
Chapter 1
Using Deep Learning to Generate
Relational HoneyData

Nazmiye Ceren Abay, Cuneyt Gurcan Akcora, Yan Zhou,
Murat Kantarcioglu, and Bhavani Thuraisingham

Abstract Although there has been a plethora of work in generating deceptive
applications, generating deceptive data that can easily fool attackers received very
little attention. In this book chapter, we discuss our secure deceptive data generation
framework that makes it hard for an attacker to distinguish between the real versus
deceptive data. Especially, we discuss how to generate such deceptive data using
deep learning and differential privacy techniques. In addition, we discuss our formal
evaluation framework.

Keywords Cyber deception · Differential privacy · Deep learning · Decoy
deployment

1.1 Introduction

Deception techniques have been recently deployed in cybersecurity for achieving
many important goals ranging from understanding the attacker intent to tricking
attackers into spending resources and time on fake targets. For example, honeypots
(e.g., [29]) have been proposed to provide deceptive targets (i.e., servers) for
attackers. Similarly, Honeyfiles (e.g., [31]) have been proposed to lure attackers
to spend time in searching files and potentially disclose their intent. Still, to
our knowledge, none of the previous work tries to create deceptive “data” (i.e.,
HoneyData) to fool potential attackers. Unfortunately, lack of realistic deceptive
data may make it easier for an attacker to detect deception. For example, without
good HoneyData, it may be easier to spot a fake database hosted on a honeypot.

The original version of this chapter was revised: Chapter authors have been added. The correction
to this chapter is available at https://doi.org/10.1007/978-3-030-02110-8_12

N. C. Abay · C. G. Akcora · Y. Zhou · M. Kantarcioglu (�) · B. Thuraisingham
The University of Texas at Dallas, Richardson, TX, USA
e-mail: muratk@utdallas.edu

© Springer Nature Switzerland AG 2019
E. Al-Shaer et al. (eds.), Autonomous Cyber Deception,
https://doi.org/10.1007/978-3-030-02110-8_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02110-8_1&domain=pdf
https://doi.org/10.1007/978-3-030-02110-8_12
mailto:muratk@utdallas.edu
https://doi.org/10.1007/978-3-030-02110-8_1

4 N. C. Abay et al.

Recent work looked into generating privacy-preserving synthetic relational data
using differential privacy (e.g., [2]). The main purpose of this line of work is to
preserve individual privacy while providing data utility. Therefore, it is not clear
whether they could be applicable for generating good HoneyData. In the context of
cyber deception, it is important that the HoneyData is indistinguishable from real
data so that it can easily fool the attacker.

Creating deceptive data (i.e., HoneyData) has many challenges. For different
settings, we may need different types of HoneyData. For example, to deceive
an attacker and feed false information, deceptive technical plans (e.g., technical
drawings of an airplane) could be generated. On the other hand, to make HoneyFiles
more believable, fake text data could be added to such files. Since addressing all
these different types of data requires different techniques, in this work, we focus
on generating deceptive HoneyData that is relational data. The main differentiating
factor for relational data is that the number of columns and the types of the
columns in a given dataset are known in advance. Still, generating realistic relational
HoneyData while not disclosing sensitive information is a significant challenge.

We need to answer questions, such as: (1) how to automatically generate
relational HoneyData? and (2) how to measure whether the generated relational
HoneyData is deceptive enough? In this work, we try to answer these questions
by leveraging existing work in differentially private synthetic data generation and
explore its effectiveness for generating relational HoneyData.

As a part of this work, we propose an important measure for understanding the
effectiveness of HoneyData. Basically, given the available information, a potential
attacker may not build an effective machine learning model to distinguish between
real vs HoneyData. We evaluate the effectiveness of relational HoneyData on
real datasets, and show under what conditions differentially private deep learning
techniques could be used to generate relational HoneyData.

Remainder of this book chapter is organized as follows: Sect. 1.2 details related
work. Section 1.3 gives preliminaries for our data generation technique in Deep
learning and privacy preserving, and Sect. 1.4 explains our methodology. We report
our experimental results in Sect. 1.5 and conclude with Sect. 1.6.

1.2 Related Work

Cyber deception mechanisms have been heavily studied to enhance the computer
security. However, most of the existing techniques are not focused on generating
deceptive data. Here, we review the existing cyber deception techniques with their
limitations and strengths.

Honeypots are a prominent cyber deception mechanism to investigate and
analyze the unauthorized intrusions [29]. Honeypots are designed as trap-based
isolated systems that appear vulnerable to attackers. Legitimate users are not
supposed to interact with them and any interaction with honeypots is considered
an illicit attempt. While interacting with intruders, honeypots gather information of

1 Using Deep Learning to Generate Relational HoneyData 5

them to disclose intruders’ behavior for forensic analysis. Although honeypots are a
notable cyber deception technique, they have limitations. Since honeypots are fake
environments, they might fail to simulate the real services. As attackers become
more sophisticated, they ensure their safety by using more advanced systems to
distinguish “fake” and real system to avoid honeypots [18]. Moreover, honeypots
might create irredeemable risks for the real user environment when the attacker can
use honeypots as a bridge to the real user environment [4].

