
Chapter 7
Restricted Parameter Spaces

7.1 Introduction

In this chapter, we will consider the problem of estimating a location vector which
is constrained to lie in a convex subset of RP . Estimators that are constrained to a
set should be constrasted to the shrinkage estimators discussed in Sect.2.4.4 where
one has “vague knowledge” that a location vector is in or near the specified set
and consequently wishes to shrink toward the set but does not wish to restrict the
estimator to lie in the set. Much of the chapter is devoted to one of two types of
constraint sets, balls, and polyhedral cones. However, Sect.7.2 is devoted to general
convex constraint sets and more particularly to a striking result of Hartigan (2004)
which shows that in the normal case, the Bayes estimator of the mean with respect
to the uniform prior over any convex set, C , dominates X for all θ ∈ C under the
usual quadratic loss ‖δ − θ‖2.

Section 7.3 considers the situation where X is normal with a known scale but
the constraint set is a ball, B, of known radius centered at a known point in R

p.
Here again, a natural estimator to dominate is the projection onto the ball PBX.
Hartigan’s result of course applies and shows that the Bayes estimate corresponding
to the uniform prior dominates X, but a finer analysis lead to domination over PBX

(provided the radius of the ball is not too large relative to the dimension) by the
Bayes estimator corresponding to the uniform prior on the sphere of the same radius.

Section 7.4 will consider estimation of a normal mean vector restricted to a
polyhedral cone, C , in the normal case under quadratic loss. Both the cases of
known and unknown scale are treated. Special methods need to be developed
to handle this restriction because the shrinkage functions considered are not
necessarily weakly differentiable. Hence the methods of Chap.4 are not directly
applicable. A version of Stein’s lemma is developed for positively homogeneous
sets which allows the analysis to proceed.

In general, if the constraint set, C , is convex, a natural alternative to the UMVUE
X, is PcX the projection of X onto C . Our methods lead to Stein type shrinkage
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estimators that shrink PcX which dominate PcX, and hence X itself, when C is a
polyhedral cone.

Section 7.5 is devoted to the case of a general spherically symmetric distribution
with a residual vector when the mean vector is restricted to a polyhedral cone. As in
Sect.7.4, the potential nondifferentiability of the shrinkage factors is a complication.
We develop a general method that allows the results of Sect.7.4 for the normal case
to be extended to the general spherically symmetric case as long as a residual vector
is available. This method also allows for an alternative development of some of the
results of Chap.6 that rely on an extension of Stein’s lemma to the general spherical
case.

7.2 Normal Mean Vector Restricted to a Convex Set

In this section, we treat the case X ∼ Np(θ, σ 2Ip) where σ 2 is known and where
the unknown mean θ is restricted to lie in a convex set C ⊆ R

p (with nonempty
interior and sufficiently regular boundary), and where the loss is L(θ, δ) = ‖δ−θ‖2.
We show that the (generalized) Bayes estimator with respect to the uniform prior
distribution on C , say π(θ) = 1C (θ), dominates the usual (unrestricted) estimator
δ0(X) = X. At this level of generality the result is due to Hartigan (2004) although
versions of the result (in R

1) date back to Katz (1961). We follow the discussion in
Marchand and Strawderman (2004).

Theorem 7.1 (Hartigan 2004) Let X ∼ Np(θ, σ 2Ip) with σ 2 known and θ ∈ C ,
a convex set with nonempty interior and sufficiently regular boundary ∂C (∂C is
Lipshitz of order 1 suffices). Then the Bayes estimator, δU (X) with respect to the
uniform prior on C , π(θ) = 1C (θ), dominates δ0(X) = X with respect to quadratic
loss.

Proof Without loss of generality, assume σ 2 = 1. Recall from (1.20) that the form
of the Bayes estimator is δU (X) = X + ∇m(X)/m(X) where, for any x ∈ R

p,

m(x) ∝
∫
C

exp

(
−1

2
‖x − ν‖2

)
dν.

The difference in risk between δU and δ0 is R(θ, δU ) − R(θ, δ0)

R(θ, δU ) − R(θ, δ0) = Eθ

[∥∥∥∥X + ∇m(X)

m(X)
− θ

∥∥∥∥
2

− ‖X − θ‖2

]

= Eθ

[‖∇m(X)‖2

m2(X)
+ 2

∇m(X)T(X − θ)

m(X)

]
. (7.1)

Hartigan’s clever development proceeds by applying Stein’s Lemma 2.3 to only
half of the cross product term in order to cancel the squared norm term in the above.
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Indeed, since

Eθ

[
(X − θ)T

(∇m(X)

m(X)

)]
= Eθ

[
div

(∇m(X)

m(X)

)]

= Eθ

[
Δm(X)

m(X)
− ‖∇m(X)‖2

m2(X)

]
,

(7.1) then becomes

R(θ, δU ) − R(θ, δ0) = Eθ

[
Δm(X) + (X − θ)T∇m(X)

m(X)

]

= Eθ

[
H(X, θ)

m(X)

]
(7.2)

with H(x, θ) = Δm(x) + (x − θ)T∇m(x). Hence it suffices to show H(x, θ) ≤ 0
for all θ ∈ C and x ∈ R

p. Using the facts that

∇x exp

(
−1

2
‖x − ν‖2

)
= −∇ν exp

(
−1

2
‖x − ν‖2

)

and

Δx exp

(
−1

2
‖x − ν‖2

)
= Δν exp

(
−1

2
‖x − ν‖2

)
,

it follows that

H(x, θ) ∝ Δx

∫
C

exp

(
−1

2
‖x − ν‖2

)
dν + (x − θ)′∇x

∫
C

exp

(
1

2
‖x − ν‖2

)
dν

=
∫
C

[
Δν exp

(
−1

2
‖x − ν‖2

)
− (x − θ)′∇ν exp

(
−1

2
‖x − ν‖2

)]
dν

=
∫
C

divν

[
∇ν exp

(
−1

2
‖x − ν‖2

)
− (x − θ) exp

(
−1

2
‖x − ν‖2

)]
dν

=
∫
C

divν

[
(θ − ν) exp

(
−1

2
‖x − ν‖2

)]
dν.

