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10.1 Introduction

Digitization is rapidly changing our entire economy and our society. The number
of connected devices, like IT infrastructural connected objects, sensors and pro-
grammable logic controllers (PLCs) [1], is currently increasing rapidly [2]. Thus,
until 2020 the number of devices connected to the Internet is expected to rise to
eight billion [3]. This applies not only to the areas of household, traffic and mobility,
infrastructure and buildings, but also to the industry. Data is currently considered the
most valuable resource [4] and is even called “gold of the future” [5].

Larger industrial companies have recognized the value of their own production
data and are using different analytic methods to improve the production process.
Despite this, small- and medium-sized enterprises still have great difficulties in col-
lecting and utilizing production data.

Internal machine data such as PLC and bus data can be used not only for process
control, as is usually the case, but also for condition and qualitymonitoring, as well as
energy efficiency [1]. In addition, data analysis can prevent high economic losses due
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to late detection of workpiece flaws. A diagnosis of insufficient workpiece quality
on a machine tool can be categorized into the following five groups [6]:

• Observations by the user of the machine,
• Diagnosis by measuring and testing equipment,
• Diagnosis by testing workpieces,
• Diagnosis by additional sensors,
• Model based or signal analytical diagnosis.

Conventional quality control systems can only be applied to randomly chosen
samples and are cost-intensive and error-prone. As a consequence, monitoring sys-
tems aremore andmore automated. For thesemonitoring systems, only the diagnosis
with additional sensors as well as model based or signal analytical diagnosis is uti-
lizable [6]. These types of diagnosis allow an early detection of workpiece flaws as
well as an identification of their causes [7]. As scrap is reduced, the safety, reliability
and profitability of products are improved as well [8].

As described in [9], monitoring systems are divided into direct and indirect mea-
suring systems, depending on whether the parameters to be monitored are observed
directly (e.g. cutting force in machine tools) or indirectly via correlated data. For
example, measurements of the spindle’s power consumption can be correlated to the
cutting forces [9–11]. Because the environmental influences and the usage of cooling
lubricant impedes direct measurements in machine tools, indirect monitoring sys-
tems are usually used. As the costs for additional sensors have to be minimized [12],
this article focuses on signal analysis diagnostics using machine internal sensors,
such as those which are used within the drives.

Furthermore, there are some model-based prediction methods for surface rough-
ness in machining processes [13, 14], but there are no knownmethods for identifying
typical workpiece flaws from pre-processing like moulding or forging. Typical flaws
of these pre-processes are listed in [15, 16]. Based on previous work, which showed
that workpiece flaws can be detected through drive-based PLC data [1], this chapter
outlines an automatedmethod formonitoringworkpiece quality usingmachine drive-
based signals inmachine tools.Because the analysed signals are sensitive to toolwear,
this aspect is examined in the second part of this chapter.

10.2 Automated Quality Monitoring Using Drive-Based
Data

In order to show the automated workpiece flaw detection method, a test series, which
is subdivided into preliminary and main tests, is examined in this chapter. The pre-
liminary tests investigate the face turning of a solid cylinder for various cutting
parameters and are used to develop a statistical concept for automated flaw diag-
nosis. Within the main tests, the developed concept is applied to a real production
process, in which different machining steps of a control disc for a hydraulic pump,
which is manufactured at the ETA Factory, a model factory for energy and resource
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Table 10.1 Relevant processing steps with the appendant machining parameters of the main tests

Processing step Cutting velocity vc Cutting depth ap Feed rate f

[m/min] [mm] [mm/rev]

Exterior scrubbing 180 2.0 0.3

Face scrubbing 180 2.0 0.3

Exterior finishing 300 0.2 0.25

Face finishing 300 0.2 0.25

efficient production at the Technische Universität Darmstadt, is analysed. The solid
cylinder is made of 42CrMoS4 and the forged brute of the control disc of 8CrMo16.

Workpiece flaws like for example blow holes, shrink holes and incorrectly placed
boreholes are simulated in the tests by boreholes of different sizes. The machine
tool on which the tests are undertaken is a vertical turning machine of type EMAG
VLC100Y with a Bosch Rexroth PLC of the type Motion Transfer Extreme (MTX).
Table 10.1 shows the relevant processing steps and parameters of the control disc
manufacturing process which is examined in the main tests.

