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Abstract Malware often contains many system-resource-sensitive condition
checks to avoid any duplicate infection, make sure to obtain required resources,
or try to infect only targeted computers, etc. If we are able to extract the system
resource constraints from malware binary code, and manipulate the environment
state as HoneyResource, we would then be able to deceive malware for defense
purpose, e.g., immunize a computer from infections, or trick malware into believing
something. Towards this end, this chapter introduces our preliminary systematic
study and a prototype system, AUTOVAC, for automatically extracting the system
resource constraints from malware code and generating HoneyResource (e.g.,
malware vaccines) based on the system resource conditions.

Keywords Malware analysis - Malware immunization - Malware deception

11.1 Introduction

Malware is a severe threat to our computer systems. To combat malware, the state-
of-the-art defense at end hosts mainly focuses on detection techniques, which often
fall into two categories: signature-based detection and behavior-based detection. A
signature-based approach typically attempts to extract some unique string patterns
from malware binaries. Unfortunately, the signature generation and update speed
usually cannot keep up with the quickly increasing malware samples each day
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in the wild due to the wide use of polymorphisms/packers in malware. While a
behavior-based approach could be relatively more stable in terms of detecting the
same set of malware and their variants, it is typically very expensive and may cause
a noticeable performance overhead on end hosts.

Therefore, the need of new lightweight and complementary techniques for
effective malware defense is still pressing. Interestingly, we find malware infection
works similarly to pandemic diseases. If we were able to deceive the malware that
it has infected the protected host, we would have been able to prevent it from
infecting a wider range of machines (considering the case of botnets). Fortunately,
we find malware that often contains system-resource-sensitive condition checks or
constraints to avoid any duplicate infection, make sure to obtain required resources,
or try to infect only targeted computers, etc. For instance, many fast-spreading
malware programs (e.g., Conficker [26]) will clearly mark an infected machine as
infected such that they can avoid wasting time and effort in re-infecting the machine.
As such, such resource manipulating scheme can be considered as a more effective
and safer way for malware deception. In this context, such resource is one kind of
HoneyResource which tricks malware into believing the existence/non-existence of
itself.

In general, any system resource/environment variables that are directly or
indirectly used in path conditions (such as registry, mutex), or those that lead to
the failure of certain system calls, can all be considered as HoneyResource, because
these external environment states can impact the behavior of the malware. While it
might lead to an over-approximation by considering all these state variables, we can
run tests to eliminate the mistakenly classified environment variables.

Based on the above observation, we propose AUTOVAC, a new technique to
automatically generate HoneyResource for effective and efficient malware decep-
tion. While theoretically manipulating any variable that leads to a conditional
check of malware execution could potentially be used as a HoneyResource, we
would like to focus on the variables whose states can be controlled by the external
environment such as registry, certain file names, etc. As such, the environment
resources accessed by malware are of our interest. Specifically, we design a program
analysis technique to determine whether the manipulation of these resources can
successfully prevent malware’s infection/execution. We treat such resources as our
malware HoneyResource and derive concrete information needed for generating
HoneyResource. After we generate the HoneyResource, we then inject them into
end hosts. For example, HoneyResource is able to serve as a kind of vaccine for
malware. To the best of our knowledge, AUTOVAC is the first systematic work of
using program analysis to automatically generate HoneyResource for real-world
malware deception.

In summary, we make the following contributions:

*  We conduct the first systematic study of malware HoneyResource. We discuss
all possible mutable resources of our interest and present a taxonomy of malware
HoneyResource.
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e We design and implement AUTOVAC, which can automatically track the malware
path constraints as well as their propagation, associate them with the external
environment resources, and automatically generate HoneyResource.

*  We evaluate our system with a large set of real-world malware samples. Experi-
mental results show that it is truly possible to generate working HoneyResource
for many real-world malware families, such as Conficker, Sality, and Zeus, and
use HoneyResource as a complementary approach in practice.

11.2 Problem Statement and Approach Overview

11.2.1 Malware HoneyResource Background
11.2.1.1 Definition of Malware HoneyResource

From our viewpoint, a malware HoneyResource is a computational preparation
that deceives a particular malware program, e.g., trick it into believing something,
or prevent its infection. Essentially, malware, like any generic program, usually
conducts a series of operations on system resources and outputs the computation
result.

Thus, we define a malware HoneyResource as a specific system resource (or
a collection of them) that is created or used by malware in order for its normal
infection and execution. Such malware HoneyResource typically has two kinds of
behavior:

* It simulates the existence of certain computer organism (system environmen-
t/resource) such that malware will perform certain activities, e.g., exit upon the
awareness of such existence (because it does not want to re-infect the victim
again, or the victim does not have a targeted environment, etc.).

» It prevents malware from creating/accessing certain critical computer organism
such that malware cannot obtain its essential resources to fulfill the functions.
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11.2.1.2 A Taxonomy of Malware HoneyResource

Besides the aforementioned categories of malware HoneyResource, we can further
define different types from different perspectives.

First, from the perspective of identification, the HoneyResource identifier is
defined as a combination of resource type and name of malware-targeted resources.
To avoid unwanted side effect to benign software running on end host, the
HoneyResource identifier should be as unique and deterministic as possible. Thus,
in our taxonomy, an identifier can be categorized as: static (e.g., constant value),
partial static (e.g., it conforms to a specific regular expression), or algorithm-
deterministic (e.g., it is calculated with customized algorithms).

To deceive different malware families, the effectiveness of a malware Hon-
eyResource can vary. Based on the effectiveness, we can classify malware Hon-
eyResource into two types: full deception that can completely cease the malware
execution (e.g., negating the first few condition checks to prevent any malicious
behavior execution), and partial deception that significantly affects the execution of
some major functions in malware (e.g., malware is not able to keep persistent in the
system if rebooted, or malware is not able to perform key network communication
such as C&C, and self-updating).

