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Integration of GRACE Data
for Improvement of Hydrological Models

Chandan Banerjee and D. Nagesh Kumar

1 Introduction

Observation is the first and most primary step in various disciplines of geosciences
such as hydrology, meteorology, oceanography, geology, glaciology, and other plan-
etary sciences. Hydrology or hydrological sciences which essentially deals with the
question “What happens to the rain?” largely depends on gauge observations, which
have been the longest running bastion furnishing long time series of datasets. Hydro-
logical studies require datasets of both meteorological and hydrological variables
such as temperature, humidity, precipitation, streamflow, etc. to monitor, understand,
and model the complex physical processes which convert precipitation to surface
water, soil moisture, groundwater, or streamflow. For a long time, hydrological stud-
ies were completely driven by datasets produced only by gauge measurements and
to some extent field surveys. Although gauge measurements and field datasets are
indispensable tools to understand the natural processes even today, they suffer from
several limitations [6] such as

(i) localized nature of the gauges provides information only for a particular loca-
tion;

(ii) gauges cannot provide data at locations inaccessible to humans;
(iii) data procured by gauges are not easily available due to political control over

data sharing policies; and
(iv) management andmaintenance of gauges are big challenges faced by concerned

authorities.

Moreover, from hydrological modeling perspective, gauge datasets are quite limit-
ing and do not help incorporate mathematical modeling of many physical processes.
Consequently, development of a systematic framework that provides us with obser-
vational datasets of the Earth having the desired properties such as global coverage,
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2 C. Banerjee and D. N. Kumar

continuously available in time, and accessible across political boundaries, specif-
ically of hydrological and meteorological variables, was necessary. As a result,
Earth-observing satellite remote sensing has been developed to complement the
gauge-based observations and enhance our knowledge and understanding of vari-
ous physical processes [52, 55, 57]. This has not only enhanced our ability to model
complex hydrological processes [36, 53, 86] to a large extent but also improved our
capabilities to predict and forecast hydrological extremes which have now reached
new levels.

The journey of remote sensing observations started in 1972 with Earth Resources
Technology Satellite (ERTS) 1 [14] launched by National Aeronautics and Space
Administration (NASA), USA, which later came to be known as Landsat 1. It car-
ried a multispectral scanner (MSS) recording data in four spectral bands, viz., red,
green, and two infrared bands. Since then the technology used for remote sensing
has grown by leaps and bounds. Remote sensing satellites now record not only in
the optical and near-infrared bands but also in thermal and microwave bands. The
spatial, spectral, temporal as well as radiometric resolutions have improved with
each new satellite. New data acquisition techniques are being developed such as the
synthetic-aperture radar (SAR) used to procure terrain and land cover information
[44], satellite altimeters used to measure depth of seabed, radiometers used to esti-
mate surface soilmoisture [63], and hyperspectral imagers having a very high spectral
resolution are used for various applications in the fields of agriculture, mineralogy,
and environmental sciences [46].

The Terrestrial Water Storage (TWS) estimate derived from the Gravity Recovery
and Climate Experiment (GRACE) satellite data is a remarkable addition to the vast
set of remote sensing observations [76, 83]. Compared to the previous satellites,
GRACE uses a completely different technique of data acquisition. While most of the
previous satellites can observe only surface features of the land, GRACE satellites
are able to acquire information about water storages in any form at any depth. TWS
refers to the total water storage in a column of land present in the form, be it snow,
ice, surface water, soil moisture, and groundwater. Although the spatial and temporal
resolution of the GRACE data is coarse as compared to many other satellites, the
unique nature of the data makes it an invaluable tool to observe terrestrial hydrolog-
ical processes [79, 93]. The water storage that is the most difficult to observe and
monitor is groundwater and in situ well observations were the only way to mon-
itor them until the advent of GRACE. Well observations suffer from the obvious
limitations of consistency, unavailability of data for the required period, inadequate
spatial distribution of observation wells, and above all, political control over data for
transboundary aquifers. GRACE on the other hand provides a global observational
dataset periodically for the past 15 years. Using GRACE-derived datasets, scientists
have identified depleting groundwater levels in different parts of the world such as
Sacramento and San Joaquin River basins, California’s Central Valley, and High
Plains aquifer in USA [12, 23, 64, 65], Bengal Basin of Bangladesh [68] and Gan-
ga–Brahmaputra–Meghna River basin [34] in South Asia, transboundary river basins
in theMiddle East [32, 88], Northern China [31] and SouthernMurray Darling River
basin [15] in Australia.
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GRACE data is being used to solve a host of scientific problems other than the
numerous studies related to groundwater. GRACE-derivedTWS, also known asTWS
Anomaly (TWSA) and its derivative TWS Change (TWSC), are used to study the
dynamics of the terrestrial part of the hydrologic cycle and unravel its complex nature
[5, 27, 45, 80]. It is used to understand water budget at the spatial scale of large river
basins or continents [38, 79]. Terrestrial water budget, atmospheric water budget, or
a coupling of the two is used to estimate evapotranspiration or river discharge [60,
59, 70, 79, 78]. Evapotranspiration is an important part of the terrestrial hydrolog-
ical cycle as it is the terrestrial feedback to the atmosphere and affects the climate.
However, it is a complex hydrological variable which is difficult to estimate by the
various energy balance and aerodynamic methods as they are highly data intensive.
GRACE provides a rather simple method of its estimation. River discharge is an
equally important parameter affecting the seas and oceans, determining the fresh-
water input to the system. Ocean salinity, sea surface temperature, and various other
parameters are dependent on the amount of freshwater that comes into the oceans in
the form of river discharge. The GRACE-based method of river discharge estimation
is specifically helpful for large rivers which do not have a defined stream but forms a
large delta system as it meets the ocean, as in case of the rivers Ganga–Brahmaputra,
Indus, Irrawaddy, Mekong, and Yangtze. GRACE also finds application in drought-
related studies [29, 84]. Precipitation is typically used for drought identification,
monitoring, and management. Recently, a few studies have also used soil moisture
to monitor droughts. However, TWS data which is the total of all the water storages
helps improve the impact assessment of a drought by providing a holistic estimate
of the total amount of water lost during a drought and the time taken to regain.

The area of application of GRACE data which would be of interest for the present
discussion is its integration into hydrological models, which are sophisticated tools
used for prediction of various hydrological parameters. Prediction of river discharge
has been the sole objective of hydrologic models for a long time due to the limited
number of hydrological variables observed (as discussed earlier). However, with the
increasing number of observations, specifically satellite-based observations and huge
improvement in the computational capabilities, the structure and functions of hydro-
logical models have also evolved. They now represent more complex processes at
finer spatial and temporal scales and predict various hydrological parameters along
with streamflow [17]. Integration of GRACE data into a hydrological model should
further improve the representation of the physical processes and prediction of com-
plex parameters such as evapotranspiration, soil moisture, and snow accumulation.
In this chapter, we discuss in detail the various ways of integrating GRACE data into
a hydrological model. We elaborate on the physics behind acquisition of TWS data
through GRACE satellites and the available data products. We also review various
hydrological models used for GRACE-based studies discussing models which are
more often chosen over the others.
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2 GRACE Data and Gravity Recovery

Before divulging into the details of integrating GRACE data with hydrological mod-
els, it is important to understand the science of gravity recovery. TheGRACE satellite
mission is a joint venture by the US and German space agencies, NASA and DLR
(DeutschesZentrum fur“r Luft-und Raumfahrt), respectively, under the NASA Earth
System Science Pathfinder Program. The mission which was launched on March
17, 2002 consists of a pair of small and identical satellites (Fig. 1) orbiting at an
altitude of 500 km from the Earth’s surface with a separation between them of about
220 km along track. The satellites are connected by a highly accurate inter-satellite
microwave K band ranging system constantly measuring the minute changes in the
inter-satellite distance/range of the order of 10 µm. The distance between the two
satellites changes due to the changes in earth surface features, which vary in den-
sity. Higher density relates to high mass, thus culminating into greater gravitational
force and vice versa. If the Earth was homogenous in nature, the range between
the two satellites would remain constant. However, the mass distribution is highly
heterogeneous as well as constantly changing in time. The most dynamic constituent
of the planet is water that circulates through the oceans, atmosphere, lithosphere,
cryosphere, and biosphere. As a result, the time variable gravity signal acquired by
theGRACE satellites through themeasurement of the inter-satellite range ratemainly
consists of the temporal variations ofwater as itmoves fromone storage compartment
to another. After removing the fluctuations in the mass of the atmosphere and oceans,
also known as Atmosphere and Ocean De-aliasing (AOD) from the total gravity sig-
nal, the seasonal and inter-annual fluctuations in TWS are obtained, expressed as
centimeters of Equivalent Water Thickness (EWT) [73, 75, 76, 89].

The inter-satellite range rate, the primary variable observed by the GRACE satel-
lites, must go through a long course of data processing to be converted to TWS.
There are three primary centers constituting the Science Data System (SDS) which
perform the processing of the Level 1 dataset to provide Level 2 and Level 3 datasets.
These centers are the Center for Space Research (CSR) at the University of Texas at
Austin, Jet Propulsion Laboratory (JPL), NASA and the GermanResearch Center for
Geosciences (GFZ)Helmholtz Center, Potsdam. The Level 1 data fromGRACE con-
sists of the inter-satellite range, range rate, range acceleration, and non-gravitational
accelerations from each satellite. The Level 2 data product is themonthly gravity field
estimates available in the form of spherical harmonic coefficients, whereas the Level
3 dataset is mass anomaly expressed in terms of EWT of TWS [39, 77]. The three
data processing centers use different data processing techniques which include dis-
tinct static gravity models, different de-aliasing schemes and varied order and degree
of the spherical harmonic coefficients to produce three separate datasets commonly
known as CSR, JPL, and GFZ datasets. However, there are other research groups
which also use other varieties of processing techniques to produce Level 2 and Level
3 data products such as the Delft Mass Transport (DMT) model of Delft University
of Technology (TUDelft) [35, 43], ITG-Grace2010 of Bonn University, and a host of
datasets produced by NASA’s Goddard Space Flight Center (GSFC). JPL’s TELLUS
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Fig. 1 Illustration of the twin satellites of the GRACE mission, connected by the along-track K-
band microwave ranging system (Credits: NASA/JPL-Caltech)

website provides Level 3 monthly gridded as well as mascon products of GRACE
TWS estimate derived from Level 2 dataset of the three primary data centers viz
CSR, GFZ, and JPL. These products are easily accessible, available along with the
error estimates and are ready to use for hydrologists [39].

3 Large-Scale Hydrological Models

Mathematical models of the hydrological processes, commonly known as hydrolog-
ical models, have a long history as they evolved from simple lumped models with a
single output to much more sophisticated stochastic distributed hydrological mod-
els which use several input variables and estimate wide range hydrologic responses
[69]. Most of the primitive models are known as rainfall–runoff models which take
rainfall and very primary land surface characteristics to estimate runoff. However,
these models were an improvement over statistical models used for the prediction
of runoff because the former contains representation of some physical processes
and their usability in real time when forced with real-time precipitation [11]. With
advancement in computational capabilities and proliferation of remotely sensed data,
the hydrological models have hugely improved in terms of the simulation time steps,
number of climatological forcings and land surface characteristics, spatial resolu-
tion, and number of output variables. These developments finally culminated to an
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increased number of physical processes represented within the models as well as the
accuracy with which they are represented. Thus, the hydrological models of the new
generation are of great use for prediction of various hydrologic variables such as
runoff, streamflow, evapotranspiration, etc. which help for water resources manage-
ment [8, 42, 71]. Moreover, they also provide a robust framework to run numerical
experiments to understand the effects of various natural and anthropogenic changes
in the land surface properties and climate such as deforestation, urbanization, expan-
sion of agricultural land, global warming, increasing extreme rainfall, etc. [7, 24].

Another aspect of hydrological models that has changed with improvement in
various technologies as well as the urge to improve the accuracy in prediction of
large-scale hydrological processes is the expanse of the land surface modeled within
a single framework. Most hydrological models refer to catchment or river basin
scale modeling where the primary output variable of interest is the streamflow at
the mouth of the river basin. However, these models are calibrated for a single
catchment such that the model parameters are tuned to represent hydrologic and
climatic processes occurring only within that catchment. A new variety of models
are the Land Surface Models (LSMs) which are included within the atmospheric
General Circulation Models (GCMs) to represent the interaction of the atmosphere
with the land surface in the form of mass and energy exchange [10, 21].

As discussed earlier, the river discharges from the land surface into the oceans alter
several of its physical properties which in turn affect the climate. As a result, these
LSMs are coupledwith a River RoutingModel (RRM) to convert the runoff produced
by the LSM to streamflow and finally the river discharge into the oceans. LSMs have
evolved greatly over the past few decades to accurately represent the partitioning of
the incoming net radiative energy into latent and sensible heat fluxes and the parti-
tioning of precipitation into runoff, evaporation, and water storage. One such LSM
is the Community Land Model (CLM), part of the Community Earth System Model
(CESM) of the National Center for Atmospheric Research (NCAR), USA [10]. The
hydrologic processes represented in the model (shown in Fig. 2) include interception
of precipitation by canopy, throughfall, transpiration, soil evaporation, canopy evap-
oration, infiltration, runoff, soil moisture, aquifer recharge, snow accumulation, melt,
and sublimation. Other than the hydrologic cycle, the model includes other physi-
cal processes such as land biogeophysics, biogeochemistry, ecosystem dynamics,
and anthropogenic interventions (Fig. 2). A similar framework is the Noah-Multi-
parameterization Land SurfaceModel (Noah-MPLSM) which includes detailed veg-
etation dynamics including canopy shading and under-canopy snow dynamics along
with the capability to differentiate between C3 and C4 pathways of photosynthesis
[51, 92]. The Noah-MP LSM version 1.6 was implemented in Weather Research
and Forecasting (WRF) Model version 3.6. WRF is a numerical weather predic-
tion model developed mainly by NCAR and National Centers for Environmental
Prediction (NCEP).

LSMs coupled within a GCM framework are not the only large-scale hydrological
models simulating thewater and energy cycles alongwith geochemical processes and
vegetation dynamics. There are many large-scale uncoupled or stand-alone LSMs,
sometimes also known as the Global HydrologicalModels (GHMs) simulating phys-
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Fig. 2 A schematic diagram showing the energy cycle, hydrological cycle, biogeochemical, veg-
etation dynamics, and land use change represented within the Community Land Model (CLM)
(Credits: http://www.cesm.ucar.edu/models/clm/)

ical processes at global scale such as the WaterGAP model (Water—Global Analy-
sis and Prognosis model) [2], developed by University of Kassel and University of
Frankfurt,Germany, PCR-GLOBWB(PCRasterGLOBalWaterBalancemodel) [96]
conceived by Utrecht University, The Netherland, ISBA-TRIP (Interactions between
Soil, Biosphere, Atmosphere—Total Runoff Integrating Pathways) [3, 19] created by
Centre National de Recherchés Météorologiques, France and the Global Land Data
Assimilation System (GLDAS) framework [61], developed byGSFC andNCEP. The
WaterGAPmodel is designed for the assessment of macro-scale processes of the ter-
restrial hydrological cycle, taking into consideration anthropogenic component to
simulate freshwater availability and irrigation water use. PCR-GLOBWB includes
subgrid schemes for partitioning of rainfall into runoff, infiltration, interflow, ground-
water recharge, and baseflow, as well as routing of the generated runoff. The model
includes detailed anthropogenic effects to the extent that it includes more than 6000
manmade reservoirs. Thus, the human water use is completely integrated into the
hydrological model at time step, calculating water demand, surface and groundwater
abstraction, consumptive water use, and return flow. ISBA is a relatively simple LSM
calculating variability in energy and water budgets with a saturation excess overland
flow approach to simulate runoff based on TOPMODEL hydrological model [9].
This is coupled with TRIP, a simple RRM which converts runoff simulated by ISBA

http://www.cesm.ucar.edu/models/clm/
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into river discharge for a global river network. The GLDAS framework consists of
four different LSMs, viz., Mosaic, CLM, Noah, and Variable Infiltration Capacity
(VIC) models forced by a single forcing dataset. These four models differ mainly in
the depth of soil considered for the simulation of soil water interaction and storage
as well as the number of layers into which the total depth is divided. It should be
noted that both the ISBA-TRIP model and the GLDAS set of models do not include
any anthropogenic effects of water storage and water use. Although the LSMs are of
great use, a major challenge lies in the calibration of these models which can only be
carried out using vegetation indices or streamflow for large river basins by routing
the simulated runoff. GRACE provides a very useful data first for the evaluation of
such LSMs and eventually can be assimilated into the models for better estimation
of various hydrologic variables. In the following sections, these two approaches of
integration of GRACE data are discussed in detail.

4 Evaluation of Model Simulations Using GRACE Data

As discussed in the previous section, coupled and uncoupled LSMs try to simu-
late several hydrological variables by incorporating most complex of the physical
processes, mimicking them to the maximum extent possible. Scientists are contin-
uously trying to improve these models by better parameterization and adding more
and more hydrological, geophysical, and biophysical processes into these models. A
handy dataset for quick evaluation of the hydrological fields simulated by these mod-
els is the GRACE dataset. Due to its continuous global coverage, GRACE data could
be used for evaluation of LSMs in cold regions affected by snow, arid, and semi-arid
regions characterized by very low or no soil moisture conditions as well as areas char-
acterized by a heavy to very heavy monsoonal rainfall. Table 1 provides a detailed
chronological list of various studies carried out at global, continental, regional, and
river basin scales to compare and evaluate various LSMs to estimate the accuracy
with which it simulates various water storages and physical processes affecting them.
Some studies tried to improve the estimation of certain variables by incorporating
better and more detailed process representation and validated the improvements by
comparison with GRACE data. The CLM LSM of NCAR is one such model which
has seen continual efforts of betterment and corresponding evaluation using GRACE
data. One of the limitations observed with CLM 2.0 was its representation of frozen
soil which included completely frozen soil in areas with temperature below 0 °C,
resulting in higher and earlier than expected runoff caused by spring season rainfall.
The modifications suggested were allowance for the coexistence of ice and water in
soil, the concept of a fractional permeable area, and considering both liquid water
and ice together as soil moisture for calculating hydraulic conductivity. These mod-
ifications improved both the surface runoff and the soil water storage estimates of
CLM when the simulations were evaluated for river basins in the cold regions, viz.,
Lena, Yenisei, Mackenzie, Ob, Churchill-Nelson, and Amur using both streamflow
and GRACE data [48, 49]. Another deficiency of the CLM model was its inability
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to model the groundwater dynamics as the column of soil considered extends only
to 3.8 m below the surface. In another attempt to improve the CLM model, a Sim-
ple Groundwater Model (SIMGM) which represents an unconfined aquifer along
with the recharge and discharge processes was included within the framework [50].
Although the modification worked out well for all the 12 river basins considered in
the study, it is not expected to dowell in cold regions where the water table is exposed
to freezing conditions due to the obvious differences in the physical processes. In a
more recent attempt to accurately represent groundwater dynamics within the CLM
model version 4.5, it was found that addition of a no-flux boundary condition at
the base of the soil layer improved the estimate. As a result, these simulations from
the improved CLM models were found to agree well with GRACE-derived TWS
observations [72].

A few studies also tried to improve the ISBA-TRIP hydrological model by com-
paring modified versions of the model with GRACE data. Initial comparisons of the
modelwithGRACEdata outlined somemodel deficiencies such as the high storage in
the form of surfacewater within the river channel as a part of the routing scheme over-
estimated the maximum and underestimated the minimum TWS values mainly in the
tropical region. Other deficiencies within the ISBA-TRIPmodel were the calculation
of evaporation and snow accumulation. However, the major limitation was identified
as the oversimplified routing model and the absence of anthropogenic effects within
the model [3, 19, 54, 87]. Although human impact was not included in the modified
version, improvements were suggested for TRIP—the routing model which included
a simple groundwater reservoir and a variable streamflow velocity calculation. Sev-
eral other LSMs were evaluated globally or regionally using GRACE data. Inclusion
of a water exchange scheme between continents and oceans included in the Organis-
ing Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) LSM resulted in
better simulation of land water storage [Ngo-Duc et al., 2007]. GRACE data when
compared to the Australian Water Resource Assessment (AWRA) model suggested
a need for improvement in representations of diffuse groundwater discharge pro-
cesses and interaction between surface and groundwater [van Dijk et al., 2011]. Doll
et al. [2014] found that the WaterGAP model version 2.2 underestimates TWS as
compared to GRACE with a phase lag of a month observed between the two. Evalu-
ation of the GLDAS framework-versions 1 & 2 carried out for China by Wang et al.
[2016] showed inconsistency in the rate of change of TWS. The four land surface
models (Noah, SAC-Sacramento Soil Moisture Accounting Model, (VIC) Variable
Infiltration CapacityModel, andMosaic) applied in the newly implemented National
Centers for Environmental Prediction (NCEP) operational and research versions of
the North American Land Data Assimilation System version 2 (NLDAS-2) were also
evaluated using GRACE data [Xia et al., 2016]. A common source of inconsistency
ob-served between the GRACE observation and model simulation was attributed
to the error and uncertainty present in the precipitation dataset which is a primary
forcing for all hydrologic models.
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Table 1 Comparative list of studies evaluating and comparing hydrological models with GRACE
data

Authors
(Year)

GRACE data Model Input data Study region Study period

Niu and Yang
[49]

Chen et al.
[16], Seo and
Wilson [67]

CLM 2.0 with
SIMTOP

GLDAS 1-degree
3-hourly data
(2002–2004)

Lena, Yenisei,
Mackenzie,
Ob, Churchill-
Nelson and
Amur

August
2002–July
2004

Niu and Yang
[48]

Chen et al.
[16], Seo and
Wilson [67]

CLM and
Modified
CLM

GLDAS 1-degree
3-hourly data
(2002–2004)

Global and
Ob, Yangtze,
Amazon, Taz
and Ural
River Basin

August
2002–July
2004

Swenson and
Wahr [74]

Swenson and
Wahr [73]

Atmospheric
and Terrestrial
Water Balance
model

GCM output and
NCEP/DOE R-2 for
atmospheric water
balance and
GLDAS/Noah LSM for
terrestrial water budget

Mississippi
and Ohio-
Tennessee
River basins

June
2002–April
2004

Ngo-Duc
et al. [47]

Ramillien
et al. [56]

ORCHIDEE
modified to
include a
routing
scheme

P: 6-hourly NCEP/NCAR
constrained by
monthly CMAP;
Others: 6-hourly NCC
(NCEP/NCAR)
corrected by CRU
atmospheric forcing

Global and
Amazon,
Congo, Niger,
Mississippi,
Yangtze,
Ganges,
Brahmaputra,
Mekong

May
2002–Decem-
ber
2003

Niu et al. [50] Chen et al.
[16], Seo and
Wilson [67]

Modified
CLM with
SIMTOP and
SIMGM

1-degree 3-hourly
GLDAS dataset
(2002–2004)

12 Global
river basins
not affected
by snow or ice

August
2002–Decem-
ber
2004

Alkama et al.
[3]

CSR-RL04,
JPL-RL 4.1,
GFZ-RL04
estimates

ISBA-TRIP 3-hourly 1-degree
Princeton University data

Global and 33
large river
basins

Aug
2002–Dec
2006

Decharme
et al. [19]

CSR-RL04,
JPL-RL4.1,
GFZ-RL04
estimates

TRIP with
groundwater
storage and
variable flow
velocity

Runoff simulated by
ISBA of Alkama et al. [3]

Global and 12
large river
basins

Aug
2002–Dec
2006

van Dijk et al.
[97]

1-degree
gridded TWS
estimates
from CSR

Australian
Water
Resource
Assessment
(AWRA)

0.05-degree gridded
meteorological forcings
obtained by interpolation
of Station data

Continental
Australia

January
2003–Decem-
ber
2010

Grippa et al.
[27]

RL04 of CSR,
JPL and GFZ,
DEOSDMT,
GRGS-
EIGEN-GL04
and 10 day, 4°
GSFC

HTESSEL,
ORCHIDEE-
CWRR,
ISBA,
JULES,
SETHYS,
NOAH,
CLSM, SSiB,
SWAP

Rainfall: TRMM 3B42,
Atmospheric forcings:
ECMWF short-term
forecast data Downwell
Radiative fluxes: mix of
ECMWF and Land
Surface Analysis Satellite
Applications Facility

West Africa Jan 2003–Dec
2007

(continued)
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Table 1 (continued)

Authors
(Year)

GRACE data Model Input data Study region Study period

Pedinotti et al.
[54]

CSR-RL04,
JPL-RL4.1,
GFZ-RL04
estimates

ISBA-TRIP TRMM-3B42 and
RFE-Hybrid rainfall for
ISBA-TRIP CHS, other
atmospheric forcings
from ECMWF

Niger River
Basin

Jan 2003–Dec
2007

Vergnes and
Decharme
[87]

CSR-RL04,
JPL-RL 4.1,
GFZ-RL04
estimates

TRIP Total runoff from ISBA
simulation by Alkama
et al. [4]

Global and 12
large river
basins

August
2002–August
2008

Rosenberg
et al. [62]

I-degree
gridded CSR
dataset

VIC modified
to include
SIMGM

1/8th-degree Gridded
from precipitation and
maximum/minimum
temperature data from
NOAA Cooperative
Observer stations and
wind data from
NCEP-NCAR reanalysis

Colorado
River Basin

2002–2010

Cai et al. [13] 1-degree
gridded TWS
estimates
from CSR
RL4.0

Noah-MP NLDAS Phase 2
atmospheric forcing at
1/8° resolution

Mississippi
River Basin

2003–2009

Doll et al. [20] 0.5-degree
gridded
GFZ-RL05,
CSR-RL05
and ITG-
Grace2010

WaterGAP
2.2

Daily climate dataset
WFD (WATCH Forcing
Data)/WFDEI (Watch
Forcing Data
ERA-Interim)

Global 2003–2009

Swenson and
Lawrence [72]

CSR RL05 CLM version
4.5 with
modification

1.25 longitude × 0.9
latitude ECMWF
ERA-Interim Reanalysis
data

Lower
Colorado
River basin, in
the
southwestern
United States,
and a region
in
northeastern
Australia

2002–2014

Ahmed et al.
[1]

1-degree
gridded TWS
estimates
from CSR
RL05

CLM4.5-SP
and
GLDAS-Noah

GLDAS: NOAA and
CPC/CMAP and CLM:
CRU/CRUNCEP

Continental
Africa (Niger,
Zambezi,
Okavanko,
Limpopo)

2003–2010

Wang et al.
[90]

GRACE
Tellus RL05
CSR, JPL,
GFZ

GLDAS1
(Noah, CLM,
Mosaic, VIC)
GLDAS2
(Noah 3.3)

ECMWF &
NCEP–NCAR reanalyses
data, NOAA/GDAS and
Princeton University
atmospheric fields,
AGRMET radiation
fields,

China 2002–2010

(continued)
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Table 1 (continued)

Authors
(Year)

GRACE data Model Input data Study region Study period

Xia et al. [91] GRACE
Tellus RL05
CSR, JPL,
GFZ average

NLDAS-2
operation
(Mosaic and
Noah) and
research
(SAC-Clim
and VIC4.0.5)

CPC, PRISM & NARR
precipitation data and 2-m
air temperature from
NARR

USA 2003–2014

Zhang et al.
[95]

GRACE
RL05 Level-2
products from
GFZ

LSDM,
WGHM,
JSBACH,
MPI-HM

WFDEI dataset based on
ERA-Interim reanalysis
data

31 largest
river basins

2003–2012

5 GRACE Data Assimilation

Data assimilation is a statistical technique of combining the simulations or forecasts
from a prediction model with measurements from an observing system to produce
improved estimates. Evaluation of LSMs has been one of the most explored tech-
niques of utilizing GRACE data for the improvement of model physics and simu-
lation accuracies. However, it is an indirect method where model deficiencies are
figured out by comparing model outputs with GRACE observations followed by
improving model physics solely based on our understanding of the intricate details
of hydrological processes. This to some extent is limiting since the knowledge and
understanding of the hydrological processes are itself limited and the large infor-
mation hidden within the GRACE observations may be completely overlooked. As
an alternate method of data integration, GRACE data assimilation techniques were
explored where the observational dataset is directly utilized to improve the model
simulation at each time step. Although it apparently does not improve model physics
or our understanding of hydrological processes, GRACE data assimilation improves
model simulations to a great extent, also facilitating spatial and temporal disaggre-
gation of GRACE data as a byproduct. Table 2 gives a detailed chronological list of
studies performed in this field of research.

The assimilation ofGRACEdata into LSMs has twomajor challenges. The typical
temporal and spatial resolution of the GRACE observation is much coarse as com-
pared to the LSMs. The GRACE data provided by NASA JPL’s TELLUS website
has a spatial resolution of ~100 km (1 degree) and a temporal resolution of a month.
On the contrary, most LSMs are run at a daily or sub-daily scale, with the spatial res-
olution varying from 5 km (0.05°) to a maximum of 50 km (0.5°). Hence, the process
of data assimilation invariably includes a spatial and temporal disaggregation tech-
nique. Consequently, a widely used and efficient data assimilation technique, known
as the Ensemble Kalman Filter (EnKF) [22], is used in most of the previous literature
(Table 2). The EnKF is a variant of a statistical technique known as the Kalman filter
and is used for large problems. It has the inherent assumptions that the probability
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Fig. 3 A schematic diagram showing the concept of a typical Kalman Filter (Credit: Melda Ulusoy,
MathWorks)

distributions are all Gaussian and the predictive model is linear. The Kalman filter
(Fig. 3) is a recursive filtering mechanism which combines the simulation of a model
and a noisy measurement, both of which are assumed to be Gaussian distributions to
estimate the most likely state variables. The model estimate is generally less prob-
able and contains more uncertainty than the measurement. However, the use of the
EnKF provides an optimal estimate of the state variable which is much more proba-
ble and contains less uncertainty as compared to both the model prediction and the
measurement, as shown in Fig. 3.

The second challenge is the hydrological variable of interest. GRACE obser-
vations result into TWS data which, as discussed earlier, is the aggregation of all
the surface and subsurface water storages. To assimilate GRACE TWS data, there
needs to be a hydrological variable within the model to which it can be mapped.
The problem in this case is that all hydrological models have separate surface and
subsurface storages modeled as different processes. Even if all the storages are added
up to create a hydrological variable to be mapped against GRACE TWS data, it falls
short due to the absence of groundwater storage. Most of the hydrological models
incorporate groundwater dynamics as a boundary condition at the bottom of the
soil column considered which is typically 2–4 m in depth from the ground surface.
To resolve this issue, the catchment land surface model is the most preferred LSM
used for assimilation as it contains an unconfined groundwater reservoir. Several
studies have assimilated the GRACE TWS data with one of the primary objectives
being improvement of groundwater estimation. Zaitchik et al. [2008] assimilated
GRACE data into the CLSM using an ensemble Kalman smoother. Results indi-
cated an improved correlation between observed ground-water and data assimilated
simulated groundwater. In a similar effort, GRACE data was assimilated into the
OpenStreams wflow_hbv model using an ensemble Kalman filter for the Rhine river
basins. Results show increase in correlation between observed and simulated ground-
water from 0.6 to 0.7 and 15% reduction in RMSE as a result of this data assimilation
[Tangdamrongsub et al., 2015]. In both the cases, slight improvement in streamflow
simulation was also observed. Tangdamrongsub et al. [2017] showed that assimi-
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lation of GRACE data increased the accuracy of groundwater estimate, simulated
for a semi-arid region in northern China by PCR-GLOBWB by 25%. GRACE data
assimilation was also carried out with the objective of drought assessment because
most frameworks lack information of groundwater and soil moisture of deeper lay-
ers. Houborg et al. [2012] and Li and Rodell [2015] assimilated GRACE data into
CLSM model to derive drought indicators for North America and conterminous US
respectively. A similar exercise was carried out for western and central Europe by Li
et al. [2012]. These efforts disaggregated GRACE data in both spatial and temporal
dimension. GRACEdata assimilationwas also carried out to estimate human induced
changes in TWS and assess regional flood potential [Y Huang et al., 2015a; Reager
et al., 2015]. Further studies concentrated on improving the data assimilation using
better variants of the ensemble Kalman Filter and other hydrologic dataset such as
the soil moisture from Soil Moisture and Ocean Salinity (SMOS) mission [Girotto
et al., 2016; Girotto et al., 2017; Khaki et al., 2017; Schumacher et al., 2016; Tian
et al., 2017].

6 Conclusions

The hydrological models altogether have improved from the simple lumped models
and now include not only hydrological processes but all such physical, chemical,
and biological processes that affect or is affected by water (a typical example of
which is shown in Fig. 2). Integration of GRACE data into hydrological models
has improved their model physics and prediction capabilities. Such models now
represent better dynamics of frozen soil, dry soil in arid climate, groundwater, and
vegetation. This also improved the estimation of various hydrological and vegetation
parameters. Further improvements were achieved by GRACE data assimilation into
hydrological models with the added advantage of disaggregation of GRACE TWS
observations. Moreover, the GRACE data processing techniques have also improved
with the most recent studies using Release 05 dataset which has a much higher
accuracy as compared to the initial releases. The GRACE Follow-On (GRACE-FO)
mission is scheduled to be launched in 2018which is expected not only to continue the
unique GRACE observations but also to have some improvements as compared to its
forerunner [18]. Meanwhile, scientists are still working on the processing techniques
of the GRACE data and the new Release 06 of the GRACE dataset having better
accuracy is available for use [28]. Thus, there are numerous avenues in which further
improvement is possible that will unravel new vistas of knowledge in future.
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An Analysis of Spatio-Temporal Changes
in Drought Characteristics over India

Ganeshchandra Mallya, Shivam Tripathi and Rao S. Govindaraju

1 Introduction

1.1 Introduction to Droughts

Droughts are among the world’s costliest disasters with an annual cost estimated
in the range of $6–$8 billion [20]. Unlike other natural disasters such as floods and
earthquakes, droughtsmanifest slowly and are already a serious threat before they are
detected. Droughts have major impacts on agriculture, natural habitats and ecosys-
tems, and economies of affected regions. Modeled precipitation and temperature
results from different climate change scenarios indicate that droughts are likely to
intensify over many parts of the world in the next 20–50 years [13], suggesting the
need to assess drought impacts more accurately and develop appropriate mitigation
strategies.

When a drought event occurs, moisture deficits are identified from many hydro-
logic variables such as precipitation, streamflow, soil moisture, snowpack, ground-
water levels, and reservoir storage [81]. Because drought impacts are experienced
differently across the world, no universally accepted definition of drought exists.
However, three types of droughts are commonly featured in the scientific literature
[17]:

a. Meteorological droughts result from deficits in precipitation amounts when com-
pared to the long-term average for a region. This shortage in precipitation can
develop quickly and also end abruptly.
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b. Agricultural drought conditions prevail when available soil moisture is insuffi-
cient to replace evapotranspiration losses in the root zone [83]. The timing of
soil moisture deficit plays a critical role, because deficiencies during the grow-
ing season can adversely impact crop yields. During droughts, plants are under
stress and cannot fight off pests. Fertilizers and pesticides are also not effective
in the absence of moisture resulting in failure of crops. The onset of agricul-
tural droughts depends on antecedent soil moisture conditions and usually lags
meteorological droughts.

c. Hydrologic droughts reflect shortages in water supply mainly in the form of
reduced streamflows, reservoir and lake levels, and groundwater levels. Hydro-
logic droughts persist for longer durations when compared to meteorological and
agricultural droughts because precipitation deficits translate to deficit in other
hydrologic variables with significant time lags in some instances.

In this chapter, we focus on meteorological droughts. Precipitation deficits are not
the only cause of droughts. Industrial and agricultural water demands have increased
exponentially over the last few decades leading to water scarcity.With the increase in
the emission of greenhouse gases, a steady rise in temperature has been observed over
many parts of the globe. Increasing temperatures have affected the global hydrologic
cycle leading to spatiotemporal variability of precipitation at different scales [54,
74], thereby affecting drought characteristics.

1.2 Drought Characterization and Monitoring

Drought indicators or indices are commonly used to characterize and monitor
droughts and their impacts. Generally, all drought indicators use some measure of
water deficit for analysis. Multiple hydrometeorological variables can also be used in
a single drought indicator to capture the complex interactions that lead to droughts.
Some of the desirable properties of a drought index are: (1) it should be sensitive to
the timescale appropriate for the problem at hand; (2) the index should be able to
capture the characteristics of both shorter and longer duration droughts; (3) it should
be applicable to the problem being studied; (4) it should be possible to identify his-
torical droughts; (5) the index should be capable of monitoring droughts on a near
real-time basis [21, 32]; and (6) it should have drought forecasting capability.

Several studies provide comprehensive review of drought indices [32, 55].Palmer
drought severity index (PDSI; Palmer [61]) is a popularmeteorological drought index
that uses precipitation and temperature for estimating demand and supply of soil
moisture within a two-layer water balance model. PDSI provides outlooks of mois-
ture conditions that are comparable across regions and over different months. PDSI
values typically vary from −4.0 to +4.0, negative values indicating drought condi-
tions, while positive values indicate wet conditions. Another drought index that is
popular because of its computational simplicity and forecasting ability at different
time scales is the standardized precipitation index (SPI; McKee et al. [51]). The SPI
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is recommended by the World Meteorological Organization as a standard meteoro-
logical drought-monitoring index [30]. The SPI first fits a probability distribution
to historic precipitation time series data, and then normalizes the fitted distribution
using the standard inverse Gaussian function to compute the drought index. SPI val-
ues are dimensionless with negative values indicating drought conditions, and the
magnitudes of their departures from zero indicating the severity of the drought.

The crop moisture index (CMI; Palmer [60]) that monitors short-term moisture
supply was developed to monitor agricultural droughts. With the improvements in
satellite remote sensing, monitoring crop and vegetation health over large spatial
extents have become routine. For example, vegetation condition index (VCI; Liu and
Kogan [40]) uses the advanced very high-resolution radiometer radiance (AVHRR)
data to study drought characteristics (early onset, intensity, frequency, and duration)
and vegetation health. Along similar lines, the normalized difference water index
(NDWI; Gao [23]) uses near-infrared (NIR) and short-wave infrared (SWIR) chan-
nels to study the variation of moisture content and spongy mesophyll in vegetation
canopies.

Monthly non-exceedance probability computed by compiling weighted values of
variables such as reservoir storage, stream flow, snowpack, and precipitation resulted
in the development of a hydrologic drought index called the surface water supply
index (SWSI; Shafer and Dezman [71]). Other popular hydrologic drought indices
are standardized streamflow index (SSI) and standardized runoff index (SRI; Shukla
and Wood [73]). The SRI is computed and interpreted along similar lines as SPI.

Drought indices have been used for identifying droughts and their triggers [76],
assessing drought status [35], forecasting droughts [1], performing drought risk anal-
ysis [31], and studying relationship of droughts with local-scale regional hydrolog-
ical variables such as water quality [75] and large-scale climate patterns like El
Niño–Southern Oscillation [11, 41, 69]. Drought indices are also used for classify-
ing droughts and quantifying their temporal trends. These two applications of drought
indices are reviewed in the following paragraphs.

1.3 Drought Classification

Drought classification schemes typically classify droughts based on their severity or
intensity, and are often based on drought indices that measure degree of departure
of hydrometeorological variables, such as precipitation and streamflow, from their
long-term averages. Water resource planners rely on drought classification to select
drought mitigation strategies. Hence, weather agencies throughout the world rou-
tinely issue drought classification bulletins. For example, the US Drought Monitor
releases a weekly update of drought status in USA by classifying droughts into five
classes—D0 to D4 with the latter representing exceptional drought. Likewise, India
Meteorological Department (IMD) issues drought bulletins classifying droughts into
three categories, namely, mild, moderate, and severe.



26 G. Mallya et al.

Common quantitative drought classification schemes work in two steps—first, by
defining a drought index using hydrometeorological observations of typically 30-
year period to establish normal conditions [33] and next, by categorizing droughts
based on predefined thresholds on the index value. Examples include IMD classifica-
tion that uses departure of rainfall from its long-term average as a drought index, and
US Drought Monitor classification that, along with other indices, uses standardized
precipitation index (SPI) as a drought index. Among several drought classification
schemes [13, 32, 55], the scheme based on standardized precipitation index (SPI;
McKee et al. [51]) is very popular because of its computational simplicity and versa-
tility in comparing different hydrometeorological variables at different time scales.
In SPI, historical observations are used to compute the probability distribution of the
monthly and seasonal (4, 6, and 12 months) precipitation totals. The fitted probabil-
ity distributions are then normalized using the standard inverse Gaussian function
to calculate SPI values. A negative value of SPI indicates precipitation less than the
median rainfall, and the magnitude of departure from zero represents the severity of
a drought.

Standard SPI-based drought classification, though popular, has many weaknesses
[48]. It provides discrete classification and ignores uncertainties arising from data
errors, model assumptions, and parameter estimates. Thus, users are not aware of
inherent uncertainties in drought classification often required for making informed
decisions. Further, in the context of SPI, there is an ongoing debate on the selection
of the parametric distribution for fitting the data. McKee et al. [50] in their original
paper on SPI recommend a gamma distribution. Lloyd-Huges and Saunders [42]
found gamma distribution to be an appropriate model for Europe. Guttman [27] sug-
gested Pearson-III distribution as the best universal model for SPI because it provides
more flexibility than the gamma distribution. Rossi and Cancelliere [67] found nor-
mal, lognormal, and gamma distributions to be suitable for different datasets in their
study.Loukas andVasiliades [43] investigateddifferent theoretical distributions using
Kolmogorov–Smirnov (K–S) test and chi-squared test and found extreme value-I dis-
tribution to be the most suitable for studying droughts over Thessaly, Greece. Mishra
et al. [53] argue that different distributions may be appropriate for different drought
durations (window size), and recommend the K–S test for choosing an appropri-
ate distribution. Bonaccorso et al. [7] used Lilliefors test to choose among normal,
lognormal, and gamma distributions while Russo et al. [68] used three parameters
generalized extreme value (GEV) distribution for SPI analysis. Thus, there is no
consensus on the choice of distribution for SPI analysis.

Mallya et al. [48] used hiddenMarkovmodel (HMM) for drought classification by
conceptualizing hidden states in the model to represent drought states. Their model
avoided the need for specifying thresholds for drought classification and provided
probabilistic drought classification by accounting for model uncertainties; however,
the number of hidden states (drought classes) was prespecified. To facilitate com-
parison of HMM drought index (HMM-DI) classification with standard methods,
they specified 11 hidden states. Since the number of states is imposed on the model,
it is possible that for datasets with short record length the model suffers from an
overspecification problem, i.e., the model structure is more complicated than sup-
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ported by the dataset. Specifically, in the HMM context, overspecification would
occur if the number of specified hidden states is more than that needed to model
the data. Overspecification can result in parameter identification problems leading
to unreliable results.

Mallya et al. [47] proposed a method that adapts SPI drought classification
methodology by employing gamma mixture model (Gamma-MM) in a Bayesian
framework. The method alleviates the problem of selecting suitable distribution for
SPI analysis, quantifiesmodeling uncertainties, and propagates them for probabilistic
drought classification. Further, it avoids overspecification using a Bayesian approach
for optimally selecting the number of hidden states in the model.

1.4 Temporal Trends in Droughts

Temporal trends in droughts are identified by determining changes or sudden shifts
in the distributional properties of the underlying hydrological variable. Classical
drought indices such as SPI, or even probabilistic drought indices such asHMM-DI or
probabilistic SPI, make several model assumptions about the hydrological variables
used in their construct. Among them, the most important assumption is that the time
series of hydrological variable is stationary, i.e., its distributional properties used to
define droughts do not change over time. Thus, temporal trends in droughts cannot
be estimated using classical drought indices. Nevertheless, hydrological time series
may exhibit nonstationarity due to changes in climate and land use or due to natural
cycles that operate over a period of several years to decades, and hence it is important
to study temporal trends of droughts.

Several studies in the literature have proposed methods to perform drought analy-
sis under nonstationary conditions. Mishra and Desai [52] used autoregressive inte-
grated moving average (ARIMA) models and variants of artificial neural networks
(ANNs), namely, recursive multistep neural network approach (RMSNN) and direct
multistep neural network approach (DMSNN) for drought forecasting in presence of
nonstationarity. Coulibaly and Baldwin [12] proposed the use of dynamic recurrent
neural network (RNN) to model and forecast nonstationary hydrologic time series.
Belayneh et al. [4] used wavelet analysis to first denoise the series, and then train
ANNs or support vector regressors on the decomposed signals to perform drought
forecasting in arid regions of Ethiopia. Türkeş and Tatlı [77] studied droughts in non-
stationary precipitation series by modifying the classical SPI using the concepts of
empirical mode decomposition. Unlike the classical SPI, the modified SPI accounts
for local or higher order statistics in the precipitation time series. Han et al. [29] pro-
posed the use of ARIMAmodels on potentially nonstationary remote sensing data to
predict vegetation temperature condition index for drought forecasting. Verdon-Kidd
andKiem [80] emphasized the need to evaluate risk towater resources systems during
drought under a nonstationary climate over Australia. Mitra and Srivastava [56] use
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the modified Mann–Kendall test on SPI and SPEI series to study the spatiotemporal
variability of meteorological droughts in southeast USA.

The literature review suggests that in the context of SPI, temporal changes in
droughts are mostly studied using one of the following two approaches. The first
approach divides the study period into smaller intervals or epochs (~30 years) where
the underlying rainfall series is assumed to be stationary, and computes relative SPI
for each epoch [18], and then compares drought characteristics between different
epochs. The second approach allows the distribution of the hydrological variable to
changewith time, but the parameters of the distribution can follow only a prespecified
temporal pattern. For example, the standardized nonstationary precipitation index
(SnsPI) proposed by Russo et al. [68] assumes that the scale parameter of the Gamma
distribution for rainfall varies linearly with time.

The main objectives of this chapter are as follows:

(a) To investigate drought characteristics in India using a probabilistic drought clas-
sification approach that adapts SPI methodology by employing gamma mixture
model (Gamma-MM) in a Bayesian framework [47], and to compare the results
with classical SPI.

(b) To use an alternate methodology for studying temporal changes in droughts [46]
that does not require—(i)making stationarity assumption about the precipitation
time series and (ii) prespecifying the nature of temporal trend in the precipitation
series.

(c) To study temporal changes in the droughts in India through this alternatemethod-
ology, and compare results with existing methods.

The remainder of the chapter is structured as follows. The next section describes
the study area, India, and provides an account of its historical droughts. The pre-
cipitation datasets available for the study area are described in Sect. 2. Section 3
presents the mathematical formulation of the methods used for classifying droughts
and quantifying temporal variation. These methods will be applied to precipitation
data over India and the results will be presented and discussed in Sect. 4. The chapter
ends with a set of concluding remarks.

2 Study Area and Dataset

The study area, India, receives 80% of its annual precipitation during 4-months
long southwest summer monsoon [3, 62]. The monsoon precipitation makes landfall
around the first week of June near Kerala, India, and moves northeast toward the
Himalayas. By the first week of July, almost the entire country typically receives
some precipitation that continues until the end of September [9]. From beginning of
October to December, cool and dry winds from Central Asia cross India diagonally
from northeast to southwest. These winds humidify the air as they blow over the Bay
of Bengal, resulting in northeast monsoon precipitation predominantly over the state
of Tamil Nadu, and partly over other states of Odisha, Andhra Pradesh, Karnataka,
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and Kerala [36]. Though the Indian monsoon is believed to be one of the most stable
monsoon systems [34, 49, 65], it has large inter- and intraseasonal variability that
can sometimes result in weak monsoon or droughts over India [37, 59]. Since the
country’s gross domestic product (GDP), particularly food and power production, is
closely linked tomonsoon rains, various strategies have beendevelopedover the years
tomitigate the effects of droughts (e.g., drought-prone areas programme (DPAP), and
desert development programme (DDP)). Implementing effective drought mitigation
strategies requires real-time reliable classification of droughts.

2.1 Droughts over India and Their Consequences

Each type of drought has its own consequences, and the effects are felt by the general
population. Since India is mainly an agricultural economy, droughts have histori-
cally had major impact on farmers. Agricultural droughts result in low crop yield
and sometimes a complete failure of the crop. The agricultural fields can quickly
turn into large dust bowls thereby leading to topsoil loss. This, in turn, causes stress
in maintaining healthy livestock. Scarcity of water also leads to unhygienic con-
ditions—leading to faster spread of diseases among the population. The economic
consequences during/following a prolonged drought event can be detrimental to the
poor farming community in India. Lack of crop insurance and inadequate financial
support from government-backed banks often forces farmers to borrow money from
private lenders. This leads to social disputes and mass migration from villages to
cities in search of alternate employment opportunities [15, 64]. The non-farming
community living in towns and cities face consequences of droughts in the form
of shortage of water supply for household and industrial use. Droughts often lead
to rise in commodity and fuel prices, thus causing economic stress for lower and
middle-income families within the affected region.

In an effort to build a resilient society, the Central and State Governments in
India have developed drought mitigation programs such as drought-prone areas pro-
gramme (DPAP), desert development programme (DDP), and national watershed
development programme in rainfed areas (NWDPRA) that provide material, educa-
tional, and financial support for the following:

i. Lake restoration and capacity building of existing reservoirs.
ii. Rainwater harvesting, cloud seeding to trigger rains.
iii. Large-scale desalination plants in major coastal cities to decrease reliance on

groundwater and river water for domestic and industrial supply.
iv. Low-interest agricultural loans to farmers, and guaranteed employment for at

least 100 days in a year under National Rural Employment Guarantee scheme.
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2.2 Recent Drought Literature over India

Niranjan Kumar et al. [58] used SPEI to study the variability of monsoon droughts
over India, and found that ElNino/SouthernOscillation (ENSO) as themost influenc-
ing factor. They implicate thewarming of the equatorial IndianOcean to the increased
droughts over India in the recent decades. Mahajan and Dodamani [44] performed
trend analysis of drought events over Upper Krishna Basin in Maharashtra. Kumar
et al. [39] used historical rainfall and sea surface temperature (SST) records to show
that warmest SST anomalies in the central equatorial Pacific are better indicators of
severe droughts over India. Varikoden et al. [78] showed that droughts associated
with El Nino are very intense in most parts of the subcontinent, when compared to
droughts during non-El Nino years. Mallya et al. [45] used SPI, SPEI, HMM-based
drought index, and Gaussian mixture models and found that irrespective of the pre-
cipitation dataset or the choice of drought index, the drought severity and frequency
over India increased significantly during recent decades. Their study also found that
droughts are becoming more regional and are showing a general shift to the agricul-
turally important coastal South India, centralMaharashtra, and Indo-Gangetic plains.
Zhang et al. [86] found that the soil moisture and vegetation drought indices were
best suited to study the impact on wheat production in India. Naresh Kumar et al.
[57] studied the spatiotemporal patterns of droughts over India using SPI and found
that area under moderate droughts have increased in recent decades.