In addition to Honeypots, decoy injection mechanisms evolved to integrate real
systems in aiding defensive computer deception. These mechanisms serve as a decoy
to intruders to mitigate unauthorized threats by distracting attackers from a target
that has sensitive information.

Yuill et al. [31] present an intrusion detection system that installs decoy files
on file servers with enticing names to capture the attention of attackers. These
decoy files are constantly monitored and when accessed by any intruder, the
system will trigger an alarm to notify system administrator. However, in some
cases, decoy files fail to influence the perception of attackers since published data
(e.g., password file stolen from LinkedIn1) provide attackers insight to distinguish
between real and fabricated data. They can enhance their technique and re-attack
again. To circumvent attacker insight, Juels et al. [19] propose Honeywords to
defend hashed password databases by generating “fake passwords” that seem
real to attackers. In their work, they preserve N-1 “fake passwords” referred as
honeywords for each legitimate user password in the database. If any of the
honeywords is submitted for logging into databases, attack has been detected
and system administrator is notified that database has been hacked. Although
honeywords are useful to detect the unauthorized intruders, in some cases it may
deteriorate system performance because each submitted password is compared with
all previously generated honeywords which slows down the authentication process
for legitimate users. Also, generating and preserving the honeywords increases the
storage requirement N times. Still, this approach is only applicable for password
setting.

Our approach proposes decoy data generation to fool attackers without degrading
system performance. Although decoy files are used in a cyber defensive system to
entice attackers, they may reveal sensitive information if care is not taken during
data generation. To preserve individual privacy, the decoy files require sanitization
of sensitive information. Dwork [10] proposes a data privacy model as ε-differential
privacy to ensure the protection of private data from leakage by perturbing the data
with random noise based on ε. Differential privacy has been implemented in a
number of data analysis tasks, including regression models [9, 33], classification
models [26, 30], and privacy-preserving data publishing [3, 6, 32]. In some cases,
it is required to combine differentially private algorithms to formulate complex
privacy solutions. To track the total privacy loss while executing these repetitive
mechanisms, Abadi et al. [1] propose the advanced composition theorem known as

1https://www.cnet.com/news/linkedin-confirms-passwords-were-compromised/.

https://www.cnet.com/news/linkedin-confirms-passwords-were-compromised/

6 N. C. Abay et al.

the moment accountant and verify that it has the best overall privacy bound in the
literature. In this work, we also employ the moment accountant to bound privacy of
the proposed technique to generate decoy files.

To balance both utility and user privacy, Rubin [25] introduces repetitive
perturbation of the original data as a substitute to the original data. However, data
generation may suffer from curse of dimensionality when the data has more than
dozen attributes. To overcome the curse of dimensionality, Zhang et al. [32] present
PRIVBAYES as a private generative model that decomposes high-dimensional data
into low-dimensional marginals by constructing a Bayesian network. Afterwards,
noise is injected into previously constructed low-dimensional marginals to ensure
differential privacy and the synthetic data is inferred from these sanitized marginals.
Acs et al. [3] model another generative approach to produce synthetic samples. First,
the original data is partitioned into k clusters with private kernel k-means. Then,
each previously clustered data is inputted to private generative neural networks to
create synthetic data.

Park et al. [23] propose DPEM as a private version of the iterative expectation
maximization algorithm. They combine differential privacy and expectation max-
imization algorithm to cluster datasets. Here, we use this approach to discover
patterns in latent space. We observed an improvement in the performance of this
technique when used with partitioning the original dataset into unique data label
groups. Here, we use this modified version in our experiments [23] as DPEM+ and
compare its results in the experiments section.

Similar to the clustering approach, Abay et al. [2] propose a new generative deep
learning method that produces synthetic data from a dataset while preserving the
utility of the original dataset. In [2], the original data is partitioned into groups, and
then the private auto-encoder (a type of deep learning model) is employed for each
group. Auto-encoder learns the latent structure of each group and uses expectation
maximization algorithm to simulate them. In this work, we employ the same data
generation model but we explore whether these techniques are applicable in the
context of generating relational honeydata.

1.3 Background

This section provides a summary of deep learning and the principles of the
differential privacy. Deep learning is utilized for the proposed approach. Differential
privacy is applied to deep learning model to construct the private generative model
to prevent the disclosure of sensitive data while generating honeydata.

