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Abstract. We investigate when non-dictatorial aggregation is possi-
ble from an algorithmic perspective, where non-dictatorial aggregation
means that the votes cast by the members of a society can be aggre-
gated in such a way that the collective outcome is not simply the choices
made by a single member of the society. We consider the setting in which
the members of a society take a position on a fixed collection of issues,
where for each issue several different alternatives are possible, but the
combination of choices must belong to a given set X of allowable vot-
ing patterns. Such a set X is called a possibility domain if there is an
aggregator that is non-dictatorial, operates separately on each issue, and
returns values among those cast by the society on each issue. We design
a polynomial-time algorithm that decides, given a set X of voting pat-
terns, whether or not X is a possibility domain. Furthermore, if X is
a possibility domain, then the algorithm constructs in polynomial time
such a non-dictatorial aggregator for X. We also design a polynomial-
time algorithm that decides whether X is a uniform possibility domain,
that is, whether X admits an aggregator that is non-dictatorial even
when restricted to any two positions for each issue. As in the case of
possibility domains, the algorithm also constructs in polynomial time a
uniform non-dictatorial aggregator, if one exists.

1 Introduction

The study of vote aggregation has occupied a central place in social choice the-
ory. A broad framework for carrying out this study is as follows. There is a fixed
collection of issues on each of which every member of a society takes a position,
that is, for each issue, a member of the society can choose between a number of
alternatives. However, not every combination of choices is allowed, which means
that the vector of the choices made by a member of the society must belong to
a given set X of allowable voting patterns, called feasible evaluations. The goal
is to investigate properties of aggregators, which are functions that take as input
the votes cast by the members of the society and return as output a feasible
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evaluation that represents the collective position of the society on each of the
issues at hand. A concrete key problem studied in this framework is to determine
whether or not a non-dictatorial aggregator exists, i.e., whether or not it is pos-
sible to aggregate votes in such a way that individual members of the society do
not impose their voting preferences on the society. A set X of feasible evaluations
is called a possibility domain if it admits a non-dictatorial aggregator; otherwise,
X is called an impossibility domain. This framework is broad enough to account
for several well-studied cases of vote aggregation, including the case of preference
aggregation for which Arrow [1] established his celebrated impossibility theorem
and the case of judgment aggregation [9].

The investigation of the existence of non-dictatorial aggregators is typically
carried out under two assumptions: (a) the aggregators are independent of irrel-
evant alternatives (IIA); and (b) the aggregators are conservative (also known
as supportive). The IIA assumption means that the aggregator is an issue-by-
issue aggregator, so that an IIA aggregator on m issues can be identified with
an m-tuple (f1, . . . , fm) of functions aggregating the votes on each issue. The
conservativeness (or supportiveness) assumption means that, for every issue, the
position returned by the aggregator is one of the positions held by the members
of the society on that issue.

By now, there is a body of research on identifying criteria that characterize
when a given set X of feasible evaluations is a possibility domain. The first such
criterion was established by Dokow and Holzman [7] in the Boolean framework,
where, for each issue, there are exactly two alternatives (say, 0 and 1) for the
voters to choose from. Specifically, Dokow and Holzman [7] showed that a set
X ⊆ {0, 1}m is a possibility domain if and only if X is affine or X is not totally
blocked. Informally, the notion of total blockedness, which was first introduced
in [13], asserts that any position on any issue can be inferred from any position
on any issue. As regards the non-Boolean framework (where, for some issues,
there may be more than two alternatives), Dokow and Holzman [8] extended
the notion of total blockedness and used it to give a sufficient condition for
a set X of feasible evaluations to be a possibility domain. Szegedy and Xu
[16] used tools from universal algebra to characterize when a totally blocked
set X of feasible evaluations is a possibility domain. A consequence of these
results is that a set X of feasible evaluations is a possibility domain if and only
if X admits a binary non-dictatorial aggregator or a ternary non-dictatorial
aggregator; in other words, non-dictatorial aggregation is possible for a society
of some size if and only if it is possible for a society with just two members
or with just three members. This line of work was pursued further by Kirousis
et al. [10], who characterized possibility domains in terms of the existence of
binary non-dictatorial aggregators or ternary non-dictatorial aggregators of a
particular form.

The aforementioned investigations have characterized possibility domains (in
both the Boolean and the non-Boolean frameworks) in terms of structural con-
ditions. Our goal is to investigate possibility domains using the algorithmic lens
and, in particular, to study the following algorithmic problem: given a set X of
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feasible evaluations, determine whether or not X is a possibility domain. Szegedy
and Xu [16, Theorem 36] give algorithms for this problem, but these algorithms
have very high running time; in fact, they run in exponential time in the number
of issues and in the number of positions over each issue, even when confined to
the Boolean framework.

We design a polynomial-time algorithm that, given a set X of feasible evalu-
ations (be it in the Boolean or the non-Boolean framework), determines whether
or not X is a possibility domain. Furthermore, if X is a possibility domain, then
the algorithm produces a binary non-dictatorial or a ternary non-dictatorial
aggregator for X. Along the way, we also show that there is a polynomial-time
algorithm for determining, given X, whether or not it is totally blocked.

