
Chapter 4
Restrain Malicious Attack Propagation

Restraining the propagation of malicious attacks in complex networks has long been
an important but difficult problem to be addressed. In this chapter, we particularly
use rumor propagation as an example to analyze the methods of restraining
malicious attack propagation. There are mainly two types of methods: (1) blocking
rumors at the most influential users or community bridges, and (2) spreading truths
to clarify the rumors. We first compare all the measures of locating influential
users. The results suggest that the degree and betweenness measures outperform
all the others in real-world networks. Secondly, we analyze the method of the
truth clarification method, and find that this method has a long-term performance
while the degree measure performs well only in the early stage. Thirdly, in order
to leverage these two methods, we further explore the strategy of different methods
working together and their equivalence. Given a fixed budget in the real world, our
analysis provides a potential solution to find out a better strategy by integrating both
kinds of methods together.

4.1 Introduction

The popularity of online social networks (OSNs) such as Facebook [171], Google
Plus [74] and Twitter [102] has greatly increased in recent years. OSNs have
become important platforms for the dissemination of news, ideas, opinions, etc.
Unfortunately, OSN is a double-edged sword. The openness of OSN platforms also
enables rumors, gossips and other forms of disinformation to spread all around
the Internet. In the real world, rumor has caused great damages to our society.
For example, the rumor “Two explosions in White House and Obama is injured”
happened in April 23, 2013 led to 10 billion USD losses before the rumor was
clarified [143].
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Currently, there are mainly two kinds of strategies used for restraining rumors in
OSNs, including blocking rumors at important users [41, 49, 83, 96, 122, 129, 190,
193, 206] and clarifying rumors by spreading truths [25, 69, 71, 107, 165, 173]. We
can further categorize the first strategy into two groups according to their measures
in identifying the most important users: the most influential users [34, 70, 80, 96,
110, 159, 185] and the community bridges [31, 33, 106, 137–139, 174].

Every kind of strategy has pros and cons. Each method claims the better
performance among all the others according to their own considerations and
environments. However, there must be one standing out of the rest. Because there
does not exist a universal standard to evaluate all them together, the question of
which method is the best has long been important but difficult to be answered.
Accordingly, previous work mainly focused on the ‘vertical’ comparison (methods
inside their own category), such as the work [96, 110], but not on the ‘horizontal’
comparison (methods from different categories). All these methods are proposed to
restrain the spread of rumors in OSNs.

To numerically evaluate different methods, we introduce a mathematical model
to present the spread of rumors and truths. This is a discrete model so as to easily
locate the most important nodes in the modeling. We can thus implement different
strategies on this mathematical platform in order to evaluate their impacts to the
spread of rumors and truths. Through a series of empirical and theoretical analysis
using real OSNs, we are able to disclose the answer to the unsolved question.

In the real world, blocking rumors at important users may incur criticism since
it has risk of violating human rights. On the other hand, the probability of people
believing the truths varies according to many social factors. Therefore, it is very
important to find out the optimal strategy of restraining rumors, which possibly
should integrate both strategies together. The discussion on which method is the best
will be a small, but an important, step towards the solution of this part of work. Thus,
we are further motivated to explore the numerical relation and equivalence between
different methods. Wen et al. [184] systematically analyzed different strategies for
restraining rumors.

4.2 Methods of Restraining Rumors

Scientists have proposed many methods in order to restrain the propagation of
rumors, such as controlling influential users, controlling bridges of social commu-
nities and clarifying the rumors by spreading the truths. The taxonomy of these
methods is shown in Fig. 4.1.
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Fig. 4.1 The taxonomy of
the methods used to restrain
the spread of malicious
attacks

4.2.1 Controlling Influential Users

The most common but popular method is to monitor a group of influential users and
block their outward communication when rumors are detected on them. According
to the way they choose the influential users, we category current methods into three
types: degree, betweenness and core.

Degree The most direct and intuitive methods are to control the popular OSN
users. In social graphs, these users correspond to the nodes with large degrees
in OSNs. The theoretical bases of these methods are the scale-free and power-
law properties of the Internet matters that a few highly-connected nodes play a
vital role in maintaining the network’s connectivity [136, 147]. We illustrate this
method in Fig. 4.2a. We can see that when adequate popular users are controlled
in OSNs, the spread of rumors will be limited in a small branch of the whole
topology.

