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Abstract The increasingly sophisticated nature of cyberattacks reduces the effec-
tiveness of expert human intervention due to their slow response times. Conse-
quently, interest in automated agents that can make intelligent decisions and plan
countermeasures is rapidly growing. In this chapter, we discuss intelligent cyber
deception systems. Such systems can dynamically plan the deception strategy and
use several actuators to effectively implement the cyber deception measures. We
also present a prototype of a framework designed to simplify the development of
cyber deception tools to be integrated with such intelligent agents.

2.1 Introduction

The knowledge of attackers and the sophistication of cyberattacks are constantly
increasing, as well as the complexity of the cyber domain. The result of this process
is that expert human intervention, even if available, is not always fast enough to
deal with the speed of cyberthreats. As a consequence, cyber deception strategies
aimed at hindering attackers’ progress and cyber defense agents that can make
autonomous decisions are receiving an increasing amount of attention [9, 17].
An important part of cyber deception is active defense [15, 16]. Differently from
classical, reactive systems such as firewalls, IPS, and IDS, active defense tools
aim to hinder attackers’ progress in a proactive manner, rather than responding if
and when an attack is detected. One of the most well-known examples of active
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defense tools are honeypots [5, 8]: mock systems designed to lure attackers in
order to study their behavior and restrict their access to the real production systems.
Other active defense techniques, like honeypatches [6], trick attackers into believing
that their exploit was successful, but transparently redirect him to an unpatched,
heavily monitored decoy system. Fake login sessions [26], mock services, and port
randomization [4] aim at confounding the attacker, compromising and slowing down
the reconnaissance phase. Coupling such active defense tools with autonomous,
intelligent agents has the potential of greatly improving cyber defense, reducing
the reliance on human intervention in response to cyberattacks.

In this chapter, we discuss intelligent cyber deception agents that can make
autonomous decisions on how to counter ongoing attacks, and their integration with
active defense tools. We also discuss our design of an active defense framework that
allows fast prototyping of active defense tools to be integrated directly into live,
production systems. The framework uses a modular approach to add and remove
active defense tools, and aims to provide seamless integration with the agent to
provide sensing and actuating functions.

2.2 Preliminaries

In this section, we discuss intelligent cyber defense agents and the complexity of
deploying them in the context of cyber defense. We also discuss active defense
techniques and the advantages it brings with respect to traditional systems.

2.2.1 Intelligent Cyber Defense Agents

An intelligent agent is an entity which takes autonomous decisions based on the
observations of the current world state through sensors, and which applies actions
through actuators to achieve an end goal. Agents can rely on different methodologies
to produce decisions, such as knowledge-based systems [10] or machine learning
techniques [24]. While research and applications of intelligent agents is already
underway in multiple fields, this is not the case in cyber defense. Indeed, the realm
of cyber defense introduces a number of unique obstacles that are particularly
challenging, such as the extreme complexity and size of the state space (i.e., the
possible states of the world the agent is monitoring). Artificial neural networks [12]
and deep learning techniques [18] can potentially help to overcome these challenges.
However, research in this direction is still in its early stages and deep learning is
mostly used to devise new attacks [13] or for the purpose of attack detection [22, 23],
rather than to plan countermeasures. Moreover, deep neural networks are subject to
a new type of attack known as adversarial examples [11, 19]. Such attacks could
be exploited by attackers to target the decision-making process of the agent itself,
tricking it into taking decisions that are detrimental for the system. For instance, if
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the agent is designed to shut down a particular service under certain severe attack
conditions, an attacker could potentially craft an adversarial example that causes the
agent to misclassify the current world state and erroneously shutdown the service.

2.2.2 Active Defense

Active defense is a branch of cybersecurity aimed at actively hindering attackers’
progress preemptively, rather than reactively as in traditional systems [15, 16].
Indeed, active defense tools are always active, and do not rely on detection of
an attack in order to function. Active defense is related to cyber deception. Most
active defense tools, in fact, heavily rely on deception techniques to confound
attackers and slow down their progress. The most well-known instance of an
active defense tool is the honeypot [20]. Honeypots are replicas of real sys-
tems, instrumented with logging and deception capabilities such as fake services.
Honeypots are designed to look like attractive targets for attackers, in order to
obtain as much information from adversarial interactions as possible. However,
honeypots require complex configuration and it is very hard to hide their nature to
attackers, reducing their effectiveness [21]. To mitigate this drawback, recent works
aim to integrate deception capabilities directly into the real production systems
themselves, avoiding the issue of camouflaging altogether [9]. These systems
use techniques similar to those employed by honeypots, as well as other active
defense tools such as honeyfiles [7, 25] and network randomization [4], in order
to heavily slow down the attacker, while at the same time increase the chances of
detection.

