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Non-intrusive Load Monitoring
on Component Level of a Machine Tool
Using a Kalman Filter-Based
Disaggregation Approach

Johannes Sossenheimer, Thomas Weber, Dominik Flum,
Niklas Panten, Eberhard Abele and Tobias Fuertjes

9.1 Introduction and Motivation

Today’s society is increasingly concerned with ecological awareness in order to
protect the environment. The political and social discussions focus on greenhouse
gas emissions and rising global average temperatures. Furthermore, the total world
consumption of primary energy is estimated to increase by 28% between 2015 and
2040 [1]. For that reason, the EU climate strategy aims to gradually reduce green-
house gas emissions and increase the share of renewable energies, combined with
improvements in energy efficiency [2].

As almost half of the global primary energy demand in 2017 will be caused by the
industrial sector [3], there is considerable room for action to achieve the mentioned
EU climate goals [2]. Progressive digitalization plays a major role here, as it offers
the potential to make production processes more energy efficient. Furthermore, opti-
mization approaches can be identified by transparent energy flows [4]. Within the
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Twin-Control project, which develops new concepts for simulatingmachine tools and
the machining processes, the presented work was developed. These models, which
are developed within this project, show both, the possibilities of making production
processes more energy efficient and also take other life cycle characteristics such as
the optimization of maintenance into account [5].

Measuring energy1 values is an essential prerequisite for implementing energy
efficiency measures through

• comparisons with other plants, departments, assembly lines, machines, compo-
nents over time,

• defining adequate control measures to react early on to deviations/inefficiencies,
• setting and pursuing realistic targets and
• providing information on energy or power demands, costs, emissions and trends.

One way to obtain measured values is by applying temporary mobile measure-
ments. Mobile measurements give an overview of the energetic status quo of a
machine tool. Nevertheless, for comprehensive analyses of the machine’s compo-
nents, the use of stationary, permanent in-depth monitoring is better suited. In order
to obtain performance data for the individual components, a distinction can be made
between two methods:

(1) Hardware-based measurements (intrusive)
(2) Non-intrusive measurement techniques.

Hardware-based measurements of power and energy at component level require
high investments in sensors and the associated devices. Non-intrusive measurement
methods such as non-intrusive load monitoring (NILM) or non-intrusive appliance
load monitoring (NIALM) [6] can be a cost-effective solution for obtaining detailed
energy data using a power disaggregation. The NILM measurement method can
detect individual devices within the performance data by analysing voltages and cur-
rents from a higher-level single point of measurement. Since the individual devices
have different properties for steady-state and transition states in both reactive and
active power, these so-called energy signatures can be used to assign the measured
power to an individual component. At the point of common coupling (PCC), the
loads of the devices are superimposed and then the individual curves are extracted
from the aggregated data by pattern detection algorithms. In addition, control data of
inferior components can be used to estimate the individual load using system identi-
fication approaches [7]. In this way, the Kalman filter-based disaggregation approach
presented in this chapter allows a continuous energy monitoring at component level
of machine tools with only one sensor needed at the machine tool’s electric PCC.

1In this chapter, the electrical energy and electrical power are meant, when energy and power are
mentioned.
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9.2 Related Work

Several NILM solutions have already been developed in recent years within the
residential sector [6, 8–11]. They are used to derive the energy demand of home
applications such as refrigerators, lamps, vacuum cleaners, televisions and toasters.
The energy data calculated by the NILM method may not be as accurate as the mea-
sured data, but it is sufficient in most cases for energy monitoring applications. For
industrial applications, there are no comparable approaches of energy disaggregation
and only few publications exist [7, 12–14]. Furthermore, in typical production envi-
ronments, there are many sources of interference for NILM systems, such as basic
electrical appliances and highly dynamic devices. One example is a speed-controlled
motor with inverters, which may inhibit the deployment of disaggregation systems
[12]. Tominimize disturbances in industrial applications and to improve the accuracy
of the algorithm, the machine states can be correlated to the aggregated power curves
as proposed in [7, 13]. Since machine data acquisition (MDA) in modern produc-
tion manufacturing facilities is already frequently used to calculate key performance
indicators (KPIs) or to plan maintenance cycles, this strategy is particularly helpful.
Thus, available industrial big data helps to provide better insight into the machine’s
energetic performance by applying power disaggregation algorithms.

