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Preface

Why Cyber Deception? Cyberattacks have evolved to be highly evasive against
traditional prevention and detection techniques, such as antivirus, perimeter fire-
walls, and intrusion detection systems. At least 360,000 new malicious files were
detected every day, and one ransomware attack was reported every 40 s in 2017
(Chap. 10). An estimated 69% of breaches go undetected by victims but are spotted
by an external party, and 66% of breaches remained undiscovered for more than
5 months (Chap. 10). Asymmetries between attacker and defender information and
resources are often identified as root causes behind many of these alarming statistics.
Cybercriminals frequently reconnoiter and probe victim defenses for days or years
prior to mounting attacks, whereas defenders may only have minutes or seconds to
respond to each newly emerging threat. Defenders seek to protect infrastructures
consisting of thousands or millions of assets, whereas attackers can often leak
sensitive information or conduct sabotage by penetrating just one critical asset.
Finding ways to level these ubiquitous asymmetries has therefore become one of
the central challenges of the digital age.

What Is Cyber Deception? Cyber deception has emerged as an effective and
complementary defense technique to overcome asymmetry challenges faced by
traditional detection and prevention strategies. Approaches in this domain delib-
erately introduce misinformation or misleading functionality into cyberspace in
order to trick adversaries in ways that render attacks ineffective or infeasible. These
reciprocal asymmetries pose scalability problems for attackers similar to the ones
traditionally faced by defenders, thereby leveling the battlefield.

Cyber Deception Models Cyber deception can be accomplished in two major
ways: (1) mutation, to frequently change the ground truth (i.e., the real value)
of cyber parameters such as cyber configuration, IP addresses, file names, and
URLs, and (2) misrepresentation, to change or corrupt only the value returned of
cyber parameters to the attacker without changing the ground truth such as false
fingerprinting, files, and decoy services. We therefore call the cyber parameters used

v



vi Preface

for deceiving the attackers HoneyThings. Using the concept of HoneyThings in both
approaches expands the cyber exploration space for adversaries to launch effective
attacks.

Cyber Deception 4D Goals Effective cyber deception aims to (1) deflect adver-
saries away from their goals by disrupting their progress through the kill chain;
(2) distort adversaries’ perception of their environment by introducing doubt into
the efficacy of their attacks; (3) deplete their financial, computing, and cognitive
resources to induce biased and error-prone decisions that defenders can influence;
and (4) discover unknown vulnerabilities and new TTPs (tactics, techniques, and
procedures) of adversaries while predicting the tactical and strategical intents of
adversaries.

Book Overview In light of this vision, this book brings together recent research
results pursuant to these goals, in four major parts:

Part I addresses in developing Cyber Deception Reasoning Frameworks and
consists of three chapters:

• Chapter 1 presents a framework that uses deep learning and differential privacy
techniques to generate deceptive data that is hard to differentiate from real data.

• Chapter 2 presents a framework and a research prototype for intelligent cyber
deception agents that can make autonomous decisions on how to counter ongoing
attacks and that integrate with active defense tools.

• Chapter 3 studies how honeypot deception can be made more effective when
applied with variety and discusses the range of deception tactics that can be
considered, such as random error messages, honey files with some convincing
real data, and out-of-date vehicle positions.

Part II is about Dynamic Decision-Making for Cyber Deception, and it consists
of two chapters:

• Chapter 4 models cyber deception as a hypergame in which attackers and
defenders can have different perceptions toward a given situation and carries out
case studies to examine how players’ perception (or misperception) affects their
decision-making in choosing a best strategy based on hypergame theory.

• Chapter 5 applies a series of game theory models to capture the strategic
interactions between attackers and defenders, the multistage persistence, as well
as the adversarial and defensive cyber deceptions.

Part III examines new approaches for network-based deception, spanning four
chapters:

• Chapter 6 presents a new cyber deception framework that composes mutation,
anonymity, and diversity to maximize key deception objectives (i.e., conceala-
bility, detectability, and deterrence) while constraining the overall deployment
cost.

• Chapter 7 presents a highly dynamic network obfuscation and deception solution
that overcomes limitations of existing solutions. Specifically, it mutates and
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randomizes multiple aspects of network configurations simultaneously, leverag-
ing network and host-level SDN, state-of-the-art virtualization techniques, and
DNS deception.

• Chapter 8 examines how deceptive web service responses can be realized as
software security patches that double as feature extraction engines for a network-
level intrusion detection system, which can increase detection accuracy and
adaptability due to the fast, automatic, and accurate labeling of live web data
streams enabled by this approach.

• Chapter 9 presents a technique to contain the risks of compromising buggy IoT
devices by creating a protection layer on top of the local network and providing
fine-grained control over the communications of individual IoT devices in the
network. It uses software-defined networking (SDN) technologies to realize
device- and device-group-specific views of the network that reduce the attack
surface against vulnerable devices in the network, contain effects of device
infections in case of device compromise, and enforce effective measures for
blocking unwanted release of contextual data.

Finally, Part IV discussed automated techniques for deceiving malware, consist-
ing of two chapters:

• Chapter 10 presents a new analytics framework and tool that can analyze the
malware binary and automatically extract deception parameters in order to
enable the automated creation of cyber deception plans.

• Chapter 11 proposes a system for automatically extracting the system resource
constraints from malware code and generating HoneyResource (e.g., malware
vaccines) based on the system resource conditions.

In each book chapter, theoretical and experimental exercises for researchers and
students are presented to deepen the understanding of the deception concepts and
techniques presented in this book.

The investigations, discoveries, and experiences reported in these recent results
open many potential avenues for future work. We recommend the following research
directions:

• Autonomy and Resiliency: The high speed and complexity of modern cyberat-
tacks demands cyber deceptions that are highly autonomous to be self-adaptive,
and resilient to survive failures that might reveal deception assets or plans.
Methods are needed that can clearly specify both the defender’s mission and the
attacker’s mission and that can identify the theoretical foundations, objectives,
levels, and risks of automation.

• Modularity and Interdisciplinarity: The innovation and deployment of cyber
deception requires scientific and engineering foundations that make Honey-
Things into plug-and-play commodities that are easy to instantiate, integrate,
deploy, adapt, and maintain. Efforts are needed to close the presently large
gap between engineering constraints and psychology theory. Mechanisms are
also needed for sharing cyber deception data that can be used to study the
psychological and cognitive influence of cyber deception on the adversary.
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• Quantitative Evaluation: To make measurable scientific progress toward effec-
tive, deployable, deception-powered cyber defenses, the scientific community
must establish accepted metrics and methodologies for evaluating proposed
cyber deception techniques, frameworks, and systems. Such evaluations must
go beyond mere anecdotal observations of effectiveness to obtain experimental
results that are systematic, comprehensive, reproducible, and statistically valid
and that afford “apples-to-apples” comparisons of competing research ideas.

Charlotte, NC, USA Ehab Al-Shaer
Charlotte, NC, USA Jinpeng Wei
Richardson, TX, USA Kevin W. Hamlen
Durham, NC, USA Cliff Wang
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Chapter 1
Using Deep Learning to Generate
Relational HoneyData

Nazmiye Ceren Abay, Cuneyt Gurcan Akcora, Yan Zhou,
Murat Kantarcioglu, and Bhavani Thuraisingham

Abstract Although there has been a plethora of work in generating deceptive
applications, generating deceptive data that can easily fool attackers received very
little attention. In this book chapter, we discuss our secure deceptive data generation
framework that makes it hard for an attacker to distinguish between the real versus
deceptive data. Especially, we discuss how to generate such deceptive data using
deep learning and differential privacy techniques. In addition, we discuss our formal
evaluation framework.

Keywords Cyber deception · Differential privacy · Deep learning · Decoy
deployment

1.1 Introduction

Deception techniques have been recently deployed in cybersecurity for achieving
many important goals ranging from understanding the attacker intent to tricking
attackers into spending resources and time on fake targets. For example, honeypots
(e.g., [29]) have been proposed to provide deceptive targets (i.e., servers) for
attackers. Similarly, Honeyfiles (e.g., [31]) have been proposed to lure attackers
to spend time in searching files and potentially disclose their intent. Still, to
our knowledge, none of the previous work tries to create deceptive “data” (i.e.,
HoneyData) to fool potential attackers. Unfortunately, lack of realistic deceptive
data may make it easier for an attacker to detect deception. For example, without
good HoneyData, it may be easier to spot a fake database hosted on a honeypot.

The original version of this chapter was revised: Chapter authors have been added. The correction
to this chapter is available at https://doi.org/10.1007/978-3-030-02110-8_12

N. C. Abay · C. G. Akcora · Y. Zhou · M. Kantarcioglu (�) · B. Thuraisingham
The University of Texas at Dallas, Richardson, TX, USA
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Recent work looked into generating privacy-preserving synthetic relational data
using differential privacy (e.g., [2]). The main purpose of this line of work is to
preserve individual privacy while providing data utility. Therefore, it is not clear
whether they could be applicable for generating good HoneyData. In the context of
cyber deception, it is important that the HoneyData is indistinguishable from real
data so that it can easily fool the attacker.

Creating deceptive data (i.e., HoneyData) has many challenges. For different
settings, we may need different types of HoneyData. For example, to deceive
an attacker and feed false information, deceptive technical plans (e.g., technical
drawings of an airplane) could be generated. On the other hand, to make HoneyFiles
more believable, fake text data could be added to such files. Since addressing all
these different types of data requires different techniques, in this work, we focus
on generating deceptive HoneyData that is relational data. The main differentiating
factor for relational data is that the number of columns and the types of the
columns in a given dataset are known in advance. Still, generating realistic relational
HoneyData while not disclosing sensitive information is a significant challenge.

We need to answer questions, such as: (1) how to automatically generate
relational HoneyData? and (2) how to measure whether the generated relational
HoneyData is deceptive enough? In this work, we try to answer these questions
by leveraging existing work in differentially private synthetic data generation and
explore its effectiveness for generating relational HoneyData.

As a part of this work, we propose an important measure for understanding the
effectiveness of HoneyData. Basically, given the available information, a potential
attacker may not build an effective machine learning model to distinguish between
real vs HoneyData. We evaluate the effectiveness of relational HoneyData on
real datasets, and show under what conditions differentially private deep learning
techniques could be used to generate relational HoneyData.

Remainder of this book chapter is organized as follows: Sect. 1.2 details related
work. Section 1.3 gives preliminaries for our data generation technique in Deep
learning and privacy preserving, and Sect. 1.4 explains our methodology. We report
our experimental results in Sect. 1.5 and conclude with Sect. 1.6.

1.2 Related Work

Cyber deception mechanisms have been heavily studied to enhance the computer
security. However, most of the existing techniques are not focused on generating
deceptive data. Here, we review the existing cyber deception techniques with their
limitations and strengths.

Honeypots are a prominent cyber deception mechanism to investigate and
analyze the unauthorized intrusions [29]. Honeypots are designed as trap-based
isolated systems that appear vulnerable to attackers. Legitimate users are not
supposed to interact with them and any interaction with honeypots is considered
an illicit attempt. While interacting with intruders, honeypots gather information of
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them to disclose intruders’ behavior for forensic analysis. Although honeypots are a
notable cyber deception technique, they have limitations. Since honeypots are fake
environments, they might fail to simulate the real services. As attackers become
more sophisticated, they ensure their safety by using more advanced systems to
distinguish “fake” and real system to avoid honeypots [18]. Moreover, honeypots
might create irredeemable risks for the real user environment when the attacker can
use honeypots as a bridge to the real user environment [4].

In addition to Honeypots, decoy injection mechanisms evolved to integrate real
systems in aiding defensive computer deception. These mechanisms serve as a decoy
to intruders to mitigate unauthorized threats by distracting attackers from a target
that has sensitive information.

Yuill et al. [31] present an intrusion detection system that installs decoy files
on file servers with enticing names to capture the attention of attackers. These
decoy files are constantly monitored and when accessed by any intruder, the
system will trigger an alarm to notify system administrator. However, in some
cases, decoy files fail to influence the perception of attackers since published data
(e.g., password file stolen from LinkedIn1) provide attackers insight to distinguish
between real and fabricated data. They can enhance their technique and re-attack
again. To circumvent attacker insight, Juels et al. [19] propose Honeywords to
defend hashed password databases by generating “fake passwords” that seem
real to attackers. In their work, they preserve N-1 “fake passwords” referred as
honeywords for each legitimate user password in the database. If any of the
honeywords is submitted for logging into databases, attack has been detected
and system administrator is notified that database has been hacked. Although
honeywords are useful to detect the unauthorized intruders, in some cases it may
deteriorate system performance because each submitted password is compared with
all previously generated honeywords which slows down the authentication process
for legitimate users. Also, generating and preserving the honeywords increases the
storage requirement N times. Still, this approach is only applicable for password
setting.

Our approach proposes decoy data generation to fool attackers without degrading
system performance. Although decoy files are used in a cyber defensive system to
entice attackers, they may reveal sensitive information if care is not taken during
data generation. To preserve individual privacy, the decoy files require sanitization
of sensitive information. Dwork [10] proposes a data privacy model as ε-differential
privacy to ensure the protection of private data from leakage by perturbing the data
with random noise based on ε. Differential privacy has been implemented in a
number of data analysis tasks, including regression models [9, 33], classification
models [26, 30], and privacy-preserving data publishing [3, 6, 32]. In some cases,
it is required to combine differentially private algorithms to formulate complex
privacy solutions. To track the total privacy loss while executing these repetitive
mechanisms, Abadi et al. [1] propose the advanced composition theorem known as

1https://www.cnet.com/news/linkedin-confirms-passwords-were-compromised/.

https://www.cnet.com/news/linkedin-confirms-passwords-were-compromised/
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the moment accountant and verify that it has the best overall privacy bound in the
literature. In this work, we also employ the moment accountant to bound privacy of
the proposed technique to generate decoy files.

To balance both utility and user privacy, Rubin [25] introduces repetitive
perturbation of the original data as a substitute to the original data. However, data
generation may suffer from curse of dimensionality when the data has more than
dozen attributes. To overcome the curse of dimensionality, Zhang et al. [32] present
PRIVBAYES as a private generative model that decomposes high-dimensional data
into low-dimensional marginals by constructing a Bayesian network. Afterwards,
noise is injected into previously constructed low-dimensional marginals to ensure
differential privacy and the synthetic data is inferred from these sanitized marginals.
Acs et al. [3] model another generative approach to produce synthetic samples. First,
the original data is partitioned into k clusters with private kernel k-means. Then,
each previously clustered data is inputted to private generative neural networks to
create synthetic data.

Park et al. [23] propose DPEM as a private version of the iterative expectation
maximization algorithm. They combine differential privacy and expectation max-
imization algorithm to cluster datasets. Here, we use this approach to discover
patterns in latent space. We observed an improvement in the performance of this
technique when used with partitioning the original dataset into unique data label
groups. Here, we use this modified version in our experiments [23] as DPEM+ and
compare its results in the experiments section.

Similar to the clustering approach, Abay et al. [2] propose a new generative deep
learning method that produces synthetic data from a dataset while preserving the
utility of the original dataset. In [2], the original data is partitioned into groups, and
then the private auto-encoder (a type of deep learning model) is employed for each
group. Auto-encoder learns the latent structure of each group and uses expectation
maximization algorithm to simulate them. In this work, we employ the same data
generation model but we explore whether these techniques are applicable in the
context of generating relational honeydata.

1.3 Background

This section provides a summary of deep learning and the principles of the
differential privacy. Deep learning is utilized for the proposed approach. Differential
privacy is applied to deep learning model to construct the private generative model
to prevent the disclosure of sensitive data while generating honeydata.

1.3.1 Deep Learning

Deep learning is a representation learning-based machine learning technique that
has been applied to image recognition and natural language processing where they
have resulted in remarkable advances. The power of deep learning is based on
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learning hierarchical concepts that allows the model to build complex concepts
from the simpler ones [16]. Deep learning can be employed for addressing
supervised, semi-supervised, or unsupervised tasks. Here, we employ unsupervised
deep learning to form a generative neural network that samples honeydata.

Most deep learning models create complex networks that are formed with
multilayer architectures. This multilayer network is a parametrized function that
aims to fit any given input. To get optimal parameters to generalize input structure,
our aim is to minimize the mismatching of error in the input, defined as loss function
L (θ), where θ is the set of network parameters. For each step in the optimization
process, θ is updated with its gradient as follows:

θt+1 = θt − α

⎛
⎝ 1

|n|
∑
xi∈D

∇θ L (θ; xi)

⎞
⎠ , (1.1)

where D is the dataset with n records xi ∈ R
d . Deep learning models have complex

networks usually formed with multilayer architectures that hinder the optimization.
To circumvent this obstacle, Stochastic gradient descent (SGD) is used in the
optimization [28].

1.3.2 Differential Privacy

Differential privacy is a mathematical formula that ensures privacy even if adversary
has background knowledge [10]. Differential privacy adds random noise to the
aggregated statistics to hinder impersonation attacks.

Theorem 1.1 Mechanism M is a randomized real-valued function that satisfies
(ε, δ) -differential privacy for some ε > 0 and δ > 0 if for any adjacent datasets d,
d ′, and for any subset of the output S ⊆ Range(M ) it holds that

Pr[M (d) ∈ S] ≤ exp (ε) P r[M (d ′) ∈ S] + δ. (1.2)

Adjacent datasets d, d ′ differ only in one tuple while rest is the same.

Mechanism M achieves (ε, δ) -differential privacy by perturbing the deterministic
real-valued function f with random noise defined as follows:

M (d) = f (d) + z, (1.3)

where z is generated randomly from zero-mean Gaussian mechanism. Here, stan-
dard deviation of Gaussian mechanism is calibrated with σ and f ’s sensitivity sf
defined by the maximum of the absolute distance ‖f (d) − f (d ′)‖ where d and d ′
are adjacent datasets. Relation among (ε, δ), σ , and sf in Gaussian mechanism is
given as σ 2ε2 � 2 ln 1.25/δs2

f [13].
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1.3.3 Differentially Private Composition Theorem

To analyze the privacy budget of our proposed work, we employ both sequential
composition [11, 12] and advanced composition theorems [1, 8].