By Stokes’ theorem (see Sect.A.5 of the Appendix) this last expression can be
expressed as

∫
∂C

ηT(ν)(θ − ν) exp

(
−1

2
‖x − ν‖2

)
dσ(ν)
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where η(ν) is the unit outward normal to ∂C at ν and σ is the surface area Lebesgue
measure on ∂C . Finally, since C is convex and θ ∈ C , the angle between η(ν) and
θ − ν is obtuse for ν ∈ ∂C and so ηT(ν)(θ − ν) ≤ 0, for all θ ∈ C and ν ∈ ∂C ,
which implies the risk difference in (7.2) is nonpositive. 
�

Note that, if θ is in the interior of C ,C 0, then η′(ν)(θ −ν) is strictly negative for
all ν ∈ ∂C , and hence, R(θ, δU ) − R(θδ0) < 0 for all θ ∈ C 0. However, if C is a
pointed cone at θ0, then ηT(ν)(θ0−ν) ≡ 0 for all ν ∈ ∂C and R(θ0, δU ) = R(θ0, δ0).

Note also that, if C is compact, the uniform prior on C is proper, and hence,
δU (X) not only dominates δ0(X) (on C ) but is also admissible for all p. On the
other hand, if C is not compact, it is often (typically for p ≥ 3) the case that δU is
not admissible and alternative shrinkage estimators may be desirable.

Furthermore, it may be argued in general, that a more natural basic estimator
which one should seek to dominate is PcX, the projection of X onto C which is the
MLE. We consider this problem for the case where C is a ball in Sect.7.3 and where
C is a polyhedral cone in Sect.7.4. 
�

7.3 Normal Mean Vector Restricted to a Ball

When the location parameter θ ∈ R
p is restricted, the most common constraint

is a ball, that is, to a set for which ‖θ‖ is bounded above by some constant R.
In this setting Bickel (1981) noted that, by an invariance argument and analyticity
considerations, the minimax estimate is Bayes with respect to a unique spherically
symmetric least favorable prior distribution concentrating on a finite number of
spherical shells. This result extends what Casella and Strawderman (1981) obtained
in the univariate case. Berry (1990) specified that when R is small enough, the
corresponding prior is supported by a single spherical shell. In this section we
address the issues of minimax estimation under a ball constraint.

Let X ∼ Np(θ, σ 2Ip), with unknown mean θ = (θ1, . . . , θp) and known
σ 2, and with the additional information that

∑p

i=1(θi − τi)
2/σ 2 ≤ R2 where

τ1, . . . , τp, σ 2, R are known. From a practical point of view, a constraint as the one
above signifies that the squared standardized deviations |(θi−τi)/σ |2 are on average
bounded by R2/p. We are concerned here with estimating θ under quadratic loss
L(θ, δ) = ‖δ − θ‖2. Without loss of generality, we proceed by setting σ 2 = 1 and
τi = 0, i = 1, . . . , p, so that the constraint is the ball BR = {θ ∈ R

p | ‖θ‖ ≤ R}.
Since the usual minimax estimators take on values outside of BR with positive

probability, they are neither admissible nor minimax when θ is restricted to BR .
The argument given by Berry (1990) is the following. As for inadmissibility, it can
be seen that these estimators are dominated by their truncated versions. Thus, the
unbiased estimator X is dominated by the MLE δMLE(X) = (R/‖X‖∧1)X (which
is the truncation of X on BR). Now, if an estimator which takes on values outside of
BR with positive probability were minimax, its truncated version would be minimax
as well, with a strictly smaller risk. This is a contradiction since the risk function
is continuous and attains its maximum in BR . Further δMLE(X) is not admissible
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since, due to its non differentiability, it is not a generalized Bayes estimator. See
Sect.3.4. For further discussions on this issue related to inadmissibility of estimators
taking values on the boundary of a convex parameter space, see the review paper of
Marchand and Strawderman (2004) and the monograph of van Eeden (2006).

As alternative estimators to δMLE(X), the Bayes estimators are attractive since
they may have good frequentist performances in addition to their Bayesian property.
Two natural estimators are the Bayes estimators with respect to the uniform
distribution on the ball BR and the uniform distribution on its boundary, the sphere
SR = {θ ∈ R

p | ‖θ‖ = R}. We will see that the latter is particularly interesting.
The model is dominated by the Lebesgue measure on R

p and has likelihood L

given by

∀x ∈ R
p ∀θ ∈ R

p L(x, θ) = 1

(2π)p/2
exp

(
−1

2
‖x − θ‖2

)
. (7.3)

Hence, if the prior distribution is the uniform distribution UR on the sphere SR , the
marginal distribution has density m with respect to the Lebesgue measure on R

p

given by

∀x ∈ R
p m(x) =

∫
SR

L(x, θ)dUR(θ)

= 1

(2π)p/2
exp

(
−1

2
‖x‖2

)
exp

(
−1

2
R2

)∫
SR

exp(xTθ)dUR(θ),

(7.4)

after expanding the likelihood in (7.3). Also, the posterior distribution given x ∈ R
p

has density π(θ |x) with respect to the prior distribution UR given by

∀θ ∈ SR π(θ |x) = L(x, θ)

m(x)
= exp(xTθ)∫

SR
exp(xTθ)dUR(θ)

, (7.5)

thanks to the second expression of m(x) in (7.4). As the loss is quadratic, the Bayes
estimator δR is the posterior mean, that is,

∀x ∈ SR δR(x) =
∫

SR

θπ(θ |x)dUR(θ) =
∫
SR

θ exp(xTθ)dUR(θ)∫
SR

exp(xTθ)dUR(θ)
. (7.6)

The Bayes estimator in (7.6) can be expressed through the modified Bessel
function Iν , solutions of the differential equation z2ϕ′′(z)+zϕ′(z)−(z2+ν2)ϕ(z) =
0 with ν ≥ 0. More precisely, we will use the integral representation of the modified
Bessel function
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Iν(z) = (z/2)ν

π1/2Γ (ν + 1/2)

∫ π

0
exp(z cos t) sin2ν tdt (7.7)

from which we may derive the formula

I ′
ν(z) = ν

z
Iν(z) + Iν+1(z). (7.8)

Using the parametrization in terms of polar coordinates, we can see from the
proof of Lemma 1.4 that, for any function h integrable with respect to UR ,

∫
SR

h(θ)dUR(θ) = 1

σ(S)

∫
V

h(ϕR(t1, . . . , tp−1)) sinp−2 t1 . . . sin tp−2dt1, . . . , dtp−1

where σ(S) is the area measure of the unit sphere and, as in (1.9), where V =
(0, π)p−2 × (0, 2π) and for (t1, . . . , tn−1) ∈ V , ϕR(t1, . . . , tp−1) = (θ1, . . . , θp)

with

θ1 = R sin t1 sin t2 . . . sin tp−2 sin tp−1

θ2 = R sin t1 sin t2 . . . sin tp−2 cos tp−1

θ3 = R sin t1 sin t2 . . . cos tp−2

...

