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1 Introduction

Observation is the first and most primary step in various disciplines of geosciences
such as hydrology, meteorology, oceanography, geology, glaciology, and other plan-
etary sciences. Hydrology or hydrological sciences which essentially deals with the
question “What happens to the rain?” largely depends on gauge observations, which
have been the longest running bastion furnishing long time series of datasets. Hydro-
logical studies require datasets of both meteorological and hydrological variables
such as temperature, humidity, precipitation, streamflow, etc. to monitor, understand,
and model the complex physical processes which convert precipitation to surface
water, soil moisture, groundwater, or streamflow. For a long time, hydrological stud-
ies were completely driven by datasets produced only by gauge measurements and
to some extent field surveys. Although gauge measurements and field datasets are
indispensable tools to understand the natural processes even today, they suffer from
several limitations [6] such as

(i) localized nature of the gauges provides information only for a particular loca-
tion;

(ii) gauges cannot provide data at locations inaccessible to humans;
(iii) data procured by gauges are not easily available due to political control over

data sharing policies; and
(iv) management andmaintenance of gauges are big challenges faced by concerned

authorities.

Moreover, from hydrological modeling perspective, gauge datasets are quite limit-
ing and do not help incorporate mathematical modeling of many physical processes.
Consequently, development of a systematic framework that provides us with obser-
vational datasets of the Earth having the desired properties such as global coverage,
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continuously available in time, and accessible across political boundaries, specif-
ically of hydrological and meteorological variables, was necessary. As a result,
Earth-observing satellite remote sensing has been developed to complement the
gauge-based observations and enhance our knowledge and understanding of vari-
ous physical processes [52, 55, 57]. This has not only enhanced our ability to model
complex hydrological processes [36, 53, 86] to a large extent but also improved our
capabilities to predict and forecast hydrological extremes which have now reached
new levels.

The journey of remote sensing observations started in 1972 with Earth Resources
Technology Satellite (ERTS) 1 [14] launched by National Aeronautics and Space
Administration (NASA), USA, which later came to be known as Landsat 1. It car-
ried a multispectral scanner (MSS) recording data in four spectral bands, viz., red,
green, and two infrared bands. Since then the technology used for remote sensing
has grown by leaps and bounds. Remote sensing satellites now record not only in
the optical and near-infrared bands but also in thermal and microwave bands. The
spatial, spectral, temporal as well as radiometric resolutions have improved with
each new satellite. New data acquisition techniques are being developed such as the
synthetic-aperture radar (SAR) used to procure terrain and land cover information
[44], satellite altimeters used to measure depth of seabed, radiometers used to esti-
mate surface soilmoisture [63], and hyperspectral imagers having a very high spectral
resolution are used for various applications in the fields of agriculture, mineralogy,
and environmental sciences [46].

