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Abstract. We consider a closed network of queues with external signals.
These signals trigger customer between queues and they arrive following
a rate which depends on the number of active customers in the station.
We consider three types of stations: they may have one server, an infinite
number of servers or no servers at all. In that case, the customers behave
like inert customers and they only react to signal. We prove that, under
irreducibility conditions, such a network has a stationary distribution
which is multiplicative. As the network is finite, all the states are not
reachable and the distribution is known up to a normalization constant.
To avoid the computation of this constant, we also prove a mean value
analysis algorithm which allows to determine the average queue size and
the average waiting time without computing the probabilities. We also
present some extensions of the model.

1 Introduction

This paper generalizes in many directions the result obtained by Gelenbe in [12]
where G-networks with trigger signals were introduced and were shown to have
a product form steady-state distribution. First, we consider a closed network
with customers and three types of stations: single server stations, infinite server
stations and stations without server. Second, the signals arrive from the outside
and are routed with a state dependent probability to a station in a the network.
A signal triggers a customer movement from the station where it is received to
any other queue in the network. Despite these uncommon features, we prove
that such a network has a product form steady-state distribution. We also prove
an “arrival see time average” property [ASTA] to relate the state seen by a
incoming customer (due to routing or trigger) with the steady-state distribution
for a network with a customer less. This property allows to develop a MVA like
algorithm to compute the average queue length and the expected sojourn time.

G-networks of queues with signals have received a considerable attention
since the seminal paper by Gelenbe [11] in 1991 where he introduced networks
with positive and negative customers. A negative customer deletes a positive
customer if there is any in the queue at its arrival. Then it disappears. If the
queue is empty, it also disappears immediately. A negative customer is never kept
in the queue. It is now seen as a signal which deletes a customer. Such a network
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with positive and negative customers are associated with models of Random
Neural networks [13] and are therefore suitable to model control algorithms.
Since then, many papers on networks of queues with signals have been published
(see for instance a annotated bibliography [5]). It is worthy to remark that most
of the results are obtained for open networks of queues (see [6] for one notable
exception). Indeed, most of the signals studied so far implies the destruction of
customers. In a closed network, such a behavior leads to an empty network after
some time. Some numerical algorithms have been designed to solve explicitly
the flow equations which are more general than the ones we get for Jackson or
Gordon networks of queues [9]. For closed networks of queues, one must also
compute the normalization constant. To avoid this computation, we develop an
exact Mean Value Analysis approach. We prove for the first time, to the best of
our knowledge, an ASTA property for a network with signals. It is well-known
that in a closed Gordon Newell network, an arriving customer sees the steady-
state distribution of the network with one customer less. Such a question was not
considered so far for closed network of generalized queues with restart or trigger
signals. The answer we provide here allows to compute the average queue size
without computing the steady-state distribution: this is an extension of the well-
known MVA algorithm [23].

Recently G-network with triggers have been proposed to model data process-
ing and energy consumption [10,14–16,18]. In this model, denoted as Energy
Packet Networks (EPN in the following), we can represent the flow of inter-
mittent sources of energy like batteries and solar or wind based generators and
their interactions with IT devices consuming energy like sensors, cpu, storage
systems and networking elements. The main idea of EPNs is to represent energy
in terms of discrete units called Energy Packets (or EP). Each EP represents
a certain number of Joules. EP are produced by intermittent source of energy
(solar, wind). Thus, the flows of EP is associated with random processes. EPs
can be stored in a battery from which they can leak after a random delay. They
also interact with devices which need energy to perform some works. Again this
interaction is associated with some random processes. Note that a EPN is not
only a theoretical concept. A more practical approach where power packets are
really implemented as a pulse of current characterized by an intensity, a voltage
and a time duration had been presented in the electrical engineering literature
(see for instance [24]. These packets are associated with a protocol, control infor-
mation and some hardware for switching and routing.

