
Chapter 5
Estimation of a Mean Vector for
Spherically Symmetric Distributions I:
Known Scale

5.1 Introduction

In Chaps. 2 and 3 we studied estimators that improve over the “usual” estimator
of the location vector for the case of a normal distribution. In this chapter, we
extend the discussion to spherically symmetric distributions discussed in Chap. 4.
Section 5.2 is devoted to a discussion of domination results for Baranchik type
estimators while Sect. 5.3 examines more general estimators. Section 5.4 discusses
Bayes minimax estimation. Finally, Sect. 5.5 discusses estimation with a concave
loss.

We close this introductory section by extending the discussion of Sect. 2.2 on the
empirical Bayes justification of the James-Stein estimator to the general multivariate
(but not necessarily normal) case.

Suppose X has a p-variate distribution with density f (‖x − θ‖2), unknown
location vector θ and known scale matrix σ 2Ip. The problem is to estimate θ under
loss L(θ, δ) = ‖δ − θ‖2. Let the prior distribution on θ be given by π(θ) = f �n(θ),
the n-fold convolution of the density f (·) with itself. Note that the distribution of θ

is the same as that of
∑n

i=1 Yi where the Yi are iid with density f (·). Recall from
Example 1.3 that the Bayes estimator of θ is given by

δn(X) = n

n + 1
X =

(

1 − 1

n + 1

)

X.

Assume now that n is unknown. Since

E(XTX) = E

( n∑

i=0

Y T
i Yi

)

= (n + 1) E(Y T
0 Y0) = (n + 1) (tr σ 2I ) = (n + 1) p σ 2 ,
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152 5 Spherically Symmetric Case I

an unbiased estimator of n + 1 is XTX/(pσ 2), and so p σ 2/(XTX) is a reasonable
estimator of 1/(n+1). Substituting p σ 2/(XTX) for 1/(n+1) in the Bayes estimator,
we have that

δEB(X) =
(

1 − p σ 2

XTX

)

X

can be viewed as an empirical Bayes estimator of θ without any assumption on the
form of the density (and in fact there is not even any need to assume there is a
density). Hence this Stein-like estimator can be viewed as a reasonable alternative
to X from an empirical Bayes perspective regardless of the form of the underlying
distribution.

Note that Diaconis and Ylvisaker (1979) introduced the prior f �n(θ) as a rea-
sonable conjugate prior for location families since it gives linear Bayes estimators.
Strawderman (1992) gave the above empirical Bayes argument. In the normal case
the sequence of priors corresponds to that in Sect. 2.2.3 with τ 2 = n σ 2. The
shrinkage factor p σ 2 in the present argument differs from (p − 2) σ 2 in the normal
case since in this general case we use a “plug-in” estimator of 1/(n + 1) as opposed
to the unbiased estimator (in the normal case) of 1/(σ 2 + τ 2).

5.2 Baranchik-Type Estimators

In this section, assuming that X has a spherically symmetric distribution with mean
vector θ and that loss is L(θ, δ) = ‖δ − θ‖2, we consider estimators of the
Baranchik-type, as (2.19) in the normal setting, for different families of densities.
In Sect. 5.3, we consider results for general estimators of the form X + g(X).

5.2.1 Variance Mixtures of Normal Distributions

We first consider spherically symmetric densities which are variance mixtures of
normal distributions. Suppose

f (‖x − θ‖2) = 1

(2π)p/2

∫ ∞

0

1

vp/2 exp

{

−‖x − θ‖2

2v

}

dG(v), (5.1)

where G(·) is a probability distribution on (0,∞), i.e., a mixture of Np(θ, vI )

distributions with mixing distribution G(·).
Our first result gives a domination result for Baranchik type estimators for such

distributions. This result is analogous to Theorem 2.3 in the normal case.
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Theorem 5.1 (Strawderman 1974b) Let X have density of the form (5.1) and let

δB
a,r (X) =

(

1 − a
r(‖X‖2)

‖X‖2

)

X,

where the function r(·) is absolutely continuous. Assume the expectations E[V ] and
E[V −1] are finite where V has distribution G. Then δB

a,r (X) is minimax for the loss
L(θ, δ) = ‖δ − θ‖2 provided

(1) 0 ≤ a ≤ 2(p − 2)/E[V −1],
(2) 0 ≤ r(t) ≤ 1 for any t ≥ 0,
(3) r(t) is nondecreasing in t , and
(4) r(t)/t is nonincreasing in t .

Furthermore, δB
a,r (X) dominates X provided the inequalities in (1) or (2) (on a set

of positive measure) are strict or r ′(t) is strictly increasing on a set of positive
measure.

Proof The proof proceeds by calculating the conditional risk given V = v, noting
that the distribution of X|V = v is normal N(θ, vIp). First note that E[V ] <

∞ is equivalent to E0[‖X‖2] < ∞ so that the risk of X is finite. Similarly, it
can be seen that E[V −1] < ∞ if and only if E0[‖X‖−2] < ∞. Then, thanks
to (2), we have E0[r2(‖X‖2)‖X‖−2] < ∞. Actually, we will see below that, for
any θ , Eθ [‖X‖−2] ≤ E0[‖X‖−2], and hence, Eθ [r2(‖X‖2)‖X‖−2] < ∞ which
guarantees that the risk of δB

a,r (X) is finite. Note that, conditionally on V , ‖X‖2/V

has a noncentral chi-square distribution with p degrees of freedom and noncentrality
parameter ‖θ‖2/V . Hence, since the family of noncentral chi-square distributions
have monotone (increasing) likelihood ratios in the noncentrality parameter (and
therefore are stochastically increasing), ‖X‖2/V is (conditionally) stochastically
decreasing in V and increasing in ‖θ‖2.

Hence,

Eθ

[
1

‖X‖2/V

]

≤ E0

[
1

‖X‖2/V

]

and, as a result,

Eθ

[
1

‖X‖2

]

= E

[

Eθ

[
1

‖X‖2

∣
∣
∣
∣V

]

= E

[
1

V
Eθ

[
1

‖X‖2/V

∣
∣
∣
∣V

]]

� E

[
1

V
E0

[
1

‖X‖2/V

]]

= E0

[
1

‖X‖2

]

.
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This sufficies to establish finiteness of the risk of δB
a,r (X). We now deal with the

main part of the theorem. Using Corollary 2.1 and Theorem 2.3, we have

R(θ, δB
a,r ) = E{E[‖δB

a,r (X) − θ‖2 |V ]}

= E

{

E

[

‖X − θ‖2 + V 2
(

a2r2(‖X‖2)

V 2‖X‖2 − 2a(p − 2)

V

r(‖X‖2)

‖X‖2

)

−4 aV r ′(‖X‖2)

∣
∣
∣
∣V

]}

≤ R(θ,X) + E

{

aE

[
r(‖X‖2)

‖X‖2/V

∣
∣
∣
∣V

](
a

V
− 2(p − 2)

)}

, (5.2)

since r2(‖X‖2) ≤ r(‖X‖2) and r ′(‖X‖2) ≥ 0. Now, as a consequence of the above
monotone likelihood property, ‖X‖2/V is stochastically decreasing in V . It follows
that the conditional expectation in (5.2) is nondecreasing in V since, if v1 < v2, we
have

E

[
r(‖X‖2)

‖X‖2/V

∣
∣
∣
∣V = v1

]

= E

[
r
(
v1

‖X‖2

V

)

‖X‖2/V

∣
∣
∣
∣V = v1

]

≤ E

[
r
(
v2

‖X‖2

V

)

‖X‖2/V

∣
∣
∣
∣V = v1

]

≤ E

[
r
(
v2

‖X‖2

V

)

‖X‖2/V

∣
∣
∣
∣V = v2

]

= E

[
r(‖X‖2)

‖X‖2/V

∣
∣
∣
∣V = v2

]

.