2.3 India Meteorological Department (IMD) Precipitation
Dataset

To analyze meteorological droughts over India, long-term precipitation data are
required. Daily rainfall data at a spatial resolution of 1° for both latitude and longi-
tude were obtained from India Meteorological Department (IMD) and are based on
a total 1803 stations distributed over India that have at least 90% availability for the
period 1901–2004 [63]. The gridded data, consisting of 357 grid points, have been
obtained by interpolating rain gage data. The IMD datasets are standard datasets
widely used in monsoon-related studies over India [25]. Figure 1 shows the study
area along with the grid locations for which rainfall data were available as circular
markers. The grids where results are discussed in subsequent sections are denoted
as square red-colored markers. Because of its large geographical extent, the study
area consists of several streams and rivers (some of which are perennial). Of these
streams, some drain into the Arabian Sea or the Bay of Bengal, while few rivers cross
international borders into neighboring countries. The main networks of some of the
major rivers of India are shown in Fig. 1.
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Grid 40

Grid 125

Grid 169
Grid 251

Fig. 1 Map showing the study area along with the location of 1°× 1° grids of IndiaMeteorological
Department (IMD) precipitation dataset. Red square markers denote the stations where results are
discussed in subsequent sections. The location of major rivers in India are also shown in the map

2.4 Homogenous Monsoon Regions

Based on rainfall characteristics, the Indian Institute of Tropical Meteorology has
divided the study area into six homogenous monsoon regions. The geographical
extent of each of these regions is shown in Fig. 2. Dividing the entire study area into
smaller regions, instead of working with a single representative average precipitation
time series for the entire country, is needed to account for large spatiotemporal
variability of precipitation across the country. Of the six regions, the hilly region
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Fig. 2 Map showing homogenous monsoon regions of India Modified from Indian Institute of
Tropical Meteorology

(labeled as region 6 in Fig. 2) consists of grids located at high altitudes and often has
poor precipitation estimates. The grids belonging to this region are not included in
this study, especially when computing or reporting regional or all-India metrics of
precipitation or droughts.

The cumulative precipitation time series for different seasons and the water year
(June to May of following year) were computed for each of the six regions using the
average of precipitation time series recorded at all grids within a region. Figure 3
shows the histogram of water year precipitation series computed over each region.
Each panel within Fig. 3 also contains the mean and standard deviation of the water
year precipitation time series. Thevalues ofmean and standarddeviation suggests that
region 1 (Northeast monsoon region) is the wettest among the six (mean precipitation
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of 208 cm with a standard deviation of 21 cm), while region 5 (Northwest monsoon
region spanning over Gujarat and Rajasthan) is the driest (mean precipitation of
52 cm with a standard deviation of 13 cm).

An analysis of previous water year drought events based on SPI values (see Fig. 4)
computed using an average representative cumulative precipitation time series over
India (without considering grids located over hilly regions) suggested that the most
severe conditions persisted during the periods early 1900s, 1918, 1951–52, 1965–68,
1972, late 1980s (Bengal drought), and early 2000s. The most recent drought condi-
tions over India occurred in 2012–2013, with the West Central region—specifically
the state of Maharashtra—being severely impacted by the drought.

Figure 5 shows time series of percentage area under drought computed using his-
torical SPI values for water year beginning in June of each year over India. According
to this figure, approximately 72% of the grids were under drought during 2002, fol-
lowed by 69% of the grids in 1972, 68% in 1918, 62% in 1965, and 60% in 1960.
Therefore, the combination of Figs. 4 and 5 suggests that 2002 drought was the
most severe on record in terms of severity and extent. However, the actual damage
caused due to droughts in recent years are much lower compared to some of the
previous droughts due to improved drought mitigation programs [14]. The result of
Mann–Kendall trend test on the time series of area under drought suggests that the
trend is positive (Sen’s slope � 0.01, shown as red-dashed line in Fig. 5), although
not statistically significant (atα � 0.05).

3 Methodology

The mathematical formulations of the two drought classification methods, namely,
SPI and Gamma-MM, are presented in Sects. 3.1 and 3.2, respectively. Next, the
methods used for studying temporal changes in droughts over India are described.

3.1 Standardized Precipitation Index (SPI)

The method involves the following steps:

1. Decide a drought duration (time window) and estimate cumulative precipitation
during that period. For example, to estimate droughts during a summer mon-
soon season, estimate cumulative precipitation during 4 months of the summer
monsoon season (JJAS) for each year. This will yield an annual time series of
cumulative precipitation. Likewise, for analyzing water year droughts obtain an
annual time series of cumulative precipitation for 12 months starting on June 1
and ending on May 31 of following year.

2. Fit a gamma distribution to the cumulative precipitation series. The cumulative
distribution function (CDF) of the gamma distribution is standardized using the
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Fig. 4 SPI time series corresponding to water year (June to May) over the Indian monsoon region
(IMR, excluding grids over hilly regions shown in Fig. 2)
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Fig. 5 Time series of percentage area under drought during the period 1901–2003 over India/IMR.
The results correspond to water year droughts (12-month time window, June to May) computed
using standard SPI. The red-dashed line indicates the Sen’s slope
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standard inverse Gaussian function to compute the SPI drought index. As stated
earlier, a negative value of SPI indicates drought conditions and the magnitude
of its departure from zero indicates the severity of a drought.

3. Decide a threshold on CDF to determine drought class. To draw parallels with
the US Drought Monitor, we have used the same thresholds as used by them for
SPI drought classification (Table 1).

3.2 Gamma Mixture Model (Gamma-MM)

As discussed in the Introduction section, there is an ongoing debate on the choice
of a suitable distribution for fitting data in SPI analysis. Mallya et al. [47] addressed
this problem using the gamma mixture model (Gamma-MM). Given sufficient num-
ber of components in the mixture, the Gamma-MM is proven to provide arbitrarily
close approximation to any general continuous distribution in the range (0,∞) (see,
DeVore and Lorentz [16]).

The use of Gamma-MM is not new in hydrology. To model data with multiple
modes and different types of skewness, Evin et al. [19] proposed the use of Gamma-
MMfor strictly positive hydrological data. In the assessment of hydrological droughts
for Yellow River in China, Shiau et al. [72] first fitted mixtures of exponential and
gamma distributions to drought duration and drought severity, respectively, and then
used the copula method to construct a bivariate drought distribution. While the mix-
tures help represent the subpopulations within an overall population, the copula
method describes the dependence between variables of interest. In the following, we
provide a brief description of the Gamma-MM. The readers are referred to Wiper
et al. [82] and Richardson and Green [66] for details on mixture models. A summary
of the mathematical details of the Gamma-MM as described in Mallya et al. [47] is
presented below.

Table 1 US Drought
Monitor classification
scheme. SPI ranges are
prescribed for the inverse of
the normal distribution.
Corresponding thresholds on
CDF are given in the last
column

Category Description SPI range Threshold on
CDF

D0 Abnormally
dry

−0.5 to −0.8 0.212–0.309

D1 Moderate
drought

−0.8 to −1.3 0.097–0.212

D2 Severe
drought

−1.3 to −1.6 0.055–0.097

D3 Extreme
drought

−1.6 to −1.9 0.023–0.055

D4 Exceptional
drought

−2.0 or less 0.023 or less
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Let the cumulative rainfall at time t be denoted by xt , t �
1, . . . , N

{
xt ∈ R and X � [x1, . . . , xN ]T

}
. If the total number of compo-

nents of Gamma-MM, M , is known a priori, then the weighted sum of M mixtures
of gamma is given by the following equation:

P(xt |λ) �
M∑

i�1

wiG

(
xt |vi , vi

μi

)
(1)

where wi are the mixture weights or mixing ratios, and G
(
xt | νi , νi

μi

)
are the com-

ponents of gamma densities of the form,

G

(
xt | νi , νi

μi

)
�

(
νi
μi

)νi

�(νi )
x (vi−1)
t exp

(
− νi

μi
xt

)
, (2)

with mean μi and shape parameter νi . Further, the mixture weights satisfy the con-
straint

∑M
i�1 wi � 1. The parameter set is represented as λ � {w,μ, v}

where w � [w1,w2, . . . ,wM ]T, μ � [μ1, μ2, . . . , μM ]T and v � [ν1, ν2, . . . , νM ]T.
In the Bayesian framework, the model parameters are obtained by specifying

prior distributions to model parameters. Parameter estimation is accomplished by
introducing a latent variable Z � [z1, . . . , zN ]T for each time step. The variable
zt is an M-dimensional binary random variable, zt � [zt1, . . . , ztM ]T, in which a
particular element is equal to 1 and all other elements are zero, i.e.,

∑M
i�1 zti � 1

and zti ∈ {0, 1}. The variable zt denotes the component to which the data xt belongs,
and hence it is also called an indicator variable. The conditional distribution of xt
given zt is

P(xt |zti � 1) ∼ G

(
xt |νi , νi

μi

)
(3)

The posterior probability of the model parameters and latent variables is obtained
by applying Bayes’ rule as

P(λ|X) ∝ P(X|λ)P(λ) (4)

where the parameter setλ includes the latent variable as well. The likelihood function
given the latent variable is

P(X|λ) � P(X|Z,μ,ν) �
N∏

t�1

M∏

i�1

(
G

(
xt |νi , νi

μi

))zti

(5)

Following Wiper et al. [82] the prior distribution over the model parameter is
given as P(λ) � P(Z|w)P(w)P(μ)P(ν) with
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P(Z|w) �
N∏

t�1

M∏

i�1

w
zti
i ,

P(w) � Dir(w|�) � C(�)

M∏

i�1

w
φi−1
i , � � [φ1, . . . , φM ]T,

P(ν) � Exp(ν|θ) �
M∏

i�1

1

θi
exp(−θi νi ), θ � [θ1, . . . , θM ]T, and

P(μ) � GI(μ|α,β) �
M∏

i�1

β
αi
i

�(αi )
μ

−αi−1
i exp

(
− βi

μi

)
, α � [α1, . . . , αM ]T andβ � [β1, . . . , βM ]T

where Dir, Exp, and GI represent Dirichlet, Exponential, and Inverted gamma dis-
tributions, respectively, and C(�) is a normalizing constant. The prior distribution
is made non-informative by assigning following values to the hyperparameters.

φi � 1; θi � 0.01; αi � βi � 1 for i � 1, . . . , M.

The posterior distribution P(λ|X) does not have a closed form and has to be
estimated by either deterministic approximation (variational Bayes’ methods) or
stochastic approximation (MCMC; Markov chain Monte Carlo methods). In this
study, the posterior distribution is estimated using stochastic approximation by sam-
pling the posterior distribution with Gibbs sampler, an MCMC algorithm [24].

The Gibbs sampling algorithm samples posterior distribution of the parameters
by sequentially sampling from the conditional distribution of a parameter given all
other parameters. The sampling starts with an initial value and proceeds as follows:

1. Set iteration number j � 0, and parameters to their initial value λ(0) �[
w(0),μ(0), ν(0)

]
. The initial value is obtained by randomly sampling from the

prior distribution of the parameters.

2. Sample from P
(
z( j+1)t |X,w( j),μ( j), ν( j)

)
∼ Multinomial(zt |r t )

where r t � [rt1, . . . , rtM ]T, rti � sti∑M
i�1 sti

and sti � wiG
(
xt |νi , νi

μi

)
and

Multinomial represents multinomial distribution.

3. Sample from P
(
w( j+1)|X, Z ( j+1),μ( j), ν( j)

) ∼ Dir
(
w|�̂

)
where �̂ �

[φi + ni , . . . , φM + nM ]T and ni �
N∑

t�1
zti .

4. Sample from P
(
μ( j+1)|X, Z ( j+1),w( j+1), ν( j)

) ∼ GI
(
μ|α̂, β̂

)

where α̂ � [αi + niνi , . . . , αM + nMνM ]T and β̂ �
[
βi + νi

M∑

t�1
xt zti , . . . , βM + νM

M∑

t�1
xt ztM

]T

.

5. Sample from P
(
v( j+1)|X, Z ( j+1),w( j+1),μ( j+1)

)
. This conditional distribu-

tion does not have a closed form. Hence, samples are generated using
Metropolis–Hastings algorithm from a proposal distribution P(ṽi |vi ) ∼
G(h, h|vi ) and are accepted with a probability
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min

{
1,

f (ṽi )P(vi |ṽi )
f (vi )P(ṽi |vi )

}
,

where f (vi ) ∝ v
ni νi
i

�(vi )
ni exp

(
−νi

(
θi +

∑
t xt zti
μi

+ ni logμi − log
(∏N

t�1;zti�1 xt
)))

.

If the new sample ṽi is rejected, the current value of vi is retained. The above
procedure is repeated to sample vi for all components i � 1, . . . , M. In this
study, the parameter of the proposal distribution, h, is set to 2.

6. Set j � j + 1 and go to Step 2 until convergence. In this study, 15,000 samples
were generated after ignoring initial 500 samples (burn-in period). Trace plots
of the samples were monitored for convergence.

To keep the notations uncluttered, the iteration number is omitted from the param-
eters of the conditional distributions.

In the above formulation of Gamma-MM, we have assumed that the number of
mixture components, M , is known. However, in a general context, M is not known
and should be estimated from data. One approach for estimatingM is to consider it as
a model parameter, assign prior distribution to it and estimate posterior distribution
byMCMCmethod. Since changingM will result in a different model structure, usual
MCMCalgorithms such asGibbs sampler cannot be applied. Instead, reversible jump
MCMC (RJMCMC; Green [26] and Richardson and Green [66]) may be used. In
this study, we implemented RJMCMC for Gamma-MM as described by Richardson
and Green [66] andWiper et al. [82]. The results suggested that RJMCMC algorithm
requires significantly higher number of iterations for convergence compared to a
modelwhereM is specified.We found that ifwe startwith amodel having sufficiently
large number of components, M , the Bayesian algorithm automatically prunes the
components that are not relevant by making the mixing ratio (w) very small, thereby
determining optimum number of components. We recommend the latter approach
for hydrological applications where the number of components is usually limited to
2 or 3.

In the Bayesian framework, mixture models have the identifiability problem, i.e.,
a M component mixture model will have a total of M! equivalent solutions. The
problem can be avoided by introducing asymmetricity in the likelihood function. For
example, in the context ofGamma-MM,Wiper et al. [82] recommended the following
restriction on themeans of themixture components,μ1 < μ2 < · · · < μM .However,
for finding a good density model, as required in the present application, the problem
of identifiability is not relevant because any of the equivalent solutions is as good as
another [6].
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3.3 Temporal Trends in Droughts

Evaluation of temporal trends associated with retrospective drought events provides
a basis to understand regional patterns of severity and duration of droughts. It also
provides insight into the nature of possible future droughts and potential vulnerabil-
ities over the study region. In this study, we first investigated trends in precipitation
series at each IMD grid and also at each homogeneous monsoon region. A modified
Mann–Kendall trend test that accounts for autocorrelation in time series [28, 38] was
used to detect trends in summer monsoon and water year precipitation. The trends
were tested at 5% significance level (α). The effect of spatial correlations in the data
[8, 85] on the trend results was accounted using false discovery rate (FDR) [5, 79].

If the precipitation series exhibits a trend, drought classification methods such as
SPI andGamma-MMare not applicable for drought analysis because they assume the
precipitation time series to be stationary. In this study, we apply an alternate method
for drought analysis that overcomes this problem by explicitly removing trends from
the precipitation series. Themethod is comparedwith relative SPI [18] and SnsPI [68]
for performing drought analysis of a nonstationary precipitation series. The following
paragraphs describe this alternate method and provide a summary of relative SPI and
SnsPI methods.

3.3.1 An Alternate Method for Drought Analysis of a Nonstationary
Precipitation Series

A precipitation series may exhibit nonstationarity because of any of several reasons
[22]—(a) the mean is a function of time, (b) the variance or other higher order
moments are functions of time, and (c) the stochastic mechanism generating time
series is nonstationary. In this study, we consider nonstationarity arising from first
kind. As proposed by Mallya et al. [46], we consider a trend stationary process in
which the mean trend is deterministic. Once the trend is estimated and removed from
the data, the residual series is a stationary stochastic process. A trend stationarity
process, yt , is expressed as

yt � f (t) + zt (6)

where t represents time, zt denotes a zero-mean stationary process, and f (t) is
a function of time representing trend of the process at time t . The trend can be
determined either extrinsically by specifying a linear or nonlinear functional form for
f (t) [e.g., regressionmodels] or intrinsically by using the data without prespecifying
a functional form (e.g., empirical mode decomposition [84]).

Drought classification for nonstationary time series can be approached in one of
the following two ways—(a) assuming that the “normal” conditions for a station are
evolving, and hence the drought thresholds for different categories are changing with
time (similar to SnsPI) and (b) assuming that the “normal” conditions for a station
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are fixed (with respect to a reference period, and hence the thresholds for drought
classification are fixed), but the frequency of droughts are changing with time (as in
relative SPI). The proposed method classifies droughts for nonstationary time series
using both the approaches. The steps of the proposed methods are as follows:

(a) Identify trend in the time series, f (t) using either an extrinsic approach (regres-
sion model) or an intrinsic approach (empirical mode decomposition).

(b) Determine zt by removing trend from the time series andfit a suitable distribution
to obtain the cumulative distribution function FZ (zt ) � P(Z ≤ zt ), where Z
is a random variable belonging to a family of stationary stochastic process (for
example—normal, lognormal, generalized extreme value, etc.).

(c) Determine the CDF of the rainfall time series at time t as

FYt (yt ) � P(Yt ≤ yt ) � P(Z ≤ yt − f (t)) � FZ (yt − f (t)). (7)

Estimate drought thresholds at each time step using FYt (yt ) and the SPI drought
definitions given in Table 1.

Select a reference year (t0), and determine FYt0
and corresponding drought thresh-

olds. Estimate drought class at time t based on these fixed thresholds for the reference
year (t0).

3.3.2 Standardized Nonstationary Precipitation Index (SnsPI)

The SnsPI method fits a nonstationary model to the precipitation data by linearly
varying the scale parameter (st ) of the gamma distribution with time. Following the
notations used in Sect. 3.2, the gamma distribution is represented as G(xt |ν, st ) with
scale parameter st � μt

/
ν and E(xt ) � μt � b1+b2t , where b1 and b2 are constants.

In this study, the parameters ν, b1, and b2 are estimated by the maximum likelihood
method.

3.3.3 Relative SPI

The relative SPI is defined with respect to a reference period in which precipitation
time series is assumed to be stationary. For estimating relative SPI, the gamma
distribution is first fitted to the reference period and to the period for which the
temporal changes have to be analyzed. The two distributions are then compared to
determine changes in the concerned period with respect to the reference period.
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4 Results and Discussion

This section is divided into three subsections. Section 4.1 presents the results for
drought classification using SPI and Gamma-MM drought indices. Section 4.2
describes the results for precipitation trend analysis. Section 4.3 presents the results
of the proposed methodology for the drought classification of nonstationary precip-
itation series (detrended-SPI) and compares them with the results of classical SPI,
relative SPI, and SnsPI for synthetic and real-world precipitation series.

4.1 Drought Classification

The drought indices described in Sect. 3 are applied to study seasonal (4-month
time window) and water year (12-month time window) droughts in India. India has
three seasons each spanning about 4 months: Winter (October to January), Summer
(February to May), and Summer Monsoon (June to September). The water year in
India extends from June to May of the following year. For example, 1999 water year
starts on June 1, 1999 and ends on May 31, 2000. First, an annual time series of
cumulative precipitation during any chosen season or water year is computed. Next,
droughts are classified using SPI and Gamma-MM methods. The latter method is
also referred to as probabilistic SPI. Both the methods assume that the cumulative
precipitation time series is stationary, and consists of independent and identically
distributed samples. In the following paragraphs, summer monsoon and water year
droughts from the two methods are presented for a selected IMD grid over India.

4.1.1 Summer Monsoon Droughts

The results are presented for IMD grid 251 located in northeast India and are among
the highest rainfall receiving regions of theworld. Figure 6 shows the empirical cumu-
lative distribution function (CDF) obtained using Weibull plotting position formula
[10] along with CDFs of fitted gamma distribution (fitted using maximum likelihood
approach) and gamma mixture model (Gamma-MM) for summer monsoon precipi-
tation (June–September). The CDF of Gamma-MM is closer to empirical CDF than
the CDF of gamma distribution, particularly, for the smaller rainfall values [F(X) <
0.25], which are critical for drought classification. The Gamma-MM owes its bet-
ter fit to the large number of tuning parameters (3M − 1, where M is number of
components in Gamma-MM) compared to two-parameter gamma distributions.

Increasing the number of mixture components (M) in Gamma-MM method
ensures that the model provides a better fit to the data. However, it may also result in
overfitting. The Gamma-MMmodel addresses this problem using a Bayesian frame-
work that avoids overfitting by marginalizing over the model parameters instead of
makingpoint estimates. Figure 7 shows themixing ratio of afive-componentGamma-
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Fig. 6 Empirical CDF along
with CDFs obtained by
fitting gamma distribution
(Gamma CDF) and gamma
mixture model (Gamma-MM
CDF) to the 4-month
cumulative precipitation
during summer monsoon
(June to September) at IMD
grid 251. The gray band
shows 5 and 95 percentile of
the Gamma-MM CDF and
the green-dotted line shows
width of its credible interval
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Fig. 7 Mixing ratios of the
components of the Bayesian
Gamma-MM. Two
components are identified as
significant for characterizing
summer monsoon (June to
September) droughts at IMD
grid 251
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MMfitted to cumulative winter precipitation at this station. The model identifies that
three of the five components have negligible contribution and are effectively pruned
from the model. Thus, the Bayesian framework identifies optimal number of mixture
components needed to fit the data.

The Bayesian framework also allows quantification of model uncertainties and
their propagation to model estimates. In the context of Gamma-MM, the posterior
distribution ofmodel parameters is estimated fromwhich theCDF is obtained.Unlike
maximum likelihood approach that yields a point estimate of CDF, the Bayesian
approach treats CDF as a random variable and yields distribution of CDFs for a
given value of precipitation. The gray shaded band in Fig. 6 represents 90% credible
interval (5 and 95 percentile). The width of the credible interval is not constant but
varies with the magnitude of precipitation. It has a maximum value of 0.145 near the
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Fig. 8 Relative frequency of
the 4-month cumulative
precipitation during summer
monsoon (June to
September) at IMD grid 251,
and probability density
functions of the fitted gamma
distribution (Gamma PDF)
and gamma mixture model
(Gamma-MM PDF). The
gray band shows 90%
credible interval (5 and 95
percentile) of the
Gamma-MM PDF
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median precipitation (120 cm), a plateau near the intersection of two components
(~160 cm; Fig. 8), and a monotonic decreasing trend on either side of the median.

The width of the credible interval is large even for smaller values of CDFs that
decide drought classes in the SPI methodology. In this study, we attempted to engage
credible interval of CDF for drought classification. Figure 9b shows the drought
classification using standard SPI method. The empirical CDF along with the fitted
CDF and drought classification thresholds are shown in the figure. The SPI drought
classification uses fixed thresholds; hence, the boundaries separating two drought
classes are vertical lines on the panel. Figure 9a shows probabilistic drought classi-
fication using Gamma-MM. The classification uses the same thresholds on CDF as
SPI but engages uncertainty in the estimate of CDF resulting in probabilistic drought
classification. Unlike standard SPI, the demarcating boundaries in the probabilistic
SPI are curves denoting varying classification probabilities.

The probabilities associated with drought classification represent uncertainties
in determining drought classes. For example, the D4 category drought represents
drought conditions where non-exceedance probability of the cumulative rainfall is
less than 0.023 [F(X) < 0.023; Table 1]. The probabilistic drought classification
acknowledges that, given limited data and model assumptions, such a threshold
cannot be determined uniquely but can be estimated probabilistically. The method
honors model uncertainty and provides results in a format that could be useful for
drought managers.

Figure 10 shows historical drought classes during summer monsoon at IMD grid
251 using standard SPI (Fig. 10b) and probabilistic SPI (Fig. 10a). The droughts
classified by the methods are similar; however, the advantages of probabilistic clas-
sification are evident in some years. For example, in 1914 and 1915 the cumulative
rainfall values were 88 cm and 85 cm, respectively. Considering that the difference
in cumulative rainfall among these years is less than 2.7% of their standard deviation
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Fig. 9 Drought classification using 4-month cumulative precipitation during summer monsoon
(June to September) at IMD grid 251 by a the probabilistic SPI (top panel) and b standard SPI
(bottom panel). The colored patches represent drought classes, the light horizontal lines denote
thresholds on CDF specified by US Drought Monitor, and the solid curves represent empirical and
fitted CDFs

(110 cm), one would not expect them to belong to two different drought classes as
categorized by SPI (1914 in D3, and 1915 in D4). The probabilistic SPI classifies
1914 and 1915 to D3 class with probabilities 66% and 58%, and to D4 class with
probabilities 13% and 34%, respectively, (the remaining probability masses being
assigned to other drought classes).

4.1.2 Water Year Droughts

Water year droughts were analyzed at all IMD grids in the study area. However, for
brevity only the results at IMD grid 125 are discussed below. The grid point is located
in the state of Chhattisgarh and belongs to core monsoon region of India. Figure 11
shows the empirical cumulative distribution function (CDF) obtained using Weibull
plotting position formula. Figure 11 also shows theCDFs of fitted gammadistribution
(fitted using maximum likelihood approach) and gamma mixture model (Gamma-
MM). The CDF of Gamma-MM is much closer to empirical CDF compared to CDF
of gamma distribution, particularly, for the smaller magnitude of rainfall [F(x) <
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Fig. 10 Classification of historical 4-month time window droughts during summer monsoon (June
to September) at IMD grid 251 using a probabilistic SPI, and b standard SPI approaches. The solid
blue line represents cumulative precipitation during summer monsoon months

0.25], which is critical for drought classification. The gray shaded band in Fig. 11
represents 90% credible interval (5 and 95 percentile). The width of the credible
interval is not constant but varies with the magnitude of rainfall. It has a maximum
value of 0.16 near the median rainfall (1260 mm), a plateau near the intersection of
two components (~900 mm; Fig. 12), and a monotonic decreasing trend on either
side of the median.

The drought classification in the case of Gamma-MMmodel (shown in top panel
of Fig. 13) uses the same thresholds on CDF as SPI but engages uncertainty in the
estimate of CDF resulting in probabilistic drought classification. Unlike standard SPI
(bottom panel of Fig. 13), the demarcating boundaries in the probabilistic SPI are
curves denoting varying classification probabilities.We observe that the demarcating
boundaries are slightly curved for D0–D2 classes indicating less uncertainty. How-
ever, the demarcating boundaries are more curved for D3 and D4 drought classes
indicating higher uncertainty in their classification.

Figure 14 shows the historical drought classification for water year droughts at
IMD grid 125. The droughts classified by both probabilistic SPI and standard SPI
are similar, however, the advantages of probabilistic classification are evident in
some years. For example, in 1998, 1999, and 2000 the cumulative rainfall values
were 69 cm, 73 cm, and 66 cm, respectively. Considering that the difference in
cumulative rainfall among these years is less than 3% of their standard deviation
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Fig. 11 Empirical CDF along with CDFs obtained by fitting gamma distribution (Gamma CDF)
and gammamixture model (Gamma-MMCDF) to cumulative precipitation during water year (June
toMay of following year) at IMD grid 125. The gray band shows 5 and 95 percentile of the Gamma-
MM CDF and the green-dotted line shows width of its credible interval

Fig. 12 Relative frequency of the cumulative rainfall in a water year at Grid 125, and probabil-
ity density functions of the fitted gamma distribution (Gamma PDF) and gamma mixture model
(Gamma-MM PDF). The gray band shows 90% credible interval (5 and 95 percentile) of the
Gamma-MM PDF
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Fig. 13 Drought classification using cumulative precipitation during water year (June to May of
following year) at IMD grid 125 by a the probabilistic SPI (top panel) and b standard SPI (bottom
panel). The colored patches represent drought classes, the light horizontal lines denote thresholds
on CDF specified by US Drought Monitor, and the solid curves represent empirical and fitted CDFs

(30 cm), we would not have expected them to belong to two different drought classes
as categorized by SPI (1998 and 2000 in D4, and 1999 in D3). The probabilistic SPI
classifies 1998, 1999, and 2000 to D3 class with probability 46%, 76%, and 23%,
and to D4 class with probabilities 53%, 16%, and 75%, respectively, (the remaining
probabilities being allocated to other drought classes).

Analyses of historical droughts over the climate divisions in India (see Fig. 15)
reveals that the drought characterizations by both standard SPI and Gamma-MM are
almost identical for the major drought events. Using fixed thresholds to character-
ize droughts (as in case of SPI) or when reporting drought class based on average
Gamma-MM, we come to similar conclusions. The average Gamma-MM intensities
were obtained by taking the probability-weighted sum of average SPI under each
drought class. For example, the average Gamma-MM intensity is −1.71 (i.e., −
1.8 * 0.75 + −1.45 * 0.25) when probabilities under D3 (average SPI −1.8) and
D2 (average SPI −1.45) drought categories at a given location are 75% and 25%,
respectively. However, if the regions have smaller geographic extent, then some
differences in drought classification are possible [46]. Such differences can have sig-
nificant impact on decision-making. It can result in incorrect assessment of drought
impacts, leads to under/over allocation of resources, and affects triggering of miti-
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Fig. 14 Classification of historical droughts during water year (June to May of following year)
at IMD grid 125 using a probabilistic SPI, and b standard SPI approaches. The solid blue line
represents cumulative precipitation during a water year

gation measures. A probabilistic drought classification provides estimates of uncer-
tainty in drought classification, and thus helps decision-makers to take informed
actions.

Figure 16 shows the spatial variation of drought classes computed across all IMD
grids over India in May 2003 (or 2002 water year drought) according to standard SPI
(Fig. 16a) and average drought intensity values from probabilistic SPI (Fig. 16b).
The 2002 water year drought was one of the most severe and widespread drought
in the recent decades. Both drought classification methods provide similar results in
terms of classifying grids as being in drought, or otherwise. However, upon closer
observation, readers may be able to notice subtle differences in the assigned drought
classes according to the two methods. For example, IMD grid 58 is classified as D2
and D3 category droughts according to standard SPI and probabilistic SPI, respec-
tively. Similarly, at IMD grid 81 the 2002 water year droughts are classified as D1
and D0 category droughts according to standard and probabilistic SPI, respectively.
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Fig. 15 Spatial variation of historical water year drought classes at each climate division during
major drought events over India according to standard SPI (top panel) and Gamma-MM (bottom
panel). Color coding for drought classes similar to Fig. 14

4.2 Precipitation Trends

The summer monsoon and water year precipitation series are analyzed for trends.
Figure 17a shows the results of Mann–Kendall trend test of summer monsoon pre-
cipitation series (i.e., 4-month time window, JJAS) ending month in September at
all 1° IMD grids over India. Results indicate that trends in summer monsoon pre-
cipitation series are not statistically significant (α � 0.05) at most grids (denoted
by circles). After ignoring 62 IMD grids located in the hilly regions (see Fig. 2),
we find that 34 IMD grids have statistically significant trends with negative slope,
indicating that precipitation magnitudes are decreasing with time. These grids are
denoted by downward pointing triangles in Fig. 17a and are mostly present within
the Central Northeast region and along the western coast of Peninsular monsoon
region. Both these regions have either dominant agricultural land use or belong
to forested tribal areas, and therefore decreasing magnitudes of summer monsoon
precipitation over these regions are of concern. Grids with statistically significant
positive trend in precipitation magnitudes are denoted by upward pointing triangular
markers. Approximately, 25 grids have positive trends, and these are predominantly
located along thewestern and eastern coasts ofWest Central and Peninsularmonsoon
regions, respectively.

Similar analysis was performed for water year precipitation series (12-month
cumulative precipitation time series ending in May) at each IMD grid over India.
From Fig. 17b, we observe that majority of the grids (235) have no statistically
significant trends, 30 grids exhibited statistically significant increase in cumulative
precipitation, while another 30 grids showed significant negative trend. The geo-
graphic location of the grids with significant positive and negative trends, and their
importance within the context of the study area, is similar to that described in the
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Grid 81

Grid 58

Fig. 16 Spatial variation of water year drought classes at each IMD grid during a recent major
drought in 2002 over India according to a standard SPI and b Gamma-MM. Color coding for
drought classes similar to Fig. 14
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Fig. 17 Mann–Kendall trend test (with α � 0.05) of cumulative a summer monsoon (4-month
time window, JJAS) and b water year (12-month time window, June to May) precipitation series at
1 ° IMD grids over India. Markers are color coded based on the magnitude of Sen’s slope. Grids
with statistically significant positive slope are denoted by upward pointing triangular markers, while
those with significant negative slope are denoted as downward pointing triangular markers
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Fig. 18 Mann–Kendall trend test result (with α � 0.05) of cumulative summer monsoon precip-
itation series (June to September) at IMD grid 40 located along the western coast of West Central
monsoon region

preceding paragraph. The results for other ending months were similar, except for
minor differences, and are not shown here for brevity.

4.3 Drought Classification for Nonstationary Precipitation
Series

Figure 18a shows the results of Mann–Kendall trend test of cumulative summer
monsoon precipitation series at IMD grid 40 located along the western coast of West
Central monsoon region. The trend is found to be significant (α � 0.05), with a
positive Sen’s slope of 0.51 cm/year, indicating that summer monsoon precipitation
totals are increasing over time. Figure 18b shows the histogram of summer monsoon
precipitation at grid 40. The mean value of total summer monsoon precipitation at
grid 40 is about 163 cm, with a standard deviation of 44 cm. Figure 18c shows the
autocorrelation of summer monsoon precipitation totals at several lags.

As the precipitation series exhibits nonstationarity, classical drought indices such
as SPI may not be appropriate. Alternate methods, namely, relative SPI and standard-
ized nonstationary precipitation index (SnsPI) are applied to the precipitation series.
Figure 19 shows the comparison of CDFs of three drought analysis methods. The
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Fig. 19 Comparison of
CDFs of classical SPI,
relative SPI (rSPI), and
SnsPI obtained for summer
monsoon precipitation series
(June to September) at IMD
grid 40. Blue cyan vertical
line represents 4-month
cumulative precipitation total
of 120 cm
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differences in the CDF for different epochs (1901–1952 and 1953–2004) indicate
that recent periods are becoming wetter. For example, a cumulative precipitation of
120 cm corresponds to relative SPI of 0.27 and 0.08 for the first (1901–1952) and
second half (1953–2004) of the study period, respectively. The corresponding values
from standard SPI and SnsPI are 0.18 and 0.03, respectively. These different values
of drought index suggest that when precipitation series is nonstationary, standard
SPI and its variants that assume stationarity are not reliable.

Figure 20a shows the 12-month cumulative precipitation time series correspond-
ing to thewater year atGrid 169 located inCentralNortheastmonsoon region. The red
line indicates the Sen’s slope or the trend in precipitation time series (−0.23 cm/year).
The Mann–Kendall trend test at 5% significance level was found to be statistically
significant. Figure 20b shows the comparison of CDFs of three drought analysis
methods when applied over 12-month water year cumulative precipitation series at
IMD grid 169. The differences in the CDF for different epochs (1901–1952 and
1953–2004) indicate that recent periods are becoming drier. For example, a cumula-
tive precipitation of 100 cm corresponds to relative SPI of 0.05 and 0.25 for the first
(1901–1952) and second half (1953–2004) of the study period, respectively. The cor-
responding values from standard SPI and SnsPI are 0.13 and 0.3, respectively. Once
again, this highlights the inconsistencies in drought characterization when applying
standard methods on nonstationary precipitation series.

The proposed method for classifying nonstationary precipitation series is first
applied on two synthetic series, and then to the summer monsoon precipitation series
at IMD grid 40 and water year precipitation series at IMD grid 169.

First, we begin by detrending the cumulative precipitation time series. One
approach for detrending is to decompose the time series using empiricalmode decom-
position which separates both deterministic and stochastic trends as intrinsic mode
functions (IMFs;Wu et al. [84]). The IMFs consist of amplitude and frequencymodu-
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Fig. 20 a Cumulative water year precipitation time series at Grid 169 along with Sen’s slope, and
b Comparison of CDFs of classical SPI, relative SPI (rSPI), and SnsPI obtained for water year
precipitation series (12-month time window, i.e., June to May) at IMD grid 169 located in Central
Northeast monsoon region

lations and are extracted from the original time series in a stepwisemanner, beginning
with high-frequency local oscillations that are superimposed on low-frequency part
of the data. These high-frequency oscillations are subtracted from the data to obtain
the residual. Then, the next IMF, representing highest frequency oscillations present
in the residual, is extracted. The process is repeated until we obtain a residual with no
oscillation. Typically, if we have a dataset of length N we can extract about log2 N
IMFs from the data. Then, those IMFs that are statistically different fromwhite noise
are subtracted from the original series to obtain a detrended series.

The second approach for detrending the time series, and the one that is used in this
study, is to fit polynomials of several orders to the data, and obtain the best polynomial
using either the Akaike information criteria (AIC; Akaike [2]) or Bayesian informa-
tion criteria (BIC; Schwarz [70]). Trend line is then obtained from the coefficients
of the best fitting polynomial.



56 G. Mallya et al.

10 20 30 40 50 60 70 80 90 100

350

400

450

500

550

600

650

700

750

800

Time

Va
lu

es

Synthetic series ~ Gamma(a=25, b=20)
100 samples

Fig. 21 Synthetic time series generated from a gamma distribution with mean 500 cm and standard
deviation equal to 100 cm. No trend is present in the time series

4.3.1 Synthetic Series with Linear Trend

First, 100 samples are drawn from the gamma distribution, G(xt |ν, st ) with scale
parameter st � 20 and shape parameter ν � 25. The time series of the 100 samples
is shown in Fig. 21. Themean and standard deviation of the series are around 500mm
and 100 mm, respectively.

For the first synthetic example, a linear trend is added to the mean of the synthetic
series. The resulting series is shown in Fig. 22. Drought characterization is then
performed using the following methods:

• SPI—A gamma distribution is fitted to the synthetic series and SPI values are
obtained as described in Sect. 3.1. The drought classes for classical SPI are shown
in the top panel of Fig. 23.

• Standardized nonstationary precipitation index (SnsPI; Russo et al. [68])—The
SnsPI drought indices are obtained using the method presented in Sect. 3.3.2. In
this method, the scale parameter of the gamma distribution is assumed to vary
linearly with time. Such a model specifies a linear trend for the mean of the series
and a quadratic trend for its variance.Drought classes obtained for SnsPI are shown
in the second panel of Fig. 23.

• Detrended-SPI—First, trend in the mean of the series is obtained by fitting a poly-
nomial. Next, the detrended series is obtained by subtracting the estimated trend
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Fig. 22 Synthetic series with linear trend in mean

from the data. Several candidate distributions (beta, Birnbaum–Saunders, expo-
nential, extreme value, gamma, generalized extreme value, generalized Pareto,
inverse Gaussian, logistic, log-logistic, lognormal, Nakagami, normal, Rayleigh,
Rician, and t location-scale and Weibull distributions) are fitted to the detrended
series, and the best distribution is selected based on AIC score (see Fig. 24). The
method identifiesGamma distribution to be one of the best distributions to describe
the detrended series. The selected distribution is then used for obtaining drought
indices shown in the third panel of Fig. 23.

As expected, the standard SPI overestimates drought severities for the earlier
time steps, and underestimates it for the later time steps. This is evident from the top
panel of Fig. 23 and also by observing that the threshold that defines any drought
class is fixed over the entire time period (dashed line in Fig. 25a and first panel
of Fig. 25b). For example, the threshold for D4 drought (F(X) < 0.023) is about
430 cm, and remains unchanged over the entire period. The SnsPI treats the scale
parameter as a time-varying component of the model, and is able to capture the
linear trend in the synthetic data. This is evident from the dotted lines of Fig. 25a.
For example, the threshold for D4 category drought is close to 380 mm at time
step 1 and close to 550 mm at time step 100. The threshold varies linearly between
these points (Fig. 25a). As a consequence, the drought classes obtained are markedly
different compared to standard SPI approach. In SnsPI, the drought occurrences are
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Fig. 23 Droughts classified into D0–D4 classes according to US Drought Monitor classification
scheme for SPI (first panel), SnsPI (second panel), and proposed detrended-SPI method (third
panel). The blue line represents the original synthetic series that has linear trend

spread evenly across the study period (second panel of Fig. 23), rather than being
concentrated in the earlier years like standard SPI (first panel of Fig. 23).

SnsPI prescribes linear trend for mean and a quadratic trend for variance. This
property is evident from the second panel of Fig. 25b. The proposed detrended-SPI
method, however, specifies linear trend for mean and no trend for variance (see third
panel of Fig. 25b).

The second approach for drought analysis of nonstationary series assumes that
the “normal” conditions for a station are fixed (with respect to a reference period),
but the frequency of droughts are changing with time. Figure 26 shows the drought
classes by the new approach when the reference point is time step 1. As expected, the
droughts become less severe with time because of the positive trend in the synthetic
precipitation series.

4.3.2 Synthetic Series with Nonlinear Trend

For the second synthetic example, a quadratic trend is imposed on a series (see
Fig. 27) generated from the same gamma distribution as used in the first example
(Sect. 4.3.1). The three methods for drought characterization, standard SPI, SnsPI,
and detrended-SPI, are applied again. For the detrended-SPI, gamma distribution
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Fig. 24 Top four out of seventeen candidate distributions based on AIC scores that fit the detrended
series (original synthetic series had linear trend)

was selected as the best distribution based on AIC score. The results obtained are
shown in Fig. 28.

The first panel of Fig. 28 shows the drought classes obtained from standard SPI.
Given the significantly positive nonlinear trend of the time series, most drought
occurrences are concentrated in the first half of the time period. The results obtained
from the detrended-SPI (third panel of Fig. 28) are significantly different from SnSPI
(second panel of Fig. 28), specifically, in the second half of the series. These differ-
ences can be attributed to the fact that SnsPI can only account for linear trends in
mean.

The advantages of proposed detrended-SPI are evident in Fig. 29a and b.
Figure 29a shows the variation of precipitation thresholds over time for different
drought categories. The SPI thresholds remain constant over time (dashed lines in
Fig. 29a), SnsPI thresholds vary linearly (dotted lines in Fig. 29a), while the drought
thresholds for the proposed method show a quadratic trend (solid lines in Fig. 29a).

Figure 30 shows the drought classes over the study period according to detrended-
SPI when the reference period is selected as time step 1. Again as expected, the
drought severities decrease with time, indicating wetter conditions (or positive trend
in data).
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Fig. 25 Variation of fitted model distributions as a function of time for synthetic data with linear
trends. Figure a shows the variation of data thresholds that define drought classes (D4 to D0)
according to SPI (dashed lines), SnsPI (dotted lines), and proposed detrended-SPI (solid lines),
b shows the median of the distribution and 95% distribution interval around the median for SPI
(first panel of Fig. 25b), SnsPI (second panel of Fig. 25b), and detrended-SPI approach (third panel
of Fig. 25b)
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Fig. 26 Drought classes calculated relative to distributional properties at the first time step using
detrended-SPI
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Fig. 27 Synthetic time series with quadratic trend in mean

4.3.3 Observed Precipitation Series

The proposed detrended-SPI method was tested on cumulative (a) summer monsoon
precipitation data at IMD grid 40 and (b) water year precipitation data at IMD grid
169. The cumulative precipitation time series at grid 40 (Fig. 18) corresponds to
4-month time window during summer monsoon season (June to September). The
red line indicates positive Sen’s slope, indicating increasing precipitation over time
(0.51 cm/year). The series exhibits a statistically significant positive trend according
to Mann–Kendall trend test (α � 0.05).

The results obtained from the three methods, SPI, SnsPI, and detrended-SPI, are
shown in Fig. 31. The detrended-SPI identifies linear trend in the precipitation series
and selects normal distribution for the detrended series. As in the synthetic time
series case (Sect. 4.3.1), the SPI and SnsPI results are markedly different during the
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Fig. 28 Droughts classified into D0–D4 classes according to US Drought Monitor classification
scheme for SPI (first panel), SnsPI (second panel), and proposed detrended-SPI method (third
panel). The blue line represents the original synthetic series that has nonlinear quadratic trend

recent years. The SnsPI assigns drought categories to several time steps in recent
years compared to SPI.

The consequences of model assumptions in the three methods become clear in
Fig. 32. The dashed lines in Fig. 32a denote the thresholds of D4–D0 classes accord-
ing to standard SPI. These dashed lines are horizontal indicating that the thresholds
on precipitation for different drought classes do not change over time (stationar-
ity assumption). This property of SPI model also becomes evident in the median
and variance in the first panel of Fig. 32b. For SnsPI (second panel of Fig. 32b),
the median varies linearly with time, whereas the variance varies quadratically. For
detrended-SPI (third panel of Fig. 32b), themedian varies linearly, while the variance
is constant.

Relative drought severity and classes with respect to the first time step are shown
in Fig. 33. Since the cumulative summer monsoon precipitation series at IMD grid
40 has positive trend (top panel Fig. 18), the summer droughts relative to the first
year become milder over time.

Figure 34a compares the performance of the three drought classification methods
on cumulative water year precipitation series at IMD grid 169. Unlike IMD grid
40, the precipitation series shows a significant decreasing trend with a Sen’s slope
of −0.23 cm/year (not shown here for brevity). Due to stationarity assumption in
standard SPI, the horizontal dashed lines that indicate the thresholds on precipitation
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Fig. 29 Variation of fittedmodel distributions as a function of time for synthetic datawith nonlinear
trends. Figure a shows the variation of data thresholds that define drought classes (D4 to D0)
according to SPI (dashed lines), SnsPI (dotted lines), and proposed detrended-SPI (solid lines);
b shows the median of the distribution and 95% distribution interval around the median for SPI
(first panel of Fig. 29b), SnsPI (second panel of Fig. 29b), and detrended-SPI approach (third panel
of Fig. 29b)
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Fig. 30 Drought classes for synthetic series with nonlinear trend in its mean, calculated relative to
distributional properties at the first time step using detrended-SPI

Fig. 31 Droughts classified into D0–D4 classes according to US Drought Monitor classification
scheme for SPI (first panel), SnsPI (second panel), and proposed detrended-SPI method (third
panel). The blue line represents the cumulative summer monsoon precipitation series at IMD grid
40 in India

for different drought classes (D0–D4) do not change over time (Fig. 34a). On the
other hand, the dotted and bold lines in Fig. 34a show that the drought thresholds
decrease over time for SnsPI and detrended-SPI, respectively. Figure 34b shows the
relative water year drought severity and classes calculated at IMD grid 169 using
detrended-SPI and the distributional properties of cumulativewater year precipitation
time series at time step 1. Since the cumulative water year precipitation series at IMD
grid 169 has negative trend, the water year droughts relative to the first year becomes
severe over time.
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Fig. 32 Variation of fitted model distributions as a function of time for nonstationary cumulative
summer monsoon precipitation (4-month time window, June to September) at IMD grid 40 in India.
Figure a) shows the variation of data thresholds that define drought classes (D4 to D0) according
to SPI (dashed lines), SnsPI (dotted lines), and proposed detrended-SPI (solid lines), b) shows the
median of the distribution and 95% distribution interval around the median for SPI (first panel of
Fig. 32b), SnsPI (second panel of Fig. 32b), and detrended-SPI approach (third panel of Fig. 32b)
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Fig. 33 Drought classes calculated relative to distributional properties of cumulative summermon-
soon precipitation series (4-month time window, June–September) at the first time step according
to detrended-SPI method. Precipitation data is from IMD grid 40 in India

Fig. 34 Using nonstationary cumulative water year precipitation (12-month time window, June to
May) at IMD grid 169 in India, a shows the variation of data thresholds that define drought classes
(D4 to D0) according to SPI (dashed lines), SnsPI (dotted lines), and proposed detrended-SPI (solid
lines), and b shows the drought classes calculated relative to distributional properties of cumulative
water year precipitation series at the first time step according to detrended-SPI method
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5 Summary and Concluding Remarks

1. Meteorological droughts over India were studied using two drought classification
methods, namely, standardized precipitation index (SPI) and gamma-mixture-
model-based drought index (Gamma-MM).The latter provides probabilistic clas-
sification of droughts.

2. The Gamma-MM alleviates the problem of adopting a prescribed distribution
for SPI analysis by modeling the data with a mixture of gamma distributions.
Given sufficient components in the mixture, the Gamma-MM can give arbitrarily
close approximation to any general continuous distribution in the range (0,∞).
The problem of overfitting the data is avoided using a Bayesian framework that
determines optimum number of components for the model.

3. The results of droughts over India during the water year (June–May) and for
each of the three seasons (winter, summer, and summer monsoon) suggest that
the drought classification by the Gamma-MM is similar to SPI when the data sat-
isfies SPI assumptions. However, the results of the two methods are significantly
different when data violate SPI assumptions.

4. Mann–Kendall trend test of precipitation series indicated that several IMD grids
in India have statistically significant trends. IMD grids with significant negative
trend in 4-month cumulative precipitation (JJAS) are greater in number (34 grids)
compared to grids with significant positive trend (25 grids). Also, similar number
of grids with significant positive precipitation trends and negative precipitations
trends (30 grids each) are found when analyzing water year precipitation series.