The Terrestrial Water Storage (TWS) estimate derived from the Gravity Recovery
and Climate Experiment (GRACE) satellite data is a remarkable addition to the vast
set of remote sensing observations [76, 83]. Compared to the previous satellites,
GRACE uses a completely different technique of data acquisition. While most of the
previous satellites can observe only surface features of the land, GRACE satellites
are able to acquire information about water storages in any form at any depth. TWS
refers to the total water storage in a column of land present in the form, be it snow,
ice, surface water, soil moisture, and groundwater. Although the spatial and temporal
resolution of the GRACE data is coarse as compared to many other satellites, the
unique nature of the data makes it an invaluable tool to observe terrestrial hydrolog-
ical processes [79, 93]. The water storage that is the most difficult to observe and
monitor is groundwater and in situ well observations were the only way to mon-
itor them until the advent of GRACE. Well observations suffer from the obvious
limitations of consistency, unavailability of data for the required period, inadequate
spatial distribution of observation wells, and above all, political control over data for
transboundary aquifers. GRACE on the other hand provides a global observational
dataset periodically for the past 15 years. Using GRACE-derived datasets, scientists
have identified depleting groundwater levels in different parts of the world such as
Sacramento and San Joaquin River basins, California’s Central Valley, and High
Plains aquifer in USA [12, 23, 64, 65], Bengal Basin of Bangladesh [68] and Gan-
ga–Brahmaputra–Meghna River basin [34] in South Asia, transboundary river basins
in theMiddle East [32, 88], Northern China [31] and SouthernMurray Darling River
basin [15] in Australia.
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GRACE data is being used to solve a host of scientific problems other than the
numerous studies related to groundwater. GRACE-derivedTWS, also known asTWS
Anomaly (TWSA) and its derivative TWS Change (TWSC), are used to study the
dynamics of the terrestrial part of the hydrologic cycle and unravel its complex nature
[5, 27, 45, 80]. It is used to understand water budget at the spatial scale of large river
basins or continents [38, 79]. Terrestrial water budget, atmospheric water budget, or
a coupling of the two is used to estimate evapotranspiration or river discharge [60,
59, 70, 79, 78]. Evapotranspiration is an important part of the terrestrial hydrolog-
ical cycle as it is the terrestrial feedback to the atmosphere and affects the climate.
However, it is a complex hydrological variable which is difficult to estimate by the
various energy balance and aerodynamic methods as they are highly data intensive.
GRACE provides a rather simple method of its estimation. River discharge is an
equally important parameter affecting the seas and oceans, determining the fresh-
water input to the system. Ocean salinity, sea surface temperature, and various other
parameters are dependent on the amount of freshwater that comes into the oceans in
the form of river discharge. The GRACE-based method of river discharge estimation
is specifically helpful for large rivers which do not have a defined stream but forms a
large delta system as it meets the ocean, as in case of the rivers Ganga–Brahmaputra,
Indus, Irrawaddy, Mekong, and Yangtze. GRACE also finds application in drought-
related studies [29, 84]. Precipitation is typically used for drought identification,
monitoring, and management. Recently, a few studies have also used soil moisture
to monitor droughts. However, TWS data which is the total of all the water storages
helps improve the impact assessment of a drought by providing a holistic estimate
of the total amount of water lost during a drought and the time taken to regain.

The area of application of GRACE data which would be of interest for the present
discussion is its integration into hydrological models, which are sophisticated tools
used for prediction of various hydrological parameters. Prediction of river discharge
has been the sole objective of hydrologic models for a long time due to the limited
number of hydrological variables observed (as discussed earlier). However, with the
increasing number of observations, specifically satellite-based observations and huge
improvement in the computational capabilities, the structure and functions of hydro-
logical models have also evolved. They now represent more complex processes at
finer spatial and temporal scales and predict various hydrological parameters along
with streamflow [17]. Integration of GRACE data into a hydrological model should
further improve the representation of the physical processes and prediction of com-
plex parameters such as evapotranspiration, soil moisture, and snow accumulation.
In this chapter, we discuss in detail the various ways of integrating GRACE data into
a hydrological model. We elaborate on the physics behind acquisition of TWS data
through GRACE satellites and the available data products. We also review various
hydrological models used for GRACE-based studies discussing models which are
more often chosen over the others.
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2 GRACE Data and Gravity Recovery

Before divulging into the details of integrating GRACE data with hydrological mod-
els, it is important to understand the science of gravity recovery. TheGRACE satellite
mission is a joint venture by the US and German space agencies, NASA and DLR
(DeutschesZentrum fur“r Luft-und Raumfahrt), respectively, under the NASA Earth
System Science Pathfinder Program. The mission which was launched on March
17, 2002 consists of a pair of small and identical satellites (Fig. 1) orbiting at an
altitude of 500 km from the Earth’s surface with a separation between them of about
220 km along track. The satellites are connected by a highly accurate inter-satellite
microwave K band ranging system constantly measuring the minute changes in the
inter-satellite distance/range of the order of 10 µm. The distance between the two
satellites changes due to the changes in earth surface features, which vary in den-
sity. Higher density relates to high mass, thus culminating into greater gravitational
force and vice versa. If the Earth was homogenous in nature, the range between
the two satellites would remain constant. However, the mass distribution is highly
heterogeneous as well as constantly changing in time. The most dynamic constituent
of the planet is water that circulates through the oceans, atmosphere, lithosphere,
cryosphere, and biosphere. As a result, the time variable gravity signal acquired by
theGRACE satellites through themeasurement of the inter-satellite range ratemainly
consists of the temporal variations ofwater as itmoves fromone storage compartment
to another. After removing the fluctuations in the mass of the atmosphere and oceans,
also known as Atmosphere and Ocean De-aliasing (AOD) from the total gravity sig-
nal, the seasonal and inter-annual fluctuations in TWS are obtained, expressed as
centimeters of Equivalent Water Thickness (EWT) [73, 75, 76, 89].

