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1 Introduction

Amodel is a simplified system, which can be used to represent the complex real-life
system and can be used as a substitute for a real system under specific conditions [17].
Generally, such models are based on the formalized concepts of the real system. A
surface water quality modelling was developed as a tool for the better understanding
of themechanisms and interactions between anthropogenic residual inputs and result-
ing water quality [7]. In the context of global climate change under anthropogenic
greenhouse warming, the sensitivity of water quality will be more intensified under
changes in hydro-meteorological variables. The self-purification capacity of the river
in response to the pollutants and climate depends on various hydro-meteorological
variables and water quality parameters. One such water quality variable, which gets
most influenced by climate change and human interventions is River Water Temper-
ature (RWT). The reasons for the alterations in RWT are generally due to human
activities and anthropogenic heat sources include water withdrawals and additions,
changes in channels, dam operation, alterations in riparian cover, industrial cooling
water, outfalls from a sewage treatment plant, net exchange from groundwater tem-
perature and downstream of a thermal plant. The RWT is of particular significance as
(i) the discharge of excess heat from industries and municipal effluents can affect the
aquatic ecosystem, (ii) temperature influences all biological and chemical reactions,
and (iii) temperature variations affect the density of water and hence the transport
of water [35]. It is also a vital physical property of rivers, directly affecting water
quality in terms of reaction rates and dissolved oxygen (DO) levels. Increase in RWT
results in the decrease of DO levels which leads to anaerobic conditions in aquatic
systems, thereby affecting marine life in terms of availability of food, reproduction
and migration. Besides, the river water temperature is a prominent variable in the
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context of climate change as it is a function of climatic variables such as air temper-
ature, humidity, solar radiation and wind speed. Reliable prediction and assessment
of RWT sensitivity under climate change have become the main issue for many
environmental applications, hydrology and ecology. To this end, numerous methods
have been developed in the recent years by several authors for the estimation of river
water temperature as a basic mathematical model to represent the complex system
of hydro-meteorological and climate data along with water quality parameters.

Some of the river water temperature models generally used are heat advection-
dispersion transport equations [30, 41], which incorporates the net heat transfer
processes at surface of water by using thermal equilibrium concepts [4, 5, 11, 19,
26]. Stochastic RWT models separate the RWT time series into long-term annual
component (annual cycle) and short-term components [6]. Few RWT models were
based on the mathematical representation of the underlying physics of heat exchange
between the river and the surrounding environment [20, 32, 30]. To incorporate the
watershed hydrology fromclimatic changes onRWT, the physically based hydrologic
and stand-alone stream temperature models have been effectively used to simulate
RWT (e.g. SoilWater Assessment Tool (SWAT), [2, 13]; BasinTEMP, [1]; QUAL2K,
[8]. Although a mechanistic temperature model could give very accurate results, it
requires large amounts of detailed data and also computationally intensive. These typ-
ically require numerous input data including stream geometry, hydro-meteorology,
vegetation cover and land use, along with in-depth knowledge of the field. Further-
more, these models sometimes have complex practical implementation issues, when
it is the large spatial domain of interest.

To this end, the regression-based models become well accepted in the research
community under the limitation of complex meteorological and hydrological river
data availability. Traditionally, river water temperature has been related to air tem-
perature as a surrogate for net heat exchange and as an approximation to equilibrium
temperature (e.g. [31]). A linear regressionmodel relating air andwater temperatures
are generally most adopted model to predict the RWTs (e.g. [5, 23, 25]). These mod-
els usually predict river water temperature at weekly, monthly and annual time steps,
relying mainly on the relatively high correlation between air and water temperature
at those timescales. Due to the computational feasibility and ease of implementation,
linear regression models have been used to obtain the relation between air and water
temperature (e.g. [12, 23, 24, 25, 33]). Neumann et al. [23], developed a linear regres-
sion method to model daily maximum stream temperature in terms of maximum air
temperature for the Truckee River in California and Nevada. In linear regression
models, the AT and RWT are considered as the independent and dependent variables
respectively and these models are claimed to work more accurately at weekly to
monthly scale rather than daily scale [5]. Webb et al. [40] noted that flow is another
important variable that should be considered in water temperature predictionmodels,
and air and water temperatures are more strongly correlated when flows are below
median levels. Several authors related river water temperature with both streamflow
and air temperatures with the linear regressionmodels (e.g. [21, 25]). Streamflow has
an inverse relationship with the water temperature, due to the fact that as sufficient
amount of streamflow is available, then the effect of river water temperature will
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decrease. The streamflow will be of more interest in the RWT prediction models,
particularly in snowmelt-fed rivers and rivers impacted by hydropower production
[36]. Generally, such regression-based models are applied by training or calibrating
the model for a subset of historical data and then validate or test with the historical
data which may be independent of historical data used in the training or calibration.
The trained and tested models can be used for future prediction of RWT. Such linear
models facilitate to study the sensitivity of the RWT to the changes in AT under
changed conditions of climate [21, 25, 27, 28, 38]. Rehana and Mujumdar [25], used
a linear regression model with daily data for understanding the sensitivity of RWT
for the changes in AT of 1 to 2 °C and 10 to 20% reduction in the streamflows for
Tunga-Bhadra river India. Further, Rehana et al. [27] revealed that the sensitivity of
RWT will be for about 2.76 °C under various air temperature and discharge changes
when compared with the observed conditions at mean annual scale for the Missouri
River at Nebraska City, Nebraska, USA.