2.3 Towards Intelligent Cyber Deception Systems

Autonomous agents require sensors and actuators to respectively measure and alter
the current world state. Active defense tools are designed to interact with attackers
and collect important data regarding how the attacker interacts with the system.
Therefore, such tools can be extremely effective sensors for the agent. For instance,
fake services can provide information regarding what type of services the attacker
is looking for, as well as how he interacts with such services. Logging honeyfiles
access provides detailed information regarding which types of files are interesting
to the attacker, and honeypatch sensors allow the agent to isolate specific exploits
used during the attack. Moreover, active defense tools can also be used as actuators:
the agent can use the data generated by the sensors to dynamically reconfigure the
active defense tools, in addition to dynamically deploying new tools aimed to hinder
the specific pattern of the current attack.

In our preliminary work [9], we proposed an automated, cyber deception system
called Attackers Hindered by Employing Active Defense, or AHEAD. The AHEAD
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architecture describes an autonomous agent that employs an array of active defense
tools as both sensors and actuators. AHEAD is comprised of an autonomous agent,
the AHEAD controller, which manages a cluster of active defense tools, the AHEAD
Pot as illustrated in Fig. 2.1.

Production System

AHEAD Pot

AHEAD Controller

. . . 

Production System

AHEAD Pot

Fig. 2.1 Overview of the architecture of AHEAD

Differently from systems such as honeypots, the AHEAD Pot is deployed
alongside the production services in a real system, rather than on a separate (virtual)
machine. Using the AHEAD Pot to directly instrument production systems with
deception capabilities allows to avoid the drawbacks of honeypots such as its ease of
detection. Moreover, this design makes it harder for attackers to identify vulnerable
services in the production systems, as well as providing the systems with advanced
monitoring capabilities. In order to prevent the AHEAD Pot itself from becoming
an attack vector, the pot is isolated from the production system through the use of
container technology [2], as illustrated in Fig. 2.2. The use of containers, as well as
mandatory access control techniques to limit the pot’s access to the system, provides
a layer of isolation and hardening against attacks directed at the pot itself. The
AHEAD controller is responsible for planning the defense strategy during an attack,
which is done based on the inputs from the active defense tools of the AHEAD Pot.
The controller is also responsible for actuating the planned countermeasures through
dynamic reconfiguration of the AHEAD Pot.

2.3.1 Usage Scenario

In this section, we describe a usage scenario of AHEAD. Let us consider an attacker
who wants to attack some production systems on a target network. We distinguish
the two scenarios depicted in Fig. 2.3: (A) a network protected by a classical
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Fig. 2.2 Integration of the AHEAD Pot in the production system

honeypot and (B) a network protected with AHEAD. Before performing any attack,
the attacker will have to perform reconnaissance on the network in order to identify
valuable targets. Let us assume that, in order to reach this goal the attacker performs
a network scan to identify existing systems and services.

(A) Classical Honeypot In scenario (A), the network scan will eventually reach
the honeypot (step 1). At this point, if the configuration of the honeypot is realistic
enough, the attacker will start attacking one of the available services provided by
the honeypot. The attack is detected by the honeypot (step 2), and the Incident and
Response Team (IRT) will be notified that something anomalous is going on in
the network. Unfortunately, the attacker will eventually realize that the target is
indeed a honeypot (step 3) and will move on to attacking one of the remaining
systems (step 4). In this scenario, the limitation of the honeypot approach from
the point of view of the IRT is that the interaction between the attacker and the
honeypot is extremely limited in time, often in the order of seconds. Indeed, after
the attacker leaves the honeypot and moves on to another system, the IRT loses
the chance to monitor the attacker and devise a proper identification and defense
strategy.

(B) AHEAD On the other hand, when AHEAD is employed, the attacker will
have to sift through fake services and mock vulnerabilities (step 1) in order to try
to compromise the production system, forcing him to interact with AHEAD for a
considerably longer time (step 3.i). This provides the autonomous agent (or the IRT,
if the agent is disabled) with considerably more time to act, and more information to
decide how to counter the attack (step 2), as well as provide more material to analyze
the strategy of the attacker after the attack has concluded (step 4). This additional
information allows to improve the attribution of the attack and the security of the
network and systems, adapting them to ever-evolving attack strategies. Moreover,
AHEAD can also work as a deterrent. Indeed, if the attacker realizes that the real
production system is heavily monitored and instrumented, he might also choose to
forfeit the attack in order to protect himself (step 3.ii). In both cases, the network is
protected.



