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Abstract. Software defined networking (SDN) brings flexibility in the
construction and management of distributed applications by reducing
the constraints imposed by physical networks and by moving the con-
trol of networks closer to the applications. However mastering SDN still
poses numerous challenges among which the design of correct SDN com-
ponents (more specifically controller and switches). In this work we use a
formal stepwise approach to model and reason on SDN. Although formal
approaches have already been used in this area, this contribution is the
first state-based approach; it is based on the Event-B formal method,
and it enables a correct-by-construction of SDN components. We pro-
vide the steps to build, using several refinements, a global formal model
of a SDN system; correct SDN components are then systematically built
from the global formal model satisfying the properties captured from the
SDN description. Event-B is used to experiment with the approach.

Keywords: SDN · Correct design · Event-B · Refinement
Decomposition

1 Introduction

An essential constituent of distributed applications is the physical network
behind them. Distributed applications very often build on existing middlewares
which embody services provided at the network level. Thus the reliability of dis-
tributed applications depends not only on their own development but also on the
reliability of the network. Due to the involvement of many physical devices, the
network level has for many years been a source of severe complexities and con-
straints leading very often to the adoption of rigid solutions in the deployment
of applications.

Fighting the lack of flexibility of physical networks resulted in the software-
defined networking (SDN) initiative [1,15,17]. Software-defined networking pro-
vides the opportunity to go deeper in modelling and reasoning on networks, since
it enables to define and manage more easily the networks at the software level.
Indeed a software-defined network is made of a controller and switches which are
abstractly defined before being implemented at software level. In this context an
user application does not consider a physical network or a specific middleware
but it is rather built on top of a virtual or open network.
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K. Bae and P. C. Ölveczky (Eds.): FACS 2018, LNCS 11222, pp. 35–53, 2018.
https://doi.org/10.1007/978-3-030-02146-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02146-7_2&domain=pdf
http://orcid.org/0000-0002-7815-1752


36 J. C. Attiogbé

Even if software-defined networking makes it possible to control an entire
network with software, through programs that tailor network behavior to suit
specific applications and environments, programmers still have many difficul-
ties to write correct SDN programs. This is due to the unpredictability of the
SDN as a distributed asynchronous system, and the lack of correctly developed
SDN frameworks or formally verified SDN frameworks. Much work have been
undertaken around SDN; they address different aspects: building simulators and
analysers for SDN, building SDN controllers, verifying the controller component
of an software-defined network, etc.

However SDN deployment is still at its beginning and programmers or admin-
istrators still need trustworthy devices and frameworks. Such devices may be
implemented from rigorously founded models and related reasoning and engi-
neering tools. Besides, considering the keen interest and the demands for the
deployment of SDN as a flexible infrastructure for specific applications, clouds
applications, IoT, etc, which all require security, it is of tremendous importance
to have at the disposal of developers trustworthy development, analysis and sim-
ulation frameworks. Formal models taking into account several of these aspects
are then necessary. That are the challenges that motivate of our work.

The main contributions of this paper are: (i) capturing the SDN as a discrete-
event system to foster its modelling with an event-based approach; (ii) a state-
based core model for rigorous analysis, development and simulation frameworks
dedicated to SDN applications; it is a global Event-B [2] model, designed as the
basis of the stepwise construction of the various components of a SDN; (iii) the
systematic derivation of correct components (SDN controller and switches) from
the global model which is previously proved to have some required properties.

The article is organised as follows. Section 2 gives an overview of software-
defined networking, related work and main issues. In Sect. 3 we introduce the
main concepts for modelling SDN, an overview of Event-B method and then our
approach to build the global abstract model by stepwise refinements. Section 4
shows how one can derive the construction of a correct SDN controller from
the global formal model. Section 5 gives the first experimental results related to
simulation and verification of global safety/liveness properties. We conclude in
Sect. 6 and stress some challenges for future work.

