from our global fatality functions partitioned by
OECD and Non-OECD countries, with minimum sea level pressure in columns
1 and 2, and maximum wind speed in columns 3 and 4. We find the United States
and the OECD fatality coefficients are not statistically different, so we combine the
two samples in the fatality function (Bakkensen and Mendelsohn 2016). The socio-
economic coefficients of fatalities resemble the previous literature (e.g., Kahn 2005;
Bakkensen and Mendelsohn 2016). Higher income lowers fatalities especially in
more developed countries. Wealthier countries place a high value on human life and
do a lot to reduce fatalities (Fankhauser and McDermott 2014).7 While we find
fatalities to increase with population density, fatalities do not scale proportionately
with increases in population density. Cities are able to protect human life more

Table 9.2 Historical fatality functions

(1) (2) (3) (4)

Ln fatalities Ln fatalities Ln fatalities Ln fatalities

MSLP MSLP Wind Wind

OECD Non-OECD OECD Non-OECD

Ln income per capita �1.223*** �0.758*** �1.257*** �0.743***

(0.184) (0.0564) (0.191) (0.0580)

Ln population density 0.247*** 0.159*** 0.246*** 0.107**

(0.0465) (0.0418) (0.0546) (0.0427)

Ln MSLP �9.356** �9.047***

(4.599) (2.235)

Ln wind 0.628** 0.511***

(0.312) (0.136)

Ln distance �0.155*** �0.187*** �0.156*** �0.187***

(0.0454) (0.0240) (0.0455) (0.0248)

78.15** 70.90*** 11.59*** 6.746***

(31.87) (15.40) (2.393) (0.730)

172 848 166 842

0.327 0.247 0.333 0.232

Standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. Note that these regression results
are identical to the specification in estimation Eq. 9.5 but are formatted as separate regressions here
for ease of presentation and comparison

7We leave empirical exploration of the efficiency versus demand hypothesis for future work.
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effectively than rural areas (Bakkensen and Mendelsohn 2016).8 Turning to cyclone
characteristics, we find fatalities increase with the –9th power of pressure and the
0.5th or 0.6th power of wind speed. We do not find statistically significant differ-
ences in the coefficient of intensity across OECD and Non-OECD countries. How-
ever, there is a significant difference in the coefficients of the socioeconomic
coefficients between the OECD and Non-OECD regressions at the 0.001% level.

9.4.2 Socioeconomic Change Impact on Tropical Cyclone
Damages and Fatalities

Tropical cyclones currently lead to about $26 billion in damages, on average, across
the globe each year (Mendelsohn et al. 2012). However, the damage varies a great
deal across space with the United States, accounting for approximately 60% of
global annual damages despite only receiving an average of two landfalls per year
(NHC 2010). The other OECD countries suffer 14% of damage and the 86
Non-OECD countries and territories account for $6.7 billion (26%) of global
damage.

We first assess the impact of future socioeconomic change on projected cyclone
damage and fatalities, assuming that the world’s climate remains unchanged. The
future will be a much richer and more populated world. In Table 9.3, we calculate
how much tropical cyclone damage would change simply because of these future
socioeconomic changes given the minimum pressure damage model in Tables 9.1
and 9.2. We compare the results using a single damage function for the whole globe
and a separate damage function for the United States, Non-US OECD countries, and

Table 9.3 Current and future cyclone damage from socioeconomic change by 2100 ($ billions)

3 regions model All countries model

Current
Future baseline
damages

%
increase

Future baseline
damages

%
increase

USA 15.3 46.2 201.7% 30.4 99.0%

(Non-USA)
OECD

3.6 0.8 �78.8% 10.0 176.4%

Non-OECD 6.7 12.9 92.2% 18.2 171.4%

Total 25.6 59.8 133.6% 58.6 128.8%

Column 1 presents summary statistics for current average annual damages (in $ Billions) across the
three (USA, Non-USA OECD, and Non-OECD) regions. The second column presents the future
baseline damage assuming current climate and future projections of socioeconomic factors. Column
3 states the percent increase between columns 1 and 2. This is our preferred specification. Columns
4 and 5 mirror the results of columns 2 and 3 except using the all countries regression model to
value the simulated cyclone landfalls

8Bakkensen and Mendelsohn (2016) find evidence in heterogeneity of damages across urban versus
rural locations. We leave exploration of the specific relationship for future work.
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Non-OECD countries. The results of the two models lead to a very similar aggregate
prediction of global damage in 2100 of almost $60 billion per year. However, the
distribution of damage changes a lot. The single damage function for the world
projects the future damage in the United States would increase by almost 100%, and
the damage in the rest of the world would rise by 175%. With the three-region
model, the United States future damage rises 200% to $46 billion/year. The other
OECD country damage falls to 20% of its former level while Non-OECD damage
doubles. China, India, and the Philippines’ future losses will be approximately 125%
more than today.

This analysis does not account for the cost of adaptive measures that many
countries might take to reduce storm damage and is not meant to be a welfare
analysis. Nonetheless, the results highlight the potential for countries to significantly
decrease their losses as they develop. One interesting question for Non-OECD
countries is whether to follow the no adaptation path of the United States or the
adaptation path of other OECD countries as they develop.

Sensitivity analysis is critical in validating climate-economy models (Burke et al.
2015; Milner and McDermott 2016). Thus, we re-run our model using different
valuation assumptions. Using wind instead of minimum sea level pressure, the story
is qualitatively similar, with damages increasing in the “all countries model” by
approximately 80% for the United States and between 140% and 150% for the rest of
the world. Turning to the all countries model, the wind model estimates similar
results for OECD and Non-OECD countries when compared with the pressure
results, with losses decreasing for the former by approximately 70% and increasing
for the latter by the same magnitude. However, given the larger income elasticity for
the United States in the wind model relative to the pressure model, the wind model
estimates future damage due to socioeconomic change alone of more than $153
billion/year, a 900% increase from the current levels. All these estimates assume that
damage will be truncated at complete destruction of the capital stock, which we
operationalize as $1 trillion for a single landfall.9 Relaxing this truncation assump-
tion only impacts estimates for the United States. In the three countries pressure
model, losses would increase by about 400%, instead of the estimated 200% in
Table 9.3. We also compare these results with the sensitivity analysis originally
performed by Mendelsohn et al. (2012). In their analysis, they find future damage is
most sensitive to assumptions of the estimated income elasticity, and less so to the
population density elasticity. We find this in our results as well for the all countries
versus three regions model, the latter of which leads to the largest spread in future
damage projections. The model sensitivity is larger than the sensitivity to projections
of future income and population. Additional sensitivity results are presented below
for climate change.

9The truncation assumption is an estimate of the maximum damage a single future cyclone could
destroy. We calculate it as six time the losses of the most damaging cyclone to date (Hurricane
Katrina at approximately $165 billion in losses, NCEI 2018).
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Table 9.4 presents the results for the impact of socioeconomic change on future
cyclone fatalities. Here, our preferred model combines the United States and other
OECD countries. We compare this model with a model that combines all countries.
The “all countries model” projects a 68% decrease in overall fatalities and not much
difference between regions. The two regions model predicts a larger effect with
OECD fatalities falling from 155 to approximately 11 per year, and Non-OECD
countries fatalities falling from 8000 to 2000 per year.10, 11 The qualitative fatality
results are similar whether one uses wind or minimum pressure.

9.4.3 Climate Change Impact on Global Tropical Cyclone
Damages and Fatalities

We now evaluate the effect of climate change given these future baseline impacts
from population and economic development. We again compare the “all countries
model” with the more spatially explicit damage and fatality functions. Changes in
losses are now due solely to changes in cyclone characteristics, including the
frequency of hits and especially intensity. The cyclone intensity coefficient coupled
with changes in cyclone intensity estimates from the four general circulation models
are the key determinants in these projections.

Table 9.4 Current and future cyclone fatalities under socioeconomic change

2 regions model All countries model

Current
Future baseline
fatalities

%
increase

Future baseline
fatalities

%
increase

OECD 155 11 �92.83% 46 �70.37%

Non-
OECD

8033 2116 �73.66% 2583 �67.85%

Total 8187 2127 �74.02% 2628 �67.90%

Column 1 presents summary statistics for current average annual fatalities across the three (USA,
Non-USA OECD, and Non-OECD) regions. The second column presents the future baseline
fatalities assuming current climate and future projections of socioeconomic factors. Column 3 states
the percent increase between columns 1 and 2. This is our preferred specification. Columns 4 and
5 mirror the results of columns 2 and 3 except using the all countries regression model to value the
simulated cyclone landfalls

10Note that we include Bangladesh and Myanmar, two high fatality outlier countries, in the current
annual fatality statistic.
11We note that we use the same underlying income and population projections across both the
damage and fatality estimates. Thus, the difference is driven by the estimated income and popula-
tion density elasticities across the damage versus fatality functions across the outcomes. For the
United States, damages increase sharply because they scale proportionately with GDP growth
whereas fatalities decrease with development.
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The hurricane model across the four climate scenarios predicts that cyclone
intensity increases in three models in the North Atlantic Ocean and across all four
models in the Northeast Pacific Ocean (Mendelsohn et al. 2012). Changes in the
other basins were less systematic. A comprehensive analysis of the impact of climate
change on cyclone behavior is provided by Emanuel (2013).

Table 9.5 presents the tropical cyclone damage estimates from climate change. In
the all countries model, climate change increases damage by about 25% in the
United States. Climate change causes no consistent impact on other OECD countries
and only an 8% increase in damage in Non-OECD countries. The three region model
suggests that United States tropical cyclone damage would increase by 67% to $76
billion/year. The rest of the world would see an average increase of between 2% and
4%. Damage in Australia would increase by about 6% and damage in Japan would
fall by about 13%. China, India, and the Philippines are estimated to see a reduction
in damage of between 10% and 15% from the future baseline level. The results
suggest it is the United States who is the most vulnerable to tropical cyclones and the
most vulnerable to changes in tropical cyclones from climate change. In our sensi-
tivity analysis, the wind model predicts future United States damages could increase
by $50 billion/year due to climate change, topping more than $205 billion/year,
compared to just $1.1 and $11.5 billion/year in other OECD and Non-OECD
countries, respectively.

Lastly, we consider future fatalities under climate change in Table 9.6. Due to a
weak intensification signal coupled with smaller (closer to zero) intensity elasticities,
we find that climate change will have a very small effect on future fatalities.
Specifically, future fatalities will only increase by about 3% for OECD countries

Table 9.5 Future cyclone damage with climate change (USD billions/year)

Future baseline CNRM ECHAM GFDL MIROC Average

All countries model

USA 30.4 37.5 34.3 52.6 28.7 38.3

(Non-USA) OECD 10.0 10.7 11.3 8.8 9.3 10.0

Non-OECD 18.2 19.6 18.4 22.2 18.6 19.7

Total 58.6 67.7 64.1 83.6 56.6 68.0
3 regions model

USA 46.2 79.3 86.4 97.5 41.6 76.2

(Non-USA) OECD 0.8 0.8 0.9 0.8 0.7 0.8

Non-OECD 12.9 13.3 12.9 14.2 13.2 13.4

Total 59.8 93.3 100.2 112.5 55.5 90.4

Column 1 presents summary statistics for the future average annual baseline damages – assuming
future socioeconomic conditions but current climate conditions – across the three (USA, Non-USA
OECD, and Non-OECD) regions. The next four columns present average annual future damages
assuming future socioeconomic and climate conditions. The final column presents the average
across the four models. All values are in real 2008 Billions of USD

9 Global Tropical Cyclone Damages and Fatalities Under Climate Change. . . 191



and 12.5% for Non-OECD countries. The all countries model predicts climate
change will cause the same percentage changes in fatalities as the two regions
model. The absolute numbers differ because the baseline fatalities are different.
The fatality estimates are similar across the wind model as well.

9.5 Conclusion

We provide updated estimates of the costs of climate and socioeconomic change on
tropical cyclone losses, utilizing the methodology of Mendelsohn et al. (2012) and
new insights surrounding cyclone damage and fatality functions (Bakkensen and
Mendelsohn 2016). Future development is predicted to reduce overall fatalities from
8000 to 2100 per year. Climate change is predicted to increase these future deaths on
average by 260 per year, entirely in Non-OECD countries.

Climate change will have a larger impact on damage. Allowing the damage
function to vary across the United States, other OECD countries, and non-OECD
countries, overall damage will increase from a future baseline of $60 billion/year to
$90 billion/year, an increase of 50%. The striking result in both current tropical
cyclone damage and future damage is the outsized role of damage in the United
States. The United States is currently responsible for 60% of global damage, and that
percentage could increase to 84% by 2100. The data suggests that the United States
is doing very little to adapt to tropical cyclones compared to other countries in the
world. If these trends continue, future tropical cyclone damage will reach $76
billion/year in the United States alone.

Table 9.6 Future cyclone fatalities under climate change

Future baseline CNRM ECHAM GFDL MIROC Average

All countries model

OECD 46 47 47 50 46 47

NonOECD 2583 2633 2816 2904 2903 2814

Total 2628 2681 2863 2954 2948 2862
2 regions model

OECD 11 11 11 12 11 11

NonOECD 2116 2158 2377 2534 2451 2380

Total 2127 2169 2388 2546 2462 2391

Column 1 presents summary statistics for the future average annual baseline fatalities – assuming
future socioeconomic conditions but current climate conditions – across the three (USA, Non-USA
OECD, and Non-OECD) regions. The next four columns present average annual future damages
assuming future socioeconomic and climate conditions. The final column presents the average
across the four models
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We note some important limitations of this analysis. Similar to previous work, we
do not include rainfall or storm surge in our analysis, although both are likely to be
important (Bakkensen et al. 2017; Seo and Bakkensen 2016). There are important
uncertainties in these projections. We do not model alternative paths of economic
growth. Faster growth will lead to more emissions but also higher income. The future
level of mitigation is uncertain. The analysis examines a modest mitigation path, but
the world may do no mitigation at all or engage in more rigorous efforts. By
comparing the results of four climate models, the paper reveals there is uncertainty
in climate projections. The paper utilized only a single model of tropical cyclones.
This is also an important source of uncertainty. The damage and fatality functions are
uncertain, as is evident from the uncertainty surrounding the coefficients. Finally,
adaptation may change over time. To the extent that countries may adapt differently
in the future, future losses could be quite different. Of particular policy relevance for
developing countries, the three regions model highlights that their development
trajectory will have critical implications for future losses. If developing countries
follow the model of the United States, tropical cyclone damage will accelerate
rapidly with development. However, if developing countries follow the model of
the rest of the OECD, they will see only modest increases in tropical cyclone
damage. Perhaps most urgent is that the United States revisit their own strategy for
adapting to tropical cyclones and invest in a more rigorous coastal protection
program.

