
Chapter 3
Estimation of a Normal Mean Vector II

As we saw in Chap. 2, the frequentist paradigm is well suited for risk evalua-
tions, but is less useful for estimator construction. It turns out that the Bayesian
approach is complementary, as it is well suited for the construction of possibly
optimal estimators. In this chapter we take a Bayesian view of minimax shrinkage
estimation. In Sect. 3.1 we derive a general sufficient condition for minimaxity
of Bayes and generalized Bayes estimators in the known variance case, we also
illustrate the theory with numerous examples. In Sect. 3.2 we extend these results
to the case when the variance is unknown. Section 3.3 considers the case of a
known covariance matrix under a general quadratic loss. The admissibility of Bayes
estimators in discussed in Sect. 3.4. Interesting connections to MAP estimation,
penalized likelihood methods, and shrinkage estimation are developed in Sect. 3.5.
The fascinating connections between Stein estimation and estimation of a predictive
density under Kullback-Leibler divergence are outlined in Sect. 3.6.

3.1 Bayes Minimax Estimators

In this section, we derive a general sufficient condition for minimaxity of Bayes and
generalized Bayes estimators when X ∼ Np(θ, σ 2Ip), with known σ 2, and the loss
function is ‖δ − θ‖2, due to Stein (1973, 1981). The condition depends only on the
marginal distribution and states that a generalized Bayes estimator is minimax if
the square root of the marginal distribution is superharmonic. Alternative (stronger)
sufficient conditions are that the prior distribution or the marginal distribution is
superharmonic. We establish these results in Sect. 3.1.1 and apply them in Sect. 3.1.2
to obtain classes of prior distributions which lead to minimax (generalized and
proper) Bayes estimators. Section 3.1.3 will be devoted to minimax multiple
shrinkage estimators.
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Throughout this section, let X ∼ Np(θ, σ 2Ip) (with σ 2 known) and the loss be
L(θ, δ) = ‖δ − θ‖2. Let θ have the (generalized) prior distribution π and let the
marginal density, m(x), of X be

m(x) = K

∫
Rp

e
− ‖x−θ‖2

2 σ2 dπ(θ). (3.1)

Recall from Sect. 1.4 that the Bayes estimator corresponding to π(θ) is given by

δπ (X) = X + σ 2 ∇m(X)

m(X)
. (3.2)

Since the constant K in (3.1) plays no role in (3.2) we will typically take it to be
equal to 1 for simplicity. It may happen that an estimator will have the form (3.2)
where m(X) does not correspond to a true marginal distribution. In this case we will
refer to such an estimator as a pseudo-Bayes estimator, provided x �→ ∇m(x)/m(x)

is weakly differentiable. Recall that, if δπ (X) is generalized Bayes, x �→ m(x)

is a positive analytic function and so x �→ ∇m(x)/m(x) is automatically weakly
differentiable.

3.1.1 A Sufficient Condition for Minimaxity of (Proper,
Generalized, and Pseudo) Bayes Estimators

Stein (1973, 1981) gave the following sufficient condition for a generalized Bayes
estimator to be minimax. This condition relies on the superharmonicity of the square
root of the marginal. Recall from Corollary A.2 in Appendix A.8.3 that a function
f from R

p into R which is twice weakly differentiable and lower semicontinuous
is superharmonic if and only if, for almost every x ∈ R

p, we have Δf (x) ≤ 0,
where Δf is the weak Laplacian of f . Note that, if the function f is analytic, the
last inequality holds for any x ∈ R

p.

Theorem 3.1 Under the model of this section, an estimator of the form (3.2) has
finite risk if Eθ

[‖∇m(X)/m(X)‖2
]

< ∞ and is minimax provided x �→ √
m(x) is

superharmonic (i.e., Δ
√

m(x) ≤ 0, for any x ∈ R
p).

Proof First, note that, as noticed in Example 1.1, the marginal m is a positive
analytic function, and so is

√
m.

Using Corollary 2.1 and the fact that δπ (X) = X + σ 2g(X) with g(X) =
∇m(X)/ m(X), the estimator δπ (X) has finite risk if Eθ

[‖∇m(X)/m(X)‖2
]

< ∞.
Also, it is minimax provided, for almost any x ∈ R

p,

D(x) = ‖∇m(x)‖2

m2(x)
+ 2 div

∇m(x)

m(x)
≤ 0 .
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Now, for any x ∈ R
p,

D(x) = ‖∇m(x)‖2

m2(x)
+ 2

m(x)Δm(x) − ‖∇m(x)‖2

m2(x)

where

Δm(x) =
p∑

i=1

∂2

∂x2
i

m(x)

is the Laplacian of m(x). Hence, by straightforward calculation,

D(x) = 2 m(x)Δm(x) − ‖∇m(x)‖2

m2(x)
(3.3)

= 4
Δ

√
m(x)√

m(x)
.

Therefore D(x) ≤ 0 since x �→ √
m(x) is superharmonic. ��

It is convenient to assemble the following results for the case of spherically
symmetric marginals. The proof is straightforward and left to the reader.

Corollary 3.1 Assume the prior density π(θ) is spherically symmetric around 0
(i.e., π(θ) = π(‖θ‖2)). Then

(1) the marginal density m of X is spherically symmetric around 0 (i.e., m(x) =
m(‖x‖2), for any x ∈ R

p);
(2) the Bayes estimator equals

δπ (X) = X + 2 σ 2 m′(‖X‖2)

m(‖X‖2)
X

and has the form of a Baranchik estimator (2.19) with

a r(t) = −2
m′(t)
m(t)

t ∀t ≥ 0 ;

(3) the unbiased estimator of the risk difference between δπ (X) and X is given by

D(X) = 4 σ 4

{
p

m′(‖X‖2)

m(‖X‖2)
+ 2 ‖X‖2 m′′(‖X‖2)

m(‖X‖2)
− ‖X‖2

(
m′(‖X‖2)

m(‖X‖2)

)2}
.

While, in Theorem 3.1 minimaxity of δπ (X) follows from the superharmonicity
of

√
m(X), it is worth noting that, in the setting of Corollary 3.1, it can be obtained

from the concavity of t �→ m1/2(t2/(2−p)).
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The following corollary is often useful. It shows that
√

m(X) is superharmonic
if m(X) is superharmonic, which in turn follows if the prior density π(θ) is
superharmonic.

Corollary 3.2

(1) A finite risk (generalized, proper, or pseudo) Bayes estimator of the form (3.2)
is minimax provided the marginal m is superharmonic (i.e. Δm(x) ≤ 0, for any
x ∈ R

p).
(2) If the prior distribution has a density, π , which is superharmonic, then a finite

risk generalized or proper Bayes estimator of the form (3.2) is minimax.

Proof Part (1) follows from the first equality in (3.3), which shows that superhar-
monicity of m implies superharmonicity of

√
m. Indeed, the superharmonicity of m

implies the superharmonicity of any nondecreasing concave function of m.
Part (2) follows since, for any x ∈ R

p,

Δxm(x) = Δx

∫
Rp

exp

(
− 1

2 σ 2 ‖x − θ‖2
)

π(θ) dθ

=
∫
Rp

Δx exp

(
− 1

2 σ 2 ‖x − θ‖2
)

π(θ) dθ

=
∫
Rp

Δθ exp

(
− 1

2 σ 2
‖x − θ‖2

)
π(θ) dθ

=
∫
Rp

exp

(
− 1

2 σ 2
‖x − θ‖2

)
Δθπ(θ) dθ

where the second equality follows from exponential family properties and the last
equality is Green’s formula (see also Sect. A.9). More generally, any mixture of
superharmonic functions is superharmonic (Sect. A.8). ��

Note that the condition of finiteness of risk is superfluous for proper Bayes
estimators since the Bayes risk is bounded above by p σ 2, and Fubini’s theorem
assures that the risk function is finite a.e. (π ). Continuity of the risk function implies
finiteness for all θ in the convex hull of the support of π (see Berger (1985a) and
Lehmann and Casella (1998) for more discussion on finiteness and continuity of
risk).

As an example of a pseudo-Bayes estimator, consider m(X) of the form

m(X) = 1

(‖X‖2)b
.

The case b = 0 corresponds to m(X) = 1 which is the marginal corresponding to
the “uniform” generalized prior distribution π(θ) ≡ 1, which in turn corresponds
to the generalized Bayes estimator δ0(X) = X. If b > 0, m(X) is unbounded in a
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neighborhood of 0 and consequently is not analytic. Thus, m(X) cannot be a true
marginal (for any generalized prior). However,

∇m(X) = −2 b

(‖X‖2)b+1 X

and

∇m(X)

m(X)
= −2 b

‖X‖2 X,

which is weakly differentiable if p ≥ 3 (see Sect. 2.3). Hence, for p ≥ 3, the James-
Stein estimator

δJS
2b (X) =

(
1 − 2 b σ 2

‖X‖2

)
X

is a pseudo-Bayes estimator. Also, a simple calculation gives

Δm(X) = (−2 b)[p − 2 (b + 1)]
(‖X‖2)b+1 .

It follows that m(X) is superharmonic for 0 ≤ b ≤ (p − 2)/2 and similarly that√
m(X) is superharmonic for 0 ≤ b ≤ p − 2. An application of Theorem 3.1 gives

minimaxity for 0 ≤ b ≤ p−2 which agrees with Theorem 2.2 (with a = 2b), while
an application of Corollary 3.2 establishes minimaxity for only half of the interval,
i.e. 0 ≤ b ≤ (p − 2)/2. Thus, while useful, the corollary is considerably weaker
than the theorem.

Another interesting aspect of this example relates to the existence of proper
Bayes minimax estimators for p ≥ 5. Considering the behavior of m(x) for
‖x‖ ≥ R for some positive R, note that

∫
‖x‖≥R

m(x) dx =
∫

‖x‖≥R

1

(‖X‖2)b
dX ∝

∫ ∞

R

rp−1

r2 b
dr =

∫ ∞

R

rp−2 b−1 dr

and that this integral is finite if and only if p − 2 b < 0. Thus, integrability of
m(x) for ‖x‖ ≥ R and minimaxity of the (James-Stein) pseudo-Bayes estimator
corresponding to m(X) are possible if and only if p/2 < b ≤ p − 2, which implies
p ≥ 5.

It is also interesting to note that superharmonicity of m(X) (i.e. 0 ≤ b ≤
(p − 2)/2) is incompatible with integrability of m(x) on ‖x‖ ≥ R (i.e. b >

p/2). This is illustrative of a general fact that a generalized Bayes minimax
estimator corresponding to a superharmonic marginal cannot be proper Bayes (see
Theorem 3.2).
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3.1.2 Construction of (Proper and Generalized) Minimax
Bayes Estimators

Corollary 3.1 provides a method of constructing pseudo-Bayes minimax estimators.
In this section, we concentrate on the construction of proper and generalized Bayes
minimax estimators. The results in this section are primarily from Fourdrinier et al.
(1998). Although Corollary 3.1 is helpful in constructing minimax estimators it
cannot be used to develop proper Bayes minimax estimators as indicated in the
example at the end of the previous section. The following result establishes that a
superharmonic marginal (and consequently a superharmonic prior density) cannot
lead to a proper Bayes estimator.

Theorem 3.2 Let m be a superharmonic marginal density corresponding to a prior
π . Then π is not a probability measure.

Proof Assume π is a probability measure. Then it follows that m is an integrable,
strictly positive, and bounded function in C∞ (the space of functions which have
derivatives of all orders). Recall from Example 1.1 of Sect. 1.4 that the posterior
risk is given, for any x ∈ R

p, by

p σ 2 + σ 4 m(x)Δm(x) − ‖∇m(x)‖2

m2(x)
.

Hence, the Bayes risk is

r(π) = Em

[
pσ 2 + σ 4 m(X)Δm(X) − ‖∇m(X)‖2

m2(X)

]
,

where Em is the expectation with respect to the marginal density m. Also, denoting
by Eπ the expectation with respect to the prior π , we may use the unbiased estimate
of risk to express r(π) as

r(π) = Eπ
[
Eθ

[
p σ 2 + σ 4 2 m(X)Δm(X)−‖∇m(X)‖2

m2(X)

]]

= Em
[
p σ 2 + σ 4 2m(X)Δm(X)−‖∇m(X)‖2

m2(X)

]
,

since the unbiased estimate of risk does not depend on θ , by definition. Hence, by
taking the difference,

Em

[
Δm(X)

m(X)

]
= 0 .

Now, since the marginal m is superharmonic (Δm(x) ≤ 0 for any x ∈ R
p),

strictly positive and in C∞, it follows that Δm ≡ 0. Finally, the strict positivity
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and harmonicity of m implies that m ≡ C where C is a positive constant (see
Doob 1984), and hence, that

∫
Rp m(X) dx = ∞, which contradicts the integrability

of m. ��
We now turn to the construction of Bayes minimax estimators. Consider prior

densities of the form

π(θ) = k

∫ ∞

0
exp

(
− ‖θ‖2

2 σ 2 v

)
v−p/2 h(v) dv (3.4)

for some constant k and some nonnegative function h on R
+ such that the integral

exists, i.e. π(θ) is a variance mixture of normal distributions. It follows from
Fubini’s theorem that, for any x ∈ R

p,

m(x) =
∫ ∞

0
mv(x) h(v) dv

where

mv(x) = k exp

(
− ‖x‖2

2 σ 2 (1 + v)

)
(1 + v)−p/2 .

Lebesgue’s dominated convergence theorem ensures that we may differentiate
under the integral sign and so

∇m(x) =
∫ ∞

0
∇mv(x) h(v) dv (3.5)

and

Δm(x) =
∫ ∞

0
Δmv(x) h(v) dv (3.6)

where

∇mv(x) = − k

σ 2
exp

(
− ‖x‖2

2 σ 2 (1 + v)

)
(1 + v)−p/2−1 x

and

Δmv(x) = − k

σ 2

[
p − ‖x‖2

σ 2(1 + v)

]
exp

(
− ‖x‖2

2 σ 2 (1 + v)

)
(1 + v)−p/2−1.

Then the following integral

Ij (y) =
∫ ∞

0
exp(−y/(1 + v)) (1 + v)−j h(v) dv
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exists for j ≥ p/2. Hence, with y = ‖x‖2/2σ 2, we have

m(x) = k Ip/2(y) (3.7)

∇m(x) = − k

σ 2
Ip/2+1(y) x

Δm(x) = − k

σ 2

[
p Ip/2+1(y) − 2 y Ip/2+2(y)

]

‖∇m(x)‖2 = 2
k2

σ 2 y I 2
p
2 +1(y).

Note that

‖∇m(x)‖2

m2(x)
= 2

σ 2

I 2
p/2+1(y)

I 2
p
2
(y)

y ≤ 2 y

σ 2 = ‖x‖2

σ 4

since Ij+p(y) ≤ Ij (y). Hence,

E0

[‖∇m(x)‖2

m2(x)

]
≤ E0

[‖x‖2

σ 4

]
< ∞ ,

which, according to Theorem 3.1, guarantees the finiteness of the risk of the
Bayes estimator δπ (X) in (3.2). Furthermore, the unbiased estimator of risk
difference (3.3) can be expressed as

D(X) = − 2
σ 2

[
p Ip/2+1(y) − 2 y Ip/2+2(y)

]
/Ip/2(y) (3.8)

− 2
σ 2

[
y I 2

p/2+1(y)/I 2
p/2(y)

]

= 2 Ip/2+1(y)

σ 2 Ip/2(y)

[
2 y Ip/2+2(y)

Ip/2+1(y)
− p − y Ip/2+1(y)

Ip/2(y)

]
.

Then the following intermediate result follows immediately from (3.2) and Theo-
rem 3.1 since finiteness of risk has been guaranteed above.

Lemma 3.1 The generalized Bayes estimator corresponding to the prior den-
sity (3.4) is minimax provided

2 Ip/2+2(y)

Ip/2+1(y)
− Ip/2+1(y)

Ip/2(y)
≤ p

y
. (3.9)

The next theorem gives sufficient conditions on the mixing density h(·) so that
the resulting generalized Bayes estimator is minimax.

Theorem 3.3 Let h be a positive differentiable function such that the function
−(v + 1)h′(v)/h(v) = l1(v) + l2(v) where l1(v) ≤ A and is nondecreasing while
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0 ≤ l2 ≤ B with A + 2 B ≤ (p − 2)/2. Assume also that limv→∞ h(v)/(v +
1)p/2−1 = 0 and that

∫∞
0 exp(−y/(1 + v)) (1 + v)−p/2 h(v) dv < ∞. Then the

generalized Bayes estimator (3.2) for the prior density (3.4) corresponding to the
mixing density h is minimax. Furthermore, if h is integrable, the resulting estimator
is also proper Bayes.

Proof Via integration by parts, we first find an alternative expression for

Ik(y) =
∫ ∞

0
exp(−y/(1 + v)) (1 + v)−k h(v) dv.