1.3.1 Deep Learning

Deep learning is a representation learning-based machine learning technique that
has been applied to image recognition and natural language processing where they
have resulted in remarkable advances. The power of deep learning is based on

1 Using Deep Learning to Generate Relational HoneyData 7

learning hierarchical concepts that allows the model to build complex concepts
from the simpler ones [16]. Deep learning can be employed for addressing
supervised, semi-supervised, or unsupervised tasks. Here, we employ unsupervised
deep learning to form a generative neural network that samples honeydata.

Most deep learning models create complex networks that are formed with
multilayer architectures. This multilayer network is a parametrized function that
aims to fit any given input. To get optimal parameters to generalize input structure,
our aim is to minimize the mismatching of error in the input, defined as loss function
L (θ), where θ is the set of network parameters. For each step in the optimization
process, θ is updated with its gradient as follows:

θt+1 = θt − α

⎛
⎝ 1

|n|
∑
xi∈D

∇θ L (θ; xi)

⎞
⎠ , (1.1)

where D is the dataset with n records xi ∈ R
d . Deep learning models have complex

networks usually formed with multilayer architectures that hinder the optimization.
To circumvent this obstacle, Stochastic gradient descent (SGD) is used in the
optimization [28].

1.3.2 Differential Privacy

Differential privacy is a mathematical formula that ensures privacy even if adversary
has background knowledge [10]. Differential privacy adds random noise to the
aggregated statistics to hinder impersonation attacks.

Theorem 1.1 Mechanism M is a randomized real-valued function that satisfies
(ε, δ) -differential privacy for some ε > 0 and δ > 0 if for any adjacent datasets d,
d ′, and for any subset of the output S ⊆ Range(M) it holds that

Pr[M (d) ∈ S] ≤ exp (ε) P r[M (d ′) ∈ S] + δ. (1.2)

Adjacent datasets d, d ′ differ only in one tuple while rest is the same.

Mechanism M achieves (ε, δ) -differential privacy by perturbing the deterministic
real-valued function f with random noise defined as follows:

M (d) = f (d) + z, (1.3)

where z is generated randomly from zero-mean Gaussian mechanism. Here, stan-
dard deviation of Gaussian mechanism is calibrated with σ and f ’s sensitivity sf
defined by the maximum of the absolute distance ‖f (d) − f (d ′)‖ where d and d ′
are adjacent datasets. Relation among (ε, δ), σ , and sf in Gaussian mechanism is
given as σ 2ε2 � 2 ln 1.25/δs2

f [13].

8 N. C. Abay et al.

1.3.3 Differentially Private Composition Theorem

To analyze the privacy budget of our proposed work, we employ both sequential
composition [11, 12] and advanced composition theorems [1, 8].

In our proposed work, while training the auto-encoder, we track the privacy loss
at the end of each batch iteration. In the optimization phase, value of the current
privacy loss ε′ that has been spent on the private auto-encoder in a given iteration
t ∈ T is computed. Training ends when ε′ reaches the final privacy budget ε.

According to moments accountant [1], deep learning network is (ε, δ)-
differentially private if the privacy loss for any ε′ < k1(|B| /n)2T is such that
for some constants k1, k2:

ε′ ≥ k2
|B| /n

√
T log 1/δ

σ
,

where T is the number of training steps and |B| is the number of samples in mini-
batch with a given privacy budget ε, delta δ, and standard deviation σ of the zero-
mean Gaussian distribution.

1.4 Methodology

This section describes the details of our Differentially Private Synthetic Data
Generation Model (DPSYN). We introduce the main algorithm and components of
DPSYN.

1.4.1 Differentially Private Synthetic Data Generation Model

DPSYN has the primary purpose of generating synthetic data that is indistinguish-
able from the real data from the attacker’s perspective given background knowledge.
DPSYN also preserves the privacy by bounding the privacy loss with differential
privacy. Abadi et al. [1] apply the moment accountant on differentially private deep
learning. Here, we make several modifications to this work and extend it as a data
generative model.

Figure 1.1 shows the fundamental steps of DPSYN. The dataset D contains
a sequence of n training examples (x1, y1) , . . . , (xm, ym) where x ∈ R

d and
y ∈ R. Our learning approach partitions the dataset D into k groups denoted as
{D1, . . . , Dk}. Partitioning of training examples is employed based on label y ∈ R

associated with training example x ∈ R
d . Group number k is identified by the

unique label number. After partitioning the dataset into k groups {D1, . . . , Dk},
for each group private generative auto-encoder is constructed to generate synthetic
data.

1 Using Deep Learning to Generate Relational HoneyData 9

Algorithm 1 demonstrates the details of the proposed approach. The dataset
that has sensitive information D is partitioned into k groups (Line 1) and those
previously partitioned groups are used to construct the private generative auto-
encoder (Line 4). This process is detailed later in Algorithm 2. Next, we obtain
the private latent representation of the group (Line 5) with activation function F

and inject it into a differentially private expectation maximization (DPEM) function.
The DPEM function is detailed in [23]. The main task of DPEM is to detect different
latent patterns in the encoded data and to generate output data with similar patterns.
These patterns are decoded in Line 7, and appended to the synthetic data D′′
(Line 8).