In terms of HoneyResource delivery and deployment, there could be two cate-
gories: direct injection and creation of HoneyResource daemon. Direct injection is
very lightweight, e.g., a specific mutex name or file name, and the HoneyResource
can be simply injected into the target computer once and it will be effective
afterwards. HoneyResource daemon requires running a service program (i.e., a
daemon) on the targeted machine, and such daemon can prevent the creation (or
other access types) of certain specific files, registries, libraries, system services,
windows, and processes to further prevent malware from obtaining critical resources
or information to fulfill its functionalities (such as for partial deception). More
details are presented in Sect. 11.5.

It is worth noting that an ideal malware HoneyResource is those with
full deception and one-time direct injection. However, other types of Hon-
eyResource are also useful, as discussed later and shown in our evaluation
(Sect. 11.6).

11.2.1.3 Use Case of HoneyResource

As a complementary technique to existing malware defense, HoneyResource may
not be used to protect machines from all malware attacks. However, they can be used
for current, high-profile, large-scale malware propagation and infections, which may
last for a period of time, e.g., several days, weeks, or months. If we can capture
the binary at the initial infection stage, we can quickly generate HoneyResource
and protect our uninfected machines from the attacks, until a better detection or
prevention solutions (e.g., a system/software patch to fix the vulnerability) are
available and fully deployed.
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11.2.1.4 Target and Assumptions

Not all malware can have HoneyResource. Our target is those malware that has
specific system-resource-sensitive behavior, illustrated in the following scenarios:

* Some malware can work only in the scenario in which none of the same malware
instances is present in the host. Thus, they have to uniquely mark their infected
systems through creating and checking certain deterministic identifiers such as
mutex, file, as shown in the Conficker example. Our HoneyResource can hence
appear to be the malware vaccine to fool the malware and stop its infection.

* Some malware has issues in handling the failure of certain system resource
access. Our HoneyResource can try to enforce such failures to make the malware
run into their undesired status (e.g., process termination, or important functions
being disabled).

* Some targeted malware is designed to work in a specific system environment.
Our HoneyResource can attempt to make each protected system different from
malware targeted environment, so as to protect machines from the infection.

It is true that some malware may not use system resource checks to make their
infection decision. That is, AUTOVAC does have limitations and we discuss in
great detail on the possible evasions in Sect. 11.7. We note that while evasions
are possible, most of these scenarios are not within the scope and assumptions
of our approach. The intention of AUTOVAC is not to replace existing defense
approaches, but to complement them from a new perspective. As we show later,
once we can successfully extract interested system resource constraints and generate
HoneyResource, we can effectively and efficiently deceive malware.

11.2.2 Approach Overview

An overview of AUTOVAC is illustrated in Fig. 11.1. At a high level, it consists of
three phases: Candidate Selection, HoneyResource Generation, and HoneyResource
Delivery/Deployment.

In Phase-I (Sect. 11.3), we will first filter out malware samples that are
unlikely to contain HoneyResource. In this step, we profile the normal execution
of the malware to obtain an overview of the malware’s accessed system resources,
including the types of resources and the names of the corresponding resource-
identifiers, the operations (e.g., create, and read/write) on the resources, and the
corresponding results (e.g., succeed, or fail).

During our profiling, we will also apply a variant of dynamic taint analysis [7] to
determine whether the malware’s execution will be affected by certain resources it
has accessed. The implication is that malware has to be sensitive to its resource
access result. Otherwise, malware’s behavior is deterministic regardless of its
resource environment and no HoneyResource willexist for it. Hence, if we find
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no program branches that depend on any system resource, we filter this malware
because it does not contain HoneyResource that we can extract. At the end of this
phase, we obtain a list of candidate resources that can affect the control flow of the
malware execution.

In Phase-II (Sect. 11.4), our task is to generate HoneyResource by testing their
exclusiveness and impact on malware execution. It contains three sub-steps.

* Step-I: Exclusiveness Analysis In general, system resources are also being used
by benign programs. In this step, we would like to filter the resource identifiers
that are not exclusive to malware itself (e.g., some benign programs also use
them), in order to avoid false positives.

* Step-II: Impact Analysis The goal of this step is to measure the potential impact
of a certain system resource, i.e., whether it can affect the execution of some
interested malware functions. We start a second-round execution monitoring by
manipulating the result of the specific malware’s resource operation, which will
generate a manipulated trace. We apply program alignment techniques [8] to
compare the execution differences between the manipulated trace and the normal
trace and determine if the system resource can (significantly) impact the malware
functions, e.g., cause malware to stop the execution. At the end of this step,
we generate a list of resources that can effectively stop the malware’s infection
(full deception), or significantly affect the malware’s certain functions (partial
deception).

e Step-III: Determinism Analysis We also have to measure the determinism
of the specific system resource identifier, e.g., filename or mutex name. An
effective malware HoneyResource should be deterministic, such that it can be
accurately reproduced/predicted to affect the targeted malware. A deterministic
value could be a fixed/static value, or a value that is generated from a deter-
ministic algorithm (from deterministic resources) or even partial static if certain
part is deterministic. To decide if a specific resource identifier is deterministic,
we perform backward taint analysis and program slicing to fully understand the
identifier generation logic and the parameters it depends on. Based on that, we
further analyze the root-cause of the identifier generation and generate a program
slice responsible for the identifier generation logic.

In Phase-III, we deploy the malware HoneyResource at an end host. There are
also two situations: direct injection and HoneyResource daemon. We will present
their details in Sect. 11.5.

11.3 Phase-I: Candidate Selection

Given a malware sample, AUTOVAC will first determine whether it is possible to
generate a HoneyResource, and at the same time collect the behavior information to
facilitate the next step analysis. Since our HoneyResourceis essentially composed
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of system resources that have a direct or indirect (through propagation) impact on
the malware execution, we adopt a variant of dynamic taint analysis [7] to achieve
this.