Letting u = (1 + v)−k+2h(v) and dw = (1 + v)−2 exp(−y/(1 + v)) dv, so that
du = (−k + 2)(1 + v)−k+1 h(v) + (1 + v)−k+2h′(v) and w = exp(−y/(1 + v))/y,
we have, for k ≥ p/2 + 1,

Ik(y) = (1 + v)−k+2 exp(−y/(1 + v)) h(v)

y

∣∣∣∞
0

+k − 2

y

∫ ∞

0
exp

(
− y

1 + v

)
(1 + v)−k+1 h(v) dv

− 1

y

∫ ∞

0
exp

(
− y

1 + v

)
(1 + v)−k+2 h′(v) dv

= −e−y h(0)

y
+ k − 2

y
Ik−1(y)

− 1

y

∫ ∞

0
exp

(
− y

1 + v

)
(1 + v)−k+2 h′(v) dv . (3.10)

Applying (3.10) to both numerators in the left-hand side of (3.9) we have

2

Ip/2+1(y)

[−e−y h(0)

y
+ p

2 y
Ip/2+1(y)− 1

y

∫ ∞
0

exp

(
− y

1 + v

)
(1 + v)−p/2 h′(v) dv

]

− 1

Ip/2(y)

[−e−y h(0)

y
+ p − 2

2 y
Ip/2(y)− 1

y

∫ ∞
0

exp

(
− y

1 + v

)
(1 + v)−p/2+1 h′(v) dv

]

≤ p + 2

2 y
−

2
∫∞

0 exp
(
− y

1+v

)
(1 + v)−p/2+2 h′(v) dv

y Ip/2+1(y)

+
∫∞

0 exp
(
− y

1+v

)
(1 + v)−p/2+1 h′(v) dv

y Ip/2(y)

since Ip/2+1(y) < Ip/2(y). Then it follows from Lemma 3.1 that δπ (X) is minimax
provided, for any y ≥ 0,
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J
y
p ≤ p − p + 2

2
= p − 2

2
,

where

J
y
p = −2 E

y

p/2+1

[
(V + 1)

h′(V )

h(V )

]
+ E

y

p/2

[
(V + 1)

h′(V )

h(V )

]

and where E
y
k [f (V )] is the expectation of f (V ) with respect to the random variable

V with density g
y
k (v) = exp(−y/(1 + v)) (1 + v)−k h(v)/Ik(y). Now upon setting

−(v+1) h′(v)/h(v) = l1(v)+l2(v) and noting that g
y
k (v) has monotone decreasing

likelihood ratio in k, for fixed y, we have

J
y
p = 2 E

y

p/2+1 [l1(V ) + l2(V )] − E
y

p/2 [l1(V ) + l2(V )]

≤ 2 E
y

p/2+1 [l1(V )] − E
y

p/2 [l1(V )] + 2 E
y

p/2+1 [l2(V )]

since l2 ≥ 0. Also

E
y

p/2+1 [l1(V )] ≤ E
y

p/2 [l1(V )]

since l1 is nondecreasing. Then

J
y
p ≤ E

y

p/2 [l1(V )] + 2 E
y

p/2+1 [l2(V )] ≤ A + 2 B ≤ p − 2

2
.

since l1 ≤ A and l2 ≤ B and by the assumptions on A and B. The result follows.
��

The following corollary allows the construction of mixing distributions so that
the conditions of the theorem are met and the resulting (generalized or proper) Bayes
estimators are minimax.

Corollary 3.3 Let ψ = ψ1 + ψ2 be a continuous function such that ψ1 ≤ C and is
nondecreasing, while 0 ≤ ψ2 ≤ D, and where C ≤ −2D. Define, for v > 0, h(v) =
exp

[
− 1

2

∫ v

v0

2 ψ(u)+p−2
u+1 du

]
where v0 ≥ 0. Assume also that limv→∞ h(v)/(1 +

v)p/2−1 = 0 and that Ip/2(y) = ∫∞
0 exp(−y/(1 + v)) (1 + v)−p/2 h(v) dv < ∞.

Then the Bayes estimator corresponding to the mixing density h is minimax.
Furthermore if h is integrable the estimator is proper Bayes.

Proof A simple calculation shows that

−(v + 1)
h′(v)

h(v)
= ψ1(v) + ψ2(v) + p − 2

2
.

Setting l1(v) = ψ1(v) + (p − 2)/2 and l2(v) = ψ2(v), the result follows from
Theorem 3.1 with A = (p − 2)/2 + C and B = D. ��
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Note that finiteness of Ip/2(y) in Corollary 3.2 is assured if we strengthen the
limit condition to limv→∞ h(v)/(1 + v)p/2−1−ε = 0 for some ε > 0, since this
implies that, for h(v)/(1 + v)p/2 ≤ M/(1 + v)1+ε for some M > 0 and any v > 0.
Thus

Ip/2(y) =
∫ ∞

0
exp(−y/(1 + v)) (1 + v)−p/2 h(v) dv ≤

∫ ∞

0
(1 + v)−p/2 h(v) dv

≤
∫ ∞

0

M

(1 + v)1+ε
dv

< ∞ .

3.1.3 Examples

An interesting and useful class of examples results from the choice

ψ(v) = α + β/v + γ /v2 (3.11)

for some (α, β, γ ) ∈ R
3. A simple calculation shows

h(v) = exp

[
−
∫ v

v0

α + β/u + γ /u2 + (p − 2)/2

u + 1
du

]

∝ (v + 1)β−α−γ− p−2
2 vγ−β exp

(γ

v

)
. (3.12)

Example 3.1 (The Strawderman 1971 prior) Suppose α ≤ 0 and β = γ = 0 so
that h(v) ∝ (v + 1)−α−(p−2)/2. Let ψ1(v) = ψ(v) ≡ α and ψ2(v) ≡ 0 so that C =
D = 0. Then the minimaxity conditions of Corollary 3.1 require limv→∞ h(v)/(1+
v)p/2−1 = limv→∞(v + 1)−α−(p−2) = 0 and this is satisfied if α > 2 − p. Also

Ip/2(y) =
∫ ∞

0
exp(−y/(1 + v)) (1 + v)−p/2 h(v) dv

∝
∫ ∞

0
exp(−y/(1 + v)) (1 + v)−α−p+1 h(v) dv

≤
∫ ∞

0
(1 + v)−α−p+1 h(v) dv

< ∞

if α > 2 − p as above. Hence in this case the corresponding generalized Bayes
estimator is minimax if 2 − p < α ≤ 0 (which requires p ≥ 3).

Furthermore it is proper Bayes minimax if
∫∞

0 (1+v)−α−(p−2)/2 dv < ∞ which
is equivalent to 2 − p/2 < α ≤ 0. This latter condition requires p ≥ 5 and
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demonstrates the existence of proper Bayes minimax estimators for p ≥ 5. We
will see below that this is the class of priors studied in Strawderman (1971) under
the alternative parametrization λ = 1/(1 + v).

Example 3.2 Consider ψ(v) given by (3.11) with α ≤ 0, β ≤ 0 and γ ≤ 0. Here
we take ψ1(v) = ψ(v), ψ2(v) = 0, and C = D = 0. The minimaxity conditions of
Corollary 3.2 require

lim
v→∞ h(v)/(1 + v)p/2−1 = lim

v→∞(v + 1)β−α−γ−p+2vγ−β exp(γ /v) = 0.

This implies 2 − p < α ≤ 0. The finiteness condition on

Ip/2(y) =
∫ ∞

0
exp(−y/(1 + v)) (1 + v)−p/2 h(v) dv

∝
∫ ∞

0
e− y

1+v (v + 1)β−α−γ−p+1vγ−β exp(γ /v) dv

also requires 2 − p < α ≤ 0. Therefore, minimaxity is ensured as soon as 2 − p <

α ≤ 0.
Furthermore, the minimax estimator will be proper Bayes if

∫ ∞

0
h(v) dv ∝

∫ ∞

0
(1 + v)β−α−γ−(p−2)/2 vγ−β exp(γ /v) dv < ∞.

This holds if 2 − p
2 < α ≤ 0 as in Example 3.1.

Example 3.3 Suppose α ≤ 0, β > 0, and γ < 0 and take

ψ1(v) = α + (γ /v)(1/ + β/γ )I[0,−2γ /β](v) ,

ψ2(v) = (γ /v)(1/v + β/γ ) 11[−2γ /β,∞](v) ,

for C = α and D = −β2/4γ .

Note first that ψ1(v) is monotone nondecreasing and bounded above by α; also,
0 ≤ ψ2(v) ≤ −β2/4γ . Therefore, we require C = α < −2D = β2/2γ .
The conditions limv→∞ h(v)/(1 + v)p/2−1 = 0 and

∫∞
0 exp(−y/(1 + v)) (1 +

v)−p/2 h(v) dv < ∞ are, as in Example 3.2, 2 − p < α ≤ 0.
Thus, δπ (X) is minimax for 2 − p < α ≤ β2/2γ < 0. The condition for

integrability of h is also, as in Example 3.2, i.e. 2 − p
2 < α ≤ β2/2γ < 0.

In this example, ψ(v) is not monotone but is increasing on [0,−2γ /β) and
decreasing thereafter. This typically corresponds to a non-monotone r(‖X‖2) in the
Baranchik-type representation of δπ (X).

For simplicity, in the following examples, we assume σ 2 = 1.



3.1 Bayes Minimax Estimators 75

Example 3.4 (Student-t priors) In this example we take ψ(v) as in Examples 3.2
and 3.3 with the specific choices α = (m−p+4)/2 ≤ 0, β = (m (1−ϕ)+2)/2, and
γ = −m ϕ/2 ≤ 0, where m ≥ 1. In this case h(v) = C v−(m+2)/2 exp(−m ϕ/2 v),
an inverse gamma density. Hence, as is well known, π(θ) is a multivariate-t
distribution with m-degrees of freedom and scale parameter ϕ if m is an integer
(see e.g. Muirhead 1982, p.33 or Robert 1994, p.174). If σ 2 �= 1, the scale of the
t-distribution is ϕ σ .

For various different values of m and ϕ, either the conditions of Example 3.2 or
the conditions of Example 3.3 apply. Both examples require α = (m−p+4)/2 ≤ 0,
or equivalently 1 ≤ m ≤ p − 4 (so that p ≥ 5), and γ = −m ϕ/2 ≤ 0.

Example 3.2 requires β = (m (1−ϕ)+2
)
/2 < 0, or equivalently, ϕ ≥ (m+2)/m.

The condition for minimaxity 2 − p < α ≤ 0 is satisfied since it is equivalent to
m > −p. Furthermore the condition for proper Bayes minimaxity, 2 − p

2 < α ≤ 0,
is satisfied as well since it reduces to m > 0. Hence, if ϕ ≥ (m + 2)/m, the scaled
p-variate t prior distribution leads to a proper Bayes minimax estimator for p ≥ 5
and m ≤ p − 4.

On the other hand, when ϕ < (m + 2)/m, or equivalently, β > 0, the conditions
of Example 3.3 are applicable. Considering the proper Bayes case only, the
condition for minimaxity of the Bayes estimator is

2 − p

2
< α = m − p + 4

2
≤ β2

2γ
≤ β2

2γ
= −1

4

(
m (1 − ϕ) + 2

)2
m ϕ

.

The first inequality is satisfied by the fact that m > 0. The second inequality can
be satisfied only for certain ϕ since, when ϕ goes to 0, the last expression tends
to −∞. A straightforward calculation shows that the second inequality can hold
only if

ϕ ≥ p − 2

m

⎡
⎣1 −

√
1 −

(
m + 2

p − 2

)2
⎤
⎦ > 0 .

In particular, if ϕ = 1 (the standard multivariate t), the condition becomes 2−p/2 <
m−p+4

2 ≤ − 1
m

. As m ≥ 1 this is equivalent to m + 2/m ≤ p − 4, which requires
p ≥ 7 for m = 1 or 2, and p ≥ m + 5 for m ≥ 3.

An alternative approach to the results of this section can be made using
the techniques of Sect. 2.4.2 applied to Baranchik-type estimators of the form(
1 − a r(‖X‖2)/‖X‖2

)
X. Indeed any spherically symmetric prior distribution will

lead to an estimator of the form φ(‖X‖2)X. More to the point, for prior distributions
of the form studied in this section, the r(·) function is closely connected to the
function v �→ −(v + 1)h′(v)/h(v). To see this, note that
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δπ (X) = X + σ 2 ∇m(X)

m(X)

=
(

1 − Ip/2+1(y)

Ip/2(y)

)
X from (3.2) with y = ‖X‖2/2σ 2

=
(
1− 1

y

(
p − 2

2
−
∫∞

0 e− y
1+v (1 + v)−p/2[(v + 1)h′(v)/h(v)] dv − e−yh(0)

Ip/2(y)

))
X

=
⎛
⎝1 − 2σ 2

‖X‖2

⎛
⎝p − 2

2
+ E

y

p/2

[
− (V + 1)h′(V )

h(V )

]
− e

− ‖X‖2

2σ2 h(0)

Ip/2(
‖X‖2

2σ 2 )

⎞
⎠
⎞
⎠X ,

where E
y
k (f ) is as in the proof of Theorem 3.1, the second to last equality following

from (3.4).
Hence, the Bayes estimator is of Baranchik form with

ar(‖X‖2) = 2

⎛
⎝p − 2

2
+ E

‖X‖2

2σ2

p/2

[
− (V + 1)h′(V )

h(V )

]
− e

− ‖X‖2

2σ2 h(0)

Ip/2(
‖X‖2

2σ 2 )

⎞
⎠ .

��
Recall, as in the proof of Theorem 3.1, that the density g

y
k (V ) has a monotone

decreasing likelihood ratio in k, but notice also that it has a monotone increasing
likelihood ratio (actually as an exponential family) in y.

Hence, if − (v+1)h′(v)
h(v)

is nondecreasing, it follows that r is nondecreasing since
e−y/Ip/2(y) is also nondecreasing. Then the following corollary is immediate from
Theorem 3.3.

Corollary 3.4 Suppose the prior is of the form (3.4) where −(v + 1) h′(v)/h(v) is
nondecreasing and bounded above by A > 0. Then, the generalized Bayes estimator
is minimax provided A ≤ p−2

2 .

Proof As noted, r(·) is nondecreasing and is bounded above by p − 2 + 2A ≤
2(p − 2). ��

Corollary 3.3 yields an alternative proof for the minimaxity of the generalized
Bayes estimator in Example 3.1.

Finally, as indicated earlier in this section, an alternative parametrization has
often been used in minimaxity proofs for the mixture of normal priors, namely λ =

1
1+v

, or equivalently, v = 1−λ
λ

.
Perhaps the easiest way to proceed is to reconsider the prior distribution as

a hierarchical prior as discussed in Sect. 1.7. Here the distribution of θ | v ∼
Np(0, vσ 2X) and the unconditional density of v is the mixing density h(v). The
conditional distribution of θ given X and v is Np( v

1+v
X, V

1+v
σ 2Ip). The Bayes

estimator is
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δπ (X) = E(θ | X)

= E[E(θ | X,V ) | X]
= E[ v

1+v
X | X]

= (1 − E[ 1
1+v

| X])X
= (1 − E[λ | X])X.

Note also that the Bayes estimator for the first stage prior

θ | λ ∼ N (0,
1 − λ

λ
σ 2I ) (3.13)

is (1−λ)X. Therefore, in terms of the λ parametrization, one may think of E[λ | X]
as the posterior mean of the shrinkage factor and of the (mixing) distribution on λ

as the distribution of the shrinkage factor.
In particular, for the prior distribution of Example 3.1 where the mixing density

on v is h(v) = C (1 + v)−α−(p−2)/2, the corresponding mixture density on λ is

given by g(λ) = Cλα+ p−2
2 −2 = Cλβ and (β = α + p/2 − 3). The resulting prior is

proper Bayes minimax if 2 − p/2 < α ≤ 0 or equivalently, −1 < β ≤ /2 − 3 (and
p ≥ 5). Note that, if p ≥ 6, β = 0 satisfies the conditions and consequently the
mixing prior g(λ) ≡ 1 on 0 ≤ λ ≤ 1, i.e. the uniform prior on the shrinkage factor
λ gives a proper Bayes minimax estimator. This class of priors is often referred to
as the Strawderman priors.

To formalize the above discussion further we present a version of Theorem 3.3
in terms of the mixing distribution on λ. The proof follows from Theorem 3.3 and
the change of variable λ = 1/(1 + v).

Corollary 3.5 Let θ have the hierarchical prior θ | λ ∼ Np(0, ({1 − λ}/λ) σ 2 Ip)

where λ ∼ g(λ) for 0 ≤ λ ≤ 1. Assume that limλ→0 g(λ)λp/2+1 = 0 and that∫ 1
0 e−λλp/2g(λ)dλ < ∞. Suppose λg′(λ)/g(λ) can be decomposed as l∗1 (λ)+ l∗2 (λ)

where l∗1 (λ) is monotone nonincreasing and l∗1 (λ) ≤ A∗, 0 ≤ l∗2 (λ) ≤ B∗ with
A∗ + 2B∗ ≤ p/2 − 3.

Then the generalized Bayes estimator is minimax. Furthermore, if
∫ 1

0 g(λ)dλ <

∞, the estimator is also proper Bayes.

Example 3.5 (Beta priors) Suppose the prior g(λ) on λ is a Beta (a, b) distribu-
tion, i.e. g(λ) = Kλa−1(1 − λ)b−1. Note that the Strawderman (1971) prior is of
this form if b = 1. An easy calculation shows λg′(λ)

g(λ)
= a − 1 − (b − 1) λ

1−λ
. Letting

l∗1 (λ) = λg′(λ)
g(λ)

and l∗2 (λ) ≡ 0, we see that the resulting proper Bayes estimator is
minimax for 0 < a ≤ p/2 − 2 and b ≥ 1.

It is clear that our proof fails for 0 < b < 1 since in this case λg′(λ)/g(λ) is not
bounded from above (and is also monotone increasing). Maruyama (1998) shows,
using a different proof technique involving properties of confluent hypergeometric



78 3 Normal Mean Vector II

functions, that the generalized Bayes estimator is minimax (in our notation) for
−p/2 < a ≤ p/2 − 2 and b ≥ (p + 2a + 2)(3p/2 + a)−1. This bound in b is
in (0, 1) for a < p/2 − 2. Hence, certain Beta distributions with 0 < b < 1 also
give proper Bayes minimax estimators. The generalized Bayes minimax estimators
of Alam (1973) are also in Maruyama’s class.

3.1.4 Multiple Shrinkage Estimators

In this subsection, we consider a class of estimators that adaptively choose a point
(or subspace) toward which to shrink. George (1986a,b) originated work in this
area and the results in this section are largely due to him. The basic fact upon
which the results rely is that a mixture of superharmonic functions is superharmonic
(see the discussion in the Appendix), that is, if mα(x) is superharmonic for each
α, then

∫
mα(x) dG(α) is superharmonic if G(·) is a positive measure such that∫

mα(x) dG(α) < ∞. Using this property, we have the following result from
Corollary 3.1.

Theorem 3.4 Let mα(x) be a family of twice weakly differentiable nonnega-
tive superharmonic functions and G(x) a positive measure such that m(x) =∫

mα(x) dG(x) < ∞, for all x ∈ R
p.

