
Chapter 2
Estimation of a Normal Mean Vector I

2.1 Introduction

This chapter is concerned with estimating the p-dimensional mean vector of a
multivariate normal distribution under quadratic loss. Most of the chapter will be
concerned with the case of a known covariance matrix of the form Σ = σ 2Ip and
“usual quadratic loss,” L(θ, δ) = ‖δ − θ‖2 = (δ − θ)T(δ − θ). Generalizations
to known general covariance matrix Σ , and to general quadratic loss, L(θ, δ) =
(δ − θ)tQ(δ − θ), where Q is a p × p symmetric non-negative definite matrix
will also be considered. Let X ∼ Np(θ, σ 2Ip) where σ 2 is assumed known and
it is desired to estimate the unknown vector θ ∈ R

p. The “usual” estimator of
θ is δ0(X) = X, in the sense that it is the maximum likelihood estimator (MLE),
the uniformly minimum variance unbiased estimator (UMVUE), the least squares
estimator (LSE), and under a wide variety of loss functions it is the minimum
risk equivariant estimator (MRE), and is minimax. The estimator δ0(X) is also
admissible under a wide class of invariant loss functions if p = 1 or 2. However,
Stein (1956) showed that X is inadmissible if p ≥ 3 for the loss L(θ, δ) = ‖δ−θ‖2.
This result was surprising at the time and has led to a large number of developments
in multi-parameter estimation. One important aspect of this “Stein phenomenon”
(also known as the Stein paradox at one time, see Efron and Morris 1977) is
that it illustrates the difference between estimating one component at a time and
simultaneously estimating the whole mean vector. Indeed, if we wish to estimate any
particular component, θi , of the vector θ , then the estimator δ0i (X) = Xi remains
admissible whatever the value of p (see for example Lehmann and Casella (1998),
Lemma 5.2.12). James and Stein (1961) showed that the estimator δJS

a (X) =
(1 − a σ 2 /‖X‖2)X dominates δ0(X) for p ≥ 3 provided 0 < a < 2 (p − 2).
They also showed that the risk of δJS

p−2(X) = (
1 − (p − 2) σ 2 /‖X‖2

)
X at θ = 0

is equal to 2 σ 2 for all p ≥ 3 indicating that substantial gain in risk over the usual
estimator is possible for large p, since the risk of δ0(X) is equal to the constant
p σ 2.
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In Sect. 2.2, we will give some intuition into why improvement over δ0(X)

should be possible in higher dimensions and how much improvement might be
expected. Section 2.3 is devoted to Stein’s unbiased estimation of risk technique
which provides the technical basis of many results in the area of multi-parameter
estimation. Section 2.4 is devoted to establishing improved procedures such as the
James-Stein estimator. In Sect. 2.5, we will provide a link between Stein’s lemma
and Stokes’ theorem while, in Sect. 2.6, we will give some insight into Stein’s
phenomenon in terms of nonlinear partial differential operators.

2.2 Some Intuition into Stein Estimation

2.2.1 Best Linear Estimators

Suppose X is a p-dimensional random vector such that E[X] = θ and Cov(X) =
σ 2 Ip where θ is unknown and σ 2 is known. We do not require at this point that
X have a multivariate normal distribution. Consider estimators of θ of the form
δa(X) = (1 − a)X under quadratic loss L(θ, δ) = ‖δ − θ‖2 = ∑p

i=1(δi − θi)
2.

The risk of δa(X) is given by

R(θ, δa) = E

[
p∑

i=1

((1 − a)Xi − θi)
2

]

=
p∑

i=1

V ar ((1 − a)Xi) +
p∑

i=1

(E [(1 − a)Xi − θi])
2

= (1 − a)2 p σ 2 + a2
p∑

i=1

θ2
i

= (1 − a)2 p σ 2 + a2 ‖θ‖2 .

The optimal choice of a, aopt , which minimizes R(θ, δa) is obtained by
differentiating R(θ, δa) with respect to a and equating the result to 0, that is,

∂

∂a
R(θ, δa) = −2 (1 − a) pσ 2 + 2 a ‖θ‖2

= 0

and solving for a gives

aopt = p σ 2

p σ 2 + ‖θ‖2 .
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We see that aopt depends on the unknown, θ but since

E‖X‖2 = p σ 2 + ‖θ‖2,

we may estimate aopt as

âopt = p σ 2

‖X‖2 ,

and hence approximate the best linear “estimator”

δaopt (X) =
(

1 − p σ 2

p σ 2 + ‖θ‖2

)
X

by

δ̂aopt (X) =
(

1 − p σ 2

‖X‖2

)
X.

This is in fact a James-Stein type estimator

δ̂aopt (X) = δJS
p (X),

which is close to the optimal James-Stein estimator (as we will see in Sect. 2.4
δJS
p−2(X) is optimal if X is normal). Hence, the James-Stein estimator can be viewed

as an approximation to the best linear “estimator” that adapts to the value of ‖θ‖2.
It is worth noting that aopt = pσ 2/(p σ 2+‖θ‖2) can typically be better estimated

for large values of p since E‖X‖2/p = σ 2 + ‖θ‖2/p and (if we assume Xi are
symmetric about θi and that the Xi − θi are independent)

V ar

(‖X‖2

p

)
= V ar(X1 − θ1)

2

p
+ 4 ‖θ‖2 σ 2

p2

which tends to 0 uniformly as p → ∞ provided ‖θ‖2/p is bounded. This helps
to explain why there is a dimension effect and that it is easier to find dominating
estimators for large p.

It is also interesting to note that normality plays no role in the above discussion
indicating that we can expect James-Stein type estimators to improve on δ0(X) in
a fairly general location vector setting. This will be discussed further in Chaps. 5
and 6 for spherically symmetric distributions.

Note also, since the estimators are generally shrinking X toward 0, we expect the
largest gains in risk to occur at θ = 0. In particular the risk of δaopt (X) at the true
value of θ is given by
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R(θ, δaopt ) = p σ 2 ‖θ‖2

p σ 2 + ‖θ‖2
= R(θ,X)

‖θ‖2

p σ 2 + ‖θ‖2
.

Hence, when ‖θ‖2 is large, there is very little savings in risk, but when ‖θ‖2 is close
to 0, the improvement is substantial.

We will see later in Sect. 2.4 that this is also true for James-Stein-type estimators
in the sense that there is very little savings in risk for large ‖θ‖2 but substantial
savings for small ‖θ‖2 and especially so for large p.

2.2.2 Some Geometrical Insight

The argument here closely follows the discussion presented by Brandwein and
Strawderman (1991a). We again suppose E[X] = θ ∈ R

p and Cov(X) = σ 2 Ip

with σ 2 known. Since E[‖X‖2] = ‖θ‖2 + p σ 2, it seems that X is“ too long” as an
estimator of θ and that perhaps the projection of θ onto X or something close to it
would be a better estimator than X. Again, the projection of θ onto X will depend
on θ and so will not be a valid estimator, but perhaps we can find a reasonable
approximation. Since the projection of θ on X has the form (1 − a)X we are trying
to approximate the constant a. Note E(θ − X)Tθ = 0, and hence we expect θ and
X − θ to be nearly orthogonal which implies that we expect 0 < a < 1.

In what follows, we assume that θ and X−θ are exactly orthogonal. The situation
is shown in Fig. 2.1.

From the two right triangles in Fig. 2.1 we note

‖(1 − a)X‖2 + ‖Y‖2 = ‖θ‖2 and ‖a X‖2 + ‖Y‖2 = ‖X − θ‖2.

Since

E‖X‖2 = ‖θ‖2 + p σ 2 and E‖X − θ‖2 = p σ 2 ,

reasonable approximations are

‖θ‖2 ∼= ‖X‖2 − pσ 2 and ‖X − θ‖2 ∼= p σ 2 .

Hence we have as approximations

‖(1 − a)X‖2 + ‖Y‖2 ∼= ‖X‖2 − p σ 2 and ‖a X‖2 + ‖Y‖2 ∼= p σ 2 .

Subtracting to eliminate ‖Y‖2, that is,

‖(1 − a)X‖2 − ‖a X‖2 = (1 − 2 a)‖X‖2 ∼= ‖X‖2 − 2 p σ 2 ,
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Y

Fig. 2.1 Observation vector X in p dimensions with mean θ orthogonal to X − θ

we obtain a ∼= p σ 2/‖X‖2. Hence, we may approximate the projection of θ on X as

(1 − a)X ∼=
(

1 − p σ 2

‖X‖2

)
X = δJS

p (X) , (2.1)

remarkably the same James-Stein estimator suggested in Sect. 2.2.1. Once again,
note that normality plays no role in the discussion. Stein (1962) gave a similar
geometric arguement to contruct confidence sets for θ , centred at (2.1), as the
orthogonal projection of θ on X. For more on the geometrical explanation of the
inadmissibility of X as a point estimator see Brown and Zhao (2012).

2.2.3 The James-Stein Estimator as an Empirical Bayes
Estimator

Assume in this subsection that X ∼ Np(θ, σ 2 Ip) with (σ 2 known) and that the
prior distribution on θ is Np(0, τ 2 Ip). As indicated in Sect. 1.4, the Bayes estimator
of θ for quadratic loss is the posterior mean of θ given by δ(X) = E[θ | X] =
(1 − σ 2/(τ 2 + σ 2))X.

