
Chapter 6
Amplitude Analysis

Multi-body decays of unstable particles proceed, where permitted, via various
short-lived intermediate resonant states. To probe the interactions that govern these
decays, an understanding of the quantum-mechanical amplitude that describes these
process is required.

The distributions of the angular components of this amplitude are well known
and constrained by angular momentum conservation, which permits the separation
of various interfering resonant components of differing spin. Interfering components
of the same spin result in complicated distributions in the invariant-mass projections
that are not as well understood, and are further complicated by the numerous decay
channels opening with increasing invariant-mass. In addition to the construction
of the amplitude, there are also various issues related to the implementation and
inference of the parameters of the amplitude model that are peculiar to amplitude
analyses.

6.1 Introduction

Amplitude analyses are used to decouple the various resonant and non-resonant
intermediate states in the decay of a heavy hadron in order to better understand
the decay dynamics: e.g., investigations into the relative rates of the intermediate
quasi-two-body decays; studying how CP violation arises in the production of the
intermediate resonances; or to understand the nature of the intermediate resonances
themselves. This study of the characteristic enhancement in the inclusive decay
rate is the only way to investigate bound states of quarks that decay rapidly via
the strong force. As the strong force conserves CP , only their production in the
weak-mediated b-hadron decay can violate CP . These resonance states interfere
quantum-mechanically with each other, giving sensitivity to potential CP violation
manifesting in the relative phases between the resonant contributions, additionally
permitting inference of the strong and weak phase variations across the phase-space.
In general, resonances that do not decay promptly are removed from the phase-space
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distribution, as their long lifetime implies a very narrowwidth, resulting in negligible
interference with the rest of the resonant contributions.

This Chapter is presented in the context of the amplitude analysis of B+ →
π+π+π−, the decay of a scalar B+ meson into three pseudoscalar charged pions,
where the results of the analysis of this decay mode with Run 1 LHCb data is pre-
sented in Chap.7.

6.2 Three-Body Kinematics

For a generic three-body decay, there are twelve possible degrees-of-freedom, from
the three 4-vectors of the final state particles. Knowledge of the final-state particle
masses removes three of these, and energy-momentum conservation removes another
four. For a (pseudo)scalar decaying into three (pseudo)scalars, there is no angular
dependence to the decay (and therefore no preferred orientation in space) and these
can be integrated out, leaving two remaining degrees of freedom. These are com-
monly taken to be two of the three invariant-mass-pairs squared, m2

i j = (pμ
i + pμ

j )
2.

Further useful variables are the momentum of one of the resonance daughters in
the resonance rest frame, q, the momentum of the ‘bachelor’ b-hadron daughter (the
decay product that does not arise from an intermediate resonance) in the resonance
rest frame, p, and the momentum of the bachelor in the b-hadron rest frame, p∗.
The helicity angle, θhel, is the angle between one of the resonance daughters and
the bachelor meson in the resonance rest frame. These can be related back to the
invariant-mass-pairs squared, for example,

m2
13 = (pμ

1 + pμ
3 )

2 = (−2pq cos θ13) + m2
1 + m2

2 + 2E1E3,

= (−2pq cos θ13) + m2
1 + m2

3 + 2
√
p + m2

1

√
q + m2

3, (6.1)

where here the helicity angle is denoted θ13, and the invariant-masses and energies
of the daughter particles are mi and Ei , respectively.

6.3 The Dalitz Plot

The two-dimensional distribution of two invariant-mass pairs squared is known as
the Dalitz plot [1]. For the decay of a scalar into three pseudoscalars, where there
are only two degrees of freedom, it provides a visualisation of all of the intermediate
decay dynamics. A schematic of the Dalitz plot and its kinematical boundaries can
be seen in Fig. 6.1.

If there are no intermediate structures, the distribution in this spacewill be uniform.
However, a resonant contribution in, for example, B→ R(P1P3)P2 will produce a
band at the invariant-mass-squared of the resonance, R, atm2

13 = m2
R , across the full
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Fig. 6.1 Left: Schematic of the (unsymmetrised) conventional Dalitz-plot, with values correspond-
ing to the boundaries and corners indicated. Right: Distributions of the decay intensities projected on
the cosine of the helicity angle, (corresponding to the squares of unnormalised Legendre polynomial
angular momentum eigenfunctions), for intermediate resonances exclusively of spin-0 (orange),
spin-1 (blue), spin-2 (green), and spin-3 (grey)

extent of m2
23 (and vice-versa for a decay B→ R(P2P3)P1, however a decay B→

R(P1P2)P3 in this configuration will result in a diagonal band). This band in general
is not uniform inm2

23, as conservation of total angularmomentum enforces a structure
in the cosine of the helicity angle, cos θ13, as described in Sect. 6.4.2. The angular
distribution is reflected in m2

23, as m
2
23 can be expressed in terms of the cosine of the

helicity angle, per Eq.6.1. Hence, an isolated resonance’s spin, or more correctly, the
relative orbital angular momentum between the resonance and the bachelor meson
(where in the case of a scalar meson decaying into three pseuduoscalar mesons, these
are equivalent), is uniquely determined by the distribution in the Dalitz plot.

6.4 The Isobar Formalism

The main simplifying assumption made in amplitude analyses is that the total three-
body amplitude can be expressed as a sum of successive amplitudes of two-body
decays. This is known as the isobar formalism, and is in general a good approximation
for the decays of B and D mesons.

In this case, the total amplitude is

A(m2
13,m

2
23) =

∑
j

c j Fj (m
2
13,m

2
23), (6.2)

where c j are the complex isobar coefficients that govern the relative magnitudes and
interferences between the contributions, and are in general extracted in a fit to the
data, and Fj are the normalised dynamical components that describe the properties
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of the j resonant contribution. The entire K-matrix (described in Sect. 6.5.4), enters
as only one of these terms with a single overall magnitude and phase relative to the
rest of the contributions, in addition to the other parameters of the K-matrix model
that are left free in the fit.