Betweenness Researchers have found that some nodes which do not have large
degrees in topologies also play a vital role in the dissemination of social
information. As shown in Fig. 4.2b, the degree of node E is smaller than node
A, B, C and D. However, node E is noticeably more important to the spread
of rumors as it is the connector of two large groups of users. To locate this
kind of nodes in OSNs, scientists introduced the measure of betweenness which
stands for the number of shortest paths passing through a given node [67]. We
can also find some other variants of betweenness, such as the RW betweenness
[132]. The work [34, 70, 80, 110, 185] argued that controlling the nodes with
higher betweenness values is more efficient than controlling those with higher
degrees.
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Fig. 4.2 Restraining the rumors by controlling the influential nodes. (a): the influential nodes are
those of large degree; (b): the influential nodes are those of large betweenness; (c): the influential
nodes are those in the innermost core

Core In this case, the network topologies are decomposed using the k-shell
analysis. Some researchers have found that the most efficient rumor spreaders
are those located within the core of the OSNs as identified by the decomposition
analysis [96, 159]. We illustrate this viewpoint in Fig. 4.2c. We can see that
the nodes in the innermost component of the network may possibly have
smaller degrees, but they contribute to the kernel of the network and build the
connectivity between the outside components. Thus, the nodes in the core are
more crucial for restraining the rumors in OSNs.

4.2.2 Controlling Community Bridges

Most real OSNs typically contain parts in which the nodes are more highly
connected to each other than to the rest of the network. The sets of such nodes
are usually called communities in OSNs. The existing methods used to identify
communities mainly have two types: finding overlapped communities [138, 139]
and finding separated communities [31, 33, 33, 106, 137, 174, 174].

Overlapped Every OSN user in the real world has numerous roles. For example,
a user is a student so that he or she belongs to a schoolmate community. This
user may also belong to the communities of a family and various hobby groups.
Therefore, most of the actual OSNs are made of highly overlapping cohesive
groups of users [138, 140]. The nodes which locate at more than one community
are the bridges between communities. The bridges forward the information from
one community to another. If we control the bridges and block the spread of
rumors on them, the scale of the rumors propagation will be limited to the local
community. We illustrate this kind of methods [138, 139] in Fig. 4.3a.
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Fig. 4.3 Restraining the rumors by controlling the bridges between communities. (a): communi-
ties are overlapped; (b): communities are separated

Separated Some researchers [31, 33, 33, 106, 137, 174, 174] extract social rela-
tionship graphs by partitioning the topologies of OSNs into numerous separated
communities. The premise of these methods is that users are more likely to
receive and forward information from their social friends. Thus, these separated
communities are representative of the most likely propagation paths of the rumors
and the truths. Compared with the overlapped communities, the bridges are
the nodes which have outward connections to the nodes of other communities.
As shown in Fig. 4.3b, when the bridges between separated communities are
controlled, the spread of rumors will also be limited to a small scale.

4.2.3 Clarification Through Spreading Truths

Except banning the outward communication on those influential users or the
community bridges, people can adopt the strategy of spreading truths [25, 69, 71,
107, 165, 173] to the public in order to eliminate the critical rumors. As shown in
Fig. 4.4, the scale of the rumors’ propagation will be restrained after the truths start
to spread. In the real world, this strategy respects the freedom of speech, but its
efficiency is highly related to the credibility of the truth origins. If the origins of the
truths have high prestige among the masses, people will definitely accept the truths
when both the rumors and the truths are received. Otherwise, people make decisions
using the “minority is subordinate to majority” rule. We will model and elaborate
the processes of people making choices in the following section.
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Fig. 4.4 Restraining the rumors by spreading truth in OSNs

4.3 Propagation Modeling Primer

We build up in this section the mathematical model in order to analyze the spread
of rumors and investigate the methods of restraining their propagation.

4.3.1 Modeling Nodes, Topology and Social Factors

In the real world, people may believe rumors, truths or have not heard of any
information from OSN. Let random variable Xi(t) represent the state of user i at
discrete time t . We borrow the concepts from epidemics and derive the values of
Xi(t) as follows

Xi(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Sus., susceptible

Def., def ended

Rec., recovered

{
Act., active

Imm., immunized

Inf., Inf ected

{
Con., contagious

Imm., misled

(4.1)

