
Chapter 9
HONEYSCOPE: IoT Device Protection
with Deceptive Network Views

Reham Mohamed, Terrence O’Connor, Markus Miettinen, William Enck,
and Ahmad-Reza Sadeghi

Abstract The emergence of IoT has brought many new device manufacturers to the
market providing novel products with network connectivity. Unfortunately, many of
these new entrants to the market lack security engineering experience and focus
heavily on time-to-market. As a result, many home and office networks contain
IoT devices with security flaws and no clear path for security updates, making
them attractive targets for attacks, e.g., recent IoT-centric malware such as Mirai.
In this chapter, we discuss a network centric approach to protecting vulnerable
IoT devices. We describe a system called HoneyScope, which seeks to achieve
two goals. First, each IoT device has a different view of its local network, which
limits the damage when a device is compromised. Second, virtual IoT devices
are created to confuse and deceive attacker with sophisticated motivations (e.g.,
fake WiFi connected cameras). To achieve these goals, HoneyScope uses an SDN-
based security gateway to create virtualized views of the network and nodes therein
providing fine-grained control over the communications that individual devices may
have.

9.1 Introduction

One of the big challenges facing IoT networks in homes and small offices—
in comparison to traditional networks—is their relatively high susceptibility to
security threats. Numerous heterogeneous IoT devices are being deployed in small
office, home office (SOHO) networks, broadening the potential attack surface for

The original version of this chapter was revised: Chapter authors have been added. The correction
to this chapter is available at https://doi.org/10.1007/978-3-030-02110-8_12

R. Mohamed · M. Miettinen · A.-R. Sadeghi
Technische Universität Darmstadt, Darmstadt, Germany

T. O’Connor · W. Enck (�)
North Carolina State University, Raleigh, NC, USA
e-mail: whenck@ncsu.edu

© Springer Nature Switzerland AG 2019
E. Al-Shaer et al. (eds.), Autonomous Cyber Deception,
https://doi.org/10.1007/978-3-030-02110-8_9

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02110-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-02110-8_12
mailto:whenck@ncsu.edu
https://doi.org/10.1007/978-3-030-02110-8_9


168 R. Mohamed et al.

adversaries, as many new IoT devices are affected by inherent security vulnera-
bilities. This is due to hundreds of new IoT manufacturers entering a market that
is largely untapped and considered unsaturated, providing players that are first-to-
market opportunities to gain considerable market share. As many manufacturers’
focus is therefore on quickly shipping their products, this leaves little time and
resources to focus on proper security design, implementation, and testing of new
device models. Moreover, manufacturers are often producing low-cost devices
(such as connected light bulbs or smart plugs) with hardly any or no budget at
all for security. This results in many IoT device vendors shipping products that
contain security vulnerabilities that are relatively easy to exploit by knowledgeable
attackers.

Due to the newness of IoT, there is a lack of regulations and laws governing
development and production of IoT devices. There exist also no dominant security
standards that all device vendors would adhere to.

In most cases, the responsibility of securing devices is therefore left to end-users.
Access to devices is typically controlled using default easy-to-guess credentials, but
vendors do not force users to update them during the device on-boarding procedure.
Many users will, however, not understand the risks (among others) associated with
such default passwords, and many of them will not even care, leaving devices at the
mercy of potential attackers. Other devices, on the other hand, are designed to work
in a plug and play mode by default, leaving no room for users to modify security
settings, even if they would like to.

Another major security threat is given by benign but intrusive functionality of
devices that can possibly breach the privacy of users by, e.g., recording private
conversations, taking photos, or recording videos and automatically uploading such
information to the cloud without the user’s consent. Already now smart voice
assistants like Amazon Alexa and Google Assistant have been, intentionally and
accidentally alike, triggered by viral ads like Burger King’s ad that forced Google
Assistant to recite the definition of the Whopper from Wikipedia [8], or other
incidents like one affecting Amazon’s Alexa, which—as explained by Amazon—
misheard the wake word during the conversation of a wife with her husband before
sending a recording of it to the wife’s colleague [1].