Then the (generalized, proper, or pseudo) Bayes estimator

δ(X) = X + σ 2 ∇m(X)

m(X)

is minimax provided E[‖∇m‖2/m2] < ∞.

The following corollary for finite mixtures is useful.

Corollary 3.6 Suppose that mi(x) is superharmonic and E[‖∇mi(X)‖2/m2
i (X)] <

∞ for i = 1, . . . , n. Then, if m(x) = ∑n
i=1 mi(x), the (generalized, proper, or

pseudo) Bayes estimator

δ(X) = X + σ 2 ∇m(X)
m(X)

=∑n
i=1(X + σ 2 ∇mi(X)

mi(X)
)Wi(X)

where Wi(X) = mi(X)/
∑n

i=1 mi(X) for 0 < Wi(X) < 1,
∑n

i=1 Wi(X) = 1 is
minimax. (Note that Eθ [‖∇m(X)‖2/m2(X)] <

∑n
i=1 Eθ [‖∇mi(X)‖2/m2(Xi)] <

∞.)
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Example 3.6

(1) Multiple shrinkage James-Stein estimator. Suppose we have several possible
points X1, X2, . . . , Xn toward which to shrink. Recall that mi(x) = (1/‖x −
Xi‖2)(p−2)/2 is superharmonic if p ≥ 3 and the corresponding pseudo-Bayes
estimator is δi(X) = Xi + (1 − (p − 2) σ 2/‖X − Xi‖2

)
(X − Xi). Hence, if

m(x) = ∑n
i=1 mi(x), the resulting minimax pseudo Bayes estimator is given

by

δ(X) =
n∑

i=1

[
Xi + (1 − (p − 2)σ 2

‖X − Xi‖2 )(X − Xi)

]
Wi(X)

where Wi(X) ∝ (
1/‖X − Xi‖2

)(p−2)/2
and

∑n
i=1 Wi(X) = 1. Note that

Wi(X) is large when X is close to Xi and the estimator is seen to adaptively
shrink toward Xi .

(2) Multiple shrinkage positive-part James-Stein estimators. Another possible
choice for the mi(x) (leading to a positive-part James Stein estimator) is

mi(x) =
⎧⎨
⎩

C exp
( ‖x−Xi‖2

2 σ 2

)
if ‖x − Xi‖2 < (p − 2) σ 2(

1
‖x−Xi‖2

)
if ‖x − Xi‖2 ≥ (p − 2) σ 2

where C = (
1/(p − 2) σ 2

)(p−2)/2
e(p−2)/2 so that mi(x) is continuous. This

gives

δi(X) = Xi +
(

1 − (p − 2)σ 2

‖X − Xi‖2

)
+

(X − Xi)

since

∇mi(X)

mi(X)
=
{−X−Xi

σ 2 if ‖X − Xi‖2 < (p − 2)σ 2,

− (p−2)

‖X−Xi‖2 otherwise.

The adaptive combination is again minimax by the corollary and inherits the
usual advantages of the positive-part estimator over the James-Stein estimator.

Note that a smooth alternative to the above is mi(x) =
(

1
b+‖x−Xi‖2

) p−2
2

for

some b > 0.

In each of the above examples we may replace (p − 2)/2 in the exponent by a/2
where 0 ≤ a ≤ p − 2 (and where 0 ≤ ‖x − Xi‖2 < (p − 2) σ 2 is replaced by
0 ≤ ‖x − Xi‖2 < a σ 2 for the positive-part estimator). The choice of p − 2 as an
upper bound for a ensures superharmonicity of mi(x). A choice of a in the range
of p − 2 < a ≤ 2 (p − 2) seems also quite natural since

√
mi(x) is superharmonic
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(but mi(x) is not) for a in this range so that each δi(X) is minimax. Unfortunately
minimaxity of δ(X) = ∑n

i=1 Wi(X)δi(X) does not follow from Corollary 3.3 for

p−2 < a ≤ 2 (p−2) since it need not be true that
√∑n

i=1 mi(x) is superharmonic

even though
√

mi(x) is superharmonic for each i.

(3) A generalized Bayes multiple shrinkage estimator. If πi(θ) is superharmonic
then π(θ) =∑n

i=1 πi(θ) is also superharmonic as is m(x) =∑n
i=1 mi(x).

For example, πi(θ) = (1/b + ‖θ − Xi‖2
)a/2

, for b ≥ 0 and 0 ≤ a ≤ p − 2, is a
suitable prior. Interestingly, according to a heuristic of Brown (1971), m(x) in this

case should behave for large ‖x‖2 as
∑n

i=1 1/
(
b + ‖x − Xi‖2

)a/2
, the “smooth”

version of the adaptive positive-part multiple shrinkage pseudo-marginal in part (2)
of this example.

By obvious modifications of the above, multiple shrinkage estimators may be
constructed that shrink adaptively toward subspaces. Further examples can be found
in George (1986a,b), Ki and Tsui (1990) and Wither (1991).

3.2 Bayes Estimators in the Unknown Variance Case

3.2.1 A Class of Proper Bayes Minimax Admissible Estimators

In this subsection, we give a class of hierarchical Bayes minimax estimators for the
model

X ∼ Np(θ, σ 2 Ip) S ∼ σ 2 χ2
k , (3.14)

where S is independent of X, under scale invariant squared error loss

L(θ, δ(X, S)) = ‖δ(X, S) − θ‖2

σ 2 . (3.15)

We reparameterize σ 2 as 1/η and consider the following hierarchically, on the
unknown parameters, structured prior(θ, η), which is reminiscent of the hierarchical
version of the Strawderman prior in (3.13),

θ |λ, η ∼ Np

(
0,

1

η

1 − λ

λ
Ip

)

η ∼ Gamma

(
b

2
,
c

2

)
(3.16)

λ ∼ (1 + a) λa, 0 < λ < 1 .
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Lemma 3.2 For the model (3.14) and loss (3.15), the (generalized or proper) Bayes
estimator of θ is given by

δ(X, S) =
(

1 − S

‖X‖2
r(‖X‖2, S)

)
X (3.17)

where

r(‖X‖2, S) = ‖X‖2

‖X‖2 + c

∫ (‖X‖2+c)/S

0 uA+1
(

1
u+1

)B+1
du

∫ (‖X‖2+c)/S

0 uA
(

1
u+1

)B+1
du

(3.18)

where

A = p + a + b

2
and B = p + k + b − 2

2
(3.19)

provided A > −1, A − B < 0, and c > 0.

Proof Under the loss in (3.15) the Bayes estimator for the model in (3.16) is given
by

δ(X, S) = E[θ η|X, S]
E[η|X, S] . (3.20)

Expressing the expectation in the numerator of (3.20) gives

E[θ η|X, S] =
∫ ∞

0

∫ 1

0

∫
Rp

θ ηp/2+1
(

λ η

1 − λ

)p/2

× exp

(
−η

2

[
‖x − θ‖2 + λ

1 − λ
‖θ‖2

])
η(k+b−2)/2

×λ(b+a)/2 exp
(
−η

2
(S + λ c)

)
dθ dη dλ

=
∫ ∞

0

∫ 1

0
(1 − λ)λAηB exp

(
−η

2
(S + λ(‖x‖2 + c))

)
dη dλ (3.21)

upon integrating with respect to θ and evaluating with the constants in (3.19).
Similarly, for the denominator in (3.20)

E[η|X, S] =
∫ ∞

0

∫ 1

0

∫
Rp

ηp/2+1
(

λ η

1 − λ

)p/2

× exp

(
−η

2

[
‖x − θ‖2 + λ

1 − λ
‖θ‖2

])
η(k+b−2)/2
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×λ(b+a)/2 exp
(
−η

2
(S + λ c)

)
dθ dη dλ

=
∫ ∞

0

∫ 1

0
ηBλA exp

(
−η

2
(S + λ(‖x‖2 + c))

)
dηdλ. (3.22)

Therefore from (3.21) and (3.22) the Bayes estimator in (3.20) has the form

δ(X, S) =
(

1 − S

‖X‖2 r(‖X‖2, S)

)
X

where

r(‖X‖2, S) = ‖X‖2

S

∫∞
0

∫ 1
0 ηB λA+1 exp

(
− η S

2

(
1 + λ

‖x‖2+c
S

))
dη dλ

∫∞
0

∫ 1
0 ηB λA exp

(
− η S

2

(
1 + λ

‖x‖2+c
S

))
dη dλ

= ‖X‖2/S

(‖X‖2 + c) S

∫ (‖X‖2+c)/S

0

∫∞
0 ηB uA+1 exp

(
− η S

2 (1 + u)
)

dη du

∫ (‖X‖2+c)/S

0

∫∞
0 ηB uA exp

(
− η S

2 (1 + u)
)

dη du

= ‖X‖2

‖X‖2 + c

∫ (‖X‖2+c)/S

0 uA+1
(

1
u+1

)B+1
du

∫ (‖X‖2+c)/S

0 uA
(

1
u+1

)B+1
du

,

with the change of variable u = λ (‖X‖2 + c)/S is made in the next to last step. ��
The properties of r(‖X‖2, S) in Lemma 3.2 are given in the following result.

Lemma 3.3 The function r(‖X‖2, S) given in (3.18) satisfies the following proper-
ties:

(i) r(‖X‖2, S) is nondecreasing in ‖X‖2 for fixed S;
(ii) r(‖X‖2, S) is nonincreasing in S for fixed ‖X‖2; and

(iii) 0 ≤ r(‖X‖2, S) ≤ (A + 1)/(B − A − 1) = (p + a + b + 2)/(k − a − 4)

provided the conditions of Lemma 3.2 hold.

Proof Note first that
∫ t

0 u f (u) du/
∫ t

0 f (u) du is nondecreasing in t for any
integrable nonnegative function f (·). Hence Part (i) follows since r(‖X‖2, S) is
the product of two nonnegative nondecreasing functions ‖X‖2/‖X‖2 + c and∫ (‖X‖2+c)/S

0 u f (u) du/
∫ (‖X‖2+c)/S

0 f (u) du for f (u) = uA (1 + u)−(B+1).
Part (ii) follows from a similar reasoning since the first term is constant in S and

(‖X‖2 + c)/S is decreasing in S.
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To show Part (iii) note that, by Parts (i) and (ii),

0 ≤ r(‖X‖2, S) ≤ lim
‖X‖2→∞

S→0

r(‖X‖2, S)

≤
∫∞

0 uA+1
(

1
u+1

)B+1
du

∫∞
0 uA

(
1

u+1

)B+1
du

=
∫ 1

0 λB−A−2 (1 − λ)A+1

∫ 1
0 λB−A−1 (1 − λ)A

= A + 1

B − A − 1

= p + a + b + 2

k − a − 4
,

expressing the beta functions and according to the values of A and B. ��
We also need the following straightforward generalization of Corollary 2.6. The

proof is left to the reader.

Corollary 3.7 Under model (3.14) and loss (3.15) an estimator of the form

δ(X, S) =
(

1 − S

‖X‖2 r(‖X‖2, S)

)
X

is minimax provided

(i) r(‖X‖2, S) is nondecreasing in ‖X‖2 for fixed S;
(ii) r(‖X‖2, S) is nonincreasing in S for fixed ‖X‖2; and

(iii) 0 ≤ r(‖X‖2, S) ≤ 2 (p − 2)/(k + 2).

Combining Lemmas 3.2 and 3.3 and Corollary 3.7 gives the following result.

Theorem 3.5 For the model (3.14), loss (3.15) and hierarchical prior (3.16), the
generalized or proper Bayes estimator in Lemma 3.2 is minimax provided

p + a + b + 2

k − a − 4
≤ 2 (p − 2)

k + 2
. (3.23)

Furthermore, if p ≥ 5, there exist values of a > −2 and b > 0 which satisfy (3.23),
i.e. such that the estimator is proper Bayes, minimax and admissible.

Proof The first part is immediate. To see the second part, note that it suffices, if
a = −2 + ε b = δ, for ε, δ > 0, that

p

k − 2
<

p + ε + δ

k − 2 − ε
≤ 2 (p − 2)

k + 2
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equivalently p > 4 k−2
k−6 . Hence, for p ≥ 5 and k sufficiently large, k > 2 (3 p −

4)/(p − 4), there are values of a and b such that the priors are proper. ��
Note that there exist values of a and b satisfying (3.23) and the assumptions of

Lemma 3.2 whenever p ≥ 3.
Strawderman (1973) gave the first example of a generalized and proper Bayes

minimax estimators in the unknown variance setting. Zinodiny et al. (2011) also
give classes of generalized and proper Bayes minimax estimators along somewhat
similar lines as the above. The major difference is that the prior distribution on
η (= 1/σ 2) in the above development is also hierarchical, as it also depends
on λ.

3.2.2 The Construction of a Class of Generalized Bayes
Minimax Estimators

In this subsection we extend the generalized Bayes results of Sect. 3.1.2, using the
ideas in Maruyama and Strawderman (2005) and Wells and Zhou (2008), to consider
point estimation of the mean of a multivariate normal when the variance is unknown.
Specifically, we assume the following model in (3.14) and the scaled squared loss
function in (3.15).

In order to derive the (formal) Bayes estimator we reparameterize the model
in (3.14) by replacing σ by η−1. The model then becomes

X∼Np(θ, η−2Ip), S ∼ sk/2−1 ηk exp(s η2/2),

θ∼Np(0, ν η−2Ip), ν∼h(ν), η ∼ ηd , η > 0 , (3.24)

for some constant d. Under this model, the prior for θ is a scale mixture of normal
distributions. Note that the above class of priors cannot be proper due to the
impropriety of the distribution of η. However, as a consequence of the form of this
model, the resulting generalized Bayes estimator is of the Baranchik form (3.17),
with r(‖X‖2, S) = r(F ), where F = ||X||2/S.

We develop sufficient conditions on k, p, and h(ν) such that the generalized
Bayes estimators with respect to the class of priors in (3.24) are minimax under
the invariant loss function in (3.15). Maruyama and Strawderman (2005) and Wells
and Zhou (2008) were able to obtain such sufficient conditions by applying the
bounds and monotonicity results of Baranchik (1970), Efron and Morris (1976),
and Fourdrinier et al. (1998).

Before we derive the formula for the generalized Bayes estimator under the
model (3.24), we impose three regularity conditions on the parameters of priors.
These conditions are easily satisfied by many hierarchical priors. These three
conditions are assumed throughout this section.
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C1: A > 1 where A = d+k+p+3
2 ;

C2:
∫ 1

0 λ
p
2 −2h

(
1−λ
λ

)
dλ < ∞; and

C3: limν→∞ h(ν)

(1+ν)p/2−1 = 0.

Now, as in Sect. 3.1, we will first find the form of the Bayes estimator and then
show that it satisfies some sufficient conditions for minimaxity. We start with the
following lemma that corresponds to (3.2) in the known variance case and (3.18) in
the previous subsection.

Lemma 3.4 Under the model in (3.24), the generalized Bayes estimator can be
written as

δ(X, S) = X − R(F)X = X − r(F )

F
X, (3.25)

where F = ||X||2/S,

R(F) =
∫ 1

0 λp/2−1 (1 + λ F)−A h
(

1−λ
λ

)
dλ

∫ 1
0 λp/2−2 (1 + λ F)−A h

(
1−λ
λ

)
dλ

, (3.26)

and

r(F ) = F R(F) . (3.27)

Proof Under the loss function (3.15), the generalized Bayes estimator for the
model (3.24) is

δ(X, S) = E( θ
σ 2 |X, S)

E( 1
σ 2 |X, S)

=
∫∞

0 h(ν)
∫∞

0 [(η2)A− 1
2 e− 1

2 η2S
∫
Rp ( 1

2πνη−2 )
p
2 θe− 1

2 η2(
||θ ||2

ν
+||X−θ ||2)dθ ]dη dν

∫∞
0 h(ν)

∫∞
0 [(η2)A− 1

2 e− 1
2 η2S

∫
Rp ( 1

2πνη−2 )
p
2 e− 1

2 η2(
||θ ||2

ν
+||X−θ ||2)dθ ]dηdν

=
⎛
⎜⎝1 −

∫∞
0 [( 1

1+ν
)h(ν)( 1

1+ν
)

p
2
∫∞

0 (η2)A− 1
2 e

− 1
2 η2(S+ ||X||2

1+ν
)
dη] dν

∫∞
0 [h(ν)( 1

1+ν
)

p
2
∫∞

0 (η2)A− 1
2 e

− 1
2 η2(S+ ||X||2

1+ν
)
dη] dν

⎞
⎟⎠ X

=
⎛
⎝1 −

∫∞
0 ( 1

1+ν
)h(ν)( 1

1+ν
)

p
2 (1 + F

1+ν
)−A dν∫∞

0 h(ν)( 1
1+ν

)
p
2 (1 + F

1+ν
)−A dν

⎞
⎠ X. (3.28)

Letting λ = (1 + ν)−1, δ(X, S) = (1 − R(F))X, which gives the form of the
generalized Bayes estimator. ��
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Recall from Stein (1981) that when σ 2 is known the Bayes estimator under
squared error loss and corresponding to a prior π(θ) is given by (3.2), that is,
δπ (X) = X + σ 2 �m(X)

m(X)
.

The form of the Bayes estimator given in (3.25) gives an analogous form with
the unknown variance replaced by a multiple of the usual unbiased estimator. In
particular, define the “quasi-marginal”

M(x, s) =
∫ ∫

fX(x) fS(s) π(θ, σ 2) dθ dσ 2

where

fX(x) =
(

1

2πσ 2

)p/2

e
− 1

2σ2 ||x−θ ||2

and

fS(s) = 1

2k/2Γ (k/2)
sk/2−1(σ 2)−k/2e

− s

2σ2 .

A straightforward calculation shows M(x, s) is proportional to

∫ ∞

0
h(ν)

∫ ∞

0
[(η2)A− 3

2 e− 1
2 η2s

∫
Rp

(
1

2πνη−2 )
p
2 e− 1

2 η2(
||θ ||2

ν
+||x−θ ||2)dθ ]dηdν.

It is interesting to note the unknown variance analog of (3.2) is

δ(X, S) = X − 1

2

∇XM(X, S)

∇SM(X, S)
.