The first inequality follows since r(‖X‖2) is nondecreasing while the second since
r(t)/t is nonincreasing and ‖X‖2/V is stochastically decreasing in V . Finally, using
the fact that aV −1 − 2(p − 2) is decreasing in V , and the fact that E[g(Y )h(Y )] ≤
E[g(Y )]E[h(Y )] if g and h are monotone in opposite directions, it follows that

R(θ, δB
a,r ) ≤ R(θ,X) + aE

[
V r(‖X‖2)

‖X‖2

]

E

[
a

V
− 2(p − 2)

]

≤ R(θ,X) (5.3)

by assumption (a). Hence δB
a,r (X) is minimax, since X is minimax.

The dominance result follows since the inequality in (5.2) is strict if there is strict
inequality in (2) or if r ′(·) is strictly positive on a set of positive measure and the
inequality in (5.3) is strict if the inequalities in (1) are strict. ��



5.2 Baranchik-Type Estimators 155

Example 5.1 (The multivariate Student-t distribution) The multivariate Student-t
distribution: If V has an inverse Gamma (v/2, v/2) distribution (that is, V ∼ v/χ2

v ),
then the distribution of X is a multivariate Student-t distribution with ν degrees of
freedom. Since E[V ] = E[v/χ2

v ] = v/(v−2) for v > 2 and E[V −1] = E[χ2
v /v] =

1, the conditions of Theorem 5.1 requires 0 ≤ a ≤ 2(p − 2) and v > 2.

Example 5.2 (Examples of the function r(t)) The James-Stein estimator has r(t) ≡
1 and hence satisfies conditions (2), (3) and (4) of Theorem 5.1. Also r(t) = t/(t+b)

satisfies these conditions. Similarly, the positive-part James-Stein estimator
(
1 −

a/XTX
)
+X is such that

r(t) =
{

t/a for 0 ≤ t ≤ a

1 for t ≥ a

and

r(t)

t
=

{
1/a for 0 ≤ t ≤ a

1/t for t ≥ a

hence also satisfies the conditions (2), (3) and (4) of Theorem 5.1.

It is worth noting, and easy to see, that if the sampling distribution is N(θ, Ip) and
the prior distribution is any variance mixture of normal distributions as in (3.4), in
the Baranchik representation of the Bayes estimator (see Corollary 3.1), the function
r(t)/t is always nonincreasing. This fact leads to the following observation on
the (sampling distribution) robustness of Bayes minimax estimators for a normal
sampling distribution. If δπ (X) = (

1 − a r(‖X‖2)/‖X‖2
)
X is a Bayes minimax

estimator with respect to a scale mixture of normal priors for a N(θ, Ip) sampling
distribution, and if r(t) is nondecreasing, this Bayes minimax estimator remains
minimax for a multivariate-t sampling distribution in Example 5.1 as long as the
degrees of freedom is greater than two.

It is also interesting to note that, in general, there will be no uniformly optimal
choice of the shrinkage constant “a” in the James-Stein estimator if the mixing
distribution G(·) is nondegenerate. The optimal choice will typically depend on
‖θ‖2. This is in contrast to the normal sampling distribution case, where G(·) is
degenerate, and where the optimal choice is a = (p − 2)σ 2.

5.2.2 Densities with Tails Flatter Than the Normal

In this section we consider the subclass of spherically symmetric densities f (‖x −
θ‖2) such that, for any t ≥ 0 for which f (t) > 0,

F(t)

f (t)
≥ c > 0 (5.4)
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for some fixed positive c, where

F(t) = 1

2

∫ ∞

t

f (u)du. (5.5)

This class was introduced in Berger (1975) (without the constant 1/2 multiplier).
This class of densities contains a large subclass of variance mixtures of normal

densities but also many others. The following lemma gives some conditions which
guarantee inclusion or exclusion from the class satisfying (5.4) and (5.5).

Lemma 5.1 Suppose X has density f (‖x − θ‖2).

(1) (Mixture of normals). If, for some distribution G on (0,∞),

f (‖x − θ‖2) =
(

1√
2π

)p ∫ ∞

0
v−p/2 exp

{

−‖x − θ‖2

2v

}

dG(v)

where E[V −p/2] is finite, E denoting the expectation with respect to G, then
f (·) is in the class (5.4) with c = E[V −p/2+1]/E[V −p/2] for p ≥ 3.

(2) If f (t) = h(t)e−at with h(t) nondecreasing, then f (·) is in the class (5.4).
(3) If f (t) = e−atg(t) where g(t) is nondecreasing and limt→∞ g(t) = ∞, then

f (t) is not in the class (5.4).

Proof (1) Applying the definition of F in (5.5) we have

F(t) = 1

2

∫ ∞

t

f (u)du

= 1

2(
√

2π)p

∫ ∞

t

∫ ∞

0
v−p/2 exp {−u/2v} dG(v)du

= 1

(
√

2π)p

∫ ∞

0
v−p/2+1 exp {−t/2v} dG(v).

Hence the ratio in (5.4) equals

F(t)

f (t)
=

∫ ∞
0 v−p/2+1 exp {−t/2v} dG(v)
∫ ∞

0 v−p/2 exp {−t/2v} dG(v)

≥
∫ ∞

0 v−p/2+1 dG(v)
∫ ∞

0 v−p/2dG(v)

= E[V −p/2+1]
E[V −p/2] . (5.6)

The inequality follows since the family of densities proportional to the function v →
v−p/2 exp {−t/2v} has monotone (increasing) likelihood ratio in the parameter t .
Note that if p ≥ 3, E[V −p/2] < ∞ implies E[V −p/2+1] < ∞. This completes the
proof of (1).



5.2 Baranchik-Type Estimators 157

(2) In this case it follows

F(t)

f (t)
=

1
2

∫ ∞
t

h(u)e−audu

h(t)e−at

≥ 1

2

∫ ∞

t

e−a(u−t)du

= 1

2a
.

Hence (5.4) is satisfied with c = 1/2a, which proves (2).
(3) In this case it follows

2 lim
t→∞

F(t)

f (t)
= lim

t→∞

∫ ∞
t

exp {−aug(u)} du

exp{−atg(t)}

= lim
t→∞

∫ ∞

t

exp {−aug(u) + atg(t)} du

= lim
t→∞

∫ ∞

0
exp {−a(u + t)g(u + t) + atg(t)} du

≤ lim
t→∞

∫ ∞

0
exp {−aug(t)} du

= lim
t→∞

1

ag(t)

= 0.

Hence f (t) is not in the class (5.4), which shows (c). ��
Part (2) of the lemma shows that densities with tails flatter than the normal (and

including the normal) are in the class (5.4), while densities with tails “sufficiently
lighter” than the normal are not included. Also the condition in part (3) is stronger
than necessary in that it suffices that the condition hold only for all t larger than
some positive K . See Berger (1975) for further details and discussion.

