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Abstract. We present a study on automated analysis of phase diagrams
that attempts to lay the groundwork for a large-scale, indexable, digitized
database of phases at different thermodynamic conditions and compo-
sitions for a wide variety of materials. For this work, we concentrate
on approximately 80 thermodynamic phase diagrams of binary metallic
alloy systems which give phase information of multi-component systems
at varied temperatures and mixture ratios. We use image processing tech-
niques to isolate phase boundaries and subsequently extract areas of the
same phase. Simultaneously, document analysis techniques are employed
to recognize and group the text used to label the phases; text present
along the axes is identified so as to map image coordinates (x, y) to phys-
ical coordinates. Labels of unlabeled phases are inferred using standard
rules. Once a phase diagram is thus digitized we are able to providethe
phase of all materials present in our database at any given temperature
and alloy mixture ratio. Using the digitized data, more complex queries
may also be supported in the future. We evaluate our system by measur-
ing the correctness of labeling of phase regions and obtain an accuracy of
about 94%. Our work was then used to detect eutectic points and angles
on the contour graphs which are important for some material design
strategies, which aided in identifying 38 previously unexplored metal-
lic glass forming compounds - an active topic of research in materials
sciences.

1 Introduction

Traditionally, document based information retrieval systems have focused on
using data from text and, to a lesser extent, from images. They do not extract,
analyze or index the content in document graphics (non-pictorial images in arti-
cles). Scientific documents often present important information via graphics and
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little work has been done in the document analysis community to address this
gap. The graphics present in documents are predominantly in the form of line,
scatter plots, bar charts, etc. [1]. Most current techniques for interacting with
graphics in documents involve user provided metadata. Information graphics are
a valuable knowledge resource that should be retrievable from a digital library
and graphics should be taken into account when summarizing a multimodal
document for indexing and retrieval [2]. Automated analysis of graphics in doc-
uments can facilitate comprehensive document image analysis, and the informa-
tion gathered can support the evidence obtained from the text data and allow for
inferences and analysis that would not have otherwise been possible [3]. In this
work, the primary focus is on analyzing and interpreting information contained
in phase diagrams which are critical for design within the Materials Science and
Engineering community.

Phase diagrams serve as a mapping of phase stability in the context of extrin-
sic variables such as chemical composition with respect to temperature and/or
pressure and therefore provide the equilibrium phase compositions and ratios
under variable thermodynamic conditions. The geometrical characteristics of
phase diagrams, including the shape of phase boundaries and positions of phase
boundary junctions have fundamental thermodynamic origins. Hence they serve
as a visual signature of the nature of thermo-chemical properties of alloys. The
design of alloys for instance, relies on inspection of many such documented phase
diagrams and this is usually a manual process. Our objective is to develop an
automated document recognition tool that can process large quantities of phase
diagrams in order to support user queries which, in turn, facilitate the simulta-
neous screening of a large number of materials without loss of information.

Further, from the phase diagram images, we readily identify specific types
of phase boundary junctions, known as ‘eutectic points’. We have used this test
case to show that we can characterize the shape of eutectic points, and provide
a meaning to the term ‘deep eutectic’. Deep eutectics are known to be critical
for the formation of metallic glasses (i.e. metallic systems without crystalline
order), although previously no clear meaning of deep eutectic had been defined
in terms of identifying new compounds [4].

Phase diagrams need specific attention primarily because of the way the infor-
mation is embedded into the diagram. The lines in a phase diagram are not of a
continuously changing value like in a line plot, but instead represent a boundary.
A phase diagram cannot be expressed by a simple table like most line plots, bar
charts etc. Further, text can appear in different orientations and subsequently
associating the text with the phase regions (and sometimes vertical lines) is an
added complexity that is non-trivial and essential to the final interpretation by
materials science domain experts. These characteristics underline the necessity
for having a targeted approach to handling this particular class of diagrams.

For our study, we randomly select a small subset of phase diagrams of binary
metallic alloy systems where the X-axis is molar fraction percentage and the Y
axis is temperature. The goal of our study is to create a database, where given
a temperature value and molar fraction percentage for a particular alloy, the
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Fig. 1. A typical phase diagram with labeled boundaries.

database returns the phases of the alloy. A typical phase diagram is shown in
Fig. 1. Since there are potentially infinite real-valued query points, we evaluate
our system on how correctly an entire phase region, i.e., the set of all possible
points with the same phase, is labeled.

