
Chapter 8
Deception-Enhanced Threat Sensing
for Resilient Intrusion Detection

Frederico Araujo, Gbadebo Ayoade, Kevin W. Hamlen, and Latifur Khan

Abstract Enhancing standard web services with deceptive responses to cyberat-
tacks can be a powerful and practical strategy for improved intrusion detection.
Such deceptions are particularly helpful for addressing and overcoming barriers to
effective machine learning-based intrusion detection encountered in many practical
deployments. For example, they can provide a rich source of training data when
training data is scarce, they avoid imposing a labeling burden on operators in
the context of (semi-)supervised learning, they can be deployed post-decryption
on encrypted data streams, and they learn concept differences between honeypot
attacks and attacks against genuine assets.

The approach presented in this chapter examines how deceptive web service
responses can be realized as software security patches that double as feature
extraction engines for a network-level intrusion detection system. The resulting
system coordinates multiple levels of the software stack to achieve fast, automatic,
and accurate labeling of live web data streams, and thereby detects attacks with
higher accuracy and adaptability than comparable non-deceptive defenses.

8.1 Introduction

Detecting previously unseen cyberattacks before they reach unpatched, vulnerable
web servers (or afterward, for recovery purposes) is an increasingly central compo-
nent to multi-layered defense of modern computer networks. High-impact zero-day
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vulnerabilities now appear at a weekly or daily rate, and studies indicate that over
75% of websites have unpatched vulnerabilities [19]. The cost of data breaches
resulting from software exploits was estimated at $2.1 trillion for 2019 [14].

Intrusion detection [10] is an important means of mitigating such threats. Rather
than implementing vulnerability-specific mitigations (which is difficult when the
vulnerability is unknown to defenders), intrusion detection systems more generally
alert administrators when they detect deviations from a model of normal behavior in
the observed data [20]. This capitalizes on the observation that the most damaging
and pernicious attacks discovered in the wild often share similar traits, such as the
steps intruders take to open back doors, execute files and commands, alter system
configurations, and transmit gathered information from compromised machines.
Starting with the initial infection, such malicious activities often leave telltale
traces that can be identified even when the underlying exploited vulnerabilities are
unknown to defenders. The challenge is therefore to capture and filter these attack
trails from network traffic, connected devices, and target applications, and develop
defense mechanisms that can effectively leverage such data to disrupt ongoing
attacks and prevent future attempted exploits.

However, despite its great power, the deployment of machine learning
approaches for web intrusion detection is often hindered by a scarcity of realistic,
current cyberattack data with which to train the system, and by the difficulty of
accurately and efficiently labeling such datasets, which are often prohibitively
large and complex. This can frustrate comprehensive, timely training of intrusion
detection systems (IDSes), causing the IDS to raise numerous false alarms and
elevating its susceptibility to attacker evasion techniques [6, 9, 13, 16, 18].

To mitigate these dilemmas, this chapter presents a deception-based approach to
enhance IDS web data streams for faster, more accurate, and more timely evolution
of intrusion detection models to emerging attacks and attacker strategies.

8.2 Deceptive Collection of Attack Data

Deception has long been recognized as a key ingredient of effective cyber warfare
(cf., [23]), but many realizations limit the potential power of deception by isolating
and separating deceptive assets from the data stream in which intrusions must
actually be detected. A typical example is the use of dedicated honeypots to
collect attack-only data streams [21]. Such approaches unfortunately have limited
training value in that they often mistrain IDSes to recognize only attacks against
honeypots, or only attacks by unsophisticated adversaries unable to identify and
avoid honeypots. For example, attacks that include substantial interactivity are
typically missed, since the honeypot offers no legitimate services, and therefore
collects no data characterizing attacks against legitimate services.

One way to overcome this limitation is to integrate deceptive attack response
capabilities directly into live, production web server software via honey-
patching [2–4]. Honey-patches are software security patches that are modified
to avoid alerting adversaries when their exploit attempts fail. Instead of merely
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blocking the attempted intrusion, the honey-patch transparently redirects the
attacker’s connection to a carefully isolated decoy environment running an
unpatched version of the software. Adversaries attempting to exploit a honey-
patched vulnerability therefore observe software responses that resemble unpatched
software, even though the vulnerability is actually patched. This deception allows
the system to observe subsequent actions by the attacker until the deception is
eventually uncovered. Thus, honey-patches offer equivalent security to conventional
patches, but can also enhance IDS web data streams by feeding them a semantically
rich stream of pre-labeled (attack-only) data for training purposes. These deception-
enhanced data streams thus provide IDSes with concept-relevant, current,
feature-filled information with which to detect and prevent sophisticated, targeted
attacks.