θp−1 = R sin t1 cos t2

θp = R cos t1.

Setting h(θ) = exp(xTθ) and choosing the angle between x and θ ∈ SR as the first
angle t1 gives

∫
SR

exp(xTθ)dUR(θ) = K

σ(S)

∫ π

0
exp(‖x‖R cos t1) sinp−2 t1dt1

where

K =
∫

V T
sinp−3 t2 . . . sin tp−2dt2, . . . , dtp−1

with V T = (0, π)p−3 × (0, 2π).
Therefore, according to (7.7), the marginal in (7.4) is proportional to

mR(‖x‖) = exp

(
−1

2
‖x‖2

)
exp

(
−1

2
R2

)
I(p−2)/2(‖x‖R)

(‖x‖R)(p−2)/2
, (7.9)
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the proportionality constant being independent of R. Then the Bayes estimator
δR(X) can be obtained thanks to (1.20), that is, for any x ∈ R

p,

δR(x) = x + ∇ log m(x).

As only the quantities depending on x matter, we have using (7.9), for any x ∈ R
p,

δR(x) = x + ∇ log mR(‖x‖)

= −p − 2

2

∇(‖x‖R)

‖x‖R + ∇I(p−2)/2(‖x‖R)

I(p−2)/2(‖x‖R)

= −p − 2

2

x

‖x‖2
+

x
‖x‖

[
p−2
2‖x‖I(p−2)/2(‖x‖R) + RIp/2(‖x‖R)

]

I(p−2)/2(‖x‖R)

= RIp/2(‖x‖R)

I(p−2)/2(‖x‖R)

x

‖x‖ , (7.10)

where (7.8) has been used for the second to last equality.
Thus, according to (7.10), the Bayes estimator is expressed through a ratio of

modified Bessel functions, that is, denoting by ρν(t) = Iν+1/Iν with t > 0 and
ν > −1/2,

δR(x) = R

‖x‖ρp/2−1(R‖x‖)x. (7.11)

Before proceeding, we give two results from Marchand and Perron (2001).

(i) For sufficiently small R, say R ≤ c1(p), all Bayes estimators δπ with respect
to an orthogonally invariant prior π (supported on BR) dominate δMLE(X);

(ii) The Bayes estimator δR(X) with respect to the uniform prior on the sphere SR

dominates δMLE(X) whenever R ≤ √
p.

Note that Marchand and Perron (2002) extend the result in (ii) showing that
domination of δR(X) over δMLE(X) subsists for some m0(p) such that m0(p) ≥√

p and for R ≤ m0(p).
Various other dominance results, such as those pertaining to a fully uniform prior

on BR and other absolutely continuous priors are also available from Marchand
and Perron (2001), but we will focus here on results (i) and (ii) above, following
Fourdrinier and Marchand (2010).

With respect to important properties of δR(X), we point out that it is the optimal
equivariant estimator for θ ∈ SR , and thus necessarily improves upon δMLE(X) on
SR . Furthermore, δR(X) also represents the Bayes estimator which expands greatest,
or shrinks the least towards the origin (i.e., ‖δπ‖ ≤ ‖δR(X)‖ for all π supported
on BR; Marchand and Perron 2001). Despite this, as expanded upon below, δR(X)
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still shrinks more than δMLE(X) whenever R ≤ √
p, but not otherwise with the

consequence of increased risk at θ = 0 and failure to dominate δMLE(X) for
large R. With the view of seeking dominance for a wider range of values of R,
for potentially modulating these above effects by introducing more (but not too
much) shrinkage, we consider the class of uniform priors supported on spheres Sα

of radius α; 0 ≤ α ≤ R; about the origin, and their corresponding Bayes estimators
δα . The choice is particularly interesting since the amount of shrinkage is calibrated
by the choice of α (as formalized below), with the two extremes δR(X) ≡ δR(X),
and δ0 ≡ 0 (e.g., prior degenerate at 0). Moreover, knowledge about dominance
conditions for the estimators δα may well lead, through further analytical risk
and unbiased estimates of risk comparisons (e.g., Marchand and Perron (2001),
Lemma 5 and the Remarks that follow), to implications relative to other Bayes
estimators such as the fully uniform on BR prior Bayes estimator.

Using Stein’s unbiased estimator of risk technique, Karlin’s sign change argu-
ments, and a conditional risk analysis, Fourdrinier and Marchand (2010) obtain,
for a fixed (R, p), necessary and sufficient conditions on α for δα to dominate
δMLE(X).

Theorem 7.2

(a) An unbiased estimator of the difference in risks

Δα(‖θ‖) = R(θ, δα) − R(θ, δMLE(X))

is given by Dα(‖X‖) = Dα,1(‖X‖) 1[0 ≤ ‖X‖ ≤ R] + Dα,2(‖X‖) 1[‖X‖ >

R] , with

Dα,1(r) = 2α2 + r2 − 2p − 2αrρp/2−1(αr) − α2ρ2
p/2−1(αr), and

Dα,2(r) = 2α2 − m2 − α2ρ2
p/2−1(αr) + 2Rr{1 − α

R
ρp/2−1(αr)} − 2(p − 1)

R

r
.

(b) For p ≥ 3, and 0 ≤ α ≤ R, Dα(r) changes signs as a function of r according to
the order: (i) (−,+) whenever α ≤ √

p, and (ii) (+,−,+) whenever α >
√

p.
(c) For p ≥ 3 and 0 ≤ α ≤ R, the estimator δα dominates δMLE(X) if and only if

(i) Δα(R) ≤ 0 whenever α ≤ √
p or

(ii) Δα(0) ≤ 0 and Δα(R) ≤ 0, whenever α >
√

p.

