
Chapter 6
Estimation of a Mean Vector for
Spherically Symmetric Distributions II:
With a Residual

6.1 The General Linear Model Case with Residual Vector

In this chapter, we consider the canonical form of the general linear model
introduced in Sect. 4.5 when a residual vector U is available. Recall that (X,U)

is a random vector around (θ, 0) (such that dim X = dim θ = p and dim U = dim
0 = k) with a spherically symmetric distribution, that is, (X,U) ∼ SSp+k(θ, 0).
Estimation of θ under quadratic loss ‖δ−θ‖2 parallels the normal situation presented
in Sects. 2.3 and 2.4 where X ∼ Np(θ, σ 2Ip) (with σ 2 known) and the estimators
of θ are of the form δ(X) = X + σ 2g(X). In the case where σ 2 is unknown (see
Sect. 2.4.3), the corresponding estimators are

δ(X) = X + S

k + 2
g(X)

where S ∼ σ 2 χ2
k independent of X. Note that, when (XT, U T)T ∼

N ((θT, 0T)T, σ 2 Ip+k), S = ‖U‖2. This most basic case of the general linear
model suggests considering improved shrinkage estimators of the form

δ(X) = X + ‖U‖2

k + 2
g(X) (6.1)

for some function g from R
p into R

p. In this section,

σ 2 = Var(Xi) = Var(Ui) = 1

p
Eθ [‖X − θ‖2] = 1

k
Eθ [‖U‖2] = 1

p + k
E[R2],

where R = (‖X − θ‖2 +‖U‖2)1/2, can be considered as known or unknown. When
σ 2 is unknown, ‖U‖2/k is an unbiased estimator of σ 2. Also, when σ 2 is unknown,
it is perhaps preferable to use the invariant loss ‖δ − θ‖2/σ 2 since the estimator X
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has constant risk p and is minimax for this loss provided the variance of X is finite,
while the minimax risk for the loss ‖δ − θ‖2 is infinite. Note that domination of an
estimator under one of these losses implies domination under the other.

When σ 2 is known, estimators of the form δ(X) = X + σ 2g(X) can be used
and we will contrast these estimators with estimators (6.1) in the next section. One
advantage of the estimators in (6.1) is that they share a striking robustness property,
namely that, if ‖g(X)‖2 + 2 div g(X) ≤ 0, then X + g(X) ‖U‖2/(k + 2) dominates
X for any spherically symmetric distribution of (X,U). In particular, the form of
the density may not be known and indeed there is no need that a density exists. The
proof of this robustness property is given below and follows closely that of Cellier
and Fourdrinier (1995).

Assuming the risk of X is finite (i.e., Eθ [‖X − θ‖2] = E0[‖X‖2] < ∞) the risk
of δ(X) is finite if and only if Eθ [‖U‖4‖g(X)‖2] < ∞ and the difference in risk
between δ(X) and X is

Δ(θ) = R(θ, δ) − R(θ,X)

= Eθ

[
2 (X − θ)Tg(X)

‖U‖2

k + 2
+ ‖g(X)‖2 ‖U‖4

(k + 2)2

]
. (6.2)

The cross product term, that is, the first term in the right-hand side of (6.2) will
be analyzed as in the normal case. The following is the key adaptation of Stein’s
identity.

Lemma 6.1 (Stein type lemma for the general linear model: Cellier and Four-
drinier 1995) Assume that (X,U) ∼ SS(θ, 0) where dim X = dim θ = p and
dim U = dim 0 = k. Then, for any weakly differentiable function g from R

p into
R

p such that

Eθ

[|(X − θ)Tg(X)|] < ∞,

we have

Eθ

[
(X − θ)Tg(X) ‖U‖2] = Eθ

[
div g(X)

‖U‖4

k + 2

]
. (6.3)

Proof We will show that, conditionally on the radius R = ‖X − θ‖2 + ‖U‖2, (6.3)
holds. First, conditionally on R, the left-hand side of (6.3) is expressed as (see
Corollary 4.2)

ER,θ

[
(X − θ)Tg(X) ‖U‖2]=

∫
SR,θ

(x − θ)Tg(x) ‖u‖2 dUR,θ (x, u)

=
∫

SR,θ

(x − θ)Tg(x) (R2 − ‖x − θ‖2) dUR,θ (x, u)

=
∫

BR,θ

(x − θ)Tg(x)C
p,k
R (R2 − ‖x − θ‖2)k/2 dx (6.4)
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since, according to (4.4), X given R has density

ψR,θ (x) = C
p,k
R (R2 − ‖x − θ‖2)k/2−1 11BR,θ

(x)

with

C
p,k
R = Γ ((p + k)/2)

Γ (k/2)

R2−(p+k)

πp/2 .

Now, note that

(R2 − ‖x − θ‖2)k/2 (x − θ) = ∇γ (x)

where

γ (x) = −(R2 − ‖x − θ‖2)k/2+1

k + 2
.

Hence, using the classical identity

(∇γ (x)
)T

g(x) = div
(
γ (x) g(x)

)− γ (x) div g(x) ,

it follows from (6.4) that

ER,θ

[
(X − θ)Tg(X) ‖U‖2] = A + B (6.5)

where

A = C
p,k
R

∫
BR,θ

div
(
γ (x) g(x)

)
dx (6.6)

and

B = C
p,k
R

∫
BR,θ

−γ (x) div g(x)dx. (6.7)

Applying Stokes’ theorem to the integral in (6.6) gives

A = C
S

p,k
R

∫
SR,θ

γ (x) g(x)
x − θ

‖x − θ‖ dσR,θ (x) = 0 (6.8)

since, for any x ∈ SR,θ , γ (x) = 0. The B term in (6.7) can be expressed as

B =
∫

BR,θ

div g(x)
(R2 − ‖x − θ‖2)2

k + 2
ψR,θ (x) dx = ER,θ

[
div g(X)

‖U‖4

k + 2

]
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and, finally, the lemma follows from (6.4), (6.5) and (6.8). �	
As a consequence of Lemma 6.1, we can derive a sufficient condition of

domination of δ(X) = X + ‖U‖2/(k + 2)g(X) over the usual estimate X.

Theorem 6.1 Let (X,U) ∼ SSp+k(θ, 0) and the loss be given by ‖δ−θ‖2. Assume
that Eθ [‖X‖2] < ∞ and Eθ [‖U‖4 ‖g(X)‖2] < ∞. Then an unbiased estimator of
the risk difference Δ(θ) in (6.2) between δ(X) = X + g(X) ‖U‖2/(k + 2) and X is

[2 div g(X) + ‖g(X)‖2] ‖U‖4

(k + 2)2
. (6.9)

A sufficient condition for domination of δ(X) over X is that, for any x ∈ R
p,

2 div g(x) + ‖g(x)‖2 ≤ 0 (6.10)

with strict inequality on a set a positive measure on R
p.

Proof The proof of (6.9) follows immediately from (6.3) and (6.2). The domination
condition (6.10) is a direct consequence of (6.9). �	
Remark 6.1 The addition of the residual term U in the estimate yields an interesting
and strong robustness property. Note that the hypotheses in Theorem (6.1) are
independent of the radial distribution and are consequently valid for any spherically
symmetric distribution. This is in contrast with the results of Sect. 6.2 which require
conditions on the radial distribution.

Differential expressions that lead to risk domination results, such as in The-
orem 6.1, have been extended to spherical and ellipitical location models by
several authors (see, for example, Cellier et al. 1989, Chou and Strawderman 1990,
Brandwein and Strawderman 1980, Brandwein and Strawderman 1991a, Cellier and
Fourdrinier 1995, Fourdrinier et al. 2003, Fourdrinier et al. 2006, Kubokawa 1991,
Maruyama 2003a, and Fourdrinier and Strawderman 2008a,b). A notable aspect of
many of the papers, in the presence of a residual vector U , is the development of
robust estimators in the sense that they are minimax for a wide class of spherically
symmetric distributions (see particularly, for example, Cellier et al. 1989, Cellier
and Fourdrinier 1995, and Fourdrinier et al. 2006).

The improved estimators in Sect. 5.3,without residual vector, require two critical
hypotheses. The first is the superharmonicity condition on an auxillary function
h such that ‖g‖2/2 ≤ −h ≤ −div g. Secondly these estimators require the
assumption that the function R → R2ER,θ [h] is nonincreasing. In contrast, the
conditions for improvement of the improved estimator with the residual term
included share the same set of hypotheses as the general Stein type estimators in
the normal case (see Sect. 2.3). As a result, estimators which dominate X (through
the differential inequality) in the normal case dominate X simultaneously for all
spherically symmetric distributions (subject to the finiteness of the risk). At this
point, we will focus on the so-called robust James-Stein estimators rather than
discussing general examples as in Sect. 2.3.



6.1 The General Linear Model Case with Residual Vector 183

Consider

δa
RJS(X) =

(
1 − a

‖X‖2

‖U‖2

k + 2

)
X

where a is a positive constant which is of the form (6.1) with g(X) = −aX/‖X‖2.
Note this is the shrinkage in the basic James-Stein estimator in (2.13) with σ 2 = 1.
Using the divergence calculation of this g(X) from (2.16), the unbiased estimator
of the risk difference implied by (6.9) is,

(
a2 − 2 a(p − 2)

) 1

‖X‖2

‖U‖4

(k + 2)2 ,

and so it follows that domination occurs for 0 < a < 2(p − 2), and the optimal
constant a (i.e., with minimum risk) is a = p − 2. Note that this optimal a

is independent of the sampling distribution and yields improvement on X for
any spherically symmetric distribution. Hence the best a also has a nice robust
optimality property.

