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Abstract. A Markovian queue, with both batch arrivals and batch
departures, is first shown to have a geometric queue length probabil-
ity distribution at equilibrium under certain conditions. From this a
product-form solution follows directly for networks of such queues at
equilibrium, by application of the reversed compound agent theorem
(RCAT). The method is illustrated using small batches of sizes 1 and
2, as well as geometric sizes.

1 Introduction

Queueing networks with batch movements, including so-called bulk arrivals, are
appropriate for modelling burstiness that has been observed in internet traffic
for some years, which has a degrading effect on network performance. Such
systems may also be used to provide quantitative analysis of algorithms and
schedules that reduce energy consumption, where large numbers of devices of
various sorts are switched off when not in use and switched on again when they
are next required. This switching inherently increases burstiness, not only in
power consumption but also in the performance delivered – typically measured
by device utilisation, throughput and response time.

In the next section, we define the batch-queues for which we obtain conditions
for a geometric queue length probability distribution at equilibrium. These have
regular batch arrivals and batch departures, as well as a special batch arrival
stream that is activated only when the queue is empty, and a special batch
departure stream that clears the queue. The special streams could represent the
switching off of a device and the backlog of work when it is restarted in a power-
control system. The geometric distribution, when it exists, allows a product-form
to be derived for networks of such queues, called batch-networks; this is simply
proved using the reversed compound agent theorem (RCAT) of [8] in Sect. 3. The
method is illustrated using small batches of sizes 1 and 2, as well as geometric
sizes. The basic results of Sect. 2 were summarised as preliminaries to the work
on asymptotics in [7], but important new properties are also obtained here. The
paper concludes in Sect. 4, with applications and future potential of the method.
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2 Geometric Batch-Queues

As noted in the introduction, batches occur in networks of queues in both the
departure and arrival processes of the constituent nodes. Typically, but not nec-
essarily, a batch of a given size departing from one node arrives as a batch of
the same size at another node. However, a departing batch may be re-batched,
e.g. divided into sub-batches, before being forwarded to another node, or per-
haps to several other nodes probabilistically. To obtain a product-form in such a
Markovian queueing network, we appeal to RCAT [8]. The primary requirement
of this theorem is that the reversed rates of all the instances of each active, syn-
chronising action (the output actions in one node that are awaited by another
node) must be the same. In particular, every departure transition for a batch
of a given size k at a given node must have the same reversed rate, which can
be calculated directly from the node’s equilibrium probabilities by a standard
result; see, for example, [8,13]. If the forward rate μk is independent of the local
state of the node it is departing from, the reversed rate of a batch-transition
from state i + k to state i is πi+kμk/πi for all i ≥ 0, where π is the equilibrium
probability vector. The reversed rate is therefore the same for all destination
states i whenever the equilibrium state probability πi = (1 − ω)ωi for some ω.
We therefore seek conditions on the batch size probability distributions and the
corresponding instantaneous transition rates that render the equilibrium state
probabilities geometric. Product-forms in networks of such queues are then easy
to identify and write down, using RCAT. It is well known that no such product-
form exists for queues with only the arrival and departure batches described
above – unless these are unit-sized with probability one. We therefore introduce
additional, “special” batches that can arrive only when the queue is empty and
can only depart so as to leave the queue empty. This idea itself is not new and
product-forms have been obtained for special cases in [4,9].

Fig. 1. Batch queue and its reversed process
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Our model of batch movements in a single server queue is illustrated in Fig. 1
and defined as follows, where we assume that the rates are bounded so that the
infinite sums exist:

– The state space S of the queue is the set of non-negative integers;
– Normal batch arrivals of size k ≥ 1 are represented by transitions with con-

stant instantaneous rate ak : i → i + k (i ≥ 0), i.e. from states i to i + k;
– Additional special batch arrivals of size k ≥ 1 to an empty queue are repre-

sented by transitions with constant instantaneous rate a0k : 0 → k;
– Normal batch departures of size k are represented by transitions with constant

instantaneous rate dk : i + k → i (i ≥ 0);
– Special batch departures of size k, leading to an empty queue, are represented

by transitions with constant instantaneous rate dk0 : k → 0;
– The ordering of individual tasks in the queue is strictly first come first served

(FCFS).

We call this a batch-queue. Rate generating functions are defined for each batch
movement as follows:

A(z) =
∞∑

k=1

akzk; A0(z) =
∞∑

k=1

a0kzk; D(z) =
∞∑

k=1

dkzk; D0(z) =
∞∑

k=1

dk0z
k.