Fig. 1.1 Differentially
private Synthetic data
generation, DPSYN

D''

Merge
generated files

Partition D into
k groups

D1 D... Dk

D

Algorithm 1 DPSYN: Differentially Private Synthetic Data Generation

Require: D: {xi , yi}mi=1 where x ∈ R
d and y ∈ R, α: learning rate; T : iteration number; ε: privacy

budget; δ: Gaussian delta; σ : standard deviation; C: clipping constant.
{D1 . . . Dk} ← partition D into k groups
D′′ ← {}
for i ← 1 to k do
θ ← DP-Auto (Di, α, T, ε/2, δ/2, σ, C) // see Algorithm 2
E′ ← F (Xi · θ) where Xi ∈ Di

E′′ ← DPEM
(
E′, ε/2, δ/2

)
// see DPEM [23]

Di
′ ← F

(
E′′ · θᵀ

)
D′′ ← D′′ ∪ Di

′
end
return D′′

10 N. C. Abay et al.

Algorithm 2 demonstrates the details of the DP-Auto model. Our private
auto-encoder employs steps to improve the optimization process with gradient
computation and clipping. While a gradient is computed for a batch in the standard
stochastic training techniques, we compute the gradient for each training instance
instead. This approach improves the optimization process since it reduces the
sensitivity of the gradient present at each instance [15]. Norms of the gradients
define the direction that optimizes the network parameters. However, in some
deep networks, the gradients can be unstable and fluctuate in a large range. Such
fluctuations can inhibit the learning process due to the increased vulnerability of
the networks. To avoid this undesired situation, we bound norms of the previously
computed gradients by a clipping constant C [24].

After clipping the gradients, noise is sampled from the Gaussian distribution
with zero mean and standard deviation of σ C and added to the previously
clipped gradients (Line 8 in Algorithm 2). While training the auto-encoder, we
track the privacy loss at the end of each batch iteration. As given in lines 2—
2, we compute the value of current privacy loss ε′ that has been spent on private
auto-encoder in a given iteration t ∈ T . Training ends when ε′ reaches the
final privacy budget ε. If current privacy budget ε′ is less than the final privacy
budget ε, model parameters of the network are updated with the negative direction
of the learning rate η multiplied by the averaged noisy gradients (Line 2 in
Algorithm 2). And, current privacy budget ε′ is updated by moments accountant
technique in Line 2 in Algorithm 2. At the end of this step, the private auto-
encoder outputs the model parameter θ based on final privacy budget ε (Line 2 in
Algorithm 2).

Algorithm 2 DP-Auto: Differentially private auto-encoder
Require: α: Learning rate; T : iteration number; ε: privacy budget; δ: Gaussian delta; σ : standard

deviation; C: clipping constant. L is the objective function
∇L is the gradient of objective function
initialize θ0 randomly
ε′ = 0
for i ← 1 to T do
Bt ← random batch
it ∼ b where xit ∈ Bt

zit ∼ N (0, σ 2C2)

if ε′ < ε then

θt+1 ← θt − α ·
(

1

|Bt |
∑
it

(∇L (θt ; xit) + zit

))

ε′ ← calculate privacy loss with moments accountant
end

end

return θ

1 Using Deep Learning to Generate Relational HoneyData 11

1.5 Experiments

In this section, we explain our experimental setting and discuss our results.
First we briefly introduce our datasets and detail parameter settings for the used
machine learning models. Afterwards, we give our results for two cyber deception
tasks: (i) attacker with no synthetic knowledge and (ii) attacker with synthetic
knowledge.

Datasets We evaluate the proposed differentially private deep learning-based
honeydata generation approach on four real datasets. The following is a brief
description of each dataset:

(i) The Diabetes [21] dataset contains the information of 768 female patients
who are at least 21 years old. Each patient is classified as diabetic or non-
diabetic. The dataset contains 8 features.

(ii) The Adult [21] dataset contains the information of 45222 individuals. The
dataset shows whether the income of the individuals exceeds 50K US dollars.
The dataset contains 15 features.

(iii) The BreastCancer(Diagnostic) [21] dataset contains the information about
whether a patient has breast cancer or not. It has 569 patient records with 32
features.

(iv) The Spambase [21] dataset contains 4601 emails, each of which is labeled as
spam or non-spam. Each instance has 58 attributes.