11.3.1 Taint Sources

Taint sources define the origins of the tainted data. Our current focus is on
those system-resource-related data that can possibly impact the malware behavior.
However, there is a wide range of system resources and certainly some of them
cannot be used such as system-assigned random objects. As such, we have to
systematically study these resources and identify our taint source. In particular, we
use the following criteria to decide whether a system resource should be tainted.

* Unique Presence Our focused system resources should be commonly used by
malware, and these resources should be uniquely identified. Thus, those transient
system resources, e.g., events, signals, and critical sections, are out of our
interest.

* Less Impact to Benign Software Our targeted resources should have little or
minor impact to benign programs. This requirement would exclude many system-
wide objects and information, such as timers, performance counters, input/output
devices, and removable devices, because they are commonly accessed by benign
programs

» Easier Deployment Our targeted resources should be lightly deployed onto end
hosts. To this end, injecting some specific files or mut ex into the end host would
be viable options. Therefore, files, mutex, or registry will be our main targeted
resources.

11.3.1.1 API Labeling

After applying the above criteria, eventually mutex, static files, and registry items
are of our particular interest. Meanwhile, the propagation use of these resources
such as process, library, GUI window, and services are also of our interest because
these resources depend on some deterministic resource identifiers. However, at the
instruction level, these resource-identifiers often get accessed through system APIs.
Thus, we have to examine each Windows API to define our taint sources.

More specifically, all the system resource access APIs (e.g., NtQueryObject)
are of our interest. AUTOVAC will taint the return values as well as the affected
arguments of these functions. In our design, we examined over 800 windows APIs
and we classified them into the following two categories:

* Tainting the return value Most APIs only affect the return values (always stored
in EAX), such as OpenMutex, and NtSaveKey. For them, we just taint the
return value.
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¢ Tainting the argument Some APIs store the affected values in the arguments.
For instance, Nt OpenKey and NtOpenFile store the return handler in their
first parameters.

Besides tainting the return values or arguments, we also need to record the con-
crete values of the arguments to these APIs because eventually our HoneyResource
work by affecting the system environments which are their arguments. Meanwhile,
not all the arguments are of our interest, and only those resource-identifiers. This is
also a tedious procedure to identify these resource-identifiers. Table 11.1 shows an
example on how we label the two Windows APISs.

Table 11.1 Labeling examples for OpenMutex/ReadFile

OpenMutex ReadFile
Resource type Mutex File
Resource-identifier 3rd parameter: [pName 1st parameter: hFile for Handle Map
Success EAX: Valid handle value EAX: TRUE
Failure EAX: NULL, EAX: FALSE
GetLastError: 0x02 GetLastError: Ox1E

11.3.2 Taint Propagation

AUTOVAC has to propagate taint labels for data operations. That is, for any
instruction whose source operand has been associated with the tainted labels,
we taint the destination operand with the same label. Then, whenever we find a
comparison (i.e., predicate) instruction whose operands have been tainted (e.g.,
test, cmp), we will flag this malware most likely having a HoneyResource and
pass it to our next phase analysis.

11.3.2.1 Output from Phase-I

As our Phase-I runs the malware in normal settings, it provides a great opportunity
to collect the normal malware behavior. To this end, we log all the executed APIs
as well as their parameters, along with the precise calling context information
including the call stack and the caller-PC (program counter). In addition, our log file
also contains the list of the system-resource-sensitive APIs that have been executed,
and their propagated taint record that is used in the predicate.
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11.4 Phase-II: HoneyResource Generation

Once a malware sample has been flagged to “possibly have a HoneyResource”
in Phase-1, it will be fed to our Phase-II to perform a deeper analysis, including
exclusiveness analysis (Sect. 11.4.1), impact analysis (Sect. 11.4.2), and determin-
ism analysis (Sect. 11.4.3). In this section, we present these analyses in greater
detail.

11.4.1 Exclusiveness Analysis

The goal of our exclusiveness analysis is to exclude the resources that have been
used in benign software. For instance, some resources such as library names
uxtheme.dll, and mscrt.dll could be used in benign programs. We must
exclude them otherwise our HoneyResource will have false positives.

In Phase-I, AUTOVAC has logged all the resource-identifiers, and next we would
like to query whether or not each identifier is unique to the malware. Our basic idea
is inspired by a Googling approach used in the previous studies [27]. Essentially, we
use Google query APIs to search resource-identifiers. Based on the return results and
their context, we infer whether these resources are already associated with benign
software. We refer the readers to [27] for more details. In short, from our search
query, if the resource-identifiers does not conflict with benign software or there is
no any matching search result, then we proceed with further analysis.

11.4.2 Impact Analysis

Given a list of the system resources that can (in)directly affect the malware
execution and the corresponding APIs provided in Phase-I, AUTOVAC will run the
malware again in a controlled environment such that we can mutate the return value
or involved arguments and test whether malware will exhibit different behavior or
not. Our current design is to mutate each involved API one at a time and compare
the behavior with our normal execution captured in Phase-I.

11.4.2.1 Trace Differential Analysis

Then, the next question is how we compare the malware behavior in two traces: one
is a normal execution, and the other is a resource mutated execution.

Finding the differences in two traces has been discussed in the previous literature
(e.g., [8, 25]). It is essentially a program alignment problem [8]. The basic idea is
to align two execution points that are equivalent to each other and then compute
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the differences only between the unaligned instructions. In our scenario, we try to
obtain the high-level information such as whether the malware will terminate rather
than the minor instruction-level execution differences. Thus, in our design, we use
the API call sequences (as we have already logged all the executed APIs and their
calling context information) and present an API sequence alignment algorithm as
shown in Algorithm 2.

