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79.1	 �HSCT for Sickle Cell Disease

Barbara Cappelli and Eliane Gluckman

79.1.1	 �Definition and Epidemiology

Sickle cell disease (SCD) is the most common 
inherited hemoglobinopathy worldwide. It results 
from a single-nucleotide substitution that leads to 
a propensity toward hemoglobin polymerization 
and sickling of red blood cells. Sickle cell disease 
is characterized by anemia, ongoing hemolysis, 
and acute and chronic vaso-occlusive complica-
tions affecting multiple organs. SCD affects over 

100,000 Americans, and it occurs in about one in 
500 African-American births and in one in every 
1000–1400 Hispanic-American births (NIH 
2014; Piel et al. 2013).

The implementation of newborn screening, 
penicillin prophylaxis, vaccination programs, 
narcotics, chronic transfusions, hydroxyurea, and 
the early detection of cerebral vasculopathy with 
transcranial Doppler (TCD) have improved the 
perspective for children with SCD (Angelucci 
et al. 2014; Yawn et al. 2014; Ware et al. 2016; 
Bernaudin et al. 2016).

79.1.2	 �Allo-HSCT with an HLA 
Identical Sibling

HSCT remains the only curative therapy for SCD 
(Angelucci et  al. 2014; Arnold et  al. 2016; 
Gluckman et al. 2017). The goal when perform-
ing HSCT is to replace the patient’s marrow with 
genetic functional cells before major organ dys-
function and complications (Bernaudin et  al. 
2007). Some of the most common indications for 
HSCT are listed in Table 79.1 (Angelucci et al. 
2014; Bernaudin et al. 2016).

79

B. Cappelli
Eurocord-Monacord, Centre Scientifique de Monaco, 
Monaco, Monaco

E. Gluckman (*)
Eurocord, Department of Hematology, Hospital Saint 
Louis, University Paris-Diderot, Paris, France
e-mail: eliane.gluckman@aphp.fr

K. Ghanem
BASMA Pediatric Oncology Unit,  
Al Bairouni Hospital, Damascus, Syria 

M. R.Abboud
Department of Pediatrics and Adolescent Medicine, 
American University of Beirut Medical Center, 
Beirut, Lebanon

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02278-5_79&domain=pdf
https://doi.org/10.1007/978-3-030-02278-5_79
mailto:eliane.gluckman@aphp.fr


596

Several barriers prevent HSCT widespread 
application including lack of a suitable donor, lack 
of information, and limited understanding of 
HSCT.  Moreover, HSCT encompasses a risk of 
early- and late-onset regimen-related toxicities, 
rejection, and mortality. Nevertheless, the annual 

number of transplants have been increasing and 
has quadrupled in the last decade (CIBMTR per-
sonal communication). The first successful HLA 
identical HSCT was performed in a patient affected 
by both SCD and AML in 1984 (Johnson et  al. 
1984). After that, many groups have described a 
series of patients transplanted from an HLA iden-
tical sibling with an OS that varies between 91 and 
100% and EFS that varies between 73 and 100% 
(Bernaudin et  al. 2007; Walters et  al. 2016). 
Recently, 1000 HLA identical transplants, per-
formed between 1986 and 2013 and reported to 
EBMT, Eurocord, and the CIBMTR, have been 
published with a 5-year EFS and OS of 91.4% 
(95% CI 89.6–93.3%) and 92.9% (95% CI 91.1–
94.6%), respectively. The EFS and OS were both 
lower with increasing age, EFS was higher for 
transplantations performed after 2006, and OS 
was lower for peripheral blood transplant recipi-
ents (Fig. 79.1) (Gluckman et al. 2017).