If we now assume that τ 2 is unknown we can derive an empirical Bayes estimator
as follows; the marginal distribution of X is Np(0, (σ 2 + τ 2) Ip) and hence ‖X‖2,
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which is distributed as (σ 2 + τ 2) times a chi-square with p degrees of freedom, is a
complete sufficient statistic for σ 2+τ 2. It follows that (p−2)/‖X‖2 is the UMVUE
of 1/(σ 2 + τ 2) and that δJS

p−2(X) = (1 − (p − 2) σ 2/‖X‖2)X can be viewed as an
empirical Bayes estimator of θ .

Here we have explicitly used the assumption of normality but a somewhat
analogous argument will be given in Sect. 5.1 for a general multivariate location
family.

2.3 Improved Estimators via Stein’s Lemma

In this section, we restrict our attention to the case where X ∼ Np(θ, σ 2 Ip) with
σ 2 known and where the loss function is L(θ, δ) = ‖δ − θ‖2. We will be concerned
with developing expressions for the risk function of a general estimator of the form
δ(X) = X + σ 2 g(X) for some function g from R

p into R
p. This development is

due to Stein (1973, 1981).
Through

L(θ, δ) = ‖X + σ 2 g(X) − θ‖2

= ‖X − θ‖2 + σ 4 ‖g(X)‖2 + 2 σ 2 (X − θ)Tg(X) , (2.2)

we will see that the risk of δ is finite if and only if Eθ [‖g(X)‖2] < ∞. Indeed,
considering the expectation of the cross product term in (2.2), we have

Eθ [|(X − θ)Tg(X)|] ≤ (
Eθ [‖(X − θ)‖2])1/2(

Eθ [‖g(X)‖2])1/2
,

by the Cauchy-Schwarz inequality. Therefore, as Eθ [‖(X − θ)‖2] < ∞, it suffices
that Eθ [‖g(X)‖2] < ∞ to have Eθ [‖X + g(X) − θ‖2] < ∞, that is, R(θ,X +
g(X)) < ∞.

Conversely, assume that R(θ,X + g(X)) < ∞. As

‖g(X)‖2 = ‖X + g(X) − θ − (X − θ)‖2

= ‖X + g(X) − θ‖2 + ‖X − θ‖2 − 2 (X − θ)T(X + g(X) − θ)

then applying the above argument gives Eθ [‖g(X)‖2] < ∞ since, by assumption,
Eθ [‖X + g(X) − θ‖2] < ∞, Eθ [‖(X − θ)‖2] < ∞ and hence using again the
Cauchy-Schwarz inequality

Eθ [|(X − θ)T(X + g(X) − θ)|] ≤ (
Eθ [‖(X − θ)‖2])1/2(

Eθ [‖X + g(X) − θ‖2])1/2
.

Under this fineteness condition the risk function of δ is given by

R(θ, δ) = p σ 2 + σ 4Eθ [‖g(X)‖2] + 2 σ 2Eθ [(X − θ)Tg(X)] .
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Stein’s lemma in (2.7) below allows an alternative expression for the last
expectation, that is, Eθ [(X − θ)Tg(X)] = σ 2 Eθ [divg(X)] where divg(X) =∑p

i=1
∂

∂Xi
gi(X) under suitable conditions on g. The great advantage that Stein’s

lemma gives is that the risk function can be expressed as the expected value of a
function of X only (and not θ ), that is,

R(θ, δ) = Eθ [p σ 2 + σ 4 ‖g(X)‖2 + 2 σ 4 divg(X)], (2.3)

and hence the expression

p σ 2 + σ 4
[
‖g(X)‖2 + 2 divg(X)

]

can be interpreted as an unbiased estimate of the risk of δ (see Corollary 2.1
(3)). Actually, as X is a complete sufficient statistic, this unbiased estimator
is the uniformly minimum variance unbiased estimator of the risk. To see that
Eθ [(X − θ)Tg(X)] = σ 2 Eθ [divg(X)] is quite easy if g is sufficiently smooth.
Suppose first that p = 1 and g is absolutely continuous. We show in Sect. A.5 in the
Appendix that limx→±∞ g(x) exp{−(x − θ)2/2σ 2} = 0 as soon as Eθ [|g′(X)|] <

∞ (see also Hoffmann 1992 where g is assumed to be continuously differentiable).
Then a simple integration by parts gives

Eθ [(X − θ)g(X)] = 1

(2πσ 2)1/2

∫ ∞

−∞
(x − θ)g(x) exp{−(x − θ)2/2σ 2} dx

= 1

(2πσ 2)1/2

∫ ∞

−∞
σ 2g(x)

(−d

dx
exp{−(x − θ)2/2σ 2}

)
dx

= σ 2

(2πσ 2)1/2

∫ ∞

−∞
g′(x) exp{−(x − θ)2/2σ 2} dx

= σ 2Eθ [g′(X)] .

In higher dimensions, let g = (g1, . . . , gp) be a function from R
p into R

p.
Also, for any x = (x1, . . . , xp) ∈ R

p and for fixed i = 1, . . . , p, set x−i =
(x1, . . . , xi−1, xi+1, . . . , xp) and, with a slight abuse of notation, x = (xi, x−i ).
Then, using the independence of Xi and X−i , we have

Eθ [(Xi − θi) gi(X)] = Eθ

[
Eθ [(Xi − θi) gi(Xi,X−i )| X−i]

]

= Eθ

[
Eθ [σ 2 ∂igi(Xi,X−i )| X−i]

]

= σ 2Eθ [∂igi(X)] .

Now, summing on i gives Eθ [(X − θ)Tg(X)] = σ 2 Eθ [divg(X)].
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However, we wish to include estimators such as the James-Stein estimators

δJS
a (X) =

(
1 − a σ 2

‖X‖2

)
X (2.4)

where the coordinate functions of g(X) = (a σ 2/‖X‖2)X are not smooth, since g

explodes at 0. For this reason, Stein considered a weaker regularity condition for his
identity to hold, that he called almost differentiability. In his proof, he essentially
required that g(x) = (g1(x), g2(x), . . . , gp(x)) be such that, for each i = 1, . . . , p,
the coordinate gi(x) is absolutely continuous in xi for almost every x−i . Formally,
he stated: “A function h from R

p into R
p is said to be almost differentiable if there

exists a function ∇h = (∇1h, . . . ,∇ph) from R
p into R

p such that, for all z ∈ R
p,

h(x + z) − h(x) =
∫ 1

0
zT ∇h(x + t z) dt , (2.5)

for almost all x ∈ R
p. A function g = (g1, . . . , gp) from R

p into R
p is said to

be almost differentiable if all its coordinate functions gi’s are” (see Sect. A.1 in the
Appendix for a detailed discussion).

We will establish Stein’s identity under the weaker notion of weak differentiabil-
ity which is of more common use in analysis and also in statistics (see e.g. Johnstone
1988). To this end, recall that the space of functions h from R

p into R such that h

is locally integrable is defined by

L1
loc(R

p) =
{
h : Rp → R |

∫

K

|h(x)| dx < ∞ ∀K ⊂ R
p with K compact

}
.

Definition 2.1 A locally integrable function h from R
p into R is said to be weakly

differentiable if there exist p locally integrable functions ∂1h, . . . ∂ph such that, for
any i = 1, . . . , p,

∫

Rp

h(x)
∂ϕ

∂xi

(x) dx = −
∫

Rp

∂ih(x) ϕ(x) dx (2.6)

for any infinitely differentiable function ϕ with compact support from R
p into R.

Note that weak differentiability is a global, not local, property. The functions
∂ih in Definition 2.1 are denoted, as the usual derivatives, by ∂/∂xi . The vector
∂h = (∂1h, . . . , ∂ph) = (∂h/∂x1, . . . , ∂h/∂xp) denotes the weak gradient of h

and the scalar divg = ∑p

i=1 ∂igi denotes the weak divergence of g. The following
proposition establishes a link between weak differentiability and those aspects of
almost differentiability that Stein used (and we will use) in the proof of Stein’s
lemma.

Proposition 2.1 (Ziemer 1989) Let h be a locally integrable function from R
p

into R. Then h is weakly differentiable if and only if there exists a representative
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h0 which is equal to h almost everywhere such that, for any i = 1, . . . , p, the
function h0(xi, x−i ) is absolutely continuous in xi for almost all values of x−i and
whose (classical) partial derivatives belong to L1

loc(R
p). Also the classical partial

derivatives of h0 coincide with the weak partial derivatives of h almost everywhere.

Proposition 2.1 is essentially Theorem 2.1.4. of Ziemer (1989) who deals with
functions h in L1(Ω) where Ω is an open set of Rp (and, more generally, in Lq(Ω)

with q ≥ 1). However, his proof relies only on local integrability of h and its partial
derivatives. So, the apparently stronger statement of Proposition 2.1 follows from
his arguments. See also Theorem 8.27 of Bressan (2012).

As indicated in Proposition 2.1, the key feature of weak differentiability is the
local integrability of the function and of all its partial derivatives. For the functions
h of interest to us, the representative h0 is the function itself so that the weak
differentiability follows from the local integrability of h and its derivatives and its
absolute continuity along almost all lines parallel to the axes. In particular, as the
weak partial derivative is unique up to pointwise almost everywhere equivalence,
the weak partial derivative of a continuously differentiable function coincides with
the usual derivative (see e. g. Hunter 2014, Chap. 3).

As an example, consider the shrinkage factor h(x) = x/‖x‖2 of the James-
Stein estimator in (2.4). In Sect. A.2 in the Appendix, we show that h is weakly
differentiable if and only if p ≥ 3 and that div h(x) = (p − 2)/‖x‖2. We also show
that h is not almost differentiable in the sense of Stein given above. This last fact is
due to the requirement that h be absolutely continuous in all directions while weak
differentiability, in contrast, only requires absolute continuity in directions parallel
to the axes. Again we note that Stein only used absolute continuity in the coordinates
directions.