Honey-patches are often easy to implement via only a minor change to a vendor-
released software patch. For example, buffer overflow vulnerabilities are typically
patched by adding a bounds check that tests whether a dereferenced pointer or array
index falls within the bounds of the buffer. Such patches can easily be reformulated
into honey-patches by retaining the check, but changing what happens when the
check fails. Instead of aborting the connection or reporting an error, the honey-
patch redirects the connection to an unpatched decoy, where the buffer overflow is
permitted to succeed.

1 read a[i]

1

2 abort();
3 read a[i]

if (i ≥ length(a)) 1 if (i ≥ length(a))
2 fork_to_decoy();
3 read a[i]

Fig. 8.1 Pseudo-code for a buffer overflow vulnerability (left), a patch (middle), and a honey-
patch (right)

Figure 8.1 demonstrates the approach using pseudo-code for a buffer-overflow
vulnerability, a conventional patch, and a honey-patch. The honey-patch retains the
logic of the conventional patch’s security check, but replaces its remediation with
a deceptive fork to a decoy environment. The decoy contains no valuable data and
offers no legitimate services; its sole purpose is to monitor attacker actions, such as
shellcode or malware introduced by the attacker after abusing the buffer overflow
to hijack the software. The infrastructure for redirecting attacker connections to
decoys can remain relatively static, so that honey-patching each newly discovered
vulnerability only entails replacing the few lines of code in each patch that respond
to detected exploits.

Honey-patches constitute an integrated deception mechanism that offers some
important advantages over conventional honeypots. Most significantly, they observe
attacks against the defender’s genuine assets, not merely those directed at fake assets
that offer no legitimate services. They can therefore capture data from sophisti-
cated attackers who monitor network traffic to identify service-providing assets
before launching attacks, who customize their attacks to the particular activities
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of targeted victims (differentiating genuine servers from dedicated honeypots),
and who may have already successfully infiltrated the victim’s network before
their attacks become detected. The remainder of this chapter examines how the
deception-enhanced data harvested by honey-patches can be of particular value
to network-level defenses, such as firewalls equipped with machine learning-based
intrusion detection.

8.3 Intrusion Detection Challenges

Despite the potential power of machine learning in intrusion detection applications,
its success in operational environments can be hampered by specific challenges that
arise in the cybersecurity domain. In this section we argue that cyber deception can
be a highly effective strategy for avoiding or overcoming many of these challenges.

Fundamentally, machine learning algorithms perform better at identifying simi-
larities than at discovering previously unseen outliers. Since normal, non-attack data
is usually far more plentiful than realistic, current attack data, many classifiers must
be trained almost solely from the former, necessitating an almost perfect model of
normality for any reliable classification [18]. Deceptive defenses help to offset this
imbalance by providing a continuous source of realistic attack data specialized to
the defender’s network and assets.

Feature extraction [7] is also unusually difficult in intrusion detection contexts
because security-relevant features are often not known by defenders in advance.
The task of selecting appropriate features to detect an intrusion (e.g., features
that generate the most distinguishing intrusion patterns) can create a bottleneck in
building effective models, since it demands empirical evaluation. Identification of
attack traces among collected workload traces for constructing realistic, unbiased
training sets is particularly challenging. Current approaches usually require manual
analysis aided by expert knowledge [6, 9], which reduces the model’s evolutionary
and update capabilities, making it susceptible to attacker evasions. The approach
presented in this chapter shows how including deceptions within software security
patches can overcome this difficulty.

A third obstacle is analysis of encrypted data. Encryption is widely employed to
prevent unauthorized users from accessing sensitive web data transmitted through
network links or stored in file systems. However, since network-level detectors
typically discard cyphered data, their efficacy is greatly reduced by the widespread
use of encryption technologies [13]. In particular, attackers benefit from encrypting
their malicious payloads, making it harder for standard classification strategies to
distinguish attacks from normal activity. Deceptive defenses can often be placed
after decryption within the software stack, evading this problem.

High false positive rates are another practical challenge for adoption of machine
learning approaches [16]. Raising too many alarms renders intrusion detection
meaningless in most cases, as actual attacks are often lost among the many alarms.
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Studies have shown that effective intrusion detection therefore demands very low
false alarm rates [5]. Deception-enhanced data streams can ameliorate this by
improving the concept-relevance of the collected training data, improving attack
detection accuracy.

