
Rena Bakhshi · Paolo Ballarini
Benoît Barbot · Hind Castel-Taleb
Anne Remke (Eds.)

 123

LN
CS

 1
11

78

15th European Workshop, EPEW 2018
Paris, France, October 29–30, 2018
Proceedings

Computer
Performance Engineering

Lecture Notes in Computer Science 11178

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Rena Bakhshi • Paolo Ballarini
Benoît Barbot • Hind Castel-Taleb
Anne Remke (Eds.)

Computer
Performance Engineering
15th European Workshop, EPEW 2018
Paris, France, October 29–30, 2018
Proceedings

123

Editors
Rena Bakhshi
eScience Center
Amsterdam
The Netherlands

Paolo Ballarini
University Paris-Saclay
Gif-sur-Yvette
France

Benoît Barbot
Université Paris-Est Créteil
Créteil
France

Hind Castel-Taleb
Telecom SudParis
Evry
France

Anne Remke
Westfälische Wilhelms Universität Münster
Münster
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-02226-6 ISBN 978-3-030-02227-3 (eBook)
https://doi.org/10.1007/978-3-030-02227-3

Library of Congress Control Number: 2018957280

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This LNCS volume contains the proceedings of the 15th European Performance
Engineering Workshop (EPEW), held in Paris, France, during October 29–30, 2018. At
its 15th edition the annual EPEW workshop series is a well-established workshop
aimed at providing researchers from both academia and industry with a forum for
debate/networking over a broad range of topics across the performance engineering
realm, including, dependability and security modeling, performance-oriented model
verification and testing, hardware and software systems case studies,
applications/extensions of queuing theory, and network design. Following the tradition
of EPEW, the papers presented at the 2018 edition reflect the diversity of modern
performance engineering, where theoretical aspects (involving formalisms such as
graphs, trees, queueing networks, stochastic automata as well as mathematical methods
such as simulation, product form solutions, game theory, optimization, model check-
ing) are often combined with specific applications (e.g., delay-tolerant networks,
mobile cloud computing, smart buildings, fault-tolerant systems, distributed databases).

EPEW 2018 received 27 submissions from nine countries around the world,
including Asia, North America, and Europe. Each paper was peer reviewed by an
average of three Program Committee (PC) members and assessed on the basis of its
relevance to the workshop community, its novelty, and its technical quality. The review
outcome led to the selection of 17 high-quality contributions for publication in the
proceedings and presentation at the workshop.

We would like to thanks the keynote speakers we were honored to host at EPEW
2018, namely, Dr. Gerardo Rubino, a senior researcher at Inria/IRISA Rennes (France)
with a strong background both in quality of services for network applications as well as
in quantitative analysis of probabilistic models, and Dr. Benny Van Houdt, a senior
lecturer at the computer science department of the University of Antwerp (Belgium)
with strong diverse expertise in performance evaluation of computer systems and
networks.

We would also like to warmly thank all PC members and external reviewers for their
quality work in the review process. Furthermore we would like to thank both the
SAMOVAR laboratory of Télécom SudParis, the LACL laboratory of the University of
Paris-Est Créteil, and the MICS laboratory of CentraleSupélec for their support in
making the organization of EPEW 2018 possible. We are very grateful both to the
EasyChair team, for their useful conference system that we used for managing papers
submission/reviewing process, and to Springer for their editorial support. Above all, we

would like to thank the authors of the papers for their contribution to this volume. We
hope these contributions will be as useful and inspiring to the readers as they were to
us.

September 2018 Rena Bakhshi
Paolo Ballarini
Benoît Barbot
Hind Castel

Anne Remke

VI Preface

Organization

Program Committee

Elvio Gilberto Amparore University of Turin, Italy
Urtzi Ayesta LAAS-CNRS, France
Rena Bakhshi Netherlands eScience Center, The Netherlands
Paolo Ballarini CentraleSupelec, France
Simonetta Balsamo Università Ca’ Foscari di Venezia, Italy
Benoit Barbot Paris-Est Creteil University, France
Marco Beccuti University of Turin, Italy
Marco Bernardo University of Urbino, Italy
Marco Biagi University of Florence, Italy
Olivier Brun LAAS-CNRS, France
Laura Carnevali University of Florence, Italy
Hind Castel Telecom SudParis, France
Tadeusz Czachórski Institute of Theoretical and Applied Informatics,

Polish Academy of Sciences, Poland
Dieter Fiems Ghent University, Belgium
Jean-Michel Fourneau DAVID, Université de Versailles St. Quentin, France
Stephen Gilmore University of Edinburgh, UK
Boudewijn Haverkort University of Twente, The Netherlands
András Horváth University of Turin, Italy
Gábor Horváth Budapest University of Technology and Economics,

Hungary
Emmanuel Hyon Paris Nanterre University, France
Alain Jean-Marie Inria, France
William Knottenbelt Imperial College London, UK
Samuel Kounev University of Würzburg, Germany
Lasse Leskelä Aalto University, Finland
Andrea Marin University of Venice, Italy
Marco Paolieri University of Southern California, USA
Nihal Pekergin N. Paris-Est Creteil University, France
Agapios Platis University of the Aegean, Greece
Philipp Reinecke Cardiff University, UK
Anne Remke WWU Münster, Germany
Markus Siegle University of the Bundeswehr Munich, Germany
Miklos Telek Budapest University of Technology and Economics,

Hungary
Nigel Thomas Newcastle University, UK
Petr Tuma Charles University, Czech Republic
Enrico Vicario University of Florence, Italy

Joris Walraevens Ghent University, Belgium
Qiushi Wang Nanyang Technological University, Singapore
Katinka Wolter Freie Universitüt zu Berlin, Germany
Huaming Wu Tianjin University, China

Additional Reviewers

Hüls, Jannik
Pilch, Carina
Santoni, Francesco
Walter, Jürgen

VIII Organization

Keynotes

Performance Evaluation Targeting Quality
of Experience

Gerardo Rubino

Inria, France

When we must evaluate the performance of a computing facility, a communication
network, a Web service, we typically build a model and, then, we use it to analyze one
or several metrics that we know are important for capturing the performance aspect of
interest of the considered system (mean response time, mean backlog of
jobs/packets/requests/…, loss probabilities, etc.). Typical tools for analyzing the model
are queuing theory results, Markov chain algorithms, discrete event simulation, etc. If
we specifically consider the case of applications or services operating on the Internet
and focusing on video, or audio, or voice content (IP telephony, video streaming,
video-conferences, …), in most cases the ultimate target is the perception the user has
about the delivered service, how satisfied she is with its quality, and this perception
concentrates in that of the quality of the content (how good was the reception of the
transmitted voice over the IP channel, or of the play of the movie requested to the VoD
server, etc.). We call it Perceptual Quality (PQ), and it is the main component of the
user-centered Quality of Experience for these fundamental classes of applications. In
theory, PQ is the mandatory criteria to take care of the user when designing the system.
Needless to say, these classes of apps and/or services are responsible for a very
important component of today’s and tomorrow’s Internet traffic, and they represent a
large fraction of total traffic in volume. The PQ is usually evaluated using subjective
tests, that is, by means of panels of human observers. In this area many standards exist,
depending on the type of media, the type of usage, etc. A subjective testing session
provides, at the end, a number measuring the PQ, that is, quantifying this PQ. When
quantifying (when measuring), we typically refer to the Mean Opinion Score
(MOS) of the video or voice sequence, and a standard range for MOS is the real
interval [1, 5], ‘1’ the worst, ‘5’ the best. In this presentation, we will argue that using
an appropriate approach to measure this PQ, we can rely on our classic tools in
performance evaluation (queuing models, low level stochastic processes, etc.) while
focusing our effort in analyzing directly this PQ central aspect of our systems. Instead
of saying “if the offered traffic and the system service rate satisfy relation R, then the
throughput of the system is high, which is good, but the delay is also a little bit high,
which is not very nice,…”, we can say “if the offered traffic and the system service rate
satisfy relation R, then the PQ is high enough”. That is, instead of showing how the
throughput, the mean backlog, the mean response time, … evolve with some param-
eters that can be controlled to tune the system’s performance, we can work directly
with the PQ, the ultimate target, and still use our M/M/* queues, Jackson networks, or
whatever model is relevant in our study. This allows obtaining results concerning our
final goal, that is, keep the user happy when looking at the video stream, or when using

her telephone, at a reasonable cost. Detailed examples will be given using the author
own proposal for the automatic measure of PQ, called PSQA (for Pseudo Subjective
Quality Assessment) and based on Machine Learning tools., that provides a rational
function of several parameters returning the current PQ, parameters that may include
those low level metrics.

XII G. Rubino

Mean Field Models for (Large-Scale) Load
Balancing Systems

Benny Van Houdt

University of Antwerpen, Belgium

This talk focuses on the behavior of load balancing systems and is composed of three
parts.

In the first part we revisit a classic mean field result on load balancing in large
distributed systems. More specifically, we focus on the celebrated power-of-two
choices paradigm and its mean field limit. We subsequently introduce a theorem for the
class of density dependent population processes established in the 1970s by Kurtz and
discuss some of the technical issues involved to extend this result to the stationary
regime. We end the first part by illustrating the accuracy of the mean field limit using
simulation.

In the second part we introduce the refined mean field approximation, which is a
technique to compute a 1/N correction term to improve the accuracy of classic mean
field limits. This technique can be used to more accurately approximate the perfor-
mance of small systems, e.g., consisting of N = 10 servers, and can be applied to any
density dependent population processes with limited effort. We focus on the different
computational steps involved to compute this correction term and illustrate its accuracy
on various numerical examples.

In the final part of the talk we discuss some recent results on load balancing
schemes that select servers based on workload information (as opposed to queue length
information). Such systems are motivated by load balancing systems that use late
binding or redundancy. We present explicit results for the workload and response time
distribution when the job sizes follow an exponential distribution and indicate how to
compute these distributions for non-exponential jobs sizes.

This talk is based on joint work with Nicolas Gast (Inria) and Tim Hellemans
(University of Antwerp).

Contents

On the Degradation of Distributed Graph Databases with
Eventual Consistency. 1

Paul Ezhilchelvan, Isi Mitrani, and Jim Webber

To What Extent Does Performance Awareness Support Developers
in Fixing Performance Bugs? . 14

Alexandru Danciu and Helmut Krcmar

Deriving Symbolic Ordinary Differential Equations from Stochastic
Symmetric Nets Without Unfolding. 30

Marco Beccuti, Lorenzo Capra, Massimiliano De Pierro,
Giuliana Franceschinis, and Simone Pernice

Mean Value Analysis of Closed G-Networks with Signals 46
Jean-Michel Fourneau

Extending the Steady State Analysis of Hierarchical Semi-Markov
Processes with Parallel Regions . 62

Marco Biagi, Enrico Vicario, and Reinhard German

Formal Parameter Synthesis for Energy-Utility-Optimal Fault Tolerance. 78
Linda Herrmann, Christel Baier, Christof Fetzer, Sascha Klüppelholz,
and Markus Napierkowski

Performance Model of Apache Cassandra Under Heterogeneous
Workload Using the Quantitative Verification Approach 94

Al Amjad Tawfiq Isstaif and Nizar Alhafez

Modelling Smart Buildings Using Fault Maintenance Trees 110
Alessandro Abate, Carlos E. Budde, Nathalie Cauchi,
Arnaud van Harmelen, Khaza Anuarul Hoque, and Mariëlle Stoelinga

Performance Impact of Misbehaving Voters . 126
Mohammed Alotaibi and Nigel Thomas

Information Flow Security for Stochastic Processes 142
Jane Hillston, Andrea Marin, Carla Piazza, and Sabina Rossi

Towards Probabilistic Modeling and Analysis of Real-Time Systems. 157
Laura Carnevali, Luca Santinelli, and Giuseppe Lipari

An Ontology Framework for Generating Discrete-Event
Stochastic Models . 173

Ken Keefe, Brett Feddersen, Michael Rausch, Ronald Wright,
and William H. Sanders

A Mixed Strategy for a Competitive Game in Delay Tolerant Networks. 190
Thi Thu Hang Nguyen, Olivier Brun, and Balakrishna Prabhu

Second Order Fluid Performance Evaluation Models for Interactive 3D
Multimedia Streaming . 205

Enrico Barbierato, Marco Gribaudo, Mauro Iacono,
and Pietro Piazzolla

Modeling the Effect of Parallel Execution on Multi-site Computation
Offloading in Mobile Cloud Computing. 219

Ismail Sheikh and Olivia Das

An OpenFlow Controller Performance Evaluation Tool 235
Zhihao Shang, Han Wu, and Katinka Wolter

Product-Form Queueing Networks with Batches . 250
P. G. Harrison

Author Index . 265

XVI Contents

On the Degradation of Distributed Graph
Databases with Eventual Consistency

Paul Ezhilchelvan1(B), Isi Mitrani1, and Jim Webber2

1 School of Computing, Newcastle University, Newcastle upon Tyne NE4 5TG, UK
{paul.ezhilchelvan,isi.mitrani}@ncl.ac.uk

2 Neo4j UK, 41-45 Blackfriars Rd, London SE1 8NZ, UK
Jim.Webber@neo4j.com

Abstract. The ‘eventual consistency’ approach to updates in a dis-
tributed graph database leaves open the possibility that edge information
may be corrupted. The process by which this occurs is modeled, with the
aim of estimating the time that it takes for the database to become cor-
rupted. A fluid approximation is developed and is evaluated for different
parameter settings. Comparisons with simulations show that the results
are very accurate.

1 Introduction

Managing distributed data typically means adopting either strongly or even-
tually consistent update policies. In the former approach, replicas of a data
item are updated in an identical order at all servers [7]. When update requests
are launched concurrently, users will see an identical update sequence, irrespec-
tive of the actual physical server they use for accessing the data. However, this
single-server abstraction imposes a significant performance penalty, since update
requests need to be ordered (and replicated) prior to being acted upon. Further,
according to the CAP theorem (see [2,6]), if the network partitions the servers,
request ordering and access to data may be interrupted and the availability of
services can be reduced.

In view of these disadvantages, large distributed data stores such as Google
Docs, Dynamo [5] and Cassandra [4], opt instead for an eventually consistent
update policy (see [10]). Update requests are processed as soon as they arrive.
This enhances system performance and availability but leaves a time window
in which values of a replicated data item at different servers can be mutually
inconsistent. These windows may occasionally lead to incorrect data operations.
Eventual consistency is a viable model for applications where availability is
paramount and where the consequences of any incorrect operations can be dealt
with through compensations and state reconciliations.

For example, Bailis and Ghodsi [1] refer to an ATM service where eventual
consistency can allow two users to simultaneously withdraw more money than
their (joint) bank account holds; such an anomaly, on being detected, is recon-
ciled by invoking exception handlers. Given that an ATM service is expected to
be available 24/7, the eventually consistent approach is appropriate.
c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 1–13, 2018.
https://doi.org/10.1007/978-3-030-02227-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_1&domain=pdf

2 P. Ezhilchelvan et al.

In this paper, we focus on the effects of adopting the eventually consistent
policy in systems where occasional incorrect operations are not immediately or
readily observed, and can lead to large scale propagation of erroneous states.
Reconciliation at a later time can become impossible. The systems of interest
here are Graph Databases (see Robinson et al. [9]), which are a rapidly growing
database technology at present.

A graph database consists of nodes and edges, representing entities and rela-
tions between them, respectively. For example, node A may represent a person
of type Author and B an item of type Book. A and B will have an edge between
them if they have a relation, e.g. A is an author of B. The popularity of the graph
database technology owes much to this simple structure from which sophisticated
models can be easily built and efficiently queried. Examples of operations per-
formed on a graph database are: counting the number of fans following a famous
person on Twitter, ranking the most frequently accessed pages in the web, etc.

When nodes are connected by an edge, the database stores some reciprocal
information. For example, if there is an edge between A and B, then A would
have a field wrote B and B would have a field written by A; similarly, if there is an
edge between a music fan F and a singer S, then they would have the reciprocal
fields following S and being followed by F. Storing this reciprocal information is
a critical design decision. In a distributed graph database this is a non-trivial
problem since the information at nodes across different servers must remain
mutually compatible. Any updates in one connected node at one server must be
reflected in the other node(s) at a different server(s).

When a query writes a distributed edge, the eventual consistency policy can-
not ensure that the necessary updates are implemented in a timely or consistently-
ordered fashion across the servers involved. This can cause major problems. Sup-
pose that two queries operate (nearly) simultaneously on a given distributed edge,
each starting from a different server. Then the two updates can be implemented in
a different order at the two servers, leading to a mutual incompatibility between
two nodes. While such a state exists, there may be a stream of queries reading one
node and another stream reading the other. One of the two streams is obviously
reading incorrect information (from a global point of view).

A query that reads incorrect information about one edge and updates another
edge, introduces incorrect information at both nodes of the second edge. Those
two nodes may then be mutually compatible, yet incorrect. Such errors cannot be
detected by simple compatibility tests. Moreover, they are propagated through-
out the database by subsequent queries that carry out updates based on incorrect
information. Eventually, the quality of information held by the database becomes
so degraded that the database becomes unusable.

The contribution of this paper is to model the above process of degradation.
This has not, to the best of our knowledge, been done before. This work is thus
the first in formally assessing the damage that the eventually consistent update
policy can inflict on a distributed graph database.

We provide easily implementable, efficient and accurate solutions that allow
us to determine the time it takes for the database to lose its utility. These

On the Degradation of Distributed Graph Databases 3

solutions are then used in experiments aimed at examining quantitatively the
effect that various parameters have on the degradation process. At the same time,
the accuracy of the estimates is evaluated by comparisons with simulations.

The model is described in Sect. 2. Section 3 develops the solutions, based
on fluid approximations. The numerical and simulation results are presented in
Sect. 4.

2 The Model

A popular implementation of a graph database contains, for each node, a list of
adjacency relations describing the incoming and outgoing edges associated with
that node. When an edge is updated, the corresponding entries in both the origin
and the destination nodes must be updated. If those two nodes are stored on the
same server, then the edge is said to be ‘local’. A local update is assumed to be
instantaneous. An edge connecting two nodes stored on different servers is said
to be ‘distributed’. A ‘write’ operation for a distributed edge is carried out first
on one of its servers and then, after a small but non-zero delay, on the other.

This implementation of distributed writes makes it possible to introduce
faults in edge records. Consider an edge e, spanning two servers, S1 and S2.
A query Q1, containing a write operation for e, arrives in S1 at time t and is
performed in S2 at time t+ δ. At some point between t and t+ δ, another query,
Q2, also writing e, arrives in S2 and is performed in S1 some time later. The
result of this occurrence, which will be referred to as a ‘conflict’, is that the S1

entry for e is written in the order Q1, Q2, while the S2 entry is written in the
order Q2, Q1. One of these entries may be considered correct, but an external
observer cannot tell which is which. Such edges are called ‘half-corrupted’.

Q1

Q2
t + δ

t

S1 S2

Fig. 1. Conflict between Q1 and Q2

4 P. Ezhilchelvan et al.

The mechanism of conflict is illustrated in Fig. 1, where the time at S1 and
S2 is shown flowing downwards.

A subsequent query which happens to read the correct entry of a half-
corrupted edge, and completes a write operation for it without a conflict, will
repair the fault and make the edge record clean again. However, if it reads the
incorrect entry and writes any edge, it causes the target to become ‘semantically
corrupted’, or simply ‘corrupted’. The correct and incorrect reads are equally
likely, so each occurs with probability 1/2.

Any edge can become corrupted by being written on the basis of reading
incorrect information. Corrupted edges cannot be repaired, since there is no
post-facto solution to the graph repair problem in the general case.

Queries that update edges arrive in a Poisson stream with rate λ per second.
We assume that each query contains a random number of read operations, K,
followed by one write operation. This is a conservative assumption, since more
than one writes per query would increase the rate of corruption. The variable K
can have an arbitrary distribution, P (K = k) = rk. In practice K tends to be
at least 2, i.e. r0 = r1 = 0. The K edges read, and the one written by the query
are assumed to be independent of each other (but note below that they are not
equally likely).

The edges in the database are divided into T types, numbered 1, 2, . . . , T
in reverse order of popularity. The probability that a read or a write operation
accesses an edge of type i is pi, with p1 > p2 > . . . > pT . The number of edges
of type i is Ni, and typically N1 < N2 < . . . < NT . The total number of edges
is N . In every type, a fraction f of the edges are distributed and the rest are
local. The probability of accessing a particular edge of type i, for either reading
or writing, is pi/Ni.

At time 0, all edges are clean (free from corruption). When a certain fraction,
γ (e.g., γ = 0.1), of all edges become corrupted, the database itself is said to
be corrupted for practical purposes. The object of the analysis is to provide an
accurate estimate of the length of time that it takes for this to happen.

At any moment in time, an edge belongs to one of the following four cate-
gories.

Category 0: Local and clean.
Category 1: Distributed and clean.
Category 2: Half-corrupted.
Category 3: Corrupted.

Only distributed edges can be in category 2, but any edge, including local ones,
can be in category 3.

Denote by ni,j(t) the number of type i edges that are in category j at time
t. The set of vectors ni(t) = [ni,0(t), ni,1(t), ni,2(t), ni,3(t)], for i = 1, 2, . . . , T ,
define the state of the database at time t. At all times, the elements of vector ni

add up to Ni. Any state such that

T∑

i=1

ni,3(t) ≥ γN, (1)

On the Degradation of Distributed Graph Databases 5

will be referred to as an ‘absorbing state’. The absorbing states correspond to a
corrupted database.

The value of interest is U , the average first passage time from the initial state
where ni(0) = [(1−f)Ni, fNi, 0, 0] (i.e., a clean database), to an absorbing state.

The above assumptions and definitions imply that a read operation performed
at time t would return a correct answer with probability α, given by

α =
T∑

i=1

pi

Ni
[ni,0(t) + ni,1(t) +

1
2
ni,2(t)]. (2)

The probability, β, that all the read operations in a query arriving at time t
return correct answers, is equal to

β =
∞∑

k=1

rkαk. (3)

Suppose that the distribution of K is geometric with parameter r, starting at
k = 2; in other words, rk = (1 − r)k−2r. Then the above expression becomes

β =
α2r

1 − α(1 − r)
. (4)

Consider now the probability, qi, that a query of type i arriving at time t
and taking a time δ to complete a write operation, will be involved in a conflict.
That is the probability that another query of type i arrives between t and t + δ
and writes the same edge, but starting at its other end. This can be expressed
as

qi = 1 − e− 1
2λpiδ/Ni ; i = 1, 2, . . . , T. (5)

Note that in practice δ is dominated by network delays. The actual processing
time associated with a write operation is negligible.

If the time to complete a distributed write is not constant, but is distributed
exponentially with mean δ, then the conflict probability would be

qi =
λpiδ

2Ni + λpiδ
; i = 1, 2, . . . , T . (6)

When δ is small, there is very little difference between these two expressions.
An incoming query that is involved in a conflict would change the category of

a distributed edge from 1 to 2, provided that all read operations of both queries
return correct results. Hence, the instantaneous transition rate, ai,1,2, from state
[ni,0, ni,1, ni,2, ni,3] to state [ni,0, ni,1 − 1, ni,2 + 1, ni,3], can be written as

ai,1,2 =
λpini,1

Ni
qiβ

2. (7)

Conversely, an incoming query writing a category 2 edge can change it to a
category 1 edge, provided that all its read operations return correct results and

6 P. Ezhilchelvan et al.

it is not involved in a conflict. Hence, the instantaneous transition rate, ai,2,1,
from state [ni,0, ni,1, ni,2, ni,3] to state [ni,0, ni,1 + 1, ni,2 − 1, ni,3], is given by

ai,2,1 =
λpini,2

Ni
(1 − qi)β. (8)

The other possible transitions convert an edge of category 0, 1 or 2 into an
edge of category 3. This happens when a query writes after receiving an incorrect
answer to at least one of its reads. Denoting the corresponding instantaneous
transition rates by ai,j,3, for j = 0, 1, 2, we have

ai,j,3 =
λpini,j

Ni
(1 − β). (9)

Using these transition rates, one can simulate the process of corrupting the
database and obtain both point estimates and confidence intervals for the average
time to corruption, U . However, the systems of practical interest tend to be large,
and such simulations take a long time to run. It is therefore desirable to develop
an analytical solution that is both efficient to implement and provides accurate
estimates for U . That is our next task.

3 Fluid Approximation

Instead of describing the system state by integer-valued functions specifying
numbers of edges of various types and categories, it is convenient to use contin-
uous fluids of those types and categories. So now ni,j(t) is a real-valued function
indicating the amount of fluid present at time t in a ‘bucket’ of type i and cat-
egory j (i = 1, 2, . . . , T ; j = 0, 1, 2, 3). The total amounts of different types, and
the initial states, are the same as before.

Fluids flow out of, and into buckets, at rates consistent with the transition
rates described in the previous section. Thus, the bucket labeled (i, 0) (local of
type i and clean) has an outflow at the rate given by (9), and no inflow. This
can be expressed by writing

n′
i,0(t) = −λpi(1 − β)

Ni
ni,0(t), (10)

where β is given by (3) and (2).
The bucket labeled (i, 1) (distributed of type i and clean) has two outflows,

at rates given by (7) and (9) respectively, and an inflow at rate given by (8).
The corresponding equation is,

n′
i,1(t) = −λpi(β2qi + 1 − β)

Ni
ni,1(t) +

λpiβ(1 − qi)
Ni

ni,2(t). (11)

Similarly, bucket (i, 2) (half-corrupted of type i) has two outflows, at rates
given by (8) and (9) respectively, and an inflow at rate given by (7). This implies

n′
i,2(t) = −λpi(β(1 − qi) + 1 − β)

Ni
ni,2(t) +

λpiβ
2qi

Ni
ni,1(t). (12)

On the Degradation of Distributed Graph Databases 7

Finally, bucket (i, 3) (corrupted of type i) has three inflows, at rates given
by (9), and no outflows. Hence,

n′
i,3(t) =

λpi(1 − β)
Ni

[ni,0(t) + ni,1(t) + ni,2(t)]. (13)

The object is to determine the value U such that

T∑

i=1

ni,3(U) = γN. (14)

Unfortunately, the above differential equations are coupled in a complicated
way. Not only do the unknown functions appear in each others equations, but
they also depend on β, which in turn depends on α, which depends on the
unknown functions. Moreover, that dependency is non-linear. Consequently, an
exact solution for this set of equations does not appear to be feasible. We need
another level of approximation.

Denote by n̄i,j the average value of the function ni,j(t) over the interval
(0, U):

n̄i,j =
1
U

∫ U

0

ni,j(t)dt. (15)

Replacing, in the right-hand side of (2), all functions by their average values,
allows us to treat the probability α as a constant:

α =
T∑

i=1

pi

Ni
[n̄i,0 + n̄i,1 +

1
2
n̄i,2]. (16)

Then the probability β will also be a constant. Also, where one unknown function
appears in the differential equation of another, replace the former by its average
value. The resulting equations are linear, with constant coefficients, and are
easily solvable. The solution of (10), which involves only ni,0(t), becomes

ni,0(t) = (1 − f)Nie
−ai,0t, (17)

where ai,0 = λpi(1 − β)/Ni.
In Eq. (11), ni,2(t) is replaced by n̄i,2. The solution is then

ni,1(t) =
bi,1n̄i,2

ai,1
[1 − e−ai,1t] + fNie

−ai,1t, (18)

where ai,1 = λpi(β2qi + 1 − β)/Ni and bi,1 = λpiβ(1 − qi)/Ni.
Similarly, in Eq. (12), ni,1(t) is replaced by n̄i,1. This yields

ni,2(t) =
bi,2n̄i,1

ai,2
[1 − e−ai,2t], (19)

where ai,2 = λpi[β(1 − qi) + 1 − β]/Ni and bi,2 = λpiβ
2qi/Ni.

8 P. Ezhilchelvan et al.

Replacing ni,j(t) by n̄i,j in Eq. (13), makes the right-hand side constant and
therefore

ni,3(t) = t
λpi(1 − β)

Ni
(n̄i,0 + n̄i,1 + n̄i,2). (20)

Hence, according to (14), the time to corruption U can be estimated as

U = γN

[
T∑

i=1

λpi(1 − β)
Ni

(n̄i,0 + n̄i,1 + n̄i,2)

]−1

. (21)

Integrating (17), (18) and (19) over the interval (0, U) and dividing by U , we
obtain the following expressions:

n̄i,0 =
(1 − f)Ni

ai,0U
[1 − e−ai,0U]; (22)

n̄i,1 =
bi,1n̄i,2

ai,1
+ (fNi − bi,1n̄i,2

ai,1
)

1
ai,1U

[1 − e−ai,1U]; (23)

n̄i,2 =
bi,2n̄i,1

ai,2
[1 − 1

ai,2U
(1 − e−ai,2U)]. (24)

This is a set of non-linear simultaneous equations for the averages n̄i,0, n̄i,1

and n̄i,2. They can be solved by consecutive iterations.
Start with some initial estimates for n̄i,j ; call them n̄

(0)
i,j . Using (16), get an

initial estimate for α and hence for β; call those α(0) and β(0). Then (21) provides
an initial estimate for U , called U (0).

Substituting the initial estimates into the right-hand sides of (22), (23) and
(24), yields new values for the averages n̄i,j ; call them n̄

(1)
i,j . They in turn provide

new values, α(1) and β(1), and a new estimate, U (1).
In step m of this procedure, the values n̄

(m−1)
i,j , β(m−1) and U (m−1) are used

to compute α(m), β(m), n̄
(m)
i,j and U (m). The process terminates when the results

of two consecutive iterations are sufficiently close to each other.
In effect, the above procedure computes a fixed point for the mapping n̄i,j →

n̄i,j defined by (22), (23) and (24). Such a fixed point exists by Brouwer’s theorem
[3] because the averages are bounded and the mapping is continuous.

In the next section, the fluid approximation is used to study the behaviour
of a reasonably realistic sample database. The accuracy of the approximation is
evaluated by comparisons with simulations.

4 Numerical and Simulation Results

The example database contains five types of edges. Their numbers are: N1 =
104, N2 = 105, N3 = 106, N4 = 107 and N5 = 108. The corresponding probabil-
ities of access are p1 = 0.5, p2 = 0.26, p3 = 0.13, p4 = 0.07 and p5 = 0.04. The
number of read operations per query is distributed geometrically, starting at 2:

On the Degradation of Distributed Graph Databases 9

rk = (1 − r)k−2r, with r = 0.07. Thus, on the average, there are just over 15
reads per query.

The time to complete a distributed write operation is assumed constant,
equal to 0.005 s.

In all types, a fraction 0.3 of the edges are distributed and the rest are local
(for an argument in support of this fraction, see [8]). The database starts clean
at time 0 and is considered to be corrupted when a fraction γ = 0.1 of all edges
are corrupted.

In Fig. 2, the average period until corruption is plotted against the arrival
rate of queries, λ. The latter is varied in the range (100, 5000) queries per second.
The time U is measured in hours.

0

50

100

150

200

250

300

350

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

U

λ

Fluid approximation
+

+

+
+
+
+++++

+ + + +

+
Simulation

×

×

×
×
××××××

× × × ×

×

Fig. 2. Corruption time in hours vs. arrival rate/sec.

We observe that U decreases with λ. This was of course to be expected, since
a higher arrival rate leads both to higher probability of conflicts, and faster
spread of incorrect information. In this database, type 1 forms a relatively small
nucleus of edges that are quite likely to be accessed; once they become involved
in conflicts, corruption spreads rapidly.

The figure also aims to compare the fluid approximation results with those
obtained by simulation. That is, the transition steps governed by the rates (7),
(8) and (9) were simulated until an absorption state was reached.

The two plots are practically indistinguishable; the relative differences that
exist are smaller than 1%. On the other hand, the fluid approximation plot took
a fraction of a second to compute (each point required fewer than 10 fixed-point
iterations), whereas the simulated one took more than half an hour.

10 P. Ezhilchelvan et al.

The next experiment examines the effect of the average number of read oper-
ations per query, E(K), on the time to corruption. The arrival rate is fixed at
λ = 500 queries per second. The other parameters are as in Fig. 2.

For the purpose of this evaluation, the requirement that there should be at
least two reads per query has been dropped. The random variable K has the
normal geometric distribution with parameter r: rk = (1 − r)k−1r, k = 1, 2,
In Fig. 3, r decreases from 0.99 to 0.02, which means that E(K) = 1/r increases
from 1.01 to 50. The time to corruption, U , is again measured in hours.

60

62

64

66

68

70

72

74

0 5 10 15 20 25 30 35 40 45 50

U

E(K)

Fluid approximation

+

+
+

+
+

+ + +

+
Simulation

×

×
×
× ×

× × ×

×

Fig. 3. Corruption time in hours vs. average number of reads

As expected, the more edges are read by queries, the higher the probability
of reading a corrupted edge, and hence the shorter the time to a corrupted
database. Less obvious, however, is the observation that the resulting decrease
in U is highly non-linear. Indeed, increasing E(K) beyond 10 almost ceases to
make a difference. We see roughly the same U , whether there are 10 or 50 reads
per query.

The accuracy of the fluid approximation is again very good over the entire
range of E(K).

It may also be of interest to examine the effect of the fraction of distributed
edges, f , on the interval U . In Fig. 4, that fraction is varied between f = 0.1
and f = 1. The arrival rate is fixed at λ = 100 (in order to prolong the time
to corruption), and the number of reads per query is distributed geometrically
starting with 2, with parameter r = 0.07 and mean just over 15.

On the Degradation of Distributed Graph Databases 11

260

280

300

320

340

360

380

400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U

f

Fluid approximation

+ + + + + + + + + +

+
Simulation

× × × × × × × × × ×

×

Fig. 4. Varying fraction of distributed edges

The fluid approximation plot is flat. This is not entirely surprising, since
the expression for the probability α involves only the sums n̄i,0 + n̄i,1, and not
the individual averages. Moreover, local edges are just as easily corrupted by
incorrect reads as distributed ones.

The simulation agrees with the approximation for most of the range, but
begins to diverge from it when f = 0.1. It seems that when the fraction of dis-
tributed edges is very small, the accuracy of the fluid approximation diminishes.

In the final experiment, the parameter that is varied is the fraction, γ, of
edges that should become corrupted before the database is considered to be
corrupted. The arrival rate is fixed at λ = 500, and all other parameters are as
in Fig. 2.

Figure 5 shows how the time to corruption grows when the definition of cor-
ruption becomes more demanding. The plot is a convex curve, which is slightly
counter-intuitive. One might guess that the more edges are corrupted, the faster
even more edges would be corrupted. That would produce a concave curve. In
fact the opposite is observed. The likely explanation is that the fewer the remain-
ing clean edges, the longer it takes for a random access to hit one and corrupt
it.

The fluid approximation estimates are almost indistinguishable from the sim-
ulation ones, while being several orders of magnitude faster to compute.

12 P. Ezhilchelvan et al.

0

500

1000

1500

2000

2500

3000

3500

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

U

γ

Fluid approximation

+
+

+
+

+

+

+

+

+
+

Simulation

× ×
×

×
×

×

×

×

××

Fig. 5. Varying fraction of corrupted edges

5 Conclusions

The problem that we have addressed—to construct and solve a quantitative
model of database deterioration—is of considerable practical importance. The
fluid approximation that has been developed is fast and provides accurate esti-
mates of the time to corruption. The only area where there is a suggestion of
inaccuracy is when the fraction of distributed edges is very small.

It may be possible to improve the approximation so that it can handle more
extreme parameter values. One idea would be to break the interval (0, U) into
smaller portions and apply the fixed-point iterations consecutively to each por-
tion. This, and other possible extensions would be a suitable topic for future
research.

References

1. Bailis, P., Ghodsi, A.: Eventual consistency today: limitations, extensions, and
beyond. Queue 11(3), 20–32 (2013)

2. Brewer, E.A.: Towards robust distributed systems. In: Proceedings of the 19th
Annual ACM Symposium on Principles of Distributed Computing, Portland, 16–
19 July 2000

3. Brouwer, L.E.J.: Uber Abbildungen von Mannigfaltigkeiten. Mathematische
Annalen 71, 97–115 (1911)

4. http://cassandra.apache.org/
5. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. SIGOPS

Oper. Syst. Rev. 41(6), 205–220 (2007)

http://cassandra.apache.org/

On the Degradation of Distributed Graph Databases 13

6. Gilbert, S., Lynch, N.: Brewers conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. ACM SIGACT News 33(2), 51–59 (2002)

7. Herlihi, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent
objects. ACM TOPLAS 12(3), 463–492 (1990)

8. Huang, J., Abadi, D.J.: Leopard: lightweight edge-oriented partitioning and repli-
cation for dynamic graphs. Proc. VLDB Endow. 9(7), 540–551 (2016)

9. Robinson, I., Webber, J., Eifrem, E.: Graph Databases, New Opportunities for
Connected Data. O’Reilly Media, Sebastopol (2015). ISBN 978-1491930892

10. Vogels, W.: Eventually consistent. Comm. ACM 52(1), 40–44 (2009)

To What Extent Does Performance
Awareness Support Developers in Fixing

Performance Bugs?

Alexandru Danciu1(B) and Helmut Krcmar2

1 fortiss GmbH, Guerickestr. 25, 80805 Munich, Germany
alexandru.danciu@mytum.de

2 Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany
krcmar@in.tum.de

Abstract. Current research on performance awareness evaluates
approaches primarily for their functional correctness but does not assess
to what extent developers are supported in improving software imple-
mentations. This article presents the evaluation of an existing approach
for supporting developers of Java Enterprise Edition (EE) applications
with response time estimations based on a controlled human-oriented
experiment. The main goal of the experiment is to quantify the effective-
ness of employing the approach while optimizing the response time of an
implementation. Subjects’ optimizations are quantified by the amount of
fixed performance bugs. Having employed the approach, subjects fixed
on average over three times more performance bugs. The results further
indicate that in the absence of a performance awareness aid, the success
of optimizing a previously unknown implementation is far less dependent
of the behavior and skill level of the developer.

Keywords: Performance awareness · Response time estimation
Controlled experiment · Palladio Component Model · Java EE

1 Introduction

The concept of performance awareness aims at aiding the development pro-
cess with observations on the performance of software and the ability to react
upon the findings, if necessary [16]. Among other layers, performance awareness
addresses the support of developers with insights to complement their optimiza-
tions. Many promising performance awareness approaches aim at automating
performance evaluations and integrating feedback in development environments.
However, existing approaches are primarily validated for their functional correct-
ness [1,5]. The resulting evaluations, therefore, do not assess to what extent per-
formance awareness could support developers. The influence of these approaches
on developers and the quality of their implementations remains unknown. Horký
et al. [6] report the failed attempt to investigate the influence of their approach

c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 14–29, 2018.
https://doi.org/10.1007/978-3-030-02227-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_2&domain=pdf

Impact of Performance Awareness While Fixing Performance Bugs 15

(a) Integration of response time estima-
tions within code editor

(b) Integration of estimations for
reused components

(c) Tooltip information

Fig. 1. Developer feedback example

on the response time of implementations produced by students. On the basis
of a few and in some cases strongly diverging results, no statistically significant
improvement could be found by the availability of the approach. As an alterna-
tive, the usefulness of the approach was explained using scenarios. The approach
presented by Danciu et al. [3] at the 12th European Workshop on Performance
Engineering has so far only been evaluated with regard to the prediction accu-
racy. The aim of this paper is to investigate if this approach can help developers
improve the performance of software implementations. The contribution of this
paper is the execution of a controlled experiment aimed at quantifying the impact
of the approach described by Danciu et al. [3] on developers and answering the
following research questions:

– Are developers performing better while employing the approach?
– How do developers spend their time while executing a maintenance task?
– How does the success of developers relate to a methodical investigation of the

code?

We first provide an overview of the approach for integrating performance
awareness in Java EE development environments in Sect. 2. The design, results,
and threats to validity of the experiment are described in Sects. 3, 4, and 5
respectively. In Sect. 6 similar approaches and the scope of their validation are
presented. Finally, we state a conclusion and provide an outlook on future work
(Sect. 7).

2 Performance Awareness Approach

Depending on the dimension, Tůma [16] distinguishes awareness of perfor-
mance relevant mechanisms, of performance expectations, of developers and

16 A. Danciu and H. Krcmar

Fig. 2. Architectural Overview

performance-aware applications. The approach presented by Danciu et al.
[3] aims at supporting developers of Java EE components with insights on
the expected response time for the operations they are currently developing.
Response time estimations for component operations under development are
derived based on the measured performance of reused components. Developers
trigger response time estimations by selecting a specific Java class and execut-
ing the corresponding context menu action. Estimation results are presented to
the developer within the code editor using symbols, text highlighting, links, and
tooltips, as depicted in Fig. 1.

Hints on Method Declaration Level. The exceeding of the warning or error
threshold for estimated response times is displayed at the level of the corre-
sponding method declaration (see Fig. 1a). A yellow or red speedometer is used
as a symbol opposite the declaration.

Hints on Method Invocation Level. Separate markers indicate which indi-
vidual method invocations already exceed the configured response time thresh-
olds for the superordinate method declaration (see Fig. 1b). A yellow or red
square surrounding the invocation is used as a symbol. Chained methods are
also accounted for. Hints are also inserted recursively into the underlying call
hierarchy of a method declaration. Thus, the declarations of invoked methods
within the same project are also augmented with markers.

Tooltip. Tooltips are used to display the actual predicted or measured response
times (see Fig. 1c). If there are several markers within a row, the symbols get
superimposed. However, the tooltip displays a list of all hint details.

The performance awareness plugin can be configured based on Eclipse pref-
erences. Developers are able to specify (i) a threshold for displaying warning
messages, (ii) a threshold for displaying error messages, (iii) the number of sim-
ulated users, and (iv) the think time of simulated users. Developers are also
able to refine the model creation using Java annotations. The awareness plugin,
however, can use default values for these settings.

The architecture consists of the Awareness Plugin, the Model Generator, the
Performance Simulator, and the Data Service (see Fig. 2). The Java Develop-
ment Tools (JDT) implement the standard user interfaces for managing and

Impact of Performance Awareness While Fixing Performance Bugs 17

editing Java source code in Eclipse. By selecting a specific class, developers
are able to request estimations for the expected response time of the contained
method declarations (1). The Awareness Plugin determines the Java class and
the surrounding project to be analyzed (2) to configure and trigger the creation
of performance models (3). The Model Generator then parses the corresponding
source code to an abstract syntax tree (AST) which is then transformed to a Pal-
ladio Component Model (PCM) [12]. The Data Service supplies response time
measurements for the reused component operations that are used to enhance the
PCM model (4). The resulting models are retrieved (5) and supplied as input
for the Performance Simulator (6). The outcomes are analyzed (7) and reported
back to the developer interface. If the estimated response time of a method dec-
laration or method invocation exceeds a specific threshold, either a performance
warning or a performance error is displayed within the code editor of the devel-
oper (8). Details of the performance model generation and simulation process
can be found in [3].

3 Experimental Design

The impact of employing the presented approach during software development
is assessed based on a controlled experiment, which is conducted according to
Wohlin et al. [19]. The goal of the experiment is to quantify the effectiveness
of employing the approach during a software development task in terms of the
resulting response time of an implementation. The time frame and the setting
represent important factors for the expected outcomes of the development task.
The more time subjects are accorded, the more complex tasks can be conducted.
During a longer time frame, however, the effective time spent on the task can
vary between subjects. To address this factor, the task is carried out during a
shorter time frame under supervision. While relying on volunteers as subjects,
a shorter time frame promises more participants. The experiment is, therefore,
designed for at most one hour and conducted within a computer lab providing
identical workplaces to all subjects.

As a development task, both the implementation of new and the mainte-
nance of existing functionality can be considered. In the context of complex
business software, the implementation of new functionality represents a risk to
the outcome of the experiment. During a relatively short time frame, only sim-
ple requirements can be implemented and the subjects’ results might not dif-
fer significantly. Horký et al. [6] require the implementation of an XML parser
within their experiment and report a small share of acceptable solutions. The
implementation of new functionality while relying on complex Java EE frame-
works promises even fewer working solutions. Therefore, subjects are required to
perform a maintenance task comprising the optimization of an existing imple-
mentation in terms of response time.

18 A. Danciu and H. Krcmar

3.1 Hypotheses, Variables and Treatments

RQ1: Are Developers Performing Better While Employing the Approach? The
realized optimization can be quantified by measuring the resulting response
times. In the context of complex business software, this represents, however, a
huge challenge. To exclude errors and interference, extensive measurements have
to be conducted. Response times also heavily depend on the executed workloads
and the database content. Therefore, the subjects’ optimizations are quantified
by the amount of fixed performance bugs. According to Jin et al. [8] performance
bugs represent inefficient code sequences resulting in a significant performance
degradation and which can be resolved by relatively simple source code modifi-
cations. Based on the goals of the experiment, we formulate the following main
hypotheses for this paper:

– H0: The employment of the approach has no impact on the amount of per-
formance bugs fixed during the optimization task.

– H1: The employment of the approach has a positive impact on the amount of
performance bugs fixed during the optimization task.

The amount of fixed performance bugs represents the dependent variable, and
the availability of the approach the independent variable. We choose a between-
subjects design so that a participant is part of either the experiment group or
the control group. The computers of the lab are equipped with the Java EE IDE.
The performance awareness plugin is activated only for a subset of these IDEs.
Each workstation is identified by a number. Through the workstation assign-
ment, subjects are distributed to either the experiment or the control group.
Due to the number of available workstations and the availability of volunteers,
the experiment is conducted in multiple iterations resulting in different group
sizes.

RQ2: How Do Developers Spend Their Time While Executing a Maintenance
Task? Context switches and work fragmentation have a negative impact on the
productivity of developers while executing maintenance tasks [14]. After leaving
the IDE and then returning back, developers need time to resume their activities
[11]. For quantifying the amount of interruptions experienced by subjects during
the experiment we measure how often the IDE is left and how much time is
spent outside the IDE.

RQ3: How Does the Success of Developers Relate to a Methodical Investigation
of the Code? Robillard et al. [13] analyze the impact of applying a methodi-
cal approach while investigating code on the effectiveness of developers during
a maintenance task. The authors describe a methodical approach as the appli-
cation of cross-reference and keyword searches. In contrast, an opportunistic
approach relies on scrolling and browsing. Based on the definitions of Robillard
et al. [13] we quantify the methodical investigation of the code as the number of
inspected classes which are relevant for fixing bugs.

The assignment of subjects to treatments is performed randomly. It is
assumed that the performance of subjects depends on their experience in soft-
ware development. To control this factor, blocking is applied. The experience

Impact of Performance Awareness While Fixing Performance Bugs 19

level of subjects is not known in detail upon the experiment. Also, the classifi-
cation of experience is difficult and comprises different layers, such as software
performance, architecture, programming language, frameworks, and IDEs. We,
therefore, distinguish between students (Bachelor’s and Master’s) and practi-
tioners (from research or industry) for blocking. While repeating the experiment
with a different amount of subjects, the application of blocking might not be
possible within each iteration. For example, during an iteration with two sub-
jects having different experience levels, blocking would not be applicable. Within
the affected iterations, a pure randomization is performed. In a subsequent itera-
tion, the equilibrium is restored by assigning the blocks to the opposite treatment
without randomization. Overall, treatments are assigned in such a way that a
balanced design is achieved and both groups have the same number of subjects.

This experiment design represents, according to Wohlin et al. [19], a standard
design type with one factor and two treatments, which can further be concep-
tualized as completely randomized design or as paired comparison design. An
advantage of the paired comparison design lies in the collection of double the
amount of samples. However, learning effects can take place during the exper-
iment, thus requiring different objects and tasks for the two stages [9]. Due to
the complexity of the optimization task and the limited availability of suitable
implementations, a completely randomized design is chosen.

3.2 Experiment Subjects

Students and researchers of the Department of Informatics of the Technische
Universität München, researchers of the fortiss An-Institut Technische Univer-
sität München and software developers from industry are invited to volunteer as
subjects for the experiment. Volunteers are required to possess at least basic pro-
gramming skills to be accepted as subjects. An informal interview is conducted
before the admission to the experiment to assess whether a volunteer has visited
at least one course and already gained some practical experience in the area
of software engineering. While having to optimize an existing implementation,
knowledge in the domains of Eclipse, Java, Java EE, JPA, or software perfor-
mance management are not supposed. During the experiment, however, subjects
must fill out a form eliciting their knowledge in these areas. Students invited to
participate study either computer science, information systems, or games engi-
neering. Subjects are invited to participate based on convenience sampling [19].

3.3 Experiment Objects

The open source Java EE project Cargo Tracker1 is used as the implementation
for the optimization task due to its intuitive user interface, its code comprehen-
siveness and its ease of deployment. Cargo Tracker demonstrates how Java EE
applications can be developed using approaches such as domain-driven design
and implements the business logic of a cargo shipping company. The source code

1 https://github.com/javaee/cargotracker.

https://github.com/javaee/cargotracker

20 A. Danciu and H. Krcmar

Fig. 3. Relevant Cargo Tracker components and localization of performance bugs
(Color figure online)

comprises 83 classes, eleven interfaces and three enums distributed among 27
packages. Due to its lightweight and loosely coupled components, the implemen-
tation provides relatively simple methods. Therefore, a new component reusing a
great share of existing functionality is created and called BatchProcessingBean.
This component provides functionality for the identification and rescheduling of
late cargos and serves as an entry point for the optimization scenario.

Due to its high quality, the Cargo Tracker source code provides relatively
little potential for optimization. Therefore, new performance bugs are inserted
systematically into the implementation. The performance antipatterns described
by [15] serve as a basis. Wert [18] classifies performance antipatterns in the
four abstraction levels architecture, design, implementation, and deployment.
During the experiment, subjects are not provided any architectural descriptions,
but source code. Therefore, only antipatterns on the implementation level are
suitable for the experiment. Due to the focus of the application on reading and
writing database records, the following antipatterns are instantiated within the
source code as performance bugs (PB) [15]:

– Sisyphus database retrieval: Queries for individual entities are replaced with
the retrieval of collections, which afterwards are iterated to identify the rele-
vant entity (PB1, PB4, PB6, PB8, PB9, PB10, PB11, PB12, and PB13).

– Empty semi trucks: The retrieval of a collection of objects from the database
is replaced with multiple queries for single entities (PB7).

Furthermore, the Cargo Tracker implementation provides three more opportuni-
ties for the instantiation of antipatterns: (i) inserting redundant database queries
(PB2), (ii) always calling a service that is only required under certain conditions

Impact of Performance Awareness While Fixing Performance Bugs 21

(PB3), and (iii) removing existing caching mechanisms (PB5). Other antipat-
terns, such as the Tower of Babel [15], cannot be implemented without signif-
icantly changing the application design. The type and quantity of instantiated
antipatterns reflects the application’s characteristics, which in turn reflects a
typical Java EE implementation. Bugs are implemented only on statement level,
e.g., by substituting method calls or changing the control flow. Subjects are also
requested to alter only Java code. Figure 3 illustrates the relevant components of
the application. Classes enhanced with performance bugs are depicted in color.

The performance awareness plugin does not aim at identifying bugs, instead
it integrates measurements in the code editor and makes developers aware of
expected method response times. Inefficient code sequences may include, how-
ever, method calls reported by the awareness plugin. The complete resolution of
a performance bug is rated with one point. Incomplete or syntactically incorrect
fixes are awarded half a point. When optimizations are applied to statements
that are not affected by any performance bugs, or when minor improvements,
such as avoiding unnecessary variable declarations, are performed, no points are
awarded at all. The awareness plugin also reports hints for expensive statements
which cannot be avoided without destroying functionality.

The experiment objects provided to subjects comprise a Java EE IDE, a local
application server, a deployment script and a browser. The IDE is based on the
Eclipse2 platform 4.5.2. The performance awareness plugin is preinstalled in the
IDE, however, is only visible for the experiment group. Initially, the plugin has
access to response time measurements for the EntitiyManager methods but does
not supply any insights. Only after an estimation is triggered by the developer,
the corresponding performance models are created and simulated. The Cargo
Tracker source is included in the workspace of the IDE as a Java EE project. The
deployment script automates the activities of compiling, building and deploying
the application to a local Glassfish3 server. After applying source code changes,
subjects have to run the script and are then able to test the new version using
a browser. Running and testing the application does not require any prior Java
EE knowledge at all.

Instrumentation. Subjects are provided written instructions at the beginning
of the experiment. This document describes (i) the experiment procedure in
terms of phases and duration, (ii) an imaginary scenario where subjects act as
the developer of the BatchProcessingBean of the Cargo Tracker application, (iii)
the response time goals set for the application, (iv) the features and the user
interface of the application, (v) the development environment, (vi) the task of
optimizing the response time of the BatchProcessingBean, and (vii) experiment
rules. Subjects of the experiment group are also informed about the usage of
the performance awareness plugin. The instructions are printed and written in
English. Subjects are allotted ten minutes for reading the instructions and 40 min
to perform the optimization task. All relevant actions performed by the subjects
are captured automatically by the IDE.
2 https://www.eclipse.org/.
3 https://javaee.github.io/glassfish/.

https://www.eclipse.org/
https://javaee.github.io/glassfish/

22 A. Danciu and H. Krcmar

Analysis Procedure. Depending on the distribution of samples, this analysis
employs either the paired t-test or the Mann-Whitney test. The characteristic
of normal distribution is evaluated using the Kolmogorov-Smirnov test and the
Shapiro-Wilk test [4]. We use the Pearson correlation coefficient (PCC) to assess
the correlation between the behavior of subjects and their effectiveness.

4 Impact of Performance Awareness

The experiment was executed during a period of four weeks and comprised eight
iterations. Overall, 26 subjects participated in the experiment without receiving
any incentive. Participants included 21 students and 5 practitioners, implying
an imbalanced distribution. Figure 4 illustrates the distribution of subjects to
groups. Participating students cover the degree programs of computer science,
information systems, and games engineering. All participating researchers are
active in the field of business information systems engineering and engaged in
industry projects. Only one industrial software engineer volunteered. During the
seventh iteration, only workstations of the control group were available in the
computer lab, leading to the imbalance of one additional practitioner towards
the control group and one student towards the experiment group. All subjects
completed the experiment.

Fig. 4. Classification of subjects

4.1 Descriptive Statistics

Subjects of the experiment group fixed on average over three times more perfor-
mance bugs than subjects of the control group. Three subjects of the experiment
group and nine of the control group could not fix any bugs at all. The highest
number of bugs fixed within the experiment group was 5.5 (one bug only fixed
partially) and within the control group 3. The dispersion and skewedness of the
two samples are illustrated in Fig. 5. While the highest score of three fixed bugs
within the control group exceeds the interquartile range, it is displayed here as
an outlier [4]. The maximum value of the control group calculated by the box-
plot is 1. Subjects of the experiment group executed at least one, an average of
2.231, and at most 5 response time estimations. Subjects having fixed no bugs
at all executed one estimation. Most subjects having fixed more than one bug
also executed multiple estimations. One subject fixed five bugs while executing

Impact of Performance Awareness While Fixing Performance Bugs 23

Fig. 5. Dispersion and skewedness of samples

one estimation. During the experiment, each response time estimation run took
about five minutes.

Figure 6 illustrates how frequently individual performance bugs were fixed
by the two groups. One subject of the experiment and one of the control group
fixed PB1 only partially and received half the points. One subject of the control
group provided an additional optimization, which is reported separately in Fig. 6.
Instead of replacing the Sisyphus database retrieval with a more specific query,
the result set was reused within a subsequent loop. The bug types empty semi
trucks (PB7) and caching (PB5) were not addressed by the control group at all.
Subjects of the experiment group did not destroy any functionality due to hints
for expensive statements that cannot be avoided.

Fig. 6. Histogram of fixed performance bugs by group

Figure 7 illustrates the performance of each group according to the highest
degree and the employment status of the subjects. Subjects of the experiment
group performed better with an increasing experience level. The impact of the
highest degree and the employment status on the number of fixed bugs is lower
within the control group.

The number of times the subjects left the IDE is similar within both groups.
Overall, subjects left the IDE on average 63.6 times (median of 58). In the case of
the availability of the performance awareness plugin, subjects spent an average
of 10.6% more time within the IDE. The overall time spent inside the IDE is
82%.

The top-level class was visited by all participants, though it reuses directly
and indirectly six other classes relevant for the optimization task. While employ-
ing the awareness plugin participants visited on average 4.4 relevant classes
(median of 5) compared to a mean of 2.5 (median of 2) achieved by partici-
pants of the control group.

24 A. Danciu and H. Krcmar

Fig. 7. Dispersion and skewedness by highest degree and employment status

4.2 Hypothesis and Correlation Testing

For the selection of a suitable hypothesis test, we first examine whether the
samples of the number of fixed performance bugs are normally distributed.
The results of the Kolmogorov-Smirnov and the Shapiro-Wilk tests are listed
in Table 1. The null hypothesis of both tests assumes a normal distribution of
samples. The p-value of the Kolmogorov-Smirnov test for the experiment group
is higher than α = 0.05, indicating a normally distributed sample. However,
this does not apply to the control group. The Shapiro-Wilk test indicates that
none of the two samples are normally distributed. Therefore, the Mann-Whitney
test is applied to evaluate H0. The p-value of the directed test is considerably
lower than α = 0.05 (p-value = 0.005723, U = 131) and, therefore, allows us to
reject the null hypothesis H0 and accept the alternative hypothesis. Hence, we
conclude that the number of fixed performance bugs is significantly increased by
the availability of the performance awareness plugin.

Table 1. Test for normal distribution

Group Kolmogorov-Smirnov test Shapiro-Wilk test

D p-value W p-value

Experiment 0.327 0.124 0.8092 0.008795

Control 0.3898 0.03845 0.5759 0.00004089

The results of the survey for eliciting the skill level of participants are based
on an ordinal scale and, therefore, cannot be used in any mathematical opera-
tions. When assuming the same difference between the skill levels (e.g., interval
scale) the test for correlation indicates a high correlation between the amount of
fixed bugs and the expertise only for the participants using the awareness plu-
gins. The corresponding boxplots displayed in Fig. 7 also indicate that subjects
with a higher experience level also achieve better results with the availability of
the plugin. In contrast, the experience level has less impact if subjects are not

Impact of Performance Awareness While Fixing Performance Bugs 25

supported with performance awareness. The lack of familiarity with an applica-
tion prevents subjects from utilizing their expertise. The presence of hints on the
response time of methods within the source code supports developers in proceed-
ing more effectively during the optimization task. The performance awareness
plugin also enables less experienced subjects to implement optimizations.

Subjects of the experiment group spent statistically significantly more time
within the IDE than subjects of the control group. The most successful subjects
of the control group also spent more time than the average of the group within
the IDE. However, the test for correlation between the number of fixed bugs and
the time spent inside the IDE does not indicate any significant correlation.

Subjects of the experiment group visited statistically significantly more rele-
vant classes than subjects of the control group. The test for correlation between
the methodical inspection of relevant classes and the effectiveness of developers
employing the aid returns a PCC of 0.56 and a p-value of 0.04 indicating a signifi-
cant linear correlation. As many subjects of the control group didn’t fix any bugs
at all, the results of the correlation test are not robust. We conclude, that the
awareness plugin enables a methodical investigation of code during maintenance
tasks and, therefore, increases the effectiveness of developers.

During the experiment, a single response time estimation took about five min-
utes due to the lab’s low performing computers. In contrast, the same operation
takes about 90 s on up-to-date hardware. Hence, only eight estimations could be
obtained during the allotted time frame. It can be assumed that subjects using
the plugin would perform even better when provided with faster workstations.

5 Threats to Validity

Threats to conclusion, internal, construct, and external validity [19] are discussed
in this section.

Conclusion Validity. The selection of hypothesis tests for this experiment is
performed considering underlying assumptions on the distribution of samples
and levels of measurement. The results and the activity of subjects is measured
automatically by the IDE. The assessment of optimizations is based on a well-
defined scheme accounting for alternative or incomplete solutions.

Internal Validity. The performance of subjects can vary significantly, so that
their selection represents a threat to internal validity. Subjects might lack the
required skills for performing the optimization task. To participate in the experi-
ment, at least basic programming skills were required. None of the subjects aban-
doned the experiment. Within each group, at least 30% of the subjects managed
to identify or fix a performance bug. Due to the voluntary participation, a rel-
atively high motivation of the subjects can be assumed. Prior knowledge of the
Cargo Tracker application among the experiment participants can be excluded
based on the analysis of the survey. Participants were also distributed randomly
to treatments. By employing blocking, the impact of subjects’ experience was
controlled. To address learning effects, subjects participate only once and are
assigned only one treatment.

26 A. Danciu and H. Krcmar

Construct Validity. The operationalization of response time behavior as a
set of performance bugs represents a simplification of the underlying construct
since bugs can differ in their impact. In the context of Java EE applications, the
impact of bugs depends on database content and cannot be generally quantified.
A simplified representation of the response time behavior is therefore necessary.
Using a single application as an object, the concept of Java EE might be under-
represented. The application, however, is composed of a variety of components
and covers the broad spectrum of Java EE technologies. Only five of the perfor-
mance antipatterns identified in literature are instantiated as performance bugs.
However, only antipatterns on the implementation level can be addressed by the
performance awareness approach, and other types do not apply to the appli-
cation. The application of the treatment aims at improving the response time
behavior of components. While optimizing the response time, other aspects such
as resource utilization or throughput might be aggravated. Thus, the results of
this experiment might not be generalizable to other constructs.

External Validity. Several studies examine the suitability of students as sub-
jects in carrying out experiments in the field of software engineering [7]. Accord-
ing to Kitchenham et al. [10], students are generally suitable for evaluating the
use of a technology by software engineers with less experience. The majority
of the subjects, however, already had a bachelor’s degree and industrial pro-
gramming experience. About half of the subjects possessed more than a year
of industrial experience. The Cargo Tracker implements all relevant Java EE
technologies and is in this regard representative for the industry. However, the
application is relatively simple. The lack of familiarity with the application and
its domain could compensate for the simplicity. It is expected that the benefit
of performance awareness will be even higher in the context of a more com-
plex application. Similar optimization tasks can occur in practice. However, the
results of the experiment are not necessarily transferable to development tasks.
This threat was deliberately accepted in order to allow for a short procedure
with the highest possible number of participants and a low drop-out rate. In
contrast to the development of simple algorithms, the implementation of Java
EE components requires more knowledge.

6 Related Work

Research in the area of performance awareness proposes both measurement-
based and model-based approaches supporting developers with insights based on
past observations and predictions. Approaches can be further classified by their
level of automation, the focused domain, the type of insights provided and their
integration in development environments. Automated approaches integrated in
the development environment are described in this section.

Measurement-Based Approaches. Existing measurement-based approaches
focus on several domains, such as parallel programs, component-based applica-
tions, Java programs, or database management systems. The insights provided

Impact of Performance Awareness While Fixing Performance Bugs 27

cover aspects such as resource consumption, anti-patterns, or response times. The
Stochastic Performance Language (SPL) presented by Bulej et al. [1] provides
a means for specifying expectations of the performance of individual methods.
The authors evaluate how well SPL formulas are suitable for specifying ratios
between the performance of different methods. Heger et al. [5] describe an app-
roach for the automatic recognition of performance degradation and the iden-
tification of the root causes based on unit tests. The authors validate how well
the approach can identify a sample of both synthetically injected and real-world
performance regressions. Horký et al. [6] present an approach for the support of
performance awareness by extending the source code documentation of meth-
ods with a description of their response time behavior. As already described in
Sect. 1, the authors report that no statistically significant improvement could
be found by the availability of the approach due to the few and in some cases
strongly diverging results.

Model-Based Approaches. Model-based approaches focus on domains such
as event-driven systems, object-relational mapping, storage systems, or software
as a service. The insights provided cover aspects such as response time, and
suggestions for optimization. Weiss et al. [17] describe an approach for predicting
the response time of persistence layer services based on tailor-made benchmarks.
The influence of the approach on the implementation of the developers is not
evaluated by the authors. An approach for feedback-driven development of cloud
applications based on the integration of monitoring data in the IDE is described
by Cito et al. [2]. The authors describe an initial implementation of the approach
for the SAP HANA Cloud Platform but no evaluation.

7 Conclusion and Future Work

This work presented the evaluation of an approach for supporting developers
of Java EE applications with performance awareness within a controlled exper-
iment. Subjects fixed on average over three times more performance bugs while
using the approach. Statistical tests indicate that the number of fixed perfor-
mance bugs is significantly increased by the availability of the performance
awareness plugin.

Future research will investigate the impact of the performance awareness
approach in new scenarios. The present experiment focused on the availability
of the awareness plugin. It would also be desirable to compare the results while
employing different tools. Here, other approaches for performance awareness as
well as classical tools for performance analysis can be considered. For example,
subjects might be required to employ Java profilers to optimize components. In
addition, the approach to performance awareness should also be evaluated in the
context of a development task.

Subjects had to explicitly request response time predictions during this exper-
iment. Due to the duration of each prediction run, the approach could not provide
continuous feedback, e.g. automatically after each code change. The approach
will be optimized for this scenario. In the context of further experiments, it

28 A. Danciu and H. Krcmar

could then be investigated whether the influence on developers persists while
predictions are displayed unsolicited.

References

1. Bulej, L., Bureš, T., Keznikl, J., Koubková, A., Podzimek, A., Tůma, P.: Capturing
performance assumptions using stochastic performance logic. In: 3rd ACM/SPEC
International Conference on Performance Engineering, pp. 311–322 (2012)

2. Cito, J., Leitner, P., Gall, H.C., Dadashi, A., Keller, A., Roth, A.: Runtime met-
ric meets developer: building better cloud applications using feedback. In: ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software, pp. 14–27 (2015)

3. Danciu, A., Chrusciel, A., Brunnert, A., Krcmar, H.: Performance awareness in
Java EE development environments. In: Beltrán, M., Knottenbelt, W., Bradley, J.
(eds.) EPEW 2015. LNCS, vol. 9272, pp. 146–160. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23267-6 10

4. Elliott, A.C., Woodward, W.A.: Statistical Analysis Quick Reference Guidebook:
With SPSS Examples. Sage, Thousand Oaks (2007)

5. Heger, C., Happe, J., Farahbod, R.: Automated root cause isolation of perfor-
mance regressions during software development. In: 4th ACM/SPEC International
Conference on Performance Engineering, pp. 27–38 (2013)

6. Horký, V., Libic, P., Marek, L., Steinhauser, A., Tůma, P.: Utilizing performance
unit tests to increase performance awareness. In: 6th International Conference on
Performance Engineering, pp. 289–300 (2015)

7. Höst, M., Regnell, B., Wohlin, C.: Using students as subjects–a comparative study
of students and professionals in lead-time impact assessment. Empir. Softw. Eng.
5(3), 201–214 (2000)

8. Jin, G., Song, L., Shi, X., Scherpelz, J., Lu, S.: Understanding and detecting real-
world performance bugs. SIGPLAN Not. 47(6), 77–88 (2012)

9. Kitchenham, B., Fry, J., Linkman, S.: The case against cross-over designs in soft-
ware engineering. In: 11th International Workshop on Software Technology and
Engineering Practice, pp. 65–67 (2003)

10. Kitchenham, B.A., et al.: Preliminary guidelines for empirical research in software
engineering. IEEE Trans. Softw. Eng. 28(8), 721–734 (2002)

11. Minelli, R., Mocci, A., Lanza, M.: I know what you did last summer - an investiga-
tion of how developers spend their time. In: 23rd IEEE International Conference
on Program Comprehension, pp. 25–35 (2015)

12. Reussner, R., Becker, S., Happe, J., Koziolek, H., Krogmann, K., Kuperberg, M.:
The Palladio Component Model. Universität Karlsruhe (2007)

13. Robillard, M.P., Coelho, W., Murphy, G.C.: How effective developers investigate
source code: an exploratory study. IEEE Trans. Softw. Eng. 30(12), 889–903 (2004)

14. Sanchez, H., Robbes, R., Gonzalez, V.M.: An empirical study of work fragmen-
tation in software evolution tasks. In: 22nd IEEE International Conference on
Software Analysis, Evolution, and Reengineering, pp. 251–260 (2015)

15. Smith, C.U., Williams, L.G.: More new software performance antipatterns: even
more ways to shoot yourself in the foot. In: Computer Measurement Group Con-
ference, pp. 717–725 (2003)

16. Tůma, P.: Performance awareness: keynote abstract. In: 5th ACM/SPEC Interna-
tional Conference on Performance Engineering, pp. 135–136 (2014)

https://doi.org/10.1007/978-3-319-23267-6_10
https://doi.org/10.1007/978-3-319-23267-6_10

Impact of Performance Awareness While Fixing Performance Bugs 29

17. Weiss, C., Westermann, D., Heger, C., Moser, M.: Systematic performance evalua-
tion based on tailored benchmark applications. In: 4th ACM/SPEC International
Conference on Performance Engineering, pp. 411–420 (2013)

18. Wert, A.: Performance problem diagnostics by systematic experimentation. Ph.D.
thesis, KIT-Bibliothek (2015)

19. Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Deriving Symbolic Ordinary Differential
Equations from Stochastic Symmetric

Nets Without Unfolding

Marco Beccuti1, Lorenzo Capra2, Massimiliano De Pierro1,
Giuliana Franceschinis3(B), and Simone Pernice1

1 Dip. di Informatica, Università di Torino, Turin, Italy
2 Dip. di Informatica, Università di Milano, Milan, Italy

3 DISIT, Università del Piemonte Orientale, Alessandria, Italy
giuliana.franceschinis@uniupo.it

Abstract. This paper concerns the quantitative evaluation of Stochas-
tic Symmetric Nets (SSN) by means of a fluid approximation technique
particularly suited to analyse systems with a huge state space. In par-
ticular a new efficient approach is proposed to derive the deterministic
process approximating the original stochastic process through a system of
Ordinary Differential Equations (ODE). The intrinsic symmetry of SSN
models is exploited to significantly reduce the size of the ODE system
while a symbolic calculus operating on the SSN arc functions is employed
to derive such system efficiently, avoiding the complete unfolding of the
SSN model into a Stochastic Petri Net (SPN).

Keywords: Stochastic Symmetric Nets
Ordinary Differential Equations · Symmetries · Symbolic analysis
Symbolic structural techniques

1 Introduction

SSNs [8] are a colored extension of SPNs [11]: both formalisms are widely used
for modeling and analysing Discrete Event Dynamic Systems. The underlying
stochastic process, a Continuous Time Markov Chain (CTMC), can be auto-
matically generated and studied using numerical and simulative techniques or
approximated by an ODE system.

This paper extends the result described in [4] in which: (1) we identified a
class of SSNs whose underlying CTMC can be approximated by an ODE system
according to Kurtz’s theorem [9]; (2) we proposed an algorithm to generate
a reduced ODE system exploiting the SSN model symmetries. This algorithm
requires an unfolding step before generating the reduced system.

To overcome this limitation we propose a new approach based on a symbolic
calculus for SSN arc functions to generate the compact ODE system without
prior unfolding. Such calculus was introduced in [5] where a language extending

c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 30–45, 2018.
https://doi.org/10.1007/978-3-030-02227-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_3&domain=pdf

Deriving SODEs from SSNs Without Unfolding 31

the arc expressions syntax of SSNs and some operators on the language elements
were presented and applied to SSN structural properties computation. The cal-
culus was implemented in the SNexpression tool [6]. In [7] a more comprehensive
formalization of SSN structural properties and the generalization of all opera-
tors (with some limitations on composition) to work on multisets extended the
method applicability. In this paper the ability to symbolically manipulate the
arc functions of SSNs is exploited to build the reduced set of Symbolic ODEs
(SODEs) directly. The three main contributions are: (1) the definition of the
formulae for the derivation in symbolic form of the terms to be included in each
SODE, (2) the definition of an approach to compute the cardinality of specific
language expressions representing groups of similar terms in a single ODE, that
can thus be compressed in a single term in the SODE, and (3) the definition of
a procedure to express the enabling degree of transition instances appearing in
the SODE in symbolic form. The main steps required to automatically derive
the complete set of SODE have been implemented.

This is the first approach in which the syntax of SSNs is exploited to directly
generate a compact ODE system (we refer to [13] for a general overview on PNs
and fluid approximation). Indeed, even in efficient PN tools (e.g., Snoopy [10])
the compact representation of colored models is exploited in model construction
and for some basic analysis, but not for the deterministic simulation. In the con-
text of a fluid framework for PEPA, a result similar to that in [4] was presented
in [14], but the aggregation is based on exact fluid lumpability.

The paper is organized as follows: in Sect. 2 the background and the notation
needed to understand the new approach are introduced. In Sect. 3 the new app-
roach is illustrated on a case study and the main properties needed to automati-
cally generate the SODE are presented. In Sect. 4 we report a set of experimental
results illustrating the method efficiency. Conclusions and directions for future
work are discussed in Sect. 5.

2 Background

In this section, after presenting the case study used for illustrating the new
approach, the SSN formalism is introduced and a description on how to derive
the SODE system from an SSN model is presented, recalling the results in [4].

2.1 Our Case Study in a Nutshell

Our case study is inspired by the model presented in [12]: Botnets are networks
of compromised machines under the control of an attacker that uses those com-
promised machines for a variety of malicious/nefarious purposes.

Typically, initial infection involves a malware, called Trojan horse, which
installs a malicious code into a vulnerable machine. The injected malicious code
begins its bootstrap process and attempts to join the Botnet. A machine con-
nected to the Botnet becomes a bot and can send spam (a working bot) or infect
new machines (a propagation bot). The bot is inactive most of the time to reduce

32 M. Beccuti et al.

the probability to be detected and becomes active only for very short periods.
An infected machine can be recovered if an anti-malware software discovers the
virus or if the computer is physically disconnected from the network. The cor-
responding SSN model is reported in Fig. 1. In the next subsections its main
components are introduced together with the elements of the formalism.

2.2 The SSN Formalism

The SSN formalism [8] adds colors to the SPN formalism, so that information
can be associated with the tokens in the net. This feature usually leads to a
more compact system representation which may be exploited during both the
construction and the solution of the model [4,8].

An SSN is a bipartite directed graph with two types of nodes: places and
transitions. Places, graphically represented as circles, coincide with the state
variables of the system. For instance the places of the Botnet model in Fig. 1
are NoConBot, ConBot, InactiveBot and ActiveBot, corresponding to four pos-
sible phases through which a machine under attack can flow. Places contain
tokens, whose colors are defined by the color domain cd(), expressed as Cartesian
product of color classes Ci. Color classes can be partitioned in static subclasses
{Ci,j , j = 1, . . . , k}. Colors in a class represent entities of the same nature but
only colors within the same static subclass are guaranteed to behave similarly. A
color class may be ordered and in this case a successor function denoted by ! is
defined on it, which determines a circular order on its elements. In the model of
Fig. 1 there are two color classes: Mac and Loc. The former is partitioned into
four static subclasses of cardinality one (the machine infection states): N(ormal),
I(nfected), W(orking Bot), P(ropagation Bot). The latter, representing machine
locations, is not partitioned into subclasses. The color domains of all the places
is Mac × Loc (representing pairs 〈machine infection state,location〉).

Transitions, graphically drawn as boxes, represent the system events: in our
example, the flow through attack phases and changes in the infection state of a
machine. The instances of a transition t are defined by its color domain cd(t)
defined as a list of typed variables (with types chosen among the color classes) or
as the Cartesian product of its variables types (assuming an implicit order among
its variables). The transition variables appear in the functions labeling its arcs. A
transition instance 〈t, c〉 binds each variable to a specific color of proper type. A
guard can be used to restrict the allowed instances of t: it is a logical expression
defined on cd(t), and its terms, called basic predicates allow one to (1) compare
colors assigned to variables of the same type (x = y, x �= y); (2) test whether
a color belongs to a given static subclass (x ∈ Ci,j); (3) compare the static
subclasses of the colors assigned to two variables (d(x) = d(y), d(x) �= d(y)).

For instance RecInitInf is a transition in the model of Fig. 1. Its color domain
is Mac × Mac × Loc (assuming variables’ order x, y, l), restricted by the guard
[x ∈ I ∧ y ∈ N] to the colors that associate variables x and y to the subset of
machines in infected and not infected state respectively.

Deriving SODEs from SSNs Without Unfolding 33

Fig. 1. SSN model for the Botnet.

The state of an SSN, called marking, is defined by the number of colored
tokens in each place. The initial marking of the model in Fig. 1, representing one
infected machine and 1000 not infected machines in each location, is

NoConBot(1000〈N,Loc〉) + ConBot(〈I, Loc〉). (1)

Places and transitions are connected through arcs decorated with arc functions
defining both the enabling conditions for the transition instances and the state
change caused by their firing. The function on the arc connecting place p and
transition t has domain cd(t) and codomain Bag[cd(p)], where Bag[A] is the
set of multisets built on set A, and if b ∈ Bag[A], a ∈ A, b[a] denotes the mul-
tiplicity of a in multiset b. Given a transition instance, the input and output
arc functions map the transition color into (multi)sets of colored tokens match-
ing the corresponding place color domain. Input and output arcs are denoted
I,O[p, t] : cd(t) → Bag[cd(p)]. A transition instance 〈t, c〉 is enabled in marking
m if ∀p ∈• t,∀c′ ∈ cd(p)I[p, t](c)[c′] ≤ m[p][c′] (•t and t• represent the set of input
and output places of t, respectively). An enabled instance may fire causing a state
change from m to m′ defined as follows: ∀p,m′[p] = m[p] − I[p, t](c) + O[p, t](c).