In our proposed work, while training the auto-encoder, we track the privacy loss
at the end of each batch iteration. In the optimization phase, value of the current
privacy loss ε′ that has been spent on the private auto-encoder in a given iteration
t ∈ T is computed. Training ends when ε′ reaches the final privacy budget ε.

According to moments accountant [1], deep learning network is (ε, δ)-
differentially private if the privacy loss for any ε′ < k1(|B| /n)2T is such that
for some constants k1, k2:

ε′ ≥ k2
|B| /n

√
T log 1/δ

σ
,

where T is the number of training steps and |B| is the number of samples in mini-
batch with a given privacy budget ε, delta δ, and standard deviation σ of the zero-
mean Gaussian distribution.

1.4 Methodology

This section describes the details of our Differentially Private Synthetic Data
Generation Model (DPSYN). We introduce the main algorithm and components of
DPSYN.

1.4.1 Differentially Private Synthetic Data Generation Model

DPSYN has the primary purpose of generating synthetic data that is indistinguish-
able from the real data from the attacker’s perspective given background knowledge.
DPSYN also preserves the privacy by bounding the privacy loss with differential
privacy. Abadi et al. [1] apply the moment accountant on differentially private deep
learning. Here, we make several modifications to this work and extend it as a data
generative model.

Figure 1.1 shows the fundamental steps of DPSYN. The dataset D contains
a sequence of n training examples (x1, y1) , . . . , (xm, ym) where x ∈ R

d and
y ∈ R. Our learning approach partitions the dataset D into k groups denoted as
{D1, . . . , Dk}. Partitioning of training examples is employed based on label y ∈ R

associated with training example x ∈ R
d . Group number k is identified by the

unique label number. After partitioning the dataset into k groups {D1, . . . , Dk},
for each group private generative auto-encoder is constructed to generate synthetic
data.
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Algorithm 1 demonstrates the details of the proposed approach. The dataset
that has sensitive information D is partitioned into k groups (Line 1) and those
previously partitioned groups are used to construct the private generative auto-
encoder (Line 4). This process is detailed later in Algorithm 2. Next, we obtain
the private latent representation of the group (Line 5) with activation function F

and inject it into a differentially private expectation maximization (DPEM) function.
The DPEM function is detailed in [23]. The main task of DPEM is to detect different
latent patterns in the encoded data and to generate output data with similar patterns.
These patterns are decoded in Line 7, and appended to the synthetic data D′′
(Line 8).

Fig. 1.1 Differentially
private Synthetic data
generation, DPSYN

D''

Merge
generated files

Partition D into
k groups

D1 D... Dk

D

Algorithm 1 DPSYN: Differentially Private Synthetic Data Generation

Require: D: {xi , yi}mi=1 where x ∈ R
d and y ∈ R, α: learning rate; T : iteration number; ε: privacy

budget; δ: Gaussian delta; σ : standard deviation; C: clipping constant.
{D1 . . . Dk} ← partition D into k groups
D′′ ← {}
for i ← 1 to k do
θ ← DP-Auto (Di, α, T, ε/2, δ/2, σ, C) // see Algorithm 2
E′ ← F (Xi · θ) where Xi ∈ Di

E′′ ← DPEM
(
E′, ε/2, δ/2

)
// see DPEM [23]

Di
′ ← F

(
E′′ · θᵀ)

D′′ ← D′′ ∪ Di
′

end
return D′′
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Algorithm 2 demonstrates the details of the DP-Auto model. Our private
auto-encoder employs steps to improve the optimization process with gradient
computation and clipping. While a gradient is computed for a batch in the standard
stochastic training techniques, we compute the gradient for each training instance
instead. This approach improves the optimization process since it reduces the
sensitivity of the gradient present at each instance [15]. Norms of the gradients
define the direction that optimizes the network parameters. However, in some
deep networks, the gradients can be unstable and fluctuate in a large range. Such
fluctuations can inhibit the learning process due to the increased vulnerability of
the networks. To avoid this undesired situation, we bound norms of the previously
computed gradients by a clipping constant C [24].

After clipping the gradients, noise is sampled from the Gaussian distribution
with zero mean and standard deviation of σ C and added to the previously
clipped gradients (Line 8 in Algorithm 2). While training the auto-encoder, we
track the privacy loss at the end of each batch iteration. As given in lines 2—
2, we compute the value of current privacy loss ε′ that has been spent on private
auto-encoder in a given iteration t ∈ T . Training ends when ε′ reaches the
final privacy budget ε. If current privacy budget ε′ is less than the final privacy
budget ε, model parameters of the network are updated with the negative direction
of the learning rate η multiplied by the averaged noisy gradients (Line 2 in
Algorithm 2). And, current privacy budget ε′ is updated by moments accountant
technique in Line 2 in Algorithm 2. At the end of this step, the private auto-
encoder outputs the model parameter θ based on final privacy budget ε (Line 2 in
Algorithm 2).

Algorithm 2 DP-Auto: Differentially private auto-encoder
Require: α: Learning rate; T : iteration number; ε: privacy budget; δ: Gaussian delta; σ : standard

deviation; C: clipping constant. L is the objective function
∇L is the gradient of objective function
initialize θ0 randomly
ε′ = 0
for i ← 1 to T do
Bt ← random batch
it ∼ b where xit ∈ Bt

zit ∼ N (0, σ 2C2)

if ε′ < ε then

θt+1 ← θt − α ·
(

1

|Bt |
∑
it

(∇L (θt ; xit ) + zit

))

ε′ ← calculate privacy loss with moments accountant
end

end

return θ
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1.5 Experiments

In this section, we explain our experimental setting and discuss our results.
First we briefly introduce our datasets and detail parameter settings for the used
machine learning models. Afterwards, we give our results for two cyber deception
tasks: (i) attacker with no synthetic knowledge and (ii) attacker with synthetic
knowledge.

Datasets We evaluate the proposed differentially private deep learning-based
honeydata generation approach on four real datasets. The following is a brief
description of each dataset:

(i) The Diabetes [21] dataset contains the information of 768 female patients
who are at least 21 years old. Each patient is classified as diabetic or non-
diabetic. The dataset contains 8 features.

(ii) The Adult [21] dataset contains the information of 45222 individuals. The
dataset shows whether the income of the individuals exceeds 50K US dollars.
The dataset contains 15 features.

(iii) The BreastCancer(Diagnostic) [21] dataset contains the information about
whether a patient has breast cancer or not. It has 569 patient records with 32
features.

(iv) The Spambase [21] dataset contains 4601 emails, each of which is labeled as
spam or non-spam. Each instance has 58 attributes.

Parameter Setting for Data Generation Our DPSYN technique generates syn-
thetic data by using Deep Auto-encoders [5]. An auto-encoder is trained on n

data points. Once a model is learned, the auto-encoder can be used to generate
any number of data points (e.g., honeydata). For n training samples, we report the
results of the privacy loss (i.e., the measure of potential leakage to an attacker) using
differential privacy with (ε, δ) parameters that is computed from the noise level σ

(see Sect. 1.3.3). We fix the δ as 1
n

and compute the value of ε for each iteration
t ∈ T . In moment accountant, we use several noise levels to obtain consistent
results. The large noise level (σ = 6.0) is implemented for small ε = 1.0 and the
small noise level (σ = 4.0) is implemented for large ε ∈ {2.0, 4.0}. In these settings
with the increasing ε values, synthetic data generation techniques are perturbed less
since small noise is added to these techniques.

In all synthetic datasets (i.e., the generated relational honeydata), biases are
initialized to zero, while the initial values of the weights θ are randomly cho-
sen from a zero-mean normal distribution with a standard deviation of 0.05.
For each dataset, we form a new auto-encoder to generate its corresponding
honeydata.
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Parameter Setting for Machine Learning Models We employ four machine
learning models in measuring the efficiency of our approach in synthetic data
generation for cyber deception: One-class SVM [27], two-class SVM [17], Logistic
Regression (LR) [22], and Random Forest (RF) [7]. We chose to employ these
methods because they are widely used for classification tasks [20]. Furthermore,
these machine learning models will be used to explore whether an attacker can
distinguish between the real data vs the honeydata easily.

For the hyper parameter of one-class SVM, we experiment with kernel types
{linear, poly, rbf } and gamma values {1.0, 0.1, 0.01, 0.001}. We select the most
consistent results of one-class SVM with different (ε, δ) pairs. For two-class SVM,
we employ the LinearSVM [14].

Benchmark Techniques In all experiments, we compare DPSYN results with
two state-of-the-art synthetic data generation techniques: PRIVBAYES [32] and
DPEM+ [23]. We run the experiments 10 times and report the average of the results.

1.5.1 Task 1: Cyber Deception for Attacker with No Honeydata
Knowledge

In the first task, we assume that the attacker has knowledge about real data where
we model the background knowledge as the number (i.e., {50, 100, 200, 400}) of
data points known to the attacker. This approach is similar to the setting reported
in [6]. In this scenario, the attacker does not have access to honeydata samples. We
evaluate the quality of the generated honeydata by observing whether the attacker
can distinguish the real vs honeydata by leveraging the obtained real data. In these
experiments, the attacker employs a one-class SVM model that is built on the
{50, 100, 200, 400} real data points.

We measure the success of DPSYN by the attacker’s failure to separate honeydata
and real data by using the classifier. The test data is an equal mix of 50% real
and 50% honeydata. A honeydata generation technique achieves best results if the
attacker’s SVM model labels all synthetic data as real, which results in a 50%
accuracy.

Figure 1.2 shows the performance of techniques in deceiving the attacker on the
four real datasets. In Fig. 1.2a, we show performance for various training number
sizes 50, 100, 200, and 400. Each training set is used by increasing noise additions,
which is calibrated to ε = 1.0, 2.0, and 4.0, where ε = 4.0 shows the least
amount of added noise in the model. As training size increases, performance of
all three techniques improves and accuracy values approach 50%. In Spambase
and BreastCancer datasets, PRIVBAYES and DPEM+ perform worse compared to
Adult and Diabetes datasets. We hypothesize that PRIVBAYES and DPEM+ are more
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vulnerable to the curse of high dimensionality; both Adult and Diabetes datasets
have less than 15 attributes, whereas BreastCancer and Spambase have more than
32 attributes.

DPSYN results are comparable with those of DPEM+ and PRIVBAYES in the
Adult dataset. In Diabetes and Spambase datasets, DPSYN has better accuracy.
PRIVBAYES has its worst results in the BreastCancer dataset. In all figures,
increasing ε values result in values closer to the desired 50% accuracy value.

1.5.2 Task 2: Cyber Deception for Attacker with Honeydata
Knowledge

In the first task, the attacker had access to real data only. In this second task, the
attacker has access to both real and honeydata, which may help the attacker in
distinguishing honeydata. The knowledge of honeydata implies that attacker was
fooled into accepting some honeydata previously; when the attacker fails while
using the honeydata (e.g., could not use the honeydata for identity theft), he/she
may start analyzing other stored data files to authenticate them.

The attacker employs three binary classification models (i.e., two-class SVM,
LR, and RF) that are built on a mix of 50% real and 50% synthetic data. The
classifier is trained to learn two labels: real and synthetic (i.e., honeydata). The
classifier is tested on a mix of 50% real and 50% honeydata. The accuracy of
a model is given as the percentage of correctly classified data points. For the
best performance in honeydata generation, the attacker must wrongly classify all
honeydata points as real, which results in a 50% accuracy.

In this set of experiments, we report our results for each of the three Machine
Learning classification models separately. We begin by demonstrating the Random
Forest results.

Figure 1.3 demonstrates accuracy of the three techniques for the Random Forest
classifier. The honeydata generated by DPSYN is more similar to real data when
compared to the synthetic data generated from PRIVBAYES for Diabetes, Spambase,
and BreastCancer datasets. For the Adult dataset, DPEM+ results are closer to the
desired 50% level. DPSYN performs better than DPEM+ for Diabetes and Spambase.
The failure of DPEM+ and PRIVBAYES on Spambase and Diabetes datasets is
expected since the attacker can already distinguish the difference between synthetic
and real data with one-class SVM (See Sect. 1.5.1). DPSYN exhibits remarkable
improvement for the majority of the RF test cases when compared to DPEM+ and
DPSYN.
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Fig. 1.2 Accuracy results of one-class SVM classifiers of attackers that are modeled on different
percentages of real data with varying privacy budgets. The desired accuracy is 50%. (a) Adult. (b)
Diabetes. (c) Spambase. (d) BreastCancer

The performance of the attacker with Logistic Regression (LR) is demonstrated
in Fig. 1.4. The test results of LR are consistent with the other machine learning
models previously shown in Figs. 1.3 and 1.2. In fact, on average, LR results are
highly correlated (0.94) with RF results in all datasets. However, it is noticeable
that attacker with RF is better able to distinguish between real and honeydata when
compared to LR; accuracy levels are lower in the LR results. DPSYN outperforms
PRIVBAYES in three out of four datasets. For Adult dataset, PRIVBAYES has
slightly better results than DPSYN. For this set of experiments with LR, DPSYN

results are similar to those of DPEM+ in the Diabetes, Spambase, and BreastCancer
datasets.
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Fig. 1.3 Accuracy results of RF classifiers of attackers that are modeled on different percentages
of real data with varying privacy budgets. The desired accuracy is 50%. (a) Adult. (b) Diabetes.
(c) Spambase. (d) BreastCancer

The performance of the attacker with two-class SVM is demonstrated in Fig. 1.5.
Results are consistent with those of LR and RF in Figs. 1.4 and 1.3. Only in the Adult
dataset, we see a slight increase of difference between PRIVBAYES and DPEM+
performances with the increase of training numbers.

In all Machine Learning models, our method DPSYN generates honeydata that
has better indistinguishability (i.e., the attacker has less accuracy in distinguishing
real vs honeydata) for cyber deception. With increasing training dataset size, the
classifiers that could be used by the attacker perform better in all data generation
techniques. Except for the Adult dataset, DPSYN outperforms PRIVBAYES signifi-
cantly in all experimental settings. Compared to DPEM+, DPSYN generates better or
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comparable synthetic data for the Spambase, BreastCancer, and Diabetes datasets.
For the majority of the test cases, increasing ε values harm the attacker machine
learning model. However, increasing ε values result in less added noise which may
cause the leakage of sensitive data. Hence, there is a trade-off between the quality
of honeydata and the prevention of sensitive data leakage.
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Fig. 1.4 Accuracy results of LR classifiers of attackers that are modeled on different number of
real data with varying privacy budgets. The desired accuracy is 50%. (a) Adult. (b) Diabetes. (c)
Spambase. (d) BreastCancer
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1.6 Conclusions

In this book chapter, we explore the applicability of using privacy-preserving deep
learning-based synthetic data generation techniques for creating HoneyData that can
fool potential cyberattackers. We define a machine learning (ML)-based metric (i.e.,
the accuracy of any ML model in distinguishing real vs HoneyData) to measure the
goodness of generated deceptive HoneyData. Although, our results indicate that
existing techniques could be leveraged for HoneyData generation, care must be
taken in setting the privacy parameters used in HoneyData generation.
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Fig. 1.5 Accuracy results of binary SVM classifiers of attackers that are modeled on different
percentages of real data with varying privacy budgets. The desired accuracy is 50%. (a) Adult. (b)
Diabetes. (c) Spambase. (d) BreastCancer
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Chapter 2
Towards Intelligent Cyber Deception
Systems

Fabio De Gaspari, Sushil Jajodia, Luigi V. Mancini, and Giulio Pagnotta

Abstract The increasingly sophisticated nature of cyberattacks reduces the effec-
tiveness of expert human intervention due to their slow response times. Conse-
quently, interest in automated agents that can make intelligent decisions and plan
countermeasures is rapidly growing. In this chapter, we discuss intelligent cyber
deception systems. Such systems can dynamically plan the deception strategy and
use several actuators to effectively implement the cyber deception measures. We
also present a prototype of a framework designed to simplify the development of
cyber deception tools to be integrated with such intelligent agents.

2.1 Introduction

The knowledge of attackers and the sophistication of cyberattacks are constantly
increasing, as well as the complexity of the cyber domain. The result of this process
is that expert human intervention, even if available, is not always fast enough to
deal with the speed of cyberthreats. As a consequence, cyber deception strategies
aimed at hindering attackers’ progress and cyber defense agents that can make
autonomous decisions are receiving an increasing amount of attention [9, 17].
An important part of cyber deception is active defense [15, 16]. Differently from
classical, reactive systems such as firewalls, IPS, and IDS, active defense tools
aim to hinder attackers’ progress in a proactive manner, rather than responding if
and when an attack is detected. One of the most well-known examples of active
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defense tools are honeypots [5, 8]: mock systems designed to lure attackers in
order to study their behavior and restrict their access to the real production systems.
Other active defense techniques, like honeypatches [6], trick attackers into believing
that their exploit was successful, but transparently redirect him to an unpatched,
heavily monitored decoy system. Fake login sessions [26], mock services, and port
randomization [4] aim at confounding the attacker, compromising and slowing down
the reconnaissance phase. Coupling such active defense tools with autonomous,
intelligent agents has the potential of greatly improving cyber defense, reducing
the reliance on human intervention in response to cyberattacks.

In this chapter, we discuss intelligent cyber deception agents that can make
autonomous decisions on how to counter ongoing attacks, and their integration with
active defense tools. We also discuss our design of an active defense framework that
allows fast prototyping of active defense tools to be integrated directly into live,
production systems. The framework uses a modular approach to add and remove
active defense tools, and aims to provide seamless integration with the agent to
provide sensing and actuating functions.