In the original Energy Packet Network model presented for instance in [17], we
model the energy as EPs and the workload ad Data Packets (DPs). To transmit
a DP between two nodes, one must use one EP. In a G-network, this is modeled
with two types of queues: a battery queue and a workload queue (see Fig. 1). EP
are stored in a battery queue while DP are queued before service in the workload
queue. Each node in the network is associated with a queue to store the DP and a
battery (the EP queue) to keep the energy. The EPs are sent to the DP queue and
triggers the customer movement between workload queues in the network. When
an EP arrives at a DP queue which is not backlogged, the energy is lost.
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Fig. 1. The classical EP network model: 2 types dedicated respectively to EP and DP,
the migration of a DP is provoked by the movement of an EP.

We hope that the theoretical results we provide in this paper will be useful
for that research direction. This paper is merely theoretical as we prove that
the queueing network has a product form steady-state distribution if the asso-
ciated Markov chain is ergodic. The proof of the product form result is based
on the resolution of the global balance equation. One may use other theoretical
approaches to establish the result. But it not clear that the CAT and RCAT
theorems proved by Harrison [1,19,21] are easier here. G-networks have also
been modeled as networks of synchronized automata [4,7] and a proof based on
properties of tensors has been proposed associated with this representation. We
think that the proof we present here are easier. To simplify the presentation the
proof is postponed in an appendix.

The technical part of the paper is organized as follows. In the next section
we present the model and we state that the network of queues has a product
form steady state distribution. Many details of the proof are postponed into an
appendix for the sake of readability. As the network is closed and the number
of customers is constant, not all the states are reachable and the distribution
is known up to a normalization constant. To avoid the computation of this
constant, we develop in Sect. 3 a mean value analysis algorithm to obtain the
mean queue length and the average waiting time. This algorithm requires that
we relate the state seen by an arriving customer or a signal and the steady-state
distribution. In Sect. 4, we present some possible extensions of these results and
an example of a closed network with energy packets and data packets.

2 Description of the Model

We investigate generalized networks with an arbitrary number N of queues,
one class of customers and one type of signals (i.e. triggers as introduced by
Gelenbe in [12]. We consider that the networks contains three types of station:
stations with one server (in set F), stations with an infinite number of servers
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(in set I) and stations without server (in set Z). In a station without any server,
the customers do not receive service but they react to the signal. The stations
received customers which are waiting for service, are served before migration to
another queue, but they can also react to a signal as usual with G-networks of
queues with signals. We consider here a trigger signal defined by Gelenbe in [12].
At its arrival to a non empty queue (say i) a trigger moves a customer to queue
j according to routing matrix T and it disappears immediately. If queue i is
empty, the trigger signal vanishes instantaneously. Triggers are never queued.
Triggers arrive to the system following to a Poisson process with rate λt and
they are routed to station i with a state dependent probability which will be
detailed in the following paragraphs. Note that matrix T is stochastic but we
do not require it is irreducible.

In most of the papers in the literature, G-networks with signals have an open
topology because many signals imply the deletion of customers. Here we assume
that the signals are external and only implies customer movement. Thus, we
have a balance for the customers in the queues. If the queue is empty, it remains
empty after reception of a trigger. If there is a backlog, we still have the same
total number of customers after the reception of a signal. Therefore it is possible
to consider a closed network where the total number of customers is constant.
Let K be this number of customers in the network.

Let us turn back to the routing of triggers to queues. Let x = (x1, . . . , xN )
be the state of the system where xi is the number of customers in station i. Thus
K = ||x||1. We consider the following quantity:

S(x) =
∑

i∈F
1xi>0 +

∑

i∈I
xi +

∑

i∈Z
xi

The probability that a trigger entering the network of queues is routed to queue
i is:

– 1xi>0

K if i is station with one server,
– xi

K if i is an infinite server station,
– xi

K if i is station without server,

and it vanishes before joining a station with probability K−S(x)
K . Indeed we have

S(x) ≤ K and these probabilities are all well-defined. The remaining of the
model is more classical. Service times are exponentially distributed with rate μi

for a server at station i (for i in F and I). At the completion of their service, the
customers move between queues according to routing matrix R. Note that this
matrix is initially defined as a rectangular matrix because it models the routing
between a queue in F ∪ I to a queue in F ∪ I ∪ Z. We complete this matrix to
obtain a square matrix with null rows corresponding to nodes in Z. Note that
R is not stochastic as it contains some null rows.