For the decay of a scalar meson, B, into three pseudoscalar mesons P1, P2, and P3,
via the decay of an intermediate resonance of arbitrary spin, R, B → R(P1P2)P3,
this matrix element can be written in terms of a matrix element for the production
process, a matrix element for the decay process, and a propagator, TR(m), for an
intermediate state with mass m, as

F =
∑

λ

〈P1P2|Rλ〉 TR(m) 〈P3Rλ|B〉, (6.3)

where, as the polarisation states of the intermediate resonance are not observed,
there is the sum is over the helicity states, λ, of the intermediate resonance. This
dynamical term can be written as a product of the invariant-mass lineshape, T , the
angular distribution, Z , and the Blatt–Weisskopf barrier factors, X , that represent a
correction to the amplitude due to the spatial extent of the intermediate resonance
and the b-hadron,

F(m2
13,m

2
23) = T (m13) · Z( �p, �q, L) · X (prBW, L) · X (qrBW, L). (6.4)

6.4.1 Blatt–Weisskopf Form Factors

Fundamental particles are pointlike, however bound states of quarks must have some
finite spatial extent (analogous to the semi-classical impact parameter). Due to the
potential well that this creates, the maximum angular momentum is limited by 2q,
the relative momentum of the decay particles in the resonance rest frame. Decaying
particles moving slowly cannot generate sufficient angular momentum to conserve
the spin of the resonance, and therefore these decays – both of the parent b-meson
and the resonance – are suppressed, introducing an extra momentum dependence to
the lineshape.

This additional dependence is introduced by assuming that the hadron forms a
harmonic potential well [2, 3], and are included in the amplitude by multiplicative
factors defined in terms of z = q rBW (or p rBW),

L = 0 : X (z) = 1 ,

L = 1 : X (z) =
√
1 + z20
1 + z2

,

L = 2 : X (z) =
√
z40 + 3z20 + 9

z4 + 3z2 + 9
,
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Fig. 6.2 Distribution of the ρ3(1690) resonance, modelled with a spin-3 relativistic Breit–Wigner,
in π+π− invariant mass for various values of the resonance Blatt–Weisskopf barrier radius

L = 3 : X (z) =
√
z60 + 6z40 + 45z20 + 225

z6 + 6z4 + 45z2 + 225
,

L = 4 : X (z) =
√
z80 + 10z60 + 135z40 + 1575z20 + 11025

z8 + 10z6 + 135z4 + 1575z2 + 11025
. (6.5)

where z0 represents the value of z whenm = m0. The value of the barrier radius, rBW,
is often taken to be in range 2–4 GeV−1. The effect of this choice on the invariant-
mass distribution for the spin-3 ρ3(1690) resonance can be seen in Fig. 6.2.

An important point to note is that these distributions only result in the correct
behaviour of the overall amplitude when combined with the explicit parameterisa-
tions of the angular distributions and mass-dependent width of the relativistic Breit–
Wigner described in this Chapter (in the Particle Data Group review [4] these are
the B ′ barrier factors), such that all parameters are evaluated in the correct reference
frame.

6.4.2 Angular Distributions

The angular distributions in the cosine of the helicity angle, cos θ13, result from the
conservation of angular momentum between the resonance and the bachelor meson,
and therefore from the spin of the intermediate resonance. As such these are in terms



104 6 Amplitude Analysis

of the Legendre polynomials that represent the eigenfunctions of angularmomentum,
which can be seen in Fig. 6.1.

Using the Zemach tensor formalism [5, 6], the angular probability distribution
terms Z( �p, �q) are given by

L = 0 : Z( �p, �q) = 1,

L = 1 : Z( �p, �q) = − 2 �p · �q,

L = 2 : Z( �p, �q) = 4

3

[
3( �p · �q )2 − (| �p ||�q |)2

]
,

L = 3 : Z( �p, �q) = − 24

15

[
5( �p · �q )3 − 3( �p · �q )(| �p ||�q |)2

]
,

L = 4 : Z( �p, �q) = 16

35

[
35( �p · �q )4 − 30( �p · �q )2(| �p ||�q |)2 + 3(| �p ||�q |)4

]
.

(6.6)

The factors of pq form part of the Blatt–Weisskopf form factors described in
Sect. 6.4.1.

6.4.3 Interference Effects

All modern amplitude analyses are performed via the construction of a quantitative
model of the contributing amplitudes and their interferences, the parameters of which
are inferred by some statistical procedure. However, it is instructive to investigate
the qualitative features of the Dalitz plot, such that this may guide the physical
interpretation of the models in Chap. 7.

The sensitivity to the relative phases of each resonant component arises from the
interference terms in the amplitude. Considering a very simple amplitudemodel with
only two contributing resonance components (in the same pair of daughter particles),
total intensity (magnitude of the total amplitude squared) can be written as

|A|2 = |T1(m2)Z1(θ) + T2(m
2)Z2(θ)|2

= Z2
1[Re(T1)2 + Im(T1)

2] + Z2
2[Re(T2)2 + Im(T2)

2]
+ 2Z1Z2[Re(T1)Re(T2) + Im(T1)Im(T2)], (6.7)

wherem is the invariant mass of the two daughter particles from the resonance decay,
and θ is the corresponding helicity angle. The factors that do not depend on θ (such as
the Blatt–Weisskopf form factors) have been subsumed into the definition of Ti (m2),
and Z is real. The last term in this expression is the interference term, and gives
sensitivity to the physical phase difference between the two contributions. Much
like the individual resonance components, this interference term (in the absence of
efficiency effects), has a helicity angle distribution proportional to the product of
Legendre polynomials when the above expression is integrated over m2. This has
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Fig. 6.3 Magnitude-squared of the total amplitude (z-axis), in the cosine of the helicity angle and
di-hadron invariant mass, for interfering spin-0 (distributed flat in mh+h− ) and spin-1 (distributed
with a relativistic Breit–Wigner in mh+h− ) components. The relative isobar phase, φ, is π in the
bottom-left, and π

2 in the bottom-right. The magnitude-squared of the amplitude where the decay
proceeds purely via the spin-0 contribution can be seen in the top-left, and in the top-right for the
decay purely via a spin-1 resonance. Note that regardless of the relative phase, the projection on
the di-hadron invariant-mass is the same, but the projection on the cosine of the helicity angle is
modified

important consequences when inferring the properties, or existence, of intermediate
resonances.