The inter-satellite range rate, the primary variable observed by the GRACE satel-
lites, must go through a long course of data processing to be converted to TWS.
There are three primary centers constituting the Science Data System (SDS) which
perform the processing of the Level 1 dataset to provide Level 2 and Level 3 datasets.
These centers are the Center for Space Research (CSR) at the University of Texas at
Austin, Jet Propulsion Laboratory (JPL), NASA and the GermanResearch Center for
Geosciences (GFZ)Helmholtz Center, Potsdam. The Level 1 data fromGRACE con-
sists of the inter-satellite range, range rate, range acceleration, and non-gravitational
accelerations from each satellite. The Level 2 data product is themonthly gravity field
estimates available in the form of spherical harmonic coefficients, whereas the Level
3 dataset is mass anomaly expressed in terms of EWT of TWS [39, 77]. The three
data processing centers use different data processing techniques which include dis-
tinct static gravity models, different de-aliasing schemes and varied order and degree
of the spherical harmonic coefficients to produce three separate datasets commonly
known as CSR, JPL, and GFZ datasets. However, there are other research groups
which also use other varieties of processing techniques to produce Level 2 and Level
3 data products such as the Delft Mass Transport (DMT) model of Delft University
of Technology (TUDelft) [35, 43], ITG-Grace2010 of Bonn University, and a host of
datasets produced by NASA’s Goddard Space Flight Center (GSFC). JPL’s TELLUS
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Fig. 1 Illustration of the twin satellites of the GRACE mission, connected by the along-track K-
band microwave ranging system (Credits: NASA/JPL-Caltech)

website provides Level 3 monthly gridded as well as mascon products of GRACE
TWS estimate derived from Level 2 dataset of the three primary data centers viz
CSR, GFZ, and JPL. These products are easily accessible, available along with the
error estimates and are ready to use for hydrologists [39].

3 Large-Scale Hydrological Models

Mathematical models of the hydrological processes, commonly known as hydrolog-
ical models, have a long history as they evolved from simple lumped models with a
single output to much more sophisticated stochastic distributed hydrological mod-
els which use several input variables and estimate wide range hydrologic responses
[69]. Most of the primitive models are known as rainfall–runoff models which take
rainfall and very primary land surface characteristics to estimate runoff. However,
these models were an improvement over statistical models used for the prediction
of runoff because the former contains representation of some physical processes
and their usability in real time when forced with real-time precipitation [11]. With
advancement in computational capabilities and proliferation of remotely sensed data,
the hydrological models have hugely improved in terms of the simulation time steps,
number of climatological forcings and land surface characteristics, spatial resolu-
tion, and number of output variables. These developments finally culminated to an
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increased number of physical processes represented within the models as well as the
accuracy with which they are represented. Thus, the hydrological models of the new
generation are of great use for prediction of various hydrologic variables such as
runoff, streamflow, evapotranspiration, etc. which help for water resources manage-
ment [8, 42, 71]. Moreover, they also provide a robust framework to run numerical
experiments to understand the effects of various natural and anthropogenic changes
in the land surface properties and climate such as deforestation, urbanization, expan-
sion of agricultural land, global warming, increasing extreme rainfall, etc. [7, 24].

Another aspect of hydrological models that has changed with improvement in
various technologies as well as the urge to improve the accuracy in prediction of
large-scale hydrological processes is the expanse of the land surface modeled within
a single framework. Most hydrological models refer to catchment or river basin
scale modeling where the primary output variable of interest is the streamflow at
the mouth of the river basin. However, these models are calibrated for a single
catchment such that the model parameters are tuned to represent hydrologic and
climatic processes occurring only within that catchment. A new variety of models
are the Land Surface Models (LSMs) which are included within the atmospheric
General Circulation Models (GCMs) to represent the interaction of the atmosphere
with the land surface in the form of mass and energy exchange [10, 21].