Appendix

Additional Historical Damage and Fatality Functions

In this section, we present additional historical damage and fatality functions.
Namely, in Table 9.7, we present the all countries functions as well as damage
functions partitioned based on OECD (including the United States) versus
Non-OECD countries. While the estimated coefficients are qualitatively similar
(in terms of coefficient sign) across the regressions, important differences are
present, especially with respect to the magnitude of the cyclone elasticity coeffi-
cients. However, given Table 9.1, combining US and Non-US OECD countries
hides the underlying heterogeneity in coefficient magnitudes. Thus, Table 9.1 is a
preferred partitioning. Also see Bakkensen and Mendelsohn (2016) for a much more
detailed analysis of damage and fatality functions.

Lastly, Table 9.8 presents additional historical fatality functions, namely the all
countries model and partitioning between US, Non-US OECD, and Non-OECD
countries. We find the estimated coefficient on US income and pressure to be
imprecisely estimated, perhaps partly due to the small sample size. Thus, we prefer
the partitioning in Table 9.2 in the main paper.
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Chapter 10
Poleward Migration of Tropical Cyclone
Activity in the Southern Hemisphere:
Perspectives and Challenges for the Built
Environment in Australia

Richard J. Krupar III and Daniel J. Smith

Abstract With statistically significant trends suggesting that tropical cyclones are
migrating poleward in the Southern Hemisphere, specifically in the South Pacific
Ocean basin, it is important to review the current state of knowledge on poleward
migrating tropical cyclone activity. Furthermore, given the potential impacts they
may have on regions traditionally unaffected by tropical cyclones, review of current
residential building practice in Australia is warranted. This chapter highlights the
significance of the long-term poleward trends in the Southern Hemisphere and
potential mechanisms that are driving the geographical shift. Residential building
practice in cyclonic and non-cyclonic regions in Australia is discussed to address
existing vulnerabilities and how they can lead to catastrophic impacts. Methods and
tools to evaluate tropical cyclone risk as well as future research needs are then
discussed in the context of adapting to and mitigating for tropical cyclone activity
that may migrate poleward. Finally, the chapter concludes with a summary and some
finishing thoughts about the advantages of forming multidisciplinary teams to
address the grand challenge of disaster resilience in the built environment in
Australia.
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10.1 Introduction

Tropical cyclones cause significant damage to the built environment globally
through the concomitant hazards of wind, rainfall and storm surge. Recent tropical
cyclone events like Hurricane Sandy (2012) in the U.S., Severe Tropical Cyclone
Marcia (2015) in Australia, and others that have impacted areas outside the “tradi-
tional” tropical latitudes have motivated atmospheric and climate scientists to
determine what physical mechanism(s) within a changing climate system are driving
the poleward migration of tropical cyclones (Kossin et al. 2014; Moon et al. 2015).
This motivation is largely driven by the potential impacts that a poleward shift in
tropical cyclone activity would have on regions historically unaffected by tropical
cyclones (Ramsay 2014). Regions that are historically unaffected by tropical
cyclones design for lower wind speed requirements than those employed for tropical
cyclone-prone regions. These requirements put infrastructure systems at a signifi-
cantly higher risk of structural damage compared with identical storms impacting
infrastructure systems designed for regions that experience landfalling tropical
cyclones more frequently.

Given recent observations of tropical cyclone activity migrating away from the
“traditional” tropical latitudes, it is important to review existing research on this
subject and how building codes and standards are employed in regions traditionally
affected and unaffected by this type of activity. The scope of this manuscript is to
provide a qualitative assessment of the potential issues with poleward migration of
tropical cyclones to motivate future quantitative impact studies. This chapter begins
with a summary of the meteorological perspective on the poleward migration of
tropical cyclones in the Southern Hemisphere; specifically, what metrics are used to
assess it and what are the key drivers. Then, we provide a brief discussion on the
Australian building codes and standards and its application in cyclonic and
non-cyclonic regions. Next, a discussion on what actions and methods
non-cyclonic regions in Australia can take to prepare for future tropical cyclone
activity and improve infrastructure resilience is discussed. Finally, the chapter
concludes with a summary and some finishing thoughts on what future research
needs to address within the context of future impacts of tropical cyclones that may
continue migrating poleward.

10.2 Poleward Migration of Tropical Cyclones

Recently, atmospheric and climate scientists have begun to examine long-term
poleward shifts in tropical cyclone activity, especially at their peak storm intensity.
Work conducted by Kossin et al. (2014) sheds light on this topic by examining at
what latitude tropical cyclones reach their peak storm intensity. This latitude is
referred to as the lifetime-maximum intensity (LMI) in their study. Key findings
from their research suggest that there are statistically significant mean poleward
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trends in the latitude of LMI in both the Northern and Southern Hemispheres. The
largest poleward trend is observed in the Southern Hemisphere, where the observed
shift in distance from the equator is 62 km per decade based on a 31-year period
between 1982 and 2012 (Fig. 10.1). Within each respective hemisphere, there exists
year-to-year and basin-to-basin variability that suggests poleward migration of
tropical cyclone activity is not occurring in every ocean basin. Nonetheless, the
authors imply that increased wind shear in the deep tropics, decreased wind shear at
higher latitudes, and greater potential intensity due to expansion and anthropogenic
warming is conceivably linked to the poleward migration of LMI during the period
considered.

Moon et al. (2015) questioned the statistical significance of the global and
hemispheric mean poleward trends in annual-mean latitude of LMI that were
noted by Kossin et al. (2014) and used a quantitative method to examine the
contributions to the observed trends. The method determines the annual global-
mean latitude of LMI (LLMIglobal) by summing the product of the annual-mean LMI
latitude for each ocean basin (LLMIbasin) by the ratio of the annual tropical cyclone
frequency for each ocean basin (Nbasin) to the total global tropical cyclone frequency
in all ocean basins (Nglobal):

LLMIglobal ¼
X

basin

LLMIbasin þ
Nbasin

Nglobal
Þ:

�
ð10:1Þ

The contributions of global poleward migration trends can be further separated
into two components: the frequency and pure migration contributions. The fre-
quency contribution represents changes in relative annual tropical cyclone frequency
within each ocean basin. The pure migration contribution solely constitutes the
poleward migration of LMI within each ocean basin. An analysis of the trends in
annual-mean latitudes of LMI shows that the frequency contribution strongly influ-
ences the trend in the Northern Hemisphere, while the pure migration contribution
primarily controls the trend in the Southern Hemisphere (Fig. 10.2). This result
implies that the environmental influences proposed by Kossin et al. (2014) are not
necessarily linked to poleward migration trends in both hemispheres.

The results from Kossin et al. (2014) and Moon et al. (2015) explicitly suggest
that cities in the Southern Hemisphere mid-latitudes may realize a growing threat to
landfalling tropical cyclones if current poleward trends continue. This is a significant
problem because current building codes and standards enforced in non-cyclonic
regions in Australia do not currently require the building construction industry to
design at the same level of strength as required in cyclonic regions. While the causes
of the observed poleward trends have yet to be proven (Walsh et al. 2016), it is still
important that communities in the mid-latitudes of the Southern Hemisphere begin
thinking about adaptation strategies for buildings and critical infrastructure. The next
section describes the current building design practice in Australia in non-cyclonic
and cyclonic regions and what challenges exist for retrofitting from economic and
social perspectives.
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Fig. 10.1 Time series of annual-mean distance (km) north (a) and south (b) of the equator and
interhemispheric span (km) across the Northern and Southern Hemispheres (c) calculated from best-
track historical data (red) and ADT-HURSAT reanalysis (blue). Linear trend lines in each plot are
shown with shaded 95% two-sided confidence intervals (see Kossin et al. 2014, Fig.1)
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10.3 Engineering for Tropical Cyclones in Australia

Building design in Australia is governed by the National Construction Code (NCC;
ABCB 2016). The NCC’s structural performance requirements specify that a build-
ing or structure, to the degree necessary, must resist the wind actions to which it may
reasonably be subjected and should also:

Fig. 10.2 Time series of annual-mean distance from the equator (km) in the Northern Hemisphere
(a), Southern Hemisphere (b), and globally (c) considering frequency contribution (green open
circles and solid line) and pure migration contribution (black open circles and solid line) with effects
of ENSO reduced. Interhemispheric span (km) across the Northern and Southern Hemispheres (d)
considering frequency contribution and pure migration contribution with reduced effects of ENSO
is also displayed. Straight linear trends for the frequency (thin green line) and pure migration (thin
black line) contributions in each plot are shown with their significance levels in the legends (see
Moon et al. 2015, Fig. 3)
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• Remain stable and not collapse.
• Prevent progressive collapse.
• Minimise local damage and loss of amenity.
• Avoid causing damage to other properties.

The NCC sets the societal risk for the ultimate limit state strength of a structure.
The level of risk is evaluated as an annual probability of exceedance value
depending on the location and importance of a structure, as shown in Table 10.1.
Housing is deemed Level 2 importance, which has a minimum annual probability of
exceedance of 1:500. Other structure types assume different risk levels. For example,
a hospital has a higher level of importance (Level 4) and therefore a greater
exceedance value, than an isolated farm shed (Level 1).

The building standards for wind design, AS/NZS 1170.2 (Standards Australia
2011) and AS 4055 (Standards Australia 2012), establish the design wind speed
(i.e. wind pressure load criteria) associated with a given exceedance value. Although
the exceedance value may be the same for a given importance level, the design wind
speed varies significantly across geographical regions because the likelihood of high
wind events occurring varies significantly (e.g. currently much higher in lower
latitudes versus higher latitudes). These variations are accounted for in AS/NZS
1170.2 by dividing Australia into the four wind regions A, B, C and D, as shown in
Fig. 10.3. Regions A and B are deemed “non-cyclonic” while C and D are “cyclonic”.

For a building in cyclonic Region C, the regional 10 m height 3-s gust wind speed
for a 1:500 exceedance level is 69 m/s (mid-range Category 4 cyclone per Australian
Bureau of Meteorology tropical cyclone storm intensity scale). This wind speed has
a nominal probability of occurring on the order of 10% in 50 years. In contrast, the
same building in non-cyclonic Region B has a design wind speed of 57 m/s. The
design pressure varies with the square of the wind speed. The difference in loading
criteria means that a home in Region B is designed for wind loads that are 69% of
those for the same home in Region C.

If cyclones exhibit a poleward shift to higher latitudes (i.e. between 25�S and
30�S and perhaps south of 30�S) that have not experienced tropical cyclones

Table 10.1 Importance levels and design events for safety for wind design from Tables B1.2a and
B1.2b of NCC 2016 Building Code of Australia

Level Building type

Annual prob. of
exceedance

Non-
cyclonic Cyclonic

1 Buildings or structures representing a low degree of hazard to life
and other property in the case of failure

1:100 1:200

2 Buildings or structures not included in Importance levels 1, 3 and
4

1:500 1:500

3 Buildings or structures that are designed to contain a large number
of people

1:1000 1:1000

4 Buildings or structures that are essential to post disaster recovery
or associated with hazardous facilities

1:2000 1:2000

204 R. J. Krupar III and D. J. Smith



historically, the risk implications for existing buildings and critical infrastructure as
well as design challenges in non-cyclonic regions would be significant. However,
before discussing the potential impacts in non-cyclonic regions, a closer look should
be taken at the issues and solutions present in lower latitudes, where the cyclone
threat is already relatively high and therefore a significant aspect of community
planning.

10.3.1 Buildings in Cyclonic Regions

In Australia, communities along the northeastern coastline of Queensland experience
tropical cyclones frequently. Over the last 40 years, the Cyclone Testing Station
(CTS) has conducted post-event damage assessments in this region. These post-
storm analyses provide useful information about the performance of infrastructure in
a variety of tropical cyclone landfall events and common failure modes amongst
similar infrastructure systems.

One of the key proxies for predicting tropical cyclone-induced damage intensity
is age of construction. There is a stark contrast in performance for homes constructed
before and after the mid-1980s. This contrast is a result of Tropical Cyclone Tracy,
which caused widespread severe damage to housing in December 1974, especially in

Fig. 10.3 Wind regions for building design from AS/NZS 1170.2 (2011)
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the Northern suburbs of Darwin (Walker 1975). Changes to design and building
standards of houses were implemented during the reconstruction. The Queensland
Home Building Code (HBC) was introduced as legislation in 1982, with provisions
that stemmed from the lessons learned from Tracy. By 1984 it is reasonable to
presume that houses in the cyclonic region of Queensland were being fully designed
and built to its requirements.

Damage investigations carried out by the CTS following severe windstorms over
the last 15 years have typically shown that Australian unstrengthened houses built
prior to the mid-1980s offer a lower level of structural performance and life safety
protection during windstorms compared with houses constructed to contemporary
building standards. The NCC (ABCB 2016) is continually reviewed to ensure that it
supports acceptable performance of new housing. However, only a small fraction of
our housing stock is replaced per annum, therefore most Australians will spend most
of their lives in houses that are already built. Given that these older houses will
represent the bulk of the housing stock for many decades, practical structural
upgrading solutions based on the latest research can make a significant improvement
to housing performance and to the economic and social well-being of communities.
Structural retrofitting details exist for some forms of older housing, but the use of
these details for mitigation upgrades is limited (Smith et al. 2016). There is also
evidence of retrofitting details not being included into houses, requiring major
repairs following severe storm events, thus missing the ideal opportunity to improve
resilience of the house and community at the time when doing so is most econom-
ical. Hence, the issues of retrofitting legacy housing, including feasibility and
hindrances on take-up, etc., are difficult, and largely unsolved challenges that coastal
communities in cyclonic regions are faced with.

It is important to note that CTS damage investigations also report failures of
contemporary construction at wind speeds below design requirements, for water-
ingress related issues (e.g. Boughton et al. 2017). The poor performance of these
structures commonly results from design and construction failings, poor connections
(i.e. batten/rafter, rafter/top plate) (Figs. 10.4 and 10.5), or from degradation of
construction elements (i.e. corroded screws, nails and straps, and decayed or insect-
attacked timber). A damage survey after Cyclone Yasi, which hit the north Queens-
land coast in 2011, showed substantial corrosion of roof elements in houses less than
10 years old (Boughton et al. 2011), emphasizing that ongoing maintenance is an
important part of improving community resilience for all ages of housing. The
analysis highlights that development of retrofit solutions is a key area of ongoing
research for cyclonic areas and critical to the performance and longevity of both
legacy and contemporary housing.

10.3.2 Buildings in Current Non-cyclonic Regions

The age dependence of housing performance in severe wind events and issues
related to poor construction practices in renovation, degradation of materials (lack
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of maintenance), etc. are not constrained to only the cyclonic regions of northern
Australia. Damage investigations of severe thunderstorms in Brisbane, Dubbo, and
Perth (e.g. Parackal et al. 2015) revealed similar issues. If the frequency of storms at
higher latitudes increases, residential buildings and critical infrastructure systems
south of 25�S will face the same issues cyclonic regions face today. In addition,
lower design wind speed requirements and construction practices in these regions
(compared to cyclonic regions) will result in a significantly higher risk of structural
damage compared with a similar storm making landfall in a cyclonic design region.

