
Chapter 4
Spherically Symmetric Distributions

4.1 Introduction

In the previous chapters, estimation problems were considered for the normal
distribution setting. Stein (1956) showed that the usual estimator of a location vector
could be improved upon quite generally for p ≥ 3 and Brown (1966) substantially
extended this conclusion to essentially arbitrary loss functions. Explicit results of the
James-Stein type, however, have thus far been restricted to the case of the normal
distribution. Recall the geometrical insight from Sect. 2.2.2, the development did not
depend on the normality of X or even that θ is a location vector – this suggests that
the improvement for Stein-type estimators may hold for more general distributions.
Strawderman (1974a) first explored such an extension and considered estimation of
the location parameter for scale mixtures of multivariate normal distributions. Other
extensions of James-Stein type results to distributions other than scale mixtures
of normal distributions are due to Berger (1975), Brandwein and Strawderman
(1978), and Bock (1985). In this chapter, we will introduce the general class of
spherically symmetric distributions; we will examine point estimation for variants
of this general class in subsequent three chapters.

4.2 Spherically Symmetric Distributions

The normal distribution has been generalized in two important directions. First, as
a special case of the exponential family and second, as a spherically symmetric
distribution. In this chapter, we will consider the latter. There are a variety of
equivalent definitions and characterizations of the class of spherically symmetric
distributions; a comprehensive review is given in Fang et al. (1990). We now turn
our interest to general orthogonally invariant distributions in R

n and a slightly more
general notion of spherically symmetric distributions.
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128 4 Spherically Symmetric Distributions

Definition 4.1 A random vector X ∈ R
n (equivalently the distribution of X) is

spherically symmetric about θ ∈ R
n if X − θ is orthogonally invariant. We denote

this by X ∼ SS(θ).

Note that Definition 4.1 states that X ∼ SS(θ) if and only if X = Z + θ where
Z ∼ SS(0). As an example, the uniform distribution UR,θ (cf. Definition 1.4) on
the sphere SR,θ of radius R and centered at θ is spherically symmetric about θ .
Furthermore, if P is a spherically symmetric distribution about θ , then

P(HC + θ) = P(C + θ),

for any Borel set C of Rn and any orthogonal transformation H .
The following proposition is immediate from the definition.

Proposition 4.1 If a random vector X ∈ R
n is spherically symmetric about θ ∈ R

n

then, for any orthogonal transformation H,HX is spherically symmetric about Hθ

(X − θ has the same distribution as HX − Hθ ).

The connection between spherical symmetry and uniform distributions on
spheres is indicated in the following theorem.

Theorem 4.1 A distribution P in R
n is spherically symmetric about θ ∈ R

n if and
only if there exists a distribution ρ in R+ such that P(A) = ∫

R+ Ur,θ (A) dρ(r) for
any Borel set A of Rn. Furthermore, if a random vector X has such a distribution
P , then the radius ‖X − θ‖ has distribution ρ (called the radial distribution) and
the conditional distribution of X given ‖X−θ‖ = r is the uniform distribution Ur,θ

on the sphere Sr,θ of radius r and centered at θ .

Proof Sufficiency is immediate since the distribution Ur,θ is spherically symmetric
about θ for any r ≥ 0.

It is clear that for the necessity it suffices to consider θ = 0. Let X be distributed
as P where P is SS(0), ν(x) = ‖x‖, and ρ be the distribution of ν. Now, for any
Borel sets A in R

n and B in R+ and for any orthogonal transformation H , we have
(using basic properties of conditional distributions )

∫

B

P (H−1(A) | ν = r) dρ(r) = P(H−1(A) ∩ ν−1(B))

= P(H−1(A ∩ H(ν−1(B))))

= P(A ∩ H(ν−1(B)))

= P(A ∩ ν−1(B))

=
∫

B

P (A | ν = r) dρ(r)

where we used the orthogonal invariance of the measure P and the function ν. Since
the above equality holds for any B, then, almost everywhere with respect to ρ, we
have
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P(H−1(A) | ν = r) = P(A | ν = r).

Equivalently, the conditional distribution given ν is orthogonally invariant on Sr .
By unicity (see Lemma 1.1), it is the uniform distribution on Sr and the theorem
follows. ��
Corollary 4.1 A random vector X ∈ R

n has a spherically symmetric distribution
about θ ∈ R

n if and only if X has the stochastic representation X = θ +R U where
R (R = ‖X − θ‖) and U are independent, R ≥ 0 and U ∼ U .

Proof In the proof of Theorem 4.1, we essentially show that the distribution of
(X − θ)/‖X − θ‖ is U independently of ‖X − θ‖. This is the necessity part of the
corollary. The sufficiency part is direct. ��

Also, the following corollary is immediate.

Corollary 4.2 Let X be a random vector in Rn having a spherically symmetric
distribution about θ ∈ R

n. Let h be a real valued function on Rn such that the
expectation Eθ [h(X)] exists. Then

Eθ [h(X)] = E[ER,θ [h(X)]] ,

where ER,θ is the conditional expectation of X given ‖X − θ‖ = R (i.e. the
expectation with respect to the uniform distribution UR,θ on the sphere SR,θ of
radius R and centered at θ ) and E is the expectation with respect to the distribution
of the radius ‖X − θ‖.

A more general class of distributions where (X − θ)/‖X − θ‖ ∼ U but not
necessarily independently of ‖X − θ‖ is known as the isotropic distributions (see
Philoche 1977). The class of spherically symmetric distributions with a density
with respect to the Lebesgue measure is of particular interest. The form of this
density and its connection with the radial distribution are the subject of the following
theorem.

Theorem 4.2 Let X∈R
n have a spherically symmetric distribution about θ ∈ R

n.
Then the following two statements are equivalent.

(1) X has a density f with respect to the Lebesgue measure on R
n.

(2) ‖X − θ‖ has a density h with respect to the Lebesgue measure on R+.

Further, if (1) or (2) holds, there exists a function g from R+ into R+ such that

f (x) = g(‖x − θ‖2) a.e.

and

h(r) = 2πn/2

Γ (n/2)
rn−1g(r2) a.e.
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The function g is called the generating function and h the radial density.

Proof The fact that (1) implies (2) follows directly from the representation of X in
polar coordinates. We can also argue that (2) implies (1) in a similar fashion using
the independence of ‖X − θ‖, angles, and the fact that the angles have a density.
The following argument shows this directly and, furthermore, gives the relationship
between f, g, and h.