8.4 Mining Deception-Enhanced Threat Data

To mitigate these challenges, this chapter introduces an approach to enhance
intrusion detection with threat data sourced from honey-patched [4] applications.
Figure 8.2 shows an overview of the approach. Unlike conventional approaches,
our framework incrementally builds a model of legitimate and malicious behavior
based on audit streams and attack traces collected from honey-patched web servers.
This augments the classifier with security-relevant feature extraction capabilities not
available to typical network intrusion detectors, effectively reducing the anomaly
detection task to a semi-supervised learning process.

Such capabilities are transparently built into the framework, requiring no addi-
tional developer effort (apart from routine patching) to convert the target application
into a potent feature extractor for anomaly detection. Since traces extracted from
decoys are always contexts of true malicious activity, this results in an effortless
labeling of the data and supports the generation of higher-accuracy detection
models.

Honey-patches add a layer of deception to confound exploits of known (patch-
able) vulnerabilities. Previously unknown (i.e., zero-day) exploits can also be
mitigated through IDS cooperation with the honey-patches. For example, a honey-
patch that collects identifying information about a particular adversary seeking
to exploit a known vulnerability can convey that collected information to train a
classifier, which can then potentially identify the same adversary seeking to exploit a
previously unknown vulnerability. This enables training intrusion detection models
that capture features of the attack payload, and not just features of the actual
exploitation of the vulnerability, thus more closely approximating the true invariant
of an attack.

To facilitate such learning, our approach classifies sessions as malicious, not
merely the individual packets, commands, or bytes within sessions that comprise
each attack. For example, observing a two-phase attack consisting of (1) exploitation
of a honey-patched vulnerability, followed by (2) injection of previously unseen
shellcode might train a model to recognize the shellcode. Subsequent attacks that
exploit an unpatched zero-day to inject the same (or similar) shellcode can then
be recognized by the classifier even if the zero-day exploit is not immediately
recognized as malicious. Conventional, non-deceptive patches often miss such
learning opportunities by terminating the initial attack at the point of exploit, before
the shellcode can be observed.
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Fig. 8.2 System architecture overview

Our approach therefore essentially repurposes security patches in an IDS setting
as automated, application-level feature extractors. The maintenance burden for these
extractors is relatively low: most of the patch code is maintained by the collective
expertise of the entire software development community, as they discover new
vulnerabilities and release patches for them. Via honey-patching, defenders can
reimagine those patches as highly accurate, rapidly co-evolving feature extraction
modules for an IDS. The extractor detects previously unseen payloads that exploit
known vulnerabilities at the application layer, which can be prohibitively difficult
to detect by a strictly network-level IDS.

By living inside web servers that offer legitimate services, a deception-enhanced
IDS can target attackers who use one payload for reconnaissance but reserve another
for their final attacks. The facility of honey-patches to deceive such attackers
into divulging the latter is useful for training the IDS to identify the final attack
payload, which can reveal attacker strategies and goals not discernible from the
reconnaissance payload alone. The defender’s ability to thwart these and future
attacks therefore derives from a synergy between the application-level feature
extractor and the network-level intrusion detector to derive a more complete model
of attacker behavior.

8.5 Use Case: Booby-Trapping Software for Intrusion
Detection

8.5.1 Architectural Overview

The architecture depicted in Fig. 8.2 embodies this approach by leveraging
application-level threat data gathered from attacker sessions misdirected to decoys.
Within this framework, developers use honey-patches to misdirect attackers to
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decoys that automatically collect and label monitored attack data. The intrusion
detector consists of an attack modeling component that incrementally updates the
anomaly model data generated by honey-patched servers, and an attack detection
component that uses this model to flag anomalous activities in the monitored
perimeter.

The decoys into which attacker sessions are forked can be managed as a pool of
continuously monitored containers (e.g., LXC on Linux). Each container follows
the following life cycle: Upon attack detection, the honey-patching mechanism
acquires the first available container from the pool. The acquired container holds
an attacker session until (1) the session is deliberately closed by the attacker, (2)
the connection’s keep-alive timeout expires, (3) the ephemeral container crashes,
or (4) a session timeout is reached. The last two conditions are common out-
comes of successful exploits. In any of these cases, the container is released
back to the pool and undergoes a recycling process before becoming available
again.

After decoy release, the container monitoring component extracts the session
trace (delimited by the acquire and release timestamps), labels it, and stores the
trace outside the decoy for subsequent feature extraction. Decoys only host attack
sessions, so precisely collecting and labeling their traces (at both the network and
OS level) is effortless.

Evaluating the framework requires distinguishing three separate input data
streams: (1) the audit stream, collected at the target honey-patched server, (2)
attack traces, collected at decoys, and (3) a monitoring stream, which consists
of a actual test stream collected from regular servers. Each of these streams
contains network packets and operating system events captured at each server
environment. To minimize performance impact, a powerful and highly efficient
software monitor is recommended. Recommended candidates include sysdig (to
track system calls and modifications made to the file system) and tcpdump (to mon-
itor ingress and egress of network packets). Specifically, monitored data is stored
outside the decoy environments to avoid possible tampering with the collected
data.