Proof

(a) Writing δMLE(x) = x + gMLE(x) with gMLE(x) = (R/r − 1)x 1[r>R] (with
r = ‖x‖) note that gMLE is weakly differentiable. Then we have

2divgMLE(x) + ‖gMLE(x)‖2 =
{
2(p − 1)

R

r
− 2p + (R − r)2

}
1(R,∞)(r)

and, by virtue of Stein’s identity, R(θ, δMLE) = Eθ [ηMLE(X)] with
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ηMLE(x) = p1[0,R](r) +
{
2(p − 1)

R

r
− p + (R − r)2

}
1(R,∞)(r). (7.12)

Analogously, as derived by Berry (1990), the representations of δα and d
dt

ρν(t)

given in (7.11) and Lemma A.8, along with (2.3), permit us to write R(θ, δα) =
Eθ [λα(X)] with

λα(x) = 2α2 + r2 − p − 2αrρp/2−1(αr) − α2ρ2
p/2−1(αr). (7.13)

Finally, the given expression for the unbiased estimator Dα(‖X‖) follows
directly from (7.12) and (7.13).

(b) We begin with three intermediate observations which are proven below.

(I) The sign changes of Dα,1(r) ; r ∈ [0, R]; are ordered according to one of
the five following combinations: (+), (−), (−,+), (+,−), (+,−,+) ;

(II) limr→R+{Dα(r)} = limr→R−{Dα(r)} + 2;
(III) the function Dα,2(r); r ∈ (R,∞) is either positive, or changes signs once

from − to +.

From properties (I), (II) and (III), we deduce that the sign changes of Dα(r) r ∈
(0,∞); an everywhere continuous function except for the jump discontinuity at
R; are ordered according to one of the three following combinations: (+), (−,+),

(+,−,+). Now, recall that δα is a Bayes and admissible estimator of θ under
squared error loss. Therefore, among the combinations above, (+) is not possible
since this would imply that δα is dominated by δMLE in contradiction with its
admissibility. Finally, the two remaining cases are distinguished by observing that,
Dα(0) = 2α2 − 2p ≤ 0 if and only if α ≤ √

p.
Proof of (I): Begin by making use of Lemma A.8 to differentiate Dα,1 and obtain:

r−1 D′
α,1(r) = 2−2

α

r
ρp/2−1(αr)−2α2ρ′

p/2−1(αr)−2α3ρ′
p/2−1(αr)

ρp/2−1(αr)

r
.

Since, the quantities r−1ρp/2−1(αr) and ρ′
p/2−1(αr) are positive and decreasing in

r by virtue of Lemma A.8, r−1 D′
α,1(r) is necessarily increasing in r , r ∈ [0, R].

Hence, D′
α,1(·) has, on [0, R], sign changes ordered as either: (+), (−), or (−,+).

Finally, observe as a consequence that Dα,1(·) has at most two sign changes on
[0, R], and furthermore that, among the six possible combinations, the combination
(−,+,−) is not consistent with the sign changes of D′

α,1.
Proof of (II): Follows by a direct evaluation of Dα,1(R) and Dα,2(R) which are
given in part (a) of this lemma.
Proof of (III): First, one verifies from (7.13), part (a) of Lemma A.8, and part (c)
of Lemma A.9 that limr→∞ Dα,2(r) is +∞, for α < R; and equal to p − 1 if
α = R. Moreover, part (a) also permits us to express Dα,2(r); r > R; as (1 −
α
R

ρp/2−1(αr))
∑3

i=1 Hi(α, r) with
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H1(α, r) = 2rR

⎧⎨
⎩1 − (1 − α2

R2 )R

r{1 − α
R

ρp/2−1(αr)}

⎫⎬
⎭ ,

H2(α, r) = −2(p − 1)R

r { 1 − α
R

ρp/2−1(αr) }
and

H3(α, r) = R2 + αRρp/2−1(αr).

Hence, to establish property (III), it will suffice to show that each one of the
functions Hi(α, ·), i = 1, 2, 3, is increasing on (R,∞) under the given conditions
on (p, α,R). The properties of Lemma A.8 clearly demonstrate that H3(α, ·) is
increasing, and it is the same for H2(α, ·) given also Lemmas A.8 and A.9 since

r(1 − α

R
ρp/2−1(αr)) = r(1 − ρp/2−1(αr)) + r (1 − α

R
) ρp/2−1(αr).

Finally, for the analysis of H1(α, r), r > R, begin by differentiation and a
rearrangement of terms to obtain

∂

∂r
H1(α, r) ≥ 0 ⇔ T (R) ≥ 0

where, for r > R ≥ α,

T (R) = (R − αρp/2−1(αr))2 − α2(R2 − α2)ρ′
p/2−1(αr).

But notice that T (α) = α2(1 − ρp/2−1(αr))2 ≥ 0, and

1

2

∂T (R)

∂R
= (R − αρp/2−1(αr)) − Rα2ρ′

p/2−1(αr)

≥ (α − αρp/2−1(αr)) − Rα2 1 − ρp/2−1(αr)

αr

= α(1 − ρp/2−1(αr))

(
1 − R

r

)

≥ 0,

by Lemma A.9, part (b), since r ≥ R ≥ α. The above establishes that T (R) ≥
T (α) ≥ 0 for all R ≥ α, that H1(α, r) increases in r , and completes the proof of the
Theorem.

(c) The probability distribution of ‖X‖2 is χ2
p(λ2), so that the potential sign

changes of Δα(λ) = Eλ[Dα(‖X‖)] are controlled by the variational properties
of Dα(·) in terms of sign changes (e.g., Brown et al. 1981). Therefore, in
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situation (i) with α ≤ √
p, it follows from part (b) of Lemma 7.2 that, as Δα(·)

varies on [0,∞] (or [0, R]), the number of sign changes is at most one, and that
such a change must be from − to +. Therefore, since δα is admissible; and that
the case Δα(λ) ≥ 0 for all λ ∈ [0, R] is not possible1; we must have indeed that
Δα(·) ≤ 0 on [0, R] if and only if Δα(R) ≤ 0 establishing (i). A similar line of
reasoning implies the result in (ii) as well. 
�

We refer to Fourdrinier and Marchand (2010) for other results. In particular,
large sample determinations of these conditions are provided. Both cases where
all such δα’s, or no such δα’s dominate δMLE are elicited. As a particular case,
they establish that the boundary uniform Bayes estimator δR dominates δMLE if
and only if R ≤ k(p) with limp→∞ k(p)/