It is clear that it suffices to assume that θ = 0. Suppose then that R = ‖X‖ has a
density h. According to Theorem 4.1, for any Borel set A of Rn, we have

P(X ∈ A) =
∫ ∞

0

∫

Sr

1A (y) dUr (y) h(r) dr

=
∫ ∞

0

∫

Sr

1A(y)
dσr (y)

σ1(S1)rn−1
h(r) dr (by (1.4))

=
∫ ∞

0

∫

Sr

1A(y)
h(‖y‖)

σ1(S1)‖y‖n−1
dσr(y) dr

=
∫

Rn

1A(y)
h(‖y‖)

σ1(S1)‖y‖n−1 dy (by Lemma 1.4)

=
∫

A

h(‖y‖)
σ1(S1)‖y‖n−1 dy.

This implies that the random vector X has density

f (x) = h(‖x‖)
σ1(S1)‖x‖n−1

= g(‖x‖2)

with h(r) = σ1(S1) rn−1 g(r2), which is the announced formula for h(r) since
σ1(S1) = 2πn/2/Γ (n/2) by Corollary 1.1. ��

We now turn our attention to the mean and the covariance matrix of a spherically
symmetric distribution (when they exist).

Theorem 4.3 Let X ∈ R
n be a random vector with a spherically symmetric

distribution about θ ∈ R
n. Then, the mean of X exists if and only if the mean of

R = ‖X − θ‖ exists, in which case E[X] = θ . The covariance matrix of X exists if
and only if E[R2] is finite, in which case

cov(X) = E[R2]
n

In.

Proof Note that X = Z + θ where Z ∼ SS(0) and it suffices to consider the
case θ = 0. By the stochastic representation X = R U in Corollary 4.1 with R =
‖X‖ independent of U and U ∼ U , the expectation E[X] exists if and only if the
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expectations E[R] and E[U ] exist. However, since U is bounded, E[U ] exists and
is equal to zero since E[U ] = E[−U ] by orthogonal invariance.

Similarly, E[‖X‖2] = E[R2] E[‖U‖2] = E[R2] and consequently the covari-
ance matrix of X exists if and only if E[R2] < ∞. Now

cov(RU) = E[R2] E[UU T] = E[R2]
n

In.

Indeed E[U2
i ] = E[U2

j ] = 1/n since Ui and Uj have the same distribution by

orthogonal invariance and since
∑n

i=1 U2
i = 1. Furthermore, E[UiUj ] = 0, for

i 
= j , since UiUj has the same distribution as −UiUj by orthogonal invariance.
��

An interesting and useful subclass of spherically symmetric distributions consists
of the spherically symmetric unimodal distributions. We only consider absolutely
continuous distributions.

Definition 4.2 A random vector X ∈ R
n with density f is unimodal if the set

{x ∈ R
n | f (x) ≥ a} is convex for any a ≥ 0.

Lemma 4.1 Let X ∈ R
n be a spherically symmetric random vector about θ with

generating function g. Then the distribution of X is unimodal if and only if g is
nonincreasing.

Proof Suppose first that the generating function g is nonincreasing. Take the left
continuous version of g. For any a ≥ 0, defining g−1(a) = sup{y ≥ 0 | g(y) = a}
we have

{x ∈ R
n | g(‖x‖2) ≥ a} = {x ∈ R

n | ‖x‖2 ≤ g−1(a)}

which is a ball of radius
√

g−1(a) and convex. Conversely suppose that the set
{x ∈ R

n | g(‖x‖2) ≥ a} is convex for any a ≥ 0 and let ‖x‖ ≤ ‖y‖. Then,
for xT = y/‖y‖‖x‖, we have ‖xT‖ = ‖x‖ and xT ∈ [−y, y] and hence, by the
unimodality assumption, g(‖x‖2) = g(‖xT‖2) ≥ g(‖y‖2). ��
Theorem 4.1 showed that a spherically symmetric distribution is a mixture of
uniform distributions on spheres. It is worth noting that, when the distribution is
also unimodal, it is a mixture of uniform distributions on balls.

Theorem 4.4 Let X ∈ R
n be a spherically symmetric random vector about θ ∈ R

n

with generating function g. Then the distribution of X is unimodal if and only if
there exists a distribution ν in R+ with no point mass at 0 such that

P [X ∈ A] =
∫

R+
Vr,θ (A) dν(r) (4.1)
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for any Borel set A of Rn, where Vr,θ is the uniform distribution on the ball Br,θ =
{x ∈ R

n | ‖x − θ‖ ≤ r}.
Proof It is clear that it suffices to consider the case where θ = 0. Suppose first that
formula (4.1) is satisfied. Then expressing

Vr,0(A) = 1

λ(Br)

∫

Br

1A(x) dx

gives

P [X ∈ A] =
∫

R+

1

λ(Br)

∫

Br

1A(x) dx dν (r)

=
∫

R+

1

λ(Br)

∫ r

0

∫

Su

1A(x) dσu(x) du dν(r)

=
∫

R+

∫

Su

1A(x)

∫ ∞

u

1

λ(Br)
dν(r) dσu(x) du

after applying Lemma 1.4 and Fubini’s theorem. Then

P [X ∈ A] =
∫ ∞

0

∫

Su

1A(x) g(‖x‖2) dσu(x) du

=
∫

A

g(‖x‖2) dx

again by Lemma 1.4 with the nonincreasing function

g(u2) =
∫ ∞

u

1

λ(Br)
dν (r). (4.2)

Hence according to Lemma 4.1, the distribution of X is unimodal.
Conversely, suppose that the distribution of X is unimodal. According to the

above, this distribution will be a mixture of uniform distributions on balls if there
exists a distribution ν on R+ with no point mass at 0 such that (4.2) holds. If
such a distribution exists, (4.2) implies that ν can be expressed through a Stieltjes
integral as

ν(u) =
∫ u

0
λ(Br)(−dg(r2)).

It suffices therefore to show that ν is a distribution function on R+ with no point
mass at 0. Note that, as g is nonincreasing, ν is the Stieltjes integral of a positive
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function with respect to a nondecreasing function and hence ν is nondecreasing.
Since λ(Br) = λ(B1) rn = n σ1(S1) rn, an integration by parts gives

ν(u) = σ1(S1)

∫ u

0
rn−1g(r2) dr − λ(B1)

n g(u2). (4.3)

Note that the first term of the right hand side (4.3) is the distribution function of
the radial distribution (see Theorem 4.2) and approaches 0 (respectively 1) when u

approaches 0 (respectively ∞). Therefore, to complete the proof it suffices to show
that

lim
u→0

ung(u2) = lim
u→∞ ung(u2) = 0 .

Since
∫ ∞

0
rn−1g(r2) dr < ∞,

we have

lim
r→∞

∫ r

r/2
rn−1g(u2) du = 0.

By the monotonicity of g, we have

∫ r

r/2
un−1g(u2) du ≥ (r2)

∫ r

r/2
un−1 du = g(r2) rn 1

n

(

1 − 1

2n

)

.