Using the continuous audit stream and incoming attack traces as labeled input
data, the intrusion detector incrementally builds a machine learning model that
captures legitimate and malicious behavior. The raw training set (composed of
both audit stream and attack traces) is piped into a feature extraction compo-
nent that selects relevant, non-redundant features (see Sect. 8.5.2) and outputs
feature vectors—audit data and attack data—that are grouped and queued for
subsequent model update. Since the initial data streams are labeled and have
been preprocessed, feature extraction becomes very efficient and can be performed
automatically. This process repeats periodically according to an administrator-
specified policy. Finally, the attack detection module uses the most recently
constructed attack model to detect malicious activity in the runtime monitoring
data.
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8.5.2 Detection Models

To assess our framework’s ability to enhance intrusion detection data streams, we
have designed and implemented two feature set models: (1) Bi-Di detects anomalies
in security-relevant network streams, and (2) N-Gram finds anomalies in system
call traces. The feature set models and classifier presented in this section serve
as illustrative use case. Applications of the IDS framework should consider other
machine learning models and contrast trade-offs and their effectiveness for attack
detection.

8.5.2.1 Network Packet Analysis

Bi-Di (bi-directional) is a packet-level network behavior analysis approach that
extracts features from sequences of packets and bursts—consecutive packets ori-
ented to the same direction (viz., uplinks from client to server, or downlinks from
server to client). It uses distributions from individual burst sequences (uni-bursts)
and sequences of two adjacent bursts (bi-bursts). To be robust against encrypted
payloads, we limit feature extraction to packet headers.

Network packets flow between client (Tx) and server (Rx). Bi-Di constructs
histograms using features extracted from packet lengths and directions. To over-
come dimensionality issues associated with burst sizes, bucketization is applied
to group bursts into correlation sets (e.g., based on frequency of occurrence).
Table 8.1 summarizes the features used in our approach. It highlights new features
proposed for uni- and bi-bursts as well as features proposed in the prior works
[1, 12, 15, 22].

Uni-burst Features include burst size, time, and count—i.e., the sum of the sizes of
all packets in the burst, the amount of time for the entire burst to be transmitted, and
the number of packets it contains, respectively. Taking direction into consideration,
one histogram for each is generated.

Bi-burst Features include time and size attributes of Tx-Rx-bursts and Rx-Tx-bursts.
Each is comprised of a consecutive pair of downlink and uplink bursts. The size and
time of each are the sum of the sizes of the constituent bursts, and the sum of the
times of the constituent bursts, respectively.

Bi-bursts capture dependencies between consecutive packet flows in a TCP
connection. Based on connection characteristics, such as network congestion, the
TCP protocol applies flow control mechanisms (e.g., window size and scaling,
acknowledgement, sequence numbers) to ensure a level of consistency between Tx
and Rx. This influences the size and time of transmitted packets in each direction.
Each packet flow (uplink and downlink) thereby affects the next flow or burst until
communicating parties finalize the connection.
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Table 8.1 Packet, uni-burst,
and bi-burst features

Category Features

Packet (Tx/Rx) Packet length

Uni-burst (Tx/Rx) Uni-burst size
Uni-burst time
Uni-burst count

Bi-burst (Tx-Rx/Rx-Tx) Bi-burst size
Bi-burst time

Algorithm 1: Ens-SVM
Data: training data: T rainX, testing data: T estX

Result: a predicted label LI for each testing instance I
1 begin
2 B ← updateModel(Bi-Di, TrainX)

3 N ← updateModel(N-Gram, TrainX)

4 for each I ∈ TestX do
5 LB ← label(B,I )
6 LN ← label(N,I )
7 if LB == LN then
8 LI ← LB

9 else

10 LI ← label

(
arg max
c∈{B,N}

confidence(c,I ), I

)

11 end
12 end
13 end

8.5.2.2 System Call Analysis

The monitored data also includes system streams comprising a collection of OS
events, where each event contains multiple fields including event type (e.g., open,
read, select), process name, and direction. Our prototype implementation was
developed for Linux x86_64 systems, which exhibit about 314 distinct possible
system call events. Our framework builds histograms from these system calls using
N-Gram—a system-level approach that extracts features from contiguous sequences
of system calls.

There are four feature types: Uni-events are system calls, and can be classified
as enter or exit events. Bi-events are sequences of two consecutive events, where
system calls in each bi-event constitute features. Similarly, tri- and quad-events are
sequences of three and four consecutive events (respectively).