We give now a precise statement of Stein’s lemma for weakly differentiable
functions along the lines of Stein (1981). Note that we will see, in Sect. 2.5, that
it is closely related to Stokes’ theorem, which will provide an alternative proof.

Theorem 2.1 (Stein’s lemma) Let X ∼ Np(θ, σ 2Ip) and let g be a weakly
differentiable function from R

p into R
p. Then

Eθ [(X − θ)Tg(X)] = σ 2 Eθ [divg(X)] , (2.7)

provided, for any i = 1, . . . , p, either

Eθ [|(Xi − θi)gi(X)|] < ∞ or Eθ [|∂igi(X)|] < ∞ . (2.8)

Formula (2.7) is often referred to as Stein’s identity.

Proof Let x = (x1, . . . , xp) ∈ R
p and set

ϕ(x) = ‖x − θ‖2

2 σ 2
and φ(x) = 1

(2 π σ 2)p/2
exp(−ϕ(x)) .
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Equality (2.7) is equivalent to

Eθ [∇ϕ(X)Tg(X)] = σ 2 Eθ [divg(X)] . (2.9)

For fixed i = 1, . . . , p, set x−i = (x1, . . . , xi−1, xi+1, . . . , xp) and, with a slight
abuse of notation, set x = (xi, x−i ). Note that

∂φ(x)

∂xi

= −∂ϕ(x)

∂xi

φ(x)

so that φ(x) can be written as

φ(x) =
∫ xi

−∞
−∂ϕ(x̃i , x−i )

∂x̃i
φ(x̃i , x−i ) dx̃i =

∫ ∞
xi

∂ϕ(x̃i , x−i )

∂x̃i
φ(x̃i , x−i ) dx̃i , (2.10)

noticing that, by assumption, lim|xi |→∞ ϕ(x1, . . . , xp) = ∞ implies

lim|xi |→∞ φ(xi, x−i ) = 1

(2 π σ 2)p/2 lim|xi |→∞ exp
(− ϕ(xi, x−i )

) = 0 . (2.11)

Fixing i ∈ {1, . . . , p} and assuming first Eθ [|∂igi(X)|] < ∞, we can write
using (2.10), for almost every x−i ,

∫ ∞

−∞
∂gi(xi, x−i )

∂xi

φ(xi, x−i ) dxi

=
∫ 0

−∞
∂gi(xi, x−i )

∂xi

∫ xi

−∞
−∂ϕ(x̃i , x−i )

∂x̃i

φ(x̃i , x−i ) dx̃i dxi

+
∫ ∞

0

∂gi(xi, x−i )

∂xi

∫ ∞

xi

∂ϕ(x̃i , x−i )

∂x̃i

φ(x̃i , x−i ) dx̃i dxi

=
∫ 0

−∞
−∂ϕ(x̃i , x−i )

∂x̃i

φ(x̃i , x−i )

∫ 0

x̃i

∂gi(xi, x−i )

∂xi

dxi dx̃i

+
∫ ∞

0

∂ϕ(x̃i , x−i )

∂x̃i

φ(x̃i , x−i )

∫ x̃i

0

∂gi(xi, x−i )

∂xi

dxi dx̃i .

(2.12)

Now, according to Proposition 2.1, as g is weakly differentiable, we may assume
without loss of generality that, for each i = 1, . . . , p, the function gi(xi, x−i ) is
absolutely continuous in xi for almost all values of x−i so that
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−
∫ 0

x̃i

∂gi(xi, x−i )

∂xi

dxi =
∫ x̃i

0

∂gi(xi, x−i )

∂xi

dxi = gi(x̃i , x−i ) − gi(0, x−i ) .

Then (2.12) becomes

∫ ∞

−∞
∂gi(xi, x−i )

∂xi

φ(xi, x−i ) dxi

=
∫ ∞

−∞
∂ϕ(xi, x−i )

∂xi

φ(xi, x−i ) [gi(xi, x−i ) − gi(0, x−i )] dxi

=
∫ ∞

−∞
∂ϕ(xi, x−i )

∂xi

φ(xi, x−i ) gi(xi, x−i ) dxi ,

since, using again (2.11),

−
∫ ∞

−∞
∂ϕ(xi, x−i )

∂xi

φ(xi, x−i ) dxi =
∫ ∞

−∞
∂φ(xi, x−i )

∂xi

dxi = 0 .

Finally, integrating with respect to x−i gives

Eθ

[
∂gi(X)

∂xi

]
=

∫

Rp

∂gi(xi, x−i )

∂xi

φ(xi, x−i ) dxi dx−i

=
∫

Rp

∂ϕ(xi, x−i )

∂xi

φ(xi, x−i ) gi(xi, x−i ) dxi dx−i

= Eθ

[
∂ϕ(X)

∂xi

gi(X)

]

and hence, summing on i gives (2.9), which is the desired result.
To show (2.7) assuming Eθ [|(Xi−θi)

Tgi(X)|] < ∞ for i ∈ {1, . . . , p}, it suffices
to essentially reverse the steps in the above argument. �

The following corollary is immediate from Stein’s lemma and the above discus-
sion. Recall that L(θ, d) = ‖d − θ‖2, R(θ, δ) = Eθ [L(θ, δ(X))] = Eθ [‖δ(X) −
θ‖2], and Eθ [‖g(X)‖2] < ∞ implies that for any i = 1, . . . , p, Eθ [|(Xi −
θi) gi(X)|] < ∞.

Corollary 2.1 Let g(X) be a weakly differentiable function from R
p into R

p such
that Eθ [‖g(X)‖2] < ∞. Then

(1) R(θ,X + σ 2 g(X)) = Eθ [p σ 2 + σ 4 (‖g(X)‖2 + 2 divg(X))];
(2) δ(X) = X + σ 2 g(X) is minimax as soon as ‖g(X)‖2 + 2 div g(X) ≤ 0 a.e. and

dominates X provided there is strict inequality on a set of positive measure; and
(3) p σ 2+σ 4 (‖g(X)‖2+2 divg(X)) is an unbiased estimator (in fact the UMVUE)

of R(θ,X + σ 2 g(X)).
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We note once again that δ(X) is minimax since it dominates (or ties) the
minimax estimator X. In the next few sections we apply the above corollary to
show domination of the James-Stein estimators and several others over the usual
estimator in three and higher dimensions.

2.4 James-Stein Estimators and Other Improved Estimators

In this section, we apply the integration by parts results of Sect. 2.3 to obtain
several classes of estimators that dominate the classical minimax estimator δ0(X) in
dimension 3 and higher. The estimators of James and Stein, Baranchik, and certain
estimators shrinking toward subspaces are the main application of this section.
Bayes (generalized, proper, and pseudo) are considered in Chap. 3. Throughout this
section, except for Theorem 2.4, let X ∼ Np(θ, σ 2 Ip) and loss be L(θ, δ) = ‖δ −
θ‖2. According to Corollary 2.1 it suffices to find weakly differentiable functions
g from R

p into R
p such that Eθ [‖g(X)‖2] < ∞ and ‖g(X)‖2 + 2 div g(X) ≤ 0

(with strict inequality on a set of positive measure) in order to show that δ(X) =
X + σ 2 g(X) dominates X.

2.4.1 James-Stein Estimators

The class of James-Stein estimators is given by

δJS
a (X) =

(
1 − a σ 2

‖X‖2

)
X. (2.13)

The basic properties of δJS
a (X) are given in the following result.

Theorem 2.2 Under the above model

(1) The risk of δJS
a (X) is given by

R(θ, δJS
a ) = p σ 2 + σ 4 (a2 − 2 a (p − 2))Eθ

[
1

‖X‖2

]
(2.14)

for p ≥ 3.
(2) δJS

a (X) dominates δ0(X) = X for 0 < a < 2 (p − 2) and is minimax for
0 ≤ a ≤ 2 (p − 2) for all p ≥ 3.

(3) The uniformly optimal choice of a is a = p − 2 for p ≥ 3.
(4) The risk at θ = 0 for the optimal James-Stein estimator δJS

p−2(X) is 2 σ 2 for all
p ≥ 3.

Proof Observe that δJS
a (X) = X + σ 2g(X) where g(X) = −a/‖X‖2 X. As

noted in Sect. 2.3, g(X) is weakly differentiable if p ≥ 3. Also Eθ [‖g(X)‖2] =
a2 Eθ [1/‖X‖2] is finite if p ≥ 3 since ‖X‖2/σ 2 has a non-central χ2 distribution
with p degrees of freedom and non-centrality parameter λ = ‖θ‖2/2σ 2. Indeed



2.4 James-Stein Estimators and Other Improved Estimators 41

by the usual Poisson representation of a non-central χ2, we have ‖X‖2/σ 2 | K ∼
χ2

p+2K where K ∼ Poisson (λ = ‖θ‖2/2σ 2) and hence,

Eθ

[
σ 2

‖X‖2

]
= Eλ

[

E

[
1

χ2
p+2K

∣∣∣∣K

]]

= Eλ

[
1

p + 2K − 2

]
≤ 1

p − 2
< ∞

(2.15)
if p > 2.

Also, according to (A.18), for any x �= 0,

div

(
x

‖x‖2

)
= p − 2

‖x‖2 . (2.16)

Hence,

‖g(x)‖2 + 2 divg(x) = (a2 − 2 a (p − 2))
1

‖x‖2

and by Corollary 2.1, for p ≥ 3,

R(θ, δJS
a ) = p σ 2 + σ 4 (a2 − 2 a (p − 2)) Eθ

(
1

‖X‖2

)
.