2.2 Preliminaries

In this section, we discuss intelligent cyber defense agents and the complexity of
deploying them in the context of cyber defense. We also discuss active defense
techniques and the advantages it brings with respect to traditional systems.

2.2.1 Intelligent Cyber Defense Agents

An intelligent agent is an entity which takes autonomous decisions based on the
observations of the current world state through sensors, and which applies actions
through actuators to achieve an end goal. Agents can rely on different methodologies
to produce decisions, such as knowledge-based systems [10] or machine learning
techniques [24]. While research and applications of intelligent agents is already
underway in multiple fields, this is not the case in cyber defense. Indeed, the realm
of cyber defense introduces a number of unique obstacles that are particularly
challenging, such as the extreme complexity and size of the state space (i.e., the
possible states of the world the agent is monitoring). Artificial neural networks [12]
and deep learning techniques [18] can potentially help to overcome these challenges.
However, research in this direction is still in its early stages and deep learning is
mostly used to devise new attacks [13] or for the purpose of attack detection [22, 23],
rather than to plan countermeasures. Moreover, deep neural networks are subject to
a new type of attack known as adversarial examples [11, 19]. Such attacks could
be exploited by attackers to target the decision-making process of the agent itself,
tricking it into taking decisions that are detrimental for the system. For instance, if
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the agent is designed to shut down a particular service under certain severe attack
conditions, an attacker could potentially craft an adversarial example that causes the
agent to misclassify the current world state and erroneously shutdown the service.

2.2.2 Active Defense

Active defense is a branch of cybersecurity aimed at actively hindering attackers’
progress preemptively, rather than reactively as in traditional systems [15, 16].
Indeed, active defense tools are always active, and do not rely on detection of
an attack in order to function. Active defense is related to cyber deception. Most
active defense tools, in fact, heavily rely on deception techniques to confound
attackers and slow down their progress. The most well-known instance of an
active defense tool is the honeypot [20]. Honeypots are replicas of real sys-
tems, instrumented with logging and deception capabilities such as fake services.
Honeypots are designed to look like attractive targets for attackers, in order to
obtain as much information from adversarial interactions as possible. However,
honeypots require complex configuration and it is very hard to hide their nature to
attackers, reducing their effectiveness [21]. To mitigate this drawback, recent works
aim to integrate deception capabilities directly into the real production systems
themselves, avoiding the issue of camouflaging altogether [9]. These systems
use techniques similar to those employed by honeypots, as well as other active
defense tools such as honeyfiles [7, 25] and network randomization [4], in order
to heavily slow down the attacker, while at the same time increase the chances of
detection.

2.3 Towards Intelligent Cyber Deception Systems

Autonomous agents require sensors and actuators to respectively measure and alter
the current world state. Active defense tools are designed to interact with attackers
and collect important data regarding how the attacker interacts with the system.
Therefore, such tools can be extremely effective sensors for the agent. For instance,
fake services can provide information regarding what type of services the attacker
is looking for, as well as how he interacts with such services. Logging honeyfiles
access provides detailed information regarding which types of files are interesting
to the attacker, and honeypatch sensors allow the agent to isolate specific exploits
used during the attack. Moreover, active defense tools can also be used as actuators:
the agent can use the data generated by the sensors to dynamically reconfigure the
active defense tools, in addition to dynamically deploying new tools aimed to hinder
the specific pattern of the current attack.

In our preliminary work [9], we proposed an automated, cyber deception system
called Attackers Hindered by Employing Active Defense, or AHEAD. The AHEAD
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architecture describes an autonomous agent that employs an array of active defense
tools as both sensors and actuators. AHEAD is comprised of an autonomous agent,
the AHEAD controller, which manages a cluster of active defense tools, the AHEAD
Pot as illustrated in Fig. 2.1.

Production System

AHEAD Pot

AHEAD Controller

. . . 

Production System

AHEAD Pot

Fig. 2.1 Overview of the architecture of AHEAD

Differently from systems such as honeypots, the AHEAD Pot is deployed
alongside the production services in a real system, rather than on a separate (virtual)
machine. Using the AHEAD Pot to directly instrument production systems with
deception capabilities allows to avoid the drawbacks of honeypots such as its ease of
detection. Moreover, this design makes it harder for attackers to identify vulnerable
services in the production systems, as well as providing the systems with advanced
monitoring capabilities. In order to prevent the AHEAD Pot itself from becoming
an attack vector, the pot is isolated from the production system through the use of
container technology [2], as illustrated in Fig. 2.2. The use of containers, as well as
mandatory access control techniques to limit the pot’s access to the system, provides
a layer of isolation and hardening against attacks directed at the pot itself. The
AHEAD controller is responsible for planning the defense strategy during an attack,
which is done based on the inputs from the active defense tools of the AHEAD Pot.
The controller is also responsible for actuating the planned countermeasures through
dynamic reconfiguration of the AHEAD Pot.

2.3.1 Usage Scenario

In this section, we describe a usage scenario of AHEAD. Let us consider an attacker
who wants to attack some production systems on a target network. We distinguish
the two scenarios depicted in Fig. 2.3: (A) a network protected by a classical
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Fig. 2.2 Integration of the AHEAD Pot in the production system

honeypot and (B) a network protected with AHEAD. Before performing any attack,
the attacker will have to perform reconnaissance on the network in order to identify
valuable targets. Let us assume that, in order to reach this goal the attacker performs
a network scan to identify existing systems and services.

(A) Classical Honeypot In scenario (A), the network scan will eventually reach
the honeypot (step 1). At this point, if the configuration of the honeypot is realistic
enough, the attacker will start attacking one of the available services provided by
the honeypot. The attack is detected by the honeypot (step 2), and the Incident and
Response Team (IRT) will be notified that something anomalous is going on in
the network. Unfortunately, the attacker will eventually realize that the target is
indeed a honeypot (step 3) and will move on to attacking one of the remaining
systems (step 4). In this scenario, the limitation of the honeypot approach from
the point of view of the IRT is that the interaction between the attacker and the
honeypot is extremely limited in time, often in the order of seconds. Indeed, after
the attacker leaves the honeypot and moves on to another system, the IRT loses
the chance to monitor the attacker and devise a proper identification and defense
strategy.

(B) AHEAD On the other hand, when AHEAD is employed, the attacker will
have to sift through fake services and mock vulnerabilities (step 1) in order to try
to compromise the production system, forcing him to interact with AHEAD for a
considerably longer time (step 3.i). This provides the autonomous agent (or the IRT,
if the agent is disabled) with considerably more time to act, and more information to
decide how to counter the attack (step 2), as well as provide more material to analyze
the strategy of the attacker after the attack has concluded (step 4). This additional
information allows to improve the attribution of the attack and the security of the
network and systems, adapting them to ever-evolving attack strategies. Moreover,
AHEAD can also work as a deterrent. Indeed, if the attacker realizes that the real
production system is heavily monitored and instrumented, he might also choose to
forfeit the attack in order to protect himself (step 3.ii). In both cases, the network is
protected.
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Fig. 2.3 Comparison between a classical honeypot system and AHEAD

2.3.2 The Architecture of the AHEAD System

From an architectural perspective, the AHEAD system is composed by two
components: the AHEAD Controller and AHEAD Pot. The AHEAD Controller is
the single point of interaction with the pots, and allows to manage the active defense
tools deployed over a secure channel. The AHEAD Pot is the component effectively
implementing the active defense countermeasures and is deployed on the production
systems. In a real-world scenario, several AHEAD Pots are deployed in a corporate
network, covering all components of the information system (see Fig. 2.4). The
AHEAD Pots are encapsulated in a container and therefore do not interfere with the
production services, while at the same time having a low, configurable overhead
on the production system itself. Full automation of the security management of
a network is a challenging task that requires gradual evolution and integration.
Therefore, the AHEAD system is designed to be tightly integrated with pre-existing
security information and event management (SIEM) systems, and can provide an
admin interface for the security admin. The AHEAD Pots constantly send activity
logs to the SIEM systems, allowing the IRT to improve other security components
already deployed (e.g., intrusion detection/prevention systems, and firewall). The
feedback from the AHEAD Pots is also used by the IRT to identify what additional
active defense modules need to be deployed in the Pots themselves, so that the
system can dynamically adapt to emerging threats. However, the final goal is for
the system to be fully autonomous: the controller makes decisions on what tools
should be deployed based on the current state of the world, which is reported by the
tools of the pot itself as illustrated in Fig. 2.5.
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Fig. 2.4 Integration of AHEAD in the architecture of a typical corporate information system

Fig. 2.5 Feedback loop of
the AHEAD system. The
Controller reconfigures the
tools in the pot, based on the
world view provided by the
pot itself

World State update
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2.4 Evolving the Pot: ADARCH

During the development of the AHEAD Pot prototype, we quickly realized that a
unified framework for the development and integration of active defense tools was
required. Existing active defense tools are implemented using a heterogeneous mix
of programming languages and libraries, as well as differing architectural designs.
Moreover, different tools tend to use different logging formats, sometimes custom-
made, which complicates the interaction with the AHEAD Controller. Finally,
having separate active defense tools makes it harder to present the attacker with a
consistent view of the Pot, potentially creating side channels that allow the attacker
to distinguish between services exposed by the Pot, and production services exposed
by the real system. Integrating and maintaining such a diverse set of tools into a



28 F. De Gaspari et al.

coherent architecture would be complex and error-prone. Moreover, assessing the
overall security of the system would be a daunting task, especially given the overlap
in functionality between certain tools, and the code duplication ensuing from it.

In order to address the above-mentioned issues, we designed and implemented
a new, cross-platform pot architecture, ADARCH (the Active Defense ARCHitec-
ture), to facilitate the development of active defense tools that share a uniform
architecture. The goal of ADARCH is to simplify the implementation of common
functionalities of active defense tools, as well as to provide a uniform interface
for the controller to interact with the tools. In particular, we identified two main
functions that are used by multiple tools and that require simplification and
unification: networking and logging. The first implementation of ADARCH aims
to simplify and uniform the network flow management and concurrency across the
tools, as well as to provide a common logging interface that enables the AHEAD
Controller to more easily parse their output.

2.4.1 ADARCH Design

As we discussed in the previous section, one of the design goals of ADARCH is to
simplify the development and integration of active defense tools. However, since the
Pot is designed to be integrated into real production systems, it is also important to
reduce the overhead introduced and the resource requirements as much as possible.
To this end, we designed ADARCH and the new ADARCH Pot around a core
software module written in C, and integrated a Python interpreter to facilitate the
prototyping and development of active defense tools. Figure 2.6 provides a high-
level overview of the ADARCH framework and the architecture of the ADARCH
Pot. The core C module efficiently implements common functionalities required
by multiple active defense tools, such as network connection and concurrency
management, as well as provides an interface for the integrated python interpreter.
Active defense tools developed with ADARCH are executed within the integrated
Python interpreter, which provides them with access to the API exposed by the
C core module. Moreover, ADARCH allows active defense tool developers to
use a configuration file-based approach to instantiate required resources (e.g.,
port bindings) that are transparently handled by the ADARCH core, as well as
to define triggers associated with particular functions of the tools (e.g., which
function to call when a new connection is open on a port). Finally, ADARCH is
designed to be cross-platform and to work with container technologies, such as
Docker, to provide an additional layer of isolation to the underlying production
system.
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Fig. 2.6 High-level ADARCH architecture overview

2.4.2 Python Embedding and Extension

We chose Python as the programming language for the development of new active
defense tools because of the large number of available libraries, the community
support, and the ease of prototyping it provides. Moreover, several pre-existing
active defense tools were already implemented in Python, so its choice also provides
continuity for the developers. However, integrating Python with the C core of the
framework to provide better efficiency and performance presented several chal-
lenges. In particular, it required overcoming the limitation of the Global Interpreter
Lock (GIL) of the standard CPython interpreter, which heavily limits concurrent
architectural designs [3]. The GIL prevents the Python interpreter from concurrently
interpreting bytecode for different threads, effectively resulting in a sequential
execution. This behavior is highly undesirable as it reduces the performance of the
ADARCH Pot, and might even provide attackers with a side channel to differentiate
the services exposed by the Pot from the production services [14]. To overcome
these drawbacks, the interface between the Python interpreter and the C core of
ADARCH was designed to manage the GIL in a fine-grained manner, releasing
the lock whenever possible when an ADARCH API call is made, and trying to
parallelize the execution of the various modules as much as possible.

The Python interpreter was also extended in order to expose the ADARCH’s API
to the tool developers. The extension of the interpreter required explicit managing
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of the internal reference count of Python objects, which is used by the Python
garbage collector to periodically cleanup unreferenced memory. While reference
count management is generally well-documented and understood, special care was
needed due to the concurrent nature of the ADARCH core. ADARCH’s API,
illustrated in Table 2.1, is currently minimalistic mainly due to the fact that it is
updated as more active defense tools are integrated and developed into ADARCH.
However, it can be easily extended to provide additional functionalities, such as
filesystem management to implement integrity check tools, similarly to Artillery [1].
The API is encapsulated in a wrapper Python class, allowing developers to extend
the standard API if needed.

Table 2.1 ADARCH API

API Description

log.write Helper function to write logs in a standard format

connection.send Network wrapper to send data through an open connection

connection.shutdown Network wrapper to close an open connection

2.4.3 Advantages of the ADARCH Framework

The ADARCH frameworks implements functions that are common to multiple
active defense tools, such as logging and networking, and provides a transparent
interface to the developer through the API and ADARCH configuration file.
Allowing developers to focus on the core deception aspects of the tools, rather than
having to deal with networking, threading, and synchronization, greatly simplifies
and expedites the development process. Moreover, the integration of the Python
interpreter allows developers to use a high-level language, further simplifying the
prototyping and development of new tools, while at the same time maintaining
high performance as a result of the C core module of ADARCH. The ADARCH
framework is also cross-platform, working both under Linux and Windows systems,
which means that active defense tools developed with ADARCH do not require
additional work to be ported to different systems. Moreover, having multiple tools
integrated and running within the same process space allows them to more easily
share resources and interact with each other if required. Finally, ADARCH provides
active defense tools with a standard format for logging, which allows for immediate
integration of new active defense tools with the AHEAD Controller.

To assess the advantages of ADARCH over previous versions of the Pot, we re-
implemented a popular active defense tool called Portspoof as an ADARCH module.
Portspoof is an active defense tool which allows to simulate the signatures of a
great number of network services. The goal of the tool is to hinder the discovery
phase of an attack, forcing the attacker to perform a more thorough service scan,
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and to generate much more traffic in the process. The original software, developed
in C++, counts 3k lines of code to manage concurrent network connections using
multiple threads. The corresponding ADARCH module is less than 100 lines of
code written in tens of minutes and is functionally equivalent to the original tool.
Moreover, our preliminary performance evaluation shows that the ADARCH tool
introduces a slightly lower overhead to a production system than the original
Portspoof. ADARCH extremely simplifies the development of active defense tools,
heavily reducing the time required and the complexity of the code, while at the
same time improving the maintainability and the security of the tools due to less
code duplication. Finally, ADARCH allows to use a single, optimized instance of
the Python interpreter for all active defense tools, rather than one instance per tool,
further reducing system overhead when considering deployments of multiple tools.

2.5 Conclusions

In this chapter, we discussed autonomous, intelligent cyber agents and the chal-
lenges associated with their implementation. Moreover, we examine the architecture
we presented in [9] and propose a new framework to develop and deploy active
defense tools, ADARCH, and the new ADARCH Pot. The ADARCH framework
allows to heavily simplify and expedite the development of new active defense
tools and their integration in the AHEAD architecture, transparently implementing
common functions required by multiple active defense tools. We discuss the
advantages of ADARCH with respect to stand-alone implementations of active
defense tools, and we compared the complexity of such stand-alone tools with the
simplicity of an ADARCH module providing the same functionalities.L

2.6 Exercises

In this section, we propose a list of exercises, in increasing order of difficulty, that
can help familiarize students with the concepts presented in this chapter.

1. Identify and describe the disadvantages of the presented approach.
2. What are the trade-offs of using container technology for isolation vs. virtual

machines?
3. Configure and deploy a simple honeypot on the Internet. Analyze how long

attackers interact with the honeypot on average before realizing that it is not a
real system.

4. What are the risks of installing active defense tools on live, production systems?
How would you minimize these risks?

5. Write a simple active defense tool that can create trap files in the file system.
Once opened, the files should trigger and log an alert.

6. Extend the tool described in the previous point to provide attribution capabilities.
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Chapter 3
Honeypot Deception Tactics

Neil C. Rowe

Abstract Honeypots on computer networks are most effective when they use
deception to fool cyberadversaries into thinking that they are not actual decoy
intelligence collectors. Honeypot deception can be made more effective when
applied with variety. We discuss the range of deception tactics of which honeypots
can take advantage. Ideas can come from deception theory, and honeypot deceptions
can benefit from planning and experimentation.

3.1 Introduction

Defensive cyber deception is increasingly used against adversaries in cyberspace,
cyberattackers, and cyberspies [23]. Honeypots and honeynets [12] are an efficient
way to test defensive deception tactics for computer systems, mobile devices, and
networks. Honeypots can be defined as network nodes with no purpose beyond
collecting network security intelligence. A honeypot testbed offers much flexibility
since a computer or device that is not burdened with many routine tasks can be
reconfigured more easily. Detailed scripting of some interactions with adversaries
is possible in advance, and most automated attacks will not notice deceptive details
since they are not looking for them and rarely encounter deception. Furthermore,
minimizing links to the honeypot other than its address means that there will
be little chance of it being encountered by normal non-malicious non-spying
users.

