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Preface

As in previous editions, the 12th IAPR International Workshop on Graphics Recog-
nition (GREC 2017) was organized by the IAPR TC-10 (Technical Committee on
Graphics Recognition). It took place in November in Kyoto (Japan), just before the
14th International Conference on Document Analysis and Recognition (ICDAR 2017).

As usual, the GREC workshop provided an excellent opportunity for researchers
and practitioners at all levels of experience to meet colleagues and to share new ideas
and knowledge about graphics recognition methods, applied, among others, to engi-
neering drawings, maps, architectural plans, comics, musical scores, mathematical
notation, tables, diagrams, etc. Instead of being a mini-conference, GREC aims for its
unique and creative workshop atmosphere, through highly dynamic interactive and
productive sessions. The workshop enjoyed strong participation from researchers in
both industry and academia.

As in previous editions, the program was organized in a single-track two-day
workshop. It comprised several sessions dedicated to specific topics related to graphics
in document analysis and graphic recognition. Each session began with an introductory
talk by the session chairs, who introduced the topic, stated the current open challenges,
put the presented talks in a more global perspective, and in many cases, highlighted
links and relations between the papers of each session. This introduction was then
followed by short scientific presentations of results or solutions to some of these
questions. Each session was concluded by a panel discussion, which became a highly
interactive debate between the audience and the presenters of the papers.

In this edition, 27 papers were presented, followed by highly interactive discussions.
On the first day, GREC hosted a record-breaking 110 participants. Unlike with other
editions, we also included in the program the IAPR invited talk and the discussion
groups.

The IAPR invited speaker was Prof. Ichiro Fujinaga, Chair of the Music Technology
Area at the Schulich School of Music at McGill University. He has been the acting
director of the Center for Interdisciplinary Research in Music Media and Technology
(CIRMMT) and a faculty member at the Peabody Conservatory of Music at the Johns
Hopkins University. In his talk “A Retrospective on Optical Music Recognition
Research,” he reviewed the progress of optical music recognition (OMR) research from
its inception in the late 1960s to the present. His talk included an overview of the
history of Gamera and other non-commercial software developments, including the
software developed within his research projects at McGill University.

On the first day, Bart Lamiroy also presented the Engineering Drawing Challenge II,
the continuation of the challenge presented at GREC 2015 in Nancy. It included the
presentation of the collection of 800 engineering drawings, available on the Lehigh
University DAE server.

At the end of the first day, we enjoyed discussion groups, where the level of
interaction was very intense and rich. It consisted of small-group discussions on topics



of special interest to attendees. We split up into several groups to discuss graphics
recognition topics, such as structures and relations in the deep learning age, optical
music recognition, how to get over the bottleneck of annotated data for learning
approaches, and the engineering drawing challenge. On the second day, a spokesperson
of each group summarized the results of their discussions to all GREC attendees. Some
of these groups also had volunteers who wrote a short summary report that is included
in this volume.

At the end of the second day, we had the final panel discussion, led by Josep Lladós,
a senior member of our community and one of the former TC10 chairs, who presented
a retrospective of the last 20 years of GREC workshops and his vision concerning the
future of the community.

The current proceedings contain ten reviewed and extended selected papers, the
Engineering Drawing Challenge II, several reports summarizing the discussion groups,
and the final panel discussion.

The GREC organizers would like to thank all participants for the highly interactive
GREC workshop, with many fruitful discussions on graphics recognition topics.

August 2018 Alicia Fornés
Bart Lamiroy
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Analysis and Detection of Diagrams



Automated Extraction of Data from
Binary Phase Diagrams for Discovery of

Metallic Glasses

Bhargava Urala Kota1(B), Rathin Radhakrishnan Nair1, Srirangaraj Setlur1,
Aparajita Dasgupta2, Scott Broderick2, Venu Govindaraju1,

and Krishna Rajan2

1 Department of Computer Science and Engineering, University at Buffalo,
State University of New York, Buffalo, NY, USA

{buralako,rathinra,setlur,govind}@buffalo.edu
2 Department of Materials Design and Innovation, University at Buffalo,

State University of New York, Buffalo, NY, USA
{adasgupt,scottbro,krajan3}@buffalo.edu

Abstract. We present a study on automated analysis of phase diagrams
that attempts to lay the groundwork for a large-scale, indexable, digitized
database of phases at different thermodynamic conditions and compo-
sitions for a wide variety of materials. For this work, we concentrate
on approximately 80 thermodynamic phase diagrams of binary metallic
alloy systems which give phase information of multi-component systems
at varied temperatures and mixture ratios. We use image processing tech-
niques to isolate phase boundaries and subsequently extract areas of the
same phase. Simultaneously, document analysis techniques are employed
to recognize and group the text used to label the phases; text present
along the axes is identified so as to map image coordinates (x, y) to phys-
ical coordinates. Labels of unlabeled phases are inferred using standard
rules. Once a phase diagram is thus digitized we are able to providethe
phase of all materials present in our database at any given temperature
and alloy mixture ratio. Using the digitized data, more complex queries
may also be supported in the future. We evaluate our system by measur-
ing the correctness of labeling of phase regions and obtain an accuracy of
about 94%. Our work was then used to detect eutectic points and angles
on the contour graphs which are important for some material design
strategies, which aided in identifying 38 previously unexplored metal-
lic glass forming compounds - an active topic of research in materials
sciences.

1 Introduction

Traditionally, document based information retrieval systems have focused on
using data from text and, to a lesser extent, from images. They do not extract,
analyze or index the content in document graphics (non-pictorial images in arti-
cles). Scientific documents often present important information via graphics and
c© Springer Nature Switzerland AG 2018
A. Fornés and B. Lamiroy (Eds.): GREC 2017, LNCS 11009, pp. 3–16, 2018.
https://doi.org/10.1007/978-3-030-02284-6_1
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4 B. Urala Kota et al.

little work has been done in the document analysis community to address this
gap. The graphics present in documents are predominantly in the form of line,
scatter plots, bar charts, etc. [1]. Most current techniques for interacting with
graphics in documents involve user provided metadata. Information graphics are
a valuable knowledge resource that should be retrievable from a digital library
and graphics should be taken into account when summarizing a multimodal
document for indexing and retrieval [2]. Automated analysis of graphics in doc-
uments can facilitate comprehensive document image analysis, and the informa-
tion gathered can support the evidence obtained from the text data and allow for
inferences and analysis that would not have otherwise been possible [3]. In this
work, the primary focus is on analyzing and interpreting information contained
in phase diagrams which are critical for design within the Materials Science and
Engineering community.

Phase diagrams serve as a mapping of phase stability in the context of extrin-
sic variables such as chemical composition with respect to temperature and/or
pressure and therefore provide the equilibrium phase compositions and ratios
under variable thermodynamic conditions. The geometrical characteristics of
phase diagrams, including the shape of phase boundaries and positions of phase
boundary junctions have fundamental thermodynamic origins. Hence they serve
as a visual signature of the nature of thermo-chemical properties of alloys. The
design of alloys for instance, relies on inspection of many such documented phase
diagrams and this is usually a manual process. Our objective is to develop an
automated document recognition tool that can process large quantities of phase
diagrams in order to support user queries which, in turn, facilitate the simulta-
neous screening of a large number of materials without loss of information.

Further, from the phase diagram images, we readily identify specific types
of phase boundary junctions, known as ‘eutectic points’. We have used this test
case to show that we can characterize the shape of eutectic points, and provide
a meaning to the term ‘deep eutectic’. Deep eutectics are known to be critical
for the formation of metallic glasses (i.e. metallic systems without crystalline
order), although previously no clear meaning of deep eutectic had been defined
in terms of identifying new compounds [4].

Phase diagrams need specific attention primarily because of the way the infor-
mation is embedded into the diagram. The lines in a phase diagram are not of a
continuously changing value like in a line plot, but instead represent a boundary.
A phase diagram cannot be expressed by a simple table like most line plots, bar
charts etc. Further, text can appear in different orientations and subsequently
associating the text with the phase regions (and sometimes vertical lines) is an
added complexity that is non-trivial and essential to the final interpretation by
materials science domain experts. These characteristics underline the necessity
for having a targeted approach to handling this particular class of diagrams.

For our study, we randomly select a small subset of phase diagrams of binary
metallic alloy systems where the X-axis is molar fraction percentage and the Y
axis is temperature. The goal of our study is to create a database, where given
a temperature value and molar fraction percentage for a particular alloy, the
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Fig. 1. A typical phase diagram with labeled boundaries.

database returns the phases of the alloy. A typical phase diagram is shown in
Fig. 1. Since there are potentially infinite real-valued query points, we evaluate
our system on how correctly an entire phase region, i.e., the set of all possible
points with the same phase, is labeled.

The rest of the paper is organized as follows: Sect. 2 provides an overview
of the related work done for understanding information graphics. Section 3
describes phase diagrams and Sects. 4 through 6 discuss the proposed approach,
followed by details of the evaluation metrics and a discussion in Sect. 7.

2 Background

Although graphics analysis and understanding of a variety of diagrams has been
addressed in the literature, to the best of our knowledge, no prior work has
tackled the problem of analyzing and understanding classes of diagrams with
complex semantic interpretation such as phase diagrams. The purpose of graph-
ics in most cases is to display data, including the ones in popular media and
research documents. Specifically, in research documents, they serve the purpose
of pictorially comparing performance of multiple approaches, and offering objec-
tive evaluations of the method proposed in the manuscript. In this section, we
discuss some prior work in graphics analysis and understanding. We are primarily
interested in analyzing the structure of the graphic and analyzing it to interpret
the information present in it. A survey of some of the earliest work in the field
of diagram recognition is mentioned in [5], where they discuss the challenges of
handling different types of diagrams, the complexity in representing the syntax
and semantics, and handling noise. Noise in the graphic makes data extraction
difficult, as the data points can be close and hence can be skewed or intersecting.
Shahab et al. [6] presented the different techniques that were used to solve the
problem of detecting and recognizing text from complex images. Relevant infor-
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mation include understanding the axis labels, legend and the values the plots
represent.

Attempts at graphics understanding from scientific plots can be seen in [1,
7] targeting bar charts, and simple line plots [3,8,9]. An understanding of the
information required to be extracted is a key component in disambiguating the
relevant section of a graphic, and [8] tackles the extraction of relevant information
from line plots which are one of the more commonly used information graphics
in a research setting. Additionally, in [3] the authors propose a method using
hough transform and heuristics to identify the axis lines. The rules include the
relative position between axis lines, the location of axis lines in a 2-D plot, and
the relative length of axis lines in a 2-D plot. The textual information that is
embedded into the graphics, such as axes labels and legends, in line plots and
bar charts, is also crucial to understanding the graphics. Connected components
and boundary/perimeter features [10] have been used to characterize document
blocks. [11] discusses methods to extract numerical information in charts. They
use a 3 step algorithm to detect text in an image using connected components,
detect text lines using hough transform [12], and inter-character distance and
character size to identify final text strings followed by Tesseract OCR [13] for
text recognition. Color (HSV) based features have also been used to separate
plot lines and text/axes [14] for interpretation of line plots that use color to
discriminate lines. This study reports results on about 100 plots classified as
‘easy’ by the authors. They also use a color-based text pixel extraction scheme
where the text is present only outside the axes and in the legend.

Fig. 2. Example of a challenging phase diagram.

Once the relevant data has been extracted, the next logical step is in con-
necting them in a coherent manner to interpret the information contained in the
chart. [15] discusses the importance of communicative signals, which are informa-
tion that can be used to interpret bar charts. Some of the signals of interest that
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represent the information from the graphic include annotations, effort, words
in caption, and highlighted components. Allen et. al [16], in one of the earliest
works in the area developed a system for deducing the intended meaning of an
indirect speech act. In [9], a similar idea is used in understanding line plots by
breaking down each line plot into trends and representing each trend by a mes-
sage. These constituent trend level messages are combined to obtain a holistic
message for the line plot.

While phase diagrams belong broadly to the class of plots, they require spe-
cial treatment due to the complex embedding of information into these diagrams,
as explained in the next section. The contour nature of the plot, complex text
placement with semantic import, and challenging locations and orientations cou-
pled with the optional presence of other graphic symbols such as arrows that are
vital for semantic interpretation of the figure, justify a dedicated exploration of
such complex diagrams.

3 Phase Diagrams

Phase diagrams are graphs that are used to show the physical conditions (tem-
perature, pressure, composition) at which thermodynamically distinct phases
occur and coexist in materials of interest [17]. A common component in phase
diagrams is lines which denote the physical conditions in which two or more
phases coexist in equilibrium - these are known as phase boundaries. The X and
Y axes of a phase diagram typically denote a physical quantity such as temper-
ature, pressure and, in the case of alloys or mixtures, the ratio of components
by weight or by molar fraction. As stated earlier, we focus on phase diagrams of
binary metal alloys where the X-axis is molar fraction percentage and the Y axis
is temperature. In Fig. 1, the blue lines within the plot denote the phase bound-
aries. All points bounded by a phase boundary represent physical conditions at
which the material of interest, in this case an alloy of silver and zinc, occurs
in the same phase. The name or label of this phase, for example α in Fig. 1,
is typically present somewhere within the phase boundary. The various Greek
letters present in the phase diagram represent different types of solid phases (i.e.
crystal structures). Positioning within a phase defines the ratio of the different
phases, as well as the composition of the phases. All of these characteristics
heavily impact the material properties.

We can observe that there are several regions that are unlabeled. These
regions represent multi-phase regions and the phases that constitute this mixture
are obtained by using the phase labels of the regions to the left and right of the
unlabeled region. Additionally, as shown in Fig. 2, in several phase diagrams,
labels are sometimes provided to the phase boundary instead of the region.
These cases represent intermetallic compositions (ie. the labeled phase exists
only at that one composition, thus explaining the vertical line which is labeled).
In such cases, the same rule to infer phase labels holds true except we would be
using a vertical line on the left or on the right to obtain one of the two phase
labels.
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4 Overview of Our Approach

From a document analysis perspective, a phase diagram can be seen to consist
mainly of alphanumeric text, often with accompanying Greek characters, in ver-
tical and horizontal orientations; bounded regions of uniform phase within the
plot; and descriptions of axes and numerical quantities along the axes. As can be
seen in Fig. 2, narrow and small phase regions, presence of arrows, text located
very close to phase boundaries and different orientations pose steep challenges
to the automated analysis. The key steps in automated phase diagram analysis
are listed below and will be elaborated in the sections that follow:

– detection and recognition of text used to label phases
– extraction of regions of uniform phases
– association of each phase region to appropriate labels
– detection and recognition of axes text in order to convert image coordinates

to physical coordinates and detect elements of the binary alloy

5 Identifying Text and Phase Regions

The phase diagram images that we have considered in this study were obtained
from a single source - the Computational Phase Diagram Database [18] from the
National Institute of Materials Science, so that the phase labeling, and plot and
image styling are consistent. We gathered about 80 different phase diagrams of
binary alloys consisting of a number of common transition metals and main group
metals. Each image was preprocessed by Otsu thresholding [19] and inverting it,
so that background pixels are off and foreground pixels are on. We then extracted
contours using the border following algorithm proposed by Suzuki and Abe [20].
The largest contour extracted corresponds to the box that defines the axes and
the plot. The contours are then divided into plot (inside the largest contour),
and non-plot (outside the largest contour). Plot and non-plot contours were
manually annotated using an in-house annotation tool and a database of about
720 phase region contours and about 7100 text region contours were created.
This database was divided into a training and validation set in the ratio 4 : 1.
We then extracted the following features from the contours:

– Unit normalized coordinates of the contour bounding box
– Bounding box area normalized with respect to image area
– Contour area normalized with respect to area of image
– Convex hull area normalized with respect to area of image
– Ratio of contour area to convex hull area
– Ratio of contour area to bounding box area
– Ratio of convex area to bounding box area
– Contour perimeter normalized with respect to image perimeter
– Orientation, Eccentricity of contour
– Hu invariant moments
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The features are designed so as to normalize the effect of large size disparity
between phase regions and text regions. Orientation and eccentricity are com-
puted using first and second order image moments of the contour. Hu invariant
moments [21] are seven image moments that are invariant to rotation, transla-
tion, scale and skew. They are commonly used in object recognition and seg-
mentation [22,23].

Table 1. Confusion matrix for contour classification

% Phase Text

Phase 97.60 2.40

Text 0.15 99.85

Fig. 3. Classification of text (red) and phase (blue) contours. Best viewed in color.
(Color figure online)

The feature vector extracted from the contour has a dimensionality of 20.
Features are extracted from training contours and a gradient boosted tree-based
classifier is trained to classify between phase contours and text contours. We
choose this classifier as we found it to be the most robust to our unbalanced
data among other classifiers such as support vector machine (SVM), random
forests and neural networks. The number of estimators was chosen to be 1000
and the maximum depth of each tree was fixed at 10 after a grid search. The
performance of the trained classifier is evaluated on the validation set. Table 1
shows the confusion matrix obtained after evaluation. We can see that our model
is quite proficient at classifying phase and text contours. Figure 3 shows the
classification of text and phase contours in one of our phase diagram images.
The text contours are marked in red and phase contours are marked blue.
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6 Mapping Regions to Labels

After classification of all contours into non-phase and phase, we concentrate on
grouping the text contours into words and recognizing the text, so that these
word labels can then be mapped to the appropriate phase contours.

6.1 Segmenting Text into Words

As a first step, all text contours that are fully contained within another text
contour are eliminated. Then, we sort all of the plot text contours in increasing
order of y-coordinate of the centroid cy. A text contour i, whose centroid y-
coordinate cyi value is within a certain threshold H1

t from the previous contour
i − 1 is grouped together as belonging to the same line. Otherwise, it becomes
the start of a new line. Once the text contours are grouped into lines, we sort
text contours in a single line by the increasing order of x-coordinates of their
centroid cx. A text contour i is grouped together as belonging to the same word
as the previous contour i − 1 if their centroid x-coordinates differ by a value of
H2

t , otherwise it becomes the start of a new word. We fixed the values of H1
t

as hmean, the average height of all text contour bounding boxes within the plot
and H2

t as 1.5 × wmean, the average width of text contour bounding boxes in
that particular line.

Using this method of line and word grouping works well for horizontally
oriented text, however vertically aligned text are still left as isolated contours. In
order to group vertical text, we repeat the procedure described above, except we
group the text contours by x-coordinate of centroids to obtain vertical text lines
and switch to grouping by y-coordinate of centroids to obtain vertical words in
each line. We use a different set of thresholds, V 1

t and V 2
t respectively. We chose

Fig. 4. Grouping of text into vertical (red) and horizontal (blue) words. Best viewed
in color. (Color figure online)
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the values of V 1
t as wmean, the average width of all isolated text contour bounding

boxes and V 2
t as 1.5×hmean, the average height of text contour bounding boxes

in that particular vertical line.
Some single character text or contours that contain many characters may be

left isolated and not grouped into horizontal or vertical lines. These contours
are marked as ambiguous. The ambiguity is resolved by rotating the contours
90◦ in both clockwise and anti-clockwise directions and attempting to recognize
the text in all three configurations. The configuration that yields the highest
confidence is selected as the right orientation for these contours. Once the correct
orientation of all contours is known, we perform OCR on all the words by using
the orientation information. For vertically aligned text, we flip the word about
the Y-axis, and compare recognition confidence in both directions to finalize the
orientation. Figure 4 shows the grouping and orientation of plot text contours
of the phase diagram in Fig. 3. Recognition is performed using the Tesseract
library [13].

6.2 Detection of Arrows

Since the phase label for phase regions that are small in area cannot be placed
within the region, they are usually displayed elsewhere and an arrow is used
to indicate the region or line for the phase association. It is therefore neces-
sary to identify arrows in order to accurately match these text contours to the
corresponding phase contour. Arrows occur frequently in our dataset and are
vital for correct interpretation of the phase diagram as can be seen in Fig. 2.
We use a Hough line detector to detect arrows. Since the length of arrows varies
in our dataset, we tune the Hough line detector to detect short line segments.
Collinear and overlapping line segments are merged to yield the list of arrows in
the image. The arrow direction is determined by comparing the center of mass
of the arrow and its geometric midpoint. Due to more pixels located at the head
of the arrow, we expect the center of mass to be between the head and the mid-
point. For every arrow, we find the word region closest to the tail and the phase
contour or vertical line closest to the head and these are stored as matched pairs.
Figure 5 shows an example of successful arrow detection and corresponding text
box association.

6.3 Completing the Mapping

Once the text within the plot is grouped and recognized and the arrows in the
image have been dealt with, we proceed to associate the rest of the text labels
to the appropriate phase regions and boundary lines. Vertical words are mapped
to the nearest unlabeled vertical line by measuring the perpendicular distance
between the centroid of the word bounding box and the line. After this, we match
phase regions to horizontal text labels by finding the text bounding boxes that
are fully contained within the phase region. We resolve conflicts, if any, by giving
priority to text labels whose centroid is closest to that of the phase region. Labels
for unlabeled phase contours are inferred using the rules described in Sect. 3.
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Fig. 5. Arrow detection and corresponding text box association. Best viewed in color.
(Color figure online)

Fig. 6. Extraction of phase contours. Best viewed in color. (Color figure online)

6.4 Handling Text in the Axes

Text grouping, recognition and orientation determination is performed for text
contours outside the plot boundary using the same procedure described in Sect. 6.
The text regions to the left of the plot box closest to the top-left and bottom left
corners are identified and recognized. Using the vertical distance between these
two regions as well as the recognized numerals we can easily compute the value
of the temperature that corresponds to the top-left and bottom-left corners of
the plot box. Thus, we are able to translate the image coordinates (x, y) to the
physical coordinates (molefraction, temperature). With this, we will be able to
query any required physical coordinate for any binary alloy, convert it to image
coordinates and find the phase contour which contains this point and return the
label assigned to the contour.
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7 Evaluation and Discussion

Despite designing a system which digitizes a phase diagram and returns the phase
information of any queried point, we choose to eschew the traditional information
retrieval oriented evaluation scheme. Instead, we present our accuracy of phase
contour labeling for both cases - labels present within the phase diagram and
labels that have to be inferred. This is because, in our case, we could potentially
generate an infinite number of real-valued queries within the bounds of the plot
axes and each one would have a corresponding phase label response. Depending
on the kind of points queried we could have precision and recall numbers skewed
to very high or very low accuracy and there would be no guarantee of a fair
evaluation of our system. By measuring the accuracy of phase contour labeling,
we can therefore obtain a comprehensive idea of the efficacy of our system.

(a) Single phase query (b) Mixed phase query

Fig. 7. Demo of our live phase query retrieval system. Best viewed in color. (Color
figure online)

To this end, we have annotated the phase diagrams using the LabelMe anno-
tation tool [24]. Expert annotators provided the text labels for all phase contours
as well as relevant phase boundaries which were used as ground truth and the
accuracy of the labels generated by our algorithm was measured against the
truth. We report our accuracy of phase contour labeling for both cases - labels
present within the phase diagram (94%) and labels that have to be inferred
(88%).

We believe that the results show promise, as seen in Figs. 6 and 3. Our contour
extraction and text classification works well even for varied contour sizes and
shapes. A minimalistic demo application constructed using our methods is shown
in Figs. 7(a) and (b), where we display the transformed physical coordinates as
well as the phase of the material at the cursor position.
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Discovery of Bulk Metallic-Glasses
Aside from the phase information, we also detect ‘eutectic points’ (see Sect. 1),
which are point(s) in a phase diagram indicating the chemical composition and
temperature corresponding to the lowest melting point of a mixture of compo-
nents. These points serve as an important first order signature of alloy chemistries
and are vital for design of ‘metallic-glasses’, a class of material of increasing
interest and importance. The eutectic points can be determined by analyzing
the smoothened contour of the liquid phase, for which both contour separation
and accurate matching of label and region is critical. We also measure the so-
called ‘eutectic angle’ corresponding to each eutectic point which is defined as
the angle formed by the contour lines leading into and out of the eutectic point.
An example is seen in Fig. 8. Blue circles are used to mark the location of eutectic
points and the corresponding angles are shown nearby.

We analyzed a database of binary metallic phase diagrams and quantitatively
defined that a deep eutectic angle is roughly between 0◦ and 75◦. This value was
defined by identifying the design rule which most correctly identified metallic glass
forming compounds. This work therefore allows us to define the ‘deep eutectic’
in terms of a design rule, as opposed to the more general usage of the term to
date. When combined with radii difference scaled by composition (the value along
the X-axis) at the eutectic point, we were able to identify binary metallic systems
that were likely to form metallic glasses. Following this analysis, we identified 6
different binary metallic systems to have a high probability of metallic-glass for-
mation, which were previously unknown. A complete list of 38 different systems,
with exact compositions and temperatures, which were previously unidentified as
glass-forming, uncovered due to our work, are listed in [4].

Fig. 8. Detection of eutectic points and angles in phase diagrams. Best viewed in color.
(Color figure online)
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Conclusion
Given the importance of a digitized phase diagram database to the materials
community at large, we believe that our effort in developing automated tools to
digitize phase diagrams from technical papers is a valuable contribution with sig-
nificant impact. In the future, we would like to create a comprehensive, high reso-
lution database of phase diagrams, and improve label and phase region matching
tasks. We would also like to extend our work to support the detection and storage
of critical points and material parameters which are key in design and manufac-
ture of certain materials. Further, the materials domain is rich in graphs, figures
and tables that contain valuable information, which when combined and collated
into large indexable, digital databases, would help the materials community to
accelerate the discovery of new and exciting materials.
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conclusions or recommendations expressed in this material are those of the author(s)
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Abstract. A set of documents, while creating a building structure, containing
the fundamental assumptions and the primary requirements are called engi-
neering construction documents. It acts as a blueprint to provide the engineers or
architects a bird’s-eye view of the whole project. Generally, an engineering
project comprises of large number of document sheets. These sheets maintain
the constructional hierarchy of the projects. Accessing the information manually
from a desired sheet becomes laborious and time consuming for an engineer or
architect. Therefore, a hyperlinked navigation mechanism is essential to over-
come the aforesaid problem. A special graphical representation named ‘callout’,
which is usually circular in shape, contains the destination sheet names in such
documents. In the automated project navigation process, a callout with the
respective destination sheet name must be recognized properly. The destination
sheet names are written in an abbreviated form in the callout. Here, we have
proposed a novel software approach which can detect the circular callouts and
also create hyperlinks to the destination sheets. This work has a significant
impact in the AEC (Architectural, Engineering, Constructional) domain and we
achieved very encouraging results by our method.

Keywords: AEC drawing documents � Callouts � Circle detection
Text localization

1 Introduction

Engineers or architects develop their drawings using the combination of several
graphical representations, i.e. symbols, line-segments, circles, circular arcs, etc. Such
drawing documents are widely used in Architectural, Constructional and Engineering
(AEC) domain. The amount of data, AEC industry handles is enormous and manip-
ulation process of these documents is a challenging task. Still several of these processes
involve manual interventions. Hence, the whole process of data retrieval from AEC
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documents becomes very time consuming and error prone. Also, the presence of
graphics makes things even more complicated. Furthermore, the difficulty in accurate
text extraction increases due to different orientation in graphical shapes. As the AEC
industry deals with huge number of documents for a project, it is necessary to use
several sheets for depicting the desired information and some symbolic way of refer-
ring from one document to the other. One such symbolic representation is called
“callout”. The overall appearance of a callout is normally circular, which have several
other structural properties. Some examples of callouts are shown in the Fig. 1. The
callout contains some text which represents other document sheet name and section
number. In an AEC project, it is cumbersome to navigate through all the documents of
a project. One document may refer to several other for various purposes. Thus, auto-
matic callout detection and sheet number extraction play helpful role for engineers
working with them.

In this paper, we have proposed one approach which can automatically detect the
callouts in AEC drawing documents and recognize the document sheet number suc-
cessfully. This approach can also be applied for the detection of other circular symbolic
representations in other drawing documents with some modifications. In Fig. 2, the
presence of callouts with orientation variation is shown.

Fig. 1. Examples of various type of callouts (including handwritten).

Fig. 2. A cropped region of an AEC drawing document consisting of callouts
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1.1 Related Work

In the literature, there exists several works [11–18] which can detect circular shapes.
Among them [16–18] are based on Hough transform. However, those are computa-
tionally expensive, and do not provide sufficient accuracy in the localization of the
center and end points of the detected arcs. In [11], Kim et al. proposed a two-step circle
detection method. In the first step they detected the center based on Hough transform
and in second step they tried to detect radii by radius histogram. In [12], Xiaoyu used
scan line based RANSAC algorithm to detect circular shapes. De et al. present a
method in [13] to recognize and classify graphics in engineering drawings by skele-
tonizing the input image, followed by segmentation of lines, arcs, and circles. Extracted
line segments are classified into object lines, centerlines, dashed lines, section lines and
arcs. The stages of segmentation and classification are based on dominant chain. In
[14], Dosch et al. proposed a method which works on chains of points, or on segments
obtained by the polygonal approximation of such chains. The basic idea is to compute
an estimation of the curvature for these chains. They suggested a vectorization process
where the pixels of the skeleton are linked together to form chains, and a polygonal
approximation converted the chains into straight line segments. Bart Lamiroy et al.
presents a method in [15] for detecting circular shapes, which is also based on
RANSAC algorithm.