Parameter Setting for Data Generation Our DPSYN technique generates syn-
thetic data by using Deep Auto-encoders [5]. An auto-encoder is trained on n

data points. Once a model is learned, the auto-encoder can be used to generate
any number of data points (e.g., honeydata). For n training samples, we report the
results of the privacy loss (i.e., the measure of potential leakage to an attacker) using
differential privacy with (ε, δ) parameters that is computed from the noise level σ

(see Sect. 1.3.3). We fix the δ as 1
n

and compute the value of ε for each iteration
t ∈ T . In moment accountant, we use several noise levels to obtain consistent
results. The large noise level (σ = 6.0) is implemented for small ε = 1.0 and the
small noise level (σ = 4.0) is implemented for large ε ∈ {2.0, 4.0}. In these settings
with the increasing ε values, synthetic data generation techniques are perturbed less
since small noise is added to these techniques.

In all synthetic datasets (i.e., the generated relational honeydata), biases are
initialized to zero, while the initial values of the weights θ are randomly cho-
sen from a zero-mean normal distribution with a standard deviation of 0.05.
For each dataset, we form a new auto-encoder to generate its corresponding
honeydata.

12 N. C. Abay et al.

Parameter Setting for Machine Learning Models We employ four machine
learning models in measuring the efficiency of our approach in synthetic data
generation for cyber deception: One-class SVM [27], two-class SVM [17], Logistic
Regression (LR) [22], and Random Forest (RF) [7]. We chose to employ these
methods because they are widely used for classification tasks [20]. Furthermore,
these machine learning models will be used to explore whether an attacker can
distinguish between the real data vs the honeydata easily.

For the hyper parameter of one-class SVM, we experiment with kernel types
{linear, poly, rbf } and gamma values {1.0, 0.1, 0.01, 0.001}. We select the most
consistent results of one-class SVM with different (ε, δ) pairs. For two-class SVM,
we employ the LinearSVM [14].

Benchmark Techniques In all experiments, we compare DPSYN results with
two state-of-the-art synthetic data generation techniques: PRIVBAYES [32] and
DPEM+ [23]. We run the experiments 10 times and report the average of the results.

1.5.1 Task 1: Cyber Deception for Attacker with No Honeydata
Knowledge

In the first task, we assume that the attacker has knowledge about real data where
we model the background knowledge as the number (i.e., {50, 100, 200, 400}) of
data points known to the attacker. This approach is similar to the setting reported
in [6]. In this scenario, the attacker does not have access to honeydata samples. We
evaluate the quality of the generated honeydata by observing whether the attacker
can distinguish the real vs honeydata by leveraging the obtained real data. In these
experiments, the attacker employs a one-class SVM model that is built on the
{50, 100, 200, 400} real data points.

We measure the success of DPSYN by the attacker’s failure to separate honeydata
and real data by using the classifier. The test data is an equal mix of 50% real
and 50% honeydata. A honeydata generation technique achieves best results if the
attacker’s SVM model labels all synthetic data as real, which results in a 50%
accuracy.

Figure 1.2 shows the performance of techniques in deceiving the attacker on the
four real datasets. In Fig. 1.2a, we show performance for various training number
sizes 50, 100, 200, and 400. Each training set is used by increasing noise additions,
which is calibrated to ε = 1.0, 2.0, and 4.0, where ε = 4.0 shows the least
amount of added noise in the model. As training size increases, performance of
all three techniques improves and accuracy values approach 50%. In Spambase
and BreastCancer datasets, PRIVBAYES and DPEM+ perform worse compared to
Adult and Diabetes datasets. We hypothesize that PRIVBAYES and DPEM+ are more

1 Using Deep Learning to Generate Relational HoneyData 13

vulnerable to the curse of high dimensionality; both Adult and Diabetes datasets
have less than 15 attributes, whereas BreastCancer and Spambase have more than
32 attributes.

DPSYN results are comparable with those of DPEM+ and PRIVBAYES in the
Adult dataset. In Diabetes and Spambase datasets, DPSYN has better accuracy.
PRIVBAYES has its worst results in the BreastCancer dataset. In all figures,
increasing ε values result in values closer to the desired 50% accuracy value.

1.5.2 Task 2: Cyber Deception for Attacker with Honeydata
Knowledge

In the first task, the attacker had access to real data only. In this second task, the
attacker has access to both real and honeydata, which may help the attacker in
distinguishing honeydata. The knowledge of honeydata implies that attacker was
fooled into accepting some honeydata previously; when the attacker fails while
using the honeydata (e.g., could not use the honeydata for identity theft), he/she
may start analyzing other stored data files to authenticate them.

The attacker employs three binary classification models (i.e., two-class SVM,
LR, and RF) that are built on a mix of 50% real and 50% synthetic data. The
classifier is trained to learn two labels: real and synthetic (i.e., honeydata). The
classifier is tested on a mix of 50% real and 50% honeydata. The accuracy of
a model is given as the percentage of correctly classified data points. For the
best performance in honeydata generation, the attacker must wrongly classify all
honeydata points as real, which results in a 50% accuracy.