Bi-Di and N-Gram differ in feature granularity; the former uses coarser-grained
bursting while the latter uses only individual system call co-occurrences.
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8.5.3 Attack Classification

Bi-Di and N-Gram both use SVM for classification. Using a convex optimization
approach and mapping non-linearly separated data to a higher dimensional linearly
separated feature space, SVM separates positive (attack) and negative (benign)
training instances by a hyperplane with the maximum gap possible. Prediction labels
are assigned based on which side of the hyperplane each monitoring/testing instance
belongs.

Ens-SVM Bi-Di and N-Gram can be combined to obtain a better predictive model.
A naïve approach concatenates features extracted by Bi-Di and N-Gram into a
single feature vector and uses it as input to the classification algorithm. However,
this approach has the drawback of introducing normalization issues. Alternatively,
ensemble methods combine multiple classifiers to obtain a better classification
outcome via majority voting techniques. For our purposes, we use an ensemble,
Ens-SVM, which classifies new input data by weighing the classification outcomes
of Bi-Di and N-Gram based on their individual accuracy indexes.

honey-patched server

attack generator

attack automation

normal traffic generatordata sources

activities

BBC News
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Electronic 
Records

Selenium client

network monitoring
(pcap)

system monitoring
(scap)

exploits

attack labeling

normal
workload

attack 
workload

attack traces

scap

pcap

audit stream

scap

pcap

statistically 
sampled

Fig. 8.3 Web traffic generation and testing harness

Algorithm 1 describes the voting approach for Ens-SVM. For each instance in
the monitoring stream, if both Bi-Di and N-Gram agree on the predictive label
(line 7), Ens-SVM takes the common classification as output (line 8). Otherwise,
if the classifiers disagree, Ens-SVM takes the prediction with the highest SVM
confidence (line 10). Confidence is rated using Platt scaling [17], which uses the
following sigmoid-like function to compute the classification confidence:

P(y = 1|x) = 1

1 + exp (Af (x) + B)
(8.1)

where y is the label, x is the testing vector, f (x) is the SVM output, and A and
B are scalar parameters learned using maximum likelihood estimation (MLE). This
yields a probability measure of how much a classifier is confident about assigning a
label to a testing point.
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8.6 Evaluation Testbed

Objective, scientific evaluation of cyber deceptions is often very difficult, because
evaluations on live attackers tend to be subjective (there is usually no way to know
whether an anonymous attacker was genuinely deceived or just “playing along”),
anecdotal (samples of hundreds or thousands of provably distinct attackers are
required to draw quantifiable conclusions), and impossible to replicate. Much of the
prior work in this space has been criticized on those grounds. Our work therefore
offers a more rigorous evaluation methodology, which demonstrates that objectively
quantifiable success metrics for IDSes significantly improve when exposed to
deception-enhanced data, and the experimental results are reliably reproducible at
large sample sizes.

8.6.1 Realistic Web Traffic Generation

To demonstrate the practical advantages and feasibility of deception-enhanced
intrusion detection, we built a web traffic generator and test harness. Figure 8.3
shows an overview of our evaluation testbed, inspired by prior work [8]. It streams
realistic encrypted legitimate and malicious workloads onto a honey-patched web
server, resulting in labeled audit streams and attack traces (collected at decoys) for
training set generation.

Legitimate Data Normal traffic is created by automating complex user actions on a
typical web application as shown in Table 8.2, leveraging Selenium to automate user
interaction with a web browser (e.g., clicking buttons, filling out forms, navigating
a web page). We generated web traffic for 12 different user activities (each repeated
200 times), including web page browsing, e-commerce website navigation, blog
posting, and interacting with a social media web application. The setup included a
CGI web application and a PHP-based Wordpress application hosted on a monitored
Apache web server. To enrich the set of user activities, the Wordpress application
was extended with Buddypress and Woocommerce plugins for social media and e-
commerce web activities, respectively.