An alternative approach to the results of this section can be based on the
approach used in Lemma 5.2 where a density is assumed, that is, (X,U) ∼
f (‖x − θ‖2 + ‖U‖2). This second approach has been used by many authors in this
and more general settings. For spherically symmetric distributions with a density
it is essentially related to the above method. A statement of this connection is
given at the end of this section. The proof is provided in the Appendix. Thus a
straightforward adaptation of the proof of Lemma 5.2 leads to

Eθ

[
(X − θ)Tg(X) ‖U‖2] = Eθ

[
F(‖X − θ‖2 + ‖U‖2)

f (‖X − θ‖2 + ‖U‖2)
divXg(X)

‖U‖2

k + 2

]

= C E∗
θ

[
divXg(X)

‖U‖2

k + 2

]
(6.11)

where C and E∗
θ are defined in Lemma 5.2. Similarly

Eθ

[
‖g(X)‖2 ‖U‖4

(k + 2)2

]
= Eθ

[
U T

(
U

‖U‖2

(k + 2)2
‖g(X)‖2

)]

= Eθ

[
F(‖X − θ‖2 + ‖U‖2)

f (‖X − θ‖2 + ‖U‖2)
divU

(
U‖U‖2) ‖g(X)‖2

]

= Eθ

[
F(‖X − θ‖2 + ‖U‖2)

f (‖X − θ‖2 + ‖U‖2)

‖U‖2

k + 2
‖g(X)‖2

]

= C E∗
θ

[‖U‖2

k + 2
‖g(X)‖2

]
. (6.12)
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Hence the difference in risk between X+g(X) ‖U‖2/(k+2) and X can be written as

C E∗
θ

[(
2 div g(X) + ‖g(X)‖2) ‖U‖2

k + 2

]
. (6.13)

Note that the normalizing constant

C =
∫
Rp×Rk

F (‖x − θ‖2 + ‖u‖2) dx du . (6.14)

can be expressed, through a straightforward application of the Fubini theorem, as

C = 1

p + k

∫ ∞

0
r2 h(r) dr (6.15)

where h(r) is the radial density. Thus C is the common variance of each coordinate
of (X,U). Therefore it follows from (6.13) that condition (6.10) is sufficient for the
minimaxity of the estimator X + g(X) ‖U‖2/(k + 2), provided we treat the density
f (·) as fixed and known, which implies implicitly that σ 2 is known. Alternatively, if

(X,U) ∼ 1

σp+k
f

(‖x − θ‖2 + ‖u‖2

σ 2

)

where σ 2 is unknown, and the loss is ‖δ − θ‖2/σ 2, then X is minimax simul-
taneously for all such families where Eθ [‖X‖2] < ∞. Hence (6.10) implies
simultaneous minimaxity for the entire class as well.

6.1.1 More General Estimators

In this section, we give results for a more general class of estimators of θ of the form
δ = δ(X, ‖U‖2). The loss will be invariant squared error loss, i.e.

η ‖δ − θ‖2 , (6.16)

where η = 1/σ 2, so that the risk is

R(θ, η, δ) = Eθ,η

[
η ‖δ(X,U) − θ‖2

]
, (6.17)

where Eθ,η denotes the expectation with respect to the density (6.33) with η =
1/σ 2. For the rest of this section, we assume

Eθ,η

[
‖X − θ‖2

]
< ∞, (6.18)
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which guarantees that the standard estimator X has finite risk and is minimax. As
δ(X, ‖U‖2) can be written as δ(X, ‖U‖2) = X + g(X, ‖U‖2), the finiteness of its
risk is guaranteed by

Eθ,η

[
‖g(X, ‖U‖2)‖2

]
< ∞ . (6.19)

A version of the following lemma can be found in Fourdrinier et al. (2003). Its
proof follows closely the pattern of (6.11) and (6.12).

Lemma 6.2 Assume that the function g(x, ‖u‖2) is weakly differentiable from
R

p+k into R
p. Then

η Eθ,η

[
(X − θ)Tg(X, ‖U‖2)

]
= C E∗

θ,η

[
divXg(X, ‖U‖2)

]
, (6.20)

where E∗
θ,η is the expectation with respect to the density

ηp+k

C
F
(
η
(
‖x − θ‖2 + ‖u‖2

))
, (6.21)

provided either of the above expectations exists.
Similarly, for any weakly differentiable function h from R

p+k into R
p,

ηEθ,η

[
U Th(X,U)

] = C E∗
θ,η [divUh(X,U)] , (6.22)

provided either of these expectations exists.

Thanks to Lemma 6.2, an expression of the risk difference between δ(X, ‖U‖2)

and X is given in the following proposition.

Proposition 6.1 Assume that Eθ,η

[‖g(X,U)‖2
]

< ∞. The risk difference between
δ(X, ‖U‖2) = X + g(X, ‖U‖2) and X equals

R(θ, η, δ) − R(θ, η,X) = C E∗
θ,η

[
Og(X, ‖U‖2)

]
,

where

Og(X, ‖U‖2)

= 2 divXg(X, ‖U‖2) + k − 2

‖U‖2 ‖g(X, ‖U‖2)‖2 + 2
∂

∂S
||g(X, S)||2

∣∣∣∣
S=‖U‖2

.

(6.23)
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Proof A straightforward calculation of the risk difference gives

�(θ, η) = η Eθ,η

[
2 (X − θ)Tg(X, ‖U‖2) + ‖g(X, ‖U‖2)‖2

]

= η Eθ,η

[
2 (X − θ)Tg(X, ‖U‖2) + U T U

‖U‖2 ‖g(X, ‖U‖2)‖2
]

.

Using Lemma 6.2 on each term in the brackets, we obtain

�(θ, η) = C E∗
θ,η

[
2 divXg(X, ‖U‖2) + div

(
U

‖U‖2
‖g(X, ‖U‖2)‖2

)]

= C E∗
θ,η

[
2 divXg(X, ‖U‖2) + k − 2

‖U‖2 ‖g(X, ‖U‖2)‖2

+ U T

‖U‖2
∇U‖g(X, ‖U‖2)‖2

]

by the divergence formula. Finally expressing the gradient gives

�(θ, η) = C E∗
θ,η

[
2 divXg(X, ‖U‖2) + div

(
U

‖U‖2 ‖g(X, ‖U‖2)‖2
)]

= C E∗
θ,η

[
2 divXg(X, ‖U‖2) + k − 2

‖U‖2 ‖g(X, ‖U‖2)‖2

+2
∂

∂S
||g(X, S)||2

∣∣∣∣
S=‖U‖2

]
.

�	
This result will be used in Sect. 6.3 to develop generalized Bayes minimax

estimators. An easy corollary applicable to Baranchik type estimators of the form

(
1 − a r

(‖X‖2

S

)
S

‖X‖2

)
X (6.24)

is the following. The proof is left to the reader.

Corollary 6.1 The estimator (6.24) dominates X simultaneously for all spherically
symmetric distributions SSp+k(θ, 0) for which E∗

θ,η[‖X‖2] < ∞ under loss (6.16)
provided

(a) 0 < a ≤ 2 (p − 2),
(b) 0 ≤ r(·) ≤ 1, and
(c) r(·) is nondecreasing.
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6.1.2 A Link Between Expectations with Respect to E∗
θ,σ 2

and Eθ,σ 2

We mentioned above that the two approaches to the results of this section are
connected. Here is a lemma, whose proof is postponed to Appendix A.6, which
makes explicit this connection thanks to a link between expectations with respect to
E∗

θ,σ 2 and Eθ,σ 2 .

Lemma 6.3 (Fourdrinier and Strawderman 2015) For any function γ defined
on R

p × R+ and for any θ ∈ R
p, we have

σ 2 C E∗
θ,σ 2

[
γ
(
X, ‖U‖2

)]
= Eθ,σ 2

[
1

2

1

‖U‖k−2

∫ ‖U‖2

0
γ (X, s) sk/2−1 ds

]
,

(6.25)

provided these expectations exist, where C is defined in (6.14).

6.2 A Paradox Concerning Shrinkage Estimators

In this section, we contrast the result of the previous section and Sect. 5.2. We
continue our study of the problem of estimating the mean vector θ of a spherically
symmetric distribution when the scale σ 2 is known but when a residual vector U is
available.

In Sect. 5.2, we studied the important class of improved estimators, the James-
Stein estimators δa

JS(X) = (
1 − a σ 2/‖X‖2

)
X. The previous section provided

an alternative class of robust James-Stein estimators, that is, δa
RJS(X,U) = (

1 −
a/‖X‖2 ‖U‖2/(k + 2)

)
X. In this section, we show that there often exist situations

where δ
p−2
RJS(X,U) dominates δa

JS(X) simultaneously for all a and hence that the
use of the residual vector U to estimate σ 2 may be superior to using its known
value. This phenomenon seems paradoxical in the sense that the risk behavior of
an estimator may be improved by substituting an estimate for a known quantity.
This phenomenon adds to the attractiveness of the robust James-Stein class by
demonstrating not only domination of the usual estimator X simultaneously for
all spherically symmetric distributions, but also domination of the usual James-
Stein estimators in many cases. A similar paradox was found in the context of
goodness of fit testing by Wells (1990). The results of this section are Fourdrinier
and Strawderman (1996) and Fourdrinier et al. (2004).

Note that the paradox cannot occur in the case of a normal distribution since by
the Rao-Blackwell theorem, when σ 2 is known in the normal case, X is a complete
sufficient statistic so that the conditional expectation of δa

RJS(X,U) given X reduces

to δ
ak/(k+2)
JS (X) which dominates δa

RJS(X,U). Note also that, if the paradox holds
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for one value of σ 2 for a particular family, it holds for all values of σ 2 by the scale
equivariance of δa

RJS(X,U) and, therefore, holds for any scale mixture. Hence, as
the normal distribution arises as a mixture of uniform distributions on spheres, and
also as a mixture of uniform distributions on balls, the paradox cannot occur for
these distributions as well.