During a cyclone, dynamic fluctuating winds subject the building envelope and
structure to a multitude of spatially and temporally varying loads. Generally, the

Fig. 10.4 Wind-induced failure of a new (<1 year) metal cladding roof on an old house at the rafter
to top-plate connection during Cyclone Marcia (2015) in Yeppoon, Australia – there appeared to be
no retrofitting of the weaker connections

Fig. 10.5 Wind-induced failure of a metal cladding roof (left) at the batten to rafter connection
(right) during Cyclone Marcia (2015) in Yeppoon, Australia

10 Poleward Migration of Tropical Cyclone Activity in the Southern. . . 207



structural design of housing uses peak gust wind speeds for determining the positive
and negative pressure loads the structure must resist. The storm duration and
temporally varying forces are important for assessing elements of the envelope
and frame (i.e. roofing, battens, connections, etc.) that may be subject to low cycle
fatigue. Testing and approval of building products in cyclonic regions requires load
cases that include cyclic (i.e. repeated) loading over a period of several hours to
mimic the conditions occurring during cyclone passage. Building components in
non-cyclonic areas are not subject to this requirement and therefore may be more
inclined to fail when subjected to the longer duration of loading from cyclones.

Internal pressure effects are also handled very differently in cyclonic versus
non-cyclonic design. Maintaining a sealed building envelope is critical to the wind
resistance of buildings. If there is a breach on the windward face (i.e. from broken
window or failed door), the internal pressure of the house can be dramatically
increased. The internal loads act in concert with external pressures, thereby increas-
ing the load on cladding elements and the structure. Depending on the geometry of
the building, the increase in internal pressure caused by this opening can double the
load in certain areas, increasing the risk of failure, especially if the building has not
been designed for such an opening. Residential structures in cyclonic regions
designed in accordance with contemporary design standard AS 4055 are required
to incorporate load cases for internal pressure increases created by envelope
breaches. Houses in non-cyclonic regions designed to AS 4055 are not required to
account for this load case, resulting in a higher probability of significant structural
failure if such an opening were to occur.

10.3.3 Damage Mitigation

Two of the key issues related to mitigation and poleward migrating cyclones are
(a) mitigation against wind damage in older housing (pre-1980s) in all wind regions
– even for existing levels of wind (this addresses known problems of structural
adequacy in those houses) and (b) mitigation against damage from more intense
cyclones for both old and new houses in mid-latitudes – Region B south of 25�S and
Region A south of 30�S (this addresses the poleward shift of cyclone activity).
Regardless of whether a residential building is in what is currently classified as a
cyclonic or non-cyclonic design region, from an engineering perspective, the adap-
tive strengthening solutions are largely the same (e.g. opening protection, improved
vertical load path from roof to foundation, proper maintenance). Although these
solutions are proven effective at reducing severe damage and loss, post-event
analysis and observations regularly note their lack of implementation (Smith et al.
2015). This aspect of the mitigation problem has not been part of traditional
engineering rhetoric; however, Smith et al. (2016) stresses the importance of
multidisciplinary thinking and consideration of behavioral and socio-economic
factors to improve overall community engagement with structural mitigation pro-
grams in cyclone-prone areas.
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There have been several retrofit incentive programs in the U.S. (e.g. My Safe
Florida Home, etc.). These programs focus on perceived financial benefit (Poussin
et al. 2014), an obvious driver of preparedness action. Although financial incentives
are an important motivator (Boon et al. 2012), they do not ensure mitigation action.
A public opinion survey during the ‘My Safe Florida Home’ program found that
only 40% of respondents indicated that reduced insurance premiums were a key
motivator in undertaking improvements to their home (Sink 2008). Financial incen-
tives of this nature are more likely to be effective if used in concert with other
behavioral drivers.

Missing from the existing approaches is a holistic perspective on what drives
individuals to take mitigation actions. Each of the programs reviewed hinge on
financial incentive and fail to encompass other motivators. Identifying other incen-
tives can be difficult as they can be situationally and contextually specific to the
individual. Factors affecting the success of mitigation activities therefore differ by
region, event type, and citizen-behavior patterns. Four key factors were identified in
the literature that show factors beyond financial incentive, including prior event
experience, mitigation capacity, social connectedness, and freedom of choice.

10.4 Discussion

Given the current state of knowledge on poleward migrating tropical cyclones and
building practice in both cyclonic and non-cyclonic regions in Australia, it is
appropriate to discuss what methods and tools are available to communities in
these regions and how they can be used in non-cyclonic regions to evaluate tropical
cyclone risk. Furthermore, it is also of interest to discuss how communities can
develop better adaptation and mitigation strategies in preparation for potential
tropical cyclone activity in the future.

10.4.1 Tropical Cyclone Impact Assessment

Impact assessments for tropical cyclones often begin with an evaluation of the
hazard (e.g. wind, rainfall, and storm surge) using either probabilistic or scenario-
based analysis methods. Both methods leverage a historical catalog that contains
storm intensity and position data. Given the statistical distribution of key storm
parameters (e.g. minimum central pressure, radius of maximum wind, translation
speed, etc.), probabilistic methods use a Monte Carlo approach to randomly sample
the storm parameters. In contrast, scenario-based methods use event-specific or
synthetic storm parameters.

Storm parameters from either the probabilistic or scenario-based methods are
used as input in a mathematical tropical cyclone wind field model to produce a
specific scenario or set of possible scenarios. Once wind fields are generated by the
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tropical cyclone wind hazard model, simulated or adjusted wind fields
(i.e. accounting for exposure and averaging time) are used as input to drive rainfall
(i.e. inland flood) and storm surge hazard models. Existing rainfall models use either
statistical or analytical models to estimate rainfall rates. The simulated rainfall rates
can then be ingested by inland flood models to evaluate flood risk. Storm surge
hazard models ingest simulated wind fields from the wind hazard model to drive
hydrodynamic numerical models. Simulations without wind give an estimate of the
tidal height, and when wind is included, an estimate of the tidal height plus storm
surge is produced (i.e. storm tide).

Once hazard metrics are generated by each peril model, they are ingested by a
hazard-specific vulnerability model to estimate the degree of damage to a specific
type of infrastructure system (e.g. buildings, electrical distribution networks, etc.).
Wind vulnerability models for buildings (e.g. commercial, industrial, and residen-
tial) in Australia are created using past loss data, past loss data enhanced with expert
judgement, heuristic methods, component-based methods, and simulation-based
methods to determine the damage index (DI) for a specific building type (Mason
and Parackal 2015). The DI is defined as the ratio of the repair cost to the total
replacement cost of a specific building. Once a DI is computed for a specific design
wind speed (i.e. 3-s gust at 10 m above ground level in open exposure terrain
conditions), mean damage functions for different building construction can be
produced. Mason and Parackal (2015) reviewed vulnerability of buildings and
civil infrastructure to tropical cyclones worldwide and found that wind vulnerability
models for Australia are the most refined compared with inland flood and storm
surge vulnerability models for residential buildings. Limited data has been compiled
and little research has been done to develop wind, flood, and storm surge vulnera-
bility models for commercial and industrial buildings in Australia. Flood and storm
surge models are also extremely limited or non-existent for residential buildings in
Australia.

Community-based projects that leverage tropical cyclone risk models for differ-
ent scenarios are very useful tools for assessing future tropical cyclone hazards and
impacts. Recently, Krupar and Mason (2017) developed a multi-hazard (i.e. wind,
rainfall, and storm surge) tropical cyclone disaster impact scenario model for
Queensland. The model framework consists of both public and private hazard
models as well as wind and flood vulnerability models consisting of heuristic
damage functions for a variety of different types of infrastructure. A modified Severe
Tropical Cyclone Marcia (2015) scenario was developed to examine what the
potential impacts on Yeppoon, Queensland could have been if the cyclone had
made landfall further south. This case study was selected for examination because
Marcia is the southernmost Category 5 cyclone on the Australian tropical cyclone
intensity scale to make landfall in Queensland and is an example that supports the
recent poleward migration trend of tropical cyclones noted in the Southern Hemi-
sphere by Kossin et al. (2014) and Moon et al. (2015). Results from the case study
suggest that Livingstone Shire Council would have experienced greater wind and
storm surge damage across all building construction types had Marcia made landfall
further south of the observed landfall location. For instance, 43% of the synthetic
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residential building exposure (primarily in Byfield and Yeppoon) would require
major structural repairs for the 10% probability of exceedance scenarios. Also,
low-lying residential buildings in Yeppoon would be subject to 3.12–5.83 m storm
surge that could cause significant building contents damage and lead to severe
business interruption.

For a non-cyclonic region located south of, say, 25�S, the methods used for
conducting tropical cyclone impact assessments described above could easily be
leveraged to evaluate potential tropical cyclone risk, with some slight modifications.
For example, one modification would involve updating wind vulnerability curves for
residential buildings in Region B to account for the lack of wind resistance, as
pointed out in Sect. 10.3. With this modification, local emergency managers and
community planners can run pre-incident training exercises based on realistic trop-
ical cyclone scenarios for the region of interest. During the pre-incident training
exercise, emergency services personnel would respond to the landfall event as if it
were occurring with available personnel and resources. Response activities would be
documented to learn how to improve inefficiencies and identify what additional
resources may be needed to adequately respond to the disaster.

10.4.2 Challenges in Adapting to and Mitigating for Future
Tropical Cyclone Impacts

While scenario case studies can provide unique insight to potential future impacts
that may arise from landfalling tropical cyclones, these case studies, alone, cannot
drive adaptation and mitigation planning. As alluded to in Sect. 10.3.3, only a
relatively small proportion of citizens (based on U.S. statistics) suggest they would
make improvements to their houses if reduced insurance premiums were made
available. Other behavioral drivers need further exploration to better understand
complex behavior in human decision making. A better understanding of this behav-
ior could potentially inform building codes and standards we use today as well as the
insurance industry to create incentive programs that meet the needs of communities.
To acquire this behavioral information, multidisciplinary teams made up of actuar-
ies, atmospheric scientists, economists, engineers, geographers, psychologists,
social scientists, and underwriters need to be formed to address how humans respond
to changes in built environments. This can provide the missing perspective on what
drives individuals to take adaptation actions.

In concert with acquiring a better understanding of what drives individuals to take
adaptation actions, we also need to focus our attention on the performance of the
built environment and predicting future disaster outcomes. Currently, we lack
quantitative information about the built environment we dwell in and heavily utilize.
In a post-event scenario, we rely on post-event failure analysis assessments to infer
performance. Using a combination of existing information generated from both
aerial (e.g. satellite imagery) and ground-based damage assessments

10 Poleward Migration of Tropical Cyclone Activity in the Southern. . . 211



(e.g. insurance claims, rapid damage assessments), data-driven approaches to
assessing built environment performance need to be developed to inform mitigation
strategies that improve overall disaster resilience. This approach introduces sensor
technology to fill in data gaps about our built environment and combines existing
information about not only the built environment, but also the natural
(i.e. atmosphere and human) environment to improve our understanding of complex
system behavior and response to “shocks.” Davies (2015) defines a “shock” as a
change in system conditions that has a deleterious impact on the system. These
changes may be sudden (e.g. explosions, tornadoes, etc.) or more gradual over time
(e.g. roof aging). In some instances, the gradual change may be unacknowledged by
the system members and an irreversible damage trajectory gets established (Davies
2015).

Once a better understanding of the physical characteristics of these shocks is
achieved and how they introduce vulnerabilities in our built environments, we can
then start discussing what drives individuals to adapt and take mitigation actions.
Also, we can consider what changes can be made to our existing building codes and
standards. Changes to building codes take a long time to implement, so the process
of ratifying and updating the building codes and standards would inevitably need to
become more dynamic to remain as current as possible. Moreover, with the intro-
duction of smart technologies (i.e. sensors, deep learning algorithms, etc.), there is
tremendous potential to begin developing better predictive tools to evaluate infra-
structure system performance of our built environment and implement new design
and manufacturing strategies that allow our communities to build back better from
disasters and recover quicker.

10.5 Summary and Conclusions

The primary aim of this chapter was to qualitatively summarize the current state of
knowledge on poleward migrating tropical cyclone activity in the Southern Hemi-
sphere and current building practice in Australia to better understand how poleward
migration of tropical cyclones could impact communities in Australia in traditionally
non-cyclonic regions. The chapter begins with a summary of research activities on
poleward migrating tropical cyclones and highlights the statistical significance of the
poleward shifts in the Southern Hemisphere. Potential drivers of the geographical
shift were discussed. It is still unclear what mechanisms are driving the poleward
shift in tropical cyclone activity and research in this area is becoming more critical as
we become accustomed to experiencing stronger tropical cyclone activity as the
“traditional” tropical latitudes continue to expand.

Following the discussion on poleward migration of tropical cyclone activity, a
summary of current building practice in cyclonic and non-cyclonic regions of
Australia is presented. While building codes and practice has evolved over time to
a point where our residences are performing better in extreme events, we still lack
(i) appropriate means of assessing quantitative building performance in cyclonic and
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non-cyclonic regions; (ii) information on human responses to shocks in our built and
natural complex systems; and (iii) robust programs to incentivize adaptation and
mitigation measures. This lack of knowledge and tools is due in large part to the
influence of cultural norms that sway human decision making. To improve disaster
resilience in Australia and globally, more research needs to be conducted using
cross-disciplinary approaches that observe built and natural complex system behav-
ior to improve our understanding of shocks and their impacts on human decision
making.
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Chapter 11
Metocean Conditions in Future Hurricane
Environments

James M. Done, Cindy L. Bruyère, and Ming Ge

Abstract The offshore energy industry in the Gulf of Mexico is exposed to sub-
stantial hurricane risk. The plausible scenario of the hurricane climate changing in
response to climate change could severely impact the industry, yet understanding
changes in hurricanes on regional scales is challenging due to the small number of
events and high variability. For impacts, loading on facilities is a complex function
of wind, waves and ocean currents. To understand future loading scenarios, it
therefore becomes necessary to account for these multiple load drivers. An approach
is developed to assess future changes to metocean (Metocean is an offshore engi-
neering term used to describe combined meteorological and oceanographic condi-
tions) conditions in hurricane environments using physical modeling that captures
relationships between wind, waves, and current. For a set of nine historical Gulf of
Mexico hurricanes, the effects of the hurricane wind fields on ocean waves and
currents are simulated using analysis winds to drive a wave model and a regional
ocean model. The generalized extreme value distribution describes wind, wave
height, wave period, and surface ocean current well. In addition, significant wave
height is significantly correlated with wave period and wind speed in hurricane
environments. The effects of the hurricane wind fields are simulated again with
modified hurricane wind fields consistent with future climate scenarios, while
keeping the current climate ocean forcing fixed. Under the future scenario of 10%
increase in wind speed and 10% reduction in storm size, the distributions shift to
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higher significant wave heights and longer peak wave periods with the largest
proportional increases at the highest percentiles. The higher percentiles show future
increases of up to 16% across the metocean variables with significant wave heights
seeing the largest proportional increases. Integrating these results with engineering
design protocols is anticipated to lead to better planning guidelines that will enable
improved design of structures and operating procedures, and minimize environmen-
tal and safety risks.