The primary challenge here is the symbol recognition [19], in which an automatic
way is sought to identify various special constructs in the floor plan such as doors and
windows. Several researchers have investigated the problem and reported impressive
results. Most existing algorithms focused solely on the symbol recognition [20] and did
not provide a complete solution for the reconstruction problem.

Most of the existing text/graphic separation methods [3–8] can be categorized into
three approaches: 1st approach: Extract text first, leaving non-text objects behind [6, 8];
2nd approach: Extract non-text elements first, leaving text behind [10]; and the 3rd

approach: Recognize both text and graphical objects at the same time based on their
discriminative characteristics [3].

In a document, the callouts containing texts, can be oriented in any direction
(Fig. 2). Hence, existing text localization methods [9, 10] may fail to detect the callout
texts. In [9] Chowdhury et al. used a morphological operation to detect graphics and
line arts and finally extracted the texts.

But AEC class of drawing documents are mixture of symbols, texts, and graphics.
So, callout like symbol detection and text extraction from it is a difficult task. The
callouts are not perfect circles. It contains of several other features. Therefore, addi-
tional care should be taken for detecting them. The description of our proposed method,
results and discussion, conclusion and future scope are described in Sects. 2, 3 and 4,
respectively.
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2 Proposed Method

The overall workflow of our proposed method is briefly given below:

I. A preprocessing step is applied to create a binarized image of smaller dpi (dots
per inch).

II. Then we apply a graphics removal process to enrich the document with relevant
information.

III. Now, a text block localization method is executed where each component is
labelled, and grouping done for the components of similar pattern.

IV. Next a circle detection method is applied on the text block localized region.
V. To identify the exact location of the document sheet name, first the mid-line (the

mid-line is the line separating the circle into two nearby equal halves.) of the
circle is detected, and then the desired document sheet name is extracted.

VI. Finally, the detected text portion is recognized by a custom-built OCR (Optical
Character Recognition) engine and the text is auto hyperlinked to the desired
document sheet name.

2.1 Preprocessing

Documents created in AEC industry are very big in size. Therefore, handling such
document is difficult. But, all the foreground pixels present in the image may not be of
much use while recognizing or detecting text or graphical objects. Hence, first we do
reduce the size in half of the original image. Then this reduced gray image is binarized.

2.2 Graphics Removal

AEC documents contain several types of line and textual patterns. A Connected
Component Labelling (CCL) technique is used to get the shape and size information.
We remove the large sized graphical/non-textual components obtained by CCL tech-
nique. In drawing documents, the line patterns, e.g., dashed lines, dotted lines etc.,
which have similar textual structural properties, should also be removed. Therefore, we
have applied a noise removal technique. From the component set, three components are
recursively and consecutively selected to form several groups. Now, for each com-
ponent of a group, the center point is calculated and checked for co-linearity among
themselves. If the group count surpasses a heuristically learned threshold, maintaining
the co-linearity, then those groups are removed from the component set and the
remaining components are retained. In (Fig. 3b) it can be seen that the majority of the
line patterns (assumed as noise for our problem) are removed efficiently. It will make
the input image text rich. The main problem here is, characters or parts of them,
especially in their extraordinary large or small sizes, exhibit similar shape character-
istics as non-text graphical objects, which will confuse the recognition of the latter.
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2.3 Text Block Localization

After removing sufficient amount of large graphical objects and noise pixels, therefore,
the next objective is to localize the text block regions. To fulfil our aim, we need to
cluster the components and form the text blocks. Now, on the remaining components
set, a grouping approach is applied based on the distance between two components and
their overlapping area in a set. While grouping, we have searched in all the directions
from the center point of each component to make our method orientation independent.
Finally, a region of text is localized and set as region of interest, i.e., ROI (Fig. 4b).
Now, this ROI is used to initiate the callout detection mechanism.

Fig. 3. (a) Cropped image of a drawing documents (b) Initial grouping (line pattern and
graphical objects are removed)

Fig. 4. (a) Red colored rectangular boxes represent the candidate text blocks (b) Localized
regions of text components (Color figure online)
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2.4 Circle Detection

Using the original binarized image obtained in the preprocessing stage, a connected
component-based technique is used to remove the smaller components and retain the
larger components (see Fig. 5b). Now, positional features and size-based thresholding
technique is used on the inverted image to identify the circle region. Taking 4 points by
traversing from four sides we get black to white transition points. If these 4 points
satisfy Eq. 1 and then it is treated as a circle and we can find the radius and center of
the circle.

X2 þ Y2 þAX þBY þC ¼ 0 ð1Þ

Then we exploit a geometrical property for the validation of the circles. If we draw
two chords, i.e. AC and CE by using three consecutive points, lying on the circum-
ference of that circle, then the perpendiculars (i.e. BG and DH) drawn from the mid
points (i.e., B and D) of those two chords will intersect each other at the center (i.e. F)
of the circle (Fig. 6). This condition stays true for any three consecutive points and the
perpendiculars always pass through the center of the circle.

Fig. 5. (a) Candidate callout (b) After the removal of textual components (c) Negative Image
(d) Contour area and (e) Middle line extraction

Fig. 6. Geometrical property of a circle
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2.5 Middle Line Detection

Generally, a straight line passes through the center of a callout. This is one of the
primary features of a circular callout. This line can also be treated as the diameter of the
callout. Now a Hough transformed-based line detection method [18] is used to extract
the lines from the edge image. The middle line or diameter of the circle is detected by
calculating perpendicular distance from the center of the image. The minimum distance
among those distances containing line is the diameter of the circle. In our algorithm,
middle line plays a major role. It helps us to separate the top and bottom portion of the
callouts. It is also used for orientation detection of the callouts. After the detection of
proper orientation, the middle line is removed. While experimenting, we have noted
that the portion, which contains maximum number of components, represents the
destination sheet number. Thus, the appropriate sheet number containing region is
extracted.

2.6 Text Extraction

Text extraction from the circular callouts is also a challenging task. At first, the sheet
number region is restored from the original image and then it is binarized using a
standard thresholding technique. Now, we drop a perpendicular (Fig. 7) from each
pixel present on the mid-line in the vertical direction and store the distance at which the
perpendicular first hits a data pixel. Then, by analyzing the distance curve we try to
identify the rate of change of the gradient (Fig. 8) for both sides of the bilateral
symmetric curve. For each of the extracted half circle, the gradient change is considered
as positive for the left region and negative for the right region. We have exploited this
observation to eliminate the unwanted segment of the circle. Now, we try to identify a
position where the aforementioned behavior of the gradient fails. In Fig. 8, point A and
B are the two segmentation points. Finally, the left portion of point A and right portion
of point B are eliminated from the half circle and get more precise location of the text
regions.

Now, while analyzing the connected component labels, we take the center of each
component and align them in the horizontal direction. Then we try to identify the
outlier which lies at the maximum distance from each of the centers and finally remove
it. This approach is applied such that we can maximize the accurate extraction of the
text regions in case of a touching or noisy callout.

Fig. 7. Pictorial representation of vertical scan line mechanism
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2.7 Text Recognition

Text recognition is vital in any document analysis and retrieval system [21–23]. In case
of drawing documents, the texts inside the callout represent information about other
documents. These texts are generally machine printed (in some cases handwritten
callouts are also found). Also, the presence of noise and overlapping text region makes it
difficult for the conventional OCR systems to accurately recognize the texts. Therefore,
we have developed a full-fledged OCR engine where Support Vector Machine (SVM) is
used as a classifier. For feature extraction 3 sets of features are used, i.e. (a) 28 features
based on distance from four boundary points (each of the 4 sides of the bounding box of
the image is divided into 7 bins, making a total 28 bins, Fig. 9(a)), (b) 8-directional
feature from center point to outer boundary of the character component (Fig. 9(b)) and
(c) 16 features block representation (whole image is equally divided into 16 blocks,
Fig. 9(c)). Therefore, in total 52 features are used for the classification task. Then, all the
detected callout images are fed to the OCR engine which also utilizes some of the
features mentioned in [21–23]. Here, in total 64 classes are considered including all
upper and lower-case characters, numerical digits and two special symbols i.e. {‘.’, ‘-’}.
So total 64 classes. We have used 250 data per class for training.

Fig. 8. Graphical representation of vertically downwards scanline distances

Fig. 9. Pictorial representation of various features (a) Scan line mechanism from boundary of
bounding box to character body (b) 8 directional distance from center of the image to outer
boundary in 45

�
interval (c) Block based feature
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3 Results and Discussion

The method has been experimented on a fairly large dataset, consisting of several
categories of AEC class of documents. We have tested our method on a dataset con-
taining 1320 data images. These images are gathered from different architects to train
and test different callout patterns. We have achieved callout detection accuracy of
96.72%, which is quite satisfactory given the complexity and variety of callouts. While
experimenting on the AEC data set, we have noted that our OCR engine achieves better
accuracy with respect to the Tesseract OCR. The comparison of accuracy is shown in
Table 2.

The text localization and text recognition accuracy are 94.68% and 98.53%
respectively (see Table 1). Due to the presence of noise and overlapping of text with
graphics, it becomes difficult to localize and recognize the text properly. In Table 3, the
intermediate results of sheet number extraction from various callout images are shown.
Our proposed method not only extract the destination sheet number from an ideal and
clean callout image, but also it is robust enough to handle complex (including hand-
written callouts) and noisy callout images. In Table 3, we have shown how our
approach can successfully handle such noisy images. Also, one sample output of the
finally hyperlinked destination sheet names is presented in Fig. 10.

Table 1. Stages and their accuracies

Process Accuracy (%)

Text localization 94.68
Callout detection 96.72
Text recognition 98.53
End-to-end performance 90.22

Table 2. OCR accuracy

OCR Accuracy (%)

Tesseract 95.19
In-house OCR 98.53
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Table 3. Intermediate results of sheet number extraction method (The last row is hand-drawn
callout)
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Fig. 10. Final results are shown in the cropped sample image

Fig. 11. Callout images with different category of noise
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4 Conclusion and Future Scope

The proposed algorithmic approach can efficiently detect the callouts in AEC class of
drawing documents. Also, the callout text hyperlinking mechanism is developed based
on the work proposed in [1, 2] and used to automate the navigation process. Integration
of this approach software to any commercial systems in AEC domain will immensely
reduce the cost of navigation time. Also, manual intervention will be almost removed
while hyperlinking the destination sheet names.

Though this method gives promising results, a few enhancements can be done in
future to improve its performance. Cases where straight lines pass through the text
regions of the callouts or the characters within the text block are overlapped, our
method may produce erroneous results. After employing line removal mechanism
followed by an in-painting approach may help to overcome such situations. Some
examples of such difficult callouts are given in the Fig. 11.
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Abstract. In AEC (Architecture, Engineering & Construction) industry,
drawing documents are used as a blueprint to facilitate the construction process.
It also acts as a graphical language that helps to communicate ideas and
information from one mind to another. A construction project generally contains
huge number of such drawing documents. An engineer or architect often needs
to refer various documents while creating a new one or marking irregularities in
such documents. Elevation datum is one of such graphical representation
medium for referring one document from another. It is a very difficult and time-
consuming task to manually identify elevation datums and link the documents
with respect to each datum. Here, our proposed method is aimed to overcome
this hurdle. The suggested system will automatically find the elevation datums
from the existing drawing documents and will also automate the hyperlinking
mechanism to enable the engineer quickly navigate among different drawing
files. We have achieved an overall accuracy of 96.71% for elevation datum
detection and destination document text recognition on a fairly large sized
database.

Keywords: AEC drawing documents � Automatic hyperlinking
Elevation datum � Circular hough transform � OCR � SVM classifier

1 Introduction

An AEC project requires blueprint or plan documents before starting the work on the
ground. A sample of AEC drawing document is shown in the Fig. 1. An engineering
drawing is a type of technical drawing, used to fully and clearly define the requirements
for engineering and manufacturing items, and is usually created in accordance with
standardized conventions of layout, nomenclature, interpretation, appearance size etc.
Its purpose is to unambiguously capture all the geometric features of a product or
component. A construction work involves different categories of skilled individuals

© Springer Nature Switzerland AG 2018
A. Fornés and B. Lamiroy (Eds.): GREC 2017, LNCS 11009, pp. 30–42, 2018.
https://doi.org/10.1007/978-3-030-02284-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02284-6_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02284-6_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02284-6_3&amp;domain=pdf
https://doi.org/10.1007/978-3-030-02284-6_3


such as Engineers, Architects, Electricians, Contractor, Plumbers etc. For different
tasks, the AEC drawing documents make it possible to quickly understand the whole
project. For a project, the documents are usually inter-related, and the engineers often
refers to different documents while preparing a new one or detecting irregularities at
any project site.

AEC projects involve a huge number of documents and one document may refer to
another document. Therefore, manual navigation from one document to another is very
difficult and a time-consuming task. Moreover, if the drawing sheets are not properly
indexed, then this process becomes even more problematic. In that case the engineers
or architects must visit each document in order to identify whether the destination
documents are correctly referred or not. As a solution, by creating hyperlinks in these
drawing documents, the navigation mechanism can be given a very significant boost.
To achieve this goal, we require the destination document and the accurate path of this
document. Then only this manual intervention of the navigation process can be
removed by creating an indexing based automated system. In this paper, we proposed
such a system which will automatically locate the destination file by extracting its name
from the referring document sheet and finally creating the hyperlink.

In AEC class of drawing documents, the linking information is represented by a
circular shape drawn on the desired portion in the document sheet. Such a shape is
commonly called as ‘Callout’. Another popular representation of linking information is
denoted by ‘Elevation Datum (ED)’. ED is also circular in shape, but a horizontal and a
vertical line crossing through the center divides the circle into four parts as Top-Left,

Fig. 1. An example of AEC drawing document.
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Top-Right, Bottom-Left, Bottom-Right. The major graphical property of ED is that the
diagonally opposite quarters (see Fig. 2) of the ED is always filled with the same
colour, i.e. white or black. Also, a horizontally or vertically drawn dash-line (also
called Sectional line) is used for referring the destination document name as text.
Depending on the architects or engineers, this text appears either at the top of the dash-
line or at the bottom.

Our proposed method can be divided into the following four stages, (a) Elevation
Datum location detection, (b) Destination Text localization and text-graphics separa-
tion, (c) Optical Character Recognition (OCR) of localized destination text region and
(d) Hyperlinking of the destination sheet with respect to the extracted linking document
information.

1.1 Background

To the best of our knowledge, there is no existing work which has tackled the problem
stated above. Though there exists some literature where engineering or technical
drawing documents are processed, yet they are not equipped with adequate techniques
to tackle our problem However, some closely related literatures are cited here.
A common problem of any symbol processing systems, recognition or spotting, is
localization or detection of the symbols. The method may be embedded in the
recognition/spotting method or work as a separated stage in a two-stage system [8].
Pham et al. [9] proposed an approach for symbol localization using junction features
and geometry consistency checking. They used to find three different types of T, L, X
junction point. They also mentioned that their system will fail to detect symbol like
circle connected with line, due to omission of end key point. Do et al. [10] represented
a system of detecting symbols into graphical documents using sparse representation.
More specifically, a dictionary is learned from a training database of local descriptors
defined over the documents. In our method there is no need of supervised learning to
detect the ED.

Banerjee et al. [1] have used a Hough transform based approach for detecting the
callouts in engineering drawing documents and finally hyperlinked them. Najman et al.
[2] have worked on locating the tittle block in engineering drawings. In [4], the authors
have worked on automatic detection of version information in computer-aided design
and drafting (CADD) Drawings using engineering drawing interpretation. They have
proposed a knowledge-based version information extraction method which analyzes
the layout of the drawing frame and extracts the version information with the help of
predefined key words. Z. Lu et al. have proposed a method for detecting text regions
from digital engineering drawings in [5]. Therefore, to the best of our knowledge, no
previous work for automatic detection of ED in AEC class of drawing documents exist.
Automatic ED detection is a new work in this domain.
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Fig. 2. Different types of ED representations. The desired texts may appear on the right (a)/left
(b)/top or bottom(c) side of an ED.
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2 Elevation Datum Detection and Destination Sheet Name
Localization

The AEC class of documents are generally very big in size. Therefore, handling such a
document is quite difficult and time consuming. The higher the dpi of a document will
be, the more information will be generated in the document. We have considered
different range of dpi images and noted that our approach achieves a good accuracy
with 300 dpi images.

We mentioned that the EDs are circular in shape and they are segmented into four
quadrants where opposite quadrants are similar in their graphical representation.
Our ED detection module is divided into two stages. In the first stage we have detected
the near circular shapes. In the second stage, the segregation of ED and non-ED circular
shapes is done by analyzing the graphical representation of the four quadrants.

2.1 Circle Detection

To detect the circular shapes in an AEC drawing, we have used Hough transform [3]
based approach. The threshold parameters of HT are learned heuristically. Before
applying the HT, we have converted the image into an edge image using canny edge
detector. This step significantly reduces the time required by HT in order to detect
circles. Thus, only boundary components (which signify that less amount of foreground
information) are retained. An example of the input image and corresponding canny
output image is presented in Fig. 3.

Fig. 3. (a) Original input image where ED notation is used, (b) Corresponding Canny edge
image.
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We can represent a circle in two-dimensional space, where parameters will represent
center and radius of the circle, respectively. Generally, architects follow a standard
notation while creating a circular shaped ED. But, in some cases we have seen that the ED
size varies. That is why we have considered a radius range for detecting the circles from
the documents. For each point on the candidate image, a circle can be definedwith a center
residing at point (x, y) having radius, say, r. The intersection point of all such candidate
circles in the parameter space corresponds to the center point of the original circle.

Due to the use of HT more than one circle may get detected with a single circle
center point. To solve this problem, we have heuristically learned the parameter values
of HT, e.g. Minimum Radius, Maximum Radius, Voting Threshold for Center and
Minimum Distance between two center points. Since ED is not exactly circular in
shape, therefore we have experimented with different values of the voting parameter/
center threshold to detect as many ED as possible. Table 1 shows the corresponding
accuracy performance test of true ED circle detection by tuning the center threshold.
Here, we have noted that, when the center threshold is decreased, the circle detection
rate increases. But, it also increases the false circle detection rate. So, we have enabled
our approach with a mechanism which can identify the false circles and then they are
discarded.

Since the shape is not perfectly circle, you can shift the center within a small region
and collect all the votes for each center position and assume that they lie in the same
“near circle” shape. You can give tolerance in the radius too. It may increase false
detection of circle, but in a false circle if you pick some random points on the
perimeter, and see their neighborhood lines, then those lines may not be circular
shaped. If that happens, you can discard the detected circle.

From the experimental results, it is quite clear that we achieve the highest accuracy
at the center threshold of 25. We tested with different architect documents. We can see
merely decreasing the center threshold does not help us to increase our final ED
detection accuracy, since the false circle detection rate also increases. Now, our goal is
to identify the proper ED shape.

Table 1. Circle detection accuracy by changing the center threshold

Center voting
threshold

Number of
file tested

Number of true
circle present

Number of true
circle detected

True circle
accuracy

85 1040 12446 9847 79.12
65 1040 12446 10649 85.56
55 1040 12446 11005 88.42
45 1040 12446 11518 92.54
25 1040 12446 12309 98.90
15 1040 12446 12315 98.01
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2.2 Elevation Datum Detection

We have already stated that ED notations are nearly circular, and they are divided into
four equal parts where the diagonally opposite parts contain white or black colour.
Figure 4 shows two types of ED notations.

Now, we generate the contour of each circle which was earlier detected by our
circle detection module in Fig. 5a shows different circle detected by circle detection
module. There has some false circle is present which not represent ED. In the next stage
we removed false circle using contour analysis. Figure 5b represent different contours
in green, orange colour within the circle. Then, we find which circle contains four
almost equal sized contours and then check the pixel intensities of each contour. Now,
if it is found that the diagonally opposite contours are filled with the same colour
component, then that circle is tagged as an elevation datum circle. Finally, all the
circles validating the aforesaid property are considered as ED in Fig. 5c.

2.3 Destination Sheet Name Localization

After the detection of ED, we need to find the destination sheet name associated with
each ED. The destination sheet name generally appears on the right side or left side of
the datum. Therefore, at first, the sectional line’s positional appearance which is
associated with a datum, is to be found. To achieve this, Hough line detection algo-
rithm is applied on the pre-processed image.

After detecting the sectional line (see Fig. 7), we try to find the associated text
region near the sectional line region. The sheet name may be printed in single or multi
line format. In Fig. 5, the sheet name is in multi-line format. So, at-first we try to locate
the position of the text region with respect to the sectional line. Initially, we separate
the image horizontally in two halves with respect to the sectional line. While experi-
menting, it is noted that the height of the destination sheet name component is always
less than the diameter length of the ED. Also, we have used the value of the diameter as
the vertical distance (with respect to the sectional line), within which the document
name should appear. Now, a connected component labelling based approach is applied
to spot the probable character components. Then, the stroke width of every component

Fig. 4. Different types of elevation Datum notation.
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Fig. 5. (a) Detected circle is highlighted by red colour, (b) Contour analysis on detected circle,
(c) Detected Elevation Datum is highlighted by red colour (Color figure online).

A System for Automatic Elevation Datum Detection 37



is compared with each other and similarly stroked-width components are grouped
together. Since the text may extend to multiple lines, the component localization and
grouping procedure is applied recursively. The diameter of the ED boundary is used as
a distance measure to terminate the search mechanism. The aforesaid method is applied
to both half of the image.

Fig. 6. (a) Elevation datum detection, (b) Text localization, (c) Corresponding text OCR output
drawn in blue colour (Color figure online).
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2.4 Optical Character Recognition of Localized Text

After the identification of the text components, we need to recognize these characters in
order to proceed to hyperlink creation step. This is a very important step for hyperlink
creation.

Now, for optical character recognition (OCR) there is Tesseract [11] open source
engine, but the accuracy of tesseract engine falls if text is in italic or bold style. In most
cases we need to extract information from small text region when tesseract fails to
recognize properly. So, to sort out the problem of tesseract we have built an in-house
OCR engine using a support vector machine classifier. An important step for accurate
classification is the selection of proper features. The features can be of two types– local
and global. Local features involve windowing the image whereas global feature takes
some characteristics of the whole image. For local feature the image of the character is
divided into 5 � 5 blocks. The features include the directional components of the
border pixels in 4 directions. Thus, 5 � 5 � 4 = 100 features are obtained. Some
global features like aspect ratio, longest vertical run, normalized height of the leftmost,
rightmost, and lowermost black pixel, Euler number etc. are also used to improve the
accuracy. Thus, a total of 108 features are used for classification in the OCR system
developed at ARC Document Solutions in collaboration with Indian Statistical Institute
(ISI) [7]. The process of ED detection, text localization and corresponding text OCR
outputs are shown in Fig. 6. A comparative study of tesseract and our In-build OCR
result is shown in Table 3.

Sectional Line

Fig. 7. Sectional line representation of Elevation Datum.

Table 2. Intermediate and final results at different stages

Process Accuracy

Circle detection 98.02%
ED detection 97.56%
Text localization and recognition 98.75%
Hyperlinking with the documents 96.71%
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3 Hyperlink Creation

After generating the OCRed text output, based on the experimental analysis, we used a
post-processing module to validate the document naming convention. Finally, the

Now, we simply burn this information into the original document and end-up with
clickable links which enable navigation among several plan documents within a par-
ticular project. Figure 8 represents navigation process from sheet source document to
destination document BLDG 73 – 0 LOWER LEVEL PLAN.

4 Experimental Results

This section elaborates results including accuracy of our system based on the test on a
dataset containing AEC drawing documents.

• Data Collection

ARC Document Solution provides a cloud system named as SKYSITE [12] which
provides the architects to manage their documents. From the system we have collected
AEC class of data from different architect. Nearly all the AEC drawing documents of a
project, contain ED representations and the documents are navigated by creating
hyperlinks to this notation. We have collected around 1140 different drawing docu-
ments. We have also added some data image where ED is not present. This was done to
test the generic nature and robustness of our algorithm.

Table 3. Comparison study of OCR engine

Process Tesseract ARC OCR

Recognition 98.28% 98.75%
Average speed (ms) 200 148

Fig. 8. Hyperlink navigation representation; When clicked on the Elevation Datum shape of a
document, it will automatically navigate to the associated document i.e. BLDG 73 – 0
LOWER LEVEL PLAN.

40 P. Banerjee et al.



• Results and Accuracy

In the first step we have detected circles from the document images. The accuracy
of circle detection came out to be around 98.02% as shown in Table 2. Our goal is to
detect Elevation Datum. After removal of false ED notations, the accuracy of detecting
proper elevation datum is 97.56%. The next step is localization of destination sheet
name text region and recognition of localized text. The OCR accuracy from the system
developed to recognize 52 characters, 10 digits and a few symbols including dot (.) and
dash (-), came out to be around 98.75%. The end to end automatic hyperlinking system
accuracy is nearly 96.71%.

5 Conclusion and Future Work

We know that linking with the document and detection of the ED is of much necessity
for any architect.

A good accuracy is needed for localization and linking. Though we obtained an
accuracy of 96.71%, the system performance should further be improved. The cases
where the documents are noisy or multiple straight lines either pass through or overlap
the datum, the proposed method results in misclassification of the datum. Therefore, we
guesstimate that the removal of such lines from the datum images followed by an
image in-painting mechanism applied on these filtered datums can resolve the aforesaid
problems. Also, there are some exceptional cases where our method doesn’t produce
adequate results (Fig. 9). Still, a system with current level of accuracy should prove
useful for the architects and engineers.

Fig. 9. (a) Destination sheet name appearing at Top and/or bottom of the elevation datum,
(b) Overlapped elevation data.
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Abstract. Images embedded in documents carry extremely rich infor-
mation that is vital in its content extraction and knowledge construction.
Interpreting the information in diagrams, scanned tables and other types
of images, enriches the underlying concepts, but requires a classifier that
can recognize the huge variability of potential embedded image types
and enable their relationship reconstruction. Here we tested different
deep learning-based approaches for image classification on a dataset of
32K images extracted from documents and divided in 62 categories for
which we obtain accuracy of ∼ 85%. We also investigate to what extent
textual information improves classification performance when combined
with visual features. The textual features were obtained either from text
embedded in the images or image captions. Our findings suggest that
textual information carry relevant information with respect to the image
category and that multimodal classification provides up to 7% better
accuracy than single data type classification.

1 Introduction

Images embedded in scientific, or other professional documents, such as financial
reports, clinical trials report or internal company corpora, carry important visual
information densely packed and structured. These images can represent many
categories, such as diagrams, scanned tables, lesions in medical photos, scatter
plots, and so on. Understanding the content of these images is crucial to answer
questions that may not be possible by simply analyzing what is written in the
document. For instance, one may want to know the average profit per year of a
company based on a financial report that contains a table of profit per month.
In another scenario, one may want to know whether there is a positive trend in a
scatter plot. Obtaining the correct answer for these questions is a rather complex
task in case the answer is not explicitly written in the main text. The first step
towards a solution is to recognize the type of image one is dealing with. Next, the
image is analyzed and its content is extracted in a category-dependent fashion.
This process allows the construction of a knowledge graph for understanding
concepts present in images and their relationships.
c© Springer Nature Switzerland AG 2018
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An important point is that, in most common applications, the image recog-
nition is performed by an image classifier that relies on visual features to decide
what is the most appropriated category. For instance, this is the case for most
studies in document categorization and retrieval [6,9], functional decomposition
[1] and modality detection of biomedical images [13].

However, many types of images also have relevant information in form of
written text in addition to visual features. For instance, the word ocean may
indicate that the image is a map, as well as the word chart may indicate a
pie chart. This textual information can be extracted through OCR engines. A
similar approach was used in [8,11,15], where the authors applied OCR to doc-
ument images to extract textual features and to perform different tasks, such as
document categorization and functional decomposition.

A less explored type of information corresponds to the captions of document
images. In [2] the authors used images caption to perform the classification of
images in three different classes. In this paper, we report the results of different
experiments related to image classification. First, we tested different state-of-the-
art network architectures to perform deep learning-based image classification.
We also show that fusion techniques can improve the classification accuracy.
Finally, we show that textual information extracted either from images via OCR
engines or image captions carry important information and add significant level
of accuracy per se.

To address the vast representation variability and extract the underlying
structure we propose a multimodal deep learning approach which has been tested
on two datasets described in Sect. 2. We present results in Sect. 3 and conclude
the paper with discussion and summary in Sect. 4. In addition to testing different
architectures for image classification.