2 Overview of SDN: Concepts and Architecture

The SDN architecture consists of three layers: user application, control, and data
forwarding. Control and data are the most relevant ones when studying the SDN.
Figure 1 depicts how the SDN is viewed from the user side as a single global
switch which denotes an abstraction of an entire network. User applications can
directly exploit an abstraction of the network. Network services are solicited
directly from host machines linked to a physical device: a switch assumed to be
under the SDN control.
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Fig. 1. The layered architecture of a SDN

In software-defined networking there is a physical separation between the
control-plane (the management of the network and definition of rules to for-
ward data packets) and the data-plane (how packets are forwarded according
to control-plane) [15,17]. Indeed the network control (the high level or control-
plane) is now separated from the packet forwarding (the low level or data-plane)
activity and, physical devices inside the low level may be designed more eas-
ily; the network control is independent from device providers, the control is
brought closer to software controllers and administrators. Traditional network
services such as routing, access control, traffic engineering, security, etc can be
implemented via various APIs provided by the SDN, instead of being vendor-
dependent. The control and data levels are linked by an open communication
interface. OpenFlow [1,9] is representative of such communication interfaces.
OpenFlow is a standard communication interface, that moves the control of the
network from the physical switches to logically centralized control software.

SDN has been used in variety of implementations, for example [16] is ded-
icated to the implementation of wireless networks, while in [5] the authors
describe a tool, FlowChecker, which identifies any intra-switch misconfiguration
within a Flow Table of a switch. RouteFlow [19] is a controller which implements
virtualized IP routing over OpenFlow infrastructure.

2.1 Concepts and Components

We distinguish in Fig. 2 the main components of an SDN. Switches and controller
are network devices that interact using packets and messages on data channel
and message channel also called secure channel.

Switch. A switch is a device responsible of forwarding packets, to perform a hop-
by-hop transfer of information through the network. A switch is configurable by
the controller with which it interacts via a secure message channel. A switch
interacts with other switches via a data channel.

Controller. A controller is a device responsible of controlling a whole network
(a local or medium area network). It is used by the network administrator to
dynamically configure, in an evolutive way, the switches with adequate forward-
ing information; it maintains the connectivity of the switches, etc. The controller
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Fig. 2. A detailed architecture

initiates the switches behaviour, maintains them and instructs the switches with
respect to specific actions. Packets not processed by the switches are sent to the
controller via messages emitted on the message channel. The controller does not
use the data channel.

Packet. A packet contains information related to various protocols (Ethernet,
IP, etc). A packet has a header related to data and network layers and a body.
Inside the header we have for instance: the destination and source addresses for
each layer, the type of protocol, ...

Message. A message contains a control or management information addressed by
the controller to a switch. The control information is for instance: which packet
to drop, the indication of a port on which the switch may forward a data packet.
A switch can also emit a message to a controller. In this case either the message
contains a response to a control order (for instance the controller asked for the
status of a switch) or a packet for which the switch does not have an entry in
its table for forwarding the packet to its destination.

Flow Table. A flow table is a part of a switch. It describes the switch elementary
behaviour. A flow table is made of several entries sent by the controller. Each
entry has a header information and a body. The header may contain a message
priority set by the controller. The body of the message can be a data packet, or
a rule to process the incoming packets.

Interaction between switches and controller. A properly configured switch has
routes to forward received packets coming from other network services. If the
switch lacks of forwarding information, it sends the received packets to the con-
troller. The controller is linked to the available switches and manages them
directly with orders sent via messages on a secure reliable channel. These mes-
sages are used to configure and maintain the switches, defining for each one the
rules to forward packets it receives. At this stage we have a simple interaction
between application level, and the provided high level network services. But this
interaction is more complex if we look at it in details. Consider for this purpose
a detailed view depicted in Fig. 2, of the interaction with the SDN network.
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2.2 OpenFlow: a Standard Interface

OpenFlow is a standard communications interface, supported by the Open Net-
work Foundation [1,9,17]. OpenFlow has been precisely defined but not formally.

As such, OpenFlow provides a means for specifying data level or control-plane
logics and also protocols. However there is no mandatory formal specification or
formal requirements; accordingly the network systems resulting from OpenFlow
may be incorrect or not satisfying safety conditions.

The OpenFlow semantics being informal, tool builders may assume particular
behaviour and functioning for the network devices, leading to inconsistencies and
incorrect behaviours; that is the case for the order in which packets are processed
inside a switch.

2.3 Issues and Related Work

There is a keen interest for SDN, justifying several papers from both industry and
academia. Important efforts are devoted to the implementation of SDN [16,18,
19]. SDN provides flexible network systems and distributed systems development
but there is no guarantee that these systems are safe or correct. SDN as an
asynchronous system undergoes the impact of time passing and non-determinism
or concurrency of events. Packets may be received and distributed in any order
causing for instance inconsistent interpretation in the switches when a forwarding
route arrives after the related packet is sent. One of the main issues in SDN is
the inconsistent packet forwarding during a network update which results in an
update inconsistency [8]. Update consistency requires that packets are either
forwarded by an old version of the forwarding table or by the new version of
the table (after an update), but not by an interleaving of the old and the new
version.