The arc functions are formally expressed as sums of tuples, with each tuple
element chosen from a set of predefined basic functions whose domain is the
transition color domain and whose codomain is Bag[Ci], for a given color class
Ci. The tuples may have an associated guard, expressed with the same syntax
of transition guards, allowing to include or exclude the tuple from the sum
depending on the truth value of the guard for a given transition instance. The
basic functions are: projection, denoted by a variable in the transition color

34 M. Beccuti et al.

domain (e.g., x and l appearing in the arc expression 〈x, l〉); successor, denoted
!x, where x is a variable whose type is an ordered class; a constant function
returning all elements in a class (or subclass), denoted SCi

(or SCi,j
). A linear

combination of basic functions is a class function, e.g. SCi
− x, where x is of

type Ci, is a class function returning all elements of class Ci except element x.
The stochastic behavior of an SSN model is characterized by the assumption

that the firing of any enabled transition occurs after a random delay sampled
from a negative exponential distribution. A function ω is associated with each
transition and defines its firing rate as follows:

ω(t, c) =
{

ri if condi(c), i = 1, . . . , n;
rn+1 otherwise

where condi is a boolean expression comprising standard predicates on the tran-
sition color instance. Hence, the firing rate ri ∈ R

+ of a transition instance can
depend only on the static subclasses of the colors assigned to the transition vari-
ables and on the comparison of variables of the same type. We assume that the
conditions condi are mutually exclusive. For instance, the rate associated with
transition InitInf representing the infection propagation event is 10.0 if q = l,
otherwise 2; also BeBot, representing the start of Working or Propagation Bot
activity, has rate 20.0 if (y ∈ W) and 2 if (y ∈ P). The stochastic process driv-
ing the dynamics of an SSN model is a CTMC, where the states are identified
with SSN markings and the state changes correspond to the marking changes in
the model. In this context we assume that all the transitions of the SSN use an
infinite server policy, and we define the intensity of 〈t, c〉 in marking m as:

ϕ(m, t, c) = ω(t, c) min
〈pj ,c′〉:I[pj ,t](c)[c′] �=0

⌊
m[pj][c′]

I[pj , t](c)[c′]

⌋

where the last factor is e(m, t, c), the enabling degree of 〈t, c〉 in m.

2.3 From SSN Models to ODE

In [2] a class of SPN was identified whose stochastic behavior can be approx-
imated through a deterministic process in agreement with the Kurtz’s results
in [9]: considering an SPN model whose places are all covered by P-semiflows
and whose transitions use an infinite server policy, the underlying CTMC satis-
fies the density dependent property (i.e. the intensities of the transitions can be
expressed as a function of the density of the tokens m(p)

N where N is a constant
depending on the P-semiflows and the initial marking) and it is possible to derive
a set of ODE providing a good deterministic approximation of the average num-
ber of tokens in the places when the number of interacting objects (i.e. tokens)
is large. In [4] we showed that similar results can be derived for SSN models
and we described how to automatically generate the ODE system from an SSN
model through the net unfolding: the average number of tokens in each place of
the unfolded net is approximated through the following ODE:

Deriving SODEs from SSNs Without Unfolding 35

dxi(ν)
dν

=
|T |∑
j=1

ϕ(x(ν), tj)(O[pi, tj] − I[pi, tj]) (2)

where x(ν) is a vector of real numbers representing the average number of tokens
in the model places at time ν, T is the set of the net transitions, and ϕ(x(ν), tj)
is a function defining the intensity of transition tj in the state x(ν) as follows:

ϕ(x(ν), tj) = ω(tj) min
l:I[pl,tj] �=0

xl(ν)
I[pl, tj]

, (3)

where ω(tj) is obtained by ω(t, c) through the unfolding of 〈t, c〉 into tj .
In [4], we proposed a translation method which reduces the size of the ODE

system by automatically exploiting the model symmetries. This is achieved
through the notion of “symbolic” ODE (SODE): a compact representation for a
set of equivalent ODE, where the actual color identity is abstracted away, but
the ability to distinguish different colors and to establish their static subclass is
retained. However, this method still required an initial unfolding of the model
to generate the ODE system that is automatically reduced in a second step. The
goal of this paper is instead to directly derive the SODE from the SSN.

2.4 Symbolic Manipulation of SSN Arc Functions

In this section the definitions and notations required to explain how to derive the
set of SODE are introduced: the method is based on symbolic manipulation of
expressions of a language L (that look like SSN arc functions with a few syntac-
tical extensions) through a set of operators (difference, transpose, composition).

The elements of language L have the following syntax:
∑
j

λj [g′
j]Tj [gj], λj ∈ N

where Tj is a tuple of class functions while [gj] and [g′
j] are called respectively

guard and filter. These expressions denote functions D → Bag[D′]; D and D′

are in turn defined as Cartesian products of color classes. The components in a
tuple Tj correspond one-to-one to the elements in the Cartesian product D′: they
are intersections (∩) of basic class functions from set1 BS = {v, S − v, SC , SCk

}
denoting functions D → Bag[C], where C is one of the basic color classes in
D′, v is a variable of type C, and Ck is a static subclass of C. The functions
in BS are a subset of SSN class functions. The intersection is not part of the
arc functions syntax, but allows any SSN arc function to be rewritten to a L
expression. For instance (vi, vj variables of type C): 〈SCk

−vi, vi〉[vi ∈ Ck] (/∈ L)
≡ 〈SCk

∩ (S − vi), vi〉[vi ∈ Ck] (∈ L); 〈S − vi − vj , vi, vj〉[vi �= vj] (/∈ L) ≡
〈(S −vi)∩ (S −vj), vi, vj〉[vi �= vj] (∈ L). Symbols [gj], [g′

j] are defined on D and

1 To keep the presentation simple, ordered classes are not considered here, but the
presented results extend to models including them.

36 M. Beccuti et al.

D′, respectively. Symbol [g], where g is a SSN standard predicate defined on D,
denotes a function D → D: [g](d) = d if g(d) = true, [g](d) = ∅ if g(d) = false.
Observe that the SSN arc function syntax may include guards but not filters.

Language L is closed with respect to a set of operators among which the
transpose and the difference; SNexpression (www.di.unito.it/∼depierro/SNex)
implements the rules for symbolically treating these operators.

Definition 1 (Transpose). Let f : D → Bag[D′] be a function, its transpose
f t : D′ → Bag[D] is defined as: f t(x)[y] = f(y)[x],∀x ∈ D′, y ∈ D.

Definition 2 (Difference). Let f, g : D → Bag[D′] be two functions. The
difference f − g : D → Bag[D′] is defined as: f − g(x) = f(x) − g(x),∀x ∈ D.

The multiset difference is: b, b′ ∈ Bag[A], a ∈ A, (b− b′)[a] = max(0, b[a]− b′[a]).
In the sequel the language, its operators and its properties are the key formal

tools to define the SODE characterizing an SSN model without unfolding it. In
particular the difference and transpose operators allow us to define and express
in symbolic form the functions R(t, p) and A(t, p), where t is a transition and
p is a place connected to t. Function R(t, p), called Removed By, defines which
instances 〈t, c′〉 of t withdraw tokens of color c ∈ cd(p) from place p. Function
A(t, p), called Added By, defines which instances 〈t, c′〉 add tokens of color c ∈
cd(p) into place p. R(t, p)(c)[c′] and A(t, p)(c)[c′] denote the number of tokens
of color c withdrawn by/ added by instance 〈t, c′〉 from/to p.

R(t, p) : cd(p) → Bag[cd(t)]; R(t, p) = (I[t, p] − O[t, p])t

A(t, p) : cd(p) → Bag[cd(t)]; A(t, p) = (O[t, p] − I[t, p])t

For instance, place ActiveBot (whose cd is Mac×Loc) is connected to transition
RecActive with cd : x ∈ Mac, y ∈ Mac, l ∈ Loc and with guard y ∈ N . The
expression for R(RecActive,ActiveBot) = (〈x, l〉[y ∈ N])t, is 〈x̃, SN , l̃〉 denoting
a function from cd(ActiveBot) to Bag[cd(RecActive)]. Here the names ỹ and
l̃ indicate respectively the first occurrence of class Mac and of class Loc in
cd(ActiveBot), while the color identifying an instance of RecActive is indicated
as 〈x, y, l〉. As expected the instances of RecActive that remove tokens of color
〈x̃, l̃〉 from ActiveBot are those with x = x̃, y ∈ N, l = l̃.

3 The Symbolic ODE Generation Method

The approach for deriving the SODE corresponding to a given place p comprises
two steps. Let x[p, c] be the number of c-colored tokens in place p at time ν (in
order to keep notation simple we will omit time dependency).

Step 1. For each transition t connected to place p: if there is an arc from p to t
compute R(t, p), if there is an arc from t to p compute A(t, p).

Step 2. The differential equation for place p and color c ∈ cd(p) is defined as:

dx[p, c]

dν
=

∑

〈t,c′〉:p∈t•,c′∈A(t,p)(c)

ϕ(x(ν), t, c′)(A(t, p)(c)[c′]) −
∑

〈t,c′〉:p∈•t,c′∈R(t,p)(c)

ϕ(x(ν), t, c′)(R(t, p)(c)[c′]), (4)

www.di.unito.it/~depierro/SNex

Deriving SODEs from SSNs Without Unfolding 37

Each sum spans over all instances 〈t, c′〉 that withdraw (negative sum) or add
(positive sum) tokens of color c from/to p. The intensity of 〈t, c′〉 is multiplied
by A(t, p)(c)[c′] or R(t, p)(c)[c′] (i.e., by the number of tokens of color c added
to or withdrawn from p by 〈t, c′〉) to get the actual flow of tokens in/out p.

Due to the symmetry of SSN arc functions the above procedure can be done
for just an arbitrary color c ∈ cd(p). This statement is only partially true, in fact
the symmetry is surely preserved only in subsets of cd(p) containing colors that
cannot be distinguished through standard predicates operating on cd(p): for this
reason a partial unfolding of the places may be needed (e.g. due to the pres-
ence of static subclasses). In order to apply the symbolic approach the intensity
ϕ(x(ν), t, c′) must also be symmetric: this may require the partial unfolding of
transitions. Special care should be taken in case the cd(t) includes variables with
same type: in this case one should treat separately instances in which the same
color or different colors are assigned to these variables since this may influence
both the rate of 〈t, c′〉 and the number of tokens of color c flowing in or out of p.

Symbolic Representation of ODE. Due to symmetries, each summation over the
color domain of a given transition t in Eq. (4) may be computed efficiently by
grouping instances with “similar” rate and same number of tokens moved into
or out of the place. This may be achieved by expressing Eq. (4) in a compact,
symbolic way. As anticipated, a preliminary partial unfolding of some nodes of
the original SSN may be needed: each place p′ in the partially unfolded net,
derives from a place p in the original model and an SSN predicate g on cd(p)
taking into account the partition of color classes in subclasses, and the possibility
that elements of same class in the tuples of cd(p) be equal or different. In the
partially unfolded net a filter [g] prefixes the function on any arc connected to
p′; notation p[g] shall be used for the place names in the partially unfolded net
to put in evidence the original place name and predicate g. If cd(p) contains
only one occurrence of C and g is [c ∈ Cj] we shall use the notation pCj

. For
what concerns transitions, each t′ in the partially unfolded net must satisfy
∀c1, c2 ∈ cd(t′) : ω(t′, c1) = ω(t′, c2) = ω(t′), in this case the unfolded transitions
t′ deriving from transition t in the original model shall be characterized by a
guard which is the conjunction of t guard and the condition condi associated
with value ri in the definition of ω(t). This kind of partial net unfolding will be
illustrated on the example.

The terms of the SODE corresponding to place p are based on the symbolic
expressions A(t, p) and R(t, p), formally expressed as weighted sums of tuples∑

i λiFi, λi ∈ N, Fi = [gi]Ti[g′
i], ∀c ∈ cd(p),∀c′ ∈ cd(t) Fi(c)[c′] ≤ 1. Each

term of R and A can be seen as a parametric set of t’s instances, each one
withdrawing/putting λi tokens of color c from/to p. Hence we need to compute
the cardinality of each parametric set, that may depend on c ∈ cd(p).

Definition 3 (Constant-size function). A guarded function F [g] : D →
Bag[D′] is constant-size if and only if ∃k ∈ N : ∀c ∈ D, g(c) ⇒ |F (c)| = k.

The above definition includes the particular case g ≡ true. The cardinality |F [g]|
of a constant-size function is equal to |F (c)|, for any c s.t. g(c) is true.

38 M. Beccuti et al.

A guarded tuple T [g] ∈ L is constant size if and only if, for each T ’s compo-
nent (a class function) f , f [g] is constant size. The following property defines a
syntactical condition for a (guarded) class function f [g] being constant size:

Property 1. f [g] is constant-size if: f either belongs to the basic-set BS of class
functions or it takes one of these forms

(a)
⋂

j∈Q, |Q|<|C|
S − vj b) SCk

⋂
j∈J,|J|<|Ck|

S − vj

where in (b) for each vj : g ⇒ vj ∈Ck.

The cardinalities of terms of type (a) and (b) are |C| − |Q| and |Ck| − |J |,
respectively. The cardinalities of functions in BS can be easily inferred. For
instance, function S −v1 ∩S −v2[v1 �= v2], where v1, v2 are two variables of type
C, is constant size, with cardinality |C| − 2.

When transposing a given expression with the SNexpression tool each term
[g′]T [g] in the resulting sum is such that T [g] is constant size. We finally state a
syntactical condition on a filter [g′] ensuring that [g′]T [g] ∈L is constant-size.

Property 2. [g′]T [g]∈L is constant-size if T [g] is constant size and

1. g′ is a conjunctive form composed only of (in)equations ci = (�=)cj , i < j,
2. for each (in)equation ci = (�=)cj the corresponding class-C functions fi, fj in

T are such that fj ≡ fi,

Condition (2) says that tuple components referred to by any (in)equation in the
filter must be equal. A constructive proof of Property 2, given in terms of an
algorithm computing tuple cardinality, is provided in [3].

Example: the tuple [c1 �= c2 ∧ c2 �= c3]〈SC1 − c, SC1 − c, SC1 − c, S, c〉[c∈C1] has
domain C and co-domain C ×C ×C ×C (i.e. C4); each ci appearing in the filter
represents the i − th element in tuple T , C = C1 ∪ C2 hence |C| = |C1| + |C2|
and |C1| = 4, |C2| = 2. Observe that the first three elements in the tuple are
equal, and this is coherent with the hypothesis that elements compared in some
term of the filter g′ must be equal. The tuple can be divided in two independent
sub-tuples: the first [c1 �= c2 ∧ c2 �= c3]〈SC1 − c, SC1 − c, SC1 − c〉[c ∈ C1] and
the second 〈S, c〉[c∈C1]. The guard makes the elements SC1 − c constant size:
without this guard the size would be |C1| if c /∈ C1 and |C1| − 1 if c∈C1.

The filter of the second subtuple is true. The filter of the first subtuple
doesn’t involve any equality while it comprises two inequalities. The cardinality
of the tuple elements are: |SC1 − c| = |C1| − 1, |S| = |C|, |c| = 1.

The first subtuple has as many elements as the number of possible colorings of
a graph G with three nodes, each one associated with one of the three variables
c1, c2, and c3, and an edge between pairs of variable-nodes that appear in an
inequality of the filter. Since |SC1 − c| = |C1| − 1 = 3 in this case P (G, 3) = 12.
The filter of the second subtuple is true, hence its cardinality is simply |S||c| =
|C| = 6. Finally the cardinality of the complete tuple is 12 ∗ 6 = 72.

Deriving SODEs from SSNs Without Unfolding 39

Property 3. Any expression e∈L can be rewritten as a weighted sum of constant-
size terms [g′

i]Ti[gi].

The SNexpression tool can be instrumented to produce expressions in the
form introduced in Property 3. The expression obtained from the tool does not
have a canonical form: depending on the order of application of the rewriting
rules the expression terms may be grouped in different ways; it is however guar-
anteed that the terms Fi = [gi]Ti[g′

i] appearing in R or A are pairwise disjoint
and constant-size. Thus, according with the transpose semantics, a term [gi]Ti[g′

i]
of R or A represents a set of ni = |[gi]Ti[g′

i]| t’s colour instances each one with-
drawing/adding exactly λi (the term’s coefficient in the weighted sum) tokens
from/to place p (these instances satisfy the predicate g′

i).
If, in addition, all t colour instances matching [gi]Ti[g′

i] had the same
enabling-degree and hence consequently the same intensity (denoted by
ϕ(x(ν), t)), we could directly express the SODE relating place p:

dx[p, c]
dν

=
∑

t:p∈t•,Fi inA(t,p)

λiniϕ(x(ν), t) −
∑

t:p∈•t,Fj inR(t,p)

λjnjϕ(x(ν), t) (5)

Each term in the SODE is a product of four factors: the cardinality of the
expression identifying a set of (ni) homogeneous transition instances, the number
(λi) of tokens withdrawn/added by any transition instance in the set, the base
rate ω of any transition instance in the set, and its enabling degree (the two fac-
tors are combined in ϕ). The last factor depends on the number of colored tokens
required by the arc functions labelling the input arcs of any transition instance
in the set. Some terms [gi]Ti[g′

i] of A or R may have to be split into equivalent
sums of tuples representing classes of transition instances with the same enabling
degree. The procedure for computing the enabling degree is described later.

The Botnet Example. Let us illustrate the idea on the Botnet example to point
out the main problems that have to be solved to automatize the whole process.
Only the equation for place NoConBotN , obtained by partially unfolding place
NoConBot , is developed completely since similar arguments apply to the other
places. The method generates one distinct equation for each place in the partially
unfolded net: since all places in the BotNet model have cd(p) = Mac × Loc and
only Mac is partitioned in four static subclasses, each place p will be unfolded
into four new places pI , pN , pW and pP , and filters [c ∈ X], where X stands
for a static subclass of Mac, will prefix the functions on the arcs connected to
place pX as shown in Fig. 2. In some cases it is possible to simplify the partially
unfolded net taking into account the transition guards: in Fig. 2 for instance some
filters are not present because the transition guards make them redundant (e.g.
see the arc from RecActive to NoConnBotN), moreover if the combination filter-
transition guard results in a surely empty function, then the arc can be deleted
(this is the case for the arc from ActiveBotW and transitions InitInf [g]). On
the Botnet example only a subset of colors can be found in the model places as
explained hereafter: this allows to further simplify the partially unfolded model.
The first element (Mac) of tokens in NoConBot can only be in N or in I, those

40 M. Beccuti et al.

Fig. 2. Partially unfolded (sub)net (note filters
[c ∈ N/I/P/W]) including all transitions con-
nected to place NoConBotN .

Table 1. List of rates in the
NoConBotN equation and func-
tions A and R needed to derive it,
where g = (c∈N).

in Active/InactiveBot can only be in W and P (see grey-colored empty instances
in Fig. 2), finally those in place ConBot can only be in I.

Table 1 shows the expressions A and R for each transition connected to place
NoConBotN from which we can generate a differential equation with several
terms, depending on the number of terms in the expressions A and R. Observe
that some term may need to be transformed into an equivalent sum of terms to
separate the transition instances with different enabling degree or rate.

In our model we assume that all transitions have uniform base rate except
InitInf and BeBot : the former has a different rate depending whether the two
locations l′ (of the machine which is going to be infected) and l (of the bot
which is going to propagate the infection) are equal or different. The latter has a
different rate for working bot and propagation bot generation. Hence the partial
unfolding shall generate two instances of InitInf , InitInf [l=l′] and InitInf [l �=l′]
(see Fig. 2), and two instances of BeBot : BeBotW and BeBotP .

In the following equation we denote with x[pX , c, l] the mean number of
tokens in the place instance 〈pX , c, l〉 (where X is one of the static subclasses in
Mac). Thus, the differential equation corresponding to 〈NoConBotN , c, l〉 is:

dx[NoConBotN , c, l]

dν
= |P |ω1x[ActiveBotP , c′, l] + |W |ω2x[ActiveBotW , c′, l]+

+ |P |ω3x[InactiveBotP , c′, l] + |W |ω4x[InactiveBotW , c′, l] + ω7x[NoConBotI , c′, l]+
− |P ||I|ω5 min(x[NoConBotI , c′, l], x[ActiveBotP , c′′, l])+

− |P ||I|(|Loc| − 1)ω6 min(x[NoConBotI , c′, l], x[ActiveBotP , c′′, l]),

Deriving SODEs from SSNs Without Unfolding 41

where rates ωi are defined in Table 1. Coefficients |P | and |W | in the
first four terms are the cardinality of the tuples 〈SP , c1, l1〉 and 〈SW , c1, l1〉
respectively: these are obtained by splitting the term 〈SMac, c1, l1〉[c1 ∈ N],
common to A(RecActive,NoConBotN) and A(RecInactive,NoConBotN), into
〈SP , c1, l1〉[g] + 〈SW , c1, l1〉[g] (the terms 〈SI , c1, l1〉[g] + 〈SN , c1, l1〉[g]) do not
appear because they correspond to instances of RecActive and RecInactive
that will never be enabled). Coefficients |P ||I| and |P ||I|(|Loc| − 1) in the last
two terms of the SODE are the cardinalities of tuples 〈c1, SI , SP , l1, l1〉 and
〈c1, SI , SP , l1, SLoc − l1〉, respectively. We omit the factor 1 preceding the ωi,
derived from the coefficient of the corresponding term in A or R.

Computation of the Enabling Degree. Let us consider the SODE for place p. The
contribution due to a transition t connected to p is expressed by R(t, p) or A(t, p),
whose weighted terms λi[gi]Ti[g′

i] represent parametric sets of ni = |[gi]Ti[g′
i]|

instances of t, that withdraw/add λi tokens from/to p. We need a method to
derive the enabling degree of such instances, by possibly splitting terms with
ni > 1 into subterms denoting instances with same enabling degree.

Let Fi = [gi]Ti[g′
i] be one such term. Due to symmetries, for each place p′ ∈•t

we just have to evaluate the arc function I[p′, t] on an arbitrary element of the
parametric set Fi. This operation corresponds to a composition of two elements
of L: I[p′, t]◦Tri, where Tri is a cardinality-1 symbolic tuple representative of Fi.
This particular composition is supported by the SNexpression tool and results
in an element of L.

Definition 4 (Composition). Given l1 and l2 in L where l2 has constant size
equal to 1, the composition l1 ◦ l2 is defined as l1 ◦ l2(c) = l1(l2(c)); where l1 is
evaluated on the single element in the (multi)set returned by l2(c).

The representative tuple Tri has the same co-domain as Fi and domain De,
which may be equal to D of Fi or be extended. If ni = 1 the representative tuple
Tri coincides with [gi]Ti[g′

i]. Otherwise it is defined as [gi]T ′
i [g

′′
i], according to

Table 2, which maps Ti components to the corresponding T ′
i ones; a conjunction

of additional predicates may be introduced. The type of class-functions on the
first row is the only admitted in constant-size tuples. Symbols ch are new vari-
ables (index h must exceed the number of repetitions of C in D) that occur only
once in Tri. These symbols cause an extension of the original domain.

Table 2. Syntactical rules to derive a representative tuple

Ti component f , |f [g′
i]| = 1 S SCk

⋂
w∈A S − cw SCk

⋂
w∈A S − cw

T ′
i component f ch ch ch ch

g′′
i = g′

i ∧ . . . - - ch ∈Ck
∧

w∈A ch �= cw ch ∈Ck
∧

w∈A ch �= cw

As an example, consider 〈S − c1 ∩S − c2, c1〉[c1 �= c2], with domain C2. Its
representative, with domain C3, is 〈c3, c1〉[c1 �= c2 ∧ c1 �= c3 ∧ c2 �= c3].

The following property formalizes the notion of representative tuple:

42 M. Beccuti et al.

Property 4. Let c′ ∈ De, and let c′
D ∈ D denote the projection on D of c′

– ∀c′ ∈ De : Tri(c′) ∈ [gi]Ti[g′
i](c

′
D);

– ∀c ∈ D : [gi]Ti[g′
i](c) =

⋃
c′∈De, c′

D=c Tri(c′).

The composition I[p′, t] ◦ Tri results in
∑

j λjFj , Fj = [gj]Tj [g′
j]. If this

summation contains a single term then λ1 is the coefficient to be used as divisor
of x[p′], in the formal expression of the enabling degree of t. Otherwise it can
be rewritten2 so that its terms are pairwise disjoint (Fj1 ∩ Fj2 ≡ ∅), and guards
[g′

j] are either equal or mutually exclusive.
We can thus partition the summation into subsums

∑
j1

+
∑

j2
. . . of terms

characterized by having the same guard, i.e., (
∑

jh
λjh [gjh]Tjh)[g′

h]. The guard
of each subsum (that, we recall, is a function cd(t) → cd(t)) identifies a subset
of t’s instances that require the same number λjh tokens of a color cjh from
place p′, so that the enabling degree (w.r.t. input place p′) can be expressed
as: x[p′]/λ∗

h, λ∗
h = max({λjh}). These guards are applied as filters to split the

parametric set Fi of t’s instances, into subsets with constant enabling degree
(w.r.t. p′): formally λiFi �→ λi(

∑
h[g′

h ∧ gi]Ti[g′
i]).

By repeatedly applying the procedure on the obtained subterms on the
remaining places of •t, we finally get the SODE expression for Fi, that will take
the form: λi

∑
h nihωteih(x), where eih(x) = minp′∈•t(x[p′]/λ∗

ih
),

∑
h nih = ni.

Example. Let us illustrate the procedure on the Botnet model. When building
the SODE of place 〈NoConBotN , c ∈ N, l ∈ Loc〉 all the connected transitions
should be considered: they are shown in Fig. 2. Let us consider only one of
them: InitInf[l �=l′]: in Table 1 we find the expression for R((InitInf[l �=l′], c, c

′ ∈
I, c′′ ∈ P, l, l′), (NoConBotN , c ∈ N, l ∈ Loc)), namely 〈c, SI , SP , l, S − l〉[c ∈
N]. The last term in the SODE of NoConBotN originates from this expres-
sion which represents |I||P |(|Loc| − 1) transition instances. A representa-
tive tuple for it is: 〈c, c′, c′′, l, l′〉[c ∈ N, c′ ∈ I, c′′ ∈ P, l �= l′]; to com-
pute its enabling degree we need to know how many tokens are required in
each input place (ActiveBotP and NoConBotN) to ensure its enabling. We
already have the number of tokens (of color 〈c ∈ N, l ∈ Loc〉) required in
NoConBotN since it is the coefficient of the considered term in R that is 1;
the multiset of tokens required in ActiveBotP by the representative instance
of InitInfl �=l′ can be computed by performing the composition 〈c′′, l′〉[c′′ ∈
P] ◦ 〈c, c′, c′′, l, l′〉[c ∈ N, c′ ∈ I, c′′ ∈ P, l �= l′] resulting in 〈c′′, l′〉[c′′ ∈ P], so
it is only one token, hence the enabling degree is e(x, InitInf[l�=l′], c, c

′ ∈ I, c′′ ∈
P, l, l′) = min(x(NoConBotI , c, l), x(ActiveBotP , c

′′, l′)). Similar arguments apply
to InitInf[l=l′]. In the other terms of the SODE the min function does not
appear because the corresponding transitions have only one input place: for each
of them the procedure illustrated above indicates that only one colored token is
required by the input arc function composed with the representative tuple (so
the divisor in the enabling degree formula is simply 1).

2 In the SNexpression implementation there is an option to enforce such rewriting.

Deriving SODEs from SSNs Without Unfolding 43

4 Experimental Results

In this section we report some experimental results showing the effectiveness
of the proposed method. All the experiments are performed using a prototype
implementation which combines: (1) GreatSPN [1] to draw the model and to
generate R scripts encoding the ODE systems derived by the unfolded net; (2)
SNexpression [6], a java tool, to compute and support the user into the creation
of the SODE system applying the approach presented in this paper; (3) the R
framework to solve the ODE systems (i.e. deSolve package).

The experiments consisted in (1) generating and solving the SODE system
using the new approach and (2) unfolding the SSN model to evaluate the cost of
this operation, which is the dominating cost of the method [4] as |Loc| increases,
and compare the results obtained from the ODE system of the unfolded model
against those obtained from the SODE system.

The SODE system and the reduced ODE system generated with the method
in [4] have the same number of equations, however the equations may not be
identical because the new method may group homogeneous transition instances.
In the Botnet model the equation associated with NoConBotN has one term
representing |Loc| − 1 terms in the corresponding equation from the unfolding.
As a consequence the number of terms in the ODE system grows linearly with
|Loc| while in the SODE it is constant.

We also compared the results obtained by solving the SODE system with
those obtained from the ODE system of the unfolded model when the initial
marking is that in Eq. 1: using the R function lsoda() for numerically solving the
systems, the difference between the computed solutions is smaller than 1.0e−11.

The SODE system comprises 7 equations (the number of places in the par-
tially unfolded net is 16 but 9 of them are always empty) and the total number
of terms is 28. The procedure to derive the seven SODE from the net structure
takes slightly less than one second (including the initial partial unfolding) and
does not depend on |Loc|. In Table 3 the number of terms and equations of the
ODE system obtained from the unfolded net and the reduction ratio achieved
when the SODE system is adopted are shown. The fourth and fifth column con-
tain the execution time required to solve the ODE and the SODE system on
a 2.50 GHz Intel i3-3120M processor with 4 GB of RAM. In Table 4 the time
required by the unfolding step is shown as a function of |Loc|; it was not pos-
sible to generate the unfolded model for |Loc| = 200 for insufficient memory.
From these results we can conclude that the SODE approach is effective and
overcomes the limitations of the methods that require the complete unfolding.

44 M. Beccuti et al.

Table 3. ODE vs. SODE system size

|Loc| Num. of terms Mean solution time (sec.)

ODE ODE/SODE ODE SODE

1 42 (11 eq.) 2.511 (1.57) 0.3790 0.0846

10 600 (110 eq.) 21.43 (15.7) 38.8110 0.2381

20 1600 (220 eq.) 57.14 (31.43) 572.1798 0.2920

50 7000 (550 eq.) 250 (78.58) >4 h 0.2479

Table 4. Unfolding time.

|Loc| Unfolding (sec.)

10 2.484

50 13.219

100 43.949

150 320.979

200 Out of memory

5 Conclusions and Future Work

In this paper we have proposed a new approach for generating a reduced set
of ODE approximating the dynamic behavior of a SSN model: this is based
on the observation that, due to the model symmetries, groups of equivalent
equations, generated from the unfolded model could be substituted by a unique
representative [4] so that the reduced system could be solved more efficiently.

The novelty of the present paper consists in the ability to automatically
derive a Symbolic ODE for each group of equivalent ODE without ever com-
puting the (complete) unfolding of the SSN. The new method is based on a
recently developed extension of a symbolic calculus for the computation of SSN
structural properties and its implementation in the SNexpression tool. In the
paper the steps required to generate the system of SODE are defined in details.
Some preliminary experimental results are reported to compare the new method
with a previous method based on the model unfolding. The results have been
obtained through a prototype implementation which combines different tools
as GreatSPN, SNexpression and the R framework. The performance improve-
ment observed on a relatively simple example may lead to substantial saving
in more complex cases with good symmetric structure (large color classes with
a few static subclasses). The complete implementation of the whole automatic
procedure for generating the system of SODE of a SSN model is in progress.

The proposed method relies on the specific way of modeling symmetric sys-
tems provided by the SSN formalism. It is not straightforward to extend it to
other formalisms that allow to express symmetries at the level of the model syn-
tax, in some cases this may be achieved by showing a correspondence between
formalism constructs: this is an interesting topic for future work.

Another foreseen evolution is to extend our approach for cases in which the
deterministic approximation is not suited. In particular we will investigate how to
combine SSN formalism with the diffusion approximation proposed by Kurtz [9]
in which the deterministic process is replaced by the Ito’s process.

Acknowledgments. This work is original and the contribution of G. Franceschinis
was supported by the Università del Piemonte Orientale. The work of M. Beccuti was
supported by Fondazione CRT for the project Experimentation and study of models for

Deriving SODEs from SSNs Without Unfolding 45

the evaluation of the performance and the energy efficiency of the Competence Center
for Scientific Computing at the Università di Torino.

References

1. Baarir, S., Beccuti, M., Cerotti, D., De Pierro, M., Donatelli, S., Franceschinis, G.:
The GreatSPN tool: recent enhancements. ACM SIGMETRICS Perf. Eval. Rev.
36(4), 4–9 (2009). Special Issue on Tools for Performance Evaluation

2. Beccuti, M., Bibbona, E., Horvath, A., Sirovich, R., Angius, A., Balbo, G.: Anal-
ysis of Petri net models through stochastic differential equations. In: Ciardo, G.,
Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 273–293. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07734-5 15

3. Beccuti, M., Capra, L., De Pierro, M., Franceschinis, G., Pernice, S.: Deriving
symbolic ordinary differential equations from Stochastic Symmetric Nets without
unfolding. Technical report TR-INF-2018-07-03-UNIPMN, DiSIT, Università del
Piemonte Orientale, Alessandria, Italy (2018)

4. Beccuti, M., et al.: From symmetric nets to differential equations exploiting model
symmetries. Comput. J. 58(1), 23–39 (2015)

5. Capra, L., De Pierro, M., Franceschinis, G.: A high level language for structural
relations in well-formed nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005.
LNCS, vol. 3536, pp. 168–187. Springer, Heidelberg (2005). https://doi.org/10.
1007/11494744 11

6. Capra, L., De Pierro, M., Franceschinis, G.: A tool for symbolic manipulation
of arc functions in symmetric net models. In: Proceedings of the 7th International
Conference on Performance Evaluation Methodologies and Tools, ValueTools 2013,
Torino, Italy, pp. 320–323. ICST, Brussels (2013)

7. Capra, L., De Pierro, M., Franceschinis, G.: Computing structural properties of
symmetric nets. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015. LNCS, vol.
9259, pp. 125–140. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22264-6 9

8. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed
coloured nets for symmetric modelling applications. IEEE Trans. Comput. 42(11),
1343–1360 (1993)

9. Kurtz, T.G.: Strong approximation theorems for density dependent Markov chains.
Stoch. Process. Appl. 6(3), 223–240 (1978)

10. Liu, F., Heiner, M., Gilbert, D.: Coloured Petri nets for multilevel, multiscale and
multidimensional modelling of biological systems. Brief. Bioinf. 11 (2017)

11. Molloy, M.K.: Performance analysis using stochastic Petri nets. IEEE Trans. Com-
put. 31(9), 913–917 (1982)

12. E. V. Ruitenbeek and W. H. Sanders. Modeling peer-to-peer botnets. In Proceed-
ings of the 5th International Conference on Quantitative Evaluation of Systems),
QEST 08, Washington, DC, USA, pp. 307–316. IEEE CS (2008)

13. Silva, M.: Individuals, populations and fluid approximations: a Petri net based
perspective. Nonlinear Anal.: Hybrid Syst. 22, 72–97 (2016)

14. Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for Markovian process
algebra. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp.
380–394. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32940-
1 27

https://doi.org/10.1007/978-3-319-07734-5_15
https://doi.org/10.1007/11494744_11
https://doi.org/10.1007/11494744_11
https://doi.org/10.1007/978-3-319-22264-6_9
https://doi.org/10.1007/978-3-319-22264-6_9
https://doi.org/10.1007/978-3-642-32940-1_27
https://doi.org/10.1007/978-3-642-32940-1_27

Mean Value Analysis of Closed
G-Networks with Signals

Jean-Michel Fourneau(B)

DAVID, UVSQ, Univ. Paris-Saclay, Versailles, France
Jean-Michel.Fourneau@uvsq.fr

Abstract. We consider a closed network of queues with external signals.
These signals trigger customer between queues and they arrive following
a rate which depends on the number of active customers in the station.
We consider three types of stations: they may have one server, an infinite
number of servers or no servers at all. In that case, the customers behave
like inert customers and they only react to signal. We prove that, under
irreducibility conditions, such a network has a stationary distribution
which is multiplicative. As the network is finite, all the states are not
reachable and the distribution is known up to a normalization constant.
To avoid the computation of this constant, we also prove a mean value
analysis algorithm which allows to determine the average queue size and
the average waiting time without computing the probabilities. We also
present some extensions of the model.

1 Introduction

This paper generalizes in many directions the result obtained by Gelenbe in [12]
where G-networks with trigger signals were introduced and were shown to have
a product form steady-state distribution. First, we consider a closed network
with customers and three types of stations: single server stations, infinite server
stations and stations without server. Second, the signals arrive from the outside
and are routed with a state dependent probability to a station in a the network.
A signal triggers a customer movement from the station where it is received to
any other queue in the network. Despite these uncommon features, we prove
that such a network has a product form steady-state distribution. We also prove
an “arrival see time average” property [ASTA] to relate the state seen by a
incoming customer (due to routing or trigger) with the steady-state distribution
for a network with a customer less. This property allows to develop a MVA like
algorithm to compute the average queue length and the expected sojourn time.

G-networks of queues with signals have received a considerable attention
since the seminal paper by Gelenbe [11] in 1991 where he introduced networks
with positive and negative customers. A negative customer deletes a positive
customer if there is any in the queue at its arrival. Then it disappears. If the
queue is empty, it also disappears immediately. A negative customer is never kept
in the queue. It is now seen as a signal which deletes a customer. Such a network
c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 46–61, 2018.
https://doi.org/10.1007/978-3-030-02227-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_4&domain=pdf

Mean Value Analysis of Closed G-Networks with Signals 47

with positive and negative customers are associated with models of Random
Neural networks [13] and are therefore suitable to model control algorithms.
Since then, many papers on networks of queues with signals have been published
(see for instance a annotated bibliography [5]). It is worthy to remark that most
of the results are obtained for open networks of queues (see [6] for one notable
exception). Indeed, most of the signals studied so far implies the destruction of
customers. In a closed network, such a behavior leads to an empty network after
some time. Some numerical algorithms have been designed to solve explicitly
the flow equations which are more general than the ones we get for Jackson or
Gordon networks of queues [9]. For closed networks of queues, one must also
compute the normalization constant. To avoid this computation, we develop an
exact Mean Value Analysis approach. We prove for the first time, to the best of
our knowledge, an ASTA property for a network with signals. It is well-known
that in a closed Gordon Newell network, an arriving customer sees the steady-
state distribution of the network with one customer less. Such a question was not
considered so far for closed network of generalized queues with restart or trigger
signals. The answer we provide here allows to compute the average queue size
without computing the steady-state distribution: this is an extension of the well-
known MVA algorithm [23].

Recently G-network with triggers have been proposed to model data process-
ing and energy consumption [10,14–16,18]. In this model, denoted as Energy
Packet Networks (EPN in the following), we can represent the flow of inter-
mittent sources of energy like batteries and solar or wind based generators and
their interactions with IT devices consuming energy like sensors, cpu, storage
systems and networking elements. The main idea of EPNs is to represent energy
in terms of discrete units called Energy Packets (or EP). Each EP represents
a certain number of Joules. EP are produced by intermittent source of energy
(solar, wind). Thus, the flows of EP is associated with random processes. EPs
can be stored in a battery from which they can leak after a random delay. They
also interact with devices which need energy to perform some works. Again this
interaction is associated with some random processes. Note that a EPN is not
only a theoretical concept. A more practical approach where power packets are
really implemented as a pulse of current characterized by an intensity, a voltage
and a time duration had been presented in the electrical engineering literature
(see for instance [24]. These packets are associated with a protocol, control infor-
mation and some hardware for switching and routing.

In the original Energy Packet Network model presented for instance in [17], we
model the energy as EPs and the workload ad Data Packets (DPs). To transmit
a DP between two nodes, one must use one EP. In a G-network, this is modeled
with two types of queues: a battery queue and a workload queue (see Fig. 1). EP
are stored in a battery queue while DP are queued before service in the workload
queue. Each node in the network is associated with a queue to store the DP and a
battery (the EP queue) to keep the energy. The EPs are sent to the DP queue and
triggers the customer movement between workload queues in the network. When
an EP arrives at a DP queue which is not backlogged, the energy is lost.

48 J.-M. Fourneau

Data Packets

Energy Packets

Leakage

Data Transmission

Fig. 1. The classical EP network model: 2 types dedicated respectively to EP and DP,
the migration of a DP is provoked by the movement of an EP.

We hope that the theoretical results we provide in this paper will be useful
for that research direction. This paper is merely theoretical as we prove that
the queueing network has a product form steady-state distribution if the asso-
ciated Markov chain is ergodic. The proof of the product form result is based
on the resolution of the global balance equation. One may use other theoretical
approaches to establish the result. But it not clear that the CAT and RCAT
theorems proved by Harrison [1,19,21] are easier here. G-networks have also
been modeled as networks of synchronized automata [4,7] and a proof based on
properties of tensors has been proposed associated with this representation. We
think that the proof we present here are easier. To simplify the presentation the
proof is postponed in an appendix.

The technical part of the paper is organized as follows. In the next section
we present the model and we state that the network of queues has a product
form steady state distribution. Many details of the proof are postponed into an
appendix for the sake of readability. As the network is closed and the number
of customers is constant, not all the states are reachable and the distribution
is known up to a normalization constant. To avoid the computation of this
constant, we develop in Sect. 3 a mean value analysis algorithm to obtain the
mean queue length and the average waiting time. This algorithm requires that
we relate the state seen by an arriving customer or a signal and the steady-state
distribution. In Sect. 4, we present some possible extensions of these results and
an example of a closed network with energy packets and data packets.

2 Description of the Model

We investigate generalized networks with an arbitrary number N of queues,
one class of customers and one type of signals (i.e. triggers as introduced by
Gelenbe in [12]. We consider that the networks contains three types of station:
stations with one server (in set F), stations with an infinite number of servers

Mean Value Analysis of Closed G-Networks with Signals 49

(in set I) and stations without server (in set Z). In a station without any server,
the customers do not receive service but they react to the signal. The stations
received customers which are waiting for service, are served before migration to
another queue, but they can also react to a signal as usual with G-networks of
queues with signals. We consider here a trigger signal defined by Gelenbe in [12].
At its arrival to a non empty queue (say i) a trigger moves a customer to queue
j according to routing matrix T and it disappears immediately. If queue i is
empty, the trigger signal vanishes instantaneously. Triggers are never queued.
Triggers arrive to the system following to a Poisson process with rate λt and
they are routed to station i with a state dependent probability which will be
detailed in the following paragraphs. Note that matrix T is stochastic but we
do not require it is irreducible.

In most of the papers in the literature, G-networks with signals have an open
topology because many signals imply the deletion of customers. Here we assume
that the signals are external and only implies customer movement. Thus, we
have a balance for the customers in the queues. If the queue is empty, it remains
empty after reception of a trigger. If there is a backlog, we still have the same
total number of customers after the reception of a signal. Therefore it is possible
to consider a closed network where the total number of customers is constant.
Let K be this number of customers in the network.

Let us turn back to the routing of triggers to queues. Let x = (x1, . . . , xN)
be the state of the system where xi is the number of customers in station i. Thus
K = ||x||1. We consider the following quantity:

S(x) =
∑

i∈F
1xi>0 +

∑

i∈I
xi +

∑

i∈Z
xi

The probability that a trigger entering the network of queues is routed to queue
i is:

– 1xi>0

K if i is station with one server,
– xi

K if i is an infinite server station,
– xi

K if i is station without server,

and it vanishes before joining a station with probability K−S(x)
K . Indeed we have

S(x) ≤ K and these probabilities are all well-defined. The remaining of the
model is more classical. Service times are exponentially distributed with rate μi

for a server at station i (for i in F and I). At the completion of their service, the
customers move between queues according to routing matrix R. Note that this
matrix is initially defined as a rectangular matrix because it models the routing
between a queue in F ∪ I to a queue in F ∪ I ∪ Z. We complete this matrix to
obtain a square matrix with null rows corresponding to nodes in Z. Note that
R is not stochastic as it contains some null rows.

Assumption 1. We assume in the following that:

– λt > 0.
– μj > 0 for all j in I ∪ F .

50 J.-M. Fourneau

– Consider the directed graph built as follows: the set of nodes is the set of
stations and there exists an arc from node i to node j if either R[i, j] > 0 or
T[i, j] > 0. Let DG be this directed graph. We assume that DG is strongly
connected,

Clearly (x)t is a continuous time Markov chain. It has a finite number of
states. As we assume that the directed graph of the customer movement (due
to signals or routing of customers after their service) is strongly connected, it is
also irreducible. Therefore it is ergodic and the steady-state distribution exists.
The following result characterizes this distribution.

Theorem 1. Let K be the number of customers in the network. Under Assump-
tions 1, the Markov chain (x)t has the following steady-state distribution:

π(K,x) =
1

G(K)
1(∑i xi=K)

∏

i∈F
ρxi

i

∏

i∈I

ρxi
i

xi!

∏

i∈Z

γxi
i

xi!
, (1)

where ρi and γi are defined by the flow equations: for all queue i in F and in I:

ρi =

∑
j∈F∪I μjρjR[j, i] +

∑
j∈F∪I

λt

K ρjT[j, i] +
∑

j∈Z
λt

K γjT[j, i]

μi + λt

K

, (2)

and finally for all queue i in Z

γi =

∑
j∈F∪I KμjρjR[j, i] +

∑
j∈F∪I λtρjT[j, i] +

∑
j∈Z λtγjT[j, i]

λt
. (3)

Proof: The proof of product form is based on the analysis of the Chapman
Kolmogorov equation for steady-state. For the sake of readability we now give the
equation and some explanations for several terms in the equation. The analysis
is then postponed in an appendix.

Let us first give the global balance equation. In the following ej will be a
vector the components of which are all equal to 0 except component j which is
equal to 1.

π(K,x)[
∑

i∈F
μi1xi>0 +

∑
i∈I

μixi + λt(
∑

i∈F
1xi>0

K
+

∑
i∈I∪Z

xi

K
)]

=
∑

i∈F

∑
j∈F∪I∪Z

μiπ(K,x + ei − ej)R[i, j]1xj>0 [1]

+
∑

i∈I

∑
j∈F∪I∪Z

xiμiπ(K,x + ei − ej)R[i, j]1xj>0 [2]

+
∑

i∈F

∑
j∈F∪I∪Z

π(K,x + ei − ej)T[i, j]1xj>0λ
t 1xi+1>0

K
[3]

+
∑

i∈I

∑
j∈F∪I∪Z

π(K,x + ei − ej)T[i, j]1xj>0λ
t xi + 1

K
[4]

+
∑

i∈Z

∑
j∈F∪I∪Z

π(K,x + ei − ej)T[i, j]1xj>0λ
t xi + 1

K
. [5]

(4)

Mean Value Analysis of Closed G-Networks with Signals 51

The first two terms of the right hand side describe the services in stations
in F and I. Remember that in stations of Z the services do not occur. The last
three terms describe the effect of trigger signals arriving at queue i with a state
dependent probability and moving a customer to another queue somewhere else
in the network (say j). The left hand side of the equation contains the description
of service with state dependent service rate for stations in I and in F . The last
two terms of the l.h.s. describe the arrival of a trigger signal. Note that we
avoid to take into account null transitions on both sides of the balance equation.
Remember that some triggers may vanish without any effect. ��

Once the theorem has been established, we still have to prove is the existence
of the rates ρi (for i in F and I) and γj (for j in Z). We begin with a technical
lemma.

Lemma 1 (Stochastic). For all queue j in F ∪ I ∪ Z, matrix M defined in
Eq. 5 is stochastic.

M[j, i] =
μj1j∈I∪F

μj1j∈I∪F + λt/K
R[j, i] +

λt/K
μj1j∈I∪F + λt/K

T[j, i]. (5)

Furthermore matrix M is irreducible.

Proof: Consider an arbitrary index j in I ∪ F .

M[j, i] =
μj

μj + λt/K
R[j, i] +

λt/K
μj + λt/K

T[j, i].

And rows j of matrix R and T are distributions of probability. Therefore as a
convex sum of distributions of probability the i-th row of M is a distribution of
probability.

Now assume that j is in Z. We have:

M[j, i] = T[j, i].

As matrix T is stochastic by assumption, the i-th row of M is also a distribution
of probability. Finally, all rows of M are distributions of probability and therefore
matrix M is stochastic.

Now remember that DG is strongly connected. The adjacency matrix A of
directed graph DG is defined by

A[i, j] = 1R[i,j]>0 OR 1T[i,j]>0

As λt and μj (for all j in I ∪ F) are positive, we also have:

A[i, j] = 1M[i,j]>0

Matrix M is irreducible because it is associated with adjacency matrix A which
is strongly connected by the third part of Assumptions 1.

Property 1 (Existence). Under Assumptions 1, the system of fixed point equa-
tions (Eqs. 2 and 3) has a solution.

52 J.-M. Fourneau

Proof: let us denote by v the vector defined by
[
v(i) = ρi(μi + λt/K) i ∈ F ∪ I,
v(i) = γiλ

t/K i ∈ Z.

After substitution in Eq. 2, we have for all i in I ∪ F :

v[i] =
∑

j∈F∪I
v[j]M[j, i] +

∑

j∈Z
v[j]T[j, i]. (6)

Similarly for Eq. 3 we get for all i in Z:

v[i] =
∑

j∈F∪I
v[j]M[j, i] +

∑

j∈Z
v[j]T[j, i]. (7)

Thus, combining both equations in vector form, taking into account that
M[j, i] = T[j, i] for all j in Z:

v = vM. (8)

The previous lemma states that matrix M is stochastic and irreducible. Thus
there exists an eigenvector associated with eigenvalue 1 and v is an arbitrary
positive multiple of this eigenvector. Remember that for a closed queuing net-
work, we can consider any multiple of the eigenvector as the unique solution for
the probability distribution is obtained after normalization. ��

As usual it remains to compute G. A natural idea consists in a generalization
of the convolution algorithm proposed by Buzen [2], to networks of queues with
signals. In the following we develop another idea which allows to compute the
expected queue length and average waiting time without computing the normal-
ization constraint.

3 Mean Value Analysis

We have to prove an arrival theorem to relate the probability seen by an arriving
customer to the steady-state probability (the so-called ASTA property). We
follow the approach presented by Harrison and Patel in [20]. Let us introduce
some additional notation. Let πAi(K,x) be the probability that an arriving
customer at queue i sees state x. This is due to a transition from state x + ej
to state x + ei . In state x the total number of customers is K − 1. We begin
with some technical properties.

Property 2. Due to the product form solution for the steady-state distribution,
we have, for all state x:

G(K)π(K,x + ej) = G(K − 1)π(K − 1,x)aj ,

where: ⎡

⎢⎢⎢⎢⎣

aj = ρj , if j ∈ F

aj = ρj

xj+1 , if j ∈ I

aj = γj

xj+1 , if j ∈ Z

Mean Value Analysis of Closed G-Networks with Signals 53

Proof: Assume first that j ∈ F . Then

G(K)π(K,x + ej) = 1(1+∑
i xi=K)ρ

xj+1
j

∏

i∈F,i �=j

ρxi
i

∏

i∈I

ρxi
i

xi!

∏

i∈Z

γxi
i

xi!

Thus:

G(K)π(K,x + ej) = 1(∑i xi=K−1)ρj

∏

i∈F
ρxi
i

∏

i∈I

ρxi
i

xi!

∏

i∈Z

γxi
i

xi!
= ρjG(K − 1)π(K − 1,x)

The proof is similar for j ∈ I and j ∈ Z. It is omitted for the sake of conciseness.
��

Theorem 2 (Arrivals See Time Average). An arriving customer at queue
i sees the steady-state distribution in a network with one customer less:

πAi(K,x) = π(K − 1,x)

Proof: The process is stationary. Therefore, πAi(K,x) can be expressed as the
ratio of the expected number of transitions giving an arrival to node i at state
x (i.e. Ai(x)) and the expected number at any internal state y, i.e.

∑
y Ai(y):

πAi(K,x) =
Ai(x)∑
y Ai(y)

. (9)

A customer arriving at queue i sees state x during a transition from state x+ej
to state x + ei . This transition occurs after a service completion or after the
reception of a trigger signal at station j. Remember that the service rates or the
trigger routing probability may be state dependent. Thus:

Ai(x) =
∑

j∈F π(K,x + ej)μjR[j, i]

+
∑

j∈I π(K,x + ej)μj(xj + 1)R[j, i]

+
∑

j∈F π(K,x + ej)
λt

K
T[j, i]

+
∑

j∈I∪Z π(K,x + ej)
λt(xj + 1)

K
T[j, i].

Reordering the summations, we get:

Ai(x) =
∑

j∈F π(K,x + ej)
[
μjR[j, i] +

λt

K
T[j, i]

]

+
∑

j∈I π(K,x + ej)(xj + 1)
[
μjR[j, i] +

λt

K
T[j, i]

]

+
∑

j∈Z π(K,x + ej)
λt(xj + 1)

K
T[j, i].

54 J.-M. Fourneau

Using the definition for matrix M we obtain after substitution:

Ai(x) =
∑

j∈F π(K,x + ej)
[
μj +

λt

K

]
M[j, i]

+
∑

j∈I π(K,x + ej)(xj + 1)
[
μj +

λt

K

]
M[j, i]

+
∑

j∈Z π(K,x + ej)
λt(xj + 1)

K
M[j, i].

(10)

Let us now turn back to Property 2 from which we easily obtain:

π(K,x + ej) = π(K − 1,x)aj
G(K − 1)

G(K)
,

which is substituted into Eq. 10 to get:

Ai(x) =
G(K − 1)

G(K)

∑
j∈F π(K − 1,x)aj

[
μj +

λt

K

]
M[j, i]

+
G(K − 1)

G(K)

∑
j∈I π(K − 1,x)(xj + 1)aj

[
μj +

λt

K

]
M[j, i]

+
G(K − 1)

G(K)

∑
j∈Z π(K − 1,x)aj

λt(xj + 1)
K

M[j, i].

Taking into account the definition of aj for the various queues and the definition
of v[i], we get after substitution:

Ai(x) =
G(K − 1)

G(K)

∑
j∈F π(K − 1,x)v[j]M[j, i]

+
G(K − 1)

G(K)

∑
j∈I π(K − 1,x)(xj + 1)v[j]M[j, i]

+
G(K − 1)

G(K)

∑
j∈Z π(K − 1,x)v[j]M[j, i]

Thus,

Ai(x) =
G(K − 1)

G(K)
π(K − 1,x)

∑

j∈F∪I∪Z
v[j]M[j, i].

Remember that v is the eigenvector of matrix M. Thus,

Ai(x) =
G(K − 1)

G(K)
π(K − 1,x)v[i]. (11)

Mean Value Analysis of Closed G-Networks with Signals 55

Combining this last equation and Eq. 9, we finally get

πAi(K,x) = π(K − 1,x).

and the proof is complete. ��
We now present the algorithm to compute de average queue size and the

expected sojourn time in each queue. It is similar to a classical MVA algorithm for
a single class closed queueing network as detailed in [2,20]. Let us first introduce
some notation:

– Ti(K) is the sojourn time at queue i when the number of customers in the
network is K,

– Ni(K) is the average queue size at queue i when the number of customers in
the network is K,

– Λi(K) is the arrival rate at queue i when the number of customers in the
network is K.

The first step is to define an equivalent service time. Remember that some sta-
tions (i.e. in Z) do not have a server and in some stations the signals trigger
customers movement. Let Si be the average equivalent service time.

Si =
1

μi1i∈I∪F + λt

K

Little equation give two sets of equations as in the classical MVA approach:

Ni(K) = Λi(K)Ti(K)

And:

K = Λi(K)(
∑

j

Tj(K)
v[j]
v[i]

)

Finally, the theorem on the state seen by an arriving customer allows to relate
the sojourn time to the average queue size:

Ti(K) = (1 + Ni(K − 1))Si

These three sets of equations allow a computation for Ti(K), Ni(K) and Λi(K)
for all values of K beginning with K = 1. When K = 1, the quantities are
initialized with:

Ti(1) = Si, Λi(1) =
1

∑
j Sj

v[j]
v[i]

, Ni(1) =
Si∑

j Sj
v[j]
v[i]

.

��

56 J.-M. Fourneau

4 An Example and Some Possible Extensions

Let us first present a simple example (depicted in Fig. 2) to illustrate some
features of the model. The network is decomposed into two sub-networks which
are connected by the movement of customers provoked by signals. The first sub-
network is a ring containing queues labeled 1, 2 and 3. The second sub-network
is a tandem with two queues labeled 4, and 5. The signals arriving in the first
sub-network move a customer to queue 4 while they provoke a migration to
queue 1 when they arrive in the second sub-network.

1

2

3

4

5

Fig. 2. An example with a two sub-networks topology. The migrations of customers
provoked by signals are represented by a hatched lines with a dot to indicate the
destination.

Station 5 does not have any server. Therefore the customers accumulate until
the station receives a signal to move to station 1. Such a model was proposed
for the optimization of the Energy Packets arrival. Indeed, a very simple idea
is to provide energy to stations where packets are waiting. The trigger signal
(as mentioned in the introduction) represents EP which are needed to move the
customers to another part of the network (between the two sub-networks in the
example). The ordinary movements of customers based on matrix R are not
supposed to need energy (or at least the energy is insignificant).

We now propose some extensions of the model. First, one may replace the
external source of triggers by a sub-network of queues with positive and negative
customers as in Fig. 3. This is the original model we first consider and the fol-
lowing property explains how to decompose the model into two parts, the second
one being solved by Theorem1.

Property 3. As proved in [3], an open network of positive and negative cus-
tomers is quasi-reversible and the flows of signals (whatever they are) leaving
the network follow Poisson processes. Therefore we may add in the model of
Theorem1 an open subnetwork sending trigger signal to the closed sub-network
instead of assuming an external Poisson arrival of signals.

One may also consider stations with multiple servers. Here we only consider
stations with 0, 1 or an infinite number of servers. We have to find the associate

Mean Value Analysis of Closed G-Networks with Signals 57

routing probability which provides a product form. We also have to extend the
MVA algorithm to deal with these stations. Concerning the routing probabili-
ties of signals for stations without server, we have obtained preliminary results
showing that it is possible to have much more general routing functions for these
stations. We hope to provide more general results in the near future.

Fig. 3. Mixed topology. The signals are generated by the first sub-network (on the
left) and sent to the closed subnetwork (on the right). The first sub-network is open
and it contains positive and negative customers. Positive customers (resp. negative
customers) movements are represented by solid lines (resp. doted lines). The emission
of trigger signals is represented by hatched lines.

Finally, we have considered here the single class version of the problem.
G-networks with multiple classes of customers and signals have already been
studied in the literature (for instance [8] for Processor Sharing queues). We
think that it is possible to extend both the proof of product form and arrival
theorem for network with multiple classes of customers and signals, at least for
Processor Sharing queues and Infinite Server queues.

5 Concluding Remarks

We obtained one of the first closed form expression for closed networks of queues
with signals. It is also to the best of our knowledge the first time that an arrival
theorem for a closed network with signals is proved. This allows to generalize
the MVA approach for networks with more complex movement of customers.
The result rises many interesting theoretical questions for closed networks with
triggers, signals, or more general synchronizations of queues (for instance, the
closed version of networks with load balancing presented in [22]). We want to
address some of these problems in the near future.

58 J.-M. Fourneau

Appendix: Proof of Theorem1

Consider again the global balance equation at steady-state.

π(K,x)[
∑

i∈F
μi1xi>0 +

∑
i∈I

μixi + λt(
∑

i∈F
1xi>0

K
+

∑
i∈I∪Z

xi

K
)]

=
∑

i∈F

∑
j∈F∪I∪Z

μiπ(K,x + ei − ej)R[i, j]1xj>0 [1]

+
∑

i∈I

∑
j∈F∪I∪Z

xiμiπ(K,x + ei − ej)R[i, j]1xj>0 [2]

+
∑

i∈F

∑
j∈F∪I∪Z

π(K,x + ei − ej)T[i, j]1xj>0λ
t 1xi+1>0

K
[3]

+
∑

i∈I

∑
j∈F∪I∪Z

π(K,x + ei − ej)T[i, j]1xj>0λ
t xi + 1

K
[4]

+
∑

i∈Z

∑
j∈F∪I∪Z

π(K,x + ei − ej)T[i, j]1xj>0λ
t xi + 1

K
[5]

Divide both sides by π(x) and take into account the multiplicative solution
proposed in Eq. 1. As the probability depends on the type of station, we have
to decompose the summation into three parts, based on the set of stations we
consider. We also notice that 1xi+1>0 = 1 and that xi1xi>0 = xi and we simplify
some terms.

∑
i∈F μi1xi>0 +

∑
i∈I μixi + λt(

∑

i∈F

1xi>0

K
+

∑
i∈I∪Z

xi

K
)

=
∑

i∈F

∑
j∈F μiρi/ρjR[i, j]1xj>0 [1]

+
∑

i∈F

∑
j∈I μiρi/ρjxjR[i, j] [2]

+
∑

i∈F

∑
j∈Z μiρi/γjxjR[i, j] [3]

+
∑

i∈I

∑
j∈F μiρi/ρjR[i, j]1xj>0 [4]

+
∑

i∈I

∑
j∈I μiρi/ρjxjR[i, j] [5]

+
∑

i∈I

∑
j∈Z μiρi/γjxjR[i, j] [6]

+
∑

i∈F

∑
j∈F ρi/ρjT[i, j]1xj>0λ

t 1
K

[7]

+
∑

i∈F

∑
j∈I ρi/ρjxjT[i, j]λt 1

K
[8]

+
∑

i∈F

∑
j∈Z ρi/γjxjT[i, j]λt 1

K
[9]

+
∑

i∈I

∑
j∈F ρi/ρjT(i, j)T[i, j]λt 1

K
[10]

Mean Value Analysis of Closed G-Networks with Signals 59

+
∑

i∈I

∑
j∈I ρi/ρjxjT[i, j]λt 1

K
[11]

+
∑

i∈I

∑
j∈Z ρi/γjxjT[i, j]λt 1

K
[12]

+
∑

i∈Z

∑
j∈F γi/ρjT[i, j]1xj>0λ

t 1
K

[13]

+
∑

i∈Z

∑
j∈I γi/ρjxjT[i, j]λt 1

K
[14]

+
∑

i∈Z

∑
j∈Z γi/γjxjT[i, j]λt 1

K
[15]

We exchange the role of indices i and j in all the terms of the r.h.s. and we
factorize the terms (1+4+7+10+13), (2+5+8+11+14), (3+6+9+12+15):

∑
i∈F μi1xi>0 +

∑
i∈I μixi + λt(

∑
i∈F

1xi>0

K
+

∑
i∈I∪Z

xi

K
)

=
∑

i∈F 1xi>01/ρi

[∑
j∈F∪I μjρjR[j, i] +

∑
j∈F ρjT[j, i]

λt

K

+
∑

j∈I ρjT[j, i]
λt

K
+

∑
j∈Z γjT[j, i]

λt

K

]

+
∑

i∈I xi/ρi

[∑
j∈F∪I μjρjR[j, i] +

∑
j∈F ρjT[j, i]

λt

K

+
∑

j∈I ρjT[j, i]
λt

K
+

∑
j∈Z γjT[j, i]

λt

K

]

+
∑

i∈Z xi/γi

[∑
j∈F∪I μjρjR[j, i] +

∑
j∈F ρjT[j, i]

λt

K

∑
j∈I ρjT[j, i]

λt

K
+

∑
j∈Z γjT[j, i]

λt

K

]
.

60 J.-M. Fourneau

The first and second term of the l.h.s. cancel with the first and second term of
the r.h.s. due to the first flow equation (i.e. Eq. 2). It remains:

λt
∑

i∈Z
xi

K =
∑

i∈Z xi/γi

[∑
j∈F∪I μjρjR[j, i] +

∑
j∈F ρjT[j, i]λt

K

∑
j∈I ρjT[j, i]λt

K +
∑

j∈Z γjT[j, i]λt

K

]
.

And this last equation is equivalent to the second flow equation for station in Z
(i.e. Eq. 3). And the proof is complete. ��

References

1. Balsamo, S., Harrison, P.G., Marin, A.: A unifying approach to product-forms in
networks with finite capacity constraints. In: Misra, V., Barford, P., Squillante,
M.S. (eds.) SIGMETRICS 2010, Proceedings of the 2010 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems,
pp. 25–36. ACM, New York (2010)

2. Bolch, G., Greiner, S., De Meer, H., Trivedi, K.: Queueing Networks and Markov
Chains. Wiley, Hoboken (1998)

3. Chao, X., Miyazawa, M., Pinedo, M.: Queueing Networks: Customers, Signals and
Product Form Solutions. Wiley, Hoboken (1999)

4. Dao Thi, T.H., Fourneau, J.M.: Stochastic automata networks with master/slave
synchronization: product form and tensor. In: Al-Begain, K., Fiems, D., Horváth,
G. (eds.) ASMTA 2009. LNCS, vol. 5513, pp. 279–293. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-02205-0 20

5. Do, T.V.: An initiative for a classified bibliography on G-networks. Perform. Eval.
68(4), 385–394 (2011)

6. Fourneau, J.M.: Closed G-networks with resets: product form solution. In: Fourth
International Conference on the Quantitative Evaluation of Systems (QEST 2007),
Edinburgh, UK, pp. 287–296. IEEE Computer Society (2007)

7. Fourneau, J.-M.: Product form steady-state distribution for stochastic automata
networks with domino synchronizations. In: Thomas, N., Juiz, C. (eds.) EPEW
2008. LNCS, vol. 5261, pp. 110–124. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-87412-6 9

8. Fourneau, J.M., Kloul, L., Quessette, F.: Multiple class G-networks with iterated
deletions. Perform. Eval. 42(1), 1–20 (2000)

9. Fourneau, J.M., Quessette, F.: Computing the steady-state distribution of G-
networks with synchronized partial flushing. In: Levi, A., Savaş, E., Yenigün, H.,
Balcısoy, S., Saygın, Y. (eds.) ISCIS 2006. LNCS, vol. 4263, pp. 887–896. Springer,
Heidelberg (2006). https://doi.org/10.1007/11902140 92

10. Fourneau, J.M., Marin, A., Balsamo, S.: Modeling energy packets networks in the
presence of failures. In: 24th IEEE International Symposium on Modeling, Anal-
ysis and Simulation of Computer and Telecommunication Systems, MASCOTS,
London, United Kingdom, pp. 144–153. IEEE Computer Society (2016)

11. Gelenbe, E.: Product-form queuing networks with negative and positive customers.
J. Appl. Prob. 28, 656–663 (1991)

https://doi.org/10.1007/978-3-642-02205-0_20
https://doi.org/10.1007/978-3-540-87412-6_9
https://doi.org/10.1007/978-3-540-87412-6_9
https://doi.org/10.1007/11902140_92

Mean Value Analysis of Closed G-Networks with Signals 61

12. Gelenbe, E.: G-networks with instantaneous customer movement. J. Appl. Prob.
30(3), 742–748 (1993)

13. Gelenbe, E.: G-networks: an unifying model for queuing networks and neural net-
works. Ann. Oper. Res. 48(1–4), 433–461 (1994)

14. Gelenbe, E.: Energy packet networks: ICT based energy allocation and storage. In:
Rodrigues, J.J.P.C., Zhou, L., Chen, M., Kailas, A. (eds.) GreeNets 2011. LNICST,
vol. 51, pp. 186–195. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33368-2 16

15. Gelenbe, E.: A sensor node with energy harvesting. SIGMETRICS Perform. Eval.
Rev. 42(2), 37–39 (2014)

16. Gelenbe, E., Ceran, E.T.: Energy packet networks with energy harvesting. IEEE
Access 4, 1321–1331 (2016)

17. Gelenbe, E., Ceran, E.T.: Central or distributed energy storage for processors with
energy harvesting. In: 2015 Sustainable Internet and ICT for Sustainability, Sus-
tainIT, pp. 1–3. IEEE (2015)

18. Gelenbe, E., Marin, A.: Interconnected wireless sensors with energy harvesting. In:
Gribaudo, M., Manini, D., Remke, A. (eds.) ASMTA 2015. LNCS, vol. 9081, pp.
87–99. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18579-8 7

19. Harrison, P.G.: Compositional reversed Markov processes, with applications to G-
networks. Perform. Eval. 57(3), 379–408 (2004)

20. Harrison, P.G., Patel, N.M.: Performance Modelling of Communication Networks
and Computer Architectures. Addison-Wesley, Boston (1993)

21. Harrison, P.: Turning back time in Markovian process algebra. Theor. Comput.
Sci. 290(3), 1947–1986 (2003)

22. Marin, A., Balsamo, S., Fourneau, J.: LB-networks: a model for dynamic load
balancing in queueing networks. Perform. Eval. 115, 38–53 (2017)

23. Reiser, M., Lavenberg, S.S.: Mean-value analysis of closed multichain queuing net-
works. J. ACM 27(2), 313–322 (1980)

24. Takahashi, R., Takuno, T., Hikihara, T.: Estimation of power packet transfer prop-
erties on indoor power line channel. Energies 5(7), 2141 (2012)

https://doi.org/10.1007/978-3-642-33368-2_16
https://doi.org/10.1007/978-3-642-33368-2_16
https://doi.org/10.1007/978-3-319-18579-8_7

Extending the Steady State Analysis
of Hierarchical Semi-Markov Processes

with Parallel Regions

Marco Biagi1(B), Enrico Vicario1, and Reinhard German2

1 Department of Information Engineering, University of Florence, Florence, Italy
{marco.biagi,enrico.vicario}@unifi.it

2 Department of Computer Science 7, University Erlangen-Nuremberg,
Erlangen, Germany

reinhard.german@fau.de

Abstract. Analysis of hierarchical semi-Markov processes with parallel
regions is a technique that evaluates steady-state probabilities of models
with multiple concurrent non-Markovian timers in a compositional way
without the need of full state space generation. In this paper we extend
the technique by removing some of its limitations and increasing its mod-
elling power. By applying the time advancement mechanism known from
stochastic state classes, exits in parallel regions with different time ori-
gins can be taken into account. Furthermore, exits can be put on state
borders such that the model evolution depends on the exited region and
a concept for history states is also presented. This significantly increases
modeling power, such that the gap between semi-Markov processes with
restricted modeling power and non-Markovian models without modeling
restrictions but also with less efficient analysis is filled. Experimentations
in order to validate the approach and to compare it with another tech-
nique were performed in order to better characterise the advantages of
the compositional approach.

1 Introduction

Realistic stochastic models often involve multiple concurrent timers with general
distributions (non-Markovian timers). A large number of formalisms has been
defined for the modeling of such systems, each one having different character-
istics, such as Stochastic Time Petri Nets [8], Stochastic timed automatas [2]
and Input/Output stochastic automatas [4], but often such formalisms are not
widespread outside the research context. Other approaches [7,10] are based
instead on derivations of more common formalisms like state charts [6] and
UML state machines [1]. Furthermore numerous techniques have been proposed
for the evaluation of quantitative measures of non-Markovian models, but each
technique has limitations that restrict their adoption. Steady-state probabilities
can be evaluated for models where the enabling restriction is satisfied, namely
when no more than one non-Markovian timer is enabled in each state [5,12], a
c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 62–77, 2018.
https://doi.org/10.1007/978-3-030-02227-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_5&domain=pdf

Extending Steady State Analysis of HSMP 63

restriction not often satisfied in realistic models. Regenerative steady-state anal-
ysis with stochastic state classes [13] can evaluate the steady-state probabilities
beyond the enabling restriction, but only if each cycle in the state space passes
through at least one regeneration. In many models this condition is not verified
and building the state space often leads to the problem of state space explosion.
The approach of [7] exploits the hierarchical structure of the formalism in order
to develop a compositional approach for the evaluation of steady state proba-
bilities of the model, notably without the requirement to build the whole state
space. The limitation of such work is mainly related to the restricted number
of features adopted from the UML state machine formalism. Specifically the
derived formalism defines a state machine, where each state can be simple or
composite. Simple states have a sojourn time distribution describing how long
the system remains in a particular state, while composite states are described
by a set of parallel regions, where each region is in turn described by another
state machine. Additionally, regions can have final states or exit states describ-
ing the condition that needs to be met in order to leave the composite state.
One major limitation of the approach is that it doesn’t allow to have different
successors of a state based on how concurrency is resolved. Additionally the
technique imposes restrictions on how exit states can be included in the model.
In this paper, we extend such formalism in order to increase its expressiveness.
Specifically we remove the limitation to have exit states only at the lower level
of the hierarchy of a composite state, allowing to define more complex concur-
rency patterns. This is achieved by applying the concept of time advancement
mechanism known from state classes [8]. It is also combined with a computation
of probabilities to reach nested states, which is needed for the final computation
of steady-state probabilities. We also add the possibility to have exit states on
the border, making possible to have different successor states based on which
region finishes first, substantially increasing the expressivity of the formalism.
Finally we introduce the possibility to have history states, enabling the defini-
tion of more condensed models. The new technique has also been implemented
in order to experimentally validate it and to better characterize the advantages
of having such a compositional approach.

The paper is organized as follows: in Sect. 2 we present the extended formal-
ism and give a formalization of it; in Sect. 3 we describe the analysis technique;
in Sect. 4 we report an application example and study technique performances;
finally conclusions are drawn in Sect. 5.

2 Hierarchical Semi-Markov Process with Parallel
Regions

Adopted formalism is derived from UML state machines [1], allowing only the
usage of a subset of its features but also adding some extensions to model quan-
titative aspects as done in, e.g., [10]. A previous version of the formalism was
presented in [7], but here it is enriched with the concept of history states which
allows for a more concise representation, and for exit states on the border, which
allow to have distinct successor states based on which region concludes first.

64 M. Biagi et al.

S2

S1

S2,a X

S2,b X

S3

S3,a

S3,b

P

S4

S4,a X

S4,c X S6

S5S4,bHpa

pb
S6

Fig. 1. Example model defined with the formalism

2.1 Description and Graphical Representation

The model describes a state machine, thus a system that can be in exactly one
state at any given time. The time elapsed in a particular state is stochastically
distributed, and when such time expires the system changes its state. Each state
can be simple or composite. Time spent in a simple state is described by a
stochastic distribution and there are no additional details regarding the inter-
nal representation of the state. Instead the internal state of a composite state
is described by a set of one or more parallel regions, each one described again
as a state machine. When a composite state is entered, each region has its own
internal state and only when a specific condition between regions is met the com-
posite state is left. Recursively applying this concept allows to define hierarchical
models, since in the same composite state it is possible to have sub-states that
in turn are composite, thus having more levels of details in the same composite
state. The highest of such levels will be called hereafter top level.

An example model is shown in Fig. 1. At any given time at top level, the
system can be in states S1, S2, S3, S4, S5 or S6, where S1 is the initial state
identified by an arrow with a black circle on its origin. States S1, S5 and S6 are
simple states, while states S2, S3 and S4 are composite states where their inter-
nal representation is described through regions and sub-models. Additionally, the
successor of state S3 is a P-pseudonode, introduced in [9], that is used to handle
discrete probabilistic branching. Specifically, after state S3 with probability pa

next state is S4 and with probability pb next state will be S1. In this example,
composite states are all defined by a set of two regions, each one describing a
nested state machine. When state S2 is entered, both regions have their own cur-
rent state, S2,a and S2,b, respectively. In this case the end condition is defined by
exit pseudostates, which denote that the composite state is left when one of the
exit pseudostate is reached first. Exit pseudostates are graphically represented as
a circle with a cross. Composite state S3 is modeled with a different kind of end
condition, by using final pseudostates, which denote that the state is left when
both final states are reached. Final states are graphically represented as a circle
with an inscribed black circle. Finally, state S4 uses again exit pesudostates, but
they are placed on the border of the composite state, meaning that the state
reached when state S4 is left depends on which region completes at first its exe-
cution. If the upper region ends first, next state will be S5, otherwise, if the lower
region ends first, S6 will be the next state. Moreover, the upper region of state
S4 has an initial state depending on its history. A history state allows a region
to keep track of the state it was in when it was last exited. When the system

Extending Steady State Analysis of HSMP 65

enters again in such a region, the region returns to this same state. The first
time the state is entered a default history state is specified, in this case it is S4,a.
This is represented as described by the UML specification [1]. Note also that if
the absorbing state was reached in the previous execution, next time the region
is entered the default history state will be selected. According to this history
states have a meaning only in regions where exit pesudostates are present. As
a restriction, we require that all regions on a level directly below a composite
state must have the same type of end pseudostate.

2.2 Formal Definition

First we recall the definition of semi-Markov processes (SMP) [11]. Consider a
stochastic process {X(t), t ≥ 0} with a countable number of states. It starts in
an initial state X0 at time t = 0, stays for a sojourn time T1 and then changes
its state to a new value X1. In general it stays in a state Xn for a duration Tn+1

and then jumps to a state Xn+1.

Definition 1. A stochastic process X(t), t ≥ 0 is called SMP if it has a countable
number of states and the sequence {X0, (Xn, Tn), n ≥ 1} satisfies P (Xn+1 =
j, Tn+1 ≤ t|Xn = i, Tn,Xn−1, Tn−1, . . . , X1, T1,X0) = P (X1 = j, T1 ≤ t|X0 =
i) = Gi,j(y).

The matrix G(y) = [Gi,j(y)] is called global kernel of the SMP process.