Hence, lim
r→∞ rng(r2) = 0. The limit as r approaches 0 can be treated similarly and

the result follows. ��
It is possible to allow the possibility of a point mass at 0 for a spherically

symmetric unimodal distribution, but we choose to restrict the class to absolutely
continuous distributions. For a more general version of unimodality see Section 2.1
of Liese and Miescke (2008).

4.3 Elliptically Symmetric Distributions

By Definition 1.2, a random vector X ∈ R
n is orthogonally invariant if, for

any orthogonal transformation H , HX has the same distribution as X. The
notion of orthogonal transformation is relative to the classical scalar product
〈x, y〉 = ∑n

i=1 xiyi . It is natural to investigate orthogonal invariance with respect to
orthogonal transformations relative to a general scalar product 〈x, y〉Γ = xTΓy =
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∑
1≤i,j≤n xiΓij yj where Γ is a symmetric positive definite n×n matrix. We define

a transformation H to be Γ-orthogonal if it preserves the scalar product in the sense
that, for any x ∈ R

n and y ∈ R
n, 〈Hx,Hy〉Γ = 〈x, y〉Γ or, equivalently, if it

preserves the associated norm ‖x‖Γ = √〈x, x〉Γ , that is, if ‖Hx‖Γ = ‖x‖Γ . Note
that H is necessarily invertible since

ker H = {x ∈ R
n | Hx = 0} = {x ∈ R

n | ‖Hx‖Γ = 0} = {x ∈ R
n | ‖x‖Γ = 0} = {0} .

Then it can be seen that H is Γ-orthogonal if and only if 〈Hx, y〉Γ = 〈x,H−1y〉Γ ,
for any x ∈ R

n and y ∈ R
n or, equivalently, if H TΓ H = Γ .

In this context, the Γ -sphere of radius r ≥ 0 is defined as

SΓ
r = {x ∈ R

n | xTΓ x = r2} .

Definition 4.3 A random vector X ∈ R
n (equivalently the distribution of X) is Γ-

orthogonally invariant if, for any Γ-orthogonal transformation H , the distribution of
Y = HX is the same as that of X.

We can define a uniform measure on the ellipse SΓ
r in a manner analogous

to (1.3) and the resulting measure is indeed Γ-orthogonally invariant. It is not
however the superficial measure mentioned at the end of Sect. 1.3, but is, in fact,
a constant multiple of this measure where the constant of proportionality depends
on Γ and reflects the shape of the ellipse. Whatever the constant of proportionality
is, it allows the construction of a unique uniform distribution on SΓ

r as in (1.4).
The uniqueness follows from the fact that the Γ-orthogonal transformations form
a compact group. We can then adapt the material from Sects. 1.3 and 4.2 to the
case of a general positive definite matrix Γ . However, we present an alternative
development.

The following discussion indicates a direct connection between the usual
orthogonal invariance and Γ-orthogonal invariance. Suppose, for the moment, that
X ∈ R

n has a spherically symmetric density given by g(‖x‖2). Let Σ be a positive
definite matrix and A be a nonsingular matrix such that AAT = Γ . Standard change
of variables gives the density of Y = AX as |Σ |−1/2g(yTΣ−1y). Let H be any Σ−1

orthogonal transformation and let Z = HY . The density of Z is |Σ |−1/2g(zTΣ−1z)

since H−1 is also Σ−1 -orthogonal and hence, (H−1)TΣ−1H−1 = Σ−1.

This suggests that, in general, Y = Σ
1
2 X is Σ−1-orthogonally invariant if

and only if X is orthogonally invariant. The following result establishes this
general fact.

Theorem 4.5 Let Σ be a positive definite n × n matrix. A random vector Y ∈
R

n is Σ−1-orthogonally invariant if and only if Y = Σ1/2X with X orthogonally
invariant.

Proof First note that, for any Σ−1-orthogonal matrix H , Σ−1/2HΣ−1/2 is an In

-orthogonal matrix since
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(Σ−1/2HΣ1/2)T(Σ−1/2HΣ1/2) = Σ1/2H TΣ−1HΣ1/2

= Σ1/2Σ−1Σ1/2

= In.

Then, if X is orthogonally invariant, for any Borel set C, of Rn we have

P [HΣ1/2X ∈ C] = P [Σ−1/2HΣ1/2X ∈ Σ−1/2C]
= P [X ∈ Σ−1/2C]
= P [Σ1/2X ∈ C].

Hence Y = Σ1/2X is Σ−1-orthogonally invariant.
Similarly, for any orthogonal matrix G, Σ1/2GΣ−1/2 is a Σ−1-orthogonal

matrix. So, if Y = Σ1/2X is Σ−1-orthogonally invariant, then X is orthogonally
invariant. ��

Note that, if X is orthogonally invariant and its covariance matrix exists, it is of
the form σ 2In by Theorem 4.3. Therefore, if Y = Σ1/2X, the covariance matrix
of Y is σ 2Σ , while, by Theorem 4.5, Y is Σ−1-orthogonal invariant. In statistical
models, it is often more natural to parametrize through a covariance matrix Σ

than through its inverse (graphical models are the exception) and this motivates the
following definition of elliptically symmetric distributions.

Definition 4.4 Let Σ be a positive definite n × n matrix. A random vector X

(equivalently the distribution of X) is elliptically symmetric about θ ∈ R
n if X − θ

is Σ−1-orthogonally invariant. We denote this by X ∼ ES(θ,Σ).

Note that, if X ∼ SS(θ), then X ∼ ES(θ, In). If Y ∼ ES(θ,Σ), then Σ−1/2Y ∼
SS(Σ−1/2θ).

In the following, we briefly present some results for elliptically symmetric
distributions that follow from Theorem 4.5 and are the analogues of those in
Sects. 1.3 and 4.2. The proofs are left to the reader.

For the rest of this section, let Σ be a fixed positive definite n × n matrix and
denote by SΣ−1

R = {x ∈ R
n | xTΣ−1x = R2} the Σ−1- ellipse of radius R and by

U Σ
R the uniform distributions on SΣ−1

R .

Lemma 4.2

(1) The uniform distribution U Σ
R on SΣ−1

R is the image under the transformation

Y = Σ
1
2 X of the uniform distribution UR on the sphere SR , that is,

U Σ
R (Ω) = UR(Σ− 1

2 Ω)

for any Borel set Ω of SΣ−1

R .
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(2) If X is distributed as U Σ
R , then

(a) Σ−1/2X/(XTΣ−1X)1/2 is distributed as U and
(b) X/(XTΣ−1X)1/2 is distributed as U Σ

1 .