10.2.1 Information Flow and Evaluation Process

To control the movements of the axis, the actual values of the machine drives are
constantly measured at the frequency inverter and transmitted to the PLC via the fast
automation bus Sercos. The signal flow and the evaluation workflow are shown in
Fig. 10.1.

Fig. 10.1 Signal flow and the evaluation workflow
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The drive-based signals are read out at a sampling rate of 2 ms with a soft-
ware called MTX efficiency workbench (EWB). This data is buffered until the end
of the measurement. In parallel, the Data Analytic Server (DAS, formerly Generic
Data Server), a workflow-based software framework by Bosch Rexroth introduced
in [1], detects the end of the recording with a filewatch trigger and executes a work-
flow consisting of the CNC-DataProvider and a computational activity. The CNC-
DataProvider imports the buffered EWB data into the database used by the DAS
called MongoDB. In the next step, the calculate activity evaluates this data using
a precompiled MATLAB DLL which contains the necessary MATLAB functions
for workpiece flaw diagnosis and writes the diagnostic results back into the Mon-
goDB. This workflow-based evaluation method enables fully automated workpiece
flaw analysis in parallel to the production.

10.2.2 Sensitivity Analysis and Signal Processing Steps

A sensitivity analysis was carried out to select appropriate drive-based signals for
evaluation. Available signals include the current values of position, speed, power,
force and momentum of each axis. In addition to the actual position of the spindle,
which is needed to locate the flaw on the workpiece, the following five signals form
a feature vector that represents the input for the analysis:

• The current position value of the x-axis
• The current position value of the y-axis
• The current position value of the z-axis
• The current spindle power value
• The process force of the x-axis, which is the only feed axis during the tests.

While the current position of the axis is measured directly at the engine encoder
and the process force is derived fromamodel, the actual power of the axis is calculated
by measuring the DC link voltage and current at the frequency inverter [17]. As a
result, it was found that the interference caused by the flaw can be detected in a better
way in the five signals by analysing the difference between the averaged last three
signals and the currently measured signal. This formula is represented in Eq. 10.1,
where i is the number of the currently measured signal. The resulting calculated
signal calc.signal oscillates about zero and is not affected by the scale of the signal’s
trend.

calc.signali �
∑3

j�1 signali− j

3
− signali (10.1)

The peaks of the signals caused by the flaws can be easily detected in the cal-
culated signal, as depicted in Fig. 10.2. The calculated signal for the five analysed
characteristics is plotted over the radius of the workpiece for the facing process of
the full cylinder, whose bores have a diameter of 2.0, 1.5 and 1.0 mm, respectively,
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at a distance of 9, 18 and 27 mm to the workpiece centre. Three empirically chosen
tolerance bands, which are divided into multiple sections, mark a certain standard
deviation to themean value of the currently measured signal. The advantage of divid-
ing the tolerance bands into equidistant sections is the ability to detect small flaws
even if the noise’s amplitude varies over the workpiece radius.

10.2.3 Workpiece Flaw Detection

A diagnosis of workpiece flaws includes an identification of the flaw, a localization
on the workpiece and a quantification of the flaw.

Possible workpiece flaws are detected if the calculated signal exceeds the narrow-
est tolerance bands. With the corresponding actual position information of the feed
and spindle axis, the potential workpiece flaws are localized in the next step. In order
to quantify the potential workpiece flaw, a new parameter called intensity of diagno-
sis IoD was introduced. The IoD indicates the accuracy of the flaw diagnosis and the
distribution of the IoD over the workpiece’s surface can give more detailed insight
into the flaw’s size. According to Eq. (10.2), the IoD is the quotient of the number
of features F that simultaneously manifest a trespass of the smallest tolerance band
and the total number of features Ftot multiplied by the quotient of the number of the
largest tolerance band T of all features that was trespassed and the total number of
tolerance bands Ttot times one hundred. If the workpiece shows frequent and locally
concentrated of measurements with a high IoD,

IoD � F

Ftot
∗ T

Ttot
∗ 100 (10.2)