√
p = √

2, improving on the previously
known sufficient condition of Marchand and Perron (2001) for which k(p) ≥ √

p.
Finally, they improve upon a universal dominance condition due to Marchand and
Perron, by establishing that all Bayes estimators δπ with π spherically symmetric
and supported on the parameter space dominate δMLE whenever R ≤ c1(p) with
limp→∞ c1(p)/

√
p = √

1/3.
See Marchand and Perron (2005) for analogous results for other spherically

symmetric distributions including multivariate t .
Other significant contributions to the study of minimax estimation of a normal

mean restricted to an interval or a ball of radius R, were given by Bickel (1981)
and Levit (1981). These contributions consisted of approximations to the minimax
risk and least favourable prior for large R under squared error loss. In particular,
Bickel showed that for p = 1, as R → ∞, the least favourable distributions
rescaled to [−1, 1] converge weakly to a distribution with density cos2(πx/2),
and that the minimax risks behave like 1 − π2/(8R2) + o(R−2). There is also a
substantial literature on efficiency comparisons of minimax procedures and affine
linear minimax estimators for various models, and restricted parameter spaces; see
Donoho et al. (1990) and Johnstone and MacGibbon (1992) and the references
therein.

Finally, we observe that the loss function plays a critical role. In the case where
p = 1 and loss is absolute error |d − θ |, δMLE(X) is admissible. See Isawa and
Moritani (1997) and Kucerovsky et al. (2009).

7.4 Normal Mean Vector Restricted to a Polyhedral Cone

In this section, we consider first the case when X ∼ Np(θ, σ 2Ip) where σ 2 is
known and θ is restricted to a polyhedral cone C and where the loss is ‖δ − θ‖2.
Later in this Section, we will consider the case where σ 2 is unknown and, in

1The risks of δα and δMLE cannot match either, since a linear combination of these two distinct
estimators would improve on δα .
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Sect.7.5, the general spherically symmetric case with a residual vector. The reader
is referred to Fourdrinier et al. (2006) for more details.

A natural estimator in this problem is δC (X) = PCX, the projection of X onto
the cone C . The estimator δC is the MLE and dominates X which is itself minimax
provided C has a nonempty interior. Our goal will be to dominate δC and therefore
also δ0(X) = X.

We refer the reader to Stoer and Witzgall (1970) and Robertson et al. (1988) for
an extended discussion of polyhedral cones. Here is a brief summary. A polyhedral
cone C is defined as the intersection of a finite number of half spaces, that is,

C = {x | aT
i x ≤ 0, i = 1, . . . , m} (7.14)

for n fixed vectors a1, . . . , am in R
p.

It is positively homogeneous, closed and convex, and, for each x ∈ R
p, there

exists a unique point PC x in C such that ‖PC x − x‖ = infy∈C ‖y − x‖.
We assume throughout that C has a nonempty interior, C o so that C may be

partitioned into Ci , i = 0, . . . , m, where C0 = C o and Ci , i = 1, . . . , m, are
the relative interiors of the proper faces of C . For each set Ci , let Di = P −1

C Ci

(the pre-image of Ci under the projection operator PC and si = dimCi). Then
Di, i = 0, . . . , m form a partition of Rp, where D0 = C0.

For each x ∈ Ci , we have PC x = Pix where Pi is the orthogonal linear
projection onto the si−dimensional subspace Li spanned by Ci . Also for each such
x, the orthogonal projection onto L⊥

i , is equal to PC ∗x where C ∗ = {y | xTy ≤ 0} is
the polar cone corresponding to C . Additionally, if x ∈ Di , then aPix + P ⊥

i x ∈ Di

for all a > 0, so Di is positively homogeneous in Pix for each fixed P ⊥
i x (see

Robertson et al. 1988, Theorem 8.2.7). Hence we may express

δC (X) =
m∑

i=0

1Di
(X)PiX. (7.15)

The problem of dominating δC is relatively simple in the case where C has the
form C = R

k+ ⊕ R
p−k where R

k+ = {(x1, . . . , xk) | xi ≥ 0, i = 1, . . . , k}. In this
case,

δC (X)i =
{

Xi if Xi ≥ 0
0 if Xi < 0 for i = 1, . . . k and δC (X)i = Xi for i = k + 1, . . . , p.

Furthermore, δC (X) is weakly differentiable and the techniques of Chap.3 (i.e.
Stein’s lemma) are available.

As a simple example, suppose C = R
p
+, i.e. all coordinates of θ are nonnegative.

Then δCi
(X) = Xi + ∂i(X) i = 1, . . . , p where

∂i(X) =
{−Xi if Xi < 0

0 if Xi ≥ 0.



7.4 Normal Mean Vector Restricted to a Polyhedral Cone 227

Also, we may rewrite (7.15) as X+ = ∑2p

i=1 1Oi
(X)PiX where O1 = R

p
+, and Oj ,

for j > 1, represent the other 2p − 1 orthants and Pi is the projection of X onto the
space generated by the face of O1 adjacent to Oi .

Then a James-Stein type shrinkage estimator that dominates X+ is given by

δ(X) =
2p∑
i=1

(
1 − ci

‖X+‖2

)
X+1Oi

(X)

where ci = (si − 2)+ and si is the number of positive coordinates in Oi . Note that
shrinkage occurs only in those orthants such that si ≥ 3.

The proof of domination follows essentially by the usual argument of Chap.3,
Sect.2.4, applied separately to each orthant since X+ and X+/‖X+‖2 are weakly
differentiable in Oi and

∇·
X

X+
‖X+‖21Oi

(X) = si − 2

‖X+‖21Oi
(X),

provided si > 2. Note also that ci may be replaced by any value between 0 and
2(si − 2)+.

Difficulties arise when the cone C is not of the form C = R
k+ ⊕ R

p−k because
the estimator PCX may not be weakly differentiable (see Appendix A.1). In this
case, a result of Sengupta and Sen (1991) can be used to give an unbiased estimator
of the risk. Here is a version of their result.

Lemma 7.1 (Sengupta and Sen 1991) Let X ∼ Np(θ, σ 2Ip) and C a positively
homogeneous set. Then for every absolutely continuous function h(·) from R+ to R

such that limy→0,∞ h(y)yk+p/2e−y/2 = 0 for all k ≥ 0 and Eθ [h2(‖X‖2)‖X‖2] <

∞ we have

Eθ [h(‖X‖2)XT(X − θ)1C (X)] = σ 2Eθ [2‖X‖2h′(‖X‖2) + ph(‖X‖2)1C (X)]
= σ 2Eθ [div(h(‖X‖2)X)1C (X)].

