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Abstract. Diatom assemblages from a site called Cueva del Tigre were studied.
It is located in the lower basin of the Quequén Salado River, Buenos Aires
province (38° 50′ 2.2″ S–60° 32′ 7.1″ W). The results are part of a project that
includes sedimentologic, stratigraphic and palaeontologic aspects with the aim
of reconstructing the environmental history of south-eastern Buenos Aires
during the Late Cenozoic. The studied sedimentary succession is 1.90 m thick
and has a tabular geometry with alternating levels of coarse sandstone and
clayey siltstones. Diatom analysis of the 17 samples corresponding to four levels
(N1, N2, N3 and N4) was performed using conventional techniques of taxo-
nomic identification and treatment. A total of 74 diatom taxa were recognized
and grouped according to salt tolerance and life form. Cluster analysis allowed
dividing the sedimentary sequence into two diatom zones. The deposit begins
with a freshwater/shallow lakes with associated vegetation (N1: 7 samples)
dominated by Cyclotella meneghiniana Kützing 1844 (plankton) accompanied
by the epiphytes Cocconeis placentula Ehrenberg 1838 and Cymbella cistula
(Ehrenberg) Kirchner 1878. The overlapping levels: N2 (4 samples), N3
(3 samples) dated on 29,360 ± 670 years 14C BP (33,128 cal. years BP) and N4
(3 samples) represent brackish conditions in a shallow pond, where benthic
epipelic diatoms dominate: Caloneis westii (W.Smith) Hendey 1964, Campy-
lodiscus clypeus Ehrenberg 1840 and Surirella striatula Turpin 1828. Today,
these taxa live in temperate waters with salinities of 2–10‰. The comparison
between fossil and modern samples through NMDS analysis showed that
modern diatom assemblages from the Quequén Salado River are distinctly
dissimilar to the Pleistocene assemblages under study, but they strongly corre-
late with diatom assemblages from Buenos Aires shallow lakes in agreement
with the autoecological interpretation.
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1 Introduction

The Marine Isotopic Stage 3 (MIS 3; ca. 56,000–25,000 14C years BP) was an inter-
stadial period during the Pleistocene with relatively warmer conditions than today,
where climatic conditions fluctuated over millennia scales (Rabassa and Ponce 2013).
The updating and reinterpretation of diatom studies that cover this period in South
America showed the need and importance of selecting new sites for high-resolution
interdisciplinary studies in the region (Espinosa 2016).

In the south-eastern part of the Buenos Aires province, Argentina, in a region set
between the Tandilia and Ventania ranges, rivers like Quequén Salado, Indio Rico and
Las Mostazas modelled banks that have been the subject of many geological studies
(Schillizzi et al. 2006; Isla et al. 2014). The first studies in the Quequén Salado River
correspond to Frenguelli (1928, 1945), who assigned these deposits to the Lujanense
(upper Pleistocene) and Platense (Holocene) stages. More recently, Aramayo et al.
(2005) recognized deposits of Late Pleistocene and Holocene ages (between 16,000
and 4800 years BP) in the south-east coast of Buenos Aires province between the
localities of Pehuen-Có and Monte Hermoso, ca. 50 km south-west from the Quequén
Salado inlet. Schillizzi et al. (2006) analysed profiles near Oriente (12 km upstream)
assigning Late Pleistocene and Holocene ages. Isla et al. (2014) described and dis-
cussed the Neogene records outcropping at the Irene village. Beilinson et al. (2015)
studied the stratigraphy and sedimentology of more than 10 km of sea cliffs of Buenos
Aires province where the main macromammals sites are found and concluded that
during accumulation of the Middle to Late Pleistocene succession, glacio-eustasy
and/or climate controlled the balance between generation of accommodation space and
sediment supply. A geological model for the Quequén Salado river valley was pro-
posed by Beilinson et al. (2017), a case of downcutting and headward erosion that
explains the spatial distribution of facies and fossil taxa: the younger in the distal sector
of the Quequén Salado middle basin and the older in the lower basin.

Several biological and sedimentologic proxy records preserved in Late Quaternary
sequences constitute a valuable source of information for understanding the
palaeoenvironmental changes that characterized the aquatic environments. Diatoms
have been used as proxy indicators to reconstruct Late Quaternary environmental and
climatic changes in every continent, being in continental aquatic ecosystems much
more common than in marine or coastal studies (Mackay et al. 2003). Even so, the
number of diatom-based Quaternary climatic reconstructions from marine and coastal
environments is increasing in recent years (Romero 2010; Cermeño et al. 2013).