To create realistic interactions with the web applications, our framework feeds
from online data sources, such as the BBC text corpus, online text genera-
tors for personally identifiable information (e.g., usernames, passwords), and
product names to populate web forms. To ensure diversity, we statistically sam-
pled the data sources to obtain user input values and dynamically generated
web content. For example, blog title and body is statistically sampled from the
BBC text corpus, while product names are picked from the product names data
source.
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Table 8.2 Summary of synthetic data generation

Normal workload summary

Activity Application Description

Post CGI web app Posting blog on a guestbook CGI web
application

Post Wordpress Posting blog on Wordpress

Post Wordpress Buddypress plugin Posting comment on social media web
application

Registration Wordpress Woocommerce plugin Product registration and product description

E-commerce Wordpress Woocommerce plugin Ordering of a product and checkout

Browse Wordpress Browsing through a blog post

Browse Wordpress Buddypress Browsing through a social media page

Browse Wordpress Woocommerce plugin Browsing product catalog

Registration Wordpress User registration

Registration Wordpress Woocommerce plugin Coupon registration

Attack Data Attack traffic is generated based on real vulnerabilities as shown in
Table 8.3. For this evaluation, we selected 16 exploits for eight well-advertised,
high-severity vulnerabilities. These include CVE-2014-0160 (heartbleed), CVE-
2014-6271 (shellshock), CVE-2012-1823 (improper handling of query strings by
PHP in CGI mode), CVE-2011-3368 (improper URL validation), CVE-2014-0224
(change cipher specification attack), CVE-2010-0740 (malformed TLS record),
CVE-2010-1452 (Apache mod_cache vulnerability), and CVE-2016-7054 (buffer
overflow in OpenSSL with support for ChaCha20-Poly1305 cipher suite). In
addition, nine attack variants exploiting CVE-2014-6271 (shellshock) were created
to carry out different malicious activities (i.e., different attack payloads), such as
leaking password files and invoking bash shells on the remote web server. These
vulnerabilities are important as attack vectors because they range from sensitive
data exfiltration to complete control and remote code execution. To emulate realistic
attack traffic, we interleaved attacks and normal traffic following the strategy of
Wind Tunnel [8].

Dataset The traffic generator is deployed on a separate host to avoid interference
with the testbed server. To account for operational and environmental differences,
our framework simulates different workload profiles (according to time of day),
against various target configurations (including different background processes and
server workloads), and network settings, such as TCP congestion controls. In total,
we generated 12 GB of (uncompressed) network packets and system events over a
period of three weeks. After feature extraction, the training data comprised 1200
normal instances and 1600 attack instances. Monitoring or testing data consisted
of 2800 normal and attack instances gathered at unpatched web servers, where the
distribution of normal and attack instances varies per experiment.
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8.6.2 Experimental Results

Using this dataset, we trained the classifiers presented in Sect. 8.5.2 and assessed
their individual performance against test streams containing both normal and attack
workloads. In the experiments, we measured the true positive rate (tpr) where
true positive represents the number of actual attack instances that are classified as
attacks, false positive rate (fpr) where false positive represents the number of actual
benign instances classified as attacks, accuracy (acc), and F2 score of the classifier,
where the F2 score is interpreted as the weighted average of the precision and recall,
reaching its best value at 1 and worst at 0. An RBF kernel with Cost = 1.3 × 105

and γ = 1.9 × 10−6 was used for SVM [15].

Detection Accuracy To evaluate the accuracy of intrusion detection, we tested each
classifier after incrementally training it with increasing numbers of attack classes.
Each class consists of 100 distinct variants of a single exploit, as described in
Sect. 8.6.1, and an n-class model is one trained with up to n attack classes. For
example, a 3-class model is trained with 300 instances from 3 different attack
classes. In each run, the classifier is trained with 1200 normal instances and 100 ∗ n

attack instances where n ∈ [1, 16] attack classes. In addition, in each run, we
execute ten experiments where the attacks are shuffled in a cross-validation-like
fashion and the average is reported. This ensures training is not biased towards any
specific attacks.

Table 8.3 Summary of attack workload

# Attack type Description Software

1 CVE-2014-0160 Information leak OpenSSL

2 CVE-2012-1823 System remote hijack PHP

3 CVE-2011-3368 Port scanning Apache

4–10 CVE-2014-6271 System hijack (7 variants) Bash

11 CVE-2014-6271 Remote password file read Bash

12 CVE-2014-6271 Remote root directory read Bash

13 CVE-2014-0224 Session hijack and information leak OpenSSL

14 CVE-2010-0740 DoS via NULL pointer dereference OpenSSL

15 CVE-2010-1452 DoS via request that lacks a path Apache

16 CVE-2016-7054 DoS via heap buffer overflow OpenSSL

Testing on Decoy Data The first experiment measures the accuracy of each
classifier against a test set composed of 1200 normal instances and 1600 uniformly
distributed attack instances gathered at decoys. Figure 8.4a–b presents the results,
which serve as a preliminary check that the classifiers can accurately detect attack
instances resembling the ones comprised in their initial training set.
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(a) tpr (c) tpr (e) tpr