Note that for C = R
p, Lemma 7.1 follows from Stein’s lemma with g(X) =

h(‖X‖2)X provided E[h(‖X‖2)‖X‖2] < ∞. The possible non-weak differentia-
bility of the function h(‖X‖2)X1C (X) prevents a direct use of Stein’s lemma for
general C .

Proof of Lemma 7.1 Note first that, if, for any θ , Eθ [‖g(X)‖] < ∞, then

E0

[
g(X)eXTθ/σ 2

]
=

∞∑
k=0

E0

[
g(X)(XTθ/σ 2)k

k!
]

by the dominated convergence theorem. Without loss of generality, assume σ 2 = 1
and let
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Aθ = Eθ [h(‖X‖2)XT(X − θ)1C (X)] (7.16)

= (2π)−p/2e−‖θ‖2/2
∫
Rp

e−‖X‖2/2eXTθh(‖X‖2)(‖X‖2 − XTθ)1C (X)dx

= (2π)−p/2e−‖θ‖2/2
∞∑

k=0

E0

[
h(‖X‖2)(‖X‖2 − XTθ)

(XTθ)

k!
k

1C (X)

]

= (2π)−p/2e−‖θ‖2/2
∞∑

k=0

1

k!E0

[
h(‖X‖2)1C (X)(XTθ)k(‖X‖2 − k)

]

= (2π)−p/2e−‖θ‖2/2
∞∑

k=0

1

k!E0

[
h(‖X‖2)1C (X)

(
XTθ

‖X‖
)k

(‖X‖k+2 − k‖X‖k)

]
.

By the positive homogeneity of C , we have 1C (X) = 1C (X/‖X‖) and, by the
independence of ‖X‖ and X/‖X‖ for θ = 0, we have

Aθ = (2π)−p/2e−‖θ‖2/2
∞∑

k=0

1

k!E0

[(
XTθ

‖X‖
)k

1C

(
X

‖X‖
)]

×E0

[
h(‖X‖2)

(
‖X‖k+2 − k‖X‖k

)]
(7.17)

When θ = 0, ‖X‖2 has a central Chi-square distribution with p degrees of freedom.
Thus, with d = 1/2p/2Γ (p/2), we have

E0[h(‖X‖2)(‖X‖k+2 − k‖X‖k)] = d

∫ ∞
0

yp/2−1h(y)(y(k+2)/2 − kyk/2)e−y/2dy

= d

∫ ∞
0

y(p+k)/2h(y)e−y/2dy − dk

∫ ∞
0

y(p+k)/2−1h(y)e−y/2dy

Integrating by parts, the first integral gives

∫ ∞

0
y(p+k)/2h(y)e−y/2dy

= 2

[∫ ∞

0

p + k

2
y(p+k)/2−1h(y)e−y/2dy +

∫ ∞

0
y(p+k)/2h′(y)e−y/2dy

]

and thus combining gives
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E0[h(‖X‖2)(‖X‖k+2 − k‖X‖k)] = d

∫ ∞

0
yk/2[2yh′(y) + ph(y)]y(p−2)/2e−y/2dy

= E0[(2‖X‖2h′(‖X‖2) + ph(‖X‖2))‖X‖k].

Thus (7.17) becomes

Aθ = (2π)−p/2e−‖θ‖2/2
∞∑

k=0

1

k!E0

(
XTθ

‖X‖
)k

1C (X)

(
XTθ

‖X‖
)

×E0[(2‖X‖2h′(‖X‖2) + ph(‖X‖2))‖X‖k]

= (2π)−p/2e−‖θ‖2/2
∞∑

k=0

1

k!E0[(XTθ)k{2‖X‖2h′(‖X‖2) + ph(‖X‖2)}1C (X)]

= Eθ [{2‖X‖2h′(‖X‖2) + ph(‖X‖2)}1C (X)]

where the final identity follows by the dominated convergence theorem. 
�
General dominating estimators will be obtained by shrinking each PiX in (7.15)

on the set Di . Recall that each Di has the property that, if x ∈ Di , then aPix +
P ⊥

i x ∈ Di for all a > 0. The next result extends Lemma 7.1 to apply to projections
Pi onto sets which have this conditional homogeneity property.

Lemma 7.2 Let X ∼ Np(θ, σ 2Ip) and P be a linear orthogonal projection of rank
s. Further, let D be a set such that, if x = Px + P ⊥x ∈ D, then aPx + P ⊥x ∈ D

for all a > 0. Then, for any absolutely continuous function h(·) on R+ into R such
that limy→0,∞ h(y)y(j+s)/2e−y/2 = 0 for all j ≥ 0, we have

Eθ [(X − θ)TPXh(‖PX‖2)1D(X)]
= σ 2Eθ [{2‖PX‖2h′(‖PX‖2) + sh(‖PX‖2)}1D(X)].

Proof By assumption (Y1, Y2) = (PX,P ⊥X) ∼ (Np(η1, σ
2P),Np(η2, σ

2P ⊥))

where (P θ, P ⊥θ) = (η1, η2). Also

A(θ) = Eθ [(X − θ)TPXh(‖PX‖2)1D(X)]
= Eθ [(PX − Pθ)TPXh(‖PX‖2)1D(X)]
= Eη1η2 [(Y1 − η1)

TY1h(‖Y1‖2)1D′(Y1, Y2)]

where

D′ = {(Y1, Y2)|(Y1, Y2) = (PX,P ⊥X) ∈ D}.

On conditioning on Y2 (which is independent of Y1), and applying Lemma 7.1 to
Y1, we have
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A(θ) = Eη2 [Eη1 [(Y1 − η1)
TY1h(‖Y1‖2)1D′(Y1, Y2)|Y2]]

= σ 2Eη2 [Eη1 [{2‖Y1‖2h′(‖Y1‖2) + sh(‖Y1‖2)}1D′(Y1,Y2)|Y2]]

= σ 2E[{2‖PX‖2h′(‖PX‖2) + sh(‖PX‖2)}1D(X)].


�
Now we use Lemma 7.2 to obtain the main domination result of this section.