The main contributions of our paper are (i) the systematic investigation
of different networks architectures for classification of document images in a
large number of classes; (ii) combination of both visual and textual features for
classification of document images, where the textual features are obtained from
OCR engines or images caption.

2 Methods and Datasets

2.1 Large Dataset

We generated a dataset of 32K images obtained from different sources, such as
scientific papers, financial reports, medical reports and web search engines. The
images were manually classified into 62 different categories that cover different
domains such as general, geological and molecular. A few examples of images
are shown in Fig. 1a. The goal was to use this dataset to investigate the perfor-
mance of different deep learning-based methods in the task of document images
classification.

The dataset was split into training (40%), validation (30%) and test (30%)
for purposes of training convolutional neuronal networks (CNNs). We tested
three CNN architectures, ResNet [7], Inception V3 [14] and Xception [3]. We
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also performed fusion experiments by extracting features from the last layer of
the CNNs and using them as input of SVM classifiers. We divide the fusion
experiments into average, stack and concat, depending on how the features from
two CNNs are combined.

We also used this dataset to test whether textual features extracted via OCR
from the images could improve the performance of our classifiers. To do so, each
image from our dataset was submitted to the Tesseract OCR engine to have their
embedded text extracted. The resulting text of all the images were combined to
generate a bag of words. We used the function spellcheck from the python library
textblob to remove noisy words. We also used a snowball stemmer algorithm to
reduce similar words to a common radical. Upon having this bag of words, each
image was represented as binary vector where the i-th position is one if the i-th
word of our bag does appear in the image. Finally, the binary vectors were used
as input for a SVM classifier.

2.2 Small Dataset

We also generated a dataset of images extracted from papers from ArXiv. We
downloaded all the 1425 documents that contained the word seismic in the
abstract (as on Mar 15, 2018). We used PDFFigures [4] to extract metadata
from these documents. PDFFigures is a tool that identifies tables and figures
together with their corresponding captions. In total we extracted 3501 images
and captions which have been manually classified into 6 classes, such as plot,
heat map and diagram. Out of the total images extracted, we excluded 5.4%
corresponding to text regions incorrectly extracted as images. Notice that this
number is in agreement with the accuracy reported in [4]. Another 1.4% incorpo-
rated some part of the main text and had to have their bounding box manually
adjusted. We did not use the tables extracted with PDFFigures and our goal
was to use this small dataset to evaluate how the textual features extracted from
the captions could improve the performance of our document images classifiers.

The PDF documents were converted into plain text files by using the pdftotext
tool from the Poppler library (https://poppler.freedesktop.org/). All the text
files have been pre-processed with same noise-removal and stemmer algorithms
mentioned in the previous section and concatenated to create a representative
corpora of our documents. The corpora contains ∼ 800K words and was used to
train a word2vec algorithm with dimension 64 [12]. The trained word2vec model
has a vocabulary of ∼ 30K words and was used to make inference over every
image caption creating a numeric embedding representation of size 64 for each
of these captions.

As mentioned above, the ground-truths classes of both large and small
datasets were assigned by hand through visual inspection of each image.

3 Results

We used the large dataset described in Sect. 2.1 to test different deep learning-
based approaches for classifying images extracted from documents. The results

https://poppler.freedesktop.org/
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are summarized in Table 1. We found that the fusion technique of extracting
features from CNNs and using them as input of SVM classifier improves the
baseline classification performance. Because transfer learning has been proven
to be a successful approach for classifying document’s images, [6], with exception
of the networks marked with “*” in Table 1, all networks have been pre-trained
on the ImageNet dataset. Only the last layer of those networks was fine-tuned
on our dataset. The ResNet architectures marked with “*” have been trained
from scratch and their number of layers was selected by optimizing the model
accuracy in the range 50 to 101 layers.

Table 1. Classification performance of different architectures of neuronal networks on
our testing set. Baseline represents the performance of a given network alone, while
FE+SVM represented the performance obtained combining feature extraction from
CNN and SVM classifier. Only best results are shown.

Model Experiment Input size Acc. (%)

ReNet*101 baseline 256 × 256 76.79

ResNet*50 baseline 512 × 512 81.85

ReNet*101 FE+SVM 256 × 256 83.43

ReNet*50 FE+SVM 512 × 512 83.07

ReNet*58 baseline 128 × 128 84.63

ReNet*58 FE+SVM 128 × 128 84.98

ReNet*82 baseline 128 × 128 84.53

ReNet*82 FE+SVM 128 × 128 84.42

ReNet*(101+50) FE+SVM
(stack)

256 × 256
512 × 512

83.26

ReNet*(101+50) FE+SVM
(average)

256 × 256
512 × 512

84.88

ReNet*(101+50) FE+SVM
(concat)

256 × 256
512 × 512

84.41

InceptionV3 baseline 128 × 128 62.3

InceptionV3 baseline 256 × 256 78.87

Xception baseline 256 × 256 75.21

Xception baseline 512 × 512 81.03

Results in Table 1 indicates that the best performance in classifying images
extracted from documents is achieved with input size 128×128. This is somehow
intriguing given that larger images are capable of retaining fine grain image
details. The best performance was achieved by using RestNet with 58 layers
for extracting the features that feed to a SVM classifier. Also interesting that
adding more layers (from 58 to 82) does not improve accuracy, which highlights
the importance of selecting the appropriate number of layers.
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We also used our large dataset to test whether the text embedded in the
images together with the images themselves are capable of improving the clas-
sification accuracy. We found however that this type of data is very sparse as
shown in Fig. 1b. In fact, less than 5% of our images displayed at least one word
captured by the OCR engine.
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Fig. 1. (a) A few examples of images in our large dataset of 32K images. (b) Distri-
bution of number of image in each class of our large dataset and average number of
words fond by the OCR engine in each image for each class. The sparsity of the textual
information in our dataset prevents us from using this type of data in a more effective
way to improve image classification.

Despite the sparsity of this data, as a proof of concept that textual features
embedded in images extracted from documents has some potential to positive
affect the image classification performance, we created a subdataset in which
we keep only the categories block diagram and pie charts for which we found a
reasonable words to image ratio (∼0.37 words per image and 20% of the images
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display at least one word). By using a four-layers multilayer perceptron (MLP;
256, 128, 64 and 2 units), we observed that textual features in isolation are
capable of classifying the subdataset images with accuracy 8% above the baseline
expected by chance. By inspecting the weights of the first layer of the MLP, we
found the most relevant words are start, input, program, director, information
and diagram, which seems to be words that often appear in images of class block
diagram.

This result indicates that this data modality carries important information
that could contribute to improve image classification. To test this hypothesis, we
used the Xception network with input size of 128 × 128 to extract features from
images of the subdataset and we combined these features with those generated
by the 3rd layer of the MLP mentioned above. The concatenated features were
used as input for a three-layers MLP (2048, 1024 and 2 units) responsible for
classifying the images as block diagram or pie chart. We found that the combi-
nation of textual and visual features increases by 1% the accuracy in the testing
set (acc. 0.92% vs 0.93%, respectively).

The previous result indicates that textual features carry additional infor-
mation capable of improving classification accuracy when combined with visual
features. To further explore the potential of multimodal classification, we used
our small dataset described in Sect. 2.2 that combines visual features and textual
features extracted from image captions. The textual features are encoded in a
embedding representation created by using word2vec model. To check whether
this type of representation carry any relevant information about the image
category, we used t-Stochastic Neighbor Embedding (tSNE) [10] to reduce the
embedding dimensionality from 64 to 2 as shown in Fig. 2a. The figure reveals
some spatial structure, suggesting that image captions can be used for image
classification.

Next, we tested the performance of a classifier based on textual features only.
We used a four-layers MLP (256, 128, 64 and 6 units) to classify the captions
embedding into one of the six classes. We split the data into training and test-
ing sets (90% and 10%, respectively) and trained the model for 512 epochs.
The maximum model accuracy on the testing set observed after 1024 epochs of
training was 70.8%, which is significantly higher than what is expected by chance
(∼17%, see Fig. 2b). Although the experiments have been conducted in different
datasets, this result suggests that figure captions have a lot more potential for
classification of document figures than text embedded in the figures.

To check whether figure captions could contribute to improve image classifica-
tion, we used the Xception network with input size of 128×128 to perform visual
features extraction and we combined these features with the captions embedding.
The concatenated features were used as input for a three-layers MLP (2048, 1024
and 2 units). As shown in Fig. 2c, we found the maximum accuracy in the testing
set was about 7% greater than what is obtained when using visual features alone
(79.6%).

To gain some insights of how the textual features combined with visual fea-
tures are boosting the classification accuracy of document images, we inspected
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Fig. 2. (a) Embedding of document figure captions. A word2vec model of size 64 was
trained on the corpora of all arXiv papers with the word seismic in the abstract. The
embedding was created by applying word-by-word the trained model to every caption
extracted out of those documents. We used t-Stochastic Neighbor Embedding (tSNE)
[10] to reduce the embedding dimensionality from 64 to 2. (b) Accuracy for train and
testing set as we train our single and multimodal models. (c) Classification performance
of our best trained models for each class.

one sample (shown in Fig. 3 that was miss-classified by the Xception network
that only uses visual features only. Without textual features, the image shown
was classified as a map. Combining visual and textual features from its caption,
the image was correctly classified as diagram. In Fig. 3 we also show the most
relevant words of the corresponding caption that help in the correct image clas-
sification. We notice that words related to the concept of graph, such as network,
vertices, edge and connected, display high importance for the correct classifica-
tion, which is reasonable taking into account that the category diagram contains
many examples of graphs and flowcharts.

Fig. 1:  Construction of the epicenter network. The time windows are represent-
ed by wi, where i is the window number and all time windows must have the 
same value, in this example T = 3 (the time is represented in arbitrary units). 
Events in the same window are connected as explained in the text. We can see 
that there are 9 earthquakes (A, B, C, D, E, F, G, H, I), but the network of epicen-
ters has only 7 vertices (CA, CB, CC, CD, CE, CF, CI), because CE = CG and 
CF = CH. It     can also be observed that cF → cH is a self edge.
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fig. construction of the epicenter network. the time windows are repre-
sented by wi where i is the window number and all time windows must 
have the same value in this example t the time is represented in arbi-
trary units. events in the same window are connected as explained in 
the text. we can see that there are earthquakes a b c d e f  g h i but 
the network of epicenters has only  vertices ca  cb  cc  cd  ce  cf  ci  
because ce  cg and cf  ch. it can also be observed that cf  ch is a self 
edge.

Analyzed caption:

Original caption:

not in the dictionary
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Fig. 3. Figure extracted from [5] that was correctly classified as diagram when using
visual and textual features together. We also show the impact each word had for the
image classification.
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4 Conclusion

Image understanding is a crucial part in the process of document-based knowl-
edge construction. As part of this step, image classification is of fundamental
importance so that appropriate algorithms can be applied to specific types of
images for content extraction. Here we used a large dataset to show how feature
extraction combined with SVM classifier can improve the process of image clas-
sification. We also investigate the role of textual features in boosting image clas-
sification when combined with visual features. First we show how text extracted
from images through OCR engines can be used as an additional source of infor-
mation for image classification. Although some improvement was observed, we
found this feature to be very spare and its use require appropriate high-resolution
datasets for which OCR engines are reliable and for which the text extraction
make sense. Finally, we used a small dataset that contains images extracted from
documents and their captions to further explore the combination of visual and
textual features. A corpora was created and used to train a word2vec model.
The model was used for creating an embedding representation for each caption.
By means of tSNE 2D projection we observed that the embedding displays spa-
tial structure in terms of images categories. We found a significant performance
improvement (∼7%) in image classification when visual features extracted via
ConvNet were combined with textual features represented by captions embed-
ding. Our results also suggest that the use of textual information is more effec-
tive for particular classes of images, such as diagrams and less effective for other
classes, such as photo (see Fig. 2). In future experiments we would like to test
different approached for weighted multimodal classification, i.e. classification of
images based on different types of data such data each data has a different weight
depending on the image class. These weights will be embedded in the deep learn-
ing algorithm such that the whole system can be trained in a end-to-end fashion.
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Abstract. There are many practical applications that require the sim-
plification of polylines. Some of the goals are to reduce the amount of
information, improve processing time, or simplify editing. Simplification
is usually done by removing some of the vertices, making the resultant
polyline go through a subset of the source polyline vertices. If the resul-
tant polyline is required to pass through original vertices, it often results
in extra segments, and all segments are likely to be shifted due to fixed
endpoints. Therefore, such an approach does not necessarily produce a
new polyline with the minimum number of vertices. Using an algorithm
that finds the compressed polyline with the minimum number of ver-
tices reduces the amount of memory required and the postprocessing
time. However, even more important, when the resultant polylines are
edited by an operator, the polylines with the minimum number of ver-
tices decrease the operator time, which reduces the cost of processing the
data. A viable solution to finding a polyline within a specified tolerance
with the minimum number of vertices is described in this paper.

Keywords: Polyline compression · Polyline approximation
Orthogonality · Circular arcs

1 Introduction

The task is to find a polyline within a specified tolerance of the source polyline
with the minimum number of vertices. That polyline is called optimal. Usu-
ally, a subset of vertices of the source polyline is used to construct an optimal
polyline [6,8]. However, an optimal polyline does not necessarily have vertices
coincident with the source polyline vertices. One approach to allow the resultant
polyline to have flexibility in the locations of vertices is to find the intersections
between adjacent straight lines [11] or geometrical primitives [4]. However, there
are situations when such an approach does not work well, for example, when
adjacent straight lines are almost parallel to each other or a circular arc is close
to being tangent to a straight segment.

Another task is to find a polyline within the specified tolerance of the source
polyline with the minimum number of vertices while maintaining orthogonal
c© Springer Nature Switzerland AG 2018
A. Fornés and B. Lamiroy (Eds.): GREC 2017, LNCS 11009, pp. 54–68, 2018.
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angles. In this case, the orthogonal polyline cannot be restricted by the vertices
of the source polyline. Similar to the previous task, the vertices of the resultant
polyline can be found as the intersections between adjacent straight lines [12].
This solution works well; however, it does not have a proper error model for the
joints.

The approach described in this paper evaluates a set of vertex locations
(considered locations) while searching for a polyline with the minimum number of
vertices. This approach leads to a robust algorithm for compression of polylines.

2 Compression of a Polyline with a Minimum Number
of Vertices

The algorithm to find the compressed polyline with a minimum number of ver-
tices is based on three concepts:

– The vertices of the resultant polyline can only be from the set of considered
locations.

– Verification that the resultant segment or geometrical primitive can prop-
erly describe the corresponding part of the source polyline: points of the
source polyline do not deviate more than the tolerance from the segment,
and changes of direction can be explained by the noise.

– The optimal solution is found by the dynamic programming approach.

2.1 Discretization of the Solution

Any compressed polyline must be within tolerance of the source polyline; there-
fore, the compressed polyline must have vertices within tolerance of the source
polyline. It would be very difficult to consider all possible polylines and find
one with the minimum number of vertices; therefore, as an approximation, only
some discrete locations around the vertices of the source polyline are considered
(see the black points around the vertices of the source polyline in Fig. 1).

The chosen locations around the vertices of the source polyline are on an
infinite equilateral triangular grid with the distance from the vertices of the
source polyline less than the specified tolerance. The equilateral triangular grid
(see Fig. 2) has the lowest number of nodes compared to other grids (square,
hexagonal, etc.), satisfying that the distance from any point to the closest node
does not exceed the specified threshold.

Fig. 1. Example of one segment (red segment) between considered locations (black
dots) within tolerance of the source polyline (blue polyline). (Color figure online)
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O

A B

C

Fig. 2. The worst case distance for the equilateral triangular grid is the distance from
the center of the triangle O to any vertex of the equilateral triangle. If OA = OB =
OC = q, then AB = BC = CA =

√
3q.

The chosen length of the side of an equilateral triangle in the equilateral trian-
gular grid is calculated from the error it introduces. That error can be expressed
as a proportion of the specified tolerance. For example, q ∈ (0, 1) proportion of
the specified tolerance means that the side of the equilateral triangle is equal to√

3q times the specified tolerance. This leads to about
2π

3
√

3q2
≈ 1.2

q2
locations for

each vertex. To decrease complexity, some locations might be skipped if they are
considered neighbor vertices of the source polyline; however, it should be done
without breaking the dynamic programming approach described in Sect. 2.5. If
tolerance is great, it is possible to consider locations around segments of the
source polyline. In this paper, to support any tolerance, only locations around
the vertices of the source polyline are considered. Densification of the source
polyline might be necessary to find the polyline with the minimum number of
vertices.

2.2 Testing a Segment to Satisfy Tolerance

For a compressed polyline to be within tolerance, every segment of the com-
pressed polyline must be within tolerance of the part of the source polyline it
describes. To find the compressed polyline with the minimum number of vertices,
this test has to be performed many times (testing different segments between
considered locations). Precalculated convex hulls can be used to perform such
tests efficiently [14], [10, Appendix II]. The complexity of this task is O

(
log2 (n)

)
,

where n is the number of vertices in the convex hull.1

If there are no lines with a thickness of two tolerances covering the convex hull
completely, then one segment cannot describe this part of the source polyline.
The complexity of this check is O(n).

1 The expected number of points in the convex hull for the N random points in any
rectangle is O(log (N)), see [13]. If the source polyline has parts close to an arc, the
size of the convex hull tends to increase. In a worst case, the number of vertices in
the convex hull is equal to the number of vertices in the original set.
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2.3 Testing Segment Endpoints

The test described in Sect. 2.2 does not check the ends of the segment. The
example in Fig. 3 shows that the source polyline changes directions several times
(zigzag) before going up. Without checking endpoints and changes in direction,
the compressed polyline might not describe some parts of the source polyline
(Fig. 3a). Therefore, these tests are necessary to guarantee that the compressed
polyline (Fig. 3b) describes the source polyline without missing any parts.

Fig. 3. The blue polyline is the source polyline. The red polyline is the result of the
algorithm without checking for endpoints and the source polyline direction (a) and
with both checks performed (b). (Color figure online)

The test to determine whether segment endpoints are within the tolerance
of the part of the source polyline is based on the convex hull in the same way as
the test performed in Sect. 2.2.

The same test for tolerance can be used if the segment extends in parallel and
perpendicular directions (see Fig. 4) and contains a convex hull as part of the
source polyline it describes. If more directions are used, a better approximation
of the curved polygon can be obtained. The complexity of the test is O

(
log2 (n)

)
,

see [10, Appendix II].

Fig. 4. The diagonal striped area is the tolerance area around the segment. The thin
rectangle is the approximation of the area around the segment. A thick polygon would
be a better approximation.
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2.4 Testing Polyline Direction

The test for the source polyline to have a zigzag is performed by checking if
the projection to the segment of backward movement exceeds two tolerances
(2T , where T is the tolerance). Two tolerances are used because one vertex of
the source polyline can shift forward by the tolerance and another vertex can
shift backward by the tolerance, see Fig. 5. The algorithm is based on analyzing
zigzags before the processed point. Let pi, i = 0..N − 1, be the vertices of the
polyline and N be the number of vertices in the polyline. The next algorithm
constructs a table for efficient testing.

TT

Fig. 5. Example of two points following each other on the source polyline, when one
vertex is shifting forward and another vertex is shifting backward by the tolerance T .

Define a set of directions αj =
2π

Nd
j, where j = 0..Nd − 1, Nd is the number

of directions.
Cycle over each direction αj , j = 0..Nd − 1.

Define the priority queue with requests containing two numbers. The first
number is the real value, and the second number is the index. The priority
of the request is the first number.
Set k = 0.
Cycle over each point pi of the source polyline,
i = 0..N − 1.

Calculate the projection of pi to the direction αj (scalar product
between the point and the direction vector):

d = pi · (cos (αj) , sin (αj)) .

Remove all requests from the priority queue with a priority of more
than d+2T . If the largest index from removed requests is larger than
k, set k equal to that index.
Set Vj,i = k.
Add request (d, i + 1) to the priority queue.

To test if the part of the source polyline between vertices is and ie has a
zigzag:

First, find the closest direction αj to the direction of the segment αj∗ :

j∗ = round
(

Nd

2π
α

)
mod Nd, where α is the direction of the segment.

Second, if Vj∗,ie ≤ is, then there are no zigzags for the segment describing
the part of the source polyline from vertex is till ie.
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Let Wi = min0≤j∧j<Nd
(Vj,i). If is < Wie , then one segment cannot describe

the part of the source polyline from vertex is till ie.
This test has the following limitations:

– Since the tested direction is only an approximation of the closest one, the
result is also an approximation.

– For some error models, a zigzag might pass the test. For example, if errors are
limited by a circle, a zigzag by two tolerances is only possible if it happens
directly on the segment.

Nevertheless, it is an efficient test to avoid absurd results, like in Fig. 3a. The
complexity of the algorithm is O(NdN log (N)), and the complexity to test any
segment is O(1).

2.5 Dynamic Programming Approach to Find an Optimal Solution

The optimal solution is found by using the dynamic programming approach, see
[11,18,20].

Let pi,j be considered locations for vertex pi, where i = 0..N − 1, j =
0..Ni − 1, Ni is the number of considered locations for the vertex i. Let pairs
(ik, jk), k = 0..m, divide the source polyline into m straight segments (pik,jk ,
pik+1,jk+1

)
describing the source polyline from vertex ik to ik+1, k = 0..m − 1.

Note that neighbor segments are already connected in pik,jk , k = 1..m − 1, and
this solution avoids problems in algorithms [4,11] when the intersection of neigh-
bor segments is far away from the source polyline.

The goal of this algorithm is to find a polyline with the minimum number
of vertices while satisfying tolerance restriction, and among all polylines find
one with the minimum integral of squared deviations. Therefore, minimization

is performed in two parts

{
T#

T ε

}

, where the first part T# is the number of seg-

ments, and the second part T ε is the integral of the squared deviations between
segments and the source polyline. The solutions are compared by the number
of segments and, if they have the same number of segments, by the integral
of squared deviations between segments and the source polyline. The solution
of this task, when the optimal polyline has vertices coincident with the source
polyline, can be found in [5].

Let Pk, k = 0..N − 1 be parts of the source polyline from vertex 0 to k.
The optimal solution is found by induction. Define the optimal solution for

polyline P0 as

{
T#
0,j

T ε
0,j

}

=

{
0
0

}

, j = 0, N0 − 1. For k = 1, N − 1, construct the

optimal solution for Pk from optimal solutions for Pk′ , k′ = 0..k − 1.
{

T#
k,j

T ε
k,j

}

= min
0 ≤ k′ ∧ k′ < k

0 ≤ j′ ∧ j′ < Nk′

check ((k′, j′) , (k, j))

({
T#

k′,j′ + 1

T ε
k′,j′ + ε(k′,j′),(k,j)

})

, (1)
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where ε(k′,j′),(k,j) is the integral of squared deviations between a segment
(pk′,j′ , pk,j) and the source polyline from vertex k′ to k, check ((k′, j′) , (k, j))
is a combination of checks described in Sects. 2.2, 2.3, and 2.4 to check if seg-
ment (pk′,j′ , pk,j) can represent the part of the source polyline from vertex k′

to k.
The complexity of the algorithm can be reduced by the approach described

in [11, Sect. 4]. The lower limits for the (1) when k′ ∈ [k1, k2] are derived in
Appendix. The maximum of (5) and (6) can be used to skip checking combina-
tions between vertices k1 and k2.

To reconstruct the optimal solution, it is necessary for

{
T#

k,j

T ε
k,j

}

to store

{k′, j′} when the right part of (1) is minimal. The optimal solution is recon-

structed from min
0≤j∧j<NN−1

{
T#

N−1,j

T ε
N−1,j

}

by recurrently using stored {k′, j′} values.

2.6 Compression of Closed Polylines

To find the optimal compression of a closed polyline, it is necessary to know the
starting vertex. It is also necessary that the resultant polyline starts and ends
in the same considered location. The next algorithm will be used to find the
starting vertex and to construct a closed resultant polyline.

1. Construct a convex hull for all vertices of the source polyline.
2. Find the smallest angle of the convex hull polygon.
3. Take the vertex corresponding to the smallest angle as the starting vertex

and reorient the closed polyline to start from that vertex.
4. Apply the algorithm.
5. From the constructed solution, take one vertex in the middle as the new

starting vertex and reorient the closed polyline to start from that vertex.
6. Apply the algorithm once more. For the first and the last vertices consider

only the location of the previous solution for the middle vertex.

Steps 1, 2, and 3 are important for small closed polylines, because the resul-
tant polyline is likely to be within the tolerance of the source polyline, even with
suboptimal orientation. As a consequence, without these steps, step 5 may not
find the optimal division of the source polyline, leading to a suboptimal solution.

This algorithm does not guarantee finding the optimal solution, but it is a
good compromise between the optimality of the resultant closed polyline and
the speed.

2.7 Optimal Compression by Straight Segments and Arcs

The algorithm described in this paper is extendible to support arcs. The arc pass-
ing through considered locations differs from the segment because of the need
to define the radius. Unfortunately, this adds significant complexity to the algo-
rithm. Nevertheless, such an algorithm is possible. There are different ways to fit
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an arc into a polyline: minimum integral of squared differences of squares [15,19];
minimum integral of squared deviations [3,7,9,16,17]; minimum deviation; etc.
The most efficient algorithms to fit an arc have constant complexity [7,9,15,19];
however, algorithms based on integral of squared differences of squares [15,19]
might break for small arcs and, therefore, are not suitable. Checking that the
part of the source polyline is within tolerance, endpoints, and zigzags will be
time-consuming due to complexity O(n).

2.8 Analysis of the Algorithm Complexity

The algorithm contains three steps:

1. Preprocessing of the source polyline: Construction of convex hulls (Sect. 2.2)
and filling arrays for an efficient zigzag test (Sect. 2.4).

2. Construction of the optimal solution (Sect. 2.5).
3. Reconstruction of the optimal solution (Sect. 2.5).

A significant amount of time is spent on constructing an optimal solution. It
is difficult to evaluate the complexity described in Appendix; however, the worst
complexity is

O

(

N2 ·
(

max
0≤i∧i<N

Ni

)2

· log2 (N)

)

. (2)

The complexity of the algorithm depends on the type of polyline it pro-
cesses; therefore, it is difficult to conclude what is the practical complexity of
this algorithm. If the optimal polyline does not have segments describing too
many vertices of the source polyline, (2) tends to be

O

(

N ·
(

max
0≤i∧i<N

Ni

)2
)

. (3)

Figure 6 shows how much time it takes to process a polyline depending on
the number of vertices. The dependence is very close to linear, supporting (3).

Figure 7 shows the dependence on the error introduced by a discrete set of
considered locations (see Sect. 2.1) to the efficiency of the compression. Flexibil-
ity in places where neighboring segments connect to each other is very important
to reach maximum compression, especially for noisy data.

2.9 Example

If the source polyline is the noisy version of a ground truth polyline, where
the noise does not exceed some threshold, and the algorithm is provided with
a tolerance slightly greater than the threshold to account for approximations
inside the algorithm, then the resultant polyline will never have more vertices
than the ground truth polyline. The effectiveness of this approach is shown in
Fig. 8. Nine segments are sufficient to represent the arc with specified precision.
The algorithm not only optimizes the number of segments, it also finds the
locations of the segments that minimize integral of squared deviations.



62 A. Gribov

Fig. 6. Time needed to process a polyline versus the number of vertices. The time is
measured in CPU ticks on the processor Intel Xeon CPU E5-2670. The polylines are
generated using the Brownian motion process. Each next vertex is incremented from
the previous vertex by random vector, with components normally distributed with zero
mean and 0.25 standard deviation. The tolerance was set to one. The average reduction
in the number of vertices is about 50 times.

Fig. 7. The number of segments versus discretization error. The polyline was generated
using the Brownian motion process in the same way as in Fig. 6 with 10, 000 vertices.

Fig. 8. The black polyline is the source polyline. The red circles are the vertices of the
optimal polyline. Ground truth is the arc of 90◦. The noise has uniform distribution in
the circle of one percent of the arc radius. (Color figure online)
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3 Compression of a Polyline with a Minimum Number
of Vertices by Orthogonal Directions

Reconstruction of orthogonal buildings requires support by 90◦ and sometimes
45◦. Therefore, the square grid for considered locations is more appropriate
for this task compared to the triangular grid that supports directions by 60◦.
Because only certain directions are allowed, only segments between pairs of con-
sidered locations aligned by these directions may be parts of the resultant poly-
line. Suppose the resultant segment goes between vertex i and j, it has to be
within tolerance of all vertices between i and j; therefore, it goes through their
considered locations (with the exception of the segment deviating close to the
tolerance due to discretization of considered locations).