5. An alternate method is proposed for drought analysis of trend stationary precip-
itation series. The method first explicitly removes trend from the data, and then
analyzes detrended series to estimate changes in drought frequency and drought
classification thresholds.

6. The application of the proposed method on synthetic and real-world data sug-
gests that it offers flexibility in modeling nonstationary time series compared to
standardized nonstationary precipitation index (SnsPI) and relative SPI.

7. The proposed method can be applied only if the trends are deterministic and
can be explicitly estimated as a function of time. Future research should explore
possibilities to relax this requirement.
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Urban Hydrology in a Changing World

James A. Griffiths and Shailesh Kumar Singh

1 Introduction

Across the globe, an increasing number of people are choosing to reside in cities
rather than in rural areas (70% of the global population is expected to reside in
cities by 2020) [30]. The resulting increase in population and land-cover change will
increase the demand for water resources in such areas. In addition, climate change
may result in an increased risk of both flood and drought frequency depending on the
geographic location [43]. As combined impacts of urbanisation and climate change
become evident, the need for accurate simulation of water demand, management
and distribution will become critical. This chapter considers the different modelling
approaches that can be used to represent the increased hydrological dynamics that
will be found within urban areas. The role of sustainable urban water management
in mitigating impacts of climate change and urbanisation is also considered.

2 Modelling Urban Hydrology

Thehydrologyof urban areas is verydifferent from that of rural areas.Most obviously,
urban areas exhibit higher percentages of impervious (or near impervious) areas.
Runoff generation is also higher and faster in urban areas, as there is less natural
storage to delay incident rainfall. There is also less vegetation compared to rural areas,
so that whilst surface evaporation is comparable, there is less evapotranspiration and
withdrawal of subsurface water. Urban areas also exhibit greater use of artificial
subsurface drainage which may also combine domestic discharges with stormwater
and subsurface seepage, resulting in an overall depletion of drainage water quality.
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The use of infrastructure responses to mitigate the impacts of urbanisation and
climate change [13] makes the design stage use hydrological models crucial for
developing infrastructure performance scenarios and comparisons. The choice of
model should be made relative to the nature of the existing hydrological system and
any expected future perturbation.

2.1 Network Representation

A key measure of the utility of any hydrological model is how robustly it can repre-
sent different surface and subsurface networks. This task is difficult because surface
water networks in modern cities consist of both natural and man-made channels and
pipelines. In addition to simulating surface water flows, sediments and pollutants,
such models should also be able to provide information to help identify areas for
habitat creation, recreation, and socio-cultural value.

Development of a realistic and representative city-scale hydrological model
requires consideration of the surface and subsurface drainage networks. A consistent
method for representation of existing and future network components is essential.
Once a reliable model of the network topology is identified, operational models can
populate the network with hydraulic equations to describe both hydraulic response
and system control mechanisms [6]. A number of contemporary models utilise Geo-
graphic Information Systems (GIS) to capture the topology of urban networks. How-
ever, the extent to which such information reflects reality will depend on the level of
detail required by the model (i.e. flow direction, intensity, variability and range) and
the scale which the network is mapped.

Most GISs can also be used to provide a basic visual representation of water
networks. Figure 1a shows an example of a standard representation of a surface
water network for example. Features include a large river network represented by
polygons, and a canal network represented by a polyline coverage. The database was
compiled from satellite imagery using manual digitization. A semi-natural drainage
network that surrounds (and feeds into) the urban network was determined from
30 m resolution ASTER GDEM data. The two networks were manually aligned, by
identifying pour points at the interface between the canal and river network on the
floodplain and the surrounding mountain stream network.

Figure 1b shows a width-weighted representation of the same network that uses
channelwidth data to scale the canal system. The advantage of Fig. 1b is that channels
that have more influence on the overall flow pattern within the network are more
easily identifiable. For example, in Fig. 1b, the existence of a large, north–south,
flood alleviation channel is more easily seen and can thus be better represented
within numerical simulation models.

The ArcGIS (ESRI) ‘Geometric Network’ toolset allows mapping and represen-
tation of pipe and surface water networks, using nodes and vectors (referred to as
junctions and edges). The connectivity of a network is based on ‘geometric coinci-
dence’, so that it is possible to combine the topology and connectivity properties of a
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Fig. 1 a Standard network representation; and b width-weighted representation

network with feature locations from other networks or point features. The framework
allows drainage direction to be defined either as the direction in which the network
was digitised, or by definition of ‘sink’ and ‘source’ point location data (nodes).
Within a city network, sink nodes can be used to represent drainage outlets (such as
floodgate or sluice gates), whilst source nodes can be used to represent inflows (such
as tributaries from peri-urban areas).

Figure 2 illustrates a section of network consisting of three channel segments
(Edges 1 to 3). In the illustration, a source node is linked to two sink nodes, and as
a result water is adjudged to flow from the source node to the sink nodes. Table 1
illustrates the different flow directions that would be determined for different node-
type combinations. It can be seen that only two combinations would result in a
definitive flow direction in all three channels—other combinations will result in
‘null’ or unknown flow direction.

To obtain a more accurate representation of flow direction within a GIS, drainage
direction can be defined by the direction of digitization (i.e. during the digitization
process). However, this method would prove to be arduous on very large networks
andwould be unable to capture changes in flow direction caused by varying boundary
conditions.

Figure 3a illustrates a new urban development in Ningbo, China. The observed
water flow in the surrounding drainage network is largely controlled by pre-existing
agricultural channels that drain this part of the city in a north-westerly direction
towards the Yong River. Figure 3b indicates the location of GIS-digitised sink
nodes that represent city floodgates. The flow direction in any channel, however, is
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Fig. 2 Illustration of flow
direction between Junction 1
(source) and two sink nodes
(Junctions 2 and 3)
indicating outflow becoming
indeterminate (●) after the
bifurcation point

determined as much by channel proximity to the floodgates as the location relative
to other channels.

It can be seen from Fig. 4a that the western side of the area is characterised
by newer linear-type larger channels, whilst the eastern side of the area retains the
older irregular drainage pattern. As the area was relatively small, drainage direction
could be defined manually using the direction of digitisation (Fig. 4b). Whilst the
predominant direction of flow is from southeast to northwest, some drainage will
still occur in the opposite direction because of the network configuration.

Development of GIS-based drainagemaps such as those in Figs. 3 and 4 allows the
analysis of total system storage, travel times, water transfer efficiencies assessment
of the capacity of the system to manage high magnitude events (flood and drought),
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Table 1 Possible combinations of flow directions within a tri-channel junction

Junction 1 Line 1 Junction 2 Line 2 Junction 3 Line 3

Sink < null > null >

Source > null < null <

Sink < Source > null o

Source > Sink o Sink o

Sink < Source o Source o

null < Source o Source o

null > Sink o Sink o

Sink o Sink o Sink o

Source o Source o Source o

null x null x null x

where o � unknown direction; x � no flow; > indicates flow towards junction; < indicates flow
away from junction

Fig. 3 a Location of Ningbo East City development area within canal network and relative to larger
river system; and b location of sink points (floodgates)

and assessment options for diversion of water. A more dynamic characterization
of flow and flow direction can only be achieved using independently developed, or
bespoke, hydrological software.

2.2 Numerical Simulation Models

Most commercial hydrological models now incorporate the capture of surface or
subsurface networks in their data preparation routines. Model performance generally
improves with increased network representation, with the marked exception of some
parsimoniousmodelling approaches (e.g. Coutu et al. [9],Griffiths et al. [15]). Table 2
lists some of themost widely used, commercial and open-sourcemodels. Themodels
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Fig. 4 a Detail of Ningbo East City development area within canal network. b Flow direction for
(a) based on ArcGIS geometric network capability
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are categorised by their function (hydrology, hydraulic and water quality). The most
globally recognised and frequently utilised runoff models for urban areas include the
rational method, SCS or curve number method (TR55), a range of models developed
by the US Department of Agriculture (USDA) (TR-20; TR-55), and the US Army
Corps of Engineers developed HEC-1 and HEC-HMS.

Manymodelling platforms utilise theUSEnvironmental ProtectionAgency’s Sur-
face Water Management Model (SWMM) for simulation of runoff, routing and net-
work hydraulics (EPASWMM; PCSWMM; InfoSWMM; xpSWMM). As a dynamic
rainfall-routingmodel, it can be used for both event-based and continuous runoff sim-
ulation. SWMMalso accounts for a range of hydrologic processes that produce runoff
and will route both overland flow, pipe flows and channel flows. Larger modelling
suites often used for urban water modelling include Infoworks, MIKE URBAN and
the Soil Water Assessment Tool (SWAT).

Shrivastava [44] suggests that whilst all urban hydrological models can be
described in terms of their spatial (lumped or distributed) and temporal (event-based
or continuous) predictive capacity, no model currently exists that can meet all these
needs. Currently, even models adjudged to be the most robust in the field have scope
for improvement in terms of representation of runoff generation processes, ground-
water interaction, integration of hydrological and ecological parameterisation, and
calibration and validation of sub-catchment scale processes.

Joyce et al. [18] propose the use of a multi-scale modelling approach to gain a
more robust assessment of drainage infrastructure and hydrological response. Whilst
such an approach would require the use of a range of scale-dependent informatics to
support hydrological modelling at different scales, it would be better able to account
for locally scaled watershed response, to a larger range of climatic impacts.

2.3 Representing Climate Change

The International Climate Change Committee Report—Fifth Assessment Report
(AR5) [2] indicates a worldwide increase in the frequency of extreme rainfall events
as a result of globalwarming. Significant changes in annual rainfall totals and temper-
ature variation are also expected [38]. Recent improvements in modelling capability
and accuracy have led to improved assessment of climate-related hazards such as
wildfire, drought, water security, flooding and water quality.

In spite of advances in our understanding of the implications of climate change
for the design and operation of urban infrastructure, uncertainty related to interpre-
tation of local-scale impacts remain. Spatial and temporal scales of interest for urban
hydrology, for example, are most often described in metres or kilometres and min-
utes or hours, respectively [10, 41, 49]. Data from global climate models, therefore,
require downscaling from regional climatemodels to higher spatial and temporal res-
olution climate change projections. A number of approaches can be used to interpret
regional-scale climate models at the city-scale.
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Research into downscaling climatemodels for urban areas has developed over sev-
eral decades, originally to account for lack of suitable precipitation data for drainage
design [33]. The challenge of trying to represent the impact of global change on
local hydrological systems has been discussed more fully by Arnbjerg-Nielsen [4]
andWillems et al. [49]. Even recently, however, Arnbjerg-Nielsen et al. [3] concluded
that describing precipitation patterns under changing climate for use in the design
and operation of urban drainage infrastructure remains problematic. Olsson et al.
(2016) suggest that climate impact assessment has been developed with a primary
focus on applicability to a medium-sized rural basin. However, impact assessment
is to increase the degree performed at scales smaller or larger than such basins. The
co-optimisation of this aim with objectives of resilience, flexibility, robustness and
rapid response will therefore become ever more important to safeguard habitable
cities into the future.

The use of Global Circulation Model (GCM) data for urban hydrological mod-
elling is hindered, however, by uncertainty within downscaling model estimates to
spatial resolutions used by local-scale models. The extent of the uncertainty intro-
duced will depend on the location being modelled, and the GCM data and down-
scaling methods used. Representation of potential changes to rainfall extremes is
particularly difficult as they may not be represented in average annual changes pre-
dicted by the GCM. Similarly, precipitation extremes occur in durations less than
24 h meaning that interpreting future change requires temporal downscaling from
climate change model.

3 Sustainable Approaches to Urban Water Management

Sustainable Urban Drainage Systems (SUDS) aim to reduce rates of stormwater
runoff by limiting imperviousness and employing green technologies, while also
promoting water capture and reuse [24]. The approach also provides a range of
ecosystem service benefits, including water quality treatment, groundwater recharge
and flood resilience [21, 26, 50]. Recent years have seen a marked increase in ‘Blue-
Green’ approaches to urbanwatermanagement [11, 25, 46], which has influenced the
development of urban water network representation and subsequent mathematical
modelling (e.g. Infoworks, SWMM, MIKE URBAN, XPS).

It can be argued that the development of urban hydrological models has facili-
tated the development of a more integrated approach to surface water management
in cities. Indeed, SUDS and similar conceptual approaches [e.g. Water Sensitive
Urban Design (WSUD) and Low Impact Development (LID)] are increasingly being
adopted specifically to reduce the hydrological impacts of urbanisation. Typical mea-
sures that ideally can be represented within stormwater models include green roofs,
bio-retention systems, permeable pavements, swales, infiltration ponds, etc. [24].
This is consistent with the needs of planners and developers who increasingly require
reliable simulation of potential community and ecosystem service benefits, such as
water quality treatment, groundwater recharge and flood resilience [21, 26, 50–52].
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The concept of sustainable urbanwatermanagement aims to reducepeak stormwa-
ter runoff in urban areas and improves the water quality of stormwater released to
natural water courses. Additional environmental and community benefits of this
approach are described by Wong [51] and Woods Ballard et al. [52]. Whilst there is
growing evidence to support the effectiveness of SUDS, WSUD and LID [23, 34]
and the efficiency of related infrastructure [1], its wide-scale adoption is not universal
due to a lack of information about the long-term cost–benefits of such systems [36].

The identification of internationally accepted performance criteria or best practice
guidelines will be critically important therefore to the long-term adoption of more
sustainable approaches to surface water management. Such guidance already exists,
including that by the Construction Industry Research and Information Association
(CIRIA) in the UK [52], various state-level guidance documents by the Environ-
mental Protection Agency in the USA (for example [39]) and national government
Sponge City Construction Guidelines in China [7].

Most attempts to accurately measure the performance and overall impact on water
quantity and quality of SUDS occur at the micro-scale and in the near-downstream
area of the developed area. Golden and Hoghooghi [14] suggest that whilst such
studies are useful, assessment of the overall impact of SUDS at the catchment scale
should also be sought. Similarly, Trinh and Chui [47] highlight the fact that our
current understanding of urban hydrological impacts is too focused on peak flow
prediction or storm recession times, to the detriment of other hydrological aspects.

There is adequate evidence to support the effectiveness of this approach [23, 34]
and the efficiency of related infrastructure [1], but its wide-scale adoption is still not
standard beyond the site scale, and the reliance on traditional ‘grey’ infrastructure
design continues. This is due to the convoluted nature of urban planning process [12]
and the lack of a standardised approach to quantifying long-term cost–benefits of
stormwater infrastructure [36].

3.1 Case Study—New Zealand

To assess the extent to which the SUDS approach may be adopted in the future, it
is useful to look at the case of New Zealand where such measure has been used for
over 10 years and is currently attracting increasing attention with respect to levels
of service, legislation compliance and stakeholder expectation [22]. Recent flood
and water quality incidents in the country have also pushed these issues further
into the public spotlight (Christchurch flooding in 2014 and 2017; and Auckland
flooding in 2017). Expected changes in climatic patterns across New Zealand also
suggest that extreme events will become more common in future and should be
considered in more detail in the planning and development of urban environments in
the future. Whilst some regional and city councils have started to consider possible
implications of climate change (e.g. [5]), there is still a need to describe replicable
approaches to assess the impact of themost recent regional climate changeprojections
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[29, 45]; consider available mitigation options; and thus recommend appropriate
water management responses to reduce risk and improve resilience.

Several national and regional policy documents [22, 31, 32] already promote
the use of WSUD as a way of combatting increased pressure on urban drainage
systems and away to improve the hydraulic andwater quality characteristics of urban
streams. Internationally, WSUD has also begun to gain traction as a mechanism for
climate change adaptation [42], providing higher amenity value by ‘greening’ urban
environments [8].

However, the wider uptake of WSUD in NZ is hindered by a range of barriers
[29]. These include high capital cost, high maintenance requirements and inadequate
assessments of long-term benefits [40], and uncertainty over costs relative to con-
ventional infrastructure provision [16]. This information gap, along with a lack of
clear national guidelines, represents a significant inertia against wider adoption [35,
48]. In this respect, there is much need for evidence to inform the wider adoption of
WSUD in New Zealand cities where appropriate.

Commitment to mitigation measures requires capital expenditure and confidence
that such measures will be effective under future conditions. Whilst there are exam-
ples of the use of cost–benefits analysis methods in urban water management and
planning, the approach is still underutilised in New Zealand. For this purpose, reli-
able life cycle costing methods are needed to estimate the relative costs of WSUD
compared to a conventional infrastructure approaches when adapting to projected
climate change. Some work in this field has been conducted by Ira [17], which pro-
vides at least a foundation for urban developers and planners to develop newmethods
for evaluation of different climate change adaptation strategies.

The generation of location-specific flow estimates that account for the future cli-
mate change is needed to improve flood mapping in urban areas and to inform flood
risk assessments for specified design events. Similarly, summary flow statistics can
be used to better inform future of water supply, wastewater and transport infras-
tructure planning. Inter-disciplinary collaboration is needed to develop and apply
new approaches that guide stormwater management to deliver more resilient and
sustainable outcomes with greater cost-effectiveness. This in turn will aid wider
environmental, social and cultural benefits that contribute to better urban livability
within New Zealand.

4 Conclusion

It is generally held that urban areas have a lower capacity to adapt to climate change
than natural environments, but that they can be managed to perform better [28].
Future challenges imposed by rapid urbanisation and climate changemean that urban
planners and developers will need to consider more sustainable ways of managing
water and related environmental services [20]. The development of cost-efficient
and hi-tech water management models and monitoring systems will go some way
to making this possible [19], but hydrologists should also take responsibility for
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increasing implementation of such systems, and the continued development of related
best practice.

In response to increasing urbanisation, many city governments around the world
are legislating for stormwater infrastructure that integrates infiltration, storage and
conveyance systems to achieve higher overall system performance, and ability to
better meet multiple design objectives [37]. As suggested by Makropoulos [27],
however, this strategy needs to be supported by a step change in conceptual represen-
tation and understanding of the technical and social components of the environmental
systems concerned.

Hydrology will be increasingly important to the design and functioning of new
urban development areas. Designing (or retrofitting) local urban drainage networks
will continue to be challenging as larger surface water networks are managed at the
city-scale. Indeed, only a modelling approach that considers plot-scale hydrology
within the context of the dynamics of the larger drainage system will be useful in
development and design of appropriate drainage systems.

While there is widespread capability in the engineering community to apply com-
mercially available hydrological and hydraulic models for drainage design and flood
studies, the process and results of flood modelling often lack transparency. Ideally,
government agencies, engineers, developers and planners would refer to a common
template that can be used to improve resilience of drainage designs to future risk.
Such a template would improve on agency-specific guidance using common assess-
ment methods to measure the benefits of water management investment strategies.

The use of GIS-based mapping and analysis techniques allows urban drainage
networks to be topologically represented, so that information relating to upstream
or downstream channel sections (such as the length between two points) can be
determined relatively easily. However, such systems have limited ways to represent
dynamic properties of networks (such as changes in flow direction). This means that
for dual direction flow systems (such as tidally influenced networks), accurate repre-
sentation of flow direction and magnitudes increasingly requires bespoke software.

Finally, climate changewill continue to drive changes in urban drainage paradigms
which will result in the implementation of more practical and sustainable drainage
solutions. Indeed, the design and optimization of urban drainage infrastructure for
climate change impacts will likely ensure our cities remain habitable well into the
future.
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Uncertainty in Calibration of Variable
Infiltration Capacity Model

Ankita Pradhan and J. Indu

1 Introduction

Hydrological models are mathematical representations for understanding the hydro-
logical processes such as, precipitation, evapotranspiration, infiltration, interception,
snowmelt, surface flow, subsurface flow as well as the interaction between them
in a simplified form. Hydrological modelling involves highly nonlinear processes,
complex interactions and high spatial variability’s at basin scale. The fundamental
objective of hydrological modelling is to gain an understanding of the hydrologi-
cal system in order to provide reliable information for managing water resources in
a sustained manner. Over the history of model development, hydrological models
have been adopted, modified and applied to solve a wide spectrum of hydrological
problems [6, 28, 64]. Initiating from the mid of nineteenth century, the evolution
of hydrological modelling is continuing with the development of understanding the
physical processes, computational efforts and data retrieving facilities.

Coupled models of land surface and subsurface, which incorporate hydrologic
components into Land Surface models (LSMs), may yield improvements in weather
and short-termclimate forecasting andflood/drought forecasting. LSMshave evolved
from the original bucket model of Manabe et al. [48] which is the first generation of
land surfacemodels. The bucket model allows the water level in a soil moisture reser-
voir to increase during precipitation events and to decrease as the water evaporates.
Here, the efficiency of evaporation varies with the water level in reservoir. As a result,
rainy periods would lead to high evaporation rates and droughts would in turn lead to
low rates. In the bucket model, runoff is non-existent until the precipitation reaches
the maximum value, i.e. the field capacity. These resulted in limitations involving:
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of the first-generation land surface models, i.e. the bucket model were: no explicit
representation of vegetation, no heat conduction into soil and water holding capacity
and the last being prescribed threshold for precipitation to runoff [48]. The Project
for Intercomparison of Land surface Parameterisation Schemes (PILPS) showed that
the bucket model was inadequate for diurnal to multi-annual scale surface hydrology
representation.

The second-generation land surface models were introduced by Sellers et al. [53]
and Dickinson et al. [21] in the mid-1980s with the Simple Biosphere Model (SiB)
and Biosphere-atmosphere transfer scheme (BATS) model respectively. The major
improvements of the second-generation land surface models were soil moisture and
temperature in two layers [19], vegetation as a single-bulk layer, interaction of land
surface with atmosphere, separate treatment of vegetation and soil (e.g. different
albedo), explicit representation of visible (VIS) and Near Infrared (NIR) waveband
(plants absorb most energy in VIS but reflect more in NIR), integration of satellite
data (e.g. albedo), include the impact of vegetation and representation of evaporation
from trees (stomatal conductance), inclusion of canopy interception of precipitation,
runoff parameterization (varies according to models) and inclusion of multilayer
snow schemes. The PILPS showed that the second-generation models outperformed
the first-generation models.

The third-generation models incorporated include the physics of photosynthesis
with a motive that plants and trees would open their stomata to maximize the carbon
intakewhileminimizingwater loss. The inclusion of physics of photosynthesiswould
be an accurate representation of realistic transpiration rates. Themajor improvements
in the third-generation land surface models were physically based parameterization
of stomatal conductance, inclusion of leaf photosynthesis, allocate carbon to simulate
plant growth, inclusion of soil carbon and simulation of land surface in carbon cycle.

In these models, uniform soil moisture condition is assumed spanning over thou-
sands of square kilometres. The processes that control movement of soil moisture
and runoff production are three-dimensional in nature and are not controlled only in
the vertical direction. For example, when rain falls in a saturated seepage face in a hill
slope is spreading over a length of ten meters, water does not infiltrate the soil rather
it runs off directly. The surface runoff over sub-saturated soil resulting from high
precipitation intensities vary with space. On the other hand, rainwater falling on the
top of the hill can infiltrate the soil. Thus, it becomes very difficult to separate these
regimes explicitly only with a set of vertical layers. Hence, it becomes a necessity
for a modeller to enforce parameterizations that can impart the sub-grid behaviour
to average soil moisture contents in the different layers. The amount of precipitation
that is converted to runoff can be found accurately by the spatial variation of soil
moisture and not by averaging across a large area. These limitations in the third-
generation models led to improve the land surface models with sub-grid variability
that would produce realistic runoff rates. Liang et al. [43] came up with the Variable
Infiltration Capacity (VIC) model to grip up with the problem. The model explicitly
represents the spatial variation of infiltration capacity.

The VIC model was first stated by Stamn et al. [58] as an inclusion in Geophys-
ical Fluid Dynamics Laboratory GCM. The authors wanted to characterize the land
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surface hydrological processes and include it to global climate to determine its sen-
sitivity. VIC model was initially designed to imbibe the variation of moisture in soil
within a grid. Initially the VIC model had one layer of soil with base flow consid-
eration. The VIC model simulation was carried out in four different soil moisture
scenarios. The first simulation was done with fixed global soil moisture of 15 cm
which showed lower global average soil moisture. The second used a more realis-
tic approach as they provided varying soil moisture capacity around the globe. The
other two simulations were done considering global fixed soil moisture of 5 cm and
15 cm respectively. But the results were found to be unsatisfactory as it was found
that evaporation over northern Eurasia and North America was unaffected by the soil
moisture, due to the dry period drainage to base flow. Thus, realizing the need ofmore
realistic hydrological model Liang et al. [43] improved the model by implementing
two soil layers. They developed the model with a more realistic evaporation process
in the form of three components of evapotranspiration: canopy evaporation, evapora-
tion from bare soils and transpiration. In addition, the model was able to include the
sub-grid spatial variability of land cover with their respective roots fraction. In spite
of this, the two-layer VIC model was unable to imitate the evaporation as compared
to the latent heat because of lower moisture in the upper soil layer in certain basin.
Although such basins showed an appreciable simulation of total soil water content,
soil moisture in the upper 0.5 m was found to be underestimated. This made the
authors realize the need to improve the soil moisture transport capacity of the model.
Hence, Liang et al. [42, 44] added 0.1 m top soil thus giving rise to a new three-layer
VICmodel. The specialities of the three-layermodel were the variability of fractional
coverage of vegetation and leaf area index at each time step. The authors found that
root distribution was more sensitive to evapotranspiration and soil moisture rather
than depth of soils.

Scientists were interested in coupling hydrological and atmospheric models
through the use of Land Surface Parameterization schemes. But no research was
carried out to analyse the reliability of LSP schemes. This made Lohmann et al. [46]
to develop a horizontal routing model that could be coupled to land surface param-
eterisation schemes. They estimated the runoff by routing streams along a channel
and then comparing it with measured stream flow data. The application of these
routing models was done by Lohmann et al. [47] to predict the stream flow in Waser
River Catchment of Germany. The routing model performed good in the prediction
of daily, monthly and annual stream flow in the river catchment. The authors also
highlighted the significance of infiltration parameter, soil thickness and base flow
recession curve over runoff volume generated by the VIC model.

Abdulla and Lettenmaier [1] applied the VIC hydrological model to estimate the
water balance of the Arkansa-Red River basin. The model derived stream flow and
evapotranspiration were compared with observations from observed discharge and
evapotranspiration derived from an atmospheric budget of the Arkansas-Red basin.
[2, 3] framed a methodology for developing regional parameter estimation equations
for the VIC hydrological model by using a set of 34 unregulated catchments dis-
tributed throughout the Arkansas-Red River basin of the south central U.S. Zhou
et al. [73] assessed the VIC-3L hydrological model for the Baohe river basin to see
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the importance of remote sensing data. They simulated the water fluxes using the
VIC-3L model by taking land cover properties from the resource and environment
database of China (REDC) and from the moderate resolution imaging spectrora-
diometer (MODIS) data and compared with the daily observed stream flow at the
outlet of the river basin. Adam [4, 5] used the VIC hydrological model to under-
stand the causes of stream flow changes in the Eurasian Arctic region in two studies.
First, using a physically based reservoir model coupled to VIC model and second,
by applying only VIC model. Liang et al. [41] investigated the impacts of spatially
distributed precipitation and soil heterogeneity on modelling water fluxes at dif-
ferent spatial resolutions at the Blue water watershed in Oklahoma. The authors
suggested that a critical spatial resolution for the VIC-3L model may exist for the
studywatershed. For spatial resolutions finer than the critical resolution, one does not
necessarily obtain better model performance in terms of runoff, evapotranspiration,
and soil moisture with increasing spatial resolution if the VIC-3L model parameters
are calibrated at each special resolution. Guo et al. [31] explored the impacts of dif-
ferent precipitation data sources (radar and rain-gauge) on water budgets simulated
by the VIC-3L land surface model over the watershed of the Illinois River at Watts,
Oklahoma. Hurkmans et al. [35] investigated the effect of projected land use changes
scenarios on river discharge in the Rhine basin which was expected to shift from a
combined snowmelt-rainfall regime to a more rainfall-dominated regime because of
the change of climate. Lakshmi and Wood [40] evaluated the variation of evapora-
tion in time and space by simulating the fluxes using the VIC model for the King’s
Creek catchment in Manhattan. They found that the model computed fluxes match
fairly well with the observed fluxes. Matheussen et al. [49] examined the effect of
land cover change on stream flow in the Interior Columbia River basin using two
land cover scenarios using the variation infiltration capacity hydrological model. The
first land cover being the historical land covers vegetation and second as estimated
from remote sensing data. Su and Xie [59] assessed the effects of climate change on
runoff in entire China using the variable infiltration capacity surface parameterization
scheme. The VIC land surface model contains physically conceptualized parameters
that require calibration for optimal model performance. Troy et al. [63] framed an
efficient calibrationmethod for continental-scale land surfacemodelling. They exam-
ined the effect of model spatial and temporal resolutions on calibrated parameter sets
to assess whether one could calibrate at coarser resolutions and apply these parameter
sets to finer resolutions, thus reducing the computational time.Yuan et al. [71] applied
the variable infiltration capacity land surface model to simulate stream flow using
remote sensing data for the Hanjiang River basin in China. Slater et al. [56] compared
the performance of five land surface models(Chameleon Surface Model (CHASM)
Noah, Community Land Model (CLM), Variable Infiltration capacity Model (VIC),
European Centre for Medium-Range Weather Forecasts(ECMWF)), in the simula-
tion of hydrological processes across the terrestrial Arctic drainage system for the
period 1980–2001. Hillard et al. [33] assessed the snowmelt dynamics with NASA
scatterometer (NSCAT) data using the VIC hydrological model for the upper Mis-
sissippi River basin of the north central U.S. Gao et al. [29] focussed on generating
observation operators for assimilating soil moisture into land surface models using
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a number of satellite-model combinations. The authors employed a bivariate statis-
tical approach based on copula distributions for representing the joint distribution
between retrieved and modelled soil moisture, allowing for a quantitative estimation
of the uncertainty in modelled soil moisture when merged with satellite retrieval.
The remote sensing soil moisture products used is from Tropical Rainfall Measuring
Mission (TRMM)Microwave Imager (TMI) and the NASA/Earth Observing System
(EOS) Advanced Microwave Scanning Radiometer (AMSR-E). The soil moisture
model predictions are from the VIC hydrological model; the 40-yr European Centre
for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40); and the
NCEP North American Regional Reanalysis (NARR). Huang et al. [34] framed a
methodology for transferring model parameters for the VIC land surface scheme
from data-rich areas to data-sparse areas. The authors came up with two essential
steps for the successful transferring of model parameters. The first is to effectively
classify the basic available data into clusters and the second is establishing nonlinear
relationships between classified basic available data and the model parameters.

Some of the other hydrological models are Soil and Water Assessment Tool
(SWAT) model, MIKE SHE model, TOPMODEL, Hydrologiska Byrans Vatte-
navdelning (HBV) model etc.

The SWAT model is a complex physically based model developed to quantify the
impact of land management practices in large watersheds. The model is adequate
in performing long-term simulations. The model uses a two-level disaggregation
scheme; first dividing the entireWatershed into sub-watersheds and the second divid-
ing the sub-watersheds into hydrologic response units(HRU), i.e. vegetation, land use
and soil characteristics. The basic input into the model is the daily precipitation data,
maximum and minimum air temperature, wind speed, relative air humidity and solar
radiation. This model is capable enough to describe vegetation growth, water and
sediment circulation and nutrients circulation. TheMIKE SHEmodel is a physically
basedmodel taking into account different processes of hydrological cycle such as pre-
cipitation, evapotranspiration, interception, saturated and unsaturated groundwater
flow, etc. The model is efficient enough to simulate surface and ground water move-
ment and their interactions. It can also simulate sediment and nutrient transport and
other water quality problems for large watersheds. TOPMODEL is a rainfall-runoff
model that makes use of topographic information to relate it to runoff generation.
The model can be used in single or multiple catchments using the catchment grid-
ded elevation data. The model predicts the hydrological behaviour of the catchment.
Catchment topography and soil transmissivity are the major factors considered by
themodel. Themain aim of themodel is to compute the water table depth and storage
deficit at any location. The HBV model is a semi-distributed conceptual model. The
model divides the entire catchment into sub-catchments, which are further divided
into different vegetation and elevation zones. The model simulates on daily and
monthly rainfall data, air temperature ad evaporation.

In spite of the significant developments in hydrologic modelling, addressing the
uncertainty associated with hydrological predictions remains a critical and challeng-
ing one. In order to address hydrological modelling uncertainty, one needs to under-
stand, quantify and reduce the uncertainty involved in a systematic manner. It is now
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being recognized that proper consideration of uncertainty in hydrologic predictions is
essential for the purpose of both research and operational modelling [69]. The value
of a hydrologic prediction towater resources and other relevant decision-making pro-
cess is limited if reasonable estimates of the corresponding predictive uncertainty are
not provided [30]. In general, hydrological modelling gets affected by three sources
of uncertainties: (1) input uncertainty: like measurement errors in precipitation esti-
mates, identifying proper land use/land cover, etc.; (2) model or structural uncer-
tainty: originating from representation of hydrological processes in the models; (3)
parametric uncertainty:model parameter approximations or calibration uncertainties.

Hydrological simulations depend critically on the input forcing datasets, specifi-
cally on precipitation [50, 62]. The input precipitation forcing regulates the amount of
modelled precipitation that affects the simulation of runoff. The model results there-
fore rely heavily on the quality of these forcing as the uncertainty (measurement
errors, etc.) in such data will propagate through all hydrological processes during
simulations (Wagner and Gupta [7, 60, 69]. Some of the studies focus solely on forc-
ing uncertainties rather than parametric and structural studies [9, 10, 12, 14–18, 24,
30, 36, 38, 39, 45, 52, 55, 57, 65–66]. In case of complex terrain forcing uncertainty
is enhanced as meteorological variables exhibit high spatial variability [25, 26, 32].

Along with forcing datasets, many studies have focused their attention either on
model structure [37, 51, 65, 70] or on calibration parameters [61]; Benett et al. [11].
Arsenault and Brissette [8] estimated the uncertainty due to parameter set selection
using a hydrological model over several basins in Quebec. The authors found that
parameter set selection can play an important role in model implementation and
predicted flows. Poulin et al. [51] stated that for parameter uncertainty, a hydrological
model can have many equivalent local optima within a realistic parameter space.
Hence, parameter uncertainties involved in the model calibration process needs to
be evaluated.

2 Description of VIC Model

Variable Infiltration Capacity (VIC) model [42, 44] is macro-scale hydrological
model which has the capability to solve full water and energy balance within a grid
cell. It was originally developed by Xu Liang at the University of Washington. The
key characteristics of the VIC model are the sub-grid variations of vegetation, pre-
cipitation, elevation and multiple soil layer features. Some of the prominent features
of VIC are variability of soil moisture storage capacity within a grid cell along with
the sub-grid variations of land surface vegetation classes. VIC model also includes
the flexibility to include the snow model, topography information in terms of ele-
vation bands within a grid. The VIC model also includes a separate routing model
developed by Lohmann et al. [46, 47] which simulates the stream flow based on a
linear transfer function.

Figure 1 shows the schematic of the VIC model with a mosaic representation of
vegetation coverage and three soil layers. The surface of a single grid cell is described
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Fig. 1 Hydrologic process involved in VIC model (Adapted from: Gao et al. [29])

in 1 toN different vegetation tiles where N + 1 represents the bare soil. For each of the
vegetation tile, the vegetation characteristics, such as leaf area index(LAI), albedo,
minimum stomatal resistance, roughness length, architectural resistance and relative
root fractions are assigned. The Penman–Monteith equation is used to calculate evap-
otranspirationwhere evapotranspiration transportsmoisture in upward direction. The
total evapotranspiration is given by the sum of evaporation from canopy and bare
soil tile which is further weighted by the coverage fraction for each surface cover
class. The rainfall is intercepted by the canopy layer according to a biosphere–at-
mosphere transfer scheme (BATS) parameterization [20] as a function of LAI. The
bottom layer responds to short-term rainfall only when the upper soil layers are satu-
rated. The runoff from the bottom soil layer is described as per the drainage in Arno
model [27]. The moisture from the roots can also be transported upward through
evapotranspiration. For each of the land tile at each considered time step, the model
calculates the infiltration, soil moisture distribution, surface runoff, subsurface runoff
and drainage between soil layers. The summation of variables over each of the land
tiles weighted by fractional coverage gives the total heat fluxes, i.e. (latent heat,
sensible heat, ground heat), total surface and subsurface runoff.
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2.1 Water Balance Mode

The water balance mode takes less computational time as compared to the energy
balance model. One of the basic assumptions of this mode is air temperature is equal
to the soil surface temperature. The water balance equation for each time step is

∂S

∂t
� P − E − R, (1.1)

where dS/dt, P, E and R are the change of water storage, precipitation, evapotran-
spiration and runoff, respectively. All units are in mm. Equation where vegetation is
present in the canopy layer (interception) is

∂Wi

∂t
� P − Ec − Pt , (1.2)

where Wi is canopy intercepted water (mm), Ec is evaporation from canopy layer
(mm), and Pt is through fall (mm).

2.1.1 Evapotranspiration

The three types of evaporation that theVICmodel considers are: evaporation from the
canopy layer (Ec, mm) of each vegetation tile, transpiration (Et , mm) from each of the
vegetation tiles and bare soil evaporation (El, mm) [43]. The total evapotranspiration
over a grid cell is calculated as the sum of the above components, weighted by the
respective surface cover area fractions.

E �
N∑

n�1

Cn · (Ec,n + Et,n)+CN+1 · E1, (1.3)

where Cn is the vegetation fractional coverage for the nth vegetation tile, CN+1 is the

bare soil fraction, and sum of all fractions has to be 1, i.e.
N+1∑
n�1

Cn � 1.

Canopy Evaporation
The maximum canopy evaporation (E∗

c , mm) from each vegetation tile is calculated
using the following formulation:

E∗
c �

(
Wi

Wim

)2/3

Ep
rw

rw + ro
, (1.4)

where Wim, r0, rw, and Ep are the maximum amount of water the canopy can inter-
cept(mm) (Dickinson [20]), the architectural resistance (s m−1), aerodynamic resis-
tance(s m−1), the potential evapotranspiration(mm) given by the Penman–Monteith
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equation respectively. The Penman–Monteith equation as given by Shuttleworth [54]
is

λvEp � �(Rn − G) + ρacp(es − ea)/ra
� + γ

, (1.5)

where λv,, Rn, G, (es − ea), ρa, cp, Δ, γ are the latent heat of evaporation (J kg−1),
the net radiation (W m−2), the soil heat flux (W m−2), the vapour pressure deficit of
the air(Pa), the density of air at constant pressure (kg m−3), the specific heat of the
air (J kg−1 K−1), the slope of the saturation vapour pressure temperature relationship
(Pa K−1), and the psychrometric constant (66 Pa K−1) respectively.

Vegetation Transpiration
The vegetation transpiration (Et , mm) is estimated using [13, 22, 23]:

Et �
(
1 −

(
Wi

Wim

)2/3
)

Ep
rw

rw + ro + rc
, (1.6)

where rc is the canopy resistance given by:

rc � r0cgT gvpdgPARgsm
L AI

(1.7)

where r0c, gT , gvpd , gPAR and gsm are the minimum canopy resistance(s m−1), the tem-
perature factor, the vapour pressure deficit factor, photosynthetically active radiation
flux (PAR) factor and soil moisture factor, respectively.

The sum of transpiration from all available soil layers in weightage to each layer
roots fraction gives the total vegetation transpiration for a single vegetation tile.

Bare soil evaporation
The bare soil evaporation takes place only on the thin uppermost layer and evaporates
at potential evaporation when the layer is saturated. In case the uppermost layer is
not saturated the Arno method formulated by Franchini and Pacciani [27] is used to
calculate the evaporation rate (El).

E1 � Ep

⎛

⎝
AS∫

0

d A +

1∫

AS

i0
im(1 − (1 − A)1/bi )

d A

⎞

⎠, (1.8)

where i, io, im are the infiltration capacity, infiltration capacity at a corresponding
point and the maximum infiltration capacity respectively. Further, A, As, bi, θs and
Z represents fractional area of infiltration capacity being less than i, fractional area
of saturated bare soil, infiltration shape parameter, soil porosity and depth of soil
respectively. The infiltration capacity (i) as described by the Xianjiang model [72]
that uses the spatial heterogeneous structure is expressed as
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i � im(1 − (1 − A)1/bi ) with im � (1 + bi ) · θS · |z| (1.9)

2.1.2 Soil Moisture and Runoff

The VIC model adopts the variable infiltration curve given by Zhao et al. [72] to
consider the spatial heterogeneity in generation of runoff and the Arno model for the
subsurface runoff formulation.Themodel assumes that the surface runoff is generated
from the upper two soil layers by those areas for which precipitation added to soil
moisture storage exceeds the storage capacity of the soil. The total runoff Q is the
sum of direct runoff (Qd,n, mm) and base flow (Qb,n, mm) for each tile.

Q �
N+1∑

n�1

Cn · (Qd,n + Qb,n) (1.10)

The direct runoff Qd, for the entire upper layer (layer 1 and 2) within each time
step is given by Liang et al. [42, 44]

Qd �
{
P − z2 · (θS − θ2) + z2 · θS · (1 − i0+P

im
)1+bi , P + i0 ≤ im

P − z2 · (θS − θ2), P + i0 ≥ im
, (1.11)

where the terms are explained above. The base flow (subsurface runoff, Qb) given
by [27] which used the Arno model is

Qb �
{

DSDm
WSθS

· θ3, 0 ≤ θ3 ≤ WSθS
DS Dm
WSθS

· θ3 + (Dm − DSDm
WS

)( θ3−WSθS
θS−WSθS

)2, θ3 ≥ WSθS
, (1.12)

where Dm, Ds and Ws are the maximum subsurface flow (mm d−1), fraction of Dm

and the fraction of maximum soil moisture (soil porosity) θ s. The base flow recession
curve is linear below a threshold (WS θ s) and nonlinear above the threshold.

2.2 VIC Routing Model

TheVICmodel simulates each grid cell independentlywith no horizontal flowamong
the grids. As VIC model simulates non-uniformly distributed runoff time series for
each cell, a separate model is used to transport cell surface runoff and base flow to
the outlet. Hence, the routing model used by the VIC model is adopted by Lohmann
et al. [46, 47]. Figure 2 represents the schematic of the VIC routing model. The VIC
routing model does not allow water to flow back into the grid cell from channel. To
transport the surface runoff and base flow from each grid cell to the outlet of the cell
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Fig. 2 VIC routing model (Adapted from: Gao et al. [29])

a triangular unit hydrograph is used and then routed to the river basin outlet. The
basic principle of the routing scheme follows the linear transfer functions.

3 Case Study on Calibration of VIC Model

In this study, the uncertainties in VIC model are presented through a case study
conducted over the Mahanadi basin, India (Fig. 3). The uncertainty associated with
hydrological predictions needs to be addressed. An effort has been made to simu-
late the hydrological processes for the entire Mahanadi basin using the three-layer
variable infiltration capacity model and estimate the parametric uncertainty or the
uncertainty associated with calibration of the model.

TheMahanadi basin lies encompassedwithin geographical co-ordinates of 80° 30′
to 86° 50′ East longitudes and 19° 20′–23° 35′ North latitudes. The total catchment
area of the basin is 1,41,600 km2. Basin is bounded in the North by Central India
hills, in the South and East by the Eastern Ghats and in the west by Maikala hill
range. It is a typical basin considered from geographical and geological point of view
covering major parts of Odisha, Chattisgarh, small portions of Madhya Pradesh and
Jharkhand. The hydrological importance of the basin lies in the fact that it receives
heavy to very heavy rainfall. The Mahanadi basin is subjected to frequent flooding
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Fig. 3 Study area showing locations of Gauging stations

every year. Agriculture is the mainstay of basin’s economy and sustenance of the life
of the people.

4 Datasets Used

Daily 0.25° × 0.25° gridded rainfall dataset developed by Indian meteorological
Department (IMD)was used to derive daily rainfall in millimetres over theMahanadi
basin. The IMDproduct uses gauge data from different stations from period 1951–till
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date to estimate accumulated rainfall in the 24 h ending 0830 IST. The daily max-
imum temperature, minimum temperature and wind speed data is taken from the
National Centres for Environmental Prediction(NCEP) and the National Centre for
Atmospheric Research(NCAR) with a spatial resolution of 2.5° × 2.5°. To deter-
mine soil properties the FAO global soil map of world at scale 1:5000000 has been
used. The global land use land cover map produced at 1 km spatial resolution using
Advanced Very-High-Resolution Radiometer (AVHRR) data by University ofMary-
land is used in this study. The University Of Maryland Department Of Geography
generated this global land cover classification collection in 1988. Imagery from the
AVHRR satellites acquired between 1981 and 1994 were analysed to distinguish
fourteen land cover classes. Observed hydro-meteorological data were collected for
model calibration and validation of the results. These include the discharge data
from Central Water Commission (CWC) for six stations, i.e. Kantamal, Sundergarh,
Simga, Andhiyarkore, Bamnidhi and Tikarapara as shown in Fig. 3 for the period
2002–2011.

5 Results

The methodology for setting up the VIC model is shown in Fig. 4. All the input
files have been created for the entire Mahanadi basin. Study period of 2003–2007
has been used for calibration with 2002 being the initialization period for the model.
The model is validated for the period 2009–2011. The model is set to run at 0.5°
resolution. Hence the basin gives total of 74 grid cells. A three soil layer VIC model
is considered to run the model in water balance mode. All the input files as shown
in Fig. 4 created for setting up the model.

Three hydrological stations of Mahanadi basin, i.e. Tikarapara, Kantamal and
the Sundergarh gauging station has been selected for calibrating and validating the
model (shown in Fig. 3) as continuous observed discharge data is available for these
stations. Calibration of the VIC hydrological model is an iterative process involving
the change of sensitive model parameters to obtain best possible match between the
observed and simulated values. Six model parameters of the VIC-3L model need to
be calibrated because as they cannot be determinedwell based on the soil information
[71]. These six model parameters are the depths of the upper and lower soil layers
(di, i � 2,3); the Variable Infiltration Capacity curve parameter(bi) which defines
the shape of the Variable Infiltration Capacity curve; and the three subsurface flow
parameters (i.e. Dm, Ds and Ws, where Dm is the maximum velocity of base flow,
Ds is the fraction of Dm and Ws is the fraction of maximum soil moisture

The general principle to VIC model calibration

1. Soil depth—[varies between 0.1 to 1.5 m] Thicker the depth of the soil layers,
less is the runoff generated resulting inmore soil moisture stored in the soil layers
and increase the loss due to evapotranspiration.
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Fig. 4 Model inputs and VIC model methodology

2. bi—[>0 to ~0.4] The variable infiltration capacity curve parameter represents
the quantity of available infiltration capacity as a function of relative saturated
grid cell area. Higher value of bi will yield lower infiltration and higher surface
runoff.

3. Dm—[0 to ~30] It is the maximum amount of baseflow that can occur from the
lowest soil layer and depends on the hydraulic conductivity of the soil.

4. Ds—[>0 to 1] It represents the fraction of Dmwhere rapidly increasing nonlinear
baseflowbegins.A higher value ofDswill result in higher baseflowat lowerwater
content in the lowest soil layer.

5. Ws—[>0 to ~0.4] It is the fraction of the maximum soil moisture of the lowest
soil layer where the nonlinear baseflow occurs. A higher value of Ws will tend
to raise the water content demanded for rapidly increasing nonlinear baseflow,
which will tend to delay the runoff peaks.

The calibration of the above specified parameters is conducted through a trial-
and-error procedure to have an acceptable match of model-predicted discharge with
the observed discharge. Once the model is calibrated, the calibrated parameters are
used to validate the model. Coefficient of determination (R2) between the observed
with respect to simulated stream flow for the gauging stations Tikarapara, Kantamal
and Sundergarh for calibration and validation as shown in Fig. 5a, b and c are 0.73,
0.77, 0.67 and 0.68, 0.73, 0.61, respectively. The VIC model is primarily designed
to evaluate long-term climate and land cover changes over the catchments. It does
not take into effect human-induced activities such as effects of dams, reservoirs or
any other structural intervention which may be a reason of disagreement between
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observed and simulated discharge. The Mahanadi basin contains several storage
reservoirs and diversion structures. When the flow is low, reservoirs store most of the
river waters whereas during high flows reservoir throws out all waters once it is filled
thus being a possible reason of overestimation during low flows and underestimation
during high flows. The results of calibration and validation would have been better
if there were no human induced activities present.

6 Open Questions

The VIC model has been widely used in a number of research areas such as water
resourcemanagement, meteorology, environmental and atmospheric science, remote
sensing, etc. It has played the role of a hydrological model as well as land surface
model. The model has proved its efficiency by being well calibrated and applied
to a number of large basins over the continental and global scale. The model also
outperformed well relative to other land surface schemes in the PILPS project. In
addition to the evaluation of stream flow, the model has also evaluated soil moisture,
evapotranspiration and snow cover data across the globe. The VIC model has also
been used to provide long-term data record of land surface fluxes and states when
forced with high-quality meteorological forcing, the output of which can be used for
a number of purpose such as water management, analysing and predicting drought
and flood events, simulating hydrologic variables and snow simulations, etc.

Despite its number of well-proved applications the model is associated with a
number of uncertainties which may be due to the deficiencies in forcing data, the
model parameters or the model structure. The forcing uncertainty is enhanced due to
the scarcity of data stations which seeks data estimation rather than being measured
at the location, data prone to measurement errors or the high spatial variability of
the forcing variable. This uncertainty propagates from the model input to the output;
hence it needs to be quantified. Further, coming to parametric uncertainty the model
performance is also affected by the choice of parameter set. Proper selection of
parameters would lead to improvement in the model simulations.