These issues require efforts to build robust tools and protocols on the basis
of thoroughly studied SDN models. Much work have been devoted to vari-
ous aspects of SDN among which the modelling and reasoning on the SDN
controller[10], the analysis of the SDN traffic [8,14].

According to the state of the art [4,6,12,15] most investigations address the
implementation issue as an important challenge; some of the aspects taken into
account in these papers are: scalability, performance, security, simulation. The
correctness of the implementations has received less attention.

In [13] the authors address the challenge of building robust firewalls for pro-
tecting OpenFlow-based networks where network states and traffic are frequently
changed. They propose the FlowGuard framework for the detection and the res-
olution of firewall policy violation. They use an algorithmic approach.

VeriFlow is a verification tool proposed in [14] for checking in real-time net-
work invariants and policy correctness in OpenFlow networks. This work is based
on direct implementation that monitors the update events occurring on the net-
work; it uses an algorithmic approach for the forwarding rules.

SDNRacer [8] is a network analyzer which can ensure that a network is free
of harmful errors such as data races or per-packet inconsistencies. The authors
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provide a formal semantics enriched with a happens-before model, to capture
when events can happen concurrently.

The work in [10] is devoted to the verification of an SDN controller; the
authors provide an operational model for OpenFlow and formalize it in the Coq
proof assistant. This model is then used to develop a verified compiler and a
run-time system for a high-level network programming language.

To sum up, the previous references are the preliminary steps towards making
SDN networks more reliable; but much works remain to be done:

– making easier for developers the construction and verification of controllers
from various existing well-researched models,

– enhancing machine-assisted configuration of controllers and OpenFlow-based
switches,

– promoting the reuse of correct SDN components in the deployment of new
SDN (that is interoperability).

The goal of our work is to serve these purposes by contributing with a global,
extensible, refinable formal model. It is the first event-based one, making it easy
to derive simulators and also to prove safety and liveness properties. It is provided
as a reusable formal basis for any one interested, avoiding hence to repeat the
efforts through the chains of work.

Unlike in the case dedicated to implementations, we follow an approach sim-
ilar to those addressing modelling and reasoning on controllers, by defining for
the SDN a global formal model from which the models of the components can
be derived and then correctly implemented.

3 Stepwise Refinement-Based Modelling of SDN

We use Event-B [2] and adopt a correct-by-construction approach.

3.1 An Overview of Event-B

Event-B [2,11] is a modelling and development method where components are
modelled as abstract machines which are composed and refined into concrete
machines. An abstract machine describes a mathematical model of a system
behaviour1. In an Event-B modelling process, abstract machines constitute the
dynamic part whereas contexts are used to describe the static part. A context
is seen by machines. It is made of carrier sets and constants. It may contain
properties (defined on the sets and constants), axioms and theorems. A machine
is described, using named clauses, by a state space made of typed variables and
invariants, together with several event descriptions.
State Space of a Machine. The variables constrained by the invariant (typing
predicate, properties) describe the state space of a machine. The change from
one state to the other is due to the effect of the events of the machine. Specific
1 A system behaviour is a discrete transition system.
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properties required by the model may be included in the invariant. The predicate
I(x) denotes the invariant of machine, with x the state variables.

Events of an Abstract Machine. Within Event-B, an event is the description of a
system transition. Events are spontaneous and show the way a system evolves.
An event e is modelled as a guarded substitution: e =̂ eG =⇒ eB where eG is the
event guard and eB is the event body or action. An event may occur only when
its guard holds. The action of an event describes, with simultaneous generalised
substitutions, how the system state evolves when this event occurs: disjoint state
variables are updated simultaneously.

The effect of events are modelled with generalised logical substitution (S)
using the global variables and constants. For instance a basic substitution x :=
e is logically equivalent to the predicate x’ such that x’ = e. This is symbolically
written x′ : (x′ = e) where x′ corresponds to the state variable x after the
substitution and e is an expression. In the rest of the paper, the variable x is
generalised to the list of state variables.

Several events may have their guards held simultaneously; in this case, only
one of them occurs. The system makes internally a nondeterministic choice. If
no guard is true the abstract system is blocking (deadlock).