(b) tpr (d) tpr (f) tpr

Fig. 8.4 Classification accuracy of Bi-Di, N-Gram, and Ens-SVM for 0–16 attack classes for (a)–
(b) training and testing on decoy data, (c)–(d) training on decoy data and testing on unpatched
server data, and (e)–(f) training on regular-patched server data and testing on unpatched server
data

Testing on Unpatched Server Data The second experiment also measures each
classifier’s accuracy, but this time the test set was derived from monitoring streams
collected at regular, unpatched servers, and having a uniform distribution of attacks.
Figure 8.4c–d shows the results, which indicate that the detection models of each
classifier generalize beyond data collected in decoys. This is critical because it
demonstrates the classifier’s ability to detect previously unseen attack variants.
Our framework thus enables administrators to add an additional level of protection
to their entire network, including hosts that cannot be promptly patched, via the
adoption of a honey-patching methodology.

The results also show that as the number of training attack classes increases—
which are proportional to the number of vulnerabilities honey-patched—a steep
improvement in the true positive rate of both classifiers is observed, reaching an
average tpr of above 92% for the compounded Ens-SVM, while average false
positive rate in all experiments remained below 0.01%. This demonstrates the
positive impact of the feature-enhancing capabilities of deceptive application-level
attack responses like honey-patching.

Training on Regular-Patched Server Data To compare our approach against anal-
ogous, standard IDSes that do not employ deception, we trained each classifier on
data collected from non-deceptive, regular-patched servers, and tested them on the
unpatched server data, using the same set of attacks. Figure 8.4e–f shows the results,
which outline the inherent challenges of traditional intrusion detection models on
obfuscated, unlabeled attack traces. Unlike honey-patches, which capture and label
traces containing patterns of successful attacks, conventional security patches yield
traces of failed attack attempts, making them unfit to reveal patterns of attacks
against unpatched systems.
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Table 8.4 Base detection rates for approximate targeted attack scenario (PA ≈ 1%) [11]

Classifier tpr fpr acc F2 bdr

OneSVM-Bi-Di 55.56 13.17 68.96 59.69 4.09

OneSVM-N-Gram 84.77 0.52 91.07 87.09 62.22

Bi-Di 86.69 0.25 92.29 89.02 77.79

N-Gram 86.52 0.01 92.30 88.89 98.98

Ens-SVM 92.76 0.01 95.86 94.12 99.05

Baseline Evaluation This experiment compares the accuracy of our detection
approach to the accuracy of an unsupervised outlier detection strategy, which is
commonly employed in typical intrusion detection scenarios [9], where labeling
attack data is not feasible or prohibitively expensive. For this purpose, we imple-
mented two one-class SVM classifiers, OneSVM-Bi-Di with a polynomial kernel
and ν = 0.1 and OneSVM-N-Gram with a linear kernel and ν = 0.001, using Bi-Di
and N-Gram models for feature extraction, respectively. We fine-tuned the one-class
SVM parameters and performed a systematic grid search for the kernel and ν to get
the best results.

One-class SVM uses an unsupervised approach, where the classifier trains
on one class and predicts whether a test instance belongs to that class, thereby
detecting outliers—test instances outside the class. To perform this experiment,
we incrementally trained each classifier with an increasing number of normal
instances, and tested the classifiers after each iteration against the same unpatched
server test set used in the previous experiments. The results presented in Table 8.4
highlight critical limitations of conventional outlier intrusion detection systems:
reduced predictive power, lower tolerance to noise in the training set, and higher
false positive rates.

In contrast, our supervised approach overcomes such disadvantages by auto-
matically streaming onto the classifiers labeled security-relevant features, without
any human intervention. This is possible because honey-patches identify security-
relevant events at the point where such events are created, and not as a separate,
post-mortem manual analysis of traces.

8.6.3 Discussion

Methodology Our experiments show that just a few strategically chosen honey-
patched vulnerabilities accompanied by an equally small number of honey-patched
applications provide a machine learning-based IDS sufficient data to perform
substantially more accurate intrusion detection, thereby enhancing the security of
the entire network. Thus, we arrive at one of the first demonstrable measures of
value for deception in the context of cybersecurity: its utility for enhancing IDS
data streams.
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Supervised Learning Our approach facilitates supervised learning, whose wide-
spread use in the domain of intrusion detection has been impeded by many
challenges involving the manual labeling of attacks and the extraction of security-
relevant features [9]. Our results demonstrate that the language-based, active
response capabilities provided via application-level honey-patches significantly
ameliorates both of these challenges. The facility of deception for improving other
machine learning-based security systems should therefore be investigated.