We assume that A(1), A0(1) < ∞, to avoid null mean state holding times (i.e.
infinite total instantaneous transition rate out of a state), and D(1) < ∞ simi-
larly, to avoid unbounded total transition rates. The functions A(z), A0(z),D(z)
are therefore absolutely convergent and analytic inside the unit disk, which lies
inside their circles of convergence. The following proposition gives conditions for
the length of the batch-queue to have a geometric equilibrium probability dis-
tribution, so that product-forms become facilitated in networks by application
of RCAT.

Proposition 1. The batch-queue defined above, with A(1),D(1) < ∞, has geo-
metrically distributed equilibrium queue length probabilities with parameter ρ < 1,
πn = (1 − ρ)ρn for n ≥ 0, iff

(1 − ρz)[A0(z) − D0(ρz)] = [A(1) − D(ρ)]ρz − A(z) + D(ρz) (1)

for |z| < min(ρ−1, R), where R is the minimum of the radii of convergence of
the series A(z), A0(z),D(ρz),D0(ρz). The total rates of the batch arrival streams
then satisfy the constraint:

A(1) + A0(1) = D(ρ) + D0(ρ) (2)

Proof. At equilibrium, the queue has balance equations

(
A(1) +

i∑

j=1

dj + di0

)
πi =

i∑

j=1

ajπi−j + π0a0i +
∞∑

j=1

djπi+j (i ≥ 1) (3)

(A(1) + A0(1))π0 =
∞∑

j=1

(dj + dj0)πj (4)
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Taking πi = (1−ρ)ρi as a trial solution, multiplying Eq. 3 by zi and summing
from i = 1 to ∞ leads to the following equation, where Π(z) =

∑∞
i=0(1−ρ)ρizi =

(1 − ρ)/(1 − ρz) for |z| < ρ−1:

A(1)(Π(z)− π0) +

∞∑

i=1

i∑

j=1

djπiz
i +

∞∑

i=1

di0πiz
i = A(z)Π(z) + π0A0(z) +

∞∑

i=1

∞∑

j=1

djπi+jz
i

Dividing by 1 − ρ, this becomes

A(1)ρz

1 − ρz
+

∞∑

j=1

∞∑

i=j

djρ
izi +

∞∑

i=1

di0ρ
izi =

A(z)
1 − ρz

+ A0(z) +
∞∑

i=1

∞∑

j=1

djρ
i+jzi

so that, multiplying by 1 − ρz and summing all but one of the remaining series,

A(1)ρz +
∞∑

j=1

dj(ρz)j + (1 − ρz)D0(ρz) = A(z) + (1 − ρz)A0(z) + D(ρ)ρz

Equation 1 now follows. The converse is proved by dividing Eq. 1 by 1 − ρz,
expanding in powers of z and comparing coefficients.

At z = 1, Eq. 1 becomes

[A(1) − D(ρ) + A0(1) − D0(ρ)]ρ = A(1) − D(ρ) + A0(1) − D0(ρ)

so that for ρ < 1,
A(1) − D(ρ) + A0(1) − D0(ρ) = 0

as required. In fact, this also follows from the redundant Eq. 4. The trial solution
is therefore valid and the proposition follows by uniqueness of the equilibrium
probabilities of an irreducible Markov process. ��

This proposition states that, given the generating functions A(z),D(z) for the
normal batches, there is always a geometric, equilibrium queue length probability
distribution with any parameter value ρ ∈ (0, 1), provided the special batch
generating functions satisfy the equation

A0(z) − D0(ρz) =
[A(1) − D(ρ)]ρz − A(z) + D(ρz)

1 − ρz
(5)

Notice that this equation does not uniquely define the individual generating func-
tions A0(z),D0(z). However, it is usually required to minimise the effect caused
by the additional transitions introduced to secure the geometric probabilities;
and hence product-form in a network. This is aided by the following corollary.

Corollary 1. Suppose that A(z),D(z) are given and that A0(z),D0(z) are cho-
sen to give geometric, equilibrium queue length probabilities with parameter ρ
according to Proposition 1. Then the following properties hold:
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1. A0(z) − D0(ρz) has radius of convergence less than 1/ρ unless

A(ρ−1) + D(ρ) = A(1) + D(1) (6)

In particular, ρ must satisfy this equation for A0(z)−D0(ρz) to have infinite
radius of convergence, e.g. finitely many terms.

2. If there exists a real number r ∈ (0, 1), such that r−1 is less than the radius
of convergence of A(z) and A(r−1) > A(1) + D(1) − D(r), e.g. if A(z) has
infinite radius of convergence and so is unbounded, the equation A(x−1) +
D(x) = A(1)+D(1) has a unique root x0 ∈ (0, 1) if and only if Ḋ(1) > Ȧ(1),
where “dot” denotes differentiation with respect to z, the derivatives being
well defined by analyticity of A(z) and D(z). The equilibrium queue length is
then geometric, with parameter x0.