79.1.3	 �Indications

Indication for HSCT for “less severe patients” 
before significant organ damage has occurred is 
open to discussion. In fact, on one hand, it would 
be better to transplant them early in order to pre-

Table 79.1  Indications for HSCT in SCD patients

Age <16 years
HLA identical 
sibling donor
One or more of the 
following 
complications:

Stroke or central nervous system 
event lasting >24 h
Sickle lung disease
Sickle nephropathy
Retinopathy
Osteonecrosis
Red-cell alloimmunization
Acute chest syndrome
Recurrent priapism
Recurrent vaso-occlusive painful 
episodes
Failure to benefit or unable or 
unwilling to continue supportive 
care therapy including hydroxyurea
Impaired neuropsychological 
function with abnormal cerebral 
MRI and angiography
Abnormal transcranial Doppler 
velocities

Modified from (Angelucci et al. 2014)
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Fig. 79.1  Overall 
survival according to 
stem cell source on 1000 
SCD patients 
transplanted from an 
HLA identical sibling 
(Gluckman et al. 2017)
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vent early organ damage secondary to SCD, avoid 
SCD complications in childhood, and achieve bet-
ter HSCT outcomes secondary to less pre-HSCT 
organ damage and alloimmunization and, on the 
other hand, it could be considered to wait to per-
form an HSCT for the establishment of new avail-
able SCD supportive cares (new medications other 
than hydroxyurea), promising curative therapies 
(gene therapy), and advances in HSCT technology, 
others may be available. Nevertheless, it has been 
demonstrated that patients transplanted at a young 
age have a better 3-year OS and 3-year EFS, with 
lower incidence of aGvHD and cGvHD (Gluckman 
et al. 2017). These findings outline the importance 
of early referral to HSCT for SCD patients.

79.1.4	 �Conditioning

To date, a myeloablative conditioning regimen 
(especially with BU/CY + ATG) is the gold stan-
dard for HLA identical sibling HSCTs (EFS: 
73–96%, OS: 91–100%) despite the risk of long-
term transplant-related toxicity (Bernaudin et al. 
2007; Walters et al. 2016). A conditioning regi-
men including FLU and BU has been used but 
with high GvHD risk; therefore, it should be con-
sidered to add ATG to the conditioning regimen 
to lower the GvHD risk in these patients.

A RIC regimen has been explored to decrease 
toxicity and allow a stable, mixed chimerism. 
The aim of a tailored conditioning regimen in 
children is to preserve fertility, whereas in adults 
is to reduce toxicity in severely compromised 
patients due to their underlying disease. Several 
reduced intensity conditioning regimens (FLU/
MEL + ALEM +/− TT or ALEM + TBI 300 cGy 
+/− PT-CY or FLU/CY or TBI 300  cGy +/− 
ATG) have been used in many small patient series 
but with high degree of graft rejection (Talano 
and Cairo 2015; Arnold et  al. 2016). Thus, 
recently, encouraging outcomes and low early- 
and long-term toxicity have been confirmed by 
other groups after FLU-based RIC regimens 
(Bhatia et al. 2014). Lately, 13 high-risk patients 
conditioned with a chemotherapy-free regimen 

(ALEM-TBI 300 cGy) have shown a 92% DFS 
and 100% OS (Saraf et al. 2016).

Moreover, a prospective multicenter trial com-
paring allogeneic matched related HSCT after a 
RIC regimen, with standard of care in adolescents 
and adults with severe SCD, has shown encourag-
ing preliminary results (Dhedin et al. 2016).

Despite MAC dosing in the conditioning regi-
mens, a mixture of both donor and recipient 
hematopoietic cells (mixed donor chimerism) 
can be consistently observed in approximately 
10–20% of these children (Bernaudin et al. 2007; 
Walters et  al. 2016). Interestingly, this mixed 
chimeric state with the presence of both recipi-
ent and donor blood cells is sufficient to direct 
bone marrow to preferentially produce donor-
type hemoglobin (rather than abnormal hemo-
globin of the recipient), and red cells revert the 
SCD phenotype, and minimize the risk of 
GVHD, confirming the therapeutic efficacy of 
mixed chimerism for hemoglobinopathies. New 
studies on mixed chimerism are ongoing.

79.1.5	 �Alternative Donors

Finding a potential MUD is based on the ethnic 
and racial background; for SCD patients the 
probability for an 8/8 HLA MUD or CB donor is 
less than 18%. Nevertheless, some small series of 
patients using URD have been published, but for 
now relapse rate and GvHD risk remain unac-
ceptable (Justus et al. 2015).