The rest of the paper is organized as follows: Sect. 2 provides an overview
of the related work done for understanding information graphics. Section 3
describes phase diagrams and Sects. 4 through 6 discuss the proposed approach,
followed by details of the evaluation metrics and a discussion in Sect. 7.

2 Background

Although graphics analysis and understanding of a variety of diagrams has been
addressed in the literature, to the best of our knowledge, no prior work has
tackled the problem of analyzing and understanding classes of diagrams with
complex semantic interpretation such as phase diagrams. The purpose of graph-
ics in most cases is to display data, including the ones in popular media and
research documents. Specifically, in research documents, they serve the purpose
of pictorially comparing performance of multiple approaches, and offering objec-
tive evaluations of the method proposed in the manuscript. In this section, we
discuss some prior work in graphics analysis and understanding. We are primarily
interested in analyzing the structure of the graphic and analyzing it to interpret
the information present in it. A survey of some of the earliest work in the field
of diagram recognition is mentioned in [5], where they discuss the challenges of
handling different types of diagrams, the complexity in representing the syntax
and semantics, and handling noise. Noise in the graphic makes data extraction
difficult, as the data points can be close and hence can be skewed or intersecting.
Shahab et al. [6] presented the different techniques that were used to solve the
problem of detecting and recognizing text from complex images. Relevant infor-
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mation include understanding the axis labels, legend and the values the plots
represent.

Attempts at graphics understanding from scientific plots can be seen in [1,
7] targeting bar charts, and simple line plots [3,8,9]. An understanding of the
information required to be extracted is a key component in disambiguating the
relevant section of a graphic, and [8] tackles the extraction of relevant information
from line plots which are one of the more commonly used information graphics
in a research setting. Additionally, in [3] the authors propose a method using
hough transform and heuristics to identify the axis lines. The rules include the
relative position between axis lines, the location of axis lines in a 2-D plot, and
the relative length of axis lines in a 2-D plot. The textual information that is
embedded into the graphics, such as axes labels and legends, in line plots and
bar charts, is also crucial to understanding the graphics. Connected components
and boundary/perimeter features [10] have been used to characterize document
blocks. [11] discusses methods to extract numerical information in charts. They
use a 3 step algorithm to detect text in an image using connected components,
detect text lines using hough transform [12], and inter-character distance and
character size to identify final text strings followed by Tesseract OCR [13] for
text recognition. Color (HSV) based features have also been used to separate
plot lines and text/axes [14] for interpretation of line plots that use color to
discriminate lines. This study reports results on about 100 plots classified as
‘easy’ by the authors. They also use a color-based text pixel extraction scheme
where the text is present only outside the axes and in the legend.

Fig. 2. Example of a challenging phase diagram.

Once the relevant data has been extracted, the next logical step is in con-
necting them in a coherent manner to interpret the information contained in the
chart. [15] discusses the importance of communicative signals, which are informa-
tion that can be used to interpret bar charts. Some of the signals of interest that
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represent the information from the graphic include annotations, effort, words
in caption, and highlighted components. Allen et. al [16], in one of the earliest
works in the area developed a system for deducing the intended meaning of an
indirect speech act. In [9], a similar idea is used in understanding line plots by
breaking down each line plot into trends and representing each trend by a mes-
sage. These constituent trend level messages are combined to obtain a holistic
message for the line plot.

While phase diagrams belong broadly to the class of plots, they require spe-
cial treatment due to the complex embedding of information into these diagrams,
as explained in the next section. The contour nature of the plot, complex text
placement with semantic import, and challenging locations and orientations cou-
pled with the optional presence of other graphic symbols such as arrows that are
vital for semantic interpretation of the figure, justify a dedicated exploration of
such complex diagrams.

3 Phase Diagrams

Phase diagrams are graphs that are used to show the physical conditions (tem-
perature, pressure, composition) at which thermodynamically distinct phases
occur and coexist in materials of interest [17]. A common component in phase
diagrams is lines which denote the physical conditions in which two or more
phases coexist in equilibrium - these are known as phase boundaries. The X and
Y axes of a phase diagram typically denote a physical quantity such as temper-
ature, pressure and, in the case of alloys or mixtures, the ratio of components
by weight or by molar fraction. As stated earlier, we focus on phase diagrams of
binary metal alloys where the X-axis is molar fraction percentage and the Y axis
is temperature. In Fig. 1, the blue lines within the plot denote the phase bound-
aries. All points bounded by a phase boundary represent physical conditions at
which the material of interest, in this case an alloy of silver and zinc, occurs
in the same phase. The name or label of this phase, for example α in Fig. 1,
is typically present somewhere within the phase boundary. The various Greek
letters present in the phase diagram represent different types of solid phases (i.e.
crystal structures). Positioning within a phase defines the ratio of the different
phases, as well as the composition of the phases. All of these characteristics
heavily impact the material properties.