Example 5.3 Some specific examples in the class (5.4) include (see Berger 1975
for more details)

(1) f (t) = K/cosht (c ≈ 1/2)

(2) f (t) = Kt(1 + t2)−m with m > p/4 (c = m/2)

(3) f (t) = Ke−αt−β
/
(1 + e−αt−β)2 (c = α/2)

(4) f (t) = Ktne−t/2 for n ≥ 0 (c = 1).

The latter two distributions are known as the logistic type and Kotz , respectively.
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The following lemma plays the role of Stein’s lemma (Theorem 2.1) for the
family of spherically symmetric densities.

Lemma 5.2 Let X have density f (‖x−θ‖2) and let g(X) be a weakly differentiable
function such that Eθ [|(X − θ)Tg(X)|] < ∞. Then

Eθ [(X − θ)Tg(X)] = Eθ

[
F(‖X − θ‖2)

f (‖X − θ‖2)
div g(X)

]

= C E∗
θ

[

div g(X)

]

where F(t) is defined as in (5.5) and E∗
θ denotes expectation with respect to the

density

x → 1

C
F(‖x − θ‖2)

and where it is assumed that

C =
∫

Rp

F (‖x − θ‖2) dx < ∞ .

Proof Note that the existence of the expectations in Lemma 5.2 will be guaranteed
for any function g(x) such that Eθ [‖g(x)‖2] < ∞ as soon as E0[‖X‖2] < ∞.
The proof will follow along the lines of Sect. 2.4 making use of Stokes’ theorem. It
follows that

E[(X − θ)Tg(X)]
=

∫

Rp

(x − θ)Tg(x)f (‖x − θ‖2) dx

=
∫ ∞

0

∫

SR,θ

(x − θ)Tg(x) f (‖x − θ‖2) dσR,θ (x) dR (by Lemma 1.4)

=
∫ ∞

0

∫

SR,θ

(
x − θ

‖x − θ‖
)T

dσR,θ (x) R f (R2) dR

=
∫ ∞

0

∫

BR,θ

div g(x) dxR f (R2) dR (Stokes’ theorem)

=
∫

Rp

div g(x)

∫ ∞

‖x−θ‖
Rf (R2) dR dx (Fubini’s theorem)

=
∫

Rp

div g(x) F (‖x − θ‖2) dx
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= Eθ

[

div g(x)
F (‖x − θ‖2)

f (‖x − θ‖2)

]

= C E∗
θ

[

div g(X)

]

��
Now, with the important analog of Stein’s lemma in hand, we can extend some

of the minimaxity results from the Gaussian setting to the case of spherically
symmetric distributions. The following result gives conditions for minimaxity of
estimators of the Baranchik type.

Theorem 5.2 Let X have density f (‖x − θ‖2) which satisfies (5.4) for some 0 <

c < ∞. Assume also that E0[‖X‖2] < ∞ and E0[‖X‖−2] < ∞. Let

δB
a,r (X) =

(

1 − a r(‖X‖2)

‖X‖2

)

X

where r(·) is absolutely continuous. Then δB
a,r (X) is minimax for p ≥ 3 provided

(1) 0 < a ≤ 2 c (p − 2),
(2) 0 ≤ r(t) ≤ 1, and
(3) r(·) is nondecreasing.

Furthermore δB
a,r (X) dominates X provided both inequalities are strict in (1) or

in (2) on a set of positive measure or if r ′(·) is strictly positive on a set of positive
measure.

Proof We note that the conditions ensure finiteness of the risk so that Lemma 5.2 is
applicable. Hence we have

R(θ, δB
a,r ) = Eθ

[

‖X − θ‖2 + a2r2(‖X‖2)

‖X‖2
− 2

a r(‖X‖2)XT(X − θ)

‖X‖2

]

= R(θ,X) + a Eθ

[
ar2(‖X‖2)

‖X‖2 − 2 div

(
r(‖X‖2)X

‖X‖2

)
F(‖X − θ‖2)

f (‖X − θ‖2)

]

by Lemma 5.2. Therefore the risk difference between δB
a,r (X) and X equals

Δθ = a Eθ

[
ar2(‖X‖2)

‖X‖2
−

(
2(p − 2)r(‖X‖2)

‖X‖2
+ 4 r ′(‖X‖2)

)
F(‖X − θ‖2)

f (‖X − θ‖2)

]

≤ a Eθ

[
r(‖X‖2)

‖X‖2

(

a − 2(p − 2)
F (‖X − θ‖2)

f (‖X − θ‖2)

)]

≤ a Eθ

[
r(‖X‖2)

‖X‖2

(
a − 2(p − 2) c

)
]

≤ 0.

The domination part follows as in Theorem 5.1. ��
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Theorem 5.2 applies for certain densities for which Theorem 5.1 is not applicable
and additionally lifts the restriction that r(t)/t is nonincreasing. However, if the
density is a mixture of normals, and both theorems apply, the shrinkage constant
“a” given by Theorem 5.1 (with a = 2(p − 2)/E[V −1]) is strictly larger than that
for Theorem 5.2 ( with a = 2(p −2)c) whenever the mixing distribution G(·) is not
degenerate. To see this note that

1

E[V −1] > c = E[V −p/2+1]
E[V −p/2]

or equivalently

E[V −p/2] > E[V −1]E[V −p/2+1]

whenever the positive random variable V is non-degenerate. Note also that
E[V −1] < ∞ whenever E[V −p/2] < ∞ and p ≥ 3.

Example 5.4 (The multivarite Student-t distribution, continued) Suppose X has a
p-variate Student-t distribution with ν degrees of freedom as in Example 5.1, so that
V has an inverse Gamma(ν/2, ν/2) distribution. In this case

E[V −p/2] = 2p/2Γ
(p+ν

2

)

νp/2Γ
(

ν
2

)

which is finite for all ν > 0 and p > 0.

The bound on the shrinkage constant, “a”, in Theorem 5.1 is 2(p − 2) as shown in
Example 5.1, while the bound on “a”, in Theorem 5.2, as indicated above, is given
by

2(p − 2)
E[V −p/2+1]
E[V −p/2] = 2(p − 2)

(
ν

ν + p − 2

)

< 2(p − 2).

Hence, for large p, the bound on the shrinkage factor “a” can be substantially less
for Theorem 5.2 than for Theorem 5.1 in the case of a multivariate-t sampling
distribution. Note that, for fixed p, as ν tends to infinity the smaller bound tends
to the larger one (and the Student-t distribution tends to the normal).

Example 5.5 (Examples 5.3 continued) All of the distributions in Example 5.3
satisfy the assumptions of Theorem 5.2 (under suitable moment conditions for the
second density). It is interesting to note that for the Kotz distribution , the value of c

(= 1), as in (5.4), doesn’t depend on the parameter n > 0. Hence the bound on the
shrinkage factor “a” is 2(p − 2) and is also independent of n, indicating a certain
distributional robustness of the minimaxity property of Baranchik type estimators
with a < 2(p − 2).
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With additional assumptions on the function F(t)/f (t) in (5.4) (i.e. it is either
monotone increasing or monotone decreasing), theorems analogous to Theorem 5.2
can be developed which further improve the bounds on the shrinkage factor “a”.
These typically may involve additional assumptions on the function r(·). We will
see examples of this type in the next section.

5.3 More General Minimax Estimators

We now consider minimaxity of general estimators of the form X + a g(X). The
initial results rely on Lemma 5.2. The first result follows immediately from this
lemma and gives an expression for the risk.