Firstly, every user is presumed to be susceptible (Xi(t) = Sus.) at the beginning.
If a user is proactively controlled and will block the rumors, the node of this user
is at the Def. state. An arbitrary user i believes the rumor if Xi(t) = Inf. or the
truth if Xi(t) = Rec. Secondly, seldom users will forward the same messages of the
rumor or the truth multiple times to ‘persuade’ their social friends into accepting
what they have believed. Thus, we assume OSN users distribute the rumor or the
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Fig. 4.5 The state transition
graph of a node in the
topology

truth only once at the time when they get infected (Xi(t) = Con.) or recovered
(Xi(t) = Act.). After that, they will stop to spread the rumor (Xi(t) = Mis.) or the
truth (Xi(t) = Imm.). Thirdly, the origins of the true news in the real world usually
have high prestige among the masses. Thus, an infected user can be recovered and
will not be infected again. The user will stay being immunized after he or she trusts
the truth. We provide the state transition graph for an arbitrary user in Fig. 4.5. We
can see that most users will finally believe the truth as the Imm. state is an absorbing
state.

The nodes and the topology are the basic elements for the propagation of OSN
rumors and truths. Given an OSN, we derive the topology of it. A node in the
topology denotes a user in the OSN. Here, we propose employing m × m square
matrix with elements 〈ηR

ij , η
T
ij 〉 (ηR

ij , η
T
ij ∈ [0, 1]) to describe the topology of an

OSN with m nodes, as in

⎡

⎢
⎣

〈ηR
11, η

T
11〉 · · · 〈ηR

1m, ηT
1m〉

... 〈ηR
ij , η

T
ij 〉

...

〈ηR
m1, η

T
m1〉 · · · 〈ηR

mm, ηT
mm〉

⎤

⎥
⎦

where, ηR
ij and ηT

ij denote the probability of rumors and truths spreading from user

i to user j respectively. If user i has contact with user j , we have ηR
ij �= 0, ηT

ij �= 0.

Otherwise, ηR
ij = 0, ηT

ij = 0.

4.3.2 Modeling Propagation Dynamics

We introduce a widely approved discrete model [9, 29, 109, 185, 186, 195] to present
the propagation of rumors and truths in OSNs. The discrete model can locate each
influential node and evaluate its impact to the spread. Given a topology of an OSN
with m nodes, we can estimate the number of susceptible and recovered users at
time t , S(t) and R(t), as in
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{
S(t) = ∑m

i=1 P(Xi(t) = Sus.)

R(t) = ∑m
i=1 P(Xi(t) = Rec.)

(4.2)

where, P(·) denotes the probability of a variable. Similarly, the number of defended
nodes at time t , D(t), is derived by computing

∑m
i=1 P(Xi(t) = Def.). Then, we

can obtain the number of infected nodes at time t , I (t), as in

I (t) = m − S(t) − R(t) − D(t). (4.3)

As shown in Fig. 4.5, a susceptible user may accept the rumor and the node
enters the Inf. state. An infected node may also be recovered if this user accepts
the truth. We use v(i, t) and r(i, t) to denote the probability of user i being
infected or recovered. Then, the values of P(Xi(t) = Sus.), P(Xi(t) = Rec.)

and P(Xi(t) = Def.) can be iterated using the discrete difference equations as in

P(Xi(t) = Sus.) = [1 − v(i, t) − r(i, t)] · P(Xi(t − 1) = Sus.) (4.4)

P(Xi(t) = Rec.) = r(i, t) · [1 − P(Xi(t − 1) = Rec.)] + P(Xi(t − 1) = Rec.)

(4.5)
P(Xi(t) = Def.) = [1 − r(i, t)] · P(Xi(t − 1) = Def.) (4.6)

We introduce Neg(i, t) and Pos(i, t) to be the probability of user i not believing
the rumor or the truth. Since the rumor and the truth come from social neighbors, the
values of Neg(i, t) and Pos(i, t) can be derived by assuming all social neighbors
cannot convince user i of the rumor or the truth. Then, according to the principle of
multiplication, we have

⎧
⎨

⎩

Neg(i, t) = �j∈Ni

[
1 − ηR

ji · P(Xj (t − 1) = Con.)
]

Pos(i, t) = �j∈Ni

[
1 − ηT

ji · P(Xj (t − 1) = Act.)
] (4.7)

where Ni denotes the set of user i’s neighbors. We assume the states of nodes in
the topology are independent. Then, according to the state transitions in Fig. 4.5, the
values of P(Xi(t) = Con.) and P(Xi(t) = Act.) can be derived as in

P(Xi(t) = Con.) = P(Xi(t − 1) = Sus.) · v(i, t) (4.8)

P(Xi(t) = Act.) = [1 − P(Xi(t − 1) = Rec.)] · r(i, t) (4.9)

From the above equations, we adopt discrete time to model the propagation
dynamics. Note that the length of each time tick relies on the real environment.
It can be 1 min, 1 h or 1 day.
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4.3.3 Modeling People Making Choices

According to the ways people believe rumors and truths, we drive different values
of v(i, t) and r(i, t). In part, we summarize two major cases on the basis of our
analysis in the real world.