9.1.1 Principle of “Need to See”

At the root of our approach to deception in SOHO networks is the principle of
need to see, which is a variant of the traditional principle of need to know used
in environments with sensitive information. A key observation is that while future
SOHO networks may be filled with tens of IoT devices, most devices do not interact
with one another. First, many devices communicate exclusively with the Internet.
Second, for devices that communicate within the network, interaction is often with
a small set of controller devices, such as smartphones and smart speakers (e.g.,
Alexa, Google Home). Therefore, there is no need for most IoT devices to see one
another on the network.



9 HONEYSCOPE: IoT Device Protection with Deceptive Network Views 169

The simplest security policy in any setting is that of strict isolation. It is simple
to express and enforce. WiFi isolation is built into all commodity routers and access
points. In fact, most hotels use WiFi isolation to ensure that guests can access
the Internet, but not interact with one another directly. However, WiFi isolation is
not suitable for SOHO networks. First, SOHO networks contain traditional devices
where isolation impedes functionality, e.g., desktops, laptops, printers, and network
attached storage (NAS) devices. Second, some intra-network communication is
needed for controller devices to coordinate actions with IoT devices. Third, some
IoT devices may be designed to work directly with one another, such as those
from the same manufacturer (e.g., WeMo, D-Link) or using the same standardized
protocols (e.g., HomeKit). Therefore, the need to see in SOHO environments is
more complex than strict isolation.

9.1.2 Deception Through Network Views

WiFi isolation is a degenerative type of network view. That is, each device can only
see itself and the network gateway. Consider the more general model, where there
exists a policy for each network device that defines which other network devices it
can see. More formally, let N be the set of devices on the network. Each n ∈ N has
a policy Pn ∈ P(N), where P(N) is the power set of N .1 The policy Pn defines a
specific network view for n.

The network view presented to an adversary, whether it be a compromised or
misbehaving device, influences its perspective of the attack surface of the network.
There is also no requirement that each n ∈ N is a physical device. For example,
N can include a virtual WiFi baby monitor camera that simply plays a feed on
a loop. Such virtual deception devices can be used in several ways. Consider the
scenario where one of the users’ IoT devices is compromised and is used as an
attack pivot, which proceeds to scan for other vulnerable network devices. First, the
virtual deception device can act as a honeypot. Under normal scenarios, the virtual
deception device should not receive any network connections from real devices.
Second, the virtual deception device may make the adversary believe she has control
of a real device, e.g., watching a live feed of a baby. Gaining access to the baby
camera may be the adversary’s goal, and the simulated feed may keep the adversary
from burglarizing the home.

Network views provide usability in addition to deception. For example, the
network view policy can exclude the virtual deception devices from the view of
controller devices (e.g., smartphones). In this way, users will not be confused by the
potentially many virtual deception devices.

1The power set of S is the set of all subsets of S.



170 R. Mohamed et al.

9.1.3 HONEYSCOPE

In the remainder of this chapter, we present HONEYSCOPE, a security framework
for small office and home office (SOHO) networks built on top of the concept
of network views. HONEYSCOPE is a protection layer built on top of the local
network and provides a fine-grained control over the communications of individual
IoT devices in the network. HONEYSCOPE uses software defined networking (SDN)
technologies [9] to realize device- and device-group-specific views of the network
that reduce the attack surface against vulnerable devices in the network, contain
effects of device infections in case of successful device compromise, and enforce
effective measures for blocking unwanted release of contextual data from within
the network to the outside. At the same time HONEYSCOPE acts as a deceptive
obfuscation layer that decouples the network appearance of devices from their actual
physical interfaces, providing the network owner fine-grained control over how
devices and the network topology are presented to other devices and to the outside.

9.2 Design of HONEYSCOPE

The core idea on which HONEYSCOPE builds is to provide device-group-specific
views on the local IoT network in order to be able to control the exposure of devices
and contain potential security incidents, without adversely affecting the benign
functionality of devices. HONEYSCOPE seeks to realize this through following
design principles.