Corollary 5.1 Let X have a density f (‖x − θ‖2) such that E0[‖X‖2] < ∞ and let
g(X) be weakly differentiable and be such that Eθ [‖g(X)‖2] < ∞.

Then, for loss L(θ, δ) = ‖δ − θ‖2, the risk of X + a g(X) can be expressed as

R(θ,X + a g(X)) = R(θ,X) + Eθ

[
a2 ‖g(X)‖2 + 2 a Q(‖X − θ‖2) div g(X)

]

(5.7)
where

Q(‖X − θ‖2) = F(‖X − θ‖2)

f (‖X − θ‖2)
(5.8)

and where F(‖X − θ‖2) is defined in (5.5).

An immediate consequence of Corollary 5.1 when the density of f satisfies (5.4),
i.e. Q(t) ≥ c > 0 for some constant c, is the following.

Corollary 5.2 Under the assumptions of Corollary 5.1, assume that, for some c >

0, we have Q(t) ≥ c for any t ≥ 0. Then X + g(X) is minimax and dominates X

provided, for any x ∈ R
p,

‖g(x)‖2 + 2 c div g(x) ≤ 0

with strict inequality on a set of positive measure.

The following two theorems establish minimaxity results under the assumption
that Q(t) is monotone.

Theorem 5.3 (Brandwein et al. 1993) Suppose X has density f (‖x − θ‖2) such
that E0[‖X‖2] < ∞ and that Q(t) in (5.8) is nonincreasing. Suppose there exists a
nonpositive function h(U) such that ER,θ [h(U)] is nondecreasing where U ∼ UR,θ

(the uniform distribution on the sphere of radius R centered at θ ) and such that
Eθ [|h(x)|] < ∞. Furthermore suppose that g(X) is weakly differentiable and also
satisfies
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(1) div g(X) ≤ h(X),
(2) ‖g(X)‖2 + 2 h(X) ≤ 0 , and
(3) 0 ≤ a ≤ E0(‖X‖2)/p.

Then δ(X) = X + ag(X) is minimax. Also δ(X) dominates X provided g(·) is
nonzero with positive probability and strict inequality holds with positive probability
in (1) or (2), or both inequalities are strict in (3).

Proof Note that g(x) satisfies the conditions of Corollary 5.1. Then we have

R(θ, δ) = R(θ,X) + a E[a ‖g(X)‖2 + 2 Q(‖X − θ‖2) div g(X)]
= R(θ,X) + a E[ER,θ [a ‖g(X)‖2 + 2 Q(R2) div g(X)]]

where ER,θ is as above and E denotes the expectation with respect to the radial
distribution. Now, using (1) and (2), we have

R(θ, δ) ≤ R(θ,X) + a E[ER,θ [−2 a h(X) + 2 Q(R2) h(X)]]
= R(θ,X) + 2 a E[(a − Q(R2)) ER,θ [−h(X)]]
≤ R(θ,X) + 2 a E[a − Q(R2)] Eθ [−h(X)]

by the monotonicity assumptions on ER,θ [h(·)] and Q(t) as well as the covariance
inequality.

Hence, since −h(X) ≥ 0, we have R(θ, δ) ≤ R(θ,X), provided 0 ≤ a ≤
E[Q(R2)]. Now E[Q(R2)] = E0[‖X‖2]/p by Lemma 5.3 below, hence δ is
minimax. The domination result follows since the additional conditions imply strict
inequality between the risks. ��
Lemma 5.3 For any k > −p such that E[Rk+2] < ∞,

E[RkQ(R2)] = 1

p + k
E[Rk+2].

In particular, we have

E[Q(R2)] = 1

p
E[R2] = 1

p
E0[‖X‖2]

and, for p ≥ 3,

E

[
Q(R2)

R2

]

= 1

p − 2
.

Proof Recall that the radial density ϕ(r) of R = ‖X − θ‖ can be expressed as
ϕ(r) = σ(S)rp−1f (r2) where σ(S) is the area of the unit sphere S in Rp. By (5.8)
and (5.5), we have
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E[RkQ(R2)] = 1

2

∫

Rp

‖x‖k

∫ ∞

‖x‖2
f (t) dt dx

= 1

2

∫ ∞

0

∫

B√
t

‖x‖kdx f (t) dt by Fubini’s theorem

= 1

2

∫ ∞

0

∫ √
t

0
σ(S) rk+p−1dr f (t) dt by Lemma 1.4

= 1

2

∫ ∞

0
σ(S)

t(k+p)/2

k + p
f (t) dt

= 1

k + p

∫ ∞

0
rk+2ϕ(r) dr by the change of variable t = r2

= 1

k + p
E[Rk+2].

Note that positivity of integrands and E[Rk+2] < ∞ implies E[RkQ(R2)] < ∞.
��

The next theorem reverses the monotonicity assumption on Q(·) and changes the
condition on the function h(X) which, in turn, bounds the divergence of g(X).

Theorem 5.4 (Brandwein et al. 1993) Suppose X has a density f (‖x − θ‖2)

such that E0[‖X‖2] < ∞ and E0[1/‖X‖2] < ∞ and such that Q(t) in (5.8)
is nondecreasing. Suppose there exists a nonpositive function h(X) such that
ER,θ

[
R2h(U)

]
is nonincreasing where U ∼ UR,θ and such that Eθ [−h(X)] < ∞.

Furthermore suppose that g(X) is weakly differentiable and also satisfies

(1) div g(X) ≤ h(X),
(2) ‖g(X)‖2 + 2 h(X) ≤ 0, and
(3) 0 ≤ a ≤ 1

(p−2)E0(1/‖X‖2)
.

Then δ(X) = X + a g(X) is minimax. Also δ(X) dominates X provided g(·) is
nonzero with positive probability and strict inequality holds with positive probability
in (1) or (2), or both inequalities are strict in (3).

Proof As in the proof of Theorem 5.3, we have

R(θ, δ) ≤ R(θ,X) + 2 a E[(a − Q(R2)) ER,θ [−h(X)]]

= R(θ,X) + 2 a E

[(
a

R2 − Q(R2)

R2

)

ER,θ [−R2 h(X)]
]

≤ R(θ,X) + 2 a E

[
a

R2
− Q(R2)

R2

]

ER0,θ [−R2
0 h(X)]

where R0 is a point such that a −Q(R2
0) = 0, provided such a point exists. Here we

have used the version of the covariance inequality that states



164 5 Spherically Symmetric Case I

Ef (X)g(X) ≤ Ef (X)g(X0)

provided that g(X) is nondecreasing (respectively, nonincreasing) and f (X)

changes sign once from + to − (respectively, − to +) at X0. But such a point
R0 does exist provided

E

[
a

R2 − Q(R2)

R2

]

≤ 0

since Q(R2) is nondecreasing.

It follows that R(θ, δ) ≤ R(θ,X) provided that aE[ 1
R2 ] ≤ E[Q(R2)

R2 ]. However

E[Q(R2)

R2 ] = 1
p−2 by Lemma 5.3 and hence the result follows as in Theorem 5.3. ��

Note that the bound on “a” in both of these theorems is strictly larger than the
bound in Theorem 5.2 provided Q(R2) is not constant. This is so since the bound in
Theorem 5.2 is based on c = inf Q(R2) while, in these results, the bound is equal
to a (possibly weighted) average of Q(R2).

We indicate the utility of these two results by applying them to the James-Stein
estimator.