Definition 2. A hierarchical SMP with parallel regions (HSMP) is a tuple θ =
〈R, ρ, S, P, F, φ, η〉, where R is the set of regions; ρ : R → S is a function that
identifies the initial state of a region; S = Ss ∪ Sc ∪ Sa is the set of states
where Ss are simple states, Sc are composite states, Sa = SE

a ∪SF
a are absorbing

states, SE
a are absorbing states of type exit, SF

a are absorbing state of type final;
P : S × S → R is the matrix that describes the discrete probability that the
successor of a state will be specific state; F : Ss → CDF associates each simple
state to a cumulative distribution function; φ : Sc → θ associates the composite
state with another HSMP that describes its internal representation.

The definition is recursive since each composite state is described through a
nested HSMP. It is worth noting that for convenience this definition defines
branching with a matrix P and not as a pseudostate. It would also be easy to
associate state transitions with timing. If we consider the model of a particular
region, without considering sub-states of composite states, the underlying pro-
cess constitutes a semi-Markov process. The reason is that the state space of the
process is composed by the states of the region, where the sojourn time depends
only on the current state and not on the history as required by Definition 1. In
particular if the current state is a simple state s ∈ Ss, the distribution of time
to reach next state is simply given by F (s), if instead the current state is a com-
posite state it can be evaluated as will be shown in Sect. 3 and the distribution
does also not depend on the history.

Finally it should be noted that exits on borders and history states are not
directly formalized in the above definition, because as we will see in Sect. 3 they
need special handling to be considered.

66 M. Biagi et al.

3 Analysis Technique

The steady-state analysis of an HSMP presented in [7] is extended here notably
to increase its applicability. Specifically it can now be applied to analyze models
with history states, with exits on borders and with a complex structure of exit
states, not handled by the previous version of the technique.

The analysis technique allows to evaluate steady-state probabilities for top
level states and for states nested inside composite states of the HSMP. As in the
steady-state analysis of an SMP [11], the idea behind the analysis is to build the
embedded DTMC of the top level SMP, evaluate its steady-state probabilities and
then evaluate steady-state probabilities of the top level SMP using mean sojourn
times of states. Subsequently, the steady state probability of nested states can
be evaluated by evaluating the ratio of time spent in each nested state.

The analysis is organized in the following 6 steps: (1) Sojourn time dis-
tributions are evaluated for each composite state, without considering possi-
ble exits in parallel regions (Sect. 3.1); (2) Exit distributions are computed,
defined as the probability to leave a region at time t due to an exit in a par-
allel region (Sect. 3.2); (3) Reaching probabilities of sub-states are com-
puted, considering also possible exits in parallel regions (Sect. 3.3); (4) If exits
on the border are present, probabilities to exit from a specific exit are
computed (Sect. 3.4); (5) Mean sojourn times are evaluated, considering also
possible exits in parallel regions (Sect. 3.5); (6) Steady-state probabilities of
the HSMP are evaluated (Sect. 3.6).

In the following each step will be explained in detail, first without considering
history states, then describing required extensions for analyzing models with
history states in Sect. 3.7

3.1 Evaluation of the Sojourn Time Distributions

The first step of the analysis is to evaluate the sojourn time distributions of
composite states, without considering possible exits that may occur in parallel
regions on the same level or at higher hierarchy levels. This is done with a
bottom-up approach starting from the deepest level where only simple states
are present and then going up through the hierarchy exploiting sojourn times
of composite states evaluated in previous steps. Following this approach, when
evaluating the sojourn time distribution of a state sk ∈ Si

c of an HSMP θi =
〈Ri, ρ, Si, P i, F i, φi, ηi〉, we first evaluate the distribution of time to reach the
end state of each region and then compose them. In particular, being φi(sk) =
θj = 〈Rj , ρj , Sj , P j , F j , φj , ηj〉 the HSMP describing the internal representation
of the composite state sk, we need to evaluate it for each region rq ∈ Rj . Let
ψrq

be the distribution of time to reach the end state of the region rq, it can
be derived from the transient probabilities of the underlying SMP. Transient
probabilities of an SMP can be evaluated according to Eq. 1 [11].

Vrq
(t) = Erq

(t) +
∫ t

0

dGrq
(u)Vrq

(t − u) (1)

Extending Steady State Analysis of HSMP 67

X

X

X

X

X

X

Si

Sj

Sk

rA
rB

rC
rD

rE
rF

Fig. 2. Evaluation of the exit distribution of a region

Where Vrq
(t) is the matrix of transient probabilities to be in a state of the SMP

at time t given an initial state, Erq
(t) = I − diag(H1(t), . . . , H|Trq |(t)) is the

local kernel of the process, Trq
is the set of states of the process and Hi(t) is

sojourn time distribution of the state si ∈ Trq
. Let e be the vector with 1 in the

position of absorbing states of the SMP and 0 otherwise and l the vector having
1 in the position of the initial state of the SMP given by ρ(rq) and 0 otherwise,
the sojourn time distribution of the region is given by ψrq

(t) = 1− l ∗Vrq
(t) ∗ e.

After evaluating ψrq
(t) for each region of the composite state sk, its sojourn

time distribution can be derived. If end states are final states, the distribution
of the sojourn time of sk is the maximum over the sojourn time of its regions,
evaluated as Ωsk

(t) =
∏|Rj |

q=1 ψrq
(t), otherwise if all end states are exit states its

distribution of sojourn time is given by the minimum over the sojourn times of
its region evaluated as Ωsk

(t) = 1 − ∏|Rj |
q=1(1 − ψrq

(t)).

3.2 Evaluation of Exit Distributions

The evaluation of the mean sojourn time of a state needs to take into account its
distribution of sojourn time, but also the possibility that an exit occurs during
its sojourn in some parallel region. According to this we evaluate the distribution
of probability F exit

ri
(t) that sojourn in a region ri is interrupted at time t due to

an exit occurring in a parallel region of the same composite state or in a higher
level parallel region. Consider Fig. 2 where F exit

rF
(t) needs to be evaluated. An

early exit in such region can occur if an exit occurs in region rE , rC or rA.
F exit

ri
(t) can be evaluated with a top-down approach exploiting the fact that

the behavior in each region is independent from other regions except that when
an exit occurs. Additionally we assume that the evaluated distribution needs to
have as time origin the time at which ri is entered. Since higher level parallel
regions were entered before the entrance in region ri, we need to condition the
probability that such regions will cause an exit to the fact that time has already
passed when region ri is entered.

First is useful to recall that the conditioning of a distribution to the passage
of time can be done using time advancement operation introduced in [8]:

Definition 3. Let τA and τB be two random variables of the sojourn time in
two concurrent states A and B distributed according to the probability density

68 M. Biagi et al.

Listing 1.1. Evaluation of exit distributions
1 procedure eva lua t eEx i tD i s t r i bu t i on (ri , ψ)
2 //Bottom-up reasearch of parents
3 parentState s = [] ; //Stack
4 parentRegions = [ri] ; //Stack
5 parent = getParentState (ri) ; //Find the state that directly contains ri
6 while (parent i s not nu l l)
7 parentState s . push (parent) ;
8 conta in ingRegion = getParentRegion (parent) ;
9 i f (conta in ingRegion i s not nu l l)

10 parentRegions . push (conta in ingRegion) ;
11 parent = getParentState (conta in ingRegion) ;
12 else
13 parent = nu l l ;
14 //Top-down evaluation of the distribution
15 F exit

ri
(t) = U(t − ∞) ;

16 cur r entSta te = parentState s . pop () ;
17 while (cur r entSta te i s not nu l l)
18 currentRegion = parentRegions . pop () ;
19 r eg i on s = getRegions (cur r entSta te) ; //Get regions of the composite state
20 r eg i on s = reg i on s . removeElement (currentRegion) ;
21
22 i f (currentRegion has ex i t pseudostate)
23 for (r in r eg i on s)
24 F exit

ri
(t) = min(F exit

ri
(t) , ψr(t)) ;

25
26 nextState = parentState s . pop () ;
27 i f (nextState i s not nu l l)
28 smp = buildSMP(currentRegion) ; //Build the model of the region
29 γ(t) = smp . evaluateTrans ientTo (nextState) ; //Evaluate time to be

absorbed
30 F exit

ri
(t) = timeAdvancement (F exit

ri
(t) , γ(t)) ; //Apply the time advancement

31
32 cur r entSta te = nextState ;
33 return F exit

ri
(t) ;

functions fτA
(t) and fτB

(t), respectively. Let’s assume that τA < τB. When A is
exited, the remaining sojourn time τ ′

B in B is reduced by τA, τ ′
B = τB − τA and

is distributed as fτ ′
B
(t) =

∫ Max(τA)

Min(τA)
fτB

(t + x)fτA
(x)dx. This operation is called

time advancement or time shift.

Let ψ be the set of sojourn time distributions of each region of the model
evaluated in Sect. 3.1. The top-down algorithm for the evaluation of exit distri-
butions for region ri is reported in Listing 1.1.

In order to better understand the algorithm we apply it to the model of Fig. 2.
We want to evaluate the exit distribution for region rF , so procedure parameters
are rF and ψ. From line 3 to 13, the model is visited with a bottom-up approach
creating two stacks of parent states of the considered region and regions contain-
ing such parent states. At the end of this first step parentStates = [Sk, Sj , Si]
and parentRegions = [rF , rD, rB]. Note that the two stacks are equipped with
the classic push() and pop() operations. Then the procedure from line 15 to 32
effectively evaluates the exit distribution by iterating with a top-down approach
until the target region is reached. The exit distribution is initialized at line 15,
with a unit step function in ∞. Then the top-down approach iterates from Si

over Sj to Sk. At lines 19 and 20 all parallel regions of the current region are
found. Then from line 22 to line 24, if the current region has a final pseudostate,
it has no exit and so also its parallel regions do not contribute to the exit distri-
bution. Otherwise the total exit distribution is given by the minimum between
the previous regions exit distributions and the sojourn time distribution of these
regions. Finally if another level in the hierarchy is present, we need to apply a
time advancement to the evaluated distribution, equal to the time required to

Extending Steady State Analysis of HSMP 69

Sk

Sk,a X

Sk,c X

Sk,b

Sk,d

Fig. 3. Example of a composite
state with exit states

si

si,a X

Si,c X

Si,b

Si,d

sj

sk

Si | r1<r2

Pr1
r2

Si | r2<r1

sj

sk

P("r1 < r2")

P("r2 < r1")

Fig. 4. Example of a composite state with
exits on the border reaching distinct suc-
cessor

be absorbed in the state containing the target region, so that at the next step
all considered distributions will continue to have the same time origin. To help
understand, Fig. 2 highlights the distributions used in the evaluation of F exit

ri
(t).

At first step F exit
ri

(t) = ψrA
(t) since rA is the only parallel region to rB and

the minimum between the step function in ∞ and ψrA
(t) is the sojourn time

distribution of rA. The algorithm goes down to the next level, and first the dis-
tribution γSj

(t) that represents time to be absorbed in Sj is evaluated, then a
time advancement operation is applied to F exit

ri
(t) by subtracting γSj

(t). At next
step the minimum between previous F exit

ri
(t) and ψrC

(t) is evaluated and then a
time advancement of γSk

(t) is applied. Finally the minimum between previously
evaluated F exit

ri
(t) and ψrE

(t) gives the final result of the evaluation.
This algorithm evaluates the F exit

ri
(t) distribution for each region of the

model. The approach has a limitation: it can’t be applied if a lower level region
contains cycles which includes a composite state. The reason is that if cycles with
a composite states are present, when evaluating the exit distribution we need to
evaluate the time to be absorbed by the target state in order to apply the time
advancement conditioning. But if cycles are present, it is possible to enter in a
sub-region, exit and then enter again and according to this the evaluation of the
absorbing time is no longer compositional, but requires to analyze the model as
a whole instead that through a succession of isolated evaluations. Note that this
restriction applies only to the case of regions with exit states, if only final states
are present there is no need to evaluate the absorbing probabilities.

Finally it is important to highlight that the early version of the technique
presented in [7] didn’t use this algorithm and thus it was limited to the case in
which exit states were possible only at bottom levels of composite states.

3.3 Evaluation of the Reaching Probabilities of Nested States

Consider the composite state of Fig. 3. When we evaluate the steady-state prob-
abilities of sub-states Sk,b or Sk,d we need to consider both the ratio between the
sojourn time spent in the parent state and in the nested state and also the prob-
ability that the nested state will be visited. The reason is that in both regions of
the composite state it is possible that an exit occurs in the other parallel region
before the nested state will be reached. More generally, the probability μsi

to
visit a sub-state si given that the parent state is visited is μsi

≤ 1 if it is not the
initial state of the region and there are parallel regions or higher level regions
with exit states, thus in that cases it needs to be evaluated. The value μsi

of a
state si in a region rj can be evaluated from Eq. 2.

70 M. Biagi et al.

μsi
=

∫
Dτ1<τ2

γsi
(τ1)fexit

rj
(τ2)dτ (2)

Where γsi
(t) is the probability to be absorbed in state si at time t given that

the region rj is entered a time t = 0, fexit
rj

is exit density evaluated from the
distribution F exit

rj
(t), τ = <τ1, τ2> and Dτ1<τ2 is the joint domain of the two

functions restricted to τ1 < τ2, thus where the absorption occurs before any exit.

3.4 Evaluation of Probabilities to Exit from Border Points

Exit states on the border allow us to define different successors of a composite
state, based on which region completes first. Consider the composite state si

shown in the left part of Fig. 4. If region r1 exits first, the successor state will be
sj , and if region r2 exits first, the successor state will be sk.

Evaluation of sojourn time distribution of a composite state with exits on
the border is not different compared to exits not on the border. Its sojourn time
continues to be the minimum between the sojourn times of its regions and this
will be later used to evaluate the mean sojourn time of the state. The presence of
exits on the border will instead affect evaluation of the distribution and probabil-
ities in the parent region that contains such a composite state. From the parent
region point of view, the composite state can be represented as an equivalent
model as the one shown in the right part of Fig. 4. In particular the probability of
reaching a specific successor can be evaluated as the probability that one region
is faster than the other. Moreover if a specific successor is reached, it means that
time spent in state si is conditioned on the fact that a particular region was
faster. Thus depending on the successor, time spent in si is different, and this
is represented as two distinct states in which the sojourn time is conditioned
to one region being faster than the other. According to this the evaluation of
models including composite states with exits on borders requires to evaluate the
probability that a region will be faster than all other parallel regions, evaluate
the conditioned sojourn time distributions and replace such a composite state
with the proposed equivalent model.

Consider a composite state si with exits on the border and Ri the set of its
regions. Let αsi

rj
be the probability that region ri is faster than all other |Ri| − 1

parallel regions, it can be evaluated according to Eq. 3,

αsi
rj

=
∫

Dτjfirst

dψrj
(τj)

dτj
∗

∏
r∈Ri,i �=j

dψr(τi)
dτi

dτ (3)

where Dτjfirst is the joint domain of the |Ri| densities restricted to the sub-region
where τj < τi ∀i. Note that Eq. 3 can be efficiently implemented replacing the
right factor with the minimum and solving a two dimensions integral instead
that a multi dimensions one. Finally, the sojourn time distribution for the state
conditioned on having a region rj faster is given by ψrj

(t).

Extending Steady State Analysis of HSMP 71

3.5 Evaluation of the Mean Sojourn Times

Now the mean sojourn times of each state can be evaluated through a bottom-
up approach, taking into account exits in parallel regions. Specifically, the mean
sojourn time for any top level state can be evaluated as the mean of its sojourn
time distribution σsi

=
∫ ∞
0

Ωsi
(t)dt. Also if all parallel regions on the same

and on higher level has only final pseudostate, we can use the same formula. In
all other cases, the possibility that an exit occurs in a parallel region must be
considered. In the latter case, the mean sojourn time σsi

for a composite state si

contained in a region rj , can be evaluated as σsi
=

∫ ∞
0

vsi
rj

(t) ∗ F exit
rj

(t)dt, where
vsi

rj
(t) is the transient probability to be in state si, given that region rj is entered

at time t = 0 without considering exits in parallel regions, while F exit
rj

(t) takes
into account possible exits in parallel regions.

3.6 Embedded DTMC and Evaluation of Steady State Probabilities

Consider the top level HSMP θ and its transition matrix P . The embedded
DTMC of such HSMP can be built considering only time point in which the
top level state changes. Then the steady-state probabilities u of the embedded
DTMC of the top state can be evaluated by the system of linear equations
u = uP with the additional constraint |u| = 1. Finally steady-state probabilities
can be evaluated using a top-down approach, considering the steady-state prob-
abilities u of the embedded DTMC and weighting them by the mean sojourn
times. The top-down approach starts evaluating steady-state probabilities for
top level states as πsi

= usi
∗σsi∑

sj∈S usj
∗σsj

[11]. Then steady-state probabilities of

a sub-state si contained in one of the regions of the parent state sj can be
evaluated as πsi

= πsj
∗ μsi

∗ σsi

σsj
.

It can be noted that in the early version of the technique presented in [7],
μsi

was not considered and according to this, the technique didn’t support the
analysis of models where a parallel exit could prevent a sub-state to be reached.

3.7 Analysis with History States

The concept of history states was introduced in [6], as a convenience mechanism
to keep track of a state configuration when a region was exited due to some
parallel region. In the original formulation a history state could be of two types:
shallow, that keep track only of the top most level configuration or deep that
keep track of all sub-levels. In a non-Markovian system, the system state is not
only given by the current location but also by the time elapsed in that state.
According to this, we can define an additional subdivision of history states types:
Preemptive Repeat Different (PRD), keeping memory of the location but not of
time, and Preemptive Resume (PRS) keeping track also of time, thus when the
configuration is restored also remaining time is restored. In this work we consider
only PRD history states, while PRS history states will be studied in future work.
For the sake of simplicity, in the following we also refer only to shallow history
states, but similar concepts can be applied to deep history states.

72 M. Biagi et al.

S1,a
S1,b

S1,a
S1,c

S1,b

MA

MB1 S2
H: S1,b

MC

S1,a

S2
H: S1,c

S2
H:

S1,a S1,c

MD ME

S2

S2

S2

S1,a S1,c

S1

S1,b X

S1,a X

S1,cH

S2

MB2S1,a
S1,c

r1
r2

P

S2
H: S1,c

S2
H:

P

Fig. 5. Example of model with history states and encoding of history in the state space

If a history state is present like in state s4 of Fig. 1 when the state is entered,
the last configuration when it was exited is resumed. In order too keep memory
of the last configuration when last exited, we propose to encode this information
into the state space. In practice, states of the system need to be differentiated
based on the history so as to keep track of it, thus allowing to diversify the future
behavior based on such encoded information and start in the correct configura-
tion when the state is visited again. An example is shown in Fig. 5, where on
the left a model with one history state and in the center the corresponding state
space are shown. If s1 is exited due to region r2, we don’t need to keep track
of history since its exit state was reached. If instead s1 is exited due to region
r1, we need to keep track of which was the last configuration of r2, s1,b or s1,c.
According to this when s2 is reached we need to keep track of this information.
In the state space diagram in the center of Fig. 5 nodes represent current overall
configurations of the model considering both higher and lower level states, arcs
represent the transition from one state to another and their label report the state
whose sojourn time ending causes the change of configuration. In the upper right
corner of nodes, a unique name node name is assigned in order to simplify the
explanation and in states that need to keep track of history, history information
is represented in bold font. The initial node is MA, where the system is in s1
and in particular in state s1,a in region r1 and in state s1,b in region r2. If the
first state to complete its sojourn is s1,a, s1 is exited reaching MC where we
need to keep memory of the state of r2 that was s1,b. Instead if s1,b completes
first, MB1 is reached. From MB1 the system will in any case go to s2 but with
different history depending on which completes first. If s1,c completes first, node
ME is reached and next time r2 will start from its default history state since it
has reached its end state. If instead s1,a completes first, next time r2 will start
again from s1,c and this is encoded in the history. When this happens the initial
configuration of s2 is different from the one represented by node MB1, because
in MB1 the remaining sojourn time of state s1,a was conditioned on the fact that
s1,b completes first. This is why node MB2 is different from MB1 even though
the configurations represent same locations, because in the latter the remaining
time of s1,a has a different distribution.

In summary, when dealing with history states we need to enrich the state
space with additional information about history and in it must be observed
that probabilities to go from MB1 to MD or to ME require to be evaluated as
well as probabilities from MA to MC and from MB2 to MD or ME . Then the
SMP of the top level of this model can be built, as shown in the right side of

Extending Steady State Analysis of HSMP 73

the Fig. 5 based on the above analysis. It worth noting that sojourn time in
state s1 is different if we are in MB2 or MA and also depends on which state
we exit. This is similar to what was seen in Sect. 3.4 for exits on the border,
since depending on the successor, the sojourn time changes and thus can be
handled following a similar approach. When entering in MA, a pre-selection is
needed like the one shown on the right of Fig. 4 and then the sojourn time is
different. In particular it decides which is the probability to have a particular
history when the state will be exited, then the elapsed sojourn time will be
conditioned on the exit having such a particular history. The probability to
have a specific configuration when exiting a composite state with history states
need to be evaluated. More generally, suppose to have n regions r1,. . . , rn all
having history states and suppose that rj exits, since the evolutions of regions
are independent by construction, the probability can be evaluated according to
Eq. 4.

P{“H =< h1, . . . , hj−1, hj+1, hn >”} =
∫ ∞

0

f
rj

exit(t)
∏

q=1...n,q �=j

v
rq

hq
(t)dt, (4)

where hq is the location of region rq when the composite state was exited and
thus this allows to evaluate the probability to have a particular history h =
<h1, . . . , hj−1, hj+1, hn> when the state was exited. Note that if a region has
not a history state, we can simply remove it from the equation and consider
instead the probability that the region was not exited before region rj . Finally
the sojourn time elapsed in the composite states with history state need to be
evaluated conditioned on the specific successor. Let sk be the composite state
with n regions r1,. . . , rn all having history states. Given that the configuration
when exit occurs in rq was h and thus the successor will encode that history, the
sojourn time distribution can be according to Eq. 5.

Ωsk|H=<h1,...,hj−1,hj+1,hn>(t) =
∫ t

0

f
rj

exit(τ) ∗ ∏
q=1...n,q �=j v

rq

hq
(τ)

P{“H =< h1, . . . , hj−1, hj+1, hn >”}dτ

(5)
It should be noted that analyzing models with history states substantially
increases the complexity of the analysis, in particular if the number of com-
posite states with history states are more then one since it is required to encode
the cartesian product of all possible histories causing an increase of the num-
ber of states and requiring to evaluate probabilities to have a particular history
for all such states. However, on the positive side, the concept of history states
requires an extension of the state space just on the level of states with a history
state inside. If history states appear on different levels, the extension can also
be considered separately. History state analysis can be combined with all other
modeling elements of HSMPs presented in this paper.

74 M. Biagi et al.

4 Experiments

4.1 Unavailability Analysis of a Fault Tree

A Java numerical implementation of the approach has been developed so as to
experimentally validate its correctness. The techniques can be implemented also
as an analytical approach, but this requires a restriction of its applicability [7].
The code is available at https://github.com/biagimarco/hierarchicalSMP.

A B C D

TE

(A and B) or (C and D)

X X X

Waiting
maintenance

Repair
Preventive

maintenance

A B C D

Fig. 6. A fault tree and the equivalent HSMP model with repair and maintenance

Fig. 7. Steady-state probabilities that
the fault tree is unavailable due to a
failure, due to preventive maintenance,
or both

Table 1. Evaluation times varying Nr

and Ns. Upper rows with HSMP analy-
sis, lower rows with regenerative analysis

Nr Ns

1 2 3 4 5 6

1 <1 s <1 s <1 s <1 s <1 s <1 s

<1 s <1 s <1 s <1 s <1 s <1 s

2 <1 s <1 s <1 s <1 s <1 s <1 s

<1 s <1 s <1 s <1 s �1 s �3 s

3 <1 s <1 s <1 s <1 <1 s <1 s

<1 s <1 s � 5s N.D. N.D. N.D.

4 <1 s <1 s <1 s <1 s <1 s <1 s

<1 s �10 s N.D. N.D. N.D. N.D.

As an example, we show how the analysis can be applied for the evaluation of
steady-state probabilities of a repairable static fault tree with preventive mainte-
nance [14]. Consider the static fault tree shown on the left side of Fig. 6. The fault
tree represents a system composed by four components A, B, C and D. If compo-
nents A and B or components C and D fail at the same time, the whole system
fails and becomes unavailable. In that case, a repair operation is performed in
order to restore the initial state of the system. Since the unplanned repair oper-
ation is slow and more expensive, a preventive maintenance procedure has been

https://github.com/biagimarco/hierarchicalSMP

Extending Steady State Analysis of HSMP 75

adopted in order to periodically maintain the system and thus reduce unplanned
repair operations. As shown in the right side of Fig. 6, this system can be repre-
sented with an HSMP model. Specifically the fault tree is converted in parallel
regions where AND gates are represented by final states and the OR gate is rep-
resented by exit states. It is worth noting that static fault trees with only AND
and OR gates can always be modeled as an HSMP. A third parallel region mod-
els the maintenance period. Exits on the border are used in order to differentiate
between unavailability due to a failure of the system and unavailability due to
preventive maintenance. Distributions of the system are F (“A”) = Exp(1/180),
F (“B”) = Exp(1/240), F (“C”) = Exp(1/180), F (“D”) = Exp(1/360),
F (“Waiting maintenance”) =Det(ξ), F (“Repair”) = Unif(1, 3), F (“Preventive
maintenance”) =Unif(0, 1), where Exp(λ) is the exponential distribution of rate
λ, Unif(a, b) is the uniform distribution with support [a, b], Det(ξ) is a determin-
istic time ξ. We want to measure the probability to find the system unavailable
and the probability that the system is unavailable due to a preventive mainte-
nance or due to a failure. Figure 7 shows these three measures, varying the value
ξ of the time between two subsequent maintenance procedures. If the mainte-
nance occurs too often, the probability to find the system unavailable is higher.
Increasing ξ, that means decreasing the frequency of preventive maintenance,
reduces the total probability to find the system unavailable but also increases
the probability that the system is unavailable due to a failure and not due to a
preventive maintenance.

In order to experimentally validate the approach, the same system has also
been modeled as a Petri net and analyzed using Oris tool API [3]. Evaluated
results match for all possible values of ξ.

4.2 Computational Experience with Composability

The strong point of this technique is compositionality, allowing to analyze a
model without the need to build its whole state space. In the following a com-
parison with a technique that instead build the whole state space is performed.
The technique that we chose to compare is the regenerative steady-state analy-
sis based on stochastic state classes [13], since currently it is the only technique
allowing the evaluation of steady-state probabilities of models with multiple con-
current non-Markovian timers and without the enabling restriction.

The experiment has been performed on a model having a top level composed
by a single composite state with a self loop. The composite state consists of Nr

parallel regions, each one composed by a sequence of Ns states leading to a final
state. Thus the lower level model is composed by Nr ∗ (Ns + 1) states. Sojourn
times are all uniform distributions with support [0, 1].

The times required to analyze the model with varying Nr and Ns are reported
in Table 1. Experiments were performed on a single core of a 2.20 GHz Intel i5-
5200U with 8 GB RAM, and each single run was performed with a timeout of
2 min. Increasing the number of regions Nr increases the concurrency degree of
the model and thus the regenerative analysis needs to evaluate the state space
considering all possible orders in which the transitions can be executed. As one

76 M. Biagi et al.

can see, with Nr = 3 and Nr = 4, 2 min are no more sufficient to analyze
the model with the regenerative analysis while with the hierarchical approach
requires less then 1 s. The experiment gives an impression of the advantage of
this technique when applied to model with high concurrency.

5 Conclusion

Many techniques exist for the analysis of systems with multiple concurrent non-
Markovian timers, each one having different limitations and using different for-
malisms to represent the model. The HSMP formalism is inspired by UML state
machines [1], a widely diffused formalism and thus easier to be understood.
HSMP uses state machines in which states can be simple or composite, where
simple states have a stochastic sojourn time allowing us to model quantitative
aspects while the concept of composite states allows us to define hierarchical
models. Leveraging this hierarchical structure a compositional analysis can be
defined, enabling the development of an approach that doesn’t need to build the
whole state space. In this work we better formalize and extend the HSMP for-
malism, and improve the analysis technique by removing some of its limitations
and extending it so as to boost its modeling power in the direction to be more
similar to that of UML state machines. Specifically, composite states now have
no limitation related to exit states, also the possibility to have exit states on the
border has been introduced, allowing to define different successors of composite
state based on which region finishes first. Additionally, the concept of history
states has been added, enabling the definition of more condensed models.

The extended technique was implemented and experimentally validated ana-
lyzing a static fault tree under preventive maintenance and comparing results
with those of another technique. A comparison with another technique was also
performed so as to better highlight the advantage of being compositional.

A future development will be to further extend the technique so as to reduce
the gap between the modeling power of UML state machines, for example allow-
ing to have composite states mixing regions with final states and exit states, or
to have final and exit states in the same region. Another direction would be to
study how to analyze models with PRS history states introduced in this work.

References

1. Unified modeling language specification version 2.5.1, December 2017
2. Bertrand, N., et al.: Stochastic timed automata. arXiv (2014)
3. Carnevali, L., Ridi, L., Vicario, E.: A framework for simulation and symbolic state

space analysis of non-Markovian models. In: Flammini, F., Bologna, S., Vittorini,
V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 409–422. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-24270-0 30

4. D’Argenio, P.R., Lee, M.D., Monti, R.E.: Input/output stochastic automata. In:
Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 53–68.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7 4

https://doi.org/10.1007/978-3-642-24270-0_30
https://doi.org/10.1007/978-3-319-44878-7_4

Extending Steady State Analysis of HSMP 77

5. German, R., Logothetis, D., Trivedi, K.S.: Transient analysis of Markov regenera-
tive stochastic petri nets: a comparison of approaches. In: Petri Nets and Perfor-
mance Models, pp. 103–112. IEEE (1995)

6. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

7. Homm, D., German, R.: Analysis of hierarchical semi-Markov processes with par-
allel regions. In: Remke, A., Haverkort, B.R. (eds.) MMB&DFT 2016. LNCS,
vol. 9629, pp. 92–106. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31559-1 9

8. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian
models using stochastic state classes. Perform. Eval. 69(7–8), 315–335 (2012)

9. Jansen, D.N., Hermanns, H., Katoen, J.-P.: A probabilistic extension of UML stat-
echarts. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp.
355–374. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45739-9 21

10. Jansen, D.N., Hermanns, H., Katoen, J.-P.: A QoS-oriented extension of UML
statecharts. In: Stevens, P., Whittle, J., Booch, G. (eds.) UML 2003. LNCS, vol.
2863, pp. 76–91. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45221-8 7

11. Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems. CRC Press, London
(2016)

12. Logothetis, D., Trivedi, K.S., Puliafito, A.: Markov regenerative models. In: Com-
puter Performance and Dependability Symposium. IEEE (1995)

13. Martina, S., Paolieri, M., Papini, T., Vicario, E.: Performance evaluation of Fis-
cher’s protocol through steady-state analysis of Markov regenerative processes. In:
MASCOTS, pp. 355–360. IEEE (2016)

14. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)

https://doi.org/10.1007/978-3-319-31559-1_9
https://doi.org/10.1007/978-3-319-31559-1_9
https://doi.org/10.1007/3-540-45739-9_21
https://doi.org/10.1007/978-3-540-45221-8_7
https://doi.org/10.1007/978-3-540-45221-8_7

Formal Parameter Synthesis
for Energy-Utility-Optimal Fault

Tolerance

Linda Herrmann(B), Christel Baier(B), Christof Fetzer(B),
Sascha Klüppelholz(B), and Markus Napierkowski(B)

Technische Universität Dresden, Dresden, Germany
{linda.herrmann1,christel.baier,christof.fetzer,sascha.klueppelholz,

markus.napierkowski}@tu-dresden.de

Abstract. Fault-tolerance techniques are widely used to improve the
resiliency of hardware/software systems. An important step for the
deployment of such techniques in a concrete setting is to find reason-
able configurations balancing the tradeoff between resiliency and energy.
The paper reports on a case study where we employ probabilistic model
checking to synthesize values for tunable system parameters of a redo-
based fault-tolerance mechanism. We consider discrete parameters of a
finite range (as the number of redos) as well as continuous parameters to
encode the error detection rates of the underlying control- and data-flow
checkers. To tackle the state-explosion problem, we exploit structural
properties of redo-based protocols. The parameter synthesis approach
combines probabilistic model checking for Markov chains with paramet-
ric transition probabilities and reward values and computer-algebra tech-
niques to determine parameter valuations that minimize the expected
overhead given constraints on the utility, depending on a given error
probability.

1 Introduction

The paper reports on a case study that addresses the synthesis problem for redo-
based fault-tolerance mechanisms. We assume environmental parameters that
are part of the input (e.g., error probabilities and energy costs) and configurable
parameters (e.g., detection probabilities and the number of redos). The latter are
controllable and hence part of the output. The goal is to search for configurations
(i.e., values for the tunable parameters) that allow balancing the tradeoff between
resiliency, energy and performance.

The authors are supported by the DFG through the Collaborative Research Cen-
ter SFB 912 – HAEC, the Excellence Initiative by the German Federal and State
Governments (cluster of excellence cfAED and Institutional Strategy), the Research
Training Groups QuantLA (GRK 1763) and RoSI (GRK 1907), the DFG-project
BA-1679/11-1, and the DFG-project BA-1679/12-1.

c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 78–93, 2018.
https://doi.org/10.1007/978-3-030-02227-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_6&domain=pdf

Formal Parameter Synthesis for Energy-Utility-Optimal Fault Tolerance 79

The considered fault-tolerance mechanism is inspired by the hardware-
assisted fault-tolerance protocol HAFT [1]. HAFT enables error1 detection and
correction for a finite sequence of instructions (in the further named applica-
tion), that is affected by bit-flips. The operating principle of HAFT at the rel-
evant abstraction level is as follows: The fault-tolerance technique partitions
the application into transactions, and performs error detection and correction
transaction-wise. Error detection is enabled by replicating instructions, and com-
paring for differences. Replicated instructions can also be affected by errors, and
thus might cause error correction to be invoked although the application would
have been correct when not using error detection. An erroneous transaction is
corrected by redoing the transaction. Also during a redo errors can occur and
further redos might be necessary. If after a pre-defined number of redos still an
error is detected, the application is aborted. Error detection and correction cause
overhead costs. As a measure, we take the number of instructions executed for
error handling. This measure correlates with the energy consumption for error
detection and correction, since the additional energy consumption only comes
from additional instruction execution. In this paper we build on Markov chains
with parameters for transition probabilities and rewards as underlying semantic
model. The discrete protocol parameters, e.g., the number of redos and trans-
action length, induce a family of parametric Markov chains that yield the basis
for finding reasonable configurations. Finding optimal solutions in uncountably
infinite parameter sets is in general undecidable [3,4]. We restrict ourselves to
families with finitely many members, as the set of reasonable transaction lengths
as well as the number of redos can safely be assumed to be finite as well.

Our primary configuration objective is resilience: the probability of termi-
nating without an undetected error shall be very high. Aborting the application
is preferred to terminating with a wrong result, thus, the conditional probability
of aborting in case of not terminating correctly shall be high. As a subordi-
nate objective, the energy consumption has to be low. This opens the following
synthesis problems: (1) What is a good transaction length? Long transactions
increase the probability of a transaction to be erroneous and increase the over-
head in redos, while short transactions cause error detection to be performed
very often and thus increase the overall costs for error detection. (2) What is
an optimal number of maximal redos? Redos enable error correction and thus
application recovering, but during a redo there is an additional chance of having
undetected errors and causing the application to terminate with a wrong result.
(3) How many instructions shall be replicated? Increasing this amount increases
the chance of detecting an error, but also increases the overhead and the chance
of some replica being affected by an error.

Challenges. To address this synthesis problem, we apply variants of probabilis-
tic model checking [5,6] that take as input parametric Markov chains as described

1 Following the taxonomy of [2], we use the term “fault” to describe bit-flips. Errors
are caused by faults that affected the applications run. Failures in our sense are
caused by errors that could not be detected by the fault-tolerance mechanism and
thus lead to a wrong computation of the application.

80 L. Herrmann et al.

above. These variants yield rational functions for probabilities of reaching some
goal state and expected accumulated rewards. We will refer to this variants as
parametric probabilistic model checking (PPMC). PPMC yields rational func-
tions, describing system characteristics, instead of single values. The rational
functions can then be analyzed for optimality. This comes with several chal-
lenges. (1) An application typically consists of billions of instructions, realistic
transaction lengths range from several hundred instructions to the extremal case
of handling the whole application as one transaction. We need to include both,
the details of a transaction, and the execution of millions of transactions, in the
model. This results in very large models, which is in contrast to PPMC requiring
models to be small. (2) Only the detection probabilities but not the maximal
number of redos and the transaction length can be handled as parameters. For
the latter, PPMC needs to be invoked once for each considered configuration,
which is especially problematic due to the large model sizes. (3) The error proba-
bility crucially depends on the hardware and the application scenario. Moreover,
tiny error probabilities2 can lead to numerical instability when treated in a non-
parametric fashion. Thus, environmental and tunable parameters are part of the
model, but PPMC hardly scales for larger models with multiple parameters [5].

Contribution. In this paper, we report on a case study for the synthesis prob-
lem for fault-tolerance mechanisms and show how to overcome the mentioned
challenges. The main idea is to exploit the regularity of our model with repeating
transaction blocks. Hence, we apply PPMC to families of very small sub-models,
modeling only one transaction, but detailed and still parametric in the full set
of probability and reward parameters. With this we obtain rational functions for
probabilities of successful error detection and aborting as well as energy over-
head for each transaction. We present a new, suited factorization approach that
allows to combine the transaction-level results and obtain rational functions for
the whole application. Our approach allows handling the transaction length as
a parameter and PPMC has to be invoked only once for each considered num-
ber of maximal redos. Finally, we exemplarily utilize the rational functions to
find sweet spots in the tradeoff between resiliency and energy. Here, a surprising
result is, that for reasonable error probabilities, increasing the maximal number
of redos to more than just one, degrades the resiliency while only introducing
additional overhead costs.

2 Related Work

Parameter synthesis for probabilistic systems using formal methods has been
done widely before. In, e.g., [10] parametric model checking is applied to syn-
thesize optimal values for transition probabilities in Markov models, as we do

2 [7] gives an error rate of 0.066 FIT (failures in time, the expected number of failures
in 109 h) per Mbit. This corresponds to having an error in a single instruction within
an hour with probability about 4 · 10−15. Other error rate estimates from [8] and [9]
give error probabilities of 3.7 · 10−15 and 2.7 · 10−15.

Formal Parameter Synthesis for Energy-Utility-Optimal Fault Tolerance 81

for the amount of instructions to be replicated. Rate parameters are synthesized
in [11] in a CTMC modelling stochastic biochemical networks, and in [12] for a
real-time storage system that is affected by randomly occurring bit-flips. In [13],
a parameter synthesis approach is presented and applied to repair systems by
tuning transition probabilities. Some instances of adaptive systems with config-
urable transition probabilities are configured in [14], using stochastic methods
like Monte Carlo Sampling and particle swarm optimization. None of these works
addresses the parameter synthesis problem for redo-based fault-tolerance mecha-
nisms and exploits the regularity of the model structure to address the imposed
scalability challenges. Furthermore, our approach also spans parameters that
affect the structure of the Markov model and thus cannot be handled easily
with standard parametric model-checking techniques.

3 Preliminaries

We will provide a brief summary of the relevant concepts for Markov chains.
For more details, we refer to, e.g., [15]. A discrete-time Markov chain (DTMC)
is a tuple M = (S, P) with a finite set of states S and transition probabilities
P : S × S → [0, 1] ∩ Q such that for all s ∈ S :

∑
t∈S P (s, t) ∈ {0, 1}. A path in

M is a finite or infinite sequence of states π = s0s1 . . . such that P (si, si+1) > 0
for all i ≥ 0. We denote the set of all paths in M by PathsM. For a finite path
π = s0s1 . . . sn we write P (π) =

∏n−1
i=0 P (si, si+1). A path π is maximal if it is

infinite or π is finite and
∑

t∈S P (sn, t) = 0.
Let G ⊆ S and s0 ∈ S. The probability of eventually reaching some state in

G from s0, denoted by Prs0(♦G), is derived using the standard definition of the
induced probability distribution on the set of measurable sets of maximal paths.
The event ♦G is called a reachability property.

A reward function rew : S → Q
≥0, assigns each state a non-negative

value (e.g., energy consumed in that state). The accumulated reward induced
by rew is a random variable AccRew : PathsM → R assigning each path
in M the sum of its state rewards, i.e. AccRew(s0s1 . . . sn) =

∑n
i=0 rew(si),

Let G ⊆ S be a set of states such that Prs0(♦G) = 1. The
expected accumulated reward until reaching G from s0, denoted by
Es0(G), is the expectation value of AccRew in M restricted to the
set of paths ending in G, i.e., Es0(G) =

∑
π∈Π P (π) · AccRew(π), where

Π = {s0 . . . sn ∈ PathsM | sn ∈ G, si �∈ G for 0 ≤ i < n}.
For G ⊆ S and Prs0(♦G) > 0 the conditional expected accumulated reward

until reaching G from s0 under the condition of reaching G is, with Π as above:

Es0(G | ♦G) =
∑

π∈Π

P (π) · AccRew(π)
Prs0(♦G)

.

4 Redo-Based Fault-Tolerance Model

In this section, we introduce the fault-tolerance model. A detailed description
can be found in the extended version of this paper [16]. The model contains

82 L. Herrmann et al.

adjustable attributes for, e.g., the error probability. It consists of components
for the underlying hardware, the application, and the fault-tolerance protocol.
The latter contains a control-flow checker (CFC), a data-flow checker (DFC),
and a transaction redo manager (TRM) implementing the redo/abort-schema.

Application. An application performs a fixed number of instructions inst num,
each instruction is prone to errors (see paragraph “Errors and Failures”
below). The instruction flow is partitioned into transactions, each consisting
of ta len instructions. The number of transactions to be performed is ta num =
inst num/ta len. We assume three types of instructions: control-flow instruc-
tions, where errors affect only the control-flow (e.g., jump), data-flow instruc-
tions, where errors affect the data-flow (e.g. add), and transaction management
instructions, implementing the transaction mechanism (e.g., begin-of-transaction
and end-of-transaction instructions). Errors in the latter do only affect the con-
trol flow. Errors in the data-flow also affect and thus falsify the control-flow.
The ratio of control-flow and data-flow instructions can be set via the attribute
cf df ratio. The amount of transaction management instructions is controlled by
the attribute tmi num. The application starts in a location “start transaction“,
performs a transaction and then reaches a “wait” location. Eventually, it either
receives an ABORT or a COMMIT from the TRM. An ABORT indicates that an
error could not be corrected. Then, the application switches to location “abort”.
Receiving COMMIT causes the application to complete the transaction. If all
instructions are executed, it terminates, reaching location “done”. Otherwise, it
increases a counter ta counter and starts a new transaction.

Error Detection. The TRM initially waits for the application to complete a
transaction. Then, it invokes both, CFC and DFC in parallel, and waits for the
results. The DFC checks all data-flow instructions for errors. The CFC checks
all instructions for errors, since all instructions affect the control flow. For each
data-flow-corrupted transaction there is a chance p detn DFC of the DFC to
detect this error. For each transaction with correct data-flow, there is a chance
of p fp DFC to detect an error anyway, i.e., to have a false positive. Analogous
attributes p detn CFC and p fp CFC are defined for the CFC.

Error Correction. After checking, the checkers report their results to the TRM,
which switches to location “answers received”. If one of the checkers detected
an error, a redo is invoked by the TRM, i.e., the transaction is re-executed and
a redo-counter redo counter is increased. The re-executed transaction can again
be corrupted, thus, error detection is invoked and might result in a further redo.
This is repeated until the preset attribute max redos is reached by the redo
counter. Then, the TRM sends an ABORT signal to the application. If in the
original transaction or in one of its re-executions no error is detected, the TRM
sends a COMMIT-signal to the application.

Errors and Failures. The hardware model tracks the state of the applications
internal memory. When starting the application, the hardware location is “cor-
rect”. Each instruction can be corrupted with probability p e, which causes the
location to switch to “error”. When being erroneous, and a redo is invoked by

Formal Parameter Synthesis for Energy-Utility-Optimal Fault Tolerance 83

the TRM, the location switches back to “correct”. When being erroneous and
no redo is invoked, the location is changed to “failure”. A failure increases the
chance of a subsequent error in an instruction to p e incr. Once the application
has a failure in its internal memory, it will persist until the application either
terminates (with this failure) or is aborted due to another error.

Transaction Outcomes. After performing, checking, correcting, and commit-
ting or aborting a transaction, there are four possible outcomes. (1) The hard-
ware state is “correct” and the application received a commit, i.e., is in a location
“transaction completed” (short: cc). This outcome is reached if either no error
occurred and also no error was detected, or if an error occurred, was detected
and could be corrected. (2) The hardware is “correct” but the application was
aborted (short: ca), arising, if no error occurred in the original transaction, but
a false positive triggered redos, and redos failed. (3) If an error occurred in the
original application but could not be detected, the hardware model ends up in
location “failure” and the application receives a commit, completing the transac-
tion (short: fc). (4) If the hardware after some transaction ends in the previous
mentioned outcome fc and in some transaction afterwards an abort signal is
sent, then the hardware model is in location “failure” and the application is in
location abort (short: fa).

5 State-Space Reduction and Factorization

Semantics and Structure of the Model. The fault-tolerance model is a
Markov decision process (MDP) (see, e.g., [17]), i.e., a discrete-time Markov
chain (DTMC) enhanced with nondeterminism. In an MDP there can be several
distributions per state. The non-determinism is resolved by a strategy. Each
strategy S induces a DTMC and thus, together with a starting state s0 ∈ S, a
probability distribution PrSs0

on the set of measurable sets of paths in the induced
DTMC. The MDP M for our model serves as operational model whose states
are tuples consisting of the local states of all components. The initial state s0 is
the state where the hardware is “correct”, the application’s location is “start”
and all other modules wait for being invoked. All counters (i.e.,redo counter ,
ta counter) are set to 0 and variables indicating redos to false. For each state,
the outgoing transitions arise from all possible synchronous and asynchronous
transitions enabled in the components.

Reduction to Markov Chain. The nondeterminism in M solely arises from
interleaving execution of the CFC and DFC. None of the individual components
of the model contains nondeterministic choices. Since no variables or locations
outside CFC and DFC change during execution of CFC and DFC and no transi-
tions in the CFC and DFC make use of the internal state of the respective other
checker component, the state of the MDP after error detection does not depend
on the chosen interleaving. Furthermore, none of our configuration criteria in
Sect. 6 distinguishes between states in the non-deterministic part of the MDP,
i.e., states that model the error detection process. Thus, we can rely on results

84 L. Herrmann et al.

that have been established in the context of partial-order reduction for MDPs
[18–20]: for the chosen configuration criteria it is irrelevant which interleaving
is chosen and we can replace M with, e.g., the DTMC in which first the CFC
performs error detection and then the DFC checks the data-flow.

Factorization. The model size increases significantly when increasing ta num
(i.e., by decreasing the transaction length). Furthermore, even for small mod-
els, PPMC performs badly on our model. When choosing max redos = 1 and
ta num = 5, the model consists of only 876 states, but computation times of
simple probabilistic properties are unfeasible large3. Realistic applications con-
sist of many more transactions, e.g., in Sect. 6 we will analyze a model with
ta num = 1010.

We will use the structure of the model to simplify the model checking process.
For technical reasons, we slightly modify the model: instead of terminating in
abort states, we stepwise increase the transaction counter up to its maximum
value (without changing other variable values). This gives us a DTMC with
a regular structure with repeating phases (Fig. 1). One phase represents one
transaction and after each phase there are four possible outcomes cc, ca, fc, and
fa (cf. Sect. 4). Internal details of each phase such as program execution, error
detection and correction are omitted here.

t1 t2 t3 tn

cc cc cc cc

ca ca ca ca

fc fc fc fc

fa fa fa fa

S1 S2 S3 SnS0
cc

ca

fc

fa

Fig. 1. The structure of the DTMC on transaction level. Each arrow indicates the
execution of one transaction, including error detection and correction. The outcome
of each transaction is one of the states in {(correct,commit)(cc), (correct,abort)(ca),
(failure,commit)(fc), (failure,abort)(fa)}. Light-grey states in S0 mark states that are
not reachable.

For the rest of this section we fix ta num = n. We denote the set of outcome
states after the i-th transaction by Si = {(cc, i), (ca, i), (fc, i), (fa, i)} (cf. Fig. 1),
and identify the initial state with s0 = (cc, 0) ∈ S0, since the hardware is “cor-
rect”, the application is not aborted and no transaction is performed yet. Note
that for all 0 ≤ i < n the probabilities of reaching state t ∈ Si+1 from s ∈ Si do
not depend on the counter value i. Thus, we can choose an arbitrary 0 ≤ i < n

3 Computing the probability of correct termination single threaded on a 2.5 Ghz
Intel Core Processor did not finish within 2 h, for ta num = 5. The model was
parametrized in the detection probabilities and the error probabilities.

Formal Parameter Synthesis for Energy-Utility-Optimal Fault Tolerance 85

and define a probability matrix P = (Prs(♦t))s∈Si,t∈Si+1 . P is a 4×4-matrix that
describes the probabilistic effects of a single transaction. Note that the matrix
elements are rational functions. The probability of reaching outcome goal ∈ Sn

(thus, after the n-th transaction) can be computed by Prs0(♦goal) = (Pn)s0,goal.

Lemma 1. Let rew be a reward structure with rew(sn) = 0 for all sn ∈ Sn,
E = (Es(t|♦t))s∈Si,t∈Si+1 for some arbitrary 0 ≤ i < n, and let pe be a 1 × 4

vector with pe =
(∑

t∈Si+1
Ps,t · Es,t

)

s∈Si

. Then we have

Es0(Sn) =

(
n∑

k=1

P k−1 · pe

)

s0.

The proof relies on Bayesian decomposition for expectation values and can be
found in the extended version of this paper [16]. The matrices P and E and
the vector pe can be computed with existing PPMC implementations on very
small models (modeling only one transaction). Thus, we can compute rational
functions for both, reachability properties and expected accumulated rewards
by combining PPMC (on very small models) and a computer algebra system.
Furthermore, the structures of the small models do not depend on ta num and
ta len, thus ta len can be treated as a parameter.

6 Configuration

In this section, we exemplarily configure an instance of our fault-tolerance model
with respect to the configuration parameters p detn CFC, p detn DFC, ta len
and max redos. During model checking we handle p detn CFC, p detn DFC
and ta len as parameters, and, using the factorization approach from Sect. 5,
compute rational functions for each max redos ∈ {0, 1, 2, 3}. We also handle the
error probability p e as parameter, and exemplarily configure the fault-tolerance
model for all p e ∈ {10−8, 10−10, 10−15}. The models, rational functions, and
additional files can be downloaded4.

Fault-Tolerance Setting. The model instance is mainly inspired by HAFT [1],
i.e., instructions in our model correspond to instructions on CPU level, and
error detection is enabled by duplicating instructions. The amount of dupli-
cated instructions is configurable and represents the detection probability, e.g.,
replicating 80% of all data-flow instructions means p detn DFC = 0.8. Repli-
cating all instructions gives error detection probabilities of 1, i.e., we neglect
the probability of the same error occurring in both, an original instruction and
its replication, which would cause the error to be undetectable. Furthermore we
assume that transaction management instructions are not replicated.

Model Attributes. We fix the following model attributes: The application runs
for exactly 1012 (inst num) instructions, 10% (cf df ratio) being control-flow
4 https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/EPEW18.

https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/EPEW18

86 L. Herrmann et al.

instructions, and two (tmi num) transaction management instructions (“begin
of transaction” and “end of transaction”) are inserted per transaction. The
increased error probability is defined as p e incr = (p e)

8
10 . False positives are

errors that occur in replicated instructions or in transaction management instruc-
tions, i.e., with cf df ratio = 0.1 we have:

p fp CFC = 1 −
(
(1 − p e)ta len·0.1·p detn CFC · (1 − p e)ta len·0.9·p detn DFC

· (1 − p e)tmi num
)

and

p fp DFC = 1 − (
(1 − p e)ta len·0.9·p detn DFC

)
.

Reward Structures. In the analysis we focus on the expected energy-overhead
for error detection and correction. For this we introduce a reward structure that
assigns one energy unit each time an instruction is executed for error detection
or correction. Formally, we define a reward structure assigning states where
the TRM is in location “answers received” the following reward for the energy
overhead, depending on whether a transaction or one of its redos was executed:

if redo counter = 0 : ta len · p detn CFC + ta len · 0.9 · p detn DFC + tmi num,

if redo counter > 0 : ta len · p detn CFC + ta len · 0.9 · p detn DFC + tmi num+ ta len.

Configuration Criteria. The goal of this section is to exemplarily find good
parameter values that optimize the chosen protocol instance with respect to the
following criteria: (1) the probability of terminating correctly should be at least
0.9995, (2) the conditional probability of aborting, in case of not terminating
correctly, should be greater than 0.15, and (3) from all configurations meeting
the conditions above, one with least energy overhead should be chosen.

Finding Optimal Configuration. Using probabilistic model checking, we
compute parametric matrices P and E (as defined in Sect. 5). For this we
use the parametric model checker Storm [21]. The matrices are parameter-
ized over the error probability, detection probabilities, and the transaction
length. As P and E depend on the number of redos, this causes sepa-
rate runs of Storm for max redos ∈ {0, 1, 2, 3}. To systematically explore
the design space, we first fix the error probabilities and replace the param-
eters with constants within P and E, as these values can be assumed to
be given. We will consider three scenarios with p e ∈ {10−10, 10−12, 10−15}.
For each max redos ∈ {0, 1, 2, 3} we then consider a discrete number of
combinations for the detection probabilities (p detn DFC, p detn DFC ∈
{0, 0.001, 0.1, 0.5, 0.75, 0.9, 0.95, 0.99, 0.999}) and transaction length (ta len ∈
{100, 200, 500, 1000, 2000, 5000, 104, 106, 1010, 1012}) to fill decision tables (or
plot the respective rational function). For this step we applied the Python-based
computer algebra system SymPy [22]5.
5 Computing the matrices took 50 s for max redos = 0, 173 s for max redos = 1,

140 min for max redos = 2, and about one day and 3 h for max redos = 3. Eval-
uating the rational functions to set up decision tables using SymPy [22] took less
then a second per evaluation point for max redos = 0 and about 3 s per point for
max redos = 3.

Formal Parameter Synthesis for Energy-Utility-Optimal Fault Tolerance 87

The Maximal Number of Redos. We start with analyzing the effect of the
maximal number of redos. Without any fault-tolerance mechanism6, the proba-
bility of terminating correctly is 3 · 10−83 for p e = 10−10, 0.15 for p e = 10−12,
and for p e = 10−15 it is 0.998. Figure 2 shows the probability of terminating
correctly, when varying max redos. For all chosen error probabilities and detec-
tion probabilities, performing a single redo pays off drastically. For example,
when the transaction length is 1000 and the detection probabilities both are
set to 0.9, allowing a single redo increases the probability of terminating cor-
rectly from 0.027 to 0.827, when p e = 10−12. When performing error detection
without redo-based correction, increasing detection probabilities cause the prob-
ability of terminating correctly to shrink, since more instructions are replicated
and thus more replicas can be affected by errors. Allowing redos neglect this
effect. Also for all transaction lengths, except for the extremal case where the
whole application is a single transaction, allowing redos increases the probabil-
ity of terminating correctly significantly. Allowing more than one redo does only
marginally increase the probability of terminating correctly, except for trans-
action lengths above 1010. Figure 3 shows that each redo decreases the chance
of aborting in case of not terminating correctly (Criteria 2). For two redos, this
chance is almost zero for all configurations except for extremely large transaction
lengths and small error probabilities. The correlation of the energy overhead and

p e = 10−10 p e = 10−12 p e = 10−15

P
r
(♦

(d
on

e
∧

co
rr
ec

t)
)

P
r
(♦

(d
on

e
∧

co
rr
ec

t)
)

Fig. 2. Probability of terminating correctly in dependence on the maximal number
of redos. First row: ranging detection probabilities, ta len = 1000. Second row: rang-
ing transaction length, p detn CFC = p detn DFC = 0.9. From left to right: error
probability 10−10, 10−12, 10−15. Note that y-scales in the left column are in log scale.

6 Due to the nature of PPMC, these values need to be computed in a separate run.
Applying the factorization approach of Sect. 5, this took less than three seconds.

88 L. Herrmann et al.

p e = 10−10 p e = 10−12 p e = 10−15

P
r
(♦

ab
or

t
|�

¬d
c)

P
r
(♦

ab
or

t
| �

¬d
c)

Fig. 3. Conditional probability of aborting in case of not terminating correctly in
dependence of the maximal number of redos (dc is short for done ∧ correct.) First row:
ranging detection probabilities. Second row: ranging transaction lengths. From left to
right: error probability 10−10, 10−12, 10−15. Note that y-scales are in log scale.

Fig. 4. Expected overhead in dependence of the maximal number of redos. First row:
ranging detection probabilities. Second row: ranging transaction length. From left to
right: error probability 10−10, 10−12, 10−15.

the maximal number of redos is depicted in Fig. 4. For low error probabilities,
the overhead is only marginally affected by the maximal number of redos, since,
when errors are unlikely and thus error correction is invoked only seldom, the
overhead is mainly defined by the number of replicated instructions executed

Formal Parameter Synthesis for Energy-Utility-Optimal Fault Tolerance 89

for error detection. For higher error probabilities, expectably more errors occur
and thus more error correction needs to be performed. So the overhead increases,
when allowing more redos. Thus, choosing to perform at most one redo increases
the probability of correct termination. Allowing another redo does not further
increase this probability significantly, but decreases the probability of aborting
in case of not terminating correctly without decrease in the overhead. Hence,
from now on we fix max redos = 1.

Optimal Transaction Lengths. Figure 5 shows from top to bottom results for
the three configuration criteria. For p e = 10−10 the probability of terminating
correctly is hardly affected by varying transaction lengths below 106. Choosing
longer transaction length decreases the probability substantially. Large transac-
tion lengths do increase the probability again, when p detn DFC is small, but
short transaction lengths are in general to be preferred. For lower error proba-
bilities, the turning point moves to the right. For error probability 10−15 it is
beyond the maximal possible transaction length. The conditional probability of

p e = 10−10 p e = 10−12 p e = 10−15

P
r(

♦(
d
on

e
∧

co
rr
ec

t)
)

P
r
(♦

ab
or

t
|�

¬d
c)

E
s
0

(
S
n

) (/
10

1
2
)

Fig. 5. In dependence of the transaction length for ranging detection probabilities,
max redos= 1: First row: probability of terminating correctly. Second row: conditional
probability of aborting in case of not terminating correctly (dc is short for done ∧
correct). Third row: expected energy overhead. From left to right: error probability
10−10, 10−12, 10−15.

90 L. Herrmann et al.

aborting when not terminating correctly (Fig. 5, second row) first increases with
increasing transaction lengths, then stays on a level near one for middle-large
transaction lengths and finally drops again, in the same point as the probability
of terminating correctly rises for some detection probabilities. Again, the turn-
ing points move to the right when decreasing error probabilities. Regarding the
overhead, small transaction lengths cause less transactions to be erroneous and
thus less error correction to be performed. Nevertheless, very small transaction
lengths cause error detection to take place very often and thus lead to a higher
overhead. This is visible in the third row of Fig. 5. For error probabilities 10−10

and 10−12, increasing the transaction length up to 1010 decreases the overhead,
but after this point, the overhead increases significantly. For error probability
10−15 the effect is barely visible. The decrease of energy overhead also arises
because the probability of aborting increases with higher transaction length (cf.
Fig. 6): The higher this probability, the sooner the application is likely to be
aborted. After an abort no more overhead is produced. Thus the overhead drops
with increasing abort rates, and rises, when very large transaction lengths cause
a shrinking abort rate. For p e = 10−10, ta len = 106 is optimal under the inves-
tigated lengths. For p e = 10−10, we choose ta len = 1010, and for p e = 10−15,
errors are unlikely enough to handle the application as one transaction.

p e = 10−10 p e = 10−12 p e = 10−15

P
r
(♦

ab
or

t)

Fig. 6. The (unconditional) probability of aborting in dependence of the transaction
length for ranging detection probabilities, max redos= 1: From left to right: error
probability 10−10, 10−12, 10−15.

Error Detection Probabilities. We now fix the remaining configuration
parameters, p detn CFC and p detn DFC. Figure 7 shows the effect of these
parameters with the previously chosen configurations for max redos and ta len.
As expected, all three values increase when increasing the detection probabilities.
Increasing only one error detection probability certainly has a visible effect on
the probability of terminating correctly, yet it is ineffective to choose one detec-
tion probability to be very low and the other one to be very high. To configure
the remaining parameters of the fault-tolerance technique, we use a decision
table, exemplarily for p e = 10−15. Figure 8 shows results for max redos = 1
and ta len = 1012. All depicted lines satisfy the first two configuration crite-
ria. The energy overhead does not differ much, but the conditional probability

Formal Parameter Synthesis for Energy-Utility-Optimal Fault Tolerance 91

P
r
(♦

(d
on

e
∧

co
rr
ec

t)
)

P
r
(♦

ab
or

t
|�

¬d
c)

E
s
0

(
S
n

) (/
10

1
2
)

Fig. 7. In dependence of the detection probabilities, for max redos= 1: First row:
probability of terminating correctly. Second row: conditional probability of aborting in
case of not terminating correctly (dc is short for done ∧ correct). Third row: expected
overhead. From left to right: p e = 10−10 and ta len = 106, p e = 10−12 and ta len =
1010, p e = 10−15 and ta len = 1012.

p detn CFC p detn DFC Criteria 1 Criteria 2 Criteria 3
0.95 0.99 0.99992 0.19 1.851 · 1012
0.95 0.999 0.99994 0.21 1.86 · 1012
0.99 0.95 0.99993 0.19 1.855 · 1012
0.99 0.99 0.99997 0.43 1.892 · 1012
0.99 0.999 0.99997 0.57 1.9 · 1012
0.999 0.95 0.99994 0.23 1.864 · 1012
0.999 0.99 0.99998 0.59 1.901 · 1012
0.999 0.999 0.99998 0.88 1.909 · 1012

Fig. 8. Decision table for p e = 10−15, ta len = 1012 and max redos = 1.

of aborting when not terminating correctly can be increased significantly when
accepting a little more overhead. Thus, it would be worth choosing a configu-
ration that replicates some more instructions, accepting a little more overhead,
e.g., p detn CFC = p detn DFC = 0.999.

92 L. Herrmann et al.

7 Conclusion

The purpose of the paper was to illustrate how probabilistic model checking
techniques can be employed to determine parameter settings for a redo-based
fault-tolerance protocol minimizing the expected overhead subject to resilience
constraints. We dealt with discrete parameters that affect the topological struc-
ture of the state space (number of redos, transaction length) and continuous
parameters (error detection rates). This spans a large family of protocols arising
by concrete choices for the parameters. Due to the huge state spaces of these
Markov chains, the direct application of standard model checking techniques for
probability-parametric Markov chains was not feasible. Instead, we employed
a new factorization approach that exploits the repeating phases in the models
and used a combination of PPMC and computer-algebra techniques to compute
and analyze the rational functions for the relevant probabilities and expectations
in these Markov chains, and finally to extract an optimal parameter valuation.
While the factorization technique is specific for redo protocols, we argue that
the remaining steps are of exemplary character.

References

1. Kuvaiskii, D., Faqeh, R., Bhatotia, P., Felber, P., Fetzer, C.: HAFT: hardware-
assisted fault tolerance. In: European Conference on Computer Systems. ACM
(2016)

2. Saha, G.K.: Approaches to software based fault tolerance. Comput. Sci. J. Mold.
13(2), 193–231 (2005)

3. Apt, K.R., Kozen, D.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

4. Lanotte, R., Maggiolo-Schettini, A., Troina, A.: Parametric probabilistic transition
systems for system design and analysis. Form. Asp. Comput. 19(1), 93–109 (2007)

5. Hahn, E.M., Hermanns, H., Zhang, L.: Probabilistic reachability for parametric
Markov models. Softw. Tools Technol. Transf. 13(1), 3–19 (2011)

6. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.P.: Parameter syn-
thesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D.
(eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46520-3 4

7. Sridharan, V., Liberty, D.: A study of dram failures in the field. In: High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–11, November 2012

8. Li, X., Huang, M.C., Shen, K., Chu, L.: A realistic evaluation of memory hardware
errors and software system susceptibility. In: USENIX Annual Technical Confer-
ence, p. 6 (2010)

9. Sridharan, V., Stearley, J., DeBardeleben, N., Blanchard, S., Gurumurthi, S.: Feng
Shui of supercomputer memory positional effects in DRAM and SRAM faults. In:
2013 SC - International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pp. 1–11, November 2013

10. Cubuktepe, M., et al.: Sequential convex programming for the efficient verification
of parametric MDPs. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10206, pp. 133–150. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54580-5 8

https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-319-46520-3_4
https://doi.org/10.1007/978-3-662-54580-5_8
https://doi.org/10.1007/978-3-662-54580-5_8

Formal Parameter Synthesis for Energy-Utility-Optimal Fault Tolerance 93

11. Češka, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Informatica 54(6),
589–623 (2017)

12. Han, T., Katoen, J., Mereacre, A.: Approximate parameter synthesis for proba-
bilistic time-bounded reachability. In: Proceedings of the 29th IEEE Real-Time
Systems Symposium, pp. 173–182 (2008)

13. Bartocci, E., Grosu, R., Katsaros, P., Ramakrishnan, C.R., Smolka, S.A.: Model
repair for probabilistic systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS
2011. LNCS, vol. 6605, pp. 326–340. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19835-9 30

14. Chen, T., Han, T., Kwiatkowska, M., Qu, H.: Efficient probabilistic parameter
synthesis for adaptive systems. DCS, Technical report RR-13-04, p. 13 (2013)

15. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

16. Herrmann, L., Baier, C., Fetzer, C., Klüppelholz, S., Napierkowski, M.: Formal
parameter synthesis for energy-utility-optimal fault tolerance (extended version)
(2018). https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/EPEW18

17. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (1994)

18. Baier, C., Größer, M., Ciesinski, F.: Partial order reduction for probabilistic sys-
tems. In: Quantitative Evaluation of Systems, pp. 230–239. IEEE (2004)

19. D’Argenio, P.R., Niebert, P.: Partial order reduction on concurrent probabilistic
programs. In: Quantitative Evaluation of Systems, pp. 240–249. IEEE (2004)

20. Groesser, M., Baier, C.: Partial order reduction for Markov decision processes:
a survey. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.P. (eds.)
FMCO 2005. LNCS, vol. 4111, pp. 408–427. Springer, Heidelberg (2006). https://
doi.org/10.1007/11804192 19

21. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A storm is coming: a modern prob-
abilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS,
vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

22. Meurer, A., et al.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3,
e103 (2017)

https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-642-19835-9_30
https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/EPEW18
https://doi.org/10.1007/11804192_19
https://doi.org/10.1007/11804192_19
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31

Performance Model of Apache Cassandra
Under Heterogeneous Workload Using
the Quantitative Verification Approach

Al Amjad Tawfiq Isstaif(B) and Nizar Alhafez

Higher Institute for Applied Sciences and Technology, Damascus, Syria
{alamjadtawfiq.isstaif,nizar.alhafez}@hiast.edu.sy

Abstract. We report our experience using PRISM, a leading quantita-
tive verification engine, to formulate a performance model of Apache Cas-
sandra, a popular NoSQL database, under a simple form of hybrid oper-
ational/analytical workload, since such heterogeneous workloads have
shown to have significant implications for the deployment and elastic
strategies of these databases. Some current literature suggest that, com-
pared to classical performance modelling tools, quantitative verification
provides a more rigorous analysis framework. We aim to explore the effec-
tiveness and applicability of this approach in practice which we identify
as relevant to our use case. We present a partial model of a single Cassan-
dra node that predicts its maximum throughput under various system
and workload parameters and validate this model experimentally. Fur-
thermore, we show the limitations of extending this model using PRISM
to address other interesting properties, identifying the need for scalable
analytical modelling approaches for realistic highly concurrent systems
under heterogeneous workloads.

Keywords: Probabilistic model checking · Quantitative verification
PRISM · NoSQL · Apache Cassandra · Performance analysis
Heterogeneous workload

1 Introduction

Due to their benefits in horizontal scalability, NoSQL databases are having an
increasingly important role as backends of Big Data applications. With the
increasing adoption of Big Data analytics applications, such databases are being
extensively used for diverse transactional, analytical and hybrid workloads.

In practice, mixing analytical and transactional workloads is known to cre-
ate undesired consequences on the performance of NoSQL databases [12]. In
Cassandra, this has led to new deployment models that sort out hybrid work-
loads into isolated homogeneous workloads. Each workload is then applied to a
separate replica of the database cluster, which is tuned independently in order
to achieve the desired performance properties of its applied workload, avoiding
any interference that may be caused by other workloads. Furthermore, there
c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 94–109, 2018.
https://doi.org/10.1007/978-3-030-02227-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_7&domain=pdf

Performance Model of Apache Cassandra Under Heterogeneous Workload 95

has been extensive research works to develop workload-aware elastic strategies
for NoSQL data stores, particularly the works of [1–3]. These works show how
the data access pattern and the heterogeneity of the workload have significant
implications for the optimal deployment configurations of such systems in the
cloud. Developing performance models that take such workload characteristics
into account can lead to more effective capacity planning and autonomous man-
agement of these NoSQL databases. Our work represents an initial step in this
direction with Apache Cassandra as an example.

As for the modelling approach, we consider the cloud elasticity as instance
of the general class of self-adaptive systems (as presented in several works such
as [7] and [8]). Among other model-based performance analysis approaches for
self-adaptive systems surveyed in [4], the work in [7] utilizes the quantitative ver-
ification approach using the probabilistic model checker (PRISM). This provides
a rigorous analysis approach, which has the important benefit of establishing the
correctness of performance requirements of dynamic and self-adaptive systems
under possible autonomous reconfiguration or environment changes. In particu-
lar, the work in [7] presents performance and reliability models developed using
PRISM for a hypothetical service-based software system, where the QoS require-
ments of this system are specified using ProProST, a formal specification system
based on probabilistic logics, that are verified against these models. The PRISM
engine is then integrated into the closed monitor-analyse-plan-execute (MAPE)
control loop to proactively detect any possible QoS violations and ensure adap-
tation plans do not result in QoS violations as well.

Nevertheless, while all the surveyed performance modelling approaches in
[4] have provided proof-of-concept implementations of their target self-adaptive
systems, none of these works have conducted case studies on realistic systems.
To this end, our aim is to explore the usage of PRISM to develop a performance
model of a realistic system that has the potential to improve elasticity decisions.
A well known issue that constitutes the main limitation of this approach is the
state-space explosion and large solution times [5]. Our goal is to explore to which
extent it is feasible to develop analytical performance models for realistic systems
using PRISM with fast solution times.

Our initial aim is to develop a full model of a single Cassandra node that
detects any resource bottlenecks under a simple form of hybrid operational/an-
alytical workload. However, representing both disk and network resources with
realistic capacities leads to prohibitively large models and long solution times.
Building on insights related to the system internals of Cassandra, and within
restrictive assumptions, we are able to develop a continuous-time Markov chain
(CTMC) partial model of a single Cassandra node, addressing how concurrent
read queries of multiple types are handled by Cassandra multithreading architec-
ture. We show by experimental validation how this model can be used to predict
the performance in terms of maximum throughput of a single node under a mixed
workload with various proportions of read and scan operations. While we show
this model can be extended to a reasonable number of request types that could
still be solved effectively by PRISM, a serious limitation prohibits its extensi-
bility to capture more interesting behaviour of our target system. Furthermore,

96 A. A. T. Isstaif and N. Alhafez

our experience shows that we resort to a rather simple model where the benefits
of PRISM are questionable. We thus identify the need for scalable analytical
modelling approaches for the QoS requirements of highly concurrent distributed
systems under heterogeneous workloads.

The rest of the paper is organised as follows. Section 2 summarises related
work. Section 3 describes the internals of Apache Cassandra involved in the
study. Section 4 introduces the proposed model, which is subsequently validated
in Sect. 5. Section 6 presents the limitations of PRISM. Finally, we present our
conclusions as well as proposed future work in Sect. 7.

2 Related Work

In this section we present previous work related to (1) benchmarks of mixed
workloads performed on NoSQL databases, (2) previous performance models of
Apache Cassandra and finally (3) relevant work on using PRISM for performance
analysis.

2.1 Benchmarks of Mixed Workloads on NoSQL

We derived our initial insights related to the behaviour of Cassandra under
mixed workloads from the experiments presented in [10] and [12]. As for [10],
a comprehensive performance evaluation and benchmark study has been con-
ducted over six database systems (including Cassandra) using workloads found
in Big Data analytics applications. For databases that support scan operations,
analytical workloads were modeled using the Yahoo! Cloud Serving Benchmark
(YCSB) [11] to construct a mixed workload consisting of read, write and scan
operations. These database systems were also benchmarked against the same
workloads, excluding scan operations, so that their performance would be com-
parable to the performance of databases that do not support scans. Comparing
the maximum throughput measured with and without scans, the study shows
that the maximum throughput of these systems decreases significantly. This
insight remains true irrespective of the cluster size, as the benchmarks were per-
formed on various number of nodes, and the linear scalability has been confirmed
for Cassandra in most of the tests.

The negative effect of mixing scan operations has also been confirmed in
a public benchmark of NoSQL databases [12], where several YCSB workloads
were applied to various cluster sizes of Cassandra. These workloads included
standard YCSB workloads alongside a customized workload representing mixed
operational/analytical workload (60% read, 25% update, 10% insert, and 5%
scan). In this study, the Cassandra throughput decreased from over 300,000
operations per second under balanced read and write workload, to less than
130,000 operations per second under this mixed workload. Again, these insights
remain true irrespective of the cluster size. We think this is due to the fact that
clusters in both [10] and [12] have been configured with no replication factor.
Furthermore, nodes under all cluster sizes were filled so that they will have the
same amount of data.

Performance Model of Apache Cassandra Under Heterogeneous Workload 97

2.2 Performance Models of Apache Cassandra

To the best of our knowledge, the research work which has been conducted
on performance modelling of NoSQL databases is limited, and the available
models specific to Cassandra are all based on the simulative approach applied
under normal transactional workloads [13–15]. Our work is different from all the
previous works in focusing on considering a simple heterogeneous workload that
includes the scan operation, which generally represents the analytical component
of a workload, alongside normal read operations on a single node database.
Furthemore, it takes into account the effect of the variation in the proportion
of scan operations on the maximum throughput that could be served by the
node. However, because of the limitations of developing workable solutions using
PRISM (reported later in Sect. 6), we are not able to extend our approach to
predict end-to-end latencies of the requests as in these works.

The work presented in this paper is also different at the abstraction level.
Previous models of Cassandra focus on modelling the latencies of the requests
as they travel through the computing resources of CPU, network and disk. In
this work, however, we leverage the insights related to the internals of Cassan-
dra multithreading architecture based on the Staged Event-Driven Architecture
(SEDA). In this architecture, the request life-cycle is broken into several stages,
and the read and write operations have different system paths. This enables us
to develop a partial model of the single stage of reading data from disks, con-
sidering how scan and read operations compete for the same resource excluding
the effect of write operations.

Furthermore, we focus only on modelling a single node Cassandra system.
The general behaviour of read and scan operations in the cluster is directly
related to the replication factor and consistency levels which have been thor-
oughly modelled and studied in [13]. We think that the study of scan queries
found in analytical workloads applied on a cluster should be the subject of a
future work that builds on our present work and on [13].

2.3 Performance Analysis Using PRISM

The work in [5] explains the usage of PRISM in performance and reliability
analysis, where PRISM can be used to represent continuous-time Markov chains
(CTMCs) and Markov reward models. Furthermore, the works in [6] and [9]
have shown the applicability of probabilistic model checking to formulate queu-
ing network based models with several layers of existing models in the literature
and the advantage of this approach compared to classical performance modelling
tools. Our work could be considered as a further contribution to define the lim-
itations of using PRISM to model the performance of realistic case studies. In
particular, we consider the effect of incorporating multiple request types and
realistic queue sizes. Another relevant case study is [8], where PRISM is used to
model dependable and cost-aware horizontal scaling decision making for NoSQL
databases applied to Cassandra. The focus of [8] is on transient-analysis of per-
formance during the scale-up and scale-down events of the NoSQL cluster using

98 A. A. T. Isstaif and N. Alhafez

a Markov Decision Process (MDP) in order to provide performance guarantees
regarding latency violations for various elastic policies. In contrast, this work
focuses on steady-state analysis of the node under different sets of workload and
system parameters using a CTMC-based model.

3 Cassandra Internals

In this section, we present a brief overview of system internals of a single Cas-
sandra node related to our use case. Firstly, we outline how local read and
write requests follow different paths in the system, showing how write opera-
tions resort to extremely fast sequential disk writes that do not directly interfere
with generally disk-bound read operations. We then illustrate Cassandraś inter-
nal multithreading architecture based on SEDA. We show, in particular, how
this architecture handles requests and background operations as a collection of
explicitly defined stages, each with a separate thread pool, which helps to avoid
congestion in a particular resource.