The optimal solution is found by induction. Define the optimal solution for

polyline P0 as

{
T#
0,j,q

T ε
0,j,q

}

=

{
0
0

}

, where j = 0, N0 − 1, q = 0,M − 1, and M

is the number of different directions. For orthogonal case M = 4, and for 45◦

case M = 8. Take directions as αi =
360◦

M
· i, i = 0,M − 1. For k = 1, N − 1,

construct the optimal solution for Pk from the optimal solution for Pk−1.
{

T#
k,j,q

T ε
k,j,q

}

= min
0 ≤ j′ ∧ j′ < Nk−1

0 ≤ q′ ∧ q′ < M

2 |q′ − q| �= M

angle (pk,j − pk−1,j′ , αq′)

({
T#

k−1,j′,q′ + δq′ �=q

T ε
k−1,j′,q′ + ε(k−1,j′),(k,j)

})

,

where angle (v, α) is the check that the vector v has angle α (zero length vectors

are allowed) and δq′ �=q =

{
1, if q′ �= q;
0, otherwise.

The condition 2 |q′ − q| �= M corresponds to prohibiting changes in direction
by 180◦.

For the 45◦ case, it is possible to restrict the resultant polyline from having
sharp angles by not allowing a change of direction by 135◦

(|4 − ((q′ − q) mod 8)| �= 1).
Note that it is not necessary to check for the tolerance, direction, and end-

points because they are satisfied during each induction step.
Analyzing the previous solution along M direction will further reduce the

amount of calculations. The total complexity of the algorithm is

O

(
N · max

0≤i∧i<N
(Ni) · M

)
.

For some data, the algorithm may produce an improper result. This happens
when the introduction of a zero length segment lowers the penalty.
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Because the correct orientation is not known in advance, it is necessary to
rotate polylines by different angles and take the solution with the lowest penalty
[12, see Sect. 6].

The main difference between the algorithm described in this section and [12]
is in the parameters. The algorithm described in this paper uses tolerance, while
the algorithm in [12] is based on the penalty Δ for each additional segment.
Specification of the tolerance guarantees that the resultant polyline is within
the tolerance of the source polyline.

3.1 Examples

Figure 9a shows an example of the reconstruction of orthogonal buildings. The
reconstruction of buildings with 45◦ sides are shown in Fig. 9b.

Fig. 9. The black polylines are reconstructed buildings from lidar data [1]. The red
polylines are the resultant orthogonal shapes (a), and resultant shape with orthogonal
and diagonal sides (b). The blue polylines are the ground truth taken from [2]. (Color
figure online)

The performance was analyzed on a dataset with 4, 681 buildings on two Intel
Xeon CPU E5-2670 processors with 32 threads (see Fig. 10). Reconstruction of
orthogonal shapes from polylines took 30 s, and orthogonal and diagonal sides
took 1 min 30 s.
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Fig. 10. The red polylines are the resultant orthogonal shapes. The result is overlapped
with imagery to evaluate quality of the method. (Color figure online)

4 Conclusion

This paper describes an algorithm that finds a polyline approximately with the
minimum number of vertices while satisfying tolerance restriction. The solution
is optimal with the following limitations:

– The vertices of the compressed polyline are limited to considered locations
(Sect. 2.1).

– The test that the vertex of the compressed polyline is located between some
vertices of the source polyline is approximate due to the snapping of the
breaking point (Appendix).

– The tests for endpoints (Sect. 2.3) and zigzags are approximate (Sect. 2.4).

The performance of the algorithm can be greatly improved if the number of
considered locations is decreased without losing quality. This requires further
research.

Modification of this algorithm to find a compressed polyline when angles
between adjacent segments are restricted to 90◦ or 45◦ has the following impor-
tant differences:

– The algorithm requires densification of the source polyline.
– The complexity of the algorithm becomes proportional to the number of

points in the densified source polyline.
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– The complexity of the algorithm becomes inversely proportional to the square
of the precision parameter q, which was defined in Sect. 2.1.

The advantages of this algorithm are as follows:

– While this task can be solved by using the dynamic programming approach
without considered locations, the advantage of this approach is in satisfying
the tolerance requirement in the joints of the resultant orthogonal polyline.
Different types of tolerance restrictions at the joints can be supported by
adjusting the set of considered locations.

– The algorithm has complexity proportional to the length of the source poly-
line.

– This algorithm requires that the tolerance be specified, which is easier than
specifying the penalty Δ in [12].

The limitation of this algorithm is its inability to work with small tolerances
because the complexity of the algorithm is inversely proportional to the toler-
ance. This limitation is not an issue for processing real data because they always
come from measurements and there are no measuring devices that can measure
without some error.

Acknowledgments. The author would like to thank Linda Thomas and Mary Anne
Chan for proofreading this paper; and Arthur Crawford for helpful discussions and
processing the data from [1,2] used in Figs. 9 and 10. The author would also like to
thank the anonymous reviewers for their helpful comments to improve this paper.

Appendix: Lower Bounds for an Optimal Solution

Following the approach described in [11, Sect. 4]

min
k1 ≤ k′ ∧ k′ ≤ k2

0 ≤ j′ ∧ j′ < Nk′

check ((k′, j′) , (k, j))

({
T#

k′,j′ + 1

T ε
k′,j′ + ε(k′,j′),(k,j)

})

�

� min
k1 ≤ k′ ∧ k′ ≤ k2

0 ≤ j′ ∧ j′ < Nk′

⎛

⎝

⎧
⎨

⎩

T#
k′,j′ + 1

T ε
k′,j′ + ε

(k2)
(k′,j′),(k,j)

⎫
⎬

⎭

⎞

⎠,

(4)

where ε
(k2)
(k′,j′),(k,j) = min

0 ≤ j2 ∧ j2 < Nk2

check ((k′, j′) , (k2, j2))
check ((k2, j2) , (k, j))

(
ε(k′,j′),(k2,j2) + ε(k2,j2),(k,j)

)
.
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From (4), it follows that

min
k1 ≤ k′ ∧ k′ ≤ k2

0 ≤ j′ ∧ j′ < Nk′

check ((k′, j′) , (k, j))

({
T#

k′,j′ + 1

T ε
k′,j′ + ε(k′,j′),(k,j)

})

�

� min
0 ≤ j2 ∧ j2 < Nk2

check ((k2, j2) , (k, j))

({
T#

k2,j2

T ε
k2,j2 + ε(k2,j2),(k,j)

})

(5)

and

� min
0≤j1∧j1<Nk1

({
T#

k1,j1

T ε
k1,j1

})

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

min
0 ≤ j2 ∧ j2 < Nk2

check ((k2, j2) , (k, j))

(
ε(k2,j2),(k,j)

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (6)

The inequalities (5) and (6) are approximate due to the use of considered
locations. However, this allows finding stricter limitations for the solution inside
the interval and simultaneously finding the solution for breaking at vertex k2.

It is possible to construct (5) and (6) with exact inequalities by constructing
the optimal solution when the endpoint is not required to end in the considered
location. Similarly, the part from vertex k2 to (k, j) should not be required to
end in the considered locations for vertex k2.
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1 Department of Software and Computing Systems, University of Alicante,
Alicante, Spain

{jsober,drizo,inesta}@dlsi.ua.es
2 Schulich School of Music, McGill University, Montréal, Canada
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Abstract. The transcription of music sources requires new ways of
interacting with musical documents. Assuming that automatic technolo-
gies will never guarantee a perfect transcription, our intention is to
develop an interactive system in which user and software collaborate to
complete the task. Since the use of traditional software for score edition
might be tedious, our work studies the interaction by means of electronic
pen (e-pen). In our framework, users trace symbols using an e-pen over a
digital surface, which provides both the underlying image (offline data)
and the drawing made (online data). Using both sources, the system is
capable of reaching an error below 4% when recognizing the symbols
with a Convolutional Neural Network.

Keywords: Music documents · Optical music recognition
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1 Introduction

Automatic recognition systems have been traditionally focused on accomplishing
a fully-automated operation, yet optimum performance cannot be assured [2,8,
18]. The management of the errors produced by the system is usually seen as
an issue outside the research process because it is simply considered as the
procedure for converting the system hypothesis into the desired result. Quite
often, however, we find a semi-automatic scenario in which the human operator
has the eventual responsibility of verifying and completing the task [15].

This approach to problem solving by using pattern recognition algorithms
with the user in the loop, has been successfully used in different tasks, like
image retrieval [10], speech transcription, and machine translation [16], among
others. In a domain closer to that presented in this paper, user feedback has
been successfully used in word spotting in historical printed documents [11].

c© Springer Nature Switzerland AG 2018
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All these works have in common the demonstration of a clear benefit when
taking advantage of the intervention of the human expert in the process.

In this paper, we focus on the human-machine interaction for tasks related to
music notation. The automatic transcription of music documents into a symbolic
format is a complex task [14], and their current performance do not allow us
to consider them reliably in a fully-automatic scenario [4]. Therefore, it seems
interesting to set out the aforementioned interactive paradigm when dealing
with the task of music document transcription. However, conventional channels
of communication such as the keyboard or the mouse are not easily applicable.
On the contrary, handwriting is a natural way of communication for humans,
and so it is interesting to consider it for interacting with the computer. This can
be done by means of electronic pen (e-pen) technologies [9].

When using this kind of interfaces, the user is provided with a friendlier
interface to interact, but the result of the interaction is no longer determinis-
tic: unlike the keyboard or mouse entry, for which it is clear what the user is
inputting, the pen-based interaction has to be decoded and this process might
have errors [6].

This work focuses on early music notation handwritten scores (see Fig. 1).
The music sheets will be transcribed into the symbolic domain and stored in
an XML format, suitable to be post-processed. We cannot assume an absolute
accuracy in the system performance, so the output score post-editing might be
tedious and time-consuming. The suitable understanding of this kind of doc-
uments are not within the reach of every expert, and those who can actually
correct the system output still prefer to work with pencil and paper for these
tasks, so they are more comfortable using pen-based technologies for human-
computer interaction involving music documents [5]. This is why our objective
is to provide an ergonomic interface with an e-pen able to provide low error
recognition rates.

The use of the e-pen produces an interesting multimodal signal, which can
be used to boost the recognition [1,17]. To carry out this classification task, we
make use of Convolutional Neural Networks [19]. Within this paradigm, we can
nicely combine the different modalities produced so that the performance can
be improved as far as possible.

Fig. 1. The kind of documents processed are in Spanish white mensural notation that
are transcribed into an XML representation.
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Note that the approach proposed here does not attempt to ignore automatic
recognition strategies. That is, we do not expect users to manually trace every
single symbol of an image. Ideally, one would initially use an automatic system,
and then use the interface proposed here to post-process the output in a more
ergonomic way.

The rest of the paper is organized as follows. First, the kind of handwrit-
ten score data and how they are represented are introduced in Sect. 2. Then,
the convolutional neural network architecture used will be described in Sect. 3,
followed by the way in which the unimodal and multimodal decisions are made
(Sect. 4). Finally, the results (Sect. 5) and conclusions (Sect. 6) are summarized.

2 Data and Multimodal Representation

We assume a workflow in which the user traces symbols on a digital surface
depicting a music score. The system, therefore, receives a multimodal signal: on
one hand, the sequence of points that indicates the path followed by the e-pen
on the digital surface —usually referred to as online modality—; on the other
hand, the piece of image below the drawn, which contains the original traced
symbol —offline modality—. The goal is to use this interaction to transcribe
the musical document. Since the interaction itself gives us the position of the
symbols in the image, it is only necessary to infer which type of symbol has been
traced in each interaction.

Figure 2 illustrates the process explained above for a single symbol. The
actual information obtained is the sequence of 2D points in the same order they
were collected, indicating the path followed by the e-pen (online information).
An image representation of the symbol can be rendered by generating segments
between pairs of consecutive points. In addition, we can consider the bounding
box of the pen strokes to crop the original image, thereby obtaining the symbol
of interest as it appears in the original image (offline information).

The process for collecting and labeling the dataset has been implemented
on a graphical interface specifically designed for this work. See Fig. 3 for an
illustration of the user interface.

To carry out our experiments, we consider a dataset consisting of 60 pages
of handwritten documents in Spanish White Mensural notation (circa 16th and
17th centuries) including 10 150 symbols of 30 different classes (see Table 1)1.
Each sample is represented by both the offline (region-of-interest image) and the
online (image reconstructed from the user traces) modalities. Data were collected
by five different users, tracing symbols on an archive of early music handwritten
in Mensural notation. The number of symbols per class is not balanced but it
depicts the same distribution found in the documents.

1 The dataset is freely available at http://grfia.dlsi.ua.es/ (Bimodal music symbols
from Early notation).

http://grfia.dlsi.ua.es/


74 J. Sober-Mira et al.

(a) Tracing process

(b) Offline data (c) Online data

Fig. 2. Example of extraction of a minima note. Above, the sequence of points collected
by the e-pen. The box represents the bounding box defined from the sequence of user
traces. Below, the multimodal data extracted.

Fig. 3. Snapshot of the graphical interface developed and used for tagging. On the
right, the images of the score pages are presented for selection. The central window is
the main one, where the user can see the contents of the image and proceed to make
the symbol tracing. On the left side, the result of the classification (trace, region of
interest, and output class) can be seen.



Pen-Based Music Document Transcription with CNN 75

Table 1. A representative subset of the elementary mensural symbols in the archive
that have been used as classes for the classifier.

3 Classification Scheme

The classification scheme utilized are different Convolutional Neural Networks
(CNN), which have shown a great success in a number of tasks related to com-
puter vision [12]. These networks take advantage of local filters, pooling, and
many connected layers to learn a suitable data representation for classification
tasks.

The architecture of our CNN is depicted in Fig. 4. The same scheme is uti-
lized for classifying both the offline and online images. As mentioned above, the
traces made by the user are converted into an image, in order to represent both
modalities in the same way to be provided to the network. Input layers are of
the same size for both cases (36 × 36), so traces and bounding box images are
resized to these dimensions.

Fig. 4. CNN architecture utilized for both the offline and online inputs.
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We denote by Conv(c, k) a spatial convolutional layer with kernel size k×k and
number of filters c, with Rectified Linear Unit (ReLU) activation [7]. Therefore, the
CNN we have evaluated for our approach comprises the following configuration:
Conv(32, 3) → Conv(32, 3) → MaxPool(2) → Conv(32, 3) → Conv(32, 3) →
MaxPool(2).

After two series of convolutions and pooling layers, the neurons are arranged
into a hidden layer that is fully-connected to a SoftMax output with 30 units.
This last layer permits us to interpret the activation of every unit as the proba-
bility of the input signal x to represent each considered class, ω: P (ω|x) [3].

4 Classification Strategies

Several strategies have been considered to address the classification of the mul-
timodal data:

Single Modalities. It is interesting to measure how well each modality images
considered are able to perform the classification of the music symbols. To this
end, we consider the single mode classification strategies, which means to assess
the performance of the CNN in Fig. 4 for the images of one modality by itself.

This analysis may be also useful to check whether the staff present as back-
ground in the offline mode image makes the problem harder or not, which would
pose the need to apply staff removal algorithms.

Multimodal Classifications. The main goal of this paper is to check how the
combination of different sources of information can be used to improve a hard
classification task like the present one. Two kind of information fusions have
been tested depending on where the different data were actually combined.

– Intermediate fusion: the two images are supplied to the input layer of two
CNNs, but the two networks end up in a single output layer.

– Late fusion: the decisions of each single CNN are interpreted in terms of
probabilities that are combined into a single decision.

For the intermediate fusion scheme, the neural codes computed from both
images are concatenated into a single hidden layer of the network that is fully
connected to the softmax output layer (see Fig. 5).

In this case, the classification is performed by a maximum activation scheme,
so the sample image is assigned to the class represented by the output neuron
having the highest activation. Due to the SoftMax layer, the output of the CNN
corresponds to values between 0 and 1, indicating the confidence (probability)
that the network gives to each possible category.

In the case of multimodal classification by late fusion, the decision is taken
from the activations of the output layer for both single-architecture networks.
Since they can be interpreted as the probabilities assigned by each network to the
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Fig. 5. CNN architecture utilized for the intermediate fusion approach.

offline and online representations of the sample, the decisions of the independent
CNNs can be merged by a linear combination.

Let Ω denote the set of categories considered. Given images x and y from the
offline and online modality, respectively, the late fusion emits the label ω̂ such
that

ω̂ = arg max
ω∈Ω

1
2

Poffline(ω|x) +
1
2

Ponline(ω|y),

where Poffline(ω|x) and Ponline(ω|y) are the probabilities obtained from the cor-
responding modality.

5 Results

Experimentation followed a 5-fold cross-validation scheme for the four classi-
fication approaches considered. The independent folds were randomly created
with the sole constraint of having the same number of samples per class (when
possible) in each of them.

Error rates achieved by the different classification schemes are presented in
Table 2. Average and standard deviations for the five folds are displayed.

Regarding the single-modality classifications, it is interesting to note that the
offline mode performs better, although not dramatically (1%), than the online
one. Although this may seem contradictory according to the literature [13], it
is important to emphasize that the writers of each modality are not the same.
Thus, we can deduce that the original copyists were more cautious when writing,
and therefore their handwriting is easier to classify. On the other hand, current
users pay less attention to the way they write, which makes online mode more
complex to decode in our experiments.

Another conclusion that can be made from these results is that, the presence
of the staff lines in the offline region of interest, has not made the classification
task harder, since in the online mode the staff is not present and this was not
an advantage for it.

What is very significant is the difference between the results obtained by the
single modalities and the multimodal approaches. The experiments report that
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Table 2. Results (error rates) obtained for a 5-fold cross validation experiment with
respect to the four classification schemes considered.

Classification strategy Average ± std. dev.

Offline modality 6.3 ± 0.7

Online modality 7.3 ± 0.2

Late fusion 3.6 ± 0.5

Intermediate fusion 3.5 ± 0.7

both multimodal classification schemes significantly outperformed the strategies
only using one modality. In this case, less than 4% of the symbols are mislabeled,
achieving figures that are around half of the former.

The differences were no significant when comparing the performance of both
multimodal approaches. The computation time is neither significantly greater in
one case or in the other.

6 Conclusions

This paper presents a new approach to transcribe music documents by means
of a computer equipped with e-pen technologies. Our framework produces a
multimodal signal by which music symbol classification can be improved.

This framework also provides a more comfortable and user-friendly environ-
ment for expert musicologists to interact with the system.

Experimentation with a particular corpus of handwritten Spanish white men-
sural notation has been presented, considering CNNs as classification scheme.
Results of classification of the single modalities considered and two different
multimodal fusion strategies have been presented.

Results support that it is worth to consider both modalities in the classifi-
cation process, as accuracy is noticeably improved with a combination of them
than that achieved by the single modalities. Very low rates (around 3.5%) were
obtained when combining both modalities. This promising performance makes
it possible an efficient work by the expert.

This is a first step to achieve a complete system for music document tran-
scription. More factors are still of interest, such as detecting the position of the
symbols in the staff or check the impact of different writers or experts in the
interactions with the system.

As the classification learns from the data images, the approach is independent
of the notation. The training phase adapts the system to it, so it can be applied
to any kind of notation or style of writing. The actual impact of these variations
is still needed to be studied.
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Abstract. Optical Music Recognition refers to the task of transcribing
the image of a music score into a machine-readable format. Many music
scores are written in a single staff, and therefore, they could be treated
as a sequence. Therefore, this work explores the use of Long Short-Term
Memory (LSTM) Recurrent Neural Networks for reading the music score
sequentially, where the LSTM helps in keeping the context. For training,
we have used a synthetic dataset of more than 40000 images, labeled
at primitive level. The experimental results are promising, showing the
benefits of our approach.

Keywords: Optical music recognition · Recurrent neural network
Long short-term memory

1 Introduction

Sheet music uses music notation to encode information on how to interpret a
piece. It is one of the most considered means for the transmission of music.
With the advent of the digital era, there is a number of computational tools for
working with musical scores. However, to take advantage of these benefits, it is
necessary to transcribe sheet music into a digital format that can be processed
by a computer.

The transcription process can be carried out manually. However, the wealth
of music notation inevitably leads to burdensome software for music score edit-
ing, which makes the whole process very time-consuming and prone to errors.
Consequently, automatic transcription systems for musical documents represent
interesting tools. The field devoted to address this task is known as Optical
Music Recognition (OMR) [1–3]. Nowadays, there exist many commercial OMR
tools, like PhotoScore1 or SharpEye2.

Typically, an OMR system takes an image of a music score and automatically
exports its content into some structured format such as MEI or MusicXML. In
1 http://www.neuratron.com/photoscore.htm.
2 http://www.visiv.co.uk/.
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addition to the automatic transcription of sheet music, the OMR field comprises
many other applications such as writer identification, graphic reconstruction of
old music scores, generation of audio files from images, or retrieval of the same
piece from different authors.

The process of recognizing the content of a music score from its image is
complex because it has to deal with many music-specific difficulties [2], such
as the two-dimensional nature of the notation, the double component of music
symbols,3 the presence of the staff lines, and so on.

Traditionally, OMR has been approached considering multi-stage systems [1].
The different stages comprise several small sub-tasks such as image binarization
[4], staff-line removal [5], or music symbol classification [6]. Our work, however,
focuses on directly recognizing the music content appearing on an image.

We do assume that the image depicts a single staff section (e.g. scores for
violin, flute, etc.), much in the same way as most text recognition research focuses
on recognizing words appearing in a given line image [7]. Note that this is not a
strong assumption, as there exist algorithms that achieve good performance for
both isolating staff sections [8] and separating music and lyrics (accompanying
text) [9]. For this reason, one can assume that staves are already segmented and,
therefore, can be processed as a sequence.

To address this specific task, the proposed architecture is based on Recurrent
Neural Networks (RNN), since they have been applied with great success to many
sequential recognition tasks such as speech [10] or handwriting [7] recognition.
Specifically, to avoid the vanishing gradient problem, Long Short-Term Memory
(LSTM) units are considered. Moreover, Bidirectional LSTMs are used to benefit
from context information.

As a scientific novelty, we address the OMR by separating the two compo-
nents of the musical symbols: duration and pitch, both in terms of training and
evaluation. This provides the RNN with greater robustness, as they can focus
on the specific aspects that concern each component. Our experimental results
demonstrate the viability of this approach, obtaining results that are close to
optimal on an exhaustive set of musical staves.

The rest of the paper is organized as follows. Section 2 explores the state
of the art. Section 3 describes the method, whereas Sect. 4 analyzes the results.
Finally, conclusions and future work are drawn in Sect. 5

2 Related Work

This section overviews the key approaches in Optical Music Recognition, and
also, overviews the Deep Learning architectures applied to music research that
are relevant to the present work.

2.1 Optical Music Recognition

An OMR system aims to recognize each element located in the music score.
Figure 1 illustrates the usual pipeline from a scanned music score to a machine-
3 Symbols appear with specific duration (rhythm) and pitch (melody).
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readable format. The steps are the following. First, the image is preprocessed to
reduce problems in segmentation. Usually, before segmenting the musical sym-
bols and/or primitives, the staff lines are removed. Hence, the segmentation
task is simplified. Afterwards, the primitives are merged to form symbols. Some
methodologies use rules or grammars in order to be able to validate and solve
some ambiguities from the previous step. Finally, the musical description file
(e.g. MusicXML, MEI) is created with the information of the previous steps.
These steps are described in more detail next.

Fig. 1. Typical OMR pipeline.

The first stage is devoted to preprocessing and layout analysis. The most
common techniques are binarization, noise removal and blur correction. However,
other techniques as enhancement, skew correction or deskewing, among others
have also been proposed. In music scores documents it is important to segment
the document into regions. Authors in [11] propose a new algorithm to segment
the regions that include text and regions containing music scores. Normally,
the staff removal algorithm are based on projections and run-length analysis,
contour-line tracking, or graphs.

The recognition of music symbols consists in the recognition of isolated and
compound music symbols. Figure 2 shows examples of isolated and compound
music symbols. This classification is done because the techniques are usually
different. For example, isolated music symbols are usually detected by symbol
recognition methods [12–15], grammar/rules [16], sequence analysis (e.g. Hidden
Markov Models) [17,18], graphs [19], Multilayer perceptron [14] and deep neural
networks [6,20,21]. In the case of compound music symbols, most methods are
based on grammars or rules [22]. It must be noted that the combination of
compound music symbols is large, so it is impossible to have examples of all
these possible combinations. This limitation must be taken into account when
developing learning-based approaches.

(a) Isolated Music Symbols. (b) Compound Music Symbols.

Fig. 2. Examples of music symbols.

The validation stage is related to the previous one. Usually grammars or rules
are defined to make more robust the recognition step in front of ambiguities.
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Some works [16,22,23] propose the use of grammars to correct any mistakes as
repeating or missing symbols. Another aspect that could be verified is whether
the number of beats match the time signature.

OMR systems typically provide an output file at the end of the process.
The most common output files are MIDI4, MusicXML5 or MEI6. MIDI (Musical
Instrument Digital interface) is a communication technical standard used in
electronic music devices. MusicXML is an open musical notation format based
on Extensible Markup Language (XML). MEI is an open-source effort to define
a system for encoding musical documents in a machine-readable structure.

2.2 Deep Learning in Music

According to Goodfellow, Bengio and Courvill [24], Deep Learning appeared
between 1940s–1960s. However, it has become popular quite recently due to,
among others, the technological advances in Hardware. In the last decade, several
deep learning techniques have been applied to music or audio processing. For
example, CNNs have been applied to audio processing in order to detect and
recognize the sound of certain objects and scenes in videos. In [25] they use CNNs
to compensate differences between video and audio sampling rates, whereas, the
authors in [26] use CNN in order to process sounds. The authors of [27,28] have
applied RNNs to MIDI generation, specifically LSTM in order to produce new
music files taking advantage of sequence model of the music input files. In [29]
RNNs are used in polyphonic music in order to make predictions.

As far as we know, there are very few deep learning-based systems that cover
the whole stages of Optical Music Recognition. For example, a very recent OMR
work which uses a Convolutional Sequence-to-Sequence network for recognizing
printed scores has been published [30]. Then, Calvo-Zaragoza et al. [31] use an
end-to-end architecture based on a Recurrent Convolutional Neural Network in
order to recognize monophonic music scores. Finally, Pacha et al. [32] proposes
a first step towards OMR developing a handwritten music symbol classifier.
However, it is still far from a complete OMR system.

3 Methodology

Single staff sheet music can be seen as a sequence. In this way, a music score is
read from left to right. In order to automatically process the music score and
take into account the sequence of music symbols, a Recurrent Neural Network
(RNN) seems an appropriate tool. In this work, we propose to make use of Long
Short-Term Memory (LSTM) [33] networks. LSTMs have the ability to decide
which information has to be kept as context and which information has to be
removed, i.e. forgotten.

4 https://www.midi.org/.
5 http://www.musicxml.com/.
6 http://music-encoding.org/.

https://www.midi.org/
http://www.musicxml.com/
http://music-encoding.org/
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Figure 3 shows the different stages of our proposed pipeline. Firstly, the input
music scores are preprocessed (Subsect. 3.1). Afterwards, each column of the
image is processed by an LSTM network (Subsect. 3.2). The output of the LSTM
is passed by two fully connected layers in order to distinguish between rhythm
and pitch (Subsect. 3.3). Finally, the output of the system is the recognition of
symbols, including rhythm and pitch (Subsect. 3.4). The different steps of this
pipeline are explained in the following sections.

Fig. 3. Architecture of the network

3.1 Input

The proposed architecture is trained by batches of images that are resized to a
fixed height of 50 pixels. Then, these images are fed into the proposed model
using pixel-wise columns. The maximum width can be variable depending on the
widest image in the batch. Therefore, images with a shorter width are padded
with 0’s to the maximum width of the batch. In this work, the staff lines have
not been removed in order to avoid noise and distortions in the musical symbols.
In addition, staff lines provide useful information in terms of the pitch. Note
that features are not extracted from the image in order to maintain the spatial
information and the spatial order as much as possible.

3.2 Long Short-Term Memory

A LSTM network has been used in order to recognize the elements of the sheet
music. In this work, we use a bidirectional network to increase the performance
and reduce ambiguities when recognizing some symbols. The combination of
forward and backward pass allows to recognize symbols that may be confused if
only one direction is used.

The proposed LSTM network is composed by 3 recurrent layers with a hidden
state size of 128. We have trained our architecture for 100 epochs with a batch
size of 128 or 64 for LSTM and BLSTM respectively. These values have been
experimentally set. It must to be said that the network is trained column by
column so it predicts one output per column. In other words, the output will
end up being as long as the input image.
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3.3 Fully Connected Layers

At the end of the LSTM network, we propose to use two heads in order to
separately predict rhythm and melody. Therefore, after the LSTM output, two
fully connected layers (FC) are used to obtain two different outputs. The reason
to split the output in two parts is that the number of combinations between
melody and rhythm is very high. In case of using a single output, all possible
combinations of rhythm-melody must be created as possible classes. Therefore,
we propose to exploit the idea that rhythm and pitch can be independent. Thus,
rhythm is decided by the symbol whereas the pitch depends on the position with
respect the staff lines. Following this idea, many more examples are available to
train our system.