Corollary 5.3 Let X ∼ f (‖x − θ‖2) for p ≥ 4 and let δJS
b (X) = (1 − b/‖X‖2)X.

Assume also that E0[‖X‖2] < ∞ and E0[1/‖X‖2] < ∞. Then δJS
b (X) is minimax

and dominates X provided either

(1) Q(R2) is nonincreasing and

0 < b < 2(p − 2)
E0‖X‖2

p
, or

(2) Q(R2) is nondecreasing and

0 < b <
2

E0(1/‖X‖2)
.

Proof We apply Theorems 5.3 and 5.5 with g(X) = −[2 (p − 2)/‖X‖2]X,
div g(X) = −2 (p − 2)2/‖X‖2 = h(X). It follows from Lemma A.5 in
Appendix A.10 that when p ≥ 4, Eθ,R[h(U)] is nondecreasing in R and
Eθ,R[R2h(U)] is nonincreasing in R. Hence, if Q(R2) is nonincreasing, Theo-
rem 5.3 implies that

δa(X) = X − 2 (p − 2) a

‖X‖2 X = δJS
2 (p−2) a(X)

is minimax and dominates X provided 0 < a < E0[‖X‖2]/p or equivalently 0 <

2 (p − 2) a < 2 (p − 2) E0(‖X‖2)/p which is (1) with b = 2 (p − 2) a. Similarly,
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applying Theorem 5.5 when Q(R2) is nondecreasing, we find that δa(X) is minimax
and dominates X if

0 < a <
1

(p − 2)E0(1/‖X‖2)

which is (2). ��
Example 5.6 (Densities with increasing and decreasing Q(R2)) Note first that
variance mixtures of normal distributions have increasing Q(R2) since, by (5.6)
and (5.8), Q(R2) may be viewed as the expected value of V with respect to a family
of distributions with monotone increasing likelihood ratio in t = R2. Note also that
the bound for the shrinkage constant “a” in a James-Stein estimator is the same in
Corollary 5.3 as it is in Theorem 5.1 for mixtures of normals.

We also note that, if we consider f (t) to be proportional to a density of a positive
random variable, then 2 Q(t) is the reciprocal of the hazard rate. There is a large
literature on increasing and decreasing hazard rates (see, for example, Barlow and
Proschan 1981).

We note that the monotonicity of Q(t) may be determined in many cases by
studying the log-convexity or the log-concavity of f (t). In particular, if ln f (t) is
convex (concave), then Q(t) is nondecreasing (nonincreasing). To see this, note that

Q(t) = 1

2

∫ ∞
t

f (u) du

f (t)
= 1

2

∫ ∞

0

f (s + t)

f (t)
ds

and hence Q(t) will be nondecreasing (nonincreasing) if f (s+t)
f (t)

is nondecreasing
(nonincreasing) in t for each s > 0. But, assuming for simplicity that f is
differentiable, for any t ≥ 0 such that f (t) > 0,

d

dt

(
f (s + t)

f (t)

)

= f (t)f ′(s + t) − f (s + t)f ′(t)
f 2(t)

= f (s + t)

f (t)

[
f ′(s + t)

f (s + t)
− f ′(t)

f (t)

]

= f (s + t)

f (t)

[
d

dt
ln f (s + t) − d/dt ln f (t)

]

.

This is positive or negative when ln f (s + t) is convex or concave in t ,
respectively. For example if X has a Kotz distribution with parameter n, f (t) ∝
tne−t/2. Then ln f (t) = K + n ln t − t

2 which is concave if n ≥ 0 and convex
if n ≤ 0. Hence Q(t) is decreasing if n > 0 and increasing if n < 0. Of
course the log-convexity (log-concavity) of f (t) is not a necessary condition for
the nondecreasing (nonincreasing) monotonicity of Q(t). Thus, it is easy to check
that f (t) ∝ exp(−t2) exp[−1/2

∫ t

0 exp(−u2) du] leads to Q(t) = exp(t2), which
is increasing. But log f (t) is not convex.
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An important class of distributions is covered by the following corollary.

Corollary 5.4 Let X ∼ f (‖x − θ‖2) for p ≥ 4 with f (t) ∝ exp(−βtα) where
α > 0 and β > 0. Then δJS

b (X) = (1 − b/‖X‖2)X is minimax and dominates X

provided either

(1) α ≤ 1 and 0 < b < 2
β1/α

p−2
p

Γ ((p+2)/2α)
Γ (p/2α)

or

(1) α > 1 and 0 < b < 2
β1/α

Γ (p/2α)
Γ ((p−2)/2α)

.

Proof By the above discussion, Q(R2) is nonincreasing (nondecreasing) for α ≥ 1
(α ≤ 1). Then the result follows from Corollary 5.3 and the fact that

E0[‖X‖k] = 1

βk/2α

Γ (
p+k
2α

)

Γ (
p
2α

)

for k > −p. ��
The final theorem of this section gives conditions for minimaxity of estimators

of the form X + a g(X) for general spherically symmetric distributions. Note that
no density is needed for this result which relies on the radial distribution defined in
Theorem 4.1.

We first need the following lemma which will play the role of the Stein lemma
in the proof of the domination and minimaxity results.

Lemma 5.4 Let X have a spherically symmetric distribution around θ , and let
g(X) be a weakly differentiable function such that Eθ [ |(X − θ)Tg(X)| ] < ∞.
Then

Eθ [(X − θ)Tg(X)] = 1

p
E

[

R2
∫

BR,θ

div g(X) dVR,θ (X)

]

where E denotes the expectation with respect to the radial distribution and where
VR,θ (·) is the uniform distribution on BR,θ , the ball of radius R centered at θ .

Proof Let ρ be the radial distribution and according to Theorem 4.1, we have

E[(X − θ)Tg(X)] =
∫

R+

∫

SR,θ

(x − θ)Tg(x) dUR,θ (x) dρ(R)

=
∫

R+

R

σR,θ (SR,θ )

∫

SR,θ

(x − θ)T

‖x − θ‖ g(x) dσR,θ (x) dρ(R)

=
∫

R+

R

σR,θ (SR,θ )

∫

BR,θ

div g(x) dx dρ(R) by Stokes’ theorem

= 1

p

∫

R+

∫

BR,θ

div g(x) dVR,θ (x) R2dρ(R)

since the volume of BR,θ equals λ(BR,θ ) = RσR,θ (SR,θ )/p. ��
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Theorem 5.5 (Brandwein and Strawderman 1991a) Let X have a spherically
symmetric distribution around θ , and suppose E0[‖X‖2] < ∞ and E0[1/‖X‖2] <

∞. Suppose there exists a nonpositive function h(·) such that h(X) is subharmonic
and ER,θ [R2 h(U)] is nonincreasing where U ∼ UR,θ and such that Eθ [|h(x)|] <

∞. Furthermore suppose that g(X) is weakly differentiable and also satisfies

(1) div g(X) ≤ h(X),
(2) ‖g(X)‖2 + 2 h(X) ≤ 0, and
(3) 0 ≤ a ≤ 1

pE0(1/‖X‖2)
.

Then δ(X) = X + a g(X) is minimax. Also δ(X) dominates X provided g(·) is non-
zero with positive probability and strict inequality holds with positive probability in
(1) or (2), or both inequalities are strict in (3).