Keywords Future hurricanes · Metocean conditions · Significant wave height

11.1 Introduction

Hurricane Katrina resulted in major losses to the offshore energy industry, including
damage to numerous offshore facilities and severe damage to Royal Dutch Shell’s
Mars platform that was built to withstand 140 mph winds and simultaneous 70 ft
waves (Hays 2007). Average loss per storm is in the billions of US dollars in lost
production, evacuation costs, and damage to rigs, pipelines, ships, and onshore
facilities (Somerville 2010). Any change in hurricane activity will therefore sub-
stantially impact the offshore energy industry.

The North Atlantic basin has experienced decadal variability and longer-term
trends in hurricane activity (Holland and Bruyère 2014; Holland and Webster 2007;
Bell and Chelliah 2006), bringing dramatic swings in metocean conditions. Changes
in extreme metocean conditions arise mainly from variations in hurricane frequency,
intensity, size, and forward speed that drive damaging waves and currents. Major
hurricanes have become more frequent in recent decades (Holland and Bruyère
2014) and, according to recent assessments, average and maximum hurricane inten-
sity is projected to increase in the future (Walsh et al. 2016; Knutson et al. 2013;
Done et al. 2015; Tye et al. 2014). Such changes will have far reaching effects on
offshore energy safety and production. However, little can be said with confidence
about future hurricane activity on small regional scales such as the Gulf of Mexico
due to large interannual and internal variability (e.g., Done et al. 2014). This lack of
clarity presents potential safety, environmental, and production risks of an uncertain
magnitude. Offshore facilities may be under-designed, and older facilities may need
hardening in order to maintain presently accepted risk levels.

Accurate estimates of loading are critical to avoid damage in the case of under-
estimation and unwarranted costs in the case of overestimation. Accepted annual
failure rates typically span 1/100–1/1000 year for non-life risk and up to
1/10,000 year for life risk. Steel jackets, for example, are normally designed for
the 1/100 year storm because they have reserve strength after impact (Forristall and
Cooper 2016). Loading on facilities is a complex function of characteristics of the
wind field and characteristics of the wave field and ocean currents. For example, the
pitch of a vessel is a combined function of wave period and wave height, and loading
on some structures can depend critically on directional criteria. Adding to this
complexity are correlations among wind, waves, and currents (WWC) under hurri-
cane conditions (Forristall and Cooper 2016). Simple empirical relationships
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between WWC therefore miss some of the essential physics under hurricane condi-
tions, and this asymptotic dependence therefore needs to be accounted for in risk
assessments. For example, hurricanes alter the surface temperature of the ocean over
which they pass through wind-driven ocean mixing across the thermocline and the
excitation of inertial oscillations in the wake of the storm that can lead to substantial
additional mixing and cooling of the upper ocean (Price 1981). The cooler sea
surface temperatures can, in turn, feed back to the atmosphere and weaken the
storm. These physical processes therefore need to be incorporated to account for
the non-linear processes that result in extreme loading events.

Future hurricane activity has been assessed using free running global climate
models (Wehner et al. 2017) or regional climate models (Bruyère et al. 2017;
Knutson et al. 2013); However, these approaches suffer from a low sample size
and struggle to identify a climate change signal on the scale of basin sub-regions
such as the Gulf of Mexico (Cobb and Done 2017). An alternative approach
downscales the large-scale environment from the global climate model using a fast
hurricane model to generate a large number of events (e.g., Emanuel et al. 2006,
2008). Meza-Padilla et al. (2015) used this approach to drive wave and surge models
to assess extreme wave and water heights in the Gulf of Mexico. Appendini et al.
(2017) extended this approach to quantify future change in wave heights in the Gulf
of Mexico. Results were dependent on the specific global climate model projection.
The more controlled approach of Pseudo Global Warming (PGW) adds a climate
change ‘delta’ to historical environmental conditions (Gutmann et al. 2018; Parker
et al. 2018; Lackmann 2015). Here, we design a novel controlled simulation
approach to assess metocean conditions for historical hurricanes. Historical events
have been used previously to characterize extreme wave heights in the Gulf of
Mexico (Panchang et al. 2013). We extend this approach to study future changes.
We borrow the concept of PGW, but rather than modifying the historical environ-
ment, the hurricane winds themselves are modified according to scientific consensus
climate change effects. Future changes in metocean conditions are quantified by
combining the physical modeling results with statistical distribution fitting,
described in the next section.

The physical and statistical modeling approaches are described in the next
section. Results are presented in Sect. 11.3 and a discussion and conclusions are
presented in Sect. 11.4.

11.2 Methods

A controlled modeling approach to assess future changes in extreme metocean
conditions in hurricane environments is described in the following subsections.
First, for nine historical Gulf of Mexico hurricanes, the effects of the hurricane
wind field on ocean currents and waves is simulated using numerical modeling.
Historical hurricane wind fields are reconstructed using available analysis data and
used to drive regional ocean and wave models. Second, a statistical description of
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metocean variables from the nine simulations is developed and used to assess WWC
probabilities in the current climate. Finally, the hurricane wind fields are modified
according to scientific consensus on likely climate change effects on hurricane winds
and used to rerun the ocean and wave models. Statistical modeling is again used to
assess potential future changes in WWC probabilities.

11.2.1 Historical Hurricane Wind Field Reconstruction

Historical hurricane wind fields are taken from the National Oceanic and Atmo-
spheric Administration (NOAA) Hurricane Research Division (HRD) Real-time
Hurricane Wind Analysis System (H*WIND) project (http://www.hwind.co/leg
acy_data/, Powell et al. 1998). H*Wind is an approximation of the actual wind
field based on available surface, aircraft, and remote sensing data and is a readily
accessible, publicly available surface wind analysis for historical hurricanes.
H*WIND only covers a small geographic region, therefore the less detailed North
American Regional Reanalysis (NARR, Mesinger et al. 2006) is used to fill in the
wind field in the surrounding environment. Figure 11.1 shows the impact of merging
H*WIND with NARR for the case of Hurricane Lili (2002). Lili approached
offshore structures in the Gulf of Mexico as a category 4 hurricane, resulting in
half a billion (2002) US dollars in losses to the offshore energy industry (Willis
Energy Loss Database, unpublished data, 2009). H*WIND captures smaller scale
hurricane structure, a tighter hurricane core, and higher peak wind speeds of 40 ms�1

compared to the 18 ms�1 produced by NARR (Fig. 11.1). Peak winds are still less
than the observed 64 ms�1 (IBTrACS, Knapp et al. 2010) largely because the 12-km
grid used to construct the regional wind field is too coarse to retain fine scale wind
maxima. This improved wind field characterization leads to much-improved simu-
lated peak significant wave heights, as described in the next subsection.

Fig. 11.1 Wind speed (ms�1) for Hurricane Lili (2002) just prior to landfall shown in (left) NARR,
and (right) H*WIND combined with NARR
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11.2.2 Simulating Historical Waves and Currents

The reconstructed hurricane wind fields are used to drive the Regional Ocean
Modeling System (ROMS, Shchepetkin and McWilliams 2005), and the Shallow
Waves Nearshore (SWAN: Booij et al. 1999) model. ROMS and SWAN are
two-way coupled to capture the two-way wave-current interactions and operate
within the coupling framework of the Coupled-Ocean-Atmosphere-Wave-Sediment
Transport Modeling System (COAWST: Warner et al. 2010). Prior work has shown
COAWST can produce a reasonable simulation of waves and ocean currents in
hurricane environments (e.g., Zambon et al. 2014; Olabarrieta et al. 2012).

11.2.2.1 Ocean Model

ROMS is a free-surface, hydrostatic, primitive equation ocean model. For this study,
ROMS is employed with a 12 km grid spacing on a 159� 159 grid and a terrain
following coordinate with 16 vertical levels. The model domain and bathymetry are
shown in Fig. 11.2. Bathymetry has a minimum depth of 5 m. Model initialization
and lateral boundary conditions along the eastern and southern portions of the
domain for the variables of free surface, three-dimensional momentum, potential
temperature and salinity are specified, with values from the 1/25� Hybrid Coordinate
Ocean Model (HYCOM) with Naval Research Lab Coupled Ocean Data Assimila-
tion (NCODA, Cummings 2005) Southeast United States analysis (2003–2010), or
the HYCOM + NCODA Global 1/12� Reanalysis for earlier storms. Lateral bound-
aries use a 0.5-day relaxation for inflow and 10-day relaxation for outflow condi-
tions. ROMS receives surface heat fluxes from HYCOM at the surface. The model
uses a 30-s baroclinic timestep with model-splitting ratio of 30. The Generic Length-
Scale turbulence closure is used for vertical mixing and to specify the quadratic drag
formulation for the bottom friction (Warner et al. 2005).

11.2.2.2 Wave Model

SWAN is a spectral wave model that includes wave generation, propagation,
defraction, non-linear wave interactions, and dissipation. It computes random,
short-crested, wind-generated waves and uses the same grid as ROMS (Fig. 11.2).
SWAN is spun up from a state of rest after initial time, and boundary data are
provided by 3-hourly output from the 10 arc minute North Atlantic regional wave
spectral model WAVEWATCH III. We use 36 directional bins and 24 frequency
bins of 1 s width between 1 and 25 s. Nonlinear quadruplet wave interactions are
activated, wave bottom friction is parameterized using the Jonswap formulation, and
the depth-induced breaking constant is set to 0.73. Whitecapping is activated and
wind-wave growth is generated using the Komen formulation. The drag coefficient
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is capped at 0.0022, based on measurements showing the coefficient saturates at
hurricane wind speeds (Powell et al. 2003).

11.2.2.3 Model Coupling

Although full coupling brings a more physically realistic air-sea interaction (e.g.,
Mooney et al. 2016), we choose not to use a fully coupled atmosphere-ocean
simulation system in order to retain control of the wind fields and explore the
ocean response to specified changes in the wind fields. This approach follows that
of Wang and Oey (2008) who were able to control the wind speed of Hurricane
Katrina using prescribed winds to drive the ocean. Our model components, input
data, and flow of information between model components are summarized in
Fig. 11.3. Data are exchanged between ROMS and SWAN every 10 min using the
Modeling Coupling Toolkit (MCT, Warner et al. 2008). Hydrodynamic information
such as surface elevations and currents are provided to SWAN by ROMS. Currents
modify the effective wind forcing and the propagation velocity of wave energy.

Fig. 11.2 ROMS and SWAN model domains with bathymetry contoured (m)
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Currents can also cause wave refraction and wave modification due to bottom drag.
In return, SWAN sends wave information including wave height, direction, period,
length, and energy dissipation to ROMS to modify the bottom shear stress and
calculate wave mixing to resolve the wave-current interaction, as summarized in
Rong et al. (2014). The full list of variables exchanged are shown in the flow
diagram in Fig. 11.3.

11.2.3 Case Studies

Our emphasis on case study scenarios rather than free-running climate simulations
has the advantage of assessing historical hurricanes under different scenarios, rather
than looking at simulated events in a free-running regional climate simulation. While
free-running climate simulations are physically possible, they do not have one-to-
one correspondence with historical hurricanes. The set of nine historical Gulf of
Mexico hurricanes are shown in Fig. 11.4, including Lili (2002), Ivan (2004), Dennis
(2005), Katrina (2005), Rita (2005), Gustav (2008), Ike (2008), Ida (2009) and Isaac
(2012). These nine hurricanes were chosen because of their track over the region of
spatially dense offshore energy facilities (Fig. 11.4). Katrina was included specifi-
cally because of its strong interaction with the Loop Current in the Gulf. These nine
cases are simulated using the modeling system described in Sect. 11.2.2 and used to
build a statistical characterization of relationships between metocean variables in
hurricane environments.

For a coupled simulation of Hurricane Ike, Winterbottom et al. (2012) used a
5-day spin-up period before the analysis period to allow the ocean mixed layer to

Fig. 11.3 Flow diagram of the numerical modeling approach, indicating input data sources and
flow of information between model components
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spin up with the atmospheric forcing. They showed substantial variability in the
ocean mixed layer kinetic energy in the first 24–36 h of spin-up as the ocean state
adjusted to the atmosphere. Our simulation lengths vary between 2.5 and 4.5 days
depending on the hurricane track and we do not explicitly allow for a period of spin
up. However, most of the simulations begin when the hurricanes are outside the Gulf
of Mexico and all begin well before the peak hurricane intensity in the northern Gulf
(Table 11.1). Therefore, the extreme values of WWC should be reasonably spun up.

The extent to which this modeling approach can capture observed significant
wave height (defined as the average of the highest one-third of waves, measured

Fig. 11.4 Tracks of the nine historical Gulf of Mexico hurricanes used in this study: Lili (2002),
Ivan (2004), Dennis (2005), Katrina (2005), Rita (2005), Gustav (2008), Ike (2008), Ida (2009) and
Isaac (2012). Platform locations in the Gulf of Mexico as of 02/03/15 (black dots) mostly lie within
the region bounded by (26�N, 88�W, black dashed lines). (Data sources: Bureau of Ocean Energy
Management, IBTrACS)

Table 11.1 Simulation start times, times of peak wind speed in the northern Gulf of Mexico (taken
from IBTrACS, Knapp et al. 2010), and simulation length for the nine hurricanes

Hurricane Simulation start time Time of peak wind speed Simulation length (hours)

Lili 2002-10-01 00Z 2002-10-03 00Z 60

Ivan 2004-09-13 00Z 2004-09-14 00Z 84

Dennis 2005-07-08 00Z 2005-07-10 12Z 72

Katrina 2005-08-27 00Z 2005-08-28 18Z 72

Rita 2005-09-20 12Z 2005-09-22 06Z 96

Gustav 2008-08-30 00Z 2008-09-01 12Z 72

Ike 2008-09-09 00Z 2008-09-13 00Z 108

Ida 2009-11-08 00Z 2009-11-09 18Z 60

Isaac 2012-08-26 12Z 2012-08-29 00Z 84
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from trough to crest) is illustrated for the case of Hurricane Lili (2002) using data at
the location of NOAA buoy 42041. The location of buoy 42041 and the track of Lili
are shown in Fig. 11.5a. Figure 11.5b shows that the use of the combined NARR and
H*WIND analyses doubles the storm maximum significant wave height from 6 to
12 m due to the substantial increase in wind speeds (Fig. 11.5c). The simulation is

Fig. 11.5 (a) Track of Hurricane Lili (2002) and the location of buoy 42041. The red star indicates
the location of the hurricane at the start of the simulation. (b) Timeseries of significant wave height
(m) at the location of buoy 42041. (c) Timeseries of wind speed (ms�1) at the location of buoy
42041. Shown in (b) and (c) are observations (black stars), simulation driven by NARR winds
(black lines), and the simulation driven by combined NARR and H*WIND winds (colored lines).
Observations are provided by the NOAA National Data Buoy Center
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also able to reasonably reproduce the observed time-series and storm maximum
significant wave height of 12 m at the location of buoy 42041.

11.2.4 Statistical Assessments of the Extremes

In the absence of readily available response functions for specific structures, we
explore relationships among metocean variables and future changes more generally
for the region of the Gulf of Mexico. Using a fixed location in time would be more
appropriate for a point assessment for a given offshore facility, but here we develop a
more regional assessment over the Gulf of Mexico. This regional approach also
increases our sample size of extreme conditions compared to a fixed location.