3.4 Output

After the FC layers, the next step is to calculate the loss and backpropagate
the errors. Even though two heads are used to separate between rhythm and
pitch, the output of our system should be able to deal with multiple classes
per time step. Therefore, in validation and test, a threshold is applied to both
outputs (Rhythm and Pitch) in order to obtain the corresponding classes. The
outputs and the ground-truth of each music score is represented by two binary
matrices, one for the rhythm and another for the melody or pitch. Horizontally,
it corresponds to the width of the input image whereas the vertical axis tells
the different classes for symbols and pitch, 54 and 26 respectively. Pitch cor-
responds to locations in the staff. Figure 4 shows the structure of the matrix
for both melody Fig. 4a and rhythm Figs. 4b and 5 shows a real example with
its corresponding groundtruth. The corresponding pixels where the symbol is
located in the music score will be activated in both matrices indicating which
symbols are activated in each time step i.e. pixels. The following symbols have
been manually added to ease the recognition task:

– Epsilon (ε) is used to know where each symbol starts and ends, as it is used
in text recognition. This symbol can be seen as a separator. Wherever this
symbol is activated, it means that it is not possible to have any other symbol
activated as well (see Fig. 4c blue marks). This symbol appears in both the
rhythm and pitch ground-truths.

– No note is used to indicate that a symbol has not any pitch. This symbol
only appears in the pitch ground-truth.

Finally, these outputs are converted into an array. One with the detection of the
rhythm, another for the pitch and the last one with the combination of rhythm
and pitch. These arrays will be used to evaluate the method.

3.5 Loss Function

In music, we can find one or more symbols in one instance of time, for example,
chords or time signature (see Fig. 4c red marks). Therefore, a multilabel loss
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Fig. 4. Output representation for Rythm (a) and Pitch (b). (Color figure online)

Fig. 5. Example of Music Score and the corresponding Ground-truth in a Binary
Matrix. The first row is the music score. The second row is the Rhythm Ground-truth.
The third row is the Pitch Ground-truth.

function has to be chosen to deal with the before-mentioned problem. In other
words, the loss function must allow more than one activation per time step. Thus,
the softmax activation function cannot be used because it is thought for single-
label classification problems. In this work, two different loss functions have been
used: On the one hand, SmoothL1Loss creates a criterion that uses a squared
term if the absolute element-wise error falls below 1 and an L1 term otherwise
(Eq. 1). On the other hand, MultiLabelSoftMarginLoss creates a criterion that
optimizes a multi-label one-versus-all loss based on max-entropy (Eq. 2). The
loss is calculated independently for rhythm and melody. Once both losses are
calculated, they are summed and backpropagated.

SmoothL1Loss(x, y) =
1
n

∑
{

0.5(xi − yi)2, if |xi − yi| < 1
|xi − yi| − 0.5, otherwise

(1)
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MultiLabelSoftMarginLoss(x, y) = −
∑

i

y[i] · log
( 1

1 + e−x[i]

)

+ (1 − y[i]) log
( e−x[i]

1 + e−x[i]

)
(2)

4 Experiments and Results

This Section presents and discusses the experimental results.

4.1 Dataset

A Synthetic dataset has been used to train the network. This collection is com-
posed of more than 50000 music scores with 3 different typographies. The dataset
corresponds to incipts from the RISM catalog7. It is composed of almost 50000
music scores with 3 different typographies. The staffs are divided in 60% (29815)
for training, 20% (9939) for validation and 20% (9939) for test.

4.2 Evaluation

The evaluation of a complete OMR system is not well defined in the literature.
Thus, we propose to follow the evaluation described in [30]. The authors proposed
to evaluate three aspects of the framework; pitch, rhythm and their combination.
Note that the combination of pitch and rhythm corresponds to the performance
of the whole system. The chosen evaluation metric is the Symbol Error Rate
(SER) applied to an array produced by the system. Note that a threshold is
applied to convert the output of the FC layers to an array of symbols.

Fig. 6. Example of music score.

An example of the format of the three output arrays, corresponding to Fig. 6,
is the following.

– Rhythm: [gClef, accidental sharp, accidental sharp, accidental sharp, quarter
note, eight note, bar line].

– Pitch: [noNote, L5, S3, S5, L4, S1, noNote]8.
– Rhythm+Pitch: [[gClef, noNote], [accidental sharp, L5], [accidental sharp,

S3], [accidental sharp, S5], [quarter note, L4], [eight note, S1], [bar line,
noNote]].

7 http://www.rism.info/.
8 L = Line; S=Space; L1 is the bottom line on the staff and S1 is the space between

line 1 and 2.

http://www.rism.info/
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Symbol Error Rate (SER). This metric is based on the well-known Word
Error Rate (WER) metric [34] used in speech and text recognition. SER also
uses the Levenshtein distance. The main difference between them is that the
Levenshtein distance computes the differences at character level, WER does it at
the word level and SER does it at symbol level. In the case of music scores, given
a prediction and a reference ground-truth, the SER is defined as the minimum
number of edit operation i.e. insertions, substitutions and deletions, to convert
one array into the other.

SER =
S + D + I

N
(3)

where S, D and I are the number of substitutions, deletions and insertions respec-
tively and N is the quantity of symbols in the groundtruth. Dynamic program-
ming is used to find the minimum value.

SER(i, j) = min

⎧
⎨

⎩

SER(i − 1, j) + 1
SER(i, j − 1) + 1

SER(i − 1, j − 1) + Δ(i, j)
(4)

where Δ(i, j) is 0 if the symbols predictedi and referencej are the same and 1
if these symbols are different.

Output’s Threshold Evaluation. A threshold is applied to decide which
symbols are activated at each time step. Note that this threshold is needed
because we have no knowledge about the number of symbols appearing at each
time step. This threshold has been experimentally set using a grid search from
0 to 1 and step of 0.1. We have selected the combination of rhythm and pitch
Error Rate as a metric to choose the best threshold. Figure 7 shows the evolution
of the error rate depending on the threshold. As we can see, the best threshold
is 0.5 even though 0.4 achieves similar results.

Fig. 7. Evaluation of the best threshold in terms of Error Rate: Rhythm, Pitch and
Rhythm+Pitch.
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4.3 Results

All the results that are shown in this section are obtained using Adam as opti-
mizer with a learning rate of 10−4. In this work, the PyTorch9 library has been
used in order to build the proposed framework.

Table 1 shows an error rate comparison in terms of the average and standard
deviation among 5 runs. In this comparison, single directional and bidirectional
LSTM are analyzed with the two described loss functions. The first column
shows the loss function and the network that has been used, the second one
shows the error rate of the rhythm, the third one the results concerning the
pitch; and the last column shows the results when considering the rhythm and
pitch jointly. Note that the BLSTM produces better results. Moreover, regarding
the loss function, the Smooth L1 function obtains better results with 1.5% SER
when recognizing the pitch, 2% SER when recognizing the rhythm and 2.8% SER
when recognizing the pitch an rhythm jointly. Using a bidirectional network, the
input is processed in both directions. Thus, it obtains information of the whole
symbol, and becomes more accurate. For example, if one direction recognizes a
note-head, the other direction can discard that the vertical line that it is reading
is a bar line, but instead a note stem (both stems and bar lines are straight
vertical lines).

Table 1. Results using LSTM and BLSTM. All results are between [0–1] given in error
rate (ER). The first number is the mean of the five executions and the number between
parenthesis is the standard deviation

Rhythm (R) symbol ER Pitch (P) symbol ER R + P symbol ER

LSTM Smooth
L1

0.326 (± 0.007) 0.293 (± 0.008) 0.426 (± 0.009)

BLSTM
Smooth L1

0.020 (± 0.001) 0.015 (± 0.001) 0.028 (± 0.002)

LSTM Multi
Label Soft
Margin

0.431 (± 0.017) 0.567 (± 0.051) 0.747 (± 0.063)

BLSTM Multi
Label Soft
Margin

0.027 (± 0.002) 0.023 (± 0.002) 0.036 (± 0.003

In Figs. 8 and 9 we can see some qualitative results. First subfigure shows
the input of the system. The second, third and fourth subfigures correspond to
the Rhythm ground-truth, output and thresholded output respectively. In the
fifth, sizth and seventh subfigures we can see the Melody ground-truth, output
and thresholded output respectively.

9 http://pytorch.org/.

http://pytorch.org/
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(a) Input image

(b) Rhythm ground truth

(c) Rhythm Output

(d) Rhythm Output with threshold higher than 50%

(e) Melody ground truth

(f) Melody Output

(g) Melody Output with threshold higher than 50%

Fig. 8. Qualitative results example using LSTM.

4.4 Comparison with a Commercial OMR Software

The proposed method has been compared with PhotoScore 10, a commercial
OMR software able to recognize printed and also handwritten music scores.
Figure 10 show qualitative results. Note that this comparison might not be com-
pletely fair. PhotoScore has some features to improve its performance that are
not considered in our method. PhotoScore probably uses syntactic rules for val-
idation. For instance, the commercial system can recognize the time signature
and then validate the amount of music notes at each bar unit (which is used to
solve ambiguities). Contrary, in our work, no syntactic rules have been applied.

10 http://www.neuratron.com/photoscore.html.

http://www.neuratron.com/photoscore.html
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(a) Input image

(b) Rhythm ground truth

(c) Rhythm Output

(d) Rhythm Output with threshold higher than 50%

(e) Melody ground truth

(f) Melody Output

(g) Melody Output with threshold higher than 50%

Fig. 9. Qualitative results example using BLSTM.

This is an important difference because we do not correct any miss-classification
using music notation rules.

Figure 10 shows that, even with a very simple music score, PhotoScore has
produced two errors. First, it has confused the time of silence (5–10), and second
it has added a duration dot at the end. It must be said that the method proposed
in this work has correctly recognized all the music symbols.

5 Conclusion and Future Work

In this work, we have proposed an optical music recognition method that deals
with single staff sheet music as a sequence making use of (B)LSTM networks.
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(a) Original Image

(b) Visual Result of PhotoScore

Fig. 10. Recognition of a music score using the PhotoScore Commercial OMR software.
The errors are shown in red color.

The obtained results show that single staff music scores could be recognized
by means of RNN. We have also shown the benefits of using a BLSTM instead
of an LSTM applied to musical images. However, the recognition of scores as
sequences has some limitations. For instance, more complex music scores (e.g.
scores with multiple voices) require further research.

Future work will be focused on investigating transfer learning methods to rec-
ognize handwritten music scores. Moreover, we would like to incorporate musical
rules or semantics as in our previous work [22] in order to solve ambiguities. In
addition, we plan to investigate more suitable techniques for recognizing complex
polyphonic music scores such as CNNs and attention mechanisms. In addition,
we would like to convert the output of the architecture into a MIDI file, able to
be listened, or to convert it into a sheet format as PhotoScore does.
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21. Dorfer, M., Hajič, J., Widmer, G.: On the potential of fully convolutional neu-
ral networks for musical symbol detection. In: 12th International Workshop on
Graphics Recognition (GREC), pp. 53–54 (2017)
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Abstract. Health and life sciences’ research fields like personalized
medicine, drug discovery, pharmacovigilance and systems biology make an
intensive use of graphical information to represent knowledge in the form
of domain-specific diagrams, such as molecular pathway‘s. The aim is to
provide added value to written text in scientific literature and related doc-
uments. Enabling access to all the existing literature for further research
requires enabling access to the information contained in these diagrams.
Molecular pathways are very different from more conventional diagrams
(e.g. flowcharts), and therefore interpretation of molecular pathway dia-
grams requires domain-specific knowledge to remove ambiguity. In this
paper, we propose a method that automatically extracts information from
molecular pathways using computer vision techniques. To the best of our
knowledge this is the first attempt to retrieve information from images
depicting molecular pathway diagrams. The lack of a significant, publicly
available dataset with annotated ground truth has led to experimental
evaluation on synthetic data. Results show high precision and recall val-
ues for the detection of entities and relations. We compare and describe
the substantial differences between the proposed method and prior art on
the closest diagram type using CLEF-IP flowchart summarization task.

1 Introduction

Science is a cumulative task, where new knowledge is always built upon prior
knowledge [1]. Scientific production, in the form of conference proceedings, pre-
sentations and journal articles is constantly growing. This information overload
requires updated computer-based tools to make knowledge accessible and, most
importantly, searchable and interpretable. The goal of making information acces-
sible and reusable for future research, requires understanding not only text but
also graphical information [2].

Specific fields, including personalized medicine, drug discovery, pharmacovig-
ilance and systems biology make intensive use of graphical information to pro-
vide added value to written text in scientific publications. Molecular pathway
diagrams are one major tool used by scientists aiming at summarizing, describing
and representing complex relations between various biological entities. The term
molecular pathway is used in this paper as a common denomination of metabolic
c© Springer Nature Switzerland AG 2018
A. Fornés and B. Lamiroy (Eds.): GREC 2017, LNCS 11009, pp. 99–114, 2018.
https://doi.org/10.1007/978-3-030-02284-6_8
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pathways, signal transduction pathways, regulatory networks or genetic path-
ways, among others. In general, a molecular pathway diagram is a graphical
representation of any actions, changes, relations and interactions between the
phenotype of a living organism, genes, RNA, proteins, drugs or other molecules.

Molecular pathway diagrams contain extremely valuable information for
researchers that is integrated into searchable databases [3,4]. These databases
are built with the assistance of experts that manually curate [5–7] each of the
relations that are included in the database, often combining text mining on pub-
lished sources [8] and additional tools for discovery [9], conflict-resolution [10]
and integration [11,12]. However, these tools neglect the information that is
contained in the images that accompany the publications.

Figure 1 contains a selection of molecular pathway diagrams extracted from
the literature, demonstrating the enormous heterogeneity within the molecu-
lar pathways category and why initiatives like the Systems Biology Graphical
Notation (SBGN) [13] and the Systems Biology Markup Language (SBML) [14]
will provide a more stable framework for designing and interpreting these dia-
grams when the related standards are mature. In fact, the use of molecular
pathways in scientific literature to describe molecular-level interactions is quite
recent. A well-established initiative like the modality classification task of Image-
CLEF [15] does not contain a specific class for molecular pathways in their
modality hierarchy [16]. Methods designed to identify the various modalities of
graphs and diagrams found in documents are extremely helpful in case of similar-
ity based retrieval [17], but they are only the first step in addressing the extrac-
tion of domain-specific information. In this paper we describe a method that
extracts molecular pathway information from raster images of these diagrams.
The proposed method uses image analysis and a cognitive model to extract
entity-relation information from diagrams through reasoning and automatically
produces a structured textual version of the content, opening the possibility to
obtain comprehensive knowledge based on several documents.

The rest of the paper is organized as follows: in Sect. 2 we review the state of
the art in extracting information from diagrams, analyzing related work on the
closest types of diagrams. In Sect. 3 we present the domain-specific characteristics
of molecular pathway diagrams and how they differ from other types of diagrams.
In Sect. 4 we describe the main principles of the framework and how they are used
to extractmolecular interactions.We evaluate the effectiveness and performance of
the proposed method using the data described in Sect. 5 and we discuss the results
in Sect. 6. We conclude the paper with our planned with future work in Sect. 7.

2 Related Work

Analysis of graphical information from documents can be performed at various
scales. Going from the largest to the finest scale we can, among other tasks, clas-
sify complete images and graphs into predefined categories, localize and anno-
tate specific objects, or extract structured information from diagrams. The idea
behind information extraction from diagrams is to build a cognitive model based
on computer vision and artificial intelligence that is able to describe all the rel-
evant content in the image.
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(a) Molecular pathway showing various in-
teraction types. Source: [18]

(b) Molecular pathway combined with a
drawing of the membrane between cell and
cytoplasm. Source: [19]

(c) Molecular pathway with occluded entities
and relations. Source: [20]

Fig. 1. Examples of molecular pathway diagrams from various sources, showing the
heterogeneity of this type of diagrams.

The earliest theoretical discussions on information extraction from diagrams
occurred in the 1990s [21,22] and although to the best of our knowledge none
of the existing approaches deals with the specificities of molecular pathway dia-
grams (see Sect. 3), we have reviewed the most relevant state of the art for
diagram understanding. Target applications range from UML (Unified Model-
ing Language) diagrams [23–25], flowcharts [26–28], military action plans [29] or
electrical diagrams [30,31].
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Nakamura et al. [32] proposed natural language to improve the understanding
of diagrams, but there is no automated effort in the detection of lines, shapes
or other graphical items; and the processing of all this information is done by
humans. Butler et al. [33] define a formal framework to retrieve information
from data flow diagrams. Implementation details are not discussed, and their
most important contribution is a formalism to encode data flow diagrams as a
set of tuples. Watanabe and Nagao [34] apply natural language methods to plant
description drawings, without interpretation of the graphical elements.

In [23], Lank et al. proposed a system to recognize UML diagrams on an
electronic white board, making use of the user interaction as part of the input
to recognize individual elements. Similarly, Forbus et al. [29] use sketch-based
visual reasoning and gestures to digitalize battle plans of the US military. Other
methods relying on user interaction are [24,25,30,31].

The closest related work is the flowchart summarization task organized dur-
ing The Cross Language Evaluation Forum (CLEF) in 2012. In this evaluation
campaign, three participants submitted their methods to summarize the content
of flowchart diagrams extracted from patent documents. All three participants
use variations of the same approach, which consists in separating text from
graphical elements and then classify boxes and edges. Mözinger et al. [35] use
a combination of binary operations (thinning, closing and opening) to separate
characters from line segments. Rusiñol et al. divide the image in a graphical, a
textual and an undefined layer. Then they perform detection of specific symbols
to find the nodes [36]. A similar approach is followed by Thean et al. [26], who
also investigated the use of various OCR methods.

To the best of our knowledge, the method we present in this paper is the first
to propose fully automated understanding of molecular pathway diagrams. By
using computer vision and machine learning we aim to extract structured infor-
mation from raster images that can be incorporated into databases or converted
to textual summaries using natural language generation.

In the next section we describe the specificities of this type of diagram,
and explain why extracting information from molecular pathways needs to be
addressed with a tool that is designed with this specificities in mind.

3 Specificities of Molecular Pathways

Enclosing shapes. Due to the ongoing standardization effort for molecular
pathways, there is not a fixed definition of what are the valid enclosing shapes
for the entities. This forces any information extraction approach to be as
general as possible in terms of shape expectation and detection and not rely
exclusively on a fixed set of known shapes, such as ellipses, rectangles, etc.

Occlusion. The information density in a molecular pathway can be extremely
high, as shown in Fig. 1c. Occlusion is, therefore, a major problem during the
analysis of these diagrams and specific measures need to be taken in order to
extract information. There are two types of possible occlusions: entity-level
occlusion and relation-level occlusion.
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Entities and interaction types. Molecular pathways often represent various
types of interactions between several types of entities. Figure 2 shows the pos-
sible entities and interactions in a hierarchical way. These entity and relation
subtypes are represented in various ways using graphical representations. e.g.
it is common to describe a protein inhibition using an arrow with a T-shaped
head.

Hypothetical interactions and entities Although the SBGN initiative rec-
ommends using dashed or dotted lines to represent hypothetical interactions,
the truth is that many authors rely on color, line thickness or even text
attributes to provide this information.

Resolution and OCR. Space limitations in scientific publications force many
authors to reduce the resolution of diagrams to stay within the page limits.
This, along with the dense knowledge representation often witnessed at molec-
ular pathways, has a severe impact on OCR (Optical Character Recognition)
of the entities, but also on the recognition of relations.

Entities

Protein

Gene

RNA

mRNA

miRNA

siRNA

tRNA

rRNA

Ligand

Complex

Phenotype

(a) Entity hierarchy

Relations

State transition

Activation

Inhibition

Degradation

Post-translational
modification

Phosphorylation

Acetilation

Ubiquitination

Methylation

Others

Block diagram

(b) Relation hierarchy

Fig. 2. Hierarchical classification of entities and relations frequently found in molecular
pathways.

4 A Comprehensive Model for Diagrams Applied to
Molecular Pathways

The principle of our method is to extract basic objects in the diagram, such
as characters and line segments (see Sect. 4.1), and then through reasoning,
construct structural primitives, such as texts and information carrying shapes
(see Sect. 4.2), that can be labeled with their actual semantic meaning in the
context of the diagram. This cognitive approach is summarized in Fig. 3. The
reason why we use this approach is that, by progressively moving from lower level
features to higher level structural and semantic information, the methodology
can be adapted to cover as much of the heterogeneity as possible within a specific
domain, but also it allows to use the same procedure for extracting information
from generic diagrams such as line, scatter or bubble plots.
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Molecular
Pathway
Diagram

Basic
Objects

extraction

B. Object
Collection

Structural
Primitives
extraction

S. Primitives
Collection

Structural
Primitive-
labelling

Entity-
relation

description

characters

closed
shapes

polylines

texts

connection
nodes

content
nodes

entities

relations

Fig. 3. Overview of the information extraction pipeline together with the type of out-
puts generated at each step.

4.1 Basic Object Detection

Given the existing heterogeneity in the molecular pathway diagrams extracted
from the scientific literature, the first step in the pipeline of the proposed method
has the goal to reduce all the possible graphical elements into the three categories
that carry most of the information: characters, polylines and closed shapes. It is
obvious that other primitives might be present in the diagrams, e.g. drawings,
shadings, and color information. In the current implementation of the proposed
method these primitives are not used to extract specific information, but are
compatible with the system: e.g. color information is part of the preprocessing
and binarization process, but with no further implication in reasoning.

After preprocessing and applying a learned threshold, the connected compo-
nents of the binary image are classified according to the following context-based
reasoning:

– Characters are the most frequent single basic object type. Therefore a thresh-
old for characters is defined using the mode of the distribution of height and
width of connected components.

– Background areas surrounded by a single connected component are relevant
closed shapes if they contain characters, otherwise they are considered loops
formed by edges.

– Every other connected component that is not text or a closed shape is part of
a polyline describing one or multiple edges, since there might be intersections.

These rules lead to a simplified version of the diagram, containing only the
basic objects.

4.2 Structural Primitives Resolution

Once the individual basic objects have been found, the structure of the diagram
is inferred building structural primitives which contain higher level information
about the basic objects. The idea is to obtain structural information that can,
in the next step, be labeled as entity, relation, or an attribute of any of them.

Extracting texts out of characters Groups of characters are clustered together
using mathematical morphology and a structuring element of the same size as
the average character. A dilation operation on the image of the characters with
such a structuring element produces text blobs that work as a mask for text
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locations. Each of these text blobs are extracted independently and processed
using Tesseract OCR [37]. Since the character detection is simply based on the
size of the connected components, OCR recognition confidence is used to discard
noise.

Connection Nodes Detection. Connection nodes are the singular points of a
polyline: intersections with other lines and objects, abrupt changes in curvature
and endpoints of the polyline. In order to identify the connection nodes we
perform corner detection using the Harris and Stephens algorithm [38] separately
on each independent polyline. As it can be seen in Fig. 4 there are several pixels
that produce a high response to the corner detection for each actual connection
node. To resolve this ambiguity we propose the use of the same principle as
explained for character grouping: dilation using an image-dependent structuring
element. We then apply this as a mask to find the center of mass of the actual
connection point.

Defining Content Nodes. Molecular pathways often contain text that is enclosed
by ellipses, rectangles and other shapes, but it is not infrequent to observe texts
that are not enclosed. We use the information from both the closed shapes basic
objects and the text structural primitives to produce a partition of the image
space that identifies the position of the closest content node. We achieve this by
using a distance transform on a map that contains the texts and shapes bounding
boxes. We next create a Voronoi diagram where we can assign an identification
number to each region with relevant content.

4.3 Labeled Structural Primitives

The final step consists of labeling the relevant structural primitives so that enti-
ties and relations can be obtained. Entities are labeled using all the text included
in each Voronoi region (see Fig. 5). The relations are constructed by labeling each
of the connection nodes as either endpoint (e.g. the start or end of an arrow in
a directed edge) or as intersection point. Intersection points are resolved so that
the actual path is recovered. The relation resolution process is performed using
a rule-based reasoning exploiting structural primitive-generated features as fol-
lows:

1. Construct a list where the i-th element represents the nodes that are con-
nected to it.

2. Pairs of nodes that are connected to each other only are defined as a relation
between the Voronoi regions where the connection nodes are located.

3. If one node i is connected to a node j, but this node connects to several
other nodes, the j-th node is labeled as a connection node and a next-node
resolution algorithm is started:
(a) The polyline segment connecting node i and j is analyzed to compute the

predominant direction as a vector vij.
(b) The rest of polyline segments connecting node j with other nodes kj are

used to define vjkj
.
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(c) The next node for the path is chosen as the one with a largest absolute
value of the normalized scalar product:

∣
∣
∣
∣

vijvjkj

|vij||vjkj
|
∣
∣
∣
∣
=

∣
∣cos(∠(vij,vjkj

))
∣
∣ .

The maximum value is 1 when the two vectors point in the same direction
and the minimum is 0 if they are orthogonal.

4. When all paths are defined, the amount of foreground pixels in the neighbor-
hood of the end nodes are checked to define the directionality of the edge. The
relation is labeled as directed if the ratio of foreground pixels in the neighbor-
hood of each of the endpoints of the path is above a experimentally learned
threshold. In that case, the direction goes from the entity in the Voronoi
region with fewer foreground pixels to the entity in the Voronoi region with
a larger amount.

Fig. 4. Detection of connection points in a polyline.
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5 Dataset

The basic goal of the proposed method is to obtain information from molecular
pathways found in the scientific literature, since it is not part of the textual
content of the document. This poses an obvious challenge in the evaluation
phase, since there is no ground truth available.

Fig. 5. Use of Voronoi diagram to label entities according to structural primitives

During the design of the method we downloaded 9938 articles from PubMED
Central1, using the queries “molecular pathway” and “regulatory network”.
Images from these publications were manually reviewed and 451 molecular path-
ways were found. They were classified as follows:

– 123 of them contained molecular pathways with default characteristics
(grayscale or color images, with closed shapes, texts and continuous lines
representing relations, as seen Fig. 9).

– 159 of them contained the default characteristics and additional drawings e.g.
cell membranes, mitochondria, etc (see Fig. 1b).

– 82 of them contained the default characteristics and dashed lines to represent
hypothetical relations or entities.

– 87 of them contained the default characteristics and severely occluded entities
or relations where text was not readable (see Fig. 1c).

According to this distribution, we decided to generate an annotated dataset
following the assumptions of the default group. Using a directed graph generation
tool commonly used for generating molecular pathways in the literature, we
generated synthetic diagrams using existing protein names using information
from the structured databases that contain curated pathways, various shapes,
randomly connected to each other, with various arrow shapes and also at varying
resolutions. Figure 6 shows an example of one of the diagrams generated. In the
current evaluation pipeline, the only sources of noise included were the JPEG
compression artifacts and resolution.

1 https://www.ncbi.nlm.nih.gov/pmc/, as of March 2018.

https://www.ncbi.nlm.nih.gov/pmc/
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The dataset of synthetic diagrams containing protein names consists of 1000
images with up to 25 nodes and entities. In order to address the impact of
resolution, number of nodes and number of entities separately, a second dataset
containing 800 images was generated. This dataset does not contain protein
names, in order to remove dependency on OCR recognition.

6 Experimental Results

Evaluation of correct detection is based on the following aspects: entities are cor-
rectly detected only if the text is spelled exactly as in the ground truth. Changes
in number of white spaces or casing yields an incorrect detection. Relations are
correctly detected only if the involved entities are correct. Therefore precision of
OCR in entity detection affects the maximum precision of relation detection.

Fig. 6. Synthetic molecular pathway diagram generated using random shapes and pro-
tein names

Table 1 contains the results of the detection of entities and relations using the
synthetic dataset generated with protein names. Table 2 shows the precision and
recall obtained for entity and relation detection. Comparison between Tables 1
and 2 clearly shows the impact of OCR recognition. By relaxing the way we
evaluate the metrics the values could be significantly larger, but since the correct
detection of entities is of significant semantic value, we keep them very strict,
with the relevant effects in our performance values.

The impact of image resolution is shown in Fig. 7 where we evaluate the
performance for two resolutions, namely 100 dpi and 200 dpi, both smaller than
the minimal printing resolution of 300 dpi. Resolution does not appear to have
a strong effect on the recognition of relations. If any, it has a slight effect in
the detection of entities, that is the performance of OCR. This is expected since
OCR is based on closed object detection.
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Table 1. Precision and recall on a synthetic dataset of 1000 molecular pathway dia-
grams with existing protein names.

Precision Recall

Entity detection 0.73 0.74

Relation detection 0.50 0.54

Directed relation detection 0.49 0.52

Table 2. Precision and recall on a synthetic dataset of 800 randomly generated molec-
ular pathways.