Proof Using Lemma 5.4 and Conditions (1) and (2), we have

R(θ, δ) = R(θ,X) + a Eθ

[
a ‖g(X)‖2 + 2 (X − θ)Tg(X)

]

≤ R(θ,X) + 2 a Eθ

[ − a h(X) + (X − θ)Tg(X)
]

= R(θ,X) + 2 a

{

Eθ

[ − a h(X)
] + 1

p
E

[

R2
∫

BR,θ

div g(X) dVR,θ (X)

]}

≤ R(θ,X) + 2 a

{

Eθ

[ − a h(X)
] + 1

p
E

[

R2
∫

BR,θ

h(X) dVR,θ (X)

]}

.

By subharmonicity of h (see Appendix A.8 and Sections 1.3 and 2.5 in du Plessis
1970),

∫

BR,θ

h(X)dVR,θ (X) ≤
∫

SR,θ

h(X)dUR,θ (X).

Hence,

R(θ, δ) ≤ R(θ,X) + 2 a

{

Eθ

[ − a h(X)
] + 1

p
E

[

R2
∫

SR,θ

h(X) dUR,θ (X)

]}

= R(θ,X) + 2 a E

[(
a

R2 − 1

p

)

·
(

− R2
∫

SR,θ

h(X)dUR,θ (X)

)]

= R(θ,X) + 2 a E

[(
a

R2 − 1

p

)
( − ER,θ [R2h(X)])

]

≤ R(θ,X) + 2 a E

[(
a

R2 − 1

p

)]

E
[ − ER,θ [R2h(X)]].



168 5 Spherically Symmetric Case I

The last inequality follows from the monotonicity of ER,θ [R2h(X)] and the
covariance inequality. Hence R(θ, δ) ≤ R(θ,X) when E

[
a/R2 − 1/p

] ≤ 0 which
is equivalent to (3). The domination part follows as before. ��

We note that the shrinkage constant in the above result 1/{pE0[1/‖X‖2]} is
somewhat smaller than the constant in Theorem 5.4 (a = 1/{(p − 2)E0[1/‖X‖2]}),
but Theorem 5.5 has essentially no restrictions on the distribution of X aside from
moment conditions (which coincide in Theorems 5.4 and 5.5). In particular we do
not even assume that a density exists! However there is an additional assumption of
subharmonicity of h.

The following useful corollary gives minimaxity for James-Stein estimators in
dimension p ≥ 4 for all spherically symmetric distributions with finite E0[‖X‖2]
and E0[1/‖X‖2].
Corollary 5.5 Let X have a spherically symmetric distribution with p ≥ 4, and
suppose E0[‖X‖2] < ∞ and E0[1/‖X‖2] < ∞. Then

δJS
a (X) =

(

1 − a

‖X‖2

)

X

is minimax and dominates X provided

0 < a <
1

pE0(1/‖X‖2)
.

Proof Here g(X) = −X/‖X‖2 and is weakly differentiable for p ≥ 3. Then
div g(X) = −(p − 2)/‖X‖2 and ‖g(X)‖2 = 1/‖X‖2 so that Conditions (1) and (2)
of Theorem 5.5 are satisfied with h(X) = −α/‖X‖2 where 0 ≤ α ≤ p − 2. Now
the subharmonicity of h(X) and its monotonicity condition hold since it is shown in
the appendix that, for p ≥ 4, 1/‖X‖2 is super-harmonic (so that ER,θ [1/‖X‖2] is
nonincreasing in R) and that R2ER,θ [1/‖U‖2] is nondecreasing in R.

Furthermore, it is worth noting that ER,θ [1/‖U‖2] is nonincreasing in ‖θ‖
(see Lemma A.5 and remark that follows). Hence, for any θ ∈ R

p, we have
Eθ [−h(X)] < ∞ since

ER,θ [1/‖X‖2] ≤ ER,0[1/‖X2‖]

so that

Eθ [1/‖X‖2] ≤ E0[1/‖X‖2] < ∞ ,

by assumption. ��
Example 5.7 (Nonspherical minimax estimators) In Sect. 2.4.4, we considered
estimators which shrink toward a subspace. Theorem 5.5 allows us to show that
estimators of this type are minimax for general spherically symmetric distributions.
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To be specific, suppose V is a s < p dimensional linear subspace and let

δa(X) = PV X +
(

1 − a

‖X − PV X‖2

)

(X − PV X).

As in the proof of Theorem 2.6, it can be shown that the risk of δa(X) equals

R(θ, δa(X)) = Eν1 [‖Y1 − ν1‖2] + Eν2

[∥
∥
∥
∥

(

1 − a

‖Y2‖2

)

Y2 − ν2

∥
∥
∥
∥

2]

, (5.9)

where Y1, Y2, ν1 and ν2 are as in Theorem 2.6.
In the present case, Y2 has a spherically symmetric distribution about ν2 of

dimension p − s. Hence, by Theorem 5.5,

E(θ, δa(X)) ≤ Eν1 [‖Y1 − ν1‖2] + Eν2 [‖Y2 − ν2‖2]
= Eθ‖X − θ‖2

= R(θ,X),

provided p − s ≥ 4 and

0 < a <
1

(p − s) E0[1/‖X − PV X‖2] .

5.4 Bayes Estimators

In this section, we consider (generalized) Bayes estimators of the location vector
θ ∈ R

p of a spherically symmetric distribution. More specifically let X be a random
vector in R

p with density f (‖x − θ‖2) and let π(θ) be a prior density. Under
quadratic loss ‖δ−θ‖2, the (generalized) Bayes estimator of θ is the posterior mean
given by

δπ (X) = X + 1

m(X)

∫

Rp

(θ − X) f (‖X − θ‖2) π(θ) dθ (5.10)

where m(x) is the marginal

m(x) =
∫

Rp

f (‖x − θ‖2)π(θ) dθ. (5.11)

Recall from Sect. 3.1.1 that, in the normal case (that is, f (t) ∝ exp(−t/2σ 2)

with σ 2 known) the superharmonicity of
√

m(x) is a sufficient condition for
minimaxity of δπ (X). This superharmonicity is implied by that of m(x) and in
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turn by that of π(θ). While in the nonnormal case minimaxity has been studied by
many authors (for example, see Strawderman (1974b); Berger (1975); Brandwein
and Strawderman (1978, 1991a)) relatively few results on minimaxity of Bayes
estimators are known. The primary technique to establish minimaxity is through
a Baranchik representation of the form (1 − a r (‖X‖2)/‖X‖2)X. The minimaxity
conditions are essentially those developed in Theorems 5.3 and 5.4 and most of the
derivations are in the context of variance mixtures of normals. See Strawderman
(1974b), Maruyama (2003a) and Fourdrinier et al. (2008) for more discussion and
results on Bayes estimation in this setting.

The main difficulty in using Theorem 5.1 with mixtures of normals densities for
the sampling distribution is to prove the monotonicity (and boundedness) properties
of the function r(·). Maruyama (2003a) and Fourdrinier et al. (2008) consider
priors which are mixtures of normals as well. Their main condition for obtaining
minimaxity of the corresponding Bayes estimator is that the mixing density g of the
sampling distribution has monotone nondecreasing likelihood ratio when considered
as a scale parameter family. In Fourdrinier et al. (2008), explicit use is made of that
monotone likelihood ratio property for the mixing (possibly generalized) density h

of the prior distribution.
The main result of Fourdrinier et al. (2008) is the following. Consult that paper

for the somewhat technical proof.