Morrill et al. [21] used both linear and nonlinear models in 43 river and stream
sites in 13 countries and indicated that the air/water temperature relationship is bet-
ter fitted with non-linear regression. Linear Regression is less appropriate if the
assumption of linear relationship cannot be verified. Also, these models are sensitive
to outliers and can suffer from the problems of overfitting. i.e., regression begins to
model the random error (noise) in the data, rather than just the relationship between
the variables. Further, linear regressions become unsuitable for modelling the RWT
extremes, for example, at highest (due to increased evaporative cooling) and low-
est temperatures (due to freezing). Mohseni et al. [18] developed a four-parameter
non-linear regression model at a weekly time step, which is widely accepted in the
research community (e.g. [28, 38]. Van Vliet et al. [38] improved the non-linear
regression model developed by Mohseni et al. [18] with the inclusion of streamflow
and applied at daily time scale.

Apart from regression-based models, another set of data-driven models which
became promising due to the advancement of machine learning models in the RWT
estimation are basedonArtificialNeuralNetworks, SupportVectorMachines (SVM),
Boosted Regression Trees (BRS), specifically for data scarce regions. There is a
recent advancement towards the use of Artificial Neural Networks (ANN) in river
water quality prediction (e.g. [14, 29]). Modelling of RWT using ANN has gained
much attention in the literature (e.g. [9, 29]) due to its ability to capture and rep-
resent complex non-linear relationships. DeWeber and Wagner [10] applied ANN
for estimating daily mean RWT of the individual stream reaches throughout the
range of Brook Trout Salvelinus Fontinalis in the eastern U.S with different groups
of predictor variables including climate, landform and land cover attributes. Tem-
izyurek and Dadaser-Celik [34], used ANN to study the effect of meteorological
parameters on RWT at Kızılırmak River in Turkey. However, Support vector regres-
sion (SVR), which is based on structural risk minimization to avoid overfitting [37]
has been adopted over ANN in several research studies due to the uniqueness and
globalization of the solution [39]. In this context, there are limited studies for test-
ing the predictability of RWT with SVR in the literature. To this end, the present
work adopted well-accepted machine learning algorithm, such as Support Vector
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Machine (SVR) to analyze the predictability performance of river water tempera-
ture. The present study used SVR model to compare the predictability performance
with a linear regression model. A Multiple Linear Regression Model (MLRM) with
air temperature and streamflow as predictors and daily RWT as predictand variable
was compared with the predictability of SVRmodel. The proposed machine learning
algorithm of SVR is applied with air temperature and streamflow as predictors to
estimate the RWT at Shimoga river water quality checkpoint along Tunga-Bhadra, a
tributary of Krishna river, India. For understanding the possible variability in RWT
under climate change, a statistical downscaling model based on Canonical Correla-
tion Analysis (CCA) has been adopted. The future RWT projections were analyzed
using the trained and testedMLRMandSVRmodelswith the downscaled projections
of air temperature and streamflow.

2 Data and Methods

Tungabhadra River is one of the highly polluted rivers in India after Yamuna River
due to the rapid growth of urban industries located along the river such as effluents
from paper, pulp, rayon and steel industries such as Mysore paper mill and Harihar
poly fibre. Tunga River, of length 147 km and Bhadra River, about 178 km long
originates in the Western Ghats, and join at Kudli, which is about 14.5 km from
Shimoga city, to form the Tungabhadra River (Fig. 1). The river location considered
for the quantification of RWT is Shimoga along the Tunga River. The river location
receives the waste load from Shimoga city municipal effluent. The daily streamflow
and river water temperature data from 1988 to 2005 recorded at Shimoga station was
obtained from Central Water Commission (CWC), Karnataka, India.