3.1 Read and Write Paths

Among other NoSQL databases, Cassandra is known to be capable of handling
write-heavy workloads thanks to its in-memory writes where their durability is
ensured by a persistent write-ahead commit log. Writes are initially handled
by an in-memory structure called Memtable which is periodically flushed into
disk in the form of a persistant structure called SSTable. An SSTable (Sorted
Strings Table) is an immutable structure, so new data elements are added as
new SSTables that are periodically merged and compacted in order to reduce
read access time. To ensure that writes do not directly affect the performance
of reads, separate disks are used for storing both SSTables and the commit log.
Data written to the commit log remain there until the Memtable is flushed into
disk. These background operations of flushing data from memory to disk and
compacting SSTables might affect the performance of read operations in write-
heavy workloads. In such cases, the compaction operations could be throttled so
their effect would only consume a limited proportion of available disk bandwidth.
However, this has no effect on the performance of write operations. This is due
to the fact that clients of write requests do not need to wait the data to be
fully written in data directory as writes can be acknowledged once written to
the commit log. As a result, write operations resort to extremely fast sequential
disk writes and thus are considered to be CPU-bound.

On the contrary, read operations include random access disk reads hitting
several SSTables until finding the appropriate records, so they are considered
disk-bound operations. Various forms of in-memory caching are used to acceler-
ate read operations. Furthermore, the virtual file system cache is used to store
chunks of these SSTables. If the size of data stored on the node fits in the RAM,
all read operations can be served from memory. Only in such a case, both read
and write operations would be considered to be CPU-bound.

Performance Model of Apache Cassandra Under Heterogeneous Workload 99

3.2 Internal Multithreading Architecture

Operations of Cassandra are handled by several thread pools organized based on
a Staged Event-Driven Architecture (SEDA). In this architecture, the lifecycle
of request is broken down into various stages. A dedicated thread pool exists for
each stage, making one thread responsible for only a single stage of the request
lifecycle. By the end of each stage, a thread submits its work to available threads
in the next stage. If all threads are busy, the job is submitted to a message queue
instead. Once a thread is available, it fetches any waiting jobs from its message
queue. If there is no room at the message queue, the requester is blocked until a
room exists.

In Cassandra, there are three types of stages: request, transport and
internal. Stages under the request type are dedicated to directly handle
incoming requests, most notably are the ReadStage and MutationStage for local
read and write operations respectively. Stages of the internal type include back-
ground operations such as SSTable compaction and flushing Memtables to disk.
The transport type includes the single Native-Transport-Requests stage,
which is used to handle network requests and responses for native clients send-
ing Cassandra Query Language (CQL) queries. Two threads are used for each
request: one for sending and another for receiving.

Both inserts and updates are handled by the MutationStage. Similarly, both
read and scan operations are performed during the ReadStage. However, scan
operations are constructed as range queries which are handled differently than
normal ones. Thus, unlike reads, scans take considerably longer times in order to
collect all the matching number of records. The maximum thread pool sizes of
both ReadStage and MutationStage default to 32 concurrent threads. However,
this defaults to 128 threads in the case of the Native-Transport-Requests
stage.

4 Cassandra Model

In this section, we firstly summarize the assumptions behind our model. Sec-
ondly, we present a two-dimensional birth-death CTMC model both in mathe-
matical formulation and in using PRISM. Then, we illustrate our methodology
to parameterize our model. Finally, we report how we use the PRISM experi-
ments feature to predict the maximum throughput of a single node under various
proportions of read and scan operations.

4.1 Model Assumptions

We focus in our work on modelling the ReadStage thread pool under a mix of
read and scan operations in a single Cassandra node system. Scans are consid-
ered to be a special type of read operations because they are handled by the same
ReadStage thread pool. While multiple threads would be running concurrently,
we assume this can be modeled as a finite-capacity queuing station with a single

100 A. A. T. Isstaif and N. Alhafez

server and a capacity size corresponding to a thread pool size of 32 concurrent
threads. We assume that scan operations need longer time to be serviced by the
server, and so a decreased throughput is observed under mixed workloads. Fur-
thermore, we assume independent Poisson for request arrivals, and exponential
distribution for all service times.

We exclude the effect of write operations handled by the MutationStage
thread pool which we will argue that is safe in most cases. We assume read-
mostly workloads where background operations triggered by write operations
have insignificant effect on read operations. We have shown in Sect. 3 that write
operations can affect the performance of read operations only in two main cases:
firstly under write-heavy workloads where flushing and compaction operations
start to significantly consume disk bandwidth, and secondly when read workloads
start to become CPU-bound where data can fit entirely in memory.

Before and after retrieving data from disk, network transfers are handled
by the Native-Transport-Requests thread pool which has a default size of
the maximum of 128 concurrent threads. This would be naturally modeled as
another finite-capacity queuing station that submits and retrieves jobs from the
queuing station corresponding to the ReadStage. However, due to the limitations
we will report in Sect. 6, we are unable to include these two queuing stations in
the same model as this combination would generate a prohibitively large model.

Excluding network transfer time makes it impossible to compute the end-
to-end latencies of requests. However, assuming a large network bandwidth, it
becomes safe to assume read and scan workloads are disk rather than network
bound. Thus, assuming we have the general case of disk-bound workloads, this
makes the ReadStage model useful to estimate the number of system active
jobs under various target throughputs. Furthermore, it allows us to estimate
the queuing station refusal ratio which, as we show, can be used to predict the
maximum throughput under a certain proportion of read and scan operations.

4.2 Mathematical Formulation

In this section, we present the mathematical formulation of the limited-capacity
queuing station model, corresponding to the ReadStage thread pool. As we
explained in detail in the previous section, read requests would correspond to
threads submitted to this queue with jobs waiting to be served in a first-come-
first-served (FCFS) fashion. Both read and scan requests would be submitted
to the same queue. These two request types would have different service rates
related to the average time needed to fetch data from disk for each request type.

Our mathematical formulation is built upon the birth-death Markov process,
which is a well-known analytical equivalent of a queuing station. In this formu-
lation, a single state variable represents the number of waiting jobs in the queue
and a continuous-time Markov chain (CTMC) is used to model how often the
value of this variable changes as jobs arrive and leave the system. We extend
this formulation by suggesting a two-dimensional birth-death process to model
the state of two variables representing the number of current requests of each
of the two types currently held by the queue (illustrated in Fig. 1). The sum of

Performance Model of Apache Cassandra Under Heterogeneous Workload 101

these two variables at any time should represent the total number of requests
which should not exceed the maximum allowed number of threads in the thread
pool stage. In this extended model we would have to consider two types of rates
describing (1) arrival rates of both read and scan operations and (2) service
rates of both read and scan operations. The first group of parameters represents
the properties of the workload while the other represents the behaviour of the
system under a specific configuration as we will elaborate in Sect. 4.4.

0,0 0,1 0,n − 1 0,n

1,0

n − 1,0

n,0

1,1 1,n − 1

n − 1,1

λ2

λ2

λ2

λ2

λ2

λ2

λ2

λ2β1,0

β2,0

βn−1,0

βn,0

β1,1

β2,1

βn−1,1

β1,n−1

λ1 λ1 λ1 λ1

λ1 λ1 λ1

λ1

α0,1 α0,2 α0,nα0,n−1

α1,1 α1,2 α1,n−1

αn−1,1

Fig. 1. The two-dimensional CTMC-based mathematical formulation of the ReadStage
thread pool holding active read and scan jobs concurrently.

Each type of request has its own arrival rate, λ1 and λ2. Assuming that inter-
arrivals follow an exponential distribution, the total arrival rate of requests, λ,
would correspond to the sum of these two rates λ = λ1+λ2. Furthermore, assum-
ing pread and pscan are the proportions of each of the read and scan operations
in the workload respectively, the arrival rates of each request type can be derived
from λ as follows: λ1 = pread ∗ λ and λ2 = pscan ∗ λ.

102 A. A. T. Isstaif and N. Alhafez

For each of the read and scan operations, we would have two service rates:
αi,j and βi,j respectively. Unlike arrival rates, these would vary according to the
current state of the queue and thus are parameterized by indexes accordingly. In
the two extreme cases of read-only or scan-only workloads, the values of these
rates would not depend on the current state of the queue featuring the constant
values of μ1 and μ2 which correspond to the maximum service rate of each request
type under the condition of being served alone. Thus, α0,j = μ1 and βi,0 = μ2. In
the general case of a state (i, j), which represents the state of the queue having
i waiting scan jobs and j waiting read jobs, and assuming that these requests
are performed by a single server, we further assume that the service time (of any
request type) would be directly proportional to the fraction of each operation
type in the queue. This rate would be obtained by multiplying the fraction of
this type of request at the current state by the corresponding service rate if
it would be served alone on this server. While the backward transitions of αi,j

and βi,j would typically represent parallel service, the composition of these two
transitions would result with a total service rate that corresponds to a single
server processing both types of requests:

αi,j = μ1 ∗ j

i + j
and βi,j = μ2 ∗ i

i + j
(1)

4.3 PRISM Formulation

In this section, we introduce the PRISM formulation used in representing the
previous mathematical structure. As we have shown in the previous section,
our main interest is the number of active read and scan jobs, which are to
be predicted under certain workload and system parameters. As Cassandraś
architecture limits the number of concurrent read jobs (explained in Sect. 3),
calculating this value in the long run allows us to predict when the system
reaches its maximum throughput. For this purpose we use the PRISM CTMC
module to represent our model, which will be later verified in Sect. 4.5 against
a PRISM property in order to calculate the ratio of accepted requests using
steady-state analysis.

The PRISM model is composed of two modules: the jobs module for gener-
ating the workload and the read stage module for representing the queuing sta-
tion. The jobs module includes two events: accept read and accept scan that
are triggered unconditionally according to the overall arrival rate of requests.
Each request type is generated according to a rate directly proportional to its
share in the workload. The module is illustrated in Listing 1.1.

module jobs

[accept_read] true -> lambda * read_proportion: true ;

[accept_scan] true -> lambda * scan_proportion: true ;

endmodule

Listing 1.1. jobs module

Performance Model of Apache Cassandra Under Heterogeneous Workload 103

In Listing 1.2, we show the read stage module which holds the variables
active read and active scan, representing the active number of read and scan
jobs currently waiting in the queue respectively.

formula read_stage_active = active_read + active_scan ;

module read_stage

active_read: [0.. capacity] init 0;

active_scan: [0.. capacity] init 0;

[accept_read] read_stage < capacity -> active_read ’ =

active_read +1;

[accept_scan] read_stage < capacity -> active_scan ’ =

active_scan +1;

[process_read] active_read > 0 -> read_rate *

(active_read/read_stage): (active_read ’ =

active_read -1) ;

[process_scan] active_scan > 0 -> scan_rate *

(active_scan/read_stage): (active_scan ’ =

active_scan -1) ;

endmodule

Listing 1.2. read stage module

The Listing 1.2 shows the various events handled by the read stage mod-
ule. The first two events are triggered in synchronization with the correspond-
ing accept scan and accept read events of the jobs module, representing the
action of accepting the incoming requests as long as the maximum capacity (con-
figured to be a constant value, 32) has not been reached. The current capacity is
represented by the read stage active formula which returns the sum of active
jobs in the system of both types at any time. Processing these active jobs is
represented by the collection of processed read and processed scan events.
These events are triggered as long as there are active jobs in the system wait-
ing to be processed, according to the rates in Eqs. (1) and (2) illustrated in the
previous section.

4.4 Model Parameterization

In this section we present our methodology to obtain the group of parameters
related to system configuration and state: the service rates of read and scan
operations which correspond to the read rate and scan rate variables in the
PRISM formulation and μ1 and μ2 in the mathematical formulation.

These two rates represent the hard disk service rates of both read and scan
operations under a specific system configuration. This configuration can be either
normal configuration or an optimized configuration for a specific workload type.
In our experiments, we examine the service rates of read and scan operations
under normal system configuration, taking into account the following two factors:
(1) the scan length and (2) the total number of records currently held at the
node. The scan length factor corresponds to the number of records that need
to be obtained to match the scan operation. We examine the two constant scan

104 A. A. T. Isstaif and N. Alhafez

Table 1. A summary of measured disk service rates (operations per second)

Number of records Reads Normal scans Aggressive scans

1 million record 23294 2172 225

8 million record 312 92 30

16 million record 235 110 40

lengths, 100 records (normal scans) and 1000 records (aggressive scans). The
total number of records factor corresponds to the total size of records currently
held by the database. We examine three different data sizes: firstly, the case
when the entire data can fit into memory (1 million records), and secondly when
data is served mostly from disk (8 and 16 million records). Table 1 illustrates the
measured service rates (as operations per second) under the described scenarios.

In order to measure these rates, a single node would be stressed by workload
of a single request type under the target system state, and the maximum reported
throughput would be considered as the service rate of this request type. To
ensure these rates represent truly the disk service rates, we need to ensure that
the applied workloads are not network bound. We achieve this by monitoring
network bandwidth (using standard Linux monitoring tools) during the period of
the tests, ensuring it does not reach the maximum network bandwidth between
the client and the server which could be measured using iperf tool.

Using the YCSB benchmark with the default parameters used in the stan-
dard Workload E (a YCSB workload where ranges of records are queried), we
generate these workloads by modifying the proportion of operations so that scan
or read operations would be %100. Before each stress test, the node is loaded
with the required number of records. The default size for each record is 1KB. We
also set value of the maxscanlength property to specify the number of records to
be scanned by a single scan operation, according to a constant distribution (spec-
ified by the scanlengthdistribution). We then record the average throughput
values as recorded by YCSB at the end of each stress test. Each experiment
is run on the real system for a period of 30 min to ensure the recorded values
represent stable system behaviour.

4.5 PRISM Experiments to Predict Maximum Throughput

In this section, we use a PRISM property to represent the ratio of accepted
requests of the read stage queuing station in order to predict the maximum
throughput of a single node in the long run under certain workload parameters
and system configuration and state. This ratio can be calculated using the fol-
lowing PRISM property, which corresponds to the steady-state probability of
the read stage having at least one free room for an incoming request:

S=? [(r e ad s t age < capac i ty)]

Performance Model of Apache Cassandra Under Heterogeneous Workload 105

Furthermore, this property can also be used to specify the requirement for
having no dropped requests by providing a threshold value for the acceptance
ratio. The verification of this property would return true if the expected value
of this property in the steady state is over 0.99. As we will show experimentally
in the next section, we consider the 0.99 ratio as a good approximation of the
behaviour of the system, since requests, that could not be handled by thread
pools of Cassandra, are not actually dropped but are instead saved in the message
queue of the thread pool waiting for the system to handle them:

S>0.99 [(r e ad s t age < capac i ty)]

To predict the maximum throughput, we perform PRISM experiments ver-
ifying our model against the previous property over a range of arrival rates,
lambda, using appropriate step sizes, until we reach the arrival rate value where
the property does not hold. We calculate the maximum throughputs considering
major changes in read and scan proportions in the workload, increasing the read
proportion with %25 steps (and decreasing the scan proportion accordingly).
Thus we examine the workloads with the following read proportions: %25 (scan-
mostly), %50 (balanced), %75 (read-mostly). These workloads are examined
alongside the considered factors of scan length and data size, described earlier in
Sect. 4.4. Figure 2 shows the results of these experiments plotted alongside real
measurements obtained from the experimental setup, which we will describe in
Sect. 5.

5 Experimental Evaluation

To validate the results of our model, we setup a single node Cassandra on a bare
metal server and install the YCSB workload generator on another bare metal
server. Both servers have 2 CPU cores and 8 GBs of memory. Cassandra server
has a 1TB SSD hard disk which is used solely for the storage of data while the
commit log is configured on another disk, which is considered the best practice
to avoid any interference between normal workloads and recent data written on
the commit log. The operating system is Ubuntu 16.04 with Sun Java 1.8 and
Cassandra version 3.1.

To validate the maximum throughput of the workloads and system parame-
ters described in the previous section, the YCSB workload generator is used to
load the database with the corresponding data size. Then the node is stressed
repeatedly, each time by a new workload; with the two types of scan operations
(normal and aggressive) and with the %25 variation in scan proportion described
in the previous section. In order to stress the node, the workload is run with dif-
ferent increasing number of target throughputs (using the -target option) until
no further increase is possible. The results of these experiments are recorded in
Fig. 2 and plotted alongside the values obtained from the corresponding PRISM
models. Except for the 16 million record under aggressive scans where we have
very low maximum throughput values, comparing the results obtained from the
real system and from our PRISM model, we notice that our model is sensitive to

106 A. A. T. Isstaif and N. Alhafez

0 20 40 60 80 100
0

200

400

Read proportion

M
ax

im
um

th
ro
ug

hp
ut 16m-measured

16m-model

16m-agg-measured

16m-agg-model

(a)

0 20 40 60 80 100
0

200

400

Read proportion

8m-measured

8m-model

8m-agg-measured

8m-agg-model

(b)

0 20 40 60 80 100

0.5

1

·104

Read proportion

M
ax

im
um

th
ro
ug

hp
ut 1m-measured

1m-model

(c)

0 20 40 60 80 100

500

1,000

1,500

Read proportion

1m-agg-measured

1m-agg-model

(d)

Fig. 2. A set of four plots describing the maximum throughputs of a single Cassandra
node both as measured experimentally and as obtained from the PRISM model, under
various proportions of read operations. (a) and (b) describes the maximum throughputs
under 16 and 8 million records both under normal and aggressive scans; while (c) and
(d) describe the maximum throughputs under 1 million record separating normal and
aggressive scans in two plots.

all major changes in the ratio of scan operations under all experimented system
states. Average relative errors range from 6% to 12%.

6 PRISM Limitations

In this section, we point out the limitations we have encountered during our
attempts to develop useful performance models that can be solved by PRISM
effectively. As mentioned in Sect. 4.1, extending our model with an additional
queuing station to consider network transfer results in a model that could
not be solved by PRISM. The limitation is mainly due to the relatively large
size of the queue representing the Native-Transport-Requests thread pool
(128 threads). Referring to the details presented in Sect. 4.3, the two vari-
ables active read and active scan have a defined integer range, namely 0

Performance Model of Apache Cassandra Under Heterogeneous Workload 107

to 32, corresponding to the maximum size for this thread pool which directly
affects the number of states in the model. Following a similar approach to
represent the Native-Transport-Requests thread pool, this yields four addi-
tional variables which represent both read and scan network requests as well as
network responses: active read req, active scan req, active read res and
active scan res. These variables are necessary to represent receiving network
requests and submitting them to the ReadStage before being submitted back to
the network stage as network responses. As shown in Table 2, adding all these
variables to a single model results in a prohibitively large state space which could
not be solved under any of PRISM solution engines. Providing a much lower
and unrealistic size of maximum threads for the Native-Transport-Requests,
namely 32, the state space persists to be too large to have a fast solution time.
Excluding variables related to network requests (assuming that request size is
negligible), the model size is reduced considerably. However, this still results
with an impractical solution time of several minutes. Limiting the model to the
ReadStage, we are able to extend the it to include up to 4 request types with
reasonable solution time.

Table 2. Comparison of model sizes (number of states) and fastest solution times
(seconds) for various extensions of our PRISM model. Solution times were obtained
using the JOR (Jacobi with over-relaxation) numerical method.

Model Used variables with ranges State space size Solution time

ReadStage only active read (32), active scan

(32)

561 0.02

ReadStage with network

transfer (realistic queue

sizes)

active read (32), active scan

(32), active read req (128),

active scan req (128),

active read res (128),

active scan res (128)

6,778,438,128 n/a

ReadStage with network

transfer (unrealistic queue

sizes)

active read (32), active scan

(32), active read req (32),

active scan req (32),

active read res (32),

active scan res (32)

33,044,616 416.249

ReadStage with network

responses only

active read (32), active scan

(32), active read res (128),

active scan res (128)

4,703,985 328.457

ReadStage only (4 request

types)

active read (32),

active scan[1,3] (32)

58,905 0.924

ReadStage only (6 request

types)

active read (32),

active scan[1,5] (32)

2,760,681 19.732

7 Conclusions and Future Work

In this paper, we have investigated the limitations of the PRISM model checker
in the performance analysis of a realistic system. While PRISM formalism has

108 A. A. T. Isstaif and N. Alhafez

shown to be very useful to rigorously define an accurate analytical performance
model for our use case, our experience shows that having multiple request
types alongside multiple layers of queuing stations with realistic queue sizes
produces models with prohibitively large state space and long solutions times.
We showed how we had addressed this problem by identifying and modelling
a sub-component of the target systems that is still useful to capture high-level
system behaviour. However, our work shows the limitations of using PRISM to
solve analytical models of realistic highly concurrent distributed systems under
heterogeneous workloads. We aim, in future work, to further analyze the perfor-
mance of realistic big data workloads over cluster configuration of Cassandra,
and to identify appropriate modelling approaches to provide performance guar-
antees for workload-aware auto-scaling strategies of NoSQL databases.

References

1. Cruz, F., et al.: MeT: workload aware elasticity for NoSQL. In: Proceedings of the
8th European Conference on Computer Systems - EuroSys, pp. 183–196 (2013)

2. Kassela, E., Boumpouka, C., Konstantinou, I., Koziris, N.: Automated workload-
aware elasticity of NoSQL clusters in the cloud. In: 2014 IEEE International
Conference on Big Data (Big Data) (2014). https://doi.org/10.1109/bigdata.2014.
7004232

3. Anwar, A., Cheng, Y., Gupta, A., Butt, A.R.: MOS: workload-aware elasticity for
cloud object stores. In: Proceedings of the 25th ACM International Symposium on
High-Performance Parallel and Distributed Computing, pp. 177–188 (2016)

4. Becker, M., Luckey, M., Becker, S.: Model-driven performance engineering of self-
adaptive systems: a survey. In: Proceedings of the 8th international ACM SIG-
SOFT Conference on Quality of Software Architectures, QoSA 2012, pp. 117–122
(2012)

5. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: probabilistic model checking
for performance and reliability analysis. ACM SIGMETRICS Perform. Eval. Rev.
36, 40–45 (2009)

6. Berczes, T., Guta, G., Kusper, G., Schreiner, W., Sztrik, J.: Comparing the perfor-
mance modeling environment MOSEL and the probabilistic model checker PRISM
for modeling and analyzing retrial queueing systems. Technical report no 07–17
in RISC Report Series, Research Institute for Symbolic Computation (RISC),
Johannes Kepler University Linz, Austria (2007)

7. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.:
Dynamic QoS management and optimization in service-based systems. IEEE
Trans. Softw. Eng. 37, 387–409 (2011)

8. Naskos, A., Gounaris, A., Katsaros, P.: Cost-aware horizontal scaling of NoSQL
databases using probabilistic model checking. Cluster Comput. 20, 2687–2701
(2017)

9. Bérczes T., Guta, G., Kusper, G., Schreiner, W., Sztrik, J.: Analyzing a proxy
cache server performance model with the probabilistic model checker PRISM. In:
Automated Specification and Verification of Web Systems (2009)

10. Rabl, T., Gómez-Villamor, S., Sadoghi, M., Muntés-Mulero, V., Jacobsen, H.-A.,
Mankovskii, S.: Solving big data challenges for enterprise application performance
management. Proc. VLDB Endow. 5, 1724–1735 (2012)

https://doi.org/10.1109/bigdata.2014.7004232
https://doi.org/10.1109/bigdata.2014.7004232

Performance Model of Apache Cassandra Under Heterogeneous Workload 109

11. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing - SoCC 2010 (2010). https://doi.org/10.1145/1807128.1807152

12. Benchmarking Top NoSQL Databases: Apache Cassandra, Couchbase, HBase, and
MongoDB [Internet]. End Point Corporation, 2015 April. https://www.datastax.
com/wp-content/themes/datastax-2014-08/files/NoSQL Benchmarks EndPoint.
pdf

13. Dipietro, S., Casale, G., Serazzi, G.: A queueing network model for performance
prediction of Apache Cassandra. In: Proceedings of the 10th EAI International
Conference on Performance Evaluation Methodologies and Tools (2017). https://
doi.org/10.4108/eai.25-10-2016.2266606

14. Gandini, A., Gribaudo, M., Knottenbelt, W.J., Osman, R., Piazzolla, P.: Perfor-
mance evaluation of NoSQL databases. In: Horváth, A., Wolter, K. (eds.) EPEW
2014. LNCS, vol. 8721, pp. 16–29. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-10885-8 2

15. Huang, X., Wang, J., Qiao, J., Zheng, L., Zhang, J., Wong, R.K.: Performance
and replica consistency simulation for quorum-based NoSQL system Cassandra.
In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS, vol. 10258, pp.
78–98. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57861-3 6

https://doi.org/10.1145/1807128.1807152
https://www.datastax.com/wp-content/themes/datastax-2014-08/files/NoSQL_Benchmarks_EndPoint.pdf
https://www.datastax.com/wp-content/themes/datastax-2014-08/files/NoSQL_Benchmarks_EndPoint.pdf
https://www.datastax.com/wp-content/themes/datastax-2014-08/files/NoSQL_Benchmarks_EndPoint.pdf
https://doi.org/10.4108/eai.25-10-2016.2266606
https://doi.org/10.4108/eai.25-10-2016.2266606
https://doi.org/10.1007/978-3-319-10885-8_2
https://doi.org/10.1007/978-3-319-10885-8_2
https://doi.org/10.1007/978-3-319-57861-3_6

Modelling Smart Buildings Using Fault
Maintenance Trees

Alessandro Abate2, Carlos E. Budde1(B), Nathalie Cauchi2,
Arnaud van Harmelen1, Khaza Anuarul Hoque4, and Mariëlle Stoelinga1,3

1 Formal Methods and Tools Group, University of Twente,
Enschede, The Netherlands

{c.e.budde,a.vanharmelen,m.i.a.stoelinga}@utwente.nl
2 Department of Computer Science, University of Oxford, Oxford, UK

{alessandro.abate,nathalie.cauchi}@cs.ox.ac.uk
3 Department of Software Science, Radboud University, Nijmegen, The Netherlands

4 Department of Electrical Engineering and Computer Science,
University of Missouri, Columbia, USA

hoquek@missouri.edu

Abstract. Increasingly many industrial spheres are enforced by law
to satisfy strict RAMS requirements—reliability, availability, maintain-
ability, and safety. Applied to Fault Maintenance Trees (FMTs), for-
mal methods offer flexible and trustworthy techniques to quantify the
resilience of (abstract models of) systems. However, the estimated met-
rics are relevant only as far as the model reflects the actual system:
Refining an abstract model to reduce the gap with reality is crucial for
the usefulness of the results. In this work, we take a practical approach
at the challenge by studying a Heating, Ventilation and Air-Conditioning
unit (HVAC), ubiquitous in smart buildings. Using probabilistic and sta-
tistical model checking, we assess RAMS metrics of a basic fault main-
tenance tree HVAC model. We then implement four modifications aug-
menting the expressivity of the FMT model, and show that reliability,
availability, expected number of failures, and costs, can vary by orders
of magnitude depending on involved modelling details.

Keywords: Fault maintenance trees · Reliability · Availability
Maintenance · Model checking · PMC · SMC · Smart buildings · HVAC

1 Introduction

The current rapid momentum in the number of available sensing devices and
the advances in communication technologies has resulted in a growing interest
towards making things “smart.” This shift has not escaped the building sector,
where engineers and researchers are working towards a new type of building
termed smart buildings. These are equipped with sensors to deliver services that
are cost effective, compliant with RAMS—reliability, availability, maintainabil-
ity, and safety—requirements, ubiquitous, and ensuring occupant comfort and
c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 110–125, 2018.
https://doi.org/10.1007/978-3-030-02227-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_8&domain=pdf

Modelling SBs Using FMTs 111

productivity, e.g. proper temperature and high air quality. A key element is the
correct application of timely and cost-effective maintenance: Comfort and cor-
rect building operation, i.e. reliable and dependable, can be maintained only as
long as the components are available and operating with sufficient performance.

In this work we focus on the Heating, Ventilation and Air-Conditioning
unit (HVAC) of a smart building, whose optimised operation is essential for
the correct running of the premises. Early fault detection and maintenance can
improve the lifespan and reliability of an HVAC. In the literature, maintenance
can be optimised following different methods—see e.g. [17]. Fault maintenance
trees (FMT, [19]) are a novel technique to model and analyse systems, which
allow planning maintenance strategies to balance costs and system (failure)
resilience. FMTs extend dynamic fault trees (DFT, [11]) encompassing degra-
dation and maintenance concepts. Degradation modelling represents component
health decay via elemental modules known as Extended Basic Events. Main-
tenance modelling incorporates different maintenance concepts like inspections,
repairs, and replacements. Typically, FMT analysis is performed via statistical
model checking (SMC, [19]). Analysing (smart buildings using) FMTs via prob-
abilistic model checking (PMC) was introduced in [5]. In that work, component
degradation of an HVAC is discretised in time using phases, with a stepwise
degradation behaviour approximated via Erlang distributions, and using inspec-
tion and repair modules to regulate maintenance actions.

Standing on the FMT model framework introduced in [5], in the following
sections we present a sequence of modelling setups which extend the central
case study of that work. We enhance the modelling and analysis of the HVAC
FMT by adding realistic flavours, to attune the maintenance policies towards
their application in the real world. To that aim, we first perform an encoding of
the FMT in terms of continuous-time Markov chains and priced time automata,
which we then respectively analyse using PMC and SMC. For each technique we
highlight the trade-offs and limitations encountered. From that basis, we extend
the FMT model in four stages: First, we individualise maintenance actions and
make a clear distinction between cleans and repairs. Second, we drop the Erlang
approximation of time periods in lieu of truly deterministic intervals. Third, we
model component redundancy by introducing spare gates for some elements of
the HVAC. Fourth and last, we refine the degradation of some extended basic
events to follow a continuous stochastic (generalised) behaviour.

We use both PMC and SMC to analyse the first two modelling setups, i.e. the
basic setting and the first extension; for all other extensions we use only SMC.
PMC explores all states of the model (relevant for the current property query)
and does not need statistical bounds to decide convergence. In contrast, SMC
uses statistical theory to infer conclusions with arbitrary levels of confidence
and precision. On each stage we demonstrate the implications and the result-
ing modifications needed for analysing system reliability, availability, expected
number of failures, and the total costs. We also delineate the impact on these
key performance indicators w.r.t. the previous models.

112 A. Abate et al.

This article has the following structure: Sect. 2 presents the fundamental
theoretical basis; Sect. 3 introduces the central case study, an HVAC unit, where
the root HVAC model inspired in [5] is presented in Sect. 3.1; The four modelling
extensions are introduced and analysed in Sects. 3.2, 3.3, 3.4 and 3.5; Sect. 4
concludes this work and outlines possible tracks of future research.

2 Preliminaries

Fault Maintenance Trees. Fault trees are directed acyclic graphs describing
combinations of failures in system components, that can lead to a system failure
or Top Level Event (TLE) at the root of the tree [21]. The leaves in fault trees
are basic events which denote atomic component failures, typically following the
exponential distribution. The internal nodes or gates describe how failures in
basic events and lower level gates interact, as they propagate towards the TLE.
The internal events are labelled as intermediate events (IE). Each gate models
a different interaction: to propagate a failure, AND gates require all children to
fail, OR gates require any child to fail, etc. [20]. In standard fault trees a closed-
form solution exists for many RAMS metrics, provided the exact distributions
of the basic events are known. Dynamic fault trees introduce gates with time- or
order-dependent behaviour for which this is no longer true [22]. For instance, the
children in priority-AND gates are ordered, and the gate fails if all children fail
from left to right. Other than FMTs, there seems to be relatively scarce litera-
ture on DFTs that support component health decay combined with preventive
maintenance, e.g. acting before component failure [20]. In [13] a tool is presented
to compute RAMS metrics from DFTs in the presence of a maintenance policy.
FMTs offer a formalism for this: They are a superset of DFTs which can model
and assess various maintenance concepts [19]. Extensions over DFTs include:

– Extended Basic Events (EBEs): basic events whose failures follow an Erlang
distribution. Its stepwise degradation allows identifying light decay, allowing
restorations before an actual failure (that may trigger a TLE) occurs;

– Repair Modules (RM): perform periodic checks that can trigger maintenance
actions. This encompasses with the phased degradation of EBEs, allow-
ing early detection of degradation and potentially cheaper maintenance, as
opposed to repair boxes that can repair a component only after it has failed.

Metrics. To measure compliance with RAMS requirements, it is common to set
a time horizon T > 0 and quantify failures in the time window [0, T]. Mainte-
nance is also a cost-driven concept, hence the operational and maintenance costs
incurred within the time window provide further insight on how well the system
is performing. The following Key Performance Indicators (KPIs) are commonly
used to assess system resilience in the presence of maintenance actions:

Modelling SBs Using FMTs 113

– Reliability at time T is the probability of not observing a system failure, i.e.
a TLE, in the time window [0, T];

– Availability at time T is the proportion of time that the system is not failed
in the time window [0, T];

– Expected number of failures (ENF) at time T is the expected number of times
a TLE is observed in the time window [0, T];

– Expected cost at time T is the total expected cost incurred in the time window,
including operational and maintenance costs (such as costs associated with
system inspections and repair of components).

Modelling and Analysis of FMTs. FMTs can be given semantics via
Bayesian networks, generalised stochastic Petri nets, etc. [14]. We use continuous-
time Markov chains (CTMC) and priced time automata (PTA): two widely
extended modelling formalisms with rich tool support, whose expressiveness
meets our modelling requirements. For these semantics, the KPIs of interest
can be quantified via quantitative model checking [7], a well-established formal
verification technique used to verify the correctness of finite-state automata.
Model checking algorithms take as input (i) a formal model of the system, usu-
ally some type of labelled automaton, and (ii) the property queries to verify,
usually expressed in terms of a temporal logic. To check whether the model
satisfies a property, the algorithms explore exhaustively and automatically all
(reachable) states. Quantitative model checking is a broad field that comes in
different flavours [8]. In particular we use two (complementary) techniques to
analyse our models:

– Probabilistic model checking (PMC, [15]) performs a state space analysis in
probabilistic (finite) state automata. These are usually state transition models
like CTMC, with probability as transitions rates and labels on the transitions
and the states. A probabilistic model checker computes the probabilities of
reaching certain states, or the expected reward over a time horizon.

– Statistical model checking (SMC, [24]) samples finitely many runs of “model
behaviour,” typically execution traces, and uses statistical analysis to esti-
mate an answer to the query from such (random) sample, where the proba-
bility of converging to an incorrect answer can be arbitrarily bounded.

Thus, using PMC/SMC one can analyse e.g. CTMC/PTA models of an FMT,
computing (approximate) values for the relevant KPIs, which serve to assess the
resilience and RAMS compliance of the modelled system.

3 Fault Maintenance Tree Model of an HVAC System

This work is centred around a Heating, Ventilation and Air-Conditioning unit
(HVAC) that regulates the internal environment in smart buildings. HVACs offer
a decomposition in subsystems fitting nicely the FMT approach. The concrete
model studied is taken from [5]: Fig. 1 shows a visual description of the setup.

114 A. Abate et al.

Fig. 1. HVAC system schematic [5].

The HVAC is divided in two cir-
cuits, one for air and the other for
water flow. Two valves in the water cir-
cuit, one for the supply air heating coil
and one for the radiators, control the
water flow rate. A boiler heats up the
supply water, which is then transferred
into the heating coil and the radiators.
The radiators transfer the water heat
directly into the room (or zone). The
return water goes through the collec-
tor back towards the boiler. In the air

circuit, the mixer blends outside air with zone air. This goes to the heating coil
to warm it up to the desired temperature. The air is then sent back into the
zone via the supply fan, at a rate controlled by the Air Handling Unit dampers
(AHU).

In smart buildings, comfort and running costs depend heavily on the proper
functioning of the HVAC unit. Moreover, these are complex machines that can
fail in various ways, and repairs can be quite costly. The trade-off between system
performance and maintenance costs offers a rich scenario to model with FMTs,
and to analyse with model checking in order to estimate relevant KPI metrics.

The degree of confidence in, and utility of, the computed metrics is a function
of the realism of the underlying model. With that motivation, the next sections
present five (incremental) versions of the HVAC, using FMT models to measure
KPIs. We start from the basic case in Sect. 3.1, which mainly corresponds to the
model presented in [5]. In Sect. 3.2 we enhance the model by refining the main-
tenance actions. In those two setups deterministic time delays are emulated via
Erlang distributions: In Sect. 3.3 we use true deterministic delays instead. Finally,
in Sect. 3.4 we introduce component redundancy by means of spare gates, and
in Sect. 3.5 we model EBE degradation using continuous stochastic functions.

3.1 HVAC-0: The Basic Setting

In [5], HVAC failures can derive from malfunctions in the heating coil, the supply
fan, or the radiators. Similarly, here we decompose the HVAC FMT into the
failures affecting its subsystems; see Fig. 2a for a graphical description. The leaves
of the tree are EBEs whose degradation behaviour is detailed in Fig. 2b. Values
for N and MTTF, which are the number of degradation phases and mean time
to failure respectively, are obtained from [2,12] and are based on a real dataset
of measurements on an HVAC system. For instance, EBE 1 models the failure
of the AHU via a random variable with distribution Erlang(4, 4/20).

We label the degradation phases (states) of EBEs to allow differentiated
maintenance actions. With new we label the initial phase of an EBE, correspond-
ing to perfect condition. With failed we label the last phase, e.g. phase 4 for
EBE 1, corresponding to a failure that may propagate in the tree. With thresh
we label all other phases to indicate a degraded—but still functional—condition.

Modelling SBs Using FMTs 115

Fig. 2. FMT of HVAC-0

The maintenance policies modelled in [5] distinguish between inspections,
repair checks, and overhauls, which in our setting take place every half, two, and
fifteen years respectively. Deterministic time delays, e.g. for performing these
periodic maintenance checks, are emulated via Erlang distributions. Overhauls
trigger a replace action that renews the whole HVAC, sending all EBEs back
to their states representing the new phase. Replace actions take one week to
complete. Instead, inspections and repair checks can trigger a clean action, that
reverts one degradation phase in all the EBEs. Clean actions take one day to
complete. When an inspection takes place, a clean is triggered if any EBE is in a
thresh state. Similarly, a clean is triggered if any EBE is in a thresh or failed
state during a repair check. Maintenance actions act on all EBEs: A clean sends
all EBEs back one degradation phase—except those in a new state. Notice these
semantics are a modelling choice and not a general characteristic of FMTs.

The total costs incurred are divided into operational and maintenance costs.
Operational costs accrue e1 per day of system uptime and e4 per day of system
downtime. Maintenance costs are e5000 per replace action triggered, e100 per
clean action triggered, and e5 per periodic inspection. Repair checks and over-
hauls incur no additional costs when they take place. These values are based on
previous research and expert-knowledge applied to an industrial case study [6].

In [5], the HVAC FMT is modelled using a CTMC with rewards, and the
KPIs are computed with PMC via the PRISM model checker [16]. A state-space
reduction technique is devised to build “an equivalent abstract CTMC,” allow-
ing PRISM to analyse the whole model and estimate (an approximation of) the
metrics. We reproduce that approach for HVAC-0, and extend the analysis reper-
toire with SMC via the UPPAAL tool [9]. SMC estimates confidence intervals
rather than point values like PMC does. Once a confidence level and termina-
tion epsilon have been set for SMC and PMC respectively, the results yielded
by these techniques coincide if the SMC interval contains the PMC value.

UPPAAL operates with PTAs, a proper superset of CTMC that can encode
(general) stochastic and non-linear dynamic behaviour. To substantiate the

116 A. Abate et al.

semantic coincidence of the models encoded in both tools, we first study subsys-
tems of HVAC-0 for which the non-reduced (exact) PRISM model (i.e. without
the state-space reduction technique devised in [5]) can be analysed.

In Fig. 3a we show the metrics for five time horizons in the largest of these
subsystems, where only EBEs 2, 3, and 4 (i.e. the supply fan subsystem) are
missing from the model of Fig. 2a. The metrics coincide between SMC and PMC
exact, and differ slightly (as expected) for PMC reduced, i.e. using the abstract
CTMC. When studying the full system, PMC exact cannot be used due to the
state space explosion and the physical memory constraints [5,15]. Thus only SMC
and PMC reduced can be compared, for which a difference as that observed in
Fig. 3a is expected. This is corroborated in the full system analysis of HVAC-0,
as it can be observed in Fig. 3b. The metrics for the total costs are not shown
due to space constrains but they exhibit the same trends.

Fig. 3. Comparative model checking for FMT of HVAC-0

In Fig. 3a, reliability and ENF values for SMC are lower than for PMC
reduced, whereas in Fig. 3b they are higher. This is due to an interplay between
the cleaning actions and the state-space reduction, which (for each time horizon)
substitutes OR gates by EBEs with 4 phases and the MTTF of the replaced sub-
system. Only EBE 4 has more than 4 phases—see Fig. 2b. Thus in PMC reduced
the number of phases of all replaced subtrees is greater or equal for the system of
Fig. 3a, but lower for the full HVAC-0 of Fig. 3b, viz. for the supply fan subtree.
Therefore, only for PMC reduced of the full system, cleaning actions have less
opportunities to act, which derives in more failures and explains Fig. 3.

Modelling SBs Using FMTs 117

3.2 HVAC-1: Refinement of Maintenance Actions

In the basic setting of Sect. 3.1, inspections and repair checks overlap consider-
ably: Both can trigger the same maintenance action, namely a clean, and both
will do so in the same system configurations. The only situations when a clean
would be triggered by a repair check and not by an inspection, is when there is at
least one failed—but no degraded—component. The likelihood of these scenarios
decreases with the amount of EBEs and their number of degradation phases.

A more problematic modelling effect is that, when triggered by an inspection,
a clean can “repair” a failed EBE and make it operational again. If e.g. EBE 1 is
failed and EBE 2 is degraded, an inspection will trigger a clean because EBE 2 is
in a thresh state; since cleaning actions are system-wide this also affects EBE 1,
which then moves from its failed to a thresh state, becoming operational.

We argue this is not a realistic behaviour: Thus as first improvement over
HVAC-0 we propose a more clear distinction between inspections and repairs.
The former will remain as is, but repair checks will effectively trigger a repair
maintenance action iff some EBE is in its failed state. As opposed to a clean
triggered by an inspection, a repair will only affect failed components, send-
ing them back N − 2 degradation phases. In particular, EBEs in a thresh or
new state are not affected by repair actions. Repairs thus restore the health of
failed components significantly albeit not entirely—only replacements triggered
by overhauls leave components “as good as new.” Repairs are necessarily more
complex than cleans: They take longer (2 days) and cost more (e800).

The intuition behind this modification, code name HVAC-1, is that a techni-
cian fixes periodically all broken components, which has been named age repair
or age replacement and is also related to block replacement [1,4].

Hence, to become operational again, a failed system must now wait for the
next repair check, which takes four times longer than an inspection. This should
increase system downtime and reduce availability. It is less clear how system reli-
ability, ENF, and costs would be affected: The degradation mechanisms remain
unchanged and the likelihood of failures may not be altered. In turn, total costs
might increase due to the higher cost of repairs w.r.t. cleans.

Fig. 4. Metrics for HVAC-1 (full system): SMC and PMC reduced

118 A. Abate et al.

Figure 4 shows that system un-availability in HVAC-1 is 2 to 3 times higher
than in HVAC-0; other metrics are much less affected. Due to space constraints,
ENF values are not shown. However, they correlate to those obtained in HVAC-0.
Since PMC exact creates a state-space explosion, here we opt for PMC reduced;
the results obtained validate those achieved via SMC and highlight the trade-off
between state-space reduction and deviation from SMC metrics.

3.3 HVAC-2: Deterministic Time Periods

In the previous section we give a first glimpse of how significantly a model
refinement can impact a KPI. Here, building on top of HVAC-1, we focus on the
modelling of events in time. In the FMTs from Sects. 3.1 and 3.2 and following
[5], periodic events like inspections and overhauls are emulated using 3-phase
Erlang distributions. Originally, this was needed because the model had seman-
tics exclusively in terms of CTMCs. For the HVAC-2 model presented in this
section we employ (more realistic) deterministic time periods instead [1,4].

This refinement has a twofold motivation: First, on the modelling side, events
occurring at specific time points are a common maintenance policy—e.g. inspec-
tions are scheduled exactly every six months. Accurately modelling this is rele-
vant for cost analyses, specially for (high) one-time investments like overhauls.
Second, on the analysis side, Erlang approximations as phase-type distributions
tend to the desired behaviour as the number of phases increases [10]. Thus,
to achieve more deterministic-like delays, the state space of PMC models must
grow, since e.g. Erlang phases are integral variables in the CTMCs of PRISM.
To reach the desired level of realism, all variables encoding periodic time delays
(inspections, cleans, etc.) require �10 values. This would result in �108 states,
meaning PMC via PRISM cannot be performed [15]. Therefore, from this section
onwards, we use exclusively PTA models of the HVAC FMT, which can naturally
encode (true) deterministic time intervals with no impact on the state space. The
KPIs can thus be measured using SMC alone1.

Fig. 5. Metrics for HVAC-2 (full system): SMC

We present the KPIs for HVAC-2 in Fig. 5: The most prominent modification
w.r.t. HVAC-1 are in the maintenance costs. The costs incurred by the overhaul
1 Support for reward analysis on PTA with PRISM is ongoing research, see Sect. 4.

Modelling SBs Using FMTs 119

at 15 years can be clearly appreciated for HVAC-2, whereas they are spread-out
and less noticeable for HVAC-1. Detailed information like this can be crucial e.g.
when assessing investment portfolios. The difference in the reliability and ENF
values estimated for HVAC-2 are insignificant when compared to HVAC-1. How-
ever, availability is higher for the former. Looking at the individual maintenance
actions triggered in the simulations of UPPAAL, after 5 years HVAC-1 performs
7 inspections on average, whereas HVAC-2 performs 10; after 25 years we get 37
vs. 48 respectively, etc. This reveals that, on average, the 3-phase Erlang approxi-
mation of the deterministic time delays in HVAC-1 is over-approximating. Repair
checks are thus performed more frequently in HVAC-2, where the maintenance
protocol is better emulated than in previous models. This is corroborated by the
number of repairs, which is about ten times higher in HVAC-2 than in HVAC-1,
accounting also for the generally higher maintenance costs in HVAC-2. Conse-
quently, since the probability and number of failures are not altered, system
downtime is lower in HVAC-2 than in HVAC-1. This explains the availability
values from Fig. 5. Computation times for these SMC analyses increases consid-
erably w.r.t. HVAC-0 and HVAC-1: While UPPAAL converged to the desired
values in a matter of minutes for those models, it took several hours to compute
some of the metrics for HVAC-2. This is discussed in Sect. 4.

3.4 HVAC-3: Spares for Affordable Components

In Sects. 3.1, 3.2 and 3.3 we increasingly refined our model to improve realism.
Following the same goal, in this section we extend the HVAC to include spares in
some subsystems. Redundancy is a common practice in high-resilience or safety-
critical systems: RAID data storage uses extra disks to keep system availability
high, cars come with a spare wheel, all modern air-conditioned buildings have
spare air filters [3], etc. In HVAC-3 we use spare gates (SPARE) to implement
cold spare components (whose degradation starts only after a fault occurs, [20])
for the valves in the water circuit, i.e. EBEs 6 and 7.

Two reasons motivated the choice of these components: On the one side,
valves are relatively affordable parts (compare them to the boiler or the radi-
ators) for which redundancy should require minor investments. On the other
side, in Fig. 2b indicates these EBEs fail the most often. The impact observed in
resilience should thus be greatest when providing spares for such components.

We add a SPARE with one spare component for EBE 6, and another (inde-
pendent) SPARE with two spare components for EBE 72. Spare components are
assumed identical to main components, and as soon as the main component fails,
the corresponding SPARE will switch to a spare without incurring system down-
time3. When the main component and all spares have failed, the SPARE fails and
propagates a signal to the rest of the FMT. We set ate1000 the cost of using a spare
component. This way spares are more expensive than repairing the valve (e800),
but cheaper than a full system overhaul (e5000). For all previous cases, the cost of

2 Higher redundancies lead to rare failures that hinder SMC analyses, see Sect. 4.
3 Notice that a valve can be replaced in hours, whereas all time horizons are in years.

120 A. Abate et al.

a triggered maintenance action (e.g. a clean) is independent of the number of EBEs
affected by it. For HVAC-3, the cost of using n spares during system operation is
n×e1000.

Spares are replenished during repair checks. Costs of using a spare are not
incurred immediately, but rather in the next repair check occurring after the use
of the spare. The intuition behind this is that the technician that periodically
visits the company to perform repairs, is also in charge of replenishing the spares.
The company pays him then for all pieces that have been used since his last visit.

Unlike in the previous sections, this extension affects only a subsystem of
the HVAC, and in particular does not involve the “Supply fan failure” subtree
from Fig. 2a. To highlight the effect of these modifications, we measure the KPIs
exclusively for the affected part of the model, i.e. an FMT without EBEs 2–4.
Accordingly, when referencing models from previous sections, we allude to the
KPIs measured for the corresponding FMTs that also disregard fan failures.

The results of our SMC analyses on HVAC-3 are presented in Fig. 6. To
exercise the capabilities of spares we also study a scenario where maintenance
occurs half as frequently. Thus with “half maintenance,” as opposed to “stnd.
maintenance,” inspections occur every year, repair checks every four years, and
overhauls every thirty years. Notice that here we measure the KPIs for seven
time horizons, i.e. for T ∈ {5, 10, 15, . . . , 35} years of system operation.

Fig. 6. Metrics for HVAC-3 (no supply fan): SMC

Except for costs, direct comparison of the KPIs from HVAC-3 and its pre-
decessors is omitted, because HVAC-3 is so fault tolerant that its metrics would
appear as flat lines on top of the charts. For HVAC-2 with stnd. maintenance,
system availability without fan failures converges to 0.97, similarly to the full-
system metrics from Fig. 5. For HVAC-3 availability was always above 0.9998, see
“SMC stnd.” in the availability plot of Fig. 6. With half maintenance, availability
for HVAC-2 converged around 0.89 and for HVAC-3 around 0.997. Comparing
thus HVAC-3 with half maintenance against HVAC-2 with stnd. maintenance,
viz. 0.997 vs. 0.97, we get that using 1 & 2 spares for EBE 6 & 7, and reducing
maintenance checks to a half, system downtime is reduced by more than 10×.

Reliability exhibits a similar trend: With stnd. maintenance it decreases in
a seemingly linear fashion, reaching the value 0.4078 at the 35 years time hori-
zon for HVAC-2, and 0.9919 for HVAC-3. With half maintenance the reliability

Modelling SBs Using FMTs 121

values of HVAC-2 and HVAC-3 at 35 years are respectively 0.2053 and 0.9477.
The values computed for ENF resemble this ratio: 0.9589 vs. 0.0069 for stnd.
maintenance and 1.6407 vs. 0.0565 for half maintenance.

This tremendous increment in system resilience is explained by the Erlang
degradation modelling in the EBEs. With one component we get N exponential
jumps of rate N

MTTF each. Adding m−1 spares identical to the main component
multiplies the number of jumps by m−1, yet keeps the rate constant. Therefore,
having m − 1 spares is equivalent to having an Erlang(mN,N/MTTF), whose
expected value is m MTTF. In the setting of HVAC-3 this means that the MTTF
of EBEs 6 and 7 changed to 20 and 30 years respectively, with the corresponding
decrease in the probability of failure for a given fixed time window.

Nonetheless, although resilience improved drastically, total costs are actually
lower for HVAC-3 than for HVAC-2 under both maintenance schemes, see Fig. 6.
This is a consequence of the 4-to-1 cost ratio of system downtime/uptime. In
spite of the extra maintenance costs incurred to keep stocks of spares, operational
costs are much lower due to the very low proportion of system downtime.

It is straightforward to conclude that redundancy (spares) are a must in
high-resilience systems. As final comment we mention that SMC analyses took
significantly longer than all previous studies. For instance, computing the un-
reliability at 35 years under stnd. maintenance (0.0081) took 78 h of wall-clock
computer time. This issue, discussed in Sect. 4, is due to (i) the addition of two
longer time horizons, and (ii) the rarity of observing an event in the time window
considered. In comparison, PMC should be less affected by these causes.

3.5 HVAC-4: Randomised Continuous Degradation of EBEs

In all previous sections the EBEs were regarded as atomic elements of the FMT,
and modelling did not differ from the basic setting of HVAC-0. Here we refine
the degradation semantics of EBEs: Instead of using discrete phases we model
degradation continuously. We focus on the “Supply fan failure” subsystem, mak-
ing the degradation of the fan bearings (EBE 4) resemble a continuous stochastic
process known as Geometric Brownian Motion (GBM).

We use GBM for two reasons: First, recent studies show GBM can appropri-
ately model bearing degradation [23]. Second, when using N discrete phases
of rate λ, time increments between consecutive degradation stages are sam-
pled from N independent and identically distributed (iid) random variables
∼ Exponential(λ). Failure times thus follow an N -phase Erlang distribution
with expectation MTTF = N/λ. In contrast, our GBM simulation uses constant
time increments, and for ever smaller time increments the degradation process
is continuous (with probability 1). So degradation is a non-iid non-linear—thus
not linearly phased—process, and changes in degradation between consecutive
instants are partially stochastic. Consequently, the degradation speed of a com-
ponent is a function of time, and since the expectation of GBM is an exponential
function of time, the failure time follows a log-normal distribution.

122 A. Abate et al.

Technically, GBM is the analytical solution to the stochastic differential equa-
tion S(t) = S(0) exp

((
μ − 1

2σ2
)
t + σWt

)
. Next we review its main concepts as

used in this section, and refer the interested reader to the abundant literature
for a deeper insight into GBM. Let S(t) denote the (continuous) degradation of
a system component at time t, with S(0) = 1 and Δt the time increment. Then
the GBM degradation can be expressed and simulated as

S(t + Δt) = S(t) exp
((

μ − 1
2
σ2

)
Δt + σWΔt

)
. (1)

In Eq. (1) WΔt is a Wiener process or “Brownian motion,” meaning WΔt

is normally distributed with zero mean and variance Δt, and has independent
Gaussian increments. Parameters μ and σ in Eq. (1) are respectively the drift
and diffusion coefficients. The expected value and variance of S(t) are given by
E [S(t)] = S(0) exp (μt) and Var [S(t)] = S(0)2 exp(2μt)(exp(σ2t) − 1).

In previous sections, each EBE is characterised by its mean time to fail-
ure (MTTF) and number of degradation phases (N). As we now only change
the degradation function, we can express the expected degradation value at
the MTTF as: Sfail = E [S(MTTF)] = S(0) exp (μMTTF). Hence, assuming
Var [S(MTTF)] = 1 and setting S(0) = 1 and Sfail = N + 1, this yields

μ =
ln(Sfail) − ln(S(0))

MTTF
=

ln(N + 1)
MTTF

(2a)

σ =

√√
√
√ ln

(
1 + Var[S(MTTF)]

S(0)2 exp(2µMTTF)

)

MTTF
=

√√
√
√ ln

(
1 + 1

(N+1)2

)

MTTF
. (2b)

Thus, using Eq. (1) with the drift and diffusion from Eq. (2) as degradation
function for EBE 4, and keeping EBEs 2 and 3 unmodified w.r.t. HVAC-2,
we analyse the FMT for the supply fan subsystem. Since the MTTF values of
EBEs 2–4 are among the highest of the model, failures will be rare in the time
windows considered. In that sense, this scenario is similar to the one from the
previous section, and we thus follow a similar approach: We study a scenario
with half maintenance for time horizons T ∈ {5, 10, . . . , 35}.

Fig. 7. Metrics for HVAC-4 (supply fan): SMC

Modelling SBs Using FMTs 123

The results of experimentation are shown in Fig. 7. Comparing the KPIs
against HVAC-2, we observe that HVAC-4 models a more resilient system. This
is a direct consequence of using GBM for the degradation of EBE 4, even
though it has the lowest MTTF in the subsystem considered. More in detail,
the expected degradation of this component in HVAC-4 is continuous and expo-
nentially increasing. The expected time it takes for the GBM to reach a certain
degradation value is thus logarithmic w.r.t. the degradation value. In contrast,
degradation is linearly phased in HVAC-2 for all EBEs, and thus the correspond-
ing expected time is linear w.r.t. the degradation state. Because of identical
MTTF and failure threshold, the degradation speed in the initial stages of EBE
4 is lower in HVAC-4 than in HVAC-2. Therefore, inspections in HVAC-4 have
a higher chance of restoring EBE 4 to its initial value, while in HVAC-2 it is
easier to have the component degrade by two phases before the inspection can
trigger a clean. As a consequence, given a fixed maintenance scheme and time
period, the chances of EBE 4 failing are lower in HVAC-4 than in HVAC-2. This
explains the reliability and availability values observed in Fig. 7.

The costs are also an interesting point of comparison. Operational costs are
identical for both models, and thus omitted from Fig. 7. Maintenance costs how-
ever present a major distinction: HVAC-4 has nearly no costs incurred by repairs,
whereas repairs in HVAC-2 increase linearly from e123 after 5 years, to e1984
after 35 years. This is precisely the expected behaviour as per the argument
presented above: since most degradation is “early caught” by inspections in
HVAC-4, maintenance costs are concentrated in cleans, rather than repairs. This
shows, once again, that refining the FMT model can noticeably impact both the
resilience KPIs, as well as the costs of system operation and maintenance, in
ways and quantities that may concern the interested parties.

4 Concluding Remarks and Future Work

In this work, we demonstrate the importance of the semantic details of an FMT
system model, by quantifying the effect of modifications to the model on typical
RAMS metrics estimated via PMC and SMC. We propose four (incremental)
modelling improvements for a basic HVAC-0 FMT model. We note that (i)
the localisation of clean actions to only degraded components increases the un-
availability by a factor of ≈ 2.5× (HVAC-1, see Fig. 4), (ii) modelling periodic
events with deterministic time delays increases the resilience KPIs and greatly
impacts costs (HVAC-2, see Fig. 5), (iii) the use of spares reduces the frequency
of maintenance actions while achieving >100× higher availability and slightly
lower costs (HVAC-3, see Fig. 6), and (iv) using GBM to model component
degradation increases resilience metrics (in particular reliability) and reduces
costs, but makes analyses more involved and, arguably, more realistic (HVAC-4,
see Fig. 7). It is thus evident that much can be gained by revisiting an otherwise
finished model, and refining any particularly relevant component.

124 A. Abate et al.

Future Work. There are several areas open for further development. First,
from HVAC-2 onwards only SMC could be used because CTMCs cannot emu-
late deterministic time delays. Current endeavours by the PRISM community
to measure reward properties on PTA models [15] are opening the gate to PMC
studies of the cases presented in Sects. 3.3, 3.4 and 3.5. Moreover, when the
time window is large w.r.t. the event-time-unit simulated (or when the event of
interest rarely happens), SMC suffers from longer computation times due to the
duration of the (resp. required amount of) simulations, see e.g. Sects. 3.4 and
3.5. If PMC could be used to analyse HVAC-3 and HVAC-4, the time required
to converge to an estimate should be faster [15]. Rare event simulation offers
an alternative, to apply SMC when the event of interest occurs with very low
probability [18]. Parallelly, the next natural step to the EBE refinement from
Sect. 3.5 is data validation, i.e. comparing the KPI metrics against measure-
ments from real systems. However, such measurements are scarce due to the
long time horizons involved. It would also be interesting to experiment with dif-
ferent degradation functions for distinct EBEs, specialised for the behaviour of
each component type concerned. Further relevant extensions include measuring
the effect of “on-demand” maintenance in addition to fixed periodic mainte-
nance, and experimenting with different cost schemes to test the robustness of
the final conclusions.

Acknowledgements. This work is partially supported by the Alan Turing Institute,
UK; Malta’s ENDEAVOUR Scholarships Scheme; and the NWO SEQUOIA project.

References

1. Aven, T., Jensen, U. (eds.): Maintenance optimization. Stochastic Models in Reli-
ability, pp. 169–211. Springer, New York (1999). https://doi.org/10.1007/978-0-
387-22593-7 5

2. ASHRAE: HVAC systems and equipment. American Society of Heating, Refriger-
ating, and Air Conditioning Engineers, Atlanta, GA (1996)

3. Au-Yong, C.P., Ali, A.S., Ahmad, F.: Enhancing building maintenance cost per-
formance with proper management of spare parts. JQME 22(1), 51–61 (2016)

4. Barlow, R.E., Proschan, F.: Mathematical theory of reliability. Science 148(3674),
1208–1209 (1965)

5. Cauchi, N., Hoque, K.A., Abate, A., Stoelinga, M.: Efficient probabilistic model
checking of smart building maintenance using fault maintenance trees. In: BuildSys
(2017)

6. Cauchi, N., Macek, K., Abate, A.: Model-based predictive maintenance inbuilding
automation systems with user discomfort. Energy 138(Suppl. C), 306–315 (2017)

7. Clarke, E., Emerson, E., Sistla, A.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Trans. Program. Lang. Syst. 8,
244–263 (1986)

8. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

9. David, A., Larsen, K., Legay, A., Mikučionis, M., Poulsen, D.: Uppaal SMC tuto-
rial. Intl. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

https://doi.org/10.1007/978-0-387-22593-7_5
https://doi.org/10.1007/978-0-387-22593-7_5

Modelling SBs Using FMTs 125

10. David, A., Larry, S.: The least variable phase type distribution is Erlang. Commu-
nications in statistics. Stoch. Models 3(3), 467–473 (1987)

11. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Fault trees and sequence dependencies. In:
RAMS, pp. 286–293 (1990)

12. Faisal, I., Mahmoud, M.: Risk-based maintenance (RBM): a quantitative approach
for maintenance/inspection scheduling and planning. J. Loss Prev. Process Ind.
16(6), 561–573 (2003)

13. Guck, D., Spel, J., Stoelinga, M.: DFTCalc: reliability centered maintenance via
fault tree analysis (tool paper). In: Butler, M., Conchon, S., Zäıdi, F. (eds.) ICFEM
2015. LNCS, vol. 9407, pp. 304–311. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-25423-4 19

14. Junges, S., Guck, D., Katoen, J.P., Stoelinga, M.: Uncovering dynamic fault trees.
In: DSN, pp. 299–310. IEEE, June 2016

15. Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic model checking: advances
and applications. In: Drechsler, R. (ed.) Formal System Verification, pp. 73–121.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-57685-5 3

16. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

17. Nicolai, R.P., Dekker, R.: Optimal maintenance of multi-component systems: a
review. In: Kobbacy, K.A.H., Murthy, D.N.P. (eds.) Complex System Maintenance
Handbook, pp. 263–286. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
1-84800-011-7 11

18. Rubino, G., Tuffin, B. (eds.): Rare Event Simulation Using Monte Carlo Methods.
Wiley, Hoboken (2009)

19. Ruijters, E., Guck, D., Drolenga, P., Peters, M., Stoelinga, M.: Maintenance anal-
ysis and optimization via statistical model checking. In: Agha, G., Van Houdt, B.
(eds.) QEST 2016. LNCS, vol. 9826, pp. 331–347. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-43425-4 22

20. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015)

21. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault tree handbook.
Technical report, U.S. Nuclear Regulatory Commission, Washington DC (1981)

22. Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018)

23. Wang, D., Tsui, K.L.: Statistical modeling of bearing degradation signals. IEEE
Trans. Reliab. 66(4), 1331–1344 (2017)

24. Younes, H.L.S., Simmons, R.G.: Probabilistic verification of discrete event systems
using acceptance sampling. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 223–235. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45657-0 17

https://doi.org/10.1007/978-3-319-25423-4_19
https://doi.org/10.1007/978-3-319-25423-4_19
https://doi.org/10.1007/978-3-319-57685-5_3
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-1-84800-011-7_11
https://doi.org/10.1007/978-1-84800-011-7_11
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1007/978-3-319-43425-4_22
https://doi.org/10.1007/3-540-45657-0_17
https://doi.org/10.1007/3-540-45657-0_17

Performance Impact of Misbehaving
Voters

Mohammed Alotaibi(B) and Nigel Thomas(B)

Newcastle University, Newcastle upon Tyne, UK
{m.alotaibi1,nigel.thomas}@newcastle.ac.uk

Abstract. In this paper we present three formal performance models,
using PEPA, for three types of misbehaving voters when using the DRE-i
e-voting system. We use the constructed performance models to study
the impact of the intervention of misbehaving voters on the throughput
of four main actions of the DRE-i e-voting system. Our performance anal-
ysis reveals that the three types of misbehaving voters have a negative
impact on the throughput of the DRE-i server actions.

Keywords: Performance models · PEPA · e-Voting

1 Introduction

E-voting systems face a wide range of potential misbehaving components or
agents beyond what we used to have in traditional elections. These misbehaviours
include misconfigured e-voting components [15,23], errors made by voters, and
malicious behaviours made by attackers [16]. Some known attacks on e-voting
systems include the replay attack [6], man in the middle attacks, and Cross-
Site Scripting (XSS) and Cross-Site Request Forging (CSRF) attacks [7,19].
Investigating the impact of these misbehaviours on e-voting systems performance
is an intriguing research topic. One way of studying this impact is through
constructing the misbehaving voters’ formal performance models and evaluating
how their interventions with e-voting system may affect the performance of the
e-voting system.

PEPA (Performance Evaluation Process Algebra) [13] is a well-known formal-
ism in constructing performance models for concurrent systems and communica-
tion protocols [9,22]. In [2], a formal performance model for the casting-verifying
stage of the DRE-i e-voting scheme [11] was constructed using PEPA. In this
study, we will model three types of misbehaving voters and their interactions
with the DRE-i system using the same formalism. The constructed performance
models will be analysed using performance evaluation techniques built in PEPA
Eclipse Plug-in [21] to have an insight on the effect of misbehaving voters on the
performance of the DRE-i server.

Next, we will provide a brief background about e-voting systems and PEPA.
In the third section, we will describe our approach in modelling the misbehaving

c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 126–141, 2018.
https://doi.org/10.1007/978-3-030-02227-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_9&domain=pdf

Performance Impact of Misbehaving Voters 127

voters and analysing their impact on the DRE-i e-voting system. Performance
models will be shown in section four, and in section five we will present the result
and discussion. Finally, conclusion and future work will be presented in Sect. 6.

2 Background

In this section, we will provide a brief background about PEPA (For more details
about PEPA, please refer to [13]) and e-Voting schemes (Refer to [10,12] for more
details). Also, we will briefly present some known misbehaviours that could affect
e-voting systems. At the end of this section, we will present the work related to
modelling and analysing e-voting schemes using formal performance models such
as PEPA.

2.1 e-Voting

An election enables a participant to choose his candidate for holding a position
in a public or private organisation by the voting process. To increase the turnout
of voters in elections, researchers suggested electronic voting systems that meet
strict accuracy and security requirements. Well-known examples of e-voting sys-
tems include DRE-i [11], Helios [1], and iVote [5]. Many countries, states, and
organizations have used the e-voting systems in elections such as Estonia [17],
Brazil, India, the Australian state of New South Wales (NSW) [5], and the
International Association of Cryptologic Research (IACR) [3]. Electronic voting
security literature identifies many security requirements for e-voting protocols
such as completeness, privacy, soundness and robustness, receipt-freeness, verifi-
ability, fairness, eligibility, and unreusability. To achieve these security features,
the electronic voting schemes use different cryptographic building blocks which
include blind signatures, mix-nets, encryption algorithms, and interactive and
non-interactive proofs.

2.2 e-Voting Misbehaviours

Security of e-voting systems is very influential in the democratic process so many
researchers have studied the possible attacks against e-voting systems [12,16].
One of the attacks is the replay attack where a malicious voter retransmits a
valid vote or message. The vote replay attack was discovered in different e-voting
schemes such as Helios 2.0 [6] and the e-voting schemes by Sako & Kilian and
Schoenmakers [18]. Another attack is based on compromising the web-interface
of the e-voting client using for example XSS (Cross-Site Scripting) or CSRF
(Cross-Site Request Forgery) attacks. In [7] the malicious voter can install a
malicious browser extension on the voter’s machine to compromise Helios 2.0 e-
voting system. Using the CSRF approaches [19], the malicious voter may exploit
a weakness in the e-voting web interface and establish an authenticated session
with the e-voting server to exchange voting messages with the server.

128 M. Alotaibi and N. Thomas

2.3 Introduction to PEPA

PEPA (Performance Evaluation Process Algebra) is a stochastic modelling for-
malism for constructing performance models for concurrent systems [13]. It was
successfully used in modelling and analysing the performance aspects of sys-
tems and protocols. Performance models constructed by PEPA can help sys-
tems designers to evaluate the performance characteristics of the system to
be deployed. The performance attributes (such as throughput, queue-length,
and response time) of models constructed by PEPA can by analysed using
Continuous-Time Markov Chain (CTMC) and Ordinary Differential Equations
(ODEs) approaches. When using CTMC, the construction and evaluation of
PEPA models will be restricted by the size and complexity of modelled sys-
tems. PEPA model will encounter the state-space explosion problem when the
model comprises a large number of components. To overcome the state-space
problem, a fluid approximation approach has been suggested [14] to represent
the PEPA model’s underlying CTMC as a set of ordinary differential equations
(ODEs). PEPA is an abstract compositional description formalism which is used
for constructing performance models as a number of interacting components that
process activities with rates. In a PEPA model, activity rate is an exponentially
distributed random number that shows the rate at which the activity (action)
happens during the execution of the model. To evaluate the performance of the
PEPA model, the PEPA Eclipse Plug-in tool [21] is used to edit and test the
model. It is also used to derive the model’s underlying CTMC and the ODE
approximation of the model’s CTMC. The derived CTMC and ODEs can be
solved by the tool to extract the model’s performance measures such as expected
response time, throughput and utilisation.

The syntax of PEPA language is composed of combinators that express the
behaviours and interactions of the model’s components. The following is the set
of PEPA language’s combinators:

Prefix. The prefix combinator “.” designates the first behaviour undertaken
by the component. The action type α and rate r for component P is encoded
in PEPA as (α, r).P which means the action will be carried out and then
behaves as component P.
Constant. The constant combinator def= assigns names to behaviours (com-
ponents). For example, Q def= (α, r).P represents the assignment of the
behaviour of (α, r).P to the component Q.
Cooperation. The combinator “��L” represents the interactions between
components. The (P��L Q) indicates the cooperation between components P
and Q over action types in the cooperation set L. The two components P and
Q will proceed independently and concurrently when their cooperation set L
is empty. In this case, the parallel composition of P and Q will be expressed
as P ||Q.
Choice. The choice combinator “+” denotes the competition between
behaviours. P+Q represents a system that may behave as P or Q.

Performance Impact of Misbehaving Voters 129

Hiding. The hiding combinator “/” hides the activities in the set L and
considers them as an internal delay inside the component. The P/L makes
the activities in set L as the unknown type τ where the external observer
can witness the delay caused by the hidden activity τ. However, the external
observer can not access the hidden activity.

2.4 Related Work

PEPA performance models for the voting scheme of Fujioka, Okamoto, and Ohta
[8] was constructed and evaluated in [4,20]. In [20], a set of PEPA models were
constructed and analysed for reliable and unreliable voters. In [4], a stochastic
simulation technique was used to convert a PEPA model of an e-voting scheme
to a set of rate equations. Each rate equation represented an individual action
of a component inside the PEPA model and by using these rate equations a
simulation description file was constructed that fitted the Dizzy simulation tool.
Therefore, the PEPA model of the e-voting scheme was simulated and analysed
for a large number of voters. Moreover, the DRE-i e-voting scheme was modelled
by PEPA in [2]. The constructed model was evaluated using CTMC and ODEs
approaches for a varying number of voters to evaluate the voters’ response time
when they get involved in the cast-verify stage during the election day.

3 Our Approach

During the election day, legitimate voters who prefer using e-voting systems will
use their electronic devices to join the election and cast their votes. This usually
will lead to an increase in the throughput of the main activities in the e-voting
system. With the intervention of misbehaving voters with the e-voting system,
the throughput that is dedicated for legitimate voters will be challenged. We
are interested in evaluating the impact of the rate and depth of the intervention
of misbehaving voters with the e-voting system. Theretofore, in this section we
will present the PEPA models for the DRE-i e-voting server and client, and
the three types of misbehaving voters. Also, we will present the rates for the
models’ actions, and finally we will explain how to evaluate the impact of the
misbehaving voters on the DRE-i e-voting system.

3.1 DRE-i Behaviour Description

The Direct Recording Electronic with integrity e-voting scheme (DRE-i) was
presented by Hao et al. [11]. The scheme is an end-to-end verifiable and self-
enforcing cryptographic voting scheme and based on the Direct Recording Elec-
tronic voting system technique. This scheme replaces the tallying authority with
a cryptographic homomorphic tallying algorithm. The DRE-i scheme can be
used in controlled or uncontrolled voting environments for large-scale country-
wide political elections or small-size elections like university students’ union elec-
tions. In this e-voting scheme, a tamper-resistant security module of the e-voting

130 M. Alotaibi and N. Thomas

server will generate for each eligible voter n ballots. Each ballot will have two
encrypted values known as cryptograms. During election stage, the voter needs
to prove his or her eligibility for voting and identity to the voting server. If the
voter is eligible for voting, the voter will receive a ballot and will choose one of
the two cryptograms. The voter will submit his or her selected vote to the server.
Next, the server will sign the received ballot and send it to the voter so the voter
can either accept it and cast it as the voter’s vote or reveal the content of the
signed ballot to verify that the voter’s selection reflects his or her intention.

We are interested in modelling and evaluating the casting stage of the DRE-i
e-voting system which has four main activities: getting the vote cryptograms,
signing the selected cryptogram, casting or verifying the selected vote. From
the server side, these actions are voteCryptogramsReply, signTransReply, vote-
CastAck, and voteVerifyAck. Figure 1 demonstrates the interactions between the
voting client and voting server to carry out vote casting process.

DRE-i server

DRE-i client

1.1
1.2

2

3.1

3.2

4.14.24.3
4.4

1.1 The DRE-i client sends
voteCryptogramsReq to the server.
1.2 The server sends
voteCryptogramsReply to the DRE-i
client
2 The DRE-i client selects a
cryptogram
3.1 The DRE-i client sends
signTransReq to the server.
3.2 The server sends signTransReply
to the DRE-i client
4.1 The DRE-i client sends
voteCastMSG to the server.
4.2 The server sends voteCastAck to
the DRE-i client
4.3 The DRE-i client sends
voteVerifyMSG to the server.
4.4 The server sends voteVerifyAck to
the DRE-i client

Fig. 1. Main collaboration between the DRE-i client and server

The legitimate voter will send the following requests: voteCryptogramsReq,
signTransReq, voteCastMSG, and voteVerifyMSG to the server. Respectively,
the server will reply with the following actions: voteCryptogramsReply, sign-
TransReply, voteCastAck, and voteVerifyAck. In the following two paragraphs
we will explain the server and client actions.

3.2 Misbehaving Voters

We have also investigated three misbehaviours that may happen to the DRE-i
e-voting system. The first misbehaviour is represented by a rogue client that just

Performance Impact of Misbehaving Voters 131

replays voteCryptogramsReq messages to get valid ballots from the DRE-i server.
We call this type of rogue clients as RCA (Rogue Client of type A) voting client
and the steps 1.1 and 1.2 in Fig. 1 show the interactions between the RCA voting
client and voting server. This behaviour represents an unsuccessful replay attack
where the misbehaving voter tries to request a ballot that has been requested
by a legitimate voter but the voting server replies with error message.

The second misbehaviour is represented by a rogue client that sends requests
voteCryptogramsReq and signTransReq to the DRE-i server. We call this type
of rogue clients as RCB (Rogue Client of type B) voting client and the steps 1.1,
1.2, 2, 3.1, and 3.2 in Fig. 1 show the interactions between the RCB voting client
and voting server. In this type of voter misbehaviours, the voter successfully
replays a ballot request and gets back the vote cryptograms from the server and
then selects a candidate and sends a sign transcript request to the server but
the server replies with an error message.

The third misbehaviour is represented by a rogue client that successfully
sends requests voteCryptogramsReq, signTransReq, voteCastMSG, and voteV-
erifyMSG to the DRE-i server and gets back valid replies. We call this type of
rogue clients as RCC (Rogue Client of type C) voting client and the steps 1.1,
1.2, 2, 3.1, 3.2, 4.1, 4.2, 4.3 and 4.4 in Fig. 1 show the interactions between the
RCC voting client and the voting server. In this type of misbehaving voters, the
malicious voter can successfully cast or verify a vote. This type of misbehaviour
can be represented by cross-site scripting (XSS) or Cross-Site Request Forgery
(CSRF) attacks.

3.3 Actions Rates

We consider the rogue clients’ actions to have rates similar to the rates of the
legitimate clients. We assumed that the rogue clients need to wait for one second
(1000 ms) to restart the next intervention. The rogue clients will have different
rates to complete one intervention with the DRE-i system. To have a good esti-
mate for the rates of the server actions in our performance models, we used the
same live experiment in [2] to derive some of the PEPA model rates. Moreover,
we assumed that the rates of client actions to be 0.002 for actions that will
be done by the client software and 0.0002 for actions to be done by the voter
(Tables 1 and 2).