In Event-B proof obligations are defined to establish model consistency via
invariant preservation. Specific properties (included in the invariant) of a system
are also proved in the same way.

Refinement. An important feature of the Event-B method is the availability
of refinement technique to design a concrete system from its abstract model
by stepwise enrichment of the abstract model. During the refinement process
new variables (y) are introduced; the invariant is strengthened without breaking
the abstract invariant, and finally the events guards are strengthened. In the
invariant J(x, y) of the refinement, abstract variables (x) and concrete variables
(y) are linked. The refinement is accompanied with proof obligations in order to
prove their correctness with respect to the abstract model.

Rodin Tool. Rodin2 is an open tool dedicated to building and reasoning on B
models, using mainly provers and the ProB model-checker. Rodin is made of
several modules (plug-ins) to work with B models and interact with related
tools.

3.2 Abstractions for SDN Modelling

An SDN is made of a controller connected to several switches. The controller
is linked to the switches via a secure message channel which conveys message
flows between the controller and the switches. The switches are interconnected
via a data channel which conveys data packets. Consequently, the elementary
abstractions using the Event-B notations, are the basic sets that represent:
the switches (SW ID), the packets (PACKET), the messages (MESG), the

2 http://wiki.event-b.org/index.php/Main Page.

http://wiki.event-b.org/index.php/Main_Page
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packet headers (HEADER), the states of a switch (SW STATE). The messages
have types and may contain packets3: mesgType ∈ MESG �→ MESGTYPE ,
mesgPk ∈ MESG �→ PACKET .

A packet has several headers (MAC source address, MAC destination address,
MAC type, IP source address, IP destination address, IP protocol, transport
source port, transport destination port), for simplification we consider only one
of such header: pHeaderi ∈ PACKET �→ HEADER. In the model these headers
are specified like the function pHeaderi . The previous sets and constants are
gathered in a CONTEXT EnvCtx0 (see Fig. 3), seen by an abstract MACHINE
which contains the variables and the typing predicate and properties in the
VARIABLES and INVARIANT clauses. The context is then successively extended
as the machines are refined.

Fig. 3. Event-B specification of the primary context

The SDN is a set of components that work concurrently in an asynchronous
manner; we build a first global abstract model that simulates the functioning of
this asynchronous system. The global abstract model will be the basis for the
development of the components.

To structure this abstract model, we consider the data model and the dis-
cretisation of the behaviour (a set of observed events) of each of its components
as a family of events. This is important for mastering the interaction between
components and the forthcoming decomposition of the model.
Switches. Each switch has a flow table which contains the elementary behaviour
of the switch according to the packets entering the switch. The behaviour of a
switch is as follows: when it receives a message from the controller, it analyses
the information inside the message and accordingly performs the instructions

3 The symbol �→ denotes a partial function; ↔ denotes a relation.
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of the controller, for example updating its table, delivering a packet to a given
port indicated in the message, dropping a packet or buffering a packet contained
in the message. When a switch receives a packet from another switch, either
it forwards the packet to another switch according to the rules in its current
table, or it forwards the packet to the controller if there is no rule matching
the packet headers. Accordingly, we have a set of switches: switches ⊆ SW ID.
Each switch has:

– a flow table which may be empty or made of several entries:
flowTable ∈ ENTRY �→ switches.
Each entry has several headers (similar as for packets); each one is specified
as follows4:
eHeaderi ∈ ENTRY �→ HEADER
dom(eHeaderi) = dom(flowTable)

– a status: swStatus ∈ SW ID �→ SW STATE ∧ dom(swStatus) = switches
– a buffer swIncomingMsg containing all messages received by the switches:

swIncomingMsg ⊆ MESG × switches
– a buffer swIPk for all packets it receives, before treatment:

swIPk ∈ PACKET ↔ switches; swIncomingPk is the set of packets such that
swIncomingPk ⊆ PACKET and swIncomingPk = dom(swIPk).
Each packet has a header: pHeaderi ∈ PACKET �→ HEADER

– a buffer swOMsg that contains messages to be sent to the controller:
swOMsg ∈ MESG ↔ switches; swOutgoingMsg is a set of messages such that
swOutgoingMsg ⊆ MESG ∧ swOutgoingMsg = dom(swOMsg)

– a buffer swOPk containing packets to be sent to other switches or to the con-
troller: swOPk ∈ PACKET ↔ switches and swOutgoingPk the set of packets
such that swOutgoingPk ⊆ PACKET ∧ swOutgoingPk = dom(swOPk).