We can observe that there are several regions that are unlabeled. These
regions represent multi-phase regions and the phases that constitute this mixture
are obtained by using the phase labels of the regions to the left and right of the
unlabeled region. Additionally, as shown in Fig. 2, in several phase diagrams,
labels are sometimes provided to the phase boundary instead of the region.
These cases represent intermetallic compositions (ie. the labeled phase exists
only at that one composition, thus explaining the vertical line which is labeled).
In such cases, the same rule to infer phase labels holds true except we would be
using a vertical line on the left or on the right to obtain one of the two phase
labels.
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4 Overview of Our Approach

From a document analysis perspective, a phase diagram can be seen to consist
mainly of alphanumeric text, often with accompanying Greek characters, in ver-
tical and horizontal orientations; bounded regions of uniform phase within the
plot; and descriptions of axes and numerical quantities along the axes. As can be
seen in Fig. 2, narrow and small phase regions, presence of arrows, text located
very close to phase boundaries and different orientations pose steep challenges
to the automated analysis. The key steps in automated phase diagram analysis
are listed below and will be elaborated in the sections that follow:

– detection and recognition of text used to label phases
– extraction of regions of uniform phases
– association of each phase region to appropriate labels
– detection and recognition of axes text in order to convert image coordinates

to physical coordinates and detect elements of the binary alloy

5 Identifying Text and Phase Regions

The phase diagram images that we have considered in this study were obtained
from a single source - the Computational Phase Diagram Database [18] from the
National Institute of Materials Science, so that the phase labeling, and plot and
image styling are consistent. We gathered about 80 different phase diagrams of
binary alloys consisting of a number of common transition metals and main group
metals. Each image was preprocessed by Otsu thresholding [19] and inverting it,
so that background pixels are off and foreground pixels are on. We then extracted
contours using the border following algorithm proposed by Suzuki and Abe [20].
The largest contour extracted corresponds to the box that defines the axes and
the plot. The contours are then divided into plot (inside the largest contour),
and non-plot (outside the largest contour). Plot and non-plot contours were
manually annotated using an in-house annotation tool and a database of about
720 phase region contours and about 7100 text region contours were created.
This database was divided into a training and validation set in the ratio 4 : 1.
We then extracted the following features from the contours:

– Unit normalized coordinates of the contour bounding box
– Bounding box area normalized with respect to image area
– Contour area normalized with respect to area of image
– Convex hull area normalized with respect to area of image
– Ratio of contour area to convex hull area
– Ratio of contour area to bounding box area
– Ratio of convex area to bounding box area
– Contour perimeter normalized with respect to image perimeter
– Orientation, Eccentricity of contour
– Hu invariant moments
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The features are designed so as to normalize the effect of large size disparity
between phase regions and text regions. Orientation and eccentricity are com-
puted using first and second order image moments of the contour. Hu invariant
moments [21] are seven image moments that are invariant to rotation, transla-
tion, scale and skew. They are commonly used in object recognition and seg-
mentation [22,23].

Table 1. Confusion matrix for contour classification

% Phase Text

Phase 97.60 2.40

Text 0.15 99.85

Fig. 3. Classification of text (red) and phase (blue) contours. Best viewed in color.
(Color figure online)

The feature vector extracted from the contour has a dimensionality of 20.
Features are extracted from training contours and a gradient boosted tree-based
classifier is trained to classify between phase contours and text contours. We
choose this classifier as we found it to be the most robust to our unbalanced
data among other classifiers such as support vector machine (SVM), random
forests and neural networks. The number of estimators was chosen to be 1000
and the maximum depth of each tree was fixed at 10 after a grid search. The
performance of the trained classifier is evaluated on the validation set. Table 1
shows the confusion matrix obtained after evaluation. We can see that our model
is quite proficient at classifying phase and text contours. Figure 3 shows the
classification of text and phase contours in one of our phase diagram images.
The text contours are marked in red and phase contours are marked blue.
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6 Mapping Regions to Labels

After classification of all contours into non-phase and phase, we concentrate on
grouping the text contours into words and recognizing the text, so that these
word labels can then be mapped to the appropriate phase contours.