The simulations produce spatial snapshots of wind, wave, and current fields every
hour, giving approximately 699 data times (the sum of the simulation lengths shown
in Table 11.1). To minimize the effects of spatial dependency between data points,
we take a single data value for each variable at each time. Given that the significant
wave height is a common variable in a response function (Forristall and Cooper
2016), all variables are taken at the location of the maximum significant wave height
every hour. This approach does not remove any temporal dependence in the data, but
we consider this secondary to the high spatial dependence.

Assessing extremes requires extrapolation beyond the sample of nine storms.
Fitting theoretical generalized extreme value (GEV) distributions to the simulated
distributions allows us to assess the extremes. In Panchang et al. (2013), the Gumbel,
Weibull, and the GEV distributions are applied to significant wave height data with
100-year values ranging from 19.1 to 26.7 m. They note the high uncertainty
introduced by few observations in the tail but conclude that GEV is preferential
for applications sensitive to the extremes. The use of GEV was also justified in
Meza-Padilla et al. (2015) since it combines many families of distributions and is
adaptive to the data. While the GEV can produced higher values in the tail than, say,
the Weibull, they suggest GEV is more reliable since the Weibull rarely goes above
the maximum observed values. We therefore apply GEV and take the simple
approach of block maxima, taking 1 value per hour.

11.2.5 Idealized Future Climate Scenarios

A simple and controlled simulation approach is designed to assess future changes in
metocean conditions in hurricane environments. This approach modifies the set of
historical hurricane wind fields according to scientific consensus about the effects of
climate change on hurricane wind fields. We choose to only change the hurricane
wind fields and not also change the ocean state. However, climate change is likely to
impact Gulf of Mexico temperatures (e.g., Biasutti et al. 2012), stratification, and
ocean currents, and this may change the ocean response to the hurricane wind field.
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While our approach includes the hurricane response to this enhanced oceanic energy
source through the controlled increase in wind speed, possible differences in the
ocean current and wave response due to the changed ocean state are excluded. This
intentionally isolates the effects of future hurricane wind conditions on a given ocean
state.

Three idealized future climate scenarios are chosen to sample physically plausible
future changes to hurricane wind fields; a uniform 10% increase in hurricane wind
speed, a 10% reduction in hurricane size (as defined by the radius of 64-knot winds),
and both a 10% increase in hurricane wind speeds and a 10% reduction in hurricane
size. The 10% increase in hurricane wind speeds is at the upper end of scientific
consensus in the change in hurricane intensity over the twenty-first century (Walsh
et al. 2016; Knutson et al. 2010). There is no scientific consensus on future changes
to hurricane size, so our chosen size changes should be interpreted as a sensitivity
study within physically plausible bounds. However, a reduction of hurricane size
was projected in a regional climate change experiment by Done et al. (2015) and
represents a physically plausible future scenario.

The three idealized scenarios only sample a small range of possible future
scenarios. For example, larger hurricanes in the future are not considered nor is
the potential for faster or slower moving hurricanes. However, constrained by
computational resources, the three scenarios explored here provide an indication of
the potential magnitude of future changes and provide a foundation to explore the
broader range of future scenarios. Perhaps more important is that this approach does
not allow for potential future changes in hurricane frequency. Given that there is no
consensus indication from the community of significant change in hurricane fre-
quency, particularly on small regional scales such as the Gulf of Mexico, our
approach of no change in hurricane frequency is appropriate. There is even a lack
of consensus for North Atlantic hurricane frequency change, with the average over
many studies pointing to no change in frequency of all TCs or a slight decrease
(Walsh et al. 2016).

11.3 Results

11.3.1 Current Climate

The probability distributions of peak wave period, significant wave height, maxi-
mum wind speed, and surface ocean current for the nine hurricanes under current
climate conditions are shown in Fig. 11.6. These distributions use data at the
locations of maximum significant wave height every hour. GEV fits to the data
describe the distributions well (Fig. 11.6). The fitted distribution parameters and
estimates of the 1% annual exceedance values are given in Table 11.2. The shape
parameter is negative for wind speed and significant wave height, indicative of a
reverse Weibull-type distribution that has a bounded upper tail. This is not to be
confused with the ordinary Weibull distribution that has a positive-definite shape
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parameter and a bounded lower tail. The reverse Weibull has been used to describe
hurricane wind speeds (Heckert et al. 1998) and is consistent with physical con-
straints on storm intensity dictated by maximum potential intensity theory (Holland
1997; Emanuel 1988). It also seems physically plausible for an upper bound to exist
for wave height (as indicated here by the negative shape parameter) given the
geographic constraints of water depth and fetch limitations, and physical constraints
on the hurricane wind field.

Fig. 11.6 Probability distributions of wind speed (a), wave height (b), wave period (c) and upper
ocean current (d) for the nine historical hurricanes under current climate conditions. Data are at the
location of the maximum significant wave height every hour through the simulations. Blue dashed
lines indicate the fitted generalized extreme value distribution

Table 11.2 Attributes of the GEV distributions fitted to wind speed, wave period, significant wave
height and ocean current for current climate

Significant wave
height (m)

Wave
period (s)

Surface Ocean current
(ms�1)

Wind
speed
(ms�1)

Location 8.8 (0.17) 12.0 (0.11) 0.42 (0.01) 25.1
(0.35)

Scale 3.9 (0.12) 2.7 (0.08) 0.29 (0.01) 8.3 (0.25)

Shape �0.11 (0.03) �0.37
(0.01)

0.17 (0.04) �0.26
(0.03)

1% annual
probability

22.6� 1.6 18.0� 0.2 2.45� 0.4 47.1� 1.5

Standard errors are given in parentheses. Ninety percent confidence bounds are given for the 1%
annual probabilities

226 J. M. Done et al.



The 1% annual exceedance wind probability of 47.1 ms�1 (high category 2 wind
speeds) is lower than expected because the 12 km analysis grid does not retain small-
scale wind maxima. Also, wind data are taken at the locations of maximum signif-
icant wave height and so the maximum values in the wind field may be missed. The
1% annual exceedance significant wave height of 22.6 m falls in the middle of the
range found by Panchang et al. (2013), but is higher than the maximum values
observed during recent major hurricanes. For example, 16.9 m was observed by
National Buoy Data Center’s buoy number 42040 during Hurricane Katrina. This
apparent high value could be due to a combination of model bias and the fact that the
1% exceedance value is for anywhere in the Gulf of Mexico rather than for a single
location. Peak surface current of almost 2.5 ms�1 were observed during Hurricane
Katrina at the Telemark platform (Frolov 2010) and is similar to the 1% annual
exceedance value estimated here.

11.3.2 Relationships Among Metocean Variables

While univariate analyses characterize extremes of metocean variables, structural
response functions are often combinations of metocean variables. Without a specific
structure to guide the analysis of joint extremes, dependence among metocean
variables is explored briefly here through an analysis of relationships among key
pairs of variables. Given that the significant wave height is a common variable in a
response function (Forristall and Cooper 2016) we explore significant wave height
paired with other metocean variables. Significant wave height is positively correlated
with peak wave period and maximum wind speed. The bulk distributions of signif-
icant wave height and peak wave period are correlated at r2 ¼ 0.85, and significant
wave height and maximum wind speed are correlated at r2 ¼ 0.77. The implications
of such strongly correlated load drivers is discussed in Sect. 11.4.

11.3.3 Future Climate

The impact of the three idealized future climate scenarios on significant wave height
for the case of Hurricane Lili is conveyed in Fig. 11.7. The results of future changes
are in agreement with expectations, with the 10% increase in wind speed increasing
the significant wave heights and the 10% decrease in hurricanes size decreasing the
significant wave heights. The combination of 10% increase in wind speed and 10%
decrease in hurricane size also led to a decrease in significant wave heights.

Increased wind speeds increase the wind stress on the ocean surface. For neutral
stability conditions within the hurricane boundary layer, the wind stress is propor-
tional to the square of the wind speed. This means a 10% increase in wind speed
increases the wind stress by 21%; however, the drag coefficient also increases with
wind speed, thus further increasing the wind stress. Here, the drag coefficient is
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capped at 0.0022 based on measurements showing the coefficient saturates at
hurricane wind speeds (Powell et al. 2003). This enhanced wind stress increases
the momentum exchanged from the winds to the waves.

The decrease in storm size reduced the area of strongest winds and decreased the
peak winds experienced at the location of the buoys in Fig. 11.7 (not shown). This
reduction in momentum transferred from the winds to the waves resulted in a
reduction in the wave heights. The net effect of increased wind speed and decreased
storm size was a reduction in wave height at buoy locations. This suggests that the
area of strong winds is more important than the magnitude of the peak wind speeds
for simulating wave heights at specific buoy locations. This arises from large
changes in wind speed at buoy locations within regions of strong wind gradients.
However, the wave heights shown in Fig. 11.7 are constrained to specific buoy
locations. As shown next, analyzing the peak wave height anywhere within the
storm allows us to explore changes to the highest wave heights.

Considering all storms and all times, a comparison of the modeled distributions of
wind speed, significant wave height, wave period, and ocean current at the locations
of peak wave height for the current climate and for the future scenario of +10% wind
speed and�10% hurricane size is included in Fig. 11.8. The enhanced wind stress in

Fig. 11.8 Probability distributions of wind speed (a), wave height (b), wave period (c) and upper
ocean current (d) for the nine historical hurricanes. Grey bars are the empirical distributions for
current climate. Data are at the location of the maximum significant wave height every hour through
the simulations. The lines indicate the generalized extreme value distribution fitted to current
climate data (blue) and future climate data (red)
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the future climate, albeit over a smaller area, results in increased density of the
highest values of wave height, wave period, and wind speed. This is reflected in
higher scale and location parameters, and reduced magnitude shape parameters of
the fitted distributions (not shown). The majority of these highest values occur for
the large and intense Hurricanes Ivan and Katrina. For upper ocean current, however,
there is no apparent change.

Given that offshore structures are impacted primarily by the extremes, it is
instructive to quantify the changes in the most extreme values. The future change
in the high percentile values of metocean variables under the future scenario of
+10% wind speed and�10% hurricane size is given in Table 11.3. This emphasis on
proportional change sidesteps model bias, particularly the low wind speed bias on
the 12 km grid. The high percentiles show future increases of up to 16% across the
metocean variables, with significant wave heights seeing the largest proportional
increases. In contrast, surface ocean currents are reduced under this scenario,
seemingly at odds with the enhanced wind stress increasing the momentum
exchanged from the winds to the ocean currents. We hypothesize that the smaller
storms reduce the resonance effect (Forristall and Cooper 2016) between the
Coriolis-driven current rotation and wind stress turning associated with the passage
of the storms.

11.4 Conclusions

Reconstructions of historical hurricane wind fields were used to drive physical ocean
wave and ocean current models for a set of nine historical Gulf of Mexico hurricanes.
The historical events were simulated under historical and future climate conditions to
assess potential future changes to metocean variables. The GEV distribution
describes the model-simulated metocean variables well, with regional estimates of
the 1% annual exceedance values agreeing with previous work. The plausible future
scenario of a 10% increase in wind speed and a 10% decrease in size led to future
increases in the extremes of all metocean variables, except for surface ocean current

Table 11.3 Percent future changes in the 90th, 99th and 99.9th percentile values of metocean
variables under the idealized future scenario of 10% increase in wind speed and a 10% decrease in
hurricane size

90th 99th 99.9th

Wind speed 7 10 12

Significant wave height 7 12 16

Wave period 2 3 3

Ocean current �2 �5 �9
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where a decrease was indicated. The biggest proportional increase was in the
significant wave height. The future changes are a similar order of magnitude as the
change in the 100 year return value when adding a single intense storm to the
historical record (Cooper et al. 2005), and highlights the level of uncertainty in
assessing extreme values.

Significant relationships are found among metocean variables in hurricane envi-
ronments, suggesting the need for a more formal multivariate analysis of the
extremes. A more simple analysis that reflects the high correlation of metocean
variables in hurricane environments would be to combine the n-year wave with
0.95*n-year wind speed and 0.75*n-year current speed. Alternatively, a more
comprehensive view mapping the full space could be obtained through environmen-
tal contours, in recognition that the maximum structural response may not be at the
maxima of the variables. Ultimately, the future changes should be presented in terms
of design criteria for specific structures.

These estimations were based on a small sample of nine hurricanes. It is likely
that this sample misses portions of the full range of hurricane behavior, such as slow
moving or stalled intense hurricanes or very small, intense, and fast-moving storms.
While our sample of storms was limited by the availability of high-resolution wind
analyses through H*WIND, a more comprehensive study is needed to better char-
acterize the full range of climate change effects. We also assume the same hurricane
frequency in current and future climates based on the lack of consensus in the
scientific community on future change in hurricane frequency, particularly for
small geographical regions such as the Gulf of Mexico. The future wind scenarios
considered here are just a few of many possible scenarios, so this study provides an
indication of the potential magnitude of future changes. Other limitations include the
12 km grid spacing and the lack of full coupling between the atmosphere, ocean, and
waves. This constrained approach misses small-scale coupled processes that are
potentially important for assessing future changes to WWC, such as the effect of
changes in sea surface roughness on the hurricane wind field. Given that we chose to
only change the hurricane wind fields and not also change the ocean state, this study
is limited to the effects of future hurricane wind conditions. The effects of a changed
future ocean state, such as changed momentum transfer through altered ocean
stratification, may be incorporated into future work to understand a broader range
of future WWC scenarios.

Integrating these results with engineering design protocols is anticipated to lead
to better planning guidelines. For example, the sensitivity of the pitch of a vessel or
loading on a structure to climate change may be assessed by modifying the input
metocean data by the climate change perturbation found in this study. These
improved guidelines will support design of structures and operating procedures,
and minimize environmental and safety risks in a changing climate.
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Chapter 12
Estimating the Human Influence
on Tropical Cyclone Intensity as the Climate
Changes

Michael F. Wehner, Colin Zarzycki, and Christina Patricola

Abstract Quantifying the human influence on individual extreme weather events is
a new and rapidly developing science. Understanding the influence of climate
change on tropical cyclones poses special challenges due to their intensities and
scales. We present a method designed to overcome these challenges using high-
resolution hindcasts of individual tropical cyclones under their actual large-scale
meteorological conditions, counterfactual conditions without human influences on
the climate system, and scenarios of increased climate change. Two practical case
studies are presented along with a discussion of the conditions and limitations of
attribution statements that can be made with this hindcast attribution method.