Behaviour of the switch. We capture the behaviour of the switch by considering
how it is involved in the interaction with its environment. Each impact of the
environment is considered as an event. The (re)actions of the switch are modelled
as events that in turn impact or not the environment. We have then a set of events
characterizing the switches; they are as follows.

sw rcv matchingPkt: the condition for the occurrence of this event is that there
is in the incoming packets of a switch sw , a packet pkt , received from another
switch via the data channel ((pkt �→ sw) ∈ dataChan), which header (ahd =
pHeader1(pkt)) is pattern-matched with one entry of the flow table of sw :
(∃ee.(((ee ∈ ENTRY ) ∧ (ee ∈ dom(flowTable))) ∧ (eHeader1 (ee) = ahd)));
the effect of the event is that the packet should be forwarded to another
switch: swIPk := swIPk ∪ {pkt}
The Event-B specification of the event is given in the Fig. 4.

sw rcv unmatchingPkt: its occurs when a switch receives a packet (from
another switch) which header does not match any entry of the flow table.

4 dom denotes the domain of a relation; ran denotes the range.
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sw sndPk2ctrl: its occurs when a switch emits to the controller, a message
containing an unmatched packet;

sw sendPckt2sw: a switch sends a packet to another switch via the data chan-
nel;

sw newFTentry: the occurrence of this event expresses that a new entry is
added to the flow table. · · ·

Fig. 4. Event-B specification of the event sw rcv matchingPkt

Controller. A controller administrates the switches with control messages. It has
buffers which contain messages or packets to be sent/received to/from switches:
a buffer for incoming packets (ctlIncomingPk ⊆ PACKET ); a buffer for outgoing
packets (ctlOutgoingPk ⊆ PACKET ).

The controller emits/receives messages on/from the message channel. These
messages contain either data packets or instructions to control the switches.
Among the control messages we have: the Add order to add an new entry into
the table flow of a switch; Modf to modify an entry into the flow table of a
switch; Del to delete an entry into the flow table of a switch.

Behaviour of the controller. As for the switch, the behaviour of the controller is
captured and modelled as a set of events denoting how the controller interacts
with its environment. Each impact of the environment is considered as an event;
the (re)actions of the controller are modelled as events that in turn impact or
not the environment.

As illustration, among the events of the controller we have the following:

ctl emitPkt: this event occurs when the controller emits to a switch sw, through
a message, one of its pending packets; the condition for this occurrence is that
there is some pending packets in the dedicated buffer (pkt ∈ ctlOutgoingPk).
The effect of the event is that a message containing the packet is added to
the secure channel: secureChan := secureChan ∪ {msg �→ sw} and the buffer
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is updated: ctlOutgoingPk := ctlOutgoingPk\{pkt}. Figure 5 gives the Event-
B specification of the event; all the remaining events are specified in a similar
way.

ctl rcvPacketIn: this event occurs when the controller receives a packet from a
switch which previously received it but does not have an entry matching it.

ctl askBarrier: the occurrence of this event specifies when the controller asks
for a barrier; that means the controller orders the switch to perform some
control with urgency and to send a barrier acknowledgement.

Fig. 5. Event-B specification of the event ctl emitPkt

The global abstract model comprises in an EVENT clause, all the events
characterizing the switches and the controller; the occurrence of each event is
due to some conditions of the SDN and this occurrence has effect on the SDN.
In Event-B a guard captures each condition; an Event-B substitution describes
the effect of the event.

Interaction between Controller and Switches. The interaction is based on com-
munications via channels; we distinguish a data packet channel and a control
message channel. The channels are modelled with sets. A switch or a controller
writes/reads messages on/from the channels according to their behaviour.

secureChan ⊆ MESG × switches
dataChan ⊆ PACKET × switches

A first abstract Event-B model is obtained by gathering all these abstractions
on data and behaviour.

3.3 Correctness Conditions of the Model

The correctness of the global model depends on the properties formulated in the
invariant, enhanced and proved during the model construction. Such properties
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are carefully derived from the understanding and the structuring of the SDN
(see Sect. 3.2).

For instance the model ensures that: outgoing packets are sent by one of the
switches or by the controller.
This property (SP) is progressively built with the following parts of the invari-
ant. The packets delivered by a switch to other switches according to routing
information are called outgoing packets (see Sect. 3.2).