Diatoms have been widely employed to reconstruct changes in salinity, depth and
trophic status related to Holocene sea level changes and shoreline position in Southern
South America (e.g. Espinosa et al. 2003, 2012; Garcia Rodriguez et al. 2004; Fayó and
Espinosa 2014; Dos Santos et al. 2016). However, despite the high potential of diatom
records for environmental reconstructions, a limited number of detailed studies have
been conducted for Pleistocene age deposits in South America (Espinosa 2016). Fur-
thermore, few studies have focused on the interaction between climate variability and
aquatic ecology (Mackay et al. 2012). This highlights the need for increased knowledge
of environmental responses to changes in climate in aquatic ecosystems in the southern
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hemisphere that can be used as analogues for palaeoclimatic interpretations. The lack of
long-term, continuous or near-continuous climate records, particularly those spanning
through the Late Pleistocene, limits detailed understanding of the aquatic communities’
responses to climatic changes.

2 Methods

2.1 Regional Setting

The Quequén Salado River (Fig. 1) is located in the south-eastern Pampean Region,
reaching to the Atlantic Ocean as a mesotidal estuary (2–3 m tidal range) and flowing
across the region known as the Humid Pampas. It has a mean discharge of 10.76 m3/
seg (max: 28.8 m3/seg, min: 4.6 m3/seg, Marini and Piccolo 2000). The zone has a
temperate climate (annual mean temperature of 14 °C) and an annual mean rainfall of
800 mm (Marini and Piccolo 2004). The river runs along the hilly plain (also called
“Undulated Pampa”) between the Tandilia and Ventania ranges. It is characterized by
the presence of riffles every 1 or 2 km in the middle and lower sections, while its
channel can reach 15–20 m wide. The lower valley is oriented NNW–SSE and is
flanked by cliffs of 8–15 m high. In the last 5 km, the river runs across a sandy barrier
composed of vegetated dunes (Marini and Piccolo 2000). A site named Cueva del Tigre
was studied. It is located 12 km from the outlet (38° 50′ 2.2″ S–60° 32′ 7.1″ W). The
outcrop consists of two stratigraphic units (Fig. 2). The lower one, 1.90 m thick and
tabular geometry, comprises sandstones, silty sandstones and mudstones. The upper
one is presented as a carbonate lenticular body tufa with a maximum high of 2.60 m

Fig. 1. Location map. a Geological map of the Buenos Aires province. b Quequén Salado River
basin showing the upper, middle and lower reaches. c Cueva del Tigre sampling site. Modified
from Beilinson et al. (2017)
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and lateral extension of tens of metres. Its base is concave and irregular, showing an
interdigitation with the non-calcareous deposits that underlie it.

Two different profiles were studied at the Cueva del Tigre site. Even though they
are about 100 m from each other, correlation between them is easy to make. Taking
into account the position of the levels within the Quequén Salado valley, it is observed

Fig. 2. Sedimentologic profile of the study site
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that the tufa and diatom succession correspond to the lower terrace, and that the
upstream profiles emerge at higher elevations, on the upper terrace of Quequén Salado
River. Then, based on this geomorphological interpretation, the upstream profiles
would be older than the levels with diatoms. Since the contact relationships between
both units cannot be observed, it is difficult to discern if it is transitional or not, but
there is definitely no faulting between both profiles.

Absolute chronological data for the Quequén Salado River basin is scarce. Mari
et al. (2015) dated Heleobia sp. shells from sandy silt sediments corresponding to level
3 (N3) of the studied profile giving a radiocarbon age of 29,360 ± 670 years
BP/33,128 years cal. BP (LP 3031).

2.2 Diatom Analysis

Diatoms were extracted from 17 sediment samples corresponding to four levels: N1,
N2, N3 and N4 (Fig. 2). 5 g of dry sediment was oxidized with hydrogen peroxide
(30%) and hydrochloric acid (10%) to remove organic matter and carbonates, washed
four or five times with distilled water and diluted to a total volume of 100 ml. Diatom
residues were mounted onto microscope slides using Naphrax®. On each slide at least
300 diatom valves were counted in random transects. All counts were performed under
oil immersion (1000�), using a Zeiss light microscope equipped with phase contrast
optics. The identification of species was based on the local and standard diatom tax-
onomic literature. Nomenclature and taxonomic authorities follow AlgaeBase (Guiry
and Guiry 2018). Photographs of the diatom species were archived. The relative
abundance of each species is presented as a proportion of the total frustule counts, and
species representing less than 5% of the relative abundance were removed to increase
the significance of the data. Ecological groups proposed by De Wolf (1982), Denys
(1991/1992) and Vos and De Wolf (1988, 1993) were used to classify diatom taxa
according to their salinity and habitat preferences. Diatom diagram and cluster analyses
were performed using the TILIA and TILIAGRAPH software (Grimm 1991). The
purpose of cluster analysis was to define diatom zones based on a stratigraphic con-
strained classification (minimum variance, Euclidean distance).