Keywords Tropical cyclone · Climate change · Attribution · Modeling

12.1 Introduction to Extreme Event Attribution

The quantification of the human influence on specific extreme weather events due to
climate change began with the pioneering study of the 2003 European heat wave by
Stott et al. (2004). The large spatial extent and lengthy duration of that heat wave
allowed them to use the output of a standard climate model of that era to analyze the
frequency and magnitude of the heat wave in simulations of both the actual world
and a counterfactual world without the influence of human changes to the compo-
sition of the atmosphere. Since that first study, the human influence on many
different individual extreme weather events has been studied. A series of reports
published as supplements to the Annual State of the Climate Report in the Bulletin of
the American Meteorological Society (BAMS) (Peterson et al. 2012, 2013; Herring
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et al. 2014, 2015, 2016) describe extreme events of all types using a wide variety of
methods of varying sophistication. Reviews of the statistically rigorous class of
analyses referred to as “Probabilistic Extreme Event Attribution” include Pall et al.
(2014), Easterling et al. (2016), and Stott et al. (2016), among others. Furthermore,
attribution of the human influences on individual extreme events was reviewed by
the National Academies of Sciences, Engineering, and Medicine (2016).

Probabilistic Extreme Event Attribution analysis expresses the human influence
on a specific weather event in two ways. The first is to quantify the anthropogenic
change in the probability of the event’s occurrence at its observed magnitude. The
second is to quantify the anthropogenic change in the event’s magnitude when fixing
its occurrence probability at an estimate appropriate to that in the actual world. These
quantities both can be estimated by comparing climate model simulations with and
without the human forcing changes to the climate system. Stott et al. (2004) used
simulations of the UK MetOffice’s fully coupled climate model HadCM3. Simula-
tions with only the natural external forcings of volcanoes and solar variations served
as the counterfactual world and were compared to simulations of the actual world
that were forced with both these natural agents and the anthropogenic forcings of
well-mixed greenhouse gases, ozone, and sulfate aerosols. Since the HadCM3 well
represents European temperatures, they could then estimate the change in the event’s
frequency as well as uncertainty estimates on this change. It is important to note that
while these two types of attribution statements are equivalent ways of stating the
same information, interpretation of the magnitude of the human influence may
appear quite different (Otto et al. 2012; Easterling et al. 2016). For instance,
relatively small changes in the magnitude of an event may imply large ratios of
factual to counterfactual probabilities (Wehner et al. 2018a). However, the lower
bound on this probability ratio is often quite insensitive to uncertainty in estimates of
the actual observed event magnitude and its probability (Jeon et al. 2016; Pall et al.
2017; Risser and Wehner 2017).

Pall et al. (2011) extended this technique in an analysis of the Autumn 2000
floods in England and Wales. As the unusual seasonal precipitation was found to be
highly dependent on the state of the ocean, free running fully coupled models would
not produce enough, if any, simulations that were comparable to the observed
precipitation totals. Hence, they performed a very large ensemble of atmospheric
models with prescribed sea surface temperatures (SSTs) representative of the year
2000 to quantify the statistics of the “world that was”. An ensemble simulation of the
“world that might have been” had humans not influenced the climate system required
the construction of counterfactual SSTs and sea ice concentrations. This was done by
using simulations from the Coupled Model Intercomparison Project (CMIP) data-
base to quantify the attributable change in SST and sea ice concentrations and
subtracting them from the observed SST and sea ice concentrations used in the
factual “world that was” simulations. This method of extreme event attribution is
applicable to a wide variety of seasonal extremes including heat waves, droughts,
and floods. Because of these opportunities, a great deal of effort has been put into
constructing general purpose ensembles of paired factual and counterfactual simu-
lations. The weather@home group at the University of Oxford has utilized the
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publics’ personal computers to generate very large ensembles, often containing
several thousand realizations (https://www.climateprediction.net/weatherathome/).
The Detection and Attribution subproject of CLIVAR’s Climate of the 20th Century
project (C20C+) has constructed a multi-model database of factual and counterfac-
tual global atmospheric model simulations (Stone et al. 2018) and provided the data
to the scientific community (http://portal.nersc.gov/c20c). Because the C20C+ data-
base spans many years (1959–2016), this methodology permits some separation of
the anthropogenic and natural contributions to the risk of extreme events (Risser
et al. 2017). For instance, certain extreme events are more likely in El Niño years
than in La Niña years, or vice versa. This technique then permits isolating the
attribution statement to years where the ocean is in a state conducive to the extreme
event of interest. While these databases are constructed to attribute extreme events
that have already occurred, it is possible to operationally forecast the risk of near
future seasonal extremes by utilizing seasonally forecasted SSTs and sea ice con-
centrations (Haustein et al. 2016).

This revision of event attribution methodology imposes further conditions on the
resulting attribution statements. In the original 2003 European heat wave study using
fully coupled models (Stott et al. 2004), the attribution statement that it is “very likely
that human influence has at least doubled the risk of a heat wave exceeding this
(observed) threshold magnitude” is conditional on only the changes in the anthropo-
genic forcing agents of well-mixed greenhouse gases, ozone, and sulfate aerosols and
the sensitivity of HadCM3. In the attribution statement about the UK 2000 floods (Pall
et al. 2011), “that twentieth-century anthropogenic greenhouse gas emissions
increased the risk of floods . . . by more than 90%,” additional conditions must be
added. The first is that the ocean state was as observed. The second is that the
attributable change in SST and sea ice concentration is as calculated from the coupled
climate models. This latter condition also introduces another uncertainty, as there are
many ways to estimate this attributable change. In fact, Pall et al. (2011) examined this
uncertainty by considering SST and sea ice concentration changes from four different
coupled climate models. Conditionality on the ocean state implies that attribution
statements may exhibit interannual variations (Risser et al. 2017; Stone et al. 2017).

Angelil et al. (2017) considered 63 extreme events already analyzed in the BAMS
Supplements and cautioned that credible attribution statements can only be made
using models that are “fit for purpose”. By this they meant that the factual simula-
tions must be able to produce reasonable simulated statistics of the observed event. If
the climate model, under these conditions, cannot produce events of the observed
magnitude, quantile bias correction techniques (Jeon et al. 2016) can sometimes be
used to modify the output of both the factual and counterfactual simulations to make
a confident attribution statement. However, if the model does not represent the
fundamental processes, bias correction will not lead to such confidence. The Pall
et al. (2011) method of targeted factual and counterfactual ensembles of prescribed
ocean climate model simulations is widely applicable to seasonal extremes of
temperature and precipitation (Angelil et al. 2017). It is also suitable, with an
appropriate modeling framework and caveats, to construct attribution statements
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about extremely active or inactive storm seasons, including tropical cyclone seasons.
However, it is not well suited for constructing attribution statements about individual
shorter duration extreme weather events, particularly intense storms such as tropical
cyclones. The principal reason for this is that the technique is unlikely to produce
storms in the right place and time to compare with the actual observed event in
question, even with very large ensemble sizes.

Tropical cyclones are a case in point. The resolutions of the models used in the
C20C+, neither the weather@home nor the CMIP5 database are refined to the point
where realistic tropical cyclones are simulated. No amount of bias correction can fix
that and these models are not fit for purpose to directly attribute the human influence
on this class of extreme storms. To remedy this deficiency, Pall et al. (2017) further
modified extreme event attribution methodology to analyze the September 2013 flood
in Colorado by using hindcast technologies. Similar to a forecast, a hindcast is a
simulation of a specific period of weather initialized a few days prior, but with the
difference being that the period is already observed. In this method, a “hindcast that
was” is compared to a “hindcast that might have been”, constructed with estimates of
changes not only to the boundary conditions as before but also to the initial condi-
tions. Hence, in their attribution statement about the Colorado flood “that anthropo-
genic drivers increased the magnitude . . . by 30%”, the additional condition is that the
large-scale meteorological patterns (LSMP) were as observed and the anthropogenic
changes to the LSMP were as estimated. While this technique as an attribution
method was originally applied to a non-cyclonic extreme storm, it is equally appli-
cable to tropical cyclones. In fact, the original notion of perturbing individual storms
was first proposed by Schär et al. (1996) to gain insight into how future climate
change will affect extreme weather. This pseudo-global warming approach to
extreme event attribution has been termed a “storyline” by Shepherd (2016). He
correctly points out that this attribution method only describes a portion of the
relevant anthropogenic mechanisms that may influence a particular extreme event.
No statements about the LSMP can be made in this method as it is prescribed as
discussed below. For instance, in the attribution of the human influence on a tropical
cyclone, no statement is made in this method on the chances of cyclogenesis or
landfall. However, unlike Shepherd (2016), we prefer to describe the unattributable
aspects of changes in extreme storms by the hindcast methodology as “nonlocal”
rather than “dynamical”, and the attributable portion as “local” rather than “thermo-
dynamic”. This is motivated by the findings discussed below that dynamical storm
properties (winds and pressures) in addition to thermodynamic properties (tempera-
ture and precipitation) can be significantly influenced by climate change.

As discussed in the subsequent sections of this chapter, there are many sources of
uncertainties in extreme event attribution statements, especially for tropical
cyclones. Principal among these is that no definitive trends in observed tropical
cyclone statistics have been detected nor attributed to human influences due to both
the short record and its large variability. Hence, tropical cyclone attribution state-
ments are made “without detection” (Knutson 2017). Nonetheless, some confidence
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can be ascribed to these statements drawn both from physical understanding of the
relevant processes and other numerical modeling experiments. Maximum potential
intensity (MPI) theory (Bister and Emanuel 1998) suggests an increase in tropical
cyclone destructiveness in a warmer world (Emanuel 1987). Tropical cyclone
permitting experiments with both regional and global models all suggest an increase
in both the frequency of intense tropical cyclones and in the wind speeds of the most
intense storms despite decreases or little change in the total number of tropical
storms (Knutson et al. 2015; Walsh et al. 2015; Kossin et al. 2017; Wehner et al.
2018b). These results about the climatology of intense tropical cyclones set an
expectation that the human influence on individual storms might be to make them
stronger. However, the hindcast methodology presented here reveals that the human
influence on any individual tropical cyclone may be far more nuanced.

For ease of discussion in the rest of this chapter, we refer to the original technique
of Stott et al. (2004) as the “CMIP” attribution method, although any coupled
climate model simulations could be used. Furthermore, we will refer to the revised
technique of Pall et al. (2011) as the “C20C+” attribution method, although again
any set of atmospheric models could be used. Finally, we will refer to the storyline
technique of Pall et al. (2017) as the “hindcast” attribution method, which is the
central focus of this chapter. Details of the implementation of this hindcast attribu-
tion method and the application to tropical cyclones are discussed in the next section.

12.2 The Hindcast Attribution Method Applied to Tropical
Cyclones

The complex meteorology that led to the September 2013 flood in Colorado was
excessively rare to occur at that place and time of year making its representation in
free-running climate models difficult to quantify. Nonetheless, with appropriate
initial and boundary conditions, it was well simulated in the “hindcast that was”
with a high-resolution (12 km) version of the Weather Research and Forecast (WRF)
model (Skamarock et al. 2008) by Pall et al. (2017). Tropical cyclones are no
different in this regard as they are well forecasted routinely with this and many
other numerical weather prediction models (e.g., Davis et al. 2008). In this section,
we discuss implementation details of the hindcast attribution method using as
examples both WRF as a regional model and the variable-resolution version of the
Community Atmospheric Model (VR-CAM5), as a global model. However, the
method could be used with any model in either of these classes.

As in the other paired ensemble event attribution methods described in the previous
section, it is critical to demonstrate that the hindcast model is “fit for purpose” to
analyze the event in question. For individual storms, standard forecast diagnostics are
useful to determine the quality of the “hindcast that was” ensemble. For tropical
cyclones, these could include comparison to observations of the simulated storm
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track, peak wind speed, and central pressure minima histories, precipitation totals or
other well-measured quantities. High horizontal resolution, often finer than 25 km, is
generally required to reproduce these observations, as is a high quality set of initial
and boundary conditions. Furthermore, the event itself must be able to be well
predicted, as it will undergo a sizable perturbation when simulated again in the
counterfactual hindcast.

The generation of a sample of plausible hindcasts of the actual storm can be
constructed by standard techniques to perturb the simulation. As simple perturba-
tions to the initial conditions will not permit differences between a limited number of
realizations to grow fast enough for the sample to adequately represent the full
distribution of plausible hindcasts, forecasters typically employ strategies to produce
larger perturbations. Comparison of the resulting hindcast under actual conditions to
the observations is necessary to determine whether it is “fit for purpose”. However,
the predictability of tropical cyclones, especially their tracks, varies. While some
intense tropical cyclones, such as Super Typhoon Haiyan, take relatively straight
paths from cyclogenesis to landfall; others such as Hurricane Sandy may be dramat-
ically steered by the large-scale environmental conditions. As a result, the time of
initialization can determine whether the simulations are “fit for purpose”. For storms
like Sandy, if initialized too early, the hindcasted tracks may veer into the open
ocean rather than make landfall at the New York and New Jersey coastlines as
actually occurred (Magnusson et al. 2014; Bassill 2014).

The construction of a counterfactual ensemble of hindcast simulations is straight-
forward, but the details depend on whether a global or regional model is employed.
For either class of model, the composition of the counterfactual atmosphere is
prescribed to be representative of a preindustrial state as would be in the CMIP or
C20C+ attribution methods. Also, the counterfactual SST and sea ice concentration
patterns and magnitude are altered in a similar manner as in a C20C+ attribution
method. For the hindcast attribution method, counterfactual initial conditions also
must be prescribed by perturbing the actual initial conditions. If a regional model is
used, lateral boundary conditions are additionally perturbed.

Actual initial and lateral boundary conditions can be obtained from reanalyses.
However, if “rapid” attribution (Haustein et al. 2016) is required, reanalyses may not
be available as there is usually a lag time of a month or more before they are released.
In such cases, initial and boundary conditions used in forecasts are an option if they
are available, and in some cases may be preferable to reanalysis products if they are
available on higher-resolution grids. As the tropical cyclone case studies below will
reveal, careful construction of attribution statements for this class of storm can be
considerably more difficult than for other classes of extreme events. Rapid attribu-
tion statements about tropical cyclones might then be contradicted by later analyses
with more accurate initial and boundary conditions. Communicating these uncer-
tainties is thus a critical part of the process.

As the perturbation to the actual conditions that define the counterfactual condi-
tions represent an anthropogenic climate change to the environment that the extreme
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weather event occurred in, it is generally obtained from other climate model simu-
lations. The fields that must be perturbed, in addition to SST and sea ice concentra-
tion, would include at least the surface pressure, wind vector components, humidity,
temperature, and geopotential height (or similar fields). Other than surface pressure,
these other perturbations need to be calculated at the vertical levels of the hindcast
model using the appropriate vertical coordinate system. As the lower boundary
conditions of SST and sea ice concentration are already perturbed following a
C20C+ attribution methodology, one way to provide initial and lateral boundary
condition perturbations would be to use estimates of the anthropogenic influence on
these additional fields from the same source. For instance, if the SST is estimated
from the anthropogenic change of an ensemble of CMIP5 models, differences
between the “historical” (all forcings) and “historicalNat” (natural-only forcings)
at an appropriate point in time could be a reasonable perturbation. However, a more
nuanced perturbation can be obtained from the databases constructed for C20C+
attribution methods. In these databases, differences between the ensembles of
simulations of all forcing and natural forcing alone for these additional fields can
be calculated at the same time as the extreme weather event of interest. These
differences represent the anthropogenic change to the large-scale environment
conditional on the state of the ocean at the time of the event. As the goal of the
hindcast attribution method is to characterize the extreme weather event and its
counterfactual equivalent, accounting for dependence of the anthropogenic change
on the ocean state is more self-consistent than not doing so. However, interannual
variability in the anthropogenic change to the climate system is certainly smaller
than the change itself, and if a suitable C20C+ class ensemble is not available, other
model output, such as CMIP5, must suffice. Indeed, this would be the case for rapid
attribution, as the generation of C20C+ class ensembles requires observed SST and
sea ice concentrations that are only available with a several week delay. As a
practical matter, it is convenient to calculate the perturbations using the monthly
averages drawn from the month and year that the event of interest occurred in rather
than over the event’s actual duration. Such a practice has an additional advantage of
further damping any residual natural variability in the ensemble average.