When the spins of two interfering resonances are different, the interference term
from the products of the corresponding Legendre polynomials can be an odd function
of cos θ, and therefore in these cases, when projected on to the invariant-mass axis
(i.e., integrating across cos θ), the effect of the interference vanishes.1 When pro-
jecting on to the helicity angle axis however, a structure appears that is sensitive to
the relative isobar phases between the two resonances. An example of this, using toy
data sampled from relativistic Breit–Wigner functions representing a broad spin-0
resonance interfering with a narrower spin-1 resonance, can be seen in Fig. 6.3, for
two values of the relative isobar phase. Also of note is that this depends on the phase
evolution of the relativistic Breit–Wigner: In the case of a relative isobar phase of π,

1For B+ → π+π+π−, the symmetrisation of the amplitude by a folding of the Dalitz-plot results in
this only being true at low mass for projection on the low-mass combination of oppositely charged
pions (and high mass for the projection on the high-mass combination), as the full helicity range is
not integrated over.
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Fig. 6.4 Distributions in the cosine of the helicity angle and di-hadron invariant mass for two
interfering (and overlapping in mass) spin-1 resonances of equal isobar magnitude, where the
relative isobar phase, φ, is π

2 on the left, and π on the right. Note that regardless of the relative phase
the projection on the cosine of the helicity angle is invariant, but the projection on the di-hadron
invariant mass is modified

decays with low values of cos θ preferentially occur above the pole mass, denoted by
the dotted line, whereas decays with high values of cos θ preferentially occur below
the pole mass.

For two interfering resonances of the same spin, the interference term is always an
even function of cos θ, and the opposite effect occurs. Projections on the helicity angle
do not depend on the relative isobar phase, and instead projections on the invariant-
mass distribution are sensitive to this phase. This is visible in Fig. 6.4, where similar
projections are shown for two overlapping spin-1 resonances. When the relative
isobar phase is zero or π, the maximum of the mass peak is consistent with the
resonance pole mass (dotted line) in the invariant-mass projection. However, when
this phase is π/2, a shift is observed in the position of the invariant-mass distribution
relative to the polemass, due to the constructive and destructive interference resulting
from the phase evolution of the relativistic Breit–Wigner. This indicates that correct
evaluation of the potential interference contributions from additional contributions
is essential when measuring the properties of resonances, and that inspection of
the structure in the cosine of the helicity angle and invariant-mass projection can
be used to qualitatively interpret the effects of the interferences between various
resonant contributions.

This is naturally more complicated when there are multiple interfering resonances
of different spins, and hence in practice an automated statistical procedure is required
to decouple these contributions (described in Sect. 6.6). However, when few contri-
butions dominate is it often possible to observe these effects in real decays, as in the
case of the analysis of the B+ → π+π+π− decay in Chap.7.
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6.5 Mass Distributions

The component of the amplitude that describes the evolution in the invariant mass
of the resonance daughters, often known as the lineshape, is determined by the
fundamental parameters of the resonance, such as its mass and width, and is also
modulated by the presence of open channels in the same region. The mass lineshape
also contains a complex phase, which in concert with the phase from the isobar
coefficient determines the interference structure in the Dalitz plot.

Unlike for the angular distributions, enforcing physical constraints such as uni-
tarity and analyticity in the lineshape is difficult. However, for a large number of
resonances which are isolated and narrow, the relativistic Breit–Wigner is a suffi-
cient approximation to the true distribution. In the analysis described in Chap.7,
these are used extensively, in addition to the unitarity-conserving K-matrix model
for the ππ S-wave, and the Gounaris–Sakurai model for the ρ(770)◦.

6.5.1 Relativistic Breit–Wigner

The non-relativistic Breit–Wigner form arises from the Fourier transform into the
frequency (or energy) domain of a damped driven harmonic oscillator, where the fre-
quency at which the amplitude is at a maximum is known as the resonant frequency.
This therefore is a very general physical phenomenon, which is also observed in the
exponential decay law of an unstable particle from Fermi’s golden rule, and as the
phase-shift of a partial wave in non-relativistic scattering theory.

In quantum field theory, the Feynman rules for a massive intermediate vector res-
onance prescribe a propagator (disregarding the sum over intermediate polarisations)

BWprop = i

s − �(s)
(6.8)

where m is the mass of the propagator, s is the sum of the momenta of the incoming
particles squared, and �(s) = m2(s) + im(s)�(s) is the self-energy of the interme-
diate state. In general this self-energy is unknown for hadronic intermediate reso-
nances. For isolated and narrow hadronic resonances,m(s) can bewell approximated
by a constant.2 Therefore, for resonant contributions, the relativistic Breit–Wigner
lineshape used is

T (m) = 1

(m2
0 − m2) − i m0�(m)

, (6.9)

2This is not the case for the ρ(770)◦ in particular, where a specific calculation has been performed
to improve agreement with experimental data, described in Sect. 6.5.2. It is also possible to use
dispersion theory techniques to estimate the mass dependence [7].
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where m0 is the mass of the resonance and the dependence of the decay width of the
resonance on m is approximated by

�(m) = �0

(
q

q0

)2S+1 (m0

m

)
X2(q rBW) , (6.10)

where �0 is the nominal width of the resonance, S is the spin of the resonance,
X is the Blatt–Weisskopf barrier factor, r is the barrier radius, q is (as before) the
magnitude of the momentum of each of the resonance daughters in the resonance
rest frame, and q0 denotes the value of q when m = m0.