Each switch is equipped with a buffer of data packets it received (swIPk)
and a buffer of data packets it forwarded (swOPk):
swIPk ∈ switches ↔ PACKET ∧ swOPk ∈ switches ↔ PACKET .

The packets forwarded by a switch to other switches should come from its
proper buffer: ∀sw .swOPk(sw) ⊆ swIPk(sw)

The union of the packets to be delivered by the switches is denoted by
swOutgoingPk: swOutgoingPk ⊆ ran(swOPk)

The packets in transit through the switches are gathered in the swSentPkts
variable: swSentPkts ⊆ PACKET

In the same way all the packets sent by the controller are gathered in the
ctlSentPkts variable: ctlSentPkts ⊆ PACKET

Finally the property SP is expressed by:

swOutgoingPk ⊆ swSentPkts ∪ ctlSentPkts

In a similar way, may properties among which the two following ones, are
progressively formulated as parts of the invariant.

The packets in the data channel should be sent by the controller or by the
switches.

dom(dataChan) ⊆ swSentPkts ∪ ctlSentPkts

The contents of the switches buffers (swIncomingPk) should come from the
controller or other switches.

swIncomingPk ⊆ ctlSentPkts ∪ swSentPkts

These properties are first stated in the abstract model and then refined along
the development process according to the refinement of the state variables.

3.4 Model Construction Strategy: The Refinements

Despite the general development strategy in Event-B which consists in building
an abstract global model of a system and then to use several refinements to make
it precise, it is still challenging to determine the refinement steps according to
the problem at hand. In this work we have considered as one of our targets,
the main components of the SDN. That is, we tried to deal with details related
to the targeted components (switches, controller). The questions are: what are
the main features of the switches and how they impact their environments?
what are the main features of the controller behaviour and how they impact
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its environment? By answering these questions we finished by introducing, for
instance, that switches use various ports and they receive/emit messages on
ports. Consequently the first abstract model of channels is impacted and then
refined.

We focus on the architecture of the SDN, and then tried to list the details that
will support actually the achievement of the network services (routing, access
control, traffic engineering; see Sect. 2). We have listed, the detailed structure of
packets, the structure of messages, the fine-grained processing of packets inside
the switches. Then we order these details and tried to handle them one by one.
It follows that we have to detail in the refinements: the structure of packets with
various headers and body parts; the structure of messages, and accordingly the
refinement of the abstract channels; the behaviour of the events that specify the
behaviour of both switches and controller. This guided us to master the gradual
modelling. From the methodological point of view this is a recipe for (Event-B)
specifiers.

We also follow the basic recommendations of Event-B to consider small steps
of refinement at time. Table 1 gives an overview of the refinement chains.

Table 1. The refinement steps

GblModel0 The first abstract model; all the events are specified at a high level;
for instance we do not have yet information on ports, etc

GblModel0 1 Refinement. Ports and headers are introduced in the state space
thus refined; the related events are refined

GblModel0 2 Refinement. Priorities are introduced in the state space; messages
are sent from the controller with a priority in their header

GblModel0 3 Refinement. The events guard are refined according to priority rules

3.5 Data Refinement

The set of ports (PORTID) is introduced as data refinement details in the
GblModel0 1 refined abstract model. Packets are sent on ports according to
the actions defined in the entries of the flow table. One port (also called action)
may be the destination of a set of packets.

actionsQueues ∈ PORTID �→ P(PACKET ) // packets targeting a port
actions ∈ ENTRY �→ P(ACTION ) // ports concerned by an entry

dom(actions) = dom(flowTable) // all entries have target ports
An entry may specify several actions or ports. The various fields in SDN pack-

ets are also introduced as data refinement with the functions: macSrc, macDst ,
IpSrc, IpDst , IpProto, TpSrc, TpDst , TpSrcPt , TpDstPt .
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3.6 Behavioural Refinement

Explicit priority. The controller (via a human administrator) can introduce
priorities as an information contained in the messages. Priorities are comparable,
they are numbers. Consequently, we introduced this refinement level where the
messages are refined by adding to them a field which represents their priority.
In Event-B, this is a function giving the priority of each message:
msgPriority ∈ MESG �→ MSG PRIORITY where MSG PRIORITY is the set
of priorities (a subset of naturals).
Accordingly, the event ctl emitPkt for instance, is now refined in the model
(GblModel0 2); its substitution sets the priority of the message which is sent.