The case studies presented below will reveal that, while applying this methodol-
ogy may be straightforward, interpretation and construction of attribution statements
for individual tropical cyclones may not be. Many factors can complicate attribution
including changes in initial storm structure or resultant track difference. Further-
more, different hindcast models may respond differently due to differences in model
formulation or resolution. Even results from a single model could depend on
resolution. Consistency across multiple methods leads to greater confidence in any
attribution statement, but expert judgment is also a part of that confidence. The
hindcast attribution method indeed may require yet more expert judgment than other
methods given both its highly constrained design and the increased possibility of
conflicting or unfit for purpose results. In particular, expert judgment must be
exercised for the suitability of the factual and counterfactual tracks and the spread
of the ensembles as well as the simulated factual intensities.

12 Estimating the Human Influence on Tropical Cyclone Intensity as the. . . 241



12.3 Tropical Cyclone Attribution Case Studies

12.3.1 Case Study 1: Global Atmospheric Model Analysis
of Super Typhoon Haiyan

Super Typhoon Haiyan was a devastating Category 5 storm that made landfall near
Manila (the Philippines) in November 2013. Over 6000 fatalities and 4 million
displaced persons stressed humanitarian efforts to their limits (Lum and Margesson
2014). Its storm track was not unusual and was well-forecast (Xiang et al. 2015)
making it a good candidate for the hindcast attribution method. For this case study,
we used the variable resolution version of the Community Atmospheric Model
(VR-CAM5, Zarzycki et al. 2014b). This global atmospheric model, based on a
spectral element dynamical core (Dennis et al. 2011), enables the refinement of the
computational grid to accelerate simulation throughput (Zarzycki et al. 2014a).
While an atmosphere-only model such as VR-CAM5 does not include
atmosphere-ocean interactions, we note that the ocean boundary layer was particu-
larly deep during Haiyan, partially allaying concerns about important missing
processes. To simulate Haiyan, we began with a global mesh of approximately
69 km on a side, then progressively refined to 34 km, 17 km, and 8 km. Given
these resolution constraints, the effects of deep cumulus convection are parameter-
ized in VR-CAM5 (Neale et al. 2012). SSTs are obtained from the 0.25� National
Oceanic and Atmospheric Administration Optimum Interpolation (NOAA-OI)
dataset (Reynolds et al. 2007) and are not varied throughout the hindcast. Figure 12.1

Fig. 12.1 The refinement
regions of VR-CAM5 used
in the global model
attribution case study of
Typhoon Haiyan
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shows the refinement regions, with the track of Haiyan completely contained within
the finest grid spacing within the domain.

Hindcasts using VR-CAM5 are initialized and integrated as described in Zarzycki
and Jablonowski (2015) and readers are referred to that manuscript for technical
details regarding the configuration used here. VR-CAM5 simulations replicate
observed structural characteristics of the actual storm well. Figure 12.2 shows a
comparison of brightness counts from the Japanese MTSAT satellite at 21UTC on
November 21, 2013 and simulated outgoing longwave radiation (OLR) from CAM
hindcasts at the same time. Here we analyze these images qualitatively, although the
colormaps have been designed to make the observations and model panels compa-
rable. The middle panel shows that the simulated cloud field from VR-CAM5
(initialized 3 days prior) refined to 8 km compares favorably with the satellite
image shown in the top panel. We note that the size and shape (including an
“eye”) of the storm are remarkably well-simulated. We conclude from figures like
this that the model itself is “fit for purpose” to simulate the actual storm. Comparing
other analyzed fields such as peak wind speeds, storm track, etc. can reinforce this
claim. In contrast, the lower panel shows the same simulation except showing the
solution with resolution of approximately 111 km (no grid refinement). While the
size of the storm is surprisingly realistic, simulated wind speeds and central pressures
are too weak compared to observational estimates and significant structural deficien-
cies (e.g., lack of an eye and spiral rainbands) are obvious. We conclude that this
low-resolution version of the model is not fit for purpose to confidently attribute the
human influence on Haiyan, principally because it cannot reproduce the observed
storm intensity. In general, CMIP5 class models, with resolutions between 100 and
200 km, would not be judged fit for purpose for intense tropical cyclone attribution
for this reason.

Even if a model is found to be fit for purpose to simulate the actual tropical
cyclone, the hindcast methodology as a whole must be judged to be fit for purpose or
not. The perturbations that define the counterfactual hindcast can be significant and
the resulting counterfactual tropical cyclone may bear little resemblance to the actual
storm. While the predictability of the actual tropical cyclone, reflected somewhat by
the stability of the actual hindcast, is a good indicator of the applicability of the
hindcast attribution method to a particular storm, only subjective expert judgment is
available to make a final decision on the fit for purpose question. Figure 12.3 shows
the observed and simulated tracks for Haiyan. VR-CAM5 was initialized at 12UTC
November 4, 2013 in all of these simulations. Each VR-CAM5 ensemble consisted
of ten individual realizations, which were generated using small-scale perturbations
within the initial conditions as well as perturbations to subgrid parameterizations.
The ensemble generated from actual conditions, shown in red, is a reasonable
hindcast of the observed track from IBTrACS (Knapp et al. 2010), shown in
black. The anthropogenic influences were estimated by selecting the November
2013 monthly averages contributed by the CAM5 model (Angelil et al. 2017) to
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Fig. 12.2 Observed (brightness count) and simulated (outgoing longwave radiation) cloud struc-
ture of Typhoon Haiyan at 21UCT on November 7, 2013. Top panel: MTSAT satellite (NOAA
image). Middle panel: VR-CAM5 at 8 km. Bottom panel: CAM5 at 111 km without refinement.
Both warmer and colder cloud tops are noted on relative locations of each panel’s colorscale



the C20C+ experiment.1 This results in a “delta” (or “difference”) in the mean
synoptic state with and without a human-induced signal. The counterfactual ensem-
ble is then generated by applying these “deltas” to the initial conditions from the
actual ensemble to simulate the same weather pattern but with the anthropogenic
signal stripped from the background state. Expert judgment in the evaluation of these
tracks should include not only the assessment of the track location, but also timing of
storm centers.

While tracks from the counterfactual ensemble, shown in blue, may be shifted
equatorward a bit from the factual ensemble, this shift is not large. This both implies
that the anthropogenic influences do not significantly modify storm speed and
direction, and that we can credibly assess differences in storm intensity between
the runs. Therefore, we judge that the simulations and hence the hindcast attribution
methodology is indeed fit for purpose for attributing the human influence on Super
Typhoon Haiyan. Clearly, this need not be the case. While models that can simulate
observed tropical cyclone intensity may be available, if the storm tracks are sensitive
to the large-scale environment and the perturbations significantly alter that environ-
ment, counterfactual storms may take paths that cause them to be so unlike the actual
storm that comparison is imprudent. Superstorm Sandy, as mentioned previously, is
a good example as even in the factual ensemble, simulated tracks may diverge just
due to the perturbations applied to create the ensemble spread (Lackmann 2015). In
general, tropical cyclones embedded within weak steering flow conditions will be
less amenable to the hindcast attribution method than those determined by a strong
steering flow that is resilient to perturbations, like Haiyan. By moving the initiali-
zation time closer to landfall, this problem of diverging tracks may be ameliorated.
However, the simulated storms must be given enough time to develop on their own
from the initial conditions to give a credible spread in the hindcasts. Experience is
limited in this regard and again expert judgment must be relied upon.

Fig. 12.3 Observed and simulated tracks of Super Typhoon Haiyan. Black: Observed (IBTrACS).
Red: Ensemble of actual conditions as simulated by 8 km VR-CAM5. Blue: Ensemble of counter-
factual conditions as simulated by 8 km VR-CAM5

1The CAM5 contribution to the C20C+ experiment consisted of 100 simulations in both the factual
and counterfactual scenarios. We also repeated this attribution analysis with the MIROC5 contri-
bution finding the same behavior as detailed here.
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The response of Super Typhoon Haiyan to anthropogenic perturbations in
VR-CAM5 is complex and not completely as expected. Figure 12.4 shows the
observed and simulated instantaneous peak wind speeds (left) and central pressure
minima (right). This figure shows that ensemble averaged simulated peak wind
speeds under the actual conditions (red) are close to observed (black) at landfall
(just past Day 3) but that the model’s central pressure minima is slightly too weak.
Under counterfactual conditions (blue), a small increase in simulated peak wind
speeds and a substantial decrease in central pressure minimum of the ensemble
averages are found. One might expect that Haiyan would be weaker under the cooler
counterfactual conditions, however this is not the case, at least as simulated by this
configuration of VR-CAM5.

The hindcast attribution method permits further exploration about the effect of
anthropogenic forcing changes on tropical cyclone intensity. By recomputing the
counterfactual hindcast with subsets of the perturbed conditions, some of these
effects can be further isolated. The green curves in Fig. 12.4 show the peak wind
speed and central pressure minima obtained when only SST is perturbed. In these
simulations, the initial vertical structure of the storm is set to the actual conditions.
Because Haiyan is so stable to perturbations, the storm can adjust to this unbalanced
initial state and the simulated storms weaken in both wind speeds and pressure
minima in response to the cooler counterfactual ocean (and, correspondingly,
reduced enthalpy fluxes). Conversely, the yellow curves in Fig. 12.4 show these
fields when the SST is maintained at the actual values and the initial conditions are
set to the counterfactual case. Here, the effect of only changing the vertical structure
of the storm is to intensify the wind speeds and pressure minima. Although not
shown, further numerical experimentation reveals that this effect is primarily due to
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the perturbation of the vertical temperature profile. The vertical tropospheric tem-
perature profile is more strongly heated aloft than at the surface when anthropogenic
influences are configured (Santer et al. 2005). Therefore, even though the counter-
factual profile is cooler, there are larger amounts of convective instability. Analysis
using maximum potential intensity (MPI) theory (Bister and Emanuel 1998) shows
that a sounding from the cooler counterfactual atmosphere as simulated by
VR-CAM5 can support a storm 10–20 hPa deeper (stronger) than the control case
because of this effect.

We learn from this that the effects of climate change on an individual storm is at
least twofold. Increases in SST cause tropical cyclones to be more intense, while the
anthropogenic change in the vertical temperature profile causes them to be less
intense. The net effect is, of course, a combination of these two counteracting effects.
In the present example, these two effects combined for a slightly weaker storm due to
anthropogenic climate change. However, their relative magnitude will vary by the
specifics of individual storms, as well as choice of hindcast model and the details of
the anthropogenic perturbations. In fact, a similar analysis by Takayabu et al. (2015)
and in Sect. 12.3.2 using different models comes to an opposite conclusion, i.e. that
anthropogenic climate change slightly increased Haiyan’s intensity. Methods to
quantify this sort of structural uncertainty are currently under development (private
communication, Richard Smith, University of North arolina-Chapel Hill, 2017) and
it is worth noting that there is likely significant regional and temporal variability that
may also influence these results.

12.3.2 Case Study 2: Regional Atmospheric Model Analysis
of Super Typhoon Haiyan

While most of the experimental design for hindcast attribution with regional atmo-
spheric models is the same as outlined in Case Study 1 using global atmospheric
models, there is an important difference. Regional models require the imposition of
lateral boundary conditions in addition to the surface boundary and initial conditions
and greenhouse gas concentrations. Fortunately, all the information necessary to
construct counterfactual initial conditions can be used to construct counterfactual
lateral boundary conditions. Consistency mandates that the lateral boundary condi-
tions come from the same source as the initial conditions. Hence, if a reanalysis is
used, then the only additional task is to apply the perturbations to each time step that
reads the lateral boundary conditions.

There are significant advantages to using regional models over global models. For
the same resolution, they offer a computational advantage. But perhaps more
importantly, many regional models, such as WRF (Skamarock et al. 2008) are
often non-hydrostatic, and can be configured at high enough resolutions that cloud
systems are simulated directly, eliminating the need for deep cumulus convection
parameterizations. This is a significant point, as most cumulus convection

12 Estimating the Human Influence on Tropical Cyclone Intensity as the. . . 247



parameterizations are not developed with extreme precipitation in mind but are tuned
to replicate average precipitation. This can lead to significant errors in convectively
active storms such as tropical cyclones (Wehner et al. 2014).

Models specifically developed for forecasting, such as WRF, are usually enabled
to produce ensemble forecasts. As mentioned above, the microscopic perturbations
typically used to generate independent realizations of multi-decadal climate simula-
tions are not large enough to produce the significant spread of ensemble members
necessary to quantify forecast uncertainty. WRF is equipped with the Stochastic
Kinetic Energy Backscatter Scheme (SKEBS) (Shutts 2005), which represents the
uncertainty from interactions with unresolved scales by introducing temporally and
spatially correlated perturbations to the rotational wind components and potential
temperature.

Another potential advantage of using regional over global models is that the
constraints provided by the lateral boundary conditions may control the path the
hindcasted storm takes. Because the prescribed lateral boundary conditions in a
hindcast incorporate the actual LSMP as observed (and as represented by the
reanalysis), simulated tropical cyclone tracks are more likely to resemble the actual
storm track than in a hindcast with a global model unconstrained in this manner.
Similarly, we would expect that a forecast would not be as accurate as a hindcast
initialized at the same time, as the LSMP would also be subject to forecast errors.

Simulated anthropogenic tropical cyclone intensity response tends to be domi-
nated by changes in the thermodynamic variables (humidity, temperature,
geopotential height) applied to the initial and boundary conditions, rather than the
dynamical variables (wind vectors), which are more likely to alter the simulated
storm track. Hence, construction of counterfactual hindcasts may be made more
likely to succeed in difficult cases in being “fit for purpose” by altering only the
thermodynamic variables in the initial and boundary conditions.