3. Conversely, the existence of a geometric, equilibrium probability distribution,
with parameter ρ, implies that A(ρ−1) + D(ρ) = A(1) + D(1), provided that
A(ρ−1) < ∞.

Proof. By Eq. 5, A0(z)−D0(ρz) is a power series, which is singular at the point
z = ρ−1 unless the numerator [A(1) − D(ρ)]ρz − A(z) + D(ρz) vanishes when
z = ρ−1, i.e. unless Eq. 6 is satisfied. The point z = ρ−1 must therefore lie outside
the circle of convergence.

For the second part, let f(x) = A(x−1)+D(x)−A(1)−D(1). Then f(r) > 0
and f(1) = 0. There is therefore at least one solution to the equation f(x) = 0
in the open interval (r, 1) if and only if ḟ(1) > 0 (whereupon f(1−) < 0), i.e.
Ḋ(1) − Ȧ(1) > 0, since D(z) and A(z−1) are analytic in the unit disk and
the annulus with inner radius r and outer radius 1 respectively, and so are
continuous, in (r, 1). Substituting into Eq. 1, the batch queue has geometric
equilibrium queue length probability distribution with parameter x0, which is
unique; hence x0 is unique.

For the last part, setting z = ρ−1 in Eq. 1 yields A(1)−D(ρ) = A(ρ−1)−D(1)
giving Eq. 6. ��
Notice that the derivatives at z = 0, Ȧ(1) and Ḋ(1) are the task-arrival and
task-departure rates respectively, so that Ḋ(1) > Ȧ(1) is the expected stability
condition for the batch-queue.

We call a queue satisfying the conditions of Proposition 1 a geometric batch-
queue with parameter ρ. Notice that whenever the corollary holds, the parameter
ρ is determined independently of the generating functions A0(z) and D0(z),
which thereby become constrained by Eq. 1 of the main proposition.

Proposition 1 is a generalisation of a result in [9] where the extra departures
to state 0 were restricted to being due to (normal) departure batches that were
larger than the current queue length. Then any departure batch size k could
occur at any queue length n: if k ≤ n, the state becomes n−k after the departure;
if k > n (an excess batch of size k), the state becomes 0. In the present model,
this is represented by dk0 =

∑∞
j=k+1 dj , but of course this is a special case. We

use this case below and now calculate its rate generating function:

D0(z) =
∞∑

k=1

∞∑

j=k+1

djz
k =

∞∑

j=2

j−1∑

k=1

djz
k =

∞∑

j=2

dj
z − zj

1 − z
=

zD(1) − D(z)

1 − z
(7)
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Plugging this expression for D0(z) into Eq. 5 now determines A0(z) as

A0(z) =
[A(1) + D(1) − D(ρ)]ρz − A(z)

1 − ρz
(8)

Notice, therefore, that such queues are entirely determined by just the two nor-
mal generating functions A(z) and D(z), which can be arbitrary, up to the
existence of equilibrium of the queue.

If, in addition, Eq. 6 is satisfied, the expression simplifies to

A0(z) =
ρzA(ρ−1) − A(z)

1 − ρz
(9)

Such queues are used in an “assembly-transfer network” in Chap. 8 of [4],
which is appropriate for models of certain manufacturing systems. The inter-
pretation is that batches of size less than or equal to the queue length are “full
batches” and the others are “partial batches” (referring to a size equal to the
queue length n which is less than the intended batch size k), which are dis-
carded in the assembly line. We therefore call this the “discard” model, or a
discard batch-queue; a minimal discard batch-queue when the parameter ρ is
determined by Eq. 6.

Proposition 2. In a minimal discard batch-queue defined by the generating
functions A(z),D(z),

1. A0(z) has finitely many terms if and only if A(z) has finitely many terms.
2. If A(z) =

∑n
i=1 aiz

i for 1 ≤ n ≤ ∞, A0(z) =
∑n−1

j=1 (ρz)j
∑n

i=j+1 aiρ
−i.

3. If A(z) is geometric with parameter α, i.e. A(z) = A(1)(1 − α)z/(1 − αz),
A0(z) = α

ρ−αA(z).

Proof. 1. First, as in part 1 of Corollary 1 and using Eq. 8, the point z = ρ−1 is a
singularity of A0(z) unless Eq. 6 is satisfied, i.e. unless the discard batch-queue
is minimal. Hence, A0(z) can only have finitely many terms in a minimal
discard batch-queue. Since the numerator of Eq. 8 vanishes at z = ρ−1, the
denominator is a factor. Thus, if A(z) has finitely many terms – and is of
degree n, say – then A0(z) also has finitely many terms and has degree n−1.
Conversely, A(z) = ρzA(ρ−1)− (1− ρz)A0(z) and so has finitely many terms
if A0(z) does.