After this, we turn our attention to uniform possibility domains, which were
introduced in [10] and form a proper subclass of the class of possibility domains.
Intuitively, uniform possibility domains are sets of feasible evaluations that admit
an aggregator that is non-dictatorial even when restricted to any two positions for
each issue. In [10], a tight connection was established between uniform possibility
domains and constraint satisfaction by showing that multi-sorted conservative
constraint satisfaction problems on uniform possibility domains are tractable,
whereas such constraint satisfaction problems defined on all other domains are
NP-complete.

Here, using Carbonnel’s result in [5], we give a polynomial-time algorithm
for the following decision problem: given a set X of feasible evaluations (be it in
the Boolean or the non-Boolean framework), determine whether or not X is a
uniform possibility domain; moreover, if X is a uniform possibility domain, then
the algorithm produces a suitable uniform non-dictatorial aggregator for X.

The results reported here contribute to the developing field of computational
social choice and pave the way for further exploration of algorithmic aspects of
vote aggregation.

2 Preliminaries and Earlier Work

In this section, we formally describe the framework we will work on and the nec-
essary tools in order to obtain our results. In Subsect. 2.1 we consider possibility
domains both in the Boolean and non-Boolean case, whereas in Subsect. 2.2 we
turn our attention to uniform possibility domains.

2.1 Possibility Domains

Let I = {1, . . . , m} be a set of issues. Assume that the possible position values
of an individual (member of a society) for issue j are given by the finite set Aj ,
where j = 1, . . . ,m.

We assume that each set Aj has cardinality at least 2. If |Aj | = 2 for all
j ∈ {1, . . . , m}, we say that we are in the binary or Boolean framework; otherwise
we say that we are in the non-binary or non-Boolean framework.
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An evaluation is an element of
∏m

j=1 Aj . Let X ⊆ ∏m
j=1 Aj be a set of

permissible or feasible evaluations. To avoid degenerate cases, we assume that
for each j = 1, . . . ,m, the j-th projection Xj of X is equal to Aj . Note that this
assumption in no way implies that X =

∏m
j=1 Xj .

Let n ≥ 2 represent the number of individuals. We view the elements of
x ∈ Xn as n×m matrices that represent the choices of all individuals over every
issue. The element xi

j of such a matrix x will be the choice of the i-th individual
over the j-th issue, for i = 1, . . . , n and j = 1, . . . ,m. The i-th row xi will
represent the choices of the i-th individual over every issue, i = 1, . . . , n, and the
j-th column xj the choices of every individual over the j-th issue, j = 1, . . . , m.

To aggregate a set of n feasible evaluations, we use m-tuples f̄ = (f1, . . . , fm)
of functions, where fj : An

j → Aj , j = 1, . . . ,m. Such a m-tuple f̄ of functions
will be called an (n-ary) aggregator for X if the following two conditions hold
for all x ∈ Xn:

1. (f1(x1), . . . , fm(xm)) ∈ X and
2. f̄ is conservative, that is, fj(xj) ∈ {x1

j , . . . , x
n
j }, for all j ∈ {1, . . . , m}.

An aggregator f̄ = (f1, . . . , fm) is called dictatorial on X if there is a number
d ∈ {1, . . . , n} such that (f1, . . . , fm) = (prnd , . . . ,prnd ), where prnd is the n-ary
projection on the d-th coordinate; otherwise, f̄ is called non-dictatorial on X.
We say that X has a non-dictatorial aggregator if, for some n ≥ 2, there is a
n-ary non-dictatorial aggregator on X.

A set X of feasible evaluations is a possibility domain if it has a non-dictatorial
aggregator. Otherwise, it is an impossibility domain. A possibility domain is, by
definition, one where aggregation is possible for societies of some cardinality,
namely, the arity of a non-dictatorial aggregator.

The notion of an aggregator is akin to, but different from, the notion of a
polymorphism – a fundamental notion in universal algebra (see Szendrei [17]).
Intuitively, a polymorphism is a single-sorted aggregator.

Let A be a finite non-empty set. A constraint language over A is a finite set
Γ of relations of finite arities.

Let R be an m-ary relation on A. A function f : An → A is a polymorphism
of R if the following condition holds:

if x1, . . . , xn ∈ R, then (f(x1), . . . , f(xm)) ∈ R,

where xi = (xi
1, . . . , x

i
m) ∈ R, i = 1, . . . , n and xj = (x1

j , . . . , x
n
j ), j = 1, . . . , m.

In this case, we also say that R is closed under f or that f preserves R. Finally,
we say that f is a polymorphism of a constraint language Γ if f preserves every
relation R ∈ Γ .

A function f : An → A is conservative if, for all a1, . . . , an ∈ A, we have
that f(a1, . . . , an) ∈ {a1, . . . , an}. Clearly, if f : An → A is a conservative
polymorphism of an m-ary relation R on A, then the m-tuple f̄ = (f, . . . , f) is
an n-ary aggregator for R.
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We say that a ternary operation f : A3 → A on an arbitrary set A is a
majority operation if for all x and y in A,

f(x, x, y) = f(x, y, x) = f(y, x, x) = x;

we say that f is a minority operation if for all x and y in A,

f(x, x, y) = f(x, y, x) = f(y, x, x) = y.