In particular, we adopted an alignment algorithm from Zeller [8], which uses the
execution context for each instruction for the comparison. If the instruction and its
execution context are equivalent (line 4), they are aligned together. However, we do
not need to compare instruction by instruction, but rather at the granularity of APIs.
Thus, we define a calling execution context as a triple:

Algorithm 2: Differential Analysis on the API-Call Traces

[1,,,: Manipulated Call Trace, [],,: Natural Call Trace
A,z Unaligned Call Trace in [[,,,, A,: Unaligned Call Trace in [],,,
f1: ( name, caller eip, parameter list), fa: ( name, parameter list)
Ay <~ 0,0, <0
for call f17, in[],, do

for call fry in[],, do

if isAligned( 7, f17,) then
L | GOTO FIND_ALIGNED

oA W N -

Am = Am U fAm

An = nn

FIND_ALIGNED:
An = [T,10, index(f7 )]
{fAi} = Diff(Ama An)
return { fa; }

- o &

p—

<API-name, Caller-PC, Parameter list>

For the parameter list, we only compare the static parameters that are identical
across different executions. Note that all these information has been logged either in
Phase-I for the normal execution, or logged in Phase-II for the mutated execution.
Also, the reason we have to log the Caller-PC is for the preciseness.

As illustrated in Algorithm 2, our analysis begins from the start of the trace, then
proceeds with a linear searching for each system/library call in the mutated trace
and examines whether it could be aligned with some call in the normal run trace
(line 2 — 8). If we find an anchor point, we generate two difference sets A,, and A,,.

Next, we examine the two A sets to evaluate the further differences and
classify the HoneyResource type. Specifically, we define three kinds of deception
effects.
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11.4.2.2 Full Deception

If we find APIs such as ExitThread, TerminateProcess, and Terminate
Thread in A, then certainly the mutated system resources can be served as a full
deception HoneyResource, because the malware has killed itself.

11.4.2.3 Partial Deception

Some HoneyResource may significantly weaken certain important functions of
malware. We consider them as partial deception. More specifically, we currently
focus on the following four types of partial deception:

¢ Type-I: Disable Kernel Injection An important malicious function of malware
is to raise its privilege. The common way they use is to inject a kernel driver
into an end host. There are several system calls (mainly undocumented), such
as OpenSCManager have been used for this. Furthermore, some malware
commonly copies itself as a new file with its name ending with . sys, which
implies that some kernel driver is created by the malware.

¢ Type-II: Disable Massive Network Behavior If we find that the normal
execution is full of network-related functions, while the manipulated execution is
clean from such calls, we consider such deception as Type-II Partial Deception.

e Type-1II: Disable Malware Persistence Malware typically modifies specific
registry entries such as Run subkeys in multiple register paths. Other autostart
approaches include: (a) file operations on startup folder or system. ini
files, (b) creation of new service entries, and (c) access of winlogon binary.
Through differential analysis, we can tell if these operations are lost in the
mutated execution while present in the normal execution.

¢ Type-1V: Disable Benign Process Injection To be more evasive, malware
often inject themselves into some benign processes. Processes such as
explorer.exe and svchost.exe are common targets. If we find such
a clear pattern in the differential analysis, we consider these HoneyResource as
Type-IV partial deception.

11.4.2.4 No Deception

If none of the above APIs are in the A, then we classify this HoneyResource with
no effect to stop or affect malware behavior.

11.4.3 Determinism Analysis

We next need to verify the determinism of the extracted resource-identifiers.
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11.4.3.1 Backward Taint Tracking and Program Slicing

Given a resource-identifier, we need to identify whether it is deterministic or entirely
random. We choose to trace the root-cause for the generation of the resource-
identifier.

To back track the procedure of how malware generates an identifier, we perform
a backward taint tracking. The basic idea is to include all the instructions that have
contributed to the creation of the resource-identifier, which is the argument of the
API of our interest. To this end, starting from data-use of the argument, we back
track each executed instruction to check whether or not their operands have been
involved to define the data. If so, we taint the source operand as the same symbol
and continue the backward propagation. We perform the analysis offline on logged
traces.

The termination of our backward tracking is the point to identify the root-cause
that generates the identifier’s name. We continue backward propagation until tainted
source is either from read-only regions (e.g., static strings), or constant values, or
the return value of the system APIs. Based on these different sources, we decide
whether the generation of the identifier is deterministic or not.

An identifier has a non-deterministic type if and only if all elements of its compo-
sition are resulted from some random functions (e.g., Get PerformanceCounter
and GetTempFileName). As illustrated in the left part of Fig 11.2, if the
termination data point is from a read-only segment such as .rdata, or constant
values, we can easily mark it as static. Similarly, if an identifier is constructed using
some non-deterministic value combined with some constant value, we can mark it
as partial static, and such an identifier will be deployed using a slightly different
strategy compared to the scenario of purely static identifier.

An identifier could be algorithm-deterministic, namely its identifier is generated
through certain computation. Some appear-to-be random name can be generated
from some invariable seed, such as computer name or hardware serial number.
Algorithm-deterministic names will be backward propagated to some semantic-
known APIs. We use these APIs to decide the root-cause type when generating
the name. One example is shown in the middle part of Fig. 11.2. We use the
GetComputerName to infer that the input should be a computer name.

For such algorithm-deterministic identifier, we also need to find the generation
logic because we need to replay and compute it for each end host. We apply
the existing backward program slicing[18] techniques to extract an independent,
executable program slice for that. At the end of this step, we delete all the entirely
random (non-deterministic) identifiers.

11.4.4 Malware Clinic Test

To further reduce the possible false positives, we design a Malware Clinic Test at
the end of this phase. Malware Clinic Test aims to inject our HoneyResource into
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real environments and test whether it will affect the normal use of a computer
system. This test environment is automatically configured by running multiple
benign software and services. Even though the scheme of clinic test is simple, it
is essential to ensure the quality of our generated HoneyResource. If it affects the
normal usage, it will be discarded.

Algorithmic-
deterministic
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Fig. 11.2 Sample Malware code and the traced behavior

11.5 Phase-1I1: HoneyResource Delivery and Deployment

After we generate the HoneyResource, we next describe how to deliver and deploy
the HoneyResource to an end-user computer.