Grouping of Devices According to Their Vendor Due to the lack of proper
interoperability standards for IoT devices, many device manufacturers offer vendor-
specific interoperability solutions, often supported by vendor-specific cloud-based
back-end services. Due to this approach, many IoT devices seldom—if ever—have
the need to communicate with devices that do not fall within their vendor-specific
device category. HONEYSCOPE uses this property to compartmentalize the local IoT
network by placing individual IoT devices into vendor-specific groups. By limiting
communication to happen only within the vendor group (and potentially the vendor
cloud service), the attack surface of IoT devices inside the group can be effectively
reduced and security attacks across vendor groups effectively mitigated.

Grouping of Devices According to Their Functionality The differentiation
between device groups can also happen based on properties other than the device’s
manufacturer. For a number of specific applications like smart lighting there already
exist to some degree protocols that enable interoperability between devices of
different vendors (e.g., ZigBee Light Link). To support such (future) functionality,
HONEYSCOPE supports orthogonally also groupings that are based on the declared
functionality of devices, if this functionality requires interoperability across vendor-
specific groups. As mentioned, this grouping is orthogonal to the vendor-specific
groups, meaning that devices can be in parallel member of a vendor-specific group
and one or more functionality-specific groups.



9 HONEYSCOPE: IoT Device Protection with Deceptive Network Views 171

Vulnerable Device Isolation HONEYSCOPE isolates devices that are known to
have vulnerabilities in a specific group with a very constrained view on other devices
in the network. The vulnerable device group shall not have access to any other
devices in the local IoT network, nor shall external devices be able to communicate
with devices in this group. The only exception is access to vendor cloud services that
are necessary to maintain the benign functionality of the device. This has twofold
goals: (1) to protect vulnerable devices from being compromised by malware or
active attacks originating from outside the network, and (2) to protect the rest of the
IoT network’s devices in case an adversary manages to compromise a vulnerable
device.

Deceptive Views of the Network HONEYSCOPE also provides the possibility to
create various deceptive views of the real, physical network. Each physical device
in the IoT network has a virtual representation in the HONEYSCOPE virtualization
layer. This allows the network owner to define how devices are perceived by other
devices and the outside network. The deceptive views may also include virtual
representations of non-existent devices to provide honey views of the network that
allow to completely obfuscate the true topology of the actual physical network setup.

9.2.1 HONEYSCOPE Implementation Approaches

There are multiple options for HONEYSCOPE to implement network views.

Option 1: Multiple (V)LANs One way to realize the group separation of HON-
EYSCOPE would be to use a number of LANs or VLANs to represent the different
groups of the local network. However, this would be incompatible with existing
discovery protocols, as devices on separate LANs would be unable to discover each
other. For example, mDNS, which is used by HomeKit, assumes that all devices are
on the same LAN.

Option 2: Multiple SSIDs A second option is to use separate SSIDs of a WiFi
access point. The main drawback of using this approach lies in the increased com-
plexity of the bootstrapping process, as each device would need to be provisioned
on the correct SSID. This would in general be a too complex task to be handled
correctly by regular users. For example, many IoT devices have a bootstrap process
that includes a smartphone app that automatically copies the SSID and WPA2
password from the smartphone. Therefore, the user would need to navigate multiple
SSIDs when setting up devices.

Option 3: Use of SDN Technologies for Group Separation Software defined net-
work (SDN) technology such as OpenFlow provides a unified network abstraction
in which all devices in the network are controlled by the SDN controller, allowing
fine-grained control over network connectivity of individual nodes. SDN provides
the most versatility to programmatically implement network views. It also allows the
architecture to extend to an arbitrary number of access points, which is increasingly



172 R. Mohamed et al.

common as newer WiFi protocols such as 802.11ac provide faster performance
when devices are close to the access point.

HONEYSCOPE uses SDN technology to control the topology of the IoT network
in order to provide maximal flexibility to manage nodes in the local network and to
realize a virtualization layer implementing the security design of HONEYSCOPE and
enforce its security policies. In effect, the local WiFi access point acts as a security
gateway controlled by a HONEYSCOPE SDN controller. The task of the security
gateway is to realize the HONEYSCOPE virtualization layer by enforcing network
connectivity policies defining the device group topology and create required virtual
representations of nodes belonging to the honey views comprising the deception
aspect of the HONEYSCOPE framework.