6.5.2 Gounaris–Sakurai

For the ρ(770) resonance (and often applied to the ρ(1450) resonance), the functional
form of the mass-dependent width has been explicitly calculated by Gounaris and
Sakurai in Ref. [8], and hence this modification to the relativistic Breit–Wigner is
known as the Gounaris–Sakurai model.3 Here the lineshape is defined as

T (m) = 1 + D · �0/m0

(m2
0 − m2) + f (m) − i m0�(m)

, (6.11)

where

f (m) = �0
m2

0

q3
0

[
q2 [h(m) − h(m0)] + (

m2
0 − m2 )

q2
0
dh

dm

∣∣∣∣
m0

]
, (6.12)

q is the magnitude of the momentum of one of the daughter particles in the resonance
rest-frame,

h(m) = 2

π

q

m
ln

(
m + 2q

2mπ

)
, (6.13)

and
dh

dm

∣∣∣∣
m0

= h(m0)
[
(8q2

0 )
−1 − (2m2

0)
−1] + (2πm2

0)
−1 . (6.14)

The normalisation condition at T (0) fixes the parameter D = f (0)/(�0m0), and
is found to be

D = 3

π

m2
π

q2
0

ln

(
m0 + 2q0

2mπ

)
+ m0

2π q0
− m2

πm0

π q3
0

. (6.15)

3This parameterisation disregards information about additional open channels, and as such its
validity, particularly for precision mass measurements or for modelling the higher mass ρ(1450)
and ρ(1700) resonances, is questioned by some authors [7].
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Fig. 6.5 Left: Relativistic Breit–Wigner (orange) and Gounaris–Sakurai (blue) models for the
ρ(770)◦ invariant-mass shape, where the same values of the mass and with are used for both
models. Right: The ρ–ω mixing model defined in Eq.6.16

A comparison between this and the relativistic Breit–Wigner model for the ρ(770)◦
resonance can be seen in Fig. 6.5 (left).

ρ–ω Mixing Amplitude

In B+ → π+π+π−, the π+π− invariant-mass spectrum is dominated by a
large ρ(770)◦ contribution. A distortion of this lineshape arises from the B+ →
ω(π+π−)π+ decay, with the corresponding isospin-violating ω→ π+π− decay.
Since the ρ(770)◦ and ω(782) are both vector states and overlap in m(π+π−), the
relative magnitude and phase of these strongly interfering contributions is included
directly in a combined amplitude.

The combined ρ–ω mixing amplitude described in Refs. [9, 10] is modified to
replace the relativistic Breit–Wigner with the Gounaris–Sakurai model,

Aρ−ω = Aρ

[
1 + Aω�|B| exp(iφB)

1 − �2AρAω

]
, (6.16)

where Aρ is the Gounaris–Sakurai ρ(770)◦ lineshape, Aω is the relativistic Breit–
Wigner ω(782) lineshape, |B| and φB are the relative magnitude and phase of the
production amplitudes of ρ(770)◦ and ω(782), and � = δ (mρ + mω), where δ gov-
erns the electromagnetic mixing of ρ(770)◦ and ω(782). When ignoring the small
�2 term in the denominator of Eq.6.16, this is equivalent to the parameterisation
described in Ref. [11].

From SU(3) symmetry, the ρ(770)◦ and ω(782) are expected to be produced
coherently, giving |B| exp(iφB) = 1. In general δ is complex, although the imaginary
part is expected to be small so this can be neglected. The theory prediction for δ is
around 2MeV [12], and previous analyses have found |δ| to be 2.15 ± 0.35MeV [10]
and 1.57 ± 0.16MeV, and arg δ to be 0.22 ± 0.06 [11]. The distribution of thismodel
in the di-pion invariant mass can be seen in Fig. 6.5 (right), under the assumption of
coherent production.



110 6 Amplitude Analysis

6.5.3 Virtual Contributions

Virtual contributions, from the tail of off mass-shell B∗0 decays can enter the B+ →
π+π+π− Dalitz plot via the decay B+ → B∗0

v (π+π−)π+. These are modelled as
relativistic Breit–Wigner functions, with a pole mass corresponding to the true pole
mass of the excited state. The exception to this is when calculating the q0 parameter
in Eq.6.10, where, as the pole mass is outside of the kinematically allowed region,
an effective mass term is used,

meff
R (m) = mmin

ππ + (mmax
ππ − mmin

ππ )

[
1 + tanh

(
m − mmin

ππ +mmax
ππ

2

mmax
ππ − mmin

ππ

)]
. (6.17)

In principle, both scalar and vector B∗0 resonances can contribute, where each
of these appears similar to a exponential non-resonant term in the S or P wave,
but entering the Dalitz plot from mmax

ππ , rather than from mmin
ππ as is the case for

conventional non-resonant components.

6.5.4 K-Matrix

Resonances are associatedwith poles in the S-matrix, and this alone provides the fun-
damental, model-independent description. In the special case of a narrow resonance,
isolated from other resonances or open channels, there is a close correspondence
with the peak observed in experiment (i.e., on the real axis) and the position of the
pole – the lineshape of which is given by the relativistic Breit–Wigner distribution.
In general however, the parameters of the relativistic Breit–Wigner are not a good
representation of the true parameters of the resonance, as can be seen in the com-
parison between the model for two overlapping resonances using a K-matrix model
and two relativistic Breit–Wigner lineshapes in Fig. 6.6.