Lastly, note that the exponential term in the penultimate expression in the rep-
resentation of δ(X, S) in (3.28) (that comes from the normal sampling distribution
assumption) cancels. Hence there is a sort of robustness with respect to the sampling
distribution. We will develop this theme in greater detail in Chap. 6 in the setting of
spherically symmetric distributions.

3.2.2.1 Preliminary Results

The minimax property of the generalized Bayes estimator is closely related to the
behavior of the r(F ) and R(F) functions, which is in turn closely related to the
behavior of

g(ν) = −(ν + 1)
h′(ν)

h(ν)
. (3.29)
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Fourdrinier et al. (1998) gave a detailed analysis of the type of function in (3.29).
However, their argument was deduced from the superharmonicity of the square root
of a marginal condition. Baranchik (1970) and Efron and Morris (1976) gave certain
regularity conditions on the shrinkage function r(·) such that an estimator

θ̂ (X, S) = X − r(F )

F
X (3.30)

is minimax under the loss function (3.15) for the model (3.14). Both results require
an upper bound on r(F ) and a condition on how fast R(F) = r(F )/F decreases
with F . Both theorems follow from a general result for spherically symmetric
distributions given in Chap. 6 (Proposition 6.1), or by applying Theorem 2.5 in a
manner similar to that in Corollary 2.3. The proofs are left to the reader.

Theorem 3.6 (Baranchik 1970) Assume that r(F ) is increasing in F and 0 ≤
r(F ) ≤ 2 (p − 2)/(k + 2). Then any point estimator of the form (3.30) is minimax.

Theorem 3.7 (Efron and Morris 1976) Define ck = p−2
k+2 . Assume that 0 ≤

r(F ) ≤ 2 ck , that for all F with r(F ) < 2ck ,

Fp/2−1 r(F )

(2 − r(F )/ck)1+2 ck
is increasing in F, (3.31)

and that, if an F0 exists such that r(F0) = 2ck , then r(F ) = 2 ck for all F ≥ F0.
With the above assumptions, the estimator θ̂ (X, S) = X − r(F )/F X is minimax.

Consequently, to apply these results one has to establish an upper bound for r(F )

in (3.27) and the monotonicity property for some variant of r(F ). The candidate we
use is r̃(F ) = Fcr(F ) with a constant c. Note that the upper bound 2 ck is exactly
the same upper bound needed in Corollary 3.7(iii). We develop the needed results
below.

First note that if h(ν) is a continuously differentiable function on [0,∞), and
regularity conditions C1, C2 and C3 hold, then the integrations by parts used in
Lemmas 3.5 and 3.6 are valid.

Lemma 3.5 Assume the regularity conditions C1, C2 and C3, and that g(ν) ≤ M ,
where M is a positive constant and g(ν) is defined as in (3.29). Then, for the r(F )

function (3.27), we have

0 ≤ r(F ) ≤
p
2 − 1 + M

A − p
2 − M

,

where A is defined in condition C1.

Proof By the definition in (3.26), R(F) ≥ 0. Then r(F ) = FR(F) ≥ 0. Note that

r(F ) = F

∫ 1
0 λ

p
2 −1(1 + λF)−Ah( 1−λ

λ
) dλ∫ 1

0 λ
p
2 −2(1 + λF)−Ah( 1−λ

λ
) dλ

= F
Ip

2 −1,A,h(F )

I p
2 −2,A,h(F )

,



88 3 Normal Mean Vector II

where we are using the notation

Iα,A,h(F ) =
∫ 1

0
λα(1 + λF)−Ah(

1 − λ

λ
) dλ .

Using integration by parts, we obtain

FIp
2 −1,A,h(F ) =

∫ 1

0
λp/2−1h

(
1 − λ

λ

)
d

[
(1 + λF)1−A

1 − A

]

= λ
p
2 −1h

(
1 − λ

λ

)
(1 + λF)1−A

1 − A
|10 + 1

A − 1

∫ 1

0
(1 + λF)−A(1 + λF)

[(p

2
− 1
)

λ
p
2 −2h

(
1 − λ

λ

)
− 1

λ2
λ

p
2 −1h′

(
1 − λ

λ

)]
dλ.

By C1 and C3, we know that the first term of the right hand side is nonpositive.
The second term of the right hand side can be written as N1 + N2 + N3 + N4 where

N1 = 1

A − 1

∫ 1

0
(1+λF)−A

(p

2
− 1
)

λ
p
2 −2h

(
1 − λ

λ

)
dλ =

p
2 − 1

A − 1
I p

2 −2,A,h(F ),

N2 = 1

A − 1

∫ 1

0
(1 + λF)−Aλ

p
2 −2h′

(
1 − λ

λ

)(−λ

λ2

)
dλ

=
I p

2 −2,A,h(F )

A − 1

∫ 1
0 λ

p
2 −2(1 + λF)−Ag( 1−λ

λ
)h( 1−λ

λ
) dλ∫ 1

0 λ
p
2 −2(1 + λF)−Ah( 1−λ

λ
) dλ

≤ M

A − 1
I p

2 −2,A,h(F ),

N3 =
p
2 − 1

A − 1
FIp

2 −1,A,h(F ) = (
p
2 − 1)r(F )

A − 1
I p

2 −2,A,h(F ),

and

N4 =
I p

2 −2,A,h(F )

A − 1

F
∫ 1

0 λ
p
2 −1(1 + λF)−Ah′( 1−λ

λ
)(−1

λ
)dλ

Ip
2 −2,A,h(F )

=
I p

2 −2,A,h(F )

A − 1

F
∫ 1

0 (1 + λF)−Aλ
p
2 −1g( 1−λ

λ
)h( 1−λ

λ
)dλ

Ip
2 −2,A,h(F )

≤ Mr(F)

A − 1
I p

2 −2,A,h(F ).
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Combining all the terms, we get the following inequality

(A−1)r(F ) ≤
(p

2
− 1
)

+M +
(p

2
− 1
)

r(F )+Mr(F) ⇒ r(F ) ≤
p
2 − 1 + M

A − p
2 − M

.

Therefore, we have the needed bound on the r(F ) function. ��
We will now show that under certain regularity conditions on g(ν), we have the

monotonicity property for r̃(F ) = Fcr(F ) with a constant c. This monotonicity
property enables us to establish the minimaxity of the generalized Bayes estimator.
The following lemma is analogous to Theorem 3.3 in the known variance case.

Lemma 3.6 If g(ν) = −(ν + 1)
h′(ν)
h(ν)

= l1(ν) + l2(ν) such that l1(ν) is increasing
in ν and 0 ≤ l2(ν) ≤ c, then r̃(F ) = Fcr(F ) is nondecreasing.

Proof By taking the derivative, we only need to show (since r(F ) = FR(F))

0 ≤ FR′(F ) + (1 + c)R(F ), (3.32)

which is equivalent to

0 ≤ F

I ′
p
2 −1,A,h

(F )I p
2 −2,A,h(F ) − I ′

p
2 −2,A,h

(F )I p
2 −1,A,h(F )

I 2
p
2 −2,A,h

(F )
+(1+c)

I p
2 −1,A,h(F )

I p
2 −2,A,h(F )

.

This in turn equivalent to

−FI ′
p
2 −1,A,h

(F )I p
2 −2,A,h(F )

≤ −FI ′
p
2 −2,A,h

(F )I p
2 −1,A,h(F ) + (1 + c)I p

2 −2,A,h(F )I p
2 −1,A,h(F ). (3.33)

Now note that

−FI ′
a,A,h(F ) =

∫ 1

0
λa(1 + λF)−Ah

(
1 − λ

λ

)
AλF

1 + λF
dλ.

Define the intergral operator

Ja (f (u)) =
∫ F

0
ua(1 + u)−Af (u) du.

Therefore,

Ja

(
h

(
F − u

u

))
=
∫ F

0
ua(1 + u)−Ah

(
F − u

u

)
du



90 3 Normal Mean Vector II

and

Ja

(
Au

1 + u
h

(
F − u

u

))
=
∫ F

0
ua(1 + u)−A Au

1 + u
h

(
F − u

u

)
du.

Also, note that

Ja

(
Au

1 + u
h

(
F − u

u

))
= Fa+1

∫ 1

0
λa(1 + λF)−Ah

(
1 − λ

λ

)
AλF

1 + λF
dλ,

and

Ja

(
h

(
F − u

u

))
= Fa+1Ia,A,h(F ).

Now, with this new notation, it follows that (3.33) is equivalent to

Jp
2 −1(

Au
1+u

h(F−u
u

))

Jp
2 −1(h(F−u

u
))

≤
Jp

2 −2(
Au

1+u
h(F−u

u
))

Jp
2 −2(h(F−u

u
))

+ (1 + c). (3.34)

Using integration by parts, we have

Ja

(
Au

1 + u
h

(
F − u

u

))
=
∫ F

0
ua(1 + u)−Ah

(
F − u

u

)
Au

1 + u
du

= −ua+1h

(
F − u

u

)
(1 + u)−A|F0

+
∫ F

0
(1 + u)−A

[
(a + 1)uah

(
F − u

u

)
+ ua+1h′

(
F − u

u

)(−F

u2

)]
du.

Hence, (3.34) is equivalent to

−F
p
2 h(0)(1 + F)−A

Jp
2 −1(h(F−u

u
))

+
(p

2

)

+
∫ F

0 u
p
2 −1(1 + u)−Ah(F−u

u
)

[
h′( F−u

u
)

h( F−u
u

)
(−F

u
)

]
du

∫ F

0 u
p
2 −1(1 + u)−Ah(F−u

u
) du

≤ −F
p
2 −1h(0)(1 + F)−A

Jp
2 −2(h(F−u

u
))

+
(p

2
− 1
)
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+
∫ F

0 u
p
2 −2(1 + u)−Ah(F−u

u
)

[
h′( F−u

u
)

h( F−u
u

)
(−F

u
)

]
du

∫ F

0 u
p
2 −2(1 + u)−Ah(F−u

u
) du

+ (1 + c). (3.35)

Since −(v + 1)h′(v)/h(v) = l1(v) + l2(v) (3.35) is equivalent to

−h(0)(1 + F)−A

I p
2 −1,A,h(F )

+
J p

2 −1(h( F−u
u

)l1(
F−u

u
))

J p
2 −1(h( F−u

u
))

+
J p

2 −1(h( F−u
u

)l2(
F−u

u
))

J p
2 −1(h( F−u

u
))

≤ −h(0)(1 + F)−A

I p
2 −2,A,h(F )

+
J p

2 −2(h( F−u
u

)l1(
F−u

u
))

J p
2 −2(h( F−u

u
))

+
J p

2 −2(h( F−u
u

)l2(
F−u

u
))

J p
2 −2(h( F−u

u
))

+ c. (3.36)

It is clear that I p
2 −1,A,h(F ) ≤ I p

2 −2,A,h(F ), so we then have

−h(0)(1 + F)−A

Ip
2 −1,A,h(F )

≤ −h(0)(1 + F)−A

Ip
2 −2,A,h(F )

which accounts for the first terms on the left and right hand sides of (3.36). As for
the second term on each side of (3.36) note that the hypothesis l1(ν) is increasing in
ν implies that for all fixed F , l1(

F−u
u

) is decreasing in u. When t < u, we have

(1 + u)−Au
p
2 −2h(F−u

u
) 11{u ≤ F }

(1 + t)−At
p
2 −2h(F−t

t
) 11{t ≤ F }

≤ (1 + u)−Au
p
2 −1h(F−u

u
) 11{u ≤ F }

(1 + t)−At
p
2 −1h(F−t

t
) 11{t ≤ F }

.

By a monotone likelihood ratio argument, we have

Jp
2 −1(h(F−u

u
)l1(

F−u
u

))

Jp
2 −1(h(F−u

u
))

=
∫ F

0 u
p
2 −1(1 + u)−Ah(F−u

u
)l1(

F−u
u

)∫ F

0 u
p
2 −1(1 + u)−Ah(F−u

u
) du

≤
∫ F

0 u
p
2 −2(1 + u)−Ah(F−u

u
)l1(

F−u
u

) du∫ F

0 u
p
2 −2(1 + u)−Ah(F−u

u
) du

=
Jp

2 −2(h(F−u
u

)l1(
F−u

u
))

Jp
2 −2(h(F−u

u
))

.

Finally, note that since 0 ≤ l2(v) ≤ c for the third term on each side of (3.36) we
have

0 ≤
Jp

2 −i (l2(
F−u

u
)h(F−u

u
))

Jp
2 −i (h(F−u

u
))

≤ c for i = 1, 2.

Therefore we established the inequality (3.36) and the proof is complete. ��
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3.2.2.2 Minimaxity of the Generalized Bayes Estimators

In this subsection we apply Lemmas 3.4, 3.5, 3.6 and Theorems 3.6 and 3.7 to show
minimaxity of the generalized Bayes estimator (3.25).

Theorem 3.8 Assume that g(ν) = −(ν + 1) h′(ν)/h(ν) is increasing in ν, g(ν) ≤
M , where M is a positive constant, and

p − 2 + 2M

k + 3 + d − 2M
≤ 2

p − 2

k + 2
.

Then δ(X, S) in (3.25) is minimax.

Proof Let l2(ν) = 0 and l1(ν) = g(ν). By applying Lemma 3.6 to the case c = 0,
we have r(F ) increasing in F . Applying the bound in Lemma 3.5, we can get 0 ≤
r(F ) ≤ 2 p−2

m+2 . Therefore, by Lemma 3.4, δ(X, S) is minimax. ��
It is interesting to make connections to the result in Faith (1978). Faith (1978)

considered generalized Bayes estimator for Np(θ, Ip) and showed that when g(ν) is
increasing in ν and M ≤ p−2

2 , the generalized Bayes estimator would be minimax.
By taking k → ∞, we deduce the same conditions as Faith (1978). The next lemma
is a variant of Alam (1973) for the known variance case.

Theorem 3.9 Define ck = p−2
k+2 . If there exists b ∈ (0, 1] and c = b(p−2)

4+4(2−b)ck
, such

that 0 ≤ r(F ) ≤ (2 − b)ck , and Fcr(F ) is increasing in F , then the generalized
Bayes estimator δ(X, S) in (3.25) is minimax.

Proof By taking the derivative of the Efron and Morris’ condition, (3.31) can be
satisfied by requiring

0 ≤ 2
(p

2
− 1
)

R(F)

(
2 − r(F )

cm

)
+ 4r ′(F )(1 + r(F )). (3.37)

Since r(F ) ≤ (2 −b)ck , then (3.37) is satisfied at the point where r ′(F ) ≥ 0. Since
r(F ) ≤ (2 − b)ck with β = (2 − b)ck

4r ′(F )(1 + β) ≤ 4r ′(F )(1 + r(F )), (3.38)

at the point where r ′(F ) < 0. We now have

0 ≤ (4 + 4β)(cR(F ) + R(F) + FR′(F ))

= 2b
(p

2
− 1
)

R(F) + 4r ′(F )(1 + β)

≤ 2
(p

2
− 1
)

R(F)

(
2 − r(F )

ck

)
+ 4r ′(F )(1 + r(F ))
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since Fcr(F ) is increasing in F . Thus, for all values of F , we have proven (3.37),
and combining with the bound on the r(F ) function, we have proven the minimaxity
of the generalized Bayes estimator. ��

It is interesting to observe that by requiring a tighter upper bound on r(F ), we
can relax the monotonicity requirement on r(F ). The tighter the upper bound, the
more flexible r(F ) can be. This result enriches the class of priors whose generalized
Bayes estimators are minimax. Direct application of Lemmas 3.4, 3.5, 3.6, and 3.9
gives the following theorem.

Theorem 3.10 If there exists b ∈ (0, 1] such that g(ν) = l1(ν) + l2(ν) ≤ M ,
and l1(ν) is increasing in ν, 0 ≤ l2(ν) ≤ c = b(p−2)

4+4(2−b)
p−2
k+2

, and p−2+2M
k+3+d−2M

≤
(2−b)(p−2)

k+2 , then the generalized Bayes estimator δ(X, S) in (3.25) is minimax.

3.2.2.3 Examples of the Priors in (3.24)

In this subsection, we will give several examples to which our results can be
applied and make some connection to the existing literature found in Maruyama
and Strawderman (2005) and Fourdrinier et al. (1998).

Example 3.7 Maruyama and Strawderman (2005) considered the priors with

h(ν) ∝ νb(1 + ν)−a−b−2 for b > 0 and show that r(F ) ≤
p
2 +a+1

k
2 + d

2 −a− 1
2

(in terms

of the Maruyama and Strawderman (2005) notation d = 2e + 1). Condition C1
is equivalent to the condition that d + k + p > −1. C2 and C3 are equivalent
here, and both are equivalent to the condition that a + p

2 + 1 > 0. Then, using
Theorem 3.8, we have g(ν) = a + 2 − bν−1. The condition that g(ν) is increasing
in ν is equivalent to the condition that b ≥ 0. Clearly, we can let M = a + 2. Then
the condition of Theorem 3.8 is that

k

2
+ d

2
− 1

2
> a and

p
2 + a + 1

k
2 + d

2 − a − 1
2

≤ 2ck.

A close examination of the Maruyama and Strawderman (2005) proof shows that
their upper bound on r(F ) is sharp. This implies that our bound in Lemma 3.5
cannot be relaxed.

Example 3.8 Generalized Student-t priors correspond to a mixing distribution of
the form

h(ν) = c(ν + 1)β−α−γ− p−2
2 νγ−βe

γ
ν .

Consider the following two cases. The first case where α ≤ 0, β ≤ 0 and γ < 0
involves the construction of a monotonic r(·) function. The second case where α ≤
0, β > 0 and γ < 0 does not require the r(·) function to be monotonic. In both
cases,
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ln h(ν) = (β − α − γ − p − 2

2
) ln(1 + ν) + (γ − β) ln ν + γ

ν

and

g(ν) =
(

p − 2

2
+ α + γ − β

)
+ (1 + ν)(β − γ )

ν
+ γ (1 + ν)

ν2
= p − 2

2
+ α + β

ν
+ γ

ν2
.