Implicit priority. We introduced implicit priorities via a partial order on mes-
sages to be sent; in the sequel the symbol ≺ denotes this partial order.

To avoid inconsistencies in the behaviour of switches, the messages they sent
should be reordered. In practice, when for instance the flow table is modified
by an instruction coming from the controller, the outgoing packet in a switch
may be forwarded in a wrong destination due to the modification. Besides, the
controller can use the barrier to impose a quick modification.

Accordingly the modification messages coming from the switch should have
lower priority compared with the forwarding messages. A priority rule which
reorder the events, is that: the add control messages are processed after the for-
warding of all data packets. The involved events in the model are: sw newFTentry,
sw sendPckt2sw, sw sendPk2Ctrl. Therefore we have the following ordering:

sw newFTentry ≺ sw sendPckt2sw
sw sendPk2ctrl ≺ sw sendPckt2sw
sw sendPk2ctrl ≺ sw newFTentry

As far as the Del order is concerned, as lost packets in the network can be
claimed, we use this hypothesis to consider that the Del order has priority on
the forward packet. For the Add order, this does not present an inconsistency
risk for outgoing packets. For this reason the Add order can be processed in any
order. Barrier messages coming from the controller are the most priority ones.
Unmatched packets to be returned to the controller are lower priority than the
packet to be forwarded to other switches: a rule is that packets to the controller
are sent if there is no packet to be forwarded to other switches.

These priorities have been implemented (in GblModel0 3) as a refinement of
our model. The guards of the involved events have been strengthen with these
rules.

4 Deriving Correct Controller and Switch Components

The purpose is to derive SDN components from the global model resulting from
the chain of refinements; such derivation is enabled with Event-B via the use
of model decomposition techniques: the Abrial-style decomposition (called the
A-style decomposition) [3] based on shared variables, and the Butler-style decom-
position (called the B-style decomposition) [7,20] based on shared events. Indeed
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when decomposing into sub-models a model where events use state variables,
either the decomposition is based on the partition of the state variables (and
some events may need variables in different sub-models; these are shared events)
or the decomposition is based on the partition of events in which case some
variables may be needed by events in different sub-models, these are shared
variables). In the A-style decomposition, which we have used, events are first
partitioned between Event-B sub-components. Then, according to shared vari-
ables only modified by one of the sub-components, the events which modify
the variables in one component, are introduced as external events in the sub-
components which do not modify the variables. These external events simulate
the behaviour of the events which modify the variables, in the components where
the variables are not modified. To avoid inconsistency, external events should not
be refined. In the B-style decomposition, variables are first partitioned between
the sub-components and then shared events (which use the variables of both
sub-components) are split between the sub-components according to the used
variables. We used the A-style decomposition because it is more relevant when
we consider that the events describe the behaviour of each specific component
(controller, switch) of the SDN.

Decomposition into a Controller and Switches

According to our modelling approach (see Sect. 3.2) where events are gathered by
family, it is straightforward to list the events that describe the behaviour of the
controller in order to separate them from the events related to the switches. The
controller component is made of all the events, already introduced as such and
prefixed with ctrl, which simulate the behaviour of the controller (see Sect. 3.2):
ctl emitPkt, ctl rcvPacketIn, ctl askBarrier, etc. Formally, the decomposition is
as if a model MΣ composed of components Sσ1 and Cσ2 , such that5 MΣ � P ,
is split into sub-models Sσ1 and Cσ2 such that Sσ1 � P and Cσ2 � P , with
Σ = σ1 ∪ σ2 the alphabet of MΣ and σ1 (resp. σ2) the alphabet of Sσ1 (resp.
Cσ2).

We experimented with the decomposition plugin of the Rodin toolkit using
the A-Style decomposition approach.

A challenging issue here is the question of partitioning a set of identical
behaviours; for instance if we would like to decompose the behaviours of the
switches as a partition. This question is out of the scope of the existing decom-
position techniques because of the non-determinism of data and event modelling.