Many studies have been done regarding quantification of uncertainty solely either
due to forcing data, model parameter or themodel structure. But the question remains
“which out of all three is the most leading uncertainty factors?”. Multiple studies
suggest different views stating either of the three being the most important factor. As,
the ultimate goal of modelling is to produce the most accurate results it is needed to
simulate the model with coexisting uncertainties in forcing errors, model parameters
and model structure and to analyse how the model sensitivity changes with respect
to all three sources of uncertainty.
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Fig. 5 a Comparison of Hydrograph at Tikarapara Gauging station: Calibration period and Vali-
dation period b Comparison of Hydrograph at Kantamal Gauging station: Calibration period and
Validation period c Comparison of Hydrograph at Sundergarh Gauging station: Calibration period
and Validation period
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Predictability of Hydrological Systems
Using the Wavelet Transformation:
Application to Drought Prediction

Rajib Maity and Mayank Suman

1 Introduction

Hydrological processes are complex and associated with multiple hydroclimatic fac-
tors. As a consequence, the hydrologic time series are continuously evolving over
time and exhibit nonstationary nature [1, 2]. Generally, the hydrologic time series
is presented in the time domain and this representation is useful when the temporal
changes in different statistical properties are attempted. However, this representa-
tion is not adequate in some cases as it hides important information about frequency
content of the time series and its temporal evolution (if any). Information on con-
stituting frequency of a time series may be extracted using mathematical transforms
like Fourier Transform, Wavelet Transform, etc.

Fourier Transform (FT) is a mathematical tool that is used to separate frequency
component of time series. The basis function used in the FT is circular functions (sine
and cosine functions). FT is based on the fact that any continuous periodic time series
can be constructed by using adequate number of appropriate sine or cosine waves. FT
transforms a time series from the time–amplitude domain to frequency–amplitude
domain. FT has been used in hydrology by many investigators. For instance, FT was
used by Kirchner et al. [3] for studying contaminant transport in catchment. Şen [4]
studied the FT of periodic-stochastic hydrologic sequences in general.

The outcome of FT can point out the frequencies of sine or cosine waves in the
given time series, however, it cannot provide the information about the temporal
evolution of amplitude of these frequencies. Rather, it provides the mean amplitude
or power of the different frequencies present in the time series. This drawback can
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be partially overcome by using short-term Fourier transform (also called Windowed
Fourier Transform), in which the transformation instead of operating on the whole
of time series at once operates on some selected length of the time series called a
window. However, this approach can only be applied when one is confident about
window size. If the window size changes too often for a time series, this methodology
does not yield satisfactory results. Hence, the FT is best suited for stationary time
series.

The Wavelet Transform (WT) is another mathematical tool extensively used for
analysis of time series in hydrology. Unlike FT, WT helps in getting temporal infor-
mation about different frequencies in the time series also, which may prove useful
while analyzing nonstationary time series. WT is being widely used for hydrological
time series prediction [5–7]. Smith et al. [8] used WT for streamflow prediction.
Özger et al. [9] and Maity et al. [10] utilized WT for drought forecasting and its
evolution. Labat et al. [11] modeled the rainfall–runoff relation using WT. These
studies highlight the appropriateness and effectiveness of WT based methodologies
to model relationship between hydrological series.

This chapter aims at exploring the potential of wavelet transform for prediction
of hydrological systems. In this regard, the mathematical framework of wavelet
transform and multi-resolution analysis using wavelet functions are discussed in
the subsequent sections. An example problem of predicting drought using multi-
resolutionwavelet is also provided for showing the effectiveness ofwavelet transform
for hydrologic prediction.

2 Wavelet Function

Wavelet is a finite disturbance of zero mean amplitude. Wavelet function has unit
energy and its integration over the real number line is zero. Details of a few well-
known wavelet functions like Haar, Morlet, etc., are shown in Table 1. Wavelet
functions are localized in both time and frequency space. Many different wavelet
functions can be derived from one wavelet function by shifting it temporally and/or
scaling, without changing any functional form [12]. The original wavelet function
is called mother wavelet and all the derived wavelet functions are called daughter
wavelets.

For a mother wavelet function Ψ (t), the daughter wavelet functions (denoted by
Ψa, b(t)) can be obtained as

Ψa, b(t) � 1√
a

Ψ

(
t − b

a

)
(1)

where a, b and t are scaling parameter, shifting parameter, and time step, respec-
tively. The scaling parameter helps in varying the frequency of mother wavelet as
it is inversely related to wave frequency and the shifting parameter helps in shift-
ing the mother wavelet with respect to time. Scaling as a mathematical operation
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Fig. 1 Different scale/frequencies of unit amplitude sign wave (νi represents frequency)

either dilates or compresses a wavelet function, i.e., larger scales correspond to the
dilated (or stretched out) daughter wavelet function (compared to mother wavelet)
and smaller scales correspond to the compressed daughter wavelet function. For
instance, in Fig. 1, different scales of sine wave with unit amplitude are shown. It can
be observed from Fig. 1a and d that decrease in scale leads to contraction in signal
and vice versa.

The importance of shifting and scaling operation on mother wavelet for wavelet
transform is discussed in Sect. 3. It should be further noticed that, with the increase in
scaling parameter, the frequency of the derived daughter wavelet decreases. Hence,
with finite scaling factor the mother wavelet and all daughter wavelet cannot cover
lower frequency range (in that case, scaling factor can become too high as scaling fac-
tor is inversely proportional to frequency). Another function called scaling function
or Father wavelet function (denoted by φ(t)) is used for covering thewhole frequency
range of the time series during discrete wavelet transform (discussed later). Father
wavelet functions, like mother wavelet functions, are of finite duration and act as
low-pass filter. In the next section, Haar wavelet is dealt in greater depth.

Haar Wavelet
Haar wavelet, proposed by Alfréd Haar in 1909, is a square-shaped wavelet, which is
also the firstmember of theDaubechies class ofwavelets and regarded as daubechies1
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Fig. 2 Haar Wavelet function a Mother Wavelet b Scaling function

or db1. As per Maheswaran and Khosa [13], this wavelet function has better time
localization capability, so, it is useful for short-term predictions. Haar wavelet
(Fig. 2a) is defined as

H (t) �

⎧⎪⎨
⎪⎩

1 0 ≤ t < 0.5
−1 0.5 ≤ t < 1
0 otherwise

(2)

The scaling function for Haar wavelet (Fig. 2b) is given by:

S(t) �
{

1 0 ≤ t < 1
0 otherwise

(3)

Haar wavelet and scaling functions are having the following properties:

(i) The Haar wavelet and its scaling function can be expressed as linear combina-
tion of scaling function of different scales.

S(t) � S(2t) + S(2t − 1) (4)

H(t) � S(2t) − S(2t − 1) (5)

(ii) Any continuous real function on [0, 1] can be approximated by lin-
ear combinations of dyadic Haar wavelet with different scales and shifts
(1, H(t + b1), H(2t + b2), H(4t + b3), . . . , H(2nt + bn), . . .).

(iii) Similarly, any continuous real function with compact support can be approxi-
mated by a linear combination of scale functions with different scales and shifts
(S(t + b1), S(2t + b2), S(4t + b3), . . . , S(2nt + bn), . . .).
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3 Wavelet Transform

Wavelet transform aims to provide the state of different frequency/frequency band in
the time series with time. For this purpose, theWT uses a family of daughter wavelets
(Eq. 1) for transformation. Both the operations of shifting and scaling used during
the derivation of different daughter wavelets have their significance with respect
to wavelet transform. Shifting of wavelet function helps in capturing the state of
different frequencies along the time. Scaling operation on the other hand changes the
frequency of the mother wavelet function (Eq. 1). The scaling parameter is similar
to the scale used in maps, i.e., high scale (thus low frequency) corresponds to non-
detailed global view (of the time series), and low scale (high frequency) corresponds
to detailed view. Scaling is required to capture the information regarding different
frequency ranges in the time series as per the uncertainty principle of signal analysis
which states

ΔtΔω ≥ 1

2
(6)

where Δt represents time step and Δω represents resolution in angular frequency
(ω � 2πν, where ν is wave frequency). Hence, the larger is time resolution chosen
for the analysis, the smaller will be frequency resolution analyzed or vice versa.
Hence, to analyze the time series at different frequency resolutions, the scaling of
mother wavelet is required.

In a nutshell, WT transforms the time series into its constituents or components
based on shifting and dilation or scaling of the mother wavelet Ψ (t). DuringWT, the
time series is convoluted with mother wavelet of different scales and shifts to obtain
the wavelet components. It should be noted that despite having finite length, scaling
and shifting of mother wavelet enable it to catch most of intermittent disturbances of
different durations. By using daughter wavelet of higher scale, WT extracts the slow
moving changes or global information in time series and by using daughter wavelet
of lower scale, WT extracts the detailed information about local disturbances. This
enables the wavelet transform to provide the time and frequency information or
time–frequency representation of the time series, unlike, Fourier Transform. Fourier
Transform loses the time information during transformation because it uses sinu-
soidal wave, a function with infinite support as basis function.

Based on the selection of scaling and shifting parameters and mode of application
of wavelet transform, the wavelet transform can be of different types. Three of the
most widely used wavelet transforms are as follows:

• Continuous Wavelet Transform (CWT)
• Discrete Wavelet Transform (DWT)
• Stationary Wavelet Transform (SWT)

These transforms are discussed in the following subsections.
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3.1 Continuous Wavelet Transform (CWT)

If shifting and scaling factors are considered to be continuous over real number line
while applying wavelet transform, the WT is called continuous wavelet transform
(CWT). TheCWT is computed by changing the scale of the analysis window, shifting
the window in time, multiplying by the time series, and integrating over all times. In
CWT, the transform is mathematically expressed as

W f (a, b) � 1√
CΨ

∫
X(t) Ψ ∗

a, b(t)dt (7)

where Ψ ∗(t) denotes complex conjugate of Ψ (t), CΨ � 2π
∫ ∣∣∣Ψ̂ (ω)

∣∣∣2/ωdω and

Ψ̂ (ω) denotes the Fourier transform of Ψ (t) given by

Ψ̂ (ω) � 1√
2π

∫
eiω tΨ (t)dt (8)

If the mother wavelet (Ψ (t)) is orthogonal, then the inverse of wavelet transfor-
mation is given by

X(t) � 1√
CΨ

¨
W f (a, b) Ψ(a,b)(t)

a2
dadb (9)

3.2 Discrete Wavelet Transform (DWT)

Discrete class of wavelets is formed when shifting and scaling parameters are con-
sidered discrete instead of continuous variables while applying wavelet transform. If
the discrete wavelet is sampled over dyadic space-time grid, the resulting wavelets
are called dyadic discrete wavelet [14]. The dyadic daughter wavelets are denoted
by

Ψ j,b(t) � 1√
2 j

Ψ

(
t

2 j
− b

)
(10)

The wavelet transform is given by

W f (a, b) � 1√
CΨ

∑
X(t) Ψ ∗

a,b(t) (11)

where Ψ ∗(t) denotes complex conjugate. CΨ is as defined before. Discrete wavelet
component is down-sampled or subband coded according to Nyquist–Shannon the-
orem [15]. The Nyquist–Shannon sampling theorem is a fundamental connection
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between continuous and discrete representation of time series or signal. This theo-
rem is applicable to any signal having finite range of frequencies or in other words,
signal having zero Fourier transform coefficient outside some finite range of fre-
quencies. According to this theorem, if any signal is sampled two times, first with a
sampling rate of N1 at scale a1, second at a sampling rate of N2 at scale a2, then the
information contained in these two sampling procedures is equivalent, given

N2 � a1
a2

N1 (12)

As the frequency range of wavelet components (generated by Eq. 11) is decreased
by half, hence, the components can therefore be subsampled by 2, by discarding every
alternate sample or sample falling at even places from the beginning. As a result, each
of the components has half the length that original time series or signal had. Hence,
DWT halves the time resolution but doubles the frequency resolution. Since, the
frequency band of the time series now spans only half the previous frequency band;
it effectively reduces the uncertainty in the frequency by half. This procedure is also
known as subband coding (or down-sampling). Subband coding, however, results in
wavelet coefficients depending on their location. As a result, a small change in input
signal causes large changes in wavelet coefficients. This is termed as translation-
invariance of DWT and is considered a major drawback which limits its application
in signal analysis [16].

It should be noted that a discrete mother wavelet acts as a band-pass filter and
scaling it for each level (for dyadic space) effectively halves its bandwidth. This cre-
ates the problem that in order to cover the entire spectrum (till the frequency limiting
to zero), an infinite number of scaling is required. Hence, to cover the complete spec-
trum another function associated with the mother wavelet, Father Wavelet is used.
Further, dyadic wavelet functions are orthogonal so the inverse of wavelet transform
is given by

X(t) � 1√
CΨ

∑
j, k∈Z

X(t) Ψa,b(t) (13)

Alternatively, DWT can also be carried out by using a pair of filters—a high-
pass and a low-pass filter. In DWT, the component obtained after convolution of
signal with low-pass filter followed by dyadic down-sampling is called approximate
component and one obtained by using high-pass filter and dyadic down-sampling
is called detailed component. Low-pass filter is derived from scaling function and
high-pass filter is derived from mother wavelet function. The DWT filters for Haar
mother wavelet (discussed in Sect. 2) are given by

hr,c �
{
1/

√
2 c ∈ {r, (r + 1)mod n}

0 otherwise
(14)
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gr,c �
{

(−1)r−c/
√
2 c ∈ {r, (r + 1) mod n}

0 otherwise
(15)

where hr,c and gr,c are the elements of matrix H and G respectively, r and c rep-
resent the row and column of filter matrix. H and G are low-pass and high-pass
filter matrix, respectively. Here, “mod” represents a module function. k mod n � n
if k � n, otherwise k mod n � remainder of k divided by n. On closer observation,
the low-pass filter is 2 term moving average operation and the high-pass filter is

first-order differencing operation normalized with a factor of 1
/√

2. When the time

series is multiplied with these filters followed by dyadic down-sampling (ignoring
every other value), two components are obtained. The component obtained after mul-
tiplicationwith high-pass filter is called detailedDWTcomponent (denoted by d) and
component obtained after multiplication with low-pass filter is termed approximate
DWT component (denote by a).

3.3 Stationary Wavelet Transform (SWT)

Stationary Wavelet Transform (SWT) is specially designed to avoid the translation-
invariance of DWT. SWT components are not down-sampled (as per Nyquist–Shan-
non sampling theorem) and the filter coefficients are up-sampled by a factor of 2( j−1)

in the jth level of algorithm. Hence, the SWT unlike DWT does not change the
time resolution at any stage. But lack of subband coding results in redundancies in
components as SWT components have twice the number of elements needed as per
Nyquist–Shannon Theorem. However, SWT reduces the complexity of signal anal-
ysis as both input signal and its components have equal length. For obtaining Haar
SWT components, time series can be multiplied with the filters given by Eqs. 14 and
15 without dyadic down-sampling.

4 Multi-resolution Analysis

Multi-Resolution Analysis (MRA) provides the detailed and approximate compo-
nents at even lower levels by using low-pass filter component (approximate compo-
nent) from higher level as input to wavelet transform at each subsequent level. Each
application of WT reduces the frequency band of component into half and it helps
in getting slow and fast dynamic component at different levels, which may enhance
the accuracy of prediction. The MRA is named on the basis of the wavelet transform
algorithm being used repeatedly, like Multi-Resolution Discrete Wavelet Transform
(MRDWT) or Multi-Resolution StationaryWavelet Transform (MRSWT). Irrespec-
tive of wavelet transformation used, after application of MRA a time series X(t) is
represented as
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X(t) �
∑
k

a0,kϕ0,k(t) +
∞∑
j�0

∑
k

d j,kΨ j,k(t) (16)

where ϕ0,k(t) and Ψ j,k(t) represent scaling function and mother wavelet function,
respectively. The subscript pair j and k represent scale and shift parameters of mother
wavelet or scaling function. The approximate component (a0,k) and detailed compo-
nent (d j,k) are expressed as

a0,k �
∑

X(t) ϕ0,k(t − k) (17)

d j,k �
∑

X(t) 2− jΨ j,k
(
2− j t − k

)
(18)

If maximum level of decomposition is L , a0,k series is also represented as aL .
Similarly, d j,k series are also represented as d j , where j ∈ 1, 2, . . . ,L . In form of
filters, the components aL and d j are expressed as

aL � GLGL−1 . . .G1X (19)

d j � HjG j−1G j−2 . . .G1X � Hja j−1 for j ∈ {1, 2, . . . , L} (20)

The low- and high-pass filters for Haar mother wavelet at any level l are given by

hl,r,c �
{
1/

√
2 c ∈ {r, (r + 2(l−1)

)
mod n}

0 otherwise.
(21)

gl,r,c �
{

(−1)r−c/
√
2 c ∈ {r, (r + 2(l−1)

)
mod n}

0 otherwise.
(22)

where hl,r,c ∈ Hl , gl,r,c ∈ Gl , Hl and Gl are low-pass and high-pass filter at level l.
r and c represent row and column, respectively. It should be noted that for l � 1 the
above equations are same as Eqs. 14 and 15.

5 Illustrative Example on Drought Prediction

Drought is a hydrological extreme of prolonged water deficit. It is slow initiating
but long lasting phenomenon leading to huge economic losses. As per the American
Meteorological Society [17], droughts are of four types, namelymeteorological, agri-
cultural, hydrological, and socioeconomic. The deficit in precipitation, soil moisture,
and stream flow/reservoir storage leads to meteorological, agricultural, and hydro-
logical drought, respectively. This illustrative example is on the drought prediction
over one small and another medium size watersheds from central part of India. The
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methodology and the results are mostly borrowed from Maity et al. [10] and Suman
and Maity [18].

Since the hydrologic cycle is a continuous transport of water, the occurrence
of meteorological drought is expected to propagate to other types of droughts [19].
Hence, it can be hypothesized that prolonged period of meteorological drought along
with high evaporation loss may lead to soil moisture deficit, resulting in agricultural
drought. Further, in the same way, intense agricultural drought may turn into hydro-
logical drought given the long duration. This precedence or temporal consequences of
different types of drought are easy to speculate, but it is difficult to model as a number
of factors (of climatological, topographical and geographical characteristics) affect
this precedence order. If basin size is relatively large, the lag in transition of drought
is also expected [20]. Study of temporal transition of drought also has added advan-
tage—the measurement of precipitation is more accurate and economical compared
to measurement of soil moisture and streamflow (which may require specialized
structure and may not be economical for large streams/catchment), hence, with the
information of temporal transition of different types of drought, the drought predic-
tion will be economical. Further, it may also lead to better drought preparedness and
thus better mitigation strategy for the community. The following subsection briefly
discusses the methodology of study followed by subsection for details of study area
and results.

5.1 Methodology

Overall methodology is broadly divided into two modules—(i) Drought characteri-
zation using drought indices and generation of its time series. Further, the study of
lagged correlation between the drought indices to check whether there is any delayed
response of one drought index exists on the other, (ii) Formulation of differentmodels
considering the lagged information of predictor drought index, based on MRSWT
components of drought indices. As stated above, the selected wavelet function is
Haar wavelet, as this wavelet function is having better time localization capability,
which renders it good for short lead period prediction. Further, the most potential
model structure/type is selected for prediction. It should be noted that selected model
structure may differ for different basins. The methodological overview is shown in
Fig. 3. Details of these modules are presented in the following subsections.

5.1.1 Drought Characterization Through Standardized Indices

For drought characterization, many different drought indices are available in the lit-
erature like Palmer Drought Severity Index (PDSI), Keetch–Byram drought index
(KBDI), Standardized Precipitation Index (SPI), etc. However, no single drought
index is considered universal, rather, their suitability depends on its application for a
particular problem [21]. For analyzing the interrelation of different kinds of drought
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Fig. 3 Methodological overview (Source Maity et al. [10])

such as meteorological, agricultural, and hydrological droughts, a mathematical con-
sistent drought index is needed for each of this drought type. Keeping this in mind,
Standardized Precipitation Index (SPI), Standardized Soil Moisture Index (SSMI),
and Standardized Stream Flow Index (SSFI) are used for characterization of meteo-
rological, agricultural, and hydrological droughts, respectively. SPI, SSMI, and SSFI
are calculated using monthly precipitation, soil moisture, and streamflow (at basin
outlet), respectively. The concept of these drought indices is statistically similar to
each other. SPIwas first developed byMcKee et al. [22] for the Fort Collins, Colorado
river basin in the USA. SPI can be defined as standard normal variate of precipitation
with respect to the standard deviation of precipitation for a given location and time
period calculated from the historical precipitation data. SSMI and SSFI have similar
conceptualization.

The computation of all the above mentioned indices (at a particular averaging
timescale, say 3-monthly) can be outlined in the following common steps:

(i) Time series of concerned variable is either accumulated or moving averaged
for the desired averaging temporal scale.
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(ii) A suitable Probability Density Function (pdf) is fitted (Gamma distribution in
this example) and corresponding Cumulative Distribution Function (CDF) is
obtained.

(iii) Using the fitted CDF, reduced variate of the concerned variable is computed.
(iv) The reduced variate is transformed to a standard normal variate (mean � 0 and

standard deviation � 1) to obtain the desired standardized index.

All these indices can have both positive and negative values, positive value show-
ing a surplus and negative value showing a deficit. Prolonged and severe period of
deficit may indicate a drought.

Depending on the characteristics of the study basin, sometime lagmay be expected
before effect of predecessor drought situation is observed over a successor one. The
time lag may also originate due to nature of variable being studied. On the basis
of expected precedence order, different predictor and predictant drought index rela-
tionships are considered. For instance, SPI is taken as predictor for SSMI and SSFI;
SSMI is considered a predictor for SSFI. To quantify the time lag in drought prop-
agation, lagged correlations between different predictand–predictor drought indices
are studied. The lag with highest correlation is considered as the measure of delay
in response that predictor drought series has on the predictand drought series.

5.1.2 Modeling of Drought Indices Interrelation

The drought indices are decomposed into components using MRSWT up to level 2.
The mathematical details of MRSWT are presented in Sect. 4. By using MRSWT,
the prediction of drought indices leads to the problem of predicting the slow and
fast dynamic components separately. This approach may be advantageous, as pre-
diction of slow dynamic or approximate component can be done with more confi-
dence because variations are expected to be smaller and less abrupt compared to fast
dynamic or detailed signal component. Prediction of the fast dynamic component
is challenging as the model has to learn the fast dynamic and reduce noise simul-
taneously. The challenge can be solved by overfit/underfit tradeoff. Learning fast
dynamic can lead to under fitting but learning to predict noise cause over fitting [23].
The decomposition through MRSWT results in three components (d1, d2, and a2)
for each of the drought indices.

The modeling of interrelation between the drought indices components may facil-
itate the prediction of successor drought from the state of predecessor one. Many
approaches such as traditional (Multiple Linear Regression (MLR), Auto-Regressive
Integrated Moving Average model with exogenous inputs (ARIMAX)) or even soft
computing approaches (Artificial Neutral Network (ANN)) can be used for mod-
eling. In this example, models are formulated in two versions (keeping input and
output variables same)—one using feed-forward ANN with single hidden layer and
other usingMLR.Models are formulated on the assumption that a dependent drought
index or its components are affected by all the decomposed components of the inde-
pendent drought index simultaneously with some delay. The information about the
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delay in response is given due consideration in formulation of models. It should also
be noted that minimum lead period also depends upon the level of decomposition
being used to avoid the use of future information during the prediction. Since the
maximum level for MRSWT is 2, minimum lead period for prediction is 22, i.e., 4.

5.1.3 Model Validation Scheme

All the proposed models, except those based on ANN approach, are tested using
two different validation schemes—I and II. Details of these schemes can be found
in Maity et al. [10] and also briefly explained hereafter. ANN-based models are
validated with scheme I only. Details of these schemes are discussed below. These
validation schemes are also illustrated in Fig. 4.

(i) Scheme I—Fixed Development and Testing Period: In this scheme, the whole
data set is divided into development period and testing period. These periods
remain stationary in one model calibration–prediction run. The parameters of
themodel are estimated during the development period. Complete testing period
data set is predicted in the next model run. Hence, in this validation scheme, a
model runs only two times, one for calibration in development period and other
for prediction of testing data set.

(ii) Scheme II—Moving Window Approach: In this scheme, testing period data
length is same as that of development period, but these data periods are moving
over the time series from one iteration to another. The model is first developed
with the development period data set and for prediction, the window is shifted
by one time step and the data from this new time step is considered in the testing
period pool.Hence, though there is overlap between the development and testing
period datasets, only one time step of the time series is considered as predicted
in each iteration. For the next iteration, both development and testing periods
are shifted by one time step and the process is continued until the prediction
of whole remaining time series is complete. This scheme is useful to update
the model parameters to capture any slow moving changes in the time series,
particularly in the context of climate change.

5.1.4 Model Performance Evaluation

Performances of different models are assessed based on four statistical measures,
namely correlation coefficient (r ), Refined Index of Agreement (Dr ) and unbiased
Root Mean Square Error (uRMSE). Expressions for r can be found elsewhere [24].
The expression of Dr is given by [25]

Dr �
{
1 − Dr_ f rac f or Dr_ f rac ≤ 1

1
Dr_ f rac−1 f or Dr_ f rac > 1

(23a)
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Fig. 4 Schematic diagram of two types of validation schemes [10]. In Scheme II, at any model
testing iteration only the last value is recorded for performance assessment though the testing period
overlaps the model development period of the same iteration

where Dr_ f rac is intermediate calculation step which is calculated as

Dr_ f rac �

n∑
i�1

|Yi − Xi |

2
n∑

i�1

∣∣Xi − X̄
∣∣ (23b)

where Xi and Yi are the ith observed and predicted values, X̄ is the mean of the
observed values and n is the total number of observations.

The uRMSE is the RMSE calculated between the deviations of observed and
predicted values from their respective means. It is expressed as
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Fig. 5 Study basins—Upper Mahanadi Basin (Basin-I) and Upper Narmada Basin (Basin-II)

uRMSE �

√√√√√
n∑

i�1

{(
Xi − X

)− (Yi − Y
)}2

n
(24)

where Xi ,Yi , X̄ and n are as defined before, Ȳ is themean of the predicted values. The
lower the value of uRMSE, the better the model performance. The uRMSE removes
the mean bias between observed and predicted time series (unlike RMSE). Hence,
uRMSE is better model performance measure (compared to RMSE) in the presence
of mean bias [26].

5.2 Study Areas

Two different basins are selected—upper Mahanadi basin up to Jondra (henceforth,
basin-I) and upper Narmada basin up to Manot (henceforth, basin-II). Basin-I is
mostly located in the state of Chhattisgarh in India as shown in Fig. 5. The area of
the basin is 29645 km2 and it is approximately bounded by 20◦ N to 23◦ N latitude
and 80.5◦ E to 82.5◦ E longitude. Basin-II is located in state of Madhya Pradesh in
India as shown in Fig. 5. It has an area of 4667 km2 and it is approximately bounded
by 22.5◦ N to 23.5◦ N latitude and 80◦ E to 82◦ E longitude.
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Daily rainfall data andmonthly soil moisture data for the study basins are obtained
for the period of 1971 to 2005 from the India Meteorological Department (IMD)
[27] and Climate Prediction Center (CPC) of the National Oceanic and Atmospheric
Administration (NOAA) [28], respectively. These data are available at a spatial res-
olution of 0.5◦ latitude × 0.5◦ longitude and the data are taken from grid point lying
within the respective study basin as shown in Fig. 5. Daily rainfall data at each grid
point is converted to monthly rainfall depth by accumulating it over the month. Daily
stream flow data at the outlet of the basins (Jondhra station for Basin-I and Manot
station for Basin-II) are procured from theWater Resources Information System [29]
in India. For basin-I streamflow record of June, 1979 to December, 2005 is available,
so the study period for basin-I is considered as January 1980 to December 2005.
However, for basin-II the streamflow record for June, 1978 to December, 2005 is
available, hence, the study period is taken as January, 1979 to December, 2005 for
this basin. The daily stream flow data is converted to monthly data.

5.3 Results and Discussions

Taking monthly rainfall depth, soil moisture time series, and stream flow series as
input SPI, SSMI, and SSFI, respectively, for different basins are calculated using a
mixed distribution—Gamma distribution for nonzero values with probability mass
at zero. For monthly rainfall depth, accumulation over averaging timescale was done
during SPI calculation but for all other variables moving average is calculated during
index calculation. Notations of SPI-1, SSMI-1, and SSFI-1 are used for 1-month
timescale. Similarly, SPI-3, SSMI-3, and SSFI-3 are used for 3-month timescale.
SPI-3, SSMI-3, and SSFI-3 time series are shown in Fig. 6. From Fig. 6, it can be
inferred that indices does not possess seasonality.

For studying the interrelation and propagation of different types of droughts, pos-
sible predecessor–successor or predictor–predictand pairs are selected. SPI is taken
as predictor for SSMI and SSFI; SSMI is considered a predictor for SSFI. The rela-
tionships are deemed valid regardless of selected averaging period and basin. As
stated earlier, January, 1980 to December, 2005 is chosen as study period for basin-I,
so all drought index series are having 312 data points. First 160 data points are con-
sidered for the initial scrutiny and model development. For basin-II, the study period
is selected as January, 1979 to December, 2005. Being a small basin, the response of
one variable over the other is expected to be fast and more dynamic, hence, a longer
development length of 204 is selected. It should be further noted that 10% of the data
length after development length is used for validation in case of ANN-based models.
The rest of the data are used for model testing. For initial scrutiny, the pairwise cor-
relation coefficients (r ) and the refined index of agreement (Dr ) between the indices
are computed according to their predictand–predictor relationship and the results are
tabulated in Table 2. From Table 2, the correlation coefficient and refined index of
agreement are higher for 3-month timescale indices. It is due to higher average period
used to calculate the indices, which lead to more smoothening. The coefficient of
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Fig. 6 Time series of a SPI-3 b SSMI-3 c SSFI-3 (January, 1980–December, 2005) for basin-I

correlation is found significant for all the cases, reaffirming the hypothesis that SSFI
should be affected by both SPI and SSMI. Direct runoff due to precipitation events
in catchment may affect the streamflow immediately, whereas the soil moisture is
expected to affect streamflow by delayed subsurface flow. This suggests to incorpo-
rate the combination of different perdictors (say, SPI and SSMI) with suitable lag to
achieve possible better performance in predicting target drought index (say SSFI).
It should also be noted that so far the lagged information is not considered from
any of the predictor. The values in Table 2 are used as a reference for comparing
the performance of different models as mentioned in the methodology. Any model
that can exhibit better performance compared to these values can be considered as
efficient and improvement over these reference values can be quantified.

The lagged correlation between all possible predictor–predictant drought index
pairs is then calculated for both basins. The results for basin-I are shown in Fig. 7. It
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Table 2 Correlation coefficients (r ) and the refined index of agreement (Dr ) for different drought
indices pairs during development period

Basin Averaging period
(in months)

Performance
statistics

Predictand
drought index

Predictor drought
index

SPI SSMI

Basin-I 1 r SSMI 0.401 1.000

SSFI 0.588 0.607

Dr
SSMI 0.436 1.000

SSFI 0.516 0.502

3 r SSMI 0.590 1.000

SSFI 0.682 0.661

Dr
SSMI 0.543 1.000

SSFI 0.585 0.564

Basin-II 1 r SSMI 0.303 1.000

SSFI 0.613 0.517

Dr
SSMI 0.433 1.000

SSFI 0.541 0.496

3 r SSMI 0.494 1.000

SSFI 0.618 0.479

Dr
SSMI 0.502 1.000

SSFI 0.564 0.447

is noticed that the correlation coefficient between SSMI-3 and SPI-3 with lag 1 is the
highest. This result suggests that SSMI has higher memory and changes slowly as
compared to SPI. Thus, utilization of lagged values from predictor time series may
enhance the prediction performance. In case of SSFI-3 and SSMI-3 as well as SSFI-3
and SPI-3, the correlation coefficient is highest without any lag. These observations
suggest that SSFI is affected by both SPI and SSMI; utilization of values from
these two predictors combined should enhance the prediction performance. In all
predictor–predictant pairs, the value of correlation coefficients decreases gradually
with the further increase in lag. For basin-II, the correlation coefficient for zero lag
is found to be the highest for all predictand–predictor relationships. The correlation
coefficient is found to decrease gradually with increase in lag. However, the lag
considered in modeling of interrelation of drought indices should be either equal or
greater than the averaging period andminimum lead period requirement as discussed
in Sect. 5.1.2. To reiterate, minimum required lead period for prediction is 4, since
MRSWT with level 2 is used. In case of drought indices calculated using 3-month
accumulation, SPI-3 with lag 4 and/or 5may be considered while predicting SSMI-3.
Similarly, for SSFI-3, SPI-3 with lag 4, 5 and SSMI-3 with lag 4 may be important.

Five different models as shown in Table 3 are framed. Models 1 and 2 are used
for predicting SSMI and models 3 to 5 are used for predicting the SSFI. During the
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Fig. 7 Pairwise linear correspondence between SPI, SSMI and SSFI with lags during model devel-
opment period in basin-I. Lags are applicable for the second index as shown in the legends for
different pairs

application of models, the predictor drought time series is first decomposed into its
components using MRSWT up to level 2. For instance, the components of SPI-3 for
basin-I are shown in Fig. 8. The model performances during the development period
and testing period are tabulated in Tables 4, 5 and 6, respectively. It should be noted
that for ANN-based model, each model is trained 200 times and best trained model
is selected for prediction.

During development period, the model performance is found to improve (Table 4a
and 4b) as compared to Table 2. The improvement in performance is more apparent
in case of higher averaging period. For instance, in case of basin-I correspond-
ing to 1 month averaging period, the coefficient of correlation for MLR version of
model 2 during development period is 0.831 between observed and predicted SSMI-1
(Table 4a) which is higher than the coefficient of correlation 0.401 between observed
SSMI-1 and SPI-1 (Table 2). Though it is apparent that model 2 (for SSMI) and 5 (for
SSFI) are best among other alternatives, it should be noted that the previous values
of SSMI and SSFI are used in model 2 and 5, respectively. On the other hand, model
1 uses only information of SPI (with lags) and model 4 uses only SPI and SSMI
(with lags), not the previous values of predictant series. Thus, the merit of model 1
(in case of SSMI) and model 4 (in case of SSFI) should be duly credited.

It is also noticed from the Table 4b that ANN versions of models are performing
better than MLR version in most of the cases during model development period.
However, the difference in performance betweenMLR andANN is found to decrease
when the averaging period is higher, i.e., 3. For example, in basin-I, the correlation
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Table 3 Details of different types of models (No. 1 to 5). The function f is either of multiple linear
regression or feed-forward ANN function with single hidden layer and the function g represents
wavelet reconstruction function. Subscripts a2, d2 and d1 represent the decomposed components
of the respective drought index series at level 2. T1 � 2D , where D is the level of decomposition,
hence, T1 � 22 � 4 and Tn+1 � Tn + 1 for n � 1, 2, . . .

Model
no.

Model description

1
SSM I (t) � f

(
SP Ia2 (t − T1), SP Id2 (t − T1), SP Id1 (t − T1),

SP Ia2 (t − T2), SP Id2 (t − T2), SP Id1 (t − T2)

)

2

SSM I (t) � f

⎛
⎜⎜⎝

SP Ia2 (t − T1), SP Id2 (t − T1), SP Id1 (t − T1),

SP Ia2 (t − T2), SP Id2 (t − T2), SP Id1 (t − T2),

SSM Ia2 (t − T1), SSM Id2 (t − T1), SSM Id1 (t − T1)

⎞
⎟⎟⎠

3
SSF I (t) � f

(
SP Ia2 (t − T1), SP Id2 (t − T1), SP Id1 (t − T1),

SP Ia2 (t − T2), SP Id2 (t − T2), SP Id1 (t − T2)

)

4

SSF I (t) � f

⎛
⎜⎜⎝

SP Ia2 (t − T1), SP Id2 (t − T1), SP Id1 (t − T1),

SP Ia2 (t − T2), SP Id2 (t − T2), SP Id1 (t − T2),

SSM Ia2 (t − T1), SSM Id2 (t − T1), SSM Id1 (t − T1)

⎞
⎟⎟⎠

5

SSF I (t) � f

⎛
⎜⎜⎜⎜⎝

SP Ia2 (t − T1), SP Id2 (t − T1), SP Id1 (t − T1),

SP Ia2 (t − T2), SP Id2 (t − T2), SP Id1 (t − T2),

SSM Ia2 (t − T1), SSM Id2 (t − T1), SSM Id1 (t − T1),

SSF Ia2 (t − T1), SSF Id2 (t − T1), SSF Id1 (t − T1)

⎞
⎟⎟⎟⎟⎠

coefficient between observed and predicted SSMI-1 for MLR version and ANN
version of model 2 are 0.831 and 0.873 respectively but for SSMI-3 it is 0.941 and
0.962 respectively. The performance ofmodels predicting SSFI is, in general, inferior
compared to model predicting SSMI. The decrease in performance may be due to
combined effect of higher memory of soil moisture and the fact that many factors that
affect streamflow, like evapo-transpiration, air temperature, etc., are not considered
while predicting the SSFI.

Model performance during testing period is shown inTables 5 and 6.Asmentioned
earlier, two different validation schemes are followed forMLRversion ofmodels. For
MLR versions of model predicting SSMI, it is noticed that the model performance
is either better or comparable with validation scheme I as compared to validation
scheme II. Similarly, for MLR models predicting SSFI, model performance is either
better or comparable with validation scheme II as compared to validation scheme I in
case of basin-I, however, the opposite behavior is observed in case of basin-II. This
observation suggests that in basin-I streamflow perhaps has time-varying correspon-
dence or dynamic relationship with other drought indices, i.e., its relationship with
other variable has changed with time, so validation scheme II, which is more compe-
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Table 4 Performance of model no. 1 to 5 during development period

(a) using MLR

Basin Averaging period
(in months)

Performance
measures

Model no.

1 2 3 4 5

Basin-
I

1 r 0.657 0.831 0.581 0.589 0.607

Dr
0.612 0.733 0.620 0.620 0.626

uRMSE 0.730 0.538 0.660 0.655 0.644

3 r 0.748 0.941 0.736 0.743 0.792

Dr
0.666 0.837 0.687 0.690 0.719

uRMSE 0.632 0.322 0.559 0.552 0.503

Basin-
II

1 r 0.447 0.815 0.434 0.438 0.513

Dr
0.564 0.733 0.570 0.571 0.693

uRMSE 0.785 0.508 0.816 0.814 0.778

3 r 0.558 0.935 0.672 0.674 0.767

Dr
0.584 0.831 0.651 0.653 0.715

uRMSE 0.725 0.309 0.694 0.692 0.601

(b) using ANN

Basin-
I

1 r 0.681 0.873 0.563 0.428 0.567

Dr
0.629 0.758 0.599 0.570 0.420

uRMSE 0.710 0.472 0.675 0.735 0.869

3 r 0.579 0.962 0.619 0.818 0.888

Dr
0.550 0.867 0.612 0.725 0.783

uRMSE 0.779 0.261 0.669 0.476 0.383

Basin-
II

1 r 0.446 0.789 0.374 0.387 0.278

Dr
0.543 0.696 0.438 0.502 0.408

uRMSE 0.803 0.540 0.840 0.865 1.138

3 r 0.517 0.941 0.657 0.781 0.807

Dr
0.557 0.837 0.645 0.723 0.709

uRMSE 0.755 0.297 0.709 0.589 0.555
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Fig. 8 Observed SPI-3 and its decomposed components up to level 2 for basin-I, i.e., a2, d2 and d1,
using Haar MRSWT. Figure shows the first 160 data points of decomposed series, i.e., development
period for models. Such decomposed series for SSMI-3 and SSFI-3 are also obtained (not shown)
for both basins

tent in modeling these dynamic relationships, produces better results. For example,
with the validation scheme I and for predicting SSFI-3, the model 5 performance
measures (r , Dr and uRMSE) are 0.792, 0.693, and 0.698, respectively, whereas the
same with validation scheme II are 0.801, 0.712, and 0.682, respectively. Thus, the
validation scheme II may be considered as more suitable where the correspondence
between predictor and predictant may get modified over time due to the various
reasons, including changing basin characteristics, climate regime, etc.

Interestingly, during testing, models using MLR version are found to perform
comparable to ANN version in most of cases. This observation suggests that decom-
posedwavelet coefficient has linear relationship, soANNversion could not addmuch
to the performance achieved by MLR version. Moreover, as stated earlier the per-



Predictability of Hydrological Systems Using the Wavelet Transformation … 133

Table 5 Performance for model no. 1 to 5 during model testing period using MLR with both
validation schemes I and II

Basin Averaging period
(in months)

Validation
scheme

Performance
measures

Model no.

1 2 3 4 5

Basin-I 1 I r 0.671 0.871 0.446 0.427 0.550

Dr
0.628 0.761 0.544 0.538 0.580

uRMSE 0.766 0.507 1.018 1.031 0.949

II r 0.652 0.862 0.496 0.571 0.642

Dr
0.621 0.754 0.566 0.594 0.627

uRMSE 0.782 0.522 0.990 0.934 0.873

3 I r 0.720 0.954 0.636 0.625 0.792

Dr
0.634 0.850 0.611 0.607 0.693

uRMSE 0.709 0.304 0.879 0.889 0.698

II r 0.709 0.947 0.646 0.711 0.801

Dr
0.633 0.843 0.630 0.659 0.712

uRMSE 0.716 0.324 0.869 0.801 0.682

Basin-
II

1 I r 0.652 0.841 0.465 0.491 0.560

Dr
0.592 0.748 0.556 0.557 0.589

uRMSE 0.954 0.641 0.987 0.973 0.922

II r 0.651 0.837 0.391 0.388 0.497

Dr
0.623 0.750 0.545 0.535 0.566

uRMSE 0.914 0.645 1.023 1.030 0.969

3 I r 0.735 0.935 0.735 0.749 0.791

Dr
0.629 0.836 0.618 0.623 0.683

uRMSE 0.863 0.415 0.744 0.727 0.666

II r 0.728 0.934 0.700 0.691 0.763

Dr
0.658 0.836 0.646 0.638 0.677

uRMSE 0.828 0.420 0.779 0.783 0.700

formance of model predicting SSFI is inferior to model predicting SSMI in testing
period too. The scatter plots for SSMI-3 and SSFI-3 modeled by MLR version of
model 1 to 5 for validation scheme II are shown in Fig. 9.

The models are checked for sensitivity for mother wavelet selection and develop-
ment data length. Mother wavelet sensitivity analysis on MLR version of the model
was carried out using 160 development period data and with three mother wavelets
namely Haar, Biorthogonal 1.1, and Reverse Biorthogonal 1.1. The model perfor-
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Fig. 9 Scatter plot between observed and predicted SSMI-3 and SSFI-3 byMLR version of models
1 to 5 during the testing period with validation scheme II for a Basin-I and b Basin-II
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Table 6 Performance for model no. 1 to 5 during model testing period using ANN (only for
validation scheme I)

Basin Averaging period
(in months)

Performance
measures

Model no.

1 2 3 4 5

Basin-
I

1 r 0.619 0.817 0.504 0.423 0.523

Dr
0.592 0.712 0.533 0.544 0.517

uRMSE 0.827 0.596 0.990 1.038 1.100

3 r 0.638 0.884 0.596 0.566 0.698

Dr
0.538 0.778 0.592 0.515 0.617

uRMSE 0.789 0.473 0.939 1.059 0.822

Basin-
II

1 r 0.620 0.796 0.426 0.420 0.262

Dr
0.588 0.704 0.512 0.516 0.344

uRMSE 0.929 0.719 1.014 1.020 1.309

3 r 0.653 0.933 0.754 0.600 0.389

Dr
0.616 0.829 0.587 0.513 0.546

uRMSE 0.913 0.425 0.727 0.927 1.019

mances are found to be mostly insensitive to mother wavelet. Development period
data length sensitivity is carried out on the MLR version of the models for develop-
ment period data length ranging from 16 to 192. Model performance depends on the
development data length, but its variation is very less beyond the length of 140 data
points.

6 Summary and Concluding Remarks

Nonstationary nature of hydrologic variables, owing to various reasons including
climatic change, poses a mathematical challenge to its predictability. In this chapter,
the potential of wavelet transform is investigated in this regard. Initially, a brief
introduction to various wavelets is presented followed by mathematical background
of three mostly used wavelet transform. Next, mathematical details of MRSWT are
provided which is used in an illustrative problem on drought prediction using the
concept of temporal translation of one type of drought to another type.

In the illustrative example, one small and another medium size watersheds were
considered from central part of India. For modeling the propagation of one drought
type to another, the drought indices series are first transformed to their MRSWT
components and their interrelationship is modeled using either ANN- or MLR-based
models. Two different types of validation schemes (I and II) are used. Validation
scheme I assumes that the model development period and testing period do not
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change, hence, the underlying relationship between drought components is consid-
ered to be the same during development and testing periods. On the other hand,
in validation scheme II, the relationship is assumed to evolve with time and such
evolution is modeled by shifting the window for development and testing period by
one month on each application of the model. Thus, the validation scheme II is more
suitable in cases where the relationship between the decomposed components of
drought indices time series is expected to be dynamic. On the other hand, validation
scheme I assumes the relationship to be static.

The prediction of drought indices at component level is better as compared to
when they are analyzed without decomposition. Hence, MRSWT is effective tools
for decomposing the hydrological time series and the models developed utilizing
the decomposed components usually have better prediction performance. For most
of the cases, MLR-based models are found to perform comparable to their ANN
counterparts. This observation suggests that decomposed wavelet coefficient has
linear relationship, another benefit of MRSWT decomposition in our case (though it
is not guaranteed). While considering three different mother wavelets namely Haar,
Biorthogonal 1.1, and Reverse Biorthogonal 1.1, the model performances are found
to be mostly insensitive to the choice of mother wavelet. Further, model performance
depends on the development data length, but its variation dies down beyond the data
length of 140. However, moving window approach of validation scheme (validation
scheme II) is found to be more competent in modeling the dynamic/time-varying
association between different drought indices as compared to the scheme with fixed
development and testing period.

The methodological framework based on MRSWT is general in nature can be
applied to other similar problems of hydrologic prediction. However, as in case
of many statistical models, the methodology heavily depends on the length of the
available historical data to capture the temporal evolution properly.
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Land–Atmosphere Interactions in Indian
Monsoon at Sub-seasonal to Seasonal
Scale

Amey Pathak and Subimal Ghosh

1 Introduction

The Indian Summer Monsoon Rainfall (ISMR) is a seasonal phenomenon that deter-
mines the fate of seasonal water availability across various sectors in the Indian sub-
continent. Although the summer monsoon rainfall is generally perceived as a regular
annual meteorological event, the variability associated in its evolution, persistence,
and withdrawal emphasizes on its complex and uncertain nature. The monsoon sys-
tem in the Indian subcontinent typically persists between the June and September
month, and it exhibits a large amount of rainfall variability at various timescales
ranging from daily to multi-decadal. The critical importance of understanding the
monsoon variability can be sensed by looking at the trail of the monsoon research
in the past few decades. A quantum of monsoon research is mostly aligned toward
understanding the variability aspect of monsoon rainfall with an objective to have
a better prediction insight of its cause and evolution. The variability component of
summer monsoon rainfall is governed by the interplay of several atmospheric and
geophysical phenomena such as the interaction between the large-scale processes
over the tropical oceans, Eurasia, and the local-scale processes within the subconti-
nental land.

The role of tropical disturbances, especially over the Pacific Ocean and Indian
Ocean [31] that are generally visible in wide range of time-varying physical mech-
anisms such as El Niño Southern Oscillations (ENSO), the Madden Julian Oscil-
lations (MJO), the Indian Ocean Dipole (IOD), etc., are well documented in the
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literature. However, there exists very limited understanding of how the temperature
anomalies (through evaporation–precipitation feedback) over the land surface can
influence the precipitation over the Indian subcontinent. Here, in the present chapter,
we emphasize the role of land surface feedback through evaporation in the seasonal
and sub-seasonal variability of summer monsoon rainfall in the Indian subcontinent.

2 Importance Land Surface Feedback in ISMR

The precipitation during summer monsoon season in the Indian subcontinent is a
response of a coupled ocean–land–atmosphere interactions that are reflected in terms
of large-scale atmospheric circulations. Although the air–sea interactions during the
monsoon season play a bigger role in the instigation of the temporal variability, the
role of land surface cannot be ignored.

The land–atmosphere interactions result in a mass, momentum, and energy
exchanges [7, 19, 20, 25] between the earth’s surface and the overlying atmosphere.
These interactions can regulate the characteristics of the regional climate through var-
ious feedbacks (independent as well as overlapping). Hence, a proper understanding
of the land–atmosphere interactions is necessary.

In order to study these interactions, we will have to understand the role of differ-
ent hydrological variables in the precipitation process. The hydrological variables
that mainly influences rainfall are the evaporation, the soil moisture, and the snow
cover. The role of these three hydrological variables (soil moisture, snow cover, and
evapotranspiration) in the ISMR is briefly discussed here.

2.1 Soil Moisture–Precipitation Feedback

Soil moisture prior to precipitation event can also influence the strength of the pre-
cipitation. A positive anomalous antecedent soil moisture condition can favor the
precipitation [11] by altering the surface energy budget (i.e., by increasing the moist
static energy near the surface). This is known as soil moisture–precipitation feedback
which can either be negative (soil wetness suppresses the rainfall) or positive (soil
wetness enhances the rainfall) in nature. Koster et al. [15] identified different regions
(including central India) across the globe where the soil moisture anomaly has a
substantial impact on precipitation during the northern hemisphere summer season.
Moreover, Asharaf et al. [1] also found a dominant negative feedback mechanism
over the Western and Northern India region, in response to wet initial soil condi-
tions. Additionally, they also found a positive response to dry condition over the
eastern region. Therefore, the seasonal predictability of monsoon can be improved
by correctly prescribing the soil moisture anomalies and modeling the response of
initialized soil moisture in the ISMR.
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2.2 Snow Cover–Precipitation Feedback

The terrestrial snow cover influences the precipitation in four ways––(i) it controls
the surface albedo (snow cover has high albedo), (ii) it insulates the heat between land
and atmosphere, (iii) by heat sink effect due to snow melting, and (iv) as a climate
memory by providing the soil moisture due to melting of snow [36]. Few studies
have suggested that snow melting can have a negative impact on the ISMR [8, 35,
37]. Robock et al. [29] examined the interannual variability in monsoon rainfall due
to the impact of land surface conditions over Eurasia and Indian summer monsoon
rainfall using observations of snow cover and other hydrometeorological variables.
The anomalous snow cover depth over western Eurasia is negatively linked with the
summer monsoon precipitation over the Indian subcontinent [16, 32]. Furthermore,
Peings and Douville [24] suggested that the relationship between the Indian summer
monsoon and Eurasian snow cover is not direct and stationary, but through the ENSO
condition.