For ease of presentation, it is convenient to define the general estimator δa
α(X,U)

= (1−a‖U‖2α/‖X‖2
)
X for α = 0 or 1 and to assume σ 2 = 1. Note that, for α = 0,

δa
0 = δa

JS and, for α = 1, δa
1 = δ

a/(k+2)
RJS . As in Sect. 6.1, we assume the finiteness

of the risk of X (i.e., E0[‖X‖2] < ∞) and it is clear that the finiteness of the risk of
δa
α(X,U) is guaranteed as soon as Eθ

[‖U‖2α/‖X‖2
]

< ∞. Under that condition,
the following proposition yields the risk of δa

α .

Proposition 6.2 Let the loss be ‖δ − θ‖2. The risk of δa
α equals

R(δa
α, θ) = E0[‖X‖2] + a2 Eθ

[‖U‖4α

‖X‖2

]
− 2 a

p − 2

k + 2α
Eθ

[‖U‖2(α+1)

‖X‖2

]
.

Proof The risk calculation is a straightforward extension of the one in Lemma 6.1,
with g(x, s) = sαx/‖x‖2. �	

It is easy to deduce from Lemma 6.2 that, for any θ ∈ R
p, the constant a for

which the risk of δa
α is minimum is

a(θ) = p − 2

k + 2α

Eθ

[ ‖U‖2(α+1)

‖X‖2

]
Eθ

[ ‖U‖4α

‖X‖2

] .

The corresponding risk is

R
(
δa(θ)
α , θ

) = E0
[‖X‖2]−

(
p − 2

k + 2α

)2
(
Eθ

[ ‖U‖2(α+1)

‖X‖2

])2
Eθ

[ ‖U‖4α

‖X‖2

] . (6.26)

We already noticed in Sect. 6.1 that, for α = 1, the optimal a does not depend on
θ and equals p−2

k+2 , which can also be easily seen from the above expression. For
α = 0, the optimal a depends on θ and equals

a(θ) = p − 2

k

Eθ

[ ‖U‖2

‖X‖2

]
Eθ

[ 1
‖X‖2

] . (6.27)

Then the paradox will occur if, for any a ≥ 0, R
(
δ
(p−2)/(k+2)

1 , θ
)

< R
(
δa

0 , θ
)

and will certainly occur if R
(
δ
(p−2)/(k+2)

1 , θ
)

< R
(
δ
a(θ)
0 , θ

)
with a(θ) as in (6.27).

By (6.26), this is equivalent to
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(
p − 2

k

)2
(
Eθ

[ ‖U‖2

‖X‖2

])2
Eθ

[ 1
‖X‖2

] <

(
p − 2

k + 2

)2

Eθ

[‖U‖4

‖X‖2

]
,

that is, to

(
Eθ

[ ‖U‖2

‖X‖2

])2
Eθ

[ ‖U‖4

‖X‖2

]
Eθ

[ 1
‖X‖2

] <

(
k

k + 2

)2

. (6.28)

Expression (6.28) is a general condition for the paradox to occur. Fourdrinier and
Strawderman (1996) developed a series of bounds for the quantities in the left-hand
side of (6.28). However the resulting sufficient condition was complex and could
be verified in a limited number of cases, the primary example being the Student
Student-t distribution case. Subsequently Fourdrinier et al. (2004) developed an
effective approach to deal with the expectations in (6.28) for the case of mixtures of
normals.

Assume that (X,U) has a scale mixture of normals distribution with the
representation

(X,U)| (Z = z) ∼ Np+k

(
(θ, 0), z Ip+k

)
(6.29)

where Z is a positive random variable. For model (6.29), expressions of the
expectations in (6.28) are given by the following lemma.

Lemma 6.4 Assume that (X,U) is a scale mixture of normals as in (6.29) and that
p ≥ 3. Let q > −k/2 and assume that E[Zq−1] < ∞. Then we have

Eθ

[‖U‖2q

‖X‖2

]
= 2q Γ (k/2 + q)

Γ (k/2)
E

[
Zq−1fp

(‖θ‖2

Z

)]

where fp(γ ) = E[Y−1] for a random variable Y having a noncentral chi-square
distribution with p degrees of freedom and noncentrality parameter γ .

Proof Note that X and U are independent conditional on Z and (‖U‖2/Z)| Z ∼
χ2

k (0) and (‖X‖2/Z)| Z ∼ χ2
p

(‖θ‖2/Z
)
. Hence we can write

Eθ

[‖U‖2q

‖X‖2

∣∣∣∣Z
]

= E[‖U‖2q | Z]Eθ

[
1

‖X‖2

∣∣∣∣Z
]

= Zq−1E

[(‖U‖2

Z

)q ∣∣∣∣Z
]
Eθ

[
Z

‖X‖2

∣∣∣∣Z
]

= Zq−12q Γ (k/2 + q)

Γ (k/2)
fp

(‖θ‖2

Z

)

since q > −k/2. Now use the fact that fp is bounded if p ≥ 3 and E[Zq−1] < ∞
and uncondition to complete the proof. �	
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It follows directly from Lemma 6.4 for q = 0, 1, 2 that (6.28) is equivalent to

HZ(λ) =
(
E
[
fp(λ2/Z)

])2
E
[
Zfp(λ2/Z)

]
E
[
Z−1fp(λ2/Z)

] <
k

k + 2
(6.30)

for all λ = ‖θ‖ ≥ 0.
Alternatively note that

HZ(λ) = (Eλ[W ]Eλ[W−1])−1 (6.31)

where W is a positive random variable with density

hλ(w) = c(λ)fp(λ2w)g(w)

where g is the density of V = Z−1 and c(λ) is a normalizing constant. Then (6.28)
can also be expressed as

Eλ[W ]Eλ[W−1] > 1 + 2

k
(6.32)

for all λ ≥ 0.
The following main result shows that the paradox occurs for any nondegenerate

mixture of normals when the dimension of the residual vector U is sufficiently large.

Theorem 6.2 Assume that (X,U) is a scale mixture of normals as in (6.29), with
Z nondegenerate, E[Z] < ∞ and E[Z−1] < ∞. Then, for any p ≥ 3, there exists
a positive integer k0 such that, for any integer k ≥ k0, the optimal robust James-
Stein estimator δ

(p−2)
RJS (= δ

(p−2)/(k+2)

1 ) simultaneously dominates all James-Stein
estimators δa

JS (= δa
0 ).

Proof Setting H̄ = supλ≥0 HZ(λ), Condition (6.30) reduces to k > 2 H̄

1−H̄
.

From (6.31) we know (by covariance inequality) that HZ(λ) ≤ 1 with equality if
and only if W is degenerate, that is, if and only if Z is degenerate, which corresponds
to the normal case. Then H̄ ≤ 1 and we only need to show that H̄ < 1 since HZ is
continuous, and hence H̄ does not depend on k.

Now it can be shown (see Lemma 3 in Fourdrinier et al. 2004) that

lim
λ→∞ HZ(λ) =

(
lim

λ→∞ Eλ[W ] lim
λ→∞ Eλ[W−1]

)−1

=
(

1

E[Z] · E[Z2]
E[Z]

)−1

= (E[Z])2

E[Z2]
< 1,
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for p ≥ 3 and nondegenerate Z. Since HZ(λ) < 1 for all λ and limλ→∞ HZ(λ) < 1,
this implies H̄ < 1. �	

The necessity of nondegeneracy of Z is explicit in the proof of Theorem 6.2.
Therefore the paradox occurs only in the case of nondegenerate mixtures of normals
and not in the normal case, as previously noted.

Outside the class of mixtures of normals little is known. In the case where
the radial distribution is concentrated on two points, Fourdrinier and Strawderman
(1996) show that the paradox can occur for suitable weights. Showing the existence
of the paradox in other families of spherically symmetric distributions is an open
question.

6.3 Bayes Estimators

Let (X,U) be a random vector in R
p × R

k with density

1

σp+k
f

(‖x − θ‖2 + ‖u‖2

σ 2

)
, (6.33)

where θ ∈ R
p and σ ∈ R+\{0} are unknown. We assume throughout that p ≥ 3.

We consider generalized Bayes estimators of θ for priors of the form

π(‖θ‖2) ηb , (6.34)

where η = 1/σ 2, under the invariant quadratic loss in (6.16).
We first show that, under weak moment conditions, such generalized Bayes

estimators are robust in the sense that they do not depend on the underlying density
f . Furthermore, we exhibit a large class of superharmonic priors π for which
these generalized Bayes estimators dominate the usual minimax estimator X for the
entire class of densities (6.33). Hence this subclass of estimators has the extended
robustness property of being simultaneously generalized Bayes and minimax for the
entire class of spherically symmetric distributions.

Note that, paralleling Sect. 4.5, the above model arises as the canonical form of
the general linear model Y = Vβ + ε where V is a (p + k) × p design matrix, β

is a p × 1 vector of unknown regression coefficients, and ε is an (p + k) × 1 error
vector with spherically symmetric density f (‖ε‖2/σ 2)/σp+k .

In the following, for a real valued function g(x, ‖u‖2), we denote by ∇xg(x, u)

and Δxg(x, ‖u‖2) the gradient and the Laplacian of g(x, ‖u‖2) with respect to
the variable x. Analogous notations hold with respect to the variable u. When
g(x, ‖u‖2) is a vector valued function, divxg(x, ‖u‖2) is the divergence with respect
to x (here dim g(x, ‖u‖2) = dim x).