2. Substitution into Eq. 9 and rearranging gives

A0(z) =
z

∑n
i=2 aiρ

−(i−1)(1 − (ρz)i−1)
1 − ρz

But 1 − (ρz)i−1 = (1 − ρz)
∑i−2

j=0(ρz)j and so

A0(z) = z
n∑

i=2

i−2∑

j=0

aiρ
−(i−1)(ρz)j =

n−2∑

j=0

n∑

i=j+2

aiρ
−i(ρz)j+1

3. The result follows by substituting into Eq. 9.
��
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2.1 Example

Suppose all batches have size either 1 or 2 in a minimal discard batch-queue and
define A(z) = λ1z + λ2z

2,D(z) = μ1z + μ2z
2 so that D0(z) = μ2z. Equation 6

then yields μ2ρ
4 + μ1ρ

3 − (λ1 + λ2 + μ1 + μ2)ρ2 + λ1ρ + λ2 = 0 which factorises
into (ρ − 1)P (ρ) = 0, where P (x) = μ2x

3 + (μ1 + μ2)x2 − (λ1 + λ2)x − λ2. We
therefore seek a root of the cubic equation P (x) = 0, i.e. of

μ2x
3 + (μ1 + μ2)x2 − (λ1 + λ2)x − λ2 = 0 (10)

Now, P (0) < 0 and P (1) = 2μ2 + μ1 − (2λ2 + λ1) > 0 under the stabilility
condition, so that there is a geometric equilibrium probability distribution for
the queue length.

Equation 9 (or part 2 of Proposition 2 directly) gives the arrivals-in-state-0
rate generating function A0(z) = (ρz(λ1/ρ+λ2/ρ2)−λ1z−λ2z2

1−ρz = λ2z/ρ. Thus, only
unit-batch special arrivals are required for a geometric solution to exist. In the
special case that arrivals are always single, λ2 = 0 and we find A0(z) = 0.
Indeed, provided that arrivals are single, part 2 of Proposition 2 ensures that
if departure batches with any choice of rates are introduced into an M/M/1
queue, a geometric equilibrium queue length probability distribution is preserved
(assuming equilibrium exists) without introducing any special arrivals in the
empty queue state.

2.2 The Reversed Batch-Queue

Although to apply RCAT requires the reversed rates of only the active actions –
in our case the normal departures – we will need the whole reversed process later
when we consider sojourn times in a network of batch-queues. Notice that the
structure of a batch-queue is symmetric: normal batch arrivals and departures
together with special batch arrivals and departures, out of and into state 0 only,
respectively. Any such queue is specified entirely by its four corresponding rate
generating functions A,A0,D,D0. Because of the symmetry, the reversed process
is also a batch-queue with rate generating functions A′, A′

0,D
′,D′

0, say. We now
calculate these and confirm, using Proposition 1, that the reversed queue has the
same geometric queue length probability distribution at equilibrium (assumed
to exist, with ρ < 1) as the original (forward) queue.

Proposition 3. The reversed process of a geometric batch-queue with parame-
ter ρ and rate generating functions A(z), A0(z),D(z),D0(z) is also a geometric
batch-queue with parameter ρ and rate generating functions:

A′(z) = D(ρz); A′
0(z) = D0(ρz); D′(z) = A(ρ−1z); D′

0(z) = A0(ρ−1z).

Proof. We calculate the rates of the individual transitions in the reversed pro-
cess, denoted by primes, by multiplying the corresponding forward rates by the
appropriate ratio of equilibrium probabilities (for the source and destination
states of the transition). In the reversed process, the reversed arrival transitions
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cause decreases in the queue length and so become departures, and similarly,
the reversed departure transitions become arrivals. Moreover, by the symmetry
of the model, the special transitions out of/into state 0 map into special tran-
sitions in the reversed process into/out of state 0, respectively. We now easily
obtain, using the hypothesis that the equilibrium queue length probabilities are
geometric:

a′
k = ρkdk; a′

0k = ρkdk0; d′
k = ρ−kak; d′

k0 = ρ−ka0k.