26 F. De Gaspari et al.

Fig. 2.3 Comparison between a classical honeypot system and AHEAD

2.3.2 The Architecture of the AHEAD System

From an architectural perspective, the AHEAD system is composed by two
components: the AHEAD Controller and AHEAD Pot. The AHEAD Controller is
the single point of interaction with the pots, and allows to manage the active defense
tools deployed over a secure channel. The AHEAD Pot is the component effectively
implementing the active defense countermeasures and is deployed on the production
systems. In a real-world scenario, several AHEAD Pots are deployed in a corporate
network, covering all components of the information system (see Fig. 2.4). The
AHEAD Pots are encapsulated in a container and therefore do not interfere with the
production services, while at the same time having a low, configurable overhead
on the production system itself. Full automation of the security management of
a network is a challenging task that requires gradual evolution and integration.
Therefore, the AHEAD system is designed to be tightly integrated with pre-existing
security information and event management (SIEM) systems, and can provide an
admin interface for the security admin. The AHEAD Pots constantly send activity
logs to the SIEM systems, allowing the IRT to improve other security components
already deployed (e.g., intrusion detection/prevention systems, and firewall). The
feedback from the AHEAD Pots is also used by the IRT to identify what additional
active defense modules need to be deployed in the Pots themselves, so that the
system can dynamically adapt to emerging threats. However, the final goal is for
the system to be fully autonomous: the controller makes decisions on what tools
should be deployed based on the current state of the world, which is reported by the
tools of the pot itself as illustrated in Fig. 2.5.
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Fig. 2.4 Integration of AHEAD in the architecture of a typical corporate information system

Fig. 2.5 Feedback loop of
the AHEAD system. The
Controller reconfigures the
tools in the pot, based on the
world view provided by the
pot itself
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2.4 Evolving the Pot: ADARCH

During the development of the AHEAD Pot prototype, we quickly realized that a
unified framework for the development and integration of active defense tools was
required. Existing active defense tools are implemented using a heterogeneous mix
of programming languages and libraries, as well as differing architectural designs.
Moreover, different tools tend to use different logging formats, sometimes custom-
made, which complicates the interaction with the AHEAD Controller. Finally,
having separate active defense tools makes it harder to present the attacker with a
consistent view of the Pot, potentially creating side channels that allow the attacker
to distinguish between services exposed by the Pot, and production services exposed
by the real system. Integrating and maintaining such a diverse set of tools into a
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coherent architecture would be complex and error-prone. Moreover, assessing the
overall security of the system would be a daunting task, especially given the overlap
in functionality between certain tools, and the code duplication ensuing from it.

In order to address the above-mentioned issues, we designed and implemented
a new, cross-platform pot architecture, ADARCH (the Active Defense ARCHitec-
ture), to facilitate the development of active defense tools that share a uniform
architecture. The goal of ADARCH is to simplify the implementation of common
functionalities of active defense tools, as well as to provide a uniform interface
for the controller to interact with the tools. In particular, we identified two main
functions that are used by multiple tools and that require simplification and
unification: networking and logging. The first implementation of ADARCH aims
to simplify and uniform the network flow management and concurrency across the
tools, as well as to provide a common logging interface that enables the AHEAD
Controller to more easily parse their output.

2.4.1 ADARCH Design

As we discussed in the previous section, one of the design goals of ADARCH is to
simplify the development and integration of active defense tools. However, since the
Pot is designed to be integrated into real production systems, it is also important to
reduce the overhead introduced and the resource requirements as much as possible.
To this end, we designed ADARCH and the new ADARCH Pot around a core
software module written in C, and integrated a Python interpreter to facilitate the
prototyping and development of active defense tools. Figure 2.6 provides a high-
level overview of the ADARCH framework and the architecture of the ADARCH
Pot. The core C module efficiently implements common functionalities required
by multiple active defense tools, such as network connection and concurrency
management, as well as provides an interface for the integrated python interpreter.
Active defense tools developed with ADARCH are executed within the integrated
Python interpreter, which provides them with access to the API exposed by the
C core module. Moreover, ADARCH allows active defense tool developers to
use a configuration file-based approach to instantiate required resources (e.g.,
port bindings) that are transparently handled by the ADARCH core, as well as
to define triggers associated with particular functions of the tools (e.g., which
function to call when a new connection is open on a port). Finally, ADARCH is
designed to be cross-platform and to work with container technologies, such as
Docker, to provide an additional layer of isolation to the underlying production
system.
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Fig. 2.6 High-level ADARCH architecture overview

2.4.2 Python Embedding and Extension

We chose Python as the programming language for the development of new active
defense tools because of the large number of available libraries, the community
support, and the ease of prototyping it provides. Moreover, several pre-existing
active defense tools were already implemented in Python, so its choice also provides
continuity for the developers. However, integrating Python with the C core of the
framework to provide better efficiency and performance presented several chal-
lenges. In particular, it required overcoming the limitation of the Global Interpreter
Lock (GIL) of the standard CPython interpreter, which heavily limits concurrent
architectural designs [3]. The GIL prevents the Python interpreter from concurrently
interpreting bytecode for different threads, effectively resulting in a sequential
execution. This behavior is highly undesirable as it reduces the performance of the
ADARCH Pot, and might even provide attackers with a side channel to differentiate
the services exposed by the Pot from the production services [14]. To overcome
these drawbacks, the interface between the Python interpreter and the C core of
ADARCH was designed to manage the GIL in a fine-grained manner, releasing
the lock whenever possible when an ADARCH API call is made, and trying to
parallelize the execution of the various modules as much as possible.