Theorem 4.6 A random vector X ∈ R
n is distributed as ES(θ,Σ) if and only if

there exists a distribution ρ ∈ R+ such that

P [X ∈ A] =
∫

R+
U Σ

r,θ (A) dρ (r)

for any Borel set A on R
n, where U Σ

r,θ is the uniform distribution U Σ
r translated

by θ . Equivalently X has the stochastic representation X = R U where R = ‖X −
θ‖Σ−1 = ((x − θ)TΣ−1(x − θ))1/2 and U are independent, R ≥ 0 and U ∼ U Σ

1 .
For such X, the radius R has distribution ρ (called the radial distribution).

Theorem 4.7 Let X ∈ R
n be distributed as ES(θ,Σ). Then the following two

statements are equivalent:

(1) X has a density f with respect to the Lebesgue measure on R
n; and

(2) ‖X − θ‖Σ−1 has a density h with respect to Lebesgue measure on R+.

Further, if (1) or (2) holds, there exists a function g from R+ into R+ such that

f (x) = g(‖x − θ‖2
Σ−1)

and

h(r) = 2πn/2

Γ (n/2)
|Σ |−1/2rn−1g(r2).

Theorem 4.8 Let X ∈ R
n be distributed as ES(θ,Σ). Then the mean of X exists

if and only if the mean of R = ‖X − θ‖Σ−1 exists, in which case E[X] = θ . The
covariance matrix exists if and only if E[R2] is finite, in which case cov(X) =
E[R2] Σ/n.

Theorem 4.9 Let X ∈ R
n be distributed as ES(θ,Σ) with generating function g.

Then the distribution of X is unimodal if and only if g is nonincreasing. Equivalently
there exists a distribution ν ∈ R+ with no point mass at 0 such that

P [X ∈ A] =
∫

R+
V Σ

r,θ (A) dν(r)

for any Borel set A of Rn, where V Σ
r,θ is the uniform distribution on the ball (solid

ellipse)

BΣ
r,θ = {x ∈ R

n | ‖x − θ‖Σ−1 ≤ r}.
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4.4 Marginal and Conditional Distributions for Spherically
Symmetric Distributions

In this section, we study marginal and conditional distributions of spherically
symmetric distributions. We first consider the marginal distributions for a uniform
distribution on SR .

Theorem 4.10 Let X = (XT
1, X

T
2)

T ∼ UR in R
n where dim X1 = p and dim

X2 = n − p. Then, for 1 ≤ p < n, X1 has an absolutely continuous spherically
symmetric distribution with generating function gR given by

gR(‖x1‖2) = Γ (n/2) R2−n

Γ ((n − p)/2) πp/2 (R2 − ‖x1‖2)(n−p)/2−1 1BR
(x1). (4.4)

Proof The proof is based on the fact that R Y/‖Y‖ ∼ UR , for any random
variable Y with a spherically symmetric distribution (see Lemma 1.2), in particular
Nn(0, In), and on the fact that X1 has an orthogonally invariant distribution in R

p.
To see this invariance, note that, for any p × p orthogonal matrix H1 and any
(n − p) × (n − p) orthogonal matrix H2, the matrix

H =
(

H1 0
0 H2

)

,

is a block diagonal n × n orthogonal matrix. Hence

H

(
X1

X2

)

=
(

H1X1

H2X2

)

(4.5)

is distributed as (xT
1, xT

2)T and it follows that H1X1 ∼ X1 and so X1 is orthogonally
invariant.

Therefore, if Y = (Y T
1 , Y T

2 )T ∼ Nn(0, In), then ‖Y1‖2 is independent of ‖Y2‖2

and, according to standard results, Z = ‖Y1‖2/‖Y‖2 has a beta distribution, that
is Beta(p/2, (n − p)/2). It follows that Z′ = ‖X1‖2/‖X‖2 = ‖X1‖2/R2 has the
same distribution since both X/‖X‖ and Y/‖Y‖ have distribution UR.

Thus ‖X1‖2 = R2Z′ has a Beta(p/2, (n − p)/2) density scaled by R2. By a
change of variable, the density of ‖X1‖ is equal to

hR(r) = 2

B(p/2, (n − p)/2)

rp−1(R2 − r2)(n−p)/2−1

Rn−2 1(0,R)(r).

Hence, by Theorem 4.2, X1 has the density given by (4.4). ��

Corollary 4.3 Let X = (XT
1, X

T
2)

T ∼ SS(θ) in R
n where dim X1 = p and dim

X2 = n − p and where θ = (θT
1 , θT

2 )T.
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Then, for 1 ≤ p < n, the distribution of X1 is an absolutely continuous
spherically symmetric distribution SS(θ1) on R

p with generating function given
by

∫
gR(‖X1 − θ1‖2) dν(R) where ν is the radial distribution of X and gR is given

by (4.4).

Unimodality properties of the densities of projections are given in the following
result.

Corollary 4.4 For the setup of Corollary 4.3, the density of X1 is unimodal
whenever n − p ≥ 2. Furthermore, if p = n − 2 and X =∼ UR,θ , then X1
has the uniform distribution on BR,θ1 in R

n−2.

In this book, we will have more need for the marginal distributions than the
conditional distributions of spherically symmetric distributions. For results on
conditional distributions, we refer the reader to Fang and Zhang (1990) and to Fang
et al. (1990). We will however have use for the following result.

Theorem 4.11 Let X = (XT
1, X

T
2)

T ∼ UR,θ in R
n where dim X1 = p and dim

X2 = n−p and where θ = (θT
1 , θT

2 )T. Then the conditional distribution of X1 given
X2 is the uniform distribution on the sphere in R

p of radius (R2 − ‖X2 − θ2‖2)1/2

centered at θ1.

Proof First, it is clear that the support of the conditional distribution of X1 given
X2 is the sphere in R

p of radius (R2 − ‖X2 − θ2‖2)1/2 centered at θ1. It suffices
to show that the translated distribution centered at 0 is orthogonally invariant. To
this end, note that, for any orthogonal transformation H on R

p, the block diagonal
transformation with blocks H and In−p, denoted by H̃ , is orthogonal in R

n. Then

H̃
(
(X1 − θ1)

T, (X2 − θ2)
T
)T ∼ (

(X1 − θ1)
T, (X2 − θ2)

T)T ∼ UR,θ

that is,

(
(H(X1 − θ1))

T, (X2 − θ2)
T
)T ∼ (

(X1 − θ1)
T, (X2 − θ2)

T
)T ∼ UR,θ .