Assumption 1. We assume in the following that:

– λt > 0.
– μj > 0 for all j in I ∪ F .
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– Consider the directed graph built as follows: the set of nodes is the set of
stations and there exists an arc from node i to node j if either R[i, j] > 0 or
T[i, j] > 0. Let DG be this directed graph. We assume that DG is strongly
connected,

Clearly (x)t is a continuous time Markov chain. It has a finite number of
states. As we assume that the directed graph of the customer movement (due
to signals or routing of customers after their service) is strongly connected, it is
also irreducible. Therefore it is ergodic and the steady-state distribution exists.
The following result characterizes this distribution.

Theorem 1. Let K be the number of customers in the network. Under Assump-
tions 1, the Markov chain (x)t has the following steady-state distribution:

π(K,x) =
1

G(K)
1(∑i xi=K)

∏

i∈F
ρxi

i

∏

i∈I

ρxi
i

xi!

∏

i∈Z

γxi
i

xi!
, (1)

where ρi and γi are defined by the flow equations: for all queue i in F and in I:

ρi =

∑
j∈F∪I μjρjR[j, i] +

∑
j∈F∪I

λt

K ρjT[j, i] +
∑

j∈Z
λt

K γjT[j, i]

μi + λt

K

, (2)

and finally for all queue i in Z

γi =

∑
j∈F∪I KμjρjR[j, i] +

∑
j∈F∪I λtρjT[j, i] +

∑
j∈Z λtγjT[j, i]

λt
. (3)

Proof: The proof of product form is based on the analysis of the Chapman
Kolmogorov equation for steady-state. For the sake of readability we now give the
equation and some explanations for several terms in the equation. The analysis
is then postponed in an appendix.

Let us first give the global balance equation. In the following ej will be a
vector the components of which are all equal to 0 except component j which is
equal to 1.

π(K,x)[
∑

i∈F
μi1xi>0 +

∑
i∈I

μixi + λt(
∑

i∈F
1xi>0

K
+

∑
i∈I∪Z

xi

K
)]

=
∑

i∈F

∑
j∈F∪I∪Z

μiπ(K,x + ei − ej )R[i, j]1xj>0 [1]

+
∑

i∈I

∑
j∈F∪I∪Z

xiμiπ(K,x + ei − ej )R[i, j]1xj>0 [2]

+
∑

i∈F

∑
j∈F∪I∪Z

π(K,x + ei − ej )T[i, j]1xj>0λ
t 1xi+1>0

K
[3]

+
∑

i∈I

∑
j∈F∪I∪Z

π(K,x + ei − ej )T[i, j]1xj>0λ
t xi + 1

K
[4]

+
∑

i∈Z

∑
j∈F∪I∪Z

π(K,x + ei − ej )T[i, j]1xj>0λ
t xi + 1

K
. [5]

(4)
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The first two terms of the right hand side describe the services in stations
in F and I. Remember that in stations of Z the services do not occur. The last
three terms describe the effect of trigger signals arriving at queue i with a state
dependent probability and moving a customer to another queue somewhere else
in the network (say j). The left hand side of the equation contains the description
of service with state dependent service rate for stations in I and in F . The last
two terms of the l.h.s. describe the arrival of a trigger signal. Note that we
avoid to take into account null transitions on both sides of the balance equation.
Remember that some triggers may vanish without any effect. ��

Once the theorem has been established, we still have to prove is the existence
of the rates ρi (for i in F and I) and γj (for j in Z). We begin with a technical
lemma.

Lemma 1 (Stochastic). For all queue j in F ∪ I ∪ Z, matrix M defined in
Eq. 5 is stochastic.

M[j, i] =
μj1j∈I∪F

μj1j∈I∪F + λt/K
R[j, i] +

λt/K
μj1j∈I∪F + λt/K

T[j, i]. (5)

Furthermore matrix M is irreducible.

Proof: Consider an arbitrary index j in I ∪ F .

M[j, i] =
μj

μj + λt/K
R[j, i] +

λt/K
μj + λt/K

T[j, i].