For spin-1 (or higher) resonances decaying to two scalars, the relativistic Breit–
Wigner is often a reliable description of the signal shapes, as these are mostly rea-
sonably narrow and isolated. However, in the low di-pion mass region, there are a
large number of broad overlapping scalar resonances, which exist in the presence of
numerous decay channel openings that distort the lineshapes. Therefore a model is
required that simultaneously respects unitarity when resonances interfere strongly,
and when additional decay channels for the resonance are possible.

For the interfering resonant K ∗0(1430), K ∗0(800), and non-resonant structures in
the Kπ S-wave, the so-called LASS model [13] considerably improves agreement
with data by enforcing unitarity in the interference via the phase shifts. Similarly, the
Flatté model [14] for the f0(980) resonance, where the opening of the KK threshold
(at 987MeV for K+K− and 997MeV for K 0K 0) distorts the lineshape in the π+π−
spectrum, likewise models the data well by accounting for the decays into KK and
conserving unitarity.
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Fig. 6.6 Comparison between the naïve sum of relativistic Breit–Wigner functions (orange) and
relativistic Breit–Wigner propagators within the K-matrix approach (blue), with equal isobar mag-
nitude and phase, in intensity distribution in the di-hadron mass (left), and Argand evolution of
the amplitude (right). The K-matrix amplitude remains within the unit circle, whereas the sum of
relativistic Breit–Wigner lineshapes violates unitarity

In general, unitarity conserving amplitude models can be derived from the S-
matrix formalism, where resonant contributions appear as poles in the S-matrix. The
matrix S f i can be defined as the projection of the initial state on the final state via
the scattering operator S,

S f i = 〈 f |S|i〉 = I + 2iT, (6.18)

where the identity matrix, I , represents the trivial non-interacting component of the
amplitude, and T contains all other scattering information. As the S-matrix is unitary,
it then follows that theT -matrix is also unitary and the transition amplitude is bounded
by a unit circle in the complex (Re, Im) plane. The factor of 2i is a convention that
results in this circle being centred at (0, i/2). For elastic processes the

√
s evolution

of the amplitude lies exactly on this circle, and for inelastic processes the amplitude
exists strictly within the unit circle.

A Hermitian K-matrix and transition amplitude can then be defined as

K̂−1 = T̂−1 + iρ, T̂ = (I − i K̂ρ)−1 K̂ , (6.19)

where the introduction of the phase-space factor, ρ, results in these being the Lorentz
invariant quantities, K̂ and T̂ , defined such that Tuv ≡ {ρ†u} 1

2 T̂uv{ρv} 1
2 . For two-body

channels the phase-space factor is

ρu =
√(

1 − (m1u + m2u)2

s

) (
1 − (m1u − m2u)2

s

)
, (6.20)

where m1u and m2u are the rest masses of the two products. When this goes below
the production threshold for a particular channel it is analytically continued via
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the transformation ρu → i |ρu |. The more complex parameterisations for multi-body
channels can be seen in Ref. [15].

To use this formalism for the production of resonant states in B decays, a
production-vector, P , is introduced, as described in Ref. [16]. The amplitude for
scattering from the B decays into a specific final state, u, is then

Fu =
n∑

v=1

[I − i K̂ρ]−1
uv · P̂v , (6.21)

where the sum is over all n intermediate states.
There is considerable freedom in the functional forms of K and P , other than

that P must have the same pole structure as K . Here the convention of Ref. [15]
is followed, and K is the sum over Breit–Wigner propagators for each pole, plus a
slowly varying ‘background’ polynomial term,

K̂uv(s) =
(

N∑
α=1

g(α)
u g(α)

v

m2
α − s

+ f scattuv

m2
0 − sscatt0

s − sscatt0

)
f A0(s) . (6.22)

Here, mα is the ‘bare’ pole mass of a resonant contribution; g(α)
u and g(α)

v are the
couplings of the resonance α to the ‘out’, u, and, ‘in’, v, channels, respectively; f scattuv

is the coupling of the slowly varying component to the u and v channels; and m2
0

and sscatt0 are coefficients of the slowly varying component that are determined from
scattering data. The matrix K̂ is symmetric, such that it is Hermitian by construction.
The ‘Adler zero’ term [17], f A0(s), suppresses the false kinematical singularity when
s is below the π+π− production threshold,

f A0(s) = 1 GeV2 − sA0
s − sA0

(
s − 1

2
sAm

2
π

)
, (6.23)

where sA and sA0 are constants of order unity.
The P-vector is defined analogously to the K-matrix term in Eq.6.22,

P̂v(s) =
N∑

α=1

βαg(α)
v

m2
α − s

+ f prodv

m2
0 − sprod0

s − sprod0

, (6.24)

where βα and f prodv are complex parameters that describe the production pole and
slowly-varying components, and are to be left free in the fit, and sprod0 is a constant.
As in previous analyses [18], the P-vector appears without a term to suppress the
kinematical singularity.
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Table 6.1 K-matrix parameters quoted in Ref. [19], which are obtained from a global analysis of
ππ scattering data by Anisovich and Sarantsev [15]. Only f1v parameters are listed here, as only
the di-pion contributions are observed. Masses, mα, and couplings, g(α)

u , are given in GeV, while
units of GeV2 for s-related quantities are implied; sprod0 is taken from Ref. [18]

α mα g
(α)
1 [ππ] g

(α)
2 [K K̄ ] g

(α)
3 [4π] g

(α)
4 [ηη] g

(α)
5 [ηη′]