2.3 Evapotranspiration–Precipitation Feedback

The earth surface through evapotranspiration provideswater vapor to the atmosphere,
which in turn may influence the characteristics of regional precipitation [5, 14, 34].
The atmospheric column of water vapor in any region is composed of two com-
ponents—(i) “internal” component (i.e., water vapor evaporated within the same
region) and (ii) the advective component (which is evaporated from another region
and advected to the present region). The contribution of the locally evaporated water
vapor (internal component) to the precipitation in the same region is known as “Pre-
cipitation Recycling” [9, 10], and the precipitation generated from the internal com-
ponent is known as recycled precipitation. The recycling is quantified by recycling
ratio “R”, which is a ratio of recycled precipitation to the total precipitation.

During the ISMR, the evapotranspiration increases as monsoon progresses and
reaches its maximum during the end phase of the summer monsoon. The increased
evapotranspiration during the monsoon activates the land surface feedback mech-
anism and significantly contributes to the recycled precipitation [21]. The oceanic
moisture (advective component) has a main role in monsoon initiation but the mois-
ture supplied from the local evapotranspiration enhances the subsequent precipitation
through recycling. It is observed that the precipitation recycling has a strong con-
tribution to the seasonal precipitation especially in central India, Ganges Plain, and
northeast India during the August and September. In addition to that, Pathak et al.
[21] also proposed that the precipitation recycling may have an important role in
delaying the monsoon withdrawal over northeast India.

In this section, we have seen that the various land surface feedbacks, such as
snow precipitation feedback, evapotranspiration–precipitation feedback, and soil
moisture–precipitation feedback, are strongly associated with the Indian summer
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monsoon. However, in this chapter, our main objective is to discuss the role of evap-
otranspiration–precipitation feedback in the Indian monsoon.

The evapotranspiration–precipitation feedback as described by Pathak et al. [21]
suggests the potential role of evapotranspirationwithin the subcontinent to the ISMR;
however, a recycling estimate alone cannot describe the complete moisture transport
process, especially the origin and advection of moisture across different regions.
Therefore, in order to have a detailed understanding on how moisture originated
within the subcontinent induces variability in the ISMR, we need to identify key
moisture sources and study the moisture transport and relative contributions of ter-
restrial moisture sources to the ISMR variability. In the next section, we shall discuss
the identification of major terrestrial moisture sources within the subcontinent and
quantification of their impact on the ISMR variability at seasonal and sub-seasonal
scale.

3 Identification of Major Terrestrial Moisture Sources

In the past, studies involving quantification of moisture transport to the rainfall have
been dealt with in a variety of ways, such as numerical tracer experiments, physical
analysis using the isotopes, and analytical models. A detailed discussion of vari-
ous methods, their assumptions, and limitation can be found in Budyko [3], Lettau
et al. [17], Brubaker et al. [2], Eltahir and Bras [9, 10], Burde and Zangvil [4], and
Dominguez et al. [6]. In the present chapter,we restrict ourselves to use dynamic recy-
clingmodel (a physics-based Lagrangianmoisture tracking approach) of Dominguez
et al. [6] and Martinez and Dominguez [18]. The readers are advised to go through
these articles for an in-depth understanding and comparison of the model physics.

DRM developed by Dominguez et al. [6] is based on conservation of atmospheric
water vapor. The local recycling ratio “R” at any grid point (x, y, tf ) is calculated by
following a trajectory of moisture weighted wind backward in time and estimating
a ratio “ε/w” (evapotranspiration/precipitable water) for each of the time steps.

R
(
x, y, t f

) � 1 − exp

[

−∫τ
0

∈ (
χ, ξ, τ ′)

ω(χ, ξ, τ ′)
∂τ ′

]

(1)

Here, it is important to note that as themodel runs are backward in time, the integration
starts from the time of precipitation (tf = τ ) to the timewhen it first enters the boundary
of the region (at time � 0).

The model proposed by Martinez and Dominguez [18] is an extension of their
previous model [6] with the ability to accommodate the effect of different moisture
source regions. Figure 1 shows the schematic representation of the trajectory (starting
at point “a” and ending at point “f ”) of moisture weighted wind that accumulates
evaporatedwater vapor fromfive different regions, i.e., theGangaBasin (GB), South-
Central India (SCI), South Peninsular India (SPI),Western Ghats (WG), andWestern
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Fig. 1 Schematic representation of themoisture trajectory (in white color). Here, the region bound-
aries are similar to that of Pathak et al. [22]

Indian Ocean (WIO), respectively, prior to precipitation over sink location (x, y, tf )
in GB.

The fraction of precipitation originated from any two adjoining regions altogether,
for example, from the regions GB and SCI , can be obtained by calculating the ratio
(“ε/ω”) along the path of the trajectory segment f –d. The fraction of atmospheric
moisture present in the trajectory between the points [x(tf ), y(tf )] and the [x(td),
y(td)], resulting from evaporation in GB and SCI, is given by

R
(
x, y, t f

) � 1 − exp

[

− ∫t ftd
∈ (

χ, ξ, τ ′)

ω(χ, ξ, τ ′)
∂τ ′

]

� RGB
(
x, y, t f

)
+ αGB

(
x, y, t f

) ∗ RSC I
(
x, y, t f

)
(2)
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where

RGB
(
x, y, t f

) � 1 − exp

[

−∫t f
te

∈ (
χ, ξ, τ ′)

ω(χ, ξ, τ ′)
∂τ ′

]

, (3)

RSC I
(
x, y, t f

) � 1 − exp

[

−∫te
td

∈ (
χ, ξ, τ ′)

ω(χ, ξ, τ ′)
∂τ ′

]

, (4)

αGB
(
x, y, t f

) � 1 − RGB
(
x, y, t f

)
. (5)

Here, αGB represents the fraction of moisture produced in SCI of the trajectory
that is not lost (via precipitation) in the intermediate part of the trajectory: that is,GB.
Therefore, the total contribution at sink (x, y, tf ), from all the four regions (traversed
by the trajectory segments S1: f−e, S2: e−d, S3: d−c, and S4: c−b in Fig. 1) within
the Indian subcontinent, and along the trajectory of the moisture weighted winds, is
grouped as

aInd_sub
(
x, y, t f

) �
∑

Si ∈ I nd_sub

(∏Si−1

j�1
α j

(
x, y, t f

)) ∗ RSi

(
x, y, t f

)
. (6)

4 Role of Terrestrial Moisture Sources in the Seasonal
Precipitation

The seasonal mean [June, July, August, and September (JJAS)] of the fraction of
moisture originating from different terrestrial sources that contribute to the ISMR is
presented here. Among the subcontinental terrestrial regions, GB (Ganga Basin), and
SCI (South-Central India) are the main sources of atmospheric moisture (Fig. 2). A
high amount of moisture contribution fromGB can be interpreted as recycling within
theGB,which is probably associatedwith the evapotranspiration from the large-scale
agricultural land use. In addition to high recycling, the evaporated water from the
GB also provides atmospheric moisture for the precipitation over Northeast India
(NEI) and Himalayan Forest (HF).

TheSCI,which has a relatively higher density of forest cover andhigh atmospheric
moisture from high evapotranspiration, provides water vapor to central India, East
India, and south-central India. Although the recycling is in a range of 5–10%, the
contribution from south-central India to ISMR is relatively lesser (~5%) than the
contributions from the GB (~15%). The significant amount of recycling is observed
in NEI region; however, its effect is mainly concentrated within the same region.
Similarly, the regions such as SPI and HF do not contribute significantly toward the
all India monsoon rainfall.
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Fig. 2 Mean fraction of JJAS moisture originated from subcontinental land regions (Reproduced
from: Pathak A., Ghosh S., Martinez J.A., Dominguez F., and P. Kumar, 2017a: Role of Oceanic
and Land Moisture Sources and Transport in the Seasonal and Interannual variability of Summer
Monsoon in India, Journal of Climate, 30, 1839–1859, under the copyright of ©American Meteo-
rological Society)

Here, it is important to note that these contributions are only from the terrestrial
sources those are within the Indian subcontinent, and the contribution of oceanic
sources is not included in this chapter. Readers are advised to see Pathak et al. [22]
to have a detailed discussion on the role of moisture transport from different oceanic
sources to the ISMR.

4.1 Role of Terrestrial Moisture Sources in Interannual
Variability of ISMR

Among all the scales of temporal variations, the interannual variation of ISMR has
a significant impact on seasonal water availability in the Indian subcontinent. Even
with the standard deviation, only about 10% of its mean, the impacts are extremely
large and, therefore severely affects the Gross Domestic Product (GDP) of India
[13]. Skillful predictions of seasonal variability are still a challenge for climate mod-
els. The variability in the rainfall during strong and weak years is linked with the
transport of atmospheric moisture from different oceanic and terrestrial evaporative
sources. Figure 3 shows the percentage of atmospheric moisture originated from
subcontinental evaporative sources (GB, SCI, SPI, and NEI) that contribute to the
precipitation over the core monsoon zone during the JJAS. The contribution from
almost all the terrestrial evaporative sources increases as the monsoon season pro-
gresses, and there exists a large amount of daily as well as year-to-year variability
in atmospheric moisture transport from different terrestrial evaporative sources to
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Fig. 3 Percentage of JJASmoisture originated from different subcontinental land regions resulting
into precipitation over core monsoon zone

the core monsoon zone. Therefore, we need to separately analyze the atmospheric
moisture transport from different terrestrial sources during the strong monsoon and
weak monsoon years.

The precipitation over the core monsoon zone is a well-known measure of the
strength of ISMR over the Indian subcontinent. Therefore, we can use standardized
precipitation anomaly over the core monsoon zone (as shown in Rajeevan et al. [26]
and in Fig. 5c) as an indicator to quantify the strength of the rainfall across different
years. Pathak et al. [22] analyzed the atmospheric moisture transport from different
evaporative sources during a strong monsoon and a weak monsoon year.

Figure 4 shows the contributions from major evaporative sources during strong
and weak monsoon years. Generally, precipitation over the core monsoon zone is
dominated by the oceanic sources, when compared with the subcontinental terrestrial
sources.However, their contributions during strong andweakmonsoonyears (Fig. 4a,
b) are different. During strong years, oceanic sources, as well as terrestrial sources,
contribute significantly to the total precipitation,with very high oceanic contributions
at the start and high terrestrial contributions during the end of the monsoon. The high
evapotranspiration from the terrestrial sources in addition to the good contributions
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Fig. 4 Moisture originating from different sources during strong (a) and weak (b) monsoon rain-
fall years (Reproduced from: Pathak A., Ghosh S., Martinez J.A., Dominguez F., and P. Kumar,
2017a: Role of Oceanic and Land Moisture Sources and Transport in the Seasonal and Interannual
variability of Summer Monsoon in India, Journal of Climate, 30, 1839–1859, under the copyright
of ©American Meteorological Society)

from oceanic sources collectively sustains the monsoon and results in an increased
monsoon spell duration (Fig. 4a).

Contrary to that, during weak monsoon years, a weaker atmospheric moisture
transport from the ocean results in low rainfall in the initial phase of the monsoon.
The delayed onset and low rainfall during the initial phase ofmonsoon results in early
weakening of evapotranspiration–precipitation feedback due to low availability of
soil moisture over the subcontinent land, and hence, it ultimately results in shorter
spell length compared to the strong monsoon years. Furthermore, it is observed that
the prolonged and increased moisture supply from the oceanic sources and the GB
during the initial and final phases of the monsoon period, respectively, results in a
net strong seasonal rainfall [22].

4.2 Role of Terrestrial Moisture Sources in Sub-seasonal
Variability of ISMR

In the previous section, we have seen that a strong land surface feedback due to high
evapotranspiration–precipitation leads to a prolonged and strong monsoon season.
The seasonal variability of the summer monsoon rainfall is strongly linked with the
sub-seasonal variability, and most of the agricultural activities are dependent on the
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Fig. 5 Precipitation anomaly during a active and b break period of Indian summer monsoon
(Adapted from [23], under Creative Commons Attribution 4.0 License)

good spells of rainfall within the monsoon season. Hence, for reliable modeling
and prediction of ISMR, an understanding of the causes and impact of variability at
the sub-seasonal scale is of utmost importance. Therefore, in this section, we will
discuss, how the intraseasonal variability of the ISMR is linked with the terrestrial
moisture transport?

The sub-seasonal variability of ISMR is generally characterized in the form of
periods of active (increased rainfall) and periods of break (less or cessation of rainfall
activity), over the core monsoon region. The active and break period can be identified
using criteria proposed by Rajeevan et al. [26] which is based on standardized rainfall
anomaly over the core monsoon zone. Active periods are the periods (in days) during
which standardized rainfall anomaly is greater than ±1.0 for at least 3 consecutive
days. Similarly, break periods are the periods (in days) during which standardized
rainfall anomaly is less than −1.0 for at least 3 consecutive days.

Amonsoon trough [27] that builds up over the coremonsoon zone (Fig. 5c) results
in excess precipitable water and rainfall over the coremonsoon zone during the active
period (Fig. 5a). In contrast to that, during a break period, this low-pressure system
migrates to the Himalayan foothills [28, 33], resulting in excess rainfall over region2
(Fig. 5c) and low rainfall over the core monsoon zone (Fig. 5b).

If we look closely at Fig. 5a, b, we can see that there are two kinds of asymmetrical
pattern between region1, region2, and region3 (Fig. 5c); a north–south contrast in
precipitation anomaly between the region1 and region3 (Fig. 5a, b) and an east–west
fluctuating pattern between the region1 and region2 (Fig. 5a, b). The north–south
contrast is associated with the sub-seasonal fluctuations of Tropical Convergence
Zone (TCZ) [12, 30], between the core monsoon zone “region1” and the tropical
Indian Ocean “region3”. A northward (southward) shift of TCZ results in high (low)
rainfall over the core monsoon zone during the active (Break) period. Pathak et al.
[23] observed that the atmospheric moisture transport from the oceanic sources is
strongly linked with this north–south anomalous pattern of precipitation between
region1 and region3. It is important to note that the north–south fluctuating pattern
of precipitation anomaly has been widely discussed in the literature and often viewed
as the predominantmode of intraseasonal variability, but the east–west variability has
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not received much attention. Here, we investigate this interesting feature of ISMR
variability with the help of moisture transport from different evaporative sources
during active and break periods.

Figure 6 shows the anomaly of the moisture contributions from major terrestrial
sources (GB and SCI) during active and break period. This closely resembles an
anomalous east–west asymmetric pattern of precipitation between the region1 and
region2 in Fig. 5a, b. Therefore, the east–west rainfall asymmetry during active and
break periods (Fig. 5a, b) is strongly linked with the anomalous contribution from
the terrestrial moisture sources to the core monsoon zone and to northeast India.
Furthermore, the monsoon breaks are generally associated with a northward shift of
monsoon trough to the Himalayan foothills and northeast India (Fig. 5.4b in Pathak
et al. [23]) and a southward protruding mid-latitude trough [28, 33]. This condition
results in an establishment of a strong subtropical westerlies circulation by replacing
the monsoonal easterlies. A strong northwesterly current during the breaks results in
an advection of terrestrial moisture from theGB to northeast India (Fig. 6b), whereas,
in case of active periods, the southwesterly jet becomes prominent.A relatively higher
amount of recycling within the GB is observed during active periods (Fig. 6a) than
during the monsoon breaks.

5 Conclusions

In this chapter, we analyzed the atmospheric moisture transport from different ter-
restrial evaporative sources to the Indian subcontinent during the summer monsoon
rainfall. Themajor terrestrial sources that significantly influence themonsoon rainfall
variability within the Indian subcontinent are Ganga basin (GB) and South-Central
India (SCI). The overall strength of the monsoon rainfall is strongly governed by
the amount of oceanic moisture transport during the initial phase of the monsoon
and high terrestrial contributions, especially from GB during the withdrawal phase
of the monsoon at the end of September. During the strong monsoon years, a strong
evapotranspiration–precipitation feedback leads to a prolonged and sustained mon-
soon season, whereas during the weak monsoon years, the contributions from the
terrestrial sources do not last long and it results in a shorter span of the monsoon
season.

The sub-seasonal variability of ISMR in the form of active and break periods is
also strongly associated with the fluctuations of Tropical Convergence Zone (TCZ)
and resulting anomalous atmospheric moisture transport from different oceanic and
terrestrial evaporative sources. The terrestrial sources such as GB and SCI under
the influence of the large-scale westerlies significantly contribute to the east–west
asymmetry in rainfall anomaly between the core monsoon zone and northeast India.
The north–south asymmetry, between the core monsoon zone and the tropical Indian
Ocean, however, is mostly governed by the oceanic moisture transport.
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Fig. 6 Anomaly of the moisture contributions from major terrestrial sources (GB and SCI) during
active and break period (Adapted from [23], under Creative Commons Attribution 4.0 License)

In this chapter, we have seen that the terrestrial moisture through evapotranspira-
tion–precipitation feedback has an important role in the seasonal and sub-seasonal
variability of ISMR. Here, it is also important to note that the land surface pro-
cesses and their interactions with the atmosphere are complex in nature. Therefore, a
considerable amount of uncertainty is associated with the reanalysis data of land sur-
face evapotranspiration and the computed amount of recycled precipitation. Hence,
by improving the land surface processes in the model and by including the more
realistic dataset, we can achieve the goal of accurate prediction of the seasonal and
sub-seasonal variability of ISMR.
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Assessment of Climate Change Impacts
on IDF Curves in Qatar Using Ensemble
Climate Modeling Approach

Abdullah Al Mamoon, Ataur Rahman and Niels E. Joergensen

1 Introduction

Understanding the climate change impact on hydrological conditions is considered to
be a major challenge in the context of management of stormwater and infrastructure
planning. According to the climate projections of the Intergovernmental Panel on
Climate Change (IPCC), for the Arabian Peninsula, the future average annual rainfall
may decrease, and the frequency and intensity of extreme rainfall events are likely
to increase [19]. This study, in particular, focuses on the assessment of the impacts
of climate change on extreme rainfall in Qatar.

Climate change is a major future risk affecting multiple sectors in the Gulf
countries including Qatar [31]. Studies on rainfall in Qatar showed evidence of a
greater spatial and temporal variability [27]. The 5th phase of Coupled Model Inter-
comparison Project (CMIP5) model results show that Qatar is at the high end of
precipitation sensitivity to changes in average mean temperature [20].

There have been few studies on the application of CMIP5 models to extreme
rainfalls. For example, Kawazoe and William [21] analyzed the ability of CMIP5
models to produce heavy daily precipitation events in an upper Mississippi region.
The study focused on thewinter season during 1980–1999. By comparing the climate
model output with observations, the study supports the use of CMIP5 models to
assess the changes in heavy rainfall events in future climate scenarios. In another
study, Chadwick et al. [7] investigated the spatial pattern of precipitation change
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in fourteen CMIP5 models for the scenario RCP 8.5 (Representative Concentration
Pathways) between the historical 1971–2000 and 2071–2100. The study covers the
tropical region between 30°N and 30°S which includes Qatar. The rate-of-change
around Qatar is found to have the lowest magnitude in the studied tropical region.

For climate impact assessment regarding design rainfall estimation, the avail-
ability of high-quality long precipitation time series with high temporal and spatial
resolution is essential [13]. A possible source of obtaining this data is through down-
scaling of data from a Global Climate Model (GCM) [10]. Typically, climate data
simulated by GCMs have a horizontal resolution between approximately 150 and
300 km. Downscaling of information from GCMs to a finer spatial resolution is
therefore used to assess the impacts of climate change at regional and local scales
[14].

Numerous GCMs and statistical downscaling methods have been applied to cli-
mate change impact studies, but none clearly recommended the most appropriate
one for a particular application. Choice of GCMs is therefore considered extremely
important in projecting impact of climate change [5]. Because multi-model ensem-
bles contain information from all participating models [33], it is generally believed
that multi-model ensembles are superior to single GCM [9].

Climate model projections are associated with uncertainties from various sources.
The most common sources of uncertainties include the GCMs used, climate down-
scaling techniques, emission scenarios, model structure, and parameters [8, 25, 32,
35, 40]. For example, Mandal et al. [24] investigated different sources of uncertainty
in the assessment of the climate change impacts on total monthly precipitation in the
Campbell River basin, British Columbia, Canada. The results show that the selection
of a downscaling method for Campbell River basin provides the largest degree of
uncertainty when compared to the choice of GCM and/or emission scenario.

Extreme design rainfalls in the form of IDF curves are used as an essential tool for
the purpose of urban drainage system planning [15]. Worldwide, studies have been
carried out assessing the impact of future climate on IDF curves. For example, Singh
et al. [37] assessed the impact of IDF curves for Roorkee, India using observed and an
ensemble of GCMs. Analysis of the IDF curves indicated an increase in precipitation
intensities for all the RCP scenarios. Increase in the intensities of extreme storms also
observed by Zhu [42] in various climatic regions across the USAwith strong regional
variations. Abiodun et al. [1] observed an increase in the intensity and frequency of
grid-point extreme rainfall events over three cities in Africa.

Afrooz et al. [2] investigated climate change impact on Probable Maximum Pre-
cipitation (PMP) in Chenar Rahdar River basin, southern Iran. TwoGCMs (HadCM3
and CGCM3) used under A2 emission scenario. Comparison of the future to the base
extreme rainfalls and PMP showed an increase of up to 18.2% and 27.3%, respec-
tively, by the two models. A study by Akbari et al. [3] on the impact of climate
change on IDF curves over the same Chenar Rahdar River basin indicated a decrease
in short duration rainfall (1- and 3-h) and increase in long duration rainfall (6-, 9-,
and 12-h) intensities.
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Xu et al. [40] modeled possible impacts of climate change on regional extreme
precipitation (indicated by 24-h design rainfall depth) at seven rainfall stations in
the Qiantang River basin, East China. The final results indicated that 24-h design
rainfall depthwould increase in themajority of the stations under the threeGCMs and
emission scenarios. On the other hand, IDF curves developed by Herath et al. [14] for
future periods taking future climate change into account for Perth in Australia found
decreasing rainfall depth for the 2020s, 2050s, and 2080s. Sun et al. [36] adopted
nonstationary frequency analysis to predict extreme rainfall over the globe under a
warming climate condition and found that daily extreme precipitation is likely to
increase in future in the high latitude regions of the Northern Hemisphere. Sarhadi
and Soulis [34] found that stationarity assumptions underestimate the IDF curves in
the Great Lakes area of North America.

In a recent study, the climate change scenarios in Qatar were analyzed using
two models (NCAR-CCSM and CSIRO-MK3.5) from the third phase of the Cou-
pled Model Inter-comparison Project (CMIP3), available for AR4 [26]. The results
indicated an increase of 68–76% for the 100-year rainfall depth from the current
(2000–2029) to future scenario (2070–2099).

From the above studies, it appears that the impact of global warming on design
rainfall varies with geographic location and it is not possible to draw any general
conclusion across the globe froma particular study [6].Hence, region-specific studies
are needed to assess the impacts of climate change on design rainfall for a specific
region. This is the main motivation behind this study, which focuses on the use of
the state-of-the-art CMIP5 models to assess the impacts of climate change on design
rainfall in Qatar till 2100. Qatar is investing significantly in infrastructure with long
service lives such as large stormwater systems. These structures are required to be
resilient under influence of climate change expected to occur within their design
lives. The main objective of this study is to provide an estimation of the change in
IDF curves under the influence of climate change up to the year 2100.

2 Study Area and Rainfall Data Selection

Qatar is located off the eastern coast of Saudi Arabia, in the Arabian Gulf. Extreme
rainfall intensities vary significantly over Qatar with higher intensity in the north
compared to the south. The multi-model average of CMIP5 models also exhibits
high seasonal variability of precipitation around Qatar at the end of twenty-first
century.

A total of 32 stations with daily data from Qatar and the surrounding countries
were initially selected in this study. The data period ranges from 1972 to 2015. In
addition to Qatar data, the daily rainfall data from the neighboring Gulf countries
including Bahrain, UAE, and KSA were also included in the analysis. The majority
of data collected measured as daily (24-h) rainfall. The additional short duration
rainfall data have also been used to derive rainfall distributions for short duration
rainfall. Extensive quality control of collected rainfall data was carried out using
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Fig. 1 Location of selected 23 stations

several techniques that included application of double mass curve analysis, tests
for record consistency between nearby gauges and discordance measurement tests.
Rain gauges with fewer than 15 years of observations were excluded. After applying
the above criteria, only 23 stations were retained for the analysis. The locations of
selected rain gauges are shown in Fig. 1.

3 Current Climate IDF Curves

The IDF curves for current climate in Qatar have been developed using similar
approach adopted by the previous studies, i.e., L moments-based index frequency
approach [26, 28]. This study incorporates additional rainfall data from the years
2012–2015 and includes additional short duration rainfall data from Qatar and three
neighboring countries as described in Sect. 2. The additional short duration rainfall
data have also been used to derive better sub-daily rain depth ratios. The site L-
moments are used to form homogeneous regions using H-statistics [16]. A total
of seven regions are tested with various combinations of stations. A homogeneous
region consisting of 23 stations is selected, providing an Annual Maximum Series
(AMS) with 1014 data points. The preferred homogeneous region is comprised of
19 Qatari stations, one Bahraini station, two KSA stations, and one UAE station
(total 23 stations). Based on Z-statistics, the analysis indicated Pearson Type III
(PE3) as the preferred three-parameter statistical distribution. Additionally, upper
and lower bounds for 68%- and 95% confidence intervals of the regional curve were
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Fig. 2 Current climate IDF curves (Doha Old Airport)

determined applying the procedure recommended by Hoskings and Wallis [16]. The
current climate IDF curve for Doha Old Airport is shown in Fig. 2.

4 Methodology for Development of Future IDF Curves

4.1 Selection of Models and Scenarios

The future climate conditions are established based on the Fifth Assessment Report
(AR5) [20]. AR5 is based on CMIP5; with more than 50 models developed by 24
modeling groups around the world, the CMIP5 is the state-of-the-art multi-model
dataset with generally higher spatial resolution. Compared with the IPCC AR4, the
GCM simulations in AR5 include a more diverse set of model types [23].

The CMIP5 models represent a significant improvement over CMIP3 models
used in the earlier study in Qatar [26], especially for simulation of global surface
temperature, large-scale precipitation, climate variability, and extreme events [20].
For precipitation specifically, it is found that the spatial pattern correlation between
modeled and observed annual mean has increased from 0.77 for CMIP3 models to
0.82 for CMIP5models [12].With these improvements, the current study is expected
to capture a wider and more accurate range of variability in terms of design rainfall
under climate change [29].

The CMIP5 models include two types of simulations: (i) near-term simulations
(10- to 30-year time horizon) and (ii) long-term simulations (century timescale, up to
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the year 2100 and beyond). The scenarios for the long-term simulations are of interest
for this study, as they are designed for comparison with observations or providing
projection.

There are 61 models from 22 modeling centers worldwide. Each model has been
run with several scenarios, and in total there are 609 scenarios available for selection.
Special conditions have been applied for the selection of appropriate models and
model scenarios for this study, which include the following:

• The grid cell size of the model should not exceed 300 km × 300 km; and
• The simulation output should have daily precipitation with continuous simulation
covering the period from 2010 to 2100.

As a result of the above conditions, 16models with 49 scenarios are found suitable
for this study. Simulation data were downloaded from Earth System Grid Federation
(ESGF) and World Data Center for Climate Hamburg (WDCC) homepage.

AR5 models use a new set of greenhouse gas concentration (not emissions) tra-
jectories called Representative Concentration Pathways (RCPs) [30]. There are four
RCPs in CMIP5 model, with the high emission scenario designated as RCP 8.5. In
addition to RCPs, scenarios of piControl, esmRCP85, and esmControl from model
INM-CM4 are also found to have the required projection period for this study. The
global models for performing the CMIP5 scenarios include Atmosphere-ocean Cli-
mateModels (AOGCM), Earth SystemModels of Intermediate Complexity (EMIC),
and Earth System Models (ESM) [39].

4.2 Rate-of-Change Estimation Using Multi-model Ensemble

For each selected CMIP5 model scenario, only the output from the cell covering
Doha is used. To assess the rate-of-change, data from two periods are employed
to represent the current and future projections. Data refer to average daily annual
maximum precipitation from the cell covering Doha of each model.

Three periods have been used for analysis:

• P1: 2010–2039, represents the rainfall under current climate conditions;
• P2: 2040–2069, represents the intermediate period; and
• P3: 2070–2100, represents the rainfall under future climate conditions at the end
of the twenty-first century.

The model assumptions are as follows:

• The selected scenarios are equally possible and unbiased.
• Trends within each of the simulated periods P1, P2, and P2 are ignored.
• Each P2 model is a realization of a future condition, but with different emission
scenarios and different parameterizations. The same assumption applies to P3.

• The regional data from P1 are fitted with the PE3 distribution. This assumption is
based on the regional frequency analysis (described in Sect. 3), in which the PE3
was the selected distribution for the homogeneous regions consisting of 23 sites.



Assessment of Climate Change Impacts on IDF Curves … 159

• The regional data fromP2 andP3 are assumed to share the same type of distribution
as data from P1, namely, the PE3. It should be noted that other distributions like
generalized extreme value could have been adopted; however, PE3 was selected
in this study as it was found to be the best-fit regional distribution based on the
historical data.

• The Monte Carlo sample data drawn from the PE3 distribution will still fit with a
PE3 distribution, but with variable moments.

• The rate-of-change for a cell is the same as the rate-of-change for a point rainfall.
• The models are not specifically calibrated for a single location, but the rate-of-
change will be correctly reflected by the model for a certain location. However,
model results of the current period (P1) deviating significantly from observed data
are discarded from the analysis.

• It is assumed that 10000 Monte Carlo sample sets are statistically sufficient to
capture the expected variation in the rate-of-change.

4.3 Model Screening

To analyze the local impact of climate change, appropriate climate scenarios are
selected (by screening) as presented below to capture the present-day climate of the
study area. It should be noted that bias correction could have been applied instead of
model screening; however, in this studymodel screeningwas adopted as the preferred
methodology.

4.3.1 Screening I

Screening I is based on the assumption that the data from climate models during
period P1 represent the current condition in Doha. The regional frequency analysis
(Sect. 3) identified 23 stations for the homogeneous region for Qatar. These 23
stations are taken as regional observations representing the “true” status of current
conditions, and the AMS of the regional observations (daily data) and the P1 data for
model screening. It should be noted that the P1 and P2 data in screening I have been
divided by areal reduction factor (ARF) to convert point rainfall to areal rainfall.

Figure 3 shows the scatter plot of the mean and standard deviation of both the
regional observations (Blue Square) and the climate model results, P1 data (pink
point). The blue ellipse is the best-fit ellipse to regional observations using least
squares approach. The P1 data (pink point) within this ellipse have high similarity
with the regional observations in termsofmean and standard deviation ofAMS.There
are 27 sets of P1 data (pink point) located outside the blue ellipse, and these models
have larger discrepancy with the regional observations. However, considering that
the regional observation (1962–2015) and the P1 data (2010–2039) cover different
periods, it is reasonable that the P1 data are showing certain deviation from the
regional observation. Therefore, the best-fit ellipse is increased by four on major
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Fig. 3 Mean and standard deviation of AMS data from 23 stations of regional observations and 49
sets of P1 data (pink point). The inner blue ellipse is the best-fit ellipse of the regional observations,
while the major and minor axes of the outer ellipse are four times of the inner one

and minor axes to create the “critical ellipse,” shown as the blue dashed line ellipse
in Fig. 3, and P1 data within this ellipse are considered to resemble the regional
observations in terms of mean and standard deviation of AMS. The models outside
the critical ellipse are not directly rejected; instead, the P1 data are subject to bootstrap
analysis and the mean and standard deviation of AMS of bootstrap samples are
compared with the regional observations.

Each set of P1 data covers 2010–2039, which are 10957 days of data (including
data with rain depth equal to 0). Bootstrapping is applied to these 10957 days of data
and partitioned in years to derive the AMS. This procedure is repeated 1000 times,
generating1000 sets ofAMSfor each set of P1data. The result indicates that themajor
portions of the bootstrap samples are within the critical ellipse. There are five models
with both original P1 data and 90% of the bootstrap samples located outside the crit-
ical ellipse (CCSM4_RCP26, CCSM4_RCP45, CCSM4_RCP60, CCSM4_RCP26,
and EC-EARTH_RCP26). These models are rejected due to limited similarity with
the regional observations in terms of the mean and standard deviation of AMS.

Besides the mean and standard deviation, the discordancy measure [17] is also
used for model screening. For each model, the discordancy statistic is the measure
of the discordancy between the P1 data of this model and the regional observations.
For regions with 15 sites or more, Hosking and Wallis [17] suggested the critical
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discordancy value to be 3, and sites with discordancy higher than 3 are regarded as
discordant. However, considering the source of difference of the regional observation
and P1 data, together with their data range difference, the critical discordancy value
is increased by 2, which means model scenarios with discordancy statistic greater
than 6 are taken as discordant from the regional observation, and they are MPI-
ESM-LR_RCP26, MPI-ESM-LR_RCP45, MPI-ESM-LR_RCP85, and MPI-ESM-
MR_RCP45.

4.3.2 Screening II

There are 40 model scenarios remaining after screening I. Screening II is based on
the assumption that distribution of AMS from P1, P2, and P3 data follows a PE3
distribution. The goodness of fit is evaluated by the Kolmogorov–Smirnov test (KS
test) using AMS data. The critical value for sample size 30 (2010–2039, 2040–2069,
2070–2099), with significance level of 5%, is 0.2417 for the hypothesized distri-
bution (PE3), and if the computed KS statistic is higher than 0.2417, the hypoth-
esis is rejected. The results of the KS test show that the rejected fitting is P1 data
of ACCESS1-3_RCP85, and CESM1-BGC_RCP45, CMCC-CM_RCP45, and EC-
EARTH_RCP85 of P2 data, and these four model scenarios are therefore excluded.

4.4 Multi-model Ensemble

Instead of relying on the outcomes of a single model, there is an increasing use of
ensembles of a large number of models for assessing the impact of future climate.
The multi-model ensemble has been shown to be more efficient in improving the
accuracy and consistency of the predictions than a single climate model [22, 38].

There are in total 39 model scenarios for applying multi-model ensemble, and the
adopted procedure of deriving rate-of-change is presented below.

(a) Drawing sample by Monte Carlo simulation

For each model scenario (m1,m2,m3 . . .mn), draw 10,000 Monte Carlo samples
from its fitted PE3 distribution. A single set of Monte Carlo sample is

(
d1p1,i,k, d2p1,i,k, d3p1,i,k . . . d30p1,i,k

) � Random(DP1,i )
(
d1p2,i,k, d2p2,i,k, d3p2,i,k . . . d30p2,i,k

) � Random(DP2,i )
(
d1p3,i,k, d2p3,i,k, d3p3,i,k . . . d30p3,i,k

) � Random(DP3,i ) (1)

The sample size is consistent with the original data size, which has 30
data in each set.

(
d1p1,i,k, d2p1,i,k, d3p1,i,k . . . d30p1,i,k

)
are samples drawn from

the fitted distribution
(
DP1,i

)
of AMS of the P1 data of model scenario

mi, while
(
d1p2,i,k, d2p2,i,k, d3p2,i,k . . . d30p2,i,k

)
are samples drawn from the fit-
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ted distribution
(
DP2,i

)
of AMS of the P2 data of model scenario mi, and(

d1p3,i,k, d2p3,i,k, d3p3,i,k . . . d30p3,i,k
)
are samples drawn from the fitted distribution

(DP3,i ) of AMS of the P3 data of model scenario mi. Here, i denotes the ith model
scenario, and k denotes the kth Monte Carlo sample. To avoid highly correlated sam-
ples, the 10000 samples’ Pearson Correlation coefficient is controlled to be within
−0.9 and 0.9.

(b) Drawing quantile values from samples

Each Monte Carlo sample is also fitted with a PE3 distribution, from which the
quantile values Q for certain typical design return periods are computed. The design
return periods are 1, 2, 5, 10, 20, 25, 50, 100, 500, 1000, and 10000 years, and the
corresponding quantiles are noted as

Qp1, i, k(T),T � 1, 2, 5, 10, 20, 25, 50, 100, 500, 1000, 10000

Qp2, i, k(T),T � 1, 2, 5, 10, 20, 25, 50, 100, 500, 1000, 10000

Qp3, i, k(T),T � 1, 2, 5, 10, 20, 25, 50, 100, 500, 1000, 10000

where p1 denotes the sample corresponds to P1 data, p2 denotes the sample corre-
sponds to P2 data, and p3 denotes the sample corresponds to P3 data. i denotes the
ith model scenario, and k denotes the kth Monte Carlo sample.

The overall methodology adopted in this study is summarized in Fig. 4.

5 Results and Discussions

5.1 Summary of Screened Scenarios

Screening I and screening II rejected ten model scenarios, which are ACCESS1-
3_RCP85, CCSM4_RCP26, CCSM4_RCP45, CCSM4_RCP60, CCSM4_RCP26,
EC-EARTH_RCP26, MPI-ESM-LR_RCP26, MPI-ESM-LR_RCP45, MPI-ESM-
LR_RCP85, and MPI-ESM-MR_RCP45.

There are in total 609 scenarios of CMIP5 models. Seventy-seven scenarios could
not be used due to usage restrictions of themodels. Amajor part of the scenarios (483)
are not suitable for this study due to the specific requirement on model discretization
and data range as discussed in Sect. 4. As a result, 49 scenarios were used for
screening.

Screening I excluded three RCP26 scenarios, three RCP45 scenarios, one RCP60,
and two RCP85 scenarios. Screening II excluded two RCP45 and two RCP85 sce-
narios. As a result, there are 36 scenarios suitable for applying the multi-model
ensemble. They include 11 RCP45 scenarios, 12 RCP85 scenarios, 6 RCP26 sce-
narios, 4 RCP60 scenarios, 1 piControl scenario, 1 esmRCP85 scenario, and 1 esm-
Control scenario.
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Fig. 4 Schematic of the adopted procedure

5.2 Computation of Rate-of-Change

The rate-of-change is used to represent the relation between rainfall event of P2 (or
P3) and that of P1. It is computed as

Rp1−p2,i,k(T) � Qp2,k,i (T)/Qp1,k,i (T)−1

Rp1−p3,i,k(T) � Qp3,k,i (T)/Qp1,k,i (T)−1 (2)

With 36 model scenarios and 10000 Monte Carlo samples from each model sce-
nario, the size of ensemble is 36 × 10000 � 360000 (360,000 for P1 data and
360,000 for P2 data, respectively). The medians 68, 90, and 95% uncertainty range
of the 360000 sets ofRp1-p3,i,k (T) are used to represent the uncertainty range of rainfall
event variation at the end of twenty-first century, as illustrated in Fig. 5. In general,
the median of the 360000 ensembles illustrates a slightly decreasing tendency with
increasing design Average Recurrence Interval (ARI), which means the short ARI
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Fig. 5 The 360,000 sets of Rp1-p3,i,k (T) together with their median, the 68, 90, and 95% uncertainty
ranges

rainfall will experience a higher magnitude of variation at the end of twenty-first
century than the long ARI rainfall.

The rate-of-changes found in this study are compared with similar studies carried
out in other countries. For example, the changes of seasonal precipitation extremes
in UK by 2070–2100 were evaluated by Fowler and Ekström [11] applying multi-
model ensemble on 13 regional climate models under SRES A2 emission scenario.
For daily extreme rainfall of 5-year event, the study suggested 10–30% increases in
spring, autumn, and winter rainfalls by 2010–2070. Projections are similar for the
25-year event, with larger uncertainty. The median rate-of-change of our study is
around 13% for 5-year event and 12% for 25-year event, which is at the lower end
of the rate-of-change found in the UK.

Similar climate studies, based on results from 40 CMIP 5 models, reported by the
Department of the Environment, [4] provide a range of projections for major climatic
parameters including rainfall. The median projections for a 20-year rainfall event at
the end of the century are predicted to increase by 10–15% for RCP 4.5 and 20–25%
for RCP 8.5.

The rate-of-changes predicted for Denmark are in the same range as the values in
Australia with median values for a short duration 1-h rainfall under climate change
year 2100 vary from 10 to 20%, while the 84-percentile (upper part of the 68%
confidence intervals) vary from 20 to 50%depending on the return period (IDA) [18].
The worst projections predict more than a 100% increase in extreme rainfall between
200 and 280%. The standard rate-of-change adopted in Denmark is approximately
66% of the 84-percentile value (for 1-h and 100-year ARI).
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A study from Antalya, Turkey, a location considerable closer to Qatar, conducted
by Yilmaz [41] predicted an increase in the median value of 11% for a 10-year event,
20% for 20-year event, and 37% for 100-year event using a single climate model
(Reg3CM3). The results indicated more significant changes in the median value
compared to the current study.

Transforming IDF Curves to future conditions

Transition between current baseline meteorological conditions and future meteoro-
logical conditions is expressed by a climate change factor expressed as [41]/ [18]

CF(T, d, t + �t) � IFut
ICur

� IFut (T, d, t + �t)

ICur (T, d, t + �t)

� 1 + Rt,t+�t (T, d) (3)

where

IFut � Future rainfall intensity [mm/hr]
ICur � Current rainfall intensity [mm/hr]
Rt,t+�t � Rate-of-change from t to t + �t
CF � Climate Change Factor
T � Average Recurrence Interval [years]
d � Duration of rainfall [minutes]
t � The current [year]
�t � The number of years into the future from current date [year]

The future IDF relations are found through conversion of the current to future
rainfall design criteria expressed as

IFut (T, d, t + �t) � ICur (T, d, t)CF(T, t + �t) (4)

Several aspects must be considered while choosing rate-of-change for updating
IDF for the future scenario in Qatar, such as the design horizon, the replacement
cost, the interest rate, the sensitivity of the infrastructure, and the cost of waiting
until more information becomes available. There is a 50% chance the median value
will be exceeded; hence, the median value would be an unsafe choice. Considering
theDanish standard, it has been chosen to use approximately 66%of the 84-percentile
value equivalent to the upper 68%confidence interval and apply this value for allARIs
inQatar. The computed and proposed rate-of-change values forQatar for the different
ARIs, are shown in Table 1. The results indicate an increase of up to 50% for the
100-year rainfall event from current to the intermediate scenario (2040–2069). The
rate-of-change for the far future (2070–2100) is at similar level as the intermediate
period.

Future IDF curves for the year 2100 have been developed by applying the devel-
oped climate change factor as indicated by Eq. 4. As an example, the IDF curve for
the year 2100 for Doha old airport is shown in Fig. 6.
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Table 1 Proposed rate-of-change (66% of the climate change factor based on 84-percentile) for
design rainfall in Qatar due to climate change

ARI (year) Proposed
rate–of-change
(2040–2069)

Proposed rate–of-change (2070–2100)

2 30% 30%

5 30% 30%

10 30% 30%

20 40% 30%

25 40% 30%

50 40% 40%

100 50% 50%
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Fig. 6 Future IDF curves (year 2100) for Doha Old Airport under climate change (applied rate-
of-change value for climate change 30% for 2–10 years, 40% 20 years to 50 years ARIs, and 50%
beyond for 100-year ARI)

6 Conclusions

The study evaluates climate change impacts based on IPCC’s most recent climate
models used in AR5. In order to reduce the uncertainty, this study uses ensemble
approach that includes newgeneration ofCMIP5modelswith generally higher spatial
resolution.

In this study, the relationship between current (2010–2039), intermediate future
(2040–2069), and the far future (2070–2100) IDF curves are examined. A total of
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61 Global Circulation Models (GCMs) with 609 emission scenarios are considered.
Samples are drawn from the selected multi-model ensemble to provide projections
of the rate-of-change between current and future IDFs as predicted by the selected
climate models and individual scenarios. A bootstrap analysis of the current period
(2010–2039) is carried out and comparedwith historical data. The climatemodels are
rejected if the deviations between the bootstrapped data and the historical measured
data show notable deviation.

Both the median and the upper 68% confidence interval of the rate-of-change
from the climate change analysis show increased rainfall from present to the future.
Only the lower 68% confidence intervals show decreased rainfall. The upper 68%
confidence interval from the climate change analysis is used to predict the future
design rainfall.

The result shows that the rate-of-change of intermediate period (2040–2069) is
at similar level as the far future (2070–2099). There is a slightly larger increase for
rainfall of short and intermediate ARIs (<100 years) and lower magnitude increases
for extreme rainfall (>100-year ARIs) at far future, considering the median values.
However, the confidence intervals widen with increase in the ARI; accordingly, the
typical rate-of-changes increase with increasing ARI taking safety into account.

The rate-of-change due to climate change obtained from this study is compared
with similar studies in Australia, Denmark, and Turkey. Considering the Danish
standards, it is recommended to use rate-of-change for Qatar based on approximately
66% of the 84-percentile value equivalent to the upper 68% confidence interval. This
provides a reasonable degree of safety for design of infrastructure with long design
horizon in Qatar.

The future IDF curves to account for climate change have been developed by
applying the recommended rate-change-values to the IDF curves developed for the
present condition. The climate change factor is introduced given as (1 + rate-of-
change). The climate factor is multiplied on current IDF intensities to derive the
future IDF curves. The adoptedmethodology can be applied to other Gulf and similar
countries.
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River Water Temperature Modelling
Under Climate Change Using Support
Vector Regression

Shaik Rehana

1 Introduction

Amodel is a simplified system, which can be used to represent the complex real-life
system and can be used as a substitute for a real system under specific conditions [17].
Generally, such models are based on the formalized concepts of the real system. A
surface water quality modelling was developed as a tool for the better understanding
of themechanisms and interactions between anthropogenic residual inputs and result-
ing water quality [7]. In the context of global climate change under anthropogenic
greenhouse warming, the sensitivity of water quality will be more intensified under
changes in hydro-meteorological variables. The self-purification capacity of the river
in response to the pollutants and climate depends on various hydro-meteorological
variables and water quality parameters. One such water quality variable, which gets
most influenced by climate change and human interventions is River Water Temper-
ature (RWT). The reasons for the alterations in RWT are generally due to human
activities and anthropogenic heat sources include water withdrawals and additions,
changes in channels, dam operation, alterations in riparian cover, industrial cooling
water, outfalls from a sewage treatment plant, net exchange from groundwater tem-
perature and downstream of a thermal plant. The RWT is of particular significance as
(i) the discharge of excess heat from industries and municipal effluents can affect the
aquatic ecosystem, (ii) temperature influences all biological and chemical reactions,
and (iii) temperature variations affect the density of water and hence the transport
of water [35]. It is also a vital physical property of rivers, directly affecting water
quality in terms of reaction rates and dissolved oxygen (DO) levels. Increase in RWT
results in the decrease of DO levels which leads to anaerobic conditions in aquatic
systems, thereby affecting marine life in terms of availability of food, reproduction
and migration. Besides, the river water temperature is a prominent variable in the

S. Rehana (B)
Lab for Spatial Informatics, International Institute of Information Technology,
Gachibowli, Hyderabad 500032, India
e-mail: rehana.s@iiit.ac.in

© Springer Nature Switzerland AG 2019
S. K. Singh and C. T. Dhanya (eds.), Hydrology in a Changing World, Springer Water,
https://doi.org/10.1007/978-3-030-02197-9_8

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02197-9_8&domain=pdf
mailto:rehana.s@iiit.ac.in
https://doi.org/10.1007/978-3-030-02197-9_8


172 S. Rehana

context of climate change as it is a function of climatic variables such as air temper-
ature, humidity, solar radiation and wind speed. Reliable prediction and assessment
of RWT sensitivity under climate change have become the main issue for many
environmental applications, hydrology and ecology. To this end, numerous methods
have been developed in the recent years by several authors for the estimation of river
water temperature as a basic mathematical model to represent the complex system
of hydro-meteorological and climate data along with water quality parameters.

Some of the river water temperature models generally used are heat advection-
dispersion transport equations [30, 41], which incorporates the net heat transfer
processes at surface of water by using thermal equilibrium concepts [4, 5, 11, 19,
26]. Stochastic RWT models separate the RWT time series into long-term annual
component (annual cycle) and short-term components [6]. Few RWT models were
based on the mathematical representation of the underlying physics of heat exchange
between the river and the surrounding environment [20, 32, 30]. To incorporate the
watershed hydrology fromclimatic changes onRWT, the physically based hydrologic
and stand-alone stream temperature models have been effectively used to simulate
RWT (e.g. SoilWater Assessment Tool (SWAT), [2, 13]; BasinTEMP, [1]; QUAL2K,
[8]. Although a mechanistic temperature model could give very accurate results, it
requires large amounts of detailed data and also computationally intensive. These typ-
ically require numerous input data including stream geometry, hydro-meteorology,
vegetation cover and land use, along with in-depth knowledge of the field. Further-
more, these models sometimes have complex practical implementation issues, when
it is the large spatial domain of interest.