6.1 Segmenting Text into Words

As a first step, all text contours that are fully contained within another text
contour are eliminated. Then, we sort all of the plot text contours in increasing
order of y-coordinate of the centroid cy. A text contour i, whose centroid y-
coordinate cyi value is within a certain threshold H1

t from the previous contour
i − 1 is grouped together as belonging to the same line. Otherwise, it becomes
the start of a new line. Once the text contours are grouped into lines, we sort
text contours in a single line by the increasing order of x-coordinates of their
centroid cx. A text contour i is grouped together as belonging to the same word
as the previous contour i − 1 if their centroid x-coordinates differ by a value of
H2

t , otherwise it becomes the start of a new word. We fixed the values of H1
t

as hmean, the average height of all text contour bounding boxes within the plot
and H2

t as 1.5 × wmean, the average width of text contour bounding boxes in
that particular line.

Using this method of line and word grouping works well for horizontally
oriented text, however vertically aligned text are still left as isolated contours. In
order to group vertical text, we repeat the procedure described above, except we
group the text contours by x-coordinate of centroids to obtain vertical text lines
and switch to grouping by y-coordinate of centroids to obtain vertical words in
each line. We use a different set of thresholds, V 1

t and V 2
t respectively. We chose

Fig. 4. Grouping of text into vertical (red) and horizontal (blue) words. Best viewed
in color. (Color figure online)
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the values of V 1
t as wmean, the average width of all isolated text contour bounding

boxes and V 2
t as 1.5×hmean, the average height of text contour bounding boxes

in that particular vertical line.
Some single character text or contours that contain many characters may be

left isolated and not grouped into horizontal or vertical lines. These contours
are marked as ambiguous. The ambiguity is resolved by rotating the contours
90◦ in both clockwise and anti-clockwise directions and attempting to recognize
the text in all three configurations. The configuration that yields the highest
confidence is selected as the right orientation for these contours. Once the correct
orientation of all contours is known, we perform OCR on all the words by using
the orientation information. For vertically aligned text, we flip the word about
the Y-axis, and compare recognition confidence in both directions to finalize the
orientation. Figure 4 shows the grouping and orientation of plot text contours
of the phase diagram in Fig. 3. Recognition is performed using the Tesseract
library [13].

6.2 Detection of Arrows

Since the phase label for phase regions that are small in area cannot be placed
within the region, they are usually displayed elsewhere and an arrow is used
to indicate the region or line for the phase association. It is therefore neces-
sary to identify arrows in order to accurately match these text contours to the
corresponding phase contour. Arrows occur frequently in our dataset and are
vital for correct interpretation of the phase diagram as can be seen in Fig. 2.
We use a Hough line detector to detect arrows. Since the length of arrows varies
in our dataset, we tune the Hough line detector to detect short line segments.
Collinear and overlapping line segments are merged to yield the list of arrows in
the image. The arrow direction is determined by comparing the center of mass
of the arrow and its geometric midpoint. Due to more pixels located at the head
of the arrow, we expect the center of mass to be between the head and the mid-
point. For every arrow, we find the word region closest to the tail and the phase
contour or vertical line closest to the head and these are stored as matched pairs.
Figure 5 shows an example of successful arrow detection and corresponding text
box association.

6.3 Completing the Mapping

Once the text within the plot is grouped and recognized and the arrows in the
image have been dealt with, we proceed to associate the rest of the text labels
to the appropriate phase regions and boundary lines. Vertical words are mapped
to the nearest unlabeled vertical line by measuring the perpendicular distance
between the centroid of the word bounding box and the line. After this, we match
phase regions to horizontal text labels by finding the text bounding boxes that
are fully contained within the phase region. We resolve conflicts, if any, by giving
priority to text labels whose centroid is closest to that of the phase region. Labels
for unlabeled phase contours are inferred using the rules described in Sect. 3.
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Fig. 5. Arrow detection and corresponding text box association. Best viewed in color.
(Color figure online)

Fig. 6. Extraction of phase contours. Best viewed in color. (Color figure online)

6.4 Handling Text in the Axes

Text grouping, recognition and orientation determination is performed for text
contours outside the plot boundary using the same procedure described in Sect. 6.
The text regions to the left of the plot box closest to the top-left and bottom left
corners are identified and recognized. Using the vertical distance between these
two regions as well as the recognized numerals we can easily compute the value
of the temperature that corresponds to the top-left and bottom-left corners of
the plot box. Thus, we are able to translate the image coordinates (x, y) to the
physical coordinates (molefraction, temperature). With this, we will be able to
query any required physical coordinate for any binary alloy, convert it to image
coordinates and find the phase contour which contains this point and return the
label assigned to the contour.