After the evaluation of the drive-based data, the results of the workpiece flaw
analysis, their position and quantification are combined and transferred onto a vir-
tual image of the workpiece, which is displayed in Fig. 10.3. If a potential flaw is
identified, because its corresponding data points trespass one of the tolerance bands,
the information of its location and its intensity of the diagnosis is mapped on the vir-
tual workpiece image. Areas on the workpiece that show both a locally concentrated
high frequency of flaw identifications and an IoD above 75% are thus caused by
strong variations between the currently measured and previously measured signals,
which clearly indicates a potential workpiece flaw. Areas on the workpiece surface
with IoDs below 20% can be correlated to noise in the signal. High IoDs on the outer
boards of the workpiece are due to deviations from a perfectly circular workpiece
rotation, which is explained in greater detail in the following paragraphs. The virtual
image is later transmitted to the machine operator and supports the quality control
and source inspection process. As shown in a close-up view of the repartition of the
IoD on the virtual image of the workpiece in Fig. 10.4, it is even possible to derive
the diameter of the boreholes.
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Fig. 10.2 Graphof the difference between the averaged last three signals and the currentlymeasured
signal of a full cylinder with three bores for the face turning process (in blue) over the workpiece
radius. Additionally, tolerance bands in green, yellow and red which are divided into four sections
surround the calculated signal
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Fig. 10.3 Repartition of the intensity of the diagnosis IoD over the virtual image of the full cylinder
end side, which is bordered by the blue line, during the face turning process. The green, magenta
and cyan line mark the radial position of the three boreholes on the full cylinder

10.2.4 Evaluation and Limits of the Presented Concept

A diagnosis is considered to be accurate if the displayed intensities of the diagnosis
at the corresponding locations of the virtual workpiece image match well with the
size and position of the actual borehole. As explained in this section, the choice of
the analysed process steps impacts whether the diagnosis delivers accurate results
or not. A high-precision diagnosis was achieved both for the examined face turning
process of the full cylinder and for the face scrubbing of the forged unmachined
part of the control disc. The analysis of the face finishing process and the exterior
scrubbing of the unmachined part resulted in an inaccurate diagnosis.

These differences in the accuracy of the diagnosis for the different process steps
result from the great influence of the relation between the selected cutting parameters
and the accuracy of the diagnosis. The diagnosis becomes less accurate at high cutting
speeds and feed rates because less data is recorded over the workpiece surface. In
addition, the quality of the diagnosis deteriorates at cutting depth of less than 1 mm
because the plastic deformation of previous cutting steps reduces the effective size
of boreholes.

The face scrubbing of the unmachined workpiece is characterized by moderate
cutting speeds and feed rates with simultaneously high cutting depths. Therefore, the
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Fig. 10.5 Ratio between the actual spindle position in degree and the actual spindle power (sc-axis)
over the height of the distance covered by the exterior scrubbing process

accuracy of the diagnosis proved to be better than with the finishing steps, which use
high cutting speeds, low feed rates and very small cutting depths.

Flaws on the side surface of the unmachined part were not detected during the
exterior scrubbing, because the flaw’s influence on the signal is negligible compared
to that of the initially not perfectly round rotating unmachined part.At each revolution
of the workpiece, the signals of the five features show large oscillations due to the
fact that the flaw, which is located at a covered distance of 7.7 mm form the exterior
scrubbing process, cannot be identified. This is seen in Fig. 10.5, which shows the
relation between the actual position and the power of the spindle. The flaw could
have been detected in the second turning step if the exterior scrubbing process of
the unmachined part was divided into two steps each with half of the current cutting
depth.

Although the tool wear influence is reduced by focusing on the calculated signals
based on the average of the last three cutting processes, noise from progressive tool
wear is added to the signal. The noise increases the standard deviation of the signal
and thus the size of the tolerance bands. This makes it more difficult to detect flaws
in the workpiece.

10.3 Influence of Tool Wear on Machine Drive-Based
Signals

In order to investigate the influence of the process parameters on the tool wear and to
better understand the resulting surface roughness, further experimental series were
executed. A face turning process is, therefore, conducted multiple times with differ-
ent combinations of cutting parameters and analysed for their influence on tool wear,
surface roughness and specific energy consumption. The investigated cylinder con-
sists of 42CrMoS4 andGARANTCNMG120408-SGHB7035 inserts are usedwith a
PCLNR 2525M12AFR231 tool holder. In these experiments, the alreadymentioned
EMAGVLC100Y machine tool is used, and the surface roughness is measured after
each test run with a mobile MarSurf Perthometer M2 measuring device. The process
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parameters are selected with regard to the face scrubbing process of the hydraulic
control disc in order to examine ten different cutting parameter combinations. Based
on the basic process parameters listed in Table 10.1, one parameter is modifiedwithin
a certain range, and the other two parameters are maintained constant (Table 10.2).
Considering the differences between the material of the cylinder and the hydraulic
control disc, a cutting depth (ap) of 1.5 mm is used as basis.