1 0.65100 0.22889 −0.55377 0.00000 −0.39899 −0.34639

2 1.20360 0.94128 0.55095 0.00000 0.39065 0.31503

3 1.55817 0.36856 0.23888 0.55639 0.18340 0.18681

4 1.21000 0.33650 0.40907 0.85679 0.19906 −0.00984

5 1.82206 0.18171 −0.17558 −0.79658 −0.00355 0.22358

sscatt0 f scatt11 f scatt12 f scatt13 f scatt14 f scatt15

−3.92637 0.23399 0.15044 −0.20545 0.32825 0.35412

sprod0 m2
0 sA sA0

−3.0 1.0 1.0 −0.15

Fixed Parameters

The most commonly used set of parameters for the K-matrix scattering components
that represent the complex ‘bare’ poles present in theK-matrix, aswell as the coupling
of these poles to the various final state, are those reported in Ref. [19]. These were
obtained via private communication with the authors of Ref. [15] as the (then) latest
values of their global fit to the available scattering data. These parameters are those
used in Chap.7, and are listed in Table6.1.

Typical values for the other coefficients appearing in the K-matrix are m2
0 =

1 GeV2, sscatt0 = −5 GeV2, sA = 1, and sA0 = 0 GeV2. There is also a free parameter
in the production term in Eq.6.24, sprod0 , which in previous analyses of D meson
decays has been found to be in the range −3 to 0 [18, 19].

Physical Interpretation

The K-matrix model (with the P-vector ansatz) described in the previous section
can be thought of as some initial b-hadron decay, described by P̂ , into one of the
five K-matrix channels, plus some other hadrons which are sufficiently decoupled
via the isobar approximation - in this case a single π meson. This state is then propa-
gated via the [I − i K̂ρ]−1 term to another of the five channels to form the final state
(the addition of the identity element in this propagator term means that the ‘interme-
diate’ and final state can be the same), which is often referred to as ‘re-scattering’.
In this analysis, only the π+π− final state is observed, and therefore elements in the
resulting matrix that describe other final states are discarded.

Elements of theK-matrix itself, describing the bare resonance poles and couplings
to the various final states, can be entirely determined from coupled-channel analy-
ses of scattering data, and these are assumed to universally propagate any state into
any other. The P-vector describes the virtual ‘intermediate’ states produced by the
b-hadron decay, and therefore is specific to each b-hadron decay. These have
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Fig. 6.7 Left: Absolute magnitude squared of the decay contribution to the π+π− K-matrix, with
the positions of the light scalars indicated. It is interesting to note that none of these features
resemble a simple relativistic Breit–Wigner peak. Right: Argand diagram of the decay component
of the π+π− K-matrix. This is bounded by the unit circle, and elastic until approximately the
f0(980) resonance

the same pole structure as the K-matrix, but otherwise there is no requirement on the
functional form.Here the P-vector is chosen to have the same form as the components
of theK-matrix, with similar pole and slowly-varying components. Specifically, there
is no requirement to include any particular pole or slowly-varying component, and
therefore inclusion of these is determined by the model selection procedure as with
any other resonant contribution.

The physical transition probability and real and imaginary components of the
amplitude of the K-matrix only term, given in Eq. 6.19, using parameters determined
from the coupled channel analysis in Ref. [15], can be seen in Fig. 6.7. Despite not
being included as an explicit pole, the f0(500) contribution is clear from this plot,
and likely arises from the slowly-varying contributions.

6.6 Implementation Details

To extract the physical parameters described in the previous section, along with
various derived parameters such as fit fractions and CP-asymmetries, the amplitude
model must be constructed and fitted to the b-hadron decay data. To this end, the
Laura++ amplitude analysis package is used [20]. This package also implements
the efficiency, background, and other experimental corrections in order to obtain the
best fit quality. There are also various implementation details specific to the analysis
described in Chap.7.

In the B+ → π+π+π− decay there are two identical (like-sign) pions in the final
state, under exchange of which the amplitude is symmetric due to Bose symmetry.
The pairs in which to define the amplitude are therefore arbitrary. In this case the two
pairs of opposite-sign pions are selected via mass ordering, where the pair with the
smaller invariant mass is given the label m low, and the pair with the larger invariant
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mass is labelledmhigh. This results in a ‘folding’ of the conventional Dalitz-plot about
m low = mhigh, and of the square Dalitz-plot about θ′ = 0.5.

Whilst the relative phases between amplitude contributions given by the isobar
coefficients are physical, the absolute value of the phase has nomeaning, and similarly
with the absolute magnitudes of the isobar coefficients. Hence, the magnitude and
phase of the dominant contribution (for B+ → π+π+π− this is the ρ(770)◦) are
fixed to be 1 and 0, respectively, and all contributions are measured relative to this.
When considering the CP-conjugate amplitude models, the phase of the dominant
contribution is fixed to zero in each case, however the magnitude for one is left free
in the fit to incorporate a CP-asymmetry in the dominant contribution.

6.6.1 Normalisation

The expression in Eq.6.4 enters the total amplitude with a normalisation factor, N ,
that ensures that the total integral of the component across the whole Dalitz plot is
unity,

N
∫

DP
F(m2

13,m
2
23) m

2
13m

2
23 = 1. (6.25)

In Laura++, this integral is performed using Gauss-Legendre numerical integration,
where weighted Legendre polynomials are used to approximate the total integral
across the transformed domain of [−1, 1]. Typically O(1000) grid points are evalu-
ated in each dimension, however when narrow resonances are present the integration
mesh size may be too coarse to correctly evaluate the amplitude. In these cases, an
adaptive binning scheme implements a finer mesh in the axis that the resonance is
defined in (and in both axes where narrow resonances overlap). Integrals that rep-
resent the total ‘rate’ across the Dalitz plot, such as those in the denominator of
Eq.6.26, are also calculated in this way.