To study the impact of climate change on RWT, the downscaled streamflow and
air temperatures were obtained by considering the large-scale climate predictor vari-
ables as air temperature, mean sea level pressure, specific humidity, U-wind, V-wind
and geopotential height based on earlier studies [26]. The selected predictor variables
for the period of January 1948 to December 2005 for six (National Center for Envi-
ronmental Prediction/National Center for Atmospheric Research) NCEP/NCARgrid
points were extracted for the given region of 10–20°N to 70–80°Ewith a spatial reso-
lution of 2.5°× 2.5°. The daily streamflow and air temperature data and predictor set
for the period of 10 years (1988–1998) were used for training the downscaling model
with CCA and the data from 1999 to 2005 was used for testing. The future climate
variables were obtained from the simulations of the Beijing Climate Center (BCC-
CSM1-1) model output prepared from CMIP5 (Coupled Model Inter-comparison
Project 5), by the Beijing Climate Center, China Meteorological Administration.
The BCC-CSM1-1 model was selected based on the availability of CMIP5 projec-
tions of predictor variables to demonstrate the modelling of RWT using SVR and to
analyze the future projections. The IPCC AR5 models implemented set of scenarios,
called Representative Concentration Pathways (RCPs) in which radiative forcing
due to anthropogenic factors reaches 2.6 (RCP 2.6), 4.5 (RCP 4.5) and 8.5 (RCP
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Shimoga

Fig. 1 Location map of Tunga-Bhadra River and Shimoga station, India

8.5) Wm−2 by 2100, were selected for studying the possible RWT changes under
climate change. The RCP 8.5, was considered as a possible scenario for the present
study, which represents high concentration mitigation pathway which continues to
rise throughout the 21st century. The daily GCM simulations for historical and future
scenarios from CMIP5, RCP8.5 were obtained from World Data Center for Climate
(http://cera-www.dkrz.de/maintenance.html).

http://cera-www.dkrz.de/maintenance.html
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3 Multiple Linear Regression Model (MLRM)

A MLRM is developed at daily scale to predict the RWT for Tunga-Bhadra River
with air temperature and streamflow as predictor variables. The MLRM developed
based on the training is given in the following equation:

Tw � a + bTair + cQ (1)

where Tw is the daily river water temperature in °C, Tair is the daily air temperature
in °C, Q is the daily discharge in m3/s, and a, b, c are the parameters estimated based
on the training the MLRM.

4 Support Vector Regression (SVR)

The Support Vector Machine (SVM) is a kernel function learning machine,
which follows the structural risk principle [37]. When the training data of
{(x1, y1), . . . ..(xn, yn)} with n patterns, a function f (x) will be identified with the
consideration of the deviation from the actually observed target variables yi for all the
training data [16]. The input variables, X will be mapped into a higher dimensional
feature space using a non-linear mapping function �.

f (x ;w) �< W,�(x) > +b (2)

where < , > denotes the inner product, and W and b are the regression coefficients,
which can be estimated by minimizing the error between f (x) and the observed
values of y. SVR uses the ∈-insensitive error to measure the error between f (x) and
the observed values of y.

| f (x ;w) − y|∈ �
{
0 i f | f (x ;w) − y| <∈
| f (x ;w) − y|− ∈, otherwise,

(3)

Using the training data of (xi , yi ), the values of w and b are estimated by mini-
mizing the objective function:

F � C

N

∑n

i�1
| f (xi ,w) − yi |∈ +

1

2
‖w‖2 (4)

where C and ∈ are the hyper-parameters. The minimization of the objective function,
F, uses Lagrange multiplier method, and the final regression equation with kernel
function K

(
X, X ′) can be in the form:

f (X) �
∑

i
K (X, Xi ) + b (5)
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The well-known kernel functions are Linear, Polynomial, Radial Basis Function
(RBF), Sigmoidal. The present study tried the Linear and Gaussian and RBF kernels
and the Gaussian kernel function has been identified as suitable one in terms of the
performance measures for the RWT modelling.

5 Evaluation Criteria of Model Performance

Themodel performance ofMLRMwas tested based on theNash-Sutcliffe coefficient
(NSC) [22] (Eq. 6), to show the efficiency of the model fit. The quality of theMLRM
is analyzed using Root Mean Square Error (RMSE) [15] (Eq. 7).