The rate generating functions of the reversed process then follow as stated.
Finally, since A′(1) = D(ρ) < ∞,D′(ρ) = A(1) < ∞, A′(1) − D′(ρ) =

−(A(1) − D(ρ)), A′(z) − D′(ρz) = −(A(z) − D(ρz)) and A′
0(z) − D′

0(ρz) =
−(A0(z)−D0(ρz)), the reversed process satisfies the conditions of Proposition 1
and has equilibrium queue length probability distribution with the same param-
eter ρ. ��

3 Product-Form Batch-Networks

By construction, networks of geometric batch-queues – call them batch-networks
– may have product-forms when their nodes are interconnected such that nor-
mal batch-departures become the normal batch-arrivals at another node. The
special departures must leave the network and the special arrivals must also
be external1; their parameters are determined by the rate equations of RCAT
combined with Eq. 9 or Proposition 2. Normal internal departure streams may
be split probabilistically to several other nodes by using parallel active depar-
ture transitions, just as in conventional queueing networks [6,11,12]. Thus, the
enabling constraints of RCAT are satisfied in that the passive transitions are
normal arrivals that are enabled in every state and, similarly, the active transi-
tions come into every state, these being normal departures. It remains to solve
the rate equations which equate the reversed rates of the active transition types,
a say, to an associated variable xa – see [10] for a practical description. Notice
that the reversed rates will in general depend on the set of xa and can be found
from Proposition 3. This leads to the product-form given below in Theorem1.

1 This is because the special departures are active transitions, with the empty queue as
their only possible destination-state, whereas RCAT requires all states to be possible
destinations [8]. Similarly, the special arrivals are passive but enabled only in the
empty queue, i.e. not in every state, as required by RCAT. One could consider the
special departures as passive and the special arrivals as active, provided they could
occur in, or lead to, every state, respectively. However, a special arrival transition
from the empty state to itself would then be required – i.e. an active “invisible transi-
tion”. This would lead to an increased rate of special departures in the synchronising
queue, changing the model’s specification. Worse still, the special arrival rates would
have to be carefully chosen (geometrically) so as to ensure constant reversed rates.
Similarly, an invisible, passive, special departure transition would also be needed on
the empty state, allowing spontaneous special arrivals at the synchronising queue,
which again would probably not be wanted.
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3.1 Product-Form Theorem

In a Markovian network of M batch-queues (or nodes), in which the mean service
times of node i are respectively μ−1

ik , μ−1
0ik and the mean external arrival rates

at node i are respectively λik, λ0ik for normal, special batches of size k ≥ 0, we
define the rate generating functions:

Ai(z) =
∞∑

k=1

λikzk;A0i(z) =
∞∑

k=1

λ0ikzk;Di(z) =
∞∑

k=1

μikzk;D0i(z) =
∞∑

k=1

μ0ikzk.

The “routing probability” pikjl (1 ≤ i 	= j ≤ M ; k, � ≥ 1) is the probability that
a normal batch of size k that completes service at node i immediately proceeds
to node j as a batch of size �2. We define Bij(ρ, z) to be the generating function
of the reversed rates (depending on the local geometric parameter ρi at node i)
of the normal departure transitions at node i that go to node j as batches of
size � ≥ 1:

Bij(ρi, z) =
∞∑

�=1

∞∑

k=1

pikjlμikρk
i z�.

Note that typically pikjl = pikjδkl for certain quantities pikj , i.e. there is no
change to the batch size in transit. With no re-batching, therefore, Bij(ρi, z) =∑∞

k=1 pikjμik(ρiz)k. Furthermore, if the routing probabilities are the same for
all batch sizes, i.e. pikjl = pijδkl, we have Bij(ρi, z) = pijDi(ρiz).

Our main product-form result now follows by construction: the detailed proof
is omitted, being the simple application of RCAT just described.

Theorem 1. A network of M minimal discard batch-queues at equilibrium,
specified according to the above notation, has equilibrium joint queue length prob-
ability distribution with the product-form IP(N = n) =

∏M
j=1(1 − ρj)ρ

nj

j , where
Nj is the equilibrium queue length random variable at node j, if the numbers
ρ1, . . . , ρM are the solution of the system of non-linear equations, for 1 ≤ j ≤ M :

Aj(ρ−1
j )+

∑

1≤k �=j≤M

Bkj(ρk, ρ−1
j )+Dj(ρj) = Aj(1)+

∑

1≤k �=j≤M

Bkj(ρk, 1)+Dj(1).

(11)
Furthermore, the special arrival streams to empty queues (only) have rate gen-
erating functions:

A0j(z) =
ρjz

[
Aj(ρ−1

j ) +
∑

1≤k �=j≤M Bkj(ρk, ρ−1
j )

]
− Aj(z) − ∑

1≤k �=j≤M Bkj(ρk, z)

1 − ρjz

at node j.