Intrusion Detection Datasets One of the major challenges in evaluating intrusion
detection systems is the dearth of publicly available datasets, which is often
aggravated by privacy and intellectual property considerations. To mitigate this
problem, security researchers often resort to synthetic dataset generation, which
affords the opportunity to design test sets that validate a wide range of require-
ments. Nonetheless, a well-recognized challenge in custom dataset generation is
how to capture the multitude of variations and features manifested in real-world
scenarios [6]. Our evaluation approach builds on recent breakthroughs in dataset
generation for IDS evaluation [8] to create statistically representative workloads that
resemble realistic web traffic, thereby affording the ability to perform a meaningful
evaluation of IDS frameworks.

8.7 Conclusion

This chapter outlined the implementation and evaluation of a new approach for
enhancing web intrusion detection systems with threat data sourced from decep-
tive, application-layer, software traps. Unlike conventional machine learning-based
detection approaches, our framework incrementally builds models of legitimate and
malicious behavior based on audit streams and traces collected from these traps.
This augments the IDS with inexpensive and automatic security-relevant feature
extraction capabilities. These capabilities require no additional developer effort
apart from routine patching activities. This results in an effortless labeling of the
data and supports a new generation of higher-accuracy detection models.

8.8 Exercises

8.8.1 Software Engineering Exercises

1.∗ Give an example of a high-profile software exploit cyberattack whose impact has
been reported recently in the news, and for which the cyber-deceptive software
techniques described in this chapter might have proved beneficial, if deployed.
Based on any technical details available, advise how such a defense might have
helped in that scenario, and discuss potential implementation issues or risks
involved.
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2.∗∗ For each of the following vulnerability types, find an example patch for one
such vulnerability (e.g., from MITRE CWE), and then write code that refor-
mulates the patch into a honey-patch. In your honey-patch, use the function call
fork_to_decoy() to indicate where your code would fork the attacker’s connection
to a decoy environment. Remember, a good honey-patch implementation should
not impact legitimate users!

a. buffer underflow/overflow (overwrite, overread, underwrite, or underread)
b. C format string vulnerability
c. TOCTOU (time-of-check / time-of-use) vulnerability
d. SQL injection
e. XSS (cross-site scripting)

3.∗∗∗ Install older (non-fully patched) versions of OpenSSL and Apache, and identify
from a CVE list some of the unpatched vulnerabilities. Implement a honey-patch
for any of the CVEs. Invite classmates to operate as a red team to penetrate your
server. Were they able to distinguish the decoy environment from any successful
compromise? Would any data collected from detected attacks potentially help
your server resist subsequent exploit attempts?

8.8.2 Machine Learning Exercises

1.∗ Given a set of data traces with packet data, what type of features can be extracted
from packets?

2.∗ Similarly, given a set of data traces with system calls, what type of features can
be extracted to train a machine learning classifier?

3.∗ Given the confusion matrix in Table 8.5, and defining positives to be alarms
raised by the defense, calculate the following metrics: accuracy, FPR, and TPR.

Table 8.5 Confusion matrix
Total no. of instances: 160

Actual classes

Attack Benign

Predicted classes
Attack 20 30

Benign 10 100

4.∗∗ Why is false positive rate (FPR) important in evaluating machine learning based
intrusion detection systems?

5.∗∗ Implement an IDS using support vector machine that leverages packet data traces
to classify and detect attack in collected data traces. For this exercise, you can
follow the following steps:

• Extract packet information: Use the dpkt python toolkit to extract packet
information, such as length, count, packet direction, and packet time.



164 F. Araujo et al.

• Build a histogram of the packet length for each trace. Each trace will generate
an instance to train your classifier.

• After generating your dataset, use the Scklearn python machine learning
module to build an SVM classifier.

6.∗∗∗ Implement an ensemble classifier using support vector machine to leverage both
packet data and system call data to classify attack traces. You can follow the steps
described in previous question to complete this exercise.

7.∗∗ Calculate the following metrics with the classifier you implemented in exercises 5
and 6: accuracy and FPR. How do you explain the significance of the FPR
compared to the accuracy?

8.∗∗∗ Run your algorithm on data collected from a honey-patched system (see software
engineering exercises 2–3) and compare the performance to the data collected on
a system with no honey-patch.

9.∗∗∗ Based on software engineering exercise 3, implement your own data collection
mechanism that captures packet and system call level data. Apply your machine
learning implementation from exercise 5 on the data traces collected. Compare
your performance with the supplied data. To complete this exercise, you can
use tcpdump (already installed on Linux systems) to collect packet trace data
and sysdig1 to collect system call data. To reduce noise in your data collection,
run each attack independently and collect the associated traces. Remember to run
each attack and trace collection multiple times to account for variations in system
operation.
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