This proves (1).
Part (2) follows since a2 − 2 a (p − 2) < 0 for 0 < a < 2 (p − 2) and hence for

such a > 0,

R(θ, δJS
a ) < p σ 2 = R(θ, δ0). (2.17)

The minimaxity claim for 0 ≤ a ≤ 2 (p − 2) follows by replacing < by ≤
in (2.17). It is interesting to note that R

(
θ, δJS

2(p−2)

) ≡ R(θ, δ0) ≡ p σ 2 and, more

generally, R(θ, δ2(p−2)−a) ≡ R
(
θ, δJS

a

)
.

Part (3) follows by noting that, for all θ , the risk of R
(
θ, δJS

a

)
is minimized by

choosing a = p − 2 since this value minimizes the quadratic a2 − 2 a (p − 2).
To prove part (4) note that ‖X‖2/σ 2 has a central chi-square distribution with p

degrees of freedom when θ = 0. Hence, E0
[
σ 2/‖X‖2

] = E
[
1/χ2

p

]
= (p − 2)−1

and therefore, provided p ≥ 3,

R(0, δJS
p−2) = p σ 2 + (

(p − 2)2 − 2 (p − 2)2) σ 2

p − 2

= p σ 2 − (p − 2) σ 2

= 2 σ 2 .

�
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Hence we have that δJS
p−2 = (

1−(p−2) σ 2/‖X‖2
)
X is the uniformly best estimator

in the class of James-Stein estimators. This is the estimator that is typically referred
to as the James-Stein estimator. Also note that at θ = 0 the risk is 2 σ 2 regardless of
p and so, large savings in risk are possible in a neighborhood of θ = 0 for large p.

In Theorem 2.2, the fact that p ≥ 3 is crucial (which is coherent with the
admissibility of X for p = 1 and p = 2). Actually, a crucial part of the proof
uses Stein’s identity, which fails to hold if p = 1, 2 with h(x) = x/‖x‖2. Indeed,
when p = 1, h(x) = 1/x and div(x) = −1/x2 so that E0[XTh(X)] = 1
and E0[divh(X)] = −∞. When p = 2, we also have E0[XTh(X)] = 1 while
E0[divh(X)] = 0 since, for any x �= 0, divh(x) = 0. It is interesting to note
that, while the divergence of h exists and is 0 almost everywhere, h is not weakly
differentiable since its partial derivatives are not locally integrable as shown in
Sect. A.1 in the Appendix.

We may use (2.15) to give upper and lower bounds for the risk of δJS
a based on

the following lemma.

Lemma 2.1 Let K ∼ Poisson(λ). Then, for b ≥ 1, we have

1

b + λ
≤ Eλ

[
1

b + K

]
≤

1−e−λ

λ

(b − 1) 1−e−λ

λ
+ 1

≤ 1

b − 1 + λ
.

Proof The first inequality follows directly from Jensen’s inequality and the fact that
Eλ(K) = λ. The second inequality follows since (also by Jensen’s inequality)

Eλ

[
1

b + K

]
= Eλ

[
1

K+1
b−1
K+1 + 1

]

≤
Eλ

[
1

K+1

]

(b − 1)Eλ

[
1

K+1

]
+ 1

=
1−e−λ

λ

(b − 1) 1−e−λ

λ
+ 1

and Eλ

[
(K + 1)−1

] = (1 − exp(−λ))/λ.
Now, since y/[(b − 1)y + 1] is increasing in y and (1 − exp(−λ))/λ < λ−1, we

have

1−e−λ

λ

(b − 1) 1−e−λ

λ
+ 1

≤
1
λ

b−1
λ

+ 1
= 1

b − 1 + λ
.

Hence the third inequality follows. �
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The following bounds on the risk of δJS
a follow directly from (2.14), (2.15) and

Lemma 2.1.

Corollary 2.2 (Hwang and Casella 1982) For p ≥ 4 and 0 ≤ a ≤ 2 (p − 2), we
have

p σ 2 + (a2 − 2 a (p − 2)) σ 2

p − 2 + ‖θ‖2/σ 2
≤ R(θ, δJS

a ) ≤ p σ 2 + (a2 − 2 a (p − 2)) σ 2

p − 4 + ‖θ‖2/σ 2
.

We note in passing that the upper bound may be improved at the cost of added
complexity by using the second inequality in Lemma 2.1. The improved upper
bound has the advantage that it is exact at θ = 0. The lower bound is also valid
for p = 3 and is also exact at θ = 0.

2.4.2 Positive-Part and Baranchik-Type Estimators

James-Stein estimators are such that, when ‖X‖2 < a σ 2, the multiplier of X

becomes negative and, furthermore, lim‖X‖→0 ‖δJS
a (X)‖ = ∞. It follows that, for

any K > 0, there exits η > 0 such that ‖X‖ < η implies ‖δJS
a (X)‖ > K . Hence

an observation that would lead to almost certain acceptance of H0 : θ = 0 gives
rise to an estimate very far from 0. Furthermore the estimator is not monotone in
the sense that a larger value of X for a particular coordinate may give a smaller
estimate of the mean of that coordinate. For example, if X = (X0, 0, . . . , 0) and
−√

a σ 2 < X0 < 0, then
(
1 − a σ 2/‖X‖2

)
X0 > 0 while, if 0 < X0 <

√
a σ 2, then(

1 − a σ 2/‖X‖2
)
X0 < 0.

This behavior is undesirable. One possible remedy is to modify the James-Stein
estimator to its positive-part, namely

δJS+
a (X) =

(
1 − a σ 2

‖X‖2

)

+
X (2.18)

where t+ = max(t, 0). The positive past estimate is a particular example of a
Baranchik-type estimator of the form

δB
a,r (X) =

(
1 − a σ 2 r(‖X‖2)

‖X‖2

)
X (2.19)

where, typically r(·) is continuous and nondecreasing. The r(·) function for δJS+
a is

given by

r(‖X‖2) =
{ ‖X‖2

a σ 2 if 0 < ‖X‖2 < a σ 2

1 if ‖X‖2 ≥ a σ 2.
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We show in this section that, under certain conditions, the Baranchik-type estimators
improve on X and that the positive-part James-Stein estimator improves on the
James-Stein estimator as well.

We first give conditions under which a Baranchik-type estimator improves on X.

Theorem 2.3 The estimator given by (2.19) with r(·) absolutely continuous, is
minimax for p ≥ 3 provided

(1) 0 < a ≤ 2 (p − 2);
(2) 0 ≤ r(·) ≤ 1; and
(3) r(·) is nondecreasing.

Furthermore, it dominates X provided that both inequalities are strict in (1) or in
(2) on a set of positive measure, or if r ′(·) is strictly positive on a set of positive
measure.

Proof Here δB
a,r (X) = X + σ 2 g(X) where g(X) = (−a r(‖X‖2)/‖X‖2) X. As

noted in Sect. A.2 of the Appendix, g(·) is weakly differentiable and

div g(X) = −a
{
r(‖X‖2) div

(
X

‖X‖2

)
+ XT

‖X‖2 ∇r(‖X‖2)
}

= −a
{
r(‖X‖2)

p−2
‖X‖2 + 2 r ′(‖X‖2)

}
.

Hence,

‖g(X)‖2 + 2 divg(X) (2.20)

= a2 r2(‖X‖2)

‖X‖2
− 2 a (p − 2)r(‖X‖2)

‖X‖2
− 4 a r ′(‖X‖2)

≤ r(‖X‖2)

‖X‖2
(a2 − 2 a (p − 2)) − 4 a r ′(‖X‖2)

≤ 0 .

The first inequality being satisfied by Conditions (2) while the last inequality uses
all of Conditions (1), (2), and (3). Hence, minimaxity follows from Corollary 2.1.
Under the additional conditions, it is easy to see that the above inequalities become
strict on a set of positive measure so that domination over X is guaranteed. �

As an example of a dominating Baranchik-type estimator consider

δ(X) =
(

1 − a σ 2

b + ‖X‖2

)
X

for 0 < a ≤ 2 (p − 2) and b > 0. Here r(‖X‖2) = ‖X‖2/(‖X‖2 + b) and is strictly
increasing.
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The theorem also shows that the positive-part James-Stein estimator dominates
X for 0 < a ≤ 2 (p − 2). In fact, as previously noted, the positive-part James-Stein
estimator even improves on the James-Stein estimator itself. This reflects the more
general phenomenon that a positive-part estimator will typically dominate the non-
positive-part version if the underlying density is symmetric and unimodal. Here is a
general result along these lines.

Theorem 2.4 Suppose X has a density f (x − θ) in R
p such that the function f is

symmetric and unimodal in each coordinate separately for each fixed value of the
other coordinates. Then, for any finite risk estimator of θ of the form

δ(X) =
(

1 − B
(
X2

1, X
2
2, . . . , X

2
p

))
X ,

the positive-part estimator

δ+(X) =
(

1 − B
(
X2

1, X
2
2, . . . , X

2
p

))

+ X

dominates δ(X) under any loss of the form L(θ, δ) = ∑p

i=1 ai(δi − θi)
2 (ai > 0 for

all i) provided Pθ [B(X2
1, X

R
2 , . . . , X2

p) > 1] > 0.

Proof Note that the two estimators differ only on the set where B(·) > 1. Hence the
ith term in R(θ, δ) − R(θ, δ+) is

ai Eθ

[{
(1 − B(X2

1, . . . , X
2
p))2 X2

i − 2 θiXi (1 − B(X2
1, . . . , X

2
p)

}
IB>1(X)

]

> −2 θi ai Eθ

[
Xi(1 − B(X2

1, . . . , X
2
p)IB>1(X)

]
.