Absolute Belief In this case, we optimistically assume OSN users absolutely
believe the truths except they only receive rumors. Then, we can derive the values
of v(i, t) and r(i, t) as in

{
v(i, t) = [1 − Neg(i, t)] · Pos(i, t)

r(i, t) = 1 Pos(i, t)
(4.10)

In the real world, this case happens generally when the origins of true news have
high prestige among the masses. For example, when the rumor “two explosions
in White House and Barack Obama is injured” fast spread in twitter [143], White
House, as an origin which has absolute credibility among most people, swiftly
stopped the rumor by clarifying and spreading the truth “Obama is fine and no
explosion happened”.

Minority is Subordinate to Majority In this case, people do not absolutely trust
the origins of the truths. They believe either the rumor or the truth according to
the ratio of believers among their OSN friends. We can estimate the number of
received rumor and truth copies (CR(i, t) and CT (i, t)) for each user i as in

{
CR(i, t) = ∑

j∈Ni

[
ηij · P(Xj (t − 1) = Con.)

]

CT (i, t) = ∑
j∈Ni

[
ηij · P(Xj (t − 1) = Act.)

] (4.11)

Then, we derive the values of v(i, t) and r(i, t) as in

{
v(i, t) = [1−Neg(i,t)·Pos(i,t)]·CR(i,t)

CR(i,t)+CT (i,t)

r(i, t) = [1−Neg(i,t)·Pos(i,t)]·CT (i,t)
CR(i,t)+CT (i,t)

(4.12)

where, the value of Neg(i, t) ·Pos(i, t) is the probability of people refuting both
kinds of information. In the real world, “minority is subordinate to majority” (M-
S-M) is a more general case. When more friends choose to accept one kind of
information, the probability of the user believe this kind of information is larger
than the probability of choosing the opposite one.

4.3.4 The Accuracy of the Modelling

Before we carry out analysis using the mathematical model, we set up simulations
to validate its correctness. The experiment topologies are two real OSNs: Facebook
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Fig. 4.6 The accuracy evaluation of the modelling compared with simulations

[171], Google Plus [74]. The simulations are implemented on the basis of existing
simulation work [192]. We mainly focus on the critical rumors (ηR

ij > 0.5). Thus,

we set the propagation probabilities as ηR
ij = ηT

ij = 0.75. The spread of rumors
starts at t = 0. Since the truths start to propagate after many users have believed the
rumors, we set the truth injection time, tinf ect , as tinf ect = 3. The implementation
is in C++ and Matlab2012b.

We show the validation results in Fig. 4.6. We can see that the modelling results
are quite accurate compared with the simulations. In Eq. (4.7), we assume the states
of nodes in the topology are independent. The independent assumption has been
widely used in this field, such as the works [29, 109, 185]. However, this assumption
may causes errors in the modeling. Readers could find extensive analysis in the
works [186, 195]. In fact, the errors will be compromised when the modelling results
of conflicting information mutually subtract each other. Here, we simply adopt this
assumption as we mainly focus on the comparison of different defense methods.

4.4 Block Rumors at Important Users

In this section, we analyze the proactive measures in order to find out the most
efficient one for blocking rumors. The degree measure can be directly derived from
the OSN topology. The betweenness measure is worked out using the standard
algorithm [132]. We also implement the k-shell decomposition algorithm [26] to
identify the core of OSNs. To locate community bridges, we use CFinder [28] to
identify the overlapped communities and NetMiner [130] for the separated ones.
We focus on the Facebook network [171] in this section.

4.4.1 Empirical Studies

We first work out all proactive measures and show the sorted results of influential
nodes in Fig. 4.7. For the degree measure (Fig. 4.7a), we can see that the node
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Fig. 4.7 The sorted results of the influential nodes in the Facebook topology

Fig. 4.8 The sorted results of community bridges

degrees follow the power-laws [147]. This means the nodes with large degrees
are rare in the topology but have significant contribution to the OSN connectivity.
Similar results can also be observed in the measure of betweenness (Fig. 4.7b). For
the core measure (Fig. 4.7c), we can see that the innermost part finally leaves to be
a quite small group of nodes in the network.