Honeypots are helpful for both cyberattacker adversaries (to collect intelligence
about attack methods) and cyberspy adversaries (to find out what they are interested
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in). Honeypots can be extended to “honeynets” which include network resources
as well [22]. Defensive deceptions tested on honeypots can also be used on non-
honeypots or “production” systems [6] to help protect them. And even if a honeypot
is detected, that knowledge by adversaries may provide good protection for a
“fake honeypot” [17], defined as any production system subsequently installed there,
and it will receive fewer future attacks [26].

Deception enhances honeypots because cyberadversaries want to avoid honey-
pots. Honeypots do not have useful information, they record attack methods to
enable later thwarting of them, and they have safeguards to prevent them from being
exploitable as launch points for other activity. Thus, a honeypot will be more useful
if it conceals its purpose and the purpose of its data.

3.2 Honeypot Deception Options

Many deception taxonomies have been proposed. Sztompka et al. “Trust” [20] is a
classic analysis of trust; [7] outlines military deception, which is useful because
cyberattacks are like low-level warfare; [9] gives practical advice on mounting
deceptions in general; and [3] provides a recent taxonomy. These can provide a
menu of choices from which to construct plausible and convincing deceptions. It
has often been observed that deception is more effective when it is varied and
surprising [9], so having a large menu is desirable.

Here are specific suggestions for honeypot deceptions based on the “semantic”
taxonomy of [18]:

• Deception in superconcept: Honeypots can masquerade just as cyberadversaries
do. They can pretend to be particular kinds of sites, concealing or deceiving as to
who owns them, who uses them, whether they are servers, and their purposes [5].

• Deception in object: Honeypots can offer bait in the form of fake files and fake
data within files [18]. In the military world, this is an accepted part of coun-
terintelligence. Other organizations and businesses are increasingly recognizing
that some counterintelligence is useful for learning about their adversaries in
cyberspace.

• Deception in purpose: Honeypots can run scripted or program-based interactions
to confuse and thwart cyberadversaries [21]. This is especially helpful with
industrial-control-systems honeypots because they run quite specific processes.

• Deception in external precondition: When an adversary is asking it to do
something dangerous, too revealing, or too hard to simulate, a honeypot can
provide an excuse why not to do it [18]. There are many possible excuses, but
a good one should still leave the adversary with hope to achieve their primary
goals. This can be achieved, for instance, by giving a sense of progress to the
adversary such as asking for a password or some other form of authorization to
suggest that part of the previous request was acceptable.
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• Deception in result: Lying about results of actions may also be effective when
honeypots are asked to do something they do not want to do. The easiest lie is to
say that an action has been performed, so that a cyberadversary will waste time
trying to exploit the non-existent result, as by reporting non-existent network
nodes [2]. A response can also simulate a vulnerability so the adversary thinks
that their attack has succeeded [13]. The main difficulty with deception in result is
in maintaining the consistency subsequently. This can require secondary excuses,
such as claiming protection violations when trying to open a non-existent file.
Alternatively, the honeypot may be able to model effects and be able to predict
secondary effects, as when a honeypot simulates a cyber-physical system with a
mathematical model. Even a crude simulation may fool automated adversaries.

• Deception in time-through: In time-critical situations, delaying an attack can be
critical to getting resources to fight it. Deliberate delays are often not considered
suspicious by cyberadversaries because unexpected delays occur frequently with
networks and automated software processes [16, 18].

• Deception in time-from and time-at: Bait such as documents, messages, and logs
can be assigned times to give the appearance of realistic activity.

• Deception in agent: Bait can refer to fake people, sites, and services.
• Deception in recipient and location-at: An adversary’s activities can be routed to

a “sandbox” site where they can be better controlled [5, 19].
• Deception in value: Arguments to adversary commands can be changed as a

variant on deception in result. For instance, files can be stored in a different
directory than specified, giving the excuse of a cloud-based system. Or the results
of an operation can be deliberately modified to make them unusable or less
usable, as for instance by deliberately changing the encoding scheme on some
file that is downloaded.

• Deception in experiencer: Recording adversary interactions with the honeypot is
central to their design.

Once a deception method has been chosen, honeypot deceptions should identify
an object, a presentation method, a purpose, and a target.

• Deceptions can be distinguished as to the digital object with which they are
associated. This can be a large object such as a computer, mobile device, or
network, or it can be a particular directory, file, or packet. The importance of
surprise in deception suggests putting it in unexpected objects like software
patches [4] and databases [25].

• Deceptions can be distinguished by how they are presented. They can be overt
(stated in verbal messages) or indirect (inferred from failures or unexpected
consequences of commands). They can be single events or sequences forming
a campaign, as with “second-order” deceptions where one deception, designed
to be discovered, is a setup for a more complex deception.

• Deceptions can be distinguished as to whether their purpose is to encourage,
discourage, or manipulate. Traditional honeypots want to encourage exploration
by visitors so that they can collect more data. Hence, their deceptions should try
to offer what the visitor wants, which is easier for a high-interaction honeypot that
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offers or simulates an operating system. However, giving the user everything they
want right away is not usually as good as giving it to them in small pieces so that
they will reveal more of their methods. “Fake honeypots” can try to discourage
visitors as a means of protecting themselves or other nodes on their network.
Alternatively, honeypots can try to manipulate the user in other ways such as in
trying to identify them and in deliberately making them angry. A sophisticated
honeypot could use automated planning to better manipulate the user.

• We should also choose deceptions based on knowledge of our adversaries. The
skill level of the adversary is often apparent, and deceptions can be tailored to
it [14]. Most adversaries connecting to a honeypot are cybercriminals, and we can
expect automated attacks from them with often a low level of sophistication and a
tendency to be easily discouraged. Cybercriminals have many easy targets on the
Internet, so if they cannot do much with our honeypot, they will give up quickly
and move on. If we want to encourage them so as to better collect data on their
attack methods, we need to provide at least simple forms of bait. On the other
hand, a nation-state adversary will have less likelihood of being discouraged.
They have teams of professionals with long-term plans involving both espionage
and cyberattacks, and may be willing to explore even low-interaction honeypots
thoroughly. These are the kinds of adversaries with which the honeypot can
most effectively play games. Many of these adversaries have quotas to fulfill,
so sophisticated bait can be very effective.

3.3 Some Example Tactics

Deception tactics like those described are mostly active honeypot tactics compared
to the traditional passive tactics of waiting to be attacked and collecting data about it.
Active tactics may provide intelligence more quickly to the defender. Many of these
tactics involve generating data to give to adversaries. It can be displays, system or
network configurations, error messages, misinformation, or files.

Short messages can be generated by stochastic context-free grammars where
each rule has a probability of being used in a top-down expansion of a starting
symbol [18]. For instance, a quick grammar for short error messages like “Error
at 392257016” can generate a random error-describing string drawn from a set of
common real error messages followed by “at” and a random number of 6–12 digits.
It could be sent to the honeypot adversary whenever an excuse is needed to avoid
doing something. Random error messages can be made unpredictable and thus hard
for an adversary to anticipate. Most cyberattacks are automated, and unexpected
responses can be difficult for them to handle.

Randomization can be used to generate files of random characters. These tend to
look like encrypted files and adversaries could waste time trying to decrypt them.
However, adversaries can be kept interested much longer if files contain convincing
real data. This could occur if the data is almost real, as when it is real data slightly
modified to be harmless, or real data that from a previous time period that is useless
now. For instance, we have been running a honeypot that appears to present pages
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from our school library [15] with real technical documents that are out-of-date, with
the goal of seeing which documents that cyberspies are most interested in. To build
this, we collected a representative set of technical documents on a range of current
topics for the honeypot. A similar idea is giving out-of-date vehicle positions in
military data files since timeliness is critical for planning of military operations.

A more dynamic approach to honeypot deception is using “software wrappers”
to manage it [18]. Wrappers are code that intervenes before the entry into some
software and after the exit from it. They are helpful for debugging and have good
infrastructure support. Wrappers can implement deceptions based on their context.
For instance, they could generate false error messages if asked to work with a
suspicious resource, or if asked repeatedly about a resource, or if they receive what
appears to be malicious code. They could also delay in such cases, or substitute a
different executable for the one referenced. Wrappers permit a graduated response
to the degree of a cyberthreat due to the range of options and parameters they have
at their disposal.

Specialized honeypots such as those for cyber-physical systems can offer
additional tactics for deception from their modeling of the physical system [18].
For instance, suppose a cyberattacker of a honeypot power plant sends commands
intended to close valves supplying coolant to the plant. The honeypot has several
options:

• It could give an error message and refuse to do anything. This is a typical tactic of
low-interaction honeypots. That could encourage the adversary to try something
else. It also might discourage the adversary when they have not envisioned
alternatives.

• It could fail to do anything but not say so. This is another common tactic of low-
interaction honeypots. This would discourage the adversary eventually, but for a
while the honeypot could collect additional intelligence.

• It could simulate the effects of the command if the intended effect could be
seen easily by the adversary. So if told to close a coolant value, it could report
increasing temperatures in routine packets and eventually alarm messages. This
will generally encourage the adversary, but only until their goals are achieved
which may not be long. It would require building a simulation of the physical
system, though perhaps only a partial one for the features adversaries are
interested in. This can be done for simple sensor networks but will be more
difficult for a complex power plant. However, if the intended effect should
be confirmable by another source of information (such as causing catastrophic
failure of the power plant), the honeypot could be discovered.

• It could simulate the effects of the command but slowly. For instance, it could
demand a password, or respond slowly while giving periodic updates (“Working
on your request”). This could actually be encouraging because many adversaries
expect and like a challenge. Eventually, a password can be accepted to see what
the adversary will do next.

• It could simulate some of the intended effect but appear to thwart it. For instance,
it could simulate closing a value, then quickly opening it to suggest manual
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intervention; temperatures would go up and then down. This will encourage
the adversary to try again, perhaps with a different method that will offer new
insights about them. This may be better than refusing or delaying execution of
commands because the adversary had partial success and may feel invested in the
process, and may be more inclined to increase their efforts. It also may encourage
an adversary who likes the challenge of active opposition, and may increase their
sense of self-worth.

• It could create some new effect that the adversary did not anticipate. For instance,
it could send alarm traffic across the simulated network (suggesting that the
adversary has been detected), or it could cause a valve to open wider instead of
closing (suggesting that the adversary used the wrong argument in the command),
or it could cause new generators to start up (suggesting that the adversary used the
wrong command). This will encourage the adversary to try again with a different
method, increasing the intelligence collected.

3.4 Deception as a Game

Some researchers have modeled cyber deception as a formal game and taken
advantage of results in game theory [8, 18, 24]. Deception has some distinctive
features compared to other games, however. Psychologists have noted that distrust
propagates much better than trust: It takes only one untrustworthy act to cause
someone to lose trust that took many acts to build up. Thus, honeypots should
be very cautious in offering what might be considered obvious clues to deception.
That means going to some length to conceal the honeypot mechanisms in software,
as with many products of the Honeynet Project (www.honeynet.org). In addition,
honeypots should be careful with what bait they offer. With automated attacks, the
bait may not be inspected, but either low or high quantities of bait strongly indicate
a honeypot and should be avoided.

The easy propagation of distrust has implications for deception taxonomies as
well. Figure 3.1 shows part of a honeypot deception taxonomy. We can model a
cyberadversary as initially sensing one or more of the leaves of this tree. As they
experience more of the honeypot, they may generalize their knowledge to nodes
above their initial observations in this tree. The degree to which this distrust is
propagated across a link can be expressed as a conditional probability. It can be
estimated from the semantic similarity of the two concepts, but alternatively if we
have statistics on instances of these concepts in the real world (the “extensions” of
the concepts), it can be estimated as the size of the overlap between the extensions.
The simplest overlap measure is the Jaccard formula, the ratio of the size of the set
intersection to the size of the set union. Note that these estimates should be based
if possible on what we think the adversary knows, and can be aided by experiments
with human subjects.

Different observations by the cyberadversary can propagate independently and
reinforce a conclusion much in the way associations propagate with Bayesian

www.honeynet.org
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network models. So, if adversary sees both odd behavior and an unusual delay,
they may realize that both are indicators of a honeypot. Eventually, an adversary
will accumulate enough evidence to be confident that they are viewing a honeypot.
Then, its value is decreased, since the adversary will likely leave and stop providing
data, and may tell others. Thus, we should try to prevent that by minimizing the
clues.

Fig. 3.1 Example deception taxonomy

Game theory is more useful when we have a set of honeypots (a honeynet)
rather than just one. Then, we can test more tactics independently to see how
well each works and what risks each entails [10]. Figure 3.2 shows an example
decision tree for a honeynet. To analyze this, suppose that Phi is the probability
that the adversary will encounter a deception i when accessing the honeypot, Pdi

is the probability that deception where i succeeds in fooling the adversary, and b
is the benefit to intelligence collection of each deception encountered (counting an
opportunity for an additional deception when the adversary has been fooled twice).
Assuming independence of the probabilities, the expected benefit is the sum of the
expected costs over all leaf nodes n1 - n9:

Ph1(1-Pdi)b + Ph2(1-Pd2)b + Ph3(1-Pd3)b+
2Ph1Ph2Pd1(1-Pd2)(2b) + 2Ph1Ph2Pd1Pd2(3b)+
2Ph1Ph3Pd1(1-Pd3)(2b) + 2Ph1Ph3Pd1Pd3(3b)+
2Ph2Ph3Pd2(1-Pd3)(2b) + 2Ph2Ph3Pd2Pd3(3b)

We can calculate this for different honeypot and honeynet designs and choose the
one with the highest average benefit. We should also recalculate periodically as
adversaries readjust their tactics based on what they have seen.
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Fig. 3.2 Example decision tree for honeypot deceptions

3.5 Honeypot Experiments

Research is now conducting experiments with honeypot simulations [14] and
live adversaries against honeypots [1, 13]. We have run honeypots for fifteen
years [11, 18]. We encourage everyone doing network security to run them, as the
hardware and software need not be up-to-date, they are easy to set up, and you
often encounter surprises when you start monitoring them. We have run mostly
ordinary machines as honeypots, plus a variety of honeypot software mostly from
the Honeynet Project (www.honeynet.org) including Web-server, secure-shell, and
industrial-control-system honeypots.

It often makes a considerable difference how a honeypot is configured. Small
changes to the honeypot and its services can make major differences to the traffic
observed. Also, the variety of traffic (not necessarily the volume) on a new honeypot
is usually high at first and then decreases rapidly over a few weeks; a similar
increase is observed after the honeypot is turned off for a while. Clearly, visitors are
footprinting the machine and testing its susceptibility. This is useful for planning
deceptions. A traditional honeypot that wants to encourage attacks should keep
changing its appearance and keep going offline; a fake honeypot that wants to
discourage attacks should avoid changing anything and try to stay online. The rate
of change must be faster for low-interaction honeypots since they cannot keep a
visitor’s interest as long.

It is also useful to compare the same honeypot in different environments to
see how much cyberadversaries exploit its context. Our experiments comparing a
honeypot running at our school with a honeypot running the same hardware and
software at a student’s home, both using the same Internet service provider, showed

www.honeynet.org
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considerable differences in the traffic. This suggests that many adversaries routinely
exploit Internet registry information, and that deceptions in this information or DNS
data could aid honeypot effectiveness. Our current work is focused on industrial
control systems with an emphasis on power plants. We are getting a significantly
higher rate of traffic than with the conventional SSH honeypots we have run. This
work is focusing on the simulation of processes as discussed in Sect. 3.3.

3.6 Exercises

1. Networked home-monitoring systems could be a possible target by cybercrimi-
nals for harassment or extortion purposes. A honeypot home-monitoring system
not associated with a real home could collect intelligence on what cybercriminals
are trying to do. Assume a design to control the heating, air conditioning,
lighting, and alarm system of a house.

a. Suggest possible deceptions in “result” that could be effective for such
systems and explain how they would be implemented.

b. Suggest possible deceptions in “object” different from “result” that could be
effective for such systems and explain how they would be implemented.

c. How could the honeypot respond to attempts to turn off all the lights in a way
that could encourage further interaction?

d. How could the honeypot respond to periodic attempts to modify parameters,
such as every day, in such a way that the adversary will keep returning?

2. Consider the problem of measuring the effectiveness of a honeypot’s decep-
tions.

a. If we measure traffic volume, what should we compare to assess effectiveness?
b. How could it be useful to measure traffic to nodes other than the honeypot to

assess the effectiveness of the honeypot?
c. If we measure changes made to the honeypot, what should we examine to

assess effectiveness?
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Chapter 4
Modeling and Analysis of Deception
Games Based on Hypergame Theory

Jin-Hee Cho, Mu Zhu, and Munindar Singh

Abstract In this chapter, we discuss a deception game where attackers and defend-
ers can have different perceptions towards a given situation. Although existing
game theories have considered incomplete information to consider uncertainty,
how players’ different perceptions or misperceptions can affect their decision-
making has not been fully addressed. In particular, we discuss hypergame theory
which has been used to resolve conflicts under uncertainty. In this chapter, we
examine how a player’s perception (or misperception) affects their decision-making
in choosing a best strategy based on hypergame theory. To deliver a concrete idea
on how the attack–defense game can be modeled based on hypergame theory,
we model a simple cybergame scenario and demonstrate an example probability
model using Stochastic Petri Nets. Through the evaluation of the model, we show
the experimental results to deliver insightful findings in terms of the relationships
between perceptions by different players (i.e., an attacker or a defender), their
chosen best strategies, and corresponding utilities. Lastly, we measure performance
of the attacker and the defender in terms of attack success probability and mean time
to security failure.

4.1 Introduction

Conflict situations are traditionally modeled based on game theory and decision
theory, and more recently via hypergame theory. However, the applicability of each
of these theories depends on the amount of information available. For example,
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game theory is useful to model a game in conflict with little information towards a
situation (e.g., little knowledge about opponents). And, if complete information is
known towards a game, decision theory can provide effective strategies for players
to make decisions with maximum utility. If players are not fully aware of the
situation with only partial information observed, each player will play a different
game, which can be modeled based on hypergame theory [21]. Considering real-
life situations in which we often face highly uncertain situations with only partial
information, hypergame theory is designed to provide a form of analysis considering
each player’s subjective perception, misperception, and perceived uncertainty and
accordingly their effect on their decision-making in choosing a best response [21].