Theorem 7.3 Let X ∼ Np(θ, σ 2Ip) where σ 2 is known and θ is restricted to lie in
the polyhedral cone C , (7.14), with nonempty interior. Then, under loss L(θ, d) =
‖d − θ‖2/σ 2, the estimator

δ(X) =
m∑

i=0

(
1 − σ 2 ri(‖PiX‖2)(si − 2)+

‖PiX‖2

)
PiX1Di

(X) (7.18)

dominates the rule δC (X) given by (7.15) provided 0 < ri(t) < 2, ri(·) is absolutely
continuous, and r ′

i (t) ≥ 0, for each i = 0, 1, . . . , m.

Proof The difference in risk between δ and δC can be expressed as

Δ(θ) = R(θ, δ) − R(θ, δC )

=
m∑

i=0

Eθ

[
σ 2 r2

i (‖PiX‖2)((si − 2)+)2

‖PiX‖2 (7.19)

−2
ri(‖PiX‖2)(si − 2)+

‖PiX‖2 (PiX)T(PiX − θ)

]
1Di

(X).

Now apply Lemma 7.2 (noting that (PiX)T(PiX − θ) = (PiX)T(X − θ)) to each
summand in the second term to get

Δ(θ) = σ 2
m∑

i=0

Eθ

[
r2
i (‖PiX‖2)((si − 2)+)2

‖PiX‖2

− 2
ri(‖PiX‖2)(si − 2)+

‖PiX‖2
− 4r ′

i (‖PiX‖2)(si − 2)+
]
1Di

(X)

≤ 0| (7.20)

since each r ′
i (·) ≥ 0 and 0 < ri(·) < 2. 
�

As noted in Chap.3, the case of an unknown σ 2 is easily handled provided an
independent statistic S ∼ σ 2χ2

k is available. For completeness we give the result for
this case in the following theorem.
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Theorem 7.4 Suppose X ∼ Np(θ, σ 2Ip) and S ∼ σ 2χ2
k with X independent of

S. Let the loss be ‖d − θ‖2/σ 2. Suppose that θ is restricted to the polyhedral cone
C , (7.14), with non-empty interior. Then the estimator

δ(X, S) =
m∑

i=0

(
1 −

(
S

k + 2

)
ri(‖PiX‖2)(si − 2)+

‖PiX‖2

)
PiX1Di

(X) (7.21)

dominates δC (X) given in (7.15) provided 0 < ri(·) < 2 and ri(·) is absolutely
continuous with r ′

i (·) ≥ 0, for i = 0, . . . , m.

Many of the classical problems in ordered inference are examples of restrictions
to polyhedral cones. Here are a few examples.

Example 7.1 (Orthant Restrictions) Estimation problems where k of the coordi-
nate means are restricted to be greater than (or less than) a given set constants, can
be transformed easily into the case where these same components are restricted to
be positive. This is essentially the case for C = R

k+ ⊕ R
p−k mentioned earlier.

Example 7.2 (Ordered Means) The restrictions that θ1 ≤ θ2 ≤ . . . ≤ θp (or that a
subset are so ordered) is a common example in the literature and corresponds to the
finite set of half space restrictions θ2 ≥ θ1, θ3 ≥ θ2, . . . , θp ≥ θp−1 .

Example 7.3 (Umbrella Ordering) The ordering θ1 ≤ θ2 ≤ . . . ≤ θk ≥ θk+1 ≥
θk+2, . . . , θp−1 ≥ θp corresponds to the polyhedral cone generated by the half space
restrictions

θ2 − θ1 ≥ 0, θ3 − θ2 ≥ 0, . . . , θk − θk−1 ≥ 0, θk+1 − θk ≤ 0, . . . , θp − θp ≤ 0.

In some examples, such as Example 7.1, it is relatively easy to specify Pi and Di . In
others, such as Example 7.2 and 7.3 it is more complicated. The reader is referred
to Robertson et al. (1988) and references therein for further discussion of this issue.

7.5 Spherically Symmetric Distribution with a Mean Vector
Restricted to a Polyhedral Cone

This Section is devoted to proving the extension of Theorem 7.4 to the case of a
spherically symmetric distribution when a residual vector is present. Specifically we
assume that (X,U) ∼ SS(θ, 0) where dim X = dim θ = p, dim U = dim 0 = k

and where θ is restricted to lie in a polyhedral cone, C , with non-empty interior.
Recall that the shrinkage functions in the estimator (7.21) are not necessarily weakly
differentiable because of the presence of the indicator functions IDi

(X). Hence the
methods of Chap.4 are not immediately applicable.
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The following theorem develops the required tools for the desired extension of
Theorem 7.4. It also allows for an alternative approach to the results in Sect.6.1 as
well.

Theorem 7.5 (Fourdrinier et al. 2006) Let (X,U) ∼ Np+k((θ, 0), σ 2Ip+k) and
assume f : Rp → R and g : Rp → R

p are such that

Eθ,0[(X − θ)Tg(X)] = σ 2Eθ,0[f (X)]

where both expected values exist for all σ 2 > 0. Then, if (X,U) ∼ SSp+k(θ, 0), we
have

Eθ,0[‖U‖2(X − θ)Tg(X)] = 1

k + 2
Eθ,0[‖U‖4f (X)]

provided either expected value exists.

Proof As (X,U) is normal, X ∼ Np(θ, σ 2I ) and ‖U‖2 ∼ σ 2χ2
k are independent,

using E[‖U‖2] = kσ 2 and E[‖U‖4] = σ 4k(k + 2), we have, for each fixed σ 2,

Eθ,0[‖U‖2(X − θ)Tg(X)] = kσ 2Eθ,0[(X − θ)Tg(X)]
= kσ 4Eθ,0[f (X)]

= 1

k + 2
Eθ,0[‖U‖4f (X)] (7.22)

For each θ (considered fixed), ‖X − θ‖2 +‖U‖2 is a complete sufficient statistic for
(X,U) ∼ Np+k((θ, 0), σ 2I ). Now noting

Eσ 2 [E[‖U‖2(X − θ)Tg(X) | ‖X − θ‖2 + ‖U‖2]] = Eθ,0[‖U‖2(X − θ)Tg(X)]

and

1

k + 2
Eσ 2 [‖U‖4f (X)] = 1

k + 2
Eσ 2 [E[‖U‖4f (X) | ‖X − θ‖2 + ‖U‖2]]

it follows from (7.22) and the completeness of ‖X − θ‖2 + ‖U‖2 that

E[‖U‖2(X − θ)Tg(X) | ‖X − θ‖2 + ‖U‖2]
= 1

k + 2
E[‖U‖2(X − θ)Tg(X) | ‖X − θ‖2 + ‖U‖2] (7.23)

almost everywhere. We show at the end of this section that the functions in (7.23) are
both continuous in ‖X − θ‖2 + ‖U‖2, and hence, they are in fact equal everywhere.