As previously noted, Stein (1981) shows that, when the density in (6.33) is
normal with known scale, the generalized Bayes estimator corresponding to a prior
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π(θ), for which the square root of the marginal density m(x) is superharmonic, is
minimax under the loss (6.16). Fundamental to this result is the development of an
unbiased estimator of risk based on a differential expression involving m(x) which
has become a basic tool in proving minimaxity.

Another line of research pertinent to this section is the development of Bayes
and generalized Bayes minimax estimators. In the case of a normal distribution with
known scale, see Sect. 3.1, When the scale is unknown, see Sect. 3.4. For variance
mixture of normals and, more generally, for spherically symmetric distributions with
no residual, see Sect. 5.4.

Maruyama (2003b) showed that, for spherically symmetric distributions with a
residual vector U and unknown scale parameter, the generalized Bayes estimator
with respect to a prior on θ and η proportioned to ηb ‖θ‖−a is independent of
the density f and is minimax under conditions on a and b and under weak
moment conditions (see also Maruyama and Takemura 2008 and Maruyama and
Strawderman 2005, 2009).

The goal of this section is to extend the phenomenon in Maruyama (2003b)
to a broader class of priors of the form π(‖θ‖2) ηb with π(‖θ‖2) superharmonic.
In particular, in Sect. 6.3.1, we show that the generalized Bayes estimators do not
depend on the density f under weak moment conditions and, in Sect. 6.3.2, we prove
that these generalized Bayes estimators are minimax provided the prior π(‖θ‖2) is
superharmonic and its Laplacian Δπ(‖θ‖2) is a nondecreasing function of ‖θ‖2,
under conditions on b, p and k.

In the case of a known scale parameter, Fourdrinier and Strawderman (2008a)
studied the same class of priors π(‖θ‖2) and proved minimaxity of generalized
Bayes estimators for a large subclass of unimodal densities. We rely strongly on the
techniques of that paper, as presented in Sect. 5.4.

6.3.1 Form of the Bayes Estimators

In Sect. 3.2 generalized Bayes estimators for the normal setting with an unknown
variance were discussed. In this subsection we extend the normal case to the
spherical setting with a residual vector, that is when the sampling distribution is of
the form of (6.33). In the normal setting the generalized Bayes estimators in (3.25)
were of the form X − r(F )

F
X where F = ||X||2/‖U‖2. In the more general setting

of this subsection the shrinkage function is not a function of only F but is a more
general function of both X and ‖U‖2 as in (3.17).

The results of this subsection and the next closely follow the developments in
Fourdrinier and Strawderman (2010). We will see that for the sampling distribution
in (6.33) and priors of the form (6.34), the generalized Bayes estimators do not
depend on the density (6.33); more precisely their expressions depend only on π

and b provided that
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∫ ∞

0
f (τ) τ (p+k)/2+b+1 dτ < ∞, (6.35)

which is equivalent to

E0,1

[
(‖X‖2 + ‖U‖2)2(b+2)

]
< ∞ .

Proposition 6.3 For a prior of the form (6.34) and loss (6.16), the generalized
Bayes estimator δ(X, ‖U‖2) = X + g(X, ‖U‖2) is such that, for any (x, u) ∈
R

p × R
k ,

g(x, ‖u‖2) =
∫
Rp

θ−x

(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 π(‖θ‖2) dθ∫
Rp

1
(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 π(‖θ‖2) dθ

, (6.36)

provided (6.35) holds and (6.36) exists and hence δ(X, ‖U‖2) does not depend on
f (·).

Note that g(x, ‖u‖2) arises as

∇xM(x, ‖u‖2)

m(x, ‖u‖2)
,

where m(x, ‖u‖2) is the marginal associated to π and the density

ϕ
(
‖x − θ‖2 + ‖u‖2

)
∝ 1

(‖x − θ‖2 + ‖u‖2)(p+k)/2+b+2
, (6.37)

and M is the marginal associated to φ with

φ(t) = 1

2

∫ ∞

t

ϕ(v) dv . (6.38)

Therefore, for each fixed u, δ(X, u) = X+g(X, u) with g(X, u) in (6.36) can be
interpreted as the Bayes estimator of θ under the density ϕ and the prior π for fixed
scale parameter ‖u‖ under the loss‖δ − θ‖2. This observation will be important in
the next subsection since it will allow us to use results in Sect. 5.4 (Fourdrinier and
Strawderman 2008a) which are developed for the case of known scale parameter.

Finally, note that existence of (6.36) will be guaranteed by the stronger finiteness
risk condition developed in the proof of Theorem 6.3. More generally, it suffices
that π be locally integrable and have tails that do not grow too fast at infinity. In
particular, superharmonic priors are locally integrable and have bounded tails.
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Proof of Proposition 6.3. The Bayes estimator under loss (6.16) is

δ(X, ‖U‖2) = E[η θ |X,U ]
E[η|X,U ] = X + g(X, ‖U‖2),

with, for any (x, u) ∈ R
p × R

k ,

g(x, ‖u‖2) = E[η (θ − x) | x, u]
E[η|x, u]

=
∫∞

0

∫
Rp η (θ − x) η(p+k)/2 f (η (‖x − θ‖2 + ‖u‖2)) π(‖θ‖2) ηb dθ dη∫∞
0

∫
Rp η(p+k)/2+1 f (η (‖x − θ‖2 + ‖u‖2)) π(‖θ‖2)ηb dθ dη

=
∫
Rp

(∫∞
0 η(p+k)/2+b+1 f (η (‖x − θ‖2 + ‖u‖2)) dη

)
(θ − x) π(‖θ‖2) dθ∫

Rp

(∫∞
0 η(p+k)/2+b+1 f (η (‖x − θ‖2 + ‖u‖2)) d η

)
π(‖θ‖2) dθ

,

by Fubini’s theorem. Now, through the change of variable τ = η (‖x − θ‖2 +‖u‖2)

in the innermost integrals, we obtain

g(x, ‖u‖2) =
∫
Rp

∫∞
0 τ (p+k)/2+b+1 f (τ) dτ

(θ−x) π(‖θ‖2)

(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 dθ∫
Rp

∫∞
0 τ (p+k)/2+b+1 f (τ) dτ

π(‖θ‖2)

(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 dθ

=
∫
Rp

(θ−x) π(‖θ‖2)

(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 dθ∫
Rp

π(‖θ‖2)

(‖x−θ‖2+‖u‖2)(p+k)/2+b+2 dθ

thanks to (6.35). �	

6.3.2 Minimaxity of Generalized Bayes Estimators

According to the expression of g(X, ‖U‖2) in (6.36), we give an expression of the
differential operator Og(X, ‖U‖2) in (6.23). The proof of Proposition 6.4 follows
from straightforward calculations.

Proposition 6.4 For g(X, ‖U‖2) = ∇XM(X,‖U‖2)

m(X,‖U‖2)
, (6.23) can be expressed as

Og(X, ‖U‖2) = 2
ΔXM(X, ‖U‖2)

m(X, ‖U‖2)
− 2

∇Xm(X, ‖U‖2)T∇XM(X, ‖U‖2)

m2(X, ‖U‖2)
(6.39)

+k − 2

‖U‖2

∥∥∥∥∇XM(X, ‖U‖2)

m(X, ‖U‖2)

∥∥∥∥
2

+ 2
∂

∂s

∥∥∥∥∇XM(X, s)

m(X, s)

∥∥∥∥
2 ∣∣∣∣

s=‖U‖2

,
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where, for any (x, u) ∈ R
p × R

k ,

m(x, ‖u‖2) =
∫
Rp

ϕ(‖x − θ‖2 + ‖u‖2) π(‖θ‖2) dθ, (6.40)

and

M(x, ‖u‖2) =
∫
Rp

φ(‖x − θ‖2 + ‖u‖2) π(‖θ‖2) dθ (6.41)

with ϕ and φ given by (6.37) and (6.38).

In Sect. 5.4, we studied Bayes minimax estimation of a location vector in the case
of spherically symmetric distributions with known scale parameter. For a subclass
of spherically symmetric densities, we proved minimaxity of generalized Bayes
estimators for spherically symmetric priors of the form π(‖θ‖2) under the following
assumptions (see Theorem 5.7 and also Fourdrinier and Strawderman 2008a, 2010).

Assumption 1

(1) π ′(‖θ‖2) ≤ 0 i.e. π(‖θ‖2) is unimodal;
(2) Δπ(‖θ‖2) ≤ 0 i.e. π(‖θ‖2) is superharmonic;
(3) Δπ(‖θ‖2) is nondecreasing in ‖θ‖2.

Note that Condition (2) in fact implies Condition (1) by the mean value property
of superharmonic functions. Several examples of priors which satisfy Assumption 1
have been given in Sect. 5.4: Examples 5.8, 5.9 and 5.10.

Our main result below is that a generalized Bayes estimator of θ for a den-
sity (6.33), a prior (6.34) and the loss (6.16) is minimax under weak moment
conditions and conditions on b, provided the prior satisfies the Assumptions above.
We remind the reader that, according to Proposition 6.3, the generalized Bayes
estimator is independent of the sampling density, f , provided the assumption (6.35)
holds. Hence, each such estimator is simultaneously generalized Bayes and minimax
for the entire class of spherically symmetric distributions.

Before developing our minimaxity result, we give a theorem which guarantees
the risk finiteness of the generalized Bayes estimators.

Theorem 6.3 Assume that π satisfies Assumption 1 and that b > −(k/2+1). Then
the generalized Bayes estimator associated to π has finite risk.