9.3 Kalman Filter-Based Disaggregation Approach

The goal of the Kalman filter is to determine system states as accurately as possible,
which can only be calculated and measured with an uncertainty. The Kalman filter
works with a prediction step and a correction step. In the prediction step, the desired
states of a system are calculated using a state-space model. In the meantime, the
uncertainty of the result is calculated from the initial uncertainty (covariance) and
an estimation error representing the inaccuracy of the calculation. In the correction
step, the estimated value and themeasured value are compared, while both contain an
inaccuracy. The estimated value and the uncertainty can be set using R. E. Kalman’s
algorithm as shown in [15].

9.3.1 NILM Through Kalman Filter-Based Power
Disaggregation

For the application of the Kalman filter to the energy disaggregation problem of a
machine tool, the electrical power consumption of each auxiliary unit is defined as
a condition to be determined. There is no state-space model with which the electri-
cal power can be estimated. Furthermore, the individual states cannot be measured
directly. Only the total power (Ptotal) consumed by the machine tool is measured by
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Fig. 9.1 Information flow chart of the applied Kalman filter

an external sensor. In addition, PLC data such as the power of each drive (Pdrive) and
the switching states (on/off) of the individual auxiliary units is used.

The states are updated according to the equations of R. E. Kalman via the so-
called Kalman gain by comparing the sum of the power of all switched-on auxiliary
units with the total power consumption subtracted by the accumulated power of the
drives. The updated states are now used as the basis for a new comparison with the
total output of the auxiliary units. Following this procedure, the states are updated
successively. An overview of theKalman filter-based power disaggregation approach
is schematically displayed in Fig. 9.1.

9.3.2 Differentiation of Dynamic and Constant Electrical
Power Consumers

There are two different consumption patterns for the auxiliary units. On the one hand,
there are systems, which are also referred to constant consumers, and on the other
hand, there are dynamic consumers. Constant consumers have a uniformperformance
plateau, which can be determined relatively accurately with the presented approach.
In contrast, the power consumption of dynamic consumers, like speed-controlled
motors, fluctuates evenwithout a change of state. Other than consumerswith constant
power consumption, dynamic consumers are assumed to have an uncertainty within
the measurements, whereby the inaccuracy (covariance) of the respective state is
maintained. For constant loads, the uncertainty of the static loads converges towards
zero as time progresses. This means that the performance allocated to the system is
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increasingly less affected by fluctuations in the measured total power, while dynamic
loads continue to allow performance adjustments.

9.3.3 Extension of the Kalman Filter Using Peak Shaving
and Damping Factors

The algorithm for this application case has been extended to counteract undesirable
developments. To improve the convergence for constant loads during the teach-in
process, a damping factor and a peak shaving factor were introduced.

A single damping factor has been assigned to all auxiliary units with constant
consumption behaviour, which artificially reduces the uncertainty of the respective
states. Negative consumption, i.e. the generation of energy, is excluded in the model
due to the unlikely occurrence. On this account, the Kalman gain must not lead to
a negative state. By implementing a nonnegative condition in the filter, the resulting
deviation of measured total power and the sum of the switched-on aggregates is
distributed to other aggregates. In the case that the approximate power consumption
of the auxiliary units or their dynamics is known, this information can be taken into
account.

The peak load factor was introduced to neglect peak loads that occur when the
ancillary units are started up from the disaggregated power. For this purpose, the
initial condition is held for a few seconds after the component has been switched
on, before the actual teach-in process begins. Otherwise, the load peak would falsify
the teach-in process. Errors in the teach-in phase due to peak loads can thereby
be avoided. Apart from the distinction between dynamic and statistical loads, and
if available the average consumption of the components, no further user input is
required for the presented approach.