We also say that a set X of feasible evaluations admits a majority (respec-
tively, minority) aggregator if it admits a ternary aggregator every component
of which is a majority (respectively, minority) operation. Clearly, X admits a
majority aggregator if and only if there is a ternary aggregator f̄ = (f1, . . . , fm)
for X such that, for all j = 1, . . . , m and for all two-element subsets Bj ⊆ Xj ,
we have that fj� Bj = maj, where

maj(x, y, z) =

{
x if x = y or x = z,

y if y = z.

Similarly, X admits a minority aggregator if and only if there is a ternary aggre-
gator f̄ = (f1, . . . , fm) for X such that, for all j = 1, . . . , m and for all two-
element subsets Bj ⊆ Xj , we have that fj� Bj = ⊕, where

⊕(x, y, z) =

⎧
⎪⎨

⎪⎩

z if x = y,

x if y = z,

y if x = z.

In the Boolean framework, a set X ⊆ {0, 1}m admits a majority aggregator
if and only if the majority operation maj on {0, 1}3 is a polymorphism of X.
Moreover, it is known that this happens precisely when X is a bijunctive logical
relation, i.e., X is the set of satisfying assignments of a 2CNF-formula. A set
X ⊆ {0, 1}m admits a minority aggregator if and only if the minority operation
⊕ on {0, 1}3 is a polymorphism of X. Moreover, it is known that this happens
precisely when X is an affine logical relation, i.e., X is the set of solutions of a
system of linear equations over the two-element field (see Schaefer [14]).

Example 1. Consider the sets X1 and X2 below.

(i) The set X1 = {0, 1}3 \ {(1, 0, 1), (0, 0, 1), (0, 0, 0)} is bijunctive, since it is
the set of satisfying assignments of the 2CNF-formula (x ∨ y) ∧ (y ∨ ¬z).

(ii) The set X2 = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} is affine, since it is the set
of solutions of the equation x + y + z = 1 over the two-element field.

(iii) Both sets X1 and X2 are possibility domains, since X1 admits a majority
aggregator and X2 admits a minority aggregator.

The next two theorems characterize possibility domains in the Boolean and the
non-Boolean framework. They are the stepping stones towards showing that
the following decision problem is solvable in polynomial time: given a set X of
feasible evaluations, is X a possibility domain?
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Theorem A (Dokow and Holzman [7]). Let X ⊆ {0, 1}m be a set of feasible
evaluations. The following two statements are equivalent.

1. X is a possibility domain.
2. X is affine or X admits a binary non-dictatorial aggregator.

Theorem B (Kirousis et al. [10]). Let X be a set of feasible evaluations. The
following two statements are equivalent.

1. X is a possibility domain.
2. X admits a binary non-dictatorial aggregator, or a majority aggregator, or a

minority aggregator.

We illustrate the two preceding theorems with several examples.

Example 2. Let X3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊆ {0, 1}3 be the set of Boolean
triples that contain exactly one 1. By Theorem A, the set X3 is an impossibility
domain, since it is not affine (⊕((1, 0, 0), (0, 1, 0), (0, 0, 1)) = (0, 0, 0) /∈ X3) and
it does not have a binary non-dictatorial aggregator. For the latter, one has
to check each of the 62 possible 3-tuples of conservative binary functions over
{0, 1}, which is a fairly tedious but straightforward task.

Example 3. The following two sets X4 and X5 are possibility domains.

(i) Let X4 = {(0, 1, 2), (1, 2, 0), (2, 0, 1), (0, 0, 0)}. This set has been studied in
[7, Example 4]. Let f̄ = (f1, f2, f3) be such that, for each j = 1, 2, 3:

fj(x, y, z) =

{
maj(x, y, z) if |{x, y, z}| ≤ 2,

0 else.

Clearly, f̄ is a majority operation. To see that f̄ is an aggregator for X4,
we need to check that f̄(a, b, c) ∈ X4, only when a, b, c are pairwise distinct
vectors of X4. In this case, f̄(a, b, c) = (0, 0, 0) ∈ X4, since the input of each
fj contains either two zeros or three pairwise distinct elements.

(ii) Let X5 = X3 × X3, where X3 is as in Example 2. It is straightforward to
check that (pr21, pr21, pr21, pr22, pr22, pr22) is a non-dictatorial aggregator for X5.
In fact, a stronger fact holds: if Y and Z are arbitrary sets, then their Carte-
sian product Y × Z is a possibility domain, since it admits non-dictatorial
aggregators of any arity n ≥ 2, defined as the d-th projection prnd on coordi-
nates from Y and as the d′-th projection prnd′ on coordinates from Z, where
1 ≤ d, d′ ≤ n and d 
= d′.

2.2 Uniform Possibility Domains

We consider a subclass of possibility domains, introduced in [10], called uniform
possibility domains.
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Let f̄ = (f1, . . . , fm) be an n-ary aggregator for X. We say that f̄ is a uniform
non-dictatorial aggregator for X (of arity n) if, for all j ∈ {1, . . . , m} and for
every two-element subset Bj ⊆ Xj , it holds that

fj�Bj

= prnd ,

for all d ∈ {1, . . . , n}. We say that a set X is a uniform possibility domain if it
has a uniform non-dictatorial aggregator.