Clearly, g(ν) is monotonic in the first case, and minimaxity of the generalized Bayes
estimator follows when

0 ≤ p − 2 + α

k
2 + 1

2 + d
2 − p

2 − α
≤ p − 2

k
2 + 1

in addition to the conditions C1, C2, and C3. In the limiting case where m → ∞, C1
holds trivially. Both C2 and C3 can be satisfied by α > 2 − p. The upper bound on
R(F) can be satisfied by any α ≤ 0. Consequently, the conditions reduce to those
in Example 3.4 for the case of known variance.

Next we consider spherical multivariate Student-t priors with f degrees of
freedom and a scale parameter τ and with α = f −p+4

2 , β = f (1−τ)+2
2 , and

γ = −f τ
2 . The case of τ = 1 is of particular interest but does not necessarily give

a monotonic r(·) function. However, we can use the result in Theorem 3.10 to show
that the generalized Bayes estimator is minimax under the following conditions for
f ≤ p − 4, suppose there exists a constant b ∈ (0, 1] such that

p + f + 1
f

k + 1 + d − f − 1
f

≤ (2 − b)
p − 2

k + 2
,

1

2f
≤ c = b(p − 2)

4 + 4(2 − b)
p−2
k+2

. (3.39)

Condition (3.39) can be established by observing that for this case,

g(ν) = p − 2

2
+ α + β

ν
+ γ

ν2 = f

2
+ 1 + 1

ν
− f

2ν2

is clearly nonmonotonic. We then let M = f
2 + 1 + 1

2f
and apply Lemma 3.5 to get

the upper bound on r(·). We define l1(ν) = g(ν)− 1
2f

when ν ≤ f and l1(ν) = f
2 +1

otherwise. We also define l2(ν) = 1
2f

when ν ≤ f and l2(ν) = 1
ν

− f

2ν2 otherwise.
By applying Lemma 3.6, we get condition (3.39).

The spherical multivariate Cauchy prior corresponds to the case f = 1. If k =
O(p) and d = 3, then condition (3.39) reduces to p ≥ 5, p+2

k+2 ≤ (2 − b)
p−2
k+2 , and

1
2 ≤ b(p−2)

4+8−4b
.
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3.3 Results for Known Σ and General Quadratic Loss

3.3.1 Results for the Diagonal Case

Much of this section is based on the review in Strawderman (2003). We begin with a
discussion of the multivariate normal case where Σ = diag(σ 2

1 , . . . , σ 2
p) is diagonal,

which we assume throughout this subsection. Let

X ∼ Np(θ,Σ) (3.40)

and the loss be equal to a weighted sum of squared errors loss

L(θ, δ) = (δ − θ)TD(δ − θ) =
p∑

i=1

(δi − θi)
2di . (3.41)

The results in Sects. 2.3, 2.4 and 3.1 extend by the use of Stein’s lemma in a
straightforward way to give the following basic theorem.

Theorem 3.11 Let X have the distribution (3.40) and let the loss be given
by (3.41).

(1) If δ(X) = X + Σg(X), where g(X) is weakly differentiable and E||g||2 < ∞,
then the risk of δ is

R(δ, θ) = Eθ ((δ − θ)TD(δ − θ))

= tr(ΣD) + Eθ

[
p∑

i=1

σ 4
i di

(
g2

i (X) + 2
∂gi (X)

∂Xi

)]
.

(2) If θ ∼ π(θ), then the Bayes estimator of θ is δΠ(X) = X + Σ
∇m(X)
m(X)

, where
m(X) is the marginal distribution of X.

(3) If θ ∼ π(θ), then the risk of a proper (generalized, pseudo-) Bayes estimator of
the form δm(X) = X + Σ

∇m(X)
m(X)

is given by

R(δm, θ) = tr(ΣD)

+ Eθ

⎡
⎢⎢⎢⎣

2m(X)
p∑

i=1
σ 4

i di∂m2(X)/∂2Xi

m2(X)
−

p∑
i=1

σ 4
i di (∂m(X)/∂Xi)

2

m2(X)

⎤
⎥⎥⎥⎦

= tr(ΣD) + 4 Eθ

⎡
⎢⎢⎢⎣

p∑
i=1

σ 4
i di∂

2√m(X)/∂2Xi

√
m(X)

⎤
⎥⎥⎥⎦ .
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(4) If

p∑
i=1

σ 4
i di∂

2√m(X)/∂2Xi

√
m(X)

is nonpositive, the proper (generalized, pseudo) Bayes

δm(X) is minimax.

The proof follows closely to that of corresponding results in Sects. 2.3, 2.4 and 3.1.
The result is essentially from Stein (1981).

A key observation that allows us to construct Bayes minimax procedures for
this situation, based on the procedures for the case Σ = D = I , is the following
straightforward result from Strawderman (2003).

Lemma 3.7 Suppose η(X) is such that Δη(X) =
p∑

i=1
∂2η(X)/∂2X2

i ≤ 0 (i.e. η(X)

is superharmonic). Then η∗(X) = η(Σ−1D−1/2X) is such that
p∑

i=1
σ 4

i di∂
2η∗(X)/

∂2Xi ≤ 0.

Note, that for any scalar a, if η(X) is superharmonic, then so is η(aX). This leads
to the following result.

Theorem 3.12 Suppose X has the distribution (3.40) and the loss is given
by (3.41).

(1) Suppose
√

m(X) is superharmonic (m(X) is a proper, generalized, or pseudo-
marginal for the case Σ = D = I ). Then

δm(X) = X + Σ

(∇m(Σ−1D−1/2X)

m(Σ−1D−1/2X)

)

is a minimax estimator.
(2) If

√
m(‖X‖2) is spherically symmetric and superharmonic, then

δm(X) = X + 2m′(XT Σ−1D−1Σ−1X)D−1Σ−1X

m(XT Σ−1D−1Σ−1X)

is minimax.
(3) Suppose the prior distribution π(θ) has the hierarchical structure θ |λ ∼

Np(0, Aλ) for λ ∼ h(λ), 0 < λ < 1, where Aλ = (c/λ)ΣDΣ − Σ , c is such
that A1 is positive definite, and h(λ) satisfies the conditions of Theorem 3.12.
Then

δπ (X) = X + Σ
∇m(X)

m(X)

is minimax.
(4) Suppose mi(X), i = 1, 2 . . . k are superharmonic. Then the multiple shrinkage

estimator
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δm(X) = X + Σ

⎡
⎢⎢⎢⎣

k∑
i=1

∇mi(Σ
−1D−1/2X)

k∑
i=1

mi(Σ−1D−1/2X)

⎤
⎥⎥⎥⎦

is a minimax multiple shrinkage estimator.

Proof Part (1) follows directly from Parts (3) and (4) of Theorem 3.11 and
Lemma 3.7. Part (2) follows from Part (1) and Part (2) of Theorem 3.11 with a
straightforward calculation.

For Part (3), first note that θ |λ ∼ Np(0, Aλ) and X−θ |λ ∼ Np(0,Σ). Thus, X−
θ and θ are conditionally independent given λ. Hence we have X|λ ∼ Np(0, Aλ +
Σ). It follows that

m(X) ∝
∫ 1

0
λp/2 exp

[
−λ

c

(
XT Σ−1D−1Σ−1X

)]
h(λ) dλ

but m(X) = η
(
XT Σ−1D−1Σ−1X

/
c
)
, where

√
η (XT X) is superharmonic by

Theorem 3.11. Hence, by Part (2), δπ (X) is minimax (and proper or generalized
Bayes depending on whether h(λ) is integrable or not).

Since superharmonicity of η(X) implies the superharmonicity of
√

η ( X), Part
(4) follows from Part (1) and the superharmonicity of mixtures of superharmonic
functions. ��
Example 3.9 (Pseudo-Bayes minimax estimators) When Σ = D = σ 2I , we saw
in Sect. 3.3 that by choosing m(X) = 1

‖X‖2b , the pseudo-Bayes estimator was the

James-Stein estimator δm(X) = (1 − 2bσ 2

‖X‖2 )X. It now follows from this and part

(2) of Theorem 3.12 that m(XT Σ−1D−1Σ−1X) = (1/XT Σ−1D−1Σ−1X)b has
associated with it the pseudo-Bayes estimator δm(X) = (1 − 2bD−1Σ−1

(XT Σ−1D−1Σ−1X)
)X.

This estimator is minimax for 0 < b ≤ 2(p − 2).

Example 3.10 (Hierarchical proper Bayes minimax estimator) As suggested by
Berger (1976) suppose the prior distribution has the hierarchical structure θ |λ ∼
Np(0, Aλ) where Aλ = cΣDΣ − Σ , c > 1/ min(σ 2

i di) and h(λ) = (1 + b)λb

for 0 < λ < 1 and −1 < b ≤ (p−6)
2 . The resulting proper Bayes estimator will be

minimax for p ≥ 5 by part (3) of Theorem 3.12 and Example 3.9. For p ≥ 3, the
estimator δπ (X) given in part (3) of Theorem 3.12 is a generalized Bayes minimax
estimator provided − (p+2)

2 < b ≤ (p−6)
2 .

It can be shown to be admissible if the lower bound is replaced by −2, by the
results of Brown (1971). Also see the development in Berger and Strawderman
(1996) and Kubokawa and Strawderman (2007).
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Example 3.11 (Multiple shrinkage minimax estimators) It follows from Exam-

ple 3.9 and Theorem 3.12 that m(X) =
k∑

i=1

[
1

(X−νi )
TΣ−1D−1Σ−1(X−νi )

]b
satisfies

the conditions of Theorem 3.12 (4) for 0 < b ≤ (p − 2)/2. and hence

δm(X) = X−
2b

k∑
i=1

[
D−1Σ−1 (X − νi)

]/[
(X − νi)

T Σ−1D−1Σ−1 (X − νi)
]b+1

k∑
i=1

1
/[

(X − νi)
T Σ−1D−1Σ−1 (X − νi)

]b
(3.42)

is a minimax multiple shrinkage (pseudo-Bayes) estimator.
If, as in Example 3.11 we used the generalized prior

π(θ) =
k∑

i=1

[
1

(θ − νi)
T Σ−1D−1Σ−1 (θ − νi)

]b

,

the resulting generalized Bayes (as opposed to pseudo-Bayes) estimators is minimax
for 0 < b ≤ (p − 2)/2.

3.3.2 General Σ and General Quadratic Loss

In this section, we generalize the above results to the case of

X ∼ Np(θ,Σ), (3.43)

where Σ is a general positive definite covariance matrix and the loss is given by

L(θ, δ) = (δ − θ)TQ(δ − θ), (3.44)

where Q is a general positive definite matrix. We will see that this case can be
reduced to the canonical form Σ = I and Q = diag(d1, d2, . . . , dp) = D. We
continue to follow the development in Strawderman (2003).

The following well known fact will be used repeatedly to obtain the desired
generalization.

Lemma 3.8 For any pair of positive definite matrices, Σ and Q, there exits a
non-singular matrix A such that AΣAT = I and (AT)−1QA−1 = D where D

is diagonal.

Using this fact we can now present the canonical form of the estimation problem.
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Theorem 3.13 Let X ∼ Np(θ,Σ) and suppose that the loss is L1(δ, θ) = (δ −
θ)TQ(δ−θ). Let A and D be as in Lemma 3.8 and let Y = AX ∼ Np(v, Ip), where
v = Aθ and L2(δ, v) = (δ − v)TD(δ − v).

(1) If δ1(X) is an estimator with risk function R1(δ1, θ) = EθL1(δ1(X), θ), then
the estimator δ2(Y ) = Aδ1(A

−1Y ) has risk function R2(δ2, v) = R1(δ1, θ) =
EθL2(δ2(Y ), v).

(2) δ1(X) is proper or generalized Bayes with respect to the proper prior distribu-
tion π1(θ) (or pseudo-Bayes with respect to the pseudo-marginal m1(X)) under
loss L1 if and only if δ2(Y ) = Aδ1(A

−1Y ) is proper or generalized Bayes with
respect to π2(v) = π1(A

−1v) (or pseudo-Bayes with respect to the pseudo-
marginal m2(Y ) = m1(A

−1Y )).
(3) δ1(X) is admissible (or minimax or dominates δ∗

1(X)) under L1 if and only
if δ2(Y ) = Aδ1(A

−1Y ) is admissible (or minimax or dominates δ∗
2(Y ) =

Aδ∗
1(A−1Y ) under L2).

Proof To establish Part (1) note that the risk function

R2(δ2, v) = EθL2[δ2(Y ), v]
= Eθ [(δ2(Y ) − v)TD(δ2(Y ) − v)]
= Eθ [(Aδ1(A

−1(AX)) − Aθ)TD(Aδ1(A
−1(AX)) − Aθ)]

= Eθ [(δ1((X) − θ)TATDA(δ1(X) − θ)]
= Eθ [(δ1((X) − θ)TQ(δ1(X) − θ)]
= R1(δ1, θ).

Since the Bayes estimator for any quadratic loss is the posterior mean and θ ∼
π1(θ) and v = Aθ ∼ π2(v) = π1(A

−1v) (ignoring constants), then Part (2) follows
by noting that

δ2(Y )= E[v|Y ] =E[Aθ |Y ] =E[Aθ |AX] = A E[θ |X] = A δ1(X)= Aδ1(A
−1Y ).

Lastly, Part (3) follows directly from Part (1). ��
Note that if Σ1/2 is the positive definite square root of Σ and A = PΣ−1/2

where P is orthogonal and diagonalizes Σ1/2QΣ1/2, then this A and D =
PΣ1/2QΣ1/2P T satisfy the requirements of the theorem.

Example 3.12 Proceeding as we did in Example 3.9 and applying Theorem 3.13,
m(XT Σ−1Q−1Σ−1X) = (XT Σ−1Q−1Σ−1X)−b has associated with it, the
pseudo-Bayes minimax James-Stein estimators is

δm(X) =
(

1 − 2 b Q−1Σ−1(
XT Σ−1Q−1Σ−1X

)
)

X,

for 0 < b ≤ 2 (p − 2).
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Generalizations of Example 3.10 to hierarchical Bayes minimax estimators and
generalizations of Example 3.11 to multiple shrinkage estimators are straightfor-
ward. We omit the details.

3.4 Admissibility of Bayes Estimators

Recall from Sect. 2.4 that an admissible estimator is one that cannot be dominated
in risk, i.e. δ(X) is admissible if there does not exist an estimator δ′(X) such that
R(θ, δ′) ≤ R(θ, δ) for all θ , with strict inequality for some θ . We have already
derived classes of minimax estimators in the previous sections.

In this section, we study their possible admissibility or inadmissibility. One
reason that admissibility of these minimax estimators is interesting is that, as we
have already seen, the usual estimator δ0(X) = X is minimax but inadmissible if
p ≥ 3. Actually, we have seen that it is possible to dominate X with a minimax
estimator (e.g., δJS

(p−2)(X)) that has a substantially smaller risk at θ = 0. Hence, it
is of interest to know if a particular (dominating) estimator is admissible.

Note that a unique proper Bayes estimator is automatically admissible (see
Lemma 2.6), so we already have examples of admissible minimax estimators for
p ≥ 5.

We also note that the class of generalized Bayes estimators contains all admis-
sible estimators if loss is quadratic (i.e., it is a complete class; see e.g., Sacks
1963; Brown 1971; Berger and Srinivasan 1978). It follows that if an estimator
is not generalized Bayes, it is not admissible. Further, in order to be generalized
Bayes, an estimator must be everywhere differentiable by properties of the Laplace
transform . In particular, the James-Stein estimators and the positive-part James-
Stein estimators (for a �= 0) are not generalized Bayes and therefore not admissible.

In this section, we will study the admissibility of estimators corresponding to
priors which are variance mixtures of normal distributions for the case of X ∼
Np(θ, I ) and quadratic loss ‖δ − θ‖2 as in Sect. 3.1.2. In particular, we consider
prior densities of the form (3.4) and establish a connection between admissibility
and the behavior of the mixing (generalized) density h(v) at infinity. The analysis
will be based on Brown (1971), Theorem 1.2. An Abelian Theorem (see, e.g.,
Widder (1946), Corollary 1.a, p. 182) along with Brown’s theorem are our main
tools. We use the notation f (x) ∼ g(x) as x → a to mean limx→a f (x)/g(x) = 1.
Here is an adaptation of the Abelian theorem in Widder that meets our needs.

Theorem 3.14 Assume g : R
+ → R has a Laplace transform f (s) =∫∞

0 g(t)e−st dt that is finite for s ≥ 0. If g(t) ∼ tγ as t → 0+ for some γ > −1,
then f (s) ∼ s−(γ+1)Γ (γ + 1) as s → ∞.

The proof is essentially as in Widder (1946) but the assumption of finiteness of
the Laplace transform at s = 0 allows the extension from γ ≥ 0 to γ > −1.
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We first give a lemma which relates the tail behavior of the mixing density h(v)

to the tail behavior of π(‖θ‖2) and m(‖x‖2) and also shows that ‖δ(x) − x‖ is
bounded whenever h(v) has polynomial tail behavior.

Lemma 3.9 Suppose X ∼ Np(θ, Ip), L(θ, δ) = ‖δ − θ‖2 and π(θ) is given
by (3.4) where h(v) ∼ K va as v → ∞ with a < (p − 2)/2 and where v−p/2 h(v)

is integrable in a neighborhood of 0. Then

(1) π(θ) ∼ K (‖θ‖2)a−(p−2)/2 Γ ((p − 2)/2 − a) as ‖θ‖2 → ∞,
m(x) ∼ K(‖x‖2)a−(p−2)/2 Γ ((p − 2)/2 − a) as ‖x‖2 → ∞,
and therefore π(‖x‖2) ∼ m(‖x‖2) as ‖x‖2 → ∞,

(2) ‖δ(x) − x‖ is uniformly bounded, where δ is the generalized Bayes estimator
corresponding to π .