To this end, the regression-based models become well accepted in the research
community under the limitation of complex meteorological and hydrological river
data availability. Traditionally, river water temperature has been related to air tem-
perature as a surrogate for net heat exchange and as an approximation to equilibrium
temperature (e.g. [31]). A linear regressionmodel relating air andwater temperatures
are generally most adopted model to predict the RWTs (e.g. [5, 23, 25]). These mod-
els usually predict river water temperature at weekly, monthly and annual time steps,
relying mainly on the relatively high correlation between air and water temperature
at those timescales. Due to the computational feasibility and ease of implementation,
linear regression models have been used to obtain the relation between air and water
temperature (e.g. [12, 23, 24, 25, 33]). Neumann et al. [23], developed a linear regres-
sion method to model daily maximum stream temperature in terms of maximum air
temperature for the Truckee River in California and Nevada. In linear regression
models, the AT and RWT are considered as the independent and dependent variables
respectively and these models are claimed to work more accurately at weekly to
monthly scale rather than daily scale [5]. Webb et al. [40] noted that flow is another
important variable that should be considered in water temperature predictionmodels,
and air and water temperatures are more strongly correlated when flows are below
median levels. Several authors related river water temperature with both streamflow
and air temperatures with the linear regressionmodels (e.g. [21, 25]). Streamflow has
an inverse relationship with the water temperature, due to the fact that as sufficient
amount of streamflow is available, then the effect of river water temperature will
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decrease. The streamflow will be of more interest in the RWT prediction models,
particularly in snowmelt-fed rivers and rivers impacted by hydropower production
[36]. Generally, such regression-based models are applied by training or calibrating
the model for a subset of historical data and then validate or test with the historical
data which may be independent of historical data used in the training or calibration.
The trained and tested models can be used for future prediction of RWT. Such linear
models facilitate to study the sensitivity of the RWT to the changes in AT under
changed conditions of climate [21, 25, 27, 28, 38]. Rehana and Mujumdar [25], used
a linear regression model with daily data for understanding the sensitivity of RWT
for the changes in AT of 1 to 2 °C and 10 to 20% reduction in the streamflows for
Tunga-Bhadra river India. Further, Rehana et al. [27] revealed that the sensitivity of
RWT will be for about 2.76 °C under various air temperature and discharge changes
when compared with the observed conditions at mean annual scale for the Missouri
River at Nebraska City, Nebraska, USA.

Morrill et al. [21] used both linear and nonlinear models in 43 river and stream
sites in 13 countries and indicated that the air/water temperature relationship is bet-
ter fitted with non-linear regression. Linear Regression is less appropriate if the
assumption of linear relationship cannot be verified. Also, these models are sensitive
to outliers and can suffer from the problems of overfitting. i.e., regression begins to
model the random error (noise) in the data, rather than just the relationship between
the variables. Further, linear regressions become unsuitable for modelling the RWT
extremes, for example, at highest (due to increased evaporative cooling) and low-
est temperatures (due to freezing). Mohseni et al. [18] developed a four-parameter
non-linear regression model at a weekly time step, which is widely accepted in the
research community (e.g. [28, 38]. Van Vliet et al. [38] improved the non-linear
regression model developed by Mohseni et al. [18] with the inclusion of streamflow
and applied at daily time scale.

Apart from regression-based models, another set of data-driven models which
became promising due to the advancement of machine learning models in the RWT
estimation are basedonArtificialNeuralNetworks, SupportVectorMachines (SVM),
Boosted Regression Trees (BRS), specifically for data scarce regions. There is a
recent advancement towards the use of Artificial Neural Networks (ANN) in river
water quality prediction (e.g. [14, 29]). Modelling of RWT using ANN has gained
much attention in the literature (e.g. [9, 29]) due to its ability to capture and rep-
resent complex non-linear relationships. DeWeber and Wagner [10] applied ANN
for estimating daily mean RWT of the individual stream reaches throughout the
range of Brook Trout Salvelinus Fontinalis in the eastern U.S with different groups
of predictor variables including climate, landform and land cover attributes. Tem-
izyurek and Dadaser-Celik [34], used ANN to study the effect of meteorological
parameters on RWT at Kızılırmak River in Turkey. However, Support vector regres-
sion (SVR), which is based on structural risk minimization to avoid overfitting [37]
has been adopted over ANN in several research studies due to the uniqueness and
globalization of the solution [39]. In this context, there are limited studies for test-
ing the predictability of RWT with SVR in the literature. To this end, the present
work adopted well-accepted machine learning algorithm, such as Support Vector
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Machine (SVR) to analyze the predictability performance of river water tempera-
ture. The present study used SVR model to compare the predictability performance
with a linear regression model. A Multiple Linear Regression Model (MLRM) with
air temperature and streamflow as predictors and daily RWT as predictand variable
was compared with the predictability of SVRmodel. The proposed machine learning
algorithm of SVR is applied with air temperature and streamflow as predictors to
estimate the RWT at Shimoga river water quality checkpoint along Tunga-Bhadra, a
tributary of Krishna river, India. For understanding the possible variability in RWT
under climate change, a statistical downscaling model based on Canonical Correla-
tion Analysis (CCA) has been adopted. The future RWT projections were analyzed
using the trained and testedMLRMandSVRmodelswith the downscaled projections
of air temperature and streamflow.

2 Data and Methods

Tungabhadra River is one of the highly polluted rivers in India after Yamuna River
due to the rapid growth of urban industries located along the river such as effluents
from paper, pulp, rayon and steel industries such as Mysore paper mill and Harihar
poly fibre. Tunga River, of length 147 km and Bhadra River, about 178 km long
originates in the Western Ghats, and join at Kudli, which is about 14.5 km from
Shimoga city, to form the Tungabhadra River (Fig. 1). The river location considered
for the quantification of RWT is Shimoga along the Tunga River. The river location
receives the waste load from Shimoga city municipal effluent. The daily streamflow
and river water temperature data from 1988 to 2005 recorded at Shimoga station was
obtained from Central Water Commission (CWC), Karnataka, India.

To study the impact of climate change on RWT, the downscaled streamflow and
air temperatures were obtained by considering the large-scale climate predictor vari-
ables as air temperature, mean sea level pressure, specific humidity, U-wind, V-wind
and geopotential height based on earlier studies [26]. The selected predictor variables
for the period of January 1948 to December 2005 for six (National Center for Envi-
ronmental Prediction/National Center for Atmospheric Research) NCEP/NCARgrid
points were extracted for the given region of 10–20°N to 70–80°Ewith a spatial reso-
lution of 2.5°× 2.5°. The daily streamflow and air temperature data and predictor set
for the period of 10 years (1988–1998) were used for training the downscaling model
with CCA and the data from 1999 to 2005 was used for testing. The future climate
variables were obtained from the simulations of the Beijing Climate Center (BCC-
CSM1-1) model output prepared from CMIP5 (Coupled Model Inter-comparison
Project 5), by the Beijing Climate Center, China Meteorological Administration.
The BCC-CSM1-1 model was selected based on the availability of CMIP5 projec-
tions of predictor variables to demonstrate the modelling of RWT using SVR and to
analyze the future projections. The IPCC AR5 models implemented set of scenarios,
called Representative Concentration Pathways (RCPs) in which radiative forcing
due to anthropogenic factors reaches 2.6 (RCP 2.6), 4.5 (RCP 4.5) and 8.5 (RCP
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Shimoga

Fig. 1 Location map of Tunga-Bhadra River and Shimoga station, India

8.5) Wm−2 by 2100, were selected for studying the possible RWT changes under
climate change. The RCP 8.5, was considered as a possible scenario for the present
study, which represents high concentration mitigation pathway which continues to
rise throughout the 21st century. The daily GCM simulations for historical and future
scenarios from CMIP5, RCP8.5 were obtained from World Data Center for Climate
(http://cera-www.dkrz.de/maintenance.html).

http://cera-www.dkrz.de/maintenance.html
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3 Multiple Linear Regression Model (MLRM)

A MLRM is developed at daily scale to predict the RWT for Tunga-Bhadra River
with air temperature and streamflow as predictor variables. The MLRM developed
based on the training is given in the following equation:

Tw � a + bTair + cQ (1)

where Tw is the daily river water temperature in °C, Tair is the daily air temperature
in °C, Q is the daily discharge in m3/s, and a, b, c are the parameters estimated based
on the training the MLRM.

4 Support Vector Regression (SVR)

The Support Vector Machine (SVM) is a kernel function learning machine,
which follows the structural risk principle [37]. When the training data of
{(x1, y1), . . . ..(xn, yn)} with n patterns, a function f (x) will be identified with the
consideration of the deviation from the actually observed target variables yi for all the
training data [16]. The input variables, X will be mapped into a higher dimensional
feature space using a non-linear mapping function �.

f (x ;w) �< W,�(x) > +b (2)

where < , > denotes the inner product, and W and b are the regression coefficients,
which can be estimated by minimizing the error between f (x) and the observed
values of y. SVR uses the ∈-insensitive error to measure the error between f (x) and
the observed values of y.

| f (x ;w) − y|∈ �
{
0 i f | f (x ;w) − y| <∈
| f (x ;w) − y|− ∈, otherwise,

(3)

Using the training data of (xi , yi ), the values of w and b are estimated by mini-
mizing the objective function:

F � C

N

∑n

i�1
| f (xi ,w) − yi |∈ +

1

2
‖w‖2 (4)

where C and ∈ are the hyper-parameters. The minimization of the objective function,
F, uses Lagrange multiplier method, and the final regression equation with kernel
function K

(
X, X ′) can be in the form:

f (X) �
∑

i
K (X, Xi ) + b (5)
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The well-known kernel functions are Linear, Polynomial, Radial Basis Function
(RBF), Sigmoidal. The present study tried the Linear and Gaussian and RBF kernels
and the Gaussian kernel function has been identified as suitable one in terms of the
performance measures for the RWT modelling.

5 Evaluation Criteria of Model Performance

Themodel performance ofMLRMwas tested based on theNash-Sutcliffe coefficient
(NSC) [22] (Eq. 6), to show the efficiency of the model fit. The quality of theMLRM
is analyzed using Root Mean Square Error (RMSE) [15] (Eq. 7).

NSC �
∑n

i�1

(
TWSim − TWObs

)2
∑n

i�1

(
TWObs − TWObs,Avg

)2 (6)

RMSE �
√∑n

i�1

(
TWSim − TWObs

)2
n

(7)

where TWSim is the simulated daily river water temperature at time step i in °C; TWObs

is the observed daily river water temperature at time step i in °C; TWObs,Avg is the
average daily river water temperature at time step i in °C; n is the number of data
pairs in comparison.

6 Statistical Downscaling Model

Astatistical downscalingmodel can be adopted to predict the changes in daily stream-
flow and air temperature projections based on General Circulation Models (GCMs)
outputs. GCMs are climate models designed to simulate time series of climate vari-
ables globally, accounting for the greenhouse gases in the atmosphere for current and
future scenarios. Downscaling models are the statistical techniques, which are used
to bridge the spatial and temporal resolution gaps between the GCMs and impact
assessment studies. Generally, these methods involve deriving empirical relation-
ships that relate the large-scale simulations of climate variables (referred as the
predictors) provided by a GCM to regional scale hydrologic variables (referred as
the predictands). A multivariable statistical downscaling model based on Canoni-
cal Correlation Analysis (CCA) was used in the present study, which relates the
atmospheric climate variables and downscalable variables (e.g. streamflow and air
temperatures) linearly. The downscalingmodel involves, data pre-processing of stan-
dardization and normalization to remove the systematic bias in the climate model
simulations, data reductionmethodology of Principal ComponentAnalysis (PCA) on
the large-scale climate variables of predictors [26]. The preprocessed predictors and
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predictands (streamflow and air temperatures) were given as input to CCA model,
which converts them into canonical variables (Eqs. 1 and 2). Canonical regression
equations will be developed for both streamflow and air temperatures separately with
the NCEP/NCAR reanalysis data sets (X) and observed data (Y) of period

Um � aT X, q � 1, . . . .min(N , M) (8)

Vm � bT Y, q � 1, . . . .min(N , M) (9)

where Um and Vm are called predictor and predictand canonical variables respec-
tively, a � [a1, a2, . . . aN ]T and b � [b1, b2, . . . bN ]T are canonical loadings or
weights. The canonical correlation, ρcq , between predictors canonical variable, Uq

and predictand canonical variable, Vq is maximum. The canonical coefficients of
the predictor and predictand variables estimated based on the training period from
1988 to 1998 and tested for the period from 1999 to 2005 was used for the future
projections of streamflow and air temperatures with GCMprojected climate variable.

7 Results and Discussion

The statistical downscaling model based on CCA was used to predict the changes in
daily streamflow and air temperature projections from BCC-CSM 1-1 GCM for the
period from 2006 to 2099. Figure 2 shows the observed, simulated with NCEP data
and simulated with GCM data for streamflow and air temperature for the training
period of 1988 to 1998. The performance of the statistical downscaling model was
tested with the Root Mean Square Error (RMSE) and Nash-Sutcliffe coefficients.
The performance of the downscaling model in terms of N-S coefficients as 0.73 and
0.21 for the training and testing periods respectively for streamflow, whereas, for air
temperature as 1.00 and 0.56 for the training and testing periods respectively. The
RMSE values for the training and testing periods for streamflow were obtained as
403.61 and 419.77 respectively, whereas, for air temperature, the RMSE values were
obtained as 3.41 and 3.92 for the training and testing periods, respectively.

Overall, a significant decrease in daily streamflow values and increase in air tem-
peratures were observed for Tunga river at station Shimoga for current and projected
scenarios [26]. The historical and projected streamflow and air temperatures were
used with MLRM and SVR to study the impact of RWT under climate change. The
present study compared the MLRM and SVR models to predict the RWT at daily
scale along Tunga-Bhadra River. For both the models, the training period is con-
sidered as 1989 to 1999 and the testing period as 2000 to 2005. The trained and
tested models of the MLRM and SVR with good agreement over the performance
measures were used for the future prediction of RWT. The Fig. 3 shows the observed,
simulated daily RWT with MLRM and SVR for (a) training and (b) testing period
of 1989 to 1999 and 2000 to 2005 respectively. The performance of MLRM in pre-
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Fig. 2 Observed and simulated from NCEP and GCM (BCC-CSM1-1) data sets for the training
period of 1988 to 1998 for a streamflow and b air temperatures

dicting the RWT in terms RMSE for training and testing periods were obtained as
1.19 and 1.85 respectively, whereas, the N-S numbers for training and testing were
obtained as 0.79 and 0.53 respectively. The predictability of RWT has been improved
by applying the SVR model with RMSE for training and testing periods as 0.95 and
1.69 respectively. The N-S numbers in the prediction of RWT for training and testing
periods were obtained as 0.87 and 0.61 respectively with SVR. Overall, the perfor-
mance of the MLRM and SVR in the prediction of daily RWT were satisfactory in
terms of RMSE and N-S numbers, with more accuracy towards the SVR model. The
trained and tested MLRM and SVR models were used to predict the RWT for future
scenarios with the projections obtained from CCA downscaling model.

Table 1 shows the annual mean of RWT at Shimoga, along Tunga-Bhadra river
for the historical period of 2000–2005 and for the future time periods of 2020–2040,
2041–2060, 2061–2080, 2081–2100 forMLRMandSVRmodels. Figure 4 shows the
observed and projected annual RWT for the future time periods of with MLRM and
SVRmodels. FromTable 1 and Fig. 4, it is evident that the RWTprojections based on
regression model have been identified as more pronounced compared to SVRmodel.
However, the present study revealed that there will be a significant impact on climate
change on RWTwith pronounced increases at annual scales. Tunga-Bhadra river has
been suffered in terms of river water quality with the decrease of streamflow of about
3.1% at Shimoga for the historical periods [25] and 21% of reduction for the period
of 2070–2100 MIROC 3.2 GCM along the Tungabhadra River [26]. Furthermore,
the air temperature is also projected to increase about 1.66 °C for the period from
2070 to 2100 according toMIROC 3.2 GCM along the Tunga-Bhadra River [26] and
therefore a significant increase in the RWT extremes [28] leading to deterioration of
water quality.

8 Conclusions and Future Directions

Modelling river water quality under climate change is prominent to understand the
projected risk of low water quality and possible adaptation and management policies
to be implemented. Such impact assessment models need to be integrated with cli-
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Fig. 3 Observed and simulated river water temperature for a training b testing periods for Tung-
Bhadra River at Shimoga, Karnataka, India

Table 1 The annual mean of RWT for the observed and future time periods for MLRM and SVR

Time period MLRM SVR

Historical (2000–2005) 27.87 27.87

2020–2040 25.91 25.85

2041–2060 27.23 26.69

2061–2080 28.66 27.45

2081–2100 29.99 28.09

mate change projections models. The present study integrated the RWT prediction
models with a statistical downscaling model to analyze the climate change impacts
on temperatures of rivers. A multiple linear regression model and support vector
regression models were developed to predict the daily RWT under climate change
along Shimoga Tunga-Bhadra river, India. The SVR model has identified as the best
prediction performance compared to linear regression models. The SVRmodel fitted
the daily RWT with a N-S number of 0.87 and 0.61, whereas the MLRM fitted the
RWT with N-S numbers as 0.79 and 0.53 respectively for training and testing peri-
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Fig. 4 Annual river water temperature for a observed period of 2000–2005 b future projections
for period of 2020–2040, 2041–2060, 2061–2080 and 2081–2100 with MLRM and SVR models
for Shimoga station, Tunga-Bhadra river, India

ods. The fitted models of SVR and MLRM based on historical data were used with
the downscaled projections of streamflow and air temperatures from CCA down-
scaling model. The RWT projections based on MLRM model has been identified as
more pronounced compared to SVR model. The annual RWT increase for the river
from near future time period of 2020–2040 to 2081–2100 is estimated as 3.99 and
2.24 °C for MLRM and SVR respectively. The more intensified changes in RWT
was predicted based on a linear regression model compared to the advanced machine
learning algorithm of SVR. Therefore, the present study suggests the use of both
the data-driven models for the possible application to study the RWT under climate
change. Although such data-driven models are not accurate to predict the changes
in RWT due to the non-stationarity relationship between air and RWT over time,
the simplicity of applicability for predicting future RWT motivates to adapt in the
management policies. Further, the data-driven models will not provide a physical
justification, and projections made on such models are always subjected to uncer-
tainties [3] as the models are validated within the range of measured values [36].
Therefore, knowing the limitations and strengths of each of the existing models, the
RWT prediction tools can be applied for the effective assessment of river water qual-
ity for various spatial and temporal scales of the case studies varying from global to
local/regional scales.
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Assessing the Impact of Climate Change
on Water Resources: The Challenge
Posed by a Multitude of Options

Riddhi Singh and Basudev Biswal

1 Introduction

The rise of global mean temperature due to anthropogenic emissions of greenhouse
gases, a phenomenon known as global warming, is widely recognized by climate
scientists [3, 82]. However, it is not clear how global warming will impact water
resources around theworld. Although according to Clausius–Clapeyron relationship,
global mean precipitation should increase due to global warming, climate models
predict a highly uneven picture of precipitation changes spatially. In some parts of the
world, mean annual precipitation is likely to increase, whereas in other parts, it may
decrease. The uncertainty in precipitation estimates is pronounced in regions such as
the Indian subcontinent, which receive precipitation mainly due to summer monsoon
[38, 64, 63, 70]. Even if themean annual precipitation remains unchanged in a region,
the temporal distribution of precipitation may change significantly. For instance, in
most parts of India, mean annual precipitation is within the historically observed
ranges but extreme precipitation events are on the rise—heavy rainfall events are
becoming more frequent, whereas moderate ones are becoming fewer [64].

From a water resources manager’s point of view, the main concern is whether
climate change will impact water resources of a region negatively and currently used
management strategies will fail. Many studies suggest that a changing climate cou-
pled with other anthropogenic alterations may adversely affect water resources in
several parts the world, thus exposing the population in those regions to increased
risks of hydrologic disasters [36, 37, 40]. According to one estimate, nearly two-
thirds of the global population, about a half of whom live in India and China, are
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currently living under severe water scarcity for at least 1 month in a year [50]. More-
over, due to the expected rise of extreme rainfall events in a changing climate, a
significant percentage of the global population may be at risk of experiencing catas-
trophic flooding [5]. An additional challenge faced by many countries, particularly
the developing ones, is increasingly uneven distribution of population due to the
migration of people from rural areas to urban areas, which requires transportation
of water from faraway places to cities [86]. It has also been argued that the water
crisis caused by climate change may lead to large-scale political conflicts [35, 45,
84]. In view of the imminent challenges posed by climate change, it is important
for hydrologists and water resources managers to carefully study climate change
impact on freshwater resources which are already under stress in many parts of the
world due to population growth, lifestyle changes, industrialization, and agricultural
intensification [14, 33, 59].

Many efforts have already been made to estimate the possible impacts of a chang-
ing climate on water resources. A wide variety of methods have been developed
and continue to be explored [91]. Generally, approaches involve the use of general
circulation models (GCMs), also called global climate models. By simulating how
possible changes in future greenhouse gas forcings will affect the global climate,
GCMs project possible changes in two main hydro-climatic variables: precipitation
and temperature. These projections are then used to drive hydrologic models at var-
ious spatial scales and translate the impact of changing climate on water resources.
However, with the proliferation of methods, there is also a growing confusion as
to the best way to approach the issue of impact assessment. One of the most chal-
lenging issues is the high uncertainty in GCM-projected precipitation in many parts
of the globe [55]. Apart from this, the choice of suitable techniques to post pro-
cess coarse-resolution GCM data to match the scale of predictions required in local
decision-making, choice of hydrologic models, evaluation metrics, etc., may present
quite a dilemma to a modeler.

Climate change impact assessment studies require realistic projections of future
precipitation and temperature from climate models, but often are unable to obtain
them. It is also important for us to develop an adequate understanding of how hydro-
logical systems respond to climate change as the selected hydrological models may
not predict hydrological variables well [10, 78, 85]. Although there are several meth-
ods andmodels one can find in the hydrologic literature, there is no standard guideline
on how to perform climate change impact assessment. The main aim of this chapter
is to highlight the dilemma a hydrologic modeler may encounter while attempting
to study the impact of climate change on water resources of a region. In Sect. 2, we
discuss the various approaches that are currently available to assess the impact of
changing climate on water resources. We discuss the relative advantages and dis-
advantages of different approaches. Section 3 focuses on uncertainties that emerge
from the choice of hydrological models and discusses the philosophical bases behind
the model selection. The section also highlights the issues related to the evaluation
of models. We close the chapter with a discussion on some recent developments and
highlights of future research areas on this subject.
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2 Assessment of Climate Change Impact on Water
Resources: An Overview of the Existing Methods

2.1 Climate Change and the Global Hydrologic Cycle

The hydrological cycle, which determines the distribution of fresh water across the
globe, is driven by energy gradients induced by differential heating of Earth from
the Sun. Therefore, at a global scale, the hydrological cycle is intimately linked with
the large-scale atmospheric circulation patterns. Oceans also affect the hydrological
cycle considerably due to their influence on atmospheric availability of moisture
and their heat absorption properties, among other functions. Thus, the hydrological
cycle is an essential component of the general circulation of moisture and energy on
the Earth. This is true not only at a global scale, but also at continental, regional,
and local scales. For example, hydrologic partitioning at small scales is primarily
governed by available water and energy from the atmosphere [7]. Concurrently, the
topography, moisture state of soil, and vegetative cover on the land surface feedbacks
to the local atmospheric circulation. This tight, two-way linkage between climate and
water cycle at varying spatial scales indicates that any change in climate will cause
changes in the spatiotemporal distribution of freshwater resources across the globe.

Today, the scientific community agrees that anthropogenic emission of carbon
dioxide and other greenhouse gases have led to an increase in global mean temper-
ature and consequent changes in large-scale circulation patterns of the atmosphere
[55].Agenerallywarmer atmosphere canholdmorewater, as expected from theClau-
sius–Clapeyron relationship. So, on an average, the hydrological cycle is expected
to intensify, i.e., both evaporation and precipitation fluxes will increase [30, 42].
The Clausius–Clapeyron relationship projects that for each degree rise in global
mean temperature, there will be nearly 7% increase in global mean precipitation.
However, variations from this estimate have been observed when analyzing histor-
ically observed data [30]. The variation is due to local factors such as vegetation,
topography, humidity conditions, etc. Thus, it is generally not possible to directly
estimate the impact of increases in greenhouse gas concentrations on changes in pre-
cipitation and thereafter streamflow at regional (decision-relevant) scales. However,
some attempts have been made to directly link large-scale indicators of atmospheric
circulation (such as sea surface temperatures) to streamflow [20].

The effects of increasing concentrations of greenhouse gases on the long-term
evolution of the atmosphere are studied via general circulation models (GCMs) that
simulate the global climate.While some effects of anthropogenic emissions of carbon
dioxide on the global climate are strongly debated, other impacts are more certain.
For example, GCMs typically show large uncertainties in projections of precipitation
in many parts of the world [55, 57]. However, there is a strong agreement between
GCMs that temperatures will rise across the globe [55]. The coupling between hydro-
logic partitioning and atmospheric conditions manifests itself in the model structure
of GCMs that includes mechanisms for hydrologic partitioning, and even hydrologic
routing in advanced versions [47, 49, 89]. Simply put, each GCM has a hydrologic
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Fig. 1 Various choices that a modeler faces when assessing the impact of climate change on water
resources. P: precipitation, T: temperature

model built into it. In an ideal scenario, GCMs should be able to model the Earth sys-
tem in detail including the feedback between the hydrologic fluxes and atmospheric
circulation at various scales. Thus, the output from a climate model should also
provide an accurate estimation of hydrologic variables such as soil moisture states
and runoff. But, GCMs tend to focus more on atmospheric and oceanic processes.
They divide the atmosphere into several vertical layers and simulate processes at
time steps for few minutes. On the other hand, the parametrization of land surface
processes in GCMs is considered quite rudimentary though improvements have been
made over different generations ofGCMs. Thus,many alternativemethods have been
used to overcome this scale mismatch between GCMs outputs and decision-relevant
hydrologic variables. We discuss these methods (Fig. 1).

2.1.1 GCM-Projected Runoffs

As discussed before, global as well as regional climate models (RCMs) simulate
runoff as a secondary variable. They provide grid-scale runoff outputs on a global
scale. The grid size is determined by the spatial resolution of the GCM or RCM.
The time series of these runoff fields can be studied to assess the impact of changing
greenhouse gas concentrations on freshwater availability. However, we generally do
not use direct runoff outputs fromGCMsorRCMs for assessing the future availability
of water resources at regional scales. One of the main drawbacks of raw GCM runoff
fields is their coarse resolution. Decision-makers are interested in output variable
statistics at a much finer resolution [68, 91]. Another issue is that the land surface
and hydrologic processes in GCMs are oversimplified and do not consider the role
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of detailed topography, land cover, or soil types. Finally, there are several GCMs
available to users, and it is known that different GCMs may or may not agree on
the nature of precipitation change in many parts of the world. This creates a large
uncertainty in projected raw runoff outputs derived from the GCMs. These issues
are in-part addressed by using RCMs, which can be run at a finer resolution as
compared to GCMs using the boundary conditions from the parent GCM. However,
RCMs inherit the biases from the parent GCMs via their boundary conditions and
are computationally very expensive [39].

2.1.2 Global or Continental Water Balance Models

Global to continental scale water balance models can be run by using forcing of
temperature and precipitation available as GCM output. These models can be run
at a finer resolution (0.25°–0.5°) as compared to GCMs and can also include a
more detailed representation of hydrologic processes. These models were borne out
of the need to develop calibration-free hydrologic models that could be coupled
with climate models to simulate the global hydrologic cycle. Any hydrologic model
needs parameterization for runoff generation and flow routing processes. To avoid
computationally expensive automatic calibration, the parameters of such macroscale
models are derived for each grid cell directly from global datasets for soil texture,
vegetation, etc. Even after estimating some parameters directly from global datasets,
eachmacroscalemodel required some level of tuning for the remaining parameters. In
most instances, manual calibration was carried out for such parameters by the model
developers. Examples include the water balance model (WBM by Vörösmarty et al.
[82, 83]), macroPDM [4], and the variable infiltration capacity model (VIC byWood
et al. [89]).

The development of such global scale water balance models ushered in a new era
of global scale runoff projections. Thesemodels made it feasible to visualize changes
in runoff globally, enabling translation of global scale GCM outputs to global water
availability. Despite their advantages, these models are also beset with the same
challenges as any other hydrologic model. The quality of parameterization of these
models will depend directly on the quality of the input data, and the streamflow
data against which they were manually tuned. The uncertainty in their projections is
generally more in ungauged regions, where there is no way to assess model perfor-
mance. Therefore, the challenge in regionalization of model parameters that afflicts
predictions in ungauged basins also afflicts the outputs of macroscale hydrologic
models. These issues are further elaborated in Sect. 3.

2.1.3 Using GCM Outputs to Drive Hydrologic Models

This is by far the most commonly used method to assess the impact of climate
change onwater resources. The approach involves using rawor post-processedGCM-
projected climate to drive a hydrological model. To account for the scale mismatch
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between the raw GCM outputs and input requirements for regional hydrologic mod-
els, GCM outputs are often downscaled using a variety of statistical or dynamic
methods [34]. The downscaled precipitation and temperature data are then used as
an input to a hydrologic model. The hydrologic model is typically parameterized
using past climate and streamflow information. There are two main ways in which
GCM data is used to project future runoff. These are listed below:

i. Downscaling GCM output: This approach uses the downscaled time series of
hydro-climatic variables to simulate streamflow and other hydrologic variables
for both the historical and future time periods. Then, the relative change in the
relevant indicator of interest, say mean annual runoff, is estimated by using the
historical and future estimates from each GCM and downscaling approach [82,
87]. This method focuses on the projected relative changes from the downscaled
GCM output and not on the absolute projections of the indicator. It is well known
that GCMs can carry a significant bias in their projected climate even after
downscaling. By focusing the analysis on relative changes, studies attempt to
eliminate this lack of performance of the downscaled product on the historically
observed climate. The underlying assumption here is that the biases observed in
a GCM–downscaling combination remain the same as wemove to a new climate.

ii. Change factor approach: This approach is motivated from the fact that even after
downscaling, a GCM product may not reproduce the observed historical climate
of a catchment very well. Alternatively, easily accessible downscaled GCM data
may not be available for the region of interest. It is also possible that the process
of downscaling introduces synthetic patterns in the climate data, distorting the
information regarding expected changes in climate. Finally, it is not necessary
that statistical relationships developed using historical data will hold true under
a changing climate, thus questioning the reliability of statistical downscaling
techniques under nonstationary climatic conditions. In such cases, a modeler
can choose to use the information about projected relative changes in climate
from the raw GCM outputs and apply it to the historically observed climate time
series. Thus, instead of forcing the hydrologic model with downscaled GCM
climate, the modeler uses synthetically generated climates by combining the
information from historically observed time series and raw GCM outputs. This
approach is termed as the change factor approach [27]. However, this approach
required the development of methods that can be used to alter the time series of
historically observed temperature or precipitation. For example, a modeler can
decide to estimate only the changes in long-term precipitation and temperature
from the raw GCM output and apply it to the historically observed time series.
Alternatively, more sophisticated techniques such as quantile mapping can be
used. This choice adds an additional source of uncertainty to the projections thus
derived.

In general, the use of GCM outputs, with or without downscaling, to force hydro-
logic models has gained popularity in water-related climate change impact assess-
ments due to several reasons. First, most decision-making related to water resources
is done at a regional or catchment scale. For example, dam operators will be inter-
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ested to know whether the inflows to the reservoir may change significantly under
possible climatic changes. In most cases, they have already established various kinds
of hydrologic models to manage such water-related decision-making under the his-
torical climate. It is prudent for them to utilize the knowledge developed through
previous modeling exercises to understand how a systemmay behave under a chang-
ing climate [60]. Therefore, a method that can utilize existing hydrologic models to
project future changes would be preferred. Second, alternatives such as using direct
GCM-projected runoff or macroscale water balance models do not provide the nec-
essary information at a fine spatial or temporal resolution. Such global scale outputs
may be useful to understand changes in the global hydrological cycle broadly but
are not so helpful in local to regional decision-making related to water. This is partly
due to large uncertainties in projections of future runoff arising fromGCM-projected
runoff fields, or due to large uncertainties inherent in regionalized model parameters
in global scale models [91]. Finally, this approach allows hydrologist to utilize a
variety of hydrologic models, ranging from conceptual to semi-distributed to fully
distributed, to assess the impact of climate change on a range of hydrologic variables
of interest (see Sect. 3 for details).

2.1.4 Sensitivity-Based Approaches

All the approaches discussed, until now require climate model outputs to understand
possible changes in a hydrologic indicator of interest. As discussed before, many
times, climate model outputs are beset with large uncertainties or are heavily biased
when compared against observed historical climate. These uncertainties or biases
will be reflected in the future assessments of hydrologic indicators. Sensitivity-based
approaches attempt to understand the response of a hydrologic system to changing
climate, independent of possible changes in future climate. They provide a quan-
tification of changes in hydrologic indicators as a function of synthetic changes in
climate. These synthetic changes are applied to historically observed time series of
climate data. The simplest approach is the delta change method that creates alterna-
tive climates by adding or subtracting constants from the time series of precipitation
and temperature. For example, the delta change approach can be used to generate
precipitation time series with long-term means varying from −50 to 50% of the
historically observed mean annual precipitation. Together, the combination of pre-
cipitation and temperature change thus generated constitutes a suite of scenarios.
More sophisticated techniques involve the use of weather generators [69]. The mod-
eler can thus explore likely changes in hydrologic variables such as mean annual
runoff across many possible climate change scenarios by using different hydrologic
models [53, 66]. Alternatively, existing database of streamflow, climate, and other
catchment characteristics can be used to identify relationships between streamflow
and climate variables [80]. These relationships developed across many catchments
can also be used to understand how streamflow might change in the future [73].
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2.2 Uncertainty Quantification

Given the vast array of choices available to modelers, it is natural that assessments of
climate change impact onwater resources have graduallymoved toward development
of variousmethods of uncertainty quantification.Typically, uncertainty quantification
methods do not explore all possible approaches as discussed in Sects. 2.1.1–2.1.4.
Rather, they focus on quantification of uncertainty once a broader approach is decided
upon based on the requirements of the impact assessment exercise. Numerous studies
quantify the uncertainty in impacts of climate change and/or attribute it to various
sources such as choice of climate models, downscaling methods, hydrologic models,
etc.Anexhaustive treatment of different types of uncertainties and their quantification
is beyond the scope of this chapter.

The most commonly used uncertainty quantification methods are ensemble-based
methods [67] and probabilistic approaches [88]. Ensemble-based approaches use sev-
eralGCMs, downscaling approaches, and hydrologicmodels to generate an ensemble
of future streamflow. The uncertainty in streamflow projections can then be quan-
tified using various summary statistics such as the interquartile range as estimated
from the projected ensemble. Probabilistic approaches assign weights to different
GCMs or downscaling methods in proportion to their ability to reproduce the his-
torical climate. When projecting future streamflow, the same weights are used to
assign probability to various projections [88]. There are also studies that attempt to
attribute the total uncertainty in the projection of a hydrologic indicator to various
sources using a variety of statistical or simulation-based techniques [44]. In general,
most studies indicate that GCMs are the major source of uncertainty in the future
runoff. However, the choice of hydrologic model may also be an important source
of uncertainty when the focus is on indicators such as lean season flows [79]. Such
conclusions are typically dependent on the choice of study area, GCMs, etc., and
cannot be generalized unless further studies are carried out across many catchments.

2.3 Decision-Relevant Hydrologic Indicators

Aschanging climate alters the global hydrologic cycle, allmajor hydrologic fluxes are
liable to change. A decisionmakermay be interested in one ormore hydrologic fluxes
depending upon the application. For example, dam operators will be concerned about
how inflows to the dam may change in the future. In this case, both the magnitude
and timing of inflows will impact the operation of dams. Similarly, the design of any
water-related infrastructure such as pipe or sewer networks will require estimation of
design flows, which in turn requires estimation of streamflow volumes at prescribed
return periods. Similarly, water managers may be interested in possible yields that
can be obtained by construction of reservoirs to deal with water scarcity. In this
case, only seasonal or annual surface water availability may be of interest. Reservoir
designs will also need to account for possible changes in sediment yields in the
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future, which in turn depend partly on the inflows. Farmers may be interested in both
the availability of surface runoff as well as soil moisture and groundwater. Similarly,
environmental requirements will also depend on maintaining soil moisture as well
as instream flows. Among these various hydrologic fluxes, streamflow has been the
focus of numerous assessments [2, 6, 7, 27, 44, 67, 82, 87], while recent efforts have
also focused on changes in soil moisture states [65].

Since both the timing and magnitude of streamflow are required for most appli-
cations, simulating a time series of future streamflow has been the most common
approach to study the impact of climate change on water resources. Once a time
series of streamflow is derived for a given future climate, possible changes in mean
annual runoff, or indicators of hydrologic extremes can be studied. Examples of
hydrologic indicators that can be derived from streamflow time series, apart from
mean annual runoff, include frequency of floods or droughts, duration of droughts,
flow duration curves, etc. In addition, some application may require an understand-
ing of how surface and groundwater resources may be jointly affected by a changing
climate [31, 56]. In such cases, models that can simulate both surface hydrology, as
well as groundwater related processes such as recharge and baseflow formation, are
used. Long-term means of hydrologic variables are generally used to assess changes
in water availability of a region [72]. Note that the finer the time scale at which an
indicator is required, the greater the uncertainty related to its projection. These issues
are further discussed in Sect. 3.2.

3 Hydrological Models and Evaluation Criteria

As we discussed in the previous section, hydrological models play a crucial role in
climate change impact assessment on water resources. If we had an ideal hydro-
logical model, we would be able to predict hydrological fluxes and variables with
a high degree of accuracy. However, processes responsible for the transformation
of rainfall into streamflow and evapotranspiration are extremely complex and often
unobservable. Thus, hydrologic modeling is bound to involve subjectivity [9, 12, 21].
The structure of a hydrological model primarily depends on the modeler’s perception
about key hydrological processes [13]. Not surprisingly, numerous models have been
proposed for hydrological modeling in the past [13, 26, 71, 75]. Someone who is
new to hydrological modeling may, therefore, wonder if it is possible to find the most
suitable model for a climate change impact assessment study. The main purpose of
this section is to elucidate the subjectivities involved in hydrological modeling and
model development. This will help a reader in making a more informed decision
when choosing a hydrologic model to assess the impact of climate change on water
resources.



194 R. Singh and B. Biswal

3.1 Hydrological Models: Which One to Choose?

First and foremost, a hydrological model’s structure largely depends on the philo-
sophical viewpoint of the modeler. Every model is designed keeping in mind several
objectives. In the context of climate change impact assessment, we classify hydrolog-
ical models into the following three groups: (i) pure data-based models, (ii) models
based on established physical principles, and (iii) conceptual models.

Pure data-based models are black-box-type models that use only observed hydro-
logical fluxes tomake predictions. In other words, they predict hydrological variables
without even attempting to understand the underlying hydrological processes. These
models seem to rely on two key assumptions. First, hydrological processes are far
too complex to be incorporated in a model in a meaningful manner. Second, hydro-
logical data from a river basin contain enough information to model the behavior
of the basin. Examples of pure data-based models include multiple linear regression
(MLR) based models [28], variations of autoregressive–moving-average (ARMA)
models [90], and artificial neural network (ANN) models [52]. They are widely used
mainly because they take relatively less time for set up. However, they are often
considered to be not very reliable because of their inability to explain hydrological
processes, and, therefore, their use in climate change impact assessment is limited.

In contrast to the pure data-based modeling approaches, there are approaches
that solve established fluid flow equations (Saint-Venant’s and Richard’s equation,
etc.) for modeling hydrological fluxes and variables. These models are often called
distributed hydrological models, as they typically solve fluid flow equations at sub-
grid scale [13]. A catchment is divided into small sub-grids or pixels, and fluid
flow equations are applied separately to each sub-grid. Sub-grid-scale model outputs
are then upscaled to predict hydrological fluxes at a desired scale such as that of
a catchment. The main motivation behind the development of such models is the
notion that true hydrological modeling can be performed only by applying funda-
mental equations of fluid flow [1, 19, 62]. Although this approach seems rigorous,
there are several shortcomings, in particular, with respect to its implementation. The
assumptions behind any fluid flow equation are rarely satisfied at sub-grid scale. In
fact, it is almost impossible to find a scale at which common fluid flow equations
can be meaningfully applied, because natural catchments are far too heterogeneous
for a distributed hydrological model [11, 46]. Sub-grid-scale discretization forces
distributed models to employ a large number of free parameters, whose values are
generally determined through calibration. Although the original idea was that the
parameters of a sub-grid will be directly determined from catchment properties,
such an exercise is not possible at a fine spatial scale. A modeler thus ends up setting
some parameters as constant across an entire grid, while others are allowed to vary
spatially. In addition to the issue of defining model parameters at a fine spatial scale,
it is practically impossible to obtain all relevant field data for distributed hydrological
models, particularly for subsurface domains [13]. Finally, as distributedmodels solve
partial differential equations for each sub-grid, their runtime is quite high because
of which they cannot be applied to large catchments. Due to the above reasons, the
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applicability of distributed hydrological models is limited to a small number of
experimental catchments. Nevertheless, many hydrologists emphasize the need to
have distributed models, arguing that we need to properly consider hydrological pro-
cesses for many scientific and practical problems, e.g., transport of contaminants
[76] and ecohydrological modeling [77]. Overall, there is no clear advantage of a
distributed hydrologic model over other model types in the context of climate change
impact assessment.

The third group of models tries to find a middle ground between the above two
groups. Such models are generally called conceptual hydrological models. They
account for dominant hydrological processes at catchment scale, and attempt to
optimally utilize information contained in observational datasets. Conceptual models
are generally preferred for climate change impact studies because of their simplicity
and effectiveness. One can find numerous conceptual models in the hydrological
literature [8, 13, 15, 16, 41]. Eachmodel describes hydrological processes in a unique
way, although there are many commonalities among various conceptual models. For
example, both probability distributed model (PDM, [51]) and variable infiltration
capacity model (VIC, [48]) employ the concept of partial area flow generation for
rainfall–runoff modeling. Some studies divide a large catchment into various sub-
catchments, employing conceptual hydrological models for each sub-catchment. By
using a routing model, they predict streamflow for the large catchment. Such models
are classified as semi-distributed hydrological models [13]. Different conceptual
hydrological models have different complexity levels—some conceptual models are
very simple containing less thanfiveparameters,whereas others can bemore complex
containing more than a dozen or so parameters. Model complexity implies both
number of free parameters themodel requires to simulate hydrologic fluxes as well as
the volume of data required for model calibration and prediction. Conceptual models
are most preferred for climate change impact assessment for their low computational
expense as climate change impact studies often require running themodels for various
GCMs and downscaling combinations.

3.2 What is to be Predicted?

As discussed on Sect. 2.3, the model structure as well as model complexity may
depend on the purpose of a climate change assessment exercise. If the purpose is to
predict say some statistical properties of future streamflow, the required hydrological
model will generally be far less complex compared to models required for simulating
continuous time series of streamflow. A common example is the prediction of flow
duration curves (FDCs) which is performed for many water resources related man-
agement projects. Flow duration curve for a basin can be constructed either by using
the past discharge observations or by using stochastic soil-water-balance models
[17, 29].

The choice of temporal and spatial scales can also play a key role in the selection
of a hydrological model. For instance, a model developed for simulating hydrologic
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fluxes at an annual timescale, by design, cannot be applied to simulate hydrological
fluxes at a daily timescale. Why do we have different models for different scales?
The scientific rationale is that hydrological process complexity decreases with scale.
Rainfall–runoff relationship at an hourly timescale is generally much more complex
compared to that at an annual timescale. In other words, it is easier to develop hydro-
logical models to predict for annual or decadal timescales. A notable example in this
regard is the Budyko model, which is an allied term for many hydrological models
that employ the concept of energy and water limits to perform modeling at large
timescales employing none to one free parameter [7, 72]. On the other hand, models
developed for simulation at smaller temporal and spatial scales generally employ
greater number of free parameters and demand more detailed datasets for calibration
[13]. However, many attempts have been made by hydrologists, particularly by con-
ceptual modelers, to reduce model complexity. Some studies have suggested that the
optimum number of parameters required for rainfall–runoff modeling at daily time
steps ranges between 3 and 5 [43]. Recent studies have shown that modeling at small
timescales may be possible even without employing a single free parameter [15].

3.3 The Issue of Prediction in Ungauged Basins

As discussed above, most models available for simulating hydrological fluxes and
variables need observed discharge data for calibration. Calibration is the process of
adjustingmodel parameters until the simulated streamflow comes reasonably close to
observed streamflow. Once amodel is calibrated using historical hydrological data, it
can be applied for predicting hydrological fluxes and variables for any climate change
scenario. However, we cannot calibrate a model for a river basin if we do not have
discharge data, i.e., if the basin is ungauged. This problem is commonly faced when
weattempt to predict hydrological fluxes for smaller catchments. Thegeneral solution
to the problem of ungauged basins is to transfer hydrological model parameters
from gauged basins, which is called regionalization [8, 54, 61]. In some cases, while
attempting to predict the statistical properties of streamflow, regionalization methods
are used to directly transfer relevant hydrologic information from gauged basins to
ungauged basins [58]. Again, the challenge in front of a hydrologic modeler is the
identification of a suitable regionalization method because one can come across
numerous regionalization methods, none of which having a clear advantage over
others in every region.

3.4 How do We Evaluate a Model’s Prediction?

Let us consider a model trying to predict a certain static property (x) of a system.We
can easily compare the modeled x(xm) with the observed x(x0). Now, consider x to
be varying with time, and the model predicts xt for every time step. We thus have a
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series of modeled xm,t values, which needs to be compared with the corresponding
observed xo,t values. The model’s prediction may be acceptable for some time steps
but may not be acceptable for some others. How do we evaluate the model in this
case? Essentially, we need to have an aggregate performance index that gives a
quantitative overview of the model’s performance. Such an indicator is very useful
for evaluating hydrologicalmodels since hydrological systems are dynamic in nature.
The commonly used lumped indices for hydrologicalmodel evaluation are coefficient
of determination

(
R2

)
, Nash–Sutcliffe efficiency (NSE), bias, and mean squared

error (MSE). However, the adoption of an aggregate metric does not eliminate the
subjectivity of model evaluation completely as different metrics may give different
pictures of a model’s performance, focusing on performance in different parts of the
hydrograph.

Thus, a modeler may face dilemma not only while choosing a model but also
while choosing a metric for model evaluation. Several researchers have attempted
to overcome the problem of model evaluation by employing multi-objective frame-
works with which one can objectively compare modeled values with observed values
considering multiple objectives at a time [32]. However, multi-objective frameworks
cannot fully resolve the issue ofmodel evaluation as the problem is because amodel’s
performance cannot be fully quantified with the help of lumped performance met-
rics, no matter how many of them are being used. As an alternative route, one may
combine performance in multiple lumped metrics with the model ability to explain
certain hydrological processes, say by subjectively evaluating how well the model
captures catchment-scale storage–discharge relationship [16]. Another way to ensure
the applicability of a model for impact assessment is to test its performance for all
indicators that will be used to assess the impact. For example, if an impact assessment
exercise focuses on changes in flood frequency, it will be useful to test the model’s
ability to historically observed flood frequency, in addition to performing well in
metrics such as NSE.

3.5 Final Remarks on the Model Selection Dilemma

Due to several options available for climate change impact assessment, one should
make effort to select the most suitable modeling framework for a particular climate
change impact assessment study. However, model selection is generally based on
two main factors: data availability and expertise. As we discussed earlier in this
section, different models use different datasets for calibration and prediction pur-
poses. Therefore, a model may not be found suitable for a certain level of data
availability. Nevertheless, for any given data availability situation, a modeler may
come across several suitable modeling frameworks, and he/she may not have ade-
quate expertise to set up and test all the models in order to identify the most suitable
model for the impact assessment study. In general, a hydrological model is chosen for
climate change impact assessment mainly because of the modeler’s familiarity with
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the model. This problem is confounded by the fact that there is no clear guideline in
the hydrological literature on why and when a model should be chosen or discarded.

Nevertheless, many efforts have been made in the past to facilitate proper use of
hydrological models. Many modelers provide model source code freely. For exam-
ple, VIC model code is available at the University of Washington’s website. Some
modelers have gone so far as to freely provide model code along with sophisti-
cated graphical user interfaces, e.g., SWAT model with ArcGIS-based user interface
is available at the website of Texas A&M University. Many modelers have made
efforts recently to develop frameworks to objectively compare different models [16,
22]. While these developments have advanced our understanding of hydrological
systems remarkably and enabled multi-model comparison exercises, it is up to the
modeler to objectively compare different models and decide when a model’s use is
appropriate. Model codes are not generally accessible for a majority of hydrological
models, thus limiting the ability of a modeler to explore model structures that may
be suitable for a particular climate change impact assessment study. Furthermore,
as we learned in Sect. 3.4, a modeler needs to be careful while evaluating a model
as different evaluation metrics may give different views of a model’s performance
in a catchment. To minimize the subjectivity involved in the model evaluation, a
modeler should use state of-the-art multi-objective model evaluation frameworks.
Furthermore, adequate attention needs to be given to check if a model accurately
depicts hydrological processes that transform rainfall into streamflow by carefully
analyzing the model state variables and outputs.

4 Closing Remarks

The previous sections have outlined the vast array of choices that a decision maker
faces when planning for water management under a changing climate. It is evident
that a multitude of approaches exists, each with its own merit and shortcomings.
Often, studies that utilize downscaled GCM outputs to drive hydrologic models have
been found lacking in terms of their ability to support decision-making. This ismainly
due to large uncertainties inherent in the projections of the hydrologic variables [67].
Recently, novel approaches have been suggested to overcome the challenge of large
uncertainties in projections. These approaches are termed “bottom-up” or “decision-
scaling” approaches as opposed to the “top-down” approach commonly employed
in climate change impact assessment [18, 23, 59]. Bottom-up approaches begin by
eliciting information from decision-makers regarding relevant hydrologic indicators
and associated limits of performance (Fig. 2). Instead of providing an ensemble
of streamflow time series by using a “top-down” approach, they employ a bottom-
up modeling framework that assesses the limits of climate change within which
the system maintains acceptable performance. Bottom-up approaches can answer
questions such as: what degree of climate change will cause the current reservoir
operation strategies to become suboptimal in the future? Such approaches, therefore,
allow decision-makers to understand how to improve system’s resilience to changing
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Fig. 2 Comparing “top-down” and “bottom-up” approaches when assessing the impact of climate
change on water resources

climate. They are also advantageous as they can integrate readily available climate
projections fromGCMs into the analysis to shed light on the possibility of witnessing
drastic system failures in the future.