As discussed earlier, the river discharges from the land surface into the oceans alter
several of its physical properties which in turn affect the climate. As a result, these
LSMs are coupledwith a River RoutingModel (RRM) to convert the runoff produced
by the LSM to streamflow and finally the river discharge into the oceans. LSMs have
evolved greatly over the past few decades to accurately represent the partitioning of
the incoming net radiative energy into latent and sensible heat fluxes and the parti-
tioning of precipitation into runoff, evaporation, and water storage. One such LSM
is the Community Land Model (CLM), part of the Community Earth System Model
(CESM) of the National Center for Atmospheric Research (NCAR), USA [10]. The
hydrologic processes represented in the model (shown in Fig. 2) include interception
of precipitation by canopy, throughfall, transpiration, soil evaporation, canopy evap-
oration, infiltration, runoff, soil moisture, aquifer recharge, snow accumulation, melt,
and sublimation. Other than the hydrologic cycle, the model includes other physi-
cal processes such as land biogeophysics, biogeochemistry, ecosystem dynamics,
and anthropogenic interventions (Fig. 2). A similar framework is the Noah-Multi-
parameterization Land SurfaceModel (Noah-MPLSM) which includes detailed veg-
etation dynamics including canopy shading and under-canopy snow dynamics along
with the capability to differentiate between C3 and C4 pathways of photosynthesis
[51, 92]. The Noah-MP LSM version 1.6 was implemented in Weather Research
and Forecasting (WRF) Model version 3.6. WRF is a numerical weather predic-
tion model developed mainly by NCAR and National Centers for Environmental
Prediction (NCEP).

LSMs coupled within a GCM framework are not the only large-scale hydrological
models simulating thewater and energy cycles alongwith geochemical processes and
vegetation dynamics. There are many large-scale uncoupled or stand-alone LSMs,
sometimes also known as the Global HydrologicalModels (GHMs) simulating phys-
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Fig. 2 A schematic diagram showing the energy cycle, hydrological cycle, biogeochemical, veg-
etation dynamics, and land use change represented within the Community Land Model (CLM)
(Credits: http://www.cesm.ucar.edu/models/clm/)

ical processes at global scale such as the WaterGAP model (Water—Global Analy-
sis and Prognosis model) [2], developed by University of Kassel and University of
Frankfurt,Germany, PCR-GLOBWB(PCRasterGLOBalWaterBalancemodel) [96]
conceived by Utrecht University, The Netherland, ISBA-TRIP (Interactions between
Soil, Biosphere, Atmosphere—Total Runoff Integrating Pathways) [3, 19] created by
Centre National de Recherchés Météorologiques, France and the Global Land Data
Assimilation System (GLDAS) framework [61], developed byGSFC andNCEP. The
WaterGAPmodel is designed for the assessment of macro-scale processes of the ter-
restrial hydrological cycle, taking into consideration anthropogenic component to
simulate freshwater availability and irrigation water use. PCR-GLOBWB includes
subgrid schemes for partitioning of rainfall into runoff, infiltration, interflow, ground-
water recharge, and baseflow, as well as routing of the generated runoff. The model
includes detailed anthropogenic effects to the extent that it includes more than 6000
manmade reservoirs. Thus, the human water use is completely integrated into the
hydrological model at time step, calculating water demand, surface and groundwater
abstraction, consumptive water use, and return flow. ISBA is a relatively simple LSM
calculating variability in energy and water budgets with a saturation excess overland
flow approach to simulate runoff based on TOPMODEL hydrological model [9].
This is coupled with TRIP, a simple RRM which converts runoff simulated by ISBA

http://www.cesm.ucar.edu/models/clm/
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into river discharge for a global river network. The GLDAS framework consists of
four different LSMs, viz., Mosaic, CLM, Noah, and Variable Infiltration Capacity
(VIC) models forced by a single forcing dataset. These four models differ mainly in
the depth of soil considered for the simulation of soil water interaction and storage
as well as the number of layers into which the total depth is divided. It should be
noted that both the ISBA-TRIP model and the GLDAS set of models do not include
any anthropogenic effects of water storage and water use. Although the LSMs are of
great use, a major challenge lies in the calibration of these models which can only be
carried out using vegetation indices or streamflow for large river basins by routing
the simulated runoff. GRACE provides a very useful data first for the evaluation of
such LSMs and eventually can be assimilated into the models for better estimation
of various hydrologic variables. In the following sections, these two approaches of
integration of GRACE data are discussed in detail.