Automated Extraction of Data from Binary Phase Diagrams 13

7 Evaluation and Discussion

Despite designing a system which digitizes a phase diagram and returns the phase
information of any queried point, we choose to eschew the traditional information
retrieval oriented evaluation scheme. Instead, we present our accuracy of phase
contour labeling for both cases - labels present within the phase diagram and
labels that have to be inferred. This is because, in our case, we could potentially
generate an infinite number of real-valued queries within the bounds of the plot
axes and each one would have a corresponding phase label response. Depending
on the kind of points queried we could have precision and recall numbers skewed
to very high or very low accuracy and there would be no guarantee of a fair
evaluation of our system. By measuring the accuracy of phase contour labeling,
we can therefore obtain a comprehensive idea of the efficacy of our system.

(a) Single phase query (b) Mixed phase query

Fig. 7. Demo of our live phase query retrieval system. Best viewed in color. (Color
figure online)

To this end, we have annotated the phase diagrams using the LabelMe anno-
tation tool [24]. Expert annotators provided the text labels for all phase contours
as well as relevant phase boundaries which were used as ground truth and the
accuracy of the labels generated by our algorithm was measured against the
truth. We report our accuracy of phase contour labeling for both cases - labels
present within the phase diagram (94%) and labels that have to be inferred
(88%).

We believe that the results show promise, as seen in Figs. 6 and 3. Our contour
extraction and text classification works well even for varied contour sizes and
shapes. A minimalistic demo application constructed using our methods is shown
in Figs. 7(a) and (b), where we display the transformed physical coordinates as
well as the phase of the material at the cursor position.
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Discovery of Bulk Metallic-Glasses
Aside from the phase information, we also detect ‘eutectic points’ (see Sect. 1),
which are point(s) in a phase diagram indicating the chemical composition and
temperature corresponding to the lowest melting point of a mixture of compo-
nents. These points serve as an important first order signature of alloy chemistries
and are vital for design of ‘metallic-glasses’, a class of material of increasing
interest and importance. The eutectic points can be determined by analyzing
the smoothened contour of the liquid phase, for which both contour separation
and accurate matching of label and region is critical. We also measure the so-
called ‘eutectic angle’ corresponding to each eutectic point which is defined as
the angle formed by the contour lines leading into and out of the eutectic point.
An example is seen in Fig. 8. Blue circles are used to mark the location of eutectic
points and the corresponding angles are shown nearby.

We analyzed a database of binary metallic phase diagrams and quantitatively
defined that a deep eutectic angle is roughly between 0◦ and 75◦. This value was
defined by identifying the design rule which most correctly identified metallic glass
forming compounds. This work therefore allows us to define the ‘deep eutectic’
in terms of a design rule, as opposed to the more general usage of the term to
date. When combined with radii difference scaled by composition (the value along
the X-axis) at the eutectic point, we were able to identify binary metallic systems
that were likely to form metallic glasses. Following this analysis, we identified 6
different binary metallic systems to have a high probability of metallic-glass for-
mation, which were previously unknown. A complete list of 38 different systems,
with exact compositions and temperatures, which were previously unidentified as
glass-forming, uncovered due to our work, are listed in [4].

Fig. 8. Detection of eutectic points and angles in phase diagrams. Best viewed in color.
(Color figure online)
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Conclusion
Given the importance of a digitized phase diagram database to the materials
community at large, we believe that our effort in developing automated tools to
digitize phase diagrams from technical papers is a valuable contribution with sig-
nificant impact. In the future, we would like to create a comprehensive, high reso-
lution database of phase diagrams, and improve label and phase region matching
tasks. We would also like to extend our work to support the detection and storage
of critical points and material parameters which are key in design and manufac-
ture of certain materials. Further, the materials domain is rich in graphs, figures
and tables that contain valuable information, which when combined and collated
into large indexable, digital databases, would help the materials community to
accelerate the discovery of new and exciting materials.
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