Hence

H(X1 − θ1)|(X2 − θ2) ∼ (X1 − θ1)|(X2 − θ2) ,

and therefore, the distribution of X1 given X2 is orthogonally invariant, since θ2 is
fixed. The lemma follows. ��

When properly interpreted, Corollaries 4.3 and 4.4 and Theorem 4.11 continue
to hold for a general orthogonal projection π from R

n onto any subspace V of
dimension p. See also Sect. 2.4.4 where the distribution is assumed to be normal.
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4.5 The General Linear Model

This section is devoted to the general linear model, its canonical form and the issues
of estimation, sufficiency and completeness.

4.5.1 The Canonical Form of the General Linear Model

Much of this book is devoted to some form of the following general problem.
Let (XT, U T)T be a partitioned random vector in R

n with a spherically symmetric
distribution around a vector partitioned as (θT, 0T)T where dim X = dim θ = p

and dim U = dim 0 = k with p + k = n. Such a distribution arises from a
fixed orthogonally invariant random vector (XT

0, U
T
0 )T and a fixed scale parameter σ

through the transformation

(XT, U T)T = σ (XT
0, U

T
0 )T + (θT, 0T)T , (4.6)

so that the distribution of ((X − θ)T, U T)T is orthogonally invariant. We also refer to
θ as a location parameter.

We will assume that the covariance matrix of (XT, U T)T exists, which is equiva-
lent to the finiteness of the expectation E[R2] where R = (‖X − θ‖2 + ‖U‖2)1/2

is its radius (in this case, we have cov(XT, U T)T = E[R2] In/n). Then it will be
convenient to assume that the radius R0 = (‖X0‖2 + ‖U0‖2)1/2 of (XT

0, U
T
0 )T

satisfies E[R2
0] = n since we have

cov(XT, U T)T = σ 2 cov(XT
0, U

T
0 )T = σ 2 In .

Note that when it is assumed that the distribution in (4.6) is absolutely continuous
with respect to the Lebesgue measure on R

n, the corresponding density may be
represented as

1

σn
g

(‖z − θ‖2 + ‖u‖2

σ 2

)

(4.7)

where g is the generating function.
This model also arises as the canonical form of the following seemingly more

general model, the general linear model. For an n×p matrix V (often referred to as
the design matrix and assumed here to be full rank p), suppose that an n × 1 vector
Y is observed such that

Y = Vβ + ε , (4.8)
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where β is a p×1 vector of (unknown) regression coefficients and ε is an n×1 vector
with a spherically symmetric error distribution about 0. A common alternative
representation of this model is Y = η + ε where ε is as above and η is in the
column space of V .

Using partitioned matrices, let G = (GT
1 GT

2)
T be an n × n orthogonal matrix

partitioned such that the first p rows of G (i.e. the rows of G1 considered as column
vectors) span the column space of V . Now let

(
X

U

)

= GY =
(

G1

G2

)

V β + Gε =
(

θ

0

)

+ Gε (4.9)

with θ = G1Vβ and G2Vβ = 0 since the rows of G2 are orthogonal to the columns
of V . It follows from the definition that (XT, U T)T has a spherically symmetric
distribution about (θT, 0T)T. In this sense, the model given in the first paragraph
is the canonical form of the above general linear model.

This model has been considered by various authors such as Cellier et al. (1989),
Cellier and Fourdrinier (1995), Maruyama (2003b), Maruyama and Strawderman
(2005), and Fourdrinier and Strawderman (2010). Also, Kubokawa and Srivastava
in (2001) addressed the multivariate case where θ is a mean matrix (in this case
where X and U are matrices as well).

4.5.2 Least Squares, Unbiased and Shrinkage Estimation

Consider the model in (4.9). Since the columns of GT
1 (the rows of G1) and the

columns of V span the same space, there exists a nonsingular p × p matrix A such
that

V = GT
1A, which implies A = G1V, (4.10)

since G1G
T
1 = Ip. So

θ = Aβ, that is, β = A−1θ . (4.11)

Noting that V TV = AT G1 GT
1 A = ATA, it follows that the estimation of θ by

θ̂ (X,U) under the loss

L(θ, θ̂) = (θ̂ − θ)T(θ̂ − θ) = ‖θ̂ − θ‖2 (4.12)

is equivalent to the estimation of β by

β̂(Y ) = A−1 θ̂ (G1Y,G2Y ) = (G1V )−1 θ̂ (G1Y,G2Y ) (4.13)
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under the loss

L∗(β, β̂) = (β̂ − β)TATA(β̂ − β) = (β̂ − β)TV TV (β̂ − β) (4.14)

in the sense that the resulting risk functions are equal,

R∗(β, β̂) = E[L∗(β, β̂(Y ))] = E[L(θ, θ̂)] = R(θ, θ̂) .

Actually, the corresponding loss functions are equal. To see this, note that

L∗(β, β̂(Y )) = (β̂(Y ) − β)TATA(β̂(Y ) − β)

= (A(β̂(Y ) − β))T(A(β̂(Y ) − β))

= (θ̂(X,U) − θ)T(θ̂(X,U) − θ)

= L(θ, θ̂(X,U)) ,

where (4.13) and (4.11) were used for the third equality.
Note that the above equivalence between the estimation of θ , the mean vector of

X, and the estimation of the regression coefficients β also holds for the respective
invariant losses

L(θ, θ̂ , σ 2) = 1

σ 2
(θ̂ − θ)T(θ̂ − θ) = 1

σ 2
‖θ̂ − θ‖2 (4.15)

and

L∗(β, β̂, σ 2) = 1

σ 2 (β̂ − β)TATA(β̂ − β) = 1

σ 2 (β̂ − β)TV TV (β̂ − β) . (4.16)

Additionally, the correspondence (4.13) can be reversed as

θ̂ (X,U) = A β̂(GT
1 X + GT

2 U) = G1X β̂(GT
1 X + GT

2 U) (4.17)

since, according to (4.9),

Y = GT

(
X

U

)

=
(

G1

G2

)T (
X

U

)

= (GT
1 GT

2)

(
X

U

)

= GT
1 X + GT

2 U . (4.18)

There is also a correspondence between the estimation of θ and the estimation of
η in the following alternative representation of the general linear model. Here

η = GT

(
θ

0

)

=
(

G1

G2

)T (
θ

0

)

= (GT
1 GT

2)

(
θ

0

)

= GT
1 θ + GT

2 0 = GT
1 θ
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and

G1η = G1 GT
1 θ = θ .

It follows that the estimation of θ ∈ R
p by θ̂ (X,U) under the loss ‖θ̂ − θ‖2 (the

loss (4.12)) is equivalent to the estimation of η in the column space of V under the
loss ‖η̂ − η‖2 by

η̂(Y ) = GT
1 θ̂ (G1Y,G2Y ) (4.19)

in the sense that the risks functions are equal. The easy demonstration is left to the
reader.