3.4 Throughput Analysis of Server Actions

The throughput of an action is defined as the average number of actions com-
pleted by the system during a unit of time (ms) [13]. In PEPA, we can calculate
the average number of jobs waiting to be served by an action in the model. This
number is called the population(mean queue length). Therefore, we can calcu-
late the average number of valid voters and rogue voters waiting for each server’s
action. The throughput and population of model actions can be derived by PEPA
Eclipse Plug-in immediately after solving the CTMC underlying the model or

132 M. Alotaibi and N. Thomas

Table 1. Action rates for DRE-i client.

Action Rate

voteCryptogramsReq 0.00114

signTransReq 0.00082

voteCastMSG, voteVerifyMSG 0.00087

selectVote, castReply, verifyReply, reselect 0.0002

voteCastingComplete, voteVerificationComplete 0.002

reselectOrEndVotingRate 0.002

wait 0.0000519585

Table 2. Action rates for DRE-i server.

Action Rate

voteCryptogramsReply 0.00114

signTransReply 0.00082

voteCastAck, voteVerifyAck 0.00087

the ODE approximation of the CTMC. Because we are interested in investigat-
ing the impact of rogue clients’ intervention in the DRE-i system, we need to
evaluate the goodput and badput of each server action. Goodput of a server
action expresses the throughput dedicated for the average number of legitimate
clients waiting to be served by the server action(See formula (1)). The badput
of a server action expresses the throughput dedicated for the average number of
rogue clients waiting to be served by the server action(See formula (2)).

Goodput = action throughput ×
(

number of valid voters
total number of voters

)
(1)

Badput = action throughput ×
(

number of rogue voters
total number of voters

)
(2)

4 PEPA Models

We will construct the formal performance models for the typical behaviour of
the DRE-i voting scheme using PEPA formalism similar to the PEPA model
in [2]. However, in this model we will not model the voter behaviour because
we will abstract the voter behaviour inside the voting client. Therefore, in this
model we will have the voting client and the voting server components.

Based on Fig. 1 we define the formal performance model for the DRE-i voting
scheme using PEPA language as follows:

Performance Impact of Misbehaving Voters 133

4.1 DRE-i Server and Client

The system is composed of 30 DRE-i legitimate clients and one server. The sys-
tem starts by receiving the request voteCryptogramsReq form the DRE-i client
and subsequently the DRE-i server replies with the action voteCryptogram-
sReply. The client and server continue the interactions as shown in the PEPA
description of client and server collaboration below.

Voting client:
DRE Client0

def= (voteCryptogramsReq,rvoteCryptogramsReq).DRE Client1
DRE Client1

def= (voteCryptogramsReply,rvoteCryptogramsReply).DRE Client2
DRE Client2

def= (selectVote,rselectVote).DRE Client3
DRE Client3

def= (signTranscriptReq,rsignTranscriptReq).DRE Client4
DRE Client4

def= (signTranscriptReply,rsignTranscriptReply).DRE Client5
DRE Client5

def= (castReply,rcastReply).DRE Client6 + (verifyReply,rverifyReply).DRE Client7
DRE Client6

def= (castedVoteMSG,rcastedVoteMSG).DRE Client8
DRE Client8

def= (castedVoteAck,rcastedVoteAck).
(voteCastingComplete,rvoteCastingComplete).(wait,rwait).DRE Client0

DRE Client7
def= (verifiedVoteMSG,rverifiedVoteMSG).DRE Client9

DRE Client9
def= (verifiedVoteAck,rverifiedVoteAck).

(voteVerificationComplete,rvoteVerificationComplete).DRE Client10
DRE Client10

def= (reselectOrEndVoting,rreselectOrEndVoting).DRE Client11
DRE Client11

def= (reselect,rreselect).DRE Client0 +
(endVoting,rendVoting).(wait,rwait).DRE Client0

Voting server:
DRE SRV0

def= (voteCryptogramsReply,rvoteCryptogramsReply).DRE SRV0 +
(signTranscriptReply,rsignTranscriptReply).DRE SRV0 +
(castedVoteAck,rcastedVoteAck).DRE SRV0 + (verifiedVoteAck,rverifiedVoteAck).DRE SRV0

System equation:
((DRE Client0[i] ��

L1
DRE SRV0[j]))

where i is the number of voters in the system, j is the number of e-voting servers,
and
L1 = {voteCryptogramsReply, signTranscriptReply, castedVoteAck, verifiedVoteAck}

4.2 RCA DRE-i Clients

The DRE-i rogue client of type RCA starts interacting with the system by
sending the request voteCryptogramsReq to the DRE-i server. The server replies
with the action voteCryptogramsReply to end the collaboration and the RCA
DRE-i rogue client goes back to the initial state RCA DRE Client0.

134 M. Alotaibi and N. Thomas

RCA Voting client:
RCA DRE Client0

def= (voteCryptogramsReq,rvoteCryptogramsReq).RCA DRE Client1
RCA DRE Client1

def= (voteCryptogramsReply,rvoteCryptogramsReply).RCA DRE Client2
RCA DRE Client2

def= (rc wait,rrc wait).RCA DRE Client0

System equation:
((DRE Client0[i] �� RCA DRE Client0[k]) ��

L1
DRE SRV0[j])

where i is the number of voters in the system, j is the number of e-voting servers,
k is the number of RCA clients, and
L1 = {voteCryptogramsReply, signTranscriptReply, castedVoteAck, verifiedVoteAck}

4.3 RCB DRE-i Clients

The DRE-i rogue client of type RCB starts interacting with the system by
sending the request voteCryptogramsReq to the DRE-i server and successfully
receiving the action voteCryptogramsReply from the server. In the next step,
the RCB client select the candidate. Subsequently, the RCB client sends the
request signTranscriptReq to the server and the server replies with the action
signTranscriptReply to end the collaboration and the RCB DRE-i rogue client
goes back to the initial state RCB DRE Client0.
RCB Voting client:
RCB DRE Client0

def= (voteCryptogramsReq,rvoteCryptogramsReq).RCB DRE Client1
RCB DRE Client1

def= (voteCryptogramsReply,rvoteCryptogramsReply).RCB DRE Client2
RCB DRE Client2

def= (selectVoteReq,rselectVoteReq).RCB DRE Client3
RCB DRE Client3

def= (signTranscriptReq,rsignTranscriptReq).RCB DRE Client4
DRE Client4

def= (signTranscriptReply,rsignTranscriptReply).DRE Client5
RCB DRE Client5

def= (rc wait,rrc wait).RCB DRE Client0
System equation:
((DRE Client0[i] �� RCB DRE Client0[k]) ��

L1
DRE SRV0[j])

where i is the number of voters in the system, j is the number of e-voting servers,
k is the number of RCB clients, and
L1 = {voteCryptogramsReply, signTranscriptReply, castedVoteAck, verifiedVoteAck}

4.4 RCC DRE-i Clients

In this type of rogue clients, the RCC DRE-i rogue client successfully collaborate
with the server through sending the client actions voteCryptogramsReq, signTran-
sReq, voteCastMSG, and voteVerifyMSG and receiving the server actions vote-
CryptogramsReply, signTranscriptReply, castedVoteAck, and verifiedVoteAck.

Performance Impact of Misbehaving Voters 135

RCC Voting client:
RCC DRE Client0

def= (voteCryptogramsReq,rvoteCryptogramsReq).RCC DRE Client1
RCC DRE Client1

def= (voteCryptogramsReply,rvoteCryptogramsReply).RCC DRE Client2
RCC DRE Client2

def= (selectVoteReq,rselectVoteReq).RCC DRE Client3
RCC DRE Client3

def= (signTranscriptReq,rsignTranscriptReq).RCC DRE Client4
RCC DRE Client4

def= (signTranscriptReply,rsignTranscriptReply).RCC DRE Client5
RCC DRE Client5

def= (castReply,rcastReply).RCC DRE Client6 +
(verifyReply,rverifyReply).RCC DRE Client7

RCC DRE Client6
def= (castedVoteMSG,rcastedVoteMSG).RCC DRE Client8

RCC DRE Client8
def= (castedVoteAck,rcastedVoteAck).RCC DRE Client9

RCC DRE Client9
def= (voteCastingComplete,rvoteCastingComplete).

(rc wait,rrc wait).RCC DRE Client0
RCC DRE Client7

def= (verifiedVoteMSG,rverifiedVoteMSG).RCC DRE Client10
RCC DRE Client10

def= (verifiedVoteAck,rverifiedVoteAck).RCC DRE Client11
RCC DRE Client11

def= (voteVerificationComplete,rvoteVerificationComplete).
(rc wait,rrc wait).RCC DRE Client0

System equation:
((DRE Client0[i] �� RCC DRE Client0[k]) ��

L1
DRE SRV0[j])

where i is the number of voters in the system, j is the number of e-voting servers,
k is the number of RCC clients, and
L1 = {voteCryptogramsReply, signTranscriptReply, castedVoteAck, verifiedVoteAck}

5 Results and Discussion

After constructing and testing the performance models using the PEPA Eclipse
Plug-in tool, we used the ordinary differential equations technique [14] of the

0.0

1.2

2.4

3.6

4.8

6.0

7.2

8.4

9.6

10.8

12.0

0 10 20 30 40 50 60 70 80 90 100

Number of LC clients

Th
ro

ug
hp

ut(
1x

 1
0−4

)

Server actions:
signTranscriptReply

voteCryptogramsReply

castedVoteAck

verifiedVoteAck

Fig. 2. Throughput for server actions.

136 M. Alotaibi and N. Thomas

tool to evaluate the effect of the intervention of rogue clients on the DRE-i e-
voting system. We evaluated the goodput and badput of the server actions for
the three types of rogue clients.

First, we investigated the impact of the misbehaving voters on the DRE-i
system that had one DRE-i server, thirty legitimate clients, and a varying num-
ber of rogue clients. The goodput and badput were analysed. Later, we fixed
the number of rogue clients to be 100, the legitimate clients (LC) to be 30, and
varied the number of DRE-i servers from one to eight. Before starting the evalu-
ation of the impact of the misbehaving voters’ intervention on the performance
of the system, we evaluated the throughput of the system. The system had one
server, a varying number of legitimate clients, and no rogue clients. We found
out that the server action signTranscriptReply had reached its maximum rate
of 0.000820 when there were 30 legitimate clients in the system. As a result, the
castedVoteAck and verifiedVoteAck reached a maximum throughput of 0.000656
and 0.000164, and voteCryptogramsReply reached a maximum throughput of
0.000820 (See Fig. 2). Therefore, we used this configuration, the one server and
30 legitimate clients, to evaluate the impact of the intervention of the three types
of the misbehaving voters on the good throughput of the DRE-i system.

5.1 Goodput of Server Actions

In this section, we will show the effect of the three types of interventions of the
misbehaving voters when they interact with one DRE-i server. Each intervention
type has a different rate to complete one intervention with the DRE-i server.
RCA will have the highest rate to complete one intervention, RCB will have a
lower rate, and RCC will have the lowest rate.

Impact of RCA Intervention. In the PEPA model of RCA, the rogue client
will replay the request voteCryptogramsReq and wait for a reply from the server.
The server will receive the request and reply with voteCryptogramsReply to end
the interactions between the rogue client and the server. The impact of vote-
CryptogramsReq requests sent by rogue client of type RCA on the throughput
of the DRE-i server actions is demonstrated in Figs. 3 and 4. The voteCryp-
togramsReply action has a maximum rate of 0.00114. The RCA clients make the
voteCryptogramsReply action reach that maximum because RCA clients do not
go through the signTranscriptReply action. The badput figure shows the increase
of the server action throughput used by rogue clients when we gradually increase
the number of rogue clients. Consequently, the goodput figure reveals that the
more we add rogue clients to the system the less throughput will be dedicated
for legitimate clients.

Performance Impact of Misbehaving Voters 137

0.0

1.2

2.4

3.6

4.8

6.0

7.2

8.4

9.6

10.8

12.0

0 100

200

300

400

500

600

700

800

900

1000

Number of RCA clients

G
oo

dp
ut

(1
x1

0−
4)

Server actions:
signTranscriptReply

voteCryptogramsReply

castedVoteAck

verifiedVoteAck

Fig. 3. Goodput for server actions.

0.0

1.2

2.4

3.6

4.8

6.0

7.2

8.4

9.6

10.8

12.0

0 100

200

300

400

500

600

700

800

900

1000

Number of RCA clients

B
ad

pu
t(

1x
10

−4
)

Server actions: voteCryptogramsReply

Fig. 4. Badput for server actions.

Impact of RCB Behaviour. The impact of voteCryptogramsReq and sign-
TranscriptReq requests sent by rogue client of type RCB on the throughput of
the DRE-i server actions is demonstrated in Figs. 5 and 6. In this intervention
type, the rogue client needs to go through the server action signTranscriptRe-
ply which has the minimum rate among the rates of the server’s actions. The
rate of the server’s action signTranscriptReply will slow down the intervention
rate of RCB compared to the intervention rate of RCA. This explains why the
voteCryptogramsReply action will not exceed the rate of 0.00082.

0.0

1.2

2.4

3.6

4.8

6.0

7.2

8.4

9.6

10.8

12.0

0 100

200

300

400

500

600

700

800

900

1000

Number of RCB clients

G
oo

dp
ut

(1
x

10
−4

)

Server actions:
signTranscriptReply

voteCryptogramsReply

castedVoteAck

verifiedVoteAck

Fig. 5. Goodput for server actions.

0.0

1.2

2.4

3.6

4.8

6.0

7.2

8.4

9.6

10.8

12.0

0 100

200

300

400

500

600

700

800

900

1000

Number of RCB clients

B
ad

pu
t(

1x
10

−4
)

Server actions:
signTranscriptReply

voteCryptogramsReply

Fig. 6. Badput for server actions.

The badput and goodput in Figs. 5 and 6 show that the increase in the
number of rogue clients in the system increases the badput of the server’s actions.
Consequently, this will make goodput of the server’s actions decrease.

138 M. Alotaibi and N. Thomas

Impact of RCC Behaviour. The impact of the badput of the RCC rogue
client is shown in Figs. 7 and 8.

0.0

1.2

2.4

3.6

4.8

6.0

7.2

8.4

9.6

10.8

12.0

0 100

200

300

400

500

600

700

800

900

1000

Number of RCC clients

G
oo

dp
ut

(1
x1

0−
4)

Server actions:
signTranscriptReply

voteCryptogramsReply

castedVoteAck

verifiedVoteAck

Fig. 7. Goodput for server actions.

0.0

1.2

2.4

3.6

4.8

6.0

7.2

8.4

9.6

10.8

12.0

0 100

200

300

400

500

600

700

800

900

1000

Number of RCC clients
B

ad
pu

t(
1x

10
−4

)

Server actions:
signTranscriptReply

voteCryptogramsReply

castedVoteAck

verifiedVoteAck

Fig. 8. Badput for server actions.

The badput and goodput of server actions’ voteCryptogramsReply and sign-
TranscriptReply in this type of intervention are similar to those in the RCB
intervention because both RCB and RCC rogue clients need to go through the
server action signTranscriptReply.

5.2 Scalability of Server’s Goodput

After investigating the impact of the three types of the illegitimate interventions
on one server, we have studied the goodput of server actions when there are
more than one server. As shown in Figs. 9 and 10, the throughputs of the server
actions voteCryptogramReply and castedVoteAck are fixed at 0.0082 and 0.00065
when the system has 30 legitimate clients and varying number of servers.

The throughput for the two server’s actions do not increase when we add
more servers. The rate of 0.0082 for the action signTranscriptReply (one server)
is enough to provide the 30 legitimate clients with required resources. In the case
when there are one or two servers in the DRE-i system, the goodput of the server
action voteCryptogramReply when the system interacts with 100 RCA clients is
better than the goodput of the server action voteCryptogramReply when the sys-
tem interacts with 100 RCC clients. However, when there are five servers, we
notice the contrary. This is because the RCA rogue client has a higher intensity
of actions with the DRE-i server than the RCB or RCC rogue client has. The
RCB and RCC rogue clients face a bottleneck at the server’s action signTran-
scriptReply when they interact with the system. However, when we increase the
number of servers, we alleviate the bottleneck in the action signTranscriptReply.
Therefore, the rogue clients RCB and RCC, and the 30 legitimate clients get
more throughput from the server’s action signTranscriptReply. So, the DRE-i

Performance Impact of Misbehaving Voters 139

0.0

1.2

2.4

3.6

4.8

6.0

7.2

8.4

9.6

10.8

12.0

1 2 3 4 5 6 7 8 9 10
Number of servers

G
oo

dp
ut

(1
x1

0−
4)

Type of client: RCA RCB RCC LC

Fig. 9. Goodput for voteCryp-
togramsReply. LC=30, RCA=100,
RCB=100, and RCC=100.

0.0

1.2

2.4

3.6

4.8

6.0

7.2

8.4

9.6

10.8

12.0

1 2 3 4 5 6 7 8 9 10
Number of servers

G
oo

dp
ut

(1
x1

0−
4)

Type of client: RCA RCB RCC LC

Fig. 10. Goodput for castedVoteAck.
LC=30, RCA=100, RCB=100, and
RCC=100.

system starts having a better goodput when it has interventions from RCB or
RCC rogue clients compared to the goodput it will have when it has interventions
from RCA. Moreover, the evaluation of the performance models of the DRE-i
system with misbehaving voters shows that adding more servers (up to seven
servers) do not make the goodput of the servers’ actions reaches the throughput
of the DRE-i servers when the system has no misbehaving voters.

6 Conclusion

In this paper, by using PEPA, we presented the performance models of three
misbehaving voters when using the large scale and secure DRE-i e-voting sys-
tem. The constructed performance models captured the high-level interactions
between the DRE-i e-voting system, the valid voters, and the misbehaving vot-
ers. The evaluation of throughput of the main DRE-i server’s actions clearly
shows the impact of the interaction of misbehaving voters with the e-voting sys-
tem. The goodput of server actions went down when added more rogue clients
to the system.

The evaluation of the effect of misbehaving voters on the DRE-i e-voting
system can be extended to include the analysis of the response time that will
be observed by legitimate voters when they cast their votes. Furthermore, the
countermeasures to reduce the effect of misbehaving voters on the performance
of the DRE-i voting system is an interesting area to be investigated using the
formal performance formalism like PEPA.

140 M. Alotaibi and N. Thomas

References

1. Adida, B.: Helios: web-based open-audit voting. In: USENIX Security Symposium,
vol. 17, pp. 335–348 (2008)

2. Alotaibi, M., Thomas, N.: Performance evaluation of a secure and scalable e-voting
scheme using PEPA. In: Balsamo, S., Marin, A., Vicario, E. (eds.) InfQ 2017.
CCIS, vol. 825, pp. 35–48. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-91632-3 3

3. Benaloh, J., Vaudenay, S., Quisquater, J.J.: Final report of IACR electronic voting
committee. International Association for Cryptologic Research (2010)

4. Bradley, J.T., Gilmore, S.T.: Stochastic simulation methods applied to a secure
electronic voting model. Electron. Notes Theor. Comput. Sci. 151(3), 5–25 (2006)

5. Brightwell, I., Cucurull, J., Galindo, D., Guasch, S.: An overview of the iVote 2015
voting system (2015)

6. Cortier, V., Smyth, B.: Attacking and fixing helios: an analysis of ballot secrecy.
J. Comput. Secur. 21(1), 89–148 (2013)

7. Estehghari, S., Desmedt, Y.: Exploiting the client vulnerabilities in Internet e-
voting systems: Hacking Helios 2.0 as an example. In: EVT/WOTE 2010, pp. 1–9
(2010)

8. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale
elections. In: Seberry, J., Zheng, Y. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp.
244–251. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57220-1 66

9. Gilmore, S., Tribastone, M.: Evaluating the scalability of a web service-based dis-
tributed e-learning and course management system. In: Bravetti, M., Núñez, M.,
Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 214–226. Springer, Hei-
delberg (2006). https://doi.org/10.1007/11841197 14

10. Gritzalis, D.A.: Principles and requirements for a secure e-voting system. Comput.
Secur. 21(6), 539–556 (2002)

11. Hao, F., Kreeger, M., Randell, B., Clarke, D., Shahandashti, S., Lee, P.J.: Every
vote counts: ensuring integrity in large-scale electronic voting. In: 2014 Electronic
Voting Technology Workshop/Workshop on Trustworthy Elections, EVT/WOTE
2014, vol. 2, pp. 1–25 (2014)

12. Hao, F., Ryan, P.Y.: Real-World Electronic Voting: Design, Analysis and Deploy-
ment. CRC Press, Boca Raton (2016)

13. Hillston, J.J.: A compositional approach to performance modelling. Distinguished
dissertations in Computer Science, Cambridge University Press, Cambridge (1996)

14. Hillston, J.: Fluid flow approximation of PEPA models. In: Second International
Conference on the Quantitative Evaluation of Systems, QEST 2005. IEEE (2005)

15. Kohno, T., Stubblefield, A., Rubin, A.D., Wallach, D.S.: Analysis of an electronic
voting system. In: Proceedings of 2004 IEEE Symposium on Security and Privacy,
pp. 27–40. IEEE (2004)

16. Lee, P.H.J., Shahandashti, S.F.: Theoretical attacks on E2E voting systems. Real-
World Electronic Voting: Design, Analysis and Deployment, p. 219 (2016)

17. Madise, Ü., Martens, T.: E-voting in Estonia 2005. The first practice of country-
wide binding Internet voting in the world. Electron. Voting 86 (2006)

18. Smyth, B., Cortier, V.: A note on replay attacks that violate privacy in electronic
voting schemes. Ph.D. thesis, INRIA (2011)

19. Sudhodanan, A., Carbone, R., Compagna, L., Dolgin, N., Armando, A., Morelli,
U.: Large-scale analysis & detection of authentication cross-site request forgeries.
In: 2017 IEEE European Symposium on Security and Privacy (EuroS&P), pp.
350–365. IEEE (2017)

https://doi.org/10.1007/978-3-319-91632-3_3
https://doi.org/10.1007/978-3-319-91632-3_3
https://doi.org/10.1007/3-540-57220-1_66
https://doi.org/10.1007/11841197_14

Performance Impact of Misbehaving Voters 141

20. Thomas, N.: Performability of a secure electronic voting algorithm. Electron. Notes
Theor. Comput. Sci. 128, 45–58 (2005)

21. Tribastone, M., Duguid, A., Gilmore, S.: The PEPA eclipse plugin. ACM SIG-
METRICS Perform. Eval. Rev. 36(4), 28–33 (2009)

22. Wang, H., Laurenson, D.I., Hillston, J.: Evaluation of RSVP and mobility-aware
RSVP using performance evaluation process algebra. In: 2008 IEEE International
Conference on Communications, ICC 2008, pp. 192–197. IEEE (2008)

23. Yasinac, A., et al.: Software review and security analysis of the ES&S iVotronic
8.0. 1.2 voting machine firmware. Technical report, Security and Assurance in
Information Technology Laboratory, Florida State University (2007)

Information Flow Security for Stochastic
Processes

Jane Hillston1, Andrea Marin2, Carla Piazza3(B), and Sabina Rossi2

1 University of Edinburgh, Edinburgh, UK
Jane.Hillston@ed.ac.uk

2 Università Ca’ Foscari Venezia, Venice, Italy
{marin,sabina.rossi}@unive.it
3 Università di Udine, Udine, Italy

carla.piazza@uniud.it

Abstract. In this paper we study an information flow security prop-
erty for systems specified as terms of a quantitative process algebra,
namely Performance Evaluation Process Algebra (PEPA). Intuitively,
we propose a quantitative extension of the Non-Interference property
used to secure systems from the functional point view by assuming that
the observers are able to measure also the timing properties of the sys-
tem, e.g., the response time or the throughput.

We introduce the notion of Persistent Stochastic Non-Interference
(PSNI) and provide two characterizations of it: one based on a
bisimulation-like equivalence relation inducing a lumping on the underly-
ing Markov chain, and another one based on unwinding conditions which
demand properties of individual actions. These two different characteri-
zations naturally lead to efficient methods for the verification and con-
struction of secure systems. A decision algorithm for PSNI is presented
and an application of PSNI to a queueing system is discussed.

1 Introduction

In the last decades, security of information systems has become a crucial topic
of research. Finding a formal characterisation of the various properties defined
in the context of security, (e.g., confidentiality, anonymity, integrity, etc.) has
been an active field of research. Beside numerous definitions of security have
been proposed, very few results take into account the time behaviour of the
analysed system. However, it is well-known that from the observation of the
response times of a system, malicious observers can infer some characteristics
that may help an attack to succeed (see, e.g., [2,3,5]). In this paper, we propose
a first set of results to cover this gap. We consider systems specified as terms of
a quantitative process algebra, namely Performance Evaluation Process Algebra
(PEPA). In contrast with most the process algebras used in previous well-known
results (e.g., the CCS used for the Non-Interference property [6]), PEPA allows
us to specify random delays to model the quantitative properties of the system.
Besides, the results that we present can be applied to any Markovian formalism
c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 142–156, 2018.
https://doi.org/10.1007/978-3-030-02227-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_10&domain=pdf

Information Flow Security for Stochastic Processes 143

with a synchronisation operator in the style of PEPA cooperation, e.g., the
Kronecker’s product for Stochastic Automata Networks (see [12,13] and the
references therein).

Intuitively, the idea that we propose is a quantitative extension of the Non-
Interference property that has been widely used to secure systems from the
functional point view [4,6–8,14–18]. Let us consider a system that performs some
actions that are intended to be confidential and some others that are observable
by an external, possibly malicious, user. Roughly speaking, in the standard,
functional, definition of Non-Interference a system S is secure if any external
observer is not able to distinguish the behaviour of S performing confidential,
secret, activities from the behaviour of the same system but prevented from
performing any secret action. In our setting, the definition does not change,
however we assume that the observer is able to measure also the timing properties
of that system, e.g., the response time or the throughput. In this paper we
consider the strictest situation in terms of security requirements, i.e., the observer
can see any observable execution path with its delays, i.e., he/she can see the
transient behaviour of the system and study correlation properties, averages, etc.
The request that for any execution path of the model that performs unobservable,
private, actions there exists a corresponding execution path in the model that
does not perform private actions (and vice versa) clearly implies that the two
models are also indistinguishable when observed in steady-state. However, as
shown in the example of Sect. 5, the opposite is in general not true.

We introduce a notion of stochastic Non-Interference which is persistent in
the sense that if a system is secure then all its reachable states are secure too. We
show that such property, named Persistent Stochastic Non-Interference (PSNI)
can be charaterized in terms of a bisimulation-like equivalence relation, between
the whole system and the system prevented from performing confidential activ-
ities. The property that we propose is strictly related to the lumping of Markov
chains since the observation equivalence at the base of our definition relies on
the notion of lumpability [10]. Moreover, we provide a characterization of PSNI
in terms of unwinding conditions which demand properties of individual actions.
These two different characterizations naturally lead to efficient methods for the
verification and construction of secure systems. We prove that PSNI can be
verified in polynomial time with respect to the number of states of a system.

We describe an application of PSNI to a simple queueing system in which
at random instants some private internal operations are performed. Although
the functionality of the system is not altered by these operations (and hence the
standard Non-Interference is satisfied), the response time is worsen and hence
private information can be leaked. We show a simple workaround that makes
the system secure and discuss its implications in terms of overall performance.

Structure of the Paper. The paper is organized as follows. In Sect. 2 we intro-
duce the process algebra PEPA, its semantics, and the observation equiva-
lence named lumpable bisimilarity. The notion of Persistent Stochastic Non-
Interference (PSNI) and its characterizations are presented in Sect. 3. In Sect. 4
we describe an algorithm to decide whether a PEPA component is PSNI.

144 J. Hillston et al.

Section 5 presents a simple example of a queueing system in which some pri-
vate operations are preformed. Finally, Sect. 6 concludes the paper.

Table 1. Operational semantics for PEPA components

2 The Calculus

PEPA (Performance Evaluation Process Algebra) is a popular Markovian process
algebra introduced in [9] that allows one to model and study the quantitative
properties of systems. It consists of two basic elements: the components and the
activities. Activities are pairs (α, r) where α is a label or action type belonging
to a countable set A, and r ∈ R

+ ∪ {�} is its rate The duration of an activity
is a negative exponential distribution with mean r−1. Action type τ ∈ A is the
unknown type. Activity rates may be � which should be read as unspecified.
The syntax for PEPA terms follows the grammar:

P :: = P ��
L

P | P/L | S

S :: = (α, r).S | S + S | A

where S denotes a sequential component and P denotes a model component which
runs in parallel. Finally, A is a countable set of constants and C denotes the set
of all possible components.

Operational Semantics. Table 1 shows the operational semantics of PEPA. The
component (α, r).P carries out the activity (α, r) of type α at rate r and subse-
quently behaves as P . When a = (α, r), the component (α, r).P may be written
as a.P . P + Q specifies a system which may behave either as P or as Q and

Information Flow Security for Stochastic Processes 145

where all the current activities of both P and Q are enabled. The first activity
to complete distinguishes one of the components, P or Q. The other component
of the choice is discarded. The component P/L behaves as P except that any
activity of type within the set L are hidden, i.e., they are relabelled with the
unknown type τ . The meaning of a constant A is given by a defining equation
such as A

def= P which gives the constant A the behaviour of the component P .
The cooperation combinator ��

L
is in fact an indexed family of combinators, one

for each possible set of action types, L ⊆ A \ {τ}. The cooperation set L defines
the action types on which the components must synchronise or cooperate (the
unknown action type, τ , may not appear in any cooperation set). It is assumed
that each component proceeds independently with the activities whose types
do not occur in the cooperation set L (individual activities). However, activities
with action types in L require the simultaneous involvement of both components.
The shared activity will have the same action type as the two contributing activ-
ities and its rate is that of the slower component. If in a component an activity
has rate �, then we say that it is passive with respect to that action type. In
this case the rate of the shared activity will be that of the other component. For
a given P and action type α, the apparent rate of α in P , denoted by rα(P), is
the sum of the rates of the α activities enabled in P .

The semantics of each term in PEPA is given via a labelled multi-transition
system where the multiplicities of arcs are significant. In the transition system, a
state or derivative corresponds to each syntactic term of the language and an arc
represents the activity which causes one derivative to evolve into another. The
set of reachable states of a model P is termed the derivative set of P (ds(P))
and constitutes the set of nodes of the derivation graph of P (D(P)) obtained by
applying the semantic rules exhaustively. We denote by A(P) the set of all the
current action types of P , i.e., the set of action types which the component P may
next engage in. We denote by Act(P) the multiset of all the current activities
of P . Finally we denote by A(P) the union of all A(P ′) with P ′ ∈ ds(P), i.e.,
the set of all action types syntactically occurring in P . For any component P ,
the exit rate from P will be the sum of the activity rates of all the activities
enabled in P , i.e., q(P) =

∑
a∈Act(P) ra, with ra being the rate of activity a. If P

enables more than one activity, |Act(P)| > 1, then the dynamic behaviour of the
model is determined by a race condition. As a consqeuence, the nondeterministic
branching of the pure process algebra is replaced by a probabilistic branching.
Thanks to the exponential assumption, the probability that a particular activity
completes is the ratio between its rate and the exit rate from P .

Underlying Markov Chain. Let P
def= P0 with ds(P) = {P0, . . . , Pn} be a finite

PEPA model. Then, the stochastic process X(t) on the space ds(P) is a contin-
uous time Markov chain [9].

The transition rate between two states Pi and Pj is denoted by q(Pi, Pj) and
corresponds to rate at which the system changes from behaving as component
Pi to behaving as Pj , i.e., it is the sum of the activity rates labelling arcs which

146 J. Hillston et al.

connect the node corresponding to Pi to the node corresponding to Pj in the
derivation graph. Formally:

q(Pi, Pj) =
∑

a∈Act(Pi|Pj)
ra

with Pi �= Pj and Act(Pi|Pj) = {| a ∈ Act(Pi)| Pi
a−→ Pj |}. When Pj is not a

one-step derivative of Pi we set q(Pi, Pj) = 0. In the following, when possible,
we will write qij instead of q(Pi, Pj). In the definition of the infinitesimal gener-
ator Q of X(t), qij , i �= j, are the off-diagonal elements of the matrix whereas
the diagonal elements are, as usual, the negative sum of the row non-diagonal
elements, i.e., qii = −q(Pi). For any finite and irreducible PEPA model P , the
steady-state distribution Π(·) exists and it may be found by solving the prob-
ability normalising equation and the linear system of global balance equations:∑

Pi∈ds(P) Π(Pi) = 1 and ΠQ = 0. Another notion that will be used in the
paper is that of conditional transition rate from Pi to Pj via an action type α,
denoted by q(Pi, Pj , α). This is the sum of the activity rates labelling arcs con-
necting the corresponding nodes in the derivation graph which are also labelled
by the action type α. It is the rate at which a system behaving as component
Pi evolves to behaving as component Pj as the result of completing a type α
activity. The total conditional transition rate from P to S ⊆ ds(P), denoted
q[P, S, α], is defined as

q[P, S, α] =
∑

P ′∈S

q(P, P ′, α)

where q(P, P ′, α) =
∑

P
(α,rα)−−−−→P ′

rα.

Observation Equivalence. When we study a system by means of a process
algebraic model, actions, rather than states, are used to capture its observ-
able behaviour. Therefore, we introduce an equivalence notion in which compo-
nents are regarded as equal if an external observer sees them performing exactly
the same actions. In this section we recall a bisimulation-like relation, named
lumpable bisimulation, for PEPA models that we previously introduced in [10].

Two PEPA components are lumpably bisimilar if there exists an equivalence
relation between them such that, for any action type α different from τ , the total
conditional transition rates from those components to any equivalence class, via
activities of this type, are the same.

Definition 1 (Lumpable bisimulation). An equivalence relation over PEPA
components, R ⊆ C ×C, is a lumpable bisimulation if whenever (P,Q) ∈ R then
for all α ∈ A and for all S ∈ C/R such that

– either α �= τ ,
– or α = τ and P,Q �∈ S,

it holds
q[P, S, α] = q[Q,S, α].

Information Flow Security for Stochastic Processes 147

Notice that, in contrast with the notion of strong equivalence [9], lumpable
bisimulation allows arbitrary activities with type τ among components belonging
to the same equivalence class, and therefore it is less strict.

We are interested in the relation which is the largest lumpable bisimulation,
formed by the union of all lumpable bisimulations.

Definition 2 (Lumpable bisimilarity). Two PEPA components P and Q are
lumpably bisimilar, written P ≈l Q, if (P,Q) ∈ R for some lumpable bisimula-
tion R, i.e.,

≈l =
⋃

{R | R is a lumpable bisimulation}.

≈l is called lumpable bisimilarity and it is the largest symmetric lumpable bisim-
ulation over PEPA components.

In [10] we proved that lumpable bisimilarity is a congruence for the so-called
evaluation contexts, i.e., if P1 ≈l P2 then

– a.P1 ≈l a.P2;
– P1/L ≈l P2/L;
– P1 ��

L
Q ≈l P2 ��

L
Q for all L ⊆ A.

3 Persistent Stochastic Non-interference

The security propery named Persistent Stochastic Non-Interference (PSNI) tries
to capture every possible information flow from a classified (high) level of con-
fidentiality to an untrusted (low) one. A strong requirement of this definition is
that no information flow should be possible even in the presence of malicious
processes that run at the classified level.

The definition of PSNI is based on the basic idea of Non-Interference [8]:
“No information flow is possible from high to low if what is done at the high
level cannot interfere in any way with the low level”.

More precisely, the notion of PSNI consists of checking all the states reach-
able by the system against all high level potential interactions.

In order to formally define our security property, we partition the set A\{τ}
of visible action types, into two sets, H and L of high and low level action types.
A high level PEPA component H is a PEPA term such that for all H ′ ∈ ds(H),
A(H ′) ⊆ H, i.e., every derivative of H may next engage in only high level actions.
We denote by CH the set of all high level PEPA components.

A system P satisfies PSNI if for every state P ′ reachable from P and for
every high level process H a low level user cannot distinguish P ′ from P ′ ��

H H.
In other words, a system P satisfies PSNI if what a low level user sees of the
system is not modified when it cooperates with any high level process H.

In order to formally define the PSNI property, we denote by P \H the PEPA
component (P ��

H H̄) where H̄ is any high level process that does not cooperate
with P , i.e., for all P ′ ∈ ds(P), A(P ′)∩A(H̄) = ∅. Intuitively P \H denotes the
component P prevented from performing high level actions.

First we prove that P \ H is well defined, i.e., it does not depend on H̄. The
proof follows by structural induction on P .

148 J. Hillston et al.

Lemma 1. Let P be a PEPA component and H̄ be a high level process that does

not cooperate with P . P ��
H H̄

(α,r)−−−→ Q if and only if Q is of the form P ′ ��
H H̄

and P
(α,r)−−−→ P ′ with α ∈ L ∪ {τ}.

Notice that the above lemma applies also to P ′ and more in general to all the
processes in ds(P), since they do not cooperate with H̄.

Lemma 2. Let P be a PEPA component. Let H̄1 and H̄2 be two high level pro-
cesses that do not cooperate with P , i.e., for all P ′ ∈ ds(P), A(P ′) ∩ A(H̄i) = ∅
for i = 1, 2. The derivation graphs D(P ��

H H̄1) and D(P ��
H H̄2) are isomorphic

as graphs with labels on the edges.

The formal definition of PSNI is as follows.

Definition 3. Let P be a PEPA component.

P ∈ PSNI iff ∀P ′ ∈ ds(P), ∀H ∈ CH ,

P ′ \ H ≈l (P ′ ��
H H)/H.

We introduce a novel bisimulation-based equivalence relation over PEPA
components, named ≈hc

l , that allows us to give a first characterization of PSNI
with no quantification over all the high level components H. In particular, we
show that P ∈ PSNI if and only if P \ H and P are not distinguishable with
respect to ≈hc

l . Intuitively, two processes are ≈hc
l -equivalent if they can simulate

each other in any possible high context, i.e., in every context C[] of the form
(��

H H)/H where H ∈ CH . Observe that for any high context C[] and PEPA
model P , all the states reachable from C[P] have the form C ′[P ′] with C ′[]
being a high context too and P ′ ∈ ds(P).

We now introduce the concept of lumpable bisimulation on high contexts: the
idea is that, given two PEPA models P and Q, when a high level context C[]
filled with P executes a cetain activity moving P to P ′ then the same context
filled with Q is able to simulate this step moving Q to Q′ so that P ′ and Q′ are
again lumpable bismilar on high contexts, and vice-versa. This must be true for
every possible high context C[]. It is important to note that the quantification
over all possible high contexts is re-itereted for P ′ and Q′.

We use the following notation. For a PEPA model P , α ∈ A, S ⊆ ds(P) and
a high context C[] we define:

qC(P, P ′, α) =
∑

C[P]
(α,rα)−−−−→C′[P ′]

rα

and
qC [P, S, α] =

∑

P ′∈S

qC(P, P ′, α).

The notion of lumpable bisimulation on high contexts is defined as follows:

Information Flow Security for Stochastic Processes 149

Definition 4 (Lumpable bisimilarity on high contexts). An equivalence rela-
tion over PEPA components, R ⊆ C × C, is a lumpable bisimulation on high
contexts if whenever (P,Q) ∈ R then for all high context C[], for all α ∈ A and
for all S ∈ C/R such that

– either α �= τ ,
– or α = τ and P,Q �∈ S,

it holds
qC [P, S, α] = qC [Q,S, α].

Two PEPA components P and Q are lumpably bisimilar on high contexts, writ-
ten P ≈hc

l Q, if (P,Q) ∈ R for some lumpable bisimulation on high contexts
R, i.e.,

≈hc
l =

⋃
{R | R is a lumpable bisimulation on high contexts}.

≈hc
l is called lumpable bisimilarity on high contexts and it is the largest sym-

metric lumpable bisimulation on high contexts over PEPA components.

The next theorem provides a characterization of PSNI in terms of ≈hc
l .

Theorem 1. Let P be a PEPA component. Then

P ∈ PSNI iff P \ H ≈hc
l P.

We now show how it is possible to give a characterization of PSNI avoiding
both the universal quantification over all the possible high level components and
the universal quantification over all the possible reachable states.

Before we have shown how the idea of “being secure in every state” can be
directly moved inside the lumpable bisimulation on high contexts notion (≈hc

l).
However this bisimulation notion implicitly contains a quantification over all
possible high contexts. We prove that ≈hc

l can be expressed in a rather simpler
way by exploiting local information only. This can be done by defining a novel
equivalence relation which focuses only on observable actions that do not belong
to H. More in detail, we define an observation equivalence where actions from
H may be ignored. We introduce the notion of lumpable bisimilarity up to H.

Definition 5 (Lumpable bisimilarity up to H). An equivalence relation over
PEPA components, R ⊆ C × C, is a lumpable bisimulation up to H if whenever
(P,Q) ∈ R then for all α ∈ A and for all S ∈ C/R
– if α �∈ H ∪ {τ} then

q[P, S, α] = q[Q,S, α] ,

– if α ∈ H ∪ {τ} and P,Q �∈ S, then

q[P, S, α] = q[Q,S, α].

150 J. Hillston et al.

Two PEPA components P and Q are lumpably bisimilar up to H, written P ≈H
l

Q, if (P,Q) ∈ R for some lumpable bisimulation up to H, i.e.,

≈H
l =

⋃
{R | R is a lumpable bisimulation up to H}.

≈H
l is called lumpable bisimilarity up to H and it is the largest symmetric

lumpable bisimulation up to H over PEPA components.

The next theorem shows that the binary relations ≈hc
l and ≈H

l are equivalent.

Theorem 2. Let P and Q be two PEPA components. Then

P ≈hc
l Q if and only if P ≈H

l Q.

Theorem 2 allows us to identify a local property of processes (with no quantifi-
cation on the states and on the high contexts) which is a necessary and sufficient
condition for PSNI. This is stated by the following corollary:

Corollary 1. Let P be a PEPA component. Then

P ∈ PSNI iff P \ H ≈H
l P.

Finally we provide a characterization of PSNI in terms of unwinding condi-
tions which demand properties of individual activities. In practice, whenever a
state P ′ of a PSNI PEPA model P may execute a high level activity leading it
to a state P ′′, then P ′ and P ′′ are indistinguishable for a low level observer.

Theorem 3. Let P be a PEPA component.

P ∈ PSNI iff ∀P ′ ∈ ds(P),

P ′ (h,r)−−−→ P ′′ implies P ′ \ H ≈l P ′′ \ H.

Using the equivalence relation ≈H
l this can be reformulated as follows.

Theorem 4. Let P be a PEPA component.

P ∈ PSNI iff ∀P ′ ∈ ds(P),

P ′ (h,r)−−−→ P ′′ implies P ′ ≈H
l P ′′.

Theorems 2, 3 and 4 provide different characterizations of PSNI which nat-
urally lead to efficient methods for the verification and construction of secure
systems. We also prove some compositionality results that allow us to check
the security of a system by only verifying the security of its subcomponents. In
particular we prove that PSNI is compositional with respect to the low prefix,
hiding, and cooperation over a set of low actions.

Information Flow Security for Stochastic Processes 151

Proposition 1. Let P and Q be two PEPA components. If P,Q ∈ PSNI, then

– (α, r).P ∈ PSNI for all α ∈ L ∪ {τ};
– P/L ∈ PSNI for all L ⊆ A;
– P ��

L
Q ∈ PSNI for all L ⊆ L.

We also prove that if P ∈ PSNI then the equivalence class [P] with respect
to lumpable bisimilarity ≈l is closed under PSNI.

Proposition 2. Let P and Q be two PEPA components. If P ∈ PSNI and
P ≈l Q then also Q ∈ PSNI.

4 A Decision Algorithm for PSNI

In this section we briefly describe an algorithm to decide whether a PEPA compo-
nent is PSNI. We first exploit the characterization of PSNI given in Corollary 1,
i.e., we provide an algorithm that given in input two PEPA components P and Q
having finite derivative graphs allows one to decide whether P ≈H

l Q. In virtue
of Corollary 1 this will allow us to decide whether a process is PSNI. As observed
in [10] even if the set C of PEPA components is infinite, since we are interested
in P ≈H

l Q we can safely focus on the graph D(P)∪D(Q). We intend to exploit
the algorithm introduced in [1] for solving the label-compatibility problem. To
this aim we need to introduce the notion of directed labeled weighted graphs,
the label-compatibility problem, and to show how our problem can be mapped
into a label-compatibility one.

Definition 6 (Directed labeled weighted graph). A directed labeled weighted
graph is a tuple G = (V,Lab,E,w) where:

– V is a finite set of vertices;
– Lab is a finite set of labels;
– E ⊆ V × V × Lab is a finite set of labeled edges;
– w : E → R is a weighting function that associates a value to each edge.

Given V ′ ⊆ V , we denote by w(v, V ′, a) the sum of the weights of the edges
from v to V ′ having label a.

The following definition of compatibility introduced in [1] extends that of
[19] to directed labeled weighted graphs.

Definition 7 (Label-Compatibility Problem). Let G = (V,Lab,E,w) be a
directed labeled weighted graph and R ⊆ V × V be an equivalence relation
over V . R is said to be label-compatible with G if for each a ∈ Lab, for each
C,C ′ ∈ V/R, and for each v, v′ ∈ C it holds that w(v, C ′, a) = w(v′, C ′, a).

Let G = (V,Lab,E,w) be a directed labeled weighted graph the labeled
weighted compatibility problem over G requires to compute the largest equiv-
alence relation label-compatible with G.

In [1] it has been proved that the label-compatibility problem always has a
unique solution. We now introduce the graph that allows us to map our problem
of deciding P ≈H

l Q into a label compatibility problem.

152 J. Hillston et al.

Definition 8 (Up to H Lumping Graph). Let P and Q be PEPA components.
The up to H lumping graph of P ∪ Q is the directed labelled weighted graph
LHP∪Q = (VP∪Q,A, EP∪Q, wP∪Q), where:

– VP∪Q is ds(P) ∪ ds(Q)
– EP∪Q is the set of labeled edges

EP∪Q = {(R,R′, α) | R
(α,r)−−−→ R′} ∪ {(R,R, α) | and α ∈ H ∪ {τ}}

with R and R′ in VP∪Q

– wP∪Q is the function which associates to each edge in EP∪Q the value

wP∪Q(R,R′, α) =

{
q(R,R′, α) ifα �∈ H ∪ {τ} ∨ R �= R′

−q[R, VP∪Q \ {R}, α] otherwise

When P and Q coincide we use LHP to denote LHP∪P .

Theorem 5. Let P and Q be two PEPA components. It holds that P ≈H
l Q if

and only if in the largest equivalence relation label-compatible with LHP∪Q the
vertices P and Q are equivalent.

As an immediate consequence of the above theorem we get that we can
directly exploit the algorithm presented in [1] with initial relation the total
relation over VP∪Q to decide ≈H

l in polynomial time with respect to the size
of the graph D(P) ∪ D(Q). We refer to such algorithm as LCW ()1.

Corollary 2. Let P and Q be two PEPA components. Let LHP∪Q be the up to
H lumping graph of P∪Q and LCW () be the algorithm reported in the Appendix.
LCW (LHP∪Q) decides P ≈H

l Q in time O(|VP∪Q| + |EP∪Q| log |VP∪Q|).
Notice that we are interested in deciding whether P is PSNI, i.e., whether

P \ H ≈H
l P . Exploiting the above result together with Corollary 1 this can be

done by computing both D(P \ H) and D(P). From these two LH(P\H)∪P can
be determined in linear time and then LCW () can be exploited. However, from
Theorem 5 together with Theorem 4 we can decide whether P is PSNI by simply
working on D(P) as stated in the following theorem.

Theorem 6. Let P be a PEPA component. Let CompP be the largest equiv-
alence relation label-compatible with LHP . P is PSNI if and only if whenever

P ′ (h,r)−−−→ P ′′ with P ′ ∈ ds(P) and h ∈ H it holds that (P ′, P ′′) ∈ CompP .

This last result lowers the multiplicative constants hidden in the complex-
ity result of Theorem 5, since it avoids the computation and also the manage-
ment of D(P \ H). Moreover, it substantially reduces the effective complexity of
the computation for many non-PSNI processes. As a matter of fact during the
computation of CompP as soon as a split separates two vertices that are con-
nected through a high level transition we can stop the computation and return
P �∈ PSNI. This also suggests strategies for correcting insecure processes.
1 Given a graph G = (V, Lab,E,w) the use of LCW (G) in this paper corresponds to

a call to LCW (G,V × V) in [1].

Information Flow Security for Stochastic Processes 153

Fig. 1. LTS of the the model that does not satisfy PSNI.

5 Example

We consider a distributed system with n ≥ 2 servers where ordinary jobs arrive
according to a homogeneous Poisson process with intensity λL. Arrival and
departures of ordinary jobs can be observed by a malicious user. The system has
an internal job that alternates a phase of sleeping, whose duration is exponential
with mean λ−1

H , and a phase of working where it uses one of the n servers for an
exponentially distributed time with mean μ−1

H . Each of the ordinary customers
requires a service time which is exponentially distributed with mean μ−1

L . If the
internal job becomes active and none of the servers is free, then one random
ordinary job is preempted and the internal job is executed immediately. Given
the exponential distribution of the service time, it is not necessary to discuss the
resume policy for the preempted jobs. The waiting room has infinite capacity.
The goal is that of hiding the state of the system when the internal process is
being executed to the external, possibly malicious, observers. These know how
the system works (including the value of μL) and the number of available servers.

Notice that in this setting the stability condition is given by:

λL < (n − 1)μL + μL
μH

μL + μH

where the last factor is the probability that the internal process is not active.
Figure 1 shows the labelled transition system (LTS) of the PEPA specification
of our model as it has been described so far for n = 2. States n and nH denote
the system when it contains n ordinary jobs and the internal process is not
active (state n) and active (state nH), respectively. It is interesting to observe
that if the malicious user can only estimate the throughput of the ordinary
jobs, then the system could be considered safe since this must be λL if the
stability condition is met. Nevertheless, a smart observer could pay attention
to the transient behaviour of the system, and hence could reasonably estimate
the number of ordinary jobs in the system. For instance if n = 2, and in a time
interval we have k arrivals and h departures, such that k − h ≥ 2, then the next
departure of an ordinary job should occur in an expected time of (2μL)−1 if the
internal job is not active and μ−1

L , otherwise. In other words, the observer can

154 J. Hillston et al.

apply some statistical methods to infer the probability that the internal job is
active from the observation of the transient behaviour of the system.

Fig. 2. LTS of the model that satisfies PSNI.

Fig. 3. LTS of the model as seen by an external observer.

Formally, we can say that the model of Fig. 1 does not satisfy the conditions
of PSNI. In fact, the rate outgoing from state iH to (i − 1)H is different from
from that going from i to i − 1, where i > 1. One simple, but expensive, way to
obtain a secure system according to PSNI is that of devoting one server to the
execution of the internal process. The system of Fig. 1 can be modified to obtain
that shown in Fig. 2. With these modification, the observer cannot distinguish
the model of Fig. 2 from that of Fig. 3. However, in the general case of n servers,
the stability condition becomes λL < (n − 1)μL, and the expected response
time is higher than that of the original model. Finally, we notice that due to
the independence between the internal process behaviour and the ordinary job
service, in stability, the stationary probability π is:

π(i) =

{
(1 − λL/μL)μH/(λL + μH)(λL/μL)i if i = 0, 1, . . .

(1 − λL/μL)λH/(λL + μH)(λL/μL)i if i = 0H , 1H ,

Clearly, the stationary probability of the model of Fig. 3 is that of a M/M/1
queue, i.e., π∗(i∗) = (1 − λL/μL)(λL/μL)i and we can observe that π∗(i∗) =
π(i) + π(iH), as expected by lumping theory [11].

Information Flow Security for Stochastic Processes 155

6 Conclusion

In this paper we presented a persistent information flow security property for
stochastic processes specified as terms of a quantitative process algebra, namely
Performance Evaluation Process Algebra (PEPA). Our property, named Per-
sistent Stochastic Non-Interference (PSNI) is based on a bisimulation based
observation equivalence for the PEPA terms which induces a lumping on the
underlying Markov chain. The aim of our definition is that of protecting systems
from maliciuos attachers which are able to measure also the timing properties
of the system, e.g., the response time or the throughput.

In this paper we also deal with compositionality issues and prove that PSNI is
compositional with respect to low prefix, cooperation on low actions and hiding.

As a future work we plan to relax the definition of Non-Interference by intro-
ducing metrics that allow us to measure the security degree of a system in terms
of probabilities.

Acknowledgments. The work described in this paper has been partially supported
by the Università Ca’ Foscari Venezia - DAIS within the IRIDE program, by the
Università di Udine PRID ENCASE project, and by GNCS-INdAM project Metodi
Formali per la Verifica e la Sintesi di Sistemi Discreti e Ibridi.

References

1. Alzetta, G., Marin, A., Piazza, C., Rossi, S.: Lumping-based equivalences in marko-
vian automata: algorithms and applications to product-form analyses. Inf. Comput.
260, 99–125 (2018)

2. Bortz, A., Boneh, D.: Exposing private information by timing web applications. In:
Proceedings of the 16th International Conference on World Wide Web (WWW),
pp. 621–628. ACM (2007)

3. Brumley, D., Boneh, D.: Remote timing attacks are practical. Comput. Netw.
48(5), 701–716 (2005)

4. Crafa, S., Rossi, S.: Controlling information release in the pi-calculus. Inf. Comput.
205(8), 1235–1273 (2007)

5. Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: Proceedings of
the 7th ACM Conference on Computer and Communications Security (CCS), pp.
25–32. ACM (2000)

6. Focardi, R., Gorrieri, R.: Classification of security properties. In: Focardi, R., Gor-
rieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 331–396. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45608-2 6

7. Gao, H., Bodei, C., Degano, P., Riis Nielson, H.: A formal analysis for capturing
replay attacks in cryptographic protocols. In: Cervesato, I. (ed.) ASIAN 2007.
LNCS, vol. 4846, pp. 150–165. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-76929-3 15

8. Goguen, J.A. Meseguer, J.: Security policy and security models. In: Proceedings of
the 1982 Symposium on Security and Privacy, pp. 11–20. IEEE Computer Society
Press (1982)

9. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
Press, Cambridge (1996)

https://doi.org/10.1007/3-540-45608-2_6
https://doi.org/10.1007/978-3-540-76929-3_15
https://doi.org/10.1007/978-3-540-76929-3_15

156 J. Hillston et al.

10. Hillston, J., Marin, A., Piazza, C., Rossi, S.: Contextual lumpability. In: Proceed-
ings of Valuetools 2013 Conference, pp. 194–203. ACM Press (2013)

11. Kemeny, J.G., Snell, J.L.: Finite Markov Chains. D, Van Nostrand Company Inc.,
New York (1960)

12. Marin, A., Rossi, S.: On the relations between Markov chain lumpability and
reversibility. Acta Inf. 54(5), 447–485 (2017)

13. Marin, A., Rossi, S.: On the relations between lumpability and reversibility. In:
Proceedings of MASCOTS 2014, pp. 427–432 (2014)

14. McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: Proceedings of the IEEE Symposium on Security and
Privacy (SSP 1994), pp. 79–93. IEEE Computer Society Press (1994)

15. Ryan, P.Y.A., Schneider, S.: Process algebra and non-interference. J. Comput.
Secur. 9(1/2), 75–103 (2001)

16. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. Sel.
Areas Commun. 21(1), 5–19 (2003)

17. Smith, G., Volpano, D.M.: Secure information flow in a multi-threaded imperative
language. In: Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL 1998), pp. 355–364. ACM Press (1998)

18. Sutherland, D.: A model of information. In: Proceedings of the 9th National Com-
puter Security Conference, pp. 175–183 (1986)

19. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping.
In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2 4

https://doi.org/10.1007/978-3-642-12002-2_4

Towards Probabilistic Modeling
and Analysis of Real-Time Systems

Laura Carnevali1(B), Luca Santinelli2, and Giuseppe Lipari3

1 DINFO, University of Florence, Florence, Italy
laura.carnevali@unifi.it
2 ONERA, Toulouse, France
luca.santinelli@onera.fr

3 LIFL, University of Lille, Lille, France
giuseppe.lipari@univ-lille1.fr

Abstract. Schedulability analysis of software-intensive systems requires
solution techniques that go beyond worst-case assumptions, fostering a
cross-fertilization between the areas of real-time systems and perfor-
mance engineering. We address probabilistic schedulability analysis of
tasks in single-processor non-preemptive real-time systems. To this end,
we consider periodic tasks with offsets, scheduled by Fixed Priority (FP)
or Earliest Deadline First (EDF), and managed by the discarding policy
or the rejection policy to control deadline misses. Each task has a Worst
Case Execution Time (WCET) which can be a deterministic value or
a random variable, notably characterized by a non-Markovian distribu-
tion possibly with bounded support. A continuous-time stochastic model
of task-set is specified through Stochastic Time Petri Nets (STPNs)
and solved by regenerative transient analysis based on stochastic state
classes. The evaluation of performance measures on resource allocation
and missed deadlines enables the analysis of design choices and the esti-
mation of over-provisioned resources that are likely to be unused at run-
time. Feasibility and effectiveness of the approach are validated on ran-
domly generated task-sets for different processor utilizations.

Keywords: Real-time systems
Probabilistic Worst Case Execution Time
Probabilistic schedulability analysis
Continuous-time stochastic models

1 Introduction

In real-time systems, the increasing complexity of safety-critical requirements
and computing platforms cannot be handled through deterministic frameworks,
which cannot capture uncertainties resulting from varying execution conditions
and inherent system randomness. Indeed, probabilistic approaches are advocated
to go beyond worst-case assumptions and provide guaranteed probabilities for

c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 157–172, 2018.
https://doi.org/10.1007/978-3-030-02227-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_11&domain=pdf

158 L. Carnevali et al.

timing properties. To this end, different research directions have been pursued
in order to achieve probabilistic predictability of real-time components.

The real-time community has recently approached modeling and schedulabil-
ity analysis with probabilities. The modeling problem involves the definition of
the Worst-Case Execution Time (WCET) with random variables [3,8,9]. Then,
schedulability analyses make use of probabilistic models to develop probabilis-
tic feasibility criteria and to guarantee system timing behaviors [2,11,22–24].
Schedulability analysis with probabilities extends the results with confidence lev-
els (e.g., probabilities) as the degree of respecting the schedulability conditions.
In both modeling and analysis with probabilities, key elements for evaluating the
quality of the obtained results are the enhancements of the amount and quality
of information (thus the flexibility achieved capturing the natural variability that
real-time systems have), the degree of formalism (thus the guarantees provided),
and the implicit complexity due to probability composition.

The formal modeling and analysis community has developed formalisms
and tools enabling timing analysis of systems subject to safety-critical require-
ments. Notably, timeliness analysis of non-preemptive hard real-time systems
is addressed in [26], providing a mixed static/dynamic strategy for task accep-
tance and guarantee; the theory of timed automata is used to support model
checking and testing of non-preemptive real-time systems [1], robust specifica-
tion of real-time components [17], and timing analysis of systems running under
preemptive scheduling, introducing clocks that can be occasionally stopped and
resumed [12]; preemptive timed models with comparable expressivity are also
proposed in [13,19,25], addressing both FP and EDF scheduling. Few probabilis-
tic model-based approaches effectively address real-time systems by encompass-
ing timers with bounded and deterministic support. In particular, the solution
technique of [20] supports the analysis of models with multiple concurrent expo-
nential and deterministic timers; the method of stochastic state classes evaluates
models with multiple concurrent clocks having a non-Markovian distribution,
possibly over a bounded interval [14], supporting deadline miss analysis of real-
time systems scheduled by the non-preemptive FP policy, under the assumption
of a simplified task-set model [7]; the approach of [15] evaluates the expected
performance of a given schedule, notably enabling the synthesis of an optimal
scheduler by means of a dynamic programming algorithm [16].

In this paper, we extend preliminary results of [7] through a general periodic
task model with offsets and with deadlines possibly lower than periods, consid-
ering the FP and the EDF policies to schedule jobs, and the discarding and the
rejection policies to manage late jobs, also solving priority/deadline ties. Perfor-
mance measures are defined to evaluate deadline misses and to identify the time
intervals during which the processor is likely to be free at run-time. A task-set is
specified by Stochastic Time Petri Nets (STPNs) and analyzed by regenerative
transient analysis based on the method of stochastic state classes [14], support-
ing modeling and analysis of real-time systems with non-Markovian (possibly
bounded) execution times. An experimental evaluation is provided on randomly
generated task-sets for different processor utilizations. In light of the obtained

Towards Probabilistic Modeling and Analysis of Real-Time Systems 159

results, the approach appears to be a promising step towards bridging the gap
between real-time scheduling theories and probabilistic model-based approaches.

In the rest of the paper: we formulate the problem and we define performance
measures of interest (Sect. 2); we present the models under the different combi-
nations of policies, we recall the salient traits of the analysis, and we illustrate
how the performance measures are computed (Sect. 3); we present experimental
results (Sect. 4); and, we provide a final discussion (Sect. 5).

2 Problem Formulation

Task Model. We consider a set of periodic tasks Γ = {T1,. . . ,TN} running
concurrently on a single processor. A task Ti releases a job with period πi ∈ N

such that π > 0 and offset θi ∈ N, i.e., the n-th job Jn
i of Ti is released at time

ρn
i = θi +(n−1)πi, with n > 0. (see Fig. 1). Every job of Ti has a WCET φi [10],

which can either deterministic (i.e., a strict upper bound on the execution time,
that is never exceeded at run-time) or probabilistic (i.e., an upper bound on the
execution time, associated with a given probability to be exceeded):

– a deterministic WCET φi is defined by a Dirac Delta function fφi
centered

at φmin
i = φmax

i , i.e., fφi
(x) = δ(x − φmin

i);
– a probabilistic WCET φi is characterized by a non-Markovian PDF fφi

, possi-
bly with bounded support, i.e., fφi

(x) : [φmin
i , φmax

i] → [0, 1] with φmin
i ∈ Q

+,
φmax

i ∈ Q
+ ∪ {∞}, and φmin

i �= φmax
i , where

∫ y

φmin
i

fφi
(x) dx comprises the

probability that the WCET of the task does not exceed y.

Each job of Ti has an absolute deadline equal to the job release time plus
a relative deadline ωi ≤ πi, i.e., the absolute deadline of Jn

i is Ωn
i = ρn

i + ωi

(see Fig. 1). If Jn
i has not completed its execution by Ωn

i , it is termed late
job. Jobs do not use mutex semaphores to synchronize and cannot self-suspend
before completion, thus being considered functionally independent. Each task Ti

has also a static priority ψi ∈ N, with higher numbers corresponding to higher
priorities. Overall, a task Ti can be represented as a tuple 〈πi, θi, fφi

, ωi, ψi〉.
Scheduling Policies. We consider two non-preemptive scheduling policies
(i.e., a task cannot be interrupted and later resumed): Fixed-Priority (FP) and
Earliest Deadline First (EDF). The FP policy schedules for execution the task
with the highest static priority among tasks that are ready to run. In the par-
ticular case of Rate Monotonic (RM), static priorities are assigned through a

Fig. 1. Release times (↑) and absolute deadlines (↓) of jobs of a task Ti.

160 L. Carnevali et al.

monotonically decreasing function of task periods, i.e., the shorter the period of
a task is, the higher its static priority is. The EDF policy schedules to run the
task whose job has the shortest absolute deadline among jobs of ready tasks.

Late Jobs Policies. As usual in real-time systems design, two policies are
considered for late jobs, ensuring that no more than one job of each task is active
in the system at any time: the discarding policy and the rejection policy [21].

– The discarding policy discards a job Jn
i of task Ti as soon as it misses its

absolute deadline Ωn
i = θi + (n − 1)πi + ωi. Hence, when the subsequent

job Jn+1
i is released at time ρn+1

i = θi + nπi, job Jn
i is no more active

(ωi ≤ πi guarantees that Ωn
i ≤ ρn+1

i). In so doing, late jobs are prevented
from continuing execution, guaranteeing that the system gets back to the
initial condition at times Θ + n · Π, where n ∈ N, Θ = maxi|Ti∈Γ {θi} is the
maximum offset, and Π = lcmi|Ti∈Γ {πi} is the least common multiple of task
periods. According to this, based on the results of [18], it can be proved that
the task-set Γ is schedulable if no deadline is missed by time Θ+(1+1Θ) ·Π,
where 1Θ is equal to 0 if Θ = 0 and equal to 1 otherwise.

– The rejection policy rejects a new job Jn+1
i of task Ti immediately upon

release if the previous job Jn
i is still active (by construction, Jn

i has missed
its absolute deadline when Jn+1

i has been released). While increasing the
probability that a running job is eventually completed, this policy hinders
schedulability verification, as it increases the length of paths where a job is
being executed while multiple events occur (e.g., another job is released or
misses its deadline). More specifically, if tasks have WCET with unbounded
support, then no time bound exists by which the system can be analyzed and
proved to be schedulable. Vice versa, based on the results of [18], it can be
proved that, if WCETs have bounded support and the remaining execution
time of each task is the same at time instants Θ + n · Π and no deadline is
missed by time Θ + (1 + 1Θ) · Π, then the task-set Γ is schedulable.

Performance Measures. We evaluate the following transient rewards on pro-
cessor usage and deadline misses over the interval [0, I] with I := Θ+(1+1Θ)·Π:

– αi(t) := P{a job of task Ti is running at time t};
– βi(t) := P{a job of task Ti is running at time t and its deadline has passed};
– γk

i (t) := P{jobs of task Ti have missed at least k ∈ N deadlines by time t};
– A(t) := P{no job is running at time t} = 1 − ∑

i∈N|Ti∈Γ αi(t);

where αi(t), βi(t), and A(t) are instantaneous rewards, while αk
i (t) is cumulative.

These measures are evaluated at S equispaced time instants τ1, . . . , τS in [0, I],
i.e., τ1 = 0, τS = I, τi+1 − τi = τj+1 − τj ∀ i, j = 1, . . . , S − 1 with i �= j.
An interval [τi, τi+1] ⊆ [0, I] is free with probability ζ ∈ R if A(τi+1) ≥ ζ.
We compute the number Zζ of free intervals in [0, I] (consecutive free intervals
are merged into a single one) as well as the minimum ηmin

ζ , maximum ηmax
ζ ,

average η̄ζ , and standard deviation ηstd
ζ of the duration of free intervals.

Towards Probabilistic Modeling and Analysis of Real-Time Systems 161

3 Modeling and Analysis

3.1 Stochastic Time Petri Nets

Syntax. An STPN consists of a set P of places, a set T of transitions, and sets
A− ⊆ P × T , A+ ⊆ T × P , and A· ⊆ P × T of precondition, postcondition, and
inhibitor arcs, respectively. An initial marking m0 : P → N associates each place
with a number of tokens. A transition t has an earliest firing time EFT (t) ∈ Q

+,
a latest firing time LFT (t) ∈ Q

+∪{∞} such that EFT (t) ≤ LFT (t), and a static
Cumulative Distribution Function (CDF) Ft : [EFT (t), LFT (t)] → [0, 1]. A
transition t has also a weight C(t) ∈ R

+, a priority R(t) ∈ N, an enabling function
E(t) : NP → {true, false} associating each marking with a boolean value (e.g., a
transition may have an enabling function p1+ p2== 1 which evaluates to true
if the sum of tokens in places p1 and p2 is 1 and to false otherwise), and a flush
function L(t) ∈ P(P) being a subset of P . A place p is an input, an output, or
an inhibitor place for a transition t if 〈p, t〉 ∈ A−, 〈t, p〉 ∈ A+, or 〈p, t〉 ∈ A·,
respectively. A transition t is immediate (IMM) if EFT (t) = LFT (t) = 0 and
timed otherwise; a timed transition t is exponential (EXP) if Ft(x) = 1 − e−λx

with x ∈ [0,∞] and λ ∈ R
+, and general (GEN) otherwise; a GEN transition t

is deterministic (DET) if EFT (t) = LFT (t) and distributed otherwise; if t is
distributed, we assume that Ft is absolutely continuous over its support and
thus that there exists a PDF ft such that Ft(x) =

∫ x

0
ft(y)dy.

Semantics. The state of an STPN is a pair 〈m, τ〉, where m : P → N is a marking
and τ : T → R

+ associates each transition with a time-to-fire. A transition is
enabled in a state if each of its input places contains at least one token, none of its
inhibitor places contains any token, and its enabling function evaluates to true
(typically, the enabling function of a transition does not constrain the marking of
the input, output, and inhibitor places of such transition). An enabled transition
t is firable if its time-to-fire is zero and, if t is IMM or DET, if its priority is not
smaller than that of any other enabled IMM transition and of any other enabled
DET transition with zero time-to-fire.

When multiple transitions are firable, one of them is selected to fire with
probability P{t is selected} = C(t)/

∑
ti∈T f (s) C(ti), where T f (s) is the set of

firable transitions in state s. When t fires, s = 〈m, τ〉 is replaced by a new state
s′ = 〈m′, τ ′〉, where m′ is derived from m by: (i) removing a token from each
input place of t and assigning zero tokens to the places in L(t) ⊆ P , which
yields an intermediate marking mtmp, (ii) adding a token to each output place
of t. Transitions enabled both by mtmp and by m′ are said persistent, while
those enabled by m′ but not by mtmp or m are said newly-enabled; if t is still
enabled after its own firing, it is regarded as newly enabled [4]. The time-to-
fire of persistent transitions is reduced by the time elapsed in s, while that of
newly-enabled transitions takes a random value sampled according to their CDF.

162 L. Carnevali et al.

3.2 Model Under FP and RM Scheduling

The task-set model composes four submodels for each task, i.e., the release sub-
model, the job submodel, the deadline submodel, and the late jobs submodel.
Given a scheduling policy (i.e., FP or EDF), a late jobs policy (i.e., discarding
or rejection), and a reward to compute on deadline misses (i.e., cumulative or
instantaneous), the model of a task-set Γ is univocally derived from the speci-
fication of tasks, i.e., Ti = 〈πi, θi, fφi

, ωi, ψi〉 ∀ Ti ∈ Γ . As a running example,
Table 1 specifies three tasks T1, T2, and T3 with period equal to 5 ms, 10 ms, and
10 ms, respectively, deadline equal to 5 ms, 8 ms, and 10 ms, respectively, and
priority equal to 3, 1, and 2, respectively, clearly not assigned according to RM.
T3 has offset equal to 1 ms and a probabilistic WCET with expolynomial PDF
fφ3(x) = 0.0150694 · e−5x supported over [0.5, 1] ms, while T1 and T2 have null
offset and deterministic WCET equal to 2 ms and 1 ms, respectively.

Table 1. A task-set Γ made of three tasks (times are expressed in ms).

Task Period Offset WCET PDF Deadline Priority

T3 π3 = 10 θ3 = 1 fφ3(x) = 0.0150694 · e−5x ∀ x ∈ [0.5, 1] ω3 = 10 ψ3 = 2

T2 π2 = 10 θ2 = 0 fφ2(x) = δ(2) ω2 = 8 ψ2 = 1

T1 π1 = 5 θ1 = 0 fφ1(x) = δ(1) ω1 = 5 ψ1 = 3

The FP Model Under the Discarding Policy. Figure 2 shows the submodels
of T3 when task-set Γ runs under FP scheduling according to the discarding
policy, and the cumulative reward γk

i (t) is calculated ∀ Ti ∈ Γ for some k ∈ N.
The release submodel includes a DET transition representing the task offset
(t task3 offset, with value 1 equal to offset θ3 in Table 1), a DET transition
modeling job releases (t task3 release, with value 10 equal to period π3),
and two IMM transitions accounting for task acceptance (t task3 accept) and
rejection (t task3 reject), respectively. Under the discarding policy, a newly
released job is always accepted, since any previous job either has finished or has
been discarded due to a deadline miss. According to this, t task3 accept has an
enabling function that evaluates to true in any marking, while t task3 reject
has an enabling function that evaluates to false in any marking. The initial
marking of the submodel puts a token either in p task3 offset (if the task
had a null offset, the initial marking would have assigned one token to place
p task3 ready and one to place p task3 start).

The job submodel has an IMM transition modeling processor acquisition
(t task3 wait), preconditioned by a place modeling processor availability (cpu),
and a GEN transition accounting for job execution (t task3 job), associated
with the CDF of the task WCET (Ft task3 job(x) =

∫ x

0
fφ3(y)dy) and postcondi-

tioned by the place accounting for processor availability. As discussed later, the
larger the priority of a task Ti is, the larger the priority of transition t taski wait

Towards Probabilistic Modeling and Analysis of Real-Time Systems 163

is, guaranteeing that processor is acquired by the waiting job with the largest
priority. Synchronization of jobs of different tasks on shared resources could be
represented similarly, using a place to represent resource availability, and two
IMM transition to model semaphore acquisition and release, respectively.

The deadline submodel includes a DET transition modeling the expira-
tion of the deadline (t task3 deadline, with value 10 equal to deadline ω3),
and two IMM transitions counting the number of deadlines missed by task T3

(t task3 deadlineMissCount) or ignoring it (t task3 - deadlineMissIgnore),
respectively. Given that the cumulative reward γk

3 (t) = P{jobs of T3 have missed
at least k deadlines within time t} is computed, t task3 deadlineMissCount
has an enabling function evaluating to true if p task3 deadlineMissCount< k
and false otherwise, t task3 deadlineMissIgnore has an enabling function
evaluating to true if p task3 deadlineMissCount== k and false otherwise, and
t task3 job has a flush function emptying place p task3 deadline upon its fir-
ing. Conversely, the evaluation of the instantaneous reward β3(t) = P{a job of
task T3 is running at time t and its deadline has passed} is not considered under
the discarding policy, given that β3(t) would be equal to 0 for any time t ∈ R

+.
The late jobs submodel implements the discarding policy by means

of the IMM transitions t task3 waitingJobDiscard and t task3 running
JobDiscard, preconditioned by p task3 wait and p task3 job, respectively, so
as to discard a late job both when it is ready and when it is running, respectively.

Priorities are assigned to IMM and DET transitions so as to implement the
FP scheduling policy and to avoid non-determinism. Let a task-set consist of N
tasks having N different priority values, ordered by ascending priority, i.e., tasks
T1, . . . , TN have priority 1, . . . , N , respectively. In the model of task Ti (where i
is the task index in the above ordering), transitions have the following priorities:
if t taski job is a DET transition (i.e., the WCET of Ti is deterministic), then
it has priority 4N + i; transitions in the deadline submodel and in the late

Fig. 2. A fragment of the STPN of the task-set of Table 1, when tasks run under FP
scheduling and discarding policy, and the cumulative reward γk

i (t) is computed for each
task Ti for some k ∈ N. IMM, DET, and GEN transitions are represented by thin black
bars, thick gray bars, and thick black bars, respectively.

164 L. Carnevali et al.

jobs submodel have priority 3N + i; transitions in the release submodel have
priority 2N + i; t taski wait has priority i. For instance, in the model of Fig. 2:
transitions in the deadline and late jobs submodels have priority 11; transitions
in the release submodel have priority 8; and, t task3 wait has priority 2. Note
that t task1 wait and t task2 wait have priority 3 and 1, respectively, so that,
in case jobs of different tasks are waiting to acquire processor at the same time,
jobs of T2 are never overtaken by any job, jobs of T3 are overtaken by jobs of
T2, and jobs of T1 are overtaken by jobs of both T2 and T3.

In the specific case of RM scheduling, tasks T1, T2, and T3 would have priority
3, 2, and 1, respectively. According to this, in Fig. 2: transitions in the deadline
and late jobs submodels would have priority 10; transitions in the release sub-
model would have priority 7; and, t task3 wait would have priority 1.

The FP Model Under the Rejection Policy. If the rejection policy were
assumed, the late jobs submodel of Fig. 2 would be empty. Additionally, in
the release submodel, t task3 accept and t task3 reject would have an
enabling function that evaluates to true if p task3 wait+ p task3 job== 0
and if p task3 wait+ p task3 job== 1, respectively, and to false otherwise.
Moreover, if the instantaneous reward β3(t) were evaluated (instead of the
cumulative reward γk

3 (t) considered in Fig. 2), t task3 deadlineMissCount and
t task3 deadlineMissIgnore would have an enabling function that evaluates
to false in any marking, and t task3 job would have a flush function that emp-
ties places p task3 deadline and p task3 deadlineMiss.

Encompassing Tasks with Equal Priority. If H tasks belonging to a sub-
set H of the task-set Γ had the same priority, then they would be assigned
the processor in the order they become ready, and, in case they become ready
at the same time, those with shorter period would run first. To this end, the
job submodel of each task Ti ∈ H would be extended with a sequence of
H − 1 IMM transitions chained through their input places, i.e., t taski queueh
∀ h = 1, . . . , H−1. Transitions t taski queueh would be assigned priority N +i,
where N is the number of tasks in Γ and i ∈ N is the task index, assuming that
tasks are ordered by ascending priority and, in case of priority ties, descending
period. Transitions t taski queueh ∀ h = 1, . . . , H − 2 would have an enabling
function that evaluates to true if

∑
j �=i|Tj∈H p t taskj queue(h + 1) == 0, and

false otherwise, while transition t taski queue(H − 1) would have an enabling
function that evaluates to true if

∑
j �=i|Tj∈H p t taskj wait == 0, and to false

otherwise.
For instance, if the task-set of Table 1 were added two tasks T4

and T5 with priority 2 and with period 20 ms and 30 ms, respec-
tively, the job submodel of T3 would be added two IMM transitions
t task3 queue1 and t task3 queue2 with priority 9 and with enabling
function evaluating to true if p task4 queue2+ p task5 queue2== 0 and
p task4 wait+ p task5 wait== 0, respectively, and to false otherwise (see
Fig. 3). Moreover, transitions in the deadline and late jobs submodels of T3 would
have priority 19; transitions in the release submodel would have priority 14; and,
t task3 wait would have priority 4.