Therefore it suffices to show that, for any nonnegative function H(X2
1, . . . , X

2
p),

θiEθ [XiH(X2
1, . . . , X

2
p)] ≥ 0. This follows by symmetry if whenever θi ≥ 0, then

Eθ [Xi | X2
i = t2

i , Xj = tj j �= i] ≥ 0 for all i (1 ≤ i ≤ p) and all (t1, . . . , tp).
However this expression is proportional to

| ti | [
f

(
(t1 − θ1)

2, (t2 − θ2)
2, . . . , (| ti | −θi)

2, . . . , (tp − θp)2
)

−f
(
(t1 − θ1)

2, (t2 − θ2)
2, . . . , (− | ti | −θi)

2, . . . , (tp − θp)2
)] ≥ 0

since, for θi ≥ 0, (| ti | −θi)
2 ≤ (− | ti | −θi)

2 and since f (X2
1, X

2
2, . . . , X

2
p) is

nonincreasing in each argument. Hence the theorem follows. �
For the remainder of this current section we return to the assumption that X ∼

Np(θ, σ 2Ip).
The positive-part James-Stein estimators are inadmissible because of a lack of

smoothness which precludes them from being generalized Bayes. The Baranchik
class however contains “smooth” estimators which are generalized (and even
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proper) Bayes and admissible. Baranchik-type estimators will play an important
role in Chap. 3.

We close this subsection with a generalization of the Baranchik result in
Theorem 2.3. It is apparent from the proof of the theorem that it is only necessary
that the second expression in (2.20) be nonpositive (and negative on a set of
positive measure) in order for δ(X) to dominate X. In particular it is not necessary
that r(·) be nondecreasing. The following result (see Efron and Morris 1976
and Fourdrinier and Ouassou 2000) gives a necessary and sufficient condition
for the unbiased estimator of risk difference, R(θ, δ) − R(θ,X), for δ(X) =(
1 − a r(‖X‖2)/‖X‖2

)
X, to be nonpositive. The proof is by direct calculation.

Lemma 2.2 Let g(X) = −a
(
r(‖X‖2)/‖X‖2

)
X where r(y) is an absolutely

continuous function from R
+ into R. Then on the set where r(y) �= 0,

‖g(x)‖2 + 2 divg(x) = a

{
a r2(y)

y
− 2(p − 2)r(y)

y
− 4 r ′(y)

}

= −4 a2r2(y)y
p−2

2
d

dy

[
y− p−2

2

(
1

2(p − 2)
− 1

a r(y)

)]
a.e.,

where y = ‖x‖2.

The following corollary broadens the class of minimax estimators of Baranchik’s
form.

Corollary 2.3 Suppose δ(X) = (
1 − a r(‖X‖2)/‖X‖2

)
X with

a r(y) =
[

1

2 (p − 2)
+ y(p−2)/2 H(y)

]−1

where H(y) is absolutely continuous, nonnegative and nonincreasing. Then δ(X)

is minimax provided Eθ

[
r2(‖X‖2)/‖X‖2

]
< ∞. If in addition H(y) is strictly

monotone on a set of positive measure where r(y) �= 0, then δ(X) dominates X.

Proof The result follows from Corollaries 2.1 and 2.2 by noting that

H(y) = y−(p−2)/2
(

1

2(p − 2)
− 1

a r(y)

)
.

�
An application of Corollary 2.3 gives a useful class of dominating estimators due

to Alam (1973).

Corollary 2.4 Let δ(X) = (
1 − a f (‖X‖2)/(‖X‖2)τ+1

)
X where f (y) is nonde-

creasing and absolutely continuous and where 0 ≤ a f (y)/yτ < 2 (p − 2 − 2 τ)

for some τ ≥ 0. Then δ(X) is minimax and dominates X if 0 < a f (y)/yτ on a set
of positive measure.
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Proof The proof follows from Corollary 2.3 by letting

a r(y) = a f (y)

yτ
and H(y) = −y−(p−2)/2

(
1

2 (p − 2)
− yτ

a f (y)

)
.

Clearly r is bounded so that Eθ

[
r2(‖X‖2)/‖X‖2

]
< ∞ and H(y) ≥ 0. Also

H ′(y) = p − 2

2
y−p/2

(
1

2 (p − 2)
− yτ

a f (y)

)

−y−(p−2)/2
(−τ yτ−1

a f (y)
+ yτf τ (y)

a f 2(y)

)

≤ y− p
2

[
1

4
− y2 p − 2 − 2 τ

2 a f (y)

]

≤ 0

since f ′(y) ≥ 0 and 0 < a f (y)/yτ < 2 (p − 2 − 2 τ). �
A simple example of a minimax Baranchik-type estimator with a nonmonotone

r(·) is given by r(y) = y1−τ /(1+y) for 0 < τ < 1 and 0 < a < 2(p−2−2 τ). To
see this, apply Corollary 2.4 with f (y) = y/(1+y) and note that f (y) is increasing
and 0 ≤ f (y)/yτ = r(y) ≤ 1. Note also that r ′(y) = y−τ [(1 − τ)− τ y]/(1 + y)2,
hence r(y) is increasing for 0 < y < (1 − τ)/τ−1 and decreasing for y > (1 −
τ)/τ−1.

We will use the above corollaries in Chap. 3 to establish minimaxity of certain
Bayes and generalized Bayes estimators.

2.4.3 Unknown Variance

In the development above, it was tacitly assumed that the covariance matrix was
known and equal to a multiple of the identity matrix σ 2 Ip. Typically, this covariance
is unknown and should be estimated. The next result extends Stein’s identity (2.7)
to the case where it is of the form σ 2 Ip with σ 2 unknown.

Lemma 2.3 Let X ∼ Np(θ, σ 2Ip) and let S be a nonnegative random variable
independent of X such that S ∼ σ 2χ2

k . Denoting by Eθ,σ 2 the expectation with
respect to the joint distribution of (X, S), we have the following two results, provided
the corresponding expectations exist:

(1) if g(x, s) is a function from R
p ×R+ into R

p such that, for any s ∈ R+, g(·, s)
is weakly differentiable, then

Eθ,σ 2

[
1

σ 2
(X − θ)Tg(X, S)

]
= Eθ,σ 2 [divXg(X, S)]

where divxg(x, s) is the divergence of g(x, s) with respect to x;
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(2) if h(x, s) is a function from R
p × R+ into R such that, for any x ∈ R

p,
h(x, ‖u‖2) is weakly differentiable as a function of u, then

Eθ,σ 2

[
1

σ 2 h(X, S)

]
= Eθ,σ 2

[
2

∂

∂S
h(X, S) + (k − 2) S−1 h(X, S)

]
.

Proof Part (1) is Stein’s lemma, from Theorem 2.1. Part (2) can be seen as a
particular case of Lemma 1(ii) (established for elliptically symmetric distributions)
of Fourdrinier et al. (2003), although we will present a direct proof. Part (2) also
follows from well known identities for chi-square distributions.

The joint distribution of (X, S) can be viewed as resulting, in the setting of
the canonical form of the general linear model, from the distribution of (X,U) ∼
N ((θ, 0), σ 2Ip+k) with S = ||U ||2. Then we can write

Eθ,σ 2

[
1

σ 2 h(X, S)

]
= Eθ,σ 2

[
1

σ 2 U T U

||U ||2 h(X, ||U ||2)
]

= Eθ,σ 2

[
divU

(
U

||U ||2 h(X, ||U ||2)
)]

according to Part (1). Hence, expanding the divergence term, we have

Eθ,σ 2

[
1

σ 2
h(X, S)

]
= Eθ,σ 2

[
k − 2

||U ||2 h(X, ||U ||2) + U T

||U ||2 ∂Uh(X, ||U ||2)
]

= Eθ,σ 2

[
k − 2

S
h(X, S) + 2

∂

∂S
h(X, S)

]

since

∂Uh(X, ||U ||2) = 2
∂

∂S
h(X, S)

∣
∣∣
S=||U ||2 U .

�
The following theorem provides an estimate of risk in the setting of an unknown

variance when the loss is given by

‖δ − θ‖2

σ 2
. (2.21)

Theorem 2.5 Let X ∼ Np(θ, σ 2 Ip) where θ and σ 2 are unknown and p ≥ 3
and let S be a nonnegative random variable independent of X such that S ∼
σ 2χ2

k . Consider an estimator of θ of the form ϕ(X, S) = X + S g(X, S) with
Eθ,σ 2 [S2 ||g(X, S)||2] < ∞, where Eθ,σ 2 denotes the expectation with respect to
the joint distribution of (X, S).
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Then an unbiased estimator of the risk under loss (2.21) is

δ0(X, S) = p + S

{
(k + 2) ||g(X, S)||2 + 2 divXg(X, S) + 2 S

∂

∂S
||g(X, S)||2

}
.

(2.22)

Proof According to the expression of ϕ(X, S), its risk R(θ, ϕ) is the expectation of

1

σ 2
||X − θ ||2 + 2

S

σ 2
(X − θ)Tg(X, S) + S2

σ 2
||g(X, S)||2 . (2.23)

Clearly,

Eθ,σ 2

[
1

σ 2 ||X − θ ||2
]

= p

and Lemma 2.3 (1) and (2) express, respectively, that

Eθ,σ 2

[
1

σ 2
(X − θ)Tg(X, S)

]
= Eθ,σ 2 [divXg(X, S)].

With h(x, s) = s2 ||g(x, s)||2 we have

Eθ,σ 2

[
S2

σ 2 ||g(X, S)||2
]

= Eθ,σ 2

[
S

{
(k + 2) ||g(X, S)||2 +2 S

∂

∂S
||g(X, S)||2

}]
.