NSC �
∑n

i�1

(
TWSim − TWObs

)2
∑n

i�1

(
TWObs − TWObs,Avg

)2 (6)

RMSE �
√∑n

i�1

(
TWSim − TWObs

)2
n

(7)

where TWSim is the simulated daily river water temperature at time step i in °C; TWObs

is the observed daily river water temperature at time step i in °C; TWObs,Avg is the
average daily river water temperature at time step i in °C; n is the number of data
pairs in comparison.

6 Statistical Downscaling Model

Astatistical downscalingmodel can be adopted to predict the changes in daily stream-
flow and air temperature projections based on General Circulation Models (GCMs)
outputs. GCMs are climate models designed to simulate time series of climate vari-
ables globally, accounting for the greenhouse gases in the atmosphere for current and
future scenarios. Downscaling models are the statistical techniques, which are used
to bridge the spatial and temporal resolution gaps between the GCMs and impact
assessment studies. Generally, these methods involve deriving empirical relation-
ships that relate the large-scale simulations of climate variables (referred as the
predictors) provided by a GCM to regional scale hydrologic variables (referred as
the predictands). A multivariable statistical downscaling model based on Canoni-
cal Correlation Analysis (CCA) was used in the present study, which relates the
atmospheric climate variables and downscalable variables (e.g. streamflow and air
temperatures) linearly. The downscalingmodel involves, data pre-processing of stan-
dardization and normalization to remove the systematic bias in the climate model
simulations, data reductionmethodology of Principal ComponentAnalysis (PCA) on
the large-scale climate variables of predictors [26]. The preprocessed predictors and
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predictands (streamflow and air temperatures) were given as input to CCA model,
which converts them into canonical variables (Eqs. 1 and 2). Canonical regression
equations will be developed for both streamflow and air temperatures separately with
the NCEP/NCAR reanalysis data sets (X) and observed data (Y) of period

Um � aT X, q � 1, . . . .min(N , M) (8)

Vm � bT Y, q � 1, . . . .min(N , M) (9)

where Um and Vm are called predictor and predictand canonical variables respec-
tively, a � [a1, a2, . . . aN ]T and b � [b1, b2, . . . bN ]T are canonical loadings or
weights. The canonical correlation, ρcq , between predictors canonical variable, Uq

and predictand canonical variable, Vq is maximum. The canonical coefficients of
the predictor and predictand variables estimated based on the training period from
1988 to 1998 and tested for the period from 1999 to 2005 was used for the future
projections of streamflow and air temperatures with GCMprojected climate variable.

7 Results and Discussion

The statistical downscaling model based on CCA was used to predict the changes in
daily streamflow and air temperature projections from BCC-CSM 1-1 GCM for the
period from 2006 to 2099. Figure 2 shows the observed, simulated with NCEP data
and simulated with GCM data for streamflow and air temperature for the training
period of 1988 to 1998. The performance of the statistical downscaling model was
tested with the Root Mean Square Error (RMSE) and Nash-Sutcliffe coefficients.
The performance of the downscaling model in terms of N-S coefficients as 0.73 and
0.21 for the training and testing periods respectively for streamflow, whereas, for air
temperature as 1.00 and 0.56 for the training and testing periods respectively. The
RMSE values for the training and testing periods for streamflow were obtained as
403.61 and 419.77 respectively, whereas, for air temperature, the RMSE values were
obtained as 3.41 and 3.92 for the training and testing periods, respectively.

Overall, a significant decrease in daily streamflow values and increase in air tem-
peratures were observed for Tunga river at station Shimoga for current and projected
scenarios [26]. The historical and projected streamflow and air temperatures were
used with MLRM and SVR to study the impact of RWT under climate change. The
present study compared the MLRM and SVR models to predict the RWT at daily
scale along Tunga-Bhadra River. For both the models, the training period is con-
sidered as 1989 to 1999 and the testing period as 2000 to 2005. The trained and
tested models of the MLRM and SVR with good agreement over the performance
measures were used for the future prediction of RWT. The Fig. 3 shows the observed,
simulated daily RWT with MLRM and SVR for (a) training and (b) testing period
of 1989 to 1999 and 2000 to 2005 respectively. The performance of MLRM in pre-
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Fig. 2 Observed and simulated from NCEP and GCM (BCC-CSM1-1) data sets for the training
period of 1988 to 1998 for a streamflow and b air temperatures