4 Evaluation of Model Simulations Using GRACE Data

As discussed in the previous section, coupled and uncoupled LSMs try to simu-
late several hydrological variables by incorporating most complex of the physical
processes, mimicking them to the maximum extent possible. Scientists are contin-
uously trying to improve these models by better parameterization and adding more
and more hydrological, geophysical, and biophysical processes into these models. A
handy dataset for quick evaluation of the hydrological fields simulated by these mod-
els is the GRACE dataset. Due to its continuous global coverage, GRACE data could
be used for evaluation of LSMs in cold regions affected by snow, arid, and semi-arid
regions characterized by very low or no soil moisture conditions as well as areas char-
acterized by a heavy to very heavy monsoonal rainfall. Table 1 provides a detailed
chronological list of various studies carried out at global, continental, regional, and
river basin scales to compare and evaluate various LSMs to estimate the accuracy
with which it simulates various water storages and physical processes affecting them.
Some studies tried to improve the estimation of certain variables by incorporating
better and more detailed process representation and validated the improvements by
comparison with GRACE data. The CLM LSM of NCAR is one such model which
has seen continual efforts of betterment and corresponding evaluation using GRACE
data. One of the limitations observed with CLM 2.0 was its representation of frozen
soil which included completely frozen soil in areas with temperature below 0 °C,
resulting in higher and earlier than expected runoff caused by spring season rainfall.
The modifications suggested were allowance for the coexistence of ice and water in
soil, the concept of a fractional permeable area, and considering both liquid water
and ice together as soil moisture for calculating hydraulic conductivity. These mod-
ifications improved both the surface runoff and the soil water storage estimates of
CLM when the simulations were evaluated for river basins in the cold regions, viz.,
Lena, Yenisei, Mackenzie, Ob, Churchill-Nelson, and Amur using both streamflow
and GRACE data [48, 49]. Another deficiency of the CLM model was its inability
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to model the groundwater dynamics as the column of soil considered extends only
to 3.8 m below the surface. In another attempt to improve the CLM model, a Sim-
ple Groundwater Model (SIMGM) which represents an unconfined aquifer along
with the recharge and discharge processes was included within the framework [50].
Although the modification worked out well for all the 12 river basins considered in
the study, it is not expected to dowell in cold regions where the water table is exposed
to freezing conditions due to the obvious differences in the physical processes. In a
more recent attempt to accurately represent groundwater dynamics within the CLM
model version 4.5, it was found that addition of a no-flux boundary condition at
the base of the soil layer improved the estimate. As a result, these simulations from
the improved CLM models were found to agree well with GRACE-derived TWS
observations [72].

A few studies also tried to improve the ISBA-TRIP hydrological model by com-
paring modified versions of the model with GRACE data. Initial comparisons of the
modelwithGRACEdata outlined somemodel deficiencies such as the high storage in
the form of surfacewater within the river channel as a part of the routing scheme over-
estimated the maximum and underestimated the minimum TWS values mainly in the
tropical region. Other deficiencies within the ISBA-TRIPmodel were the calculation
of evaporation and snow accumulation. However, the major limitation was identified
as the oversimplified routing model and the absence of anthropogenic effects within
the model [3, 19, 54, 87]. Although human impact was not included in the modified
version, improvements were suggested for TRIP—the routing model which included
a simple groundwater reservoir and a variable streamflow velocity calculation. Sev-
eral other LSMs were evaluated globally or regionally using GRACE data. Inclusion
of a water exchange scheme between continents and oceans included in the Organis-
ing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) LSM resulted in
better simulation of land water storage [Ngo-Duc et al., 2007]. GRACE data when
compared to the Australian Water Resource Assessment (AWRA) model suggested
a need for improvement in representations of diffuse groundwater discharge pro-
cesses and interaction between surface and groundwater [van Dijk et al., 2011]. Doll
et al. [2014] found that the WaterGAP model version 2.2 underestimates TWS as
compared to GRACE with a phase lag of a month observed between the two. Evalu-
ation of the GLDAS framework-versions 1 & 2 carried out for China by Wang et al.
[2016] showed inconsistency in the rate of change of TWS. The four land surface
models (Noah, SAC-Sacramento Soil Moisture Accounting Model, (VIC) Variable
Infiltration CapacityModel, andMosaic) applied in the newly implemented National
Centers for Environmental Prediction (NCEP) operational and research versions of
the North American Land Data Assimilation System version 2 (NLDAS-2) were also
evaluated using GRACE data [Xia et al., 2016]. A common source of inconsistency
ob-served between the GRACE observation and model simulation was attributed
to the error and uncertainty present in the precipitation dataset which is a primary
forcing for all hydrologic models.
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Table 1 Comparative list of studies evaluating and comparing hydrological models with GRACE
data