5 Experimentations and Assessment

The global abstract model has been incrementally worked out by combin-
ing invariant verification, refinements and simulation. This is done with the
Rodin platform6. In Table 2 we give the statistics of the performed proofs

5 The symbol � denotes the logical satisfaction.
6 http://wiki.event-b.org/index.php.

http://wiki.event-b.org/index.php
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on the abstract model and its refinements; the Rodin platform generates con-
sistency proof obligations and refinement proof obligations for the submit-
ted models (see Sect. 3.1). These proof obligations were mostly automatically
discharged by the Rodin prover; the remaining are interactively proved. The
complete model is available at http://pagesperso.ls2n.fr/∼attiogbe-c/mespages/
nabla/sdn/SDN-WP2.pdf

Table 2. Proof statistics
Elt Name Total Auto Manual Undischarged

SDN-WP2 210 202 8 0

GlModel0 97 94 3 0

GlModel0 1 63 59 4 0

GlModel0 1 1 2 2 0 0

GblModel0 2 2 2 0 0

GblModel0 3 0 0 0 0

The model of the
last refinement level has
been decomposed into a
controller component and
switches which preserve
all the proved properties.
One benefit of deriving
components from a global
formal model is the abil-
ity to study required properties involving the components and their environ-
ment. We have illustrated this study with a few properties expected from SDN.
Both safety and liveness properties have been considered. This can be extended
to other specific properties, following a similar approach.

We have expressed and proved several global properties on the model before
its decomposition into components. For instance: The data packets received by
any switch are sent by the controller or by the other switches.

Proof. Assume ctlSentPkts be the set of packets sent by the controller; we have to
prove that ∀sw .(sw : switches ⇒ swIPs[{sw}] ⊆ ctlSentPks). If swIncomingPks
is the union of the buffers of the switches, then it suffices to establish that
swIncomingPks ⊆ ctlSentPkts. 
�

Several such safety properties (e.g. Table 3 and Sect. 3.3) have been expressed
as invariants in the Event-B model and proved using the Rodin prover.

Table 3. A part of the considered safety properties

SPa Any packet in the data channel was sent by the controller or the switches

SPb Any packet in the switches buffers was sent by the controller or the switches

SPc The packets sent via the message channel are contained in ctl sentPkts

Similarly, liveness properties study is undertaken using stepwise checking
of basic properties. For instance, we prove that, the data packets generated
by the controller, are finally emitted by this later. The formula LPdeliv (see
Table 4) expresses this property. Literally it describes that after the occur-
rence of the event ctl havePacket we will finally (F) observe the occurrence
of ctl emitPkt. The other formula in Table 4 are similar; the X symbol stands
for the next operator. Event-B provides, via the ProB tool integrated in the
Rodin, the facilities to state and prove liveness properties. ProB supports LTL,

http://pagesperso.ls2n.fr/~attiogbe-c/mespages/nabla/sdn/SDN-WP2.pdf
http://pagesperso.ls2n.fr/~attiogbe-c/mespages/nabla/sdn/SDN-WP2.pdf
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its extension LTL[e] and CTL properties with the standard modal and temporal
operators.

Table 4. A part of the liveness properties in LTL/ProB

LPOKstatus e(ctl askStatusMsg) ⇒ F(e(ctl rcvStatus))

LPdeliv e(ctl havePacket) ⇒ F(e(ctl emitPkt))

LPOKMach e(ctl emitPkt) ⇒ X(e(sw rcv machingPkt))

6 Conclusion

We have shown how to build correct controller and switches components from
the refinement of a global formal Event-B model of an SDN system. The cor-
rectness was established according to the properties captured and formulated as
invariants from the SDN system requirements. The global model was first built
by a systematic construction using refinements and then decomposed into the
target components. The construction of the abstract model itself was achieved so
as to be reusable as a recipe for Event-B developers, following the steps we had
identified. We overcame the challenging modelling in Event-B, of an SDN sys-
tem, viewing it as a discrete events system, and thus as an interaction between
its main components. We evaluated our model and components for their confor-
mance to the properties required for SDN systems. We experimented with the
various aspects related to property proving and simulation, using the Rodin tool.
As far as we know, among the related work using formal approaches, this study
is the first one proposing an event-based approach for studying SDN systems.

We provided a core event-based model to set the foundation of frameworks
dedicated to the development, analysis and simulation of SDN-based applica-
tions.

As future work, instead of a one-shot derivation of a specific code for the con-
troller, we are investigating a parametric environment to enable the construction
of specific controllers targeting various languages. The same idea is relevant for
the switches. In light-weight distributed applications requiring the deployment
of ad-hoc SDN, it is desirable to build various specific SDN switches from a
single abstract model. Consequently, a process of generic refinement into code
will be beneficial.
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