2.3 Comparison with the Modern Data set

Fossil assemblages are compared with a modern diatom data set for the region (Hassan
et al. 2007, 2011) by means of non-metric multidimensional scaling (NMDS). NMDS is
a robust ordination technique for community analysis (Minchin 1987) and was used to
create similarity matrixes. A numerical measure of the closeness between the simi-
larities in the lower dimensional space is called stress. Stress values range from 0 to 1,
with 0 indicating perfect fit and 1 indicating worst possible fit. NMDS based on Bray–
Curtis similarity measure was performed with the program

PAST versus 1.81, (Hammer et al. 2008).
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3 Results

3.1 Diatoms

Seventy-four diatom taxa were identified. Twenty-two taxa constituted >5% of the total
assemblage in at least one sample (Fig. 3). Some photographs of the dominant diatom
species are presented in Fig. 4. The observed pattern of taxon occurrence and a cluster
analysis on this subset permitted to define two major diatom assemblage zones,
described as follows:

Zone I (DZI; 0–80 cm) is characterized by the abundance of C. meneghiniana
Kützing 1844 (plankton) accompanied by the epiphytes Cocconeis placentula Ehren-
berg 1838, Ulnaria ulna (Nitzsch) Compère 2001, Tabularia platensis (Frenguelli) Sar
and Sala 2009 and Cymbella cistula (Ehrenberg) O. Kirchner 1878. This assemblage is
related to brackish/freshwater lagoons. Low, but sustained, abundances of benthic
diatom species Nitzschia denticula Grunow 1880 and Hippodonta hungarica (Grunow)
Lange-Bertalot, Metzeltin and Witkowski 1996 occur in this zone.

Zone II (DZII; 80–190 cm) is characterized by highly abundant, T. platensis
(Frenguelli) Sar and Sala 2009. The increase of this brackish and epiphyte taxa defines
the boundary between zones I and II in the same way as the appearance of the brackish,
benthic and eutrophic taxa Caloneis westii (Smith) Hendey 1964, Campylodiscus
clypeus Ehrenberg 1840, Navicula peregrina (Ehrenberg) Kützing 1844 and Surirella
striatula Turpin 1828. Today, all of them live commonly in periodic water bodies or
wet subaerial environments.

Fig. 3. Diatom diagram of Cueva del Tigre sequence. Grey shaded shows the barren levels
(1.1 and 1.4)

Late Pleistocene Diatoms of the Lower Basin from the Quequén … 135



Fig. 4. Dominant diatom taxa from Cueva del Tigre sediment profile. Light microscope.
1 Surirella striatula; 2 Campylodiscus clypeus; 3 Cyclotella meneghiniana; 4 Tryblionella
hungarica; 5 Caloneis westii; 6 Hippodonta hungarica; 7 Navicula peregrina; 8 Cocconeis
placentula; 9 Nitzschia denticula; 10 Denticula subtilis. Scale bars = 10 lm
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3.2 Non-Metric Multidimensional Scaling Analysis (NMDS)

NMDS arranged diatom samples in a specified dimensional space according to the rank
order of their ecological similarities. The plot reveal differences in the structure of the
assemblages. Samples showed a distributional pattern clearly related to their envi-
ronment type. At first, NMDS analysis was performed between fossil samples from
Cueva del Tigre profile and modern samples of the Quequén Salado River (Fig. 5a;
Hassan et al. 2007) obtaining a stress value of 0.09. Figure 5b shows fossil samples
(N) in the positive quadrant and modern samples (QS) on the negative quadrant.
Quequén Salado River assemblages are distinctly dissimilar to the fossil assemblages
from the Pleistocene succession under study.

In order to find modern analogues that allow us to complete the characterization of
the Pleistocene environments recorded at Cueva del Tigre, a second NMDS analysis
was carried out between the fossil samples and the modern ones belonging to shallow
lakes of the central zone of Argentina (Buenos Aires, La Pampa and Mendoza). Stress
value obtained was 0.25. A total of 34 shallow ponds (most <2 m in depth) distributed
across Central Argentina (Fig. 6a) were sampled by Hassan et al (2011). Most of them
are thermally homogeneous and saturated with dissolved oxygen. Figure 6b shows that
fossil assemblages belonging to Cueva del Tigre profile (N) remained together and
close to modern samples of some shallow lakes from the Pampa Ecoregion (1, 5, 6 and
11: Buenos Aires). These samples were characterized by high percentages of organic
matter (up to 85%), and pH ranges between 8.25 and 9.8 and annual precipitation of
800–1,000 mm (Hassan et al. 2011).