Consider the first correspondence expressed in (4.13) and (4.17) between estima-
tors in Models (4.8) and (4.9). We will see that it can be made completely explicit
for a wide class of estimators. First, note that the matrix G1 can be easily obtained
by the Gram-Schmidt orthonormalization process or by the QR decomposition of
the design matrix X, where Q is an orthogonal matrix such that QTV = R and R

is an n × p upper triangular matrix (so that G1 = QT
1 and G2 = QT

2). Second, a
particular choice of A can be made that gives rise to a closed form of G1.

To see this, let

A = (V TV )1/2 (4.20)

(a square root of V TV , which is invertible since V has full rank) and set

G1 = A (V TV )−1V T = (V TV )−1/2V T . (4.21)

Then we have

G1 V = A, V = GT
1A, (4.22)

and

G1 GT
1 = (V TV )−1/2V TV (V TV )−1/2 = Ip . (4.23)

Hence, as in (4.10), (4.22) expresses that the columns of GT
1 (the rows of

G1) span the same space as the columns of V , noticing that (4.23) means that
these vectors are orthogonal. Therefore, completing GT

1 through the Gram-Schmidt
orthonormalization process, we obtain an orthogonal matrix G = (GT

1G
T
2)

T, with
G1 in (4.21), such that

GV =
(

(V TV )1/2

0

)

. (4.24)



4.5 The General Linear Model 143

The relationship linking A and G1 in (4.21) is an alternative to (4.10) and is true
in general; that is,

G1 = A (V TV )−1 V T or equivalently A = (V TGT
1)

−1V TV .

Indeed, we have V TV = AT A so that (V TV )−1 (ATA) = Ip. Hence,
(V TV )−1 AT = A−1 , which implies V (V TV )−1 AT = V A−1 = GT

1AA−1 = GT
1 ,

according to (4.10).
As a consequence, if β̂ls is the least squares estimator of β, we have

β̂ls(Y ) = (V TV )−1 V T Y (4.25)

so that the corresponding estimator θ̂0 of θ is the projection θ̂0(X,U) = X since

θ̂0(X,U) = A β̂ls(Y ) = A (V TV )−1V T Y = G1 Y = X . (4.26)

From this correspondence, the estimator θ̂0(X,U) = X of θ is often viewed as the
standard estimator. Note that, with the choice of A in (4.20), we have the closed
form

β̂ls(Y ) = (V TV )−1/2X . (4.27)

Furthermore, the correspondence between θ̂ (X,U) and β̂ls(Y ) can be specified
when θ̂ (X,U) depends on U only through ‖U‖2, in which case, with a slight abuse
of notation, we write θ̂ (X,U) = θ̂ (X, ‖U‖2). Indeed, first note that

‖X‖2 = (A β̂ls(Y ))T(A β̂ls(Y ))

= (β̂ls(Y ))T ATA (β̂ls(Y ))

= (β̂ls(Y ))T V TV (β̂ls(Y ))

= (V β̂ls(Y ))TV (β̂ls(Y ))

= ‖V β̂ls(Y )‖2 . (4.28)

On the other hand, according to (4.9), we have ‖X‖2 + ‖U‖2 = ‖GY‖2 = ‖Y‖2.
Hence,

‖U‖2 = ‖Y‖2 − ‖X‖2

= ‖Y‖2 − ‖V β̂ls(Y )‖2

= ‖Y − V β̂ls(Y )‖2 (4.29)

since Y − V β̂ls(Y ) is orthogonal to V β̂ls(Y ). Consequently, according to (4.13)
and (4.10), Equations (4.29) and (4.26) give that the estimator β̂(Y ) of β corre-
sponding to the estimator θ̂ (X, ‖U‖2) of θ is
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β̂(Y ) = (G1 V )−1 θ̂ (G1 V β̂ls(Y ), ‖Y − V β̂ls(Y )‖2) . (4.30)

Note that, when ones chooses G1 as in (4.21), β̂(Y ) in (4.30) has the closed form

β̂(Y ) = (V T V )−1/2 θ̂
(
(V T V )1/2 β̂ls(Y ), ‖Y − V β̂ls(Y )‖2

)

= (V T V )−1/2 θ̂
(
(V T V )−1/2V TY, ‖Y − V β̂ls(Y )‖2

)
. (4.31)

In particular, we can see through (4.28), that the “robust” Stein-type estimators
of θ ,

θ̂r (X, ‖U‖2) =
(

1 − a
‖U‖2

‖X‖2

)

X (4.32)

have as a correspondence the “robust” estimators of β

β̂r (Y ) = (G1 V )−1

(

1 − a
‖Y − V β̂ls(Y )‖2

‖V β̂ls(Y )‖2

)

G1 V β̂ls(Y )

=
(

1 − a
‖Y − V β̂ls(Y )‖2

‖V β̂ls(Y )‖2

)

β̂ls(Y ) (4.33)

(note that the two G1 V terms simplify). We use the term “robust” since, for
appropriate values of the positive constant a, they dominate X whatever the
spherically symmetric distribution, as we will see in Chap. 5 (see also Cellier et al.
1989; Cellier and Fourdrinier 1995).

According to the correspondence seen above between the risk functions of the
estimators of θ and the estimators of β, using these estimators in (4.33) is then
a good alternative to the least squares estimator: they dominate the least squares
estimator of β simultaneously for all spherically symmetric error distributions with
a finite second moment (see Fourdrinier and Strawderman (1996) for the use of
these robust estimators when σ 2 is known and also Sect. 5.2).

4.5.3 Sufficiency in the General Linear Model

Suppose (XT, U T)T has a spherically symmetric distribution about (θT, 0T)T with
dim X = dim θ = p > 0 and dim U = dim 0 = k > 0. Furthermore, suppose
that the distribution is absolutely continuous with respect to the Lebesgue measure
on R

n for n = p + k. The corresponding density may be represented as in (4.7). We
refer to θ as a location vector and to σ as a scale parameter. As seen in the previous
section, such a distribution arises from a fixed orthogonally invariant random vector
(XT

0, U
T
0 )T with generating function g through the transformation
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(
X

U

)

= σ

(
X0

U0

)

+
(

θ

0

)

.

Each of θ, σ 2 and g(·) may be known or unknown, but perhaps the most
interesting case from a statistical standpoint is the following.

Suppose θ and σ 2 are unknown and g(·) is known. It follows immediately from
the factorization theorem that (X, ‖U‖2) is sufficient . It is intuitively clear that
this statistic is also minimal sufficient since dim(X, ‖U‖2) = dim(θ, σ 2). Here is a
proof of that fact.