Proof First note that (with t = 1/v)

π(θ) = π∗(‖θ‖2) =
∫ ∞

0
exp

{
−‖θ‖2

2
t

}
t

p
2 −2h(1/t) dt

and g(t) = t
p
2 −2h(1/t) ∼ Kt

p−4
2 −a as t → 0+. Therefore, by Theorem 3.14,

π(θ) ∼ K(‖θ‖2)a− p−2
2 Γ

(
p−2

2 − a
)

as ‖θ‖2 → ∞. Similarly

m(x) =
∫ ∞

0
e
− ‖θ‖2

2(1+v) (1 + v)−
p
2 h(v) dv

(
for t = 1

1 + v

)

=
∫ ∞

1
e− ‖θ‖2

2 t t
p
2 −2h

(
1 − t

t

)
dt.

We note that as t → 0+, t
p
2 −2h

(
1−t
t

)
∼ t

p−4
2

(
1−t
t

)a ∼ t
p−4

2 −a . Thus, again by

Theorem 3.14,

m(x) ∼ K(‖x‖2)a− p−2
2 Γ

(
p − 2

2
− a

)
as ‖x‖2 → ∞,

and Part (1) follows.
To prove Part (2) note that

δ(x) − x = ∇m(x)
m(x)

= −
− ∫∞

0 exp

{
− ‖x‖2

2(1+v)

}
(1+v)

−(
p
2 +1)

h(v) dv

∫∞
0 exp

{
− ‖x‖2

2(1+v)

}
(1+v)

p
2 h(v) dv

x.

The above argument applied to the numerator and denominator shows
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‖δ(x) − x‖2 ∼
[

(‖x‖2)
a− p

2 Γ (
p
2 −a)

‖x‖2)
a− p−2

2 Γ (
p−2

2 −a)

]2

‖x‖2

∼
(

p−2
2 − a

)2
1

‖x‖2 as ‖x‖2 → ∞.

Since δ(x) − x is in C∞ and tends to zero as ‖x‖2 → ∞, the function is uniformly
bounded. ��

The following result characterizes admissibility and inadmissibility for general-
ized Bayes estimators when the mixing density h(v) ∼ va as v → ∞.

Theorem 3.15 For priors π(θ) of the form (3.4) with mixing density h(v) ∼ va as
v → ∞, the corresponding generalized Bayes estimator δ is admissible if and only
if a ≤ 0.

Proof (Admissibility if a ≤ 0) By Lemma 3.9, we have m̄(r) = m∗(r2) ∼ K∗
(r2)a−(p−2)/2, with m(x) = m∗(‖x‖2). Thus, for any ε > 0, there is an r0 > 0
such that, for r > r0, m̄(r) ≤ (1 + ε)K∗r2a−(p−2). Since ‖δ(x) − x‖ is uniformly
bounded,

∫ ∞

r0

(rp−1m̄(r))−1 dr ≥ (K∗(1 + ε))−1
∫ ∞

r0

r−(2a+1) dr = ∞

if a ≥ 0. Hence, δ(x) is admissible if a ≤ 0, by Theorem 1.2.
(Inadmissibility if a > 0) Similarly, we have, for r ≥ r0,

m(r) = 1

m∗(r2)
∼ 1

K∗ (r2)
p−2

2 −a,

m(r) ≤ 1

(1 − ε)K∗ rp−2−2a,

and
∫ ∞

0
r1−pm (r) dr ≤ 1

K∗

∫ ∞

r0

r−(1+2a) dr < ∞

if a > 0. Thus δ(x) is inadmissible if a > 0. ��
Example 3.13 (Continued) Recall for the Strawderman prior that h(v) = C(1 +
v)−α−(

p−2
2 ) ∼ va as v → ∞ for a = −(α + p−2

2 ).
The above theorem implies that the generalized Bayes estimator is admissible if

and only if α + p−2
2 ≥ 0 or 1− p

2 ≤ α. We previously established minimaxity when
2−p < α ≤ 0 for p ≥ 3 and propriety of the prior when 2− p

2 < α ≤ 0 for p ≥ 5.
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Note in general that for a mixing distribution of the form h(v) ∼ Kva as v →
∞, the prior distribution π(θ) will be proper if and only if a < −1 by the same
argument as in the proof of Theorem 3.15. Hence the bound for admissibility, a ≤ 0,
differs from the bound for propriety, a < −1, by 1.

3.5 Connections to Maximum a Posteriori Estimation

3.5.1 Hierarchical Priors

As we have seen in previous sections of this chapter, the classical Stein estimate
and its positive-part modification can be motivated in a number of ways, perhaps
most commonly as empirical Bayes estimates (i.e., posterior means) under a
normal hierarchical model in which θ ∼ Np(0, ψ Ip) where ψ , viewed as a
hyperparameter, is estimated. In this section we look at shrinkage estimation through
the lens of maximum a posteriori (MAP) estimation. The development of this
section follows Strawderman and Wells (2012).

The class of proper Bayes minimax estimators constructed in Sect. 3.1 relies on
the use of a hierarchically specified class of proper prior distributions πS(θ, κ). In
particular, for the prior in Strawderman (1971), πS(θ, κ) is specified according to

θ |κ ∼ Np(0, g(κ)Ip), πS(κ) = κ−a(1 − a)−1 11[0<κ<1], (3.45)

where g(κ) = (1 − κ)/κ and the constant a satisfies 0 ≤ a < 1, i.e., πS(κ)

is a Beta(1 − a, 1) probability distribution. Suppose a = 1/2; then, utilizing the
transformation ψ = g(κ) > 0 in (3.45), we obtain the equivalent specification

θ |ψ ∼ Np(0, ψIp), πS(ψ) ∝
(

1

1 + ψ

) 3
2

11[ψ>0]. (3.46)

Two interesting alternative formulations of (3.46) are given below for the case p = 1
and generalized later for arbitrary p. In what follows, we let Gamma(τ, ξ) denote a
random variable with probability density function

g(x|τ, ξ) = ξτ

Γ (τ)
xτ−1e−xξ 11[x>0] for τ > 0 and ξ > 0

and Exp(ξ) corresponds to the choice τ = 1 (i.e., an exponential random variable
in its rate parametrization).

For p = 1, the marginal prior distribution on θ induced by (3.46) is equivalent to
that obtained under the specification
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θ |ψ, λ ∼ N (0, ψ), ψ |λ ∼ Exp

(
λ2

2

)
, λ|α ∼ HN(α−1), (3.47)

where α = 1 and HN(ζ ) denotes the half-normal density

f (x|ζ ) =
√

2

π ζ
exp

{
− x2

2 ζ

}
11[x>0] for ζ > 0.

The marginal prior distribution on θ induced by (3.46) is also equivalent to that
obtained under the alternative specification

θ |λ ∼ Laplace(λ), λ|α ∼ HN(α−1), (3.48)

where α = 1 and Laplace(λ) denotes a random variable with the Laplace (double
exponential) probability density function

f (y|λ) = λ

2
e−λ|y| 11[y∈R].

This result follows from Griffin and Brown (2010). Define

θ |ψ,ω ∼ N (0, ψ), ψ |ω ∼ Exp(ω), ω|δ, α ∼ Gamma(1/2, α) (3.49)

as a hierarchically specified prior distribution for θ , ψ and ω. The resulting marginal
prior distribution for θ , obtained by integrating out ψ and ω, is exactly the quasi-
Cauchy distribution of Johnstone and Silverman (2004); see Griffin and Brown
(2010) for details. Carvalho et al. (2010) showed that this distribution also coincides
with the marginal prior distribution for θ induced by taking a = 1/2 in (3.45). The
transformation λ = √

2ω in (3.49) leads directly to (3.47) upon setting α = 1; (3.48)
is then obtained by integrating out ψ in (3.47).

3.5.2 The Positive-Part Estimator and Extensions as MAP
Estimators

Takada (1979) showed that a positive-part type minimax estimator

δc
JS+(X) =

(
1 − c

‖X‖2
2

)

+
X, (3.50)

where (t)+ = max(t, 0), is also the MAP estimator under a certain class of hierar-
chically specified generalized prior distributions, say πT (θ, κ) = π(θ |κ)πT (κ). For
the specific choice c = p − 2 in (3.50), Takada’s prior reduces to
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θ |κ ∼ Np(0, g(κ)Ip), πT (κ) ∝ (1 − κ)p/2κ−1 11[0<κ<1]. (3.51)

The improper prior (3.51) evidently behaves similarly to Strawderman’s proper
prior (3.45) (i.e., for a = 1/2). Notably, the numerator (1 − κ)p/2 in πT (κ)

explicitly offsets the contribution of (1 − κ)−p/2 arising from the determinant of
the variance matrix g(κ) Ip in the conditional prior specification θ |κ . Under the
monotone decreasing variable transformation ψ = g(κ) > 0, (3.51) implies an
alternative representation that is analogous to (3.46):

θ |ψ ∼ Np(0, ψIp), πT (ψ) ∝ ψp/2
(

1

1 + ψ

)p/2+1

11[ψ>0]. (3.52)

We observe that the proper prior (3.46) and improper prior (3.52) (almost)
coincide when p = 1; in particular, multiplying the former by ψ1/2 yields the latter.
In view of the fact that (3.46) and (3.47) lead to the same marginal prior on θ when
p = 1, one is led to question whether a deeper connection between these two prior
specifications might exist. Supposing p ≥ 1, consider the following straightforward
generalization of (3.47):

θ |ψ, λ ∼ Np(0, ψIp), ψ |λ ∼ Gamma

(
p + 1

2
,
λ2

2

)
, λ|α ∼ HN(α−1). (3.53)

Integrating λ out of the higher level prior specification the resulting marginal
(proper) prior for ψ reduces to

π(ψ |α) ∝ ψ−1/2ψp/2

(
1

1 + ψ
α

) p
2 +1

11[ψ>0]. (3.54)

For α = 1 and any p ≥ 1, we now observe that the proper prior (3.54) is
simply the improper prior πT (ψ) in (3.52) multiplied by ψ−1/2 and it reduces to
Strawderman’s prior (3.46) for p = 1.

3.5.3 Penalized Likelihood and Hierarchical Priors

Expressed in modern terms of penalization, Takada (1979) proved that the positive-
part estimator (3.50) is the solution to a certain penalized likelihood estimation
problem in which the penalty (or regularization) term is determined by the
prior (3.51). Penalized likelihood estimation, and more generally problems of
regularized estimation, have become a very important conceptual paradigm in
both statistics and machine learning. Such methods suggest principled estimation
and model selection procedures for a variety of high-dimensional problems. The
statistical literature on penalized likelihood estimators has exploded, in part due
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to success in constructing procedures for regression problems in which one can
simultaneously select variables and estimate their effects. The class of penalty
functions leading to procedures with good asymptotic frequentist properties have
singularities at the origin; important examples of separable penalties include the
least absolute shrinkage and selection operator (LASSO) , Tibshirani (1996),
smoothly clipped absolute deviation (SCAD), Fan and Li (2001), and minimax
concave penalties (MCP) Zhang (2010). In fact, most such penalties utilized in the
literature behave similarly to the LASSO penalty near the origin, differing more
in their respective behaviors away from the origin, where control of estimation
bias for those parameters not estimated to be zero becomes the driving concern.
Generalizations of the LASSO penalty have been proposed to deal with correlated
groupings of parameters, such as those that might arise in problems with features
that can be sensibly ordered, as in the fused LASSO in Tibshirani et al. (2005), or
separated into distinct subgroups as in the group LASSO in Yuan and Lin (2006).
In such problems, the use of these penalties serves a related purpose.

The LASSO was initially formulated as a least squares estimation problem
subject to a �1 constraint on the parameter vector. The more well-known penalized
likelihood version arises from a Lagrange multiplier formulation of a convex
relaxation of a �0 non-convex optimization problem. Since the underlying objective
function is separable in the parameters, the underlying estimation problem is
evidently directly related to the now-classical problem of estimating a bounded
normal mean. From a decision theoretic point of view, if X ∼ N (θ, 1) for |θ | ≤ λ,
then the projection of the usual estimator dominates the unrestricted MLE, but
cannot be minimax for quadratic loss because it is not a Bayes estimator. Casella and
Strawderman (1981) showed that the unique minimax estimator of θ is the Bayes
estimator corresponding to a two-point prior on {−λ, λ} for λ sufficiently small.
Casella and Strawderman (1981) further showed that the uniform boundary Bayes
estimator, λ tanh(λx), is the unique minimax estimator if λ < λ0 ≈ 1.0567. They
also considered three-point priors supported on {−λ, 0, λ} and obtained sufficient
conditions for such a prior to be least favorable. Marchand and Perron (2001)
considered the multivariate extension, X ∼ Np(θ, Ip) with ‖θ‖2 ≤ λ and showed
that the Bayes estimator with respect to a boundary uniform prior dominates the
MLE whenever λ ≤ √

p under squared error loss.
It has long been recognized that the class of penalized likelihood estimators also

has a Bayesian interpretation. For example, in the canonical version of the LASSO
problem, minimizing

1

2
‖X − θ‖2

2 + λ‖θ‖1, ||θ ||1 =
p∑

i=1

|θi | (3.55)

with respect to θ is easily seen to be equivalent to computing the MAP estimator of
θ under a model specification in which X ∼Np(θ, Ip) and θ has a prior distribution

satisfying θi
iid∼ Laplace(λ). It is easily shown that the solution to (3.55) is θ̂i (X) =

sign(Xi)(|Xi |−λ)+, i = 1, . . . , p. The critical hyperparameter λ, though regarded
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as fixed for the purposes of estimating θ , is typically estimated in some ad hoc
manner (e.g., cross validation), resulting in an estimator with an empirical Bayes
flavor.

The Laplace prior inherent in the LASSO minimization problem (3.55) has
broad connections to estimation under hierarchical prior specifications that lead to
scale mixtures of normal distributions. As pointed out above, the conditional prior
distribution of θ |λ obtained by integrating out ψ in (3.47) is exactly Laplace(λ).

More generally, the conditional distribution for θ |λ under the hierarchical prior
specification (3.53) is a special case of the class of multivariate exponential power
distributions in Gomez-Sanchez-Manzano et al. (2008); in particular, we obtain

π(θ |λ) ∝ λp exp {−λ‖θ‖2} , (3.56)

a direct generalization of the Laplace distribution that arises when p = 1. Treating
λ as fixed hyperparameter, computation of the resulting MAP estimator under the
previous model specification X ∼ Np(θ, Ip) reduces to determining the value of θ

that minimizes

1

2
‖X − θ‖2

2 + λ‖θ‖2. (3.57)

The resulting estimator is easily shown to be

δGL(X) =
(

1 − λ

‖X‖2

)
+

X, (3.58)

an estimator that coincides with the solution to the canonical version of the grouped
LASSO problem involving a single group of parameters (see Yuan and Lin 2006)
and equals θ̂ (X) = sign(X)(|X| − λ)+ for the case where p = 1.

Consider the problem of estimating θ in the canonical setting X ∼ Np(θ, Ip). In
view of the fact that (3.53) leads to (3.56) upon integrating out ψ , our starting point
is the (possibly improper) generalized class of joint prior distributions π(θ, λ|α, β),

which we define in the following hierarchical fashion

π(θ |λ, α, β) ∝ λp exp {−λ‖θ‖2} ,

π(λ|α, β) ∝ λ−p exp{−α(λ − β)2}, (3.59)

where α, β > 0 are hyperparameters. Equivalently,

π(θ, λ|α, β) ∝ exp {−λ‖θ‖2} exp{−α(λ − β)2}. (3.60)

The prior on λ is an improper modification of that given in (3.53), in which a location
parameter β is introduced and the factor λ−p is introduced to offset the contribution
λp in (3.56). This construction mimics the idea underlying the prior used by Takada
(1979) to motivate (3.50) as a MAP estimator.
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Considering (3.60) as motivation for defining a new class of hierarchical penalty
functions, Strawderman and Wells (2012) propose deriving the MAP estimator for
(θ, λ) through minimizing the objective function

G(θ, λ) = 1

2
‖X − θ‖2

2 + λ‖θ‖2 + α(λ − β)2 (3.61)

jointly in θ ∈ R
p and λ > 0, where α > 1/2 and β > 0 are fixed. The resulting

estimator for θ takes the closed form

δ(α,β)(X) = wα,β(‖X‖2)X, (3.62)

where

wα,β(s) =

⎧⎪⎪⎨
⎪⎪⎩

0 s ≤ β

να

(
1 − β

s

)
β < s ≤ 2αβ

1 s > 2αβ

for να = 2α/(2α − 1). Equivalently, we may write

wα,β(s) =
⎧⎨
⎩

να

(
1 − β

s

)
+ s ≤ 2αβ

1 s > 2αβ

demonstrating that (3.62) has the flavor of a range-modified positive-part estimator.
A detailed derivation of this estimator is in Strawderman and Wells (2012).

Some interesting special cases of the estimator (3.62) arise when considering
specific values of α, β and p. For example, letting α → ∞, we obtain (for β > 0)

δ(β)(X) =
(

1 − β

‖X‖2

)
+

X; (3.63)

upon setting β = λ, we evidently recover (3.58); subsequently, setting λ = √
p − 2,

one then obtains an obvious modification of (3.50) for the case where c = p − 2:

δ∗
PP (X) =

(
1 −

√
p − 2

‖X‖2

)
+

X (3.64)

In the special case p = 1, the estimator (3.62) reduces to

δM(X) =

⎧⎪⎨
⎪⎩

0 if |X| ≤ β

2α
2α−1 (X − sign(X)β) if β < |X| ≤ 2αβ

X if |X| > 2αβ

. (3.65)
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As shown in Strawderman et al. (2013), (3.65) is also the solution to the penalized
minimization problem

1

2
(X − θ)2 + ρ(θ;α, β),

where β > 0, α > 1/2 and

ρ(t;α, β) = β

∫ |t |

0
(1 − z

2αβ
)+ dz, t ∈ R.

This optimization problem is the univariate equivalent of the penalized likelihood
estimation problem considered in Zhang (2010), who referred to ρ(t;α, β) as MCP.
It follows that (3.65) is equivalent to the univariate MCP thresholding operator;
consequently, (3.62) may be regarded as a generalization of this operator for
thresholding a vector of parameters. Zhang (2010) showed that the LASSO, SCAD,
and MCP belong to a family of quadratic spline penalties with certain sparsity
and continuity properties. MCP turns out to be the simplest penalty that results
in an estimator that is nearly unbiased, sparse and continuous. As demonstrated
above, MCP also has an interesting Bayesian motivation under a hierarchical
modeling strategy. Strawderman et al. (2013) undertook a more detailed study of
the connections between MCP, the hierarchically penalized estimator, and proximal
operators for the case of p = 1. They also compared this estimator to several others
through consideration of frequentist and Bayes risks.