Theorem 5.6 Let X be a random vector in R
p (p ≥ 3) distributed as a variance

mixture of multivariate normal distributions with density

f (x) =
∫ ∞

0

1

(2πv)p/2 exp

(

− 1

2

‖x − θ‖2

v

)

g(v) dv (5.12)

where g is the density of a known nonnegative random variable V . Let π be a
(generalized) prior with density of the form

π(θ) =
∫ ∞

0

1

(2πt)p/2
exp

(

− 1

2

‖θ‖2

t

)

h(t) dt (5.13)

where h is a function from R+ into R+ such that this integral exists.
Assume that the mixing density g is such that

E[V ] =
∫ ∞

0
v g(v) dv < ∞ and E[V −p/2] =

∫ ∞

0
v−p/2 g(v) dv < ∞.

(5.14)
Assume also that the mixing function h of the (possibly improper) prior density π is
absolutely continuous and satisfies

lim
t→∞

h(t)

tβ
= c (5.15)
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for some β < p/2 − 1 and some 0 < c < ∞. Assume, finally, that h and g have
monotone increasing likelihood ratio when considered as a scale parameter family.

Then, if there exist K > 0, t0 > 0 and α < 1 such that

h(t) ≤ K t−α for 0 < t < t0, (5.16)

the (generalized or proper) Bayes estimator δh with respect to the prior distribution
corresponding to the mixing function h is minimax provided that β satisfies

− (p − 2)

[
E[V −p/2+1]

E[V ]E[V −p/2] − 1

2

]

≤ β. (5.17)

For priors with mixing distribution h satisfying (5.16) and (5.17) an argument as
in Maruyama (2003a) using Brown (1979) and a Tauberian theorem suggests that
the resulting generalized Bayes estimator is admissible if β ≤ 0. Maruyama and
Takemura (2008) have verified this under additional conditions which imply, in the
setting of Theorem 5.6, that Eθ [‖X‖3] < ∞.

As an illustration assume that the sampling distribution is a p-variate Student-
t with n0 degrees of freedom which corresponds to the inverse gamma mixing
density (n0/2, n0/2), that is, to g(v) ∝ v−(n0+2)/2 exp(−n0/2v). Let the prior be
a Student-t distribution with n degrees of freedom, that is, with mixing density
h(t) ∝ t−(n+2)/2 exp(−n/2t). It is clear that Conditions (5.14) and (5.15) are
satisfied with n0 ≥ 7. It is also clear that Condition (5.16) holds for any α < 1.
Finally a simple calculation shows that

E[V −p/2+1]
E[V ]E[V −p/2] = n0 − 2

p + n0 − 2

so that Condition (5.17) reduces to

n ≤ (p − 2)

[
2(n0 − 2)

p + n0 − 2
− 1

]

− 2.

Note that, as n > 0, this condition holds if and only if p ≥ 5 and

n0 ≥ 3 + p
p

p − 4
.

Other examples (including generalized priors) can be found in Fourdrinier et al.
(2008).

In the following, we consider broader classes of spherically symmetric dis-
tributions which are not restricted to variance mixtures of normals. Minimaxity
of generalized Bayes estimators is obtained for unimodal spherically symmetric
superharmonic priors π(‖θ‖2) under the additional assumption that the Laplacian
of π(‖θ‖2) is a nondecreasing function of ‖θ‖2. The results presented below are
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derived in Fourdrinier and Strawderman (2008a). An interesting feature is that their
approach does not rely on the Baranchik representation used in Maruyama (2003a)
and Fourdrinier et al. (2008). Note, however, that the superharmonicity property of
the priors implies that the corresponding Bayes estimators cannot be proper (see
Theorem 3.2).

First note that, for any prior π(θ), the Bayes estimator in (5.10) can be written as

δπ (X) = X + ∇M(X)

m(X)
(5.18)

where, for any X ∈ R
p,

M(x) =
∫

Rp

F (‖x − θ‖2) π(θ) dθ

with F given in (5.5). Thus δπ (X) has the general form δπ (X) = X + g(X) (with
g(X) = ∇M(X)/m(X)). If the density f (‖x − θ‖2) is as in Sect. 5.2.1, that is,
such F(t)/f (t) ≥ c > 0 for some fixed positive constant c, then Corollary 5.2
applies and δπ (X) = X + g(X) = X + ∇M(X)/m(X) is minimax provided, for
any x ∈ R

p,

2 c div g(x) + ‖g(x)‖2 ≤ 0.

In particular, it follows that if

2 c
ΔM(x)

m(x)
− 2 c

∇M(x) · ∇m(x)

m2(x)
+ ‖∇M(x)‖2

m2(x)
≤ 0 (5.19)

and

Eθ

[∥
∥
∥
∥
∇M(X)

m(X)

∥
∥
∥
∥

2]

< ∞,

δπ is minimax.
For a spherically symmetric prior π(‖θ‖2), the main result of Fourdrinier and

Strawderman (2008a) is the following.

Theorem 5.7 Assume that X has a spherically symmetric distribution in R
p with

density f (‖x − θ‖2). Assume that θ ∈ R
p has a superharmonic prior π(‖θ‖2) such

that π(‖θ‖2) is nonincreasing and Δπ(‖θ‖2) is nondecreasing in ‖θ‖2. Assume
also that

Eθ

[∥
∥
∥
∥
∇M(X)

m(X)

∥
∥
∥
∥

2]

< ∞.
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Then the Bayes estimator δπ is minimax under quadratic loss provided that f (t) is
log-convex, c = F(0)

f (0)
> 0 and

∫ ∞

0
f (t)tp/2dt ≤ 4c

∫ ∞

0
−f ′(t)tp/2dt < ∞. (5.20)

To prove Theorem 5.7 we need some preliminary lemmas whose proofs are given in
Appendix A.9. Note first that it follows from the spherical symmetry of π that, for
any x ∈ R

p, m(x) and M(x) are functions of t = ‖x‖2. Then, setting

m(x) = m(t) and M(x) = M(t),

we have

∇m(x) = 2m′(t) x and ∇M(x) = 2 M ′(t) x. (5.21)

Lemma 5.5 Assume that π ′(t) ≤ 0, for any t ≥ 0. Then we have M ′(t) ≤ 0, for
any t ≥ 0.

Lemma 5.6 For any x ∈ R
p,

x · ∇m(x) = −2
∫ ∞

0
H(u, t) up/2 f ′(u) du

and

x · ∇M(x) =
∫ ∞

0
H(u, t) up/2 f (u) du

where, for u ≥ 0 and for t ≥ 0,

H(u, t) = λ(B)

∫

B√
u,x

x · θ π ′(‖θ‖2) dV√
u,x(θ) (5.22)

and V√
u,x is the uniform distribution on the ball B√

u,x of radius
√

u centered at x

and λ(B) is the volume of the unit ball.

Lemma 5.7 For any t ≥ 0, the function H(u, t) in (5.22) is nondecreasing in u

provided that Δπ(‖θ‖2) is nondecreasing in ‖θ‖2.