11.5.1 Direct Injection

Direct injection works for static identifiers. If a HoneyResource stops malware
execution by frustrating the presence checking of static type of resources, we inject
it by creating or deleting the resources. For instance, if the malware needs to open
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certain static file (or registry) before proceeding the malicious functionality, then
we remove the static file (or registry), or vice versa. Moreover, we accordingly
adjust the injected file’s access privilege to disallow certain operation such as
read and write. In these cases, when a low-privilege malware program attempts
to access a resource, which is a common case at the initial infection stage, static
HoneyResource efficiently stop further malicious behavior.

11.5.2 HoneyResource Daemon

Daemon works for algorithm-deterministic identifier and partially static identifier.
For an algorithm-deterministic identifier, we have extracted a program slice of
the resource-identifier generation logic with knowledge about its input, such as
a computer name or an [P address. To generate the HoneyResource, we collect
these information ahead and run the captured program slice. Such procedure works
very similar to Inspector Gadget [18]. Our daemon process runs periodically to
check whether the input has been changed and the HoneyResource needs to be re-
generated.

Daemon is also designed for identifying resource name represented using regular
expressions (i.e., distinguishable partial static HoneyResource). Specifically, at the
end host, we dynamically intercept the APIs and resolve their resource-identifiers.
If the daemon monitors that a resource identifier matches with our partial static
HoneyResource, it will return the predefined result to stop the malware execution.

11.6 Evaluation

We have implemented AUTOVAC. While our online dynamic analysis can be imple-
mented using virtual machine monitors such as TEMU [4], we use DynamoRIO [2]
to implement due to its simplicity and flexibility in binary instrumentation. Our
differential analysis module is implemented using offline parsing of the execution
logs. Also, to perform tainted analysis, we translate the X86 instructions into an
intermediate language BIL [10], and then we develop our own parser code to identify
the resource-sensitive branches and perform differential analysis. Our exclusiveness
analysis involves a search engine query component, for which we implement using
the API provided by Google. In this section, we present our evaluation results.

11.6.1 Experiment Dataset

Our test dataset consists of 1,716 malware samples, which are collected from
multiple online malware repositories (e.g., [1, 3]) with mostly from Anubis [1].
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We also leverage an online malware classification tool, VirusTotal [5], to obtain the
classification information for these malware. We summarize classification results in
Table 11.2. We can see that these malware samples fall into 6 categories such as
Backdoor (722 samples), Downloader (574 samples), and Trojan (184 samples).

Table 11.2 Malware’s

: : - Category # Malware | Percentage
classification from VirusTotal -

Trojan 184 10.72%
Backdoor 722 42.07%
Downloader | 574 33.44%
Adware 73 4.25%
Worm 104 6.06%
Virus 59 3.43%
Total 1,716 100%

11.6.2 Evaluation Result on Candidate Selection

In the first step (Phase-I), we monitor malware’s access to system resources.
We conduct this experiment by running these 1,716 malware samples in our
analysis environment and each sample runs for 1 min (we tend to believe that the
resource checks usually happen in the early stage of the malware execution and
we thus choose this 1-min threshold). We hook 89 system/library calls as tainted
sources that are related to resource operations. The resources in our evaluation
include file, mutex, registry, window, process, library, and service. We measure
the basic operations for these resources such as read/write for file and registry,
and open/create for other resources. Meanwhile, for each execution instance of the
hooked function, we examine their callers’ PC and make sure that it does not belong
to the system library’s address space. Thus, we do not count the functions that are
called inside the system/library calls.

For 1,716 malware samples, we successfully tracked 460,323 occurrences of
these API calls. Through our taint analysis in this phase, we identified that
371,015(80.3%) occurrences of the calls will possibly deviate the execution of the
malware samples. This result confirms that real-world malware is indeed resource
sensitive.

Among these 371,015 occurrences, we further made a statistic study based on
the resource type and its corresponding operations. The result is shown in Fig. 11.3.
From the figure, we can see that around 37.39% of the resource accesses account for
file operation. Mutex (7.07%) and registry (20.08%) are also commonly accessed by
malware. We consider these three types of resources that can be efficiently delivered
using the injection scheme. Meanwhile, malware’s logic is also commonly sensitive
to other types of resources such as windows (13.14%), process (8.02%), library
(6.6%), and service (3.4%).
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Fig. 11.3 Statistics on Malware’s resource-sensitive behaviors

11.6.3 Evaluation on HoneyResource Generation

Table 11.3 HoneyResource samples (Operation type symbols—check Existence (E), Create (C),
Read (R), and Write (W), Impact symbol—Termination (T), Process Hijacking (H), Persistence
(P), Kernel Injection (K), and Network Massive Attack (N))

Seq | Type | OperType | Impact | Identifier Malicious sample Md5

1 Mutex | E T 'VogA.14 df1df624c5da833d3882d22a2e2456¢9

2 |File |CRW PH Josystem32% 1b6fb589f36654af0ef44aa92{94324a
\twinrsdi.exe

3 | File CER, PHN | %system32% 24784256bbbb936dc1e0999¢307883¢8
\dwdsregt.exe

4 | File CERW |K}P Yosystem32% 27d18e20e253391112d50b2b49440aea
\driver\qatpcks.sys

5 Mutex | E T GTSKISNAUOI ee5878eab962b032c78c1d6beec7ec917

6 | Mutex E PH fx221 af48ecfcc1812d6£814a26792107b80e

7 | Mutex CE T )ryt-24qtqq26sn]9c | b534b75da5fc3b9b178c60bf10bl1feca

8 | Mutex | C.E,R PH _AVIRA_2109 04a93b1108a1675c67c9975a7024c3d6

9 File CERW |PH Yosystem32% \ af48ecfcc1812d6f814a26792107b80e
shlmon.exe

10 | File CERW |TP Yosystem32%\ 04a93b1108a1675c67¢9975a7024c3d6
sdra64.exe

In the evaluation, we analyzed all 1, 716 malware in a controlled environment. In
total, we generated 536 HoneyResource that belong to 210 malware samples. The
result is presented in Table 11.4. For each column, we classify the HoneyResource
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as full deception or partial deception (Type-I to Type-IV). We also list the statistics
on the HoneyResource distribution among different resource types in Table 11.4.
Among all HoneyResource, we find that 373 HoneyResource have static identifiers,
and 163 samples have algorithm-deterministic or partial static identifiers.