Precision Recall

Entity detection 0.96 0.97

Relation detection 0.85 0.84

Directed relation detection 0.82 0.79

Knowledge density, represented by the number of entities and relations in
the diagram, has proven to be the most important problem in the recognition
of relations as shown in Fig. 8. This is expected, because density affects both
complexity in data and structural representation.
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(a) Results of entity detection. Average pre-
cision and recall are 0.96 and 0.97.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Precision

R
ec
al
l

Precision and recall for relation detection

100 dpi
200 dpi

(b) Results of relation detection. Average
precision and recall are 0.85 and 0.84.

Fig. 7. Results of entity and relation detection in dataset of 800 randomly generated
molecular pathways grouped by image resolution.

Although real data extracted from scientific papers cannot be used for
exhaustive quantitative tests due to the lack of ground truth, we include in Fig. 9
an example of a real diagram that was analyzed using the proposed method and
the correctly identified entities and relations. The figure has a significant number
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Fig. 8. Results of entity and relation detection in dataset of 800 randomly generated
molecular pathways grouped by maximum number of entities and relations.

of entities (66) and relations (63) and numerous challenges, such as occlusions,
different representations of both entities and relations and low resolution. Results
show that even in this challenging case, our method was able to detect correctly
83% of the entities and 38% of the relations.

With respect to the closest related work, which is the flowchart summariza-
tion task of CLEF-IP in 2012, the proposed method performs on molecular path-
way diagrams similarly to the reported results of the participants [26,35,36] on
flowcharts. The reported structural level accuracy (omitting OCR and direction-

(a) Original molecular pathway containing
66 distinct entities and 63 relations

(b) Correctly identified entities (83%) and
relations (38%) using the proposed method.

Fig. 9. Results of extracting information from a molecular pathway extracted from
scientific literature [39].
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ality) in the CLEF-IP task ranges between 0.86 to 0.90, which is slightly lower
than the values obtained in our experiments (summarized in Table 3), illustrating
the power of the proposed method. Moreover, the scenario of molecular path-
ways that we address is much more heterogeneous: e.g. there is no sink/source
concept to represent a flow direction, there are not predefined shapes to train
on, the use of curves and intersecting lines is frequent.

Table 3. Results compared to CLEF-IP 2012 Flowchart summarization task according
to [36].

Approach Avg. Recall

Rusiñol et al. [36] 0.90

Thean et al. [26] 0.88

Mörzinger et al. [35] 0.86

Proposed (20 entities, 20 relations) 0.94

Proposed (20 entities, 50 relations) 0.83

Proposed (50 entities, 20 relations) 0.94

Proposed (50 entities, 50 relations) 0.96

7 Conclusions and Future Work

In this article we present a domain-specific method to extract information from
scientific diagrams following the principles of using basic objects, structural prim-
itives and semantic reasoning. Quantitative results show the impact of OCR as a
limitation factor of information extraction pipeline. With OCR effects removed,
we studied the effect of knowledge density and resolution. Precision and recall
values are close to 0.95 for entities and 0.80–0.85 for undirected and directed rela-
tions on 100 and 200 dpi resolution images, while the minimal printer resolution
is 300 dpi.

Correct detection of relations between entities has been proven more difficult
than detection of entities themselves. In this paper we modelled reasoning with
a rules-based approach. We plan next to build reasoning through a Probabilistic
Graphical Model, in order to infer what are the correct relations based on the
labeled structural primitives and features computed on them.

Finally, we believe that the work described in this article shows a path for
future research that will enable access to all types of information contained in
scientific and related documents.
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9. Garćıa-Jiménez, B., Pons, T., Sanchis, A., Valencia, A.: Predicting protein relation-
ships to human pathways through a relational learning approach based on simple
sequence features. IEEE/ACM Trans. Comput. Biol. Bioinform. 11(4), 753–765
(2014)

10. Yoon, S., et al.: Systematic identification of context-dependent conflicting informa-
tion in biological pathways. In: Proceedings of the ACM 8th International Work-
shop on Data and Text Mining in Bioinformatics, DTMBIO 2014, p. 9. ACM, New
York (2014)

11. Luna, A., Sunshine, M.L., van Iersel, M.P., Aladjem, M.I., Kohn, K.W.: PathVisio-
MIM: Pathvisio plugin for creating and editing molecular interaction maps (MIMs).
Bioinformatics 27(15), 2165–2166 (2011)

12. Wang, Y.T., Huang, Y.H., Chen, Y.C., Hsu, C.L., Yang, U.C.: PINT: pathways
integration tool. Nucleic Acids Res. 38(Web Server issue), W124–W131 (2010)

13. Le Novere, N., et al.: The systems biology graphical notation, 27(8) 735–741
14. Hucka, M., et al.: The systems biology markup language (SBML): a medium for

representation and exchange of biochemical network models, 19(4), 524–531
15. Garcia Seco de Herrera, A., Kalpathy-Cramer, J., Demner-Fushman, D., Antani,

S., Müller, H.: Overview of the ImageCLEF 2013 medical tasks. In: CLEF (Working
Notes) (2013)

16. Müller, H., Kalpathy-Cramer, J., Demner-Fushman, D., Antani, S.: Creating a
classification of image types in the medical literature for visual categorization. In:
Proceedings SPIE 8319, Medical Imaging 2012: Advanced PACS-based Imaging
Informatics and Therapeutic Applications, vol. 8319, pp. 83190P–83190P-12 (2012)
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Abstract. Ancient maps are an historical and cultural heritage widely
recognized as a very important source of information, especially for
dialectological researches, the cartographical heritage produces first-rate
data. However, exploiting such maps is a quite difficult task to achieve,
and we are focusing our attention on this major issue. In this paper,
we consider the Linguistic Atlas of France (ALF), built between 1902
and 1910 and we propose an original approach using tree of connected
components for the separation of the content in layers for facilitating
the extraction, the analysis, the viewing and the diffusion of the data
contained in these ancient linguistic atlases.

Keywords: Mathematical morphology · Connected components
Map analysis · Text/Graphics separation · Linguistic Atlas

1 Introduction

Ancient maps are a historical and cultural heritage widely recognized as a very
important source of information, but not easy to use. In this paper, we are
focusing on the Linguistic Atlas of France (ALF), which is a collection of maps
in paper format1. It comprises 35 booklets, bringing together in 12 volumes, 1920
geolinguistic maps presenting an instantaneous picture of the dialect situation
of France at the end of the 19th century. It can be defined as a first-generation
atlas publishing raw data and constituting a corpus of more than one million of
reliable lexical data, homogeneously transcribed, using the Rousselot-Gilliéron
phonetic alphabet.

1 Dataset available at http://lig-tdcge.imag.fr/cartodialect3/carteTheme.
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Fig. 1. Left: A French department name in red, a survey point number in blue, and a
word in phonetics in green. Right: (a) Map; (b) French departments names; (c) Borders;
(d) Survey point numbers; (e) Words in phonetics. (Color figure online)

The ALF maps are mainly composed of three kinds of elements: names of
French departments (always surrounded by a rectangle), survey point numbers
(identification of a city where a survey has been done), and words in phonetics
(pronunciation of the word written in Rousselot-Gilliéron phonetic alphabet).
Let us note that each map gathers the different pronunciations of a given word
into a single map. An illustration of these components is given in Fig. 1.

This atlas is of prime interest for the researchers in dialectology as it allows to
understand how the French language has evolved over the last century. This work
takes place in the context of the ECLATS project, a French national research
project2 which aims at automatically extracting this information and generating
maps with selected elements (currently, this process is done manually and it
takes weeks to build a single map). More specifically, the aim of this paper
is to separate each kind of information into layers in order to prepare data
for subsequent analysis. The different layers of information are shown in Fig. 1
(right).

2 Related Work

Maps are composed of different layers of informations. Decomposing an image
into meaningful components appears as one of major aims in recent development
in image processing. The first goal was image restoration and denoising; but
following the ideas of Meyer [17], in total variation minimization framework
of Rudin, Osher and Fatemi [18], image decomposition into geometrical and
oscillatory (i.e., texture) components appears an useful and very interesting way
in computer vision and image analysis. There is a very large literature and also

2 This work is supported by the French National Research Agency under the grant
number ANR-15-CE38-0002.
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recent advances on image decomposition models, image regularization, texture
extraction and modeling or text-graphic separation. Among all the methods
that have been proposed in the litterature, we can easily identify three main
categories.

The first category of layer decomposition was based on color information.
Color-based approaches have been used for separating an image into many lay-
ers [2,8,10] by clustering the color present in the document/map. However, the
maps from our project can be seen as black and white images (black and white
edited documents, worn out by time, then scanned, which makes them grayer
and yellower) and layers of informations can not be distinguished using colors.

Looking for a fully generic approach, the second category of approach tried
to decompose an image into layers of homogeneous information. The most
recent and advanced work used Mathematical Decomposition or Morphological
Component Analysis (MCA) [6,9]. MCA allows to separate features in an
image which present different morphological aspects based on fast trans-
form/reconstruction operators. Here again, our maps are mainly composed of
black connected components on a noisy background, and a lot of overlapping
text and graphics exits. Modelling each component in a generic way will impose
to model all the different kind of details in all maps to finally obtained an over-
fitted model, or to manually post-process images like in [3].

Finally, the last category relies on the use of connected components. A lot of
work have been done using the connexity of pixels in the litterature and seems
to better fit to the features of our maps. Techniques mainly use the properties of
the connected components, like [1] which use the generation of connected com-
ponents and the application of the Hough transform in order to group together
components into logical character strings which may then be separated from the
graphics. Some bounding boxes (BB) of the components can also be used, like in
[23], and used to compute some statistics (size of BB) to separate them. Using
some automatic classification process, computed dynamically from the histogram
for instance, the large graphical components can be discarded and the smaller
graphics and text components kept.

Another work, based on such statistics, proposed to filter the components by
their density [12]. Using this information, components were filtered to remove
dashed lines. However, to properly filter out connceted components is not an
easy task.

As presented before, the maps are composed of dark connected components
on a light background (initially white but degraded by time and manipulations).
Using connected components then appear as a natural choice where filtering the
connected components is a difficult process. A recent subfield of mathematical
morphology based on trees of connected components offers some strategies to
decompose an image in layers of information [14,26]. This paper will propose to
study this last solution.

The using of trees of connected components to separate in uniform layers
of information, ancient documents which the layers have been “flattened” at
printing, is an original approach. This has never been used for this type of
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application. Moreover, even if this method use some filters and the thresholds
inside the filters are (for the moment) set up manually, they are the only param-
eters. So, this method is generic and allows to extract components with an
intelligent binarization and especially not a global one.

3 Tree of Connected Components

Mathematical morphology based on trees of connected components offers some
strategies for obtaining meaningful hierarchical partitions from any hierarchical
representation of an image. Classical connected components filtering techniques
can be seen as shape-space filtering. Here, our idea is to apply some morphologi-
cal operators to the shape graph-space of connected components extracted from
the image. Then working on a tree rather than directly on the image will be
much more efficient as maps are quite large (resolution of 9808 × 11824 pixels).
The proposed method is based on the construction of a tree of all connected
components of the input image. Then, on this tree, the components that do
not correspond to the expected layers will be filtered out using their intrinsic
properties.

Fig. 2. A morphological connected operator (here an opening) based on a tree-based
representation.

3.1 Definition

Whereas the most popular operators of mathematical morphology (MM) relies
on structuring elements, the class of “connected operators” does not [14,21].
This class is very interesting because it satisfies the same numerous properties
(and invariances) of MM operators, but with an additional property: connected
operators do not shift object contours (they cannot create some new contours,
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they just suppress some existing ones). Formally, ϕ is a connected operator if,
applied on any image f , we have:

∀xNx′, ϕ(f)(x) �= ϕ(f)(x′) ⇒ f(x) �= f(x′),

where N is a neighborhood relationship. Some connected operators can be eas-
ily defined from some tree-based representations of a grey-level image [13,19,20];
such image representations express the inclusion of the connected components
obtained by thresholding the image. Note that computing, storing, and process-
ing such a component tree is very efficient [4,16]. In the following, we focus on a
particular tree, namely the max-tree, that leads to morphological algebraic open-
ings, that are, operators γ which are: increasing (f1 ≤ f2 ⇒ γ(f1) ≤ γ(f2)),
idempotent (γ ◦γ = γ), and anti-extensive (γ ≤ id). Replacing the max-tree by
the min-tree leads to morphological algebraic closings, φ, which are increasing,
idempotent, and extensive (φ ≥ id). In addition, openings and closings have a
strong property, shared by many morphological operators; they are invariant by
contrast changes (∀g non-decreasing, γ ◦ g = g ◦ γ; the same goes for φ). This
particular property is of prime importance because it implies that such operators
have the ability to filter low-contrasted objects in the same way as they do with
high-contrasted ones.

The upper threshold set (also called upper level set) at a given grey-level λ of
a grey-level image f defined on a domain Ω is the set:

[ f ≥ λ ] = {x ∈ Ω; f(x) ≥ λ } ∈ P(Ω),

and, from the family of sets { [ f ≥ λ ] }λ we can easily reconstruct f , using:
∀x, f(x) = arg maxλ {λ; x ∈ [ f ≥ λ ] }. When we consider the inclusion
relationship, the set of connected components (obtained with the operator CC)
of all the threshold sets of f can be arranged into a tree, called max-tree of f :

Tmax(f) = { Γ ∈ CC( [f ≥ λ] ) }λ.

Such a tree is displayed in Fig. 2 (top right). If we prune this tree, such as in
Fig. 2 (bottom right), we can reconstruct the function depicted in Fig. 2 (bottom
left). Doing so, we have a way to construct an algebraic opening γα. This process
can be defined thanks to a selector operator:

selα(Γ ) =
{

Γ if α(Γ ) is true,
∅ otherwise,

with the following constraint on α to ensure that it is a pruning: Γ1 ⊂ Γ2 ⇒
selα(Γ1) ⊂ selα(Γ2). It is easy to see that we can use for α the comparison
between an increasing attribute computed on a component and a threshold.
For instance, with: α(Γ ) = ( card(Γ ) ≤ N ) we filter out any component of
the max-tree which size (area, i.e., number of pixels) is below the threshold N ,
which leads to an area opening [24]. Pruning the same way the min-tree leads to
an area closing.

Last, note that a larger class of filtering operators on trees have been defined
in [27], and that there is a third morphological tree defined on threshold sets,
called the tree of shapes [5,7,11].
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Fig. 3. The dual morphological trees of the same image; light (resp. dark) grey values
represent high (resp. low) integer values.

3.2 Building a Tree

The connected component trees are used to select or prune parts of the images
in an efficient manner. The max-tree (Fig. 3b) is a tree where grey values are
ranked from the darkest to the lightest, and the min-tree (Fig. 3c) is the dual
of the max-tree, as it ranks the grey values from the lightest to the darkest. A
component tree can be computed directly on the original grey-scale image or, to
be more robust to defects, to the result of some filtering process (for instance,
some thin objects can be re-connected beforehand, so that the components of
threshold sets are better formed).

Fig. 4. Illustration of a max-tree computation.

To better understand how a component tree is built, we use a simple example
to illustrate the process. Let us consider an image of 5 × 2 pixels having grey
levels in the range [1, 4] and, to make the explanations easier, let us name each
pixel of the image by a letter going from A to J (see Fig. 4(a)).

For each pixel having a grey level λ ≥ 4, two distinct connected components
are obtained, which are {A} and {B}. Note that their surrounding pixels belong
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Fig. 5. Code of the algorithm for creating a component tree.

to some other connected components. We then obtain two connected compo-
nents, which are {A} and {B}. In the next step, we move to the lower grey level
value, here 3. We keep all pixels with a grey level value greater than or equal
to 3. For each pixel having a grey level greater than or equal to 3, there are
obtained two distinct connected components which are {A,E} and {B,C,D}.
Now we need to choose, for each connected component, a new pixel that is not
part of the former connected components, and preferably the last pixel is taken
in the reading direction of the image (Z-reading). In other words, the pixel D now
represents the component {B,C,D}, obtained at threshold λ = 3, same thing
with E for the component {A,E}. If we continue to apply the same approach for
the rest of the image we obtain the results shown in Fig. 4(b). Finally the pixels
of the image can be arranged into a rooted tree, shown in Fig. 4(c), where the
arrows map a parenthood relationship.

In an equivalent manner, the min-tree of an image can be obtained going
from the lowest to the highest grey level values.

The full algorithm, depicted in Fig. 5, takes only a few lines of code. There is
nothing missing to be able to generate a tree of related components and is very
easy to implement.

4 Extracting Map Components

4.1 Isolate Components

Based on the trees of connected components we have extracted, some components
can be isolated by identifying their features. Note that the aim is to extract the
content of the maps into several information layers, as shown in Fig. 1. So, we
browse the created trees by filtering out the connected components that do
not correspond to the required profile. Let us mention that computing some
attributes related to connected components, and processing such trees to filter
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out or identify some particular connected components are very easy [25]. More
details about these tree structures and their implementation are given in [4].

4.2 Strategy to Manage the Different Layers

As shown in Fig. 1 (right), fours layers have been extracted: French department
names, borders, survey point numbers, and words in phonetics. To extract the
different layers and to make the algorithm more robust, the following strategy
has been adopted. When a layer has been extracted, the corresponding con-
nected components are removed from the initial image in order to process the
next layer. Indeed, ignoring already identified components helps to reduce errors
while extracting new components. The French department names and survey
point numbers have been extracted using this strategy. However, if something
is misidentified in a given layer, it will be deleted for the next filtering. So the
strategy consists in processing the easiest layers first. In this work, the choice has
been to process the names of French departments (which are always surrounded
by a rectangle), then the numbers of survey points (which are of fixed size),
then the borders, and finally the words in phonetics (residue of the input image
with the previous layers). The Fig. 6 shows the filtering system of the proposed
method.

4.3 Extraction of French Department Names

Let us have a look at a concrete example on a map for filtering French department
names. For this example, a whole scanned map of France has been chosen. The
Fig. 7(a) shows a zoom of this map which is given in its entirety in input. Dark
connected components on a light background need to be extracted.

Frontiers

Extraction of 
Department names 

Residue 

Extraction of 
Survey point

numbers 

Residue 

Extraction of 
Frontiers 

Residue 

Survey point numbers

Department names

Words in phonetic

Fig. 6. The complete process of the filtering system for a map. Only a part of the map
is shown, but the whole map was given for input and output.
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For the French department names’ extraction, the given input is the image
of the map and there apply many filters to isolate French department names. A
sampling of data allowed us to determine that these target objects were always
surrounded by a rectangle, which vary in length but not in height. Rectangles
are height invariant, but the length varies according to the name it contains.
The minimum rectangle length that can be found on our example image is
130 pixels and the maximum is 433 pixels. The minimum rectangle height is
58 pixels and the maximum is 64 pixels, this is why we can consider that the
height of the rectangles is invariant with regard to the height of the image
(11824 pixels). With this informations, we considered that three types of filters
should be implemented: a filter that recognize the vertical and horizontal lines
of the picture to detect rectangles, a filter based on the dimensions of the com-
ponents because rectangles are height invariant, and a filter based on the area
of the components to filter the noise.

So the first step consists in isolating the vertical and horizontal lines from
the rest. This strategy brings out all the rectangles of the map. Then a max-
tree of new related components so formed will be created to try to fill in the
rectangles that were highlighted in the previous step. On the min-tree created
after the filling of the rectangles, a simple filter will be applied based on the
properties of a connected component: if the white component at a height lower
than the height of the rectangles we are trying to highlight, it is filled with the
color of the parent component. So, all the small white components (the smallest
components of the image being the inside of the rectangles) will be filled by a
solid color (color of the outline of the rectangles), as shown in Fig. 7(b).

Since the expected properties of the components are known (height, width,
area, etc.), another area filtering is applied to remove from the tree anything that
does not correspond to what we expect. If the area of the component is smaller
than the smallest rectangle, this component is deleted from the tree. This remove
the noise that surrounds them (residues that match with very small rectangles).

Finally, we do the opposite filtering that filled the rectangles, using a min-
tree instead of a max-tree, to remove the rectangles from the image and leave

(a) The map given in input. (b) Image of the rectangle
components of the map.

(c) Output image of the ex-
traction of French depart-
ment names.

Fig. 7. Different steps of French department names extraction (details).
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only the outline of the map and the borders. The results, the isolation and
extraction of French department names, lies in the residue of the two previous
steps. We make the absolute difference of the image after removing the noise
surrounding the rectangles with the image leaving only the outline of the map
and the borders. The result of this filtering is shown in the Fig. 7(c).

4.4 Extraction of Survey Point Numbers

The filtering principle that was adopted for the French department names is
adaptable to other information layers from the moment we know the properties
of the connected components that we seek to extract. First of all, our goal is
to bring out the desired connected components to the rest, and then we try to
remove the noise that surrounds these connected components.

For the extraction of survey point numbers, the given input is the residue of
the image of the map with the layer of French department names and there apply
some area and dimension filtering to isolate survey point numbers. A sampling
of data allowed us to determine that the survey point numbers objects were
numbers ranging from 1 to 991 but discontinuously, and they are written in bold
with always the same font. There is a maximum of 638 survey points on one
map.

Survey point numbers are height invariant (font size), but the length varies
according to the number it represents. The minimum survey point number length
that can be found on our example image is 20 pixels and the maximum is 78
pixels. The minimum survey point number height is 36 pixels and the maximum
is 45 pixels, this is why we can consider that the height of the survey point
numbers is invariant with regard to the height of the image (11824 pixels). With
this informations, we considered that two types of filters should be implemented:
a filter based on the dimensions of the components because survey point numbers
are height invariant, and a filter based on the area of the components to filter the
noise. More, the mathematical morphology will be useful to group the numbers
between them.

To extract this kind of components, the filtering consist to delete all the
large components of the image. To isolate components, an area filter and a filter
based on the size of the bounding boxes of the component are set up. If the
property analyzed is above the defined thresholds (the largest area or dimension
of a survey point number), the component take its parent’s color in the min-
tree (what will remove it from the image). The next step is to group numbers
together (like chars to string), using mathematical morphology. This leads the
last step of filtering, which is to remove the very small components (diacritics,
frontiers made by dots, etc.) that remains on the image to get only the survey
point numbers. To do this, as in the first filtering, an area filter and a filter based
on the size of the bounding boxes of the component are set up. However this
time, if the property analyzed is below the defined thresholds (the smallest area
or dimension of a merged survey point number), the component take its parent’s
color in the min-tree (what will remove it from the image). The result of this
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step is an image containing only the survey point numbers, as shown in the right
side of the Fig. 6.

4.5 Extraction of Frontiers and Phonetic Words

Three kind of frontiers can be find in the maps: solid lines (frontiers with the
seas and oceans), dot-line-dot lines (border with bordering countries), and dot
lines (border inside France). Two methods are used to extract this three kind of
frontiers. The first one is really simple and based on the area of the connected
components. In the atlas, the solid lines which correspond to the frontiers with
the seas and oceans are always touching the outline of the map. It means that the
area of this component is the bigger area that we can find in the image. So, you
just have to look for the widest dark component of our tree, and you can extract
this type of frontier pretty easily. The second method consists in extracting the
dot lines and the dot-line-dot lines by the nearest neighbor search. This approach
allows to draw a line between the dots to regroup them in only one set. This also
has the advantage of eliminating all surrounding noise such as diacritics that
could be assimilated to border points. To summarize, these two methods will
make it possible to extract all the borders of the map in an automatic way. Once
the borders have been identified and extracted from the map, it will remain, on
the image given in input, only the words in phonetics (residue of the previous
filtering steps).

5 Evaluation

In this section, we report performance indicators for the proposed approach. In
this work, an open source image processing library was used to build the trees
of connected components [15].

5.1 Protocol and Metric

We evaluated the task of detecting individual objects of the following types:
names of French departments, and survey point numbers. The method under
evaluation is presented with the original and complete image of a map, and
produces a set of areas of interest, each of them being annotated with a type.
Areas of interest are implemented as series of point coordinates forming polygons.

The evaluation is based on the metrics proposed in [22]: for each content
type present in the ground truth and in the results for the method under test,
we compute the following indicators:

“correct” (COR): the number of objects which were correctly detected, with
the appropriate type (otherwise they are counted as noise for other content
types);

“missed” (MIS): the number of objects which were expected in the ground
truth for a particular content type, but were not detected by the method
under test;
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“noise” (NOI): the number of objects which were detected by the method
under test but which do not correspond to any expected element in the ground
truth.

A given ground truth element g ∈ G is considered as correctly detected by a
resulting element d ∈ D if g and d verify the following relations, where Ta is an
absolute threshold set to 0.5 and Tr is a relative threshold set to 0.2:

area(g ∩ d)
area(g)

> Ta
area(g ∩ d)∑

g′∈G,g′ �=g area(g′ ∩ d)
> Tr

area(g ∩ d)
area(d)

> Ta
area(g ∩ d)∑

d′∈D,d′ �=d area(g ∩ d′)
> Tr

For completeness, we also report in the results the total number of
expected objects (NGT ) of each type in the ground truth and the total
number of detected objects (NDE), as well as the precision (PRE) and
the recall (REC) for each content type. Those indicators have the following
definitions:

NGT = COR + MIS NDE = COR + NOI

PRE =
COR

NDE
REC =

COR

NGT

5.2 Data and Ground Truth

Annotated evaluation data was created from the original ALF map dataset.
The dataset regroups 1950 maps. For each map, 3 types of information must be
annotated: 84 names of departments, 638 survey point numbers, 638 words in
phonetics. If all this had to be done by hand, it would take a long time. That
is why we have decided to impose a few constraints on ourselves concerning the
creation of the ground-truth. In the dataset, there are 7 types of maps (showing
the different parts of France), that is why we decided to construct a ground-truth
for each type of map to represent the atlas as much as possible while not spending
too much time to do it. To save as much time as possible, we also decided to use
the results of the current segmentation to avoid redoing everything from scratch
and placing the points one by one, but to just move the points as precisely as
possible if the segmentation is bad or missing.

One map showing France entirely was manually annotated to produce the
ground truth for the task we previously introduced. This evaluation map (named
“ALF0101” and visible in Fig. 7(a)) contains a total of 84 names of French
departments, and 638 survey point numbers3. Each annotation is composed of a
region described by a polygon and a content type described by a string: “French
department”, “survey”, etc. Due to resource constraints, we could not annotate
more maps. Our work is currently focused on the building of the ground-truth
3 The ground truth of this evaluation map is available at http://l3i-share.univ-lr.fr/

datasets/CarteALF0101.lif.

http://l3i-share.univ-lr.fr/datasets/CarteALF0101.lif
http://l3i-share.univ-lr.fr/datasets/CarteALF0101.lif
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for the phonetics words on this map. After that, we will extend our ground-truth
to other types of maps.

The dataset is composed by one atlas (ALF), which regroup 1950 maps. For
each map, 3 types of information must be annotated: 84 names of departments,
638 survey point numbers, 638 words in phonetics. If all this had to be done
by hand, it would take a long time. That is why we have decided to impose a
few constraints on ourselves concerning the building of the ground-truth. In the
dataset, there are 7 types of maps (showing the different parts of France), that
is why we decided to construct a ground-truth for each type of map to represent
the atlas as much as possible while not spending too much time doing it. To save
as much time as possible, the results of the current segmentation will be used
to avoid redoing everything from scratch and placing the points one by one, but
to just move the points as precisely as possible if the segmentation is bad or
missing.

5.3 Results

The results are presented in Table 1. Thanks to the trees of connected com-
ponents and the filtering of the elements that compose them, the layer of
information corresponding to the French department names can be successfully
extracted. The position of French department names on the map can be easily
determined. Concerning survey point numbers, the method was able to detect
86.36% for the target elements (551 items were well detected) while introducing
128 extra elements (noise).

Table 1. Results obtained on the map ALF0101.

COR MIS NOI NGT NDE PRE REC

Names of French departments 84 0 0 84 84 100.0 % 100.0 %

Survey point numbers 551 87 128 638 679 81.2 % 86.4 %

The analysis of theses results show that some survey point numbers are miss-
ing (“MIS” column) because, in the original map, these components are directly
connected to another bigger component, like frontiers. Survey point numbers
are expected to be small components of the image, so large components (such
as frontiers) are filtered at the beginning of the extraction step for this informa-
tion layer, which also removes survey point numbers that touch those frontiers.
The components wrongly detected as survey point numbers (“NOI” column) are
all phonetic word letters that have not been well filtered during the extraction
process because of their size similar to numbers.
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6 Conclusion

In this paper, an extraction system for content of ancient maps using trees of
connected components has been presented. The system take as input an image
(scan of the map) and delivers different layers of information. Each layer cor-
respond to a specific kind of information and there positions. The proposed
approach uses a tree of connected components based on the grey level of the
input image. Working on a tree rather than directly on the image will be much
more efficient as maps are quite large. An adapted filtering of this tree allows
to extract expected components by using their intrinsic properties. Thus, the
method allows to localize the position of the extracted components.