Authors
(Year)

GRACE data Model Input data Study region Study period

Niu and Yang
[49]

Chen et al.
[16], Seo and
Wilson [67]

CLM 2.0 with
SIMTOP

GLDAS 1-degree
3-hourly data
(2002–2004)

Lena, Yenisei,
Mackenzie,
Ob, Churchill-
Nelson and
Amur

August
2002–July
2004

Niu and Yang
[48]

Chen et al.
[16], Seo and
Wilson [67]

CLM and
Modified
CLM

GLDAS 1-degree
3-hourly data
(2002–2004)

Global and
Ob, Yangtze,
Amazon, Taz
and Ural
River Basin

August
2002–July
2004

Swenson and
Wahr [74]

Swenson and
Wahr [73]

Atmospheric
and Terrestrial
Water Balance
model

GCM output and
NCEP/DOE R-2 for
atmospheric water
balance and
GLDAS/Noah LSM for
terrestrial water budget

Mississippi
and Ohio-
Tennessee
River basins

June
2002–April
2004

Ngo-Duc
et al. [47]

Ramillien
et al. [56]

ORCHIDEE
modified to
include a
routing
scheme

P: 6-hourly NCEP/NCAR
constrained by
monthly CMAP;
Others: 6-hourly NCC
(NCEP/NCAR)
corrected by CRU
atmospheric forcing

Global and
Amazon,
Congo, Niger,
Mississippi,
Yangtze,
Ganges,
Brahmaputra,
Mekong

May
2002–Decem-
ber
2003

Niu et al. [50] Chen et al.
[16], Seo and
Wilson [67]

Modified
CLM with
SIMTOP and
SIMGM

1-degree 3-hourly
GLDAS dataset
(2002–2004)

12 Global
river basins
not affected
by snow or ice

August
2002–Decem-
ber
2004

Alkama et al.
[3]

CSR-RL04,
JPL-RL 4.1,
GFZ-RL04
estimates

ISBA-TRIP 3-hourly 1-degree
Princeton University data

Global and 33
large river
basins

Aug
2002–Dec
2006

Decharme
et al. [19]

CSR-RL04,
JPL-RL4.1,
GFZ-RL04
estimates

TRIP with
groundwater
storage and
variable flow
velocity

Runoff simulated by
ISBA of Alkama et al. [3]

Global and 12
large river
basins

Aug
2002–Dec
2006

van Dijk et al.
[97]

1-degree
gridded TWS
estimates
from CSR

Australian
Water
Resource
Assessment
(AWRA)

0.05-degree gridded
meteorological forcings
obtained by interpolation
of Station data

Continental
Australia

January
2003–Decem-
ber
2010

Grippa et al.
[27]

RL04 of CSR,
JPL and GFZ,
DEOSDMT,
GRGS-
EIGEN-GL04
and 10 day, 4°
GSFC

HTESSEL,
ORCHIDEE-
CWRR,
ISBA,
JULES,
SETHYS,
NOAH,
CLSM, SSiB,
SWAP

Rainfall: TRMM 3B42,
Atmospheric forcings:
ECMWF short-term
forecast data Downwell
Radiative fluxes: mix of
ECMWF and Land
Surface Analysis Satellite
Applications Facility

West Africa Jan 2003–Dec
2007

(continued)
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Table 1 (continued)

Authors
(Year)

GRACE data Model Input data Study region Study period

Pedinotti et al.
[54]

CSR-RL04,
JPL-RL4.1,
GFZ-RL04
estimates

ISBA-TRIP TRMM-3B42 and
RFE-Hybrid rainfall for
ISBA-TRIP CHS, other
atmospheric forcings
from ECMWF

Niger River
Basin

Jan 2003–Dec
2007

Vergnes and
Decharme
[87]

CSR-RL04,
JPL-RL 4.1,
GFZ-RL04
estimates

TRIP Total runoff from ISBA
simulation by Alkama
et al. [4]

Global and 12
large river
basins

August
2002–August
2008

Rosenberg
et al. [62]

I-degree
gridded CSR
dataset

VIC modified
to include
SIMGM

1/8th-degree Gridded
from precipitation and
maximum/minimum
temperature data from
NOAA Cooperative
Observer stations and
wind data from
NCEP-NCAR reanalysis