And rows j of matrix R and T are distributions of probability. Therefore as a
convex sum of distributions of probability the i-th row of M is a distribution of
probability.

Now assume that j is in Z. We have:

M[j, i] = T[j, i].

As matrix T is stochastic by assumption, the i-th row of M is also a distribution
of probability. Finally, all rows of M are distributions of probability and therefore
matrix M is stochastic.

Now remember that DG is strongly connected. The adjacency matrix A of
directed graph DG is defined by

A[i, j] = 1R[i,j]>0 OR 1T[i,j]>0

As λt and μj (for all j in I ∪ F ) are positive, we also have:

A[i, j] = 1M[i,j]>0

Matrix M is irreducible because it is associated with adjacency matrix A which
is strongly connected by the third part of Assumptions 1.

Property 1 (Existence). Under Assumptions 1, the system of fixed point equa-
tions (Eqs. 2 and 3) has a solution.
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Proof: let us denote by v the vector defined by
[
v(i) = ρi(μi + λt/K) i ∈ F ∪ I,
v(i) = γiλ

t/K i ∈ Z.

After substitution in Eq. 2, we have for all i in I ∪ F :

v[i] =
∑

j∈F∪I
v[j]M[j, i] +

∑

j∈Z
v[j]T[j, i]. (6)

Similarly for Eq. 3 we get for all i in Z:

v[i] =
∑

j∈F∪I
v[j]M[j, i] +

∑

j∈Z
v[j]T[j, i]. (7)

Thus, combining both equations in vector form, taking into account that
M[j, i] = T[j, i] for all j in Z:

v = vM. (8)

The previous lemma states that matrix M is stochastic and irreducible. Thus
there exists an eigenvector associated with eigenvalue 1 and v is an arbitrary
positive multiple of this eigenvector. Remember that for a closed queuing net-
work, we can consider any multiple of the eigenvector as the unique solution for
the probability distribution is obtained after normalization. ��

As usual it remains to compute G. A natural idea consists in a generalization
of the convolution algorithm proposed by Buzen [2], to networks of queues with
signals. In the following we develop another idea which allows to compute the
expected queue length and average waiting time without computing the normal-
ization constraint.

3 Mean Value Analysis

We have to prove an arrival theorem to relate the probability seen by an arriving
customer to the steady-state probability (the so-called ASTA property). We
follow the approach presented by Harrison and Patel in [20]. Let us introduce
some additional notation. Let πAi(K,x) be the probability that an arriving
customer at queue i sees state x. This is due to a transition from state x + ej
to state x + ei . In state x the total number of customers is K − 1. We begin
with some technical properties.

Property 2. Due to the product form solution for the steady-state distribution,
we have, for all state x:

G(K)π(K,x + ej ) = G(K − 1)π(K − 1,x)aj ,

where: ⎡

⎢⎢⎢⎢⎣

aj = ρj , if j ∈ F

aj = ρj

xj+1 , if j ∈ I

aj = γj

xj+1 , if j ∈ Z
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Proof: Assume first that j ∈ F . Then

G(K)π(K,x + ej ) = 1(1+∑
i xi=K)ρ

xj+1
j

∏

i∈F,i �=j

ρxi
i

∏

i∈I

ρxi
i

xi!

∏

i∈Z

γxi
i

xi!

Thus:

G(K)π(K,x + ej ) = 1(∑i xi=K−1)ρj

∏

i∈F
ρxi
i

∏

i∈I

ρxi
i

xi!

∏

i∈Z

γxi
i

xi!
= ρjG(K − 1)π(K − 1,x)

The proof is similar for j ∈ I and j ∈ Z. It is omitted for the sake of conciseness.
��

Theorem 2 (Arrivals See Time Average). An arriving customer at queue
i sees the steady-state distribution in a network with one customer less:

πAi(K,x) = π(K − 1,x)

Proof: The process is stationary. Therefore, πAi(K,x) can be expressed as the
ratio of the expected number of transitions giving an arrival to node i at state
x (i.e. Ai(x)) and the expected number at any internal state y, i.e.