In this set of experiments, we report our results for each of the three Machine
Learning classification models separately. We begin by demonstrating the Random
Forest results.

Figure 1.3 demonstrates accuracy of the three techniques for the Random Forest
classifier. The honeydata generated by DPSYN is more similar to real data when
compared to the synthetic data generated from PRIVBAYES for Diabetes, Spambase,
and BreastCancer datasets. For the Adult dataset, DPEM+ results are closer to the
desired 50% level. DPSYN performs better than DPEM+ for Diabetes and Spambase.
The failure of DPEM+ and PRIVBAYES on Spambase and Diabetes datasets is
expected since the attacker can already distinguish the difference between synthetic
and real data with one-class SVM (See Sect. 1.5.1). DPSYN exhibits remarkable
improvement for the majority of the RF test cases when compared to DPEM+ and
DPSYN.

14 N. C. Abay et al.

(a) (b)

(d)(c)

40

42

44

46

48

50

52

A
cc
ur
ac
y(
%
)

DpSyn

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
040

42

44

46

48

50

52

ε=1.0 ε=2.0 ε=4.0

PrivBayes DpEm+

40

50

60

70

A
cc
ur
ac
y(
%
)

DpSyn

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
040

50

60

70

ε=1.0 ε=2.0 ε=4.0

PrivBayes DpEm+

40

50

60

70

80

A
cc
ur
ac
y(
%
)

DpSyn

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
040

50

60

70

80

ε=1.0 ε=2.0 ε=4.0

PrivBayes DpEm+

50

60

70

80

90

A
cc
ur
ac
y(
%
)

DpSyn

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
050

60

70

80

90

ε=1.0 ε=2.0 ε=4.0

PrivBayes DpEm+

Fig. 1.2 Accuracy results of one-class SVM classifiers of attackers that are modeled on different
percentages of real data with varying privacy budgets. The desired accuracy is 50%. (a) Adult. (b)
Diabetes. (c) Spambase. (d) BreastCancer

The performance of the attacker with Logistic Regression (LR) is demonstrated
in Fig. 1.4. The test results of LR are consistent with the other machine learning
models previously shown in Figs. 1.3 and 1.2. In fact, on average, LR results are
highly correlated (0.94) with RF results in all datasets. However, it is noticeable
that attacker with RF is better able to distinguish between real and honeydata when
compared to LR; accuracy levels are lower in the LR results. DPSYN outperforms
PRIVBAYES in three out of four datasets. For Adult dataset, PRIVBAYES has
slightly better results than DPSYN. For this set of experiments with LR, DPSYN

results are similar to those of DPEM+ in the Diabetes, Spambase, and BreastCancer
datasets.

1 Using Deep Learning to Generate Relational HoneyData 15

(a) (b)

(d)(c)

40

50

60

70

80

A
cc
ur
ac
y
(%

)

DpSyn

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
040

50

60

70

80

ε=1.0 ε=2.0 ε=4.0

PrivBayes DpEm+

60

70

80

90

100

A
cc
ur
ac
y
(%

)
DpSyn

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
060

70

80

90

100

ε=1.0 ε=2.0 ε=4.0

PrivBayes DpEm+

70

80

90

100

A
cc
ur
ac
y
(%

)

DPSYN

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
070

80

90

100

ε=1.0 ε=2.0 ε=4.0

PrivBayes DP-EM

60

70

80

90

100

A
cc
ur
ac
y
(%

)

DpSyn

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
060

70

80

90

100

ε=1.0 ε=2.0 ε=4.0

PrivBayes DpEm+

Fig. 1.3 Accuracy results of RF classifiers of attackers that are modeled on different percentages
of real data with varying privacy budgets. The desired accuracy is 50%. (a) Adult. (b) Diabetes.
(c) Spambase. (d) BreastCancer

The performance of the attacker with two-class SVM is demonstrated in Fig. 1.5.
Results are consistent with those of LR and RF in Figs. 1.4 and 1.3. Only in the Adult
dataset, we see a slight increase of difference between PRIVBAYES and DPEM+
performances with the increase of training numbers.

In all Machine Learning models, our method DPSYN generates honeydata that
has better indistinguishability (i.e., the attacker has less accuracy in distinguishing
real vs honeydata) for cyber deception. With increasing training dataset size, the
classifiers that could be used by the attacker perform better in all data generation
techniques. Except for the Adult dataset, DPSYN outperforms PRIVBAYES signifi-
cantly in all experimental settings. Compared to DPEM+, DPSYN generates better or

16 N. C. Abay et al.

comparable synthetic data for the Spambase, BreastCancer, and Diabetes datasets.
For the majority of the test cases, increasing ε values harm the attacker machine
learning model. However, increasing ε values result in less added noise which may
cause the leakage of sensitive data. Hence, there is a trade-off between the quality
of honeydata and the prevention of sensitive data leakage.