3.6 Estimation of a Predictive Density

Consider a parametric model {Y , (P ′
μ)μ∈Ω } where Y is the sample space, Ω is

the parameter space and P ′ = {p(y|μ) : μ ∈ Ω} is a class of densities of P ′
μ

with respect to a σ -finite measure. In addition, suppose an observed value x of the
random variable X follows a model {X , (Pμ)μ∈Ω} indexed by the same parameter.
In this section, we examine the problem of estimating the true density p′(.|μ) ∈ P ′
of a random variable Y . In this context p′(·|μ) is referred to as the predictive density
of Y .

Let the density q̂(y|x) (belonging to some class of models C ⊃ P ′) be an
estimate, based on the observed data x, of the true density p(y|μ). Aitchison (1975)
proposed using the Kullback and Leibler (1951) divergence, defined in (3.66) below,
as a loss function for estimating p(y|μ).

The class of estimates C can be identical to the class P ′, that is, for any y ∈ Y

q̂(y|x) = p(y|μ = μ̂(x))
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where μ̂ is some estimate of μ. This type of density estimator is called the “plug-in
density estimate” associated with the estimate μ̂. Alternatively, one may choose

q̂(y|x) =
∫

Ω

p(y|μ) dπ(μ|x)

where dπ(μ|x) may be a weight function (measure) or an a posteriori density
associated with a priori measure π(μ). In this case, the class C will be broader
than the class of the models P ′. Aitchison (1975) showed that this latter method
is preferable to the plug-in approach for several families of probability distributions
by comparing their risks induced by the Kullback-Leibler divergence.

3.6.1 The Kullback-Leibler Divergence

First, recall the definition of the Kullback-Leibler divergence and some of its
properties.

Lemma 3.10 The Kullback-Leibler divergence (relative entropy) DKL (p, q)

between two densities p and q is defined by

DKL (p, q) = Ep

[
log

p

q

]
=
∫

log

[
p(x)

q(x)

]
p(x) dx ≥ 0 (3.66)

and equality is achieved if and only if p = q, p−almost surely.

Note that the divergence can be finite only if the support of the density p is
contained in the support of the density q. By convention, we define 0 log 0

0 = 0.

Proof By definition of the Kullback-Leibler divergence we can write

−DKL(p, q) =
∫

log

[
q(x)

p(x)

]
p(x) dx

≤ log

[∫
q(x)

p(x)
p(x) dx

]
(by Jensen’s inequality)

= log

[∫
q(x) dx

]

= 0.

We have equality, using Jensen’s inequality, if and only if p = q, p -almost surely.
Note that the lemma is true if q is assumed only to be a subdensity (mass less than
or equal to 1). ��
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The Kullback-Leibler divergence is not a true distance since it is not symmetric
and it does not satisfy the triangle inequality. But it appears as the natural
discrepancy measure in information theory. An important property, given in the
following lemma, is that it is strictly convex.

Lemma 3.11 The Kullback-Leibler divergence is strictly convex, that is to say, if
(p1, p2) and (q1, q2) are two pairs of densities then, for any 0 ≤ λ ≤ 1,

DKL(λ p1 + (1 − λ) p2, λ q1 + (1 − λ) q2) ≤ λDKL(p1, q1) + (1 − λ)DKL(p2, q2) ,

(3.67)
with strict inequality unless (p1, p2) = (q1, q2) a.e. with respect to p1 + p2.

Proof Note that f (t) = t log(t) is strictly convex on (0,∞). Let

α1 = λq1

λq1 + (1 − λ)q2
, α2 = (1 − λ)q2

λq1 + (1 − λ)q2
, t1 = p1

q1
and t2 = p2

q2
.

From the convexity of the function f it follows that

f (α1t1 + α2t2) ≤ α1f (t1) + α2f (t2)

and consequently

(α1t1 + α2t2) log(α1t1 + α2t2) ≤ t1α1 log(t1) + t2α2 log(t2) .

Substituting the above values of α1, α2, t1 and t2 gives

(λp1 + (1 − λ)p2) log
λp1 + (1 − λ)p2

λq1 + (1 − λ)q2
≤ λp1 log

p1

q1
+ (1 − λ)p2 log

p2

q2
.

Finally, by integrating the latter term, (3.67) and the strict convexity follow from the
strict convexity of the function f . ��

3.6.2 The Bayesian Predictive Density

Assume in the rest of this subsection that p(x|μ) and p′(y|μ) are densities with
respect to the Lesbegue measure. For any estimator p̂(·|x) of the density p′(y|μ),
define the Kullback-Leibler loss by

KL(μ, p̂(·|x)) =
∫

p′(y|μ) log

[
p′(y|μ)

p̂(y|x)

]
dy (3.68)

and its corresponding risk as
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RKL(μ, p̂) =
∫

p(x|μ)

[∫
p′(y|μ) log

[
p′(y|μ)

p̂(y|x)

]
dy

]
dx. (3.69)

We say that the density estimate p̂2 dominates the density estimate p̂1 if, for any
μ ∈ Ω, RKL(μ, p̂1) − RKL(μ, p̂2) ≤ 0, with strict inequality for at least some
value of μ.

In the Bayesian framework we will compare estimates using Bayes risk. We will
consider the class, more general than Aitchison (1975), of all subdensities,

D =
{
q(·|x)|

∫
q(y|x) dy ≤ 1 for all x

}
.

Lemma 3.12 (Aitchison 1975) The Bayes risk

rπ (p̂) =
∫

RKL(μ, p̂) π(μ) dμ

is minimized by

p̂π (y|x) =
∫

p′(y|μ)p(μ|x) dμ =
∫

p′(y|μ)p(x|μ)π(μ) dμ∫
p(x|μ)π(μ) dμ

. (3.70)

We call p̂π the Bayesian predictive density.

Proof The difference between the Bayes risks of p̂π and another competing
subdensity estimator q̂ is

rπ (q̂) − rπ (p̂π ) =
∫

Ω

[∫
X

{∫
Y

p′(y|μ) log
p̂π (y|x)

q̂(y|x)
dy

}
p(x|μ) dx

]
π(μ) dμ

=
∫

Ω

[∫
X

{∫
Y

p′(y|μ) log
p̂π (y|x)

q̂(y|x)
dy

}
p(x|μ)π(μ) dx

]
dμ

=
∫

Ω

[∫
X

{∫
Y

p′(y|μ) log
p̂π (y|x)

q̂(y|x)
dy

}
p(μ|x)m(x) dx

]
dμ .

Rearranging the order of integration thanks to Fubini’sTheorem gives

rπ (q̂) − rπ (r̂) =
∫
X

[∫
Y

{∫
Ω

p(μ|x) p′(y|μ) dμ

}
log

p̂π (y|x)

q̂(y|x)
dy

]
m(x) dx

=
∫
X

[∫
Y

p̂π (y|x) log
p̂π (y|x)

q̂(y|x)
dy

]
m(x) dx

=
∫
X

DKL(p̂π (.|x), q̂(.|x))m(x) dx ≥ 0.

��
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3.6.3 Sufficiency Reduction in the Normal Case

Let X(n) = (X1, . . . , Xn) and Y(m) = (Y1, . . . , Ym) be independent iid sam-
ples from p-dimensional normal distributions Np(μ,Σ1) and Np(μ,Σ2) with
unknown common mean μ and known positive definite covariance matrices Σ1 and
Σ2. On the basis of an observation x(n) = (x1, . . . , xn) from X(n), consider the
problem of estimating the true predictive density p′(y(m)|μ) of y(m) = (y1, . . . , ym),
under the Kullback-Leibler loss. For a prior density π(μ), the Bayesian predictive
density is given by

p̂π (y(m)|x(n)) =

∫
Ω

p′(y(m)|μ)p(x(n)|μ)π(μ) dμ

∫
Ω

p(x(n)|μ)π(μ) dμ

. (3.71)

For simplicity, we consider the case where Σ1 = Σ2 = Ip. According to Komaki
(2001) the Bayesian predictive densities satisfy

∫
Rpm

p′(y(m)|μ) log
p′(y(m)|μ)

p̂π (y(m)|x(n))
dy(m) =

∫
Rp

p′(ȳm|μ) log
p′(ȳm|μ)

p̂π (ȳm|x̄n)
dȳm

(3.72)

where, denoting by φp(·, |μ,Σ) the density of Np(μ,Σ), in the left-hand side
of (3.72),

p′(y(m)|μ) =
m∏

i=1

φp(yi, |μ, Ip)

while, in the right-hand side of (3.72),

p′(ȳm|μ) = φp(ȳm|μ, Ip/m)

with ȳm = ∑m
j=1 yj /m. Similarly, p̂π (y(m)|x(n)) corresponds to the conditional

density of the p × m matrix y(m) given the p × m matrix x(n) while p̂π (ȳm|x̄m)

corresponds to the conditional density of the p × 1 vector ȳm given the p × 1 vector
x̄n =∑n

i=1 xi/n.
To see this sufficiency reduction, use the fact that

m∑
i=1

‖yi − μ‖2 =
m∑

i=1

‖yi − ȳm‖2 + m (‖ȳm − μ‖)2.
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Then we can express p′(y(m)|μ) as

p′(y(m)|μ) = 1

(2 π)mp/2 exp

(
−1

2

m∑
i=1

‖yi − ȳm‖2

)
exp

(
−m

2
(‖ȳm − μ‖)2

)

= mp/2

(2π)(m−1)p/2
exp

(
−1

2

m∑
i=1

‖yi − ȳm‖2

)
p(ȳm|μ). (3.73)

Similarly, it follows that

p(x(n)|μ) = np/2

(2π)(n−1)p/2
exp

(
−1

2

n∑
i=1

‖xi − x̄m‖2

)
p(x̄m|μ) .

By replacing these expressions in the form of the predictive density in (3.71), we
get

p̂π (y(m)|x(n))

=
{

mp/2

(2π)(m−1)p/2
exp

(
−1

2

m∑
i=1

‖yi − ȳm‖2

)} ∫
p′(ȳm|μ)p(x̄m|μ)π(μ) dμ∫

p(x̄m|μ)π(μ) dμ

=
{

mp/2

(2π)(m−1)p/2
exp

(
−1

2

m∑
i=1

‖yi − ȳm‖2

)}
p̂π (ȳm|x̄m). (3.74)

Finally, for (3.73) and (3.74), it follows that

∫
p′(y(m)|μ) log

p′(y(m)|μ)

p̂(y(m)|x(n))
dy(m) =

∫
p′(y(m)|μ) log

p′(ȳm|μ)

p̂(ȳm|x̄m)
dy(m)

=
∫

p′(ȳm|μ) log
p′(ȳm|μ)

p̂(ȳm|x̄m)
dȳm.

Therefore, for any prior π , the risk of the Bayesian predictive density estimator is
equal to the risk of the Bayesian predictive density associated to π in the reduced
model X ∼ Np(μ, 1

n
Ip) and Y ∼ Np(μ, 1

m
Ip). Thus, for the Bayesian predictive

densities, it is sufficient to consider the reduced model.
Now we will compare two plug-in density estimators, p̂1 and p̂2 associated with

the two different estimators of μ, δ1 and δ2. That is, for i = 1, 2, define

p̂i(y(m)|x(n)) = p′(y(m)|μ = δi(x(n))). (3.75)
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The difference in risk between p̂2 and p̂1 is given by

ΔRKL(p̂2, p̂1) = RKL(μ, p̂2) − RKL(μ, p̂1)

=
∫

p(x(n)|μ)

∫
p(y(m)|μ) log

p̂1(y(m)|x(n))

p̂2(y(m)|x(n))
dy(m) dx(n)

=
∫

p(x(n)|μ)

∫
p(y(m)|μ)

(
1

2

m∑
i=1

‖δ2(x(n)) − yi‖2

− 1

2

m∑
i=1

‖δ1(x(n)) − yi‖2
)

dy(m) dx(n) .

By the independence of X(n) and Y(m) this can be reexpressed in terms of
expectations as

ΔRKL(p̂2, p̂1)

= 1

2

m∑
i=1

EX(n),Y(m)

(
‖δ2(X(n)) − μ + μ − Yi‖2 − ‖δ1(X(n)) − μ + μ − Yi‖2

)

= m

2
EX(n),Y(m)

[
‖δ2(X(n)) − μ‖2 − ‖δ1(X(n)) − μ‖2

]

+
m∑

i=1

EX(n),Y(m)

( [
(δ2(X(n)) − μ)(μ − Yi)

]− [(δ1(X(n)) − μ)(μ − Yi)
] )

= m

2

(
EX(n)

[
‖δ2(X(n)) − μ‖2

]
− EX(n)

[
‖δ1(X(n)) − μ‖2

])

= m

2

[
RQ(δ2, μ) − RQ(δ1, μ)

]
,

which shows that the risk difference between p̂2 and p̂1 is proportional to the risk
difference between δ2 and δ1.

Note that, by completeness of the statistics X̄n, it suffices to consider only
estimates of μ that depend only on X̄n.

3.6.4 Properties of the Best Invariant Density

In this subsection, we restrict our attention to location models. We assume X ∼
p(x|μ) = p(x − μ) and Y ∼ p′(y|μ) = p′(y − μ), where p and p′ are two known
possibly different densities. A density q̂ is called invariant (equivariant) with respect
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to a location parameter if, for any a ∈ R
p, x ∈ R

p, and y ∈ R
p q(y|x + a) =

q(y − a|x). This is equivalent to q(y + a|x + a) = q(y|x). The following result
shows that the risk of an invariant predictive density is constant.

Lemma 3.13 The invariant predictive densities with respect to the location group
of translations have constant risk.

Proof By the property of invariance, the risk of an invariant density q̂ is equal to

R(μ, q̂) =
∫

log
p′(y − μ)

q̂(y|x)
p(x − μ)p′(y − μ) dy dx

=
∫

log
p′(y − μ)

q̂(y − μ|x − μ)
p(x − μ)p′(y − μ) dy dx

=
∫

log
p(z′)
q̂(z′|z) p(z) p′(z′) dz′ dz, (3.76)

by the change of variables z = x − μ and z′ = z − μ. Therefore, the risk R(μ, q̂)

does not depend on μ and it is constant. ��
Any invariant predictive density which minimizes this risk is known as the best

invariant predictive density.

Lemma 3.14 The best invariant predictive density is the Bayesian predictive
density p̂U associated with the Lebesgue measure on R

p, π(μ) = 1, is given by

p̂U (y|x) =
∫
Rp p′(y|μ)p(x|μ) dμ∫

Rp p(x|μ) dμ
. (3.77)

Proof Let Z = X − μ, Z′ = Y − μ, and T = Y − X = Z′ − Z. We will
show that p̂(t), the density of T , which is independent of μ, is the best invariant
density. As noted in the previous section, if q̂ is an invariant predictive density,
q̂(y|x) = q̂(y − x|0) = q̂(y − x), by an abuse of notation. Hence,

R(μ, q̂) − R(μ, p̂) =
∫
Rp

∫
Rp

[
log

p̂(y − x)

q̂(y − x)

]
p(x − μ)p′(y − μ) dx dy

=
∫
Rp

∫
Rp

[
log

p̂(z′ − z)

q̂(z′ − z)

]
p(z)p′(z′) dz dz′

=
∫
Rp

[
log

p̂(t)

q̂(t)

]
p̂(t) dt, (3.78)

which is always positive by the inequality in (3.66). The result of the equality
in (3.78), and hence the lemma, follows from the fact that p̂(t) = p̂(y − x) =
p̂U (y|x), that is,
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p̂(t) =
∫
Rp

p(z) p′(z + t) dz

=
∫
Rp

p(z) p′(z + y − x) dz

=
∫
Rp

p(x − μ)p′(y − μ) dμ

=
∫
Rp p′(y|μ)p(x|μ) dμ∫

Rp p(x|μ) dμ
(3.79)

which is the expression of p̂U given in (3.70) with π(μ) = 1. ��
Murray (1977) showed that p̂U is the best invariant density under the action

of translations and of linear transformations for a Gaussian model. Ng (1980)
has generalized this result. Liang and Barron (2004), without the hypothesis of
independence between X and Y , for the estimation of p′(y|x, μ) showed that

p̂U =
∫
Rp p′(y|x, μ) p(x|μ) dμ∫

Rp p(x|μ) dμ
is the best invariant density.

We will now show that p̂U is minimax in location problems.

Lemma 3.15 Let X ∼ p(x|μ) = p(x − μ) and Y ∼ p(y|μ) = p′(y − μ), with
unknown location parameter μ ∈ R

p. Assuming that E0
[‖X‖2

]
< ∞, then the

best predictive invariant density p̂U is minimax.

Proof We show minimaxity using Lemma 1.8. Consider a sequence {πk} of normal
Np(0, k Ip) priors. The difference of Bayes risk between p̂U and p̂πk

, is given by

r(p̂U , πk) − r(p̂πk , πk) =
∫
Rp

[
R(μ, p̂U ) − R(μ, p̂πk )

]
πk(μ) dμ

=
∫
Rp

∫
Rp

∫
Rp

log
p̂πk (y|x)

p̂U (y|x)
p(y|μ)p(x|μ)πk(μ) dy dx dμ

=
∫
Rp

∫
Rp

log
p̂πk (y|x)

p̂U (y|x)

[∫
Rp

p(y|μ)p(x|μ)πk(μ) dμ

]
dy dx

= EX,Y
πk

log
p̂πk (Y |X)

p̂U (Y |X)
(3.80)

where E
x,y
πk

denotes the expectation with respect to the joint marginal of (X, Y ),

mπk
(x, y) =

∫
Rp

p(y|μ)p(x|μ)πk(μ) dμ.