Patricola and Wehner (2018) have undertaken a hindcast attribution study using
WRF of 15 different tropical cyclones focusing on the effect of future climate
changes on counterfactual equivalent storms. The response of Super Typhoon
Haiyan to warming is quite different in WRF than in VR-CAM5, as discussed
above, and illustrates the need to understand the structural uncertainty in attribution
statements due to model differences. In the WRF study, horizontal resolution was set
to 4.5 km and initial and boundary conditions were obtained from the National
Centers for Environmental Prediction Climate Forecast System Reanalysis (NCEP-
CFSR) (Saha et al. 2010). Similar to the VR-CAM5 case study, the SSTs are
obtained from the NOAA-OI dataset (Reynolds et al. 2007) except that they vary
daily throughout the hindcast. In this WRF case study, the perturbations are chosen
from future simulations using the Community Earth System Model’s (CESM)
contribution to CMIP5. This variation on the hindcast method is in the spirit of the
original pseudo-global warming ideas of Schär et al. (1996) and may be useful in
interpreting projections of future extreme weather. For instance, by applying pertur-
bations characteristic of a warmer climate to storms that had a known impact,
decision makers can more readily construct adaptation plans specific to their needs
and past experience (private communication, Anna Roche, San Francisco Public
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Utilities Commission, 2017). The left panel of Fig. 12.5 shows Super Typhoon
Haiyan’s observed track, together with a ten-member ensemble of storm tracks under
the actual conditions at the time of Haiyan, while the right panel shows the ensemble
mean tracks under the actual conditions and three different end of twenty-first
century warming scenarios. Observations of Haiyan are from IBTrACS (Knapp
et al. 2010). There is a slight difference between the actual and future tracks, but
the three sets of future ensemble mean storm tracks are remarkably similar.

Figure 12.6 shows Super Typhoon Haiyan’s instantaneous maximum wind
speeds (left panel) and central pressure minima (right panel) as simulated by WRF
under actual and warmer conditions. Unlike the simulations from VR-CAM5, WRF

Fig. 12.5 Observed (black) and WRF simulated Super Typhoon Haiyan storm tracks. Left panel:
Individual (blue dash) and ensemble mean (blue solid) under actual November 2013 conditions.
Right panel: Observed track (black) and ten-member ensemble mean under actual conditions (blue)
and RCP4.5 (cyan), RCP6.0 (red), and RCP8.5 (magenta) future (2080–2100) conditions

Fig. 12.6 The observed (black) and ten-member ensemble mean of WRF simulated intensities of
Super Typhoon Haiyan under actual (blue) and RCP4.5 (cyan), RCP6.0 (red), and RCP8.5
(magenta) future (2080–2100) conditions. Left panel. Instantaneous maximum wind speed
(knots). Right panel. Instantaneous minimum central pressure (mb)
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produces more intense hindcasts of Haiyan in warmer climates. Such a striking
difference between model behaviors, including the sign of the change in storm
intensity, illustrates that model structural uncertainty in attributing the human influ-
ence on intense tropical cyclones can be large. Possible explanations could be in
differences in the response of the tropical tropopause height. Due to the warming of
the lower and middle troposphere mentioned above, thermal expansion raises the
height of the tropical tropopause resulting in a cooling at this now elevated boundary
(Santer et al. 2003). Our WRF configuration features higher vertical resolution in this
region than does VR-CAM5. Tropical tropopause height variations are known to
modulate maximum potential winds (Wing et al. 2015) and global models may not
replicate observed trends in the associated temperatures (Emanuel et al. 2013). While
further discussion of this particular issue is outside the scope of this chapter, these
differences highlight the necessity of performing hindcast attribution with many
different models to construct confident attribution statements.

These first two case studies illustrate that different models can lead to different
attribution statements, clearly illustrating the important role of expert judgment.
While it is entirely possible that certain models might always respond to warming
by intensifying tropical cyclones (or the opposite), experience with one of these
models (WRF) suggests that the model response can be storm dependent. Both the
Japanese group and ourselves using similar approaches with the WRF model have
found a mix of both increases and decreases in tropical cyclone intensity across a
variety of storms (Ito et al. 2016; Takemi et al. 2016; Patricola and Wehner 2018).
Given any clear reason at this time to reject either analysis of Super Typhoon Haiyan
in these two case studies, our expert judgment is that it is unclear whether climate
change had any effect on its intensity.

12.3.3 Case Study 3: Failure Modes

There are multiple ways for the hindcast methodology to fail to provide simulations
that can be useful in making confident attribution statements, even if the hindcast
model can be expected to produce hurricane-force winds. For instance, some storms
such as Hurricane Irma in 2017 exhibit rapid intensification, a storm behavior that is
notoriously difficult to reproduce (Rappaport et al. 2009; Kaplan et al. 2010). Other
storms exhibit complex track behavior, such as Hurricane Harvey, also in 2017,
which stalled just after landfall. In such cases, initialization may have to be moved
up closer to the time of interest. The risk in doing so is that the simulated storm may
not properly adjust to the model configuration, contaminating the result. Another,
somewhat typical failure mode is that, while the simulation of the tropical cyclone
under actual conditions may be acceptable, the perturbation from an altered climate

250 M. F. Wehner et al.



may be large enough to cause the counterfactual storms to be too dissimilar to the
actual storm for a legitimate comparison. For instance, the Cape Verde-type Hurri-
cane Floyd made landfall in September 1999, at the southeastern part of North
Carolina, and is simulated by WRF reasonably well as seen in Fig. 12.7. Perturba-
tions from the modest warmings of end of century RCP4.5 and RCP6.0 conditions
result in counterfactual storms that similarly skim the coastline and retain a substan-
tial fraction of the storms’ areas over the coastal Atlantic. However, perturbations
from the warmer climate of the end of century RCP8.5 cause a significant track shift,
with landfall occurring substantially farther south in WRF simulations as shown by
the pink track in Fig. 12.6. Furthermore, rather than tracking inland, this counter-
factual version of Floyd penetrates much further inland. As this counterfactual storm
is substantially different than the actual simulated storm, these simulations are
judged to not be fit for purpose, at least for this magnitude of warming. It is important
to stress that in all usage of the hindcast attribution method, whether for assessing the
influence of both past or future climate change on a tropical cyclone, that expert
judgment is an important part of the process and that the appropriate rationale for
accepting simulations be part of the caveats in the attribution statements.

Fig. 12.7 The observed (black) and ten-member ensemble mean of WRF simulated Hurricane
Floyd storm tracks under actual (blue) and RCP4.5 (cyan), RCP6.0 (red), and RCP8.5 (magenta)
future (2080–2100) conditions. Observations are from the Revised Hurricane Database
(HURDAT2, Landsea et al. 2004; Landsea and Franklin 2013)
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12.4 Discussion

We present a hierarchy of event attribution methodologies that are designed for
different purposes. The seminal study of Stott et al. (2004) used fully coupled
models to analyze heat waves, phenomena that occur frequently enough to enable
the usage of existing databases such as the Coupled Model Intercomparison Project
(CMIP5). Pall et al. (2011) extended the methodology to encompass events that were
strongly driven by the state of the ocean by utilizing atmosphere-only models where
the ocean is prescribed rather than prognostic. Customized multi-year ensembles of
such simulations also enable some separation of anthropogenic and natural influ-
ences on individual extreme events. However, to attribute the human influence on
individual tropical cyclones, if any, requires another revision: the use of sufficient
model resolution to represent TC structure and intensity and the imposition of
appropriate large-scale environmental conditions necessary to initiate and propagate
cyclogenesis.

The hindcast attribution method may or may not be “fit for purpose” to attribute
the human influence on a specific aspect of an individual tropical cyclone. A
necessary but not sufficient condition is that the model used must be high-resolution
enough to be able to simulate the storm at a credible intensity. Furthermore, the
storm track must be robust to perturbations, both the small ones used to generate a
credible spread in each ensemble and the large one that defines the counterfactual
“world that might have been” had humans not impacted the climate system. In the
case studies presented here, the fit for purpose decision was based only on expert
judgment of the simulated track locations and timings compared to observations.
Additional criteria may also be used, including the quality of simulated wind speeds
and pressure minima or precipitation amounts. These could pose very stringent
criteria in some cases, particularly those that involve rapid intensification. Despite
the limitations on this hindcast or pseudo- global warming approach, other authors,
in addition to ourselves, are proceeding to apply it to gain insight into tropical
cyclone attributions and projections (Takayabu et al. 2015; Ito et al. 2016; Takemi
et al. 2016). We fully expect the method to become a part of the standard analysis of
the effects climate change on tropical cyclones.

Any attribution statement made using this “hindcast” attribution method comes
with a number of conditions. Besides the conditionality on atmospheric composition
changes and the state of the ocean, such statements are also conditional on the
prescribed large-scale circulation. This then limits the interpretation of causality. No
statement about the change in probability due to changes in characteristics and
frequency of coupled atmosphere-ocean climate modes (e.g., Patricola et al. 2014,
2016, 2017) and large-scale circulation can be made with the hindcast attribution
method. However, we make note that this is only a further restriction on previous
work, as Pall’s 2011 revised methodology makes no attribution statement about the
change in the ocean state either. Arguably, the conditional aspects of attribution
statements made with this method could be quantified. For the conditions are
principally on the LSMPs responsible for cyclogenesis and/or intensification
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which is further influenced by the pattern and magnitude of changes in the ocean
state. Vautard et al. (2016) present a methodology to separate non-local dynamical
and local thermodynamic anthropogenic changes to extreme events which could
likely be extended to the hindcast attribution method for tropical cyclones
presented here.

We note that atmosphere-ocean interactions are a critical process missing from
the models described here. For the strongest tropical cyclones, especially those with
a cold wake trailing behind them, atmosphere-only models would tend to simulate
storms of stronger intensity than they should. This could be important in
constructing attribution statements if changes in intensity due to anthropogenic
warming affect this heat exchange process. Any effect would vary greatly according
to the depth of the ocean mixed layer during the passage of the tropical cyclone at its
highest intensities. Hence, it would be valuable to further develop this hindcast
methodology to include the atmosphere-ocean interactions known to influence
tropical cyclone intensity (Huang et al. 2015; Zarzycki 2016). In particular, replacing
the infinite heat capacity ocean implied by prescribed SST conditions with a mixed
layer ocean model offers a promising, computationally tractable compromise (pri-
vate communication, John Chiang, UC-Berkeley, 2018).

Causality is a complex philosophical topic. Attribution statements using the
hindcast methodology make no statement about possible changes in cyclogenesis
rates. High-resolution multidecadal climate model simulations (Oouchi et al. 2006;
Zhao et al. 2009; Sugi et al. 2009; Murakami and Sugi 2010; Held and Zhao 2011;
Murakami et al. 2012; Zhao et al. 2013; Wehner et al. 2015, 2018b; Walsh et al.
2015, Bacmeister et al. 2018) often project an increase in intense tropical cyclone
frequency and magnitude but a decrease in weaker tropical storm frequency as the
climate system warms. Folding such information into a more comprehensive attri-
bution statement has not yet been done, partly due to a lack of consensus on the
magnitude of these changes. Nonetheless, attribution statements from the hindcast
methodology, subject to the conditions described, can be interpreted in a strict Pearl
causality sense (Pearl 2000; Hannart et al. 2016). Pearl causality involves an
intervention in an experiment to isolate a single causal element. For instance, in a
clinical trial, one test group might receive an experimental treatment while the other
would receive a placebo. Similarly, we isolate the causal influence of anthropogenic
climate change on a tropical cyclone by comparing simulations of the actual world
with the counterfactual world without human changes to the composition of the
atmosphere. In the clinical trial, both the treated and untreated groups would
typically have been screened for some risk factor for an ailment. Similarly, in the
hindcast attribution method presented in this chapter, both ensembles of simulations
are subject to similar LSMPs and cyclogenesis conditions.

Formal extreme event attribution statements generally fall into two distinct but
related categories (Pall et al. 2014; Easterling et al. 2016; Stott et al. 2016). A
“probabilistic” interpretation quantifies the change in probability of an extreme
weather event occurring above a fixed magnitude, usually determined by an obser-
vation. A “mechanistic” interpretation quantifies the change in magnitude of an
extreme weather event at a fixed probability, also estimated from a long
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observational record. The probabilistic interpretation of tropical cyclone attribution
is only modified by the additional conditions imposed by the construction of the
hindcast. However, the mechanistic interpretation requires a subtle modification in
the hindcast attribution method. In the two less conditional attribution methods, large
samples of events, many of which are not extreme, are generated. Hence, using a
fixed probability threshold to subsample only the extreme events permits a mecha-
nistic attribution statement relevant to the actual observed event. However, by
design, all the events simulated in the hindcast attribution method are extreme, at
least compared to a climatological sample at the same time and place. In other words,
the hindcast samples are constructed to be representative of the observed event, and
comparing mean magnitudes of the factual and counterfactual ensembles form the
relevant mechanistic attribution statement.

For tropical cyclones, attributable quantities of interest include peak wind speeds,
precipitation totals or rates, Accumulated Cyclonic Energy, storm surge, and other
measures important to impacts. Some fields, most notably inland precipitation, have
long observational records, and a different class of attribution statements without the
use of climate models may be feasible. For instance, Risser and Wehner (2017) and
Van Oldenbourgh et al. (2017) both analyzed lengthy time series from Texas rain
gauges in the region flooded by Hurricane Harvey. By applying non-stationary
extreme value statistical methods, both groups could estimate the trend in extreme
precipitation and made attribution statements that anthropogenic climate change
increased the observed rainfall accumulated over several days in the Houston area.
However, unlike the hindcast attribution method that uses dynamical models, this
class of analysis has no direct intervention as described above. Hence, attribution
statements based only on the observational record are causality statements interpret-
able in the Granger sense (Granger 1969; Ebert-Uphoff and Deng 2012). This type of
causality can explicitly rule out a cause but not directly confirm a particular cause, as
there may be other hidden causes not included in the covariates used to develop the
non-stationary statistical model. However, it does have the advantage of being
readily calculable from available observations and is ideally suited for real-time
attribution, albeit producing weaker statements by construction. In the case of
Hurricane Harvey, a subsequent hindcast attribution, similar to that presented
above, found human induced precipitation changes consistent with these two solely
observational analyses (Wang et al. 2018). Readers interested in Granger attribution
are referred to Hannart et al. (2016) and Ebert-Uphoff and Deng (2012) for further
details on causal theory and attribution of human induced climate change.

Another alternative method to construct attribution statements about tropical
cyclone precipitation has been put forth by Emanuel (2017). This strategy uses a
specialized tropical cyclone model that “seeds” the output of coarser global climate
models. It has the advantage of being computationally inexpensive and can more easily
explore climate model structural uncertainty such as exhibited by the CMIP ensem-
bles. In the case of Hurricane Harvey precipitation, it provided another independent
assessment of the human influence on the storm’s precipitation, enhancing confidence
in the results of Van Oldenborgh et al. (2017) and Risser and Wehner (2017).
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Any attribution statement is incomplete without a quantification of its uncertainty.
Attribution statements about intense storms such as tropical cyclones are likely to
contain more sources of uncertainty than for other types of extreme weather. In
particular, the dependence of the attribution statement on the selection of hindcast
models should be made clear. Results from multiple hindcast models can increase or
decrease attribution statement confidence depending on the consistency of the
results. Also, in some cases, the additional usage of statistical techniques based
purely on observations can increase confidence in attribution statements developed
from the hindcast technique.

We conclude by stating that, while the hindcast attribution method presented here
cannot provide a complete description of the human influence on individual tropical
cyclones, it does provide a conditional description that can provide valuable insight
into how climate change affects those aspects of tropical cyclones that cause
damages.
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