9.4 Implementation and Validation of the Presented NILM
Approach

The online monitoring is implemented by integrating the disaggregation algorithm
into an existing process and tool monitoring system called Genior Modular of MAR-
POSS Monitoring Solutions GmbH. This monitoring system can be supplemented
with additional sensors by adding additional transmitters. In this case, a transmitter
for measuring the total power consumption of the machine is connected to the Genior
Modular via CANopen communication. The integration of embedded software, like
in this case the disaggregation algorithm, is realised by an additional OPR device of
MARPOSS Monitoring Solutions GmbH. Because an existing data acquisition and
analysis architecture can be used, the effort for the user and costs are reduced. In this
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way, the Kalman filter-based disaggregation approach can be simply retrofitted on
existing machine tools.

An exemplary application on the EMAG VLC100Y CNC turning machine is
presented in this chapter. This machine is located in the model factory for energy
efficiency (ETA-Factory) on the campus of the Technische Universität Darmstadt in
Germany. The turning machine is controlled by a programmable logic control (PLC)
from Bosch Rexroth, which records the required switching states of the units and the
power consumption of the drive units via OPC-UA communication. The modelled
power consumption can be visualized locally on a HMI or transferred to a higher-
level platform. In addition to power consumption modelling at the component level,
an analysis of the available data is also included.

The turning machine contains the following auxiliary units:

• hydraulic pump
• chip conveyor
• cooling lubricant pump
• suction
• electric control cabinet
• combined other consumers.

The hydraulic pump, the suction and the electric control cabinet are classified as
a constant consumer, while the cooling lubricant pump is a dynamic consumer. Both
consumer types are constantly switched on during machining. The chip conveyor is a
constant consumer which is switched on or off sequentially during themanufacturing
process. All other dynamic and constant auxiliary units of the machine tool are
summarized under combined other consumers. These combined other consumers
are attributed with higher measurement uncertainties than normal consumers. In
addition, the measurement uncertainty is increased or, respectively, decreased with
each switch-on or switch-off process in order to absorb the load peak that occurs.

For the validation of the presented non-intrusive load monitoring approach with
a Kalman filter-based disaggregation, a temporary mobile measurement was con-
ducted. The results of the disaggregation are compared to measured mean power
signals of the listed auxiliary units in Fig. 9.2. The corresponding evaluation results
are discussed in the following sections and are shown in Table 9.1. Besides the mea-
sured mean power consumption, the mean disaggregated power consumption, the
corresponding root mean square deviation as well as the relative error are listed for
all auxiliary units. The root mean square deviation and the relative error are calcu-
lated according to Eqs. (9.1) and (9.2), respectively. The relative error is the quotient
of root mean square deviation and the measured power at switched-on component
state.

rootmean square error �
√∑N

i�1

(
Pmeasured i − Pdisaggregated i

)2
N

(9.1)

relative error � rootmean square error

Pmeasured (when switched on)
(9.2)
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Fig. 9.2 Comparison of disaggregated and measured power for the auxiliary units with the corre-
sponding switching states
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Table 9.1 Evaluation results of the Kalman filter-based disaggregation approach on the EMAG
VLC100Y turning machine

Auxiliary unit
of the
machine tool

Consumer
type

Mean
measured
power
consumptiona

[W]

Mean
disaggregated
power
consumptiona

[W]

Root mean
square
deviation [W]

Relative error
[%]

Hydraulic
pump

Constant 448.5 328.29 114.2 25.5

Cooling
lubricant
pump

Dynamic 1288.0 847.7 439.4 34.1

Chip conveyor Constant 201.0 229.47 12.1 6.0

Suction Constant 535.3 551.8 49.8 42.2

Electrical
control
cabinet

Constant 546.3 551.8 16.9 3.1

Combined
other
consumers

Dynamic Not
measureable

1368.1 – –

aThe mean includes only power signals at switched-on component state

Since the hydraulic control of the turning machine is an accumulator charging
control, the measuring signal (first diagram in Fig. 9.2) has large peak loads that can
be attributed to the reloading of the hydraulic accumulator. Since the hydraulic unit is
defined as a constant load, these load peaks are not transmitted to the disaggregated
signal. Even when defining the hydraulic pump as a dynamic consumer, these sudden
peaks cannot be assigned to a single component without additional information about
the hydraulic recharging process. Instead, these load peaks are nowdistributed among
the dynamic consumers, but the major part of the peak is attributed to the combined
other consumers due to its higher measurement inaccuracy. In order to integrate the
hydraulic load peaks into the disaggregated power, an additional model input signal
would be necessary which describes the state of the hydraulic accumulator charging
process. These inaccuracies explain the high relative error, but when neglecting the
load peaks in the measured signal, the base load of the hydraulic pump was met very
well with the disaggregation.