The results of network communities are shown in Fig. 4.8. For the separated
communities (Fig. 4.8a), we find several large communities dominate the majority
of nodes in the network. In Fig. 4.8b, we set k = 5 (refer to CFinder [28]) and obtain
similar results for the overlapped communities.

From the empirical perspective, we examine which proactive measure can be
more efficient. We use λ to denote the defense ratio of nodes in OSNs, and λ ranges
from 1% to 30%. We mainly focus on critical rumors in this chapter (E(ηR

ij ) >

0.5). To be typical, we set E(ηR
ij ) = E(ηT

ij ) = 0.6 or 0.9. In the real world, since
critical rumors often originate from the most popular users, we let the rumors in
the modelling spread from the node with large degree. The results of the rumor
spreading scale are shown in Fig. 4.9.

Observation 1 If we set the defense ratio (λ) close to 30%, the degree and
betweenness measures will almost stop the spread of rumors. This result is in
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Fig. 4.9 The final steady amount of infected nodes when we apply proactive measures with
different defense ratios

Fig. 4.10 The propagation dynamics of rumors when we carry out defense according to different
proactive measures

accordance with the percolation ratio used to stop viruses in Email network [207].
However, the real OSNs generally have large-scales. Blocking rumors at 30% users
in OSNs is too many to be realized in the real world.

Observation 2 The betweenness and degree measures outperform all the other
measures, and the betweenness measure performs much better than the degree
measure if λ ≤ 20%. This result is in accordance with the work [110, 185].
Figure 4.9 has presented the final amount of infected users given a rumor spreading
in network. We further investigate the propagation dynamics of those measures
(typically setting λ = 10% or 20%). The results are shown in Fig. 4.10.

Observation 3 The degree measure performs better than the betweenness measure
in the early stage. The degree and betweenness measures outperform all the others
all over the spreading procedure. However, different from the observation 2, the
degree measure has a short-term better efficiency than the betweenness measure.
This degree measure is also suggested by the work [5].
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4.4.2 Theoretical Studies

In this subsection, we carry out mathematical analysis in order to theoretically
justify the empirical results. To numerically evaluate different measures, we first
introduce a new concept, the contagious ability.

Definition 4.1 (Contagious Ability) Given an OSN and an incident of rumor
spreading in this network, the contagious ability of an arbitrary node i, Ai , is defined
as the number of the following nodes which can be directly or indirectly infected by
node i after this node being infected.

An arbitrary user i may possibly get infected at any time in the rumor propagation
dynamics. We use At

i to denote the contagious ability of node i if the user of this
node gets infected at time t . On the basis of our mathematical model, we can then
estimate the overall contagious ability of an arbitrary node i as in

E(Ai) =
∞∑

t=0

[
P(Xi(t) = Con.) · E(At

i)
]

(4.13)

OSN users receive and send rumors from and to their neighboring users. We use
At

ij to denote the potential contagious ability caused by the rumor spread from node
i to node j at time j . We also introduce P t

ij to denote the potential contagious
probability of node j contributed by node i at time t . The mean value of At

i can then
be recursively worked out as in

E(At
i) =

∑

j∈Ni

[
E(At+1

ij ) + P t+1
ij

]
(4.14)

We can further compute E(At+1
i ) and P t+1

ij as in

{
E(At+1

ij ) = δt
ij · E(At+1

j )

P t+1
ij = δt

ij · P(Xj (t + 1) = Con.)
(4.15)

where δt
ij denotes the ratio of node i’s contribution to the infection of node j at time

t among all the father nodes of node j , and we have

δt
ij = P(Xi(t) = Con.) · ηR

ij

∑
k∈Nj

[
P(Xk(t) = Con.) · ηR

kj

] (4.16)

As shown in Fig. 4.5, the Imm. state is an absorbing state. Given an OSN with finite
number of users, we can predict that the spread of rumors finally becomes steady
and the values of At

i and P(Xi(t) = Con.) converge to zero if 0lleqt ≤ ∞. As a
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result, the contagious ability of each node in OSNs can be recursively and reversely
worked out by setting a large final time of the spread.

We further calculate the contagious time in order to numerically evaluate the
temporal efficiency of those measures against the spread of rumors.

Definition 4.2 Given an OSN and an incident of rumor spreading in this network,
the contagious time of an arbitrary node i, Ti , is defined as the mean time of node i

getting infected in the whole propagation.