The aforementioned sets X1, X2 and X4 are uniform possibility domains, as
X1 and X4 admit a majority aggregator, while X2 admits a minority aggregator.
Clearly, if X is a uniform possibility domain, then X is also a possibility domain.
The converse, however, is not true. Indeed, suppose that X is a Cartesian product
X = Y ×Z, where Y ⊆ ∏l

j=1 Aj and Z ⊆ ∏m
j=l+1 Aj , with 1 ≤ l < m. If Y or Z

is an impossibility domain, then X is not a uniform possibility domain, although
it is a possibility domain, since, as seen earlier, every Cartesian product of two
sets is a possibility domain. It is also clear that if Y and Z are uniform possibility
domains, then so is their Cartesian product Y × Z. In particular, the Cartesian
product X1 × X2 is a uniform possibility domain.

The next result characterizes uniform possibility domains. It is the stepping
stone towards showing that the following decision problem is solvable in poly-
nomial time: given a set X of feasible evaluations, is X a uniform possibility
domain? To state this result, we first need to give a definition.

We say that f : An → A is a weak near-unanimity operation [11] if, for all
x, y ∈ A, we have that

f(y, x, x, . . . , x) = f(x, y, x, . . . , x) = . . . = f(x, x, x, . . . , y).

In particular, a ternary weak near-unanimity operation is a function f : A3 → A
such that for all x, y ∈ A, we have that

f(y, x, x) = f(x, y, x) = f(x, x, y).

Thus, the notion of a ternary weak near-unanimity operation is a common gen-
eralization of the notions of a majority operation and a minority operation.

As with the majority/minority aggregators, we say that X admits a ternary
weak near-unanimity aggregator f̄ = (f1, . . . , fm), if it admits a ternary aggrega-
tor every component of which is a weak near-unanimity operation, i.e. for all j =
1, . . . ,m and for all x, y ∈ Xj , we have that fj(y, x, x) = fj(x, y, x) = fj(x, x, y).

Theorem C (Kirousis et al. [10]). Let X be a set of feasible evaluations. The
following two statements are equivalent.

1. X is a uniform possibility domain.
2. X admits a ternary weak near-unanimity aggregator.

3 Results

In this section, we show that there are polynomial-time algorithms for telling,
given a set X of feasible evaluations, whether or not X is a possibility domain
and whether or not X is a uniform possibility domain.



On the Computational Complexity of Non-dictatorial Aggregation 357

3.1 Tractability of Possibility Domains

Theorems A and B provide necessary and sufficient conditions for a set X to be
a possibility domain in the Boolean framework and in the non-Boolean frame-
work, respectively. Admitting a binary non-dictatorial aggregator is a condition
that appears in both of these characterizations. Our first result asserts that this
condition can be checked in polynomial time.

Theorem 1. There is a polynomial-time algorithm for solving the following
problem: given a set X of feasible evaluations, determine whether or not X
admits a binary non-dictatorial aggregator and, if it does, produce one.

Proof. We will show that the existence of a binary non-dictatorial aggregator on
X is tightly related to connectivity properties of a certain directed graph HX

defined next.
If X ⊆ ∏m

j=1 Aj is a set of feasible evaluations, then HX is the following
directed graph:

– The vertices of HX are the pairs of distinct elements u, u′ ∈ Xj , for
j ∈ {1, . . . ,m}. Each such vertex will usually be denoted by uu′

j . When
the coordinate j is understood from the context, we will often be dropping
the subscript j, thus denoting such a vertex by uu′.
Also, if u ∈ Xj , for some j ∈ {1, . . . , m}, we will often use the notation uj to
indicate that u is an element of Xj .

– Two vertices uu′
k and vv′

l, where k 
= l, are connected by a directed edge
from uu′

k to vv′
l, denoted by uu′

k → vv′
l, if there are a total evaluation z ∈ X

that extends the partial evaluation (uk, vl) and a total evaluation z′ ∈ X that
extends the partial evaluation (u′

k, v
′
l), such that there is no total evaluation

y ∈ X that extends (uk, v
′
l), and has the property that yi = zi or yi = z′

i, for
every i ∈ {1, . . . , m}.

For vertices uu′
k, vv′

l, corresponding to issues k, l (that need not be distinct), we
write uu′

k →→ vv′
l to denote the existence of a directed path from uu′

k to vv′
l. In

the next example, we describe explicitly the graph HX for several different sets
X of feasible voting patters. Recall that a directed graph G is strongly connected
if for every pair of vertices (u, v) of G, there is a (directed) path from u to v.

Example 4. Recall the sets X2 = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} and X3 =
{(0, 0, 1), (0, 1, 0), (1, 0, 0)} of Examples 1 and 2.