∑
y Ai(y):

πAi(K,x) =
Ai(x)∑
y Ai(y)

. (9)

A customer arriving at queue i sees state x during a transition from state x+ej
to state x + ei . This transition occurs after a service completion or after the
reception of a trigger signal at station j. Remember that the service rates or the
trigger routing probability may be state dependent. Thus:

Ai(x) =
∑

j∈F π(K,x + ej )μjR[j, i]

+
∑

j∈I π(K,x + ej )μj(xj + 1)R[j, i]

+
∑

j∈F π(K,x + ej )
λt

K
T[j, i]

+
∑

j∈I∪Z π(K,x + ej )
λt(xj + 1)

K
T[j, i].

Reordering the summations, we get:

Ai(x) =
∑

j∈F π(K,x + ej )
[
μjR[j, i] +

λt

K
T[j, i]

]

+
∑

j∈I π(K,x + ej )(xj + 1)
[
μjR[j, i] +

λt

K
T[j, i]

]

+
∑

j∈Z π(K,x + ej )
λt(xj + 1)

K
T[j, i].
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Using the definition for matrix M we obtain after substitution:

Ai(x) =
∑

j∈F π(K,x + ej )
[
μj +

λt

K

]
M[j, i]

+
∑

j∈I π(K,x + ej )(xj + 1)
[
μj +

λt

K

]
M[j, i]

+
∑

j∈Z π(K,x + ej )
λt(xj + 1)

K
M[j, i].

(10)

Let us now turn back to Property 2 from which we easily obtain:

π(K,x + ej ) = π(K − 1,x)aj
G(K − 1)

G(K)
,

which is substituted into Eq. 10 to get:

Ai(x) =
G(K − 1)

G(K)

∑
j∈F π(K − 1,x)aj

[
μj +

λt

K

]
M[j, i]

+
G(K − 1)

G(K)

∑
j∈I π(K − 1,x)(xj + 1)aj

[
μj +

λt

K

]
M[j, i]

+
G(K − 1)

G(K)

∑
j∈Z π(K − 1,x)aj

λt(xj + 1)
K

M[j, i].

Taking into account the definition of aj for the various queues and the definition
of v[i], we get after substitution:

Ai(x) =
G(K − 1)

G(K)

∑
j∈F π(K − 1,x)v[j]M[j, i]

+
G(K − 1)

G(K)

∑
j∈I π(K − 1,x)(xj + 1)v[j]M[j, i]

+
G(K − 1)

G(K)

∑
j∈Z π(K − 1,x)v[j]M[j, i]

Thus,

Ai(x) =
G(K − 1)

G(K)
π(K − 1,x)

∑

j∈F∪I∪Z
v[j]M[j, i].

Remember that v is the eigenvector of matrix M. Thus,

Ai(x) =
G(K − 1)

G(K)
π(K − 1,x)v[i]. (11)
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Combining this last equation and Eq. 9, we finally get

πAi(K,x) = π(K − 1,x).

and the proof is complete. ��
We now present the algorithm to compute de average queue size and the

expected sojourn time in each queue. It is similar to a classical MVA algorithm for
a single class closed queueing network as detailed in [2,20]. Let us first introduce
some notation:

– Ti(K) is the sojourn time at queue i when the number of customers in the
network is K,

– Ni(K) is the average queue size at queue i when the number of customers in
the network is K,

– Λi(K) is the arrival rate at queue i when the number of customers in the
network is K.

The first step is to define an equivalent service time. Remember that some sta-
tions (i.e. in Z) do not have a server and in some stations the signals trigger
customers movement. Let Si be the average equivalent service time.

Si =
1

μi1i∈I∪F + λt

K

Little equation give two sets of equations as in the classical MVA approach:

Ni(K) = Λi(K)Ti(K)

And:

K = Λi(K)(
∑

j

Tj(K)
v[j]
v[i]

)

Finally, the theorem on the state seen by an arriving customer allows to relate
the sojourn time to the average queue size:

Ti(K) = (1 + Ni(K − 1))Si

These three sets of equations allow a computation for Ti(K), Ni(K) and Λi(K)
for all values of K beginning with K = 1. When K = 1, the quantities are
initialized with:

Ti(1) = Si, Λi(1) =
1

∑
j Sj

v[j]
v[i]

, Ni(1) =
Si∑

j Sj
v[j]
v[i]

.