Proof According to (6.36), the risk finiteness condition (6.17) is satisfied as soon as

Eθ,η

⎡
⎢⎣
∥∥∥∥∥∥
∫
Rp (θ − X)

π(‖θ‖2)

(‖X−θ‖2+‖U‖2)(p+k)/2+b+2 dθ∫
Rp

π(‖θ‖2)

(‖X−θ‖2+‖U‖2)(p+k)/2+b+2 dθ

∥∥∥∥∥∥
2
⎤
⎥⎦

≤ Eθ,η

⎡
⎣
∫
Rp ‖θ − X‖2 π(‖θ‖2)

(‖X−θ‖2+‖U‖2)(p+k)/2+b+2 dθ∫
Rp

π(‖θ‖2)

(‖X−θ‖2+‖U‖2)(p+k)/2+b+2 dθ

⎤
⎦

< ∞ . (6.42)
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Note that, for any (x, u) ∈ R
p × R

k and for any nonnegative function h on
R+ × R+ (see Lemma 1.4),

∫
Rp

π(‖θ‖2) h(‖x − θ‖2, ‖u‖2) dθ

=
∫ ∞

0

∫
SR,x

π(‖θ‖2) dUR,x(θ) σ (S)Rp−1 h(R2, ‖u‖2) dR , (6.43)

where UR,x is the uniform distribution on the sphere SR,x of radius R and centered
at x and σ(S) is the area of the unit sphere. Through the change of variable R = √

v,
the right hand side of (6.43) can be written as

∫ ∞

0
Sπ (

√
v, x) vp/2−1 h(v, ‖U‖2) dv,

where

Sπ (
√

v, x) = σ(S)

2

∫
S√

v,x

π(‖θ‖2) dU√
v,x(θ)

is nonincreasing in v by the superharmonicity of π(‖θ‖2).
Now we can express the last quantity in brackets in (6.42) as

∫∞
o

Sπ (
√

v, x) vp/2

(v+‖u‖2)(p+k)/2+b+2 dv∫∞
o

Sπ (
√

v, x) vp/2−1

(v+‖u‖2)(p+k)/2+b+2 dv
= E1[v] ≤ E2[v], (6.44)

where E1 is the expectation with respect to the density f1(v) proportional to

Sπ (
√

v, x)
vp/2−1

(v + ‖u‖2)(p+k)/2+b+2
,

and E2 is the expectation with respect to the density f2(v) proportional to

vp/2−1

(v + ‖u‖2)(p+k)/2+b+2
.

Indeed the ratio f2(v)/f1(v) is nondecreasing by the monotonicity of Sπ (
√

v, x).
In (6.44), E2[v] is

E2[v] =
∫∞

0
vp/2

(v+‖u‖2)(p+k)/2+b+2 dv∫∞
0

vp/2−1

(v+‖u‖2)(p+k)/2+b+2 dv
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= ‖u‖2

∫∞
0

vp/2

(v+1)(p+k)/2+b+2 dv∫∞
0

vp/2−1

(v+1)(p+k)/2+b+2 dv

= ‖u‖2 B(p/2 + 1, k/2 + b + 1)

B(p/2, k/2 + b + 2)
,

which is finite for k/2 + b + 1 > 0.
Finally the expectations in (6.42) are bounded above by K Eθ,η[‖U‖2] where K

is a constant, and hence are finite. �	
We will need the following result which is essentially a reexpression of

Lemma 5.6.

Lemma 6.5 Let m(x, ‖u‖2) and M(x, ‖u‖2) be as defined in (6.40) and (6.41) and
let · be the inner product in R

p. Then we have

(1)

x · ∇xm(x, ‖u‖2) = −2
∫ ∞

0
H(v, ‖x‖2) vp/2 ϕ′(v + ‖u‖2) dv,

and

x · ∇xM(x, ‖u‖2) =
∫ ∞

0
H(v, ‖x‖2) vp/2 ϕ(v + ‖u‖2) dv,

where, for v > 0,

H(v, ‖x‖2) = λ(B)

∫
B√

v,x

x · θ π ′(‖θ‖2) dV√
v,x(θ) (6.45)

and V√
v,x is the uniform distribution on the ball B√

v,x of radius
√

v centered
at x and λ(B) is the volume of the unit ball;

(2) For any x ∈ R
p, the function H(v, ‖x‖2) in (6.45) is nondecreasing in v

provided that Δπ(‖θ‖2) is nondecreasing in ‖θ‖2. (Assumption 1 (3));
(3) For any v > 0 and any x ∈ R

p, the function H(v, ‖x‖2) in (6.45) is nonpositive
provided π ′(‖θ‖2) ≤ 0. (Assumption 1 (1)).

Given these preliminaries, we present our main result.

Theorem 6.4 Suppose that π satisfies Assumption 1. Then the generalized Bayes
estimator associated to π(‖θ‖2) ηb is minimax provided that b ≥ 2p−k−2

4 and the
assumptions of Theorem 6.3 are satisfied.

Proof It suffices to show that Og(X, ‖U‖2) in (6.38), with m(X, ‖U‖2) and M(X,

‖U‖2) given respectively by (6.39) and (6.41), is non positive since the assumptions
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guarantee that the generalized Bayes estimator δ is of the form δ(X, ‖U‖2) = X +
∇XM(X, ‖U‖2)/m(X, ‖U‖2) and has finite risk.

Due to the superharmonicity of π(‖θ‖2), for any (x, u) ∈ R
p × R

k , we have
ΔxM(x‖u‖2) ≤ 0 so that

Og(x, ‖u‖2) ≤ −2
∇xm(x, ‖u‖2)T∇xM(x, ‖u‖2)

m2(x, ‖u‖2)

+ k − 2

‖u‖2

∥∥∥∥∇xM(x, ‖u‖2)

m(x, ‖u‖2)

∥∥∥∥
2

+ 2
∂

∂s

∥∥∥∥∇xM(x, s)

m(x, s)

∥∥∥∥
2 ∣∣∣∣

s=‖u‖2
.

Note that

m2(x, s)
∂

∂s

∥∥∥∥∇xM(x, s)

m(x, s)

∥∥∥∥
2

= ∂

∂s
‖∇xM(x, s)‖2 + ‖∇xM(x, s)‖2 m2(x, s)

∂

∂s

1

m2(x, s)

≤ ∂

∂s
‖∇xM(x, s)‖2 + (p + k + 2b + 4)

1

s
‖∇xM(x, s)‖2 ,

since

∂

∂s

1

m2(x, s)
= −2

m3(x, s)

∫
Rp

−[(p + k)/2 + b + 2]
(‖x − θ‖2 + s)(p+k)/2+b+3

π(‖θ‖2) dθ

= p + k + 2b + 4

m3(x, s)

1

s

∫
Rp

s

‖x − θ‖2 + s

1

(‖x − θ‖2 + s)(p+k)/2+b+2
π(‖θ‖2) dθ

≤ p + k + 2b + 4

m2(x, s)

1

s
.

Therefore

m2(x, s)Og(x, s) ≤ −2∇xm(x, s)T∇xM(x, s) (6.46)

+ k − 2 + 2(p + k + 2b + 4)

s
‖∇xM(x, s)‖2

+ 2
∂

∂s
‖∇xM(x, s)‖2 .

As m(x, s) and M(x, s) depend on x only through ‖x‖2, it is easy to check that
(as in Fourdrinier and Strawderman 2008a)

∇xm(x, s)T∇xM(x, s) = xT∇xm(x, s) xT∇xM(x, s)

‖x‖2
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and

‖∇xM(x, s)‖2 = (xT∇xM(x, s))2

‖x‖2
.

Thus the right hand side of (6.46) will be nonpositive as soon as

− 2xT∇xm(x, s) + 2p + 3k + 4b + 6

s
xT∇xM(x, s) + 4

∂

∂s
xT∇xM(x, s) ≥ 0,

(6.47)

since, according to Lemma 6.5, the common factor xT∇xM(x, s) is nonpositive.
Using again Lemma 6.5, the left hand side of (6.47) equals

4
∫ ∞

0
H(v, ‖x‖2) vp/2 ϕ′(v + s) dv

+2p + 3k + 4b + 6

s

∫ ∞

0
H(v, ‖x‖2) vp/2 ϕ(v + s) dv

+4
∫ ∞

o

H(v, ‖x‖2)vp/2ϕ′(v + s)dv

=
∫ ∞

0
vp/2ϕ(v + s)

{
8 E

[
H(v, ‖x‖2)

ϕ′(v + s)

ϕ(v + s)

]

+2 p + 3 k + 4 b + 6

s
E
[
H(v, ‖x‖2)

]}
dv , (6.48)

where E denotes the expectation with respect to the density proportional to v �−→
vp/2 ϕ(v + s).

As

ϕ′(v + s)

ϕ(v + s)
= −((p + k)/2 + b + 2)

v + s
(6.49)

is nondecreasing in v and, according to Lemma 6.5, H(v, ‖x‖2) is also nondecreas-
ing in v, the first expectation in (6.48) satisfies

E

[
H(v, ‖x‖2)

ϕ′(v + s)

ϕ(v + s)

]
≥ E

[
H(v, ‖x‖2)

]
E

[
ϕ′(v + s)

ϕ(v + s)

]

by the covariance inequality. Therefore Inequality (6.47) will be satisfied as soon as

8 E

[
ϕ′(v + s)

ϕ(v + s)

]
+ 2p + 3k + 4b + 6

s
≤ 0, (6.50)
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since H(v, ‖x‖2) ≤ 0 by Lemma 6.5.
From (6.49) we have

E

[
ϕ′(v + s)

ϕ(v + s)

]
= −((p + k)/2 + b + 2

)
E

[
1

v + s

]
(6.51)

= −((p + k)/2 + b + 2
) ∫∞

o
1

v+s
vp/2 1

(v+s)(p+k)/2+b+2 dv∫∞
0 vp/2 1

(v+s)(p+k)/2+b+2 dv

= −((p + k)/2 + b + 2
) 1

s

∫∞
0

zp/2

(z+1)(p+k)/2+b+3 dz∫∞
0

zp/2

(z+1)(p+k)/2+b+2 dz

= −((p + k)/2 + b + 2
) 1

s

B(p/2 + 1, k/2 + b + 2)

B(p/2 + 1, k/2 + b + 1)
,

where B(α, β) is the beta function with parameters α > 0 and β > 0. Then (6.51)
becomes

E

[
ϕ′(v + s)

ϕ(v + s)

]
= − ((p + k)/2 + b + 2)

s

Γ ((k/2 + b + 2))

Γ ((p + k)/2 + b + 3)

= Γ ((p + k)/2 + b + 2)

Γ (k/2 + b + 1)

−(k/2 + b + 1)

s
. (6.52)

It follows from (6.52) that (6.50) reduces to

b ≥ 2p − k − 2

4
,

which is the condition given in the theorem. �	
The condition on b in Theorem 6.4 can be alternatively expressed as k ≥ 2p −

4b−2 which dictates that the dimension, k, of the residual vector, U , increases with
the dimension, p, of θ . This dependence can be (essentially) eliminated provided the
generalized Bayes estimator in Proposition 6.3 satisfies the following assumption.