The evaluation have given the number and the actual position of the com-
ponents that are not correctly detected, the future works will consist on refining
our approach in order to detect them more appropriately. Following the results,
our approach needs to be modified to filter the numbers of survey points with a
better accuracy. If this detection of survey point numbers is improved, this will
allow us to perfectly detect phonetic words (residue of the basic image with all
filtered layers) without missing or false-alarm components.

From the moment the layers of information are well identified, a system of
text recognition in phonetics will be made. It should be based on an optical
character recognition (OCR) method, and a dedicated recognition system that
could be able to differentiate the many diacritics in phonetic words.
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4. Carlinet, E., Géraud, T.: A comparative review of component tree computation
algorithms. IEEE Trans. Image Process. 23(9), 3885–3895 (2014)
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J.M., Micó, L., Cardoso, J.S. (eds.) IbPRIA 2013. LNCS, vol. 7887, pp. 424–432.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38628-2 50

13. Jones, R.: Component trees for image filtering and segmentation. In: Coyle, E. (ed.)
Proceedings of the IEEE Workshop on Nonlinear Signal and Image Processing,
Mackinac Island (1997)
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Abstract. Early continuous recordings of cosmic rays, as measured with
Carnegie Type C Ionization Chambers, were made on rolls of photo-
graphic paper. This paper describes the extraction of the ionization data
of the February 1956 ground level enhancement (GLE) event from the
ionization chamber recordings of three stations, viz.: Godhavn, Chel-
tenham, and Christchurch.

To verify the accuracy of the extraction algorithm a ground truth
image of historic cosmic ray recordings was first constructed from the
original image. A synthetic version of the ground truth image, which
to some degree, reproduced the distortions and optical artefacts present
in the original image was then created from the ground truth image.
The detection algorithm was then applied to the synthetic image and
the extracted values compared to the ground truth image to evaluate
the detection capabilities of the algorithm, using measures such as MSE,
precision, accuracy and recall

The ionization data of the February 1956 GLE event was then
extracted from the ionization chamber recordings and converted to per-
centage increase above background cosmic ray levels, for comparison to
existing neutron monitor data which was sourced from a GLE database.
The images share common attributes, and these include a sharp rise to
a peak that tapers off more slowly. This trend is seen in all three data
sets, and can be considered to be consistent with the neutron monitor
data.

1 Introduction

The Carnegie Type C Ionization Chambers [1] or Model-C recorders were designed
and built for the purpose of the continuous recording of cosmic rays. Essentially
the ionization chamber was a steel sphere containing purified argon at a pres-
sure of 50 atmospheres. The argon was ionized as cosmic rays passed through the
chamber. A Lindemann electrometer was used to measure the ionization current.
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To record the ionization level due to cosmic rays passing through the chamber,
the shadow of the electrometer needle was projected onto a continuously moving
strip of photographic paper. Furthermore, the barometric pressure and the tem-
perature of the cosmic-ray meter could also be recorded on the same strip of photo-
graphic paper. Every hour the ionization chamber was grounded for 3 min, zeroing
the ionization current and therefore bringing the electrometer needle back to the
zero position. At the same time the lamp of the recorder was dimmed resulting in
hourly vertical lines. Example recordings are shown in Fig. 1.

The sunspot records show that there was a steady increase in solar activity
during the first half of the 20th century. It is only during the second half of the
20th century that neutron monitors and satellites have been used to monitor
cosmic rays. Monitoring of cosmic rays using these more sophisticated methods
have therefore been restricted to an era of high solar activity. Our knowledge of
the sun indicates that it will return to low activity levels sometime in the future
with serious implications for our modern technological infrastructure as well as
for space travel. The only available source of continuous cosmic ray data for a
period of increasing solar activity is the recordings made by the Carnegie Type
C Ionization Chambers. This data is therefore of vital importance in studies of
the manner in which cosmic rays respond to changes in the level of solar activity.

Ground level enhancements (GLEs) are sudden increases in the intensity of
cosmic rays. This increase is caused by accelerated charged articles from the sun
due to energetic eruptions on the sun. The two events of March 1942 are the
first to be recorded. On average there has been one such an event per year since
then.

The aim of this study is to test algorithms for the extraction of cosmic ray
data on the GLE event of February 1956 for which comparable scientifically
approved data is available. The creation of a synthetic ground truth image is a
secondary aim, which is required to fulfill the primary aim of the study. This
study is part of a larger study to extract and recover over 25 years of historic
cosmic ray data recorded from 1935 until 1960. This study is an extension of the
work done by [3,4,6].

The GLE event which occurred in February 1956 (GLE #5) was recorded by
the Model-C recorder and these recordings have been digitised. A digital image
processing algorithm was created to automatically extract the data contained
in each scan of the photographic paper originally used to record the cosmic ray
data. The extracted data will be compared with existing data for GLE #5, to
test the feasibility of recovering as much of the cosmic ray data as possible. This
data can be used in both long term space weather research, with the focus on
weekly and monthly averages, as well as solar activity research, which is more
focused on high resolution event data.

2 Data Used

The images used in this study document GLE #5, which occurred at about
4:30am UTC, from stations located at:
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(a) Godhavn

(b) Cheltenham

(c) Christchurch

Fig. 1. GLE #5 on 23/2/1956 was recorded by the Model-C recorders at Godhavn
(Greenland), Cheltenham (USA) and Christchurch (New Zealand). The white irregular
line is the ionization current and the thick horizontal black line is the barometric
pressure. There is no temperature trace on these recordings. The horizontal white lines
are scale lines while the vertical black lines are hour markers.

1. Godhavn, Greenland: 69.2◦ North and 53.5◦ West. 9 m above sea level.
2. Cheltenham, U.S.A: 83.7◦ North and 76.8◦ West. 72 m above sea level.
3. Christchurch, New Zealand: 43.5◦ South and 172.6◦ East. 8 m above sea level.

The images measure approximately 6000 by 905 pixels, have a pixel depth of 24
bits and document a 19 h period (Fig. 1). To date more than 19000 such images
have been scanned from the complete set of recordings.

The white irregular line in Fig. 1 is the ionization current and the thick
horizontal black line is the barometric pressure. The horizontal white lines are
scale lines while the vertical black lines are hour markers.

The section that is used documents the period from 2:30am–6:30am on
23/02/1956 (Fig. 2). This section was chosen as it details GLE #5 during its
peak activity, and showcases some of the most challenging aspects of the histor-
ical data. Some of the data lines exceed the limits of the photographic paper;
there is damage to the paper in the form of folds and creases in the film. There
are also notations, such as the time and the date. Noticeably, the time is marked
as ‘4’. There is also damage to one of the top perforations, and an hour marker
is damaged.

3 Image Processing

This section deals with the image processing steps in the algorithm, and will be
described below. The image processing is undertaken with a specific goal at each



134 V. W. F. Mattana et al.

step such as to detect and locate a specific feature, viz. sprockets, hour markers,
scale lines, or ionization data lines.

3.1 Sprockets

Fig. 2. 2:30am–6:30am on 23/02/1956,
recorded at Godhavn.

One can safely assume that the
most prominent artefact in the
input image would be the holes
punched in the paper, known as
the sprockets. These holes were
punched into the photographic
paper by the manufacturers, as
these holes were necessary to drive
the photographic paper. In this
step the aim is to find and
remove the sprockets from the
input image. The sprockets pro-
duce areas of high intensity dur-
ing to the scanning process. These
bright spots disrupt the histogram,
and make accurate binarization very difficult. These sprockets must be located
and removed from our working image if any progress is to be made in extract-
ing the other features. Firstly, a good sample perforation must be located on
the image. Then the rest of the sprockets can be found automatically, making
the process more user friendly. This is accomplished by finding the maximum
of the correlation function between an ideal perforation profile, and the input
RGB image. The pixels of the sprockets found in this way are then set to Not
a Number (NaN). This results in the sprockets being removed from our image,
which is now ready for further pre-processing.

3.2 Pre-processing

Once the sprockets have been removed the input image is ready to be converted
to gray scale This step is focused on converting the colour image into a gray
scale image with good contrast. Due to the size of the image, and the variance
of intensity across the image, a block processing procedure is implemented. The
block size is set at 20 × 20 pixels, to ensure that no attribute occupies the
entire block at once. The resulting gray scale image is then histogram equalized.
This histogram-equalised gray scale image is now ready to undergo binarization,
separating the foreground from the background.

A user edited image can also be supplied to the algorithm, to assist in detect-
ing areas of ambiguity. These areas include problems such as hour markers which
are the “wrong” colour, data lines which are too faint to accurately extract, or
unexpected holes in the paper which complicate thresholding.
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3.3 Binarization

The binarization step of the image processing procedure is focused on creating
a low noise binary image, with the attributes of the recording in white, and the
background in black. Many different techniques for document image binariza-
tion have been proposed, and could be used to binarize the historic cosmic ray
recordings, but the work of Sauvola and Pietikainen [8] and the improvements
made thereupon by Gatos et al. [5] were the most effective in our application.
Otsu’s method [7] was also used to isolate the hour markers. These techniques
have all the necessary methods we need for the binarization of the historic cosmic
ray recordings. The process of binarization was approached by making use of a
blockwise process (block size of 20 × 20 pixels), to negate the effect of varying
background intensity over the image. This blockwise procedure used an iterative
process to determine the best threshold. A starting threshold was found using
Otsu’s [7] method, and applied to the block. The total number of foreground
pixels in the binarized block was counted, and this value was used as a measure
of the block’s brightness, referred to as the percentage of ‘ON’ pixels in a block.
The threshold obtained from Otsu’s method is then modified depending on the
count of ‘ON’ pixels in the block. Calculations by the author show that the fore-
ground elements occupy roughly 20% in an average block, and as such the ‘ON’
pixel percentage should be similar.

Consider a hour segment 900 pixels in height, and 300 pixels in length; the
hour marker is 15 pixels wide on average, and as such occupies 5% of the vertical
space in the image. There are on average 60 scale lines per hour marker segment,
each about 2 pixels thick. These scale lines occupy at most 14% of the image.
The data lines are less easily defined, but can be estimated to occupy about
2% of the image, due to overlap with the already counted scale lines and hour
markers. The thickness of the data lines will vary from hour segment to hour
segment, as well as between different recordings. As such the ideal value of ‘ON’
pixel percentage in an hour marker segment lies between 19% and 21% ‘ON’
pixels per segment. The segments are not ideal however and this threshold is
broadened to 16–22% depending on the image being investigated.

The threshold is adjusted up or down to move the ‘ON’ percentage closer
to the calculated values. This process is iterated until the ‘ON’ percentage is
between 16% and 22%, with the upper bound being slightly tighter, to reduce
the effect of noise in the background.

At this stage it is useful to note the width of a line, as referred to later in the
text, is measured perpendicular to the line in question. For example, the width
of a scale line (horizontal) is the vertical dimension of the scale line, whereas the
width of a vertical line such as an hour marker is its horizontal dimension.

3.4 Hour Markers

The next step is to locate the hour markers, or vertical black lines, using the
results of the previous steps to assist this process. The gray scale image is divided
into 20 segments, each spanning the height of the image. For each segment, the
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column totals are determined, and a moving average is found (5 pixels wide)
for each column. The column with the lowest moving average is selected as a
candidate hour marker, and is transcribed onto the blank output image. In this
way, we find up to 21 potential hour markers, even though only 19 of them will
be true hour markers, due to the first or last one being cut off at some length.
Once the entire image has been processed as described, and the candidate hour
markers have been found, the false hour markers are removed, using the a-priori
knowledge (the average separation of the hour markers for the current image).
Any hour markers within less than 285–310 pixels of the previous hour marker
will be removed (depends on recording station, as an average separation for the
hour markers is determined as the algorithm proceeds through the image).

Fig. 3. Diagram of the inherent
skew of the hour markers.

Once the hour markers have been located
it is possible to segment the image accord-
ing to the hour markers. This segmentation is
first used to determine the angle at which the
hour marker lies, cropping a window 31 pixels
wide around each hour marker location. The
angle of the hour marker is found by using
the Hough transform of the edges of this line.
From the resulting lines, the most prominent
line is drawn onto a blank image. Once the
angle, θ, has been found using the Hough
transform, a new hour marker must be drawn
in at this angle, however, the hour marker’s
pivot point is not at the top of the image, but
rather near the middle of the image’s height.
From Eq. 1, one is able to find the horizontal
distance, 2d, of a line drawn from the top of
the image, to the bottom, at an angle θ (Fig. 3). Once this distance is known,
the new hour marker can be drawn with the pivot position in the centre of the
image’s height using half this distance, d.

d =
tan(θ) ∗ H

2
. (1)

This new hour marker is then used as a mask, and shifted left and right,
until a minimum intensity is found. At this stage the new tilted hour marker is
drawn onto the final hour marker image. These tilted hour markers will be used
as the ground truth hour markers from this point forward.

3.5 Scale Lines

After the hour markers have been found, the histogram equalized gray scale
image is segmented along the middle of each hour marker line. This step’s aim is
to locate scale lines, in each segment, as accurately as possible. In this way each
hour segment is inspected individually and the continuous scale lines and data
lines can be located. Due to the varying intensity of the scale lines on the images,
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the decision was made to approach each hour marker segment as an individual set
of scale lines. The scale line location process is also a block processing technique,
using blocks that span the width of the image, and allow 60 such blocks to fit
into the image. This ensures roughly 2 scale lines will be visible in each block.
The row sums of the block are then obtained, and a running average of 3 pixels
is determined for each row total. The maximum row in the block is marked on
a black output image as a candidate scale line. Once all candidate scale lines
have been marked, the output image is checked against a-priori knowledge, such
as the average separation, width, and count. False scale lines are removed, and
estimated scale lines are inserted where scale lines are missing. These candidate
scale lines are then individually adjusted to lie on the local maxima of column
intensity. These lines are then used as a guiding rail, for finding the real scale
lines per column. This technique uses a candidate system spanning 5 pixels above
and below each guide scale line, with the moving average of 3 pixels in width.
This process gives us an accurate description of the local maxima along the scale
line approximations, which reflect the scale lines.

3.6 Data Lines

This step is concerned with locating the ionization data line in each hour seg-
ment. As the scale lines are the brightest regions on the image, we can use this
information to our advantage, by inspecting the regional maxima of the grey
scale image. However, the scale lines will also be registered as regional max-
ima, and as such the scale lines need to be eliminated. Care must be taken in
removing scale lines, as the scale lines overlap with the data. The solution is to
subtract the average scale line intensity from a small neighbourhood around the
scale lines that have been found previously. This way the brighter region of the
scale line where the data line crossed remains bright, whereas the rest of the
scale line is far less intense. The regional maxima of the grey scale image are
then de-noised using morphological opening, with an structuring element of 25
pixels in size. The remaining region is a good description of the where the data
can be found. This region is then used as a mask, and the column-wise candidate
process is undertaken again, this time with a moving average of 5 pixels in size.
This returns a data line for regions detected by the regional maxima algorithm
provided by Matlab.

4 Ground Truth

The result of the image processing steps detailed in the previous section yields
a ground truth image. This ground truth image represents the structures in the
original images, specifically, the hour markers, scale lines, and ionization data
line. The hour markers are 5 pixels wide, while the rest of the elements are a
single pixel thick. Upon first inspection one will notice missing sections of scale
lines. However, if one inspects Fig. 2 closely, it becomes apparent that there are
sections where the dark pressure line has removed a scale line, or part thereof.
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(a) Ground truth image (b) Synthetic ground truth image

Fig. 4. (a) Ground truth image, with hour markers (vertical), scale lines (horizontal),
and ionization data (nonlinear line). (b) Synthetic ground truth image produced by
the algorithm.

This ground truth image is built directly of measurable properties of the input
image.

The ground truth image will be used in conjunction to a histogram equalized
grayscale version of the original image to extract the ionization data. A sample
of a ground truth image is shown in Fig. 4(a).

5 Synthetic Image

The ground truth images were used as a skeleton upon which in-painting [2]
could be used to reconstruct the texture of the original image. As such, the
intersect of the ground truth and the grayscale image was used as a seed for
inpainting. The resulting synthetic image can be used to visually compare the
results, as well as having potential uses in extraction algorithm optimization.
The result is visually similar, with the benefit of not having sprockets with high
intensity, (Fig. 4(b)). It is also based directly on the ground truth image, which
can be of use when testing alternative data extraction techniques.

6 Ionization Data Lines

Arguably the most important feature on the recordings is the ionization data
lines. These lines represent the ionization recorded by the Model-C recorder, and
to obtain the percentage increase which GLE #5 produced, it is necessary to
retrieve this attribute of the image as accurately as possible. The raw extracted
data lines for the Godhavn observation of GLE #5 is shown in Fig. 5. The
horizontal axis is marked with the pixel number on which the data point occurs,
however this axis also represents time, with each pixel measuring approximately
12 s. The vertical axis is measured in pixel height. There are cases where no data
points are located on a line, and as such the corresponding height value is stored
as Not a Number (NaN). This extends to the discretized interval, and if there
are no values in the interval, data will appear missing on Figs. 5, 6 and 7.
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Fig. 5. The ionization data for the Godhavn image, with pixel height plotted against
pixel location.

Fig. 6. Percentage increase above background cosmic ray levels at Godhavn
23/02/1956. A sharp increase and slower decrease are indicative of a GLE.

7 Accuracy of Extraction

The results of the analysis comparing the results of the test image to the original
ground truth, for each of the three stations investigated (Table 1). The MSE row
shows the mean square error between the extracted attributes and the ground
truth image, as well as the MSE between the extracted ionization data line and
the ground truth’s data line. The MSE was calculated for each station using

MSE =
1
n

n∑

i=1

(Ŷi − Yi)2 (2)

and a lower value is better, as the error is lower. The MSE shows the total
distance between pixels of the resulting data, and the pixels of the ground truth
image.

When classifying the extracted pixels as true positives (tp), true negatives
(tn), false positives(fp), and false negatives (fn), one can define precision, recall
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Fig. 7. A comparison of the ground truth data lines (Godhavn, Cheltenham, and
Christchurch) to existing neutron monitor records (Leeds and Sacramento) [9]. The
data begins at 3:50am UTC, with each interval representing 5 min, and ends at 9:45am.

and accuracy and recall as:

P =
tp

tp + fp
(3)

R =
tp

tp + fn
(4)

A =
tp + tn

tp + tn + fp + fn
(5)

together with the F-measure were also calculated from the extracted attributes
and the ground truth image, as well as the extracted ionization data line and
the ground truth’s data line. All of these measures are normalised to lie between
0–1, with a higher value being better.

8 Conversion

8.1 Ionization Data Binning

The raw location data was subjected to median binning, with each bin rep-
resenting a five minute interval, and consisting of about 28 pixels (this number
varies depending on the width of the hour section). The median was used instead
of the average, due to the median’s resistance to outliers and noise. The data
sourced from the GLE database is recorded in 5 min intervals, and as such the
decision was made to use 5 min intervals so as to match the existing data. This
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Table 1. Precision of results

Godhavn Cheltenham Christchurch

Measure Extract Data Extract Data Extract Data

MSE 599.71 1.82 345.76 20.39 1446.9 34.36

Precision 0.9446 0.9822 0.9630 0.8108 0.8758 0.6222

Recall 0.9604 0.9868 0.9824 0.8291 0.8967 0.4813

Accuracy 0.9908 1.0000 0.9947 0.9997 0.9777 0.9995

F-Measure 0.9524 0.9845 0.9726 0.8199 0.8861 0.5428

will greatly simplify the comparison of the percentage increase data. As each
individual Model-C recorder was calibrated separately, the constant needed to
correct the data for these settings is specific to each recorder. This resulted in
each machine having a different scaling constant, which means that the sepa-
ration of the scale lines have different values attributed to them, based on the
recording station’s calibration constant. However, the gradient of the data line
is where our percentage increase data can be found, using

Increase =
(

[1 − I

I0
]
)

× 100%. (6)

where I represents the current segment’s gradient, and is defined as:

I =
Δc

Δt
, (7)

with Δc being the change in the ionization level over a period of time Δt. The
background cosmic ray level is given by I0,

I0 =
Δc0
Δt

, (8)

with Δc0 being the change in the background ionization level over a period
of time Δt. Thus in this study we will only be considering the relative inten-
sity/relative increase above background levels.

8.2 Percentage Increase

The gradient between each bin, or step in the data is of great interest. Using 6,
the percentage increase over the bin length (five minutes) can be found. Figure 6
shows the percentage increase in the cosmic ray intensity over the background
level for the full span of the image recorded at Godhavn. The missing segments
are due to the data line reaching the bottom edge of the photographic paper
before the Model-C recorder could reset its position the following hour.
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9 Comparison

There are documented results from neutron monitors available for GLE #5, and
these will be the values we will be comparing our results to. Due to the nature
of the data, and calibration constants which are unknown at the time of writing
this paper (due to fragmented log books), the shape of the percentage increase
plot is the main feature we are interested in, as the height of the peak can be
adjusted by using the correct constant for the particular machine which recorded
the data. There is potentially a way to calibrate the data using temperature and
pressure, but that is outside the scope of this study.

The percentage increase data which is used to compare GLE data is compared
to that of neutron monitors from Leeds and Sacramento, as these locations offer
insight into the range of GLE #5. The Leeds station is one of the stations with
the smallest recorded percentage increase for GLE #5, whereas Sacramento has
one of the highest recorded peaks for GLE #5. The extracted percentage increase
above the background level is compared to the neutron monitor data from the
GLE database for Leeds and Sacramento as comparative data sources, spanning
the range of GLE #5 (Fig. 7). The important aspect of these graphs is their
general shape, as the calibrations of the Model-C recorder are unknown to the
author. Normalization constant should be applied to these curves, based on
the pressure and temperature of the time and place where the recordings were
taken. Additionally, parts of the data set are missing due to the limitations of
the Model-C recorder.

The images do share common attributes, and these include a sharp rise to a
peak which tapers off more slowly. This trend is seen in all three data sets, and
can be considered to be consistent with the existing (more accurate) neutron
monitor data. Additional discrepancies may be attributed to the inaccuracies of
the Model-C recorder itself.

10 Conclusion and Future Work

In conclusion, GLE #5 has been extracted from historical GLE records with
an acceptable level of accuracy, using automated image processing techniques.
This study serves as a proof of concept, and validates ground truth images
for further extraction of historical cosmic ray records. The synthetic image and
ground truth, allow this algorithm to be used to test other extraction algorithms
against.

Future work includes topics such as; long-term data extraction (daily,
monthly, annual values), statistical rationale for binning decisions, user inter-
face for user input, development and testing of better extraction algorithms,
extraction of temperature and barometric pressure, normalization of the ioniza-
tion data taking into account temperature and pressure and finding the correct
calibration constants for the Model-C recorders used.
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Abstract. The first GREC Engineering Drawing Challenge (http://
iapr-tc10.univ-lr.fr/index.php/conferences/contest?id=297) was held in
2015. Since then, more than 800 high definition engineering drawings
have been digitized and made available to the research community,
accounting for approximately 400 GB of unique image data. The col-
lection is available on the Lehigh University DAE server (http://dae.cse.
lehigh.edu/DAE/?q=browse/dataitem/606796).

The 2015 edition gave rise to a number of challenges and ideas specif-
ically targeted to Graphics Recognition and were published in the pro-
ceedings of the GREC workshop. They are still relevant and open ques-
tions, and need to be addressed by the research community.

This year, we are launching a complementary and different challenge...

1 Introduction

In 2011, hundreds of engineering drawings have been made available to the
Graphics Recognition research community thanks to joint efforts between Lehigh
University and the IAPR TC-10. This collection has been called the “Lehigh
Steel Collection” [1]. It is comprised of both hand- and computer-made drawings
during the 1960’s to the 1990’s. Subsequent efforts by various research groups
has contributed to curating and digitizing part of these documents in order to
c© Springer Nature Switzerland AG 2018
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make them available for document image analysis research purposes. This pro-
cess is still ongoing. The collection is available on the Lehigh University DAE
server (http://dae.cse.lehigh.edu/DAE/?q=browse/dataitem/606796) [4]. Fur-
thermore, a first initiative has been launched in order to provide an inventory of
challenges this data collection can help solve [3]. The new challenge, presented
here, results from observed artefacts in the collection, due to the digitization
process.

2 Transforming (partial) Failure into Opportunity

After the process of digitizing the 800 engineering drawings was finished, a qual-
ity inspection of the data has shown artifacts induced by the scanning process.
These artifacts most definitely come from flaws in the digitization apparatus
and may be combination of hardware failures and firmware compensation errors.
They consist of colored, perfectly vertical, narrow stripes in the image, as shown
in Fig. 1.

Digitization was done on a ColorTrack smartLF Gx+42 (https://www.
colortrac.com/scanner/smartlf-gx-42/) at 400dpi by Ingecap (http://ingecap.
fr/). Images are full color lossless TIFF and approximately 15000 × 9000 pixels
large for 400MB each. They can be downloaded for inspection1.

On the one side, the artifacts are of sufficient importance to produce sig-
nificant bias in standard image analysis results. As such the resulting overall
quality of digitization process can be considered as incompatible with the stan-
dards required for high quality reference research data (hence, the “failure“). On
the other hand, a close inspection of the nature of the artifacts (their regularity,
their repetitive frequency pattern, their non destructive nature . . . ) and the vol-
ume of the available data (400 GB) most of which has a more than acceptable
level of quality, makes is plausible that some well thought-out post-processing
software may be able to filter out these artifacts, and an opportunity to conduct
some exciting state-of-the-art benchmarking to see where our research commu-
nity currently stands with respect to large real-world document image analysis
(Is the problem at hand “easy“ with respect to the current state-of-the-art? Is
it “interesting“ with respect to evaluating other document analysis challenges?
Can current mechanisms effectively handle the quantity and size of data?).

3 Presentation and Preliminary Artifact Analysis

The ColorTrack (https://www.colortrac.com/scanner/smartlf-gx-42/) series are
roller scanners with a fixed 1D array of CCDs under which the document is fed
and progressively moved by a traction system. This is important to notice, since
it allows to make some very strong assumptions about the artifacts. The artifacts

1 http://dae.cse.lehigh.edu/DAE/?q=browse/dataitem/606796.
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Fig. 1. From left to right: example of artifact crossing drawing, showing that the
underlying signal is not entirely lost (a); artifacts appearing essentially in CYM thus
hinting to a defect in one of the CCD channels (b) ; example of more subtle, evanescent
artifacts (c).

are depicted in Fig. 1 (high resolution versions of these images are available2).
Their intensity may be varying from extremely weak and barely visible to very
strong.

We have identified 3 types of artifacts that may probably require different
approaches as to their handling and filtering. We presume that their difficulty
in handling is probably increasing with the order of presentation below.

1. Strong full length artifacts, as shown in Fig. 1a. They are highly saturated in
one of the CYM channels, and by design of the scanner are perfectly vertical
lines, running all over the scanned document.

2. Soft full length artifacts, as shown in Fig. 1b. They are not as saturated,
nor as high intensity as the previous ones. Still they seem to be essentially
composed of one of the CYM channels, and still are perfectly vertical lines,
running all over the scanned document.

3. Partial length artifacts, as shown in Fig. 1c. They seem not to be running
over the whole page, and of varying, often very weak intensity.

Because of their supposed origin (hardware or firmware defect on some of
the CCD sensors) all artifacts share the properties of being perfectly vertical.
Each stripe is consistent in color, although there seems to be no obvious color
consistency between different stripes. The majority of artifacts cover the whole
height of the image. A minority of artifacts seem to appear only on a part of
given scan lines, and not covering the entire height. A sample image showing
this at full resolution is available for download3.

2 http://grec2017.loria.fr/wp-content/uploads/2017/07/zoomsnap1.png, http://
grec2017.loria.fr/wp-content/uploads/2017/07/extreme.png, http://grec2017.loria.
fr/wp-content/uploads/2017/07/Light-Stripes.png.

3 http://dae.cse.lehigh.edu/DOWNLOADS/example.tif.
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3.1 The Challenge

The challenge consists in finding an efficient way to remove the artifacts by
leveraging the specific context of both the data, and the structural properties of
the noise itself. This seems to be an unique opportunity to combine and com-
pare state-of-the-art knowledge of the Graphics and broader Document Image
Analysis domains to a large scale real-world problem, and to create the condi-
tions for collaboration, exchange and discussion on large scale document image
processing.

Requirements and Contributions. In order to compete and contribute to
the challenge contenders should provide:

– a standalone software solution (executable code, script or network ser-
vice) that takes a single image as an input and provides a filtered image of
the same dimensions and encoding as output and from which the artifacts
are removed and replaced by a plausible set of pixels rendering the supposed
original image.

– a full description of the techniques and methods applied to achieve the
filtering; this description should take the form of a publishable, or published
paper.

The requirement of a standalone solution is merely a necessity for allowing
to assess, compare and evaluate various contributions in a homogeneous and
straightforward way, without any possible bias towards parameter tuning.

It should be obvious to the contenders that pretraining and fine-tuning
parameters to fit the specific data set can be integrated in the proposed solutions.