��
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4 An Example and Some Possible Extensions

Let us first present a simple example (depicted in Fig. 2) to illustrate some
features of the model. The network is decomposed into two sub-networks which
are connected by the movement of customers provoked by signals. The first sub-
network is a ring containing queues labeled 1, 2 and 3. The second sub-network
is a tandem with two queues labeled 4, and 5. The signals arriving in the first
sub-network move a customer to queue 4 while they provoke a migration to
queue 1 when they arrive in the second sub-network.

1

2

3

4

5

Fig. 2. An example with a two sub-networks topology. The migrations of customers
provoked by signals are represented by a hatched lines with a dot to indicate the
destination.

Station 5 does not have any server. Therefore the customers accumulate until
the station receives a signal to move to station 1. Such a model was proposed
for the optimization of the Energy Packets arrival. Indeed, a very simple idea
is to provide energy to stations where packets are waiting. The trigger signal
(as mentioned in the introduction) represents EP which are needed to move the
customers to another part of the network (between the two sub-networks in the
example). The ordinary movements of customers based on matrix R are not
supposed to need energy (or at least the energy is insignificant).

We now propose some extensions of the model. First, one may replace the
external source of triggers by a sub-network of queues with positive and negative
customers as in Fig. 3. This is the original model we first consider and the fol-
lowing property explains how to decompose the model into two parts, the second
one being solved by Theorem1.

Property 3. As proved in [3], an open network of positive and negative cus-
tomers is quasi-reversible and the flows of signals (whatever they are) leaving
the network follow Poisson processes. Therefore we may add in the model of
Theorem1 an open subnetwork sending trigger signal to the closed sub-network
instead of assuming an external Poisson arrival of signals.

One may also consider stations with multiple servers. Here we only consider
stations with 0, 1 or an infinite number of servers. We have to find the associate



Mean Value Analysis of Closed G-Networks with Signals 57

routing probability which provides a product form. We also have to extend the
MVA algorithm to deal with these stations. Concerning the routing probabili-
ties of signals for stations without server, we have obtained preliminary results
showing that it is possible to have much more general routing functions for these
stations. We hope to provide more general results in the near future.

Fig. 3. Mixed topology. The signals are generated by the first sub-network (on the
left) and sent to the closed subnetwork (on the right). The first sub-network is open
and it contains positive and negative customers. Positive customers (resp. negative
customers) movements are represented by solid lines (resp. doted lines). The emission
of trigger signals is represented by hatched lines.

Finally, we have considered here the single class version of the problem.
G-networks with multiple classes of customers and signals have already been
studied in the literature (for instance [8] for Processor Sharing queues). We
think that it is possible to extend both the proof of product form and arrival
theorem for network with multiple classes of customers and signals, at least for
Processor Sharing queues and Infinite Server queues.

5 Concluding Remarks

We obtained one of the first closed form expression for closed networks of queues
with signals. It is also to the best of our knowledge the first time that an arrival
theorem for a closed network with signals is proved. This allows to generalize
the MVA approach for networks with more complex movement of customers.
The result rises many interesting theoretical questions for closed networks with
triggers, signals, or more general synchronizations of queues (for instance, the
closed version of networks with load balancing presented in [22]). We want to
address some of these problems in the near future.
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Appendix: Proof of Theorem1

Consider again the global balance equation at steady-state.

π(K,x)[
∑

i∈F
μi1xi>0 +

∑
i∈I

μixi + λt(
∑

i∈F
1xi>0

K
+

∑
i∈I∪Z

xi

K
)]

=
∑

i∈F

∑
j∈F∪I∪Z

μiπ(K,x + ei − ej )R[i, j]1xj>0 [1]

+
∑

i∈I

∑
j∈F∪I∪Z

xiμiπ(K,x + ei − ej )R[i, j]1xj>0 [2]

+
∑

i∈F

∑
j∈F∪I∪Z

π(K,x + ei − ej )T[i, j]1xj>0λ
t 1xi+1>0

K
[3]

+
∑

i∈I

∑
j∈F∪I∪Z

π(K,x + ei − ej )T[i, j]1xj>0λ
t xi + 1

K
[4]

+
∑

i∈Z

∑
j∈F∪I∪Z

π(K,x + ei − ej )T[i, j]1xj>0λ
t xi + 1

K
[5]

Divide both sides by π(x) and take into account the multiplicative solution
proposed in Eq. 1. As the probability depends on the type of station, we have
to decompose the summation into three parts, based on the set of stations we
consider. We also notice that 1xi+1>0 = 1 and that xi1xi>0 = xi and we simplify
some terms.