Strategies that explore the use of mismatched 
related (haplo) donors are ongoing (Dallas et al. 
2013; Talano and Cairo 2015). Recently promis-
ing results of CD3+/CD19+ depleted T-cell 
haplo-HSCT after TREO/FLU/TT  +  ATG have 
been shown to be safe and efficient with a low 
incidence of GvHD in advanced stage SCD (Foell 
et al. 2017).

Moreover, new strategies using gene therapy 
have been recently published with encouraging 
results (Ribeil et al. 2017), and the use of gene 
editing is being explored for this single-mutation 
disease (Canver and Orkin 2016).

79  Hemoglobinopathies (Sickle Cell Disease and Thalassemia)
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79.2	 �Thalassemia

Khaled Ghanem and Miguel R. Abboud

79.2.1	 �Introduction

The outcome of thalassemia major (TM, 
transfusion-dependent thalassemia) has improved 
dramatically over the past two decades due to 
improvements in supportive care and iron chela-
tion therapy (Taher et al. 2018). Life expectancy 
for TM patients exceeds 40 years, and it is no lon-
ger significantly different from the life expec-
tancy of thalassemia intermedia patients, in 
developed countries (Vitrano et al. 2017).

Match family donor (MFD) allo-HSCT is cur-
rently considered the only curative standard ther-
apeutic approach for TM, which despite holding 
its own risks, could release the patient from life-
long treatments, and possible iron accumulation 
complications. Despite encouraging results of 
gene therapy, its use is currently limited to clini-
cal trials.

79.2.2	 �Best Transplant Candidates

In late 1990s, the Pesaro group has proposed a 
risk classification for pediatric patients undergo-
ing MFD HSCT for TM (Lucarelli et al. 1998). 
The classification depended on three risk factors 
(Table  79.2) and was validated in the pediatric 
population; however, it did not predict risk in 
adult patients (Angelucci et al. 2017). Limitations 
to this risk stratification include the interobserver 
variability regarding hepatomegaly and the lack 
of clear definition of adequate iron chelation. The 

Pesaro classification is applicable in the setting of 
best medical care. In developing countries, where 
medical care might not be optimal, a very-high-
risk group was identified in Pesaro class 3 patients 
if liver size is >5 cm below the costal margin and 
if the patient age is >7  years (Mathews et  al. 
2007). The EBMT has recently identified the age 
of 14 years as the oldest age for optimal outcome 
in MFD HSCT for TM (Baronciani et al. 2016).

Accurate assessment of iron content in the 
liver and heart is crucial before proceeding to 
transplant. No consensus is currently available 
regarding the best method of iron content assess-
ment in both organs. Serum ferritin level might 
not reflect accurately the severity of iron over-
load. Liver biopsy is the gold standard; however, 
it carries the risks of the invasive procedure. 
Transient elastography (FibroScan) and T2 MRI 
have been shown to be reliable noninvasive meth-
ods to predict liver fibrosis secondary to iron 
overload, for TM patients who are candidates to 
HSCT (Hamidieh et  al. 2014; Hamidieh et  al. 
2015).

79.2.3	 �Conditioning Regimens

The use of the myeloablative BU and CY as the 
conditioning regimen for HSCT for TM has been 
the standard practice, due to the increased mar-
row activity and the allo-sensitization in heavily 
transfused patients (Lucarelli et  al. 1990). 
However, this regimen was associated with 
hepatic and cardiac toxicity due to the iron over-
load and the toxic hepatic and cardiac effects of 
BU and CY, respectively.

ATG or ALEM have been added in some pro-
tocols to the conditioning regimen to prevent 
GvHD and enhance engraftment (Law et  al. 
2012; Mohty 2012). Despite being effective with 
low incidence of infections, the use of these 
agents is still debatable.

In an attempt to reduce the extramedullary 
toxicity of BU and CY, a non-myeloablative regi-
men of TREO/FLU/TT has been used with 
encouraging results (Bernardo et  al. 2012). 
Defibrotide has been used successfully to prevent 
SOS/VOD in patients with TM undergoing 

Table 79.2  Pesaro classifications for risk assessment 
prior to HSCT for TM (Lucarelli et al. 1998)

Risk factor
Class 
1

Class 2 (min. 1, 
max. 2)

Class 
3

Inadequate 
chelation

× ×/✓ ✓

Hepatomegaly 
>2 cm

× ×/✓ ✓

Portal fibrosis × ×/✓ ✓

B. Cappelli et al.
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HSCT with conditioning regimen containing IV 
BU (Cappelli et al. 2009). The use of BU phar-
macokinetics was associated with better engraft-
ment and less toxicity (Gaziev et  al. 2010); 
however, these studies are available in limited 
number of institutions worldwide.