Erickson et al. [10] have developed a mechanism for identifying vulnerable
devices and blocking them from accessing and attacking other devices in the
network. Using this mechanism, they eliminate Man-In-the-Middle attacks at the
link and service discovery layers. To realize this mechanism, they use a different
SSID and WPA password for each device. However, this approach does not work
properly with IoT networks as the IoT devices get the network information from
their companion app on the mobile device of the user. HONEYSCOPE would
overcome this drawback by using one SSID, and one LAN for all devices in the
network using the SDN technology.

9.2.2 HONEYSCOPE Network Structure

Fig. 9.1 HONEYSCOPE

layered architecture



9 HONEYSCOPE: IoT Device Protection with Deceptive Network Views 173

The HONEYSCOPE architecture consists of three main layers as shown in
Fig. 9.1. The top level is the HONEYSCOPE controller: an SDN controller that
controls and manages the HONEYSCOPE router controlling the local IoT network.
This Open vSwitch-based router uses the OpenFlow protocol to communicate with
the HONEYSCOPE SDN controller to manage the IoT devices in the local network.

The SDN controller is responsible for creating the network views for each IoT
device connected to the local LAN. This is done by grouping devices into vendor-
and function-specific groups as discussed above in Sect. 9.2 and applying a specified
network view on each group in the network. The created virtual network views are
unidirectional views. For example, if group x can view and send information to
group y, this does not necessarily mean that group y can access and view group x.

Fig. 9.2 HONEYSCOPE grouped IoT network

9.2.2.1 HONEYSCOPE Groups

There are five default groups that are created by the HONEYSCOPE controller in
addition to the device vendor-specific groups and the function-specific groups as
shown in Fig. 9.2:

• Control group: This group consists of controlling devices such as smartphones
or tablets that should be able to control and therefore have access to any of the
IoT devices in the network. Devices in this group can view and have access to any
device in the IoT network. It is the only group in which devices have a virtual
network view that looks like the real, physical network. All devices from any
other groups can communicate with any device in this group as well, except for
devices in the vulnerable devices group. Also, devices in this group don’t see the
deceptive virtual devices in the HoneyNet group. Typically, the smartphone of
the home owner is the main device mapped to this group.



174 R. Mohamed et al.

• Vulnerable devices: This group contains any detected vulnerable IoT devices in
the local network. Devices in this group cannot view and do not have access to
any devices in other groups in the network except the HoneyNet group. They
are thus isolated from other IoT devices. The virtual network view for this
group only contains a unidirectional connection to it from the control group and
a bidirectional communication possibility with the HoneyNet group. Only the
control group can send updates, messages, or information to this group.

• Unidentified devices: Devices that cannot be identified by the controller, such
as devices that have just been released onto the market and are therefore yet
unknown to the system providing device identification, are added to this group.

• HoneyNet group: This group’s main task is to create virtual devices to deceive
the intruder, like the virtual baby camera discussed in Sect. 9.1.2 providing a fake
instance of a device to confuse the adversary in case it is able to intrude into the
network.

• Vendor-specific groups: When a device is joining the network, the SDN
controller identifies its type based on its communication behavior, and adds it to
the corresponding manufacturer group. Devices in each group can communicate
with each other but don’t have access to devices from other groups they are
not members of. An example of a vendor specific could be, e.g., the smart
home automation gadgets provided by D-Link. These include smart power plugs,
motion sensors, water sensors, IP cameras, door and window sensors, and alarm
sirens. All of these devices can be configured to work together using rules defined
in a cloud-assisted vendor-specific smartphone app. It makes therefore sense to
place all such devices from this vendor to the same group.

• Function-specific groups: Devices from different manufacturers may need to
be placed in function-specific groups when functional interoperability is needed.
For example, devices providing smart lighting (e.g., smart light bulbs, switches)
would be placed in a lighting-specific group in order to enable the light switch of
one manufacturer to control smart light bulbs of another vendor.