Colorado
River Basin

2002–2010

Cai et al. [13] 1-degree
gridded TWS
estimates
from CSR
RL4.0

Noah-MP NLDAS Phase 2
atmospheric forcing at
1/8° resolution

Mississippi
River Basin

2003–2009

Doll et al. [20] 0.5-degree
gridded
GFZ-RL05,
CSR-RL05
and ITG-
Grace2010

WaterGAP
2.2

Daily climate dataset
WFD (WATCH Forcing
Data)/WFDEI (Watch
Forcing Data
ERA-Interim)

Global 2003–2009

Swenson and
Lawrence [72]

CSR RL05 CLM version
4.5 with
modification

1.25 longitude × 0.9
latitude ECMWF
ERA-Interim Reanalysis
data

Lower
Colorado
River basin, in
the
southwestern
United States,
and a region
in
northeastern
Australia

2002–2014

Ahmed et al.
[1]

1-degree
gridded TWS
estimates
from CSR
RL05

CLM4.5-SP
and
GLDAS-Noah

GLDAS: NOAA and
CPC/CMAP and CLM:
CRU/CRUNCEP

Continental
Africa (Niger,
Zambezi,
Okavanko,
Limpopo)

2003–2010

Wang et al.
[90]

GRACE
Tellus RL05
CSR, JPL,
GFZ

GLDAS1
(Noah, CLM,
Mosaic, VIC)
GLDAS2
(Noah 3.3)

ECMWF &
NCEP–NCAR reanalyses
data, NOAA/GDAS and
Princeton University
atmospheric fields,
AGRMET radiation
fields,

China 2002–2010

(continued)
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Table 1 (continued)

Authors
(Year)

GRACE data Model Input data Study region Study period

Xia et al. [91] GRACE
Tellus RL05
CSR, JPL,
GFZ average

NLDAS-2
operation
(Mosaic and
Noah) and
research
(SAC-Clim
and VIC4.0.5)

CPC, PRISM & NARR
precipitation data and 2-m
air temperature from
NARR

USA 2003–2014

Zhang et al.
[95]

GRACE
RL05 Level-2
products from
GFZ

LSDM,
WGHM,
JSBACH,
MPI-HM

WFDEI dataset based on
ERA-Interim reanalysis
data

31 largest
river basins

2003–2012

5 GRACE Data Assimilation

Data assimilation is a statistical technique of combining the simulations or forecasts
from a prediction model with measurements from an observing system to produce
improved estimates. Evaluation of LSMs has been one of the most explored tech-
niques of utilizing GRACE data for the improvement of model physics and simu-
lation accuracies. However, it is an indirect method where model deficiencies are
figured out by comparing model outputs with GRACE observations followed by
improving model physics solely based on our understanding of the intricate details
of hydrological processes. This to some extent is limiting since the knowledge and
understanding of the hydrological processes are itself limited and the large infor-
mation hidden within the GRACE observations may be completely overlooked. As
an alternate method of data integration, GRACE data assimilation techniques were
explored where the observational dataset is directly utilized to improve the model
simulation at each time step. Although it apparently does not improve model physics
or our understanding of hydrological processes, GRACE data assimilation improves
model simulations to a great extent, also facilitating spatial and temporal disaggre-
gation of GRACE data as a byproduct. Table 2 gives a detailed chronological list of
studies performed in this field of research.

The assimilation ofGRACEdata into LSMs has twomajor challenges. The typical
temporal and spatial resolution of the GRACE observation is much coarse as com-
pared to the LSMs. The GRACE data provided by NASA JPL’s TELLUS website
has a spatial resolution of ~100 km (1 degree) and a temporal resolution of a month.
On the contrary, most LSMs are run at a daily or sub-daily scale, with the spatial res-
olution varying from 5 km (0.05°) to a maximum of 50 km (0.5°). Hence, the process
of data assimilation invariably includes a spatial and temporal disaggregation tech-
nique. Consequently, a widely used and efficient data assimilation technique, known
as the Ensemble Kalman Filter (EnKF) [22], is used in most of the previous literature
(Table 2). The EnKF is a variant of a statistical technique known as the Kalman filter
and is used for large problems. It has the inherent assumptions that the probability
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Fig. 3 A schematic diagram showing the concept of a typical Kalman Filter (Credit: Melda Ulusoy,
MathWorks)

distributions are all Gaussian and the predictive model is linear. The Kalman filter
(Fig. 3) is a recursive filtering mechanism which combines the simulation of a model
and a noisy measurement, both of which are assumed to be Gaussian distributions to
estimate the most likely state variables. The model estimate is generally less prob-
able and contains more uncertainty than the measurement. However, the use of the
EnKF provides an optimal estimate of the state variable which is much more proba-
ble and contains less uncertainty as compared to both the model prediction and the
measurement, as shown in Fig. 3.