Table 11.4 Evaluation on HoneyResource generation

Resource Full Type-1 Type-II Type-111 Type-1V All
File 31 19 17 110 61 238
Registry 10 11 3 72 19 115
Mutex 5 3 3 16 3 30
Process 2 5 2 18 5 32
Windows 0 4 3 8 3 18
Library 19 5 1 10 19 54
Service 7 4 0 17 21 49
Total 74 51 29 251 131 536

Table 11.5 HoneyResource statistics on different Malware families

Backdoor Trojan Worm Adware Downloader Virus
Type
File 33% 27% 24% 30% 45% 81%
Registry 15% 29% 21% 13% 20% 19%
Windows 3% 14% 0% 47% 11% 0%
Mutex 8% 12% 29% 0% 2% 0%
Process 8% 7% 14% 0% 10% 0%
Library 26% 9% 4% 0% 7% 0%
Service 7% 2% 8% 10% 5% 0%
Deployment
Direct 67% 79% 63% 69% 69% 84%
Daemon 33% 21% 37% 31% 31% 16%

To zoom-in the details of these HoneyResource, we select 10 representative sam-
ples and describe them in Table 11.3. We can see that most of these HoneyResource
stop several logic of malware’s infections. In some cases, different operations on
the resources can even cause different effects on malware’s logic. For example, for
the last malware in Table 11.3, we find that the failure of creating a file will stop
malware’s process hijacking logic, and the failure of writing a file will crash the
malware process (Table 11.4).

For the generated 536 HoneyResource, we also combined their types with the 210
malware’s classification information to see what is the common HoneyResource
type for different kinds of malware. The result is shown in Table 11.5. From
this table, we can see that the file resources are the common HoneyResource
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for many malware families. Meanwhile, the windows resource HoneyResource
is better suitable for adware because the windows resource HoneyResource is
attempting to prevent adware from creating their malicious windows. If such
operations fail, adware will possibly stop their further action. Last but not least,
mutex HoneyResource works better for worm and backdoor malware. This is also
reasonable, because these malware highly depend on the mutex to prevent duplicate
infection.

We also report the statistics of our delivery for these 536 HoneyResource.
As shown in Table 11.5, direct injection is the most common way to deploy
HoneyResource on end hosts. Also, only about 20%—30% HoneyResource need a
daemon for the deployment.

11.6.4 Case Studies

Next, we present two representative case studies to illustrate in greater detail on
how each of our resource access-based HoneyResource can be used for malware
infection immunization. In such case, our HoneyResource can work as malware
HoneyResource to stop malware infection.

11.6.4.1 File-Based HoneyResource

One HoneyResource for Zeus/Zbot [6] family is a static file named sdraé4 .exe
which is stored in the system32 directory. We observe that if Zeus successfully
creates this file, it will continue writing malicious bytes into that file using bytes in
its resource and start a new process using this file.

Delivery: We deliver a HoneyResource by deliberately creating sdraé4 . exe
at an end host. This file is owned by a super user and does not allow any creation
operation by others. In this way, our HoneyResource prevents Zeus’s attempt to start
the malicious process.

11.6.4.2 Mutex-Based HoneyResource

One mutex HoneyResource is for Conficker, which is an algorithm-deterministic
HoneyResource. This mutex HoneyResource can efficiently stop Conficker’s infec-
tion at its initialization stage.

Several other mutex examples include AVIRA 21099, AVIRA 2109,
_AVIRA 2108, which belong to Zeus/Zbot[6] malware. This set of HoneyRe-
source can stop multiple malware logic such as kernel injection, process hijacking,
and network communication.

Delivery: Direct injection is an efficient approach to deliver mutex HoneyRe-
source. We simply create a deterministic AVIRA mutex in the system to prevent
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Zbot’s injection. For Conficker, we run the HoneyResource slice once at the end
host and generate the mutex name for each computer.

11.6.5 HoneyResource Effect Analysis

In this test, we evaluate the effect of our HoneyResource on the malware samples.
As reported in Sect. 11.6.3, our HoneyResource can stop or weaken 210 samples’
malicious behaviors. In this test, we run these 210 samples in both deployed
environment and the normal infection environment for 5 min. Then, we compare
the differences of their native system calls (all the NT native calls) in these two
environments. We define a metric Behavior Decreasing Ratio, BDR = M,
where N, is the number native system calls in the normal environment, whilenNd
is that number in the deployed environment. The larger BDR is, the more reduction
of functions by the HoneyResource. In Fig. 11.4, we report the distribution of BDR
according to different effectiveness type.

< Full Deception ODisable Kernal Injection Disable Massive Network

xDisable Persistence Logic O Disable Process Hijacking

20% 30% 40% 50% 60% 70% 80%

Fig. 11.4 Distribution of BDR

From this figure, we can see that the full deception HoneyResource are obviously
the most effective ones and they all terminate the execution of malware (the reason
why their BDR is not 100% is simply because of their initial executions before exit
that also have some native system calls). Our partial deception HoneyResource all
effectively achieve their goals by disabling key functions in the malware (through a
careful manual examination, we confirm that all unwanted malicious logic has been
disabled). One such example for Zeus is shown in Table 11.6. Even in the worst case
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Table 11.6 Example of a high-profile Malware HoneyResource

Malware HoneyResource Type Impact description
Zeus/Zbot _AVIRA_2109 Mutex Stop process hijacking

in terms of BDR, our partial deception HoneyResource can still reduce at least 24%
malware’s important system call activities. Note that BDR will certainly increase if
we keep running the malware sample in a longer time period.