• Non-IoT devices group: In the local network there are also other non-IoT
devices like desktops, laptops, NAS devices, etc. that should be treated separately
from IoT devices, as their functionality is much richer than that of typical IoT
devices. Such devices are therefore added to a dedicated group that contains non-
IoT and legacy devices. Devices in this group have a flexible virtual network view
configurable by the user allowing the devices to view and interact with other IoT
or non-IoT devices. The view for each device is defined according to the need
of this device to communicate with other devices (e.g. interacting with printers,
or specific IoT devices in the network) and can be derived, e.g., based on the
set of applications installed on the device. For example, a non-IoT device like a
laptop should be able to view other laptops in the network, in addition to printers,
VoIP phones, cameras, smartphones, and tablets. Smartphones and tablets are
located in the control group, while printers and VoIP phones are located in the
non-IoT devices group. The laptop may also need access to IP cameras located
in the function-specific “camera” group. This way, the laptop will have a virtual



9 HONEYSCOPE: IoT Device Protection with Deceptive Network Views 175

network view that allows it to have access to the non-IoT group, the control
group, and the camera group.

As shown in Fig. 9.2, there are intersection points between vendor-specific and
function-specific groups. For example, in this network, there is a Philips Hue smart
device in both the lighting group (function-specific) and the Philips group (vendor-
specific). The function-specific groups contain devices from different vendors but
they share the same function and usage, so they need to communicate together in a
separate group.

Fig. 9.3 Grouping and isolation processes

9.2.3 Device Type Identification

Most devices joining the network do not explicitly advertise what type of device they
are. They need therefore to be identified before assigning them to HONEYSCOPE

groups. When a device joins the local IoT network, the SDN controller identifies its
type by using the developed IoT sentinel model by Miettinen et al. [12] for unknown
device type identification. IoT sentinel is based on identifying the device type by
profiling the communication behavior of the device and using machine learning
classifiers to identify its device type. It uses a database that contains pre-captured
behaviors for most of the current IoT devices in the market, and from this database,
the device type is determined and defined. The main idea of IoT sentinel is to create
device fingerprints by monitoring the communication behavior of the new added
device during the setup phase. From this generated fingerprint, IoT sentinel is able
to map the device to its corresponding device type using machine learning-based
classifiers.



176 R. Mohamed et al.

If the device is identified successfully, it is added to its corresponding group in the
local network: a vendor-specific group and possibly one or more function-specific
groups.

For example, if the device was detected to be a Philips Hue light, it will be added
to the Philips Hue group as well as the lighting group. When the device is added to
the corresponding group, the SDN controller creates a virtual network view that
matches the groups the device is added to. If IoT sentinel fails to successfully
identify the joining device, the device will be added to the unidentified group
which contains all unidentified devices in the network. The joining device will be
able to view the control group, the HoneyNet group, and any other devices in the
unidentified group.

The HONEYSCOPE IoT network will be defined by different customized network
views for each device added to it according to this device type identification process.

IoT sentinel will notify the SDN controller if any vulnerabilities become known
for any of the IoT devices registered with the SDN controller. For obtaining this
information, IoT sentinel utilizes an IoT security service, which aggregates network-
wide information about known vulnerabilities associated with particular IoT device
types. If a vulnerability is detected that affects a particular device, it will be moved
from its group, regardless whatever this group is, to the vulnerable group. This
way, the device will be isolated from other devices in the network not to affect
any of them until the device vulnerability has been removed, e.g., by applying an
appropriate firmware patch. The device will not have any access to any devices in
the local network. However, devices in the control group will have a unidirectional
connection to it, e.g., in order to check device status or send updates and other
messages.

9.3 HONEYSCOPE Components

9.3.1 HONEYSCOPE Controller

There are many SDN controllers that can be used with HONEYSCOPE. However, we
selected RYU controller [6] which is based on Python, because of its support for
the higher and newest versions of the OpenFlow protocol [11], it supports the 1.5
OpenFlow standard. In addition to that, it has the Nicira extensions for OpenFlow
matching [5]. Although Nicira is a vendor specific implementation, it is luckily
implemented in OpenvSwitch. It provides some additional criteria to match on. We
have developed a Ryu application to implement the management and control of the
whole network.