Another suite of approaches that are gaining traction is those that focus on story-
lines that detail the possible trajectories a system may take when undergoing climate
change. Instead of relying on GCM outputs and various downscaling techniques,
plausible trajectories of relevant hydro-climatic indicators such as precipitation are
constructed by expert elicitation [25]. These trajectories are based on the physical
understanding of mechanisms affecting precipitation by a group of experts. Their
opinions can be collected via individual interviews or by group discussions. Expert
elicitationmay be advantageous over direct use of downscaled GCMoutputs in cases
where uncertainties regarding future climate are large but detailed information on the
historical climate of the region exists. In a way, this approach is akin to constructing
representative concentration pathways (RCPs) that detail how carbon dioxide emis-
sions will change over the century. RCPs represent various trajectories in which the
socioeconomic system may evolve and are based primarily on expert judgements as
opposed to detailed modeling of the human system [81]. Trajectories based on story-
lines are advantageous over probabilistic or large ensemble-based projections as they
enable clarity of communication to the decision maker. Furthermore, probabilistic
forecasts may convey a false sense of confidence in the estimated projections, par-
ticularly when only a limited number of GCMs or downscaling methods have been
explored [24].
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We conclude this chapter by mentioning a few areas of research that will benefit
the study of climate change impact on water resources. First, changing climate may
alter a catchment’s land cover and subsequently soil properties. This alteration of
catchment characteristics is generally neglected in hydrologicmodels used in climate
change impact studies. Most of the studies calibrate the hydrologic model on past
streamflow and climate, and expect the parameterization to work under very different
future climates. This approach may introduce significant biases in future projections
of runoff andmethods are needed to address this issue [73]. Second, climate change is
only one of the drivers of environmental change in catchments today.Human-induced
land cover changes and other impacts such as excessive groundwater withdrawals
or construction of reservoirs perhaps have an equivalent or greater effect on the
hydrologic cycle. Understanding the impact of climate change on water resources
in isolation of these other drivers of change may be a good academic exercise, but
for all practical purposes, will likely lead to suboptimal adaptation strategies. Joint
assessment of the impact of environmental change, including climatic and land use
changes, are needed. Finally, it is now understood that the natural system is closely
interlinked with the human system and understanding both systems within a unified
framework will greatly advance our understanding of the consequences of various
water management strategies [74]. Recent studies in socio-hydrology have begun to
disentangle these complex interactions but further research is needed across a variety
of study areas to build region-specific adaptation strategies.
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Streamflow Connectivity in a Large-Scale
River Basin

Koren Fang, Bellie Sivakumar, Fitsum M. Woldemeskel
and Vinayakam Jothiprakash

1 Introduction

Large-scale river basins play a vital role in the survival, sustainability, and socioe-
conomic development of many regions around the world. On one hand, the sheer
enormity of such basins is certainly a positive, as it helps support various demands
and activities associated with our water, environmental, and ecologic systems. On
the other hand, it is the same enormity of such basins that also makes their planning
and management a tremendous challenge. For instance, in large-scale river basins,
undertaking short-termemergencymeasures (especially to dealwithfloods) aswell as
devising long-term management strategies (especially to deal with droughts) almost
always poses enormous challenges.Adequate understanding of the functions of large-
scale river basins is, therefore, essential for their proper planning and management.
Streamflow is, arguably, the central component in this regard.

Streamflow arises as a result of complex and nonlinear interactions between cli-
mate inputs (external factors) and landscape characteristics (internal factors) at a
wide range of spatial and temporal scales. As a result, streamflow dynamic behav-
ior changes as a function of both space and time. One of the keys to understand
the dynamics of streamflow in a river basin is to understand the “connections” that
generally exist between the various points (or parts) of the basin. Such connections
can, at times, be somewhat simplified in small and medium-scale basins, due to, in
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general, the limited variability in climatic conditions across the basin, limited hetero-
geneity in the catchment medium, and short concentration time. In large-scale river
basins, however, the connections are enormously complex, due to, in general, the
significant variability in climatic conditions across the basin, significant heterogene-
ity in the catchment medium, and long concentration time. It is these enormously
complex connections in large-scale river basins and our inability to accurately iden-
tify/represent themmake streamflowmodeling in such basins extremely challenging.

There exist a number of concepts andmethods for studying the connections associ-
atedwith streamflow, including those based on time, distance, correlation, variability,
scale, patterns, and many others. Such concepts and methods have been extensively
applied to study the dynamics of streamflow processes around the world [5, 19, 23,
26, 30, 33, 34, 41, 43]. A compilation of the applications of several major data-based
approaches for studying patterns and connections in hydrologic systems can be found
in Sivakumar and Berndtsson [36]. In the past two decades, in particular, some key
developments made in the field of complex systems science have enhanced the study
of connections in numerous natural and socioeconomic systems. Among such devel-
opments, the concepts of complex networks seem very appealing [2, 10, 14, 45], for
their ability to represent various types of connections encountered in large, complex,
and dynamically evolving systems, such as large-scale river systems. Studies on the
applications of complex networks concepts have been gaining considerable attention
in many different fields, including in hydrology [3, 9, 21, 24, 25, 27, 38, 42, 48].
Comprehensive accounts of complex networks concepts and their applications are
available in Estrada [10]; see also Sivakumar et al. [39] for details of their applications
in hydrology in particular.

Applications of the concepts of complex networks for studying connections in
river systems have recently started to emerge [4, 7, 8, 15, 16, 29, 28, 32, 37, 40, 46,
47], and their potential to help formulate a generic theory for hydrology has also
been discussed [35]. However, such studies have essentially been limited to small
rivers/regions and/or small number of monitoring stations (at most, a few hundreds).
As a result, they do not offer strong evidence on the appropriateness and effec-
tiveness of the concepts for large-scale river systems, since such systems generally
cover a broad range of hydroclimatic, topographic, geomorphologic, soil, land use,
and many other characteristics and present enormous complexities in connections.
To adequately test the concepts of complex networks for river systems in general,
especially toward developing a generic framework for modeling/management, it is
imperative to consider very large river basins that provide very stringent system con-
ditions (i.e., test bed) and analyze data from a large number of monitoring stations
(say, at least one thousand).

To our knowledge, the study by Fang et al. [13] has been the only study that
has, thus far, applied the concepts of complex networks to a large-scale river basin.
Fang et al. [13] focused on catchment classification in the Mississippi River basin.
The Mississippi River is one of the world’s major river systems in size, habitat
diversity, and biological productivity. Of the world’s rivers, the Mississippi River
ranks fourth in length, fourth in watershed area, and fifth in average discharge. With
a river length stretching over 3,770 km, basin area covering 4.76 million km2, and



Streamflow Connectivity in a Large-Scale River Basin 207

possessing a wide range of hydroclimatic, topographic, geomorphologic, soil, land
use, and other properties, the Mississippi River basin meets many of the stringent
conditions for studying connections in river systems. In their study on catchment
classification, Fang et al. [13] employed six community structure methods to classify
1663 catchments (streamflow stations) across the Mississippi River basin. These
1663 gaging stations were considered to cover as much data as possible from across
the basin. The results revealed that only a few communities combine to represent a
majority of the catchments, with the 10 largest communities (roughly 4% of the total
number of communities) representing almost two-thirds of the catchments. Fang et al.
[13] also reported that community formation was influenced not only by geographic
proximity but also by the organization of the river network.

Following on the study by Fang et al. [13], the present study employs the concepts
of complex networks to study the spatial connections in streamflow in theMississippi
River basin. The same 1663 stations considered by Fang et al. [13] are also analyzed
in the present study. The connections in streamflow data between these stations are
examinedby employing three basic and important network-basedmethods: clustering
coefficient, degree distribution, and shortest path length. The sensitivity of these
methods to streamflow correlation threshold is also investigated.

The rest of this chapter is organized as follows. Section 2 describes the concept
of network and the three methods used in this study. Section 3 presents the details of
the Mississippi River basin and streamflow data considered in this study. Section 4
presents the results and discussion. Section 5 draws some conclusions from this
study.

2 Network Methods

A network (or a graph) is a set of points called nodes (or vertices) joined together
by a set of connections called links (or edges), as shown in Fig. 1. Mathematically, a
network can be represented asG� {P,E},whereP is a set ofN nodes (P1,P2,…,PN )
and E is a set of n links. In a network, the existence/nonexistence of links is identified
based on a measure that represents the strength of the link, such as correlation. For
instance, node pairs that have strengths exceeding a certain threshold value T may
be assigned links.

There are various measures to study the properties of networks, including central-
ity, clustering, adjacency, distance, community structure, bipartivity, fragments (or
subgraphs), communicability, and global invariants, among others; see, for example,
Estrada [10] for details. Such measures not only identify/quantify different proper-
ties of networks, but also often offer cross-verification, and possible confirmation,
of results. For some measures, there are also different definitions, sub-measures, and
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Fig. 1 Concept of a network

corresponding methods. In what follows, a brief description of clustering coefficient,
degree distribution, and average shortest path length is provided, as these measures
are used in this study for analysis of streamflow data.

2.1 Clustering Coefficient

One of the most fundamental properties of networks is their tendency to cluster.
The concept of clustering has its origin in sociology [44]. In the context of complex
networks, however, it was first used by Watts and Strogatz [45]. The tendency of a
network to cluster is quantified by the clustering coefficient. Let us consider first a
selected node i in the network, having ki linkswhich connect it to ki other nodes. If the
neighbors of the original node i were part of a cluster, there would be ki (ki − 1)

/
2

links between them. The clustering coefficient of node i is then given by the ratio
between the number Ei of links that actually exist between these ki nodes and the
total number ki (ki − 1)

/
2, i.e.,

Ci � 2Ei

ki (ki − 1)
(1)

The procedure is repeated for each and every node of the network. The average of the
clustering coefficientsCi of all the individual nodes is the clustering coefficient of the
whole network C. An example of the clustering coefficient calculation is presented
in Sivakumar and Woldemeskel [37].

The clustering coefficient of the individual nodes and of the entire network can be
used to obtain important information about the type of network, grouping (or classi-
fication) of nodes, and identification of dominant nodes (e.g., super nodes), among
others. For instance, a high clustering coefficient (close to 1.0) indicates a regular
network, while a very low clustering coefficient (close to zero), withC � p, indicates
a random network. For a small-world network or a scale-free network, the clustering
coefficient is generally smaller than that of the regular network but also consider-
ably larger than that of a comparable random network (i.e., having the same number
of nodes and links). It should be noted that both small-world networks and scale-
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free networks are certain forms of random networks, but are different from classical
random networks. For instance, small-world networks are both stable (unlike clas-
sical random networks) and efficient (like classical random networks); scale-free
networks exhibit power-law behavior in degree distribution (unlike classical random
networks that exhibit Poisson degree distribution—see below).

2.2 Degree Distribution

In a network, different nodes may have different number of links. The number of
links (k) of a node is called as node degree. The degree is an important character-
istic of a node, as it allows derivation of many measurements for the network. The
spread in the node degrees is characterized by a distribution function p(k), which
expresses the fraction of nodes in a network with degree k. This distribution is called
degree distribution. The degree distribution is often a reliable indicator of the type
of network. In a random graph, since the links are placed randomly, the majority of
nodes have approximately the same degree, and close to the average degree k of
the network. Therefore, the degree distribution of a completely random graph is a
Poisson distribution with a peak at P( k), and is given by:

p(k) � e−k̄ k̄k

k!
(2)

Similarly, depending upon the properties of networks, degree distribution can be
Gaussian:

p(k) � 1√
2πσk

e
−

(
(k−k̄)2

2σ2k

)

(3)

exponential:

p(k) ∼ e−k/k̄ (4)

power-law or scale-free:

p(k) ∼ k−γ (5)

or other.



210 K. Fang et al.

2.3 Shortest Path Length

The shortest path length is considered as one of the most robust measures of network
topology, along with clustering coefficient and degree distribution. In a network, the
shortest path length of a node pair i and j is the number of links on the shortest
path connecting the node pair. If the node pair is unconnected, then the value of
the shortest path length is set to infinity. The average shortest path length (L) of a
network with N nodes is the average over all nodes of the shortest path between
every combination of node pairs, and is given by:

L � 1

N (N − 1)

∑
di j (6)

where dij is the distance between pair i and j.
This definition for average shortest path length, however, diverges if there are

unconnected nodes in the network, since the distance between such nodes is set to
infinity [6]. Consideration of only the connected node pairs avoids this divergence
problem, but such also introduces a distortion for networks with many unconnected
pairs of nodes. The consequence of this is a small value of the average path length,
which is expected only for networks with a high number of connections.

A closely-related measurement is the global efficiency (E), proposed by Latora
and Marchiori [22]:

E � 1

N (N − 1)

∑ 1

di j
(7)

where the sum takes all pairs of nodes into account. The global efficiency quanti-
fies the efficiency of the network in sending information between nodes, with the
assumption that the efficiency for sending information between two nodes i and j is
proportional to the reciprocal of their distance. The reciprocal of the global efficiency
is the harmonic mean of the geodesic distances (see Eq. 6), given by:

h � 1

E
(8)

The fact that the harmonic mean eliminates the divergence problem otherwise
encountered in the average shortest path length makes it a more appropriate mea-
surement for networks with more than one connected component.

The average shortest path length offers important information about the type
of network. For instance, regular networks, with their high clustering (i.e., stable),
have long average path lengths (i.e. inefficient). Random networks, while unstable
(i.e., low clustering), have short average path lengths (i.e., efficient). Small-world
networks have short path lengths and are both stable and efficient (the latter due to
high clustering).
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3 Study Area and Data

In the present study, the Mississippi River basin is considered as a representative
basin to investigate the utility and effectiveness of the concepts of complex networks
for studying spatial connections in large-scale river basins. The Mississippi River is
one of the world’s major river systems in size, habitat diversity, and biological pro-
ductivity. Of the world’s rivers, theMississippi River ranks fourth in length, fourth in
watershed area, and fifth in average discharge. It is the longest river and has the largest
drainage area in North America, originating at Lake Itasca in northern Minnesota in
the United States and flowing for about 3,770 km through the midcontinental United
States, the Gulf of Mexico Coastal Plain, and its subtropical Louisiana Delta (see
Fig. 2). The entire river basin measures about 4.76 million km2, of which about 3.22
million km2 is in the continental United States. The main stem, together with its
tributaries, extends over 31 states in the continental United States and two Canadian
Provinces; see Alexander et al. [1] for further details. The United States is separated
into 21 hydrologic unit regions based on the drainage areas of major rivers or the
combined drainage areas of a series of rivers [31]. Of the 18 hydrologic regionswhich
make up the conterminous United States (see Kiang et al. [20]), six of them are in
the Mississippi River basin: the Missouri River region, the Upper Mississippi River
region, the Ohio River region, the Tennessee River region, the Arkansas-White-Red
River region, and the Lower Mississippi River region.

For the present study, daily streamflow data from a network of as many as 1663
gaging stations within the Mississippi River Basin are analyzed. Figure 3 shows
the locations of these 1663 stations, with the different colors indicating the hydro-
logic region the stations belong to. Only the stations within the United States are
considered. The data are obtained from the US Geological Survey National Water
InformationSystemwebsite; see http://nwis.waterdata.usgs.gov/nwis for details. The
stations are chosen in such a way that they have continuous streamflow records for
at least a 5-year common period. The data considered here span from October 2008
to September 2013, and are daily values. A large number of these stations are likely
to have streamflow influences due to human activities; indeed, only 257 of these sta-
tions are classified as “reference quality stations” [11, 12]. However, none of these
stations are excluded from the present analysis, and all 1663 stations are considered.

The 1663 streamflow stations and their observed streamflow data show enor-
mous variations in their characteristics, with several orders of magnitudes of dif-
ferences in their properties. For example: (1) basin drainage area ranges from 0.70
to 2,964,240 km2; (2) station elevation ranges from –0.24 to 3,167 m; (3) mean
flow ranges from 0.0374 to 20,100 m3s−1; and (4) maximum flow ranges from 0.21
to 65,400 m3s−1. Therefore, the 1663 stations collectively possess a great level of
complexity in catchment characteristics and streamflow properties, thus making the
Mississippi River basin one of the best test cases for studying connections in a river
system.

http://nwis.waterdata.usgs.gov/nwis
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Fig. 2 The Mississippi River basin (adapted from [1])

4 Results and Discussion

The clustering coefficient, degree distribution, and average shortest path lengthmeth-
ods are employed to study the connections in streamflow in the Mississippi River
basin. The streamflow network consists of 1663 nodes, corresponding to the 1663
streamflow monitoring stations considered. Each node consists of a time series of
daily streamflow values observed over the period October 2008–September 2013.
With this, the links in the network are identified by looking at the correlations between
the different nodes. More specifically, the Pearson correlation coefficient is used to
calculate the correlations in streamflow between the different nodes and, hence, to
identify the neighbors (i.e., links) for each and every node. The correlation threshold
(T ) can significantly influence the identification of the neighbors and, hence, the
outcomes of the above methods. For instance, use of a very low correlation threshold
(say, T � 0.10) normally yields too many links in the network (since the cross-
correlation in streamflow between any two stations is normally greater than 0.10),
while use of a very high correlation threshold (say, T � 0.95) normally yields only
a few links in the network. It is, therefore, important to use at least a few different
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Fig. 3 Locations of 1663 streamflow stations in theMississippi River basin considered in this study.
The stations are colored according to their hydrologic region as follows: the Missouri River region
(teal), the UpperMississippi River region (yellow), the Ohio River region (red), the Tennessee River
region (orange), the Arkansas-White-Red region (blue), and the Lower Mississippi River region
(green)

threshold levels (but also preferably not too low or too high values) for more reli-
able interpretations and conclusions. To this end, four different threshold levels are
considered: 0.70, 0.75, 0.80, and 0.85. The range of threshold herein (0.70–0.85) is
chosen to better reflect the extent of correlations in streamflow, and is also partially
based on our previous experiences on the analysis of hydrologic data using network-
based methods; see Sivakumar and Woldemeskel [37, 38], Jha et al. [18], Fang et al.
[13], Jha and Sivakumar [17], and Han et al. [16] for some additional details. For
a given threshold, any node pair with a correlation coefficient above that threshold
value is assigned a link. This means that there is generally an inverse relationship
between the threshold value and the number of links; i.e., large number of links when
the threshold is low and small number of links when the threshold is high.

4.1 Clustering Coefficient

Figure 4 shows the clustering coefficient (CC) values for the 1663 stations in
the Mississippi River basin, for the above four different thresholds. For better
illustration, the clustering coefficient values are presented in six different ranges:
0.76–1.00, 0.51–0.75, 0.26–0.50, 0.01–0.25, 0.00, and NA. Table 1 presents the
number/percentage of stations that falls within these ranges. In Fig. 4 and Table 1,
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Fig. 4 Clustering coefficient values for the network of 1663 streamflow stations in the Mississippi
River basin for four different correlation thresholds (T ): a T � 0.70; b T � 0.75; c T � 0.80; and
d T � 0.85

a clustering coefficient of 0.0 indicates a situation when there are more than one
neighbor in the initial search (i.e., one or more links exist to calculate CC) but the
neighbors are not connected among themselves, while a clustering coefficient of NA
indicates a situation when there are no neighbors or only one neighbor in the initial
search (i.e., there is no link to calculate CC).

The results presented in Fig. 4 and Table 1 indicate significant differences in
clustering characteristics in the network with respect to the threshold values. In
terms of the number of nodes falling under the six different CC ranges, the results
follow either an increasing or a decreasing trend, depending upon the threshold. The
number of nodes decreases with an increase in the threshold when CC > 0.25 (i.e.,
0.76–1.00, 0.51–0.75, 0.26–0.50) and increases when CC≤0.25 (0.0–0.25, 0.0, NA),
although the increase in nodes when CC is 0.0–0.25 is miniscule (see Table 1). It is
also important to note that the number of nodes with a clustering coefficient value
NA (i.e., nodes for which clustering coefficient cannot be calculated) remarkably
increases from just 10% (170 nodes) when T � 0.70 to as high as 38% (630 nodes)
when T � 0.85. The latter indicates that when T is high, calculation of the clustering
coefficient is simply not possible for almost two-fifths of the number of stations,
as there are either no neighbors or only one neighbor for such nodes. This clearly
indicates the sensitivity of the clustering coefficient results to the correlation threshold
and, hence, the need for caution in the analysis. The results also indicate that the
connections are more sparse at higher threshold levels (i.e., nodes are less connected
to each other); see also the degree distribution results in Sect. 4.3.
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The clustering coefficient results, including the nodes and their number with a
clustering coefficient value of NA with respect to threshold, also offer some specific
information as to where the spatial connections are stronger and where they are
weaker. Regardless of the threshold, the clustering coefficient values are generally
higher in the Missouri River, the Upper Mississippi River, the Ohio River, and the
Tennessee River hydrologic regions when compared to those in the Arkansas-White-
Red River and the Lower Mississippi River hydrologic regions. For example, at least
for T � 0.70 and T � 0.75, the clustering coefficient values are greater than 0.5 for
a significant proportion of stations in the former four regions (with some exceptions
in the Upper Mississippi River region), and in some cases they are even greater than
0.75, while the latter two regions generally have clustering coefficient values less
than 0.5. This may be construed to suggest that the connections of the stations in
the former four regions with the rest of the network are generally stronger than the
connections of the stations in the latter two regions with the rest of the network.
Nevertheless, these interpretations need further verification and confirmation, as the
clustering coefficient essentially measures the strength of connections between the
first neighbors of a node (i.e., local density), which may or may not occur over the
entire network.

The results also indicate that stationswith higher clustering coefficient values exist
in almost all of the regions (perhaps with the exception of the Arkansas-White-Red
River region), for any of the four threshold levels considered. Similarly, stations with
lower clustering coefficient values also exist in almost all of the regions, especially for
higher threshold levels. These observations indicate that the strength of connection of
a given station in the network does not necessarily depend on geographic proximity
or the hydrologic region it belongs to, and that other factors are at play, including
the role of river network formation. The results obtained from the classification of
these 1663 stations, using community structure methods, also provide support to this
interpretation; see Fang et al. [13] for details on classification.

The clustering coefficient values of the entire network, calculated as the average
of the clustering coefficients for all the 1663 nodes, for the four different thresholds
(i.e., T � 0.70, T � 0.75, T � 0.80, and T � 0.85) are 0.588, 0.539, 0.484, and 0.384,
respectively. As expected, the clustering coefficient value decreases with an increase
in the threshold value. These generally high clustering coefficient values, especially
that for T � 0.70 (and also for T � 0.75), seem to suggest that the network is not
a purely random graph, as the clustering coefficient values for random networks are
typically very low (close to zero), essentially due to random distribution of links
[45]. Indeed, for instance, when T � 0.70, the clustering coefficient value of an
equivalent random network (i.e., a network with an equal number of nodes and links
to that of the streamflow network) is found to be as low as 0.013. The streamflow
network is also not a regular network, since the clustering coefficient for such fully
connected networks is expected to be very close to 1.0. All these seem to suggest
that the streamflow network in the Mississippi River basin may be a small-world
network [45] or a scale-free network [2] or some other.

The reasonably high clustering coefficients for the streamflow network indicate
that the network has high stability, but also low efficiency. The high network stability
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implies that stationsmay be removed (randomly or otherwise) from the networkwith-
out resulting in a significant loss of information.Which stations can be removed is an
interesting question to ask. On one hand, it could be argued that stations with higher
clustering coefficient values could be removed, since there are sufficient connec-
tions within its “neighboring” nodes to make up for the loss of information incurred
by its removal, and that stations with low clustering coefficients should be kept,
since there are not enough connections to recover the lost information. On the other
hand, there could also be an argument against the removal of stations with very high
clustering coefficients, since such stations are essentially the “dominant” ones (i.e.,
“supernodes”) in the network. We will address this issue in a future study, through
investigating the effect of the removal of stations (randomly or according to some
deterministic rules) on clustering coefficient results; see Jha and Sivakumar [17] for
a preliminary study on this issue with a rainfall monitoring network.

4.2 Degree Distribution

Figure 5 presents the degree distribution results for the streamflow network of 1663
stations in theMississippi River basin. The values are the complementary cumulative
degree distribution values, defined as the fraction of nodes with degree at least k and
denoted as p(K ≥ k). The plots show the results in the normal scale (Fig. 5a), semi-log
scale (Fig. 5b), and log–log scale (Fig. 5c). The degree distribution exhibits a similar
shape for all the above four thresholds (i.e., T � 0.70, 0.75, 0.80, 085). As expected,
the use of a stricter threshold results in a lower maximum degree for the network. For
example, the largest degree (i.e., the degree at which the degree distribution attains
saturation) at T � 0.70 is around 100, while at T � 0.85, the highest degree is only
half of that, to around 50.

The degree distribution results seem to resemble an exponential distribution over
some sections and a power-law distribution over others (an exponential distribution
should be roughly linear in a semi-log plot, while a power-law distribution appears
roughly linear in a log-log plot). Further, the exponential distribution seems to be
more fitting for low threshold levels, and the power-law distribution seems to appear
more at high thresholds. Therefore, the degree distribution may be classified as a
combination of exponential and power-lawdistributions,with a possible resemblance
to an exponentially truncated power-law distribution [10]. This is another indication
that the network is not a purely random graph or normal random graph, since the
degree distribution for such a network is Poisson or Gaussian.

The present results also indicate that, at best, the most-connected station in this
network is connected with only 6% (100 nodes) of the network size (1663 nodes)
at T � 0.7. As the threshold increases to 0.85, this percentage reduces to around
half, to around 3%. This highlights that the low connectivity of the nodes within the
network; see Sect. 4.3 for further details.
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Fig. 5 Degree distribution for the network of 1663 streamflow stations in the Mississippi River
basin for four different thresholds (T ) (0.70, 0.75, 0.80, and 0.85): a normal scale; b semi-log scale;
and c log-log scale

4.3 Shortest Path Length

The results from the application of the shortest path length method to the streamflow
data from the 1663 stations in the Mississippi River basin are presented in Fig. 6, for
all the four thresholds (T ). Based on the shortest path lengths for the 1663 stations,
the average shortest path length is also calculated. The average shortest path lengths
are found to be 7.48, 8.36, 10.42, and 6.97, for T � 0.70, T � 0.75, T � 0.80, and T
� 0.85, respectively. The efficiency of the network for the four thresholds are 0.13,
0.08, 0.04, and 0.01, and the number of unconnected node pairs are 30%, 47%, 78%,
and 96%, respectively. The average shortest path length, efficiency, and unconnected
node pairs are found to be very different from the ones obtained for an equivalent
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Fig. 6 Measures of average shortest path length, efficiency, and unconnected node pairs for the
network of 1663 streamflow stations in the Mississippi River basin for four different thresholds:
a T � 0.70; b T � 0.75; c T � 0.80; and d T � 0.85

random network. For instance, for T � 0.70, the average shortest path length for a
random network is 2.75, efficiency is 0.375, and unconnected node pairs is less than
1%. These results suggest that the streamflow network is not a random graph, and
support the results from the clustering coefficient method and the degree distribution
method regarding the type of network.

The increase in the amount of unconnected node pairs with an increase in the
threshold is clear and reflective of the role of threshold. This also supports the clus-
tering coefficient results, where a significant increase in the number of stations with
a clustering coefficient value of NA is observed when the threshold is increased.
However, the results also offer another interesting observation. When T is increased
from 0.80 to 0.85, despite an increase in the number of unconnected node pairs (from
78 to 96%), the average shortest path length decreases (from 10.42 to 6.97). This
seems to suggest that when T � 0.85, there are more connections among the iden-
tified neighbors even when the neighbors may be fewer, when compared to when
T � 0.80. This is understandable, since there may be situations when a small number
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of stations have very strong connections among themselves. Nevertheless, when T
increases from 0.80 to 0.85, the efficiency drops from 0.04 to 0.01, showing a more
unconnected network as a whole. All these results indicate that the streamflow net-
work is inefficient with particularly low levels of connectedness at higher thresholds.
Thus, the propagation of information throughout the network does not occur easily.

5 Conclusions

Modeling and prediction of streamflow dynamics in large-scale river basins is a huge
challenge, due to their enormous size, different hydroclimatic conditions, and signif-
icant heterogeneity in the catchment medium, among other factors. The present study
has employed the concepts of complex networks to examine the spatial connections
in streamflow in the Mississippi River basin, one of the largest river basins in the
world. Application of the clustering coefficient, degree distribution, and shortest path
length methods to daily streamflow data from a network of 1663 monitoring stations
across the basin has offered some useful and interesting information regarding the
properties of this network.

The results clearly indicate that streamflow stations in the Missouri River, Upper
Mississippi River, OhioRiver, andTennesseeRiver regions (i.e., northwestern, north-
ern, and eastern parts) have much stronger connections with the rest of the network
when compared to connections of the stations in the Arkansas-Red-White River and
Lower Mississippi River regions (i.e., southwestern and southern parts) with the rest
of the network. The results do not offer any evidence to suggest that the streamflow
network is a purely random network (or a regular network), i.e., the connections in
streamflow among the stations are not randomly distributed (or fully connected). The
results, instead, seem to suggest that the distribution of connections in streamflow
shows scale-free behavior in some parts of the network and exponential behavior in
others. Further, scale-free distribution in the network ismore evidentwhenmore strin-
gent conditions in connections are imposed (i.e., very strong connections between
the stations), while exponential distribution is more evident when the conditions in
connections are more relaxed. The results also reveal that even the most-connected
streamflow station is connected to only about 6% of the stations in the network even
under relaxed conditions (i.e., when the threshold is on the lower side), thus suggest-
ing that the streamflow network is inefficient, although, to a certain extent, stable. A
significant portion of the network (over 95%) is unconnected when more stringent
conditions of connections are imposed (i.e., when the threshold is on the higher side).

The results from the present study have important implications for water plan-
ning andmanagement in theMississippi River basin, and in large-scale river basins in
general. For instance, identification of strongly connected/weakly connected regions
in the basin offers crucial information as to whether new monitoring stations are
necessary and, if yes, where they would be more effective/less effective. Indeed,
identification of strongly connected/weakly connected regions also offers key infor-
mation as to whether the existing data interpolation schemes would be effective, and
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where, even before any steps to install new streamflow monitoring stations. Further,
identification of the properties (e.g., clustering, degree distribution, shortest path
length) of the streamflow network offers key information as to the type, and com-
plexity, of model that is most suitable for representing the basin. These information,
in turn, are essential from the perspectives of streamflow (and other data) moni-
toring, streamflow modeling and prediction, flood forecasting, and water resources
assessment, in the entire river basin and in the subbasins. In this regard, there are
also opportunities to construct the streamflow network in a better way. For instance,
using the concepts of nonlinear dynamics and chaos, the single-variable streamflow
time series can be reconstructed in a multidimensional phase space, which can then
serve as a network to even better represent the connections, patterns, and dynamics in
streamflow; see Yasmin and Sivakumar [46] for a very recent study.We will examine
all these issues in our future studies.
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Climate Change Impacts on Four
Agricultural, Headwater Watersheds
from Varying Climatic Regions of New
Zealand

M. S. Srinivasan, Shailesh Kumar Singh and R. J. Wilcock

1 Introduction

Anthropogenic activities have resulted in changes to land surface and atmospheric
composition, thereby affecting the energy balance of Earth and driving climate
change [15]. Among others, climate change is predicted to result in increases in
global average temperature, changes to precipitation patterns, and likely increases in
the frequency of extreme weather events [14]. Such changes can potentially affect
spatial and temporal occurrence—state, storage, flux, and, eventually, availability and
use—of water resources. Climate change impacts on water resources have implica-
tions for both natural and human systems [1, 4, 5, 8, 13, 20, 39].

2 Climate Change Impacts on New Zealand

Conclusions from thefifth Intergovernmental Panel onClimateChange (IPCC) report
indicate that the climate change impacts on New Zealand (NZ) are expected to
be on similar lines as those projected in the fourth assessment report. A summary
of climate change impacts on NZ climatic, hydrological and coastal systems can
be found at http://www.mfe.govt.nz/issues/climate/resources/impact-map/climate-
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change-impact-map-a3.pdf. The temperature increases could range from0.2 to 1.7 °C
by 2040 and from 0.1 to 4.6 °C by 2090 [23]. The MfE report (2016) also highlights
marked differences in rainfall across the country: winter and spring seasons may
bring more rainfall to the western parts of both islands, while the eastern parts might
experience dry conditions. In summer, these trends may be reversed with the eastern
parts of both islands experiencing more rainfall than western and central parts. The
western part of South Island is likely to experience more extreme rainfall events,
while the majority of the country may undergo more frequent drought events.

MfE [23] presents a more detailed discussion on the global climate models
(GCMs) used to develop climate change projections for NZ. While a suite of GCMs
are available, the models that best represented the current climate of NZwere chosen
to simulate climate change projections. While IPCC fourth assessment GCMs used
information on future projections of greenhouse concentrations as input, the IPCC
fifth assessment included an additional scenario on future land use changes resulting
from socio-economic changes. The investigation presented in the chapter does not
account for land use change, hence was based on IPCC fourth assessment.

A suite of GCMs were applied to simulate twentieth-century climate in NZ, and
the 12 best performing models were selected for further application [25]. The coarse
output fromGCMswas downscaled to NZ scale, and the methodology for downscal-
ing temperature and precipitation is described in MfE [25], and the scientific details
are provided in Mullan et al. [26]. The global climate change data were statistically
downscaled to NZ, generating regression equations, stratified by season, to describe
changes in monthly rainfall and temperature changes across NZ. The downscaled
data consider large-scale climatic and circulation features only [23].

The ministry for Environment, based on IPCC published climate change projec-
tions [14], had developed procedures to derive climate change datasets for NZ and
guidelines to apply them [24, 25]. The climate change datasets developed in accor-
dance with [25] procedures have been used in several hydrological studies in NZ.
These studies varied in spatial and seasonal scales—from regional (e.g. changes to
seasonal snow cover across the Southern Alps of the South Island of NZ by [8]),
large river basin (e.g. climate change impact on the hydrology of 1773-km2 Rangi-
tata River basin, South Island, NZ, by Woods et al. [39]) to local scale (e.g. climate
change impact on irrigation demand and supply in a 180-km2 irrigation scheme in
Canterbury, NZ, by Srinivasan et al. [33]).

3 Hydrologic Modelling of Climate Change Projections

Hydrological models are useful tools in simulating, assessing, understanding and
communicating climate change impacts on water resources. Hydrological mod-
els applied to asses climate change impacts have ranged from simple conceptual
(e.g. [11, 17]) to comprehensive, physically based models [8, 33, 39]. Studies such
as those reported in Vel´azquez et al. [36] have adopted a multi-model approach,
where models applied varied in structure and process representation, from concep-

http://www.mfe.govt.nz/issues/climate/resources/impact-map/climate-change-impact-map-a3.pdf
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tual, lumped model to conceptual, process-based and distributed. They argued that
such an approach would reduce the uncertainty arising from model selection and
application.

Climate change in NZ, as elsewhere, is predicted to result in increases in temper-
ature leading to changes in watershed-scale moisture storage and flux. Hydromad
(Hydrological Model Assessment and Development; [2]), a hydrological modelling
system containing a suite of soil moisture accounting (SMA) and runoff routing
models, provides a framework where multiple models can be used independently in
assessing watershed-scale storage and flux. Themodels within Hydromadwere inde-
pendently developed and tested (e.g. IHACRES Catchment Wetness Index model,
[16]; IHACRES Catchment Moisture Deficit model, [10]; Sacramento Soil Moisture
Accounting model, [7]; the GR4 J model, [30]; the Australian Water Balance model,
[6]; the Single-Bucket model, [3]; the snow model, Kokkonen et al. [19]). Users
can opt for model(s) based on input data availability and/or desired level of process
complexity in watersheds of interest.

The goal of the study described here was to assess the climate change impacts on
temperature, precipitation, and flows in four headwater, agricultural watersheds from
diverse climatic regions of NZ. EarlierWilcock et al. [37, 38] had identified that these
four climatic regions could potentially undergo significant agricultural intensification
in the coming years to decades, thereby impacting on land and water resources. A
comprehensive field study was launched in 2001 to monitor flows and water quality
in these watersheds, as they (the watersheds) were identified as representative of
climate and land use of the respective climatic region [38]. The climate change
impacts on these four watersheds were examined using a multi-model approach, as
reported in Vel´azquez et al. [36]. A selection of SMA models from Hydromad was
used. A scenario-based approach was applied, wherein a range of probable future
climate change conditions was investigated, simulating an array of probable future
outcomes. The specific objectives were to individually calibrate and validate the
selected SMA models using flow observations from each watershed, and to assess
the climate change impacts onwatersheds’ temperature, precipitation and flows using
the validated models.

4 Methods and Materials

4.1 Study Watersheds

The studywatersheds are spread across the length of the country over varying climatic
regions, from warm subtropical (Toenepi) to cool temperate (Bog Burn) (Fig. 1). At
all four watersheds, rainfall is uniformly distributed throughout the year though the
prevailing weather system varies. The watersheds vary in topography, soils, temper-
ature recorded, rainfall received and flows generated, but have a similar land cover
(pasture) and land use practice (livestock grazing) (Table 1). A brief description
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of the regional climate, adapted from National Institute of Water and Atmospheric
Research Ltd (NIWA) [29], follows: the furthest north, North Island (NI) watershed
Toenepi lies inland, sheltered by high country to the south and east, and is less windy
than many other parts of NZ. Owing to its inland location, Toenepi experiences a
wide range of temperature. Summers (January–March) are warm and dry with settled
weather, and winters (June–August) are cool with unsettled weather. The Waiokura
watershed (NI), because of its location, is exposed to weather systems originat-
ing from the Tasman Sea. This region often gets quite windy but has few climate
extremes. Summer weather is warm and settled. Winter weather is unsettled. The
headwaters of the Waiokura watershed descends steeply from the Taranaki moun-
tain, before gradually sloping towards the coast. This watershed is characterized by
a high density of ephemeral and first-order streams [38].

The Inchbonnie watershed is located on the West coast of the South Island (SI),
between the Tasman Sea (West) and the Southern Alps (East). Even though the mean
annual rainfall in this region is very high (upwards of 2,800 mm), dry spells do occur
often during late summer and winter periods. Inchbonnie is the smallest of the four
watersheds selected for the study but receives the most rainfall, and has the highest
specific yield (flow per every unit area of the watershed) (see Table 1). The Bog Burn
watershed is located within the cooler, temperate zone of SI. Cool coastal breezes
from south dominate this region, and in the absence of a shelter such as a mountain
range, this region is often subjected to the weather originating from and moving over
the South Seas. Of the four, the Bog Burn watershed receives the least amount of
rainfall, and its specific yield is 4% that of the Inchbonnie watershed.

4.2 Time-Series Observations

As a part of the field monitoring study initiated in 2001 [38], these four watersheds
were instrumented with stage recorders (pumproTM) at the outlets and stream stages
were recorded at 15-min intervals. Each monitoring site was visited 8–10 times
annually for manual flow gauging, and site-specific rating curves were developed.

Precipitation and temperature data for each watershed were derived from a high-
resolution daily climate data developed by NIWA. These data are available online,
and are filed under “virtual climate network” within Cliflo [9]. The Virtual Climate
Station (VCS) represents a network of approximately 5-km grid points across NZ for
which daily precipitation (24-h total from 09:00) and temperature (maximum and
minimum over 24 h from 09:00) data are interpolated from station observations. A
thin plate smoothing splinemodel was used to derive daily rainfall based on observed
meteorological data. More information on VCS data and interpolation procedures
can be found in Tait and Woods [34] and Tait et al. [35].
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Fig. 1 Locations of the study watersheds. Key climatic, physical and hydrological characteristics
are listed in Table 1
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Table 1 Key physical, climatic and hydrological characteristics of the studywatersheds.Watershed
and hydrology data compiled and adapted from Wilcock et al. [37, 38]; Flow statistics based on
observed flows. Rainfall data from Cliflo [9]; Air temperature, sun shine hours and prevailing wind
direction from NIWA [29]

Toenepi Waiokura Inchbonnie Bog Burn

Area (km2) 15.8 20.9 6.0 24.8

Slope (%) 0–11 1–20 0–12 0–12

Dominant land use (%
of watershed area)

Grazed dairy
pasture (83%)

Grazed dairy
pasture (99%)

Grazed dairy
pasture (100%)

Grazed dairy
& sheep
pasture (77%);
rest in the pine
plantation

Soil type Volcanic
origin—Tope-
haehae silt
loam, Kiwitahi
and Kereone
yellow-brown
loams,
Morrinsville
clay loam

Volcanic orig-
in—Egmont
brown loam

Freely draining
stony
soil—Harihari
silt loam

Poorly
draining with
extensive mole
and pipe
drains;
Taringatura silt
loam,
Mossburn silt
loam,
Pukemutu silt
loam

Rainfall (mm y−1) 1,160 1,250 4,800 900

Monthly average (mm) 100 (Summer,
Jan.–Mar.);

100; 210; 90;

130 (Winter,
Jun.–Aug.)

135 240 90

Average air
temperature (oC)

21–26
(Summer)

21–26; 17–22; 16–23;

10–14 (Winter) 10–14 10–14 8–12

Annual average
sunshine hours

2100 2000 1900 1600

Prevailing wind
direction

Southwest Northwest North–Northeast;
Southwest

South–Southwest

Duration of observed
flow records

Jun.
2000–Sep. 2009

May
2001–Apr.
2010

May
2004–Apr.
2010

May
2001–Feb.
2010

Flow range (mm d−1) 0–38.2 0.1–30.2 0.2–308.5 0.1–41.8

Mean flow (mm d−1) 1.2 1.8 5.2 1.0

Median (mm d−1) 0.4 1.5 1.4 0.5

95 percentile flow (mm
d−1)

5.0 4.0 17.3 3.8

Specific yield
(mm km−2 y−1)

27.7 31.4 377.2 14.7
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4.3 Climate Change Data

Of the 17 global climate models described in [14] for developing regional climate
change datasets, 12 were found to perform satisfactorily in predicting the climate in
NZ and South Pacific region [24, 25, 27]. MfE had published procedures to derive
climate change datasets based on these twelve models for two 20-year future peri-
ods—1 Jan. 2030–31 Dec. 2049 (termed “2040” hereafter) and 1 Jan. 2080–31 Dec.
2099 (“2090”) [24, 25]. Climate-change induced changes to precipitation and tem-
perature were applied to data from 1 Jan. 1980–31 Dec 1999 (“1990”) period to
derive data for 2040 and 2090 periods. Thus, the datasets from 1990, 2040 and 2090
have the same resolution, spatially (~5 km grid) and temporally (daily). The down-
scaled temperature change data for climate change scenarios represent the change in
mean temperatures from the 1990 condition. Precipitation data for climate change
scenarios were derived in four steps. In step 1, daily precipitation from 1990 condi-
tion was adjusted using monthly offset described in Tables 2 and 3 of MfE (2008;
pages 19 and 20) for 2040 and 2090 conditions. In step 2, the number of rain days
per year was altered based on predicted warming. For every degree of warming, 7
fewer rain days are predicted. Days with the lowest precipitation recorded under
1990 condition were reset to days with zero precipitation in 2040 and 2090. In step
3, increases to precipitation resulting from increases in temperature were applied to
1990 precipitation data from step 2. For every degree rise in temperature, the water
vapour saturation levels and, hence, the precipitation were increased by 8%. In step
4, the annual and monthly precipitation estimated in step 3 were compared against
those presented in MfE (2008) to ensure the changes were consistent. More details
on this downscaling procedure can be found in the MfE report [24]; pages 22–24).

The published MfE procedures cover a spectrum of greenhouse emission scenar-
ios. A description of these emission scenarios can be found in Reisinger [31] and
MfE [24]. In this study, between 2040 and 2090, three emission scenarios were con-
sidered, B1 (low emission; an increase in forest cover over the current conditions,
and introduction and adaptation of clean and resource-efficient technologies), A1B
(medium or middle-of-the road emission; a balance across all emission sources), and
A1FI (high emission; a fossil-fuel intensive future). For each emission scenario, an
averaged dataset from the 12 GCMs were used. Based on a hydrological modelling
study in a large river basin in NZ, Woods et al. [39] suggested that where resources
are not limited, data from the 12models should be considered individually. However,
in this study, as had been done previously in Srinivasan et al. [33] and Woods et al.
[39], for lack of sufficient resources, for each emission scenario dataset averaged
from the twelve GCMs was used for modelling.
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Table 3 Changes in daily and seasonal rainfall characteristics in 2040 (“2030–49”) and 2090
(“2080–99”) over 1990 (“1980–99”). All statistics are based on 20-year daily data from each
time period. Mean daily rainfall statistics includes only non-zero values. B1—Low emission;
A1B—Medium emission; A1FI—High emission. Growing season—Oct.–Mar.; Dormant sea-
son—Apr.–Sep.

1990 conditions 2040 conditions 2090 conditions

Growing Dormant Growing Dormant Growing Dormant

Watershed B1, A1B,
A1FI

B1, A1B,
A1FI

B1, A1B,
A1FI

B1, A1B,
A1FI

Mean daily rainfall (mm) Percent change in mean rainfall over 1990
conditionsa

Toenepi 9.1 8.9 3.3, 5.3,
8.4

3.1, 5.0,
7.4

7.2, 11.9,
19.1

7.1, 11.5,
17.1

Waiokura 6.2 5.6 2.8, 4.6,
7.0

4.3, 5.5,
8.3

5.4, 8.6,
14.2

6.9, 11.0,
16.8

Inchbonnie 13.1 13.1 3.1, 4.7,
6.6

7.2, 11.6,
17.2

5.0, 7.3,
10.8

13.9, 21.4,
32.4

Bog Burn 6.7 5.8 4.0, 6.2,
8.9

6.1, 9.4,
13.4

8.2, 13.8,
19.5

11.9, 19.4,
30.0

Maximum daily rainfall
(mm)

Percent change in maximum rainfall over 1990
conditions

Toenepi 137.8 99.1 9.4, 9.9,
14.5

5.8, 9.0,
13.2

13.8, 21.6,
32.3

12.1, 18.9,
28.1

Waiokura 93.7 58.0 6.3, 9.7,
14.2

5.8, 8.9,
13.0

12.9, 20.2,
29.9

13.5, 21.1,
31.4

Inchbonnie 153.5 155.8 5.7, 8.8,
12.8

15.4, 24.1,
35.4

11.9, 18.3,
26.6

28.3, 45.0,
68.2

Bog Burn 120.4 67.0 4.4, 6.8,
9.8

6.1, 9.5,
16.1

11.8, 18.5,
27.5

15.6, 27.6,
44.2

Seasonal total rainfall (mm) Percent change in seasonal total rainfall over
1990 conditions

Toenepi 472.7 589.9 0.2, 0.3,
0.4

0.0, 0.0,
0.1

−1.4, −
2.2, −3.3

0.4, 0.6,
0.9

Waiokura 517.7 593.2 0.5, 0.8,
1.2

−0.6, 1.8,
2.5

−0.6, −
1.0, −1.5

1.6, 2.4,
3.6

Inchbonnie 1524.4 1575.1 0.9, 1.4,
1.9

4.6, 8.5,
13.2

0.2, 0.1, −
0.3

10.0, 15.5,
22.7

Bog Burn 502.7 424.5 1.3, 1.9,
2.8

3.9, 6.0,
8.6

1.9, 2.7,
3.8

6.9, 10.7,
15.6

aPositive values—greater than that of 1990; negative values—less than that of 1990
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4.4 Scenario Approach

Using a scenario approach, the multiple models (the models used are identified in the
next section) from Hydromad were calibrated and validated using observed (flow)
and VCS (interpolated observations of precipitation and temperature) data and the
validated models were then applied to 1990, and to multiple probable climate change
scenarios (B1, A1B, A1FI) from 2040 to 2090. The scenario approach assumes
no change in the relationship between drivers (precipitation and temperature) and
responses (watershed storage and flows) under all conditions, thereby providing a
common ground to compare multiple responses resulting from a range of drivers. To
further support this approach, the land use and land cover in the study watersheds
were assumed to remain the same for all scenarios.

4.5 Hydromad Modelling Framework

The Hydromad modelling framework offers a range of SMA and routing models
within a powerful R environment, and is an open-source software. Hydromad allows
calibration and validation ofmodels using user-defined objective functions. Since the
watersheds considered in this study were small, primarily composed of ephemeral
and first- and second-order streams, following a preliminary assessment and testing
of all routing models, only one routing model—the exponential components trans-
fer function model––was considered. This routing model was paired individually
with five different SMAmodels, the Catchment Moisture Deficit (CMD), the Catch-
ment Wetness Index (CWI), the Single-Bucket (SB), the Sacramento Soil Moisture
Accounting (SSMA), and the Australian Water Balance (AWM). All are daily time-
steppingmodels, and treatwatersheds as lumpedunits (i.e. the smallest computational
unit is watershed; AWM is an exception to this). The SMAmodels partition the input
rainfall into storage and effective rainfall, and each model applies its own procedure
in computing the storage. Depending on the SMA model chosen, the storage may
become available for evaporation, stream flow, lateral drainage and percolation. The
effective rainfall is routed to the watershed outlet using the routing model.