Both HX2 and HX3 have six vertices, namely 01j and 10j , for j = 1, 2, 3. In
the figures below, we use undirected edges between two vertices uu′

k and vv′
l to

denote the existence of both uu′
k → vv′

l and vv′
l → uu′

k.
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HX2

011

101

012

102

013 103

HX3

011

102

013

101

012

103

Consider 011, 012 of HX2 . Since the partial vectors (0, 0) and (1, 1) extend
to (0, 0, 1) and (1, 1, 1), respectively, we need to check if there is a vector in X2

extending (0, 1), but whose third coordinate is 1. Since (0, 1, 1) /∈ X2, we have
that HX2 contains both edges 011 → 012 and 012 → 011. Now, since the partial
vectors (0, 1) and (1, 0) extend to (0, 1, 0) and (1, 0, 0), respectively, and since
neither (0, 0, 0) nor (1, 1, 0) are in X2, we have that 011 ↔ 102. By the above
and because of the symmetric structure of X2, it is easy to see that every two
vertices uu′

i and vv′
j of HX2 are connected if and only if i 
= j.

For X3, observe that, since no partial vector containing two “1”’s, in any two
positions, extends to an element of X3, there are no edges between the vertices
01i, 01j and 10i, 10j , for any i, j ∈ {1, 2, 3}, i 
= j. In the same way as with HX2 ,
we get that HX3 is a cycle.

There are two observations to be made, concerning HX2 and HX3 . First,
they are both strongly connected graphs. Also, neither X2 nor X3 admit binary
non-dictatorial aggregators (X2 admits only a minority aggregator and X3 is an
impossibility domain, as shown in Example 2).

Finally, consider X6 := {(0, 1), (1, 0)}. The graph HX6 has four vertices, 011,
101, 012 and 102, and it is easy to see that HX6 has only the following edges:

HX6

011 102

101 012

Observe that X6 is not strongly connected (it is not even connected) and
that in contrast to the sets X2 and X3, the set X6 admits two binary non-
dictatorial aggregators, namely, (∧,∨) and (∨,∧). In Lemma 2, we establish a
tight connection between strong connectedness and the existence of binary non-
dictatorial aggregators.
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We now state and prove two lemmas about the graph HX .

Lemma 1. Assume that f̄ = (f1, . . . , fm) is a binary aggregator on X.

1. If uu′
k → vv′

l and fk(u, u′) = u, then fl(v, v′) = v.
2. If uu′

k →→ vv′
l and fk(u, u′) = u, then fl(v, v′) = v.

Proof. The first part of the lemma follows from the definitions and the fact
that f̄ is conservative. Indeed, if uu′

k → vv′
l, then there are a total evaluation

z = (z1, . . . , zm) ∈ X that extends (uk, vl) (i.e., zk = u and zl = v) and a
total evaluation z′ = (z′

1, . . . , z
′
m) ∈ X that extends (u′

k, v
′
l) (i.e., z′

k = u′ and
z′
l = v′), such that there is no total evaluation in X that extends (uk, v

′
l) and

agrees with z or with z′ on every coordinate. Consider the total evaluation
(f1(z1, z′

1), . . . , fm(zm, z′
m)), which is in X because f̄ is an aggregator on X.

Since each fj is conservative, we must have that fj(zj , z′
j) ∈ {zj , z′

j}, for every j,
hence fl(zl, z′

l) = fl(v, v′) ∈ {v, v′}. Consequently, if fk(u, u′) = u, then we must
have fl(v, v′) = v, else (f1(z1, z′

1), . . . , fm(zm, z′
m)) extends (uk, v

′
l) and agrees

with z or with z′ on every coordinate.
The second part of the lemma follows from the first part by induction.

Lemma 2. X admits a binary non-dictatorial aggregator if and only if the
directed graph HX is not strongly connected.

Before delving into the proof, consider the graphs of Example 4. Using the fact
that the graphs HX2 and HX3 are strongly connected and also using the second
item of Lemma 1, it is easy to see that X2 and X3 admit no binary non-dictatorial
aggregator; indeed, let f̄ = (f1, f2, f3) be a binary aggregator of either of these
two sets and suppose that f1(0, 1) = 0. Since in both graphs HX2 and HX3 , there
are paths from 011 to every other vertex, it follows that fj = pr21, j = 1, 2, 3. If
f1(0, 1) = 1, we get that fj = pr22, j = 1, 2, 3, in the same way.

In contrast, consider HX6 and let ḡ = (g1, g2) be a pair of binary functions
with g1(0, 1) = 0. For ḡ to be an aggregator, Lemma 1 forces us to set g2(1, 0) = 1.
But now, by setting g1(1, 0) = 0, and thus g2(0, 1) = 1, we get that (g1, g2) =
(∧,∨) is a non-dictatorial binary aggregator for X6.

Proof. We first show that if X admits a binary non-dictatorial aggregator, then
HX is not strongly connected. In the contrapositive form, we show that if HX

is strongly connected, then X admits no binary non-dictatorial aggregator. This
is an easy consequence of the preceding Lemma 1. Indeed, assume that HX is
strongly connected and let f̄ = (f1, . . . , fm) be a binary aggregator on X. Take
two distinct elements x and x′ of X1. Since f̄ is conservative, we have that
f1(x, x′) ∈ {x, x′}. Assume first that f1(x, x′) = x. We claim that fj = pr21, for
every j ∈ {1, . . . , m}. To see this, let y and y′ be two distinct elements of Xj , for
some j ∈ {1, . . . , m}. Since HX is strongly connected, we have that xx′

1 →→ yy′
j .