Assumption 2 The function g(x, ‖u‖2) in (6.36) can be expressed as

g(x, ‖u‖2) = ∇xM(x, ‖u‖2)

m(x, ‖u‖2)
= − r(‖x‖2, ‖u‖2) ‖u‖2

‖x‖2 x,

where r(‖x‖2, ‖u‖2) is nonnegative and nonincreasing in ‖u‖2.

Assumption 2 is satisfied, for example, by the generalized Bayes estimator

corresponding to the prior on (θ, η) proportional to π(‖θ‖2) = (1/‖θ‖2
)−b/2

ηa for
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0 < b ≤ p − 2 and a > − k
2 − b

2 − 2, in which case the function r(‖x‖2, ‖u‖2) =
φ
(‖x‖2/‖u‖2

)
, where φ(t) is increasing in t , and hence r(‖x‖2, ‖u‖2) is decreasing

in ‖u‖2 (see, Maruyama 2003b).
We have the following corollary.

Corollary 6.2 Suppose π satisfies Assumptions 1 and the assumptions of Theo-
rem 6.4 and suppose also that the generalized Bayes estimator (which does not
depend on the underlying density f ) satisfies Assumption 2. Then the generalized
Bayes estimator is minimax provided b ≥ −(k + 2)/4.

Proof Assumption 2 guarantees that

∂

∂s

(
1

s2

∥∥∥∥∇xM(x, s)

m(x, s)

∥∥∥∥
2
)

= ∂

∂s

(
r2(‖x‖2, s)

‖x‖2

)
≤ 0.

Since

∂

∂s

∥∥∥∥∇xM(x, s)

m(x, s)

∥∥∥∥
2

= ∂

∂s

(
s2

s2

∥∥∥∥∇xM(x, s)

m(x, s)

∥∥∥∥
2
)

= 2

s

∥∥∥∥∇xM(x, s)

m(x, s)

∥∥∥∥
2

+ s2 ∂

∂s

(
1

s2

∥∥∥∥∇xM(x, s)

m(x, s)

∥∥∥∥
2
)

,

the inequality for Og(X, ‖U‖2) in the proof of Theorem 6.4 can be replaced by

Og(x, ‖u‖2) ≤ −2
∇xm(x, ‖u‖2)T∇xM(x, ‖u‖2)

m2(x, ‖u‖2)
+ k + 2

‖u‖2

∥∥∥∥∇xM(x, ‖u‖2)

m(x, ‖u‖2)

∥∥∥∥
2

.

It follows that inequality condition (6.47) becomes

−2 xT∇xm(x, s) + k + 2

s
xT∇xM(x, s) ≥ 0,

and that inequality condition (6.50) becomes

4 E

[
ϕ′(v + s)

ϕ(v + s)

]
+ k + 2

s
≤ 0,

which, by (6.52), becomes

4

[
−
(

k/2 + b + 1

s

)]
+ k + 2

s
≤ 0,

which is equivalent to b ≥ −(k + 2)/4. �	
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6.4 The Unknown Covariance Matrix Case

In this section, we consider estimation of the mean vector in the case of elliptically
symmetric distribution with an unknown nonsingular scale matrix. Most of the
material of this section is taken from Fourdrinier et al. (2003). We assume there
is sufficient data in the form of residual vectors to estimate the unknown covariance
matrix. In the canonical form of this model, X, V1, . . . , Vn−1 are n random vectors
in R

p with joint density of the form

|Σ |−n/2f

(
(x − θ)TΣ−1(x − θ) +

n−1∑
j=1

V T
j Σ−1Vj

)
(6.53)

where the p × 1 location vector θ and the p × p scale matrix Σ are unknown. Note
occasionally we will absorb the normalizing factor |Σ−1|n/2 in the function f . If
both θ and Σ are unknown, X and S =∑n−1

j=1 Vj V T
j = V V T are minimal sufficient

statistics. Throughout this section, we assume that p ≤ n − 1 so that S is invertible.
The canonical form (6.53) arises through an n × n orthogonal transformation of

(Y1, . . . , Yn) ∼ |Σ |−n/2f

⎛
⎝ n∑

j=1

(Yi − θ)TΣ−1(Yi − θ)

⎞
⎠

as in the case of an i.i.d. sample of size n from a Np(θ,Σ) distribution.
To show this reduction to the canonical form define the p × n matrices Y = (Y1 :

. . . : Yn) for Yi ∈ R
p and Θ = (θ : . . . : θ). Let P be an n × n orthogonal matrix

such that the first row of P is 1T
n/

√
n, where 1T

n = (1, . . . , 1) is the 1 × n row vector
of ones. Let the p × n matrices X = (X1 : . . . : Xn) and νT=(ν1 :...:νn) be defined
through XT = P YT and νT = P ΘT. Then

n∑
i=1

(Yi − θ)TΣ−1(Yi − θ) = tr
{
(Y − Θ)T (Y − Θ)Σ−1

}

= tr
{
(Y − Θ)T P P T (Y − Θ) Σ−1

}

= tr
{
(X − ν)T (X − ν)Σ−1

}

=
n∑

i=1

(Xi − νi)
TΣ−1(Xi − νi)

= (X1 − θ)TΣ−1(X1 − θ) +
n∑

i=2

XT
i Σ

−1Xi ,

since νT = P ΘT = (θ : 0, . . . : 0)T because the ith column of Θ is θi 1n and since
P T

1 1n = 1 and P T
i 1n = 0 for i = 2, . . . , n, where P T

i is the ith row of P .
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Letting X = X1 and Vi−1 = Xi for i = 2, . . . , n and noting that the
Jacobian of the transformation Y �→ X �→ (X1, V1, . . . , Vn−1) is 1, the density
of (X1, V1, . . . , Vn−1) is given by (6.53) (see also e.g. Rao 1973; Muirhead 1982 or
Anderson 1984).

There is an obvious connection with the canonical form of the general linear
model given in Sect. 4.5. Indeed, if Σ = σ 2 Ip, the density (6.53) becomes

σ−p n/2f

(
(x − θ)T(x − θ) +∑n−1

j=1 V T
j Vj

σ 2

)
.

So, if Uij = Vij and U = (U12, . . . , U1p,U21, . . . , U2p,Un−11, . . . , Un−1p) then
(X,U) ∼ SSp,(n−1)p(θ, 0). This model is also related to the general (normal)
multivariate linear model Yn×m = Xn×p βp×m + εn×m where εi×m ∼ Nm(0,Σ),
i = 1, . . . , n are independent, X is a known design matrix and β is a matrix of
unknown regression parameters.

We consider the problem of estimating θ with the invariant loss

L(θ, δ) = (δ − θ)TΣ−1(δ − θ). (6.54)

Recall that the usual estimator δ0(X) = X is minimax provided E0,I [‖X‖2] < ∞
(where Eθ,Σ denotes the expectation with respect to the density in (6.53)). Note
that, when Σ is a covariance matrix, this expectation is necessarily finite and equal
to p. Moreover X is typically admissible when p ≤ 2 and inadmissible when p ≥ 3.

We concentrate on the case p ≥ 3 and construct a class of estimators, depending
on the sufficient statistics (X, S), of the form

δ(X, S) = X + g(X, S), (6.55)

where S = ∑n−1
i=1 ViV

T
i , which dominate δ0(X) = X simultaneously under

loss (6.54), for the entire class of distributions defined in (6.53) such that
E0,I [‖X‖2] < ∞. Note that, although the loss in (6.54) is invariant, the estimate
in (6.55) may not be equivariant (except for δ0(X)).

The risk difference Δθ,Σ between δ(X, S) given in (6.55) and δ0(X) = X equals

Δθ,Σ = R
(
θ, δ(X, S)

)− R
(
θ, δ0(X)

)
(6.56)

= Eθ,Σ

[
2gT(X, S)Σ−1(X − θ)

]+ Eθ,Σ

[
gT(X, S)Σ−1g(X, S)

]
,

provided Eθ,Σ

[
gT(X, S)Σ−1g(X, S)

]
< ∞.

We first give a lemma which expresses the two terms in the last expression
of (6.56) as expectations E∗

θ,Σ with respect to the distribution

C−1F

(
(x − θ)TΣ−1(x − θ) +

n−1∑
j=1

V T
j Σ−1Vj

)
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where F and C are defined as

F(t) = 1

2

∫ ∞

t

f (s)ds

and

C =
∫
Rp×···×Rp

F

(
(x − θ)TΣ−1(x − θ) +

n−1∑
j=1

V T
j Σ−1Vj

)
dx dv1 · · · dvn−1.