Conceptually, the contagious time of node i, Ti , can be easily computed as in

Ti =
∞∑

t=0

P(Xi(t) = Con.) · t
∑∞

t=0 P(Xi(t) = Con.)· (4.17)

Among the three observations, we mainly focus on the observations 2 and 3
since the observation 1 is practically infeasible in real OSNs. Moreover, previous
work [207] has proved that the connection ratio and the link remaining ratio almost
reach zero if we remove the top 30% of the most connected nodes from the OSN
topologies. Under this situation, the rumors definitely cannot spread out.

Justification 1 (Observation 2) The contagious ability, Ai , denotes the potential
number of the following nodes infected by node i. Thus, a node with stronger
contagious ability is conceptually more worthwhile for blocking rumors in OSNs.
We sort the nodes according to the contagious abilities and choose the result as
a benchmark. With different values of λ, we work out the intersection between
the benchmark and the sorted nodes of various proactive measures. The results
are shown in Fig. 4.11. We can see that the betweenness and degree measures
capture more nodes with higher contagious abilities. This may be the reason why
the betweenness measure performs best and the second best belongs to the degree
measure.

Fig. 4.11 The intersection
ratio between the sorted
nodes of contagious ability
and various proactive
measures
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Fig. 4.12 The average
contagious time of the degree
and betweenness measures
when λ < 10%

Justification 2 (Observation 3) Let a rumor spread in the network, we then
calculate the contagious time of each node in order to justify the superior short-
term performance of the degree measure. We can use 1

|ω|
∑

i∈ω Ti to estimate the
average contagious time among the nodes in ω. Given a defense ratio λ, ω is the
set of nodes chosen for blocking rumors. The results are shown in Fig. 4.12. We
can see that the average contagious time of nodes chosen by the degree measure is
much less than the nodes chosen by the betweenness measure. This means the nodes
with large degrees will be infected earlier. Thus, if we use the nodes chosen by the
degree measure to block rumors, the spread in the short-term will be restrained faster
compared with the nodes chosen by the betweenness measure.

4.5 Clarify Rumors Using Truths

In this section, we will analyze the remedial measure using the mathematical model.
There are mainly two factors, tinject and E(ηT

ij ). They can greatly affect the inject
efficiency of restraining rumors by spreading truths.

4.5.1 Impact of the Truth Injection Time

To exclusively investigate the impact of tinject , we typically set E(ηR
ij ) = E(ηT

ij ) =
0.75. Based on the spreading dynamics shown in Fig. 4.10, we assign tinject as

• truth starts with rumor,
• truth starts in the early stage of rumor spread,
• truth starts in the late stage of rumor spread.
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Fig. 4.13 The number of infected users by varying truth injecting time. Setting: E(ηR
ij ) = 0.75

Fig. 4.14 The number of the contagious and the active nodes at any time t in the propagation.
Setting: E(ηR

ij ) = 0.75

The experiments are executed on both the Facebook and Google Plus networks, and
with both the cases of the people making absolute choices and and making M-S-M
choices. The results are shown in Fig. 4.13.

Observation 4 The truth clarification method performs better if the spread of truths
starts earlier, but if not, this method has a weak performance in the early stage since
the rumors are distributed incredibly fast. We can see that the propagation scale will
decrease dramatically after we inject the truth into the network. Both the spread of
rumors and truths will finally become steady. The results in Fig. 4.13 indicate that
the remedial measure of spreading truth mainly perform a long-term effectiveness
in restraining rumors.

We further investigate the number of the contagious nodes (
∑m

i P (Xi(t) =
Con.)) and the active nodes (

∑m
i P (Xi(t) = Act.)) at any time t during the spread.

The results are shown in Fig. 4.14. We can see from Figs. 4.14(A1) and 4.14(C1) that
tinject has some effect on restraining the number of contagious nodes when people
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making absolute choices. However in Figs. 4.14(B1) and 4.14(D1), we find tinject

has no obvious effect when people making M-S-M choices. Moreover, we can see
from Fig. 4.14(A2–D2) that the number of active nodes will take effect according
to the value of tinject . The results of Fig. 4.14, both from the number of contagious
nodes and active nodes in the propagation dynamics, have well explained the impact
of tinject observed in Fig. 4.13.

4.5.2 Impact of the Truth Propagation Probability

To exclusively examine the impact of the truth propagation probability E(ηT
ij ), we

typically set tinject = 3 and E(ηR
ij ) = 0.6. The value of E(ηT

ij ) will be set as

• 0.3: people are not willing to believe the truth,
• 0.6: people fairly believe the truth,
• 0.9: people most likely believe the truth.