Towards Probabilistic Modeling and Analysis of Real-Time Systems 165

Fig. 3. A fragment of the STPN model of the task-set specified in Table 1 under the
assumption that two tasks T4 and T5 with priority 2 are added to the task-set.

3.3 Model Under EDF Scheduling

The EDF Model Under the Discarding Policy. Let tasks in T1, . . . , TN

be ordered by descending relative deadline and, in case of deadline ties, by
descending period. Let D = {D1, . . . , DM} be the set of relative deadlines
of tasks in descending order, with M ≤ N . The deadline submodel of task
Ti (where i is the task index according to the above ordering) includes a
sequence of M − i + 1 DET transitions, i.e., t taski deadlined ∀ d = i, . . . ,M ,
chained through their input places, with ft taski deadlined(x) = δ(Dd − Dd+1)
and DM+1 := 0 ms. For instance, in the task-set of Table 1, tasks T3, T2,
and T1 have deadline D1 = 10 ms, D2 = 8 ms, and D3 = 5 ms, respectively.
As shown in Fig. 4, the deadline submodel of T3 (which has index 1 accord-
ing to the above ordering) includes 3 DET transitions t task3 deadline1,
t task3 deadline2, and t task3 deadline3, such that ft task3 deadline1 = δ(2)
(given that D1 − D2 = 2 ms), ft task3 deadline2 = δ(3) (D2 − D3 = 3 ms),
ft task3 deadline3 = δ(5) (D3 − D4 = 5 ms). Hence, at run-time, during the
interval of duration 2 ms going from the firing of t task3 accept to that of
t task3 deadline1, the just released job of T3 has the largest relative deadline,
between 8 ms and 10 ms. Similarly, during the interval of duration 3 ms going
from the firing of t task3 deadline1 to that of t task3 deadline2, the job of
T3 has relative deadline between 5 ms and 8 ms, which may be lower/larger than
the relative deadline of a job of T2. Finally, during the interval of duration 5 ms
going from the firing of t task3 deadline2 to that of t task3 deadline3, the
job of T3 has relative deadline between 0 ms and 5 ms, which may be lower/larger
than the relative deadline of a job of T2 or T1.

The job submodel is extended to guarantee that processor is acquired by the
job with the largest relative deadline at run-time. To this end, the job submodel
of Ti includes M − i + 1 subsubmodels rh ∀ h = i, . . . ,M , each related with
transition t taski deadlineh in the deadline submodel and aimed at determin-
ing the position of Ti job in the queue of waiting jobs with relative deadline
between Dh and Dh+1. Let H be the maximum queue length, i.e., the cardi-
nality of the set Sh ⊂ Γ of tasks with relative deadline ≥ Dh. The rh subsub-
model consists of: H IMM transitions t taski queueh q ∀ q = 1, . . . , H; H − 1
IMM transitions t taski queueh (q − 1)Toq ∀ q = 2, . . . , H; and, an IMM tran-
sition t taski waith. Moreover, each transition t taski queueh q has an ena-
bling function that evaluates to true if p taski deadlineh == 1 &&∑

j|Tj∈Sh,u=q+1,...,H p taskj queueh u == H − q and false otherwise; each
transition t taski queueh q ∀ q = 2, . . . , H has a flush function that empties

166 L. Carnevali et al.

p taski queueh − 1 k ∀ k = 1, . . . , K, where K is the number of tasks with rela-
tive deadline ≥ Dh−1; each transition t taski queueh (q − 1)Toq ∀ q = 2, . . . , H
has an enabling function evaluating to true if

∑
j|Tj∈Sh

p taskj queueh q == 0;
and, if h < H, t taski waith has a flush function emptying p taski queueh + 1.

For instance, the release submodel of T3 shown in Fig. 4 includes three sub-
submodels r1, r2, and r3 (M = 3 is the number of distinct relative dead-
lines) representing the queue of waiting jobs with relative deadline between 8 ms
and 10 ms, between 5 ms and 8 ms, and between 0 ms and 5 ms, respectively.
The r1 subsubmodel has a single IMM transition t task3 queue1 1 given only
T3 job may have relative deadline larger than 8 ms. Conversely, the r2 subsub-
model includes two IMM transitions t task3 queue2 1 and t task3 queue2 2,
given that both T2 and T3 jobs may have relative deadline between 5 ms and
8 ms: the enabling function of t task3 queue2 1 and t task3 queue2 1To2 eval-
uates to true if p task3 deadline2 == 1 && p task2 queue2 2 == 1 and if
p task3 deadline2 == 1 && p task2 queue2 2 == 0, respectively, and false
otherwise. Hence, if T2 job is already in the queue when T3 job arrives,
t task3 queue2 1 is enabled and fires, queuing T3 job; conversely, if the
queue is empty, t task3 queue2 2 is enabled and fires, enabling transition
t task3 wait2 accounting for processor acquisition. In a similar manner, the
r3 subsubmodel includes three IMM transitions t task3 queue3 h ∀ h = 1, 2, 3.

Fig. 4. A fragment of the STPN of the task-set of Table 1 scheduled by EDF.

Towards Probabilistic Modeling and Analysis of Real-Time Systems 167

Priorities are assigned to IMM and DET transitions so as to implement the
EDF scheduling policy and to avoid non-determinism. In the model of task Ti

(where i is the task index in the above stated ordering), transitions have the
following priorities: if t taski job is a DET transition (i.e., the WCET of Ti is
deterministic), then it has priority 5N + i; transitions in the deadline submodel
and in the late jobs submodel have priority 4N + i; transitions in the release sub-
model have priority 3N + i; transitions t taski queueh q have priority 2N + i
∀ h = 1, . . . , M , ∀ q = 1, . . . , H; transitions t taski queueh (q − 1)Toq have pri-
ority N + i ∀ h = 1, . . . , M , ∀ q = 2, . . . , H; and, t taski waith ∀ h = 1, . . . ,M
has priority h. For instance, in Fig. 4, transitions in the deadline and release
submodels have priority 13 and 10, respectively; t task3 queue2 q has priority
7 ∀ q = 1, 2; t task3 queue2 1To2 has priority 4; t task3 wait2 has priority 2.

As in the FP model, under the discarding policy, t taski accept has an
enabling function that evaluates to true in any marking, while t taski reject
has an enabling function that evaluates to false in any marking. Moreover, to
evaluate the instantaneous reward βi(t), the flush function of t taski job emp-
ties any place in the deadline submodel.

The EDF Model Under the Rejection Policy. If the rejection policy were
assumed, the enabling function of t taski accept would evaluate to true if every
place in the job submodel is empty and false otherwise, while the enabling func-
tion of t taski reject would evaluate to true if some place in the job submodel
contains a token and false otherwise. Moreover, if the cumulative reward γk

i (t)
were evaluated for some k ∈ N, t taski job would have a flush function that
empties any place in the deadline submodel, except for p task3 deadlineMiss.

3.4 Analysis

The task-set model is analyzed by the regenerative transient analysis of [14]
with time limit T , obtaining transient marking probabilities at any time t ≤ T ,
i.e., pm(t) = P{M(t) = m} ∀ t ≤ T , ∀ m ∈ M, where M = {M(t), t ≥ 0} is the
underlying marking process and M the set of reachable markings. Probabilities
are aggregated to derive the performance measures of Sect. 2. Specifically, for
each task Ti ∈ Γ : αi(t) =

∑
m∈Mα

i
pm(t), βi(t) =

∑
m∈Mβ

i
pm(t), and γk

i (t) =
∑

m∈Mγ,k
i

pm(t) ∀ k ∈ N, where Mα
i , Mβ

i , and Mγ,k
i are the sets of markings

s.t. p taski job contains a token, p taski deadlineMiss contains a token, and
p taski deadlineMissCount contains at least k tokens, respectively.

4 Experimentation

Experimental Setup. To explore multiple load conditions and different task-
set implementations, we have developed a procedure for random generation of
task-sets from a given utilization U , i.e., Algorithm 1, which includes a proba-
bilistic extension of the UUnifast Algorithm presented in [6]. The utilization of
the i-th generated task Ti is derived as Ui = (U−∑i−1

n=1 Un)·U(0, 1) where U(0, 1)

168 L. Carnevali et al.

is the continuous uniform distribution over [0, 1] (Line 8 in Algorithm 1). A spec-
ification Ti = 〈πi, θi, fφi

, ωi, ψi〉 is obtained as follows (Lines 9–12): a period πi is
extracted from a discrete uniform distribution U{4, 6, 8, 10, 12, 16, 20}; a deter-
ministic WCET φi is derived such that fφi

= δ(�πi ·Ui�); an offset θi is extracted
from U{0, 1, . . . , πi −�πi ·Ui�}; a deadline Ωi is sampled from U{φi −θi, . . . , πi};
a priority ψi is derived from U{1, . . . , N}, where N is the number of tasks. Then,
according to a random choice, the deterministic WCET is maintained or used to
derive a probabilistic WCET fφi

(x) : [φmin
i , φmax

i] → [0, 1] from an exponential
distribution with rate λ sampled from U{0.5, 0.55, . . . , 1.5} (Lines 2–3).

Algorithm 1. Random Generation
Input: Ti = 〈πi, θi, fφi

, ωi, ψi〉 with deterministic WCET, i.e., fφi
(x) = δ(φmin

i);

Output: Ti = 〈πi, θi, fφi
, ωi, ψi〉 with probabilistic WCET, i.e., fφi

(x) : [φmin
i , φmax

i] → [0, 1];

1: procedure Execution Time Probabilistic Random Generation(Ti)
2: λ = U{0.5, 0.55, . . . , 1.5};
3: φmin

i = 	πi · Ui
; Φi = 	− log(0.2)/λ
; φmax
i = φmin

i + Φi; fφi
(x) = λe−λx/

∫ φmax
i

φmin
i

λe−λx;
4: end procedure

Input: Task-set utilization U , number of tasks N
Output: Task-set Γ = {〈πi, θi, fφi

, ωi, ψi〉 ∀ i = 1, . . . , N}
5: procedure Task Set Random Generation(U ,N)
6: sumU = 0; availableU = U ;
7: for i ∈ {1, . . . N} do
8: Ui = availableU · U(0, 1); sumU = sumU + Ui; availableU = U − sumU ;
9: πi = U{4, 6, 8, 10, 12, 16, 20};

10: φmin
i = 	πi · Ui
; fφi

= δ(φmin
i);

11: θi = U{0, 1, . . . , πi − 	πi · Ui
};
12: Ωi = U{φi − θi, . . . , πi};
13: if U(0, 1) > 0.5 then
14: Execution Time Probabilistic Random Generation(〈πi, θi, fφi

, ωi, ψi〉)
15: end if
16: end for
17: end procedure

Experimental Results. Ten task-sets made of five tasks have been generated
for each utilization U ∈ {0.5, 0.6, 0.7, 0.8} through Algorithm1 implemented with
the R tool. The corresponding STPN models have been automatically derived
through an implementation developed on top of the ORIS API [5]. Each model
has been analyzed for each scheduling policy (i.e., FP, RM, EDF), late jobs
policy (i.e., discarding, rejection), and deadline miss reward (i.e., instantaneous,
cumulative), computing the performance measures of Sect. 2 at 100 equidistant
time points over the interval [0, I]. The analysis has been performed on an Intel
Xeon 2.67 GHz with 32 GB RAM, requiring at most 180 s (10 son average).

For each combination of scheduling policy, late jobs policy, and uti-
lization, Table 2 shows the maximum probability that a task has missed
a deadline by the time limit I, computed over all task-sets Γ1, . . . , Γ10,
i.e., maxi|Ti∈{Γ1,...,Γ10} γ1

i (I). As expected, EDF outperforms RM which, in turn,
outperforms FP. The maximum deadline miss probability increases with the
utilization, except for the peak value obtained with utilization 0.7 under FP
scheduling, which is due to the fact that the task with the smallest period is the

Towards Probabilistic Modeling and Analysis of Real-Time Systems 169

one with the lowest priority, which never occurs in randomly generated task-sets
with utilization 0.6 and 0.8. Results also show that γ1

i (I) is insensitive to the
late jobs policy, which is mainly ascribed to the fact that the way a late job
is managed does not affect the probability that such job is late. In principle,
it may have an effect on the completion time of subsequent jobs, which is nev-
ertheless smoothed by non-preemptive scheduling in these experiments. Fig. 5
shows the performance measures for the task attaining the maximum deadline
miss probability, i.e., task T5 of a task-set with utilization 0.7. The remaining
tasks belonging to the task-set of T5 have larger priority than T5 and never miss a
deadline. Note that ramps and flats in γ1

5(t) correspond to peaks and zero-valued
intervals in β5(t), respectively.

Table 2. Maximum probability of deadline miss by the time limit I.

Utilization

0.5 0.6 0.7 0.8

FP–discarding/FP–rejection 0.0/0.0 0.00054/0.00054 0.85/0.85 0.32/0.32

RM–discarding/RM–rejection 0.0/0.0 0.0/0.0 0.0/0.0 0.29/0.29

EDF–discarding/EDF–rejection 0.0/0.0 0.0/0.0 0.0/0.0 0.0/0.0

 0

0.2

0.4

0.6

0.8

 1

 0 60 120 180 240
time

A(t)
α5(t)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 60 120 180 240
time

γ1
5(t)

β5(t)

(b)

Fig. 5. For the task with maximum deadline miss probability in Table 2, i.e., task T5

of a task-set with utilization 0.7: (a) the probability α5(t) that a job of T5 is running
at t, and the probability A(t) that no job in the task-set of T5 is running at t; (b) the
probability β5(t) that a job of T5 is running at t and its deadline has passed, and the
probability γ1

5(t) that a job of T5 has missed a deadline by t.

Figures. 6(a)–(c) plot the number Zζ of intervals in [0, I] that are free with
probability not lower than ζ = 0.9, their minimum duration ηmin

ζ , and their
maximum duration ηmax

ζ , respectively, for all task-set with a given utilization.
While ηmin

ζ is insensitive to the scheduling and the late jobs policy, with negligible
variations with respect to the utilization, ηmax

ζ is larger for EDF than for RM and

170 L. Carnevali et al.

Fig. 6. For all task-sets with a given utilization and for ζ = 0.9: (a) the number Zζ

of free intervals in [0, I]; and, (b) the minimum duration ηmin
ζ and (c) the maximum

duration ηmax
ζ of free intervals. For each task-set with a given utilization and for ζ = 0.9:

a segment representing point η̄ζ in the interval [η̄ζ −ηstd
ζ ; η̄ζ +ηstd

ζ] for (d) FP, (e) RM,

and (f) EDF scheduling, where η̄ζ and ηstd
ζ are the average and the standard deviation

of the duration of free intervals.

FP, with variations with respect to the late jobs policy only for FP scheduling
with utilization 0.7. Similarly, Zζ is always smaller for EDF than for RM and
FP (except for utilization 0.6), given that no deadline miss is observed for EDF,
hence no job is discarded and processor is kept executing with less idling periods.

Figures 6(d)–(f) show the interval [η̄ζ − ηstd
ζ ; η̄ζ + ηstd

ζ] for each task-set with
a given utilization and for ζ = 0.9, where η̄ζ and ηstd

ζ are the average and
the standard deviation of the duration of free intervals. Average values do not
exhibit significant differences with respect to the scheduling and the late jobs
policy, showing evident variability only for utilization, due to the different load.

5 Discussion

Experimental results show that the approach can be effectively applied to prob-
abilistic analysis of real-time task-sets, suggesting further developments. The
model expressivity could be improved encompassing task synchronization, which
requires the investigation of suitable policies to avoid priority inversion (e.g., the

Towards Probabilistic Modeling and Analysis of Real-Time Systems 171

priority ceiling protocol) and to prevent task discarding while being in the crit-
ical section. Both aspects could be accounted using modeling patterns similar
to those discussed for priority ties and EDF scheduling. The model could be
also extended to represent conditional execution of tasks, using random switches
among IMM transitions to account for the probability of different paths.

The approach could be used also to predict time intervals during which the
processor is likely to be unused due to tasks that may execute less than their
WCET. While requiring an effort to reduce the computational burden of stochas-
tic analysis, this could support online reclaiming of over-provisioned resources,
finding its major application in resource allocation for mixed-criticality systems.

References

1. Hessel, A., Pettersson, P.: A global algorithm for model-based test suite generation.
ENTCS 190(2), 47–59 (2007)

2. Abeni, L., Manica, N., Palopoli, L.: Efficient and robust probabilistic guarantees
for real-time tasks. J. Syst. Softw. 85(5), 1147–1156 (2012)

3. Altmeyer, S., Cucu-Grosjean, L., Davis, R.I.: Static probabilistic timing analysis
for real-time systems using random replacement caches. Real-Time Syst. 51(1),
77–123 (2015)

4. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. Softw. Eng. 17(3), 259–273 (1991)

5. Biagi, M., Carnevali, L., Paolieri, M., Vicario, E.: An introdution to the ORIS tool.
In: VALUETOOLS. ACM (2017)

6. Bini, E., Buttazzo, G.C.: Measuring the performance of schedulability tests. Real-
Time Syst. 30(1–2), 129–154 (2005)

7. Carnevali, L., Melani, A., Santinelli, L., Lipari, G.: Probabilistic deadline miss
analysis of real-time systems using regenerative transient analysis. In: RTNS (2014)

8. Cazorla, F.J., Vardanega, T., Quinones, E., Abella, J.: Upper-bounding program
execution time with extreme value theory. In: WCET (2013)

9. Cucu-Grosjean, L., et al.: Measurement-based probabilistic timing analysis for
multi-path programs. In: ECRTS. IEEE (2012)

10. Cucu-Grosjean, L.: Independence-a misunderstood property of and for probabilistic
real-time systems. In: Real-Time Systems: The Past, the Present and the Future,
pp. 29–37 (2013)

11. Dı́az, J.L., et al.: Stochastic analysis of periodic real-time systems. In: RTSS, pp.
289–300 (2002)

12. Cassez, F., Larsen, K.: The impressive power of stopwatches. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44618-4 12

13. Bucci, G., Fedeli, A., Sassoli, L., Vicario, E.: Timed state space analysis of real
time preemptive systems. IEEE Trans. Softw. Eng. 30(2), 97–111 (2004)

14. Horváth, A., Paolieri, M., Ridi, L., Vicario, E.: Transient analysis of non-Markovian
models using stochastic state classes. Perf. Eval. 69(7–8), 315–335 (2012)

15. Kempf, J.-F., Bozga, M., Maler, O.: Performance evaluation of schedulers in a
probabilistic setting. In: FORMATS, pp. 1–17 (2011)

16. Kempf, J.-F., Bozga, M., Maler, O.: As soon as probable: optimal scheduling under
stochastic uncertainty. In: TACAS, pp. 385–400 (2013)

https://doi.org/10.1007/3-540-44618-4_12

172 L. Carnevali et al.

17. Larsen, K.G., Legay, A., Traonouez, L.-M., Wasowski, A.: Robust specification of
real time components. In: FORMATS, pp. 129–144 (2011)

18. Leung, J.Y.-T., Merrill, M.L.: A note on preemptive scheduling of periodic, real-
time tasks. Inf. Process. Lett. 11(3), 115–118 (1980)

19. Lime, D., Roux, O.H.: Formal verification of real-time systems with preemptive
scheduling. Real-Time Syst. 41(2), 118–151 (2009)

20. Lindemann, C., Thümmler, A.: Transient analysis of deterministic and stochastic
Petri nets with concurrent deterministic transitions. Perform. Eval. 36–37(1–4),
35–54 (1999)

21. Manolache, S., Eles, P., Peng, Z.: Schedulability analysis of applications with
stochastic task execution times. ACM TECS 3(4), 706–735 (2004)

22. Maxim, D., Cucu-Grosjean, L.: Response time analysis for fixed-priority tasks with
multiple probabilistic parameters. In: RTSS, pp. 224–235 (2013)

23. Refaat, K.S., Hladik, P.-E.: Efficient stochastic analysis of real-time systems via
random sampling. In: ECRTS, pp. 175–183 (2010)

24. Santinelli, L., Meumeu, P., Maxim, D., Cucu-Grosjean, L.: A component-based
framework for modeling and analyzing probabilistic real-time systems. In: ETFA
2011 (2011)

25. Traonouez, L.-M., Lime, D., Roux, O.H.: Parametric model-checking of time Petri
nets with stopwatches using the state-class graph. In: FORMATS (2008)

26. Vicario, E.: Static analysis and dynamic steering of time dependent systems using
time Petri nets. IEEE Trans. Softw. Eng. 27(1), 728–748 (2001)

An Ontology Framework for Generating
Discrete-Event Stochastic Models

Ken Keefe(B), Brett Feddersen, Michael Rausch, Ronald Wright,
and William H. Sanders

Information Trust Institute, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA

{kjkeefe,bfeddrsn,mjrausc2,wright53,whs}@illinois.edu

Abstract. Discrete-event stochastic models are a widely used approach
for studying the behavior of systems that have not been implemented or
that it would be too costly to examine directly. Valuable analysis depends
on carefully constructed, well-founded models, which are very difficult
for humans to create. To address this problem, we propose a framework
for generating detailed, low-level models from high-level, block-diagram-
style graphical models. Our approach uses extensible, collaborative ontol-
ogy libraries that contain information about the types of components in
a system, the types of relationships that connect those components, and
fragments of low-level models that can be constructed together based
on the definition of a high-level system model. This framework has been
implemented and used in several case studies. We describe the frame-
work and how model generation works by examining its use to generate
complex ADversary VIew Security Evaluation (ADVISE) models.

Keywords: Ontology · Model generation · Executable models
Discrete-event simulation

1 Introduction

Modeling is a critical element of system design and analysis. Through a formal,
mathematical description of how the world works, a model provides a represen-
tation of a system that can be explored, evaluated, and tested in a scientific,
repeatable way. Discrete-event stochastic models provide especially useful views
of real-world system designs [1].

Creating accurate, complete stochastic models is very challenging. Typically,
human modelers must make decisions about what details and behaviors are
important to include in each system model they create. Tools that automatically
explore an existing system to construct a complete model can help with the
decision-making process, but function only on systems that have already been
implemented [2,3].

This paper’s contribution are (1) a formal description of an ontology frame-
work that automatically generates detailed, discrete-event, stochastic models
c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 173–189, 2018.
https://doi.org/10.1007/978-3-030-02227-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_12&domain=pdf

174 K. Keefe et al.

Fig. 1. An overview of the three parts of the ontology framework and how they work
together to automatically generate executable, stochastic models.

from high-level system design primitives and (2) an implementation of the frame-
work that generates ADVISE security models in the Möbius tool. Figure 1 shows
how the pieces of our framework interact. Fine-grained models are generated
from (1) an ontology of component and relationship types, as well as model
fragment generation rules, and (2) a simple, formal description of a system that
uses instances of the types from the ontology. We define the notion of a system
instance diagram (SID) to be a graphical model of component instances and
relationship instance arcs that connect component instances. From the ontol-
ogy and SID, we use a custom semantic reasoner to automatically construct the
low-level model.

We argue that our approach to model generation is inherently more useful,
less prone to error, and more complete than conventional approaches. Once an
ontology has been defined for certain classes of systems, it is relatively quick and
easy to define a SID and generate rich and complex stochastic models. We can
now create in hours a low-level model that previously would have taken weeks of
painstaking effort. By separating the ontology and SID, ontologies can be refined
over time by a community of experts and reused over many system studies.
Instead of relying on a human modeler’s diligence to be sure that all aspects of
a system have been thoroughly and correctly modeled at a detailed level, one
can count on the generation process to apply every stochastic model construction
rule consistently and accurately. Further, making significant changes to a system
design or comparing multiple designs is much faster at the SID level than it is
at the traditional detailed stochastic model level.

Our ontology framework has been implemented and tested on a cybersecurity
modeling formalism called ADversary VIew Security Evaluation (ADVISE) [4].
The generated ADVISE models are used by the Möbius tool [5] to evaluate
custom quantitative metrics through discrete-event simulation [6].

This paper is organized as follows. Section 2 describes our ontology frame-
work. Section 3 explains how the ontology framework is used to create ADVISE
models. In Sect. 4, we provide an overview of two case studies that use our imple-
mentation of the ontology framework. In Sect. 5, we describe prior work that has
similarities to our work. We conclude in Sect. 6.

An Ontology Framework for Generating Discrete-Event Stochastic Models 175

2 Ontology Framework

An ontology is a formal specification of types, attributes of instances of those
types, and relationships that can connect instances of those types [7]. The types,
attributes, and relationships all have semantic interpretations that the ontol-
ogy seeks to organize and formalize. A knowledge base is associated with an
ontology and contains instances of the types from the ontology, values for the
attributes associated with each instance’s type, and relationships that connect
two instances.

We define a Möbius ontology to contain a set of component, relationship, and
model fragment classes. Each component class may have one or more attributes
that can be any single basic data type. Relationship classes in a Möbius ontol-
ogy define domain and range component class restrictions and provide a type
for instances of semantic relationships that connect two component instances.
Component and relationship classes have a disjoint inheritance structure that
indicates that one type is a more specialized type of another. Model fragment
classes are formal definitions of a piece of a detailed, low-level model. A model
fragment is tied to a component class by the special dependent relationship.

The knowledge base in our framework is called a system instance diagram
(SID). When a component class is instantiated in the SID, each model fragment
class that is a dependent of the instance’s class is also instantiated. A model
fragment class includes instructions for connecting the instances to other model
fragment instances.

2.1 Formal Definition

Definitions 1 and 2 provide a formal definition of a Möbius ontology and a SID.
A detailed discussion of these definitions is provided in subsequent sections.

Definition 1. A Möbius ontology can be defined as the following tuple:

<C,A,R,AF, SF, S, U, Type, Inherits, Attrib,Domain,Range,Dependents>,

where

• C is the set of component classes.
• A is the set of attributes.
• R is the set of relationship classes.
• AF is the set of action model fragment classes.
• SF is the set of state variable model fragment classes.
• S ⊆ R is the set of relationship classes that are symmetric.
• U ⊆ (AF ∪ SF) is the set that contains all universal fragment classes.
• Type: A ∪ SF → T provides a type for every attribute or state variable model

fragment. T is defined in Sect. 3.1.1 of [8].
• Inherits: C ∪ R → P(C) ∪ P(R) identifies the set of classes from which the

given component class or relationship class inherits.
• Attrib: C → P(A) identifies the set of attributes of a component class.

176 K. Keefe et al.

• Domain: R → P(C) identifies the set of source types for the relationship.
• Range: R → P(C) identifies the set of target types for the relationship.
• Dependents: C → P(AF ∪ SF) identifies the set of model fragments that are
dependents of the given component type.

Definition 2. A system instance diagram (SID) can be defined as the following
tuple:

<o,CI,RI,AFI, SFI,Class, V alue,Arc,Dependents>,

where

• o is the SID’s ontology.
• CI is the set of component instances.
• RI is the set of relationship instances.
• AFI is the set of action model fragment instances.
• SFI is the set of state variable model fragment instances.
• FI is the set of model fragment instances (AFI ∪ SFI).
• Class: CI ∪ RI ∪ AFI ∪ SFI → C ∈ o ∪ R ∈ o ∪ AF ∈ o ∪ SF ∈ o provides
the class of the instance.

• Value: CI × A → V provides the value of a component instance’s attribute,
and V is defined such that

∀ci ∈ CI,∀a ∈ Attrib(Class(ci)),∀v ∈ V,

V alue(ci, a) = v ⇒ type(v) = Type(a)

where type and V are defined in Sect. III.A.2 of [8].
• Arc: RI → CI × CI provides the source and target component instances of
a relationship instance. Arcs(ri) and Arct(ri) denote the source and target
component instance of the given relationship instance, respectively.

• DependentsI: CI → P(FI) provides the set of model fragment instances that
are dependents of the given component instance.

2.2 Components, Attributes, and Relationships

Our ontology framework defines the notions of components, attributes, and rela-
tionships. Components are atomic pieces of a system, either physical or concep-
tual. For example, a component can be a network, a firewall, a human user, a
password policy, or a collection of data in a database.

A relationship is a semantic connection between two component instances.
Class constraints are applied to the domain and range of the relationship in order
to limit instance types that are allowable as the source or target, respectively.
For example, a connectedTo relationship could connect a firewall component to
a network component and capture the information that the source component
has an Ethernet connection to the target component. Ontology relationships are
directed unless the relationship is in S, indicating that it is symmetric.

An Ontology Framework for Generating Discrete-Event Stochastic Models 177

An attribute is a semantic reference between a component instance and a
basic data type. Basic data types are like those described in Sect. III.A.1 of [8].
They are used to describe qualities of a component, such as the operational state
of an IDS service on a network component, or whether malware has infected a
network component.

2.3 Class Inheritance

In our ontology framework, classes may inherit features from other classes. Defi-
nition 3 defines class inheritance and its consequences. Inheritance plays a pivotal
role in the definition of components, relationships, and attributes. Components
and relationships have directed, acyclical hierarchies that define the inheritance
structure among these classes. The inheritance structures for components and
relationships are necessarily disjoint.

Definition 3. A child class inherits from its parent class(es) and is a spe-
cialized subtype of its parent(s). The following properties hold.

1. ∀a, b ∈ C, b ∈ Inherits(a) ⇒ Attrib(b) ⊆ Attrib(a)
2. ∀a, b ∈ C,∀r ∈ R, b ∈ Inherits(a) ∧ b ∈ Domain(r) ⇒ a ∈ Domain(r)
3. ∀a, b ∈ C,∀r ∈ R, b ∈ Inherits(a) ∧ b ∈ Range(r) ⇒ a ∈ Range(r)
4. ∀q, r ∈ R,∀a ∈ C, r ∈ Inherits(q) ∧ b ∈ Domain(r) ⇒ a ∈ Domain(q)
5. ∀q, r ∈ R,∀a ∈ C, r ∈ Inherits(q) ∧ b ∈ Range(r) ⇒ a ∈ Range(q)

Fig. 2. Example component (a) and relationship (b) class inheritance hierarchies.

When a child component class inherits from a parent component class, every
attribute ascribed to the parent will also be ascribed to the child (Definition 3.1).
For example, in Fig. 2a, Human could have the attribute Name, and User could
have the attribute Username. Given the rules of inheritance, an instance of type
User would have two attributes, Name and Username.

A relationship that defines its range class constraints as the set {User} really
has a range class constraints set of {User, Administrator} (Definition 3.2–3.3).
Relationship classes can also have an inheritance structure. For example, in
Fig. 2b, two relationship classes are defined in the example ontology; both have
domain and range class constraints sets that are equal to {Employee}. worksWith

178 K. Keefe et al.

means that two people work for the same employer, while supervises means
that the source person oversees the work of the target person. It makes sense
for inheritance to be defined between these two relationship classes, because if a
person supervises another person at work, then both people work for the same
employer (Definition 3.4–3.5).

2.4 Model Fragments

The primary objective of our framework is to automatically create detailed
low-level models from high-level system instance diagrams (SIDs). Components,
attributes, and relationships are the building blocks of the high-level model, and
model fragments describe how the lower-level models will be constructed. The
connection between the two levels is done through an explicit mapping that uses
the Dependents (Definition 1) function.

Model fragments are classified into two types: state variable fragments and
action fragments. State variable fragments describe variables that store a part of
the low-level model’s state, and action fragments describe low-level model actions
that transition the model’s state. Fragments in the ontology are not themselves
state variables and actions, but rather are information about how to create sets
of state variables and actions that will be included in the generated low-level
model. More precisely, model fragments are classes in the ontology, and the
state variables and actions that they create are instances in the knowledge base
(SID). Unlike component and relationship instances, model fragment instances
do not appear visually in a SID.

Universal Fragments. If a model fragment is in U , then it is considered to
be an element that should exist in every low-level model, regardless of the com-
position of components and relationship instances. Since these model fragment
instances are always in the SID, they are not dependent on any component
instance. For example, it may be desirable for a stochastic model dealing with
real-world scheduling of people to track the day of the week. To enable that, one
could add a DayOfTheWeek universal state variable fragment with the type char.
Regardless of how many users and which jobs are added to the SID, there will
always be a single DayOfTheWeek state variable to track the day of the week in
the generated stochastic model.

Variable Macros and Path Expressions. A variable macro describes an attach-
ment between an action model fragment and a state variable model fragment.
Our generator uses these definitions to connect together the generated model
fragment instances. Depending on the semantics of the low-level model formal-
ism, these variable macros can impact the model in a variety of ways. For exam-
ple, in the ADVISE formalism, variable macros cause AEG arcs to be defined
between state variable elements and attack steps. A variable macro includes a
SID path expression tree to identify which state variables should be included in
the variable macro’s set.

An Ontology Framework for Generating Discrete-Event Stochastic Models 179

Path expressions are used to explore the SID and collect a set of model
fragment instances. Path expressions are a hierarchy of path constraints, which
are often parameterized with a class constraint that is used to filter path steps
according to the component’s, relationship’s, or model fragment’s class. There
are several kinds of individual path constraint nodes:

• Dependent(t) explores the dependent model fragment instances with class t
of the current component instance.

• Componentsource(t) explores the source component with the class t of the
current relationship instance.

• Componenttarget(t) explores the target component with the class t of the
current relationship instance.

• Relationshipsource(t) explores the relationship instances with class t that
have the current component instance as the source component.

• Relationshiptarget(t) explores the relationship instances with class t that have
the current component instance as the target component.

• And evaluates all child path constraints and returns the intersection.
• Or evaluates all child path constraints and returns the union.
• Universal(t) returns the universal model fragments with class t.

Algorithm 1 defines how variable macro path expression trees are evaluated.
The cases that explore Componenttarget(t) and Relationshiptarget(t) are omit-
ted here to save space, but they are very similar to their source counterparts.

2.5 Model Generation Algorithm

The low-level stochastic model is generated in two phases. The first phase hap-
pens synchronously as components are added to or removed from the system
instance diagram. Any state variable or action model fragments that are depen-
dents of a component are created and added when a component is added to the
SID. Likewise, the model fragment instances are removed from the SID when
the component instance on which they depend is removed.

The second phase is performed once the SID has been defined. Algorithm
2 describes the execution of this phase. Every model fragment instance in the
SID (AFI ∪ SFI) is looped through. The component instance ci is stored for
each model fragment instance fi. For each variable macro associated with the
model fragment instance, the following two steps are performed: (1) find the set
of variables by exploring the path expression defined in the variable macro by
using the component instance as the starting point, (2) make formalism-specific
changes to the model. Once Algorithm 2 has been executed, a well-formed low-
level model has been generated.

Complexity. The factors that impact the time and space complexity of the first
phase of the model generation algorithm include the number of model fragments
that are dependents of each component class (dc) in the ontology and the number
of component instances of each component class (ic) in the SID, giving a time

180 K. Keefe et al.

Algorithm 1. Path Expression Evaluation
1: Given path expression tree pet, and component or relationship instance cur
2: function FSV(pet, cur)
3: ret ← ∅
4: pc ← rootOf(pet)
5: switch pc do
6: case Dependent(t)
7: for all d ∈ Dependents(cur) do
8: if Class(d) = t then
9: ret ← ret ∪ {d}

10: case Componentsource(t)
11: if Class(Arcs(cur)) = t then
12: ret ← ret ∪ FSV(childOf(pc, 0), Arcs(cur))

13: case Relationshipsource(t)
14: for all r ∈ RI do
15: if Arcs(r) = cur & Class(r) = t then
16: ret ← ret ∪ FSV(childOf(pc, 0), r)

17: case And
18: ret ← U

19: for i ← 0 . . . n do
20: ret ← ret ∩ FSV(childOf(pc, i), cur)

21: case Or
22: for i ← 0 . . . n do
23: ret ← ret ∪ FSV(childOf(pc, i), cur)

24: case Universal(t)
25: for all u ∈ U do
26: if Class(u) = t then
27: ret ← ret ∪ {u}
28: return ret

Algorithm 2. Model Generation Algorithm
1: for all fi ∈ AFI ∪ SFI do
2: ci ← c ∈ CI | fi ∈ Dependents(c)
3: for all vm ∈ V ariableMacros(fi) do
4: vs ← FSV (PathExp(vm), ci)
5: MakeFormalismSpecificChanges(vm, vs, fi)

and space complexity of O(dcic). However, phase 1 can be done synchronously
during the creation of a SID, so, in practice, it is O(1).

For the second phase of the generation algorithm, the time complexity is
O(vp), where v is the number of variable macros that must be evaluated across
the entire SID and p is the maximum number of nodes in the variable macros’
path expressions. The space complexity is entirely dependent on the formalism-
specific MakeFormalismSpecificChanges() function. It is typical to expect
a formalism to add a single arc for each variable macro replacement, so the
complexity would be O(v).

An Ontology Framework for Generating Discrete-Event Stochastic Models 181

Scalability. To describe the scalability of our approach in more concrete terms,
we will mention an example ontology and system that are pending publication
and are the largest (that we know of) to date. The system domain is power distri-
bution systems. The ontology contains about 100 component types, 20 relation-
ship types, and approximately 200 model fragment classes. The system instance
diagram contains about 50 component instances and 500 relationship instances.
On a modern laptop, this system takes approximately 15 min to generate the
500 state variables, 200 actions (with 2,000 variable macro resolutions), and
1,400 arcs.

3 Generating ADVISE Security Models

To test the concepts described in Sect. 2, we have implemented our ontology
framework and are able to generate Möbius ADVISE atomic models from SIDs.
Möbius provides an interface through which multiple modeling formalisms can be
used to define executable, discrete-event systems that can be combined together
and evaluated by an array of solution methods implemented in the Möbius tool.

In the remainder of Sect. 3, we will give a brief overview of the ADVISE
formalism, discuss the extensions to the generator that were implemented to
accommodate ADVISE model generation, and go through a detailed example
that should illuminate the formal definitions given in Sect. 2.

3.1 The ADVISE Atomic Model Formalism

ADversary VIew Security Evaluation (ADVISE) [4,9–11] is a security modeling
formalism that models a system from the perspective of an adversary attempting
to compromise the system and achieve custom-defined goals. An ADVISE model
consists of an executable version of an attack tree called the attack execution
graph (AEG) and an adversary profile that describes the initial assets of the
adversary.

Fig. 3. An example AEG fragment.

Figure 3 shows a small example fragment of an attack execution graph. The
yellow rectangles are the attack steps that change the model state, and every

182 K. Keefe et al.

other shape is a state variable of some kind. Arcs connecting state variables to
or from attack steps indicate that the state variable is used in the execution of
the attack step.

Several case studies have used ADVISE to model potential attack scenar-
ios against critical infrastructure systems [11–13]. However, these models were
created through extensive manual effort of human modelers.

3.2 Implementing the ADVISE Generator Extensions

Access, goals, knowledge, skills, and system state variables (SSV) are all state
variable elements of an ADVISE model. We defined five model fragment classes
to serve as base classes for any ADVISE state variable model fragments defined
in the ontology.

When formalism-specific extensions are added to the Möbius ontology frame-
work, model fragments that store the component instance attribute values must
be defined. In the ADVISE extension, component instance attributes are gener-
ated as system state variables, and the type of the attribute matches the type
of the generated system state variable.

ADVISE models have only one kind of Möbius action, the attack step-
outcome pair. These pairs are grouped together by the attack step to form
Möbius groups (see [14]). The action fragments in the ontology framework work
in a similar way, so that many actions can be joined together in a group. When a
human ontology developer defines an attack step and its outcomes, he or she does
so by creating child classes of the base attack step-outcome class. The same code
expressions necessary to define attack steps and outcomes in ADVISE atomic
models are also required in the definition of the attack step-outcome model frag-
ment classes.

3.3 The Two Nets Example

We now present an example ontology, system instance diagram, and generated
ADVISE model to illuminate the discussion presented so far. Consider a very
simple ontology that is used to describe networks and the firewalls that bridge
them. C, A, and R are defined:

• Firewall: Component that bridges traffic between connected networks.
• Network: Component that has a collection of hosts connected to it.

• isIDSOperational: Attribute that stores the operational state of a net-
work’s intrusion detection service.

• connectedTo: Indicates that a firewall is connected to a network.
• Domain: {Firewall}. Range: {Network}.

This ontology can define any organization of networks and firewalls. Figure 4
shows the Two Nets example’s SID. It has two instances of Network (Corporate
LAN and SCADA LAN) and one instance of Firewall (Corp SCADA FW).

An Ontology Framework for Generating Discrete-Event Stochastic Models 183

Fig. 4. The system instance diagram for the Two Nets example.

In order to generate an ADVISE model, ADVISE model fragment classes
must be defined in the ontology. The model fragment classes used in the Two Nets
example are outlined below. Fragments below a component class are dependents
of the component class.

• Firewall
– Defeat Firewall Attack Step: This attack step defeats a firewall by

using a brute-force approach. Upon successful completion, access is gained
to any network connected to the firewall.

• Network
– IDS Operational SSV: This SSV stores whether the network’s IDS is

currently operational. This model fragment’s value is inferred from the
isIDSOperational component attribute value.

– Install Malware on Network Attack Step: This attack step installs
malware on the network (on one of the network’s hosts).

– Malware Installed SSV: This SSV stores whether malware is installed.
– Network Access: This access stores whether the adversary has some

kind of access to the network.
• Universal

– Brute Force Skill: This skill represents the ability of an adversary to
effectively perform brute-force attacks.

In Fig. 5, the system instance diagram is presented in the left column. The
center column shows the state variable model fragment instances that are gen-
erated for each of the associated component instances. The center column also
shows the universal state variable model fragment instance that is generated for
all ADVISE models that use this ontology. The right column shows the action
model fragment instances that are generated for each component instance. The
center and right columns combined show what the attack execution graph gener-
ation looks like after phase one of the generation process. In phase two, variable
macro path expressions are evaluated, and AEG arcs are created. Precondition
elements will create AEG arcs that target attack steps. Affected elements will
create AEG arcs that are sourced from attack steps.

The outline below shows the structure of the variable macro path expression
for the Defeat Firewall Attack Step. The Install Malware on Network Attack Step
is omitted here because of space limitations. However, the Defeat Firewall Attack
Step definition is complex enough to demonstrate the relevant concepts.

184 K. Keefe et al.

Fig. 5. The generated state variable and action model fragment instances.

Fig. 6. The generated ADVISE attack execution graph for the Two Nets example.

• Defeat Firewall Attack Step
– bfs: Precondition element.

• Universal(BruteForceSkill)
– netAccesses: Precondition (and affected) element.

* Relationshipsource(connectedTo)
* Component(Network)

* Dependent(Network Access)

The path for finding the universal brute-force skill is trivial, but the path
of netAccesses, which finds all Network Access state variables of components
connected to the firewall, requires some explanation. Using the orange stars in
Fig. 5, we will step through the macro path exploration for the netAccesses vari-
able macros. The origin of every path is always the component instance of which
the macro’s parent is a dependent. In this case, the macro’s parent is the Defeat
Corp SCADA Firewall attack step instance (star marked “1”). The component

An Ontology Framework for Generating Discrete-Event Stochastic Models 185

instance on which the attack step is dependent is shown as a star marked “2”
and is the origin of the path constraints. The first step in the path expression
is to find outgoing relationship instances of the connectedTo type, which are
shown with stars marked “3.” The next step in the path expression looks for
components targeted by the discovered arcs with a type of Network. Those com-
ponents are shown as stars marked “4.” The final step in the path expression will
look at the dependents of the “4” star components that have a class of Network
Access. These network access instances are shown as stars marked “5.” The end
result is that AEG arcs will be drawn to and from the Defeat Corp SCADA Fire-
wall attack step and will connect every Network Access element of a network
component that is attached to the firewall component that this attack step is
attacking.

Figure 6 shows the final generated attack execution graph that is created by
the example ontology and the system instance diagram shown in Fig. 4. The
central attack step and the arcs that connect it to the graph were created by the
variable macros described earlier.

4 Case Studies

The Möbius ontology framework and its implementation have been used by
dozens of test users in order to evaluate and refine the overall approach. Two
in-depth case studies have been presented at peer-reviewed conferences.

In [15], the authors studied several designs of intrusion detection system
deployments on a multi-tiered advanced metering infrastructure in power distri-
bution systems. They calculated metrics that provided the expected cost to the
system owner and the probability that the adversary would be detected. In [16],
the authors used the Möbius ontology framework and ADVISE to construct a set
of physical attack models for a railway station. From these models, the authors
determined the likely sequence of attack steps for each class of attacker and
identified which kinds of devices should receive additional monitoring resources
to maximize the mitigation of attacks.

5 Related Work

We have not found work that attempts to automatically generate detailed,
discrete-event stochastic models from an ontological definition of system com-
ponents and a high-level specification of a general system based on those com-
ponents. However, we have found many efforts that relate to our approach.

In [17], the authors automatically translate feature-based system models to
PRISM models for the purpose of probabilistic model checking. In [18], soft-
ware code models are translated to Petri-net-based performance models. If one
considers the detailed model generation of our approach as a translation from a
source model to a target discrete-event model, our source model is comprised of a
high-level system description and a reusable, auditable, and extensible ontology
of translation rules. We believe that this design difference is critical.

186 K. Keefe et al.

[19] generates attack trees from a π-calculus process language by using static
analysis. [20] generates attack trees from a general system model by using a rigid
set of rules that expand attack tree nodes based on locations, assets, actors, and
processes. These approaches have some similarities in their generation parts, but
their generated products are significantly different. They generate attack trees
for static analysis, whereas we are generating executable, discrete-event, state-
based models that can be evaluated through simulation or analytical solution.
Furthermore, their input rules are not extensible.

In [21], the authors discuss an approach for generating code from high-level
Petri nets and how it can be extended to generate code from general UML models
with additional semantic information. That second part has a clear connection
to our approach of coupling a high-level UML-like model with formal semantic
definitions in the ontology to construct executable code. However, we generate
executable graphical models as an end result, and we take a more formal app-
roach in defining the ontology and system model, thereby enabling a much larger
class of potential input models than the one on which [21] focuses.

[22] generates an executable, generalized stochastic Petri net model from
a specialized class of UML models, sequence diagrams, and statecharts. [23]
generates an OSAN from another restricted class of UML models with Petri net
annotations. We believe that an ontology in the Möbius ontology framework can
be defined that would generate executable stochastic models equivalent to those
described by those authors; it might be an interesting topic for future work.

[24] and [25] construct ontologies that describe discrete-event simulation and
use them to generate executable code to evaluate discrete-event models encoded
in a knowledge base of the ontology. This approach has several connections to
our work, but does not abstract the complexity of discrete-event models of real
systems by allowing the user to think about and define the system at the level
of custom component building blocks. In essence, the authors of [24] and [25]
replicate the existing Möbius framework, but using an ontology to describe the
atomic models instead of the variety of formalisms that Möbius provides.

There is a large body of work in the area of model-driven software engineer-
ing [26], including many well-known frameworks, such as the Eclipse Modeling
Framework (EMF) [27]. These efforts often use formal meta-models to describe
the architecture of a software application, and then use the meta-models to auto-
matically generate significant portions of the source code necessary to define the
application. The software meta-models can be thought of as a kind of knowledge
base on a source code ontology. While it is clear that the Möbius ontology frame-
work addresses a very different kind of problem, we pulled many lessons from
the model-driven software engineering work as we developed our framework.

6 Conclusion

Building formal, mathematical models of real-world systems is a challenging
endeavor for any human modeler. A vast array of design details must be encoded
in complex modeling formalism primitives, often with many parameters on each

An Ontology Framework for Generating Discrete-Event Stochastic Models 187

primitive. Once complete, these low-level models are difficult for others to inter-
pret and difficult for the human modeler to alter or vary to allow for experimental
analysis of multiple designs. The development process of low-level models is a
subjective effort, and different human modelers will produce different models.

To address those issues, we have developed an ontology framework that
enables the formalization of the model development process in the form of an
ontology. The low-level model generator uses an ontology and a SID to auto-
matically construct the low-level model. Instead of working with low-level, com-
plex, discrete-event modeling primitives, users create high-level, intuitive block
diagram primitives by using familiar component and relationship notions. The
ontologies developed in our framework can be shared, audited, improved over
time, and reused. The task of constructing an effective ontology is still as chal-
lenging as that of creating low-level models in the original approach. However,
the process can be collaborative, and once it is done, the ontology can be used
for many system models and by many different people. Ontologies can be con-
nected together through the use of the inheritance relationship among types in
order to reuse previous ontology developments and to add greater detail.

We have implemented our framework in the Möbius tool and extended the
framework’s generator to construct Möbius ADVISE models in order to eval-
uate the efficacy of our approach. From simple system instance diagrams, rich
and thorough attack execution graphs are generated. The implementation and
underlying concepts of the Möbius ontology framework have been evaluated in
two peer-reviewed case studies [15,16] and shown to be useful and effective for
defining complex models and easily evaluating multiple design alternatives.

References

1. Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: from depend-
ability to security. IEEE Trans. Dependable Secure Comput. 1(1), 48–65 (2004)

2. Jajodia, S., Noel, S., O’Berry, B.: Topological analysis of network attack vulnera-
bility. In: Kumar, V., Srivastava, J., Lazarevic, A. (eds.) Managing Cyber Threats:
Issues, Approaches, and Challenges, pp. 247–266. Springer, Boston (2005). https://
doi.org/10.1007/0-387-24230-9 9

3. Ortalo, R., Deswarte, Y., Kaâniche, M.: Experimenting with quantitative evalu-
ation tools for monitoring operational security. IEEE Trans. Softw. Eng. 25(5),
633–650 (1999)

4. LeMay, E.: Adversary-driven state-based system security evaluation. Ph.D. disser-
tation, University of Illinois at Urbana-Champaign, Urbana, Illinois (2011)

5. Clark, G., T. et al.: The Möbius modeling tool. In: Proceedings of the 9th Interna-
tional Workshop on Petri Nets and Performance Models, pp. 241–250, September
2001

6. Williamson, A.L.: Discrete event simulation in the Möbius modeling framework.
Master’s thesis, University of Illinois at Urbana-Champaign, Urbana, Illinois (1998)

7. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl.
Acquis. 5(2), 199–220 (1993)

8. Deavours, D.D., et al.: The Möbius framework and its implementation. IEEE Trans.
Softw. Eng. 28(10), 956–969 (2002)

https://doi.org/10.1007/0-387-24230-9_9
https://doi.org/10.1007/0-387-24230-9_9

188 K. Keefe et al.

9. LeMay, E., Unkenholz, W., Parks, D., Muehrcke, C., Keefe, K., Sanders, W.H.:
Adversary-driven state-based system security evaluation. In: Proceedings of the 6th
International Workshop on Security Measurements and Metrics (MetriSec 2010),
Bolzano-Bozen, Italy, 15 September 2010

10. Ford, M.D., Keefe, K., LeMay, E., Sanders, W.H., Muehrcke, C.: Implementing the
ADVISE secrity modeling formalism in Möbius. In: Proceedigns of the 43rd Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN
2013), pp. 1–8, June 2013

11. LeMay, E., Ford, M.D., Keefe, K., Sanders, W.H., Muehrcke, C.: Model-based secu-
rity metrics using ADversary VIew Security Evaluation (ADVISE). In: Proceedings
of the 8th Interantional Confernece on Quantitative Evaluation of SysTems (QEST
2011), Aachen, Germany, pp. 191–200, 5–8 September 2011

12. Rausch, M., Feddersen, B., Keefe, K., Sanders, W.H.: A comparison of different
intrusion detection approaches in an advanced metering infrastructure network
using ADVISE. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol. 9826,
pp. 279–294. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-
4 19

13. Wright, R., Keefe, K., Feddersen, B., Sanders, W.H.: A case study assessing
the effects of cyber attacks on a river zonal dispatcher. In: Proceedings of the
11th International Conference on Critical Information Infrastructures Security
(CRITIS), Paris, France, pp. 252–264, 10–12 October 2016

14. Deavours, D., Sanders, W.H.: Möbius: framework and atomic models. In: Proceed-
ingso of the 10th International Workshop on Petri Nets and Performance Models,
pp. 251–260, September 2001

15. Rausch, M., Keefe, K., Feddersen, B., Sanders, W.H.: Automatically generating
security models from system models to aid in the evaluation of AMI deployment
options. In: Proceedings of the 12th International Conferece on Critical Information
Infrastructures Security (CRITIS), Lucca, Italy, 8–13 October 2017

16. Cheh, C., Keefe, K., Feddersen, B., Chen, B., Temple, W.G., Sanders, W.: Devel-
oping models for physical attacks in cyber-physical systems. In: Proceedings of
the Cyber-Physical Systems Security and PrivaCy (CPS-SPC) Workshop, Dallas,
Texas, USA, pp. 49–55, 3 November 2017

17. Chrszon, P., Dubslaff, C., Klüppelholz, S., Baier, C.: Family-based modeling and
analysis for probabilistic systems – featuring ProFeat. In: Stevens, P., W ↪asowski,
A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 287–304. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49665-7 17

18. Woodside, M., Petriu, D.C., Merseguer, J., Petriu, D.B., Alhaj, M.: Transformation
challenges: from software models to performance models. Softw. Syst. Model. 13(4),
1529–1552 (2014)

19. Vigo, R., Nielson, F., Nielson, H.R.: Automated generation of attack trees. In:
Proceedings of the IEEE 27th Computer Security Foundations Symposium, pp.
337–350, July 2014

20. Ivanova, M.G., Probst, C.W., Hansen, R.R., Kammüller, F.: Transforming graphi-
cal system models to graphical attack models. In: Mauw, S., Kordy, B., Jajodia, S.
(eds.) GraMSec 2015. LNCS, vol. 9390, pp. 82–96. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-29968-6 6

21. Philippi, S.: Automatic code generation from high-level Petri-nets for model driven
systems engineering. J. Syst. Softw. 79(10), 1444–1455 (2006)

22. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and stat-
echarts to analysable Petri net models. In: Proceedings of the 3rd International
Workshop on Software and Performance, pp. 35–45. ACM (2002)

https://doi.org/10.1007/978-3-319-43425-4_19
https://doi.org/10.1007/978-3-319-43425-4_19
https://doi.org/10.1007/978-3-662-49665-7_17
https://doi.org/10.1007/978-3-319-29968-6_6
https://doi.org/10.1007/978-3-319-29968-6_6

An Ontology Framework for Generating Discrete-Event Stochastic Models 189

23. Kamandi, A., Azgomi, M.A., Movaghar, A.: Transformation of UML models into
analyzable OSAN models. Electron. Notes Theor. Comput. Sci. 159, 3–22 (2006)

24. Gheraibia, Y., Bourouis, A.: Ontology and automatic code generation on mod-
eling and simulation. In: 6th Internatioal Conference on Sciences of Electronics,
Technologies of Information and Telecommunications (SETIT), pp. 69–73. IEEE
(2012)

25. Lacy, L.: Interchanging discrete event simulation process interaction models using
PIMODES and SRML. In: Proceedings of the Fall 2006 Simulation Interoperability
Workshop (2006)

26. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Morgan & Claypool Publishers, San Rafael (2012)

27. Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF: Eclipse Modeling
Framework. Pearson Education, New York (2008)

A Mixed Strategy for a Competitive
Game in Delay Tolerant Networks

Thi Thu Hang Nguyen1,2(B), Olivier Brun1, and Balakrishna Prabhu1

1 LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
{tthnguye,brun,bala}@laas.fr

2 Université de Toulouse, INSA, Toulouse, France

Abstract. We consider a non-cooperative game between N relays in
Delay Tolerant Networks with one fixed source and one fixed destina-
tion. The source has no contact with the destination, so it has to rely on
the relays when it has a message to send. We assume that the source has
a sequence of messages and it proposes them to relays one by one with
a fixed reward for the first transmission for each message. We analyse a
symmetric mixed strategy for this game. A mixed strategy means a relay
decides to accept relaying the kth message with probability qk when it
meets the source. We establish the conditions under which qk = 1; qk = 0
or qk ∈ (0, 1), and prove the existence and the uniqueness of the symmet-
ric Nash equilibrium. We also give the formula to compute this mixed
strategy as well as the probability of success and the delay of a given mes-
sage. When k is large, we give the limiting value of the mixed strategy q
and the probability of success for the messages.

Keywords: Delay Tolerant Networks · Incentive mechanism
Stochastic game

1 Introduction

In Delay Tolerant Networks (DTN) [3,9–11], the approach used by mobile nodes
to communicate in the absence of a communication infrastructure is based on the
so-called store-carry-forward paradigm: a source node gives a copy of its message
to all mobile nodes that it meets, asking them to keep it until they can forward it
to the destination. Although other routing schemes have been proposed [13,15],
in this work we shall specifically consider two-hop routing DTNs [2,21], in which
once a relay has the message, it can only transmit it to the destination.

The above approach implicitly assumes that mobile nodes accept to use their
scarce energy resources for relaying messages of others out of altruism. In prac-
tice, it can be expected that some nodes will act as free-riders, that is, that
they will use the network to send their own messages without offering their
resources in exchange for relaying the messages of others. Clearly, if there are
too many selfish nodes in a DTN, the network collapses and mobile nodes can
no longer communicate with one another. A central issue in DTNs is therefore
c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 190–204, 2018.
https://doi.org/10.1007/978-3-030-02227-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_13&domain=pdf

A Mixed Strategy for a Competitive Game in Delay Tolerant Networks 191

to convince mobile nodes to relay messages. Many incentive mechanisms have
been proposed to avoid the free-rider problem in DTNs, including reputation-
based schemes [12,16,22–24], barter-based schemes [4,5,20] and credit-based
schemes [7,8,14,19,25,26]. In contrast to most of the incentive mechanisms pro-
posed in the literature, explicit guarantees on the probability of message delivery
and on the mean time to deliver a message have been obtained for the credit-
based scheme considered in [17,18] (see also [19] for a closely-related mechanism).

The authors of [17,18] consider a source which promises a fixed reward to the
relay who first delivers a message to the destination. The source is backlogged
and only one message at a time is proposed by the source. Inter-contact times of
relays with the source and the destination are exponentially distributed. When
it meets the source, a relay has the choice to either accept the message or not,
and if it accepts, it can decide to drop the message at any time in the future at
no additional cost. The competition between relays is modelled as a stochastic
game in which each relay seeks to minimize its expected net cost, that is, the sum
of its expected energy and storage costs minus its expected reward. It is proven
that the optimal policy of a relay is of threshold type: it accepts a message until a
first threshold θ and then keeps it until it either meets the destination or reaches
a second threshold γ (which can be infinite). Explicit formulas for computing
the thresholds as well as the probability of message delivery are derived for the
unique symmetric Nash equilibrium, in which all relays use the same thresholds
and no player can benefit by unilaterally changing its policy.

The analysis in [17,18] implicitly assumes that the source tells the relays
when a message was proposed for the first time, or, in other words, when this
message was generated. Our objective in the present paper is to understand
whether it is profitable for the source to give this information to the relays. We
thus consider the same incentive mechanism, but assuming that when it meets
the source, a relay has to make its decision without knowing for how long the
message is in circulation. The only information available to the relay is the value
R of the reward and the period of time T during which the message is proposed
by the source.

Since it does not know for how long a message is available, we assume that
a relay decides to accept a message according to a randomized policy, that is,
when relay i meets the source, it accepts the kth message with probability qi

k,
and rejects it with probability 1 − qi

k. If it accepts the message, the relay keeps
it until it reaches the destination. The value of qi

k is computed by relay i so as
to minimize its expected net cost, and it of course depends on R and T , but also
on the number of relays competing for the delivery of the kth message (some
relays may be busy delivering previous messages). We note that a similar setting
was considered in [1], but with a different cost structure and assuming that the
source has only one message to transmit.

We establish under which condition qi
k > 0 for all i, and show that, under

this condition, there exists a unique value qk > 0 such that if all relays accept the
kth message with probability qk, no relay has anything to gain by unilaterally
changing its acceptance probability. In other words, the situation in which all

192 T. T. H. Nguyen et al.

relays accept the kth message with probability qk corresponds to a symmetric
Nash equilibrium, and this equilibrium is unique. Explicit expressions for the
probability of message delivery and the mean time to deliver a message at the
symmetric Nash equilibrium are then derived. Assuming that qk converges as
k → ∞, we also obtain an explicit characterization of the asymptotic value of
the acceptance probability q∞. Finally, we compare the performance obtained
with the threshold-type strategy in the full information setting and with the
randomized policy in the no information setting.

The rest of this paper is organized as follows. Section 2 is devoted to model
description. In Sect. 3, we establish the conditions for the existence and unique-
ness of symmetric Nash equilibria and present a method for recursively com-
puting the acceptance probabilities qk. The asymptotic value of the acceptance
probability is also derived in Sect. 3. Explicit expressions for the main perfor-
mance metrics at the symmetric Nash equilibrium are then derived in Sect. 4.
Finally, numerical results pertaining to the comparison of the full information
setting and the no information setting are given in Sect. 5.

2 Assumption and Model Description

We consider a two-hop network of N mobile nodes with one fixed source and one
fixed destination. The source is backlogged, that is, it has an unlimited number
of messages to send to the destination. Since the source and the destination are
not in radio range of each other, the source cannot transmit its messages directly
to the destination. Instead, it proposes a new message to the relays every T units
of time, promising a fixed reward R to the first one to deliver the current message
to the destination. We assume that the relays are moving randomly and that the
inter-contact times of a given relay with the source (resp. destination) are i.i.d.
and follow an exponential distribution with rate λ (resp. μ). This assumption
holds (at least approximately) under the Random Waypoint Mobility model [6].

When it accepts a message, a relay incurs a one-time reception cost Cr for
receiving it from the source. There is then a cost Cs per unit of time for keeping
the message in its buffer. Finally, the relay incurs a transmission cost Cd for
sending the message to the destination. We however assume that the latter cost
is incurred by the relay if and only if the message has not been already delivered
to the destination by another relay. If on the contrary the relay is the first one to
deliver the message to the destination, it incurs the cost Cd but gets the reward
R. In the following, we define R̄ = R − Cd.

When it proposes the current message (say message k) to relay i, the source
informs it of the values of R and T , but does not tell it for how long the current
message is available. The relay accepts message k with probability qi

k, and rejects
it with probability 1−qi

k. If the kth message was rejected by relay i, then this relay
cannot accept it later on when it meets again the source. We also assume that
if the relay accepts the message, it has to keep it until it meets the destination.
Finally, we assume that a relay can store only one message at a time and cannot
drop a message to accept a new one.

A Mixed Strategy for a Competitive Game in Delay Tolerant Networks 193

Relay i computes its acceptance probability qi
k so as to minimize its expected

net cost, which depends on its probability to be the first one to deliver message k.
Obviously, the latter probability in turn depends on the acceptance probabilities
of the other relays. We say that a vector (q1k, q2k, . . . , qN

k) is a Nash equilibrium if
no relay i can decrease its expected net cost by unilaterally changing its accep-
tance probability qi

k. A symmetric Nash equilibrium is a Nash equilibrium for
which qi

k = qk for all i, for some value qk. In the following, we shall specifically
focus on symmetric Nash equilibria.

3 Acceptance Probabilities Under the Symmetric Nash
Equilibrium

3.1 Acceptance Probabilities

Consider a tagged relay and let us analyse the competition for the delivery
of the kth message. Assume that all other relays accept the kth message with
probability qk. If the tagged relay accepts the message with probability q′

k, its
net expected cost is

q′
k

(
Cr +

Cs

μ
− R̄Ps(qk)

)
, (1)

where Ps(qk) is the probability that the tagged relay be the first one to transmit
message k to the destination, given the acceptance probability qk of the others.
In (1), Cr is the cost of accepting the message from the source and Cs/μ is
the cost of storing the message until the relay meets the destination (recall that
the inter-meeting times with the destination are exponentially distributed with
mean 1/μ). The term R̄Ps(qk) is the expected reward the relay gets the message.
Thus, (1) gives the net expected cost for accepting the message.

For the tagged relay, the optimal value of q′
k is the one which minimizes (1).

It follows that q′
k = 0 if Cr + Cs

μ − R̄Ps(qk) > 0. Hence, we conclude that if
R̄ ≤ R̄min = Cr + Cs

μ , no relay will accept the kth message. In other words, the
condition R̄ > R̄min is a necessary condition for the relays to have an incentive
to participate in message delivery. Assuming that this condition is met, we see
that q′

k = 1 is the best response of the tagged relay if R̄min/Ps(qk) < R̄, while
q′
k = qk is one of the possible best responses if R̄min/Ps(qk) = R̄. We thus need

to analyse how Ps(qk) depends on qk.
To this end, let pk be the probability, as computed by the tagged relay, that

an arbitrary other relay meets the source while it is proposing the kth message
and that this relay is not already busy with a previous message. Obviously, for
the first message we have p1 = 1−e−λT . The derivation of pk for k > 1 is slightly
more complex and we shall shortly explain how it can be computed by the tagged
relay. From the definition of pk, we obtain that pk qk is the probability that an
arbitrary other relay attempts the delivery of the kth message. Therefore, the
number Ak of other relays that are in competition with the tagged relay for the

194 T. T. H. Nguyen et al.

delivery of the kth message follows a binomial distribution with parameter pk qk,
which yields

Ps(qk) = E

(
1

Ak + 1

)
=

1 − (1 − pk qk)N

N pk qk
. (2)

From (2), we can conclude that, if R̄ > R̄min, there exists a unique symmetric
equilibrium with qk > 0, as formally stated in Theorem 1 below.

Theorem 1. If R̄ > R̄min, there exists a unique symmetric Nash equilibrium
for the kth message with qk > 0. Moreover, we have qk = 1 if

R̄ >
Npk

1 − (1 − pk)N
R̄min, (3)

while otherwise qk is the unique solution in (0, 1) of

R̄ =
Npk qk

1 − (1 − pk qk)N
R̄min. (4)

Proof. See AppendixA.

The structure of the Nash equilibrium is illustrated in Fig. 1 for the first
message. If R̄ ≤ R̄min, no relay accepts the message. If R̄ > N(1−e−λT)

1−e−λNT R̄min,
at the unique Nash equilibrium all relays accept the message with probability 1.
Otherwise, the relays use a randomized strategy with 0 < q1 < 1.

Fig. 1. Equilibrium acceptance probability q1 as a function of R and T , when the values
of the parameters are as follows: μ = 0.5, λ = 0.3, Cr = Cd = 2 and Cs = 0.4.

A Mixed Strategy for a Competitive Game in Delay Tolerant Networks 195

3.2 Computation of the Probability pk

For the first message, we already know the value of p1. We now explain how the
value of pk can be computed by the tagged relay for subsequent messages k > 1.
We need to consider the belief of the tagged relay regarding the number of other
relays that are in competition with it for the delivery of the kth message. We
assume that all relays play their equilibrium strategies qi, i = 1, . . . , k − 1 for all
previous messages. Define Φk(t) as the probability that an arbitrary relay enters
into competition for message k on or before time t. By enter into competition
on or before time t, we mean that there exists a time instant t′ < t such that
the considered relay does not have any message with index smaller than k in the
interval [t′, t]. We shall denote by φk(t) the probability density function (pdf)
corresponding to Φk(t). If this pdf is known by the tagged relay, then it can
estimate the probability pk as follows.

pk =
∫ Tk

T (k−1)

φk(x)
(
1 − e−λ(kT−x)

)
dx.

Denote by δx(t) the Dirac delta function at point x. Following the same approach
as in [18], we can the following result.

Lemma 1. The density φk(t) obeys the recursion

φk+1(t) = h1(k)δkT (t) + φk(t) + h2(k)μe−μt. (5)

Here h1(k) represents the probability that a relay is free for the (k+1)th message
at time kT , and is given by

h1(k) =
∫ kT

(k−1)T

φk(x)(1 − qkIk(x, kT))dx, (6)

and h2(k)e−μkT is the probability that a relay be busy with the kth message at
time kT , and is given by

h2(k) = eμkT

∫ kT

(k−1)T

qkφk(x)Ik(x, kT)dx. (7)

In (6) and (7),

Ik(x, t) =
λ

μ − λ
e−μteλx

(
e(μ−λ)min(t,kT) − e(μ−λ)x

)
,

represents the probability that a relay that comes into play at time x < kT will
meet the source and will not meet the destination by time t.

Since h2(i)e−μiT is the probability that a relay has message i at iT , it can
be seen that h2(i)e−μ(k−1)T is the probability that a relay has message i at time
(k−1)T . Also, h1(k−1) is the probability that the relay does not have a message

196 T. T. H. Nguyen et al.

time (k − 1)T . Since a relay either has a message or does not have one, we get
the following relation:

h1(k − 1) + e−μ(k−1)T
k−1∑
i=1

h2(i) = 1,

which yields
k−1∑
i=1

h2(i) =
1 − h1(k − 1)

e−μ(k−1)T
. (8)

Using (5)–(8) and induction, we can prove that h1(k) obeys the recursions
given below. We omit the proof due to lack of space.

Proposition 1. The terms h1(k) can be computed with the recursion:

h1(k) = h1(k − 1) (1 − qkIk ((k − 1)T, kT)) + (1 − h1(k − 1))
(
1 − e−μT

)

−(1 − h1(k − 1))
qiλμe−μT

μ − λ

(
e(μ−λ)T − 1

μ − λ
− T

)
,

with the initial value: h1(1) = 1− q1I(0, T). This leads to the following formulas
for h2(k) and pk:

h2(k)e−μkT = 1 − h1(k) − (1 − h1(k − 1))e−μT

pk = h1(k − 1)
(
1 − e−λT

)

+(1 − h1(k − 1))
(

1 − e−μT − μ

μ − λ

(
e−λT − e−μT

))
. (9)

Equation (9) has the following probabilistic interpretation. The probability that
a relay can meet the source for message k can be conditioned on two events
at time (k − 1)T (i.e., at the release time of message k): either the relay did
not have a message or had one of the previous k − 1 messages. The two terms
in (9) correspond to each of the two events. In the case of the first event, the
probability of picking up message k is just the probability of meeting the source
in the interval ((k − 1)T,KT]. Since h1(k − 1) is the probability of not having a
message at time (k−1)T , the term h1(k−1)(1−e−λT) is the probability related
to the first event. Next, we look at the second event. Suppose the relay has a
message at time (k − 1)T . It can take message k only if it meets the destination
and then the source in an interval of length T starting from (k − 1)T . This
probability is the one inside the parenthesis of the second term in (9). Since
(1 − h1(k − 1)), is the probability that the relay has a message at (k − 1)T , the
second term in (9) corresponds to the second event.

3.3 Asymptotic Analysis When k → ∞
In this section, we shall do the analysis when k is large, that is, when the sys-
tem is in steady-state or stationary regime. In this regime, the function φk will

A Mixed Strategy for a Competitive Game in Delay Tolerant Networks 197

reach its limiting value so that each message will have statistically the same per-
formance measures. This regime reflects the long-run characteristics which are
obtained after a large number of messages have been transmitted. From numer-
ical experiments, it will be seen that, for our model, after as few as 10 to 15
messages, the system reaches the steady-state.

Let h′
2(k) = h2(k)e−μkT . From Proposition 1 we get the following expressions

for the limiting values of pk, h1, and h′
2. The proof is omitted.

Proposition 2. When k is large, we have

h1(∞) := h1 =
C(T)

q∞I∞ + C(T)
, (10)

h′
2(∞) := h′

2 = (1 − h1)(1 − e−μT), (11)
p∞ = h1(1 − e−λT) + (1 − h1)D(T), (12)

where

C(T) = 1 − e−μT − q∞μλ

μ − λ

(
e−λT − e−μT

μ − λ
− Te−μT

)
,

D(T) = 1 − e−μT − μ

μ − λ
(e−λT − e−μT), (13)

I∞ =
λ

μ − λ
(e−λT − e−μT). (14)

From Proposition 2, we can write the relation between q∞ and p∞ as

p∞(q∞) =
C(T)(1 − e−λT)

q∞I∞ + C(T)
+

q∞I∞D(T)
q∞I∞ + C(T)

(15)

Now, we can establish the conditions when q∞ = 1 and when q∞ < 1.

Lemma 2. If the following condition is satisfied, then q∞ = 1, p∞ = p∞(1):

R̄ − Np∞(1)(Cr + Cs/μ)
1 − (1 − p∞(1))N

> 0 (16)

Otherwise, p∞ and q∞ are the unique solution of the following system of equa-
tions:

R̄ − Np∞q∞(Cr + Cs/μ)
1 − (1 − p∞q∞)N

= 0 (17)

C(T)(1 − e−λT)

q∞I∞ + C(T)
+

q∞I∞D(T)
q∞I∞ + C(T)

= p∞ (18)

The proof follows directly from Theorem 1. Notice that in case of q∞ < 1, there
is unique solution since the left hand side of (17) is decreasing in q∞.

Figure 2 presents the probability pk that an individual relay, which is not
busy with any previous message, meets the source while it is proposing the

198 T. T. H. Nguyen et al.

kth message. This probability is computed from analytical expressions as well
as from simulations for different values of R, T = 1.00357 and N = 10 (the
other parameters have the same value as in Fig. 1). In fact, the value of T is
the value of θ̂∞ = limk→∞ θk+1 − θk and the value of R is expressed as a
multiple of Rmin = R̄min + Cd = Cr + Cs

μ + Cd. The simulations consist of
generating meeting times of relays with the source and the destination, then
each relay deciding whether to accept or not the message when it meets the
source, and then determining which relay wins the reward. The value of pk was
then averaged over 2, 000 sample paths. For the same parameter values, Fig. 3
presents the acceptance probabilities qk as well as their limiting value q∞. From
these figures, it can be seen that the steady-state is reached quite quickly (after
10 messages).

Fig. 2. Value of pk. Fig. 3. Value of qk and its limiting value

4 Performance Metrics

In this section, we use the results obtained in Sect. 3 to establish explicit expres-
sions for the probability of message delivery and the mean time to deliver a
message at the symmetric Nash equilibrium. Together with Theorems 1 and (9),
our first result, formally stated in Proposition 3, allows to compute the proba-
bility of message delivery of each message.

Proposition 3. The probability of successful delivery of the kth message is ξk =
1 − (1 − qk pk)N .

Proof. Each individual relay participates to the delivery of the kth message with
probability qkpk, from which the result follows.

Figure 4 shows the probability of message delivery for different values of R,
and the following parameter values: T = 1.00357 and N = 10. The other param-
eters are the same as in Fig. 1. The probabilities obtained with event-driven
simulations are also shown in Fig. 4. In the simulation, we generate the inter-
contact times between the source, the destination and relays. We then let the

A Mixed Strategy for a Competitive Game in Delay Tolerant Networks 199

Fig. 4. Analytical probability of message delivery and simulated probability for differ-
ent values of R̄.

relays follow the mixed strategy with qk computed from previous sections. We
run the simulation 5000 times and take the average.

Proposition 4. Let Dk denote the delay of the kth message. It holds that

E(Dk|Dk < ∞) =
1
ξk

∫ ∞

(k−1)T

(1 − Q(t))N −(1 − qkpk)Ndt

where, with the notation m = min(t, kT), Q(t) is defined as

Q(t) = qk

∫ m

(k−1)T

φk(x)
[
1−e−λ (m−x)−Ik(x, t)

]
dx, (19)

and represents the probability that an individual relay will deliver the kth message
by time t.

Proof. The probability that an individual relay that comes into play at time x
will meet the source by time m ≥ x and the destination by time t ≥ m is∫ m

x

λe−λ(s−x)
(
1 − e−μ(t−s)

)
ds = 1 − e−λ (m−x) − Ik(x, t).

With m = min(t, kT), it follows that the probability that an individual relay
will deliver the kth message by time t is

Q(t) = qk

∫ m

(k−1)T

φk(x)
[
1 − e−λ (m−x) − Ik(x, t)

]
dx,

and hence the probability that the message is not delivered by time t is
P (Dk > t) = (1 − Q(t))N . The proof now follows from

E(Dk|Dk < ∞) =
∫ ∞

0

P (Dk > t | Dk < ∞) dt,

=
1
ξk

∫ ∞

0

P (Dk < ∞) − P (Dk ≤ t) dt,

=
1
ξk

∫ ∞

0

P (Dk > t) − (1 − qkpk)Ndt.

200 T. T. H. Nguyen et al.

Figure 5 shows the mean message delivery time for different values of R. The
delays obtained with event-driven simulations are also shown on the figure. The
parameter values are identical to those used in Fig. 4.

Fig. 5. Analytical delay and simulated delay.