Therefore R(θ, ϕ) = Eθ,σ 2 [δ0(X, S)] with δ0(X, S) given in (2.22), which means
that δ0(X, S) is an unbiased estimator of the risk ||ϕ(X, S) − θ ||2/σ 2. �
Corollary 2.5 Under condition of Theorem 2.5, if, for any (x, s) ∈ R

p × R+,

(i) ∂/∂s ‖g(x, s)‖2 ≤ 0 and
(ii) (k + 2) ||g(x, s)||2 + 2 divxg(x, s) + 2 ≤ 0,

then ϕ(X, S) is minimax. It dominates X if either inequality is strict on a set of
positive measure.

In the following corollary, we consider an extension of the Baranchik form in
Theorem 2.3.

Corollary 2.6 Let

δ(X, S) =
(

1 − a S r(‖X‖2/S)

‖X‖2

)
X

If r is nondecreasing and if 0 < a r(‖X‖2/S) < 2 (p − 2)/(k + 2), then δ(X, S)

dominates X and is minimax.
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Proof Straightforward calculations show that the term in curly brackets in (2.22)
equals

a
r(‖X‖2/S)

‖X‖2 ((k + 2) a r(‖X‖2/S) − 2 (p − 2))

−4 a
r ′(‖X‖2/S)

S
(1 + a r(‖X‖2/S)). (2.24)

Therefore, if 0 < a r(‖X‖2/S) < 2 (p − 2)/(k + 2), then δ(X, S) dominates X and
is minimax. �

Note that, in the case r ≡ 1, the bound on the constant a is 2 (p − 2)/(k + 2).
This is the estimator developed by James and Stein (1961) using direct methods.

2.4.4 Estimators That Shrink Toward a Subspace

We saw in Sect. 2.4.1, when σ 2 is known, that the James-Stein estimator shrinks
toward θ = 0 and that substantial risk savings are possible if θ is in a neighborhood
of 0. If we feel that θ is close to some other value, say θ0, a simple adaptation of the
James-Stein estimator that shrinks toward θ0 may be desirable. Such an estimator is
given by

δJS
a,θ0

(X) = θ0 +
(

1 − a σ 2

‖X − θ0‖2

)
(X − θ0). (2.25)

It is immediate that R(θ, δJS
a,θ0

(X)) = R(θ − θ0, δ
JS
a ) since

R(θ, δJS
a,θ0

) = Eθ‖θ0 +
(

1 + a σ 2

‖X − θ0‖2

)
(X − θ0) − θ‖2

= Eθ−θ0‖
(

1 + a σ 2

‖X‖2

)
X − (θ − θ0)‖2

= R(θ − θ0, δ
JS
a (X)).

Hence, for p ≥ 3, δJS
a,θ0

dominates X and is minimax for 0 < a < 2 (p − 2),

and a = p − 2 is the optimal choice of a. Furthermore the risk of δJS
a,θ0

(X) at

θ = θ0 is 2 σ 2 and so large gains in risk are possible in a neighborhood of θ0. The
same argument establishes the fact that, for any estimator, δ(X), we have R(θ, θ0 +
δ(X − θ0)) = R(θ − θ0, δ(X)). Hence any of the minimax estimators of Sects. 2.4.1
and 2.4.2 may be modified in this way and minimaxity will be preserved.
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More generally, we may feel that θ is close to some subspace V of dimension
s < p. In this case, we may wish to shrink X toward the subspace V . One way to
do this is to consider the class of estimators given by

PV X +
(

1 − a σ 2r(‖X − PV X‖2)

‖X − PV X‖2

)
(X − PV X) (2.26)

where PV X is the projection of X onto V .
A standard canonical representation is helpful. Suppose V is an s-dimensional

linear subspace of Rp and V ⊥ is the p − s dimensional orthogonal complement of
V . Let P = (P1 P2) be an orthogonal matrix such that the s columns of the p × s

matrix P1 span V and the p − s columns of the p × (p − s) matrix P2 span V ⊥.
For any vector z ∈ R

p, let

W =
(

W1

W2

)
= P Tz

where W1 is s × 1 and W2 is (p − s) × 1. Then PV z = P1W1 and ‖PV z‖2 =
‖P1W1‖2 = ‖W1‖2. Also PV ⊥z = P2W2 and ‖PV ⊥z‖2 = ‖P2W2‖2 = ‖W2‖2.
Further, if X ∼ Np(θ, σ 2I ), then

P TX =
(

Y1

Y2

)
∼ Np

((
ν1

ν2

)
, σ 2

(
Is 0
0 Ip−s

))

where P1ν1 = PV θ and P2ν2 = PV ⊥θ so that

‖PV X‖2 = ‖Y1‖2, ‖PV ⊥X‖2 = ‖Y2‖2

and

‖PV (X − θ)‖2 = ‖Y1 − ν1‖2, ‖PV ⊥(X − θ)‖2 = ‖Y2 − ν2‖2.

The following result gives risk properties of the estimator (2.26).

Theorem 2.6 Let V be a subspace of dimension s ≥ 0. Then, for the estimator
(2.26), we have

R(θ, δ) = s σ 2 + Eν2

[∥∥∥∥

(
1 − a σ 2r(‖Y2‖2)

‖Y2‖2

)
Y2 − ν2

∥∥∥∥

2]

where Y2 and ν2 are as above. Further, if p − s ≥ 3 and a and r(y) satisfy the
assumptions of Theorem 2.3 (or Corollary 2.3 or Corollary 2.4) with p−s in place of
p, then δ(X) is minimax and dominates X if the additional conditions are satisfied.
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Proof The proof involves showing that the risk decomposes into the sum of two
components. The first component is essentially the risk of the usual estimator in a
space of dimension s (i.e. of V ) and the second represents the risk of a Baranchik-
type estimator in a space of dimension p − s. The risk is

R(θ, δ) = Eθ

[∣∣
∣
∣∣
∣PV X +

(
1− a σ 2r(‖X−PV X‖2)

‖X−PV X‖2

)
(X−PV X) − θ

∣∣
∣
∣∣
∣
2
]

= Eθ

[∣∣∣
∣∣∣(PV X−PV θ) +

(
1− a σ 2r(‖X−PV X‖2)

‖X−PV X‖2

)
(X−PV X)−(θ−PV θ)

∣∣∣
∣∣∣
2
]

= Eθ [‖PV (X − θ)‖2]

+Eθ

[∣∣∣
∣∣∣
(
1 − a σ 2r(‖X−PV X‖2)

‖X−PV X‖2

)
(X − PV X) − (θ − PV θ)

∣∣∣
∣∣∣
2
]

= Eν1 [‖Y1 − ν1‖2] + Eν2

[∥∥∥
(

1 − a σ 2r(‖Y2‖2)

‖Y2‖2

)
Y2 − ν2

∥∥∥
2
]

= s σ 2 + Eν2 [‖
(

1 − a σ 2r(‖Y2‖2)

‖Y2‖2

)
Y2 − ν2‖2] .

This gives the first part of the theorem. The second part follows since Y2 ∼
Np−s(ν2, σ

2 Ip−s), with p − s ≥ 3. �
For example, if we choose r(y) ≡ 1 the risk of the resulting James-Stein type

estimator

PV X +
(

1 − a σ 2

‖X − PV X‖2

)
(X − PV X)

is

p σ 2 + σ 4 (a2 − 2 a (p − s − 2)) Eθ

[
1

‖X − PV X‖2

]
.

This estimator is minimax if 0 ≤ a ≤ 2 (p − s − 2) and dominates X if
0 < a < 2 (p − s − 2) provided p − s ≥ 3. The uniformly best choice of a

is p − s − 2. If in fact θ ∈ V , the risk of the corresponding optimal estimator
is (s + 2) σ 2, since in this case ν2 = PV ⊥θ = 0 and Eθ

[
σ 2‖X − PV X‖−2

] =
E0

[
σ 2‖Y2‖−2

]
E

[
1/χ2

p−s

]
= (p − s − 2)−1. If θ �∈V , then ν2 �= 0 and ‖Y2‖2 has a

non-central chi-square distribution with p−s degrees of freedom and non-centrality
parameter ‖ν2‖2/2 σ 2.

One of the first instances of an estimator shrinking toward a subspace is due to
Lindley (1962). He suggested that while we might not have a good idea as to the
value of the vector θ , one may feel that the components are approximately equal.
This suggests shrinking all the coordinates to the overall coordinate mean X̄ =
p−1 ∑p

i=1 Xi which amounts to shrinking toward the subspace V of dimension one
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generated by the vector 1 = (1, . . . , 1)T. The resulting optimal James-Stein type
estimator is

δ(X) = X̄ 1 +
(

1 − (p − 3) σ 2

‖X − X̄1‖2

)
(X − X̄ 1).

Here, the risk is equal to 3 σ 2 if in fact all coordinates of θ are equal. If the dimension
of the subspace V is also at least 3 we could consider applying a shrinkage estimator
to PV X as well.

In the case where σ 2 is unknown, it follows from the results of Sect. 2.4.3 that
replacing σ 2 in (2.26) by S/(k + 2) results in an estimator that dominates X under
squared error loss and is minimax under scaled squared error loss (provided r(·)
satisfies the conditions of Theorem 2.6).

It may sometimes pay to break up the whole space into a direct sum of several
subspaces and apply shrinkage estimators separately to the different subspaces.

Occasionally it is helpful to shrink toward another estimator. For example, Green
and Strawderman (1991) combined two estimators, one of which is unbiased,
remarkably by shrinking the unbiased estimator toward the biased estimator to
obtain a Stein-type improvement over the unbiased estimator.