Both the Facebook and Google Plus networks will be used in the experiments.
Similarly, the cases of people making absolute choices or M-S-M choices will also
be considered. The results are shown in Fig. 4.15.

Observation 5 The efficiency of restraining rumors using the remedial measure
largely decreases when people are not willing to spread the truths. In accordance
with the reality, we find E(ηT

ij ) has extraordinary impact on restraining rumors by
spreading truths in OSNs. We additionally examine the number of active nodes∑m

i P (Xi(t) = Act.) at any time t during the spread dynamics. As shown in
Fig. 4.16, a smaller value of E(ηT

ij ) will lead to a smaller number of active nodes.
This exactly corresponds to the limited efficiency of the remedial measure shown in
Fig. 4.15.

Given a critical rumor spreading in the network E(ηR
ij ) > 0.5, we can summarize

two real cases according to the values E(ηR
ij ) as follows:

Fig. 4.15 The number of infected nodes and recovered nodes with different values E(ηT
ij ). Setting:

tinject = 3, E(ηR
ij ) = 0.75
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Fig. 4.16 The number of active nodes with different values E(ηT
ij ). Setting: tinject = 3,

E(ηR
ij ) = 0.6

E(ηR
ij ) > 0.5 In the real world, through the propaganda or other measurements,

people may be willing to believe and spread truths. According to previous
analysis, the truth holder can receive an acceptable or even better results by
spreading truths to restrain rumors when E(ηR

ij ) > 0.5.

E(ηR
ij ) < 0.5 According to the results of Fig. 4.15, the remedial measure may not

be able to counter the spread of rumors at this case. Actually, this is a common
phenomenon always happened in the real world.

4.6 A Hybrid Measure of Restraining Rumors

In this section, we investigate the pros and cons when different measures work
together. We also explore the equivalence of these measures.

To numerically evaluate the effectiveness of these measures, we use the maximal
number of infected users (Imax) and the final number of infected users (If inal) to
present the damage caused by rumors. In the real world, when either Imax or If inal

becomes larger, more damages will be caused to the society.

4.6.1 Measures Working Together

Firstly, we examine the values of Imax and If inal on the basis of the mathematical
model. We typically set tinject = 3 and E(ηT

ij ) ranges from 0.1 to 0.9. The results
are shown in Fig. 4.17. We can see that the values of Imax always stay large while
the values of If inal gradually decrease with the increasing E(ηT

ij ). This indicates the
remedial measure cannot alleviate the damage denoted by Imax . On the contrary, the
proactive measures are able to reduce Imax .

Secondly, the spread of rumors and truths actually presents a common issue in
the psychology field when E(ηT

ij ) < 0.5 < E(ηR
ij ). That is the “rumor has wings

while truth always stays indoors” since people naturally have ‘negativity bias’ on the



4.6 A Hybrid Measure of Restraining Rumors 59

Fig. 4.17 The maximum number of infected users (Imax ), the final number of infected users
(If inal) and the final number of recovered users (Rf inal). Settings: tinject = 3, E(ηR

ij ) = 0.75,

E(ηR
ij ) ∈ [0.1, 0.9]

Fig. 4.18 A case study of
measures working together.
Settings: tinject = 3,
E(ηR

ij ) = 0.75

received information [120]. According to the observation 5, the remedial measure
cannot largely reduce the value of If inal when E(ηT

ij ) < 0.5 < E(ηR
ij ). We notice in

the observation 4 that the remedial measure only has a long-term performance, while
in the observation 3 that the degree measure has a short-term best performance.

To address the specific case “rumor has wings while truth always stays indoors”,
we propose to put the eggs in different baskets. Both the degree measure and
the truth clarification method will be used for restraining rumors in OSNs. As an
example, we set E(ηR

ij ) = 0.9 and tinject = 3 to do case study. Besides, E(ηT
ij ) and

λ will be assigned as: (1) λ = 10%, E(ηT
ij ) = 0: proactive measures, (2) λ = 0,

E(ηT
ij ) = 0.6: remedial measures, (3) λ = 5%, E(ηT

ij ) = 0.3: two methods together.