Theorem 4.12 Suppose that (XT, U T)T is distributed as (4.7). Then the statistic
(X, ‖U‖2) is minimal sufficient for (θ, σ 2) when g is known.

Proof By Theorem 6.14 of Casella and Berger (2001), it suffices to show that if, for
all (θ, σ 2) ∈ R

p × R+,

g
( ‖x1−θ‖2+‖u1‖

σ 2

)

g
( ‖x2−θ‖2+‖u2‖2

σ 2

) = c (4.34)

where c is a constant then x1 = x2 and ‖u1‖2 = ‖u2‖2. Note that 0 < c < ∞ since
otherwise (4.7) cannot be a density.

Letting τ 2 = 1/σ 2, (4.34) can be written, for all τ > 0, as

g(τ 2v2
1) = cg(τ 2v2

2) (4.35)

where v2
1 = ‖x1 − θ‖2 +‖u1‖2 and v2

2 = ‖x2 − θ‖2 +‖u2‖2 for each fixed θ ∈ R
p.

First, we will show that v2
1 = v2

2. Note that

1 =
∫

Rp×Rk

g(‖x‖2 + ‖u‖2) dx du

= K

∫ ∞

0
rp+k−1 g(r2) dr (by Theorem 4.2)

= Kυp+k

∫ ∞

0
τp+k−1 g(v2τ 2) dτ (4.36)

for any v > 0. Then it follows from (4.35) and (4.36) that

1 = Kv
p+k

1

∫ ∞

0
τp+k−1g(v2

1τ 2) dτ

= cKv
p+k

1

∫ ∞

0
τp+k−1g(v2

2τ 2) dτ

= c
v

p+k

1

v
p+k

2

. (4.37)
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Let F(b) = ∫ b

0 τp+k−1g(τ 2) dτ and choose b such that F is strictly increasing at
b. Suppose v1 > v2. Then, for any v > 0,

F(b) = vp+k

∫ b/v

0
τp+k−1 g(v2τ 2) dτ

and consequently

∫ b/v1

0
τp+k−1 g(v2

1τ 2)dτ = F(b)

vn
1

= c

∫ b/v1

0
τp+k−1 g(v2

2τ 2)dτ

< c

∫ b/v2

0
τp+h−1 g(v2

2τ 2)dτ

= c
F (b)

vn
2

.

It follows that c v
p+k

1 /v
p+h

2 > 1, which contradicts (4.37). A similar argument

would give c v
p+k

1 /v
p+h

2 < 1 for v1 < v2 and v1 = v2. Now, setting θ = x1+x2
2 in

the expressions for v1 and v2 implies ‖u1‖2 = ‖u2
2‖. It then follows that ‖x1−θ‖2 =

‖x2 − θ‖2 for all θ ∈ R
p, which implies x1 = x2 by setting θ = x2 (or x1). ��

In the case where θ is unknown, σ 2 is known, and the distribution is multivariate
normal, X is minimal sufficient (and complete). However, in the non-normal case,
(X, ‖U‖2) is typically minimally sufficient, and may or may not be complete, which
is the subject of the next section.

4.5.4 Completeness for the General Linear Model

The section largely follows the development in Fourdrinier et al. (2014). In the
case where both θ and σ 2 are unknown and g is known, the minimal sufficient
statistic (X, ‖U‖2) can be either complete or incomplete depending on g. If g

corresponds to a normal distribution, the statistic is complete by standard results
for exponential families. However, when the generating function is of the form
K g(t)1(r1,r2)(t) with 0 < r1 < r2 < ∞ and K is the normalizing constant,
(X, ‖U‖2) is not complete. In fact incompleteness of (X, ‖U‖2) follows from the
fact that the minimal sufficient statistic, when θ is known, σ 2 is unknown and g is
known, is incomplete.
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Theorem 4.13

(1) If X ∼ f (x − θ) with θ ∈ R
p where f has compact support, then X is not

complete for θ .
(2) If X ∼ 1/σf (x/σ), where f has support contained in an interval [a, b] with

0 < a < b < ∞, then X is not complete for σ .

Before giving the proof of Theorem 4.13, note that if the generating function is
of the form K g(t)1[r1,r2](t) for 0 < r1 < r2 < ∞ and the value of θ is assumed to
be known and equal to θ0, then T = ‖X − θ0‖2 + ‖U‖2 is minimal sufficient and
has density of the form K/σp+k t (p+k)/2 g(t/σ 2)1[r1σ

2,r2σ
2](T ).

Therefore, T is not a complete statistic for σ 2 by Lemma 4.13 (2). It follows
that there exists a function h(·) not equal to zero a.e. such that Eσ [h(T )] = 0 for
all σ > 0. Since Eσ 2 [h(β T )] = Eβσ 2 [h(T )], it follows that Eσ 2 [h(β T )] = 0 for

all σ 2 > 0, β > 0, and also that M(t) = ∫ 1
0 Eσ 2 [h(β t)] m(β) dβ = 0 for any

function m(·) for which the integral exists. In particular, this holds when m(·) is
the density of a Beta(k/2, p/2) random variable (where finiteness of the integral
is guaranteed since Eσ 2 [h(β T )] is continuous in β). Now, since B = ‖U‖2/T

has a Beta(k/2, p/2) distribution, ‖U‖2 = BT , and M(σ 2) = Eσ 2 [h(B T ) =
Eσ 2 [h(‖U‖2)] ≡ 0.

Since the distribution of ‖U‖2 does not depend on θ , it follows that when
both θ and σ 2 are unknown, Eθ,σ 2 [h(‖U‖2)] ≡ 0. Hence, (X, ‖U‖2), while
minimal sufficient, is not complete for the case of a generating function of the form
g(t)1[r1,r2](T ) with 0 < r1 < r2 < ∞.

Note that whenever θ is unknown, σ 2 is known, and (X, ‖U‖2) is minimal
sufficient (so the distribution is not normal, since then X would be minimal
sufficient) ‖U‖2 is ancillary and the minimal sufficient statistic is not complete.

Proof of Theorem 4.13 First, note that part (2) follows from part (1) by the standard
technique of transforming a scale family to a location family by taking logs.

We will show the incompleteness of a location family in R when F has bounded
support. We show first that, if F is a cdf with bounded support contained inside
[a, b], the characteristic function (c.f.) f̂ is analytic in C (the entire complex plane)
and is of order 1 (i.e., |f̂ (η)| is O exp(|η|1+ε) for all ε > 0 and is not O(exp(|η|1−ε)

for any ε > 0).
To see this, without loss of generality assume 0 < a < b < ∞. Then

|f̂ (η)| ≤
∫ b

a

exp(|η|X) dF(x)

≤ exp(b|η|)
∫ b

a

dF (x)

= exp(b|η|)
= O(exp(|η|1+ε)).
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for all ε > 0. Also, if η = −iv for v > 0, then

|f̂ (η)| =
∫ b

a

exp(vx) dF (x) ≥ exp(av)

∫ b

a

dF (x) = exp(av) .