5 Comparison Between the Threshold-Type Strategy
and the Randomized Policy

In this section, we compare the performance obtained with the threshold-type
strategy in the full information setting and with the randomized policy in the no
information setting. We first consider the case where the source proposes each
message for the same amount of time in both settings, that is, T = θk for the
kth message (θk and γk are the first and second thresholds, respectively, for the
kth message). Figure 6 shows the structure of the Nash equilibrium strategies
for the first message in both settings. It turns out that the randomized policy
is either to reject the message (q = 0) or to accept it (q = 1) depending on the
value of R, but independently of the value of λ. In contrast, the value of γ in the
threshold-type policy depends on the value of λ. We emphasize that when q = 1
and γ = ∞, the two policies coincide: all relays accept the message as long as
it is proposed by the source and keep it until they meet the destination (this is
not the case when γ < ∞ since relays can drop the message before meeting the
destination). Therefore, in this situation, the source does not need to provide the
birth-time of its messages. Moreover, the relays do not need to take care of time,
they just decide to accept a message or not, and then keep the message until
meeting the destination. Figure 7 compares the message delivery probabilities
in both settings as T varies. In this case, we consider the steady-state message
delivery probabilities, which are obtained as k → ∞, for two different values
of R. The figure also shows the asymptotic value of the acceptance probability
q∞ in the no information setting. For R = 2Rmin = 10, we have θ = 0.65 and
γ = ∞ for the threshold policy. We observe that the message delivery probability

A Mixed Strategy for a Competitive Game in Delay Tolerant Networks 201

in the no information setting increases as T grows: for T ≤ θ, the acceptance
probability q∞ = 1 and the message delivery probability is lower than in the
full information setting. Both settings coincide when T = θ, as expected. For
T > θ, the acceptance probability q∞ < 1, but the message delivery probability
keeps increasing until it reaches its limiting value, which is higher than in the full
information setting. For R = 3.5Rmin = 17.5, we have θ = 0.91 and γ = 3.07.
We observe a similar behavior of the message delivery probability in the no
information setting, despite the fact that in this case γ < ∞. These results
suggest that by using a value of T slightly larger than θ, and for the same
reward value R, the source can increase its message delivery probability if it
does not tell the relays when a message was generated.

Fig. 6. Randomized and threshold-type policies as functions of R and λ for the first
message when T = θ1. The values of the parameters are μ = 0.4, Cd = 2, Cr = 4, Cs =
0.5 and N = 3.

Fig. 7. The message delivery probability in mixed strategy and threshold strategy, with
μ = 0.4, Cd = Cr = 2, Cs = 0.4, N = 10 and λ = 1.5.

202 T. T. H. Nguyen et al.

6 Conclusions

We analyzed a competitive DTN game between N relays in which the source
does not give information on the message generation times to the relays. The
equilibrium obtained is a mixed one in which a relay accepts a message with a
certain probability. This contrasts with the threshold-based equilibrium in [18] in
which the source gave message generation information to the relays. Simulations
suggest giving no information on the message generation times can be advanta-
geous to the source compared to giving information. By taking the duration for
which a message is proposed to be slightly longer than the equilibrium thresh-
old in [18], the source can improve the limiting value of its message delivery
probability.

Acknowledgements. We thank the anonymous referees for their constructive com-
ments that have helpful in improving the quality of the paper.

A Proof of Theorem1

Before proving the lemma, we first prove that the probability Ps(qk) is decreasing
in qk. With r = pkqk, we have

∂Ps(qk)
∂qk

=
Nr(1 − r)N−1 − 1 + (1 − r)N

(Nr)2
(20)

The numerator is negative since it has value 0 when r = 0 and it is decreasing in
r (the derivative w.r.t r is negative), and thus in qk. It follows that the expected
net cost R̄min − R̄ Ps(qk) is increasing in qk and reaches its maximum value for
qk = 1.

Assume R̄ > R̄min. If the other relays play qk = 1, the best-response strategy
of the tagged relay is q′

k = 1 if and only if R̄min−R̄Ps(1) < 0, which is equivalent
to (3). On the other hand, for qk ∈ (0, 1) to be a symmetric equilibrium, R̄min −
R̄Ps(qk) = 0 must hold, which is equivalent to (4). It is easy to see from (4) that
R̄ is an increasing function of qk such that R̄ ∈ [R̄min, R̄max], where R̄max =

Nqkpk

1−(1−qkpk)N R̄min. Therefore, there is a bijective function between R̄ and qk.
Hence, for any R̄ ∈ [R̄min, R̄max], we always can find a value of qk such that the
Eq. (4) is satisfied.

References

1. Altman, E.: Competition and cooperation between nodes in delay tolerant networks
with two hop routing. In: Núñez-Queija, R., Resing, J. (eds.) NET-COOP 2009.
LNCS, vol. 5894, pp. 264–278. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-10406-0 18

2. Basilico, N., Cesana, M., Gatti, N.: Algorithms to find two-hop routing policies in
multiclass delay tolerant networks. IEEE Trans. Wirel. Commun. 15(6), 4017–4031
(2016). https://doi.org/10.1109/TWC.2016.2532859

https://doi.org/10.1007/978-3-642-10406-0_18
https://doi.org/10.1007/978-3-642-10406-0_18
https://doi.org/10.1109/TWC.2016.2532859

A Mixed Strategy for a Competitive Game in Delay Tolerant Networks 203

3. Benhamida, F.Z., Bouabdellah, A., Challal, Y.: Using delay tolerant network for
the Internet of Things: opportunities and challenges. In: 2017 8th International
Conference on Information and Communication Systems (ICICS), pp. 252–257,
April 2017. https://doi.org/10.1109/IACS.2017.7921980

4. Buttyan, L., Dora, L., Felegyhazi, M., Vajda, I.: Barter-based cooperation in delay-
tolerant personal wireless networks. In: IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks (2007)

5. Buttyan, L., Dora, L., Felegyhazi, M., Vajda, I.: Barter trade improves message
delivery in opportunistic networks. Ad Hoc Netw. 8(1), 1–14 (2010)

6. Cai, H., Eun, D.: Crossing over the bounded domain: from exponential to power-
law inter-meeting time in MANET. In: Proceedings of ACM/IEEE MOBICOM
(2007)

7. Chahin, W., Sidi, H.B., El-Azouzi, R., Pellegrini, F.D., Walrand, J.: Incentive
mechanisms based on minority games in heterogeneous DTNs. In: Proceedings of
25th ITC Conference, Sanghai, China, 10–12 September 2013

8. Chen, B.B., Chan, M.C.: MobiCent: a credit-based incentive system for disruption
tolerant network. In: 2010 Proceedings IEEE INFOCOM, pp. 1–9, March 2010.
https://doi.org/10.1109/INFCOM.2010.5462136

9. Fall, K.: A delay-tolerant network architecture for challenged internets. In: Pro-
ceedings of ACM SIGCOMM, Karlsruhe, Germany, pp. 27–34 (2003). https://doi.
org/10.1145/863955.863960

10. Giannini, C., Calegari, P., Buratti, C., Verdone, R.: Delay tolerant network for
smart city: exploiting bus mobility. In: 2016 AEIT International Annual Conference
(AEIT), pp. 1–6, October 2016. https://doi.org/10.23919/AEIT.2016.7892779

11. Giannini, C., Shaaban, A.A., Buratti, C., Verdone, R.: Delay tolerant network-
ing for smart city through drones. In: 2016 International Symposium on Wireless
Communication Systems (ISWCS), pp. 603–607, September 2016. https://doi.org/
10.1109/ISWCS.2016.7600975

12. He, Q., Wu, D., Khosla, P.: SORI: a secure and objective reputation-based incentive
scheme for ad hoc networks. In: Proceedings of IEEE WCNC (2004)

13. Ito, M., Nishiyama, H., Kato, N.: A novel routing method for improving message
delivery delay in hybrid DTN-MANET networks. In: 2013 IEEE Global Commu-
nications Conference (GLOBECOM), pp. 72–77, December 2013. https://doi.org/
10.1109/GLOCOM.2013.6831050

14. Mahmoud, M.E., Shen, X.: PIS: a practical incentive system for multi-hop wireless
networks. IEEE Trans. Veh. Technol. 59, 4012–4025 (2010)

15. Malathi, M., Jayashri, S.: Design and performance of dynamic trust management
for secure routing protocol. In: 2016 IEEE International Conference on Advances
in Computer Applications (ICACA), pp. 121–124, October 2016. https://doi.org/
10.1109/ICACA.2016.7887935

16. Marti, S., Giuli, T.J., Lai, K., Baker, M.: Mitigating routing misbehavior in mobile
ad hoc networks. In: Proceedings of MobiCom, pp. 255–265 (2000)

17. Nguyen, T.T.H., Brun, O., Prabhu, B.J.: Mean-field limit of the fixed-reward incen-
tive mechanism in delay tolerant networks. In: 2018 16th International Sympo-
sium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), pp. 1–8, May 2018. https://doi.org/10.23919/WIOPT.2018.8362810

18. Nguyen, T.T.H., Brun, O., Prabhu, B.: Performance of a fixed reward incen-
tive scheme for two-hop DTNs with competing relays (long version), August
2017. https://hal.laas.fr/hal-01575320, this is the long version of the NetEcon
paper, http://netecon.eurecom.fr/NetEcon2016/papers/Nguyen.pdf which is also
in HAL, https://hal.archives-ouvertes.fr/hal-01365939

https://doi.org/10.1109/IACS.2017.7921980
https://doi.org/10.1109/INFCOM.2010.5462136
https://doi.org/10.1145/863955.863960
https://doi.org/10.1145/863955.863960
https://doi.org/10.23919/AEIT.2016.7892779
https://doi.org/10.1109/ISWCS.2016.7600975
https://doi.org/10.1109/ISWCS.2016.7600975
https://doi.org/10.1109/GLOCOM.2013.6831050
https://doi.org/10.1109/GLOCOM.2013.6831050
https://doi.org/10.1109/ICACA.2016.7887935
https://doi.org/10.1109/ICACA.2016.7887935
https://doi.org/10.23919/WIOPT.2018.8362810
https://hal.laas.fr/hal-01575320
http://netecon.eurecom.fr/NetEcon2016/papers/Nguyen.pdf
https://hal.archives-ouvertes.fr/hal-01365939

204 T. T. H. Nguyen et al.

19. Seregina, T., Brun, O., Elazouzi, R., Prabhu, B.: On the design of a reward-
based incentive mechanism for delay tolerant networks. IEEE Trans. Mob. Comput.
16(2), 453–465 (2017)

20. Shevade, U., Song, H., Qiu, L., Zhang, Y.: Incentive-aware routing in DTNs. In:
IEEE International Conference on Network Protocols (ICNP), pp. 238–247 (2008)

21. Torabkhani, N., Fekri, F.: Delay analysis of bursty traffic in finite-buffer disruption-
tolerant networks with two-hop routing. In: 2013 IEEE International Conference
on Sensing, Communications and Networking (SECON), pp. 541–549, June 2013.
https://doi.org/10.1109/SAHCN.2013.6645026

22. Uddinand, M.Y.S., Godfrey, B., Abdelzaher, T.: RELICS: in-network realization
of incentives to combat selfishness in DTNs. In: Proceedings of IEEE International
Conference on Network Protocols (ICNP), pp. 203–212 (2010)

23. Wei, L., Cao, Z., Zhu, H.: MobiGame: a user-centric reputation based incentive
protocol for delay/disruption tolerant networks. In: Proceedings of IEEE Global
Telecommunications Conference (GLOBECOM), pp. 1–5 (2011)

24. Zhang, X., X.Wang, Liu, A., Zhang, Q., Tang, C.: Reputation-based schemes for
delay tolerant networks. In: Proceedings of 2011 International Conference on Com-
puter Science and Network Technology (2011)

25. Zhong, S., Chen, J., Yang, Y.R.: Sprite, a simple, cheat-proof, credit-based system
for mobile ad-hoc networks. In: Proceedings of INFOCOM 2003, San Francisco,
CA, USA, pp. 1987–1997, April 2003

26. Zhu, H., Lin, X., Lu, R., Fan, Y., Shen, X.: SMART: a secure multilayer credit-
based incentive scheme for delay-tolerant networks. IEEE Trans. Veh. Technol.
58(8), 4628–4639 (2009)

https://doi.org/10.1109/SAHCN.2013.6645026

Second Order Fluid Performance
Evaluation Models for Interactive 3D

Multimedia Streaming

Enrico Barbierato1, Marco Gribaudo1, Mauro Iacono2(B), and Pietro Piazzolla1

1 Dip. di Elettronica, Informazione e Bioingegneria, Politecnico di Milano,
via Ponzio 34/5, 20133 Milano, Italy

{enrico.barbierato,marco.gribaudo,pietro.piazzolla}@polimi.it
2 Dip. di Matematica e Fisica, Università degli Studi della Campania “L. Vanvitelli”,

viale Lincoln 5, 81100 Caserta, Italy
mauro.iacono@unicampania.it

Abstract. Streaming of 3D content has become accessible and
widespread thanks to inexpensive devices such as Google cardboard and
Samsung Gear VR. In most of the applications the user is located at the
center of a sphere where the interactive movie is projected, and she can
look in different directions of the immersive world by tilting her head.
The same technology can be used also to create different types of immer-
sive content aimed at different goals.

This paper proposes a study for a system delivering object-centric as
opposed to user-centric contents, where the subject of the action is in the
center and the viewer can look at it from different directions. This type
of multimedia content has many potential applications, ranging from
product advertising to educational purposes. It also requires much more
complex systems, which must be properly studied and sized to deliver
the optimal performance required to support a good user experience.
As the quality of the system depends heavily on the ability of its com-
puting subsystem for computing image frames timely, and data streams
to be processed depend on the geometry and setting of the acquisition
subsystem, a preliminary performance analysis is needed to derive the
specifications of the computing subsystem. This work exploits a Second
Order Fluid Model to analyze and study the performances of the pro-
posed system and defines a set of guidelines to properly develop a correct
hardware and software solution.

1 Introduction

The cinema industry has presented since the last twenty years notable special
effects oriented to tri-dimensional reconstruction of scenes.

Modeling of artificial or real scenes can be performed by using two
approaches. The first technique uses a set of separate cameras deployed side by
side in order to create a stereoscopic representation (based on the fact that the
brain is “forced” to see a depth in the scene based on the inter-ocular distance),
c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 205–218, 2018.
https://doi.org/10.1007/978-3-030-02227-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_14&domain=pdf

206 E. Barbierato et al.

while the second converts a bi-dimensional representation into a tri-dimensional
film, inevitably leading to a degradation of the original subject. More sophis-
ticated approaches use stereo images called anaglyphs that exploit a red and a
cyan colored filter, one per each eye, to visualize the image (for example, see
[4]). The quality of the final result depends on many factors, such as the fidelity
and coherence of the two cameras and the choice of good 3D glasses among the
others.

More advanced methods integrate conventional image acquisition techniques
and devices in complex computer based systems that offer a user with a real time,
realistic, immersive view of the object, provided that performance parameters
are properly tuned to achieve the quality of experience needed to satisfy the
user. Designing performance parameters is crucial to both support the design
and implementation of such systems and account for a proper compensation of
the various variability factors that affect data acquisition, transfer, computing
and rendering, keeping the experience realistic.

In this paper we present a preliminary performance evaluation based app-
roach to design an advanced dedicated 3D visualization system and support early
decision on design parameters. This approach is founded onto the exploration
of system characteristics before the prototyping phase, to optimize costs and
leverage guidance obtained by means of performance analysis for the acquisition
and the specification of the components. As a result, the subsequent develop-
ment phases is leaner and quicker. To provide more accurate prediction of the
behavior of the to-be system, the approach is based on exploiting a Second Order
Fluid Performance Model evaluation framework, which evolves an earlier work
to include the presence of jitter in data transfer and acquisition. The idea is
to provide the best possible tuning and account for real operating conditions.
This choice is based on a previous work on fluid models within the SIMTHESys
multisolution modeling framework [1,2] and extended here by implementing an
experimental, dedicated second order evaluation engine based on previous work
described in [9]. The approach to fluid modeling is founded onto [5].

The original contribution of this paper is twofold. As first - in a very prelim-
inary design stage - a novel acquisition system based on Multi-View-plus-Depth
(MVD) cameras, such as those exploiting Intel Real Sense Technology1 able to
combine image acquisition and depth acquisition is proposed. As second, a fluid
performance modeling approach (applicable to all MVD different applications
and accounting for practical issues, such as jitters) is proposed.

This paper is organized as follows: after this Introduction, next Section
describes the visualization system on which we focus our attention, and its per-
formance problems; Sect. 3 introduces the performance evaluation framework;
Sect. 4 presents some significant experiments that demonstrate the approach;
Sect. 5 reviews a short description of literature; finally, Sect. 6 draws conclusions.

1 https://www.intel.com/content/www/us/en/architecture-and-technology/
realsense-overview.html (Visited on: 5/2/2018).

https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/realsense-overview.html

Second Order Fluid Performance Evaluation Models 207

2 The Target System

The target of our design is a system capable of allowing the 3D visualization of a
subject or object (here called ‘target’) framed by a number of cameras, properly
placed around it at the same distance so to cover 360◦. It is assumed that each
camera collects information about a part of the target colors and shape. The
colors are taken by the standard camera sensor, while data about target shape
are stored as a grayscale map of the depth sensor (part of said camera features).
Both sets of data are stored as image files and provided to an application, able to
produce a cloud of vertexes approximating the surface of the target and to color
the resulting triangles accordingly. The perspective model and position matrix
of each camera are also used to visualize the generated 3D mesh as its source
target.

This application also allows a given user to visualize the target, freely rotating
the view around it. An important goal of the target system is that it must be
capable of real time streaming of information from the camera to the application,
which must elaborate the 3D mesh from the data fed by each camera efficiently
and fast enough to maintain a satisfying frame rate to ensure a quality experience
for the final user.

We assume that by increasing the number of cameras used for data collec-
tion a more closely target resembling 3D mesh can be computed. This assump-
tion, however, introduces a trade-off between visual quality and performances:
increasing the number of image files to be transmitted to the application will
also raise network load and computing costs for it, with a potential ruinous effect
on the experienced frame rate. Another parameter to account for is the size of
the images used for storing information as well as their bit-depth. Bandwidth
can also easily became a bottleneck in case of very large image files from many
camera sources. Lastly, computing power, provided by both CPU and graph-
ics adapter, of the machine on which the application is run will play a major
role in the overall system performances. All these factors heavily impact on the
choice of the component of the system to-be. While the choice about suitable,
state of the art cameras that fit our needs is relatively easy, the choice for all
the other components benefits of a quite wide market. Specifically, the selection
has to be driven by a model based analysis matching the needs that stem by
the requirements and characteristics of available cameras. The general choices
about camera features and their general setup in the system depend on tech-
nical considerations founded onto the background of perception physiology and
psychology, cinema and direction and their professional practice, and will con-
sequently not be analyzed in this paper. The analysis will be focused on the
dimensioning of the computational characteristics of the architecture, limiting
the parameters related to cameras to the essential ones.

In Fig. 1 we show an example setup of the target system with a focus on
camera placement around the object to be filmed. The system is characterized
by the following elements: a subject Target in a scene and two or more cameras
(C1 . . . CN , N > 1) framing it at the same distance (d) but from different angles.

208 E. Barbierato et al.

Fig. 1. A set of 4 cameras (C1 . . . C4) all aiming at the same subject (Target) with
partially overlapping fields-of-view. (Color figure online)

In order to give an even share of the target surface to all cameras, each
camera Cn is placed with a look-at angle α = (n − 1) · 2π/N degrees. Thanks to
the different angles of framing, each camera contributes to collect a portion of
the surface data in terms of both colors and distance from the camera sensor, as
shown for camera C4 in Fig. 1.

All the cameras will rest on the same plane, at the same distance from the
subject center of mass (M) and share the same field-of-view. The subject is
considered framed in its entirety. In this preliminary stage of the study, we are
considering only one plane for all the cameras to rest on, which is the one that
allows them to maximize relevant surface data collection.

Figure 2 summarizes the workflow of the above presented system. In this spe-
cific experimental setup 8 cameras C1 . . . C8 frame an actress in a scene from a
musical, dancing at the center of the scene and captured from 8 different angles.
The surface data collected by the cameras are streamed to an application for
processing. This application is able to generate a cloud of vertexes approximat-
ing the actress’ figure surface. This generation is required to be fast enough to
support a frame per second rate able to allow target’s animation to be experi-
enced. To reduce the number of vertexes involved in the computation, clustering
techniques are applied. Vertexes are then transformed in triangles to compose

Second Order Fluid Performance Evaluation Models 209

Fig. 2. A system setup composed of 8 cameras, all framing the same performing actress.
(Color figure online)

the final mesh and then colored. The resulting 3D mesh is presented through an
output window that allows the final user to navigate around it.

Summarizing, the main performance influencing parameters for the system
are (i) network bandwidth, (ii) computing workloads for the acquisition and
visualization subsystems, (iii) rate and resolution of images or camera aperture,
(iv) number of cameras used for the acquisition.

3 Modeling Approach

System parameters depend on the characteristics of data streams fed by cam-
eras to the computing subsystem. Each input data stream is composed of a
compressed signal that includes in turn information about the video and the
depth for the image. The number of data streams corresponds to the number of
used cameras N. Each camera produces an amount of data that is proportional
to its resolution. We consider (i) the number of pixels on the vertical axis as a
fixed constant of the system (e.g. 720 or 1080), and (ii) the number of pixels on
the horizontal axis dependent on aspect ratio a, which in turn is determined by
the field view of the cameras. θh and θv denote respectively the horizontal and
vertical field of view, it follows that:

a =
tan(θh/2)
tan(θv/2)

(1)

A larger aspect ratio increases the resolution of the captured object, and allows
to use a smaller number of cameras. However, the total amount of data generated
by the system is proportional to both the number of cameras N and their aspect
ratio a. The data cardinality (expressed by the number of data collected per sec-
ond) can be estimated by using Blender (www.blender.org), an open source 3d
creation suite capable to integrate the full life-cycle rendering process. Blender is
currently used in many heterogeneous fields such as modeling radio-wave propa-
gation and character animation (see [10]). The opening angle of cameras is also

www.blender.org

210 E. Barbierato et al.

a critical attribute, since a wrong value might cause the picture to overlap (see
Fig. 1). The simulation must consequently be able to determine the minimum
opening angle value v depending on the number n of cameras deployed. One
of the issues affecting the goal function concerns the volume of collected data,
which is bound to grow according to (N, v).

Being a scene dynamic (and because of the compression), each data stream
entity is regarded as a variable. Consequently, a fluid stochastic model may
help the prediction to be more reliable; moreover, the effects introduced by real
components and the data dependency impact on local processing implementing
stream compression, decoding and rendering, introduces jitters effects. The latter
could impact on data transmissions as delays that must be considered in the
model.

As for the workflow, the system acquires and transmits data to be decoded
and then rendered by the computational subsystem. The capture process
depends on the configuration of the acquisition section of the system, thus the
number, aspect ratio and angle impact on the acquisition time. Its variability
depends on complex interactions between data, scene variability and data com-
pression, thus has to be described with a general stochastic characterization. The
amount of data produced per capture operation depends on the duration, and
affects both decoding and rendering length. Since the scenario deals with data
streams, the modeling must consider that these processes are continuous. Visual-
ization occurs by producing frames from rendered data, which must be available
at fixed intervals depending on the number of frames per second required by
the quality requirements of the system. As display happens in real time, if the
system is not able to render a frame on time, related data have to be discarded
and the incomplete frame has to be skipped, with a consequent loss of quality.

Fig. 3. A 2nd order FSPN model of the considered system.

Figure 3 shows a visual representation of the model of the proposed system
by means of Second Order Fluid Stochastic Petri Nets [9]. This choice allows
to take into account all the described features that the behavior of the system
exhibits. Frame generation process is governed by transition Complete, which is

Second Order Fluid Performance Evaluation Models 211

characterized by a kC stages Erlang distributed duration, whose average duration
μC = a·N ·α is proportional both to the number of cameras and their aspect ratio.
In this way, the model is kept as much general as possible, and additional tuning
after the preliminary performance evaluation phase is provided. The quantity of
data generated by the frame acquisition process is governed by fluid transition
Transmit, characterized by average μT and variance σ2

T . Fluid place Decode
Buf. holds received data, and fluid transition Decode models the decompression
of the color and depth streams for each camera. This process is characterized
by an average speed μD and a variance σ2

D. The last part of the process, which
consists in the reconstruction of the selected view of captured scene, is modeled
by fluid place Render Buf. and fluid transition Render (characterized by μR and
σ2
R). Firing of transition Complete moves a token from discrete place Capture

to Processing to denote that now the frame can be generated. The system
works with a double buffer strategy. To avoid synchronization issues, two image
buffers are used: one for the frame being displayed, and another for the one
being generated. To maintain a constant frame rate visualization, if an image is
not completed in time, the next frame will be skipped. Deterministic transition
Frame, of duration μF = 1

fr
(where fr is the reproduction frame rate) models

synchronization with the display, moving the token to discrete place End. If the
frame has been successfully created, it is displayed immediately by the firing of
transition Show, which is enabled only if all the continuous places are empty2.
If the generation process has taken more time than the available slot, transition
Skip fires, and the test will be repeated when the next frame will be ready to
be displayed.

3.1 Analysis

As a general overview, the model is analyzed using a specific discrete event
simulation algorithm, based on the properties of the second order fluid model
underlying the FSPN shown in Fig. 3.

Specifically, the simulation presented in this work implements a modeling
language based on a subset of the Piecewise Deterministic Markov Processes
introduced in [5] and described in [1,2] with the term Hybrid System Modeling
Language (HSML).

The following sub-sections introduce some key notions that are exploited in
Sect. 4.

Hybrid System. A Hybrid System is composed of a discrete and finite set
of modes M = {m1, . . . ,mM}. Specifically, a mode mi is denoted by a finite
number di of continuous variables xi,j (with 1 ≤ j ≤ di), defined in turn on a
compact subset of R. The latter is included between a lower li,j and an upper
boundary ui,j . Furthermore, a mode mi is denoted by a continuous domain Di =
×di

j=1 [li,j , ui,j], where × indicates the cartesian product of the corresponding sets.

2 For sake of simplicity, in Fig. 3 only one inhibitor arc connecting fluid place Render

Buf. to transition Show has been represented.

212 E. Barbierato et al.

State. The tuple σ = (mi,xi) identify a state. Specifically, xi =
(xi,1, . . . , xi,di

) indicates the values taken by the set of the continuous variables
of the corresponding mode.

HSML Model Evolution. The model dynamics is defined by a state space S =⋃M
i=1 ({mi} × Di) with σ ∈ S. The HSML model evolves on the state space S

according to the tuple (S, Φ,E,Λ, Ψ, σ0). The function Φ = {φ1, . . . , φM} defines
the evolution of the states continuous components. For each mode mi ∈ M, the
corresponding function φi : Di × R → Di must be described. The advantage in
using function φi consists of the ability to define the temporal evolution of the
continuous variables, assuming that system remains in the same mode mi a time
interval [ta, tb]. In this case, σ(t) = (mi,xi(t)) denotes the state at time t, with
ta ≤ t ≤ tb. In case that the system endures in mode mi in the considered time
interval, as a result only the continuous element of the state is affected by t. Then,
σ(tc) = (mi,xi(tc)) =⇒ σ(td) = (mi, φi(xi(tc), td − tc)) , ∀ta ≤ tc ≤ td ≤ tb.
Following the definition, it is possible to derive that φi(xi(t), 0) = xi(t). Each
time one of N possible events E = {e1, . . . , eN} occurs, state σ(t) changes. Events
occur according to a state dependent rate denoted by function Λ : S × E → R

+
0

In particular, Pr{ek occurs in state σ(t) during Δt} = Λ(σ(t), ek) · Δt + o(Δt).
A function Ψ : S × E × S → [0, 1] characterizes the effect of the event. The
probability that the state σ(t−) becomes σ(t+) due to the occurrence of event
ek is denoted by a function Ψ(σ(t+)|ek, σ(t−)). Both the mode and the contin-
uous variables are probabilistically altered by a change of state, which moti-
vates the behavior of function Ψ is defined such that Ψ(σ(t+)|ek, σ(t−)) =
Pr{σ(t+) = (mj ,x′) with x′

j,1 ≤ xj,1, . . . , x′
j,dj

≤ xj,dj
|ek, σ(t−)}. A prob-

ability distribution depending on the current state σ(t) is short-handed as
Ψ(ek, σ(t)) = DIST (σ(t)), using DIST (σ(t)). In other words, Ψ(ek, σ(t) =
(mi,xi)) = DET (ml,xi) shows the effect of an event ek changing determin-
istically (DET) the mode from mi to ml while leaving the continuous variables
unaffected. Finally, σ0 ∈ S denotes the initial state of the model.

Model Simulation. To simulate the model, as first, the Erlang distributed
transition firing time tC Complete is generated. The considered fluid processes
correspond to a Brownian motion with positive (or negative) drift and a reflecting
barrier. It is known that the distribution of a Brownian motion with drift μ and
variance σ2, at a given time t has the following cumulative distribution [6]:

P (Z(μ, σ2, t) ≤ z) = Φ

(
z − μt

σ
√

t

)

− e
2μz

σ2 Φ

(−z − μt

σ
√

t

)

(2)

where Φ(x) is the cumulative distribution of a standard normal distribution. Due
to the particular structure of the model, the time required to (i) fill fluid place
Decode Buf., (ii) transfer the content, and (iii) empty place Render Buf. are
all distributed according to Eq. 2. The simulator thus generates the instances of
the corresponding times tT , tD and tR, using the distribution in Eq. 2 and the

Second Order Fluid Performance Evaluation Models 213

corresponding values of parameters μ and σ2. The time required to handle a
frame of the process is thus computed as:

tF = max(tT , tD, tR) (3)

If tF < μF , then the frame will be displayed on time. Otherwise, the number of
frames that will be skipped in this process is evaluated as:

fs =
⌊

tF
μF

⌋

(4)

4 Experiments

In order to use the proposed model to study the target system, we set parameters
as follows, according to a tentative set of values that showed to be interesting
and realistic:

α = 1.4, kC = 20, fr = 50
μT = 2, σ2

T = μT /4,

μD = 1.5, σ2
T = μT /10,

μR = 2.5, σ2
R = 1.5μT

Recalling Sect. 3, in order to determine the average firing time of the Erlang
distribution μC , the aspect ratio a is computed it, so that the horizontal aperture
of the camera allows to completely capture, from the different views, objects at
a distance d1 < d. In particular, from geometrical considerations, it is possible
to derive that:

θh = 2 tan−1

(

d1
tan(180◦/N)

d − d1

)

(5)

Then, Eqs. 5 and 1 determine a(N) as function of the number of cameras N ,
setting d = 3, d1 = 1.5 and θv = 86◦.

Figure 4 shows the average duration of the transmission, decoding and ren-
dering, as well as of the entire processing. Since the aperture a(N) required to
frame the scene at the selected distance d1 decreases, it is interesting to note
that the time required to process a frame decreases as well, even if the number of
camera increases. The figure shows the 95% confidence intervals of the measures:
results were computed using Matlab on a commodity laptop.

In the previous study, the bottleneck of the system was the rendering.
Figure 5 considers cases where the bottleneck is moved to the transmission
(μT = 2.5, μD = 1.5, μR = 2) and to the decoding (μT = 2, μD = 2.5, μR = 1.5).
All cases are characterized by the same average time at the bottleneck, but differ
for what concerns σ2. As expected, when the bottleneck is on the component
with the highest variance, the system has the worst performances.

214 E. Barbierato et al.

Fig. 4. Duration of the stages and of the frame generation with different number of
cameras.

Fig. 5. Frame generation duration when changing the bottleneck of the system.

Second Order Fluid Performance Evaluation Models 215

Fig. 6. Frame-skip distribution for different numbers of camera.

The proposed technique easily allows to study the distribution of the number
of frames being skipped. This is an important quality measure, as it is shown in
Fig. 6. Specifically, by considering the chosen planned configuration, the proba-
bility of skipping more than one frame is very limited, and in most of the cases
the system is able to prepare the next image within the deadline. Since a rela-
tively high rate to keep realistic movements (50 frame per second, as opposed to
most of television programs that runs at 30 or 25) is considered, the proposed
system is capable of producing a good quality of service.

Finally, we analyze the effects of changing the coefficient of variation of the
processing time of a factor that ranges from 0.25 to 2.5 to explore the possibility
of choosing computing hardware in different ranges of performances and account
for variability effects. Figure 7 shows the average number of frame skipped, which
seems to grow linearly with the variance of the system, confirming that it is
generally well dimensioned with the reference configuration. To better investigate
this effect, Fig. 8 shows the average duration of the transmission, decoding and
rendering stages. As it can be seen, the effect on stages with a relatively low
coefficient of variation (transmission and decoding) is almost negligible. However,
the effect on the rendering stage, which is the one with the highest variability,
is appreciable. This stage is the one that in the end drives the performances of
the system and has to be considered in the definition of the specifications of the
computing subsystem.

216 E. Barbierato et al.

Fig. 7. Average frame-skip for different variance coefficients.

Fig. 8. Duration of the stages and of the frame generation with different variances of
the considered stages.

5 Related Work

Many aspects characterize tri-dimensional image processing. Firstly, the com-
pression of data, in guise of the MVD algorithm, present many interesting fea-
tures besides being open to new developments. Secondly, the capability of cre-

Second Order Fluid Performance Evaluation Models 217

ating a new view from a collection of generated views, is a technique articulated
in different concepts such as (i) view synthesis [3], (ii) view morphing and (iii)
image metamorphosis (see [12,14]). Other issues must be considered when the
pixel virtualisation process generates uninitialized elements, whose size can vary
according the distance from the reference system. The lack of precision linked
to these pixels can be however recovered by applying different techniques (for
example, see [7]).

The quality evaluation of the 3d image plays a crucial role in the tri-
dimensional cinema and television industry. Existing literature covers two main
fields regarding this subject, specifically stereoscopy, which aims at evaluat-
ing the quality data compression and Depth Image Based Rendering (DIBR).
Regarding the former, two interesting views on the problem are presented in [8],
which consider the ratio between weighted peak signal to noise ratio metric, and
[13], where the authors propose an alternative complementary framework for
quality assessment developing a structural similarity index. On the other hand,
MIBR has been exploited to solve problems related to the depth compression
and view prediction (see [11]).

6 Conclusions

This paper has presented a modeling approach to support the design of a novel
3D visualization system with an innovative MVD-based architecture.

The modeling approach aims to define a simulation technique that is founded
onto a Second Order Fluid Stochastic Petri nets numerical evaluation framework,
designed to be an extension of previous work of the authors. The proposed archi-
tecture has been analyzed with reference to different phenomena, showing sig-
nificant results that provide a first guidance for the prototyping phase. Results
seem to be promising both on the technical and the methodological point of view.
From the methodological point of view, future work will include an enhancement
of the modeling technique and its full integration into the SIMTHESys frame-
work. From the application point of view, a prototype of the target system will be
implemented, leveraging the results of the analysis, and including a refinement
of our MVD approach to allow an easier application within different systems and
scenarios.

References

1. Barbierato, E., Gribaudo, M., Iacono, M.: Modeling hybrid systems in
SIMTHESys. Electron. Notes Theor. Comput. Sci. 327, 5–25 (2016). https://
doi.org/10.1016/j.entcs.2016.09.021. The 8th International Workshop on Practical
Application of Stochastic Modeling, PASM 2016

2. Barbierato, E., Gribaudo, M., Iacono, M.: Simulating hybrid systems within
SIMTHESys multi-formalism models. In: Fiems, D., Paolieri, M., Platis, A.N.
(eds.) EPEW 2016. LNCS, vol. 9951, pp. 189–203. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46433-6 13

https://doi.org/10.1016/j.entcs.2016.09.021
https://doi.org/10.1016/j.entcs.2016.09.021
https://doi.org/10.1007/978-3-319-46433-6_13
https://doi.org/10.1007/978-3-319-46433-6_13

218 E. Barbierato et al.

3. Chen, S.E., Williams, L.: View interpolation for image synthesis. In: Proceedings
of the 20th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH 1993, pp. 279–288. ACM, New York (1993). https://doi.acm.org/10.
1145/166117.166153

4. McAllister, D.F., Zhou, Y., Sullivan, S.: Methods for computing color anaglyphs
(2010). https://doi.org/10.1117/12.837163

5. Davis, M.: Markov Models & Optimization. Monographs on Statistics & Applied
Probability. Chapman & Hall/CRC, Taylor & Francis, Boca Roton (1993)

6. Dieker, A.: Reflected Brownian Motion. American Cancer Society (2011). https://
doi.org/10.1002/9780470400531.eorms0711

7. Doan, H.N., Kim, B., Hong, M.-C.: Hole filling algorithm using spatial-temporal
background depth map for view synthesis in free view point television. In: Ho, Y.-S.,
Sang, J., Ro, Y.M., Kim, J., Wu, F. (eds.) PCM 2015, Part II. LNCS, vol. 9315, pp.
598–607. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24078-7 61

8. Ekmekcioglu, E., Worrall, S., De Silva, D., Fernando, A., Kondoz, A.M.: Depth
based perceptual quality assessment for synthesised camera viewpoints. In: Alvarez,
F., Costa, C. (eds.) UCMEDIA 2010. LNICST, vol. 60, pp. 76–83. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-35145-7 10

9. Gribaudo, M., Manini, D., Sericola, B., Telek, M.: Second order fluid models with
general boundary behaviour. Ann. Oper. Res. 160(1), 69–82 (2008). https://doi.
org/10.1007/s10479-007-0297-7

10. Hornung, A., Dekkers, E., Kobbelt, L.: Character animation from 2D pictures and
3D motion data. ACM Trans. Graph. 26(1), 1 (2007). https://doi.org/10.1145/
1189762.1189763

11. Martinian, E., Behrens, A., Xin, J., Vetro, A.: View synthesis for multiview video
compression. In: Picture Coding Symposium (2006)

12. Seitz, S.M., Dyer, C.R.: View morphing, pp. 21–30
13. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:

from error visibility to structural similarity. Trans. Image Process. 13(4), 600–612
(2004). https://doi.org/10.1109/TIP.2003.819861

14. Wolberg, G.: Digital Image Warping, 1st edn. IEEE Computer Society Press, Los
Alamitos (1994)

https://doi.acm.org/10.1145/166117.166153
https://doi.acm.org/10.1145/166117.166153
https://doi.org/10.1117/12.837163
https://doi.org/10.1002/9780470400531.eorms0711
https://doi.org/10.1002/9780470400531.eorms0711
https://doi.org/10.1007/978-3-319-24078-7_61
https://doi.org/10.1007/978-3-642-35145-7_10
https://doi.org/10.1007/s10479-007-0297-7
https://doi.org/10.1007/s10479-007-0297-7
https://doi.org/10.1145/1189762.1189763
https://doi.org/10.1145/1189762.1189763
https://doi.org/10.1109/TIP.2003.819861

Modeling the Effect of Parallel Execution
on Multi-site Computation Offloading

in Mobile Cloud Computing

Ismail Sheikh and Olivia Das(&)

Electrical and Computer Engineering, Ryerson University, Toronto, Canada
misheikh@ryerson.ca, odas@ee.ryerson.ca

Abstract. As the smart mobile devices are becoming an inevitable part of our
daily life, the demand for running complex applications on such devices is
increasing. However, the limitations of resources (e.g. battery life, computation
power, bandwidth) of these devices are restricting the type of applications that
can run on them. The restrictions can be overcome by allowing such devices to
offload computation and run parts of an application in the powerful cloud ser-
vers. The greatest benefit from computation offloading can be obtained by
optimally allocating the parts of an application to different devices (i.e. the
mobile device and the cloud servers) that minimizes the total cost—the cost can
be the response time of the application or the mobile battery usage, or both.
Normally, different devices can have different number of processing cores.
Unlike prior work in the modeling of computation offloading, this work models
the effect of parallel execution of different parts of an application—on different
devices (external parallelism) as well as on different cores of a single device
(internal parallelism)—on offloading allocation. This work considers each
device as a multi-server queueing station. It proposes a novel algorithm to
evaluate the response time and energy consumption of an allocation while
considering both the application workflow as well as the parallel execution
across the cores of different devices. For finding the near-optimal allocation(s), it
uses an existing genetic algorithm that invokes our proposed algorithm to
determine the fitness of an allocation. This work is more advantageous for cases
where a workflow has multiple tasks that can execute in parallel. The results
show that modeling the effect of parallel execution yields better near-optimal
solution(s) for the allocation problem compared to not modeling parallel exe-
cution at all.

Keywords: Modeling � Multi-site computation offloading � Parallel execution

1 Introduction

In recent years, smart mobile devices are turning into an inevitable part of our daily life.
Increasingly, more complicated applications are needed to run on these devices such as
face recognition or interactive gaming. However, the resource limitations (e.g. in
battery life, computation power and bandwidth) of these mobile devices are posing a
challenge to execute complex applications on them [1, 2].

© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 219–234, 2018.
https://doi.org/10.1007/978-3-030-02227-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_15&domain=pdf

One promising approach to deal with the resource limitations of mobile devices is
to use computation offloading. Computation offloading is a solution to improve the
capability of mobile applications by migrating heavy computation tasks of an appli-
cation to powerful servers in clouds [1, 3, 4]. Computation offloading can save energy
and prolong the battery life of mobile devices by running computation-intensive tasks
in the cloud servers, which will drain a device’s battery if executed locally [5–7].
Computation offloading can improve the response time of the mobile application by
running some tasks on the cloud servers (assuming that the processing speed of the
cloud servers is higher than the mobile device) [8]. However, there are certain factors
that adversely affect the efficiency of offloading, for example, the amount of data that
must be transferred among the mobile device and the cloud servers, and the commu-
nication bandwidth between them [9].

Thus, a mobile device should judiciously determine whether to offload computa-
tion, what tasks (i.e. parts) of an application should be offloaded, and to which servers
in the cloud [10]. The offloading decisions must be taken for all the tasks of an
application where one task may be dependent on other tasks for execution. The greatest
benefit from computation offloading can be achieved by finding the optimal allocation
for the tasks of an application to different devices (i.e. the mobile device and the cloud
servers) that minimizes the total cost—the cost can be the response time of the
application or the mobile battery usage, or both.

When the workflow—the execution sequence of tasks—of a mobile application is
not linear, i.e. it contains tasks that can execute in parallel, offloading allocation can
take advantage of this parallelism. It can reduce the response time of the application by
allocating these tasks to different devices (in this work, termed as external parallelism)
and to different processing cores of the devices (in this work, termed as internal
parallelism) so that they can execute in parallel. As a result, the energy consumption in
the mobile device will be affected as well.

The goal of this paper is to model the effect of parallel execution of different parts
of an application on the offloading allocation problem. Although several works have
addressed the offloading allocation problem [10–13], to the best of our knowledge this
work is the first work that models the effect of parallel execution of different parts of an
application—on different devices (external parallelism) as well as on different cores of
the devices (internal parallelism)—on offloading allocation.

Our work assumes that different devices can have different number of processing
cores. The cores inside a device are assumed to be homogenous (i.e. cores in a device
have the same processing speed). The processing speed can vary across the devices
though. Since finding the optimal multi-site offloading allocation is an NP-hard
problem [10], our work applies an existing genetic optimization to evaluate multiple
offloading allocations and subsequently arrive at the near-optimal allocation(s).

To evaluate an offloading allocation, we propose a new algorithm that computes the
application’s response time and the energy consumption on the mobile device. Our
algorithm accounts for the execution dependencies of the tasks and the parallel exe-
cution of tasks across the cores of a device as well as across different devices.

In comparison to prior modeling approaches, our work is more advantageous for
cases where the workflow of an application has multiple tasks that can execute in
parallel. Our results show that considering the effect of parallel execution yields better

220 I. Sheikh and O. Das

near-optimal solution for the allocation problem compared to not accounting for par-
allelism at all.

The rest of the paper is organized as follows. Section 2 introduces the definitions
for the key concepts related to computation offloading for mobile applications. Sec-
tion 3 describes the optimal offloading allocation problem and our novel algorithm to
compute the application’s response time and the energy consumption on the mobile
device for a given allocation. Section 4 illustrates the application of genetic algorithms
in our work to find the near-optimal offloading allocation. Section 5 provides some
evaluation and analysis of results. Section 6 reviews the related work. Finally, the
paper is concluded in Sect. 7.

2 Definitions and Assumptions

This section provides the definitions for the key concepts related to computation
offloading for mobile applications in this work.

Definition 1 (Mobile application). A mobile application is invoked by a mobile user
through his/her mobile device for a particular purpose. A mobile application typically
consists of several tasks.

Definition 2 (Mobile device). A mobile device is a cell-phone or any portable device
that can connect to the internet and request execution of application tasks from com-
puting clouds. The mobile device d0 is a homogenous multi-core device which is
modeled as a six tuple <b0, n0, s0, pc0, pd0, pi0>. Here b0 is the current battery
percentage of the mobile device, n0 is the number of cores in the mobile device, and for
each core—s0 is the processing speed in million instructions per second (MIPS), pc0 is
the power consumption for computing in Watts (W), pd0 is the power consumption for
data transfer (uploading or downloading data), pi0 is the power consumption while
being idle.

Definition 3 (Remote Cloud Servers). In this work, a mobile device can offload its
computation to more than one cloud servers. A cloud server is a homogenous multi-
core device (e.g. a virtual machine) that can execute tasks of a mobile application.
A cloud server dc where c = 1, 2, … K is modeled as a two tuple <nc, sc> where nc is
the number of cores in the cloud server and sc is the speed of each core (in MIPS).

Definition 4 (Device-to-device bandwidth). The current data bandwidth between any
two devices is known. This is necessary to estimate the communication time between
the two devices for data transfer. Let bandwidth(du, dv) be the bandwidth between
device du and device dv, where u, v = 0, 1, 2, …K and u is not equal to v.

Definition 5 (Mobile Application Workflow). The workflow of a mobile application
defines the execution sequence of the tasks. It is modeled as a workflow graph G = (T,
E) where the set of vertices T = {t1, t2, … tN} represents the N tasks of the mobile
application and the set of edges E = {e(ti, tj) such that ti; tj 2 T} defines the inter-
dependencies between the tasks.

Modeling the Effect of Parallel Execution on Multi-site Computation Offloading 221

A task of the mobile application receives some input data and produces some output
data. All the tasks of a mobile application may not be suitable for offloading to remote
cloud servers. A task may not be offloadable if it needs access to local components
(such as camera or other sensors) or its execution on a remote cloud server might cause
security problems.

In the workflow graph G, each task ti 2 T is modeled as a two tuple <oi, xi> where
oi is the type—true(T) for offloadable or false(F) for non-offloadable—of the task ti and
xi is the amount of CPU cycles (in million instructions (MI)) required for execution of
task ti. Each directed edge e(ti, tj) such that ti; tj 2 T represents the dependency of tj on
ti for execution. Each edge e(ti, tj) is associated with a value <xij> where xij represents
the amount of data that needs to be transferred between the devices executing the tasks
ti and tj for communication. This data transfer does not happen if the tasks ti and tj are
executed on the same device.

Let source(ti) be the set of tasks on which the task ti depends on for execution. Let
sink(ti) be the set of tasks which depends on task ti for execution. We define the level of
task ti, level(ti) be the maximum of the levels of the tasks on which ti depends on for
execution plus 1, i.e. level(ti) = max {level(source(ti))} + 1.

Example-1. Figure 1(a) shows a workflow graph example consisting of seven tasks
for a mobile application. Task t1 must be executed first. When it is finished, the tasks t2,
t3, t4 and t5 can execute in parallel. When task t2 finishes, task t6 can start its execution.
When all the tasks t3, t4, t5 and t6 are finished, task t7 can begin execution. Once task t7
is finished, the execution of the mobile application is complete.

In Fig. 1(a), the task t1 is non-offloadable task whereas tasks t2, t3, t4, t5, t6 and t7 are
offloadable tasks. Each task in this example needs 4MI for execution. Each edge
between ti and tj is labeled with the amount of data that needs to be transferred between
the devices executing the tasks ti and tj for communication.

<T,4>

t1

t2

t4

t5

t6

t7

t3<F,4>

<T,4>

<T,4>

<T,4>

<T,4>

<T,4>

<1>

<1>

<4>

<4>

<1>

<16>

<16>

<16>

<4>

4

t1

t2

t4

t5

t6

t3

1

2

2

2

4

1

1

1

2

2

1

4

4

4

t7

(a) (b)

Fig. 1. (a). (Left) A simple workflow graph. (b). (Right) The time-weighted workflow graph
corresponding to the offloading allocation [d0, d2, d1, d1, d1, d0, d2] for the graph in Fig. 1(a).

222 I. Sheikh and O. Das

Definition 6 (Offloading Allocation). In a multi-server offloading scenario, each
offloadable task of a mobile application can be allocated to run on either the mobile
device or on one of the remote cloud servers. Each non-offloadable task must be
allocated to run on the mobile device. An offloading allocation is defined as one such
allocation of tasks to devices. An offloading allocation a is represented as [f1, f2, … fN]
where each fi = du where u = 0, 1, 2, …K.

For a given offloading allocation [f1, f2, … fN], we can construct a time-weighted
workflow graph TWG = (T, E) from the workflow graph G as follows: Each vertex ti
2 T is associated with a weight wi that represents the time to execute the task ti on
device fi. wi can be computed by dividing the amount of CPU cycles required for
execution of task ti by the processing speed of a core for device du (where fi = du), i.e.
wi = xi/su. Each e(ti, tj) such that ti; tj 2 T is associated with a weight wij that repre-
sents the communication time needed for transferring the data when task ti will be
executed on device du (i.e. fi = du) and task tj will be executed on device dv (i.e.
fj = dv). This communication time depends on the amount of the data that needs to be
transferred and the bandwidth between the devices du and dv. Thus, wij can be com-
puted as: wij = xij/bandwidth(du, dv) where du 6¼ dv and wij = 0 otherwise.

Let us refer to the workflow graph of Example-1 (see Fig. 1(a)). We consider three
devices here—the mobile device d0 <b0, n0, s0, pc0, pd0, pi0> = <95%, 1, 1, 0.5, 0.25,
0.15>, and two cloud servers d1 <n1, s1> = <1, 2> and d2 <n2, s2> = <1, 4>. Let
bandwidth(d0, d1) = 1 MB/sec, bandwidth(d0, d2) = 2 MB/sec, bandwidth(d1, d2) = 4
MB/sec. For the offloading allocation [d0, d2, d1, d1, d1, d0, d2], the time-weighted
workflow graph corresponding to Fig. 1(a) is shown in Fig. 1(b). In this Figure, all the
weights (on the vertices and the edges) are in seconds.

The computation of the response time RTa and the energy consumption of the
mobile device Ea for an offloading allocation a is given in the next section.

3 The Optimal Offloading Allocation Problem

Computation offloading can save battery energy for a mobile device by running
computation-intensive tasks on the cloud servers which otherwise would have depleted
battery of the mobile device if executed locally. Computation offloading can improve
response time of the mobile application by running some tasks on the cloud servers
(assuming that the processing speed of the cloud servers is higher than the mobile
device). However, the amount of data that must be transferred among the devices and
the communication bandwidth between them may adversely affect the application
performance.

Depending on the current battery energy of the mobile device, the user may choose
to minimize either response time or energy or both. The greatest benefit from com-
putation offloading can be obtained by finding the optimal offloading allocation that
minimizes the user-desired measures. The optimization problem can be a single-
objective or a multi-objective optimization problem. For example, if the user chooses to
minimize the response time and the mobile battery energy together, the multi-objective
optimization problem can be stated as:

Modeling the Effect of Parallel Execution on Multi-site Computation Offloading 223

Min RTaf g andMin Eaf g for a 2 AwhereA is the set of all possible allocations: ð1Þ

Next, we show how to compute these two measures RTa and Ea for an offloading
allocation a. We show this for two different cases: The first case does not consider
parallel execution of tasks. The second case considers parallel execution of tasks.

3.1 Not Considering Parallel Execution of Tasks

The previous works [e.g. 10, 11] on computation offloading expressed the response
time of a mobile application as the sum of the task execution times and the commu-
nication times. These works assumed that the task executions are sequential although
there may exist some tasks which—having been allocated on separate devices—can run
simultaneously, depending on the workflow. The external parallelism among tasks was
thus ignored. Additionally, the queueing within a device as well as the multiple cores in
a device were not modeled. Thus, the internal parallelism among the tasks executing
within a device was also ignored while making the computation offloading decision.
Thus, the modeling of the effect of parallel execution, which may have resulted in a
better allocation, was left out.

Following the philosophy of previous works [e.g. 10, 11], if we ignore both internal
and external parallel execution of tasks, the response time RTa for an offloading
allocation a = [f1, f2, … fN] can be computed from its time-weighted workflow graph
as:

RTa ¼
X

ti2T wi þ
X

eðti;tjÞ2E wij ð2Þ

The previous work [e.g. 10] on multi-site computation offloading expressed the
mobile battery energy consumption for executing a mobile application as the sum of—
execution energy consumed for running the locally allocated tasks, data transfer energy
consumed for communication of the mobile device with the other devices, and idle
energy consumed when the mobile device is idle (the mobile device is considered idle
in two cases—one, when tasks are executing in cloud servers (not in the mobile
device), and second, when communication occurs between the cloud servers with no
involvement of the mobile device). The computation assumed that the mobile device is
a single core. This is because for a multi-core mobile device, it may be possible that
one core is idling while others are either executing tasks or transferring data. Conse-
quently, the energy consumption of the mobile device gets decided depending on
which cores are idling, which cores are executing tasks, and which cores are trans-
ferring data. The aforementioned computation thus did not consider possible internal
parallelism of the mobile device.

Following the philosophy of previous work [e.g. 10], if we ignore the internal
parallel execution of tasks (i.e. internal to the mobile device) in the context of our work,
the energy consumption Ea for an offloading allocation a = [f1, f2, … fN] can be
computed from its time-weighted workflow graph and the power consumption speci-
fication of the mobile device as:

224 I. Sheikh and O. Das

Ea ¼
X

ti 2 T ;
fi ¼ d0

wi � pc0 þ
X

ti 2 T ;
fi 6¼ d0

wi � pi0 þ
X

e ti; tj
� � 2 E;
fi 6¼ fj and

either fi ¼ d0
or fj ¼ d0

wij � pd0 þ
X

e ti; tj
� � 2 E;
fi 6¼ fj 6¼ d0

wij � pi0

ð3Þ

Let us refer Fig. 1(b) of Example-1 that shows the time-weighted workflow graph
for the offloading allocation a = [d0, d2, d1, d1, d1, d0, d2]. Using (2), the response time
for this allocation will be:
RTa = (4 + 1 + 2 + 2 + 2 + 4 + 1) + (2 + 1 + 1 + 1 + 2 + 4 + 4 + 4 + 2) = 37 s

Using (3), the energy consumption on the mobile device for this allocation will be:
Ea ¼ 0:5 � 4þ 4ð Þ þ 0:25 � 2þ 1þ 1þ 1þ 2þ 2ð Þ þ 0:15 � 4þ 4þ 4ð Þ þ½
1þ 2þ 2þ 2þ 1ð Þ� ¼ 9:25 J:

3.2 Considering Parallel Execution of Tasks

We now compute RTa and Ea for an offloading allocation a considering both kinds of
parallelism, internal and external.

To model the internal parallelism of a device du (where u = 0, 1, 2, … K) with ru
cores, we model du as a multi-server queueing station that consists of a job queue and ru
number of identical servers. To model the external parallelism, we assume that the
parallelism can exist among the devices and each device maintains its own queue.

Let us assume that a job can be scheduled to execute on a device. There can be
three kinds of jobs with respect to the execution of task ti:

• receiveJob(tj, ti): The execution of this job represents receiving of data—produced
by task tj—by the device hosting task ti. This data will be needed for executing the
task ti. This job is relevant when tasks tj and ti are hosted in different devices.

• executeJob(ti): The execution of this job represents execution of the task ti.
• sendJob(ti, tj): The execution of this job represents sending of data—produced by

task ti—from the device hosting task ti to the device hosting task tj. This data will be
needed for executing the task tj. This job is relevant when tasks ti and tj are hosted in
different devices.

Each job has arrival time, start time, service time and end time. The arrival time
denotes the time when the job can be started to run if a server in the scheduled device is
free. Otherwise, if all the servers are busy, then the job has to wait in the queue of the
scheduled device. The start time denotes the time instant when one of the servers of the
scheduled device actually starts processing the job. The service time denotes the time
needed for processing the job. The end time denotes the time instant when the job
processing is complete, i.e. end time = start time + processing time. Each job has a
depth. The depth of a job captures its dependencies on other jobs. For example, a job
with depth 2 will need information from one or more jobs at depth 1.

Modeling the Effect of Parallel Execution on Multi-site Computation Offloading 225

Each core in a device can be either in busy state or idle state. The core is in busy
state means that it is busy processing a job. The core is in idle state means that the core
is idle. Each core has computation time and transmission time associated with it. The
computation time denotes the time the core spends in executing tasks. The transmission
time denotes the time the core spends in sending or receiving data.

To compute RTa and Ea for an offloading allocation a = [f1, f2,… fN] from its time-
weighted workflow graph, we propose the following new algorithm:

226 I. Sheikh and O. Das

Now let us refer to Fig. 1(b) of Example-1 that shows the time-weighted workflow
graph for the offloading allocation a = [d0, d2, d1, d1, d1, d0, d2]. In this example, each
of the three devices (the mobile device d0 and the two cloud servers d1 and d2) has only
one core. Hence, we do not have internal parallelism here. But we do have external
parallelism since the three devices can execute in parallel.

The Step-1 and Step-2 of our algorithm generates the jobs, schedules them in
different devices and sets their depths, arrival times, service times, start times and end
times. We found that the mobile device spent 8 s for computation, and 9 s for data
transmission. Also, the end time of job execute(t7) was found to be 30 s. As per Step-3
of our algorithm, we compute:
RTa = end time of job execute(t7) since this job has the highest depth = 30 s
Ea = 0.5 * 8 + 0.25 * 9 + 0.15 * (30-17) = 8.2 J.

Thus, we find from Sects. 3.1 and 3.2 that for an allocation a = [d0, d2, d1, d1, d1,
d0, d2] of Example-1, both the measures, RTa and Ea are different when we consider
external parallelism as opposed to not considering it.

4 Solution

To determine the optimal offloading allocation(s) of tasks to different devices that will
minimize one or more performance measures, i.e., to solve the optimization problem
given in (1), we have used genetic algorithm based solutions.

A genetic algorithm is a population based optimization method that evolves a
population of candidate solutions (called individuals) toward better solutions. For
single-objective optimization problems, it tries to find a globally optimized solution.
For multi-objective optimization problems, it is used to approximate the Pareto optimal
solutions in a single optimization run [14].

A genetic algorithm typically requires two things:

(i) a genetic representation of solutions. In our work, a solution represents a possible
offloading allocation of tasks to different devices and it is encoded in an array of N
integers x1, x2, … xN, (0� xi �K) where N is the total number of tasks in the
mobile application. Each xi represents a task and its integer value represents its
allocation to a device. Here, the integer value 0 represents the mobile device d0,
integer value 1 represents the cloud server d1, integer value K represents the cloud
server dK.

(ii) fitness function(s) to evaluate the solutions. In this work, we use the objective
function RTa or Ea or both to calculate the fitness of each individual.

A brief outline of a genetic algorithm that iteratively finds the near-optimal solution
(s) is as follows. First, the initial search population is generated during the initialization
process. The search population in each iteration is called a generation. Then, for each
iteration, individuals are selected, recombined by mutation or crossover operations to
generate offspring, and finally the search population is updated with these offsprings
using a replacement strategy. This procedure is repeated until some termination con-
dition is met, usually when the maximum number of evaluations of the solutions is
reached.

Modeling the Effect of Parallel Execution on Multi-site Computation Offloading 227

In our work, we have implemented our proposed algorithm (that considers both
internal and external parallelism) given in Sect. 3.2 to compute the measures RTa and
Ea. To compare the scenario of parallelism with that of non-parallelism, we have also
implemented the computations of RTa and Ea, given in Sect. 3.1, that ignores parallel
execution of tasks. All our algorithms have been implemented in Java. We have
combined our implementations in a genetic algorithm framework [15] so that it can
invoke our algorithms for evaluating fitness of solutions.

5 Results and Discussions

In this section, we evaluate our offloading allocation algorithm to answer the following
questions: (i) Does consideration of parallel execution of different tasks of an appli-
cation while solving the offloading allocation problem influence the optimal solution?
(ii) What is the effect of multi-core devices on the optimal solution of the offloading
allocation problem?

5.1 Setup

To evaluate our offloading allocation algorithm, we adapt the call graph of a face
recognition application from the work of Wu et al. [11]. We generate the workflow
graph, as shown in Fig. 2, from that call graph. In their call graph, Wu et al. has
specified the execution times in the mobile device, in milliseconds, for each task. For
our workflow graph, we obtain the xi of task i as follows: we assume that the mobile
device has one core with processing speed of 1000MIPS. Using this assumption, we
convert the execution time of task i from milliseconds to million instructions. Similar to
Wu et al., we assume that all the tasks are offloadable tasks except main and
checkAgainst which are non-offloadable.

In our analysis, we consider offloading to a maximum of two cloud servers. Our
assumptions of the specifications of mobile device, cloud servers, and device-to-device
bandwidth is given in Table 1. We assume the values for pc0, pd0, pi0 similar to Wu
et al. In each of the following two sub-sections, we evaluate three cases: (i) No-
offloading (Case 1)—In this case, all the tasks must execute locally in the mobile
device d0. (ii) Single-site offloading (Case 2)—In this case, we assume that there is one
cloud server d1 available for computation offloading. Two-site offloading (Case 3)—In
this case, we assume that there are two cloud servers d1 and d2 available for compu-
tation offloading.

Our evaluations are run on a machine with Intel Core i7-6800 K CPU with
3.4 GHz with 16 GB of RAM. We have applied NSGA-II genetic algorithm [14, 15]
with binary tournament selection with Pareto dominance and crowding distance, subset
crossover and uniform mutation operators. We set the probability of applying the
subset crossover operator to a decision variable to be 0.9. We further set the probability
of applying the uniform mutation operator to a decision variable to be 1/(number of
decision variables, i.e. number of tasks) = 1/15. We set the population size to 1000 and
the maximum number of evaluations of solutions to 100000. Each run took a maximum
of 21 s to obtain the near-optimal solution(s).

228 I. Sheikh and O. Das

5.2 Considering Versus not Considering Parallel Execution in Finding
Optimal Offloading Allocation

This section tries to answer the question: Does consideration of parallel execution of
different tasks of an application while solving the offloading allocation problem
influences the optimal solution or not. We assume every device has one processing
core. We therefore consider only external parallelism while comparing parallel versus
non-parallel execution in this section.

Most often response time of an application is chosen to be the objective function.
The second and third column of Table 2 shows the minimum response time for the
three cases. Each case is evaluated while considering (Sect. 3.2) versus not considering
(Sect. 3.1) the parallel execution of tasks. We observe that regardless of considering or
not considering parallel execution, the minimum response time is the same for No-
offloading case. This is because all the tasks must be allocated in the mobile device and

Jama.Matrix
:transpose

<T,192>

<0.003>

<12>

<12.003>
t1

<T,68.6>

Jama.Matrix
:times

t2

<T,33>

<T,2.2>

Jama.Matrix
:eig

t4

<T,516.6>

EigenFaceCreator
:submit

JPGFile
:readImage

t7

<T,516.5>

EigenFaceCreator
:computeBundle

t10

<T,722.2>

EigenFaceCreator
:submitSet

t13

<T,1464>

EigenFaceCreator
:readFaceBundles

t15

<F,1555.3>

TestFaceRecognition
:main

t14

<F,137.8>

EigenFaceCreator
:checkAgainst

t12

<T,35.9>

FaceBundle
:submitFace

EigenFaceCreator
:saveBundle

<T,2.2>

FaceBundle
:compute

<19.806>

<10.206>

<10.204>

<0.0>

<10.206>

<0.6>

<0.0002>

<0.00029>
t5

<T,77.7>

t11

<T,80.7>

EigenFaceCreator
:readImage

t8

<T,75.2>

JPGFile
:<init>

<0.0> <0.6752>
<1.0242>

t9

t3

t6

Fig. 2. Workflow graph of a face recognition application. It is generated from the call graph of
[11]. A circle represents a task node. Below a task node, the top bold word is a class name, the
bottom bold word after a colon is a method name of that class.

Table 1. Specifications of mobile device, cloud servers, device-to-device bandwidth

Parameter Values

Mobile device, d0 <b0, n0, s0, pc0, pd0, pi0> <10%, 1 core, 1000MIPS, 0.9 W, 1.3 W, 0.3 W>
Cloud Server-1, d1 <n1, s1> <1 core, 2000MIPS>
Cloud Server-2, d2 <n2, s2> <1 core, 4000MIPS>
Bandwidth between any two devices 1 MB/s

Modeling the Effect of Parallel Execution on Multi-site Computation Offloading 229

that the device consists of only one core forcing the tasks to execute sequentially. For
the other two cases, we see that considering the external parallelism results in a
response time that is lower than the scenario where parallelism is ignored. The near-
optimal solutions (not shown) have also been found to be different.

If the remaining battery energy of the mobile device is low when the application is
to be invoked, the energy consumption of the mobile device can be chosen as the
objective function. The fourth and fifth column of Table 2 shows the minimum energy
consumption for the three cases. We see that considering parallelism for Single-site and
Two-site offloading cases results in lower energy consumption than the scenario where
parallelism is ignored.

The results thus demonstrate that modeling the effect of external parallelism yields
better near-optimal solution for the offloading allocation problem in comparison to not
modeling parallelism at all.

5.3 Evaluating the Effect of Multi-core Devices on Optimal Offloading
Allocation

This section tries to answer the question: What is the effect of multi-core devices on the
optimal solution of the offloading allocation problem? We consider both internal and
external parallelism here. We evaluate three cases—Case-1, Case-2 and Case-3 to show
the effect of external parallelism. We vary the cores in each device—1-core versus 4-
cores—to show the effect of internal parallelism.

We consider minimizing both response time of the application and energy con-
sumption of the mobile device together by solving the multi-objective optimization
problem given in (1). We may not however end up with a single best solution that
minimizes both objectives at the same time since a small improvement in one objective
may deteriorate at least one other objective. Instead, we will have a Pareto-optimal set
of solutions. Pareto optimality considers a solution to be better or worse in comparison
to another solution only if it is better with respect to all objectives or worse with respect
to all objectives. Any two solutions are non-dominated if neither dominates the other,
i.e. neither one is better than the other. The set of all non-dominated solutions is
captured by the Pareto-optimal set of solutions [15, 16].

For each case-core pair, Table 3 shows the values of the two objective functions for
the Pareto-optimal set of solutions. A bold value in the table represents the minimum

Table 2. Near-optimal response time and energy consumption for the three cases. Parallel
execution versus no parallel execution (1-core in each device)

Case Response time (msec) Energy consumption (mJ)
Parallel
execution

No parallel
execution

Parallel
execution

No parallel
execution

No-offloading (Case-1) 5514.9 5514.9 4963.4 4963.4
Single-site offloading (Case-2) 3313.0 3700.1 2142.2 3874.6
Two-site offloading (Case-3) 2434.2 2792.5 1861.4 2785.6

230 I. Sheikh and O. Das

value of an objective function among the solutions in a Pareto-optimal set—for
example, corresponding to the Pareto-optimal set for the case-core pair (Case-2, 1-
core), the minimum response time is 3313.0 ms, and the minimum energy consump-
tion is 2142.2 mJ.

For Case-1, we see that while the response time decreases, the energy consumption
increases as we increase the number of cores in the mobile device from 1 to 4.

For the pair (Case-2, 1-core), there are four solutions in the Pareto-optimal set. If
we have all the battery energy left in our mobile device, then the solution that yields the
minimum response time of 3313.0 ms will be our choice. However, if we have less
amount of energy left in the mobile device and as a result if saving energy becomes our
prime concern, then the solution that yields minimum energy of 2142.2 mJ will be our
choice. On the other hand, if both response time as well as energy consumption are our
concern, then we have to make a selection from the last two solutions depending on our
acceptable level of response time and energy consumption.

The solution for the pair (Case-2, 4-core) results in significant decrease in response
time and energy consumption in comparison to the pair (Case-1, 4-core) by offloading
some tasks to the cloud server d1.

From Table 3, row 1 (i.e. Case-1), we see that when the number of cores increases
from 1 to 4, the response time decreases from 5514.9 ms to 4843.1 ms and the energy
consumption increases from 4963.4 mJ to 9120.7 mJ. We see similar effect for Case-2
and Case-3 as well, that is, as the number of cores in the mobile device increases, the
response time decreases and the energy consumption of the mobile device increases.

Let us consider Case-1 versus Case-2 versus Case-3 with 1-core in each device. We
find that the near optimal solution for Case-3 yields a response time of 2434.2 ms and
an energy of 1861.4 mJ which is lower than the response time of Case-1 (5514.9 ms)
and Case-2 (3313.0 ms) as well as energy consumption of Case-1 (4963.4 mJ) and
Case-2 (2142.2 mJ). We see this improvement in response time because two cloud
servers d1 and d2 are utilized simultaneously in Case-3. Moreover, in Case-3 the mobile
device is doing less computation—in comparison to Case-1 and Case-2—by offloading
some tasks to the two cloud servers. Consequently less energy is consumed in the
mobile device. Thus, two-site offloading is more beneficial than the other two cases.

Table 3. Effect of number of cores in each device

Case 1-core in each device 4-cores in each device
RT (ms) Energy (mJ) RT (ms) Energy (mJ)

No-offloading (Case-1) 5514.9 4963.4 4843.1 9120.7
Single-site offloading (Case-2) 3370.5 2142.2 3170.3 4939.8

3313.0 2193.9
3331.6 2177.2
3351.8 2159.0

Two-site offloading (Case-3) 2434.2 1861.4 2364.4 3968.4

Modeling the Effect of Parallel Execution on Multi-site Computation Offloading 231

In summary, depending on the mobile application workflow, increase in the internal
parallelism results in the decrease in response time but increase in energy consumption
of the mobile device. On the other hand, exploiting larger number of cloud servers (i.e.
increasing the external parallelism) may be beneficial both in terms of response time
and energy consumption.

6 Related Work

Computation offloading is a promising solution to deal with the resource limitations of
mobile devices. Surveys on computation offloading techniques can be found in [1, 13].
Research themes in computation offloading are mostly related to drawing optimal
offloading decisions and to develop offloading infrastructures [e.g. 17]. Since in this
paper we focus on the offloading decision, we will review the related work and explain
the differences with ours.

Most of the previous works have focused on single-site offloading, where an
application is divided between the mobile device and a single remote cloud server [eg.
6, 11, 12, 18–22]. On the contrary, offloading to multiple remote cloud servers may
result in more parallel computation and hence reduced response time as well as reduced
energy consumption in the mobile device [4]. We are aware of only a few works that
considered such multi-site offloading [10, 23–25]. Yet, in these works, the response
time is formulated as a sum of the task execution times and the communication times.
Thus, these works assume a sequential execution of the tasks in their decision model.
Therefore, although tasks allocated on separate devices are able to run simultaneously,
these works do not consider the effect of this external parallelism in the response time
formulation.

Similarly, when the multi-site works formulate the energy consumption model for
the mobile device, it is done as a sum of the execution energy, data transfer energy, and
idle energy consumed by the device assuming that the device is a single-core mobile
device. Since these works do not consider multiple cores (that can execute simulta-
neously), the effect of the internal parallelism is ignored in such energy consumption
model.

Overall, unlike us, to the best of our knowledge, none of the modeling approaches
on multi-site computation offloading consider the effect of parallelism—either internal
or external—in their offloading decision model for response time and/or energy con-
sumption objectives.

7 Conclusions

This paper models multi-site computation offloading for mobile applications. Our work
goes beyond existing modeling approaches by considering parallel execution of tasks
during offloading decision in contrast to other works that primarily focused on
sequential executions. Unlike prior models in computation offloading, our work con-
siders the effect of parallel execution of different parts of an application—on different
devices (external parallelism) as well as on the different cores of the devices (internal

232 I. Sheikh and O. Das

parallelism)—on offloading allocation. For a given allocation, we proposed a novel
algorithm to compute the response time and energy consumption taking into account
the external and internal parallelism. To compute near-optimal solution(s), we used a
genetic algorithm that invokes our proposed algorithm to evaluate the fitness of
solutions. The results show that modeling the effect of parallel execution yields better
near-optimal solution for the allocation problem compared to not modeling the parallel
execution at all.

Our offloading technique can be used to dynamically partition a mobile application
into local and remote cloud servers while minimizing the total cost where the cost can
be energy consumption or response time of an application, or both. The dynamic nature
is addressed by taking the user’s context information such as bandwidth, user-
preference on one or more objectives (that need to be minimized), etc. into account. To
use our technique dynamically, one need to use static analysis to obtain the workflow
graph of an application, and then use runtime profiling information to obtain the time-
weighted workflow graph based on the user’s context. Once such a graph is obtained,
one can run our optimization algorithm to find the optimal offloading decision.

In future, we would like to consider the variation of the user’s context—over a
period of time—that may happen due to the movement of the mobile user across
locations.

In this work, we assumed that a device is a homogenous multi-core device. We
further plan to study the effect of parallelism for heterogeneous multi-core devices. Our
future work rests on integrating our offloading decision-maker with software frame-
work that will automatically distribute the tasks of a mobile application to cloud servers
based on the near-optimal offloading allocation generated by our decision-maker.

Acknowledgment. We acknowledge support of NSERC through Discovery Grant of Olivia
Das.

References

1. Kumar, K., Liu, J., Lu, Y.-H., Bhargava, B.: A survey of computation offloading for mobile
systems. Mob. Netw. Appl. 18(1), 129–140 (2013)

2. Liu, F., et al.: Gearing resource-poor mobile devices with powerful clouds: architectures,
challenges, and applications. IEEE Wirel. Commun. 20(3), 14–22 (2013)

3. Kumar, K., Lu, Y.-H.: Cloud computing for mobile users: can offloading computation save
energy? Computer 43(4), 51–56 (2010)

4. Zhang, W., Wen, Y., Wu, D.O.: Energy-efficient scheduling policy for collaborative
execution in mobile cloud computing. In: IEEE INFOCOM, pp. 190–194 (2013)

5. Qian, H., Andresen, D.: Extending mobile device’s battery life by offloading computation to
cloud. In: 2nd ACM International Conference on Mobile Software Engineering and Systems,
pp. 150–151 (2015)

6. Yang, K., Ou, S., Chen, H.-H.: On effective offloading services for resource-constrained
mobile devices running heavier mobile Internet applications. IEEE Commun. Mag. 46(1),
56–63 (2008)

Modeling the Effect of Parallel Execution on Multi-site Computation Offloading 233

7. Xian, C., Lu, Y.-H., Li, Z.: Adaptive computation offloading for energy conservation on
battery-powered systems. In: International Conference on Parallel and Distributed Systems,
pp. 1–8 (2007)

8. Wu, H., Wang, Q., Wolter, K.: Tradeoff between performance improvement and energy
saving in mobile cloud offloading systems. In: IEEE International Conference on
Communications Workshops, pp. 728–732 (2013)

9. Liu, Y., Lee, M.J., Zheng, Y.: Adaptive multi-resource allocation for cloudlet-based mobile
cloud computing system. IEEE Trans. Mob. Comput. 15(10), 2398–2410 (2016)

10. Sinha, K., Kulkarni, M.: Techniques for fine-grained, multi-site computation offloading. In:
11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pp. 184–194 (2011)

11. Wu, H., Knottenbelt, W., Wolter, K., Sun, Y.: An optimal offloading partitioning algorithm
in mobile cloud computing. In: Agha, G., Van Houdt, B. (eds.) QEST 2016. LNCS, vol.
9826, pp. 311–328. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43425-4_21

12. Deng, S., Huang, L., Taheri, J., Zomaya, A.Y.: Computation offloading for service workflow
in mobile cloud computing. IEEE Trans. Parallel Distrib. Syst. 26(12), 3317–3329 (2015)

13. Wu, H.: Multi-objective decision-making for mobile cloud offloading: a survey. IEEE
Access 6, 3962–3976 (2018)

14. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

15. Hadka, D.: MOEA Framework - A Free and Open Source Java Framework for
Multiobjective Optimization. Version 2.12 (2015). http://www.moeaframework.org/

16. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms:
empirical results. Evol. Comput. 8(2), 173–195 (2000)

17. Kemp, R., Palmer, N., Kielmann, T., Bal, H.: Cuckoo: a computation offloading framework
for smartphones. In: Gris, M., Yang, G. (eds.) MobiCASE 2010. LNICST, vol. 76, pp. 59–
79. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29336-8_4

18. Gu, X., Messer, A., Greenberg, I., Milojicic, D., Nahrstedt, K.: Adaptive offloading for
pervasive computing. IEEE Pervasive Comput. 3(3), 66–73 (2004)

19. Cuervo, E., et al.: MAUI: making smartphones last longer with code offload. In: MobiSys,
pp. 49–62 (2010)

20. Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: CloneCloud: elastic execution
between mobile device and cloud. In: EuroSys, pp. 301–314 (2011)

21. Wu, H., Wolter, K.: Tradeoff analysis for mobile cloud offloading based on an additive
energy-performance metric. In: 8th International Conference on Performance Evaluation
Methodologies and Tools (VALUETOOLS), pp. 90–97 (2014)

22. Li, Z., Wang, C., Xu, R.: Computation offloading to save energy on handheld devices: a
partition scheme. In: International Conference on Compilers, Architecture, and Synthesis for
Embedded Systems (CASES), pp. 238–246 (2001)

23. Niu, R., Song, W., Liu, Y.: An energy-efficient multisite offloading algorithm for mobile
devices. Int. J. Distrib. Sens. Netw. 9(3), 1–6 (2013)

24. Ou, S., Yang, K., Liotta, A.: An adaptive multi-constraint partitioning algorithm for
offloading in pervasive systems. In: Fourth Annual IEEE International Conference on
Pervasive Computing and Communications (PERCOM), pp. 116–125 (2006)

25. Terefe, M.B., Lee, H., Heo, N., Fox, G.C., Oh, S.: Energy-efficient multisite offloading
policy using Markov decision process for mobile cloud computing. Pervasive Mob. Comput.
27, 75–89 (2016)

234 I. Sheikh and O. Das

http://dx.doi.org/10.1007/978-3-319-43425-4_21
http://www.moeaframework.org/
http://dx.doi.org/10.1007/978-3-642-29336-8_4

An OpenFlow Controller Performance
Evaluation Tool

Zhihao Shang(B), Han Wu, and Katinka Wolter

Free University of Berlin, Berlin, Germany
{zhihao.shang,han.wu,katinka.wolter}@fu-berlin.de

Abstract. SDN (Software Defined Networking) provides a way to flex-
ible networks and makes the management easy. This is achieved by the
programmable controllers. OpenFlow is a popular SDN protocol. In an
OpenFlow network, the controller is the only part implemented logically,
all the switches can only execute the instructions from the controller.
Therefore, it is important to understand how a controller impacts an
OpenFlow network for researchers and network managers. In this paper,
we present a user-friendly OpenFlow controller performance evaluation
tool that aims to help network researchers building performance models
of OpenFlow controllers and network manager to understand the behav-
ior of OpenFlow controllers. The tool uses a virtual OpenFlow switch
sending OpenFlow messages to a controller and measures the response
time. It fits the response time to a hyper-Erlang distribution. Through
the fitted distribution, The tool can offer more clearly performance char-
acteristic than the existing tools. The tool can export its result into JMT,
it helps users to build and evaluate their performance models.