To further verify that our HoneyResource are effective for different variants in
the same malware family, we choose 6 high-profile malware samples and perform
another test. These samples are high-profile malware such as Conficker, Zeus/Zbot,
and Sality, and for these 6 samples we have extracted a total of 17 different
HoneyResource in our previous test. We then further collect 5 variants (binaries
are different from what we have collected in the original dataset) belonging to each
family (thus 30 new variants in total). Then, we run the 30 newly collected variants
in both normal and deployed environments, similar to the previous experiment. We
carefully analyze the execution differences and manually verify that whether the
injected HoneyResource have achieved the goal or not. The result is showed in
Table 11.7. Note that the 4th column indicates the number of malicious functions
that can be stopped if ideally these HoneyResource work for all variants, the 5th
column indicates the actual number from our test, and the 6th column shows the
percentage of success.

From the result, we can see that overall our HoneyResource can take effect
in almost all variants. However, we do find that some HoneyResource can work
for some variants but fail on others. One example is the file HoneyResource
sdraé4 . exe which we did not find its use in 2 other Zbot variants. Fortunately,
for each malware, we have extracted more than one HoneyResource. Thus, even
some may not be effective for all variants, the combination of these HoneyResource
can still achieve satisfiable results. We believe that this test also highlights the
importance of using an automatic tool (such as our AUTOVAC) to analyze malware
samples to extract as many HoneyResource as possible, a goal otherwise very hard
to achieve through manual analysis.

Table 11.7 Effectiveness evaluation on Malware variants

Malware HoneyResource# Type Ideal case Verified Ratio
Zeus/Zbot 6 Mutex, file 30 23 77%
Conficker 2 Mutex 10 10 100%
Qakbot 2 Registry 10 10 100%
IBank 1 File 5 5 100%
Sality 3 Mutex, file 15 12 80%
Posionlvy 3 Mutex, file 15 10 67%

Total 17 85 70 82%
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11.6.5.1 False Positive Test

Our next test is on the false positive evaluation, i.e., whether our generated
HoneyResource will affect the normal program executions. We design a simple
malware clinic test as mentioned in Sect. 11.4.4.

First, we install 5 different virtual machines running over 40 benign software
(which includes the most common software typically seen on normal users’
computers such as all kinds of browsers, programming environments, multimedia
applications, Office toolkits, IM and social networking tools, anti-virus tools, and
P2P programs). Then, we equally inject our HoneyResource into each test machine
and monitor their system logs over a period of a week. The result shows that our
HoneyResource did not cause any problem to our running environments.

One could argue that this automatic test may underestimate users’ interaction.
Hence, we conduct another test to install 200 HoneyResource on 4 lab machines.
All these four machines are for normal everyday use. The result also shows that our
generated HoneyResource did not cause any trouble for the operation of existing
benign programs. While our clinic test could have a limited scope, we believe
that a well-designed clinic test is still helpful to refine our automatically generated
HoneyResource in a real-world scenario.

11.6.6 Performance Overhead
11.6.6.1 HoneyResource Generation Overhead

First, we measured the overhead of the automatic extraction. We run our test on
machines with Intel Core i5 CPU and 6GB memory.

* Generating the HoneyResource In our test, we measure the time spent on
analyzing the function traces, extracting the identifiers and filtering out common
identifiers using search engine and pre-built whitelist. For each sample, it took
789 s to fulfill all these tasks on average. For backward slicing, we find that it
took 214 s on average for each identifier. Meanwhile, the longest case is 530
seconds and the shortest case is 30 s.

* Impact Analysis We measure the overhead of our offline parsing part to handle
two execution traces with 1-min malware running time. The overhead for 500
cases is around 24 h. It means that for each case, it takes around 2 — 3 min to
verify its impact.

We note that the generation is a one-time effort in the analysis environment. The
more important overhead that users care about is the one on their end hosts.
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11.6.6.2 Deployment Overhead

We now report the deployment overhead on each end host.

For static and algorithm-deterministic HoneyResource, the overhead is negligible
(almost zero) because in most of the time we only need to install some system
resource or replay the resource-identifier-generation slice for one time. In our
experiment, it takes only 34s to install all the 373 static HoneyResource onto one
end-host machine. It includes copying/activating the resources and correctly setting
up their privileges. For 44 algorithm-deterministic HoneyResource, we need to run
program slices on the machine. It takes 1,131s (25.70s for each HoneyResource on
average) to deploy all the HoneyResource. Note these HoneyResource are packed
with installation scripts and there are no user interactions involved.

For partial static HoneyResource, it adds a little more overhead to the end
host. The overhead mainly comes from the identifier comparison after we intercept
the call. In our test, the highest extra overhead is below 4.5% for injecting 119
partial static HoneyResource. Among 4.5% overhead, around 3.9% comes from
the function hooking, which is relatively stable even the HoneyResource number
increases. Hence, it could be expected that even the number of partial static
HoneyResource has been expanded by 10 times, we could still efficiently control
the overhead under 12% for each host. More importantly, in most cases, we do not
need to inject all the HoneyResource at the same time (to be discussed in Sect. 11.7).

11.7 Limitations and Future Work

Our system is not perfect. In this section, we discuss its limitations and outline our
future efforts.

11.7.1 Evasions from Malware

It is possible to evade our HoneyResource if malware authors are aware that we are
using certain resource as the HoneyResource. They can drop the specific resource
checking logic or change the resource name in the new version. However, the former
will possibly lead to re-infection and thus may be not desired. While the latter
approach is possible, if we consider the wide and random propagation of worm
or botnet malware, our HoneyResource still makes the malware harder to decide
whether the system has actually been infected or not. Hence, if the malware binary
cannot run when over two instances on the same machine, our HoneyResource can
bring the malware into a dilemma that the target system may have actually been
infected before or it has installed our HoneyResource system. Even though malware
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can run with multiple instances, periodically changing the identifiers may finally
result in multiple instances running in one machine. It also creates extra risks of
being detected.