When F has no dependence on the resonance parameters (e.g., masses, widths are
held constant), and only the isobar, c j , parameters vary,N can be cached to improve
overall execution time.

6.6.2 Efficiency

As true physical distributions are fitted to the distribution of events in the Dalitz plot,
any variation in the experimental efficiency (i.e., the probability to observe a decay in
a specific point in the phase space), would bias the parameters of the model that are
extracted and the statistical significance of any particular component, and therefore
such effects need to be corrected for.

Much like in the analysis described in Chap. 5, this is primarily achieved by
large samples of simulated decays, with data-driven corrections for the particle
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identification and level-0 trigger efficiencies. In Laura++ (for the analysis described
in Chap.7), the variation of the efficiency is expressed nonparametrically by a his-
togram in the square Dalitz-plot, which is smoothed by bin-by-bin cubic-spline inter-
polation.

The efficiency for each decay in the data, ε(m2
13,m

2
23), is obtained from the

smoothed efficiency histogram, and enters in the definition of the normalised event-
wise signal probability-density function,

Psig(m
2
13,m

2
23) = |A(m2

13,m
2
23)|2ε(m2

13,m
2
23)∫

DP |A(m2
13,m

2
23)|2ε(m2

13,m
2
23) dm13 dm23

. (6.26)

The Square Dalitz-Plot

In charmless three-body decays, intermediate resonances predominantly populate the
regions around the edges of the conventional Dalitz plot. This effect is exacerbated in
the observed distributions by the requirement of the trigger and reconstruction algo-
rithms for a decay to have at least one high transverse-momentum track. Therefore,
in an attempt to make the generation of simulated data as efficient as possible for a
generic three-body decay, a transformation of the conventional Dalitz-plot, known
as the square Dalitz-plot, is introduced, such that generating events uniformly in
this transformed phase-space gives more weight to the edges of the conventional
Dalitz-plot.

In addition to improving the MC generation efficiency, the uniform phase-space
boundaries mean that implementing a binning scheme and performing efficiency
corrections is considerably easier, as the boundaries no longer depend on the specific
decay and bins can be easily aligned with the boundaries.

The square Dalitz-plot variables, m ′ and θ′, are a re-scaling of one of the helicity
angles and one of the invariant-mass pairs. There are therefore three such square
Dalitz-plots for a three-body decay, where the helicity angle and invariant-mass
pair are usually chosen to be those where the dominant resonant contributions are
expected or to exploit a symmetry in the decay. These variables are defined such that,
for m13,

m ′ ≡ 1

π
arccos

(
2
m13 − mmin

13

mmax
13 − mmin

13

− 1

)
, (6.27)

θ′ ≡ 1

π
θ13, (6.28)

which are in the range [0, 1], and similarly defined for the other two invariant-mass
combinations.

For the analysis of B+ → π+π+π− described in Chap.7, the square Dalitz-plot
is chosen to be in m12, and has the particularly useful property that the symmetrisa-
tion due to the two indistinguishable π mesons can be performed by folding about
θ′ = 0.5.
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6.6.3 Backgrounds

Background in the signal region used to select events for the Dalitz plot fit can arise
from random combinations of hadrons from the event (combinatorial background),
or where all final state hadrons are from a true b-hadron decay, but are otherwise
mis-identified (cross-feed) or partially reconstructed. Regardless of their origin, the
distributions of these background events in the Dalitz plot (conventional or square)
is parameterised, much like the efficiency distributions, by a uniformly binned his-
togram with or without cubic-spline interpolation.

The probability of an event being background is constructed, using the distribution
of background events over the Dalitz plot and the total number of background events
in the data sample (which ismost reliably estimated from a separate fit to the invariant
mass distribution of the b-hadron), and enters the total likelihood in the same way
as the efficiency corrected signal probability in Eq.6.26,

Pbkg(m
2
13,m

2
23) = B(m2

13,m
2
23)∫

DP B(m2
13,m

2
23) dm13 dm23

, (6.29)

where B(m2
13,m

2
23) is the background expectation at the point (m2

13,m
2
23).

6.6.4 Parameter Inference

The aim of amplitude analysis is to extract the isobar parameters, c j , that describe
the relative magnitudes and interferences between the model components, and other
parameters associated to individual resonances, such as masses and widths. Here,
this is achieved via a maximum-likelihood fit.

Given an amplitude model probability density function (PDF), P(x; θ), which is
proportional to the probability that an observation, x , arises from a model P , defined
in terms of themodel parameters θ, the likelihood function of a vector of independent
observations, �x = (x1, x2, . . . , xi ), can be formed,

L(�x; θ) =
∏
xi

P(xi ; θ). (6.30)

It follows that the parameters that maximise this likelihood, θ̂ describe a model that
is most favoured by the observations.

In practice this is achieved via the non-linear optimisation routines provided by
the MINUIT library [21], where instead minimisation is performed on the negative
log-likelihood as this is more numerically stable (and as the logarithm is monoton-
ically increasing function, a minimum in the negative log-likelihood coincides with
a maximum in the likelihood).
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Uncertainties

Inmost cases in high-energy physics, themaximum-likelihood estimator is unbiased,
and asymptotically normal by the central limit theorem (i.e., the estimates are equal
to the true parameter plus an uncertainty that is approximately normal, and that the
uncertainty decays proportional to 1/

√
N , where N is the size of the data).