∑
i∈F μi1xi>0 +

∑
i∈I μixi + λt(

∑

i∈F

1xi>0

K
+

∑
i∈I∪Z

xi

K
)

=
∑

i∈F

∑
j∈F μiρi/ρjR[i, j]1xj>0 [1]

+
∑

i∈F

∑
j∈I μiρi/ρjxjR[i, j] [2]

+
∑

i∈F

∑
j∈Z μiρi/γjxjR[i, j] [3]

+
∑

i∈I

∑
j∈F μiρi/ρjR[i, j]1xj>0 [4]

+
∑

i∈I

∑
j∈I μiρi/ρjxjR[i, j] [5]

+
∑

i∈I

∑
j∈Z μiρi/γjxjR[i, j] [6]

+
∑

i∈F

∑
j∈F ρi/ρjT[i, j]1xj>0λ

t 1
K

[7]

+
∑

i∈F

∑
j∈I ρi/ρjxjT[i, j]λt 1

K
[8]

+
∑

i∈F

∑
j∈Z ρi/γjxjT[i, j]λt 1

K
[9]

+
∑

i∈I

∑
j∈F ρi/ρjT(i, j)T[i, j]λt 1

K
[10]



Mean Value Analysis of Closed G-Networks with Signals 59

+
∑

i∈I

∑
j∈I ρi/ρjxjT[i, j]λt 1

K
[11]

+
∑

i∈I

∑
j∈Z ρi/γjxjT[i, j]λt 1

K
[12]

+
∑

i∈Z

∑
j∈F γi/ρjT[i, j]1xj>0λ

t 1
K

[13]

+
∑

i∈Z

∑
j∈I γi/ρjxjT[i, j]λt 1

K
[14]

+
∑

i∈Z

∑
j∈Z γi/γjxjT[i, j]λt 1

K
[15]

We exchange the role of indices i and j in all the terms of the r.h.s. and we
factorize the terms (1+4+7+10+13), (2+5+8+11+14), (3+6+9+12+15):

∑
i∈F μi1xi>0 +

∑
i∈I μixi + λt(

∑
i∈F

1xi>0

K
+

∑
i∈I∪Z

xi

K
)

=
∑

i∈F 1xi>01/ρi

[∑
j∈F∪I μjρjR[j, i] +

∑
j∈F ρjT[j, i]

λt

K

+
∑

j∈I ρjT[j, i]
λt

K
+

∑
j∈Z γjT[j, i]

λt

K

]

+
∑

i∈I xi/ρi

[∑
j∈F∪I μjρjR[j, i] +

∑
j∈F ρjT[j, i]

λt

K

+
∑

j∈I ρjT[j, i]
λt

K
+

∑
j∈Z γjT[j, i]

λt

K

]

+
∑

i∈Z xi/γi

[∑
j∈F∪I μjρjR[j, i] +

∑
j∈F ρjT[j, i]

λt

K

∑
j∈I ρjT[j, i]

λt

K
+

∑
j∈Z γjT[j, i]

λt

K

]
.
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The first and second term of the l.h.s. cancel with the first and second term of
the r.h.s. due to the first flow equation (i.e. Eq. 2). It remains:

λt
∑

i∈Z
xi

K =
∑

i∈Z xi/γi

[∑
j∈F∪I μjρjR[j, i] +

∑
j∈F ρjT[j, i]λt

K

∑
j∈I ρjT[j, i]λt

K +
∑

j∈Z γjT[j, i]λt

K

]
.

And this last equation is equivalent to the second flow equation for station in Z
(i.e. Eq. 3). And the proof is complete. ��
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