The estimators discussed in this section shrink toward some “vague” prior
information that θ is in or near the specified set. Consequently it shrinks toward
the set but does not restrict the estimator to lie in the set. In Chap. 7 we will consider
estimators that are restricted to lie in a particular set. We will see in Chap. 7 that,
although vague and restricted constraints seem conceptually similar, it turns out that
the analyses of risk functions in these two settings are quite distinct.

2.5 A Link Between Stein’s Lemma and Stokes’ Theorem

That a relationship exists between Stein’s lemma and Stokes’ theorem (the diver-
gence theorem) is not surprising. Indeed, Stein’s lemma expresses that, if X has a
normal distribution with mean θ and covariance matrix proportional to the identity
matrix, the expectation of the inner product of X − θ and a suitable function g is
proportional to the expectation of the divergence of g. On the other hand, when
the sets of integration are spheres Sr,θ and balls Br,θ of radius r ≥ 0 centered at θ ,
Stokes’ theorem states that the integral of the inner product of g and the unit outward
vector at x ∈ Sr,θ , which is (x − θ)/‖x − θ‖, with respect to the uniform measure
equals the integral of the divergence of g on Br,θ with respect to the Lebesgue
measure.

Typically, Stokes’ theorem is considered for a more general open set Ω in R
p

with boundary ∂Ω which could be less smooth than a sphere, and where the function
g is often smooth. For example, Stroock (1990) considers a bounded open set Ω in
R

p for which there exists a function ϕ from R
p into R having continuous third

order partial derivatives with the properties that Ω = {x ∈ R
p | ϕ(x) < 0} and the
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gradient ∂ϕ of ϕ vanishes at no point where ϕ itself vanishes. Further he requires
that g has continuous first order partial derivatives in a neighborhood of the closure
Ω̄ of Ω . For such an open set, its boundary is ∂Ω = {x ∈ R

p | ϕ(x) = 0}. Then,
Stroock states that

∫

∂Ω

nT(x) g(x)dσ(x) =
∫

Ω

divg(x) dx (2.27)

where n(x) is the outer normal (the unit outward vector) to ∂Ω at x ∈ ∂Ω and σ

is the surface measure (the uniform measure) on ∂Ω . He provides an elegant proof
of Stokes’ theorem in (2.27) through a rigorous construction of the outer normal
and the surface measure. It is beyond the scope of this book to reproduce Stroock’s
proof, especially as the link we wish to make with Stein’s identity only needs to deal
with Ω being a ball and with ∂Ω being a sphere. Note that Stroock’s conditions are
satisfied for a ball of radius r ≥ 0 centered at θ ∈ R

p with the function ϕ(x) =
‖x − θ‖ − r . In that context, Stokes’ theorem expresses that

∫

Sr,θ

(
x − θ

‖x − θ‖
)T

g(x) dσr,θ (x) =
∫

Br,θ

divg(x) dx (2.28)

where σr,θ is the uniform measure on Sr,θ .
In the following, we will show that Stein’s identity for continuously differentiable

functions can be derived in a straightforward way from this ball-sphere version of
Stokes’ theorem. Furthermore, and perhaps more interestingly, we will see that the
converse is also true: Stein’s identity (for which we have an independent proof in
Sect. 2.3) implies directly the classical ball-sphere version of Stokes’ theorem.

Proposition 2.2 Let X ∼ Np(θ, σ 2Ip) and let g be a continuously differentiable
function from R

p into R
p such that either

Eθ [|(X − θ)Tg(X)|] < ∞ or Eθ [|divg(X)|] < ∞ . (2.29)

Then Stein’s identity in (2.7) holds, that is,

Eθ [(X − θ)Tg(X)] = σ 2 Eθ [divg(X)] . (2.30)

Proof Integrating through uniform measures on spheres (see Lemma 1.4), we have

Eθ,σ 2 [(X − θ)Tg(X)] =
∫

Rp

(x − θ)Tg(x)
1

(2 π σ 2)p/2 exp

(
−‖x − θ‖2

2 σ 2

)
dx

=
∫ ∞

0

∫

Sr,θ

(
x − θ

‖x − θ‖
)T

g(x) dσr,θ (x) ψσ 2(r) dr (2.31)
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where

ψσ 2(r) = 1

(2 π σ 2)p/2
r exp

(
− r2

2 σ 2

)
(2.32)

and σr,θ is the uniform measure on Sr,θ . Then applying Stokes’ theorem in (2.28) to
the inner most integral in (2.31) gives

Eθ,σ 2 [(X − θ)Tg(X)] =
∫ ∞

0

∫

Br,θ

divg(x) dx ψσ 2(r) dr . (2.33)

Now, applying Fubini’s theorem to the right-hand side of (2.33), we have

∫ ∞

0

∫

Br,θ

divg(x)dx ψσ 2 (r) dr =
∫

Rp

divg(x)

∫ ∞

‖x−θ‖
ψσ 2 (r) dr dx

=
∫

Rp

divg(x)
1

(2 π σ 2)p/2

[
−σ 2 exp

(
− r2

2 σ 2

)]∞

‖x−θ‖
dx

= σ 2
∫

Rp

divg(x)
1

(2 π σ 2)p/2 exp

(
−‖x − θ‖2

2 σ 2

)
dx

= σ 2 Eθ,σ 2 [divg(X)] (2.34)

since, according to (2.32),

∂

∂r

{
1

(2 π σ 2)p/2

[
−σ 2 exp

(
− r2

2 σ 2

)]}
= ψσ 2(r) .

Therefore combining (2.33) and (2.34) we have that

Eθ,σ 2 [(X − θ)Tg(X)] = σ 2 Eθ,σ 2 [divg(X)] ,

which is Stein’s identity in (2.39).
To show Stein’s identity in (2.7) assuming Eθ [|divg(X)|] < ∞, it suffices to

essentially reverse the steps in the above development. �
Note that using Stokes’ theorem in the proof of Proposition 2.2 allows the weaker

condition (2.29) instead of Condition (2.8) used in Theorem 2.1.
Kavian (1993) showed that (2.27) and (2.28) continue to hold for weakly

differentiable functions g, provided that g behaves properly in a neighborhood of
the boundary. See also Lepelletier (2004). However, Stokes’ theorem may fail if
g is not sufficiently smooth in a neighborhood of the boundary. For example, it
is clear that a weakly differentiable function may be redefined on the boundary
of the ball Br,θ without affecting either its weak differentiability or the integral
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of the right-hand side of (2.28). But, by properly defining g on Sr,θ , the integral
over Sr,θ on the left-hand side of (2.28) may take on any value. For this reason,
we develop the following version of Stokes’ theorem (for balls and spheres) which
will hold simultaneously for almost all r as long as the function g is weakly
differentiable. It will be extensively used in extending Stein’s lemma to general
spherically symmetric distributions in Chaps. 5 and 6. Interestingly, the proof is
based on Stein’s lemma and completeness of a certain exponential family. We
provide an extension to general smooth open sets in Sect. A.5 of the Appendix.

Theorem 2.7 (Fourdrinier and Strawderman 2016) Let g be a weakly differen-
tiable function from R

p into R
p. Then (2.28) holds for almost every r .

Proof Since g is weakly differentiable, the functions (X−θ)Tg and divg are locally
integrable. The same is true for the functions gn = g hn where, for n ∈ N, hn is a
smooth cutoff function such that hn(x) = 1 if ‖x‖ < n, hn(x) = 0 if ‖x‖ > n + 1,
hn ∈ C∞, and hn(x) ≤ 1 for all x. Thus gn is weakly differentiable and we have
Eθ [|(X − θ)Tgn(X)|] < ∞ or Eθ [|divgn(X)|] < ∞. Hence, Stein’s lemma applies
to gn, so that (2.39) holds for gn, that is,

Eθ [(X − θ)Tgn(X)] = σ 2 Eθ [divgn(X)] . (2.35)

Then, as in (2.31), with ψσ 2 given in (2.32),

Eθ,σ 2 [(X − θ)Tgn(X)] =
∫ ∞

0

∫

Sr,θ

(
x − θ

‖x − θ‖
)T

gn(x) dσr,θ (x) ψσ 2(r) dr (2.36)

and, as in (2.33), we also have

σ 2 Eθ,σ 2 [divgn(X)] =
∫ ∞

0

∫

Br,θ

divgn(x) dx ψσ 2(r) dr . (2.37)

Hence, it follows from (2.35), (2.36), and (2.37) that, for all σ 2,

∫ ∞
0

∫

Sr,θ

(
x − θ

‖x − θ‖
)T

gn(x) dσr,θ (x)ψσ 2(r) dr =
∫ ∞

0

∫

Br,θ

divgn(x) dx ψσ 2 (r) dr .

Therefore, since the family {ψσ 2(r)}σ 2>0 defined in (2.32) is proportional to a
family of densities that is complete as an exponential family, we have

∫

Sr,θ

(
x − θ

‖x − θ‖
)T

gn(x) dσr,θ (x) =
∫

Br,θ

divgn(x) dx , (2.38)

for almost every 0 < r < n. Now, since gn(x) = g(x) for ‖x‖ < n, it follows
that (2.38) holds for g for almost every r > 0. �
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As a first corollary, it follows that the classical (ball-sphere) version of Stokes’
theorem holds for every r when g is continuously differentiable.

Corollary 2.7 Let g be a continuously differentiable function from R
p into R

p.
Then (2.28) holds for every r > 0.