Fig. 5. a Modern sample sites along Quequén Salado River (Hassan et al. 2007). b NMDS
analysis between Cueva del Tigre fossil samples (N) and modern samples (QS)
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Fig. 6. aModern sample sites from Central Argentina (Hassan et al. 2011). b NMDS analysis of
modern and fossil samples (N)
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4 Discussion and Final Remarks

The Quequén Salado River basin (Pampa region) was studied by means of strati-
graphic, sedimentologic and palaeomagnetic approaches as well as palaeontologic
analysis of vertebrate remains by Beilinson et al. (2017); Grill and Fernández (2016)
analysed the palynomorphs content (spores, pollen and organic-walled marine
microplankton) of two localities in the lower basin of the Quequén Salado River
(Estancia Thomas Profile and QS1 Archaeological Site) to provide a palaeoenviron-
mental and palaeoclimatic reconstruction from the Late Pleistocene to the present. They
inferred aeolian environments of extreme arid conditions during the late Pleistocene
(ca. 16,000 years BP) shown by bad pollen preservation and scarce populations of
ostracods and diatoms.

The diatom analysis from Cueva del Tigre succession provides new data about the
palaeoenvironments of the lower basin of the Quequén Salado River ca. 30,000 years
BP ago, during the Marine Isotopic Stage 3 (MIS 3). This sequence represents the
second MIS 3 diatom record for Buenos Aires province: the other is a sedimentary
succession located on the middle basin of the Luján River (Blasi et al. 2010). Although
some Pleistocene records may have poor microfossil preservation (Grill and Fernández
2016), Cueva del Tigre profile contains well-preserved diatom frustules, but the
abundance is not comparable with that found in other Holocene deposits from Buenos
Aires (e.g. Espinosa et al. 2012). Both MIS 3 records from Buenos Aires province
(Quequén Salado and Luján rivers) present important similarities on diatom content.

According to the cluster analysis of the diatom assemblages, it was possible to
identify two zones in the evolution of the water body. The first zone (DZI) clustered
seven samples of N1 (level 1). Diatom assemblages are dominated by the planktonic
centric diatom Cyclotella meneghiniana. This species is common in swamps, shallow
lakes and hot springs (Owen et al. 2004) and reflects a slightly deep freshwater/
brackish environment. C. meneghiniana can live in different habitats, from freshwater
to brackish (Tuchman et al. 1984; Hakansson and Chepurnov 1999 and is widely
distributed in the modern diatom flora of the Pampean shallow lakes, dominating under
alkaline (pH 8–10.5) and eutrophic conditions (Hassan et al. 2011). The accompanying
flora is composed of the epiphytes C. placentula, Ulnaria ulna and C. cistula. All of
them are freshwater taxa, but C. placentula is very tolerant to salinity and temperature
changes, 0.2–30.4% and 4.7–33.5 °C, respectively (Trobajo Pujadas 2007), and is
common in slow-flowing streams (Haworth 1976; Gasse 1986) and shallow lakes of
Central Argentina (Hassan et al. 2011).

The diatom assemblage that characterizes DZII is composed by brackish taxa: the
epiphyte T. platensis and the benthic and eutrophic C. westii, C. clypeus, N. peregrina
and S. striatula. Today, all of them live commonly in periodic water bodies or wet
subaerial environments.

In the Luján River basin, the lapse between 44,000 and 37,700 years B.P. is
characterized by lacustrine deposits with abundant diatoms, where the planktonic and
brackish C. meneghiniana dominate accompanied by the epiphytes Epithemia adnata
and C. placentula (Blasi et al. 2010). This assemblage is very similar to DZI

Late Pleistocene Diatoms of the Lower Basin from the Quequén … 139



(the bearing level has not radiocarbon dates yet), and it is possible that a correlation
exists between both levels with diatoms.

The relative abundance of the most dominant species within both assemblages (DZI
and DZII) varies and might indicate differences in climatic conditions, mainly changes
in water availability.

According to NMDS analysis, modern assemblages from the Quequén Salado
River are distinctly dissimilar to the fossil assemblages from the Pleistocene succession
of Cueva del Tigre. In this sense, most of the recorded diatom taxa in the fossil
sediments are absent in the modern surface sediments of the river. Then, the envi-
ronment at the time of the MIS 3 was different from the modern, with diatom
assemblages that suggest fluctuations from a deep freshwater/brackish environment to
shallow brackish water dominated by saline diatom taxa. Diatom analysis indicated that
the interval would have had relatively humid and mild conditions in agreement with the
regional patterns (Rabassa and Ponce 2013).
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