Since also f1(x, x′) = x, Lemma 1 implies that fj(y, y′) = y = pr21(y, y′) and so
fj = pr21. Next, assume that f1(x, x′) = x′. We claim that fj = pr22, for every
j ∈ {1, . . . , m}. To see this, let y and y′ be two distinct elements of Xj , for some
j ∈ {1, . . . , m}. Since HX is strongly connected, we have that yy′

j →→ xx′
1,
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hence, if fj(y, y′) = y, then, Lemma 1, implies that f1(x, x′) = x, which is a
contradiction because x 
= x′. Thus, fj(y, y′) = y′ and so fj = pr22.

For the converse, assume that HX is not strongly connected and let uu′
k, vv′

l

be two vertices of HX such that there is no path from uu′
k to vv′

l in HX , i.e.,
it is not true that uu′

k →→ vv′
l. Let V1, V2 be a partition of the vertex set such

that uu′
k ∈ V1, vv′

l ∈ V2, and there is no edge from a vertex in V1 to a vertex in
V2. We will now define a binary aggregator f̄ = (f1, . . . , fm) and prove that it
is non-dictatorial.

Given z, z′ ∈ X, we set fj(zj , z′
j) = zj if zz′

j ∈ V1, and we set fj(zj , z′
j) = z′

j

if zz′
j ∈ V2, for j ∈ {1, . . . , m}. Since uu′

k ∈ V1, we have that fk 
= pr22; similarly,
since vv′

l ∈ V2, we have that fl 
= pr21. Consequently, f̄ is not a dictatorial
function on X. Thus, what remains to be proved is that if z, z,′ ∈ X, then
f̄(z, z′) ∈ X. For this, we will show that if f̄(z, z′) 
∈ X, then there is an edge
from an element of V1 to an element of V2, which is a contradiction.

Assume that q = f̄(z, z′) 
∈ X. Let K be a minimal subset of {1, . . . , m}
such that q� K cannot be extended to a total evaluation w in X that agrees
with z or with z′ on {1, . . . , m} \ K (i.e., if j ∈ {1, . . . , m} \ K, then wj = zj
or wj = z′

j). Since z′ is in X, it does not extend q� K, hence there is a number
s ∈ K such that qs = fs(zs, z′

s) = zs 
= z′
s. It follows that the vertex zz′

s is in
V1. Similarly, since z is in X, it does not extend q� K, hence there is a number
t ∈ K such that qt = ft(zt, z′

t) = z′
t 
= zt. It follows that the vertex zz′

t is in
V2. Consequently, there is no edge from zz′

s to zz′
t in HX . We will arrive at a

contradiction by showing that zz′
s → zz′

t, i.e., there is an edge zz′
s to zz′

t in HX .
Consider the set K \ {t}. By the minimality of K, there is a total evaluation w
in X that extends q� K \ {t} and agrees with z or with z′ outside K \ {t}. In
particular, we have that ws = qs = zs and wt = zt. Similarly, by considering
the set K \ {s}, we find that there is a total evaluation w′ in X that extends
q� K \ {s} and agrees with z or with z′ outside K \ {s}. In particular, we have
that w′

s = z′
s and wt = qt = z′

t. Note that w and w′ agree on K \ {s, t}. Since
q� K does not extend to a total evaluation that agrees with z or with z′ outside
K, we conclude that there is no total evaluation y in X that extends (zs, z′

t) and
agrees with w or with w′ on every coordinate. Consequently, zz′

s → zz′
t, thus we

have arrived at a contradiction.

We are now ready to complete the proof of Theorem 1. Given a set X of
feasible evaluations, the graph HX can be constructed in time bounded by a
polynomial in the size |X| of X (in fact, in time O(|X|5). There are well-known
polynomial-time algorithms for testing if a graph is strongly connected and, in
case it is not, producing the strongly connected components of the graph (e.g.,
Kosaraju’s algorithm presented in Sharir [15] and Tarjan’s algorithm [18]). Con-
sequently, by Lemma 2, there is a polynomial-time algorithm for determining
whether or not a given set X admits a binary non-dictatorial aggregator. More-
over, if X admits such an aggregator, then one can be constructed in polynomial-
time from the strongly connected components of HX via the construction in the
proof of Lemma 2.
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As mentioned in the introduction, the existence of a binary non-dictatorial
aggregator on X is closely related to the total blockedness of X.

Theorem D (Kirousis et al. [10]). Let X be a set of feasible evaluations. The
following two statements are equivalent.

1. X is totally blocked.
2. X admits no binary non-dictatorial aggregator.

The next corollary follows from Theorems 1 and D.

Corollary 1. There is a polynomial-time algorithm for the following decision
problem: given a set X ⊆ {0, 1}m of feasible evaluations, is X totally blocked?

Furthermore, by combining Theorem 1 with Theorem A, we obtain the fol-
lowing result.

Theorem 2. There is a polynomial-time algorithm for the following decision
problem: given a set X ⊆ {0, 1}m of feasible evaluations in the Boolean frame-
work, determine whether or not it is a possibility domain.

We now turn to the problem of detecting possibility domains in the non-
Boolean framework.

Theorem 3. There is a polynomial-time algorithm for solving the following
problem: given a set X of feasible evaluations, determine whether or not X is a
possibility domain and, if it is, produce a binary non-dictatorial aggregator for
X or a ternary non-dictatorial aggregator for X.