Proof Because g is continuously differentiable, both sides of (2.38) are continuous.
Then, since the equality holds almost everywhere, it must hold for all r > 0. �

Note that the proof of Proposition 2.2 remains valid when (2.28) holds for
almost every r > 0. Hence the following corollary follows from Theorem 2.7 and
Proposition 2.2.

Corollary 2.8 (Stein’s lemma) Let X ∼ Np(θ, σ 2Ip) and let g be a weakly
differentiable function from R

p into R
p such that either Eθ [|(X − θ)Tg(X)|] < ∞

or Eθ [|divg(X)|] < ∞. Then Stein’s identity in (2.7) holds, that is,

Eθ [(X − θ)Tg(X)] = σ 2 Eθ [divg(X)] . (2.39)

Note that, as in Proposition 2.2, Corollary 2.8 uses the weaker condition (2.29)
instead of Condition (2.8) which was used in Theorem 2.1.

We have seen for balls and spheres that Stokes’ theorem can be directly
derived from Stein’s identity, for weakly differentiable functions. This result will
be particularly important for proving Stein type identities for spherically symmetric
distributions in Chaps. 5 and 6. Note that we have in fact obtained a stronger result. It
is actually shown that, any time Stein’s identity is valid, then the version of Stokes’
theorem given in Theorem 2.7 holds as well. This result is particularly interesting
when the weak differentiability assumption is not met. For example, Fourdrinier
et al. (2006) noticed that this may be the case when dealing with a location parameter
restricted to a cone; Stein’s identity (2.7) holds but the weak differentiability of the
functions at hand is not guaranteed (see also Sect. 7.3).

2.6 Differential Operators and Dimension Cut-Off When
Estimating a Mean

In the previous sections, when estimating the mean θ in the normal case, the
MLE X is admissible when p ≤ 2, but inadmissible when p ≥ 3. Although
specific to the normal case, this result can be extended to other distributional
settings (such as exponential families) so that this dimension cut-off should reflect a
more fundamental mathematical phenomenon. Below, we give an insight into such
phenomena in terms of nonlinear partial differential operators.

Indeed, when estimating θ under quadratic loss, improvements on X through
unbiased estimation techniques often involve a nonlinear partial differential operator
of the form
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Rg(x) = k divg(x) + ‖g(x)‖2 (2.40)

for a certain constant k. A sufficient condition for improvement is typically

Rg(x) ≤ 0 (2.41)

for all x ∈ R
p (with strict inequality on a set of positive Lebesgue measure). We

will see that (2.41) does not have a nontrivial solution g (i.e. g is not equal to 0
almost everywhere) when the dimension p ≤ 2, even if we look for solutions with
smoothness conditions as weak as possible. Consequently, a necessary dimension
condition for (2.41) to have solutions g �≡ 0 is p ≥ 3.

Here is a precise statement of this fact.

Theorem 2.8 Let k ∈ R be fixed. When p ≤ 2, the only weakly differentiable
solution g with ‖g‖2 ∈ L1

loc(R
p) of

Rg(x) = k divg(x) + ‖g(x)‖2 ≤ 0 , (2.42)

for any x ∈ R
p, is g = 0 (a.e.).

Note that, in Theorem 2.8, the search for solutions of (2.42) is addressed in
the general setting of weakly differentiable functions. The proof will follow the
development in Blanchard and Fourdrinier (1999). However, in that paper, the g’s
are sought in the much larger space of distributions D ′(Rp) introduced by Schwartz
(see Schwartz 1973 for a full account). Note also that the condition ‖g‖2 ∈ L1

loc(R
p)

is not restrictive. Any estimator of the form X + g(X) with finite risk must satisfy
Eθ [‖g(X)‖2] < ∞ and hence ‖g‖2 must be in L1

loc(R
p).

The proof of Theorem 2.8 is based on the use of the following sequence of so-
called test functions. Let ϕ be a nonnegative infinitely differentiable function on R+
bounded by 1, identically equal to 1 on [0, 1], and with support on the interval [0, 2]
(supp(ϕ) = [0, 2] ), which implies that its derivative is bounded. Associate to ϕ the
sequence {ϕn}n≥1 of infinitely differentiable functions from R

p into [0, 1] defined
through

∀n ≥ 1 ∀x ∈ R
p ϕn(x) = ϕ

(||x||
n

)
. (2.43)

Clearly, for any n ≥ 1, the function ϕn has compact support B2n, the closed ball of
radius 2n and centered at zero in R

p. Also, an interesting property that follows from
the uniform boundedness of ϕ′, is that, for any β ≥ 1 and for any j = 1, . . . , p,
there exists a constant K > 0 such that

∣∣∣∣∣
∂ϕ

β
n

∂xj

(x)

∣∣∣∣∣
≤ K

n
ϕβ−1

n (x) . (2.44)
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Note that, as all the derivatives of ϕ vanish outside of the compact interval [1, 2] and
ϕ is bounded by 1, (2.44) implies

∣
∣∣∣∣
∂ϕ

β
n

∂xj

(x)

∣
∣∣∣∣
≤ K

n
11Cn(x) . (2.45)

where 11Cn is the indicator function of the annulus Cn = {x ∈ R
p | n ≤ ||x|| ≤ 2n}.

Proof of Theorem 2.8 Let g be a weakly differentiable function g, with ‖g‖2 ∈
L1

loc(R
p), satisfying (2.42). Then, using the defining property (2.6) of weak

differentiability (see also Sect. A.1), we have, for any n ∈ N
∗ and any β > 1,

∫

Rp

‖g(x)‖2 ϕβ
n (x) dx ≤ −k

∫

Rp

divg(x) ϕβ
n (x) dx

= −k

p∑

i=1

∫

Rp

∂

∂xi

gi(x) ϕβ
n (x) dx

= k

p∑

i=1

∫

Rp

gi(x)
∂

∂xi

ϕβ
n (x) dx

= k

∫

Rp

gT(x) ∂ϕβ
n (x) dx

≤ k

∫

Rp

‖g(x)‖ ‖∂ϕβ
n (x)‖ dx . (2.46)

Then, using (2.44), it follows from (2.46) that there exists a constant C > 0 such
that
∫

Rp

‖g(x)‖2 ϕβ
n (x) dx ≤ C

n

∫

Rp

‖g(x)‖ϕβ−1
n (x) dx

≤ C

n

(∫

Rp

ϕβ−2
n (x) dx

)1/2 (∫

Rp

‖g(x)‖2 ϕβ
n (x) dx

)1/2

,

(2.47)

when applying Schwarz’s inequality with β > 2 and using

‖g(x)‖ϕβ−1
n (x) = ϕ

β/2−1
n (x) ‖g(x)‖ϕ

β/2
n (x) .

Clearly (2.47) is equivalent to

∫

Rp

‖g(x)‖2 ϕβ
n (x) dx ≤ C2

n2

∫

Rp

ϕβ−2
n (x) dx . (2.48)



60 2 Normal Mean Vector I

Thus, since ϕn = 1 on Bn and ϕn ≥ 0,

∫

Bn

‖g(x)‖2 dx =
∫

Bn

‖g(x)‖2 ϕβ
n (x) dx ≤

∫

Rp

‖g(x)‖2 ϕβ
n (x) dx . (2.49)

Then, since supp (ϕn) = B2n and 0 ≤ ϕn ≤ 1, using (2.48) gives

∫

Bn

‖g(x)‖2 dx ≤ C2

n2

∫

Rp

ϕβ−2
n (x) dx ≤ C2

n2

∫

B2n

dx = Anp−2 (2.50)

for some constant A > 0. Letting n go to infinity in (2.50) shows that, when p < 2,
g = 0 almost everywhere, which proves the theorem in that case. It also implies that
‖g‖2 ∈ L1(Rp) when p = 2.

In the case p = 2, the result will follow by applying (2.45). Indeed, it follows
from (2.45), (2.49) and the first inequality in (2.47) that, for some constant C > 0,

∫

Bn

‖g(x)‖2 dx ≤ C

n

∫

Cn

‖g(x)‖ dx

≤ C

n

(∫

Cn

dx

)1/2 (∫

Cn

‖g(x)‖2 dx

)1/2

(2.51)

by Schwarz’s inequality. Now, since p = 2,

∫

Cn

dx ≤
∫

B2n

dx ∝ n2 . (2.52)

Hence (2.51) and (2.52) imply that

∫

Bn

‖g(x)‖2 dx ≤ A

(∫

Cn

‖g(x)‖2 dx

)1/2

, (2.53)

for some constant A > 0. Since as noted above, ‖g‖2 ∈ L1(Rp), we have

lim
n→∞

∫

Cn

‖g(x)‖2 dx = 0

and consequently (2.53) gives rise to

0 = lim
n→∞

∫

Cn

‖g(x)‖2 dx =
∫

Rp

‖g(x)‖2 dx .

Thus g = 0 almost everywhere and gives the desired result for p = 2 is obtained.
�
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Such a dimension cut-off result implies that the usual Stein inequality 2 divg(x)

+||g(x)||2 ≤ 0, for any x ∈ R
p, has no nontrivial solution g, with ‖g‖2 ∈ L1

loc(R
p)

when p ≤ 2. This reinforces the fact that the MLE X is admissible in dimension p ≤
2 when estimating a normal mean. Blanchard and Fourdrinier (1999) (to which we
refer for a full account of the dimension cut-off phenomenon) also considered more
general nonlinear partial differential inequalities. We will again use their technique
in Chap. 8 (for loss estimation) to prove that, for an inequality of the form k Δγ (x)+
γ 2(x) ≤ 0, the same dimension cut-off phenomenon occurs for p ≤ 4 (there is no
nontrivial solution γ , with γ 2 ∈ L1

loc(R
p), when p ≤ 4).
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