The second challenge is the hydrological variable of interest. GRACE obser-
vations result into TWS data which, as discussed earlier, is the aggregation of all
the surface and subsurface water storages. To assimilate GRACE TWS data, there
needs to be a hydrological variable within the model to which it can be mapped.
The problem in this case is that all hydrological models have separate surface and
subsurface storages modeled as different processes. Even if all the storages are added
up to create a hydrological variable to be mapped against GRACE TWS data, it falls
short due to the absence of groundwater storage. Most of the hydrological models
incorporate groundwater dynamics as a boundary condition at the bottom of the
soil column considered which is typically 2–4 m in depth from the ground surface.
To resolve this issue, the catchment land surface model is the most preferred LSM
used for assimilation as it contains an unconfined groundwater reservoir. Several
studies have assimilated the GRACE TWS data with one of the primary objectives
being improvement of groundwater estimation. Zaitchik et al. [2008] assimilated
GRACE data into the CLSM using an ensemble Kalman smoother. Results indi-
cated an improved correlation between observed ground-water and data assimilated
simulated groundwater. In a similar effort, GRACE data was assimilated into the
OpenStreams wflow_hbv model using an ensemble Kalman filter for the Rhine river
basins. Results show increase in correlation between observed and simulated ground-
water from 0.6 to 0.7 and 15% reduction in RMSE as a result of this data assimilation
[Tangdamrongsub et al., 2015]. In both the cases, slight improvement in streamflow
simulation was also observed. Tangdamrongsub et al. [2017] showed that assimi-
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lation of GRACE data increased the accuracy of groundwater estimate, simulated
for a semi-arid region in northern China by PCR-GLOBWB by 25%. GRACE data
assimilation was also carried out with the objective of drought assessment because
most frameworks lack information of groundwater and soil moisture of deeper lay-
ers. Houborg et al. [2012] and Li and Rodell [2015] assimilated GRACE data into
CLSM model to derive drought indicators for North America and conterminous US
respectively. A similar exercise was carried out for western and central Europe by Li
et al. [2012]. These efforts disaggregated GRACE data in both spatial and temporal
dimension. GRACEdata assimilationwas also carried out to estimate human induced
changes in TWS and assess regional flood potential [Y Huang et al., 2015a; Reager
et al., 2015]. Further studies concentrated on improving the data assimilation using
better variants of the ensemble Kalman Filter and other hydrologic dataset such as
the soil moisture from Soil Moisture and Ocean Salinity (SMOS) mission [Girotto
et al., 2016; Girotto et al., 2017; Khaki et al., 2017; Schumacher et al., 2016; Tian
et al., 2017].

6 Conclusions

The hydrological models altogether have improved from the simple lumped models
and now include not only hydrological processes but all such physical, chemical,
and biological processes that affect or is affected by water (a typical example of
which is shown in Fig. 2). Integration of GRACE data into hydrological models
has improved their model physics and prediction capabilities. Such models now
represent better dynamics of frozen soil, dry soil in arid climate, groundwater, and
vegetation. This also improved the estimation of various hydrological and vegetation
parameters. Further improvements were achieved by GRACE data assimilation into
hydrological models with the added advantage of disaggregation of GRACE TWS
observations. Moreover, the GRACE data processing techniques have also improved
with the most recent studies using Release 05 dataset which has a much higher
accuracy as compared to the initial releases. The GRACE Follow-On (GRACE-FO)
mission is scheduled to be launched in 2018which is expected not only to continue the
unique GRACE observations but also to have some improvements as compared to its
forerunner [18]. Meanwhile, scientists are still working on the processing techniques
of the GRACE data and the new Release 06 of the GRACE dataset having better
accuracy is available for use [28]. Thus, there are numerous avenues in which further
improvement is possible that will unravel new vistas of knowledge in future.
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