Proof. It is straightforward to check that, by Theorems B and 1, it suffices to
show that there is a polynomial-time algorithm that, given X, detects whether
or not X admits a majority aggregator or a minority aggregator, and, if it does,
produces such an aggregator.

Let X be a set of feasible evaluations, where I = {1, . . . , m} is the set of
issues and Aj , j = 1, . . . ,m, are the sets of the position values. We define the
disjoint union A of the sets of position values as

A =
⊔m

j=1 Aj =
⋃m

j=1{(x, j) | x ∈ Aj}.

We also set

X̃ = {((x1, 1), . . . , (xm,m)) | (x1, . . . , xm) ∈ X} ⊆ Am.

We will show that we can go back-and-forth between conservative majority
or minority polymorphisms for X̃ and majority or minority aggregators for X.

Let f : An → A be a conservative polymorphism for X̃. We define the m-
tuple f̄ = (f1, . . . , fm) of n-ary functions f1, . . . , fm as follows: if x1

j , . . . , x
n
j ∈

Aj , for j ∈ {1, . . . , m}, then we set fj(x1
j , . . . , x

n
j ) = yj , where yj is such that

f((x1
j , j), . . . , (x

n
j , j)) = (yj , j). Such a yj exists and is one of the xi

j ’s because
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f is conservative, and hence f((x1
j , j), . . . , (x

n
j , j)) ∈ {(x1

j , j), . . . , (x
n
j , j)}. It is

easy to see that f̄ is an aggregator for X. Moreover, if f is a majority or a
minority operation on X̃, then f̄ is a majority or a minority aggregator on X.

Next, let f̄ = (f1, . . . , fm) be a majority or a minority aggregator for X. We
define a ternary function f : A3 → A as follows. Let (x, j), (y, k), (z, l) be three
elements of A.

– If j = k = l, then we set f((x, j), (y, k), (z, l)) = (fj(x, y, z), j).
– If j, k, l are not all equal, then if at least two of (x, j), (y, k), (z, l) are equal

to each other, we set

f((x, j), (y, k), (z, l)) = maj((x, j), (y, k), (z, l)),

if f̄ is a majority aggregator on X, and we set

f((x, j), (y, k), (z, l)) = ⊕((x, j), (y, k), (z, l)),

if f̄ is a minority aggregator on X;
– otherwise, we set f((x, j), (y, k), (z, l)) = (x, j).

It is easy to see that if f̄ is a majority or a minority aggregator for X, then
f is a conservative majority or a conservative minority polymorphism on X̃. It
follows that X admits a majority or a minority aggregator if and only if X̃ is
closed under a conservative majority or minority polymorphism. Bessiere et al.
[2] and Carbonnel [6] design polynomial-time algorithms that detect if a given
constraint language Γ has a conservative majority or a conservative minority
polymorphism, respectively, and, when it has, compute such a polymorphism.
Here, we apply these results to Γ = {X̃}.

3.2 Tractability of Uniform Possibility Domains

Recall that a constraint language is a finite set Γ of relations of finite arities
over a finite non-empty set A. The conservative constraint satisfaction problem
for Γ , denoted by c-CSP(Γ ) is the constraint satisfaction problem for the con-
straint language Γ that consists of the relations in Γ and, in addition, all unary
relations on A. Bulatov [3,4] established a dichotomy theorem for the computa-
tional complexity of c-CSP(Γ ): if for every two-element subset B of A, there is
a conservative polymorphism f of Γ such that f is binary and f � B ∈ {∧,∨}
or f is ternary and f ∈ {maj,⊕}, then c-CSP(Γ ) is solvable in polynomial time;
otherwise, c-CSP(Γ ) is NP-complete. Carbonnel [5] showed that the boundary
of the dichotomy for c-CSP(Γ ) can be checked in polynomial time.

Theorem E (Carbonnel [5]). There is a polynomial-time algorithm for solving
the following problem: given a constraint language Γ on a set A, determine
whether or not for every two-element subset B ⊆ A, there is a conservative
polymorphism f of Γ such that f is binary and f� B ∈ {∧,∨} or f is ternary and
f� B ∈ {maj,⊕}. Moreover, if such a polymorphism exists, then the algorithm
produces one in polynomial time.
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The final result of this section is about the complexity of detecting uniform
possibility domains.

Theorem 4. There is a polynomial-time algorithm for solving the following
problem: given a set X of feasible evaluations, determine whether or not X is a
uniform possibility domain and, if it is, produce a ternary weak near-unanimity
aggregator for X.

Proof. In what follows, given a two-element set B, we will arbitrarily identify
its elements with 0 and 1. Consider the functions ∧3 and ∨3 on {0, 1}3, where
∧3(x, y, z) := (∧(∧(x, y), z)) and ∨3(x, y, z) := (∨(∨(x, y), z)). It is easy to see
that the only ternary, conservative, weak near-unanimity functions on {0, 1} are
∧3, ∨3, maj, and ⊕. We will also make use of the following lemma, which also
gives an alternative formulation of the boundary of the dichotomy for conserva-
tive constraint satisfaction.