Since r(p̂U , πk) = R(μ, p̂U ) (p̂U has constant risk) it suffices to show (3.80) tends
to 0 as k tends to infinity. By simplifying one gets
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r(p̂U , πk) − r(p̂πk
, πk)

= EX,Y
πk

[
log

(∫
p(x, y|μ)πk(μ) dμ∫
p(x|μ)πk(μ) dμ

1∫
p(x, y|μ) dμ

)]

= EX,Y
πk

[
− log

∫
p(x, y|μ)πk(μ) 1

πk(μ)
dμ∫

p(x, y|μ)πk(μ) dμ
− log

(∫
p(x|μ)πk(μ) dμ

)]

= EX,Y
πk

[
− log Eμ|X,Y

1

πk(μ)
− log

(∫
p(x|μ)πk(μ) dμ

)]

where Eμ|X,Y denotes the expectation with respect to the posterior of μ given
(X, Y ). An application of Jensen’s inequality gives

r(p̂U , πk) − r(p̂πk
, πk)

≤ EX,Y
πk

Eμ|X,Y log πk(μ) − EX,Y
πk

[∫
p(X|μ) log πk(μ) dμ

]
. (3.81)

By developing the expectations, it follows that

EX,Y
πk

Eμ|X,Y log πk(μ) =
∫∫

mπk
(x, y)

∫
p(x, y|μ)πk(μ) log(πk(μ))dμ

mπk
(x, y)

dxdy

=
∫∫∫

πk(μ) log(πk(μ)) dμ dxdy

=
∫

πk(μ) log(πk(μ))dμ. (3.82)

Similarly, by integrating with respect to y and by interchanging between μ and μ′
we have

EX,Y
πk

[∫
p(X|μ) log πk(μ) dμ

]

=
∫∫∫∫

p(x|μ′)p(y|μ′)πk(μ
′)p(x|μ) log πk(μ) dμ′dμdxdy

=
∫∫∫

πk(μ
′)p(x|μ)p(x|μ′) log πk(μ)dμ′ dx dμ

=
∫∫∫

πk(μ)p(x|μ)p(x|μ′) log πk(μ
′)dμ dxdμ′. (3.83)

By grouping the expressions (3.81), (3.83) and (3.84) and making the changes of
variables z = x − μ and z′ = x − μ′ it follows that
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r(p̂U , πk) − r(p̂πk
, πk)

≤
∫∫∫

p(x|μ)p(x|μ′)πk(μ)
[
log(πk(μ)) − log(πk(μ

′))
]
dμdμ′ dx

=
∫∫∫

πk(μ)p(x − μ)p(x − μ′) log

(
πk(μ)

πk(μ′)

)
dμ dz dz′

=
∫∫∫

πk(μ)p(z)p(z′) log

(
πk(μ)

πk(μ + z − z′)

)
dμ dz dz′. (3.84)

In view of the form πk(μ), the term on the right in (3.84) can be written as

Eπk
EZ,Z′ log

(
πk(μ)

πk(μ + Z − Z′)

)

= Eπk
EZ,Z′

1

2k

(
‖μ + Z − Z′‖ − ‖μ2‖

)

= Eπk
EZ,Z′

[
1

2k

(
‖Z‖2 + ‖Z′‖2 + 2〈μ,Z − Z′〈

)]

= EZ,Z′
[

1

2k

(
‖Z‖2 + ‖Z′‖2

)]
,

since E(Z) = E(Z′) = E0(X) (here, EZ,Z′ denotes the expectation with respect
to p(z, z′) = p(z)p(z′)). We then see that the limit of the difference of Bayes risks
tends toward zero when k → ∞. Therefore, p̂U is minimax by Lemma 1.8. ��

This result is in Liang and Barron (2004), a more direct proof for the Gaussian
case can be found in George et al. (2006) and is given in the next section.

3.6.5 An Explicit Expression for p̂U and Its Risk in the
Normal Case

We now give an explicit expression of p̂U , described the previous subsections, in
the Gaussian setting. Let X ∼ Np(μ, νxIp) and Y ∼ Np(μ, νyIp).

Lemma 3.16 The Bayesian predictive density associated with the uniform prior on
R

p, π(μ) ≡ 1, is given by the following expression

p̂U (y|x) = 1(
(2 π) (vy + vx)

)p/2 exp

(
− ‖y − x‖2

2 (vx + vy)

)
. (3.85)

Proof For W = (vy X + vx Y )/(vx + vy) and vw = (vx vy)/(vx + vy) it is clear
that W ∼ Np(μ, vwIp), by the independence of X and Y . Further, note that
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‖x − μ‖2

2vx

+ ‖y − μ‖2

2vy

= ‖μ − w‖2

2vw

+ ‖y − x‖2

2(vx + vy)
. (3.86)

By definition, and through the previous representation, it follows that

p̂U (y|x) =

∫
Rp

p(y|μ, vy) p(x|μ, vx) dμ

∫
Rp

p(x|μ, vx) dμ

=
∫
Rp

1

(2 π)p(vy vx)p/2 exp

(
−‖x − μ‖2

2 vx

− ‖y − μ‖2

2 vy

)
dμ

=
∫
Rp

1

(2 π)p(vy vx)p/2
exp

(
−‖μ − w‖2

2 vw

)
exp

(
− ‖y − x‖2

2 (vx + vy)

)
dμ

= (2 πvw)p/2

(2 π)p(vy vx)p/2
exp

(
− ‖y − x‖2

2(vx + vy)

)

= 1(
(2 π) (vy + vx)

)p/2 exp

(
− ‖y − x‖2

2 (vx + vy)

)
.

��
Note that the risk of p̂U is constant, as we have previously seen for invari-

ant densities. Given the form of p̂U (.|x) it follows that the Kullback-Liebler
divergence is

KL(p̂U (.|x), μ)

=
∫

p(y|μ, vy) log
p(y|μ, v)

p̂U (y|x)
dy

= EY

[
log

p(Y |μ, v)

p̂U (Y |x)

]

= EY

[
−p

2
log

vy

vx + vy

− 1

2vy

‖Y − μ‖2 + 1

2(vx + vy)
‖Y − x‖2

]

= −p

2
log

vy

vx + vy

− p

2
+ EY

[
1

2(vx + vy)

(
‖Y − μ‖2 + ‖μ − x‖2

)]

=
[
−p

2
log

vy

vx + vy

− p

2
+ pvy

2(vx + vy)

]
+ 1

2(vx + vy)
‖μ − x‖2. (3.87)
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Hence, we can conclude that the risk of p̂U is

RKL(p̂U , μ) = EX
[
KL(p̂U , μ,X)

]

=
[
−p

2
log

vy

vx + vy

− p

2
+ pvy

2(vx + vy)

]
+ pvx

2(vx + vy)

= −p

2
log

(
vy

vx + vy

)
= p

2
log

(
1 + vx

vy

)
. (3.88)

In the framework of the iid sampling model presented in Sect. 3.6.3 with Σ1 =
Σ2 = Ip, we can express the risk as

RKL(p̂U , μ) = p

2
log
(

1 + m

n

)
.

A predictive density is called the plug-in relative to an estimator δ if it has the
form

p̂δ(y|x) = 1

(2πvy)p/2 exp

(
−1

2

‖y − δ(x)‖2

vy

)
.

The predictive plug-in density, which corresponds to the standard estimator of the
mean, μ, δ0(X) = X, is

p̂δ(y|x) = 1(
2πvy

)p/2
exp

[
−1

2

‖y − x‖2

vy

]
.

We can directly verify that the predictive density p̂U dominates the plug-in density
p̂δ0 for any μ ∈ R

p. In fact, their difference in risk is

�RKL(p̂U , p̂δ0) = EX,Y

(
log

p̂U (Y |X)

p̂δ0(Y |X)

)

= −p

2
log

(
vx + vy

vy

)
− 1

2

[
1

vx + vy

− 1

vy

]
EX,Y

(
‖Y − X‖2

)
.

Since EX,Y
(‖Y − X‖2

)
equals

EX,Y
(
‖Y − μ‖2

)
+ EX,Y

(
‖X − μ‖2

)
− 2

〈
EX,Y (Y − μ),EX,Y (X − μ)

〉

= p(vx + vy),
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we have

�RKL(p̂U , p̂δ0) = −p

2

[
log

(
1 + vx

vy

)
− vx

vy

]
> 0 .

Surprisingly, the predictive density p̂U has similar properties to the standard
estimator, δ0(X) = X, for the estimation of the mean under quadratic loss. Komaki
(2001) showed that the density p̂U is dominated by the Bayesian predictive density
using the harmonic prior, π(μ) = ‖μ‖2−p. George et al. (2006) extended the
analogy with point estimation. We give some of this development next.

Lemma 3.17 (George et al. 2006, Lemma 2) For W = (vy X + vx Y )/(vx + vy)

and vw = (vx vy)/(vx + vy), let mπ(W ; vw) and mπ(X; vx) be the marginals of W

and X, respectively, relative to the a prior π . Then

p̂π (y|X) = mπ(W ; vw)

mπ(X; vx)
p̂U (y|X) (3.89)

where p̂U (·|X) is the Bayes estimator associated with the uniform prior on R
p given

by (3.85). In addition, for any prior measure π, the Kullback-Leibler risk difference
between p̂U (·|x) and the Bayesian predictive density p̂π (·|x) is given by

RKL(μ, p̂U ) − RKL(μ, p̂π ) = Eμ,vw

[
log mπ(W ; vw)

]− Eμ,vx

[
log mπ(X; vx)

]
(3.90)

where Eμ,v denotes the expectation with respect to the normal Np(μ, vIp) distri-
bution.

Proof The marginal density of (X, Y ) associated with π is equal to

p̂π (x, y) =
∫
Rp

p(x|μ, vx) p(y|μ, vy) π(μ) dμ

=
∫
Rp

1

(2πvx)p/2
exp

(
−‖x − μ‖2

2vx

)
1

(2πvy)p/2
exp

(
−‖y − μ‖2

2vy

)
π(μ) dμ.

Applying (3.85) and (3.86) it follows that

p̂π (x, y) = 1

(2π)p (vx vy)p/2

∫
Rp

exp

(
− ‖y − x‖2

2(vx + vy)

)
exp

(
−‖μ − w‖2

2vw

)
π(μ) dμ

= (2πvw)p/2

(2π)p (vx vy)p/2
exp

(
− ‖y − x‖2

2(vx + vy)

)
mπ(w; vw)

= p̂U (y|x)mπ (w; vw).

Since p̂π (y|x) = p̂π (x, y)/mπ(x), (3.89) follows.
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Hence, we can write the risk difference as

RKL(μ, p̂U ) − RKL(μ, p̂π )

=
∫ ∫

p(x|μ, vx) p(y|μ, vy) log
p̂π (y|x)

p̂U (y|x)
dy dx

=
∫ ∫

p(x|μ, vx) p(y|μ, vy) log
mπ(W(x, y); vw)

mπ(x; vx)
dy dx

= EX,Y log mπ(W(X, Y ); vw) − EX,Y log mπ(X; vx)

= EW log mπ(W |vw) − EX log mπ(X|vx).

��
Using this lemma, George et al. (2006) gave a simple proof of the result of Liang

and Barron (2004) for the Gaussian setting. By taking the same sequence of priors
{πk} = Np(0, kIp), the difference of the Bayes risk equals (using constancy of the
risk of p̂U )

RKL(μ, p̂U ) − r(πk, p̂πk
) =

∫
πk(μ)

[
Eμ,vw log mπk

(W, vw) − Eμ,vx log mπk
(X, vx)

]
dμ

=
∫

πk(μ)

[
Eμ,vw log

{
(2π(vw + k))−p/2 exp

(
− ‖W‖2

2(vw + k)

)}

−Eμ,vx log

{
(2π(vx + k))−p/2 exp

(
− ‖X‖2

2(vx + k)

)}]
dμ

=
∫

πk(μ)

[
− p/2 log(2π(vw + k)) − pvw

2(vw + k)

+p/2 log(2π(vx + k)) + pvx

2(vx + k)

]
dμ

=−p

2
log

vw + k

vx + k
− pvw

2(vw + k)
+ pvx

2(vx + k)
.

Hence, we see that limk→∞ r(πk, p̂U ) − r(πk, p̂πk
) = 0 and so, p̂U is minimax

by Lemma 1.8. George et al. (2006) also show that the best predictive invariant
density is dominated by any Bayesian predictive density relative to a superharmonic
prior. This result parallels the result of Stein for the estimation of the mean
under quadratic loss and the use differential operators discussed in Sect. 2.6. The
following lemma from George et al. (2006) allows us to give sufficient conditions
for domination. We use Stein’s identity in the proof.
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Lemma 3.18 If mπ(z; vx) is finite for any z, then for any vw ≤ v ≤ vx the marginal
mπ(z; v) is finite. In addition,

∂

∂v
E log mπ(z; v) = Eμ,v

[
Δmπ(Z; v)

mπ(Z; v)
− 1

2
‖∇ log mπ(Z; v)‖2

]

= Eμ,v

[
2

Δ
√

mπ(Z; v)√
mπ(Z; v)

]
. (3.91)

Proof For any vw ≤ v ≤ vx,

mπ(z; v) =
∫
Rp

1

(2 π v)p/2 exp

(
−‖z − μ‖2

2v

)
π(μ) dμ

=
(vx

v

)p/2
∫
Rp

1

(2 π vx)p/2
exp

(
−vx

v

‖z − μ‖2

2vx

)
π(μ) dμ

≤
(vx

v

)p/2
mπ(z; vx) < ∞.

Hence, the marginal mπ is finite. Setting Z′ = (Z − μ)/
√

v ∼ N (0, I ),

∂

∂v
Eμ,v log mπ(Z; v) = ∂

∂v

∫
p(z|μ, v) log (mπ(z; v) dz)

= ∂

∂v

∫
p(z′|0, 1) log

(
mπ(

√
vz′ + μ; v)

)
dz′

= EZ′
(∂/∂v)mπ(

√
vZ′ + μ; v)

mπ(
√

vZ′ + μ; v)
(3.92)

where

∂

∂v
mπ(

√
vz′ + μ; v) = ∂

∂v

∫
1

(2πv)p/2
exp

{
−‖√vz′ + μ − μ′‖2

2v

}
π(μ′) dμ′

= 1

(2 π v)p/2

∫ (
− p

2 v
+ ‖z − μ′‖2

2 v2
− ‖z′‖2

2 v
− 2〈z′, μ − μ′〉

2 v3/2

)
p(z|μ′) π(μ′) dμ′

= ∂

∂v
mπ(z; v) −

∫ 〈z − μ, z − μ′〉
2 v2

p(z|μ′) π(μ′) dμ′. (3.93)

Note that

∇zmπ(z, v) =
∫ −(z − μ)

v
p(z|μ)π(μ)dμ (3.94)
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and

Δzmπ(z, v) =
∫ [−p

v
+ ‖z − μ‖2

v2

]
p(z|μ)π(μ)dμ

= 2
∂

∂v
mπ(z; v). (3.95)

It follows that

EZ′
(∂/∂v)mπ(

√
vZ′ + μ; v)

mπ (
√

vZ′ + μ; v)
= Eμ,v

(
1

2

Δmπ(Z; v)

mπ (Z; v)
+ 〈Z − μ, ∇ log mπ(Z; v)〉

2 v

)
.

Hence, using Stein’s identity,

Eμ,v

[
(Z − μ)T∇ log mπ(Z; v)

2 v

]
= Eμ,v

[
1

2
Δ log mπ(Z; v)

]

= Eμ,v

[
1

2

(
Δmπ(Z; v)

mπ (Z; v)
− ‖∇ log mπ(Z; v)‖2

)]
,

which is the desired result. ��
Lemmas 3.17 and 3.18 gives a result regarding minimaxity and domination from

George et al. (2006). This result reveals parallels to those on minimax estimation
of mean under quadratic loss in Sect. 3.1.1. Its proof is contained in the proof of
Theorem 3.17.

Theorem 3.16 Assume that mπ(z; vx) is finite for any z in R
p. If Δmπ ≤ 0 for

all vw ≤ v ≤ vx , then the Bayesian predictive density p̂π (y|x) is minimax and
dominates p̂U (when π is not the uniform itself). If Δπ ≤ 0, then the Bayesian
predictive density p̂π (y|x) is minimax and dominates p̂U (when π is uniform).

The next result from Brown et al. (2008) illuminates the link between the two
problems of estimating the predictive density under the Kullback-Leibler loss and
estimating the mean under quadratic loss. The result expresses this link in terms of
risk differences.

Theorem 3.17 Suppose the prior π(μ) is such that the marginal mπ(z; v) is finite
for any z ∈ R

p. Then,

RKL(μ, p̂U ) − RKL(μ, p̂π ) = 1

2

∫ vx

vw

1

v2

(
Rv

Q(μ,X) − Rv
Q(μ, μ̂π,v)

)
dv.

(3.96)

Proof From (3.90) and (3.91) it follows
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RKL(μ, p̂U ) − RKL(μ, p̂π ) =
∫ vx

vw

− ∂

∂v
Eμ,v[log mπ(Z; v)] dv

=
∫ vx

vw

Eμ,v

[
2

Δ
√

mπ(Z; v)√
mπ(Z; v)

]
dv. (3.97)

On the other hand, Stein (1981) showed that

Rv
Q(μ,X) − Rv

Q(μ, μ̂π,v) = −4v2Eμ,v

Δ
√

mπ(Z; v)√
mπ(Z; v)

. (3.98)

Hence substituting (3.98) in the integral (3.97) gives (3.96). ��
It is worth noting that using (3.88) and (3.96) leads to the following expression

for the Kullback-Liebler risk of p̂U :

1

2

∫ vx

vw

1

v2

(
Rv

Q(μ,X)
)

dv = 1

2

∫ vx

vw

p

v
dv

= p

2
log

vx

vw

= p

2
log

(
1 + vx

vy

)
.

= RKL(μ, p̂U ) . (3.99)

The area of predictive density estimation continues to develop. Recent research
covers the case of restricted parameter (Fourdrinier et al. 2011), general α-
divergence losses (Maruyama and Strawderman 2012; Boisbunon and Maruyama
2014), integrated L1 and L2 losses (Kubokawa et al. 2015, 2017). For a general
review, see George and Xu (2010).
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