Let us first motivate hypergame theory as a useful approach to model interactions
between an attacker and a defender and to analyze their best strategies (or responses)
and associated utilities, particularly where deception is placed as a defense mecha-
nism. In this book chapter, we would like to contribute a game-theoretic approach
that is not well-studied in the state of the art related on cybersecurity. The specific
motivations and the corresponding contributions are as follows:

1. Although a game based on partial observations has been studied in existing
approaches [7, 24], different perceptions, misperception, and prior beliefs due
to their limited observability or confusion caused by an opponent player have
not been fully addressed yet. Therefore, in this book chapter, by providing
modeling details on system security state, an attacker, and a defender based on
hypergame theory, we would like to encourage readers to leverage the powerful
capability hypergame theory can offer in terms of considering various types of
defense techniques in both proactive (e.g., deception or moving target defense)
and reactive (e.g., intrusion detection) mechanisms.

2. Even if the usefulness of hypergame theory has been recognized, relatively less
matured, structured modeling details have been provided in the literature. This
chapter aims to fill the gap. In this chapter, we demonstrate a game between an
attacker and a defender where the game is designed based on hypergame theory
and the defender aims to mislead the attacker’s perception by using deception
techniques.

The rest of this chapter is structured as follows. Section 4.2 gives a brief summary of
deception techniques and game-theoretic approaches to model cybergames between
attackers and defenders. Section 4.3 provides the key concepts of hypergame theory
for readers to grasp their in-depth understanding in modeling a game between an
attacker and a defender. Section 4.4 discusses an example scenario, an attacker’s
game, a defender’s game, and their corresponding hypergame expected utilities
(HEUs). Section 4.5 shows an example analytical model using Stochastic Petri
Nets (SPN) in order to deliver more concrete ideas on modeling and analyzing
an attack–defense game based on hypergame theory. Section 4.6 discusses exper-
imental results and lessons learned from the results. Section 4.7 concludes this
chapter.
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4.2 Related Work

In this section, we provide an overview of related work in terms of deception
techniques and game-theoretic defense approaches.

Deception Techniques Deception techniques are developed to mislead an attacker
to achieve a defender’s goal [26]. This technique can be used at any level
of interactions between attackers and defenders in a wide range of conflicting
situations. Due to their high applicability, various types of deception strategies have
been considered to confuse decision-makers for military operations [26].

Deception techniques can be categorized into two types, hiding the truth and
providing false information. Deception defense seeks to mislead attackers by
intentionally presenting false or incomplete information, which can lead the attacker
to misdiagnose the quality or relevance of information [3, 4]. Caddell [6] categorizes
deception as passive vs. active where passive deception means hiding information
whereas active deception means disseminating false information. In addition, Daniel
and Herbig [10] explain the purpose of deception defense as increasing ambiguity
(indicating uncertainty or confusion) for attackers to be misled for their decision-
making.

Game-Theoretic Approaches to Deal with Advanced Persistent Threat (APT)
Game-theoretic approaches have been proposed to deal with APT attacks [1, 11,
19, 24, 34]. Hu et al. [19] modeled a two-layer game considering both APT and
inside attacks and investigated Nash equilibria under both static and dynamic actions
by players. Similarly, Feng et al. [12] considered a three-player game where the
players include an attacker, a defender, and an insider. Fang et al. [11] modeled
different attack strategies based on attack paths that incur different levels of cost and
benefit. Abass et al. [1] analyzed APT attack strategies and corresponding defense
strategies for cloud computing environments based on the evolutionary game theory
and developed a dynamic APT game where defenders can apply dynamic learning
rules for attack behaviors. Van Dijk et al. [28] and Zhang et al. [34] modeled highly
intelligent attackers that can have perfect knowledge towards defenders’ behaviors
and investigated the Nash equilibria in terms of the defender’s responses to the
attack strategies. Rass et al. [24] considered various aspects of uncertainty caused
by APT behaviors such as unexpected attack responses to assessed risk, unknown
incentives to performed attacks, and unknowns about a current system state.

Game-Theoretic Approaches with Deception Techniques Deception techniques
are modeled in game-theoretic approaches. Yin et al. [33] modeled a Stackelberg
attack–defense game where both players make decisions based on their observa-
tions, not the actual strategies taken by the players, and examined the benefit of using
deception techniques. Similarly, Garg and Grosu [15] also considered an attack–
defense game and modeled a deception technique with a honeynet where a defender
aims to confuse an attacker. Carroll and Grosu [7] built a signaling attack–defense
game, which is a non-cooperative game with incomplete information where each
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player aims to take a best strategy, such as improving a honeypot by a defender or
compromising a honeypot by an attacker.

Hypergame-Theoretic Approach Hypergame theory has been used to deal with
players’ subjective, imperfect perception, which can lead their beliefs to uncertain
or non-optimized strategies that better reflect the real-world scenarios rather than
assuming that all players play the same game with perfect (or imperfect) knowledge
of each other. Although other game theories deal with uncertainty by considering
probabilities that a certain event may happen, they assume that all players play the
same game [27]. Gharesifard and Cortés [16, 17] studied how players’ perception
evolves based on hypergame theory. They developed a misperception function to
measure differences between a player’s perception and the ground truth payoff of
other players’ strategies. Kanazawa et al. [20] proposed evolutionary hypergame
theory to develop an interpretation function that considers individuals’ subjective
perception in hypergame theory. Aljefri et al. [2] developed a misperception model
for decision-making situations in conflict based on a first-level hypergame. Sasaki
[25] proposed a new solution concept called subjective rationalizability by defining
an agent’s action as subjectively rationalizable when the agent believes that the
action is a best response to the other agent’s choices based on its perceived game.

Hypergame theory has been used to solve decision-making problems in mil-
itary and adversarial environments [18, 31, 32]. Vane and Lehner [32] applied
hypergame theory to plan tactical strategies under uncertain situations, while Vane
[31] proposed a decision framework based on hypothesized simulated emergency
situations. Likewise, House and Cybenko [18] applied hypergame theory to model
a cyberattack–defense game that is affected by players’ understanding of rules,
expertise, and misperception. Putro et al. [23] proposed and investigated the
procedures of adaptive learning to derive accurate strategies and preferences used
by players in a hypergame context by using a genetic algorithm.

4.3 Hypergame Theory

For concreteness, we now briefly discuss hypergame theory and its fundamental
concepts that underlie our deception game. Bennett [5] first proposed the concept of
hypergame theory by questioning the assumption of common perception maintained
by players in game theory. In real situations, players do not have common
perceptions about a game. Instead, their understanding about the game may be
radically different and each player plays a different game although multiple players
may be involved. Hypergame theory provides a form of analysis in which a system
consists of a set of games, each of which represents a game each player plays based
on its own ideas towards a given situation.
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Here, we discuss two levels of hypergames that can be used to analyze games
differently perceived by multiple players [13]. Although hypergame theory can be
applicable for n players, since we consider a deception game by two players, an
attacker and a defender, we describe hypergame theory based on two players.

First-Level Hypergame Given two players, vectors of two players’ preferences,
denoted by Vp and Vq , define a game G that can be represented by [13]:

G = {Vp, Vq} (4.1)

Note that Vp and Vq are player p’s and player q’s actual preferences (i.e., ground
truth), respectively. If all players exactly know all other players’ preferences, all
players are playing the same game because their view towards the game is the same.
However, in reality, complete information may not be available and accordingly
each player will form its own view, which may be different from the opponent’s
view. Under this situation, player p can perceive player q’s preferences based on its
own perception, which causes differences between p’s view and q’s view. A game
perceived by player p based on its perceived preferences towards q’s preferences,
Vqp, and the game perceived by player q based on its perceived preferences towards
p’s preferences, Vpq , can be given by:

Gp = {Vqp}, Gq = {Vpq} (4.2)

Hence, the first-level hypergame H perceived by each player is written by:

H1 = {Gp,Gq} (4.3)

In a first-level hypergame, analysis is performed at the level of each player’s
perceived game because each player plays the game based on its perception. Even
if the player does not know all outcomes of the game, the outcome can be stable for
the player because the player may not unilaterally change its perception. If a game
includes an unknown outcome, the unknown outcome is caused by the uncertainty.
The stability of an outcome about a game is determined for each player even if
each outcome is the return by each player’s reaction towards the action by the
opponent. An outcome is stable for p’s game if the outcome is stable in each of
p’s perceived preference vectors, Vqp’s. The equilibrium of p’s game is determined
by the outcome p believes to resolve the conflict [13].

Second-Level Hypergame A second-level hypergame occurs when at least one
player is aware of another player’s misperception so that there exists a hypergame
being played by other players. The hypergame perceived by p or q is denoted
by [13]:

Hq = {Gpq}, Hp = {Gqp} (4.4)
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Note that p or q may not know a game played by the opponent. Hence, p may not
know how q interprets the game. A second-level hypergame is notated by:

H2 = {Hp,Hq} (4.5)

Given a two-player game, the stability of each player’s game is based on what
the player perceived its own game and the other player’ hypergame. Based on the
stability of the outcome based on the perception of the other player’s game, the
equilibrium of the hypergame by each player is determined.

Hypergame Normal Form (HNF) Vane [29] provides a hypergame normal form
(HNF) that can efficiently model hypergames based on players’ beliefs and possible
strategies of their opponents. HNF is formulated in a manner similar to the normal
strategic form in game theory. HNF consists of the following four sections: (1) full
game; (2) row-mixed strategies (RMSs); (3) column-mixed strategies (CMSs); and
(4) belief contexts.

The full game is the grid form consisting of row and column strategies, which
are associated with the utilities, ru11, · · · , rumn and cu11, · · · , cumn where n is the
number of the column player’s strategies and m is the number of the row player’s
strategies. The full game’s grid form can be represented by:

U =
⎛
⎝

(ru11, cu11) · · · (ru1n, cu1n)

· · · · · · · · ·
(rum1, cum1) · · · (rumn, cumn)

⎞
⎠ (4.6)

This full game strategies by the row player is denoted by R0, whereas the full game
strategies by the column player (believed by the row player) is represented by C0.

Row-Mixed Strategies Row-mixed strategies (RMSs) are the strategies the row
player comes up with based on its perception of the column player’s strategies. A
player’s subgame is defined as a subset of the full game (i.e., a set of all possible
strategies by all players) because the player may limit a number of strategies it
wants to consider based on its own perceived situation. Therefore, depending on the
situation, the player can choose the subgames to play. RMSs for the k-th subgame
by a game a player perceives to play due to its limited observations and beliefs are
given by:

RMSk = [rk1, · · · , rkm], where
m∑

i=1

rki = 1. (4.7)

For example, in the rock–paper–scissors game, player p may consider either rock
or scissors as a first subgame, RMS1 is defined by [r1,rock, r1,scissors] = [0.3, 0.7]
where each probability that a particular strategy is chosen is estimated by player p’s
belief which may be formed based on learning from past experience.
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Column-Mixed Strategies Column-mixed strategies (CMSs) are a column
player’s strategies believed by the row player for a k-th subgame and denoted by:

CMSk = [ck1, · · · , ckn], where
m∑

j=1

ckj = 1. (4.8)

Similarly, as an example, in the rock–paper–scissors game, player p may predict q’s
strategies based on its belief as CMS1 is defined by [c1,rock, c1,paper ] = [0.6, 0.4]
where each probability that a particular strategy is chosen is obtained by player
p’s learning towards q’s strategies based on the observations made towards q’s
playing.

Belief Contexts Belief contexts are the row player’s belief probabilities that each
subgame k will be played and are represented by:

P = [P0, · · · , PK ], where
K∑

k=0

Pk = 1. (4.9)

P0 is the probability that the full game is played where the full game considers
all possible strategies a player has based on the ground truth view of a situation.
If the row player does not know whether a particular subgame k will be played
(i.e., uncertainty), the unknown belief probability is treated simply as 0 and P0 is
computed by:

P0 = 1 −
K∑

k=1

Pk (4.10)

The row player’s belief towards the column player’s strategy j , denoted by Sj , is
computed by:

Sj =
K∑

k=0

Pkckj where
m∑

j=1

Sj = 1. (4.11)

The summary of the row player’s belief on m number of the column player’s
strategies is represented by:

C∑ = [S1, S2, · · · , Sm]. (4.12)

Each of a row player’s strategy can be evaluated based on the full game strategies
by a column player to derive the utility for the worst-case column strategy (CMSw)
(i.e., lowest utility) or the expected utility (EU ) for the column player’s strategies
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under each subgame. The hypergame expected utility (HEU ) can be calculated
based on EU(·), and the probability that a row player does not know for a given
situation (i.e., uncertainty), denoted by g. Thus, g represents the level of uncertainty
towards what is guessed about a given game, which significantly affects the degree
of the EU of a given hyperstrategy by the row player. HEU for the given row
player’s strategy rsi with the uncertainty g is given by [30]:

HEU(rsi, g) = (1 − g) · EU(rsi, C
∑) + g · EU(rsi, CMSw), (4.13)

where rsi is a given strategy i by the row player. EU(rsi, C
∑) and EU(rsi, CMSw)

are computed by:

EU(rsi, C
∑) =

m∑
j=1

Sj · uij , EU(rsi, CMSw) =
m∑

j=1

cwj · uij . (4.14)

When g = 0, meaning complete confidence (i.e., complete certainty) in a given
strategy, strategies are selected like decision theory (DT). Conversely, if g =
1, implying that the row player is completely occupied with the fear of being
outguessed (i.e., complete uncertainty because of being afraid that the chosen
strategy is wrong), the strategy selection is made like traditional game theory
(GT) [29].

4.4 Case Study

To provide more concrete ideas on modeling an attack–defense game based on
hypergame theory, we introduce an example game scenario, associated modeling
of an attacker and a defender, and their utility calculations based on hypergame
theory.

We consider an enterprise system that consists of multiple components. We
abstract out how each component is connected to each other. Instead, we specify
how many components exist and their vulnerability levels. If the components have
higher vulnerabilities, it can naturally lead to an attacker being able to compromise a
system component with a higher probability changed. In this work, we don’t assume
that there is a recovery mechanism. Hence, once a component is compromised, it
cannot be recovered. We leave the design of the recovery mechanism for future
research. We assume that the system is equipped with a network-based IDS that can
capture inside attackers after an attacker penetrated into the system.

The system can fail if either of the following conditions is met: (1) when
more than one third of its components are compromised based on the concept of
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Byzantine failure (i.e., breach of system integrity and availability) [14]; and (2)
when a confidential information is leaked out to unauthorized parties (i.e., breach
of data integrity), ultimately leading to the disruption of the entire system. Now,
we discuss how an attacker or a defender plays a given game in the following
sections.

We consider attack behaviors based on the characteristics of Advanced Persistent
Threat (APT) attacks derived from the concept of cyber kill chain (CKC) [22]. APT
has been emerged as one of the most serious threats that use advanced skills and has
the nature of persistent threat with the long-term control of a targeted system. To
give better ideas on the example scenario, we describe the well-known life cycle of
APT consisting of the following stages:

• Reconnaissance is a stage for attackers to gather basic information of a target
in order to investigate the victim before deploying an attack and prepare various
tools for different attack vectors as well.

• Delivery represents a stage for attacker delivering their exploit to the target.
Familiar actions include social engineering attack (e.g., phishing email) or water-
hole attack (i.e., attacker seeks to compromise users by infecting websites or
software that members of target are known to visit) [8].

• Exploitation describes a stage after an attacker’s penetration into a victim. Once a
malware gets inside a targeted organization network, the downloaded malware is
eventually installed and activated. A security channel between the compromised
system and Command and Control (C&C) is created to support future attacks. In
addition, the attacker stealthily continues to collect system information, including
security configurations, installed software versions, and directory listings of
network shared folders.

• Data collection and exfiltration are the stages in which attackers leak and transfer
the collected information to multiple external servers.

In the present scenario, we simply consider the three stages: (1) reconnaissance;
(2) delivery; and (3) exploitation and data collection and exfiltration. To make the
system fail, the attacker can perform critical attacks such as compromising system
components or leaking out confidential information. We combine the last two stages
because an inside attacker can freely perform either compromising any vulnerable
system component based on available information or leaking obtained information
out. For simplicity, we just call the third stage in our category as “exploitation”
which allows the attacker to perform both types of attacks.

4.4.1 Attacker’s Game

The attacker has four types of strategies as attack behaviors but considers a subset
of them depending on the stage it is in. The example four types of attack strategies
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include attacks in each of three stages and a stealthiness attack which does not
perform any attack with a strategic reason not to be detected soon until it gains more
intelligence. To be specific, we assume that an attacker is subjectively rational to
choose its best strategy based on its perception to maximize its HEU by considering
the following strategies where attack strategy i is denoted by ASi :

• AS1: This strategy can be used when an attacker just started to perform attacks
so it is not in a target system yet. Or, it can be applied when an attacker is in
the reconnaissance stage with the purpose of gaining intelligence before it goes
to a next step. This attack strategy is called reconnaissance attack. The attacker
aims to identify a targeted system by scanning its attack surface. In this stage,
the attacker is an outsider and consumes its resources to identify a vulnerable
targeted system.

• AS2: This strategy can be used when an attacker is in the delivery stage with the
success of the reconnaissance attack. This attack strategy is called delivery attack.
In this attack, the attacker aims to successfully deliver the exploit to the targeted
system by performing attacks such as social engineering attacks (e.g., phishing
attacks). The successful outcome of this attack leads the attacker to penetrate into
the system, making it an inside attacker.