Lemma 3. Let Γ be a constraint language on set A. The following two state-
ments are equivalent.

1. For every two-element subset B ⊆ A, there exists a conservative polymor-
phism f of Γ (which, in general, depends on B), such that f is binary and
f�B ∈ {∧,∨} or f is ternary and f�B ∈ {maj,⊕}.

2. Γ has a ternary, conservative, weak near-unanimity polymorphism.

Proof. (Sketch) (1 ⇒ 2) Given a two-element subset B ⊆ A and a binary con-
servative polymorphism f of Γ such that f�B ∈ {∧,∨}, define f ′ to be the
ternary operation such that f ′(x, y, z) = f(f(x, y), z), for all x, y, z ∈ A. It is
easy to see that f ′ is a conservative polymorphism of Γ as well and also that
f ′�B ∈ {∧(3),∨(3)}.

The hypothesis and the preceding argument imply that, for each two-element
subset B ⊆ A, there exists a ternary conservative polymorphism f of Γ (which,
in general, depends on B) such that f�B ∈ {∧(3),∨(3),maj,⊕}. For each two-
element subset B ⊆ A, select such a polymorphism and let f1, . . . , fN , N ≥ 1,
be an enumeration of all these polymorphisms. Clearly, the restriction of each
f i to its respective two element subset is a weak near-unanimity operation.

Consider the ‘’ operator that takes as input two ternary operations f, g :
A3 → A and returns as output a ternary operation f  g defined by

(f  g)(x, y, z) := f(g(x, y, z), g(y, z, x), g(z, x, y)).

If f, g are conservative polymorphisms of Γ , then so is (f g). Also, if B is a two-
element subset of A such that f�B or g�B is a weak near-unanimity operation,
then so is (f  g)�B . Consider now the iterated diamond operation h with

h := f1  (f2  (. . .  (fN−1  fN ) . . .)).

By the preceding discussion, h is a conservative polymorphism such that h�B is
a weak near-unanimous operation for every two-element subset B of A, hence h
itself is a weak near-unanimity, conservative, ternary operation of Γ .
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(2 ⇒ 1) Let h be a ternary, conservative, weak near-unanimity poly-
morphism of Γ . Thus, for every two-element subset B ⊆ A, we have that
h�B ∈ {∧(3),∨(3),maj,⊕}.

If there is a two-element subset B ⊆ A such that h�B ∈ {∧(3),∨(3)}, then
consider the binary function g defined by

g(x, y) := h(x, x, y) = h(pr21(x, y), pr21(x, y), pr22(x, y)).

Obviously, g is a binary conservative polymorphism of Γ ; moreover, for every
two-element subset B ⊆ A, if h�B ∈ {∧(3),∨(3)}, then g�B ∈ {∧,∨}.

By Theorem C, a set X of feasible evaluations is a uniform possibility domain
if and only if there is a ternary aggregator f̄ = (f1, . . . , fm) such that each fj is a
weak near-unanimity operation, i.e., for all j ∈ {1, . . . , m} and for all x, y ∈ Xj ,
we have that fj(x, y, y) = fj(y, x, y) = fj(y, y, x). As in the proof of Theorem 3,
we can go back-and-forth between X and the set X̃, and verify that X is a
uniform possibility domain if and only if X̃ has a ternary, conservative, weak
near-unanimity polymorphism. Theorem E and Lemma 3 then imply that the
existence of such a polymorphism can be tested in polynomial time, and that
such a polymorphism can be produced in polynomial time, if one exists.

4 Concluding Remarks

In this paper, we established the first results concerning the tractability of non-
dictatorial aggregation. Specifically, we gave polynomial-time algorithms that
take as input a set X of feasible evaluations and determine whether or not X
is a possibility domain and a uniform possibility domain, respectively. In these
algorithms, the set X of feasible evaluations is given to us explicitly, i.e., X
is given by listing all its elements. It is natural to ask how the complexity of
these problems may change if X is given implicitly via a succinct representation.
Notice that Theorems 1, 3 and 4, directly imply that in this case, the problems
of whether X is a possibility domain and of whether it is a uniform possibility
domain respectively, are EXPTIME. Furthermore, by Theorem 2, we obtain that
in the Boolean framework, the problem of whether X is a possibility domain is
in PSPACE. It is an open problem weather there are respective lower bounds
for the complexity of the above problems in the succinct case. This scenario
merits further investigation, because it occurs frequently in other areas of social
choice, including the area of judgment aggregation, where X is identified with
the set of satisfying assignments of a Boolean formula (for surveys on judgment
aggregation, see [9,12]).

The work reported here assumes that the aggregators are conservative, an
assumption that has been used heavily throughout the paper. There is a related,
but weaker, notion of an idempotent (or Paretian) aggregator f̄ = (f1, . . . , fm)
where each fj is assumed to be an idempotent function, i.e., for all x ∈ Xj ,
we have that f(x, . . . , x) = x. Clearly, every conservative aggregator is idempo-
tent. In the Boolean framework, idempotent aggregators are conservative, but,
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in the non-Boolean framework, this need not hold. It remains an open problem
to investigate the computational complexity of the existence of non-dictatorial
idempotent aggregators in the non-Boolean framework.
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