Keywords: Controller performance · Software defined networking
Distribution fitting

1 Introduction

SDN has emerged as an important way towards the future network. The key
idea behind is a separation between the data plane and the control plane. The
control plane is split from the network devices and implemented as a central-
ized controller. SDN introduces new possibilities for network management and
operation by the programmable controllers, and it solves classical network man-
agement problems [11]. The SDN controllers manage all the data plane resources
and provide interfaces to network applications.

OpenFlow [13] is a popular SDN protocol. It has matured strongly in the
last decade. In OpenFlow networks, the switches send requests to the controllers
when a new flow arrives. The controllers manage all the flows, build a global
view of the network and offer interfaces to the network applications. A typical
OpenFlow network is shown in Fig. 1. All the switches connect to a centralized
controller. If a packet arrives at a switch and the switch find any matches for
c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 235–249, 2018.
https://doi.org/10.1007/978-3-030-02227-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_16&domain=pdf

236 Z. Shang et al.

the packet, the packet will forwarded following the instructions. If there are no
matches for the packet, the packet will be sent to the controller via a packet-in
message, and the controller install a flow entry into the switch, then the other
packets in the same flow will not trigger packet-in messages.

Fig. 1. A typical OpenFlow network

The performance of the controllers impact the performance of the networks
significantly, especially in a large network [3]. Most studies on SDN focus on avail-
ability, scalability and functionality. Understanding the performance of Open-
Flow controllers is an essential issue for wide deployment. The latency of flow
entry installations and modifications must be considered during the design and
deployment phase of OpenFlow networks. The controller plays an important role
in an OpenFlow network. Since the OpenFlow specification does not dictate how
a controller should be implemented, there are different controllers developed by
different organizations in different programming languages. That makes each
controller better suited for certain scenarios than others. The current OpenFlow
ecosystem is fragmented due to the variety of controller platforms. We must
understand the difference between the controllers to choose an implementation
or to analyze the behavior of an OpenFlow network.

There are already benchmark tools to analyze the performance of OpenFlow
controller, such as Cbench [17]. Cbench can provide users the minimum, maxi-
mum throughput as well as the mean and variance of throughput. This may be
enough for some users. But researchers who want to build a performance model
for OpenFlow controller or people who want to understand the reason of the
behaviors may need more detail. The mean and variance of response time are
the most commonly used metrics in application performance management. How-
ever, in reality, the response time often has a long tail, the mean and variance
cannot provide a deep insight into of the performance. So it is better to provide
a distribution of response time, in this paper, we introduce a user friendly tool to

An OpenFlow Controller Performance Evaluation Tool 237

obtain the performance of OpenFlow controllers. Unlike other benchmark tools
that focus on throughput, our tool helps users build models for OpenFlow net-
works and evaluate the performance of the controllers with the models. So we
can understand the behavior of OpenFlow controllers and get a detailed analysis
of the performance. Our tool aims to provide a simple way to analyze the per-
formance of OpenFlow controllers. They can estimate the performance of their
network design with the model. To achieve this, we develop a tool named OFCP
to help researchers building models. There is a virtual switch in OFCP, which
can send messages to and receive messages from an OpenFlow controller. Packet-
in messages are the most frequent in an OpenFlow channel. So this tool focuses
on the performance of the controller processing the packet-in messages. The tool
sends a packet-in messages to an OpenFlow controller, receives a flow-modify
message, records the round trip time, and fits the times into a hyper-Erlang
distribution.

In this paper, we discuss our OpenFlow controller performance evaluation
tool. It is a tool with a graphical user interface to help users build performance
model of OpenFlow controllers. We provide a discussion of the implementation
and the use of OFCP in common tasks. OFCP implements a virtual switch to
measure the response time of OpenFlow controllers and a distribution fitting
algorithm to fit the response time to a hyper-Erlang distribution. Our focus will
be on the illustration of OFCP in typical scenarios. With the tool, users can
gather the response time of OpenFlow controllers and fit the response time with
a hyper-Erlang distribution. Furthermore, they can export the result into other
modeling tools to build and evaluate their model.

The rest of this paper is structured as follows. In Sect. 2 we introduce the
mathematical background about hyper-Erlang distribution. In Sect. 3 we present
the implementation of OFCP. In Sect. 4 we present the fitting algorithm used
in the tool. In Sect. 5 we discuss how to use the tool and present a performance
evaluation result. We provide some related work in Sect. 6. Finally, we conclude
this paper in Sect. 7.

2 An Overview of Hyper-Erlang Distribution

Hyper-Erlang distributions are a subclass of phase-type distribution. They are
a very flexible class of distributions for performance modeling. As hyper-Erlang
distributions have Markovian representation, they can easily be used in analyti-
cal and simulation approaches for performance evaluation. Hyper-Erlang distri-
butions are typically applied to approximate empirical data sets.

A hyper-Erlang distribution is a mixture of Erlang distributions. An Erlang
distribution is a special case of the Gamma distribution. It is the distribution of
a sum of k independent exponential variables with mean 1/λ. A hyper-Erlang
distribution consists of M independent Erlang distributions weighted with initial
probabilities α1, α2, ..., αM , where 0 < αm ≤ 1 and

∑M
m=1 αm = 1. A hyper-

Erlang distribution corresponds to an absorbing continuous-time Markov chain.
The absorbing state is shown as a dashed circle in Fig. 2.

238 Z. Shang et al.

Fig. 2. State transition of a hyper-Erlang distribution

The number of phases in the mth Erlang distribution is denoted with rm and
the rate parameter of the mth Erlang distribution is denoted λm. The generator
matrix of mth Erlang distribution is a rm × rm matrix Qm.

Qm =

⎛

⎜
⎜
⎜
⎜
⎝

λm 0

0 λm
. . .

. 0
0 λm

⎞

⎟
⎟
⎟
⎟
⎠

(1)

The pdf of the mth Erlang distribution is

f(x) =
λrm

m xrm−1e−λmx

(rm − 1)!
(2)

and the cdf is

F (x) = 1 −
rm−1∑

n=0

1
n!

e−λx(λx)n (3)

The hyper-Erlang distribution is commonly represented by a vector-matrix tuple
(α,Q), where α is the vector of initial probabilities and Q is the generator matrix.
They are presented in (4) and (5).

α = (α1, α2, ..., αM) (4)

Q =

⎛

⎜
⎜
⎜
⎜
⎝

Q1 0

0 Q2
. . .

. 0
0 Qm

⎞

⎟
⎟
⎟
⎟
⎠

(5)

Let X be a hyper-Erlang random variable. The probability density function for
X is

fX(x) =
M∑

m=1

αm
(λmx)rm−1

(rm − 1)!
λme−λmx (6)

An OpenFlow Controller Performance Evaluation Tool 239

and the cumulative distribution function is

FX(x) = 1 −
M∑

m=1

αm

rm−1∑

i=0

(λmx)i

i!
e−λmx (7)

The i-th moment is

E[Xi] =
M∑

m=1

αm
(rm + i − 1)!

(rm − 1)!
1

λi
m

(8)

3 The OFCP Tool

In this section we introduce OpenFlow briefly and present the implementation
of our performance evaluation tool. First, we explain the design goal of the tool.
Then we present the architecture of the tool and how we implemented it.

3.1 Design Goal

The OpenFlow protocol introduce new forwarding delay into the networks
because of the communications between the switches and the controller. It may
become a bottleneck in a large network. Many researchers have noticed this prob-
lem and built queueing model for OpenFlow networks to measure the impact of
the communications. Many studies assume the message processing time of con-
trollers following exponential distribution [9,19]. Based on our measurements,
the exponential distribution cannot fit the message processing very well. At the
same time, there are no tools that offer the response time for individual messages,
so we develop this tool. We develop this tool not only to help users evaluating
the performance of OpenFlow controllers also help researchers building perfor-
mance models for OpenFlow controllers. Researchers can use this tool to analyze
the response time of an OpenFlow controller and obtain the distribution of the
response time. They can use the distribution in their model. One of our design
objectives is to build a tool that is interactive and easy to use. The architecture
of OFCP is guided by the following design goals.

– Detailed analysis: The main purpose of this tool is to help researchers building
their models of OpenFlow controllers. To achieve this, the mean response
time and the variance is not enough. Our performance evaluation tool should
provide the response time and the fitted distribution of the response time.
If the users are not satisfied with the fitted result, they can also use other
fitting tools. It also provides the performance metrics such as the number of
outstanding packets.

– Interaction with modeling tools: This tool is used for building performance
models of OpenFlow controllers, but we only focus on the response time
analysis. Users need modeling tools to build and evaluate their models. It
would be helpful if this tool can interact with other modeling tools, e.g. JMT

240 Z. Shang et al.

[4]. Users obtain controller response time, analyze the response time in this
tool and export the result to other modeling tools to build and evaluate their
models.

– Flexibility: By default, the tool sends a message to the controller, waits for
the response, and sends next message when a response message is received.
This means that the tool can only analyze the response time of controller.
Researchers may want to control the arrival process of the messages in the
performance evaluation. This is a common operation in a queueing model. In
addition, the researchers may have different demanding for different topics.
The tool should be adaptable to new scenarios. We want to develop a flexible
tool to make it easy to adapt to different arrival processes.

– User-friendly: There are other open source OpenFlow benchmark tools, such
as Cbench [17], OFCBenchmark [8]. They are both command line tools and
only work on Linux platform. One of our goals is to develop a user-friendly
performance evaluation tool with a graphical user interface. Users can get the
performance metrics with some simple clicks.

3.2 Architecture

There are four main components in OFCP: virtual switch, time measurement,
arrival process configuration and distribution fitting. They are illustrated in
Fig. 3.

distribution
fitting

arrival process
configuration

virtual switch

connec on
manager

message
encoder

message
decoder

time
measurement

Fig. 3. The architecture of OFCP

The key component of the OFCP is the virtual switch and the distribution
fitting. Figure 2 shows the structure of the virtual switch. It holds a connection
to an OpenFlow controller, through which it sends OpenFlow messages to the

An OpenFlow Controller Performance Evaluation Tool 241

controller and receives messages from the controller. The message encoder trans-
fers OpenFlow messages into bytes and the message decoder does the reverse.
The time measurement component stores the time when an OpenFlow message is
sent or received. The time measurement is triggered by the message encoder and
decoder. It records a time stamp when the message encoder or decoder transfers
each message. After the time measurement, the distribution fitting component
fits the response time of the OpenFlow controller into a hyper-Erlang distribu-
tion.

By default, the virtual switch sends the next OpenFlow messages after it
receives the response for the previous one. That makes the controller only pro-
cesses one request at any time. The users may want to change the arrival process
to meet their demands. The arrival process configuration component is for this.
The users can define the arrival process of the OpenFlow messages in this com-
ponent.

3.3 Implementation

OFCP is written in Java using the OpenFlowJ library [15], which exposes the
OpenFlow protocol through a Java API. Experiments can be configured directly
via the graphical user interface. Configuration options include measurement
time, arrival process, etc.

When a virtual switch is created, it reads the configuration, performs the
OpenFlow handshake process and answers other controller requests. After the
handshake is finished, an inside packet-generator creates packet-in messages and
send them to the controller. The time between two message can be configured in
the arrival process configuration component. Each packet-in message contains a
packet header that the controller has not yet encountered. A packet-in message
is identified by its buffer id. The controller responds to each packet-in message
with a packet-out message or flow-modify message using the same buffer id to
identify the corresponding packet-in message.

The time measurement component is informed that a request or response
arrives by the encoder and decoder. Before a packet-in message can be sent, it
should be encoded into bytes. The encoder informs time measurement component
the buffer id, The time measurement component record the buffer id and the
time stamp. After a packet-out or flow-modify message is received, the message
decoder transfers the bytes into an OpenFlow message, it parses the buffer id and
informs the time measurement component. The time measurement component
gets another time stamp and calculates the response time for the request.

After the measurement is finished, the distribution fitting component gets the
measured samples from the time measurement component and fits the response
time to a hyper-Erlang distribution using the fitting algorithm described in
Sect. 4.

The OFCP has a graphical user interface, the users can see the response time
in real time. They can also see cdf and pdf of the distribution of the response
time after the distribution fitting.

242 Z. Shang et al.

4 The Fitting Algorithm

In this section we discuss the theoretical aspects of the fitting algorithm. The
fitting algorithm is used in our tool to fit a hyper-Erlang distribution to the
response time of OpenFlow controllers. The fitting algorithm uses a cluster-
based fitting approach. The main idea of the fitting algorithm is splitting the
samples into clusters and fitting each cluster with an Erlang distribution. We
get the hyper-Erlang distribution by combining all the Erlang distribution in a
branch structure.

There are two steps in the clustering, initial clustering and refinement. In the
initial clustering step, the samples are clustered using the k-means algorithm.
Randomly choose M samples, c1, c2, ..., cm, as initial cluster centers, each sample
si is assigned to the closet cluster Cj .

argmin
j

{|cj − si|, j = 1, 2, ...,M} ⇒ si ∈ Cj (9)

Then, each cluster center cj is set to be the mean of the samples in the cluster
Cj .

cj =
1

|Cj |
∑

si∈Cj

si (10)

Both these steps are repeated until the cluster centers converge.
After the initial clustering, we fit each cluster with an Erlang distribution and

do the cluster refinement based on the pdf of clusters. There are two steps in each
iteration, the fitting of Erlang distribution to the clusters and the refinement of
the samples assignments to clusters. We first fit a hyper-Erlang distribution to
each cluster Cj using the maximum expectation approach according to [14].

rj =
3 − s +

√
(s − 3)2 + 24s

12s
(11)

where s is
s = ln(

1
|Cj |

∑

xi∈Cj

xi) − 1
|Cj |

∑

xi∈Cj

ln(xi) (12)

rj must be an integer in an Erlang distribution, but it is not for most cases
if we compute it by this method. So we use �rj� or �rj� to be the phase of the
cluster Cj based on maximum likelihood. We make rj1 = �rj� and rj2 = �rj�
and the likelihoods for both rj1 and rj2 are

H1 =
∑

si∈Cj

fj1(si) (13)

H2 =
∑

si∈Cj

fj2(si) (14)

where fj1, fj2 are the pdfs of the fitted Erlang distribution with parameter rj1

and rj2.

An OpenFlow Controller Performance Evaluation Tool 243

Then we get rj as follows:

rj =
{ �rj� if H1 ≥ H2

�rj� if H1 < H2
(15)

λj can be computed as
λj =

rj

Ej
(16)

where Ej is the mean of samples in cluster Cj .
We can get the generator matrix for the cluster Cj

Qj =

⎛

⎜
⎜
⎜
⎜
⎝

λj 0

0 λj
. . .

. 0
0 λj

⎞

⎟
⎟
⎟
⎟
⎠

(17)

Qj is not the final result for the cluster Cj , it will be adjusted in each iteration
of re-assignment. After the re-assignment is finished, we will get a final Erlang
distribution for each cluster, and the generator matrix of the clusters are used
to construct the generator matrix of the hyper-Erlang distribution.

We then re-assign samples to clusters using a probabilistic re-assignment
strategy. For each sample si, we compute a pdf vector,

π =
1

∑M
j=1 fj(si)

(f1(si), f2(si), ..., fM (si)) (18)

where fj is the estimated pdf of the jth cluster. We use the pdf vector to estimate
the probability that sample si is in cluster Cj . We draw a uniform random
variable τ in [0, 1], and assign the sample si to cluster Cj if

j−1∑

i=1

πi < τ ≤
j∑

i=1

πi (19)

After the probabilistic re-assignment, all the clusters are updated, we fit each
cluster to an Erlang distribution again. The probabilistic re-assignment often
does not converge, so we repeat the Erlang distribution fitting and the proba-
bilistic re-assignment until a maximal number of iterations has been exceeded.

After the refinement process is done, we get M clusters, each cluster is asso-
ciated with an Erlang distribution. The complete hyper-Erlang distribution can
be obtained as a mixture of the Erlang distributions. The initial probabilities
can be computed according to the relative cluster size:

α = (
|C1|
N

,
|C2|
N

, ...,
|CM |
N

) (20)

where N is the number of samples. The generator matrix of can be computed
by combining the sub-generator matrix according to Eqs. 5 and 17.

244 Z. Shang et al.

5 Performance Evaluation Result

In this section we demonstrate the usage of our tool. We discuss its functionality
and show an example of the performance evaluation of Ryu controller [16], which
is a component-based OpenFlow framework written in python.

Table 1. The detailed configuration

Parameter Default Comment

IP address 127.0.0.1 IP address of the controller

Port 6633 TCP port of the controller

Mode Latency The measurement mode (latency or throughput)

Duration 30 How long the measurement lasts (in seconds)

Sample number 10000 How many samples to gather

Arrival mode Once a time The mode of packet-in arrival at the controller

Arrival rate 500 The arrival rate of Poisson process

The tool aims to help researchers to build performance model of OpenFlow
controllers and the network managers to understand the behaviors of OpenFlow
controllers. It measures the response time of the controller and fits the response
time to a hyper-Erlang distribution. The users can use the distribution to build
and validate their model. So the first step is to measure the performance of
OpenFlow controllers. There are two modes, latency and throughput. In latency
mode, the tool measure the response of the controller, it sends packet-in messages
following the given arrival process and measures the response time. In through-
put mode, the tool sends packet-in messages as many as possible, and measure
how many response messages it receives. the default mode is to measure the
response time because we think the response time is more relevant for building
models. The users can also configure the duration of the measurement. There are
two ways to configure it, measurement time and sample number. By configuring
the measurement time, the measurement will last for the given time. If a sample
number is given, the tool will gather samples until reaching the given number.
The arrival process is essential in a queueing model. The users can give an arrival
rate to the tool, by which the tool will send packet-in messages following the
given arrival rate. For now, the tool only supports Poisson process. By default,
after the response for the previous one is received. It makes the controller only
process one message at any time. All the configurations can be set on the right
panel of the tool. The detailed configuration are shown in Table 1.

We set up a Ryu controller and use the tool to measure the response time
of Ryu. The Ryu controller runs on ubuntu 18.04 with 4G memory and 2.3 GHz
CPU. There is a Ryu application for benchmark in the Ryu repository. We
modify the benchmark application to make it send flow-modify message with a
buffer id. Then we run the it and measure the response time. The measurement
process is shown is Fig. 4, and the result is shown in Fig. 5.

An OpenFlow Controller Performance Evaluation Tool 245

Ryu

OFCP

packet-in

· · · · · ·

distribution
fitting

packet-in

flow
-m

odify

flow
-m

odify

Fig. 4. The measurement process

Fig. 5. The response time of Ryu controller

We can see the configuration on the right of Fig. 5. We use latency mode
to measure the response time of the controller, and the measurement runs for
10 seconds. On the left of Fig. 5, the response time of Ryu controller is shown.
The x-axis shows the number of the gathered samples, and the y-axis shows the
response time in nanosecond. The line chart is updated in real time when the
measurement is running.

After the measurement is done, we fit the distribution to the measuring
response time. The pdf of the fitted distribution is shown in Fig. 6. The tool uses
the fitting algorithm described in Sect. 4. It fits a hyper-Erlang distribution to
the samples. We can see in the figure that there is a long tail in the distribution,
which happens often in the real world. As illustrated in the figure, the result is
well fitted. It even captures the little peak in the long tail. The fitted distribution
is a hyper-Erlang distribution with 6 Erlang branches. The parameters of the
Erlang branches are shown in Table 2.

246 Z. Shang et al.

Fig. 6. The pdf of fitted distribution

Table 2. The parameters of the Erlang branches

Probability Phase Rate

0.349 134 3.16E−4

0.01 590 2.01E−4

0.203 48 7.99E−5

0.051 11 7.54E−6

0.105 25 2.97E−5

0.279 87 1.73E−4

6 Related Work

SDN is a new network architecture that promises to reduce the limitations of cur-
rent networks by splitting the control plane from the hardwares, providing a cen-
tralized management, and introducing the programmability to networks [5,12].
By this way, SDN uses a centralized software to control a network. The cen-
tralized controller offers flexible, and programmable functionality to networks,
and many other advantages such as reduced complexity, easier management [7].
However, these advantages come with a performance penalty because the split
software controller decreases the packet processing speed and throughput [6].
The involvement of a remote controller in all forwarding devices comes at a the
extra expense in the networks.

A controller manages all network devices in an SDN network and provides
a programmatic interface to network applications. It plays a critical role in the
SDN architecture, its performance impacts the networks significantly [1]. There-
fore, it is necessary to understand the performance of the controllers in SDN.
There are many researchers trying to study the performance of the controller in

An OpenFlow Controller Performance Evaluation Tool 247

different ways. In [17], Sherwood et al. developed Cbench to benchmark differ-
ent controller implementations. Cbench creates a set of virtual switches sending
requests to OpenFlow controllers. By hence, Cbench can be used to measure
the controller performance, However, it can only get the coarse-grained per-
formance metrics. The performance metrics is not enough to build a model,
and it is hard to derive the controller behaviors from the benchmark result.
Tootoonchian [18] used the Cbench to measure several performance aspects of
different OpenFlow controllers. The authors measured the minimum and maxi-
mum controller response time, maximum throughput, and the throughput and
latency of the controller with a bounded number of packets. Their experimen-
tal results showed that a single controller is not enough to manage a sizeable
network. In [8], Jarschel further developed OFCBenchmark, a more flexible
benchmark tool based on Cbench. Unlike Cbench creates independent switches,
OFCBenchmark creates a set of virtual switches that generate and send LLDP
packets to each other. So the switches act more like a network. OFCBenchmark
can get performance statistics for each virtual switch.

Besides the measurement, there are also researchers studying the performance
of controller based on models. Azodolmolky et al. presented a model based on
network calculus to report the performance of SDN. They defined a closed form
of packet delay and buffer length inside OpenFlow switches for given cumulative
arrival process and the service rate of the SDN controller [2]. Jarschel et al. used
an on M/M/1 queueing model to estimate the packet sojourn time and blocking
probability of an OpenFlow network [9]. They validated it in OMNeT++, their
result showed that the packet sojourn time mainly depends on the controller
performance for installing new flows.

Xiong et al. modeled the packet-in message processing of OpenFlow controller
respectively using Mx/M/1 and M/G/1 queueing model [19]. Subsequently, they
built a queueing model of OpenFlow networks, and derived a closed-form expres-
sion of average packet sojourn time in OpenFlow switches and the correspond-
ing probability density function. They used Cbench to gather the response time
of OpenFlow controller and validated their model in Mininet environment. In
[10], the authors presented a M/G/1 queueing model using a log-normal mix-
ture model as the service time. Their result showed that the M/G/1 model is
more accurate than the M/M/1 model. They validated the proposed model with
experimental data and demonstrated it to be a good fit to empirical measure-
ments.

7 Conclusion and Future Work

OpenFlow controller is an essential component in OpenFlow networks. It is key
to understand the performance for researchers and managers of productive net-
works. In this paper, we introduce our tool to evaluate the performance of Open-
Flow controllers. It helps users not only get the performance metrics also fits the
distribution of the response time of the OpenFlow controller. Through the dis-
tribution of response time, users can understand the underlying reason for the

248 Z. Shang et al.

controllers’ behaviors. We also present a cluster-based fitting algorithm that fits
the samples into hyper-Erlang distribution. The fitting result shows that the
algorithm can fit the response time of OpenFlow well. Since hyper-Erlang dis-
tributions have Markovian representation, the fitted result can be easily used in
analytical and simulation approaches to performance evaluation. In our future
work, we will continue to develop our performance evaluation tool. We aim to
further investigate the performance of OpenFlow controller. The tool should
support a more complex arrival process and generate queueing model metrics of
given arrival process.

References

1. Alencar, F., Santos, M., Santana, M., Fernandes, S.: How software aging affects
SDN: a view on the controllers. In: Global Information Infrastructure and Net-
working Symposium, GIIS 2014, pp. 1–6. IEEE (2014)

2. Azodolmolky, S., Nejabati, R., Pazouki, M., Wieder, P., Yahyapour, R., Simeonidou,
D.: An analytical model for software defined networking: a network calculus-based
approach. In: 2013 IEEE Global Communications Conference (GLOBECOM), pp.
1397–1402, December 2013. https://doi.org/10.1109/GLOCOM.2013.6831269

3. Benamrane, F., Mamoun, M.B., Benaini, R.: Short: a case study of the performance
of an openFlow controller. In: Noubir, G., Raynal, M. (eds.) NETYS 2014. LNCS,
vol. 8593, pp. 330–334. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09581-3 25

4. Bertoli, M., Casale, G., Serazzi, G.: JMT: performance engineering tools for system
modeling. ACM SIGMETRICS Perform. Eval. Rev. 36, 10–15 (2009)

5. Farhady, H., Lee, H., Nakao, A.: Software-defined networking: a survey. Comput.
Netw. 81, 79–95 (2015)

6. Gelberger, A., Yemini, N., Giladi, R.: Performance analysis of software-defined net-
working (SDN). In: 2013 IEEE 21st International Symposium on Modeling, Analy-
sis & Simulation of Computer and Telecommunication Systems (MASCOTS), pp.
389–393. IEEE (2013)

7. Hu, F., Hao, Q., Bao, K.: A survey on software-defined network and OpenFlow:
from concept to implementation. IEEE Commun. Surv. Tutor. 16(4), 2181–2206
(2014)

8. Jarschel, M., Lehrieder, F., Magyari, Z., Pries, R.: A flexible OpenFlow-controller
benchmark. In: 2012 European Workshop on Software Defined Networking
(EWSDN), pp. 48–53. IEEE (2012)

9. Jarschel, M., Oechsner, S., Schlosser, D., Pries, R., Goll, S., Tran-Gia, P.: Modeling
and performance evaluation of an OpenFlow architecture. In: Proceedings of the
23rd International Teletraffic Congress, pp. 1–7. International Teletraffic Congress
(2011)

10. Javed, U., Iqbal, A., Saleh, S., Haider, S.A., Ilyas, M.U.: A stochastic model
for transit latency in OpenFlow SDNs. Comput. Netw. 113, 218–229 (2017).
10.1016/j.comnet.2016.12.015, https://doi.org/10.1016/j.comnet.2016.12.015

11. Kim, H., Feamster, N.: Improving network management with software defined net-
working. IEEE Commun. Mag. 51(2), 114–119 (2013)

12. Kreutz, D., Ramos, F.M., Verissimo, P.E., Rothenberg, C.E., Azodolmolky, S.,
Uhlig, S.: Software-defined networking: a comprehensive survey. Proc. IEEE
103(1), 14–76 (2015)

https://doi.org/10.1109/GLOCOM.2013.6831269
https://doi.org/10.1007/978-3-319-09581-3_25
https://doi.org/10.1007/978-3-319-09581-3_25
https://doi.org/10.1016/j.comnet.2016.12.015

An OpenFlow Controller Performance Evaluation Tool 249

13. McKeown, N.: OpenFlow: enabling innovation in campus networks. ACM SIG-
COMM Comput. Commun. Rev. 38(2), 69–74 (2008)

14. Minka, T.P.: Estimating a gamma distribution. Technical report, Microsoft
Research, Cambridge, UK (2002)

15. Networks, B.S.: OpenFlowJ. https://github.com/floodlight/loxigen/wiki/OpenFlo
wJ-Loxi

16. NTT: Ryu. https://osrg.github.io/ryu/
17. Sherwood, R., Yap, K.: Cbench controller benchmarker. Accessed Nov 2011
18. Tootoonchian, A., Gorbunov, S., Ganjali, Y., Casado, M., Sherwood, R.: On con-

troller performance in software-defined networks. Hot-ICE 12, 1–6 (2012)
19. Xiong, B., Yang, K., Zhao, J., Li, W., Li, K.: Performance evaluation of OpenFlow-

based software-defined networks based on queueing model. Comput. Netw. 102,
172–185 (2016). https://doi.org/10.1016/j.comnet.2016.03.005

https://github.com/floodlight/loxigen/wiki/OpenFlowJ-Loxi
https://github.com/floodlight/loxigen/wiki/OpenFlowJ-Loxi
https://osrg.github.io/ryu/
https://doi.org/10.1016/j.comnet.2016.03.005

Product-Form Queueing Networks
with Batches

P. G. Harrison(B)

Department of Computing, Imperial College London, London, UK
pgh@ic.ac.uk

Abstract. A Markovian queue, with both batch arrivals and batch
departures, is first shown to have a geometric queue length probabil-
ity distribution at equilibrium under certain conditions. From this a
product-form solution follows directly for networks of such queues at
equilibrium, by application of the reversed compound agent theorem
(RCAT). The method is illustrated using small batches of sizes 1 and
2, as well as geometric sizes.

1 Introduction

Queueing networks with batch movements, including so-called bulk arrivals, are
appropriate for modelling burstiness that has been observed in internet traffic
for some years, which has a degrading effect on network performance. Such
systems may also be used to provide quantitative analysis of algorithms and
schedules that reduce energy consumption, where large numbers of devices of
various sorts are switched off when not in use and switched on again when they
are next required. This switching inherently increases burstiness, not only in
power consumption but also in the performance delivered – typically measured
by device utilisation, throughput and response time.

In the next section, we define the batch-queues for which we obtain conditions
for a geometric queue length probability distribution at equilibrium. These have
regular batch arrivals and batch departures, as well as a special batch arrival
stream that is activated only when the queue is empty, and a special batch
departure stream that clears the queue. The special streams could represent the
switching off of a device and the backlog of work when it is restarted in a power-
control system. The geometric distribution, when it exists, allows a product-form
to be derived for networks of such queues, called batch-networks; this is simply
proved using the reversed compound agent theorem (RCAT) of [8] in Sect. 3. The
method is illustrated using small batches of sizes 1 and 2, as well as geometric
sizes. The basic results of Sect. 2 were summarised as preliminaries to the work
on asymptotics in [7], but important new properties are also obtained here. The
paper concludes in Sect. 4, with applications and future potential of the method.

c© Springer Nature Switzerland AG 2018
R. Bakhshi et al. (Eds.): EPEW 2018, LNCS 11178, pp. 250–264, 2018.
https://doi.org/10.1007/978-3-030-02227-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02227-3_17&domain=pdf

Product-Form Queueing Networks with Batches 251

2 Geometric Batch-Queues

As noted in the introduction, batches occur in networks of queues in both the
departure and arrival processes of the constituent nodes. Typically, but not nec-
essarily, a batch of a given size departing from one node arrives as a batch of
the same size at another node. However, a departing batch may be re-batched,
e.g. divided into sub-batches, before being forwarded to another node, or per-
haps to several other nodes probabilistically. To obtain a product-form in such a
Markovian queueing network, we appeal to RCAT [8]. The primary requirement
of this theorem is that the reversed rates of all the instances of each active, syn-
chronising action (the output actions in one node that are awaited by another
node) must be the same. In particular, every departure transition for a batch
of a given size k at a given node must have the same reversed rate, which can
be calculated directly from the node’s equilibrium probabilities by a standard
result; see, for example, [8,13]. If the forward rate μk is independent of the local
state of the node it is departing from, the reversed rate of a batch-transition
from state i + k to state i is πi+kμk/πi for all i ≥ 0, where π is the equilibrium
probability vector. The reversed rate is therefore the same for all destination
states i whenever the equilibrium state probability πi = (1 − ω)ωi for some ω.
We therefore seek conditions on the batch size probability distributions and the
corresponding instantaneous transition rates that render the equilibrium state
probabilities geometric. Product-forms in networks of such queues are then easy
to identify and write down, using RCAT. It is well known that no such product-
form exists for queues with only the arrival and departure batches described
above – unless these are unit-sized with probability one. We therefore introduce
additional, “special” batches that can arrive only when the queue is empty and
can only depart so as to leave the queue empty. This idea itself is not new and
product-forms have been obtained for special cases in [4,9].

Fig. 1. Batch queue and its reversed process

252 P. G. Harrison

Our model of batch movements in a single server queue is illustrated in Fig. 1
and defined as follows, where we assume that the rates are bounded so that the
infinite sums exist:

– The state space S of the queue is the set of non-negative integers;
– Normal batch arrivals of size k ≥ 1 are represented by transitions with con-

stant instantaneous rate ak : i → i + k (i ≥ 0), i.e. from states i to i + k;
– Additional special batch arrivals of size k ≥ 1 to an empty queue are repre-

sented by transitions with constant instantaneous rate a0k : 0 → k;
– Normal batch departures of size k are represented by transitions with constant

instantaneous rate dk : i + k → i (i ≥ 0);
– Special batch departures of size k, leading to an empty queue, are represented

by transitions with constant instantaneous rate dk0 : k → 0;
– The ordering of individual tasks in the queue is strictly first come first served

(FCFS).

We call this a batch-queue. Rate generating functions are defined for each batch
movement as follows:

A(z) =
∞∑

k=1

akzk; A0(z) =
∞∑

k=1

a0kzk; D(z) =
∞∑

k=1

dkzk; D0(z) =
∞∑

k=1

dk0z
k.

We assume that A(1), A0(1) < ∞, to avoid null mean state holding times (i.e.
infinite total instantaneous transition rate out of a state), and D(1) < ∞ simi-
larly, to avoid unbounded total transition rates. The functions A(z), A0(z),D(z)
are therefore absolutely convergent and analytic inside the unit disk, which lies
inside their circles of convergence. The following proposition gives conditions for
the length of the batch-queue to have a geometric equilibrium probability dis-
tribution, so that product-forms become facilitated in networks by application
of RCAT.

Proposition 1. The batch-queue defined above, with A(1),D(1) < ∞, has geo-
metrically distributed equilibrium queue length probabilities with parameter ρ < 1,
πn = (1 − ρ)ρn for n ≥ 0, iff

(1 − ρz)[A0(z) − D0(ρz)] = [A(1) − D(ρ)]ρz − A(z) + D(ρz) (1)

for |z| < min(ρ−1, R), where R is the minimum of the radii of convergence of
the series A(z), A0(z),D(ρz),D0(ρz). The total rates of the batch arrival streams
then satisfy the constraint:

A(1) + A0(1) = D(ρ) + D0(ρ) (2)

Proof. At equilibrium, the queue has balance equations

(
A(1) +

i∑

j=1

dj + di0

)
πi =

i∑

j=1

ajπi−j + π0a0i +
∞∑

j=1

djπi+j (i ≥ 1) (3)

(A(1) + A0(1))π0 =
∞∑

j=1

(dj + dj0)πj (4)

Product-Form Queueing Networks with Batches 253

Taking πi = (1−ρ)ρi as a trial solution, multiplying Eq. 3 by zi and summing
from i = 1 to ∞ leads to the following equation, where Π(z) =

∑∞
i=0(1−ρ)ρizi =

(1 − ρ)/(1 − ρz) for |z| < ρ−1:

A(1)(Π(z)− π0) +

∞∑

i=1

i∑

j=1

djπiz
i +

∞∑

i=1

di0πiz
i = A(z)Π(z) + π0A0(z) +

∞∑

i=1

∞∑

j=1

djπi+jz
i

Dividing by 1 − ρ, this becomes

A(1)ρz

1 − ρz
+

∞∑

j=1

∞∑

i=j

djρ
izi +

∞∑

i=1

di0ρ
izi =

A(z)
1 − ρz

+ A0(z) +
∞∑

i=1

∞∑

j=1

djρ
i+jzi

so that, multiplying by 1 − ρz and summing all but one of the remaining series,

A(1)ρz +
∞∑

j=1

dj(ρz)j + (1 − ρz)D0(ρz) = A(z) + (1 − ρz)A0(z) + D(ρ)ρz

Equation 1 now follows. The converse is proved by dividing Eq. 1 by 1 − ρz,
expanding in powers of z and comparing coefficients.

At z = 1, Eq. 1 becomes

[A(1) − D(ρ) + A0(1) − D0(ρ)]ρ = A(1) − D(ρ) + A0(1) − D0(ρ)

so that for ρ < 1,
A(1) − D(ρ) + A0(1) − D0(ρ) = 0

as required. In fact, this also follows from the redundant Eq. 4. The trial solution
is therefore valid and the proposition follows by uniqueness of the equilibrium
probabilities of an irreducible Markov process. ��

This proposition states that, given the generating functions A(z),D(z) for the
normal batches, there is always a geometric, equilibrium queue length probability
distribution with any parameter value ρ ∈ (0, 1), provided the special batch
generating functions satisfy the equation

A0(z) − D0(ρz) =
[A(1) − D(ρ)]ρz − A(z) + D(ρz)

1 − ρz
(5)

Notice that this equation does not uniquely define the individual generating func-
tions A0(z),D0(z). However, it is usually required to minimise the effect caused
by the additional transitions introduced to secure the geometric probabilities;
and hence product-form in a network. This is aided by the following corollary.

Corollary 1. Suppose that A(z),D(z) are given and that A0(z),D0(z) are cho-
sen to give geometric, equilibrium queue length probabilities with parameter ρ
according to Proposition 1. Then the following properties hold:

254 P. G. Harrison

1. A0(z) − D0(ρz) has radius of convergence less than 1/ρ unless

A(ρ−1) + D(ρ) = A(1) + D(1) (6)

In particular, ρ must satisfy this equation for A0(z)−D0(ρz) to have infinite
radius of convergence, e.g. finitely many terms.

2. If there exists a real number r ∈ (0, 1), such that r−1 is less than the radius
of convergence of A(z) and A(r−1) > A(1) + D(1) − D(r), e.g. if A(z) has
infinite radius of convergence and so is unbounded, the equation A(x−1) +
D(x) = A(1)+D(1) has a unique root x0 ∈ (0, 1) if and only if Ḋ(1) > Ȧ(1),
where “dot” denotes differentiation with respect to z, the derivatives being
well defined by analyticity of A(z) and D(z). The equilibrium queue length is
then geometric, with parameter x0.

3. Conversely, the existence of a geometric, equilibrium probability distribution,
with parameter ρ, implies that A(ρ−1) + D(ρ) = A(1) + D(1), provided that
A(ρ−1) < ∞.

Proof. By Eq. 5, A0(z)−D0(ρz) is a power series, which is singular at the point
z = ρ−1 unless the numerator [A(1) − D(ρ)]ρz − A(z) + D(ρz) vanishes when
z = ρ−1, i.e. unless Eq. 6 is satisfied. The point z = ρ−1 must therefore lie outside
the circle of convergence.

For the second part, let f(x) = A(x−1)+D(x)−A(1)−D(1). Then f(r) > 0
and f(1) = 0. There is therefore at least one solution to the equation f(x) = 0
in the open interval (r, 1) if and only if ḟ(1) > 0 (whereupon f(1−) < 0), i.e.
Ḋ(1) − Ȧ(1) > 0, since D(z) and A(z−1) are analytic in the unit disk and
the annulus with inner radius r and outer radius 1 respectively, and so are
continuous, in (r, 1). Substituting into Eq. 1, the batch queue has geometric
equilibrium queue length probability distribution with parameter x0, which is
unique; hence x0 is unique.

For the last part, setting z = ρ−1 in Eq. 1 yields A(1)−D(ρ) = A(ρ−1)−D(1)
giving Eq. 6. ��
Notice that the derivatives at z = 0, Ȧ(1) and Ḋ(1) are the task-arrival and
task-departure rates respectively, so that Ḋ(1) > Ȧ(1) is the expected stability
condition for the batch-queue.

We call a queue satisfying the conditions of Proposition 1 a geometric batch-
queue with parameter ρ. Notice that whenever the corollary holds, the parameter
ρ is determined independently of the generating functions A0(z) and D0(z),
which thereby become constrained by Eq. 1 of the main proposition.

Proposition 1 is a generalisation of a result in [9] where the extra departures
to state 0 were restricted to being due to (normal) departure batches that were
larger than the current queue length. Then any departure batch size k could
occur at any queue length n: if k ≤ n, the state becomes n−k after the departure;
if k > n (an excess batch of size k), the state becomes 0. In the present model,
this is represented by dk0 =

∑∞
j=k+1 dj , but of course this is a special case. We

use this case below and now calculate its rate generating function:

D0(z) =
∞∑

k=1

∞∑

j=k+1

djz
k =

∞∑

j=2

j−1∑

k=1

djz
k =

∞∑

j=2

dj
z − zj

1 − z
=

zD(1) − D(z)

1 − z
(7)

Product-Form Queueing Networks with Batches 255

Plugging this expression for D0(z) into Eq. 5 now determines A0(z) as

A0(z) =
[A(1) + D(1) − D(ρ)]ρz − A(z)

1 − ρz
(8)

Notice, therefore, that such queues are entirely determined by just the two nor-
mal generating functions A(z) and D(z), which can be arbitrary, up to the
existence of equilibrium of the queue.

If, in addition, Eq. 6 is satisfied, the expression simplifies to

A0(z) =
ρzA(ρ−1) − A(z)

1 − ρz
(9)

Such queues are used in an “assembly-transfer network” in Chap. 8 of [4],
which is appropriate for models of certain manufacturing systems. The inter-
pretation is that batches of size less than or equal to the queue length are “full
batches” and the others are “partial batches” (referring to a size equal to the
queue length n which is less than the intended batch size k), which are dis-
carded in the assembly line. We therefore call this the “discard” model, or a
discard batch-queue; a minimal discard batch-queue when the parameter ρ is
determined by Eq. 6.

Proposition 2. In a minimal discard batch-queue defined by the generating
functions A(z),D(z),

1. A0(z) has finitely many terms if and only if A(z) has finitely many terms.
2. If A(z) =

∑n
i=1 aiz

i for 1 ≤ n ≤ ∞, A0(z) =
∑n−1

j=1 (ρz)j
∑n

i=j+1 aiρ
−i.

3. If A(z) is geometric with parameter α, i.e. A(z) = A(1)(1 − α)z/(1 − αz),
A0(z) = α

ρ−αA(z).

Proof. 1. First, as in part 1 of Corollary 1 and using Eq. 8, the point z = ρ−1 is a
singularity of A0(z) unless Eq. 6 is satisfied, i.e. unless the discard batch-queue
is minimal. Hence, A0(z) can only have finitely many terms in a minimal
discard batch-queue. Since the numerator of Eq. 8 vanishes at z = ρ−1, the
denominator is a factor. Thus, if A(z) has finitely many terms – and is of
degree n, say – then A0(z) also has finitely many terms and has degree n−1.
Conversely, A(z) = ρzA(ρ−1)− (1− ρz)A0(z) and so has finitely many terms
if A0(z) does.

2. Substitution into Eq. 9 and rearranging gives

A0(z) =
z

∑n
i=2 aiρ

−(i−1)(1 − (ρz)i−1)
1 − ρz

But 1 − (ρz)i−1 = (1 − ρz)
∑i−2

j=0(ρz)j and so

A0(z) = z
n∑

i=2

i−2∑

j=0

aiρ
−(i−1)(ρz)j =

n−2∑

j=0

n∑

i=j+2

aiρ
−i(ρz)j+1

3. The result follows by substituting into Eq. 9.
��

256 P. G. Harrison

2.1 Example

Suppose all batches have size either 1 or 2 in a minimal discard batch-queue and
define A(z) = λ1z + λ2z

2,D(z) = μ1z + μ2z
2 so that D0(z) = μ2z. Equation 6

then yields μ2ρ
4 + μ1ρ

3 − (λ1 + λ2 + μ1 + μ2)ρ2 + λ1ρ + λ2 = 0 which factorises
into (ρ − 1)P (ρ) = 0, where P (x) = μ2x

3 + (μ1 + μ2)x2 − (λ1 + λ2)x − λ2. We
therefore seek a root of the cubic equation P (x) = 0, i.e. of

μ2x
3 + (μ1 + μ2)x2 − (λ1 + λ2)x − λ2 = 0 (10)

Now, P (0) < 0 and P (1) = 2μ2 + μ1 − (2λ2 + λ1) > 0 under the stabilility
condition, so that there is a geometric equilibrium probability distribution for
the queue length.

Equation 9 (or part 2 of Proposition 2 directly) gives the arrivals-in-state-0
rate generating function A0(z) = (ρz(λ1/ρ+λ2/ρ2)−λ1z−λ2z2

1−ρz = λ2z/ρ. Thus, only
unit-batch special arrivals are required for a geometric solution to exist. In the
special case that arrivals are always single, λ2 = 0 and we find A0(z) = 0.
Indeed, provided that arrivals are single, part 2 of Proposition 2 ensures that
if departure batches with any choice of rates are introduced into an M/M/1
queue, a geometric equilibrium queue length probability distribution is preserved
(assuming equilibrium exists) without introducing any special arrivals in the
empty queue state.

2.2 The Reversed Batch-Queue

Although to apply RCAT requires the reversed rates of only the active actions –
in our case the normal departures – we will need the whole reversed process later
when we consider sojourn times in a network of batch-queues. Notice that the
structure of a batch-queue is symmetric: normal batch arrivals and departures
together with special batch arrivals and departures, out of and into state 0 only,
respectively. Any such queue is specified entirely by its four corresponding rate
generating functions A,A0,D,D0. Because of the symmetry, the reversed process
is also a batch-queue with rate generating functions A′, A′

0,D
′,D′

0, say. We now
calculate these and confirm, using Proposition 1, that the reversed queue has the
same geometric queue length probability distribution at equilibrium (assumed
to exist, with ρ < 1) as the original (forward) queue.

Proposition 3. The reversed process of a geometric batch-queue with parame-
ter ρ and rate generating functions A(z), A0(z),D(z),D0(z) is also a geometric
batch-queue with parameter ρ and rate generating functions:

A′(z) = D(ρz); A′
0(z) = D0(ρz); D′(z) = A(ρ−1z); D′

0(z) = A0(ρ−1z).

Proof. We calculate the rates of the individual transitions in the reversed pro-
cess, denoted by primes, by multiplying the corresponding forward rates by the
appropriate ratio of equilibrium probabilities (for the source and destination
states of the transition). In the reversed process, the reversed arrival transitions

Product-Form Queueing Networks with Batches 257

cause decreases in the queue length and so become departures, and similarly,
the reversed departure transitions become arrivals. Moreover, by the symmetry
of the model, the special transitions out of/into state 0 map into special tran-
sitions in the reversed process into/out of state 0, respectively. We now easily
obtain, using the hypothesis that the equilibrium queue length probabilities are
geometric:

a′
k = ρkdk; a′

0k = ρkdk0; d′
k = ρ−kak; d′

k0 = ρ−ka0k.

The rate generating functions of the reversed process then follow as stated.
Finally, since A′(1) = D(ρ) < ∞,D′(ρ) = A(1) < ∞, A′(1) − D′(ρ) =

−(A(1) − D(ρ)), A′(z) − D′(ρz) = −(A(z) − D(ρz)) and A′
0(z) − D′

0(ρz) =
−(A0(z)−D0(ρz)), the reversed process satisfies the conditions of Proposition 1
and has equilibrium queue length probability distribution with the same param-
eter ρ. ��

3 Product-Form Batch-Networks

By construction, networks of geometric batch-queues – call them batch-networks
– may have product-forms when their nodes are interconnected such that nor-
mal batch-departures become the normal batch-arrivals at another node. The
special departures must leave the network and the special arrivals must also
be external1; their parameters are determined by the rate equations of RCAT
combined with Eq. 9 or Proposition 2. Normal internal departure streams may
be split probabilistically to several other nodes by using parallel active depar-
ture transitions, just as in conventional queueing networks [6,11,12]. Thus, the
enabling constraints of RCAT are satisfied in that the passive transitions are
normal arrivals that are enabled in every state and, similarly, the active transi-
tions come into every state, these being normal departures. It remains to solve
the rate equations which equate the reversed rates of the active transition types,
a say, to an associated variable xa – see [10] for a practical description. Notice
that the reversed rates will in general depend on the set of xa and can be found
from Proposition 3. This leads to the product-form given below in Theorem1.

1 This is because the special departures are active transitions, with the empty queue as
their only possible destination-state, whereas RCAT requires all states to be possible
destinations [8]. Similarly, the special arrivals are passive but enabled only in the
empty queue, i.e. not in every state, as required by RCAT. One could consider the
special departures as passive and the special arrivals as active, provided they could
occur in, or lead to, every state, respectively. However, a special arrival transition
from the empty state to itself would then be required – i.e. an active “invisible transi-
tion”. This would lead to an increased rate of special departures in the synchronising
queue, changing the model’s specification. Worse still, the special arrival rates would
have to be carefully chosen (geometrically) so as to ensure constant reversed rates.
Similarly, an invisible, passive, special departure transition would also be needed on
the empty state, allowing spontaneous special arrivals at the synchronising queue,
which again would probably not be wanted.

258 P. G. Harrison

3.1 Product-Form Theorem

In a Markovian network of M batch-queues (or nodes), in which the mean service
times of node i are respectively μ−1

ik , μ−1
0ik and the mean external arrival rates

at node i are respectively λik, λ0ik for normal, special batches of size k ≥ 0, we
define the rate generating functions:

Ai(z) =
∞∑

k=1

λikzk;A0i(z) =
∞∑

k=1

λ0ikzk;Di(z) =
∞∑

k=1

μikzk;D0i(z) =
∞∑

k=1

μ0ikzk.

The “routing probability” pikjl (1 ≤ i 	= j ≤ M ; k, � ≥ 1) is the probability that
a normal batch of size k that completes service at node i immediately proceeds
to node j as a batch of size �2. We define Bij(ρ, z) to be the generating function
of the reversed rates (depending on the local geometric parameter ρi at node i)
of the normal departure transitions at node i that go to node j as batches of
size � ≥ 1:

Bij(ρi, z) =
∞∑

�=1

∞∑

k=1

pikjlμikρk
i z�.

Note that typically pikjl = pikjδkl for certain quantities pikj , i.e. there is no
change to the batch size in transit. With no re-batching, therefore, Bij(ρi, z) =∑∞

k=1 pikjμik(ρiz)k. Furthermore, if the routing probabilities are the same for
all batch sizes, i.e. pikjl = pijδkl, we have Bij(ρi, z) = pijDi(ρiz).

Our main product-form result now follows by construction: the detailed proof
is omitted, being the simple application of RCAT just described.

Theorem 1. A network of M minimal discard batch-queues at equilibrium,
specified according to the above notation, has equilibrium joint queue length prob-
ability distribution with the product-form IP(N = n) =

∏M
j=1(1 − ρj)ρ

nj

j , where
Nj is the equilibrium queue length random variable at node j, if the numbers
ρ1, . . . , ρM are the solution of the system of non-linear equations, for 1 ≤ j ≤ M :

Aj(ρ−1
j)+

∑

1≤k �=j≤M

Bkj(ρk, ρ−1
j)+Dj(ρj) = Aj(1)+

∑

1≤k �=j≤M

Bkj(ρk, 1)+Dj(1).

(11)
Furthermore, the special arrival streams to empty queues (only) have rate gen-
erating functions:

A0j(z) =
ρjz

[
Aj(ρ−1

j) +
∑

1≤k �=j≤M Bkj(ρk, ρ−1
j)

]
− Aj(z) − ∑

1≤k �=j≤M Bkj(ρk, z)

1 − ρjz

at node j.

To clarify, we observe that Eq. 11 is simply Eq. 6 applied to node j, which has
additional normal batch-arrivals with rates defined by the reversed rates of the
2 We exclude feedback from a node to itself, so that j �= i or, equivalently, we can

define pikjl = 0 whenever i = j.

Product-Form Queueing Networks with Batches 259

feeding normal departures at other nodes, given by the generating functions
Bkj(ρk, z). The special arrival streams necessary to ensure the product-form are
given by the rate generating functions A0j(z), computed from Eq. 9 or explicitly
from part 2 of Proposition 2, with parameter ρ equal to the jth component of
the vector computed for the solution of the equations in the theorem.

Necessary and sufficient conditions for equilibrium to exist are difficult to
obtain, as in even simple open queueing networks, but the following sufficient
condition can turn out to be useful.

3.2 Sufficient Stability Condition

The necessary and sufficient condition for equilibrium to exist is that a vector
ρ with 0 < ρi < 1, for 1 ≤ i ≤ M , can be found that satisfies Proposition 1
and, in the case of a minimal discard batch-queue, Eq. 6. It then follows that
the net task-arrival rate at each node j is strictly less than the task-service rate,
i.e. Ȧj(1) +

∑
1≤k �=j≤M Ḃkj(ρk, 1) < Ḋj(1). This is a rather useless a priori

condition because the quantities ρk are unknown, but since each ρk < 1, a
sufficient condition for equilibrium to exist is that

Ȧj(1) +
∑

1≤k �=j≤M

Ḃkj(1, 1) < Ḋj(1) for 1 ≤ j ≤ M (12)

Ḃkj(ρk, z) being monotonically increasing in ρk, which is easy to check.
For the case of no re-batching and routing probabilities pij that do not depend

on the batch size, this simplifies to Ȧj(1)+
∑

1≤k �=j≤M pkjḊk(1) < Ḋj(1), a more
conventional type of “traffic constraint”.

3.3 Open and Pseudo-closed Networks

First, notice that all non-trivial (i.e. with at least one non-unit batch size)
batch-networks are open in the sense that they have external (special) arrivals
and departures from the network. Moreover, this means that all nodes have
unbounded queue lengths, whatever the batch size probability distributions;
even when special batches are a.s. finite, with positive probability some node
in the network is empty and so the total network population can increase due
to special arrivals at that node. Again, with positive probability, a node may
subsequently become empty before any special departure occurs to reduce the
total population. In this way it is possible for the network population to increase
indefinitely (with probability one), so that it is unbounded; the same therefore
applies to each queue length. Contrary to plain queueing networks, therefore,
it must always be the case that ρi < 1 at each node i. Notwithstanding these
remarks, we define an open batch network to be one in which there are exter-
nal normal arrivals or departures at one or more nodes, and a pseudo-closed
batch network (mixed open-closed) to be one with no external normal arrivals
or departures (Figs. 2 and 3).

260 P. G. Harrison

Fig. 2. Open batch-network

Fig. 3. Pseudo-closed batch-network: closed for normal tasks, open for special tasks

Consider, as a simple example, a cycle of two discard batch-queues of the
type considered above and illustrated in Fig. 3, with batch sizes restricted to
1 or 2. Without loss of generality, we assume that departing batches of size 2
become arriving batches of size 2 at the other node; however we could just as
easily choose to have departing batches change their size probabilistically (from
1 to 2 and/or 2 to 1 here) when they arrive at the other node. Denote the
types of the transitions synchronising node 1 departures with node 2 arrivals by
α21, α22, with rates d11 = μ11, d12 = μ12 (corresponding to batch sizes 1 and 2)
respectively, and similarly for the corresponding transitions synchronising node
2 departures with node 1 arrivals. Further, let the external arrival rate of normal
batches of size j at node i be λij , so that the generating function of all the normal
arrival rates at node i is

∑2
j=1 aijz

j , where aij = xαij
+ λij for i = 1, 2; j = 1, 2.

The special batch external arrival rates and their generating functions Ai0(z)
are then determined by Eq. 8. To illustrate more clearly, proceeding from first
principles, the rate equations are:

xα21 = ρ1μ11; xα22 = ρ21μ12; xα11 = ρ2μ21; xα12 = ρ22μ22

where ρi is the solution of the equation

μi2ρ
3
i + (μi1 + μi2)ρ2i − (λi1 + λi2 + xαi1 + xαi2)ρi − λi2 − xαi2 = 0

for i = 1, 2, which arises immediately from Eq. 10. This pair of simultaneous
cubic equations must be solved numerically.

Equivalently, just applying Theorem1, we obtain – in the more general case
where departing batches from node i may choose to leave the network with
probability 1 − pij or to pass to the other node with probability pij (i 	= j ∈
{1, 2}):

A1(ρ−1
1) + p21D2(ρ2/ρ1) + D1(ρ1) = A1(1) + p21D2(ρ2) + D1(1)

A2(ρ−1
2) + p12D1(ρ1/ρ2) + D2(ρ2) = A2(1) + p12D1(ρ1) + D2(1)

Product-Form Queueing Networks with Batches 261

However, these are simultaneous quartic equations, the invalid roots ρ1, ρ2 = 1
not being factored out as in Eq. 10.

The sufficient stability conditions for this network are

Ȧ1(1) + p21Ḋ2(1) < Ḋ1(1) and Ȧ2(1) + p12Ḋ1(1) < Ḋ2(1),

which yield λ11 + 2λ12 + p21(μ21 + 2μ22) < μ11 + 2μ12 and a similar inequality,
interchanging the node-subscripts 1 and 2.

A numerical instance of this example has μ11 = 10;μ12 = 2;μ21 = 5;μ22 =
3;λ11 = 4;λ12 = 0;λ21 = 3;λ22 = 0; p12 = 0.4; p21 = 0.6. The sufficient stability
conditions require, respectively, that 10.6 < 14 and 8.6 < 11, which are satisfied,
and the solution for the product-form is ρ1 = 0.584, ρ2 = 0.615.

If we increase the external arrival rate at node 2 to λ21 = 6 the second
sufficient stability conditions becomes 11.6 < 11 so is not satisfied. However, in
this case a solution ρ1 = 0.767, ρ2 = 0.931 exists and the network is stable; the
second exact stability condition is λ21+2λ22+p12ρ1(μ11+2μ12ρ1) < μ21+2μ22,
i.e. 10.01 < 11.

3.4 Pseudo-closed Networks

It is well known that, in a closed Jackson network [12], the (traffic) rate equa-
tions have a unique solution only up to a multiplicative constant, these being
the solution of a set of homogeneous linear equations. With batches in minimal
discard queues, as we have already pointed out, the network’s population is not
bounded and certainly not constant because of the external special arrivals. Fur-
thermore, the rate equations are non-linear. However, pseudo-closed networks,
with no external normal arrivals, do have a different type of constraint, arising
from Eq. 11 which, for a pseudo-closed network becomes:

∑

1≤k �=j≤M

Bkj(ρk, ρ−1
j) + Dj(ρj) =

∑

1≤k �=j≤M

Bkj(ρk, 1) + Dj(1) (13)

for 1 ≤ j ≤ M . When batch sizes do not change in transit and the routing
probabilities are the same for all batch sizes, the equation becomes

∑

1≤k �=j≤M

pkjDk(ρk/ρj) + Dj(ρj) =
∑

1≤k �=j≤M

pkjDk(ρk) + Dj(1) (14)

Summing over j then gives, setting pjj = 0 for 1 ≤ j ≤ M ,

M∑

j=1

M∑

k=1

pkjDk(ρk/ρj) +
M∑

j=1

Dj(ρj) =
M∑

j=1

M∑

k=1

pkjDk(ρk) +
M∑

j=1

Dj(1)

Interchanging the order of summation on the right hand side and noting that
for pseudo-closed networks

∑M
j=1 pkj = 1 for all k, two of the sums cancel and

we are left with
M∑

j=1

M∑

k=1

pkjDk(ρk/ρj) =
M∑

j=1

Dj(1)

262 P. G. Harrison

This is a constraint on all the pairwise ratios of the nodes’ utilisations – the
parameters of the required geometric distributions at each node. Notice that
this does not apply to open batch networks because the corresponding equation
would include the term

∑M
j=1 Aj(ρ−1

j), which is neither constant nor a function
of the utilisation-ratios.

Clearly one solution to this equation has ρ1 = ρ2 = . . . = ρM , whereupon we
may write

(D(ρ) − D(1))(I − P) = 0

where ρ = (ρ1, . . . , ρ1), D(z) is the vector (D1(z1), . . . , DM (zM)), 1 is the vector
of ones (1, . . . , 1) of length M , the matrix P = (pij | 1 ≤ i, j ≤ M) and I is the
identity M × M matrix. Since P is singular for a pseudo-closed network, these
equations have a unique solution up to an arbitrary multiplicative constant (the
rank of P being M − 1 in a connected network). Hence we obtain

Dj(ρ1) − Dj(1) = κj(D1(ρ1) − D1(1))

for 2 ≤ j ≤ M , where the vector (1, κ2, . . . , κM) is a solution to the linear
equations x.(I − P) = 0, i.e. a left eigenvector of I − P with eigenvalue 0. It
therefore remains to solve each of the non-linear equations Dj(y) − Dj(1) =
κj(D1(y) − D1(1)) for j = 2, . . . ,M , each of which must have the same solution
y = ρ1. In general, this will be highly constraining on the parameters of the
network, but for a two-node network there is only one such equation to solve,
namely (since κ2 = 1) D2(ρ) − D2(1) = D1(ρ) − D1(1), or, after factorisation,

(ρ − 1)[(μ22 − μ12)ρ − (μ11 + μ12 − μ21 − μ22)] = 0

The only valid solution (with ρ1 = ρ2 = ρ) is therefore ρ = −1 − δ1/δ2 where
δi = μ1i − μ2i for i = 1, 2. For 0 < ρ < 1 we therefore require that either
δ1 > 0, δ2 < 0,−δ2 < δ1 < −2δ2 or δ1 < 0, δ2 > 0, δ2 < −δ1 < 2δ2.

Consider the following pseudo-closed 2-node example, for which we must
have p12 = p21 = 1. Let μ11 = 2, μ12 = 1;μ21 = 2.6 and μ22 be left unspecified.
Then δ1 = −0.6 and δ2 = 1 − μ22, so we have the second case and require
0.4 < μ22 < 0.7. No solutions were found for μ22 outside this range and all
solutions with μ22 in the range had ρ1 = ρ2. For example, when μ22 = 0.699
we find ρ1 = ρ2 = 0.9934; when μ22 = 0.401, ρ1 = ρ2 = 0.0017; and when
μ22 = 0.5, ρ1 = ρ2 = 0.2. In fact, it can be shown via tedious algebra that there
are no other solutions to Eq. 14 when M = 2 other than ρ1 = ρ2. Whilst being a
challenge to generalize this to arbitrary pseudo-closed networks, this is not the
point of the present paper and the urgency of such a result is not clear.

4 Conclusion

As noted in the introduction, batch-networks of this type are well suited to mod-
elling bursty traffic that occurs in networks of various types, for example router
networks and file transfers in storage systems. Data centres, in particular, con-
sume vast amounts of energy, often requiring their own power plants to be con-
structed, and demand for their services is set to continue growing rapidly. Thus

Product-Form Queueing Networks with Batches 263

both economics and social responsibility demand the minimisation of energy
use and certainly that energy not be wasted. One way this is being done is to
construct devices with several power levels of operation, at least including “on”
and“off”, and probably with “sleep” or“standby” intermediate levels as well.
When a device is not in use, its power level decreases, e.g. it is switched off, and
conversely when it is required again, it is switched on. If the offered workload
is “smooth”, i.e. devices do not have long idle periods, there is no benefit in
shutting them down or reducing their power level; they will quickly have to be
powered up again, with increased energy (and wear) overheads, resulting in a
penalty, not a saving in energy [15]. Therefore in energy-efficient systems, work-
load has to be scheduled to introduce bursts into the workload, with longer idle
periods, and these are well modelled by batch movements in a network. To min-
imise energy consumption subject to adequate quality of service (QoS), and vice
versa, therefore requires models that account for burstiness.

In a batch-network, the scheduled regular traffic can be represented by normal
batches. When a device is switched off, it may lose work that has either already
arrived or is on the way, for example in a control unit buffer. Conversely, when
the device starts up again, it may be that a backlog of work has built up and
so there is a sudden burst of activity. Such events – switching off and on again
– are well described by a batch-queue’s special departure and arrival streams.
Efficient, product-form, batch-networks therefore have the potential to provide
a way to suggest alternative scheduling algorithms that can be assessed quickly,
even in real time.

Of course there is the objection that, even if batch-networks provide a good
representation, it is unlikely that the conditions will be met that lead to a
product-form – and hence efficient solution. However, direct analytical solutions
(solving the underlying Markov chain’s global balance equations) are intractable
numerically and simulation is expensive and time consuming. Therefore approxi-
mations are generally used. This gives at least three important roles for product-
forms:

– To provide exact results when their conditions are met;
– To provide a benchmark against which to assess approximate methods and

simulation: a parameterisation of a model would be chosen that does satisfy
the conditions for product-form and the ensuing exact solution would be
compared with the inexact model’s output;

– Product-forms themselves are (usually) approximations and may lead to
upper and/or lower bounds on the exact solution.

In fact the generality of the RCAT approach allows batch-queues to be incorpo-
rated into any other product-form networks, for example G-networks or BCMP
networks, or even be mixed with product-form Petri nets [1–3,5,11]. Current
work is investigating a pair of batch queues with finite batch sizes and w ithout
any special arrivals or departures. The essence of the approach is to observe that
above a certain pair of queue lengths, the steady state balance equations are the
same with or without the special batches. Below these thresholds, the method
of spectral expansion is used to yield an “almost” product-form solution [14].

264 P. G. Harrison

References

1. Marin, S.B.A., Harrison, P.G.: Analysis of stochastic petri nets with signals. Per-
form. Eval. 69, 551–572 (2012)

2. Balsamo, S., Harrison, P.G., Marin, A.: Methodological construction of product-
form stochastic petri nets for performance evaluation. J. Syst. Softw. 85, 1520–1539
(2012)

3. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed and mixed
networks of queues with different classes of customers. J. ACM 22(2), 248–260
(1975)

4. Chao, X., Miyazawa, M., Pinedo, M.: Queueing Networks: Customers, Signals and
Product Form Solutions. Wiley, New York (1999)

5. Gelenbe, E.: G-networks with triggered customer movement. J. Appl. Prob. 30,
742–748 (1993)

6. Gross, D., Harris, C.M.: Fundamentals of Queueing Theory. Wiley, New York
(1985)

7. Harrison, P.G., Hayden, R.A., Knottenbelt, W.J.: Product-forms in batch net-
works: approximation and asymptotics. Perform. Eval. 70(10), 822–840 (2013)

8. Harrison, P.G.: Turning back time in Markovian process algebra. Theoret. Comput.
Sci. 290(3), 1947–1986 (2003)

9. Harrison, P.G.: Compositional reversed Markov processes, with applications to G-
networks. Perform. Eval. 57, 379–408 (2004)

10. Harrison, P.G.: Turning back time - what impact on performance? Comput. J.
53(6), 860–868 (2010)

11. Harrison, P.G., Patel, N.M.: Performance Modelling of Communication Networks
and Computer Architectures. Addison-Wesley, Boston (1992)

12. Jackson, J.R.: Jobshop-like queueing systems. Manag. Sci. 10(1), 131–142 (1963)
13. Kelly, F.P.: Reversibility and Stochastic Networks. Wiley, New York (1979)
14. Mitrani, I., Chakka, R.: Spectral expansion solution for a class of Markov models:

application and comparison with the matrix-geometric method. Perform. Eval. 23,
241–260 (1995)

15. Papathanasiou, A.E., Scott, M.L.: Energy efficiency through burstiness. In: 5th
IEEE Workshop on Mobile Computing Systems and Applications (2003)

Author Index

Abate, Alessandro 110
Alhafez, Nizar 94
Alotaibi, Mohammed 126

Baier, Christel 78
Barbierato, Enrico 205
Beccuti, Marco 30
Biagi, Marco 62
Brun, Olivier 190
Budde, Carlos E. 110

Capra, Lorenzo 30
Carnevali, Laura 157
Cauchi, Nathalie 110

Danciu, Alexandru 14
Das, Olivia 219
De Pierro, Massimiliano 30

Ezhilchelvan, Paul 1

Feddersen, Brett 173
Fetzer, Christof 78
Fourneau, Jean-Michel 46
Franceschinis, Giuliana 30

German, Reinhard 62
Gribaudo, Marco 205

Harrison, P. G. 250
Herrmann, Linda 78
Hillston, Jane 142
Hoque, Khaza Anuarul 110

Iacono, Mauro 205
Isstaif, Al Amjad Tawfiq 94

Keefe, Ken 173
Klüppelholz, Sascha 78
Krcmar, Helmut 14

Lipari, Giuseppe 157

Marin, Andrea 142
Mitrani, Isi 1

Napierkowski, Markus 78
Nguyen, Thi Thu Hang 190

Pernice, Simone 30
Piazza, Carla 142
Piazzolla, Pietro 205
Prabhu, Balakrishna 190

Rausch, Michael 173
Rossi, Sabina 142

Sanders, William H. 173
Santinelli, Luca 157
Shang, Zhihao 235
Sheikh, Ismail 219
Stoelinga, Mariëlle 110

Thomas, Nigel 126

van Harmelen, Arnaud 110
Vicario, Enrico 62

Webber, Jim 1
Wolter, Katinka 235
Wright, Ronald 173
Wu, Han 235

	Preface
	Organization
	Keynotes
	Performance Evaluation Targeting Quality of Experience
	Mean Field Models for (Large-Scale) Load Balancing Systems
	Contents
	On the Degradation of Distributed Graph Databases with Eventual Consistency
	1 Introduction
	2 The Model
	3 Fluid Approximation
	4 Numerical and Simulation Results
	5 Conclusions
	References

	To What Extent Does Performance Awareness Support Developers in Fixing Performance Bugs?
	1 Introduction
	2 Performance Awareness Approach
	3 Experimental Design
	3.1 Hypotheses, Variables and Treatments
	3.2 Experiment Subjects
	3.3 Experiment Objects

	4 Impact of Performance Awareness
	4.1 Descriptive Statistics
	4.2 Hypothesis and Correlation Testing

	5 Threats to Validity
	6 Related Work
	7 Conclusion and Future Work
	References

	Deriving Symbolic Ordinary Differential Equations from Stochastic Symmetric Nets Without Unfolding
	1 Introduction
	2 Background
	2.1 Our Case Study in a Nutshell
	2.2 The SSN Formalism
	2.3 From SSN Models to ODE
	2.4 Symbolic Manipulation of SSN Arc Functions

	3 The Symbolic ODE Generation Method
	4 Experimental Results
	5 Conclusions and Future Work
	References

	Mean Value Analysis of Closed G-Networks with Signals
	1 Introduction
	2 Description of the Model
	3 Mean Value Analysis
	4 An Example and Some Possible Extensions
	5 Concluding Remarks
	References

	Extending the Steady State Analysis of Hierarchical Semi-Markov Processes with Parallel Regions
	1 Introduction
	2 Hierarchical Semi-Markov Process with Parallel Regions
	2.1 Description and Graphical Representation
	2.2 Formal Definition

	3 Analysis Technique
	3.1 Evaluation of the Sojourn Time Distributions
	3.2 Evaluation of Exit Distributions
	3.3 Evaluation of the Reaching Probabilities of Nested States
	3.4 Evaluation of Probabilities to Exit from Border Points
	3.5 Evaluation of the Mean Sojourn Times
	3.6 Embedded DTMC and Evaluation of Steady State Probabilities
	3.7 Analysis with History States

	4 Experiments
	4.1 Unavailability Analysis of a Fault Tree
	4.2 Computational Experience with Composability

	5 Conclusion
	References

	Formal Parameter Synthesis for Energy-Utility-Optimal Fault Tolerance
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Redo-Based Fault-Tolerance Model
	5 State-Space Reduction and Factorization
	6 Configuration
	7 Conclusion
	References

	Performance Model of Apache Cassandra Under Heterogeneous Workload Using the Quantitative Verification Approach
	1 Introduction
	2 Related Work
	2.1 Benchmarks of Mixed Workloads on NoSQL
	2.2 Performance Models of Apache Cassandra
	2.3 Performance Analysis Using PRISM

	3 Cassandra Internals
	3.1 Read and Write Paths
	3.2 Internal Multithreading Architecture

	4 Cassandra Model
	4.1 Model Assumptions
	4.2 Mathematical Formulation
	4.3 PRISM Formulation
	4.4 Model Parameterization
	4.5 PRISM Experiments to Predict Maximum Throughput

	5 Experimental Evaluation
	6 PRISM Limitations
	7 Conclusions and Future Work
	References

	Modelling Smart Buildings Using Fault Maintenance Trees
	1 Introduction
	2 Preliminaries
	3 Fault Maintenance Tree Model of an HVAC System
	3.1 HVAC-0: The Basic Setting
	3.2 HVAC-1: Refinement of Maintenance Actions
	3.3 HVAC-2: Deterministic Time Periods
	3.4 HVAC-3: Spares for Affordable Components
	3.5 HVAC-4: Randomised Continuous Degradation of EBEs

	4 Concluding Remarks and Future Work
	References

	Performance Impact of Misbehaving Voters
	1 Introduction
	2 Background
	2.1 e-Voting
	2.2 e-Voting Misbehaviours
	2.3 Introduction to PEPA
	2.4 Related Work

	3 Our Approach
	3.1 DRE-i Behaviour Description
	3.2 Misbehaving Voters
	3.3 Actions Rates
	3.4 Throughput Analysis of Server Actions

	4 PEPA Models
	4.1 DRE-i Server and Client
	4.2 RCA DRE-i Clients
	4.3 RCB DRE-i Clients
	4.4 RCC DRE-i Clients

	5 Results and Discussion
	5.1 Goodput of Server Actions
	5.2 Scalability of Server's Goodput

	6 Conclusion
	References

	Information Flow Security for Stochastic Processes
	1 Introduction
	2 The Calculus
	3 Persistent Stochastic Non-interference
	4 A Decision Algorithm for PSNI
	5 Example
	6 Conclusion
	References

	Towards Probabilistic Modeling and Analysis of Real-Time Systems
	1 Introduction
	2 Problem Formulation
	3 Modeling and Analysis
	3.1 Stochastic Time Petri Nets
	3.2 Model Under FP and RM Scheduling
	3.3 Model Under EDF Scheduling
	3.4 Analysis

	4 Experimentation
	5 Discussion
	References

	An Ontology Framework for Generating Discrete-Event Stochastic Models
	1 Introduction
	2 Ontology Framework
	2.1 Formal Definition
	2.2 Components, Attributes, and Relationships
	2.3 Class Inheritance
	2.4 Model Fragments
	2.5 Model Generation Algorithm

	3 Generating ADVISE Security Models
	3.1 The ADVISE Atomic Model Formalism
	3.2 Implementing the ADVISE Generator Extensions
	3.3 The Two Nets Example

	4 Case Studies
	5 Related Work
	6 Conclusion
	References

	A Mixed Strategy for a Competitive Game in Delay Tolerant Networks
	1 Introduction
	2 Assumption and Model Description
	3 Acceptance Probabilities Under the Symmetric Nash Equilibrium
	3.1 Acceptance Probabilities
	3.2 Computation of the Probability pk
	3.3 Asymptotic Analysis When k

	4 Performance Metrics
	5 Comparison Between the Threshold-Type Strategy and the Randomized Policy
	6 Conclusions
	A Proof of Theorem1
	References

	Second Order Fluid Performance Evaluation Models for Interactive 3D Multimedia Streaming
	1 Introduction
	2 The Target System
	3 Modeling Approach
	3.1 Analysis

	4 Experiments
	5 Related Work
	6 Conclusions
	References

	Modeling the Effect of Parallel Execution on Multi-site Computation Offloading in Mobile Cloud Computing
	Abstract
	1 Introduction
	2 Definitions and Assumptions
	3 The Optimal Offloading Allocation Problem
	3.1 Not Considering Parallel Execution of Tasks
	3.2 Considering Parallel Execution of Tasks

	4 Solution
	5 Results and Discussions
	5.1 Setup
	5.2 Considering Versus not Considering Parallel Execution in Finding Optimal Offloading Allocation
	5.3 Evaluating the Effect of Multi-core Devices on Optimal Offloading Allocation

	6 Related Work
	7 Conclusions
	Acknowledgment
	References

	An OpenFlow Controller Performance Evaluation Tool
	1 Introduction
	2 An Overview of Hyper-Erlang Distribution
	3 The OFCP Tool
	3.1 Design Goal
	3.2 Architecture
	3.3 Implementation

	4 The Fitting Algorithm
	5 Performance Evaluation Result
	6 Related Work
	7 Conclusion and Future Work
	References

	Product-Form Queueing Networks with Batches
	1 Introduction
	2 Geometric Batch-Queues
	2.1 Example
	2.2 The Reversed Batch-Queue

	3 Product-Form Batch-Networks
	3.1 Product-Form Theorem
	3.2 Sufficient Stability Condition
	3.3 Open and Pseudo-closed Networks
	3.4 Pseudo-closed Networks

	4 Conclusion
	References

	Author Index