Certainly, malware authors could obfuscate the malware code to frustrate our
HoneyResource generation such as using control dependence to propagate data [24].
In fact, in some cases, there is actually no propagation chain and the conditional
check is directly operated with the resource values. While future malware could
deliberately introduce additional data propagation and obfuscate through control
dependence, to address such problem will be one of our future efforts.

11.7.2 Limitation on Dynamic Analysis

In AUTOVAC, we intensively apply multiple data flow tracking techniques such as
taint analysis and program slicing. Therefore, AUTOVAC unavoidably suffers from
the problems brought by these dynamic analysis techniques [13]. For instance, in
our candidate selection/analysis, our taint analysis could cause overtainting [7]
thus resulting in more candidate resources to analyze. Fortunately, due to our
impact analysis and exclusive analysis, we can still easily filter out those unsuitable
HoneyResource.

In addition, some imprecise interpretation of differential function calls may cause
the underestimation of the actual impact of certain resources. Some previous work
[22] has discussed several approaches to gain a better understanding of malware’s
high-level behaviors. We could leverage these techniques to refine our result in
future work.

11.7.3 Potential False Positive

Some of our automated analysis techniques (e.g., the use of search engine) may
also return incomplete/inaccurate results. Meanwhile, our exclusiveness analysis
and clinic test may not cover all benign programs such that it is possible to have
some resource collision between our HoneyResource and some benign programs.
Improving these issues is our another venue of future work.

11.7.4 Deployment Issues

One concern for the HoneyResource deployment is that injecting a large number
of HoneyResource into end hosts may annoy the user. Note that most generated
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HoneyResource in practice are just some files, mutexes, and registry entries, whose
sizes are tiny or even with O byte. This is pretty lightweight compared with the
case that AV tools typically store millions of signatures on an end host. In addition,
as mentioned before, as a complementary technique to existing solutions, our
prevention scheme can be mainly used for some high-profile, large-scale, and severe
malware infections, instead of for all malware.

11.7.5 Deception Goals

In this work, we mostly focus on how to use HoneyResource to stop or impact
the proper infection/execution of malware for the defense purpose. While these are
important deception goals, many times we are also interested in deceiving malware
into continuing the normal execution so that we can observe more activities,
understand the intention from the malicious operators behind malware, or even
mislead them for the defense purpose. Our future work will investigate more on
this direction.

11.8 Related Work

11.8.1 Immunization-Based Defense

In [14], Manuel et al. proposed an end-to-end approach to make end hosts
immune from fast-propagating worms through collaborative worm detection and
self-certifying alerts. Packet Vaccine [32] followed this direction and derived
the network signatures of malicious packets to be used at the network level to
filter unwanted packets. Different from these previous work, AUTOVAC does not
investigate the exploits nor vulnerabilities that malware targets, and instead it
analyzes the system resource constraints of malware and attempts to extract effective
HoneyResource to immunize a clean system from future malware infection.

In a concurrent study, Andre et al. [28] proposed the idea of using infection mark-
ers to prevent malware infection. While both are inspired by the biological vaccine
concept, we systematically explore this problem and our HoneyResource are more
general and broader than simple infection markers. Employed techniques are also
substantially different; instead of treating the malware as a black box, AUTOVAC
conducts more fine-grained binary analysis on malware internals, performs more
analysis (e.g., exclusiveness, impact) in the automatic HoneyResource generation,
and has more delivery/deployment options.
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11.8.2 Dynamic Malware Analysis

Due to the severe threat of malware, tons of research has been carried out on
analyzing malware behavior (e.g., [9, 12, 16, 20, 22]) and classifying malware
(e.g.,[15,19,30]). Certainly, AUTOVAC complements these techniques by exploring
a new direction to stop malware infections.

In AUTOVAC, we design several dynamic binary analysis techniques to automate
the production of malware HoneyResource. There has been a significant amount
of work [11, 16-18, 21, 29] on dynamic binary analysis. In particular, prior
research [23, 29] has explored the enforced execution and reverting to trigger
malware’s dormant functions [23, 29]. Our enforced execution applies similar
techniques introduced in the forced execution [29] but we focus on these environ-
ment/system resource-sensitive branches.

We also leverage taint analysis and program alignment techniques. Different
from full taint analysis in the previous work [17, 18] and block-level program
alignment [25], our proposed solution avoids the overhead caused by full execution
tracking with a particular focus on the targeted malware behavior in our problem
domain.

11.9 Conclusion

In this chapter, we present AUTOVAC, a new complementary malware defense
scheme that aims to automatically extract malware HoneyResource from given
malware samples. Our evaluation shows that it is an appealing approach that
works on many real-world malware families. In particular, the HoneyResource
can be used to deceive malware for stopping its infection. To demonstrate the
real-world practicability, we have implemented our prototype system using several
dynamic program analysis techniques, and conducted empirical evaluations on a
large set of real-world malware samples. Our experimental results show that we can
successfully extract working HoneyResource for many malware families including
Conficker, Sality, and Zeus.

11.10 Exercise

Ex. 1 Discuss the reasons why malware authors want to avoid duplicate infection?
What is the effect of duplicate infection?

Ex. 2 Analyze the following assembly code. Is there any memory/register that will
be tainted by AUTOVAC after the execution? Why?



234 Z. Xu et al.

Listing 1: Code Example

1 msg byte "mutex test", 10
2 handle dword ?

3

4 section .text

5 go:

6 push msg

7 push dword 0

8 push dword 0

9 call _OpenMutex

10 XOor eax, eax

11 push -11

12 call _GetStdHandle
13 mov handle, eax

Ex. 3 Review the reference paper [7] and Sect. 11.7, and discuss how the limitation
of tainted analysis may affect the effectiveness of AUTOVAC.

Ex. 4 Similar to biological HoneyResource which commonly has some side effect
for patients, malware HoneyResource could also have some side effect on a user’s
system. Discuss possible side effects and how to prevent them.
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