Evaluation and Assessment. This challenge has the specific property of not
having a predetermined formal “Ground-Truth” solution, nor has it the tradi-
tional training, testing and evaluation subsets. This is making the evaluation
and assessment of contributions a challenge in itself.

For evaluation we will be combining two techniques: statistical metrics
designed to compute performance evaluation without reference data, as pub-
lished in [2,5], and crowd-sourced peer evaluation.

The latter will consist of random sampling relevant image patches and sub-
mitting them to human evaluators (typically the contestants) for assessment
under the following form: “Given the original image patch, which one of two ran-
domly selected contributed methods provides better results in removing the arti-
facts?”. The compiled results over a reasonable, yet significant amount of patches
combined with a Condorcet voting (https://en.wikipedia.org/wiki/Condorcet
method) tally will allow for ranking all contributing methods.

Tentative Timeline and Deadlines. Contestants can join and contribute at
any time in the process. There is no clear and established timeline, nor deadline.
The goal is to progressively and regularly report contributions and improvements.

https://en.wikipedia.org/wiki/Condorcet_method
https://en.wikipedia.org/wiki/Condorcet_method
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Progress reports will be presented and made available on a regular basis at the
usual IAPR (International Association for Pattern Recognition) events dedicated
to Document Analys such as GREC (http://grec2017.loria.fr/), ICDAR (http://
u-pat.org/ICDAR2017/) and DAS 2018 (https://das2018.caa.tuwien.ac.at/).

A dedicated website and related services for assessment and comparison of
methods will be set up in due time. And a permanent contact address is available
at eng-drawings-contest@loria.fr.
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1 PRHLT Research Center, Universitat Politècnica de València, Valencia, Spain
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Abstract. This document summarizes the discussion of the interest
group on Optical Music Recognition (OMR) that took place in the 12th
IAPR International Workshop on Graphics Recognition, and presents
the main conclusions drawn during the session: OMR should revisit how
it describes itself, and the OMR community should intensify its collabo-
ration both internally and with other stakeholders.

Keywords: Optical Music Recognition · Discussion group

1 Introduction

The 12th IAPR International Workshop on Graphics Recognition (GREC’17)
hosted an interest group on Optical Music Recognition (OMR), a field of research
that is concerned with computationally reading music notation in documents.
OMR has been an active research field for decades, but so far it is (justifiably)
known to “not work”, at least not well enough for real-world use-cases.

The workshop was a unique opportunity for the field to reflect its state,
as representatives of most active OMR research groups were present, thanks
to the numerous workshop contributions related to the subject (10 out of 27
contributions at GREC’17). The attendees of the meeting were (in alphabetical
order): Jorge Calvo-Zaragoza, Kwon-Young Choi, Jan Hajič jr., Jose M. Iñesta,
Alexander Pacha, Zeyad Saleh, and Ké Zhang; Alicia Fornés spent some time in
the discussion group as well.

The discussion uncovered broader systemic issues that hinder the progress of
OMR towards usable systems, rather than just a lack of technical solutions. In
this paper, we present the two most salient points that OMR needs to address:

– Revisiting how OMR is defined and described. This is necessary to design
OMR systems that address actual needs and to accurately communicate the
state of the art (Sect. 2).

J. Calvo-Zaragoza et al.—Equal contribution.
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– Intensifying collaboration within the OMR community and with related fields,
and making contributions to OMR more interoperable (Sect. 3).

2 Redefining OMR

The discussion group uncovered critical gaps in how OMR talks about itself.
There is some intuitive understanding of what OMR is, and the standard pipeline
[1,9,19] has been a helpful scaffold for decomposing OMR systems into manage-
able steps, but the field is starting to outgrow these foundations. For instance,
with respect to methods, the traditional staff-line removal step [6] is no longer
required in some systems before detecting musical symbols [10,17], and there
are even end-to-end OMR systems that do away with most intermediate steps
[5,21].

More importantly, OMR has been with few exceptions implicitly treated as a
monolithic problem, with the accompanying assumption that it has a single goal,
or at least a theoretically ideal output representation that OMR systems should
produce (which may then be used for various purposes). As became evident while
discussing a possible future OMR competition, this is not the case: it turns out
there is only limited consensus on what are worthwhile objectives to compete in.

Existing OMR literature is of little help in this respect. The overwhelming
majority of publications naturally focus on methods used to “solve OMR” [16,
19]. Some works are devoted to evaluation [2,7,13,18], and a paper by Byrd and
Simonsen [3] analyses the various dimensions of OMR difficulty. However, there
is no systematic treatment of the theoretical underpinnings of OMR: What is it
actually trying to achieve? What is the internal structure of the field? There is an
established taxonomy of OMR systems according to the inputs they process, but
what is the taxonomy of OMR systems according to the outputs they should pro-
duce? Without a clearer idea of what OMR is expected to achieve, it is difficult
to correctly evaluate sub-system improvements in the context of eventual OMR
applications, and to communicate these advances — and their limitations —
to stakeholders who are waiting for systems to be ready for their use-cases. Fur-
thermore, such an analysis would make the problem of evaluating OMR more
manageable as well.

The natural conclusion to this point of GREC’17 discussion is that an analysis
of the field from the perspective of its goals and outputs should be performed
and published.

3 Collaboration and Interoperability

Optical Music Recognition is by virtue of its domain interdisciplinary. Its motiva-
tions come not only from musicians and composers, but also from music libraries,
musicology (especially its digital branch), and music information retrieval. On
the other hand, none of these fields has the tools to provide solutions. For these,
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OMR practitioners need to look to image processing, specifically document pro-
cessing and pattern/graphics recognition, machine learning, and, in recent years,
deep learning.

This dichotomy between communities that appreciate OMR results and those
that can provide constructive feedback on OMR methods leads to the situation
where OMR-related publications get scattered, and consequently their authors
rarely meet in person. In this respect, the assembly of OMR researchers at
the GREC’17 workshop was rather unique and was only possible because of
a concerted effort of a member of the Program Committee, who reached out to
active OMR researchers individually (since the field is small, this is manageable).

The International Society for Music Information Retrieval (ISMIR) confer-
ence has recently started attracting OMR contributions more naturally, since
deep learning methods have proliferated in the music information retrieval com-
munity to the extent that deep learning-based OMR is a natural fit for the
conference both in terms of applications and methods. However, despite these
developments, the OMR community remains loose and its outputs are rarely
inter-operable so that in effect it is difficult to actually build upon previous
work.

Open-source software has, fortunately, become the (academic) norm. One
has, e.g., Audiveris1, the Pixel.js [20] and MUSCIMarker [11] data anno-
tation tools, the pre-trained symbol detection models of Pacha et al. [17]
in the Diva.js framework, and the CVC-MUSCIMA [8], HOMUS [4], and
MUSCIMA++ datasets [12] that are available under liberal licenses, and of
course the veritable Gamera open-source system [14]. However, there is not
enough effort to ensure that data formats are inter-operable, evaluation pro-
cedures are shared among authors, and in general that the wheel does not get
reinvented for every experiment.

A further critical missing piece for interoperability is the lack of a practical
format for OMR-oriented structured representation of music notation. There is
ongoing work in the MEI community2, but it has limited reach. The MusicXML
format, which is the de facto standard for music notation interchange, and MNX,
its successor project led by the W3C Music Notation Community Group3, are
moving towards a broader standardization as well. However, both MEI and
MusicXML/MNX are not very suitable for storing intermediate OMR infor-
mation, as they mix together the graphical elements of music notation and the
abstract musical objects that are encoded by them. There have been attempts
to create a format tailored for OMR output [5,12,15], but so far none of them
has actually become a standard.

A conclusion from this point of discussion is that an annual or biannual work-
shop centered on OMR that brings together its practitioners and stakeholders
(and, to gain critical size, incorporating related “systems for reading music” —
score following, cross-modal retrieval, and also music notation typesetting

1 https://github.com/audiveris.
2 http://music-encoding.org/.
3 https://www.w3.org/community/music-notation.
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software) should be organized to intensify collaboration within the OMR com-
munity, and build relationships to its stakeholders. This can be done at relatively
low costs. Establishing personal contact and collaboration with digital musicol-
ogy and digital libraries will also be necessary to sustain funding for OMR-related
projects in the future.

4 Outlook

The GREC’17 workshop in Kyoto provided the OMR community with a unique
opportunity to meet and discuss together the broad non-technical challenges
the field is facing, which have unfortunately been somewhat neglected thus far.
There are clear “action items” that the community should take upon itself to
resolve:

– Revisit the way OMR talks about itself, specifically with the focus on a taxon-
omy of OMR systems according to their goals and outputs and accompanying
evaluation metrics.

– Intensify collaboration within the OMR community and with related fields,
preferably by creating a publication venue where stakeholders can naturally
learn about each others’ needs and use-cases and establish productive collab-
orations.

– Continue the trend of open-source software and data — make sure to reflect
this principle e.g. when reviewing OMR publications.

– Improve music notation representations or at least provide conversion soft-
ware between widely adopted representations such as MEI or MusicXML and
OMR-specific formats.

The discussion group agreed that if this agenda for OMR is followed, the field
will see a qualitative improvement that will ultimately benefit everyone involved:
the OMR community itself, as well as the composers, musicians, musicologists,
librarians, and other stakeholders who are waiting for reliable OMR systems that
address their specific needs.
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Abstract. This document summarizes the discussion of the interest
group on Graphics Syntax in the Deep Learning Age that took place
in the 12th IAPR International Workshop on Graphics Recognition
(GREC).
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1 Topics of Discussion

Summary

– Deep learning powerful for object detection & parsing natural language.
– Deep learning data-hungry: labeled graphic datasets often small/absent.
– Graphics recognition distinct from text recognition: harder due to 2D vs. 1D

input, importance of distant relationships (e.g., key signature in music).
– Maturity of graphics recognition lags behind text recognition. Should these

methods be adapted for 2D graphics, or is a different approach needed?
– Where syntax may help: expressing infrequent patterns in an a priori manner

(e.g., in a grammar) rather than inferring them using statistical methods
(e.g., deep nets): reduce data dependency and model complexity.

Deep learning has produced very good results for object detection and parsing
natural language. The discussion started on the specificities of graphics recogni-
tion compared to natural language processing: bi-dimensionality; the importance
of long-distance relationships; the fact that labeled datasets are often small or
absent in graphics, and are very costly to build. As deep learning methods need
huge amounts of labeled data, it seems difficult to directly apply them to graphics
recognition. Should those methods be adapted for 2D graphics?

As both graphics and natural language are strongly structured by syntax, it
seems interesting to answer yes - but it can be hard to find sufficient training data
to capture rare long-distant relationships and infer infrequent patterns. Perhaps

c© Springer Nature Switzerland AG 2018
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it is easier to express these less frequently patterns in an a priori manner (e.g,
using a grammar). These discussions led to other discussions presented in Sect. 3
on approaches to parsing using deep learning methods, to extend them to 2D,
and in Sect. 4 on combining grammatical techniques with deep learning. Before
these discussions we had exchanges on 2D structure representations, reported in
Sect. 2. Fig. 1 provides a picture of our discussion group.

Fig. 1. Our discussion group at GREC 2017

2 2D Structure Representations

Summary

– Comment. Few representations for graphics structure include cycles. We did
not identify non-hierarchical outputs used for graphics recognition.

– Unique ground truth graphs definable when input primitives over-segment
recognition targets and are small in number (e.g., PDF symbols, handwritten
strokes with at most one symbol).

• Can use labeled adjacency (‘lg’) graphs with label sets on nodes and edges
(per CROHME [1] competitions) for graphs with or without cycles.

• All differences between ‘lg’ graphs directly identifiable, measurable
through input primitives fixed across recognition algorithms. Tools avail-
able.1

• Possible future work: develop learning/parsing methods over ‘lg’ graphs.
– When exactly matching ground truth impractical (e.g., symbol detection in

images), can still compute exact differences in output graphs, but target
matching must be approximate (e.g., thresholding intersection-over-union vs.
identical locations).

1 CROHME LgEval library: https://www.cs.rit.edu/∼dprl/Software.html.

https://www.cs.rit.edu/~dprl/Software.html
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• May prevent direct learning from ‘lg’ graphs in this case. . . future work?
– Editable representations (e.g., CAD, XML) help design & development, pro-

vide synthetic training data.

Representation of 2D graphics structure is important for outputs of recognition,
ground truth, evaluation, constructing training data, etc. We observed that few
representations for graphics structure include cycles and we did not identify non-
hierarchical outputs used for graphics recognition. It was pointed out that it is
possible to build unique ground truth graphs when input primitives over-segment
recognition targets and are small in number, as with handwritten strokes or PDF
symbols. An example label graph was demonstrated for the math expression
2 + 3x (see Fig. 2 on the whiteboard). Tools exist that identify and evaluate
all differences between ground truth and output representations. Possible future
work includes learning/parsing methods operating directly upon label graphs.

However, when recognition targets are, for example, symbols detected in
images, exact differences in output graphs is still possible but target must be
approximated with, for example, intersection-over-union (IoU), label graphs may
not be used for learning. This could be explored as future work.

The possibility of generating synthetic training data by viewing the recog-
nition problem as the inverse or dual of graphics authoring, suggests using an
editable authoring representation as the output representation of recognition.
In particular, vast amounts of training labeled data could then be generated
by rendering and distorting instances of the output representation, e.g., using
some CAD or desktop publishing XML schema. Coupled with an end-to-end
deep learning recognizer, this approach could recover a particularly useful level
of semantics, namely that at which a human author would operate.

Fig. 2. The whiteboard after our discussion
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3 Approaches to Parsing Using Deep Learning Methods

Summary

– Questions. Can we extend methods for 1D data to 2D? Or is a distinct
approach needed - can syntactic pattern recognition techniques be extended/
combined with deep learning?

– Opinion. Benefit in deep methods in part from increased reliance upon raw
input data (and continuous features) vs. inferred discrete entities used in
syntactic pattern recognition (e.g., parsing using recognized symbols).

– NLP: using recurrent nets to parse text: sentence → parse tree.
– Sequential methods (e.g., LSTM) lose 2D context. Multi-dimensional LSTMs

improve this, still do not interpret directly within 2D input space.
– Opportunities

• Exploiting correlations in feature maps (e.g., a2ia paragraph reading mod-
ules use multi-directional LSTMS).

• Constrain problems (e.g., in steps, output graph detail).
• Use loss function forcing network to learn to solve the problem (e.g.,

identifying target graph).
• Develop generative models - clean synthetic data can be helpful for this.

Several questions were asked about the possibility to extend deep learning-based
parsing methods from 1D to 2D, and about the possible combination of syntac-
tic pattern recognition and deep learning techniques. One of the most com-
pelling properties of deep methods is their ability to learn features and to work
from raw input data; syntactic pattern recognition methods use discrete recog-
nized symbols, generating difficulties arising from making hard decisions early
(e.g., for segmentation) and the rapid explosion in combinations when alter-
native hypotheses are explored. To extend from 1D to 2D, we discussed first
recurrent networks, which which are used to parse text (1D) in Natural Lan-
guage Processing. Recurrent networks such as LSTM lose 2D context, but have
been extended to multi-dimensional (MD)LSTM to try to integrate more bi-
dimensional information. They still do not use the full 2D input space directly,
and instead register/align 1D views.

Some opportunities were discussed including exploiting correlations in fea-
ture maps for paragraph reading with multi-directional LSTMs, the definition of
loss functions adapted for 2D parsing, and developing generative models using
synthetic data.

4 Combining Grammatical Techniques with Deep
Learning

Summary

– Preserving uncertainty about hypotheses (i.e., ‘weak decisions,’ ‘late commit-
ment’).
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– Interface at the triplet level? (object1, object2, relation).
– Strategy: identify sub-problems which are data driven, and where lots of data
is available.

• Training Data/Data Expansion (e.g., GAN, transfer learning).
• Strategy: use grammars to define rare/distant language elements that are

hard to infer from data.

The last discussion was on the combination of grammatical techniques with deep
learning. This combination offers the possibility to limit the use of grammars to
elements for which labeled data is scarce, or where long distance relationships
are needed. When sufficient training data is available to infer (probabilistic)
syntax reliably, it makes sense to use deep learning techniques. Even more when
data is not available, grammars can provide a way to generate training data
and complex contextual information for deep learning. For example, grammars
can contextually select sub-regions of the graphic document associated with a
contextually reduced vocabulary, to make possible application of techniques like
GAN (Generative Adversarial Networks) to automatically generate datasets for
future training, or application of data expansion. The combination can also allow
a simplification of the grammar definition, in particular offloading segmentation
tasks to deep learning modules.

Acknowledgements. We thank the GREC organizers for hosting this event, and all
the discussion participants for an engaging and animated discussion.
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Abstract. This paper summarizes the conclusions drawn in the panel
discussion of the Graphics Recognition Workshop (GREC2017) held in
Kyoto, Japan in November 2017. As usual, GREC was an exciting work-
shop with lots of interactions between attendees. Graphics Recognition
community is evolving. It is no longer a compact community focused
on typical problems as vectorization, text-graphics separation, or sym-
bol recognition. Instead, Graphics Recognition is now a confluence of
research problems from different areas with the common interest of inter-
preting symbolic constructions that follow a context-dependent language.

Keywords: Graphics Recognition · GREC workshop · IAPR-TC10

1 Retrospective: Twenty Years of GREC Workshops

1.1 The Concept of Graphics Recognition

In a traditional view, the field of Document Image Analysis and Recognition has
been roughly divided in two major subareas, namely text and graphics recogni-
tion. From this point of view where the criterion is the type of information that
is extracted from document images, Graphics Recognition can be stated as the
subfield of Document Analysis aiming to process documents containing diagram-
matic notations. Diagrammatic notations are human communication messages
basically consisting of terms such as textual labels, lines and arcs, loops, solid
regions, dotted lines, hatched patterns, etc. combined in terms of bi-dimensional
rules depending on the domain. Originally, the main categories of graphical doc-
uments were engineering drawings, architectural floor plans, and maps. Thus,
the main purposes were the conversion of raster images after scanning (large)
paper documents into CAD and GIS formats.

Thank you to all the attendees to GREC2017 workshop for their valuable contributions
during the final panel session.
The author was financially supported by projects CONCORDIA (TIN2015-70924-C2-
2-R) and XARXES (2016ACUP-00008), and the CERCA Program/Generalitat de
Catalunya.
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1.2 The Evolution of GREC Workshops: A Keywords Perspective

The first edition of the Graphics Recognition Workshop, endorsed by the Tech-
nical Committee 10 of the International Association of Pattern Recognition
(IAPR), was held at Penn State University, USA, in 1995. Table 1 compiles the
intensity of the different contributions in the proceedings regarding the main
topics.

Table 1. Papers by Topic in GREC Workshops.

199519971999200120032005200720092011201320152017

Low-level processing 16% 7% 0% 10% 6% 6% 0% 0% 8% 13% 0% 0%

Vectorization, primitive extraction, text-graphics 16% 13% 10% 16% 6% 19% 17% 17% 5% 4% 16% 15%

Technical drawings & maps 21% 30% 29% 19% 18% 0% 9% 3% 8% 21% 8% 9%

Layout analysis & diagrammatic notations, music16% 13% 6% 13% 3% 8% 3% 10% 11% 0% 24% 39%

Applications, systems & architectures 0% 13% 10% 13% 12% 6% 0% 3% 3% 13% 8% 6%

Symbol & shape recognition 11% 13% 23% 6% 18% 25% 14% 17% 18% 8% 8% 12%

Retrieval, indexing & spotting 5% 0% 6% 10% 15% 11% 14% 14% 5% 13% 4% 0%

Sketching, handwritten graphics 0% 0% 3% 10% 18% 8% 11% 10% 16% 13% 12% 3%

Performance evaluation 16% 10% 13% 3% 6% 6% 17% 10% 13% 13% 16% 9%

Historical documents 0% 0% 0% 0% 0% 11% 14% 14% 8% 0% 0% 3%

Camera-based graphics 0% 0% 0% 0% 0% 0% 0% 0% 5% 4% 4% 3%

A first glance analysis of this table leads us to draw the following musings.
First, the traditionally considered graphics recognition problems (vectorization,
text-graphics separation and symbol recognition) are still there. They are not
with the same strength than in the first editions of the workshop, but there
is still some research addressed to improve the state of the art, in general in a
given context (e.g. symbol recognition in a particular application). We observe an
increase in the works on systems for specific document types with diagrammatic
notation, in particular tables, flow charts, music scores, etc. This is probably
driven by the needs of the market concerning applications for massive reading
of certain types of documents. Surprisingly, the traditional document types like
engineering drawings, electronic diagrams, maps, etc. seem to decay. These type
of documents are nowadays digitally born, therefore the traditional raster-to-
vector conversion to import scanned line drawings to CAD and GIS systems
is a mature problem from the scientific point of view. Performance evaluation
is always present. The community requires standard and open databases and
ground truth, and with the increase of the use of machine learning methods,
training data is always needed.

Two particular application areas are recovering protagonism: comics and
Optical Music Recognition (OMR). We can not consider them genuinely Graph-
ics Recognition problems, and these topics have their own communities. But the
links to Graphics Recognition are evident, so they deserve an increasing central-
ity. It is surprising that sketch-based systems have a low impact in GREC. It
is another example of an area of interest that has a research community, but
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probably it has stronger ties with the domains of Human-Computer Interfaces,
and Computer Graphics than with Document Analysis. It is a challenge for our
community in the future, to strengthen the links to this community, and con-
tribute with graphical symbol recognition methods to solve problems of these
domains.

1.3 Main Conclusions Drawn in GREC2017

Conclusion 1: In GREC2017 we noticed that. Graphics Recognition is a
component in end-to-end interpretation systems (machines as message decoders
where graphical languages are an important but not unique component).

The traditional steps (vectorization, text/graphics separation, symbol recog-
nition) are still there but they are losing strength by themselves. However they
make sense in a global pipeline. If we analyze them individually, the state of the
art is close to consider the problems are solved. The inclusion of traditional top-
ics in a broader context that requires semantic interpretation in a given context
(e.g. music scores, diagrams, engineering drawings, maps) is more challenging.

Conclusion 2: Graphics Recognition in more global end-to-end sys-
tems. As researchers, there is a need to escape from our comfort zone, where
we are designing ad-hoc methods for particular problems. From a semiotic point
of view, the field will move from the signifier (recognition of the compounding
symbols) to the significant, i.e. the reading and understanding of the sign system
in the context where it appears.

There is a need to incorporate more semantics into the process. We are in
the artificial intelligence era, where machines understand and act. Graphical
objects are understood in terms of a language and a context. There is a need
to cope with genericity and heterogeneity, so the systems must learn and adapt
themselves to different contexts, not to be designed for ad-hoc for each use case.
Graphics Recognition has to be seen as a service that should be offered to several
interpretation pipelines. On another hand, systems must be scalable and allow
large scale interpretation.

Conclusion 3: Graphics Recognition in the Deep Era. As in textual
objets (OCR, HTR, NLP) language models have been integrated in deep learning
architectures, the integration of bidimensional language models is a challenge for
the next years.

As in the other areas, Deep Neural Networks have irrupted in Graphics
Recognition. But is it the silver bullet? Do we really need it for everything? When
designing a system, we have to take into account the cost of learning (training
data). Graphical documents involve 2D visual languages. In textual input decod-
ing, LSTM+CTC models have been successfully incorporated so they allow to
keep memory of the context, i.e. the syntactical structure of the sentence. Graph-
ical constructions usually involve bidimensional languages, which difficult the
training process. Paradigms like Graph Neural Networks are promising frame-
works to take into account.
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Conclusion 4: the need of annotated data. We have to take advantage of
the effort made by the community and centralize data and protocols (e.g. the
Engineering Drawings Challenge). The role of the TC10/TC11 dataset curators
is essencial to define the roadmap for data generation.

A big amount of ground truth data is required, not only for performance
evaluation, but also for training. In addition to classical ways of generating data
(crowdsourcing) there are new challenging directions to consider: data augmen-
tation, synthetic generation.

2 Current Trends and Challenges

Graphics Recognition is currently present in many problems and applications
that involve the interpretation of graphical languages. In addition to the tra-
ditional topics that we use to see at GREC workshops, there are interesting
problems that are becoming attractive. In this section, we briefly overview these
problems and challenges, according to the discussions held during GREC2017.

Graphics-rich document understanding, especially in large-scale sce-
narios, is a market need. Organizations have digital mail room workflows, where
heterogeneous documents, both paper-based and digitally born, have to be pro-
cessed. The understanding of the contents are required by business intelligence
systems. In addition to traditional graphical documents such as engineering
drawings, graphical components like logos, stamps, or even tables provide rich
information. Components addressed to recognize graphical parts are integrated
in ERP and data analytics software.

Flowchart and diagram recognition is a particular type of graphical lan-
guage that is intensively addressed. Big companies are developing parsing tools
for these specific structures. The interpretation of diagrams is useful in different
types of applications, as a matter of example, diagrams are efficient communi-
cation instruments in scientific papers, in chemical industry, or in patents. In
patent interpretation, flowchart interpretation is a useful mechanism to validate
or search purposes. A well known challenge for flowchart interpretation in patent
documents has been organized since 2009 [3].

The advent of pen or touch-screen based interfaces has increased the inter-
est for sketch recognition. Not only for on-line handwriting, which has been
a research topic since decades ago, but also for graphical inputs that are the
communication language in many emerging applications. The use of sketches in
multimodal processing tools has become popular. Sketch-based image retrieval
[8] is a growing challenge among the scientific community of computer vision
and pattern recognition. Ellis et al. [4] proposed a model that learns to convert
simple hand drawings into graphics programs written in a subset of LaTEX.

Doodling in touch screens in smartphones has open a myriad of applications
and services. The use of doodles as a simple way to communicate ideas can be
used in retrieval, design, education, security, etc. Graphical passwords for user
authentificaton is a clear use case that offers flexibility, simplicity and security
[6]. Doodling experiences have been proposed online by big companies [1], [2].
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These platforms, offered as toy apps, allow to collect many samples from different
uses and construct a big ground truth for the community.

Logo Recognition as a particular case of symbol recognition has been one
of the central topics of Graphics Recognition. We can observe that beyond the
typical application of logo recognition for document classification, there are new
applications related to new business services. Brand analysis through social net-
works is an important issue in marketing departments of companies. An efficient
mechanism to track the popularity of the products of a brans is to search for the
corresponding logos in the different medias that users publish in social networks.
In addition, companies are concerned in forgeries of their brand icons. Scientif-
ically, this is an interesting challenge involving logo detection and classification
on the wild. The need of logo databases for training is a crucial need, not only
to have instances of real logos but to teach machines to find logos in real scenes.
An interesting logo database have been synthetically generated using Generative
Adversarial Networks (GAN) [7].

Finally, the literature shows other interesting applications of Graphics Recog-
nition. In [5], Graphics Recognition is used in a multimodal Question Answering
system in an educational context. Sixth grade textbooks are analyzed, and the
illustrations and diagrams are analyzed together with the textual information.
A curious graphics recognition application is graffiti recognition for author iden-
tification. It is a forensics problem that has been developed as a tool for Police
departments.

3 Final Conclusion and Envisioning the Future

Graphical languages are part of the human communication. Together with tex-
tual information, graphical symbols construct messages made by humans to be
understood by humans, in the context where they appear. Documents as con-
tainers of compound signs, are no longer static paper-based sources, but have
evolved to multi-media platforms. Document Analysis has evolved to Reading
Systems, in the widest sense. Nowadays, robust reading, sketching interfaces,
on-line signature verification, etc. are well-known problems addressed by the
document analysis community but they are far from being constrained to pro-
cess scanned paper documents. The community has open the scope shifting from
the object (document images) to the function (interpreting symbols made by
humans). Graphics Recognition is aligned with this move. Therefore, the com-
munity of Graphics Recognition nowadays is no longer a small but compact
group of researchers working on vectorization, text-graphics separation, sym-
bol recognition, etc. but is more a confluence of people coming from different
areas (document analysis, computer vision, human-computer interaction, opti-
cal music recognition, etc.) that share the interest of interpreting visual (usually
bidimensional) languages in their respective fields. Thus, we are now more con-
cerned in methodologies and their application to interpret graphical entities in
end-to-end systems.

In conclusion, we see the future of Graphics Recognition as part of global
reading systems, i.e. end-to-end systems for interpreting human-made visual
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messages. These messages are constructed following a language that is valid in a
particular context. The support for these messages can range from the traditional
document images to other types of media, including digitally born documents.
The Graphics Recognition Workshop held every two years as a satellite event of
the International Conference on Document Analysis and Recognition (ICDAR)
will attract the interest of researchers from different communities having as
common interest the development of techniques for parsing graphical sentences.
Methods for graphics recognition will be general enough to adapt themselves
to different scenarios and learn incrementally. The need for annotated data will
increase in the future, as in other domains of Pattern Recognition. Thus, mech-
anisms for sharing, compiling, annotating or synthetically generate data will be
a relevant focus of attention.
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