(a) (b)

(d)(c)

20

30

40

50

60

A
cc
ur
ac
y
(%

)

DpSyn

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
020

30

40

50

60

ε=1.0 ε=2.0 ε=4.0

PrivBayes DpEm+

40

50

60

70

A
cc
ur
ac
y
(%

)

DpSyn

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
040

50

60

70

ε=1.0 ε=2.0 ε=4.0

PrivBayes DpEm+

50

60

70

80

A
cc
ur
ac
y
(%

)

DpSyn

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
050

60

70

80

ε=1.0 ε=2.0 ε=4.0

PrivBayes DpEm+

40

50

60

70

80

90

A
cc
ur
ac
y
(%

)

DpSyn

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
040

50

60

70

80

90

ε=1.0 ε=2.0 ε=4.0

PrivBayes DpEm+

Fig. 1.4 Accuracy results of LR classifiers of attackers that are modeled on different number of
real data with varying privacy budgets. The desired accuracy is 50%. (a) Adult. (b) Diabetes. (c)
Spambase. (d) BreastCancer

1 Using Deep Learning to Generate Relational HoneyData 17

1.6 Conclusions

In this book chapter, we explore the applicability of using privacy-preserving deep
learning-based synthetic data generation techniques for creating HoneyData that can
fool potential cyberattackers. We define a machine learning (ML)-based metric (i.e.,
the accuracy of any ML model in distinguishing real vs HoneyData) to measure the
goodness of generated deceptive HoneyData. Although, our results indicate that
existing techniques could be leveraged for HoneyData generation, care must be
taken in setting the privacy parameters used in HoneyData generation.

(a) (b)

(d)(c)

40

50

60

70

A
cc
ur
ac
y
(%

)

DpSyn

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
040

50

60

70

ε=1.0 ε=2.0 ε=4.0

PrivBayes DpEm+

40

50

60

70
A
cc
ur
ac
y
(%

)

DpSyn

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
040

50

60

70

ε=1.0 ε=2.0 ε=4.0

PrivBayes DpEm+

50

60

70

80

A
cc
ur
ac
y
(%

)

DpSyn

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
050

60

70

80

ε=1.0 ε=2.0 ε=4.0

PrivBayes DpEm+

50

60

70

80

90

A
cc
ur
ac
y
(%

)

DpSyn

50 10
0

20
0

40
0 50 10
0

20
0

40
0 50 10
0

20
0

40
050

60

70

80

90

ε=1.0 ε=2.0 ε=4.0

PrivBayes DpEm+

Fig. 1.5 Accuracy results of binary SVM classifiers of attackers that are modeled on different
percentages of real data with varying privacy budgets. The desired accuracy is 50%. (a) Adult. (b)
Diabetes. (c) Spambase. (d) BreastCancer

18 N. C. Abay et al.

References

1. Abadi, M., Chu, A., Goodfellow, I., McMahan, H.B., Mironov, I., Talwar, K., Zhang, L.: Deep
learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pp. 308–318. ACM (2016)

2. Abay, N.C., Zhou, Y., Kantarcioglu, M., Thuraisingham, B., Sweeney, L.: Privacy preserving
synthetic data release using deep learning. The European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases (PKDD 2018) (2018)

3. Ács, G., Melis, L., Castelluccia, C., Cristofaro, E.D.: Differentially private mixture of
generative neural networks. CoRR abs/1709.04514 (2017). URL http://arxiv.org/abs/1709.
04514

4. Almeshekah, M.H., Spafford, E.H.: Cyber security deception. In: Cyber Deception, pp. 23–50.
Springer (2016)

5. Baldi, P.: Autoencoders, unsupervised learning, and deep architectures. In: Proceedings of
ICML workshop on unsupervised and transfer learning, pp. 37–49 (2012)

6. Bindschaedler, V., Shokri, R., Gunter, C.A.: Plausible deniability for privacy-preserving data
synthesis. Proceedings of the VLDB Endowment 10(5), 481–492 (2017)

7. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
8. Bun, M., Steinke, T.: Concentrated differential privacy: Simplifications, extensions, and lower

bounds. In: Theory of Cryptography Conference, pp. 635–658. Springer (2016)
9. Chaudhuri, K., Monteleoni, C.: Privacy-preserving logistic regression. In: Advances in Neural

Information Processing Systems, pp. 289–296 (2009)
10. Dwork, C.: Differential privacy. In: Proceedings of the 33rd International Conference on

Automata, Languages and Programming - Volume Part II, ICALP’06, pp. 1–12. Springer-
Verlag, Berlin, Heidelberg (2006). DOI 10.1007/11787006_1. URL http://dx.doi.org/10.1007/
11787006_1

11. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: Privacy
via distributed noise generation. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pp. 486–503. Springer (2006)