• AS3: This strategy can be applied when an attacker is in the exploitation stage.
With this strategy, the attacker stays stealthy in the system not to be detected by
the system (i.e., an IDS). We call this attack stealthiness attack. If a disseminated
patch is real to patch system vulnerabilities, this strategy may have the attacker
lose its chance to launch an attack to compromise vulnerable components or leak
out confidential information. However, if the attacker aims to perform attacks
later and to avoid exposing a risk of being caught by the IDS, it chooses this
strategy.

• AS4: This strategy can be applied when an attacker is in the exploitation
stage. But unlike AS3, the attacker actively performs attacks by compromising
vulnerable components or leaking confidential information out. This attack is
called exploitation attack or the exfiltration attack. If a real patch is disseminated,
the attacker can leverage the defense strategy in order to identify vulnerable
components more easily. However, if a fake patch is disseminated and it is
deceived by the fake patch, it will waste its time or energy to perform their
attacks.

Table 4.1 Attacker’s subgames

Subgame Stage in CKC Attack strategies Defense strategies

1 Reconnaissance AS1, AS2 DS1, DS2, DS3, DS4

2 Delivery AS2, AS3 DS1, DS2, DS3, DS4

3 Exploitation AS3, AS4 DS1, DS2, DS3, DS4
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In this work, we design an attacker’s subgames in terms of which stage an
attacker is in the CKC. In Table 4.1, we summarize what attack strategies an
attacker will consider to deal with types of defense strategies it believes to be taken
by a defender depending on its stage in the CKC. We don’t restrict the types of
defense strategies an attacker considers but restricting only the attack strategies the
attacker can take in terms of feasibility that the strategy can be effective based on
its stage in the CKC. Although the attacker considers all four defense strategies
in its subgames, its belief in whether a particular defense strategy is chosen is
subjectively determined based on its perception. Note that which subgame is played
is determined based on which stage an attacker is located in. In this work, we
consider a dynamic selection of a subgame to be played at time t because the
attacker’s stage in the CKC can change the attacker’s decision on which subgame it
wants to play. That is, each game (i.e., an attacker chooses its best strategy based on
its HEU, while a defender chooses its best strategy based on its HEU) is played at
each time t . Hence, when a certain subgame, say k, is selected, we can say Pk = 1
and the probabilities of all other subgames are set to zero. But at a different time
point, a different subgame may be played by each player.

The attacker’s goal is to maximize its utility where the attacker’s utility
increases with: (1) increasing attack success probability; (2) decreasing attack
cost; and (3) decreasing probability of being detected by the IDS, implying high
stealthiness. The attacker’s utility for j strategy with the defender’s i strategy, cuij ,
considers the gain and loss from the following:

• Whether a given attack strategy j can contribute to attack success by exploiting
system vulnerabilities, denoted by AEU(DSi, j), referring to the attack effect
when a defender takes DSi strategy;

• Whether a chosen strategy exposes high vulnerabilities to be detected by the
IDS, denoted by ASU(DSi, j), indicating the detection vulnerability when DSi

is taken by the defender; and
• How much cost the chosen strategy j incurs, denoted by ACU(DSi, j), which

refers to the attack cost with DSi strategy taken by the defender.

Then, the attacker’s utility, uA
ij , is computed by:

uA
ij =w1

AEU(DSi, j)

umax

+ w2
umax − ASU(DSi, j)

umax

+ w3
umax − ACU(DSi, j)

umax

(4.15)

where w1 +w2 +w3 = 1 and each utility score associated with attack effect, detec-
tion vulnerability, and attack cost ranges over [umin, umax] = [0, 3] as an integer,
where a higher score represents higher degree. Each weight wi is determined based
on attackers’ objectives. Note that we used a weighted form to consider multiple
objectives in this utility function, which is a well-known scalarization multi-
objective optimization function [9]. For the detection vulnerability, ASU(DSi, j), it
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means the degree that an attacker is detected by an IDS. Note that an attacker’s HEU
is computed based on three components: (1) attack utilities when i’s attack strategy
is played under j ’s defense strategy (i.e., uA

ij ’s); (2) the attacker’s belief towards a

defense strategy j (i.e., SA
j as in Eq. 4.11); and (3) the degree of uncertainty, gA,

which is considered based on the attacker’s capability to perceive the security state
of a given system (see Eq. 4.17).

4.4.2 Defender’s Game

A defender is assumed subjectively rational to maximize its HEU based on its
perception towards a given situation and an attacker. In this work, we assume that an
intrusion detection system (IDS) executes continually and can detect any malicious
entities. Additionally, the defender considers a defender strategy, denoted DSi , for
strategy i, as follows:

• DS1: A defender disseminates a fake patch in order to lure an attacker to
a honeypot. This strategy can often be used when the system is not highly
vulnerable so it can more actively protect the system, instead of patching or
changing a platform under more vulnerable states. To this end, the defender
needs to consider cost for building and maintaining the honeypot as the part
of its defense cost. If the attacker recognizes the honeypot as fake, it will not
actively access the targeted system component based on the patch to save its
resource. This defense is to deal with inside attackers in the exploitation stage,
where the attackers are legitimately present within the system and aim to exploit
vulnerabilities of system components.

• DS2: A defender disseminates a real patch when some system components have
vulnerabilities. The vulnerable components (e.g., software vulnerability) must
be patched to mitigate the risk of the vulnerabilities that may be exploited by
attackers. If an attacker believes in this real patch, it may perform a zero-day
attack, which may lead to a certain level of damage (or risk) to the system. If
the attack is successful, the attacker can compromise vulnerable components or
leak out confidential information obtained from the vulnerable target entity to
unauthorized outside attackers.

• DS3: A defender can perform a moving target defense (MTD) technique such as
platform migration by changing operating systems or databases, IP mutation, or
network topology change to affect attack paths, when the system is detected as
more vulnerable. In this work, we consider a platform migration as an MTD. If
this defense strategy is deployed, an attacker’s intelligence collected towards the
given system is wiped out and the attacker needs to start from the reconnaissance
stage.
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Table 4.2 Defender’s subgames

Subgame System security state Defense strategies Attack strategies

1 High (Nh ≥ 90% ∧ No information
leak-out)

DS1, DS4 AS1, AS2, AS3, AS4

2 Mid (80% ≤ Nh < 90% ∧ No
information leak-out)

DS1, DS2, DS3 AS1, AS2, AS3, AS4

3 Low (Nh < 80% ∧ No information
leak-out)

DS2, DS3 AS1, AS2, AS3, AS4

Note: Nh refers to the fraction of healthy system components over the total number of initially
given components. Therefore, even if all compromised components are detected by an IDS, the
loss of available assets is also counted to consider a system failure because it will affect mission
performance capability (e.g., not properly providing normal services or functionalities due to lack
of critical components)

• DS4: If the defense cost is a major concern or the system is secure enough,
a defender may choose not performing any additional defense mechanisms
except running its IDS. During this defense strategy, if a reconnaissance attack
or delivery attack is successful, the system becomes vulnerable, leading to a
compromise of components that have exposed vulnerabilities. Otherwise, the
system can maintain system operations with minimum resource consumption to
ensure security (i.e., running a periodic IDS).

A defender can choose a subgame based on its perceived system security state. As
the system failure conditions are discussed based on two conditions (i.e., either more
than one third of components are compromised or a critical, confidential information
is leaked out), the defender will choose an appropriate action based on its perceived
system state. Table 4.2 summarizes the defender’s subgame depending on its
perceived system state and its corresponding strategies towards attack strategies.
As for the attacker’s subgame, at each time t , the defender will choose a particular
subgame based on its perceived system state. This means that the defender will
choose a particular subgame k with Pk = 1 which implies that other subgames will
not be chosen. But since this game is a repeated game, the defender will choose
a different subgame at a different time point because the system state will keep
changing over time.

The defender’s goal is to maximize the gaps between the ground truth system
state based on defense strategies performed and the system state perceived by
the attacker so that the attacker does not choose its optimal strategies based
on the ground truth system state and accordingly an accurate view towards the
given game. The defender’s utility increases with: (1) increasing system lifetime
(e.g., increasing mean time to security failure, or MTTSF), (2) decreasing system
vulnerabilities, and (3) decreasing defense cost. The defender’s utility for attacker’s
strategy j with defender’s strategy i, uD

ij , is computed based on the following:

• Whether given defense strategy i can contribute to mitigating or preventing
the effect of attack strategy ASj (i.e., attack success), which is denoted by
DEU(ASj , i) and called defense effect;
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• How much given defense strategy i will expose system vulnerabilities upon ASj ,
represented by DSU(ASj , i); and

• How much cost the defense strategy incurs by taking given defense strategy i

upon ASj , denoted by DCU(ASj , i) and it is called defense cost.

Similar to the formulation of the attacker’s utility function, the defender’s utility,
uD

ij , is formulated by:

uD
ij = w1

DEU(ASj , i)

umax

+ w2
umax − DSU(ASj , i)

umax

+ w3
umax − DCU(ASj , i)

umax

(4.16)

where w1 + w2 + w3 = 1 and 0 ≤ wi ≤ 1. Each weight, wi , is determined based
on system objectives and each utility factor is ranged in [umin, umax] = [0, 3] as an
integer where a higher score represents higher degree (Table 4.3).

4.4.3 Estimation of HEUs

In this section, given the scenario described above, we discuss how the HEU of an
attacker or a defender can be estimated by following the key concepts of hypergame
theory. First of all, we need to figure out how to compute the degree of perceived
uncertainty by each player, denoted by g, in Eq. 4.13. In the given example, we
simply estimate the degree of an attacker’s perceived uncertainty, denoted by gA, in
terms of whether an attacker is able to correctly detect a system state or effectively
perform a chosen attack or not. Suppose that given the attacker’s capability, denoted

Table 4.3 Full game in the attack-defense deception game

C0 c01 c02 c03 c04

AS1 AS2 AS3 AS4
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attack

Delivery
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attack
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13) (uA
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(uA
21, u

D
21) (uA

22, u
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22) (uA

23, u
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23) (uA
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(uA
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by Pa , gA is simply estimated by 1 − Pa where Pa can be computed based on
the level of its intelligence that can be useful to perform a planned attack. As an
example, we measure it as a function of the effective monitoring time and estimate
gA by:

gA = 1 − Pa where Pa = e
−1/T A

ef (4.17)

This equation implies that as the effective monitoring time, T A
ef , increases (e.g.,

more monitoring without experiencing any changes of system configuration by
a defender’s MTD triggered or without being caught), the attacker can make
decisions to choose a best strategy with high confidence. Then, the attacker’s high
confidence minimizes its perceived uncertainty. We can similarly model the degree
of a defender’s perceived uncertainty, denoted by gD , and measure it by:

gD = 1 − Pd where Pd = e
−1/T D

ef (4.18)

Here, T D
ef can be captured based on the level of intelligence the defender has gained

towards attack behaviors. For example, T D
ef can be obtained based on how long

the defender has observed attack behaviors or how many anomalous behaviors the
system has detected as intrusions. In Sect. 4.5, we show how to estimate T A

ef and

T D
ef by evaluating the developed SPN model.

To obtain HEU of each player (see Eq. 4.13), each player needs to estimate two
EUs over CΣ and CMSw for a given strategy of a row player (either an attacker
or a defender). To calculate the HEUs, we use the pre-defined utility values (i.e.,
uA

ij ’s and uD
ij ’s) and associated beliefs of the row player towards what strategy

the opponent player will choose to play (i.e., ckj ’s in Eq. 4.11). To distinguish an
attacker’s ckj ’s (i.e., the attacker’s beliefs about which j defense strategy is played
in the attacker’s subgame k) from a defender’s ckj ’s (i.e., the defender’s beliefs about
which j attack strategy is played in the defender’s subgame k), we denote them by
cA
kj ’s and cD

kj ’s, respectively. The default values used for the utilities of the attacker

and defender are shown in Table 4.6. The default values for cA
kj ’s and cD

kj are also
shown in Table 4.7. Again, in the ideal case, we may want to derive these values
dynamically at runtime depending on changes made at a given situation.

An attacker’s HEU (AHEU) is estimated based on Eq. 4.13 and is given by:

AHEU(ASi, gA) = (1 − gA) · EU(ASi, C
A
Σ) + gA · EU(ASi, CMSA

w) (4.19)

where ASi refers to attack strategy i and gA is the degree of perceived uncertainty by
the attacker (see Eq. 4.17). EU(ASi, C

A
Σ) and EU(ASi, CMSA

w) are obtained by:

EU(ASi, C
A
Σ) =

m∑
j

SA
j · uA

ij , EU(ASi, CMSA
w) =

m∑
j

cA
wj · uA

ij . (4.20)

Note that the attacker’s belief towards DSj is SA
j = ∑K

k=0 P A
k cA

kj where P A
k refers

to the probability that an attacker plays subgame k and cA
kj is the attacker’s belief
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that j strategy will be played by a defender under subgame k. CMSA
w is a set of

an attacker’s belief that minimizes its utility based on its chosen strategy and also
corresponding strategies to be played by a defender.

Similarly, a defender’s HEU (DHEU) is obtained based on Eq. 4.13 and is
estimated by:

DHEU(ASi, gA) = (1−gD) ·EU(DSi, C
D
Σ)+gD ·EU(DSi, CMSD

w ) (4.21)

Fig. 4.1 SPN model

where DSi refers to attack strategy i and gD is the degree of perceived uncer-
tainty by the attacker (see Eq. 4.18). EU(DSi, C

D
Σ) and EU(DSi, CMSD

w ) are
obtained by:

EU(DSi, C
D
Σ) =

m∑
j

SD
j · uD

ij , EU(DSi, CMSD
w ) =

m∑
j

cD
wj · uD

ij . (4.22)

Note that the defender’s belief towards ASj is SD
j = ∑K

k=0 P D
k cD

kj where P D
k refers

to the probability that a defender plays subgame k and cD
kj is the defender’s belief

that j strategy will be played by an attacker under subgame k. CMSD
w is a set of

a defender’s belief that minimizes its utility based on its chosen strategy and also
corresponding strategies to be played by an attacker.

4.5 Example Analytical Model Using Stochastic Petri Nets

In this section, we show an example deception game between an attacker and a
defender based on the key concepts of hypergame theory as a case study. As a
modeling tool, we use an analytical model, called Stochastic Petri Nets (SPNs),
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whose underlying model is Markov or Semi-Markov where an event’s arrival
time follows the Poisson process and the inter-arrival time between events is
exponentially distributed. We show the SPN model we developed for the example
scenario of the deception game described in Sect. 4.4. In an SPN model, an oval is
called a “place,” which refers to a system state when a particular event is triggered.
When the place has a token, this means that the system is at a particular state.
A black bar is called “Transition” which indicates a “transition rate” the system
changes from one state to another. This models the time taken for a particular
event to occur. The notation mark(place_name) means the number of tokens in
a particular place with the given place name. Now, we describe each SPN subnet to
describe each event and the impact on a system state when the event occurs. Note
that mark(place_name) refers to the number of tokens in the given place. The
system described in Fig. 4.1 consists of N components which are initialized as the
number of tokens in place SYSCOM . Now, we will discuss how each subset (or
event) occurs in terms of corresponding transition rates and tokens taken from or to
places to describe the proposed game between an attacker and a defender.

Cyber Kill Chain An attacker can be one of the first three stages (i.e., reconnais-
sance, delivery, or exploitation) in the CKC in order to perform an attack. The
number of tokens in place CKC (i.e., mark(CKC)) refers to which stage the
attacker is in where mark(CKC) = 1, 2, or 3 indicates reconnaissance, delivery, or
exploitation stage, respectively. Since the attacker is regarded as an inside attacker
when it is in the exploitation stage (i.e., mark(CKC) == 3), the inside attacker
can perform an attack and its attack behaviors are described below in the Attack
Success event.

Attack Strategy An attacker’s four strategies are modeled by the number of tokens
in place A_ST G where the number of tokens refers to each attack strategy i (i.e.,
i for ASi). The attacker chooses a best strategy based on its estimated maximum
AHEU with the rate T _A_ST G_O as long as it is not caught by an IDS having
0 < mark(CKC) < 4 where mark(CKC) indicates which stage the attacker is in
the CKC. Since the attacker may take a different action depending on the stage it is
in the CKC (i.e., mark(CKC)), in order for a new action to be chosen, the current
action is flushed out by the rate T _A_ST G_I . Note that the attacker’s capability
is closely related to the measure of perceived uncertainty, gA, that affects AHEU

where Pa is captured by e
−1/T A

ef (see Eq. 4.17) where

T A
ef = mark(CKC) + 2 if mark(A_ST G) == 4 ∧ mark(D_ST G) == 2;

(4.23)

T A
ef = 1 if mark(CKC) > 0 ∧ mark(D_ST G) == 3;

T A
ef = mark(CKC) + 1 otherwise.
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Here, the number of tokens in place D_ST G refers to the defense strategy ID i

for DSi where mark(D_ST G) == 2 means that the defender takes DS2 (i.e.,
disseminating a real patch) which allows the attacker to have better intelligence or
leverage the real patch to perform a zero-day attack. mark(D_ST G) == 3 means
that the defender takes DS3 by executing an MTD, which lowers down the attacker’s
capability because its information obtained from the previous reconnaissance
activities is not useful anymore. Note that higher T A

ef indicates a higher capability,
and vice versa.

Defense Strategy Similar to the attack strategies, a defender’s four strategies are
considered in place D_ST G. When the defender chooses a best strategy based on
its estimated maximum DHEU, the number of tokens corresponding to a chosen
strategy’s ID (i.e., i for DSi) goes to D_ST G with the rate T _D_ST G_O. The
defender chooses a new strategy with the rate T _D_ST G_I , taking all tokens in
D_ST G out from place D_ST G. The defender’s DHEU is highly affected by its

perceived uncertainty, gD = 1−Pd where Pd is computed by e
−1/T D

ef (see Eq. 4.18)
where

T D
ef = mark(CKC) + mark(DET ). (4.24)

Similar to T A
ef , higher T D

ef means a better capability for the defender.