To clarify, we observe that Eq. 11 is simply Eq. 6 applied to node j, which has
additional normal batch-arrivals with rates defined by the reversed rates of the
2 We exclude feedback from a node to itself, so that j �= i or, equivalently, we can

define pikjl = 0 whenever i = j.
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feeding normal departures at other nodes, given by the generating functions
Bkj(ρk, z). The special arrival streams necessary to ensure the product-form are
given by the rate generating functions A0j(z), computed from Eq. 9 or explicitly
from part 2 of Proposition 2, with parameter ρ equal to the jth component of
the vector computed for the solution of the equations in the theorem.

Necessary and sufficient conditions for equilibrium to exist are difficult to
obtain, as in even simple open queueing networks, but the following sufficient
condition can turn out to be useful.

3.2 Sufficient Stability Condition

The necessary and sufficient condition for equilibrium to exist is that a vector
ρ with 0 < ρi < 1, for 1 ≤ i ≤ M , can be found that satisfies Proposition 1
and, in the case of a minimal discard batch-queue, Eq. 6. It then follows that
the net task-arrival rate at each node j is strictly less than the task-service rate,
i.e. Ȧj(1) +

∑
1≤k �=j≤M Ḃkj(ρk, 1) < Ḋj(1). This is a rather useless a priori

condition because the quantities ρk are unknown, but since each ρk < 1, a
sufficient condition for equilibrium to exist is that

Ȧj(1) +
∑

1≤k �=j≤M

Ḃkj(1, 1) < Ḋj(1) for 1 ≤ j ≤ M (12)

Ḃkj(ρk, z) being monotonically increasing in ρk, which is easy to check.
For the case of no re-batching and routing probabilities pij that do not depend

on the batch size, this simplifies to Ȧj(1)+
∑

1≤k �=j≤M pkjḊk(1) < Ḋj(1), a more
conventional type of “traffic constraint”.

3.3 Open and Pseudo-closed Networks

First, notice that all non-trivial (i.e. with at least one non-unit batch size)
batch-networks are open in the sense that they have external (special) arrivals
and departures from the network. Moreover, this means that all nodes have
unbounded queue lengths, whatever the batch size probability distributions;
even when special batches are a.s. finite, with positive probability some node
in the network is empty and so the total network population can increase due
to special arrivals at that node. Again, with positive probability, a node may
subsequently become empty before any special departure occurs to reduce the
total population. In this way it is possible for the network population to increase
indefinitely (with probability one), so that it is unbounded; the same therefore
applies to each queue length. Contrary to plain queueing networks, therefore,
it must always be the case that ρi < 1 at each node i. Notwithstanding these
remarks, we define an open batch network to be one in which there are exter-
nal normal arrivals or departures at one or more nodes, and a pseudo-closed
batch network (mixed open-closed) to be one with no external normal arrivals
or departures (Figs. 2 and 3).
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Fig. 2. Open batch-network

Fig. 3. Pseudo-closed batch-network: closed for normal tasks, open for special tasks

Consider, as a simple example, a cycle of two discard batch-queues of the
type considered above and illustrated in Fig. 3, with batch sizes restricted to
1 or 2. Without loss of generality, we assume that departing batches of size 2
become arriving batches of size 2 at the other node; however we could just as
easily choose to have departing batches change their size probabilistically (from
1 to 2 and/or 2 to 1 here) when they arrive at the other node. Denote the
types of the transitions synchronising node 1 departures with node 2 arrivals by
α21, α22, with rates d11 = μ11, d12 = μ12 (corresponding to batch sizes 1 and 2)
respectively, and similarly for the corresponding transitions synchronising node
2 departures with node 1 arrivals. Further, let the external arrival rate of normal
batches of size j at node i be λij , so that the generating function of all the normal
arrival rates at node i is

∑2
j=1 aijz

j , where aij = xαij
+ λij for i = 1, 2; j = 1, 2.

The special batch external arrival rates and their generating functions Ai0(z)
are then determined by Eq. 8. To illustrate more clearly, proceeding from first
principles, the rate equations are:

xα21 = ρ1μ11; xα22 = ρ21μ12; xα11 = ρ2μ21; xα12 = ρ22μ22

where ρi is the solution of the equation

μi2ρ
3
i + (μi1 + μi2)ρ2i − (λi1 + λi2 + xαi1 + xαi2)ρi − λi2 − xαi2 = 0

for i = 1, 2, which arises immediately from Eq. 10. This pair of simultaneous
cubic equations must be solved numerically.