9.3.2 HONEYSCOPE Security Gateway

For the gateway router, our prototype uses a Linksys WRT1900AC [2] router
running a modified OpenWRT firmware. OpenWRT gives developers flexibility in



9 HONEYSCOPE: IoT Device Protection with Deceptive Network Views 177

creating the network design and flashing the desired operating system image to it
[4]. The Linksys router is considered as one of the most stable hardware that can be
used with OpenWRT. However, one of the main drawbacks of using it is its limited
memory. OpenvSwitch [3] is installed on the Linksys router to enable using SDN
and OpenFlow. Instead of the normal bridge in the router, an OVS bridge is added to
work properly with SDN. OpenvSwitch is a multiplayer virtual switch that provides
more automation and programmability. SDN needs such automation to be able to
perform the separation between the control plane and the data plane smoothly.

As mentioned in the previous section, one of the main goals of HONEYSCOPE

is to divide the local IoT network to groups in which devices are visible to each
other while they are invisible to any other devices out of this specific group’s range.
Figure 9.3 describes the process of grouping and isolating the new added devices.
When a device joins the local IoT network, the SDN controller examines the packets
coming from and to this device and processes the device’s behaviors to be able to
identify the device type accordingly.

Fig. 9.4 Communication between network groups

9.3.3 Communication Between Network Groups

As shown in Fig. 9.4, the direction of the arrows represents how the communication
goes between any two groups, for example, the communication between the control
group and the vulnerable group is unidirectional from the control to the vulnerable
group, as communication in the other direction is denied. As shown, there is no
communication between different vendor-specific or function-specific groups, nor
between any of these groups and the vulnerable group. Each of these groups cannot



178 R. Mohamed et al.

view or access other groups. There is no need for these devices to communicate and
by isolating them we reduce the attack surface of devices in the local IoT network.

The communication between the control group and the vulnerable group requires
special arrangements. As mentioned, the control group has access to the vulner-
able group through unidirectional communication. However, the vulnerable group
doesn’t have access to the control group and can’t send any packets to devices in it.
However, in some use cases like when devices in the vulnerable group need to be
configured or software updates need to be installed on them, there needs to be a way
for the controlling devices to discover devices in the vulnerable group.

Fig. 9.5 Communication
between control and
vulnerable groups

Software updates for most IoT devices are facilitated using a specific smartphone
application to get updates from the manufacturer servers and install them onto the
device. The mobile application downloads the firmware update and uploads it to the
corresponding IoT device. Note that in some cases the IoT device connects directly
to the manufacturer’s servers without the help of its mobile application. In such
cases access to the control group may not be required.

To be able to perform software updates with the help of the controlling device,
IoT devices in the vulnerable group use multicast and broadcast-based discovery
protocols to allow the controlling device (e.g., smartphone, or tablet of the user) to
be aware of them.

To enable the controlling device to discover vulnerable devices, a virtual
discovery proxy is used for facilitating limited communication for this discovery
purpose from the vulnerable group towards the control group as shown in Fig. 9.5,
demonstrating how the communication between these groups is handled. The
discovery proxy is activated by the controlling device (e.g., by activating a special
configuration/update mode of the system). When activated, the proxy will forward
broadcast and multicast messages from devices in the vulnerable group to the
specific controlling device that activated the discovery mode. Thus, the controlling
device can discover the presence of IoT devices while limiting their communication



9 HONEYSCOPE: IoT Device Protection with Deceptive Network Views 179

to any other devices in the local IoT network. We envisage that the user can activate
the discovery mode of HONEYSCOPE with the help of a smartphone application on
the controlling device, thereby activating the discovery proxy. The communication
between both groups can be summarized as follows:

• Communication from any control device to the vulnerable devices: this is granted
by direct communication from the control device to the vulnerable group.

• Communication from vulnerable devices group to the control group: This
communication is denied. It can only temporarily enabled through the discovery
proxy when the controlling device initiates a special discovery mode. It acts
like a “virtual VPN” between the controlling device and vulnerable group,
strictly limiting the delivery of multicast and broadcast packets of devices in the
vulnerable group to the controlling group only.