However, exp(av) is not O(exp(v1−ε) for any ε > 0. Hence f̂ (η) is of order 1.
In the step above, we used 0 < a < b < ∞. Note that if either a and/or b is

negative then the distribution of X is equal to the distribution of z + θ0 where θ0
is negative and where the distribution of z satisfies the assumptions of the theorem.
Hence E exp(iηx) = E exp(iηz)eiηθ0 , so |E exp(iηx)| ≤ exp(|η|b) exp(|iη||θ0|)
which is O exp(|η|1+ε) for all ε > 0.

Similarly, for η = −iv (recall θ0 < 0),

|E exp(iηx)| = E exp(tvz) exp(−vθ0)

≥ ev|θ0| exp(av)

= exp(v(a + |θ0|)

and this is not O(expv1−ε
) for any ε > 0. ��

Note that f̂ (η) exists in all of C since F has bounded support and is analytic by
standard results in complex analysis (See e.g. Rudin 1966). To complete the proof
of Theorem 4.13 we need the following lemma.

Lemma 4.3 If X ∼ F(x) where the cdf F has bounded support in R and F is not
degenerate, then the characteristic function f̂ (η) has at least one zero in C.

Proof This follows almost directly from the Hadamard factorization theorem which
implies that a function f̂ (z) that is analytic in all of C and of order 1 is of the
form f̂ (z) = exp(az + b)P (z). P(z) is the so called canonical product formed
from the zeros of f̂ (z), where P(0) = 1 and P(z) = 0 for each such root. (See
e.g., Titchmarsh (1932) for an extended discussion of the form of P(z)). Therefore,
either f̂ (z) has no zeros, in which case f̂ (z) = exp(az) (since f̂ (0) = 1 = eb ⇒
b = 0) and P(z) ≡ 1, or f̂ (z) has at least one zero. The case where f̂ (z) =
exp(az) corresponds to the degenerate case where exp(az) = f̂ (z) = E exp(izx)

with P [X = −ia] = 1. Since F is assumed to not be degenerate, f̂ (z) must have at
least one zero by the uniqueness of the Fourier transform.

To finish the proof of Theorem 4.13 note that, by By Lemma 4.3, there exists an
η0 such that

f̂ (η0) =
∫ ∞

−∞
exp(iη0x)f (x) dx = 0.

This implies that for any θ ∈ R,
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0 =
(∫ ∞

−∞
exp(iη0x)f (x) dx

)

expiη0θ

=
∫ ∞

−∞
exp(ix(η0 + θ))f (x) dx

=
∫ ∞

−∞
exp(iη0x)f (x − θ) dx

= Eθ [exp(iη0X) = Eθ [exp(i(a0 + b0i))X]
= Eθ exp(iη0X) exp(−b0X)]
= Eθ [exp(−b0X){cos a0x + i sin a0x}].

Hence, for any θ ∈ R, we have Eθ [exp(−b0x) cos(a0x)] ≡ 0.
Additionally, Eθ [| exp(−b0x) cos(a0x)|] < ∞ for all θ since f (·) has bounded

support. The theorem then follows, since h(X) = e−b0X cos a0X is an unbiased
estimator of 0, which is not equal to 0 almost surely for each θ . This proves the
result for p = 1. The extension from R to R

p is straightforward since the marginal
distribution of each coordinate has compact support. ��

4.6 Characterizations of the Normal Distribution

There is a large literature on characterizations of the normal distribution that has had
a long history. A classical reference that covers a number of characterizations of
the normal distribution is Kagan et al. (1973). We give only a small sample of these
characterizations. The first result gives a characterization in terms of the normality
of linear transformations.

Theorem 4.14 Let X ∼ ES(θ) in R
n. If A is any fixed linear transformation

of positive rank such that AX has a normal distribution then X has a normal
distribution.

Proof First note that it suffices to consider the case θ = 0. Furthermore it suffices
to prove the result for X ∼ SS(0) since an elliptically symmetric distribution is the
image of a spherically symmetric distribution by a nonsingular transformation. Note
also that, if X ∼ SS(0), its characteristic function ϕX(t) = Ψ (tTt) since, for any
orthogonal transformation H , the characteristic function ϕHX of HX satisfies

ϕHX(t) = ϕX(H Tt) = ϕX(t).

Now the characteristic function ϕAX of AX equals

ϕAX(t) = E[exp{itTAX}] = E[exp{i(ATt)TX}] = Ψ (tTAATt). (4.38)
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Also, by Theorem 4.3, Cov(X) = E[R2]/nIn. Hence Cov(AX) =
(E[R2]/n)AAT and the fact that AX is normal implies that E[R2] < ∞ and
that Cov(AX) = α AAT for α ≥ 0. This implies that ϕAX(t) = exp{−α tTAATt/2}.
Therefore, by (4.38), Ψ (z) = exp{−αz/2} and ϕX(t) = exp{−αtTt/2}, so X is
normal. ��
Corollary 4.5 Let X ∼ ES(θ) in R

n. If any orthogonal projection Π has a normal
distribution (and, in particular, any marginal), then X has a normal distribution.

The next theorem gives a characterization in terms of the independence of linear
projections.

Theorem 4.15 Let X ∼ ES(θ) in R
n. If A and B are any two fixed linear

transformations of positive rank such that AX and BX are independent, then X

has a normal distribution.

Proof As in the proof of Theorem 4.14, we can assume that X ∼ SS(0). Then
the characteristic function ϕX of X is ϕX(t) = Ψ (tTt). Hence, the characteristic
functions ϕAX and ϕBX of AX and BX are ϕAX(t1) = Ψ (tT

1AATt1) and ϕBX(t2) =
Ψ (tT

2BBTt2), respectively. By the independence of AX and BX, we have

Ψ (tT
1AATt1 + tT

2BBTt2) = Ψ (tT
1AATt1)Ψ (tT

2BBTt2).

Since A and B are of positive rank this implies that, for any u ≥ 0 and v ≥ 0,

Ψ (u + v) = Ψ (u)Ψ (v).

This equation is known as Hamel’s equation and its only continuous solution
is Ψ (u) = eαu for some α ∈ R (see for instance Feller 1971, page 305). Hence,
ϕX(t) = eαtTt for some α ≤ 0 since ϕX is a characteristic function. It follows that
X has a normal distribution. ��
Corollary 4.6 Let X ∼ ES(θ) in R

n. If any two projections (in particular, any two
marginals) are independent, then X has a normal distribution.
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