To this end, we will use the following notations. For any matrix M , ∇M is
interpreted as the matrix with components (∇M)ij = ∂/∂Mij . The differential

operator for a symmetric matrix S is DS =
(

1
2 (1 + δij ) (∇S)ij

)
and Haff

differential operator is defined, for any p×p matrix function of a symmetric matrix
S, say H(S), to be

D∗
1/2(H(S)) = tr

(
DS H(S)

) =
p∑

i=1

∂Hii(S)

∂Sii

+ 1

2

∑
i �=j

∂Hij (S)

∂Sij

. (6.57)

Lemma 6.6 Let (X, V ) = (X, V1, . . . , Vn−1) be a p × n random matrix with
density (6.53) where p ≤ n − 1 and let S = V V T.

(1) Suppose g(x, s) is a weakly differentiable function in x for each s such that the
expectation Eθ,Σ

[
gT(X, S)(X, S)Σ−1(X − θ)

]
exists. Then

Eθ,Σ

[
gT(X, S)Σ−1(X − θ)

] = CE∗
θ,Σ

[
divXg(X, S)

]
(6.58)

where divx g(x, s) is the divergence of g(x, s) with respect to x.
(2) Suppose T (x, s) is a p × p matrix function weakly differentiable in vi (i =

1, . . . , n − 1) for any x and such that the expectation Eθ,Σ

[
tr
(
T (X, S)

)
Σ−1

]
exists. Then

Eθ,Σ

[
tr
(
T (X, S)Σ−1)]

= C E∗
θ,Σ

[
2 D∗

1/2T (X, S) + (n − p − 2) tr (S−1T (X, S))
]

= C E∗
θ,Σ

[
tr(V ∇V T {S−1T (X, S)}T) + (n − 1) tr (S−1T (X, S))

]
. (6.59)

The proof of Lemma 6.6 is given at the end of this section. The two expressions
in (6.58) follow from equality between the two integrand terms thanks to the link
between the differential operators D∗

1/2 and tr(V ∇V T) established in Proposition 6.5
(also given at the end of this section).

Note that, when X, V1, . . . , Vn−1 are independent normal vectors with covari-
ance Σ , then f = F and therefore Eθ,Σ [ ] = E∗

θ,Σ [ ]. Hence for Lemma 6.6,
the identity in (6.58) essentially reduces to Stein’s lemma (Stein 1981), and the
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identity in (6.59) corresponds to a result of Stein (1977a) and Haff (1979), known
as the Stein-Haff identity.

Applying (6.58) to the first term in (6.56) and (6.59) to the second term in (6.56)
with T (x, s) = g(x, s)g′(x, s), noting that

gT(x, s)Σ−1g(x, s) = tr
(
g(x, s)gT(x, s)Σ−1)

gives immediately the following theorem.

Theorem 6.5 Assume that g(x, s) and T (x, s) = g(x, s)gT(x, s) satisfy
the assumptions of Lemma 6.6. Assume also that E0,Σ [‖X‖2] < ∞ and
Eθ,Σ

[
gT(X, S)Σ−1g(X, S)

]
< ∞. Then the risk difference Δθ,Σ in (6.56) between

δ(X, S) = X + g(X, S) and δ0(X) = X equals

C E∗
θ,Σ

[
2 divXg(X, S) + 2 D∗

1/2

(
g(X, S)gT(X, S)

)

+(n − p − 2) gT(X, S) S−1g(X, S)
]
. (6.60)

A sufficient condition for δ(X, S) to be minimax is that, for all x and s,

2 divxg(x, s) + 2 D∗
1/2

(
g(x, s)gT(x, s)

)+ (n − p − 2) gT(x, s)s−1g(x, s) ≤ 0
(6.61)

or, equivalently,

2 divxg(x, s) + tr(v ∇vT {s−1g(x, s)gT(x, s)}T + (n − 1) gT(x, s)s−1 g(x, s) ≤ 0 ,

(6.62)

where V = (V1, . . . , Vn−1) is a p × (n − 1) matrix and S = V V T. Furthermore
δ(X, S) dominates δ0(X) as soon as (6.61) or (6.62) is satisfied with strict inequality
on a set of positive measure.

Note that in the normal case E∗
θ,Σ [ ] = Eθ,Σ [ ] so that the left-hand side

of (6.61) is an unbiased estimator of the risk difference between δ(X, S) and
δ0(X). Perhaps, most importantly, observe that the theorem leads to an extremely
strong robustness property for estimators satisfying (6.61). Namely, any such
estimator is minimax and, as soon as strict inequality occurs on a set of positive
measure in (6.61), dominates δ0(X) for the entire class of elliptically symmetric
distributions (6.53). This property is analogous to the robustness property mentioned
in Sect. 6.1 in the case of spherically symmetric distributions. The following
corollary gives a general class of examples of minimax estimates which dominate
δ0(X) uniformly for densities of the form (6.53).

Corollary 6.3 Assume that E0,Σ [‖X‖2] < ∞ and Eθ,Σ

[ ‖X‖2

(XTS−1X)2

]
< ∞. Let

δ(X, S) = (1 − r(XTS−1X)/XTS−1X)X where r(·) is a nondecreasing function
bounded between 0 and 2(p − 2)/(n − p + 2). Then δ(X, S) is minimax for any
density of the form (6.53). Furthermore δ(X, S) dominates δ0(X) as soon as either r

is strictly increasing or bounded away for 0 and 2(p−2)
n−p+2 on a set of positive measure.
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Proof Setting

g(x, s) = − r(xTs−1x)

xTs−1x
x,

we have

divxg(x, s) = −
[
(p − 2)

r(xTs−1x)

xs−1x
+ 2r ′(xTs−1x)

]

by routine calculations. Now we have

D∗
1/2

(
g(x, s)gT(x, s)

)

=
p∑

i=1

∂

∂sii

[
r2(xTs−1x)

(xTs−1x)2

]
x2
i + 1

2

∑
i �=j

∂

∂sij

[
r2(xTs−1x)

(xTs−1x)2

]
xixj

= 2(xTs−1x)2r(xTs−1x)r ′(x; s−1x) − 2(xTs−1x)r2(xTs−1x)

(xTs−1x)4

×
{ p∑

i=1

∂

∂sii
(xTs−1x)X2

i + 1

2

∑
i �=j

∂

∂sij
(xTs−1x)xixj

}
. (6.63)

Using the fact that

∂

∂sij
(xTs−1x) = −(2 − δij )(x

Ts−1)i(x
Ts−1)j

it follows that the bracketed term in (6.63) equals

−
{ p∑

i=1

(xTs−1)2
i x

2
i + 1

2

∑
i �=j

2(xTs−1)i(x
Ts−1)j xixj

}

= −
∑

1≤i,j≤p

(xTs−1)i(x
Ts−1)j xj

= −
( p∑

i=1

(xTs−1)iXi

)2

= −(xTs−1x)2

and hence

D∗
1/2

(
g(x, s)gT(x, s)

) = −2

{
r(xTs−1x)r ′(xTsx) − r2(xTs−1x)

xTs−1x

}
.
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Finally it is clear that

gT(x, s)s−1g(x, s) = r2(xTs−1x)

xTs−1x

so that the left-hand side of (6.61) equals

−2

{
(p − 2)

r(xTs−1x)

xTs−1x
+ 2r ′(xTs−1x)

}
+ (n − p − 2)

r2(xTs−1x)

xTs−1x

−4
{
r(xTs−1x)r ′(xTs−1x) − r2(xTs−1x)

xTs−1x

}

= r(xTs−1x)

xTs−1x

{− 2(p − 2) + (n − p + 2)r(xTs−1x)
}

−4r ′(xTs−1x)
{
1 + r(xTs−1x)

}
≤ 0, (6.64)

according to the assumptions on r(·).
Hence the minimaxity of δ(X, S) follows. The domination result follows as

well since strict inequality in (6.64) holds on a set of positive measure under the
additional assumptions. �	
Proof of Lemma 6.6 (Part 1) By definition, we have

Eθ

[
g(X, S)TΣ−1(X − θ)

]
=
∫
Rp×···×Rp

∫
Rp

g(x, s)TΣ−1(x − θ)

f

⎛
⎝(x − θ)TΣ−1(x − θ) +

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠ dx dv1 . . . dvn−1 .

Now applying the integration-by-slice in Lemma A.2 in Appendix A.5 with
ϕ(x) = √(x − θ)TΣ−1(x − θ) to the inner most integral

I (v1, . . . , vn−1)

=
∫
Rp

g(x, s)TΣ−1(x − θ) f

⎛
⎝(x − θ)TΣ−1(x − θ) +

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠ dx

gives

∇ϕ(x) = Σ−1(x − θ)√
(x − θ)TΣ−1(x − θ)
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and

I (v1, . . . , vn−1)

=
∫ ∞

0
f

⎛
⎝R2 +

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠∫

[ϕ=R]
g(x, s)TΣ−1(x − θ)

‖∇ϕ(x)‖ dσR(x) dR

=
∫ ∞

0
f

⎛
⎝R2 +

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠∫

[ϕ=R]
g(x, s)T

√
(x − θ)TΣ−1(x − θ)

× ∇ϕ(x)

‖∇ϕ(x)‖ dσR(x) dR ,

according to the expression of ∇ϕ(x). Then, as
√

(x − θ)TΣ−1(x − θ) = R on
[ϕ = R], it follows using Stokes’ theorem that

I (v1, . . . , vn−1) =
∫ ∞

0
R f

⎛
⎝R2 +

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠∫

[ϕ=R]
g(x, s)

∇ϕ(x)

‖∇ϕ(x)‖ dσR(x) dR =

∫ ∞

0
R f

⎛
⎝R2 +

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠∫

[ϕ≤R]
divx g(x, s) dx dR .