9.3.4 Case Study

Here we will discuss an exemplary scenario to demonstrate how HONEYSCOPE adds
a level of security to the local IoT network. Assume there is a D-Link IP camera in
the local IoT network that is susceptible to be infected by an IoT malware like
Mirai [7]. At first, when this IP camera is joining the network, it will be identified
and added to the D-Link and camera groups. Only D-Link devices, in addition to all
cameras in the network, can view and have access to this D-Link camera.

Once the IoT security service notifies HONEYSCOPE that the camera is vulnera-
ble to, e.g., Mirai, the SDN controller will move the camera to the vulnerable devices
group and remove it from both the D-Link and camera groups.

When it is moved to the vulnerable group, the infected camera will have a
new limited virtual network view in which it can’t view any devices in the local
network except the virtual devices in the HoneyNet group, and can be viewed by
the controlling devices as well. This way, other devices in the D-Link and camera
groups will be protected from the vulnerable device should it be infected by the IoT
malware.

The communication between the controlling devices and the vulnerable devices
is unidirectional: this is to enable the controlling device, e.g., to send software
updates for fixing the vulnerability of the camera. After that, the camera can again
be added back to the D-Link and camera groups.

9.4 Conclusion

This chapter has provided an overview of the architecture, design, and the deception
function of HONEYSCOPE. HONEYSCOPE is based on creating virtual deceptive
network views for each IoT device in the local IoT network. SDN technology is
used to manage the network by using an SDN controller that is responsible for
creating these deceptive network views for each device according to its identified



180 R. Mohamed et al.

device type. For device type identification, the IoT sentinel system is used. Through
the use of deceptive network views, HONEYSCOPE is able to provide a higher layer
of security to the local IoT network against both external and internal attacks.

9.5 Hands-on Exercises

1. (Intermediate) In this exercise, you will use the Mininet SDN emulation
environment (http://mininet.org/) to implement the core network views concept
behind HONEYSCOPE. The best way to become familiar with Mininet is to go
through the tutorial. Once you are familiar with Mininet, construct the topology
shown in the left half of Fig. 9.6. The goal of this exercise is to construct the
network views policy shown in the right half of Fig. 9.6. To accomplish this,
you may wish to modify Mininet’s “Learning Switch” tutorial to enforce access
control based on hard-coded MAC addresses. Use the OpenFlow protocol to
program a switch to perform custom packet forwarding. Implement a software
defined network controller that can read frame and packet source and destination
fields in order to implement the HONEYSCOPE network views policy. Test
network visibility using the ping command. Note that for this exercise, you
only need to worry about unicast traffic. Finally, you may choose to use the Pox
controller, which is the default with Mininet, or choose another controller such
as Ryu, ONOS, or OpenDaylight. Mininet can be configured to use a remote
controller (e.g., a controller outside the control of Mininet).

Group 2

Group 1

Ctl

B

D

GW

A

C

Network Views

GW

Ctl B DA C

Switch

Network Topology

Fig. 9.6 Network topology and views for exercises. GW is the gateway and Ctl is a controlling
device such as a smartphone. Arrowheads indicate network visibility. For example, GW and Ctl

can see A, B, C, and D; however, A and B cannot see C and D

2. (Advanced) In this exercise, you will extend Exercise 1 to real hardware. To
complete this exercise, you will need a router/access point capable of running
OpenWRT/LEDE (https://openwrt.org/) and a Raspberry Pi. Start by setting
up OpenWRT with OpenVSwitch (OVS) and your controller running on the
Raspberry Pi. The WiFi SDN project at Helsinki is a good starting place (https://
wiki.helsinki.fi/display/WiFiSDN/Software-Defined+Wi-Fi+Networks+with+
Wireless+Isolation). Once the data plane and control plane is setup, port your

http://mininet.org/
https://openwrt.org/
https://wiki.helsinki.fi/display/WiFiSDN/Software-Defined+Wi-Fi+Networks+with+Wireless+Isolation
https://wiki.helsinki.fi/display/WiFiSDN/Software-Defined+Wi-Fi+Networks+with+Wireless+Isolation
https://wiki.helsinki.fi/display/WiFiSDN/Software-Defined+Wi-Fi+Networks+with+Wireless+Isolation


9 HONEYSCOPE: IoT Device Protection with Deceptive Network Views 181

solution to Exercise 1 to this environment. Note the controller will only see one
port: wlan0. However, by enabling WiFi isolation mode, all of the network
traffic will be forced through the soft-switch, allowing the controller to define
flow-mod rules that restrict which devices can receive packets from one another.
Again, for this exercise, only worry about unicast traffic.