The example of the chip conveyor clearly shows how the sensitivity of the algo-
rithmdecreases over the time inwhich the component is switched on (second diagram
in Fig. 9.2). While the disaggregation is initially falsified by other disturbances dur-
ing the first switch-on process, the required power of the chip conveyor is better met
during the subsequent switching processes and is ultimately properly trained. The
teach-in phase can be better used with sequentially switched consumers, since the
individual switching processes are each accompanied by the interference of varying
intensity, which is why the actual power requirement is met more accurately.
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The measurement data of the cooling lubricant pump (third diagram in Fig. 9.2)
shows an example of a component that requires several energy levels within one
manufacturing cycle. This is because the cooling lubricant is fed through nozzles
of different sizes, depending on the tool used and the current machining process. In
this case, a higher power level is reached after about 240 s. From this time on, the
cooling lubricant is sprayed in large quantities and at high pressure to rinse away
chips from the workpiece during the milling process. Different power levels could
be differentiated by taking into account the nozzles switching signals. In this case,
the classification of the cooling lubricant pump as a constant consumer would be
recommended.

The disaggregated power curve of the suction (fourth diagram in Fig. 9.2) shows
how the load peak factor prevents a falsified training due to the initial load peak,
which is almost twice as high as the later power consumption. Nevertheless, the
further disaggregated power curve is subject to strong fluctuations, and the trained-
in disaggregated power is far too low, which primarily results from the load peaks of
the hydraulic accumulator charging circuit. For this reason, the disaggregated power
consumption of the suction has a high relative error.

The constant energy requirement of the electrical control cabinet can only be
trained at the beginning of the measurement. Here, the machine is in an energy-
reduced standby mode, which is why all auxiliary units are switched off and only
the control cabinet is supplied with power. After about 55 s, the machine is switched
to the machining mode and the auxiliary units are turned on successively. At this
point in time, the algorithm has already trained the power of the electrical control
cabinet due to the damping factor. The disaggregated power and the measured power
correlate well (fifth diagram in Fig. 9.2), which is also visible in the low relative error
of the component.

In general, the accuracy of disaggregation increases if the individual components
are switched on one after the other and have enough time for the teach-in process.
However, this is not always possible due to the technical restrictions and the request
for short cycle times. The delay of the switching processes of the auxiliary units
during the examined turning process is shown in Fig. 9.3. To obtain more precise
results, the individual components could be switched on and off one after the other,
starting from the standby state of the machine, in which they are initially all switched
off. As this is rarely possible in industrial environments and because the goal was to
find an automated procedure, which does not require a manual teach-in process, this
method has been dispensed within this series of tests.

9.5 Conclusion and Outlook

The presented cost-effective disaggregation approach to monitor the energy con-
sumption at component level is possible through the use of a Kalman filter with the
information of the component’s switching states and the overall power consump-
tion. The approach was tested on a laboratory machine tool and validated with a
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Fig. 9.3 Illustration of the switching states of the auxiliary units over one production cycle

temporal measurement of the component’s power consumption. Based on the eval-
uation results, the limitations of the concept are shown. For example, load peaks,
which often arise in hydraulic accumulator charging circuits due to recharging of the
accumulator, need further input signals related to the hydraulic recharging process
in order to obtain more precise disaggregation results. The distribution of these load
peaks to other components can distort the disaggregation results. The advantages of
the disaggregation of cyclical loads are discussed, as well as the relevance of the
switching state correlation of the individual auxiliary units.

Even if an exact power disaggregation of industrial components is difficult, the
presented approach offers a cost-effective and simple possibility to estimate the
energy demand on component level. Further investigations are necessary to decrease
the influence of the limitations in order to increase the accuracy of the power disag-
gregation.
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