The Python interpreter was also extended in order to expose the ADARCH’s API
to the tool developers. The extension of the interpreter required explicit managing
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of the internal reference count of Python objects, which is used by the Python
garbage collector to periodically cleanup unreferenced memory. While reference
count management is generally well-documented and understood, special care was
needed due to the concurrent nature of the ADARCH core. ADARCH’s API,
illustrated in Table 2.1, is currently minimalistic mainly due to the fact that it is
updated as more active defense tools are integrated and developed into ADARCH.
However, it can be easily extended to provide additional functionalities, such as
filesystem management to implement integrity check tools, similarly to Artillery [1].
The API is encapsulated in a wrapper Python class, allowing developers to extend
the standard API if needed.

Table 2.1 ADARCH API

API Description

log.write Helper function to write logs in a standard format

connection.send Network wrapper to send data through an open connection

connection.shutdown Network wrapper to close an open connection

2.4.3 Advantages of the ADARCH Framework

The ADARCH frameworks implements functions that are common to multiple
active defense tools, such as logging and networking, and provides a transparent
interface to the developer through the API and ADARCH configuration file.
Allowing developers to focus on the core deception aspects of the tools, rather than
having to deal with networking, threading, and synchronization, greatly simplifies
and expedites the development process. Moreover, the integration of the Python
interpreter allows developers to use a high-level language, further simplifying the
prototyping and development of new tools, while at the same time maintaining
high performance as a result of the C core module of ADARCH. The ADARCH
framework is also cross-platform, working both under Linux and Windows systems,
which means that active defense tools developed with ADARCH do not require
additional work to be ported to different systems. Moreover, having multiple tools
integrated and running within the same process space allows them to more easily
share resources and interact with each other if required. Finally, ADARCH provides
active defense tools with a standard format for logging, which allows for immediate
integration of new active defense tools with the AHEAD Controller.

To assess the advantages of ADARCH over previous versions of the Pot, we re-
implemented a popular active defense tool called Portspoof as an ADARCH module.
Portspoof is an active defense tool which allows to simulate the signatures of a
great number of network services. The goal of the tool is to hinder the discovery
phase of an attack, forcing the attacker to perform a more thorough service scan,
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and to generate much more traffic in the process. The original software, developed
in C++, counts 3k lines of code to manage concurrent network connections using
multiple threads. The corresponding ADARCH module is less than 100 lines of
code written in tens of minutes and is functionally equivalent to the original tool.
Moreover, our preliminary performance evaluation shows that the ADARCH tool
introduces a slightly lower overhead to a production system than the original
Portspoof. ADARCH extremely simplifies the development of active defense tools,
heavily reducing the time required and the complexity of the code, while at the
same time improving the maintainability and the security of the tools due to less
code duplication. Finally, ADARCH allows to use a single, optimized instance of
the Python interpreter for all active defense tools, rather than one instance per tool,
further reducing system overhead when considering deployments of multiple tools.

2.5 Conclusions

In this chapter, we discussed autonomous, intelligent cyber agents and the chal-
lenges associated with their implementation. Moreover, we examine the architecture
we presented in [9] and propose a new framework to develop and deploy active
defense tools, ADARCH, and the new ADARCH Pot. The ADARCH framework
allows to heavily simplify and expedite the development of new active defense
tools and their integration in the AHEAD architecture, transparently implementing
common functions required by multiple active defense tools. We discuss the
advantages of ADARCH with respect to stand-alone implementations of active
defense tools, and we compared the complexity of such stand-alone tools with the
simplicity of an ADARCH module providing the same functionalities.L

2.6 Exercises

In this section, we propose a list of exercises, in increasing order of difficulty, that
can help familiarize students with the concepts presented in this chapter.

1. Identify and describe the disadvantages of the presented approach.
2. What are the trade-offs of using container technology for isolation vs. virtual

machines?
3. Configure and deploy a simple honeypot on the Internet. Analyze how long

attackers interact with the honeypot on average before realizing that it is not a
real system.

4. What are the risks of installing active defense tools on live, production systems?
How would you minimize these risks?

5. Write a simple active defense tool that can create trap files in the file system.
Once opened, the files should trigger and log an alert.

6. Extend the tool described in the previous point to provide attribution capabilities.
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