12. Dwork, C., Lei, J.: Differential privacy and robust statistics. In: Proceedings of the forty-first
annual ACM symposium on Theory of computing, pp. 371–380. ACM (2009)

13. Dwork, C., Roth, A., et al.: The algorithmic foundations of differential privacy. Foundations
and Trends R© in Theoretical Computer Science 9(3–4), 211–407 (2014)

14. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: A library for large linear
classification. Journal of machine learning research 9(Aug), 1871–1874 (2008)

15. Goodfellow, I.: Efficient per-example gradient computations. arXiv preprint arXiv:1510.01799
(2015)

16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.
deeplearningbook.org

17. Hearst, M.A., Dumais, S.T., Osuna, E., Platt, J., Scholkopf, B.: Support vector machines. IEEE
Intelligent Systems and their applications 13(4), 18–28 (1998)

18. Holz, T., Raynal, F.: Detecting honeypots and other suspicious environments. In: Information
Assurance Workshop, 2005. IAW’05. Proceedings from the Sixth Annual IEEE SMC, pp. 29–
36. IEEE (2005)

19. Juels, A., Rivest, R.L.: Honeywords: Making password-cracking detectable. In: Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security, pp. 145–160.
ACM (2013)

20. Kotsiantis, S.B., Zaharakis, I., Pintelas, P.: Supervised machine learning: A review of classi-
fication techniques. Emerging artificial intelligence applications in computer engineering 160,
3–24 (2007)

21. Lichman, M.: UCI machine learning repository (2013). URL http://archive.ics.uci.edu/ml
22. Nerlove, M., Press, S.J.: Univariate and multivariate log-linear and logistic models, vol. 1306.

Rand Santa Monica (1973)

http://arxiv.org/abs/1709.04514
http://arxiv.org/abs/1709.04514
http://dx.doi.org/10.1007/11787006_1
http://dx.doi.org/10.1007/11787006_1
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://archive.ics.uci.edu/ml

1 Using Deep Learning to Generate Relational HoneyData 19

23. Park, M., Foulds, J., Chaudhuri, K., Welling, M.: Practical privacy for expectation maximiza-
tion. CoRR abs/1605.06995 (2016). URL http://arxiv.org/abs/1605.06995

24. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks.
In: International Conference on Machine Learning, pp. 1310–1318 (2013)

25. Rubin, D.B.: Discussion statistical disclosure limitation. Journal of official Statistics 9(2), 461
(1993)

26. Rubinstein, B.I., Bartlett, P.L., Huang, L., Taft, N.: Learning in a large function space: Privacy-
preserving mechanisms for SVM learning. arXiv preprint arXiv:0911.5708 (2009)

27. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Estimating
the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001).
DOI 10.1162/089976601750264965. URL https://doi.org/10.1162/089976601750264965

28. Song, S., Chaudhuri, K., Sarwate, A.D.: Stochastic gradient descent with differentially private
updates. In: Global Conference on Signal and Information Processing (GlobalSIP), 2013 IEEE,
pp. 245–248. IEEE (2013)

29. Spitzner, L.: Honeypots: tracking hackers, vol. 1. Addison-Wesley Reading (2003)
30. Vaidya, J., Shafiq, B., Basu, A., Hong, Y.: Differentially private naive Bayes classification. In:

Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence
(WI) and Intelligent Agent Technologies (IAT)-Volume 01, pp. 571–576. IEEE Computer
Society (2013)

31. Yuill, J., Zappe, M., Denning, D., Feer, F.: Honeyfiles: deceptive files for intrusion detection.
In: Information Assurance Workshop, 2004. Proceedings from the Fifth Annual IEEE SMC,
pp. 116–122. IEEE (2004)

32. Zhang, J., Cormode, G., Procopiuc, C.M., Srivastava, D., Xiao, X.: Privbayes: Private data
release via Bayesian networks. In: Proceedings of the 2014 ACM SIGMOD international
conference on Management of data, pp. 1423–1434. ACM (2014)

33. Zhang, J., Zhang, Z., Xiao, X., Yang, Y., Winslett, M.: Functional mechanism: regression
analysis under differential privacy. Proceedings of the VLDB Endowment 5(11), 1364–1375
(2012)

http://arxiv.org/abs/1605.06995
https://doi.org/10.1162/089976601750264965

	1 Using Deep Learning to Generate Relational HoneyData
	1.1 Introduction
	1.2 Related Work
	1.3 Background
	1.3.1 Deep Learning
	1.3.2 Differential Privacy
	1.3.3 Differentially Private Composition Theorem

	1.4 Methodology
	1.4.1 Differentially Private Synthetic Data GenerationModel

	1.5 Experiments
	1.5.1 Task 1: Cyber Deception for Attacker with No Honeydata Knowledge
	1.5.2 Task 2: Cyber Deception for Attacker with Honeydata Knowledge

	1.6 Conclusions
	References