The results are shown in Fig. 4.18. We find that if we set λ = 5%, E(ηT
ij ) = 0.3,

both Imax and If inal will decrease compared with another two extreme settings
which can only reduce either Imax or If inal .
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4.6.2 Equivalence of Measures

In the real world, the surveillance on influential users needs much financial support.
The propaganda used to prompt the spread of truths also costs much money. Given
a limited budget, we explore the equivalence between the proactive and remedial
measures in order to leverage these two different strategies.

Firstly, we investigate If inal when we apply different defense ratios (λ) and
values of E(ηT

ij ) on the propagation of rumors and truths. On the basis of our
mathematical model, this part of analysis will disclose the congruent relationship
between the values of λ and E(ηT

ij ) in networks. Typically, we set tinject = 3,

E(ηT
ij ) = 0.75 and use the Facebook and Google Plus topologies. The results are

shown in Fig. 4.19. Given a pair of λ and E(ηT
ij ), we can find several equivalent

solutions with different values of λ and E(ηT
ij ). These different solutions have the

same performance as the original pair of λ and E(ηT
ij ). This means we can leverage

the proactive and remedial measures according to the fixed budget.
Secondly, we further examine the numeric equivalence in the Facebook and

Google Plus networks. We will also consider people making absolute and M-S-
M choices. Following the settings of Fig. 4.19, we provide the results in Fig. 4.20.
We find the numeric equivalence exists in most cases. On the basis of the results in
Fig. 4.20, we are able to identify the exact schema to replace the original pair of λ

and E(ηT
ij ). This part of analysis and the results are of great significance from the

practical view of point in the real world.

Fig. 4.19 The final number of infected nodes (If inal) when we set a series of different defense
ratios (λ) and truth spreading probability E(ηT

ij ). Setting: tinject = 3, E(ηR
ij ) = 0.75
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Fig. 4.20 The numeric equivalence between the degree measure and the remedial measure when
we set a series of different defense ratios (λ) and truth spreading probabilities E(ηT

ij ). Setting:

tinject = 3, E(ηR
ij ) = 0.75

4.7 Summary

In this section, we first discuss the robustness of the contagious ability. Then, we
discuss the fairness to the community bridges when we evaluate the efficiency of
restraining rumors. We finally summarize the work in this chapter.

4.7.1 The Robustness of the Contagious Ability

In this section, we firstly discuss the robustness of the contagious ability. According
the definition of contagious ability, its usage relies on the rumor spreading origins.
However, it can be directly used for numeric evaluation of other measures when the
spread of rumors originates from highly connected nodes. To confirm the robustness
of this usage, we examine the average degree of contagious nodes, Dt , at each time
tick t , as in

Dt =
m∑

i=0

P(Xi(t) = Con.)
∑m

i=0 P(Xi(t) = Con.)
· di . (4.18)

wherein di is the degree of node i. In the experiments, we randomly choose the
rumor origins and average the values of Dt at each time tick t according to 100 runs.
The results are shown in Fig. 4.21. It is clear that Dt stays high at the beginning and
then sharply decreases till the end of the spread. This means the nodes with higher
degrees are more easily to be infected in the early stage. Actually, this feature may
be caused by the power-law and the scale-free properties of OSNs [56]. As a result,
the contagious ability based on randomly chosen origins will not largely deviate
from the ones based on the identical highly-connected origins. This explains the
robustness of the usage of the contagious ability.
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Fig. 4.21 The average
degree of nodes that are being
infected at each time tick

4.7.2 The Fairness to the Community Bridges

In the real world, people form various communities according to their interests,
occupations and social relationships. They are more likely to contact the ones within
the same communities. Thus, it would be more precise to consider this premise in
our analysis. However, the algorithms (CFinder [28] and NetMiner [130]) have not
considered the communication bias between community members. This may cause
some unfairness to the community bridges when we evaluate the rumor restraining
efficiency.

In fact, the spread of information in community environment is a more complex
process. We plan to corporate the communication bias in communities from the
records of the real OSNs. This may help us more accurately evaluate the efficiency
of different measures. Due to the page limit, we will move this part to our future
work.

In summary, we carry out a series of analysis on the methods of restraining
rumors. On the basis of our mathematical model, the analysis results suggest that
the degree and betweenness measure outperform all the other proactive measures.
In addition, we observe that the degree measure has better short-term performance
in the early stage. We also investigate the efficiency of spreading truth in order
to restrain the rumors. We find the truth clarification method mainly has a long-
term performance. In order to address the critical case “rumor has wings while
truth always stays indoors”, we further explore the strategies of different measures
working together and the equivalence leveraging both of them. From both the
academic and practical perspective, our work is of great significance to the work
in this field.
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