3. (Advanced) In the previous two exercises, you only considered unicast traffic.
However, many IoT devices depend on multicast protocols (e.g., HomeKit uses
mDNS), which may leak information between network groups. Further, IoT
discovery protocols (e.g., SSDP) rely on multicast protocols for advertisement
and discovery of network services, providing information about IoT device
applications and services outside the scope of HONEYSCOPE policies. Extend
Exercise 2 to also mediate multicast traffic. To test your solution, explore the use
of Avahi (https://www.avahi.org/) and nss-mdns (https://github.com/lathiat/nss-
mdns) from Linux. Alternatively, macOS devices advertise services via mDNS
(aka Bonjour). Hint: consider making copies of multicast packets and sending
the copies to hosts allowed by the policy.

References

1. Amazon’s Alexa recorded private conversation and sent it to random contact. https://www.
theguardian.com/technology/2018/may/24/amazon-alexa-recorded-conversation. Accessed:
2018-06-20.

2. Linksys WRT 1900AC. https://www.linksys.com/us/p/P-WRT1900AC/. Accessed: 2018-06-
03.

3. OpenvSwitch. https://www.openvswitch.org/. Accessed: 2018-06-03.
4. OpenWRT. https://openwrt.org/. Accessed: 2018-06-03.
5. RYU Nicira extensions. http://ryu.readthedocs.io/en/latest/nicira_ext_ref.html. Accessed:

2018-06-03.
6. RYU SDN controller. https://osrg.github.io/ryu/. Accessed: 2018-06-03.
7. Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime

Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis Kallitsis, et al.
Understanding the Mirai botnet. In USENIX Security Symposium, 2017.

8. H. Chung, M. Iorga, J. Voas, and S. Lee. Alexa, can I trust you? Computer, 50(9):100–104,
2017.

9. ONF Market Education Committee et al. Software-defined networking: The new norm for
networks. ONF White Paper, 2012.

10. Jeremy Erickson, Qi Alfred Chen, Xiaochen Yu, Erinjen Lin, Robert Levy, and Z. Morley
Mao. No one in the middle: Enabling network access control via transparent attribution.
In Proceedings of the 2018 on Asia Conference on Computer and Communications Security,
ASIACCS ’18, pages 651–658, New York, NY, USA, 2018. ACM.

11. Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer
Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March 2008.

12. Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N. Asokan, Ahmad-Reza Sadeghi, and
Sasu Tarkoma. IoT Sentinel: Automated device-type identification for security enforcement in
IoT. In Proc. 37th IEEE International Conference on Distributed Computing Systems (ICDCS
2017), June 2017.

https://www.avahi.org/
https://github.com/lathiat/nss-mdns
https://github.com/lathiat/nss-mdns
https://www.theguardian.com/technology/2018/may/24/amazon-alexa-recorded-conversation
https://www.theguardian.com/technology/2018/may/24/amazon-alexa-recorded-conversation
https://www.linksys.com/us/p/P-WRT1900AC/
https://www.openvswitch.org/
https://openwrt.org/
http://ryu.readthedocs.io/en/latest/nicira_ext_ref.html
https://osrg.github.io/ryu/

	9 HONEYSCOPE: IoT Device Protection with Deceptive Network Views
	9.1 Introduction
	9.1.1 Principle of ``Need to See''
	9.1.2 Deception Through Network Views
	9.1.3 Honeyscope

	9.2 Design of Honeyscope
	9.2.1 Honeyscope Implementation Approaches
	9.2.2 Honeyscope Network Structure
	9.2.2.1 Honeyscope Groups

	9.2.3 Device Type Identification

	9.3 Honeyscope Components
	9.3.1 Honeyscope Controller
	9.3.2 Honeyscope Security Gateway
	9.3.3 Communication Between Network Groups
	9.3.4 Case Study

	9.4 Conclusion
	9.5 Hands-on Exercises
	References