dicting the RWT in terms RMSE for training and testing periods were obtained as
1.19 and 1.85 respectively, whereas, the N-S numbers for training and testing were
obtained as 0.79 and 0.53 respectively. The predictability of RWT has been improved
by applying the SVR model with RMSE for training and testing periods as 0.95 and
1.69 respectively. The N-S numbers in the prediction of RWT for training and testing
periods were obtained as 0.87 and 0.61 respectively with SVR. Overall, the perfor-
mance of the MLRM and SVR in the prediction of daily RWT were satisfactory in
terms of RMSE and N-S numbers, with more accuracy towards the SVR model. The
trained and tested MLRM and SVR models were used to predict the RWT for future
scenarios with the projections obtained from CCA downscaling model.

Table 1 shows the annual mean of RWT at Shimoga, along Tunga-Bhadra river
for the historical period of 2000–2005 and for the future time periods of 2020–2040,
2041–2060, 2061–2080, 2081–2100 forMLRMandSVRmodels. Figure 4 shows the
observed and projected annual RWT for the future time periods of with MLRM and
SVRmodels. FromTable 1 and Fig. 4, it is evident that the RWTprojections based on
regression model have been identified as more pronounced compared to SVRmodel.
However, the present study revealed that there will be a significant impact on climate
change on RWTwith pronounced increases at annual scales. Tunga-Bhadra river has
been suffered in terms of river water quality with the decrease of streamflow of about
3.1% at Shimoga for the historical periods [25] and 21% of reduction for the period
of 2070–2100 MIROC 3.2 GCM along the Tungabhadra River [26]. Furthermore,
the air temperature is also projected to increase about 1.66 °C for the period from
2070 to 2100 according toMIROC 3.2 GCM along the Tunga-Bhadra River [26] and
therefore a significant increase in the RWT extremes [28] leading to deterioration of
water quality.

8 Conclusions and Future Directions

Modelling river water quality under climate change is prominent to understand the
projected risk of low water quality and possible adaptation and management policies
to be implemented. Such impact assessment models need to be integrated with cli-
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Fig. 3 Observed and simulated river water temperature for a training b testing periods for Tung-
Bhadra River at Shimoga, Karnataka, India

Table 1 The annual mean of RWT for the observed and future time periods for MLRM and SVR

Time period MLRM SVR

Historical (2000–2005) 27.87 27.87

2020–2040 25.91 25.85

2041–2060 27.23 26.69

2061–2080 28.66 27.45

2081–2100 29.99 28.09

mate change projections models. The present study integrated the RWT prediction
models with a statistical downscaling model to analyze the climate change impacts
on temperatures of rivers. A multiple linear regression model and support vector
regression models were developed to predict the daily RWT under climate change
along Shimoga Tunga-Bhadra river, India. The SVR model has identified as the best
prediction performance compared to linear regression models. The SVRmodel fitted
the daily RWT with a N-S number of 0.87 and 0.61, whereas the MLRM fitted the
RWT with N-S numbers as 0.79 and 0.53 respectively for training and testing peri-
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Fig. 4 Annual river water temperature for a observed period of 2000–2005 b future projections
for period of 2020–2040, 2041–2060, 2061–2080 and 2081–2100 with MLRM and SVR models
for Shimoga station, Tunga-Bhadra river, India

ods. The fitted models of SVR and MLRM based on historical data were used with
the downscaled projections of streamflow and air temperatures from CCA down-
scaling model. The RWT projections based on MLRM model has been identified as
more pronounced compared to SVR model. The annual RWT increase for the river
from near future time period of 2020–2040 to 2081–2100 is estimated as 3.99 and
2.24 °C for MLRM and SVR respectively. The more intensified changes in RWT
was predicted based on a linear regression model compared to the advanced machine
learning algorithm of SVR. Therefore, the present study suggests the use of both
the data-driven models for the possible application to study the RWT under climate
change. Although such data-driven models are not accurate to predict the changes
in RWT due to the non-stationarity relationship between air and RWT over time,
the simplicity of applicability for predicting future RWT motivates to adapt in the
management policies. Further, the data-driven models will not provide a physical
justification, and projections made on such models are always subjected to uncer-
tainties [3] as the models are validated within the range of measured values [36].
Therefore, knowing the limitations and strengths of each of the existing models, the
RWT prediction tools can be applied for the effective assessment of river water qual-
ity for various spatial and temporal scales of the case studies varying from global to
local/regional scales.
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