A description of Hydromad SMA and routing models is available at http://
hydromad.catchment.org/ (last accessed on 17 March 2018). A brief description
of SMA models used in this study is presented here. CMD model uses a mass bal-
ance approach to calculate effective rainfall based on watershed-scale (soil) moisture
deficit and evaporative losses, both of which are expressed in the same units as rain-
fall. Evaporative losses are estimated internally using input temperature. Effective
rainfall is a direct function of moisture deficit. CWI model uses a watershed-scale
wetness index to represent watershed-scale moisture conditions. The wetness index
is not a physical measure and is watershed specific. A high wetness index results
in a large effective rainfall. The effective rainfall is calculated as a product of input
rainfall and a storage index, which is a function of wetness index.

http://hydromad.catchment.org/
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The SB model uses a single soil layer with defined storage. Rainfall in excess of
soil storage results in effective rainfall. Evaporation is optional and has to be supplied
as input. The SSMA model is the most sophisticated of models considered in this
study. It includes multiple soil zones (upper and lower), with lateral flow, percolation
and evaporation simulated from each zone, and a provision to include impervious
areas. Lateral drainage from upper and lower soil zones and storage-excess rain-
fall constitute effective rainfall. The AWM model is a three-bucket model, where a
watershed can be represented as many as three segments with varying storages. User
defines the storage and areal extents of the segments. Saturation excess based on stor-
age and evaporative losses from each segment are cumulated to estimate effective
rainfall.

During calibration, for a given watershed, the SMA and routing models were
operated as paired models and parameters were adjusted to get the best fit between
modelled and observed flows. Each model pair was calibrated individually in every
watershed using the default PORT algorithm [12], and the Nash-Sutcliffe (NS) coef-
ficient [28] as the objective function and modelled flows as the evaluation variable.
Within each model pair, the effective rainfall routing (routing effective rainfall as
flow to watershed outlet) and Soil Moisture Accounting (partitioning input rainfall
into effective rainfall and watershed storage) parameters were adjusted to fit mod-
elled flows to those observed. Thus, for a given watershed, the same routing model
may have a different parameter set depending on the SMA model it is paired with.
Both calibration and validation included a 3-month warm up period and data from
that period were not used in assessing the model performance.

4.6 Data Preparation and Analysis

During calibration and validation, dailyVCS precipitation and temperature data from
2004 to 2011 were used to drive the models (calibration, 1 Jan. 2004 to 31 Dec. 2008;
validation, 1 Jan. 2009 and 31 Dec. 2011). Spatially averaged precipitation and tem-
perature data within each watershed were used to reduce the impact of uncertain
spatial forcing data. Two models were selected based on their performance during
calibration and validation and data requirements/availability for further application
to 1990, 2040 and 2090 periods. Model outputs from multiple emission scenarios
from 2040 to 2090 were compared against 1990 to assess the climate change impact.
Changes to flows at watershed outlet and watershed internal state (moisture condi-
tions) were compared.

Because the climate change datasets were derived from spatially diffuse global-
scale models and from temporally coarse annual to monthly time-series temperature
and precipitation offsets, the model outputs were assessed at appropriate scales.
Spatially, outputs were assessed at the watershed scale, and temporally at seasonal
scale. The seasonal scale was aligned with grazing season, as the study watersheds
are primarily under grazing (see Table 1). October through March period (termed
as “growing season” hereafter) is characterized by intensive grazing, wherein each
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paddock may get grazed as frequently as every 21 days. April through September
period is characterized by less intensive grazing, as soil and climatic conditions are
less conducive for pasture growth and grazing. (“dormant season”).

In NZ, the 7-day mean annual low flow is a standard metric used to illustrate the
severity of low flows and dry conditions in watersheds (e.g. Scarf et al. [32]). In
this study, since the data were analysed at a seasonal scale, the 7-day mean statistics
were calculated at the same scale. The 7-day mean seasonal statistics includes the
7-d mean seasonal low flow (7-d MSLF) based on two selected models CMD and
CWI, the 7-d mean seasonal high (soil) moisture deficit (7-d MSHMD) based on
CMD, and the 7-d mean seasonal low wetness index (7-d MSLWI) based on CWI.
The 7-day statistics are indicative of the severity of dry conditions in the watershed,
and are expressed using a different metric.

5 Results

5.1 Calibration and Validation of Model Pairs

The five SMA models in combination with one routing model were calibrated and
validated using daily data in the four watersheds. On a daily time scale, at 3 out of 4
watersheds, the SB model outperformed, though marginally, other models (see NS
coefficient, Table 2). At the fourth, the Inchbonnie watershed, where frequent rainfall
events would have resulted in saturated soil conditions and saturation excess runoff,
the 3-bucket AWB model, a saturation excess model, outperformed others.

CMD and CWI models were the next best performing models to the SB model in
all watersheds (see Table 1 and Fig. 2 for model performance). The SB and CMD
models use similar water balance approach. In the SBmodel, evaporation is optional,
and has to be provided by the user. In CMD model, evaporation is calculated from
input temperature data. Since temperature data are readily available for all climate
change scenarios, CMD model, along with CWI, was chosen for assessing climate
change impact in the four watersheds. Both CMD and CWI models simulate daily
flows at watershed outlets. As the internal watershed state, CMD model generates
daily, watershed-scale (soil) moisture deficit, and CWI generates daily, watershed-
scale wetness index.

A comparison of effective rainfall in the four watersheds during calibration and
validation periods indicated that the differences betweenCMDandCWImodelswere
small. At Toenepi, the differences were 3.6% (calibration) and 6.5% (validation) of
seasonal total rainfall. The differences at the other watersheds were 0.8 (calibration)
and <0.1% (validation) for Waiokura, 3.0 and 8.6% for Inchbonnie and 3.2 and 8.6%
for Bog Burn. There was no consistent relationship between models, watersheds and
effective rainfall generated.
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Fig. 2 Model performance in the four study watersheds during calibration and validation periods.
CWI is catchment wetness index model flows (grey dashed line) and CMD is Catchment Moisture
Deficit model flows (dark dotted line). Observed flows are shown as a black continuous line. NSC
(Nash-Sutcliffe Coefficient) based on monthly average data

5.2 Climate Change Impacts on Precipitation
and Temperature

As predicted, at all four watersheds, climate change resulted in changes to temper-
ature and precipitation in 2040 and 2090 scenarios over 1990. Maximum (Fig. 3)
and minimum (data not shown) temperatures followed similar increasing trends over
seasons for all four watersheds. As moved from low (B1) to high (A1FI) emis-
sion scenarios, and from 2040 to 2090, the increases in temperatures are predicted to
become larger. Generally, the SIwatersheds (Inchbonnie andBogBurn) are predicted
to experience greater temperature increases than those in NI (Toenepi andWaiokura)
(Fig. 3), and Inchbonnie is predicted to record maximum increases. The cool temper-
ate Bog Burn watershed is expected to record a greater increase in temperature than
the warm, subtropical Toenepi watershed. In both islands, the temperature increases
under climate change are predicted to be larger during dormant (April–September)
than growing (October–March) season. Both under 2040 and 2090 scenarios, the
winter months (June and July) are predicted to record maximum increases in tem-
peratures (same for minimum temperature, data not shown). Since none of the four
watersheds receive snowfall, an increase in winter temperature is unlikely to impact
snow processes. With climate change, though the increases in summer temperatures
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Fig. 3 Changes in monthly maximum temperatures in 2040 (“2030–49”) and 2090 (“2080–99”)
over 1990 (“1980–99”) for three different emission scenarios. B1—Low emission; A1B—Medium
emission; A1FI—High emission. Growing season—Oct.–Mar.; Dormant season—Apr.–Sep.

are predicted to be smaller than in winter, nevertheless they could rise by as much
as 8–15% in 2090 over 1990 levels.

While the changes in temperature under all future scenarios are trending up,
the changes in precipitation are mixed (Table 3). In all four watersheds, the mean
(includes non-zero rainfall only) and maximum daily rainfall are predicted to go up
for all climate change scenarios over 1990 but this trend was not always true for
seasonal total rainfall. The increases to the mean and maximum daily rainfall are
predicted to be greater during dormant than growing season in the SI watersheds,
a trend similar to that of temperature. However, such seasonal trends in rainfall are
not observable in the NI watersheds. Also, in the SI watersheds, the differences
in seasonal rainfall (compare 2040 and 2090, dormant vs growing seasons for all
scenarios; Table 3) are consistently greater than those predicted for theNIwatersheds.
During the dormant season of 2090, the mean rainfall of the two SI watersheds is
predicted to goupby33%over the 1990 levels. TheToenepi andBogBurnwatersheds
located on either ends of the country, are likely to record the largest increases in the
mean daily rainfall during the growing seasons of 2040 and 2090. At Inchbonnie,
where the mean and maximum daily rainfall were very similar between seasons in
1990, with the onset of climate change, would vary widely with the season. Of the
four, the Inchbonnie watershed is predicted to record the largest increases in rainfall
during the dormant season and the smallest during the growing season.
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Increases in mean and maximum daily rainfalls under climate change scenarios
did not always result in increases in seasonal total rainfall. TheNIwatersheds showed
a mixed trend. At Toenepi, the changes could go either way—more seasonal total
rainfall in 2090 and less in 2040, compared to 1990. AtWaiokura, compared to 1990,
the 2090 growing season is predicted to record a decrease in the seasonal total rainfall
but the 2090 dormant season may record an increase. The two SI watersheds, except
for 2090 A1FI scenario growing season at Inchbonnie, are set to record increases in
seasonal total rainfall under climate change. The increases predicted for the dormant
season can be several times larger than those of growing season (compare Bog Burn
2040 and Inchbonnie 2090 for all scenarios, Table 3), a trend similar to those of mean
and maximum daily rainfall.

Changes to the frequency of wet days (days it rained) were analysed to further
understand the rainfall input to the watersheds (Table 4). All four watersheds are
predicted to experience decreases in the frequency of wet days under climate change
and the decreases are likely to be greater during growing than dormant seasons
(exception to this, Toenepi,Waiokura and Inchbonnie 2040B1 scenario). An analysis
of the frequency of days with 30mm, or more, of rainfall indicated that under climate
change there is a positive increase in intense rainfall events in allwatersheds over 1990
(data not shown here), and the increases are predicted to be greater during dormant
than growing seasons. The frequency of extended dry (no rain for 7 consecutive days
ormore) andwet (rains for 7 consecutive days ormore) spells in the studywatersheds
were analysed (Table 4). For all scenarios in 2040 and 2090, and for all watersheds,
extended dry spells are predicted to increase and extended wet spells to decrease.
During the growing season, the SI watersheds are predicted to record more dry spells
than those in NI, while the trends are mixed during the dormant season. Also, under
climate change, the far end watersheds, Toenepi and Bog Burn are predicted to have
fewer wet spells than Inchbonnie and Waiokura watersheds.

5.3 Climate Change Impacts on Flows and Internal
Watershed Conditions

The two selected models, CWI and CMD, along with a routing model, were applied
to simulate flows and watershed-scale moisture conditions in the four watersheds
under 1990, 2040 and 2090 conditions. The outputs from the models were analysed
separately. The modelled flows were analysed for mean and maximum statistics
(Table 5). At both NI watersheds and at Bog Burn, for 2040 and 2090, both models
predicted the mean daily flows to decrease under climate change scenarios. The two
NI watersheds are likely to undergo a greater decrease than the Bog Burn watershed.
The Inchbonnie watershed is predicted to record an increase in the mean daily flow
during the dormant season under climate change. Of all the four watersheds, under
climate change, the Bog Burn is predicted to record minimal changes in the mean
daily flow over 1990.
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Table 4 Statistical comparison of rainfall data influencing watershed moisture conditions in 2040
(“2030–49”) and 2090 (“2080–99”) over 1990 (“1980–99”). All statistics are based on 20-year daily
data from each time period. Mean daily rainfall statistics includes only non-zero values. B1—Low
emission; A1B—Medium emission; A1FI—High emission. Growing season—Oct.–Mar.; Dormant
season—Apr.–Sep.

1990 conditions 2040 conditions 2090 conditions

Growing Dormant Growing Dormant Growing Dormant

Watershed B1, A1B,
A1FI

B1, A1B,
A1FI

B1, A1B,
A1FI

B1, A1B,
A1FI

Number of wet days per
year

Percent change in the number of wet days over
1990 conditionsa

Toenepi 52.1 67.1 −3.2, −
4.9, −7.6

−3.4, −
5.1, −6.9

−8.3, −
12.5, −
18.6

−6.6, −
10.1, −
14.1

Waiokura 84.0 107.6 −2.1, −
3.5, −5.2

−4.6, −
3.4, −5.1

−5.5, −
8.6, −13.5

−4.7, −
7.5, −10.9

Inchbonnie 116.6 120.2 −2.0, −
3.1, −4.2

−3.0, −
3.0, −3.4

−4.4, −
6.6, −9.8

−3.4, −
4.8, −7.2

Bog Burn 75.5 73.8 −2.5, −
3.8, −5.5

−2.0, −
3.1, −4.1

−5.7, 9.5,
−12.9

−4.3, −
6.8, −10.5

Instances no rain for ≥7
days together

Percent change in instances with no rain for ≥7
days together

Toenepi 9.6 7.8 2.1, 3.1,
6.8

2.6, 4.5,
6.4

7.3, 8.4,
9.4

5.1, 7.7,
9.6

Waiokura 6.0 4.2 1.7, 1.7,
5.0

3.6, 9.5,
13.1

6.7, 11.7,
18.3

11.9, 13.1,
20.2

Inchbonnie 3.3 3.6 1.5, 4.5,
9.1

1.4, 4.2,
9.7

10.6, 19.7,
33.3

9.7, 12.5,
13.9

Bog Burn 5.5 6.9 1.8, 3.6,
9.1

2.9, 5.1,
5.8

10.0, 19.1,
24.5

5.8, 9.4,
12.3

Instances rainfall predicted
for ≥7 consecutive days

Percent change in the number of instances with
rainfall predicted for ≥7 consecutive days

Toenepi 1.3 2.6 −34.6, −
34.6, −
38.5

−7.8, −
17.6, −
21.6

−38.5, −
42.3, −
46.2

−21.6, −
31.4, −
47.1

Waiokura 7.3 21.3 −8.9, −
14.4, −
22.6

−10.4, −
12.9, −
21.9

−26.7, −
32.9, −
40.4

−18.1, −
33.6, −
43.5

Inchbonnie 28.9 33.4 −10.4, −
16.1, −
18.5

−5.2, −
8.7, −12.0

−18.4. −
18.4, −
34.7

−11.2, −
18.0, −
28.2

Bog Burn 1.5 3.1 −20.0, −
20.0, −
26.7

−9.8, −
21.3, −
21.3

−26.7, −
33.3, −
63.3

−21.3, −
26.2, −
36.1

aPositive values—greater than that of 1990; negative values—less than that of 1990
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Table 5 Changes in flow conditions in 2040 (“2030–49”) and 2090 (“2080–99”) over 1990
(“1980–99”). All statistics are based on 20-year daily flow data from each time period. CWI—-
Catchment Wetness Index model; CMD—Catchment Moisture Deficit model. B1—Low emission;
A1B—Medium emission; A1FI—High emission. Growing season—Oct to Mar; Dormant sea-
son—Apr.–Sep.

1990 conditions 2040 conditions 2090 conditions

Growing Dormant Growing Dormant Growing Dormant

Watershed Model B1,
A1B,
A1FI

B1,
A1B,
A1FI

B1,
A1B,
A1FI

B1,
A1B,
A1FI

Mean daily flow (mm) Percent change in mean daily flow over
1990 conditionsa

Toenepi CMD 0.5 1.2 −9.1, −
13.3, −
18.2

−6.0, −
8.9, −
12.3

−19.4,
−26.4,
−33.5

−12.2,
−17.5,
−23.1

CWI 0.7 1.6 −7.5, −
10.8, −
14.3

−8.0, −
11.8, −
16.4

−15.9,
−21.2,
−25.4

−15.8,
−22.7,
−30.1

Waiokura CMD 0.8 1.1 −3.6, −
5.3, −
7.3

−3.0, −
4.4, −
6.2

−9.1, −
12.9, −
17.0

−8.4, −
12.3, −
16.5

CWI 0.8 1.0 −4.8, −
7.0, −
9.5

−5.0, −
7.4, −
10.2

−11.2,
−15.7,
−20.1

−11.9,
−17.1,
−22.5

Inchbonnie CMD 4.3 6.1 −1.1, −
1.7, −
2.4

3.8, 5.9,
8.6

−5.7, −
8.5, −
11.7

4.0, 6.4,
9.9

CWI 4.8 5.8 1.9, 2.8,
4.1

8.2,
12.8,
18.8

0.5, 0.7,
1.1

13.0,
20.9,
32.1

Bog
Burn

CMD 0.8 1.1 −0.9, −
1.3, −
1.6

−0.3, −
0.4, −
0.4

−3.7, −
5.2, −
6.2

−4.1, −
5.5, −
6.5

CWI 0.8 1.4 −1.1, −
1.4, −
1.4

−2.4, −
3.5,−5.1

−2.9, −
2.9, −
1.4

−8.5, −
12.2, −
15.9

Maximum daily flow
(mm)

Percent change in maximum daily flow
over 1990 conditions

Toenepi CMD 4.8 6.7 −1.6, −
2.4, −
3.2

−0.3, −
0.3, −
0.1

−3.3, −
4.0, −
3.3

0.5, 1.4,
3.0

CWI 5.2 7.7 −1.9, −
2.4, −
2.4

−3.8, −
5.2, −
6.8

−3.1, −
2.1, 3.6

−6.2, −
8.0, −
8.4

(continued)
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Table 5 (continued)

1990 conditions 2040 conditions 2090 conditions

Growing Dormant Growing Dormant Growing Dormant

Waiokura CMD 2.2 2.5 −0.6, −
0.7, −
0.7

−1.3, −
1.8, −
2.4

−2.1, −
2.6, −
2.5

−3.0, −
4.0, −
4.5

CWI 2.2 2.5 −1.3, −
1.8, −
2.1

−3.3, −
4.8, −
6.4

−3.9, −
4.6, −
4.1

−6.9, −
9.1, −
10.6

Inchbonnie CMD 48.1 52.0 4.5, 6.9,
10.2

9.5,
15.0,
22.5

8.5,
13.0,
18.6

19.1,
31.3,
51.1

CWI 52.8 56.2 7.6,
12.0,
17.9

14.0,
23.0,
36.3

14.1,
22.4,
33.6

29.6,
51.4,
86.2

Bog
Burn

CMD 7.0 5.5 4.0, 6.2,
9.1

3.8, 6.1,
9.2

8.0,
12.8,
19.9

5.7,
10.2,
17.4

CWI 7.7 7.3 5.6, 9.1,
14.0

2.3, 3.7,
5.5

13.4,
22.4,
35.8

1.7, 3.8,
8.8

Runoff–rainfall ratio Percent change in runoff –rainfall ratio
over 1990 conditions

Toenepi CMD 0.2 0.4 −9.0, −
13.2, −
18.1

−5.9, −
8.9, −
12.4

−17.9,
−24.4,
−30.9

−12.5,
−18.0,
−23.8

CWI 0.3 0.5 −7.6, −
10.8, −
14.3

−8.0, −
11.8, −
16.5

−14.4,
−19.0,
−22.3

−16.1,
−23.1,
−30.8

Waiokura CMD 0.3 0.3 −4.1, −
6.0, −
8.3

−2.4, −
6.1, −
8.5

−8.5, −
11.9, −
15.6

−9.8, −
14.3, −
19.4

CWI 0.3 0.3 −5.2, −
7.6, −
10.4

−4.4, −
9.0, −
12.5

−10.5,
−14.6,
−18.6

−13.3,
−19.0,
−25.2

Inchbonnie CMD 0.5 0.7 −2.0, −
3.1, −
4.3

−0.7, −
2.4, −
4.1

−6.0, −
8.7, −
11.5

−5.4, −
7.9, −
10.4

CWI 0.6 0.7 0.9, 1.4,
2.2

3.5, 4.0,
5.0

0.3, 0.7,
1.4

2.7, 4.7,
7.7

Bog
Burn

CMD 0.3 0.5 −2.2, −
3.3, −
4.4

−4.1, −
6.0, −
8.3

−5.5, −
7.8, −
9.8

−10.3,
−14.6,
−19.2

CWI 0.3 0.6 −2.3, −
3.3, −
4.0

−6.0, −
9.0, −
12.6

−4.7, −
5.5, −
5.0

−14.5,
−20.8,
−27.3

aPositive values—greater than that of 1990; negative values—less than that of 1990
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The maximum daily flow statistics present a very different picture of NI and SI
watersheds (Table 5). The SI watersheds are predicted to record increases in the
maximum daily flow which is in line with an increase in maximum daily rainfall
under climate change scenarios (see Table 3). In the Inchbonnie watershed, under
climate change, the maximum daily flows are predicted to increase by as much as
51–86% over 1990 (see Table 5, CWD and CWI output for 2090 A1FI dormant
season). In the NI watersheds, increases in the maximum daily rainfall under climate
change scenarios (Table 3) may not translate into increases in maximum daily flows
(Table 5).

With exception of CWI model prediction in the Inchbonnie watershed, the runof-
f–rainfall (RR) ratios are predicted to decline in 2040 and 2090 over 1990 for all
scenarios and in all four watersheds (Table 5). This ratio represents the proportion
of rainfall becoming runoff, and here it is calculated as a ratio of total runoff to total
rainfall over a season. A reduction in RR ratio, when there is a predicted increase in
mean, maximum and seasonal total rainfall (Table 3) indicates that less rainfall could
be becoming runoff in 2040 and 2090. Thus, an increase in seasonal total rainfall
does not directly translate into an increase in seasonal total flow. In Waiokura and
Bog Burn watersheds, the dormant seasons are likely to record larger decreases in
RR ratios than growing seasons. At Toenepi and Inchbonnie watersheds, the two
model predictions did not match, and, hence, no specific trends could be deciphered.

Differences in the methods used to estimate watershed storage and effective rain-
fall may have resulted in differences in CMD and CWI outputs. At Inchbonnie, there
was a mismatch in the predicted mean daily flow trends between CWI and CMD
models for the growing seasons of 2040 and 2090. Similarly, in the NI watersheds
and at Bog Burn, CMD model predicted a larger decrease in the mean daily flow
during the growing season, while CWI model predicted that to happen during the
dormant season. In the Inchbonnie watershed, CMD model predicted a decrease in
RR ratios under climate change scenarios but CWI model predicted an increase.
However, unlike others, in the Inchbonnie watershed, the changes to RR ratios under
climate change scenarios were small compared to 1990.

The duration and frequency of modelled flows were analysed for all watersheds
(Fig. 4 CMD model simulations; Fig. 5 CWI model simulations). For clarity and
readability, data from scenarios B1 and A1FI are shown in those figures and the flow
duration curves for A1B scenario lie in between the two shown. Generally, under
climate change, the SI watersheds show less deviation in flow frequencies from 1990.
The NI watersheds showed an increasingly greater deviation in flow frequencies as
moved from 1990 to 2040 and 2090. While the frequencies of high flows do not
appear to increase significantly, the frequencies and magnitude of low flows could
be significantly different under climate change scenarios compared to 1990. At both
NI watersheds, CWI model predicted a greater frequency of very low flows than
CMD model. Both models predicted the Toenepi watershed to record flows that are
in the order of 0.01 mm d−1, and less, at greater frequencies than occurred in 1990.
None of the other watersheds were predicted to record such low flows. Also, at the
Toenepi watershed, in 2040 and 2090, the growing seasons may undergo low flows
at a greater frequency than the dormant seasons (Fig. 5, CWI model).
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Fig. 4 Seasonal flow duration curves for 1990 (“1980–99”), 2040 (“2030–49”) and 2090
(“2080–99”) based on Catchment Moisture Deficit model. Data from B1 (shorter dotted line) and
A1FI (long dashed line) along with 1990 (solid black line) are shown. Vertical and horizontal grey
lines are guides. For the A1B scenario not shown here, the flow duration curves fell between B1
and A1FI

To further understand the extent and severity of dry spells under climate change
scenarios, flows (Table 6) and internal watershed conditions (Fig. 6, CMD model
moisture deficit; Fig. 7, CWI model wetness index) were analysed. All 7-day statis-
tics indicate that the four watersheds are to become increasingly dry under climate
change, despite increases inmean andmaximum rainfall (in the case of 7-d increasing
soil moisture deficit). The NI watersheds are likely to undergo more severe dry spells
than those in SI. The Toenepi watershed is predicted to see the largest decrease in
7-d MSLF (low flow) under climate change. The Inchbonnie watershed is predicted
to experience moisture deficits that can be five times as great as those predicted for
other watersheds (see Table 6; Inchbonnie A1FI scenarios, 2090 dormant season),
though, in absolute numbers, the Toenepi watershed could be recording the largest
deficit (Table 6, Figs. 6 and 7).

Under climate change scenarios, the four watersheds are also likely to stay drier
for longer periods than they did in 1990. Soil moisture deficits are predicted to get
larger as moved from 1990, 2040–2090 (Fig. 6). Also, unlike flows, under climate
change, the watersheds are likely to be drier during growing than the dormant season
(Figs. 6 and 7). Of the four watersheds, the moisture deficit changes under climate
change are likely to be the least in the Bog Burn watershed (<100 mm for all climate
change scenarios; see Fig. 6) and the most in the Inchbonnie watershed.
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Fig. 5 Seasonal flow duration curves for 1990 (“1980–99”), 2040 (“2030–49”) and 2090
(“2080–99”) based Catchment Wetness Index model. Data from B1 (shorter dotted line) and A1FI
(long dashed line) along with 1990 (solid black line) are shown. Vertical and horizontal grey lines
are guides. For the A1B scenario not shown here, the flow duration curves fell between B1 and
A1FI

6 Discussion

The major challenge in assessing climate change impact on water resources is uncer-
tainty. According toKay et al. [17], uncertainties can occur anywhere fromdownscal-
ing procedures applied to global climate change datasets, representing inter-annual
changes in climate systems to selecting hydrological models that can be parame-
terised for current and future conditions equally realistically. Added to these uncer-
tainties, prediction of climate in NZ, an island surrounded by enormous water bodies
is further complicated by the country’s location and orographic effects [18]. In NZ,
at a seasonal scale, only half of the temperature variability during a growing season
(September to March) and less than a third of rainfall variability for any season are
predictable [21, 22]. Thus, any water resources assessment under climate change
needs to take into account for these regional uncertainties. The uncertainty arising
from downscaling of global climate change datasets to NZ and the suitability of
global models to derive regional climate change data for NZ are discussed in Mullan
and Dean [27] and MfE [24], and hence, not covered here.

The VCS data from 1990 (1980–99) were used to derive climate change data
for 2040 (2030–49) and 2090 (2080–99). The 1990 VCS data were interpolation of
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Fig. 6 Seasonal soil moisture deficit curves for 1990 (“1980–99”), 2040 (“2030–49”) and 2090
(“2080–99”) based CatchmentMoisture Deficit model. Data fromB1 (shorter dotted line) and A1FI
(long dashed line) along with 1990 (solid black line) are shown. Vertical and horizontal grey lines
are guides. For the A1B scenario not shown here, the flow duration curves fell between B1 and
A1FI

station observations during that period, and thus includes the inter-annual variabil-
ity. The derived dataset for 2040 and 2090 may thus include the same inter-annual
variability as those of 1990. In the absence of any specific knowledge of inter-annual
variability during those future periods, variability from 1990 was applied to 2040
and 2090. While processing the climate change datasets from 2040 to 2090, aver-
ages over the 20-year periods were compared against 1990 periods. Such averaging
of long-term dataset might have reduced any differences arising from inter-annual
variability.

In this study, multi-model and scenario approaches were used to reduce the uncer-
tainty arising from the hydrological representation of watersheds. The multi-model
approach examined watershed response to a given set of input conditions using more
than one model. Also, calibration and validation using same observed flow and VCS
datasets for all models allowed consistent training of the models and selection of
parameters specific to watersheds and hydrological conditions specific to that period.
Bymaintaining themodel representation ofwatersheds and parameter selection same
across the given hydrological conditions, the scenario approach assumed a similar
level of uncertainty arising from model representation of input–output relationships.
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Fig. 7 Seasonal catchment wetness index curves for 1990 (“1980–99”), 2040 (“2030–49”) and
2090 (“2080–99”) based catchment wetness index model. Data from B1 (shorter dotted line) and
A1FI (long dashed line) along with 1990 (solid black line) are shown. Vertical and horizontal grey
lines are guides. For the A1B scenario not shown here, the flow duration curves fell between B1
and A1FI

Under climate change scenarios all four watersheds recorded increases in temper-
atures and changes to seasonal rainfall patterns over 1990. These are consistent with
those highlighted in MfE report (2008). However, the magnitude of change varied
between watersheds as moved across the country. The SI watersheds Inchbonnie
and Bog Burn recorded greater increases in temperatures than the NI watersheds,
Toenepi and Waiokura. As temperature increases, so does the ability of air to hold
more water vapour. A positive increase in observed global change in water vapor of
about 3.5% in the past 40 years, consistent with that of observed temperature change
of about 0.5 °C during the same period has been observed [15].

The cool, temperate Bog Burn watershed is predicted to record greater increases
in temperatures under climate change scenarios than the warm, subtropical Toenepi
watershed. More intense rainfall events and larger seasonal total rainfall are pre-
dicted to occur under climate change scenarios in Bog Burn than in Toenepi. Both
Toenepi and Bog Burn watersheds record fewer wet spells compared to Inchbon-
nie and Waiokura watersheds. Under climate change scenarios, as these wet spells
are predicted to decrease in frequency, both Toenepi and Bog Burn may undergo
extended dry spells. Thus, even though it is expected to undergo less warming than
Bog Burn, Toenepi could undergo longer and more severe dry spells than Bogburn.
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Under climate change scenarios, awarmer dormant (April––September), season is
predicted to record more rainfall than a less warm growing (October–March) season
in all four watersheds. The growing seasons are predicted to have fewer wet days,
longer dry spells and fewer wet spells than the dormant seasons, thereby resulting in a
greater decrease in flows andwatershed storage. In the SI watersheds, where a greater
temperature increases than NI watersheds are predicted, the seasonal differences in
rainfall input, and flow and watershed storage response could be greater. The SI
watersheds are predicted to record greater increases in the mean and maximum daily
rainfall, seasonal total rainfall, and maximum daily flow than NI watersheds. In
2040 and 2090, the dormant seasons, specifically the winter months of June and
July, are predicted to undergo the largest increases in temperature, and hence, the
mean and maximum daily rainfall, as the capacity for air to hold more water vapour.
The SI watersheds are predicted to record an increase in the seasonal total rainfall
while the NI watersheds are predicted to record a decrease. While the temperature
increases under climate change scenariosmay result in fewerwet days in both islands,
the rainfall increases resulting from temperature increases are not sufficiently large
to enough in the NI watersheds to increase the seasonal total rainfall. While the
rainfall events may become intense in both islands, the NI watersheds are likely to go
through more dry spells (days with no rainfall for 7 days or more), thereby resulting
in decreases in seasonal total rainfall. This also may result in the NI watersheds
recording a larger decrease in mean flow under climate change scenarios than those
in SI.

The watersheds from both islands are predicted to record changes in flows under
climate change scenarios. Owing to drier conditions under climate change scenarios
over 1990 conditions, the NI watersheds are predicted to record decreases in mean
and maximum daily flows under climate change scenarios over 1990 conditions,
while the maximum daily flows are predicted to increase in SI watersheds. Despite a
larger mean and maximum daily rainfall under climate change scenarios, all water-
sheds are expected to convert less rainfall to runoff seasonally (exception to this is
Inchbonnie watershed, CWI model simulations predicted an increase in flow and
an increase in runoff–rainfall ratio). A combination of intense rainfall and long dry
spells may result in extreme variability in flows, with intense events resulting in a
greater probability of infiltration-excess runoff, and thus flow, while the dry spells
may plunge the watersheds to very low flow conditions. The 7-day mean flow and
soil moisture statistics indicate that, while all four watersheds are getting drier under
climate change scenarios, the NI watersheds could be drier than SI watersheds. Such
extreme variability in flow conditions may have implications to in-stream processes
influencing water quality and ecology of these watersheds.

7 Conclusions

Climate change is predicted to result in increases in temperatures and changes to
precipitation in New Zealand watersheds. The changes in temperature and rainfall
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were predicted to increase from low (B1) to high (A1FI) emission scenarios, and
from 1990 (“1980–99”), 2040 (“2030–49”) to 2090 (“2080–99”). Some of the key
predictions for the four study watersheds under climate change scenarios are

• South Island (SI) watersheds (Inchbonnie and Bog Burn) may record greater
increases in temperature, mean and maximum daily rainfalls, seasonal total rain-
fall and maximum daily flow than North Island (NI) watersheds (Toenepi and
Waiokura). In the NI watersheds, increases in the maximum daily rainfall may not
translate into increases in maximum daily flow.

• The cool, temperate Bog Burn watershed may record greater increases in temper-
ature than the warm, subtropical Toenepi. However, Toenepi may undergo more
dry spells due to extended periods of no rainfall.

• With exception of CWI (Catchment Wetness Index) model prediction in the Inch-
bonnie watershed, the runoff–rainfall (RR) ratios are predicted to decline in 2040
and 2090 over 1990 in all four watersheds.

• The frequency of high flows may not increase significantly but the frequency and
magnitude of low flows could be significantly affected. The NI watersheds are
likely to undergo more severe low flow conditions than those in SI.

• In all watersheds, dormant season (April–September) are predicted to record larger
temperature and rainfall increases than growing season (October–March). Grow-
ing seasons are predicted to experience fewer wet days (rain days), longer dry
spells (no rain for 7 consecutive days or more) and fewer wet spells (rains for
7 consecutive days or more) than dormant seasons, thereby experiencing greater
decreases in flows and watershed storage.

• Of the four, the Inchbonnie watershed is predicted to record the largest increases
in rainfall during the dormant season and the smallest during the growing season.

All four watersheds are dominantly dairy grazed, and suboptimal soil moisture
conditions may negatively impact pasture growth. Under climate change conditions,
since the states and stores of available water are spatially and temporally different
over the current conditions, water use might also differ from current conditions.
To sustain production, farmers and producers may need to explore other measures
such as reducing stock density, importing feed, adapting to drought-resistant pasture
species and/or increasing water storage to counter dry spells, all of which may result
in significant to transformative changes to agricultural practices, farmer water use
behaviour and farm economy.

Acknowledgements The authors would like to thank Einar Hreinsson and Christian Zammit,
NIWA-Christchurch, and the Climate Variability and Change team, NIWA-Greta Point, for their
assistance in compiling the climate change data for this study. We acknowledge the New Zealand
Ministry of Business, Innovation and Employment for funding the programme Justified Irrigation
(CO1X1617) that provided partial support in developing the work presented here.



Climate Change Impacts on Four Agricultural … 251

References

1. Andreasson J, Bergstorm S, Carlsson B, Graham LP, Lindstrom G (2004) Hydrological
change–Climate change impact simulations for Sweden. Ambio 33:228–234

2. Andrews FT, Croke BFW, Jakeman AJ (2011) An open software environment for hydrological
model assessment and development. Environ Model Softw 26:1171–1185

3. Bai Y, Wagener T, Reed P (2009) A top-down framework for watershed model evaluation and
selection under uncertainty. Environ Model Softw 24:901–916

4. Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. Tech-
nical paper of the Intergovernmental Panel on Climate Change, IPCC Secterariat, Geneva, 210
pages

5. Boe J, TerrayL,Martin E,Habets F (2009) Projected changes in components of the hydrological
cycle in French river basins during the 21st century. Water Resour Res 45:W08426

6. Boughton W (2004) The Australian water balance model. Environ Model Softw 19:943–956
7. Burnash RJC (1995) The NWS river forecast system-catchment modeling. In: Singh VP (ed)

Computer models for watershed hydrology. CAB Direct, Oxfordshire, United Kingdom, pp
311–366. ISBN 0-918334-91-8

8. Clark MP, Hreinsson EO, Martinez G, Tait A, Slater AG, Hendrikx J, Owens I, Gupta H,
Schmidt J, Woods R (2009) Simulations of seasonal snow for the South Island, New Zealand.
J Hydrol (NZ) 48:41–58

9. Cliflo (2013) The national climate database. http://cliflo.niwa.co.nz/. Accessed 14 Dec 2013
10. Croke BFW, Jakeman AJ (2004) A catchment moisture deficit module for the ihacres rainfall-

runoff model. Environ Model Softw 19:1–5
11. Dibike YB, Coulibaly P (2005) Hydrologic impact of climate change in the Saguenay water-

shed: comparison of downscaling methods and hydrologic models. J Hydrol 307:145–163
12. Gay MD (1990) Usage summary for selected optimization routines. Computing Science Tech-

nical Report No. 153. AT&T Bell Murray Hill, NJ 07974, USA
13. Hassan Z, Harun S (2011) Hydrological response of a catchment to climate change in the Kurau

River basin, Perak, Malaysia. In: Proceedings of 3rd international conference on managing
rivers in the 21st century: sustainable solutions for global crisis of flooding, pollution and
water scarcity. 6– 9 Dec 2011, Penang, Malaysia, pp 216–225

14. IPCC (Intergovernmental Panel on Climate Change) (2007) The physical science basis. Con-
tribution of working group I to the fourth assessment report of the intergovernmental panel on
climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor
M, Miller HL (eds) Cambridge University Press, Cambridge, United Kingdom and New York,
NY, USA, 996 pages

15. IPCC (Intergovernmental Panel on Climate Change) (2013) Working group I contri-
bution to the IPCC fifth assessment report: the physical science basis. Final draft
underlying scientific-technical assessment. In: Christensen J, Kanikicharla KK (eds).
http://www.climatechange2013.org/images/uploads/WGIAR5_WGI-12Doc2b_FinalDraft_
TechnicalSummary.pdf. Accessed 14 Dec 2013

16. Jakeman AJ, Hornberger GM (1993) How much complexity is warranted in a rainfall-runoff
model? Water Resour Res 29:2637–2649

17. Kay AL, Davies HN, Bell V, Jones RG (2009) Comparison of uncertainty sources for climate
change impacts: flood frequency in England. Clim Change 92:41–63. https://doi.org/10.1007/
s10584-008-9471-4

18. Kenny G (2010) Adaptation in agriculture: lessons for resilience from eastern regions of New
Zealand. In: Nottage RAC,Wratt DS, Bornman JF, Jones K (eds) Climate change adaptation in
New Zealand: future scenarios and some sectoral perspectives. New Zealand Climate Change
Centre, Wellington, New Zealand, pp 56–69

19. Kokkonen T, Koivusalo H, Jakeman A, Norton J (2006) Construction of a degreeday snow
model in the light of the “ten iterative steps in model development”. In: Voinov A, Jakeman

http://cliflo.niwa.co.nz/
http://www.climatechange2013.org/images/uploads/WGIAR5_WGI-12Doc2b_FinalDraft_TechnicalSummary.pdf
https://doi.org/10.1007/s10584-008-9471-4


252 M. S. Srinivasan et al.

AJ, Rizzoli AE (eds) Proceedings of the IEMSs third biennial meeting: summit on environ-
mental modelling and software. International Environmental Modelling and Software Society,
Burlington, USA

20. Kundzewicz ZW, Mata LJ, Arnell NW, Doll P, Jimenez B, Miller K, Oki T, Sen Z, Shiklo-
manov I (2008) The implications of projected climate change for freshwater resources and their
management. Hydrol Sci J 53:3–10

21. Madden RA, Kidson JW (1997) The potential long-range predictability of temperature over
New Zealand. Int J Climatol 17:483–495

22. Madden RA, Shea DJ, Katz RW, Kidson JW (1999) The potential long-range predictability of
precipitation over New Zealand. Int J Climatol 19:405–421

23. MfE (Ministry for the Environment) (2016) Climate change projections for New Zealand:
atmosphere projections based on simulations from the IPCC fifth assessment. Ministry for
the Environment, Wellington, 127 pages. ISBN: 978-0-908339-44-0; Publication number: ME
1247

24. MfE (Ministry for the Environment) (2010) Tools for estimating the effects of climate change
on flood flow: a guidance manual for local government in New Zealand. Ministry for the
Environment, Wellington, New Zealand. Report CHC2008-110, 93 pages

25. MfE (Ministry for the Environment) (2008) Climate change effects and impacts assess-
ment: a guidance manual for local government in New Zealand, 2nd edn. Wellington,
New Zealand. http://www.mfe.govt.nz/publications/climate/climate-change-effect-impacts-
assessments-may08/index.html. Accessed 15 Dec 2010

26. Mullan AB, Thompson CS, Woods RA (2001) Future climate and river flow scenarios. NIWA
Client Report No. WLG 2001/26. 46 p

27. Mullan AB, Dean S (2009) AR4 climate model validation and scenarios for New Zealand. In:
Presented at 9th international conference on Southern hemisphere meteorology and ocenog-
raphy, Melbourne, 9–13 Feb 2009. Available from http://www.bom.govt.au/events/9icshmo/
program_4.sthml. Accessed 6 Dec 2013

28. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models Part I: a dis-
cussion of principles. J Hydrol 10:282–290

29. NIWA (National Institute of Water and Atmospheric Research Limited) (2013) Overview
of New Zealand climate. http://www.niwa.co.nz/education-and-training/schools/resources/
climate/overview. Accessed 14 Dec 2013

30. Perrin C, Michel C, Andreassian V (2003) Improvement of a parsimonious model for stream-
flow simulation. J Hydrol 279:275–289

31. Reisinger A (2009) Climate change 101: an educational resource. Science-impacts-adaptation-
mitigation-decision-making challenges. Institute of Policy Studies and New Zealand Climate
Change Research Institute, School of Government, Victoria University ofWellington,Welling-
ton, New Zealand, 303 pages

32. Scarf W (2007) Seven-day mean annual low flow and mean annual flow mapping of the
Waipara River catchment, North Canterbury. Report No. U08/10 ISBN 978-1-86937-779-
3. Environment Canterbury, Christchurch, New Zealand. 47 pages. http://ecan.govt.nz/
publications/Reports/seven-day-mean-annual-low-flow-mean-annual-flow-mapping-waipara-
river.pdf. Accessed 12 Jan 12 2014

33. Srinivasan MS, Schmidt J, Poyck S, Hreinsson E (2011) Irrigation reliability under climate
change scenarios: a modelling: investigation in a river-based irrigation scheme in NewZealand.
J Am Water Resour Assoc 47:1261–1274. https://doi.org/10.1111/j.1752-1688.2011.00568.x

34. Tait A, Woods R (2007) Spatial interpolation of daily potential evapotranspiration for New
Zealand using a spline model. J Hydrometeorol 8:430–438

35. Tait A, Henderson R, Turner R, Zheng X (2006) Thin plate smoothing spline interpola-
tion of daily rainfall for New Zealand using a climatological rainfall surface. Int J Climatol
26:2097–2115

36. Vel´azquez JA, Schmid J, Ricard S, Muerth MJ, Gauvin St-Denis B, Minville M, Chaumont D,
Caya D, Ludwig R, Turcotte R (2013) An ensemble approach to assess hydrological models’
contribution to uncertainties in the analysis of climate change impact onwater resources.Hydrol
Earth Syt Sci 17:565–578

http://www.mfe.govt.nz/publications/climate/climate-change-effect-impacts-assessments-may08/index.html
http://www.bom.govt.au/events/9icshmo/program_4.sthml
http://www.niwa.co.nz/education-and-training/schools/resources/climate/overview
http://ecan.govt.nz/publications/Reports/seven-day-mean-annual-low-flow-mean-annual-flow-mapping-waipara-river.pdf
https://doi.org/10.1111/j.1752-1688.2011.00568.x


Climate Change Impacts on Four Agricultural … 253

37. Wilcock RJ, Monaghan RM, Quinn JM, Srinivasan MS, Houlbrooke DJ, Duncan MJ, Wright-
Stow AE, Scarsbrook MR (2013) Trends in water quality of five dairy farming streams in
response to adoption of best practice and benefits of long-term monitoring at the catchment
scale. Mar Freshw Res 64:401–412

38. Wilcock RJ, Monaghan R, Srinivasan MS, Wright-Stow AE (2012). Best practice catchments
for sustainable dairy farming: review of a long-term monitoring study of water quality trends.
National Institute of Water & Atmospheric Research Client report, HAM2012-071. Hamilton,
New Zealand. 58 pages

39. Woods R, Tait A, Mullan B, Hendrikx J, Diettrich J (2008) Projected climate and river flow for
the rangitata catchment for 2040. National Institute of Water & Atmospheric Research Report
CHC2008-097, Christchurch, New Zealand. 36 pages


	Contents
	Integration of GRACE Data for Improvement of Hydrological Models
	1 Introduction
	2 GRACE Data and Gravity Recovery
	3 Large-Scale Hydrological Models
	4 Evaluation of Model Simulations Using GRACE Data
	5 GRACE Data Assimilation
	6 Conclusions
	References

	An Analysis of Spatio-Temporal Changes in Drought Characteristics over India
	1 Introduction
	1.1 Introduction to Droughts
	1.2 Drought Characterization and Monitoring
	1.3 Drought Classification
	1.4 Temporal Trends in Droughts

	2 Study Area and Dataset
	2.1 Droughts over India and Their Consequences
	2.2 Recent Drought Literature over India
	2.3 India Meteorological Department (IMD) Precipitation Dataset
	2.4 Homogenous Monsoon Regions

	3 Methodology
	3.1 Standardized Precipitation Index (SPI)
	3.2 Gamma Mixture Model (Gamma-MM)
	3.3 Temporal Trends in Droughts

	4 Results and Discussion
	4.1 Drought Classification
	4.2 Precipitation Trends
	4.3 Drought Classification for Nonstationary Precipitation Series

	5 Summary and Concluding Remarks
	References

	Urban Hydrology in a Changing World
	1 Introduction
	2 Modelling Urban Hydrology
	2.1 Network Representation
	2.2 Numerical Simulation Models
	2.3 Representing Climate Change

	3 Sustainable Approaches to Urban Water Management
	3.1 Case Study—New Zealand

	4 Conclusion
	References

	Uncertainty in Calibration of Variable Infiltration Capacity Model
	1 Introduction
	2 Description of VIC Model
	2.1 Water Balance Mode
	2.2 VIC Routing Model

	3 Case Study on Calibration of VIC Model
	4 Datasets Used
	5 Results
	6 Open Questions
	References

	Predictability of Hydrological Systems Using the Wavelet Transformation: Application to Drought Prediction
	1 Introduction
	2 Wavelet Function
	3 Wavelet Transform
	3.1 Continuous Wavelet Transform (CWT)
	3.2 Discrete Wavelet Transform (DWT)
	3.3 Stationary Wavelet Transform (SWT)

	4 Multi-resolution Analysis
	5 Illustrative Example on Drought Prediction
	5.1 Methodology
	5.2 Study Areas
	5.3 Results and Discussions

	6 Summary and Concluding Remarks
	References

	Land–Atmosphere Interactions in Indian Monsoon at Sub-seasonal to Seasonal Scale
	1 Introduction
	2 Importance Land Surface Feedback in ISMR
	2.1 Soil Moisture–Precipitation Feedback
	2.2 Snow Cover–Precipitation Feedback
	2.3 Evapotranspiration–Precipitation Feedback

	3 Identification of Major Terrestrial Moisture Sources
	4 Role of Terrestrial Moisture Sources in the Seasonal Precipitation
	4.1 Role of Terrestrial Moisture Sources in Interannual Variability of ISMR
	4.2 Role of Terrestrial Moisture Sources in Sub-seasonal Variability of ISMR

	5 Conclusions
	References

	Assessment of Climate Change Impacts on IDF Curves in Qatar Using Ensemble Climate Modeling Approach
	1 Introduction
	2 Study Area and Rainfall Data Selection
	3 Current Climate IDF Curves
	4 Methodology for Development of Future IDF Curves
	4.1 Selection of Models and Scenarios
	4.2 Rate-of-Change Estimation Using Multi-model Ensemble
	4.3 Model Screening
	4.4 Multi-model Ensemble

	5 Results and Discussions
	5.1 Summary of Screened Scenarios
	5.2 Computation of Rate-of-Change

	6 Conclusions
	References

	River Water Temperature Modelling Under Climate Change Using Support Vector Regression
	1 Introduction
	2 Data and Methods
	3 Multiple Linear Regression Model (MLRM)
	4 Support Vector Regression (SVR)
	5 Evaluation Criteria of Model Performance
	6 Statistical Downscaling Model
	7 Results and Discussion
	8 Conclusions and Future Directions
	References

	Assessing the Impact of Climate Change on Water Resources: The Challenge Posed by a Multitude of Options
	1 Introduction
	2 Assessment of Climate Change Impact on Water Resources: An Overview of the Existing Methods
	2.1 Climate Change and the Global Hydrologic Cycle
	2.2 Uncertainty Quantification
	2.3 Decision-Relevant Hydrologic Indicators

	3 Hydrological Models and Evaluation Criteria
	3.1 Hydrological Models: Which One to Choose?
	3.2 What is to be Predicted?
	3.3 The Issue of Prediction in Ungauged Basins
	3.4 How do We Evaluate a Model’s Prediction?
	3.5 Final Remarks on the Model Selection Dilemma

	4 Closing Remarks
	References

	Streamflow Connectivity in a Large-Scale River Basin
	1 Introduction
	2 Network Methods
	2.1 Clustering Coefficient
	2.2 Degree Distribution
	2.3 Shortest Path Length

	3 Study Area and Data
	4 Results and Discussion
	4.1 Clustering Coefficient
	4.2 Degree Distribution
	4.3 Shortest Path Length

	5 Conclusions
	References

	Climate Change Impacts on Four Agricultural, Headwater Watersheds from Varying Climatic Regions of New Zealand
	1 Introduction
	2 Climate Change Impacts on New Zealand
	3 Hydrologic Modelling of Climate Change Projections
	4 Methods and Materials
	4.1 Study Watersheds
	4.2 Time-Series Observations
	4.3 Climate Change Data
	4.4 Scenario Approach
	4.5 Hydromad Modelling Framework
	4.6 Data Preparation and Analysis

	5 Results
	5.1 Calibration and Validation of Model Pairs
	5.2 Climate Change Impacts on Precipitation and Temperature
	5.3 Climate Change Impacts on Flows and Internal Watershed Conditions

	6 Discussion
	7 Conclusions
	References