Lemma 5.8 Let h(‖θ − x‖2) be a unimodal density and let ψ(θ) be a symmetric
function. Then

∫

Rp

x · θ ψ(θ) h(‖θ − x‖2) dθ ≥ 0

as soon as ψ is nonnegative.
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Proof (Proof of Theorem 5.7) By the superharmonicity of π(‖θ‖2), we have
ΔM(x) ≤ 0 for all x ∈ R

p so that by (5.19), it suffices to prove that

− 2 c ∇M(x) · ∇m(x) + ‖∇M(x)‖2 ≤ 0 (5.23)

for all x ∈ R
p. Since m and M are spherically symmetric, by (5.21), (5.23)

reduces to −2cM ′(t)m′(t) + (
M ′(t)

)2 ≤ 0 where t = ‖x‖2. Since M ′(t) ≤
0 by Lemma 5.5, (5.23) reduces to −2cm′(t) + M ′(t) ≥ 0 or, by (5.21), to
−2 c x · ∇m(x) + x · ∇M(x) ≥ 0 or, by Lemma 5.6, to

4cE

[

H(u, t)
f ′(u)

f (u)

]

+ E[h(u, t)] ≥ 0, (5.24)

where E denotes the expectation with respect to the density proportional to
up/2f (u). Since, by assumption, Δπ(‖θ‖2) is nondecreasing in ‖θ‖2, H(u, t) is
nondecreasing in u by Lemma 5.7. Furthermore f ′(u)/f (u) is nondecreasing by
log-convexity of f so that (5.16) is satisfied as soon as

4 c E[H(u, t)] E

[
f ′(u)

f (u)

]

+ E[H(u, t)] ≥ 0. (5.25)

Finally, as π ′(‖θ‖2) ≤ 0 by assumption, Lemma 5.2 guarantees that H(u, t) ≤ 0
(note that V√

u,x has a unimodal density) and hence (5.25) reduces to

4cE

[
f ′(u)

f (u)

]

+ 1 ≤ 0

which is equivalent to (5.20). ��
Several examples of priors and sampling distributions which satisfy the assump-

tions of Theorem 5.7 are given in Fourdrinier and Strawderman (2008a). We briefly
summarize these.

Example 5.8 (Priors related to the fundamental harmonic prior) Let π(‖θ‖2) =(
1

A + ‖θ‖2

)c

with A ≥ 0 and 0 ≤ c ≤ p
2 − 1.

Example 5.9 (Mixtures of priors) Let (πα)αεA be a family of priors such that the
assumptions of Theorem 5.7 are satisfied for any α ∈ A. Then any mixture of the

form
∫

A

πα(‖θ‖2) dH(α) where H is a probability measure on A satisfies these

assumptions as well. For instance, Example 5.8 with c = 1, p ≥ 4, A = α and the

gamma density α −→ β1−v

Γ (1 − v)
α−ve−βα with β > 0 and 0 < v < 1 leads to the

prior

‖θ‖−2−v eβ‖θ‖2
Γ (v, β‖θ‖2),
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where

Γ (v, y) =
∫ ∞

y

e−xxv−1 dx

is the complement of the incomplete gamma function.

Example 5.10 (Variance mixtures of normals) Let

π(‖θ‖2) =
∫ ∞

O

( u

2π

)p/2
exp

(−u‖θ‖2

2

)

h(u)du

a mixture of normals with respect to the inverse of the variance . As soon as, for any
u > 0,

uh′(u)

h(u)
≤ −2,

the prior π(‖θ‖2) satisfies the assumptions of Theorem 5.7. Note that the priors in
Example 5.10 arise as such a mixture with h(u) ∝ αuk−p/2−1 exp(−A/2u).

Other examples can be given and a constructive approach is proposed in
Fourdrinier and Strawderman (2008a).

We now give examples of sampling distributions which satisfy the assumptions
of Theorem 5.7.

Example 5.11 (Variance mixtures of normals) Let

f (t) = (2 π)−p/2
∫ ∞

0
v−p/2 exp

(

− t

2 v

)

h(v) dv

where h is a mixing density and let V be a nonnegative random variable with density
proportional to f (t). If E[V −p/2] < ∞ and E[V ] E[V −p/2]/E[V −p/2+1] < 2 then
the sampling density f satisfies the assumptions of Theorem 5.7.

Example 5.12 (Densities proportional to e−αtβ ) Let

f (t) = K e−αtβ

where α > 0, 1
2 < β ≤ 1 and K is the normalizing constant. Then the sampling

density f satisfies the assumptions of Theorem 5.7 as soon as β is in a neighborhood
of the form ]1 − ε, 1] with ε > 0. However, note that these are not satisfied when
β = 1/2.

Fourdrinier and Strawderman (2008a) give other examples with densities propor-
tional to e−αt+βϕ(t) where ϕ is a convex function.
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5.5 Shrinkage Estimators for Concave Loss

In this section we consider improved shrinkage estimators for loss functions that
are concave functions of squared error loss. The basic results are due to Brandwein
and Strawderman (1980, 1991b) and we largely follow the method of proof in the
later paper. The general nature of the main result is that (under mild conditions) if
an estimator can be shown to dominate X under squared error loss then the same
estimator, with a suitably altered shrinkage constant, will dominate X for a loss
which is a concave function of squared error loss.

Let X have a spherically symmetric distribution around θ , and let g(X) be a
weakly differentiable function. The estimators considered are of the form

δ(X) = X + ag(X). (5.26)

The loss functions are of the form

L(θ, δ) = �(||δ − θ ||2), (5.27)

where �(·) is a differentiable nonnegative, nondecreasing concave function (so that,
in particular �′(·) ≥ 0).

One basic tool needed for the main result is Theorem 5.5, and the other is the
basic property of the concave function �(·) that �(t + a) ≤ �(t) + a�′(t).

The following result shows that shrinkage estimators that improve on X for
squared error loss also improve on X for concave loss provided the shrinkage
constant is adjusted properly.

Theorem 5.8 (Brandwein and Strawderman 1991a) Let X have a spherically
symmetric distribution around θ , let g(X) be a weakly differentiable function, and
let the loss be given by (5.27).

Suppose there exists a subharmonic function h(·) such that Eθ,R[R2 h(U)] is
nonincreasing where U ∼ UR,θ . Furthermore suppose that the function g(·)
satisfies E∗

θ [||g(X)||2] < ∞ and also satisfies

(1) div g(x) ≤ h(x), for any x ∈ R
p,

(2) ‖g(x)‖2 + 2h(x) ≤ 0, for any x ∈ R
p, and

(3) 0 ≤ a ≤ 1
pE∗

0 (1/‖X‖2)
,

where E∗
θ refers to the expectation with respect to the distribution whose Radon-

Nikodyn derivative with respect to the distribution of X is proportional to �′(||X −
θ ||2).

Then δ(X) = X + ag(X) is minimax. Also δ(X) dominates X provided
g(·) is non-zero with positive probability and strict inequality holds with positive
probability in (1) or (2), or both inequalities are strict in (3).
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Proof Note, by concavity of �(·) and the usual identity

R(θ, δ) = Eθ [�(||δ(X) − θ ||2)]
≤ Eθ [�(||X − θ ||2)]

+Eθ [�′(||X − θ ||2)(a2||g(X)||2 + 2a(X − θ)′g(X))].

Hence, the difference in risk, R(θ, δ) − R(θ,X) is bounded by

R(θ, δ) − R(θ,X) ≤ Eθ [�′(||X − θ ||2)(a2||g(X)||2 + 2a(X − θ)′g(X))]
= E∗

θ [(a2||g(X)||2 + 2a(X − θ)′g(X))]
≤ 0,

by Theorem 5.5 applied to the distribution corresponding to E∗
θ . ��
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