Since the conditional distribution of (X,U) conditional on ‖X − θ‖2 + ‖U‖2 =
R2 is uniform on the sphere centered at (θ, 0) for all spherically symmetric
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distributions (including the normal), the result follows on integration of (7.23) with
respect to the radial distribution of (X,U). 
�

The main result of this section results from an application of Theorem 7.3 to the
development of the proof of Theorem 7.4.

Theorem 7.6 Let (X,U) ∼ SSp+k(θ, 0) and let θ be restricted to the polyhedral
cone C , (7.14), with nonempty interior. Then, under loss L(θ, d) = ‖d − θ‖2, the
estimator

δ(X,U) =
m∑

i=0

(
1 − ‖U‖2

k + 2

(si − 2)+ri(‖PiX‖2)

‖PiX‖2

)
PiX1Di

(X) (7.24)

dominates PC X = δC (X), given in (7.15) provided, 0 < ri(·) < 2, ri(·) is
absolutely continuous and r ′

i (·) ≥ 0 for i = 0, . . . , m.

Proof The key observation is that, in passing from (7.19) to (7.20) in the proof of
Theorem 7.3, we used Lemma 7.2 and the fact that PiX

T(PXi −θ) = PiX
T(X−θ)

to establish that

E

[
ri(‖PiX‖2)(si − 2)+

‖PiX‖2 (PiX)T(PiX − θ)1Di
(X)

]

= σ 2E

[
ri(‖PiX‖2)((si − 2)+)2

‖PiX‖2 + 2r ′
i (‖PiX‖2)(si − 2)+1Di

(X)

]
.

Hence, by Theorem 7.5,

E

[
‖U‖2

k + 2

ri (‖PiX‖2)(si − 2)+
‖PiX‖2

(PiX)T(PiX − θ)1Di
(X)

]

= σ 2E

[
‖U‖4

(k + 2)2

{
ri (‖PiX‖2)((si − 2)+)2

‖PiX‖2
+ 2r ′

i (‖PiX‖2)(si − 2)+
}
1Di

(X)

]
.

It follows then, as in the proof of Theorem 7.3,

R(θ, δ(X,U)) − R(θ, δC ) =
m∑

i=0

Eθ

[
‖U‖4

(k + 2)2

{
r2
i (‖PiX‖2)((si − 2)+)2

‖PiX‖2

−
{(

2
ri(‖PiX‖2)(si − 2)+

‖PiX‖2 + 4r ′
i (‖PiX‖2)

)
(si − 2)+

}
1Di

(X)

]

≤ 0. (7.25)


�
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Theorem 7.5 is an example of a meta result which follows from Theorem 7.6,
and states roughly that, if one can find an estimator X + σ 2g(X) that dominates
X for each σ 2 using a Stein-type differential equality in the normal case, then
X + ‖U‖2/(k + 2)g(X) will dominate X in the general spherically symmetric case,
(X,U) ∼ SS1+k(θ, U), under L(θ, δ) = ‖δ − θ‖2. The “proof” goes as follows.

Suppose one can show also that E[(X − θ)Tg(X)] = σ 2E[f (X)] in the normal
case, and also that ‖g(x)‖2 + 2f (x) ≤ 0, for any x ∈ R

p. Then, in the normal case,

R(θ,X − σ 2g(X)) − R(θ,X) = σ 4E[‖g(X)‖2 + 2f (X)] ≤ 0.

Using Theorem 7.5 (and assuming finiteness of expectations), it follows in the
general case that

R

(
θ,X + ‖U‖2

k + 2
g(X)

)
− R(θ,X) = E

[ ‖U‖4

(k + 2)2
{‖g(X)‖2 + 2f (X)}

]
≤ 0.

In this Section, application of the above meta-result had the additional complica-
tion of a separate application (to PiX instead of X) on each Di but the basic idea is
the same. The results of Chap.6 which rely on extending a version of Stein’s lemma
to the general spherically symmetric case can be proved in the same way.

We close this Section with a result that implies the claimed continuity of the
conditional expectations in (7.23).

Lemma 7.3 Let (X,U) ∼ SSp+k(θ, 0) and let α ∈ N . Assume ϕ(·) is such that for
any R > 0, the conditional expectation

f (R) = E(θ,0)[‖U‖αϕ(X) | ‖X − θ‖2 + ‖U‖2 = R2]

exists. Then the function f is continuous on R+.

Proof Assume without loss of generality that θ = 0 and ϕ(·) ≥ 0. Since the
conditional distribution or (X,U) conditional on ‖X‖2 +‖U‖2 = R2 is the uniform
distribution UR on the sphere SR = {y ∈ Rp+k/‖y‖ = R} centered at 0 with radius
R, we have

f (R) =
∫

SR

‖u‖αϕ(x)dUR(x, u).

Since ‖u‖2 = R2 − ‖x‖2 for any (x, u) ∈ SR and X has distribution concentrated
on the ball Br = {x ∈ R

p|‖x‖ ≤ R} in R
p with density proportional to

R2−(p+k)((R2 − ‖x‖2)k/2−1) we have that Rp+k−2f (R) is proportional to

g(R) =
∫

BR

(R2 − ‖x‖2)(k+α)/2−1ϕ(x)dx.
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=
∫ R

0

∫
Sr

(R2 − ‖x‖2)(k+α)/2−1ϕ(x)dσr(x)dr

=
∫ R

0
(R2 − r2)(k+α)/2−1H(r)dr

where

H(r) =
∫

Sr

ϕ(x)dσr(x)

and where σr is the area measure on the sphere Sr . Since H(·) and (k + α)/2 − 1
are non-negative, the family of integrable functions r → K(R, r) = (R2 −
r2)(k+α)/2−1H(r)I[0,R](r), indexed by R, is nondecreasing in R and bounded above
for R < R0 by the integrable function K(R0, r). Then the continuity of g(R), and
hence of f (R), is guaranteed by the dominated convergence theorem. 
�

Note that the continuity of (7.23) is not necessary for the application to (X,U) ∼
SSp+k(θ, 0) if (X,U) has a density, since then equality a.e. suffices.
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