As also [18, 19] describe, the main influence on tool wear results from an increas-
ing cutting speed. An increase of the feed rate leads to an increase of the surface
roughness but has no essential impact on the tool wear, which corresponds with the
results of [18, 20]. By increasing the cutting depth neither the surface roughness nor
the tool wear is affected significantly, as is also the case with [18, 21]. In accor-
dance with [21, 22] an increase in each of the analysed cutting parameters leads to
a reduction in specific energy consumption by increasing the material removal rate.

Furthermore, the impact of tool wear on the power consumption of the spindle is
compared for two different combinations of cutting parameters. For this purpose, the
cutting parameter combination A with a cutting speed of 180 m/min, a cutting depth
of 1.5 mm and a feed rate of 0.3 mm/rev plus the cutting parameter combination
B with a cutting speed of 220 m/min, a cutting depth of 1.5 mm and a feed rate of
0.3 mm/rev are chosen. For cutting parameter combination A, representative data
rows of the face turning process after a different number of cuts of an insert are
shown in Fig. 10.6. It is observable that the spindle power increases with increasing
material removal due to tool wear.

In Fig. 10.6, the corresponding spindle power consumption for cutting parameter
combination B is displayed. It is obvious that the power consumption varies between
the first and 56th cut. Also, this cut represents the last cut for the tool before the test
is completed. The latter is associated with a clearly higher power consumption, and
the pattern shows irregularities which do not occur with an unworn cutting edge.
Figure 10.6 also indicates that the processes with the cutting parameter combination
B are shorter because of the higher cutting speed, but also have a higher power
consumption because of the higher required spindle speed.

Besides the signals analysed in Sect. 2.2, the power consumption of the axis
drives was evaluated for tool wear analysis. It is visible that a change is detected in
the power consumption of the x-axis, y-axis and z-axis with increasing tool wear. The
corresponding power consumption of the drives of these axes is shown in Fig. 10.7
for cutting parameter combination B. A significant deviation can be determined for

Table 10.2 Range of cutting
velocity, cutting depth and
feed rate

Cutting velocity vc Cutting depth ap Feed rate f

[m/min] [mm] [mm/rev]

160 0.5 0.15

180 1.0 0.2

200 1.5 0.25

220 2.0 0.3
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Fig. 10.6 Actual spindle power (sc-axis) with cutting parameter combination A (upper figure) and
B (lower figure) according to different numbers of cuts

Fig. 10.7 Actual power of x-axis, y-axis and z-axiswith cutting parameter combinationB according
to different numbers of cuts

the last cut of the x-axis. The curve shows both deviating and a higher level of the
characteristic curves with a peak at the beginning of the process. Additionally, the
power consumption curve of the y-axis changes with increasing tool wear. There is
a shift to the right and when the tool wear is higher, the curve is at a higher level of
power consumption. In contrast, the z-axis does not have higher power consumption,
but in that case higher fluctuations in power consumption occur with increasing tool
wear.
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The data is collected in one measurement and is available both for improving the
flaw detection algorithm by automatically adjusting the barriers as tool wear and
with it signal noise increases, and for automatic and proactive identification of worn
inserts.

10.4 Conclusions

This paper presents an automated approach to component failure diagnosis. For this,
drive-based data are measured at high frequency and evaluated after completion of
the recording.Workpiece flaws, like shrink holes, which are represented by boreholes
of different diameters, can, therefore, be reliably detected, located and quantified.
Following diagnosis, quality assurance is supported by purposefully prepared data
as the display of a virtual image of the workpiece with the intensity of the diagnosis
plotted at the corresponding position. In addition, investigations of cutting parameter
combinations have shown that the cutting speed has a significant impact on tool
wear. The increasing tool wear is clearly identifiable in the power consumption of
the axis drives and the main spindle power. This information is useful for both,
automated proactive tool replacement and improved flaw detection. The limitations
of the concept, like the influence of process parameters and tool wear have been
pointed out and offer starting points for future research.
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