Intrusion Detection A given system triggers an IDS periodically with the rate
T _IDS, which contributes the only cost even if the defender chooses the “no
defense” strategy (i.e., DS4). The place DET refers to the number of accumulated
compromised components detected by the IDS. The performance of the IDS is
affected by the false positives incurred by the IDS, Pf n. The IDS can detect either
an inside attacker which is in the stage of exploitation (i.e., mark(CKC) == 3) or
a compromised system component. But, the place DET captures only the number
of compromised components, not the number of tokens in CKC.

Attack Success The considered main two attacks include: (1) the attacker can
compromise a vulnerable system component (or a node in a network) to breach
system integrity and availability; and (2) the attacker can leak out confidential
information to unauthorized parties to breach data integrity and confidentiality. The
system fails when: (1) more than one third of components are compromised or
detected (i.e., 1/3 > (mark(DET ) + mark(COMP))/N , following the concept
of Byzantine Failure [14], where N is the number of initial tokens N in SYSCOM;
or (2) confidential information is leaked out by an attacker or compromised nodes
(i.e., mark(AS) > 0) with the rate T _AP .

The key design parameters, their meanings, and their default values used in this
experiment are summarized in Table 4.4. All the detailed descriptions of transition
rates, their meanings, and their enabling functions (i.e., to set when the transition is
enabled or disabled) in our SPN model are summarized in Table 4.5.



Table 4.4 Key design parameters, their meanings, and their default values

Param. Meaning Value

N Number of components of a system 50

Pv Probability of a given node being vulnerable 0.5

Pf n Probability of incurring false negatives 0.05

Pfp Probability of incurring false positives 0.05

Tas Inter-arrival time of an attacker taking an action 10 s

Tds Inter-arrival time of a defender taking an action 10 s

Tnas Inter-arrival time of an attacker moving to a next action 1 h

Tnds Inter-arrival time of a defender moving to a next action 1 h

Ta Inter-arrival time of an attacker being at a certain stage of the CKC 1 h

Ts Inter-arrival time of an attacker attempting to leak out a confidential
information

1 h

Tc Inter-arrival time of an attacker attempting to compromise a
vulnerable system component

1 h

Td Inter-arrival time of an IDS being triggered 1 h

w1, w2, w2 Weights to consider three aspects of utilities (i.e., effect,
vulnerability, and cost)

0.4, 0.3, 0.3

Table 4.5 Transition names, meanings, rates, and enabling conditions

Name Meaning Rate Enabling conditions

T _AT K Timed transition of an
attacker being at a certain
stage of the CKC

1/Ta Enable when isSF () ==
0 ∧ mark(CKC) < 3;
disable otherwise

T _COM Timed transition of an
attacker compromising a
vulnerable system
component

(Pa · Pv)/Tc Enable isSF () ==
1 ∧ mark(CKC) == 3;
disable otherwise

T _AP Timed transition of an
attacker breaching data
integrity

(Pa · Pv)/Ts Enable when isSF () == 0;
disable otherwise

T _IDS Timed transition of an IDS
being triggered with a given
interval

(1 − Pf n)/Td Enable isSF () ==
0 ∧ (mark(CKC) ==
3 ∨ mark(COMP) > 0);
disable otherwise

T _A_ST G_O Timed transition of an
attacker taking a chosen best
action

1/Tas Disable when isSF () >

0 ∨ mark(AST G) >

0 ∨ mark(CKC) == 0;
enable otherwise

T _A_ST G_I Timed transition of an
attacker preparing to take an
action

1/Tnas Disable isSF () >

0 ∨ mark(A_ST G) == 0;
enable otherwise

T _D_ST G_O Timed transition of a
defender taking a chosen
best action

1/Tds Disable isSF () >

0 ∨ mark(D_ST G) > 0;
enable otherwise

T _D_ST G_I Timed transition of a
defender preparing to take
an action

1/Tnds Disable when isSF () >

0 ∨ mark(D_ST G) == 0;
enable otherwise

Note: isSF () returns 1 when (mark(COMP) + mark(DET )/N > 1/3) ∨ (mark(AS) > 0) ∨
(Ntotal > N) where Ntotal = mark(SYSCOM) + mark(DET ) + mark(COMP) + mark(AS);
0 otherwise. Pa and Pd are obtained from Eqs. 4.17 and 4.18, respectively
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Table 4.6 Attack and defense utility values used for the experiments

uA
ij DS1 DS2 DS3 DS4 uD

ij AS1 AS2 AS3 AS4

AS1 (2, 2, 2) (3, 2, 2) (1, 2, 3) (2, 2, 2) DS1 (3, 1, 2) (3, 1, 2) (3, 0, 2) (3, 1, 2)

AS2 (2, 2, 2) (3, 2, 2) (2, 2, 3) (2, 2, 2) DS2 (2, 1, 2) (2, 1, 2) (2, 0, 2) (2, 3, 2)

AS3 (1, 3, 1) (1, 3, 1) (1, 3, 1) (1, 3, 1) DS3 (3, 0, 3) (3, 0, 3) (3, 0, 3) (3, 1, 3)

AS4 (3, 3, 2) (3, 3, 2) (3, 3, 3) (3, 3, 2) DS4 (0, 2, 1) (0, 2, 1) (0, 0, 1) (0, 2, 1)

Note: uA
ij or uD

ij is estimated (AEU(DSi, j), ASU(DSi, j), ACU(DSi, j)) or (DEU(DSi, j),
DSU(DSi, j), DCU(DSi, j)) as shown in Eqs. 4.15 and 4.16, respectively

Table 4.7 Attack and defense utility values used for the experiments

Subgame k for an Subgame k for a
attacker cA

k1 cA
k2 cA

k3 cA
k4 defender cD

k1 cD
k2 cD

k3 cD
k4

1 0.25 0.25 0.25 0.25 1 0.6 0.2 0.1 0.1

2 0.1 0.3 0.4 0.2 2 0.3 0.3 0.1 0.3

3 0.4 0.2 0.4 0 3 0.1 0.2 0.1 0.6

Note: cA
kj ’s or cD

kj ’s are the beliefs of each party (either an attacker or a defender) about which
strategy will be played by the opposite player in given subgame k, respectively

The utilities an attacker or a defender perceives at a given situation substantially
affect each player’s decision-making process. Also, how the attacker or the defender
perceives a given situation, such as what strategy an opponent player will choose
(i.e., cA

kj ’s or cD
kj ), is critical to estimating their corresponding HEU (i.e., AHEU or

DHEU). However, to show simple example trends observed based on our proposed
SPN model, we assume that those utilities (i.e., uA

ij ’s, uD
ij ’s) and the corresponding

beliefs (i.e., cA
kj ’s, cD

kj ’s) are given as static, as summarized in Tables 4.4 and
4.7, respectively. How to obtain the utilities and beliefs dynamically using other
learning techniques (e.g., machine learning or belief models) should be discussed in
a separate work.

We consider two metrics to capture the performance by a defender and an
attacker. The performance of the defender is obtained by MTTSF, measuring
the mean time to security failure, which is defined based on isSF (). MTTSF is
measured by:

MT T SF =
∑
i∈S

ri

∞∫

t=0

Pi(t)dt (4.25)
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Fig. 4.2 Errors in system security states as perceived by the attacker and the defender

Fig. 4.3 (a) Attacker’s strategies, (b) AHEUs, and (c) attack success probability (PAS )

where S denotes the set of all states, ri (reward) is 1 for the absorbing states having
isSF () == 0 and 0 for isSF () > 0, and Pi(t) is the probability of state i at time t .

The performance of the attacker is measured based on the attack success
probability (ASP) which is obtained in the developed SPN model by:

PAS =
∑

i∈S SFi

∫ ∞
t=0 Pi(t)dt

MT T SF
(4.26)

where S denotes the set of all states i’s, SFi (reward) is set to 1 for isSF () > 0 (see
Table 4.5), and Pi(t) is the probability of state i at time t .
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Fig. 4.4 (a) Defender’s strategies, (b) DHEUs, and (c) MTTSF

4.6 Experiments and Discussion

In this section, we present our experimental findings based on the evaluation of the
developed SPN model and discuss overall trends observed and key insights obtained
from this case study.

System Security States Perceived by an Attacker and a Defender and Their
Ground Truth Figure 4.2 shows the errors that are introduced by estimating
the difference between the ground truth system view and the view by either an
attacker or a defender over time, respectively. The system security state (SS) is
captured based on the number of healthy components over the total number of the
components initially given (i.e., mark(SYSCOM)/N ). How to perceive the SS
by the attacker or the defender is affected by its respective capability to detect the
ground truth information. As discussed in Eqs. 4.17 and 4.18, their abilities to detect
the ground truth SS are affected by how long they have made effective monitoring to
detect the behaviors of the opponent player, which were considered in deriving their
capabilities, Pa and Pd , respectively. As shown in Fig. 4.2, both the attacker and the
defender are evolving their abilities to accurately detect the SS (i.e., showing lower
differences).

Attacker’s Strategies, AHEUs, and Attack Success Figure 4.3 shows the
attacker’s chosen strategy and the corresponding AHEU. Figure 4.3a shows the
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probabilities that each attack strategy is chosen by the attacker over time. For the
attacker, AS1 and AS3 are not attractive because they do not yield better utilities
than AS2 and AS4. In particular, when the attacker is in the reconnaissance stage,
it always prefers trying delivering an attack to penetrate into the system, instead
of taking more time in scanning the system surface because it won’t be able to
use all the collected information if the defender chooses an MTD (i.e., DS3). In
addition, when the attacker is in the stage of exploitation, instead of performing
passive attack by being stealthy without performing any attacks, it always tries to
access any patch disseminated and tries to penetrate into any vulnerable system
component. Over time, since the attacker is more likely to be in the exploitation
stage, AS4 is even more preferred than AS3. Figure 4.3b shows AHEU for each
attack strategy and the AHEU obtained by the chosen strategy. It is obvious that the
chosen strategy is not the best strategy based on the ground truth AHEUs by other
strategies. This is because the attacker is limited in its perception due to its inability
to perceive all the ground truth. Hence, its decision is not optimal, which is natural
because the attacker is distracted by the defender’s deception or MTD strategies
(i.e., DS1 or DS3), aiming to increase confusion or uncertainty for the attacker.
Lastly, in Fig. 4.3c, we simply varied the probability that a system component (or a
node) is vulnerable, denoted by Pv , from 0.3 to 0.7 with 0.1 increment. It is natural
to observe higher PAS as Pv increases.

Defender’s Strategies, DHEUs, and MTTSF Figure 4.4 shows the defender’s
best strategy chosen and the corresponding DHEU. Figure 4.4a shows the prob-
abilities that the defender chooses each strategy over time. Overall, DS1 (i.e.,
disseminating a fake path as a deception technique) is the most favorable because
it has high effect with less cost. The second most favorable strategy is DS3 (i.e.,
triggering an MTD) because it is highly effective although it incurs high cost. DS2
(i.e., disseminating a real patch) is favored in the beginning while it is not chosen
anymore over time because the defender chooses DS3 more due to its higher utility
when the system becomes more vulnerable. Obviously, DS4 is not attractive at all
because it won’t protect the system sufficiently although it incurs minimum cost
(i.e., cost to trigger an IDS). This trend is well-explained in Fig. 4.4b, as DS1
shows the highest DHEU. The chosen strategy generates the second highest HEU
compared to the highest (i.e., DS1) because the defender’s perception is not perfect
as well as the defender restricts its available strategies based on its own prior belief
under a given subgame (i.e., cD

kj in Table 4.7). Similar to PAS , when Pv varies from
0.3 to 0.7 with 0.1 increment, we observe that MTTSF decreases as Pv increases.

4.7 Conclusion

In this chapter, we studied the key concepts of hypergame theory and how those
can be used to model an attack-defense game which considers subjective beliefs
and perceptions (or misperception) of each player in a given dynamic situation
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where a defender uses deception techniques as one of the strategies to increase
uncertainty for an attacker. We discussed how each player’s decision utility can
be estimated based on hypergame theory and how its uncertainty can significantly
affect its expected utility. In addition, we showed an example modeling study based
on Stochastic Petri Nets, which enables us to model the proposed deception game
and to capture necessary measures and metrics in order to observe the behaviors of
the attacker and the defender. We hope this work can provide guidance in modeling
and analyzing realistic attack-defense games where various types of uncertainty
exist in real-world situations. Utilities by each player are critical to making best
decisions. How to determine or capture dynamically changing utilities and each
player’s beliefs towards an opponent’s strategy is vital and should be investigated
further in order to advance the techniques of game-theoretic modeling and analysis.

4.8 Exercise Problems

1. Discuss how hypergame theory, conventional game theory, and decision theory
differ from each other. In particular, discuss the differences in terms of the
perceived uncertainty by each player (refer to Eqs. 4.17 and 4.18).

2. Answer the following questions based on our example attack-defense game sce-
nario in Sect. 4.4. The attacker is in the exploitation stage (i.e., mark(CKC) =
3). The system security state perceived by the defender is 0.95. The IDS has
detected 5 system components as compromised (i.e., mark(DET ) = 5). The
questions are: (1) What are the uncertainty levels perceived by the attacker and
the defender (i.e., gA, gD), respectively? (2) Which subgame will be played by
the attacker or the defender, respectively? (3) What is the respective hypergame
expected utility of the attacker and the defender (i.e., AHEU and DHEU)?

3. In the example attack-defense game scenario in Sect. 4.4, the defender’s fourth
strategy, DS4, means that the defender does not perform any defense operation
except running the IDS. We simply considered no utility gained from DS4 in
terms of its effect. This is shown in the fourth row in uD

ij of Table 4.6 where the
first elements in each vector with three utilities are set to zeros (i.e., (0, 2, 1),
(0, 2, 1), (0, 0, 1), (0, 2, 1)). But considering the effect of the IDS running
periodically, if we change it to 1 (i.e., (1, 2, 1), (1, 2, 1), (1, 0, 1), (1, 2, 1)),
how does the defender’s choice of its best strategy change when the defender
perceives that the system state is 92% secure?

4. In the example attack-defense game scenario in Sect. 4.4, the attacker’s view is
fairly conservative about the defender’s strategy in that there will be a higher level
of defense if it performs active attacks. This trend is reflected in the attacker’s
beliefs towards which defense strategy j will be played under subgame k (i.e.,
cA
kj in Table 4.7). Now, let’s change the attacker’s beliefs in a more optimistic

way. The attacker believes that the system is vulnerable, but the defender may not
necessarily run any additional defense mechanisms except the IDS. To reflect the
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changes in the attacker’s belief, let’s change cA
kj for the attacker’s subgame 3 (i.e.,

the last row of cA
kj in Table 4.7) from (0.4, 0.2, 0.4, 0) to (0, 0.4, 0.2, 0.4). How

does this change in the subgame affect the attacker’s HEU and its best strategy
to choose?
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Chapter 5
Dynamic Bayesian Games
for Adversarial and Defensive Cyber
Deception

Linan Huang and Quanyan Zhu

Abstract Security challenges accompany the efficiency. The pervasive integration
of information and communications technologies (ICTs) makes cyber-physical
systems vulnerable to targeted attacks that are deceptive, persistent, adaptive, and
strategic. Attack instances such as Stuxnet, Dyn, and WannaCry ransomware have
shown the insufficiency of off-the-shelf defensive methods including the firewall
and intrusion detection systems. Hence, it is essential to design up-to-date security
mechanisms that can mitigate the risks despite the successful infiltration and the
strategic response of sophisticated attackers.

In this chapter, we use game theory to model competitive interactions between
defenders and attackers. First, we use the static Bayesian game to capture the
stealthy and deceptive characteristics of the attacker. A random variable called
the type characterizes users’ essences and objectives, e.g., a legitimate user or an
attacker. The realization of the user’s type is private information due to the cyber
deception. Then, we extend the one-shot simultaneous interaction into the one-shot
interaction with asymmetric information structure, i.e., the signaling game. Finally,
we investigate the multi-stage transition under a case study of Advanced Persistent
Threats (APTs) and Tennessee Eastman (TE) process. Two-sided incomplete infor-
mation is introduced because the defender can adopt defensive deception techniques
such as honeyfiles and honeypots to create sufficient amount of uncertainties for
the attacker. Throughout this chapter, the analysis of the Nash equilibrium (NE),
Bayesian Nash equilibrium (BNE), and perfect Bayesian Nash equilibrium (PBNE)
enables the policy prediction of the adversary and the design of proactive and
strategic defenses to deter attackers and mitigate losses.

Keywords Bayesian games · Multi-stage transitions · Advanced Persistent
Threats (APTs) · Cyber deception · Proactive and strategic defense
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5.1 Introduction

The operation of the modern society intensively relies on the Internet services and
information and communications technologies (ICTs). Cybersecurity has been an
increasing concern as a result of the pervasive integration of ICTs as witnessed
in Fig. 5.1. Every peak of the yellow line corresponds to a cyberattack1 and both
the frequency and the magnitude which represents the scope of influence have
increased, especially in recent years. For example, the Domain Name System (DNS)
provider Dyn has become the targeted victim of the multiple distributed denial-
of-service (DDoS) attacks in October 2016. The Mirai malware has turned a large
number of IoT devices such as printers and IP cameras to bots and causes an estimate
of 1.2 Tbps network flow. More recently in May 2017, the WannaCry ransomware
has attacked more than 200,000 computers across 150 countries, with total damages
up to billions of dollars.

One way to contend with the cyberattacks is for the defenders to set up firewalls
with pre-defined rules to prevent their internal network from the untrustworthy
network traffic. Moreover, defenders can use intrusion detection systems [3] to
detect a suspected malicious activity when an intrusion penetrates the system.
These defensive methods are useful in deterring naive attacks up to certain degree.
However, the unequal status between the attacker and the defender naturally gives
the attacker an advantage in the game. An attacker succeeds by knowing and
exploiting one zero-day vulnerability, while a defender can be successful only
when he can defend against all attacks. Moreover, attacks evolve to be increasingly
sophisticated and can easily challenge the traditional defense mechanisms, i.e.,
intrusion prevention, detection, and response.