Now, using Fubini’s theorem gives

I (v1, . . . , vn−1) =
∫
Rp

divxg(x, s)

∫ ∞
√

(x−θ)TΣ−1(x−θ)

R f

⎛
⎝R2 +

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠ dR dx =

∫
Rp

divx g(x, s)
1

2

∫ ∞

(x−θ)TΣ−1(x−θ)

f

⎛
⎝r +

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠ dr dx =

∫
Rp

divx g(x, s)F

⎛
⎝(x − θ)TΣ−1(x − θ) +

n−1∑
j=1

vT
jΣ

−1vj

⎞
⎠ dx , (6.65)

through the change of variable r = R2 and by definition of the function F .
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Finally integrating (6.65) with respect to the vj gives an expression for the
expectation Eθ [g(X, S)TΣ−1(X − θ)] and yields (6.58).

(Part 2) First note that, setting G = S−1T (X, S), we have

tr
(
T (X, S)Σ−1

)
= tr

(
Σ−1S G(X, S)

)
.

Then, as V = (V1, . . . , Vn−1) and S = V V T, we have

tr
(
Σ−1S G(X, S)

)
= tr

(
G(X, S)Σ−1S

)

= tr

(
G(X, S)Σ−1

n−1∑
i=1

Vi V T
i

)

=
n−1∑
i=1

tr
(
V T

i G(X, S)Σ−1 Vi

)

=
n−1∑
i=1

V T
i G(X, S)Σ−1 Vi. (6.66)

Now, according to Part 1 of Lemma 6.6 where the roles of X and θ are played by Vi

and 0 respectively, it follows from (6.66) that

Eθ,Σ

[
tr
(
Σ−1S G(X, S)

)]
= C

n−1∑
i=1

E∗
θ,Σ

[
divVi

(GT(X, S) Vi)
]

= C E∗
θ,Σ [A1 + A2] , (6.67)

where

A1 =
n−1∑
i=1

p∑
j=1

p∑
m=1

∂Vmi

∂Vji

GT
jm

=
n−1∑
i=1

p∑
j=1

p∑
m=1

δjm GT
jm(X, S)

= (n − 1)

p∑
j=1

GT
jj (X, S)

= (n − 1) tr(G(X, S)) (6.68)
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and

A2 =
n−1∑
i=1

p∑
j=1

p∑
m=1

Vmi

∂GT
jm(X, S)

∂Vji

=
n−1∑
i=1

p∑
m=1

Vmi

p∑
j=1

∂GT
jm(X, S)

∂Vji

=
n−1∑
i=1

p∑
m=1

Vmi(∇V TGT(X, S))im

=
p∑

m=1

(V ∇V TGT(X, S))mm

= tr(V ∇V T GT(X, S)) . (6.69)

Finally, combining (6.67), (6.68) and (6.69), we obtain the second formula in (6.59).
As for the first formula in (6.59), it follows directly from the link between the

differential expressions D∗
1/2S G(X, S) and tr

(
V ∇V T GT(X, S)

)
given in Proposi-

tion 6.5 below, whose proof is given in Appendix A.7. �	
Proposition 6.5 (Fourdrinier et al. 2016) For any p × p matrix function G(x, s)

weakly differentiable with respect to s for any x,

2 D∗
1/2

(
S G(X, S)

) = (p + 1) tr(G(X, S)) + tr
(
V ∇V T GT(X, S)

)
. (6.70)

6.5 Shrinkage Estimators for Concave Loss in the Presence
of a Residual Vector

In this section, we consider the case of concave loss and illustrate that certain
classes of shrinkage estimators which properly use the residual vector have the
strong robustness property of dominating the usual unbiased estimator uniformly
over the class of spherically symmetric distributions, simultaneously for a broad
class of concave loss functions. It extends and broadens the results of Sect. 5.5
to the residual vector case. We follow closely the development in Brandwein and
Strawderman (1991a).

Specifically, let (X,U) be a p + k dimensional vector with mean vector (θ, 0),
where the dimensions of X and θ are equal to p and the dimensions of the residual
vector U and its mean vector, 0, are equal to k, that is, (X,U) ∼ SSp+k(θ, 0). The
loss function we consider is

L(θ, δ) = �(||θ − δ||2), (6.71)
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for �(t) a nonnegative concave monotone nondecreasing function.
The estimators we consider will be of the now familiar form

δ(X, ‖U‖2) = X + a(S/(k + 2))g(X), (6.72)

where S = ||U ||2, and g(·) maps Rp into R
p.

The following result, extracted from the development in Theorem 5.5 due to
Brandwein and Strawderman (1991a) is basic to the development of this section.

Lemma 6.7 (Brandwein and Strawderman 1991a) Let X ∼ SSp(θ), for p ≥ 4
and let g(X) map Rp into R

p be weakly differentiable, and such that

(1) ||g(X)||2/2 ≤ −h(X) ≤ −∇Tg(X),

(2) −h(X) is superharmonic and Eθ [R2h(W)|R] is a nondecreasing function of
R, where W has a uniform distribution on the sphere of radius R centered at θ .

Then Eθ [||X+ag(X)−θ ||2 −||X−θ ||] ≤ E[(−2a2/r2 +2a/p)Eθ [r2h(W)|r2]],
where r2 = ||X − θ ||2.

We will also need the following well known result (see e.g. the discussion at the
end of Sect. 1.2).

Lemma 6.8 Suppose (X,U) ∼ SSp+k(θ, 0). Then the random variable β = ||X−
θ ||2/(||X − θ ||2 + S) has a Beta(p/2, k/2) distribution, independent of R2 =
||X − θ ||2 + S, where S = ||U ||2.

The main result is the following.

Theorem 6.6 Suppose (X,U) ∼ SSp+k(θ, 0), that loss is given by loss (6.71) and
that the estimator δ(X, S) is given by (6.72). Then δ(X, S) dominates the unbiased
estimator X, provided that

(1) g(X) satisfies assumptions (1) and (2) of Lemma 6.7,
(2) the concave nondecreasing function �(t) also satisfies tα�′(t) is nondecreasing,
(3) 0 < a ≤ (p − 2 − 2α)/p.

Note first, by concavity of �(·), that �(t) ≤ �(y) + (t − y)�′(y). Hence the risk
satisfies

R(θ, δ) = E[�(||X + aSg(X)

k + 2
− θ ||2)]

≤ E[�(||X − θ ||2) + �′(||X − θ ||2)(||X + aSg(X)

k + 2
− θ ||2 − ||X − θ ||2)]

= R(θ,X) + E[�′(||X − θ ||2)(||X + aSg(X)

k + 2
− θ ||2 − ||X − θ ||2)].

It suffices to prove the second term in the above expression is negative. Now, let
r2 = ||X − θ ||2, R2 = ||X − θ ||2 + S (where S = ||U ||2 = R2 − r2), and note that
the conditional distribution of X given r and R is SSp(θ). Then it follows, using
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Lemma 6.7 that

E[�′(||X − θ ||2)(||X + aSg(X)

k + 2
− θ ||2 − ||X − θ ||2)]

= E[�′(r2)E[||X + aSg(X)

k + 2
− θ ||2 − ||X − θ ||2|R, r]]

≤ E[�′(r2)E[(2(
aS

(k + 2)r
)2 − 2

aS

(k + 2)p
)Eθ [−r2h(W)|r2]|R, r]].

Now using Lemma 6.8, this last expression may be written as

2 E

[
�′(βR2)

({
a(1 − β)R2

k + 2

}2
1

βR2 − a(1 − β)R2

(k + 2)p

)

× Eθ [−βR2h(W)|βR2]|R]
]

= 2a

k + 2
E

[
(R2(βR2)α�′(βR2)(βR2)−α(1 − β)

(
(1 − β)a

β(k + 2)
− 1

p

)

× Eθ [−βR2h(W)| βR2]| R]
]

.

Next, for fixed R, by assumption (2) of Lemma 6.7 Eθ [−βR2h(W) | βR2] is
nonnegative and nondecreasing in β and by assumption (6.71) so is βα�′(βR2).
Also (1 − β)/β is decreasing in β. Hence it follows from the covariance inequality
(and independence of β and R) that the previous expression is less than or equal to

2a

k + 2
E

[
[Eθ [−βR2h(W)|βR2]R2(R2β)α�′(βR2)|R]E[βα(1 − β)]

×
(

a(1 − β)

β(k + 2)
− 1

p

)]
.

Since the first expectation in this term is nonnegative, it suffices that the second
expectation is negative. But this is equivalent to

0 ≤ a ≤ k + 2

p
E[βα(1 − β)]/E[(βα(1 − β)2)/β] = (p − 2 − 2α)/p,

which completes the proof. �	
For the loss L(θ, δ) = ||θ − δ||q, �(t) = tq/2, it follows that tα�′(t) =

(q/2)tα+q/2−1 is nondecreasing for α ≥ 1 − q/2. Thus, the following corollary
is immediate.
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Corollary 6.4 Under the loss L(θ, δ) = ||θ − δ||q, for p > 4 and 0 < q ≤ 2, the
estimator in Theorem 6.6 dominates X for 0 < a ≤ (p − 4 + 2q)/p simultaneously
for all spherically symmetric distributions with finite second moment. It does so
simultaneously for all such losses for 0 < a ≤ (p − 4)/p.

Note that the range of shrinkage constants for which domination holds includes
a = 1/2 as soon as p ≥ 8. For the usual James-Stein estimator,

δ(X) = (1 − a(2(p − 2)S)/((k + 2)||X||2))X, (6.73)

the uniformly optimal constant for quadratic loss (�(·) = 1) is a = 1/2 and hence
this optimal estimator improves for all such lq losses simultaneously for p ≥ 8.
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