Equivalently, just applying Theorem1, we obtain – in the more general case
where departing batches from node i may choose to leave the network with
probability 1 − pij or to pass to the other node with probability pij (i 	= j ∈
{1, 2}):

A1(ρ−1
1 ) + p21D2(ρ2/ρ1) + D1(ρ1) = A1(1) + p21D2(ρ2) + D1(1)

A2(ρ−1
2 ) + p12D1(ρ1/ρ2) + D2(ρ2) = A2(1) + p12D1(ρ1) + D2(1)
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However, these are simultaneous quartic equations, the invalid roots ρ1, ρ2 = 1
not being factored out as in Eq. 10.

The sufficient stability conditions for this network are

Ȧ1(1) + p21Ḋ2(1) < Ḋ1(1) and Ȧ2(1) + p12Ḋ1(1) < Ḋ2(1),

which yield λ11 + 2λ12 + p21(μ21 + 2μ22) < μ11 + 2μ12 and a similar inequality,
interchanging the node-subscripts 1 and 2.

A numerical instance of this example has μ11 = 10;μ12 = 2;μ21 = 5;μ22 =
3;λ11 = 4;λ12 = 0;λ21 = 3;λ22 = 0; p12 = 0.4; p21 = 0.6. The sufficient stability
conditions require, respectively, that 10.6 < 14 and 8.6 < 11, which are satisfied,
and the solution for the product-form is ρ1 = 0.584, ρ2 = 0.615.

If we increase the external arrival rate at node 2 to λ21 = 6 the second
sufficient stability conditions becomes 11.6 < 11 so is not satisfied. However, in
this case a solution ρ1 = 0.767, ρ2 = 0.931 exists and the network is stable; the
second exact stability condition is λ21+2λ22+p12ρ1(μ11+2μ12ρ1) < μ21+2μ22,
i.e. 10.01 < 11.

3.4 Pseudo-closed Networks

It is well known that, in a closed Jackson network [12], the (traffic) rate equa-
tions have a unique solution only up to a multiplicative constant, these being
the solution of a set of homogeneous linear equations. With batches in minimal
discard queues, as we have already pointed out, the network’s population is not
bounded and certainly not constant because of the external special arrivals. Fur-
thermore, the rate equations are non-linear. However, pseudo-closed networks,
with no external normal arrivals, do have a different type of constraint, arising
from Eq. 11 which, for a pseudo-closed network becomes:

∑

1≤k �=j≤M

Bkj(ρk, ρ−1
j ) + Dj(ρj) =

∑

1≤k �=j≤M

Bkj(ρk, 1) + Dj(1) (13)

for 1 ≤ j ≤ M . When batch sizes do not change in transit and the routing
probabilities are the same for all batch sizes, the equation becomes

∑

1≤k �=j≤M

pkjDk(ρk/ρj) + Dj(ρj) =
∑

1≤k �=j≤M

pkjDk(ρk) + Dj(1) (14)

Summing over j then gives, setting pjj = 0 for 1 ≤ j ≤ M ,

M∑

j=1

M∑

k=1

pkjDk(ρk/ρj) +
M∑

j=1

Dj(ρj) =
M∑

j=1

M∑

k=1

pkjDk(ρk) +
M∑

j=1

Dj(1)

Interchanging the order of summation on the right hand side and noting that
for pseudo-closed networks

∑M
j=1 pkj = 1 for all k, two of the sums cancel and

we are left with
M∑

j=1

M∑

k=1

pkjDk(ρk/ρj) =
M∑

j=1

Dj(1)
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This is a constraint on all the pairwise ratios of the nodes’ utilisations – the
parameters of the required geometric distributions at each node. Notice that
this does not apply to open batch networks because the corresponding equation
would include the term

∑M
j=1 Aj(ρ−1

j ), which is neither constant nor a function
of the utilisation-ratios.

Clearly one solution to this equation has ρ1 = ρ2 = . . . = ρM , whereupon we
may write

(D(ρ) − D(1))(I − P ) = 0

where ρ = (ρ1, . . . , ρ1), D(z) is the vector (D1(z1), . . . , DM (zM )), 1 is the vector
of ones (1, . . . , 1) of length M , the matrix P = (pij | 1 ≤ i, j ≤ M) and I is the
identity M × M matrix. Since P is singular for a pseudo-closed network, these
equations have a unique solution up to an arbitrary multiplicative constant (the
rank of P being M − 1 in a connected network). Hence we obtain

Dj(ρ1) − Dj(1) = κj(D1(ρ1) − D1(1))

for 2 ≤ j ≤ M , where the vector (1, κ2, . . . , κM ) is a solution to the linear
equations x.(I − P ) = 0, i.e. a left eigenvector of I − P with eigenvalue 0. It
therefore remains to solve each of the non-linear equations Dj(y) − Dj(1) =
κj(D1(y) − D1(1)) for j = 2, . . . ,M , each of which must have the same solution
y = ρ1. In general, this will be highly constraining on the parameters of the
network, but for a two-node network there is only one such equation to solve,
namely (since κ2 = 1) D2(ρ) − D2(1) = D1(ρ) − D1(1), or, after factorisation,