If this is the case, then the variance, Var[θ̂], of a maximum-likelihood estimate of
a parameter θ̂ follows the Cramér–Rao bound, which in the univariate case is

Var[θ̂] ≥ 1

I (θ)
. (6.31)

Here I (θ) is the Fisher information,

I (θ) = −Eθ

[
∂2 logL(x; θ)

∂θ2

]
, (6.32)

where Eθ denotes the expectation of θ, and L(x; θ) is the univariate likelihood func-
tion. The maximum-likelihood estimator is these cases is also an efficient estimator,
such that the Eq.6.31 is an equality. The expectation value of θ can be estimated
using the maximum-likelihood value of θ, θ̂, and therefore Var[θ̂] can be calculated
from the second-derivative of L(x; θ) at θ = θ̂,

Var[θ̂] = −
(

∂2 logL(x; θ)

∂θ2

)∣∣∣∣
θ=θ̂

. (6.33)

In amplitude analysis, the parameterisation of the models may violate the con-
sistency assumptions that govern Eq.6.33, resulting in biased estimates of the true
parameters and their uncertainties (for example if there are large non-linear correla-
tions between parameters, or themaximum-likelihood estimate of a parameter is near
a physical boundary).Alternativemethods for calculating the asymmetric uncertainty
intervals and the covariance matrix involve scanning the profile likelihood under the
assumption of normality, which is performed by MINOS [21].

One can also go one step further and obtain estimates for the statistical uncertainty
on the parameters of interest by re-fitting the model on ‘toy’ data generated from
the model, where the parameters are set to the maximum-likelihood estimates. The
distribution of the central values of the refitted parameter estimates then gives the
uncertainty on these parameters. This method is particularly useful for determining
uncertainties on derived parameters, such as component fit fractions.

Another similar method that does not assume that the model replicates the data
well involves forming a large number of ‘bootstrapped’ samples of the data, which
have the same number of events but where the candidates are resampledwith replace-
ment [22]. The model is refitted to these bootstrapped distributions and the central
values of the parameters used to estimate the uncertainty and bias of the original
maximum-likelihood estimates.
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6.6.5 Fit Fractions

For each contribution, j , in addition to the isobar parameters defined previously, one
can also calculate its fractional contribution to the total amplitude,

FFj =
∫
DP |c j Fj (m2

13,m
2
23)|2 dm2

13 dm
2
23∫

DP |A|2 dm2
13 dm

2
23

. (6.34)

These fit fractions enable comparison between amplitude analyses that use different
amplitude formalisms or parameterisations of the isobar coefficients, and in addition
permit extraction of the quasi-two-body branching fractions involving the intermedi-
ate resonances. It is also useful to define the interference fit fractions, which express
the net constructive or destructive interference contribution to the total amplitude,

FFi> j =
∫
DP 2Re[ci c∗

j Fi Fj ] dm2
13 dm

2
23∫

DP |A|2 dm2
13 dm

2
23

. (6.35)

Due to constructive and destructive interference,
∑

j FFj �= 1, however the sum of
these and the interference fit fractions is unity.

It is important to note that given the efficiency correction described in Sect. 6.6.2,
the isobar parameters extracted from thefit represent the true physical parameters, and
therefore subsequent derived quantities need not correct for the efficiency variation
across the phase-space.

6.6.6 Extracting CP-Violating Parameters

To extract parameters that are sensitive to CP-violation in the intermediate quasi-
two-body decays, or in the interferences between them, additional terms are intro-
duced to the isobar coefficients to parameterise this CP-violation, and the amplitude
model must be fitted to CP-conjugate collision data. In the case of B+ → π+π+π−,
described in Chap.7, charge conservation implies that this split can be performed by
separating the data by the charge of the reconstructed B+ meson, extracting parame-
ters for B+ → π+π+π− and B− → π−π−π+ decays separately.4 Efficiencies in this
case are as described in Sect. 6.6.2, but are separately calculated for B+ and B− to
account for any detection asymmetry, and are applied separately to the correspond-
ing model. A production asymmetry is also accounted for using a constant relative
efficiency offset between the B+ and B− efficiency models, as this asymmetry has
negligible correlation with the decay kinematics [24].

4This can also be done for neutral meson decays via specific intermediate resonances whose decays
are quasi-flavour-specific, such as in the amplitude analysis of the B0→ K 0

S π+π− decay, where
CP-violation was observed in the B0→ K ∗+(892)(K 0

S π+)π− decay [23].
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To account for potential CP-violation, the isobar parameters are modified such
that they allow for differences between the B+ and B− amplitudes. For example, the
Cartesian parameters are expressed as

c± = x ± δx + i(y ± δy), (6.36)

where taking the positive signs gives the B+ decay isobar coefficient, and the
negative signs give the B− decay isobar coefficient. In the absence of CP-violation,
δx = δy = 0.

A useful quantity that expresses the degree of CP-violation in a specific quasi-
two-body decay is the CP-asymmetry, which using the Cartesian isobar coefficient
convention is given by

ACP = | Ā|2 − |A|2
| Ā|2 + |A|2 = −2

[
x δx + y δy

x2 + δ2x + y2 + δ2y

]
. (6.37)

This in essence gives the degree of CP-violation in the magnitude of the quasi-
two-body contribution, but does not include information on the CP-violation in the
interference between contributions, where the information is contained in the relative
phases. The absolute phase difference between the B+ and B− amplitudes cannot
be measured in the B+ → π+π+π−, as the final state is not an eigenstate of CP .
However, it is possible to observe CP-violation in the interference between two
quasi-two-body contributions if the relative phases between these contributions are
different in the B+ and B− amplitudes.

The branching fraction for a quasi-two-body contribution, R jπ
+, is calculated

using an average of the B+ and B− fit-fractions,

B(B+ → R j (π
+π−)π+) = B(B+ → π+π+π−) · FFCP

j . (6.38)

where FFCP
j is the CP-conserving fit-fraction,

FFCP
j =

∫
DP |c̄ j F j (m2

13,m
2
23)|2 + |c j Fj (m2

13,m
2
23)|2 dm2

13 dm
2
23∫

DP |A|2 + |A|2 dm2
13 dm

2
23

. (6.39)
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