79.2.4	 �Alternative Donors

79.2.4.1  �Matched Unrelated Donors 
(MUD)

In case MFD is not available, the discovery of 
high-resolution HLA typing techniques made the 
performance of successful MUD transplant pos-
sible. The probability of finding a matched unre-
lated donor varies between 50% in Caucasians to 
less than 10% in some minorities (Rocha and 
Locatelli 2008). With the use of BU, CY, TT, and 
FLU as conditioning regimen and ATG, MMF, 
and short-course MTX as GvHD prophylaxis, the 
outcome of PBSC MUD in TM was comparable 
to MFD HSCT in regard to OS, TRM, TFS, and 
aGvHD (Li et al. 2012).

79.2.4.2  �Unrelated Umbilical Cord
The use of unrelated umbilical cord as a source of 
stem cells for HSCT in TM is hampered by the 
high incidence of graft failure due to the low stem 
cell dose. The graft failure rate could be as high 
as 57% (Ruggeri et al. 2011). This could be par-
tially overcome by the use of double UCB units. 
The 5-year overall and thalassemia-free survival 
rates were 88.3 and 73.9%, respectively, when 
using two units instead of one if no single units 
included more than 25 × 106 total nucleated cells/
kg of recipient weight. Other strategies to over-
come the main barrier of low cell dose include 
co-transplantation of third-party mesenchymal 
stromal or TCD haploidentical cells (Kwon et al. 
2014; Kim et al. 2004).

79.2.4.3  �Haploidentical HSCT
Due to the low probability of finding a MUD in 
some ethnicities and the previously mentioned 
issues with umbilical-cord transplant, new strate-
gies have been evolved to develop an effective and 
safe haploidentical transplant procedure for TM 
patients. The use of TCD graft was associated 
with high rate of infections and increased risk of 
graft failure due to allo-sensitization and hyperac-
tive marrow (Gaziev et al. 2000). This was over-
come by pretransplant over-transfusion and 
immunosuppressive therapy and post transplant 
infusion of transduced donor T-cells with gene-
inducible caspase-9 (Bertaina et  al. 2017). The 
use of T-cell replete grafts is still under investiga-
tion to explore the best strategy to prevent GvHD.

79.2.5	 �Mixed Chimerism

The incidence of mixed chimerism after HSCT 
for TM was reported to be around 12%. the risk 
of graft rejection in patients with mixed chime-
rism was high only if mixed chimerism had been 
observed within two months post-transplant. 
Most cases with late persistent mixed chimerism 
evolved into either stable chimerism or complete 
engraftment and did not require additional PRBC 
transfusion support (Andreani et al. 2000).

79.2.6	 �Post transplant Iron Chelation

Iron overload remains a problem after HSCT, and 
most investigators rely on phlebotomy to decrease 
excessive iron stores. In a recent phase II, multi-
center, single-arm trial, deferasirox at a dose of 
20 mg/kg/day, starting after a minimum of 6 months 
of transplant, and continued for 1 year, was safe 
and associated with decreased burden of iron over-
load after transplant (serum ferritin, liver, and car-
diac iron content by MRI) (Yesilipek et al. 2018).

79  Hemoglobinopathies (Sickle Cell Disease and Thalassemia)
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Key Points
•	 HLA identical sibling HSCT is an estab-

lished treatment option for SCD.
•	 HSCT should be performed as early as 

possible, preferably at pre-school age, 
and BU, CY, and ATG should be used as 
conditioning regimen.

•	 Match family donor allo-HSCT is cur-
rently considered the only curative 
standard therapeutic approach for thalas-
semia major, which despite holding its 
own risks, could release the patient from 
lifelong treatments and possible iron 
accumulation complications.

•	 Despite encouraging results of gene 
therapy, its use in TM is currently lim-
ited to clinical trials.
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