(ρ − 1)[(μ22 − μ12)ρ − (μ11 + μ12 − μ21 − μ22)] = 0

The only valid solution (with ρ1 = ρ2 = ρ) is therefore ρ = −1 − δ1/δ2 where
δi = μ1i − μ2i for i = 1, 2. For 0 < ρ < 1 we therefore require that either
δ1 > 0, δ2 < 0,−δ2 < δ1 < −2δ2 or δ1 < 0, δ2 > 0, δ2 < −δ1 < 2δ2.

Consider the following pseudo-closed 2-node example, for which we must
have p12 = p21 = 1. Let μ11 = 2, μ12 = 1;μ21 = 2.6 and μ22 be left unspecified.
Then δ1 = −0.6 and δ2 = 1 − μ22, so we have the second case and require
0.4 < μ22 < 0.7. No solutions were found for μ22 outside this range and all
solutions with μ22 in the range had ρ1 = ρ2. For example, when μ22 = 0.699
we find ρ1 = ρ2 = 0.9934; when μ22 = 0.401, ρ1 = ρ2 = 0.0017; and when
μ22 = 0.5, ρ1 = ρ2 = 0.2. In fact, it can be shown via tedious algebra that there
are no other solutions to Eq. 14 when M = 2 other than ρ1 = ρ2. Whilst being a
challenge to generalize this to arbitrary pseudo-closed networks, this is not the
point of the present paper and the urgency of such a result is not clear.

4 Conclusion

As noted in the introduction, batch-networks of this type are well suited to mod-
elling bursty traffic that occurs in networks of various types, for example router
networks and file transfers in storage systems. Data centres, in particular, con-
sume vast amounts of energy, often requiring their own power plants to be con-
structed, and demand for their services is set to continue growing rapidly. Thus
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both economics and social responsibility demand the minimisation of energy
use and certainly that energy not be wasted. One way this is being done is to
construct devices with several power levels of operation, at least including “on”
and“off”, and probably with “sleep” or“standby” intermediate levels as well.
When a device is not in use, its power level decreases, e.g. it is switched off, and
conversely when it is required again, it is switched on. If the offered workload
is “smooth”, i.e. devices do not have long idle periods, there is no benefit in
shutting them down or reducing their power level; they will quickly have to be
powered up again, with increased energy (and wear) overheads, resulting in a
penalty, not a saving in energy [15]. Therefore in energy-efficient systems, work-
load has to be scheduled to introduce bursts into the workload, with longer idle
periods, and these are well modelled by batch movements in a network. To min-
imise energy consumption subject to adequate quality of service (QoS), and vice
versa, therefore requires models that account for burstiness.

In a batch-network, the scheduled regular traffic can be represented by normal
batches. When a device is switched off, it may lose work that has either already
arrived or is on the way, for example in a control unit buffer. Conversely, when
the device starts up again, it may be that a backlog of work has built up and
so there is a sudden burst of activity. Such events – switching off and on again
– are well described by a batch-queue’s special departure and arrival streams.
Efficient, product-form, batch-networks therefore have the potential to provide
a way to suggest alternative scheduling algorithms that can be assessed quickly,
even in real time.

Of course there is the objection that, even if batch-networks provide a good
representation, it is unlikely that the conditions will be met that lead to a
product-form – and hence efficient solution. However, direct analytical solutions
(solving the underlying Markov chain’s global balance equations) are intractable
numerically and simulation is expensive and time consuming. Therefore approxi-
mations are generally used. This gives at least three important roles for product-
forms:

– To provide exact results when their conditions are met;
– To provide a benchmark against which to assess approximate methods and

simulation: a parameterisation of a model would be chosen that does satisfy
the conditions for product-form and the ensuing exact solution would be
compared with the inexact model’s output;

– Product-forms themselves are (usually) approximations and may lead to
upper and/or lower bounds on the exact solution.

In fact the generality of the RCAT approach allows batch-queues to be incorpo-
rated into any other product-form networks, for example G-networks or BCMP
networks, or even be mixed with product-form Petri nets [1–3,5,11]. Current
work is investigating a pair of batch queues with finite batch sizes and w ithout
any special arrivals or departures. The essence of the approach is to observe that
above a certain pair of queue lengths, the steady state balance equations are the
same with or without the special batches. Below these thresholds, the method
of spectral expansion is used to yield an “almost” product-form solution [14].
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