DynDyn

WannaCry
Ransomware
WannaCry
RansomwareSony Picture HackSony Picture Hack

National Cyber Security 
Awareness Month
National Cyber Security 
Awareness Month

Fig. 5.1 The search results of three keywords, i.e., the cybersecurity (in blue), the cyber deception
(in red), and the cyberattack (in yellow) in the USA from Jan. 2004 to Aug. 2018 via the Google
Trends. Compared with the blue and yellow line, the cyber deception which endows attackers
an information advantage over the defender requires more investigations. Numbers on the y-axis
represent the search frequency normalized with respect to the highest point on the chart for the
given region and time. A value of 100 is the peak popularity

1https://en.wikipedia.org/wiki/List_of_cyberattacks.

https://en.wikipedia.org/wiki/List_of_cyberattacks
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Cyber deception is one way to evade the detection [14, 21, 32]. As defined in
[16], the deception is either the prevention from a true belief or a formulation of
a false belief. In the cybersecurity setting, the first type of deception corresponds
to a stealthy attack where the virus can behave to be legitimate apparently and
remain undetected. For example, if a strategic attacker knows the pre-defined rules
of the firewalls or the rule-based intrusion detection system, they can adapt their
behaviors to avoid triggering the alarm. In the second type, for example, hackers can
launch “sacrificial attacks” to trick the defender into a false belief that all viruses
have been detected and repelled [6]. The adversarial cyber deception introduces
the information asymmetry and poses attackers in a favorable position. A defender
is analogous to a blind person who competes with a sighted attacker in a well-
illuminated room.

To tilt the information asymmetry, the defender can be reactive, i.e., continuously
consummates the intrusion prevention and detection system capable of stealthy
and deceptive attacks. This costly method is analogous to curing the blindness.
Defensive deception, however, provides an alternative to the costly rectifications of
the system by deliberately and proactively introducing uncertainties into the system,
i.e., private information unknown to the attacker. This proactive method is analogous
to turning off the light and providing every participant, especially the attacker with
sufficient amount of uncertainties. For example, a system can include honeypots
that contain no information or resource of value for the attackers. However, the
defender can make the honeypot indistinguishable from the real systems by faking
communication and network traffic. Since a legitimate user should not access the
honeypot, the activities in the honeypot reveal the existence as well as characteristics
of that attack.

The cyberattacks and defenses are the spear and shield, the existence of attackers
motivates the development of defensive technologies, which in turn stimulates
advanced attacks that are strategic, deceptive, and persistent. In this chapter, we
model these competitive interactions using game theory ranging from complete to
incomplete information, static to multi-stage transition, and symmetric to asymmet-
ric information structures.

5.1.1 Literature

Deception and its modeling are emerging areas of research. The survey [20]
provides a taxonomy that defines six types of defensive deception: perturbation via
external noises, moving target defense (MTD), obfuscation via revealing useless
information, mixing via exchange systems, honey-x, and the attacker engagement
that uses feedback to influence attackers dynamically. MTD [13] can limit the
effectiveness of the attacker’s reconnaissance by manipulating the attack surface
of the network. The authors in [29] combine information—and control—theory to
design an optimal MTD mechanism based on a feedback information structure while
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[15, 17] use the Markov chain to model the MTD process and discuss the optimal
strategy to balance the defensive benefit and the network service quality.

Game-theoretic models are natural frameworks to capture the adversarial and
defensive interactions between players [7, 9, 10, 18, 19, 25, 28, 30–32]. There are
two perspectives to deal with the incomplete information under the game-theoretic
setting, i.e., the robust game theory [1] that conservatively considers the worst-case
and the Bayesian game model [8] that introduces a random variable called the type
and the concept of Bayesian strategies and equilibrium. Signaling game, a two-stage
game with one-sided incomplete information has been widely applied to different
cybersecurity scenarios. For example, [32] considers a multiple-period signaling
game in the attacker–defender resource allocation. The authors in [22] combine the
signaling game with an external detector to provide probabilistic warnings when
the sender acts deceptively. The recent work of [12] has proposed a multi-stage
Bayesian game with two-sided incomplete information that well-characterizes the
composite attacks that are advanced, persistent, deceptive, and adaptive. A dynamic
belief update and long-term statistical optimal defensive policies are proposed to
mitigate the loss and deter the adversarial users.

5.1.2 Notation

In this chapter, the pronoun “he” refers to the user denoted by P2, and “she” refers
to the defender as P1. Calligraphic fonts such as A represent a set. For i ∈ I ,
notation “−i” means I \{i}. Take I := {1, 2} as an example, if i = 1, then −i = 2.
If A is a finite set, then we let �A represent the set of probability distributions over
A , i.e., �A := {p : A �→ R+|∑a∈A p(a) = 1}.

5.2 Static Game with Complete Information for
Cybersecurity

Game theory has been applied to cybersecurity problems [4, 18, 21, 23, 24, 27, 28]
to capture quantitatively the interaction between different “players” including the
system operator, legitimate users, and malicious hackers. As a baseline security
game, the bi-matrix game focuses on two non-cooperative players, i.e., an attacker
P2 aiming at compromising the system and a defender P1 who tries to prevent
systems from adverse consequences, mitigate the loss under attacks, and recover
quickly and thoroughly to the normal operation after the virus’ removal.

Each player Pi, i ∈ {1, 2} can choose an action ai from a finite set Ai and
mi := |Ai | is the number of actions Pi can choose from. The value of the utility
Ji(a1, a2) ∈ Rm1×m2 for each player i depends collectively on both players’ actions
as shown in Table 5.1. As stated in the introduction, targeted attacks can investigate
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the system thoroughly, exploit vulnerabilities, and obtain the information on the
security settings including the value of assets and possible defensive actions. Thus,
the baseline game with complete information assumes that both players are aware
of the other player’s existence, action sets, and payoff matrices. However, each
player will not know the other player’s action before making his/her decision.
Example 5.1 considers a nonzero-sum complete-information security game where
the attacker and the defender have conflicting objectives, i.e., ∃a1 ∈ A1, a2 ∈
A2, J1(a1, a2) + J2(a1, a2) �= 0. For scenarios where the defender does not know
the utility of the attacker, she can assume J2(a1, a2) = −J1(a1, a2),∀a1 ∈
A1, a2 ∈ A2 and use the zero-sum game to provide a useful worst-case
analysis.

Table 5.1 Utility bi-matrix (J1, J2) of the static secure game, i.e., J1 = [0,−r1; 0, r3], J2 =
[0, r2; 0,−r4]. P1 is the row player and P2 is the column player. Both players are rational and aim
to maximize their own payoffs

P1 \ P2 NOP Escalate

Permit (0, 0) (−r1, r2)

Restrict (0, 0) (r3,−r4)

Example 5.1 Consider the game in Table 5.1. Attacker P2 can either choose action
a2 = 1 to escalate his privilege in accessing the system or choose No Operation
Performed (NOP) a2 = 0. Defender P1 can either choose to restrict a1 = 1 or allow
a1 = 0 a privilege escalation. The value in the brackets (·, ·) represents the utility
for P1, P2 under the corresponding action pair, e.g., if the attacker escalates his
privilege and the defender chooses to allow an escalation, then P2 obtains a reward
of r2 > 0 and P1 receives a loss of r1 > 0. In this example, no dominant (pure)-
strategies exist for both players to maximize their utilities, i.e., each player’s optimal
action choice depends on the other player’s choice. For example, P1 prefers to allow
an escalation only when P2 chooses the action NOP; otherwise P1 prefers to restrict
an escalation. The above observation motivates the introduction of the mixed-
strategy in Definition 5.1 and the concept of Nash equilibrium in Definition 5.2
where any unilateral deviation from the equilibrium does not benefit the deviating
player. ��
Definition 5.1 A mixed-strategy σi ∈ �Ai for Pi is a probability distribution on
his/her action set Ai . ��
Denote σi(ai) as Pi’s probability of taking action ai , then

∑
ai∈Ai

σi(ai) =
1,∀i ∈ {1, 2} and σi(ai) ≥ 0,∀i ∈ {1, 2}, ai ∈ Ai . Once player Pi has
determined strategy σi , the action ai will be a realization of the strategy. Hence,
each player Pi under the mixed-strategy has the objective to maximize the expected
utility

∑
a1∈A1

∑
a2∈A2

σ1(a1)σ2(a2)J1(a1, a2). Note that the concept of the mixed-
strategy includes the pure-strategy as a degenerate case.



80 L. Huang and Q. Zhu

Definition 5.2 A pair of mixed-strategy (σ ∗
1 , σ ∗

2 ) is said to constitute a (mixed-
strategy) Nash equilibrium (NE) if for all σ1 ∈ �A1, σ2 ∈ �A2,

∑
a1∈A1

∑
a2∈A2

σ ∗
1 (a1)σ

∗
2 (a2)J1(a1, a2) ≥

∑
a1∈A1

∑
a2∈A2

σ1(a1)σ
∗
2 (a2)J1(a1, a2),

∑
a1∈A1

∑
a2∈A2

σ ∗
1 (a1)σ

∗
2 (a2)J1(a1, a2) ≥

∑
a1∈A1

∑
a2∈A2

σ ∗
1 (a1)σ2(a2)J1(a1, a2).

��
In a finite static game with complete information, the mixed-strategy Nash equilib-
rium always exists. Thus, we can compute the equilibrium which may not be unique
via the following system of equations:

σ ∗
1 ∈ arg max

σ1

∑
a1∈A1

∑
a2∈A2

σ1(a1)σ
∗
2 (a2)J1(a1, a2),

σ ∗
2 ∈ arg max

σ2

∑
a1∈A1

∑
a2∈A2

σ ∗
1 (a1)σ2(a2)J1(a1, a2).

The static game model and equilibrium analysis are useful in the cybersecurity
setting because of the following reasons. First, the strategic model quantitatively
captures the competitive interaction between the hacker and the system defender.
Second, the NE provides a prediction of the security outcomes of the scenario which
the game model captures. Third, the probabilistic defenses suppress the probability
of adversarial actions and thus mitigate the expected economic loss. Finally, the
analysis of the equilibrium motivates an optimal security mechanism design which
can shift the equilibrium towards ones that are favored by the defender via an
elaborate design of the game structure.

5.3 Static Games with Incomplete Information for Cyber
Deception

The primary restrictive assumption for the baseline security game is that all
game settings including the action sets and the payoff matrices are of complete
information to the players. However, the deceptive and stealthy nature of advanced
attackers makes it challenging for the defender to identify the nature of the malware
accurately at all time. Even the up-to-date intrusion detection system has the
false alarms and misses that can be fully characterized by a receiver operating
characteristic (ROC) curve plotted with the true positive rate (TPR) against the false
positive rate (FPR). To capture the uncertainty caused by the cyber deception, we
introduce a random variable called the type to model the possible scenario variations
as shown in Example 5.2.
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Table 5.2 Utility bi-matrix when user P2 is either adversarial θ2 = θb or legitimate θ2 = θg

θ2 = θb NOP Escalate

Permit (0, 0) (−r2, r2)

Restrict (0, 0) (r0,−r0)

θ2 = θg NOP Escalate

Permit (0, 0) (r1, r1)

Restrict (0, 0) (−r1,−r1)

Example 5.2 Consider the following static Bayesian game where we use two
discrete values of the type θ2 ∈ Θ2 := {θb, θg} to distinguish the user P2 as either an
attacker θ2 = θb or a legitimate user θ2 = θg . The attacker can camouflage to be a
legitimate user and possess the same action set A2, e.g., both attacker and legitimate
can request to escalate the privilege a2 = 1. However, since they are of different
types, the introduced utilities J̄i (a1, a2, θ2), i ∈ {1, 2} are different under the same
action pair(a1, a2) as shown in Table 5.2. For example, the privilege escalation has
a positive effect on the system when the user P2 is legitimate, yet will harm the
system when P2 is an attacker. Since the defender does not know the type of the
user due to the cyber deception, we extend the Nash equilibrium analysis of the
complete-information game to Bayesian Nash equilibrium in Definition 5.3 to deal
with the type uncertainty. Since P2 knows his type value to be either θg or θb, his
mixed-strategy σ̄2 : Θ2 �→ �A2 should be a function of his type value. Thus, with
a slight abuse of notation, σ̄2(a2, θ2) ≥ 0,∀a2 ∈ A2,∀θ2 ∈ Θ2 is the probability of
taking action a2 under the type value θ2. Clearly, the mixed-strategy is a probability
measure, i.e.,

∑
a2∈A2

σ̄2(a2, θ2) = 1,∀θ2 ∈ Θ2. Suppose that P1 manages to

know the probability distribution of the type b0
1 ∈ �Θ2, e.g., defender P1 believes

with probability b0
1(θ

g) that user P2 is of a legitimate type and b0
1(θ

b) that P2 is
of an adversarial type. Similarly, we have

∑
θ2∈Θ2

b0
1(θ2) = 1 and b0

1(θ2) ≥ 0,∀
θ2 ∈ Θ2. ��
Definition 5.3 A pair of mixed-strategy (σ ∗

1 , σ̄ ∗
2 (·)) is said to constitute a (one-

sided) mixed-strategy Bayesian Nash equilibrium (BNE) if

∑
θ2∈Θ2

b0
1(θ2)

∑
a1∈A1

∑
a2∈A2

σ ∗
1 (a1)σ̄

∗
2 (a2, θ2)J̄1(a1, a2, θ2) ≥

∑
θ2∈Θ2

b0
1(θ2)

∑
a1∈A1

∑
a2∈A2

σ1(a1)σ̄
∗
2 (a2, θ2)J̄1(a1, a2, θ2),∀σ1(·).

and

∑
a1∈A1

∑
a2∈A2

σ ∗
1 (a1)σ̄

∗
2 (a2, θ2)J̄2(a1, a2, θ2) ≥

∑
a1∈A1

∑
a2∈A2

σ ∗
1 (a1)σ̄2(a2, θ2)J̄2(a1, a2, θ2),∀θ2 ∈ Θ2,∀σ̄2(·, θ2).

��
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Note that the binary type space Θ2 can easily extend to finitely many elements to
model different kinds of legitimate users and hackers who bear diverse type-related
payoff functions. Since the type distinguishes different users and characterizes
their essential attributes, the type space can also be a continuum and interpreted
as a normalized measure of damages or the threat level to the system [11].
Moreover, the defender P1 can also have a type θ1 ∈ Θ1, which forms a
static version of the two-sided dynamic Bayesian game as shown in Sect. 5.4.2.
Theorem 5.1 guarantees the existence of BNE regardless of extensions mentioned
above.

Theorem 5.1 A mixed-strategy BNE exists for a static Bayesian game with a finite
type space. For games with a continuous type space and a continuous strategy
space, if strategy sets and type sets are compact, payoff functions are continuous
and concave in players’ own strategies, then a pure-strategy BNE exists.

5.4 Dynamic Bayesian Game for Deception and
Counter-Deception

Followed from the above static Bayesian game with one-sided incomplete infor-
mation, we investigate two types of dynamic games for cyber deception and
counter-deception. The signaling game is two-stage and only the receiver has the
incomplete information of the sender’s type. The two-sided dynamic Bayesian game
with a multi-stage state transition in Sect. 5.4.2 can be viewed as an extension of the
signaling game. The solution concept in this section extends the BNE to the perfect
Bayesian Nash equilibrium (PBNE).

5.4.1 Signaling Game for Cyber Deception

We illustrate the procedure of the signaling game as follows:

• An external player called the Nature draws a type θ2 from a set Θ2 :=
{θ1, θ2, · · · , θI } according to a given probability distribution b0

1 ∈ �Θ2 where
b0

1(θ
i) ≥ 0,∀i ∈ {1, 2, · · · , I } and

∑I
i=1 b0

1(θ
i) = 1.

• The user P2 (called the sender) observes the type value θ2 and then chooses an
action a2 (called a message) from a finite set of message space A2.

• The defender P1 (called the receiver) observes the action a2 and then chooses her
action a1 ∈ A1.

• Payoffs (J̄1(a1, a2, θ2), J̄2(a1, a2, θ2)) are given to the sender and receiver,
respectively.
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5.4.1.1 Belief Formulation

Since the receiver P1 has incomplete information about the sender’s type, she will
form a belief b1

1 : A2 �→ �Θ2 on the type θ2 based on the observation of the
sender’s message a2. As a measure of the conditional probability, the belief b1

1
satisfies b1

1(θ
i |a2) ≥ 0,∀i ∈ {1, 2, · · · , I },∀a2 ∈ A2 and

∑
θ2∈Θ2

b1
1(θ2|a2) :=∑I

i=1 b1
1(θ

i |a2) = 1,∀a2 ∈ A2.

5.4.1.2 Receiver’s Problem

For every received message a2, receiver P1 aims to optimize her expected payoffs
under her belief b1

1(·|a2), that is:

max
a1∈A1

∑
θ2∈Θ2

b1
1(θ2|a2)J̄1(a1, a2, θ2). (5.1)

As a result, the receiver’s (pure)-strategy is given by the mapping â1 : A2 �→ A1.
Thus, the receive P1’s action is the outcome of the mapping, i.e., a1 = â1(a2).

5.4.1.3 Sender’s Problem

For every type θ2 ∈ Θ2 that the Nature picks for P2, sender P2 should pick a
message a2 ∈ A2 that maximizes the following utility with the anticipation of
receiver’s action a1 = â1(a2), that is:

max
a2∈A2

J̄2(â1(a2), a2, θ2). (5.2)

Hence, the sender’s (pure)-strategy is given by the mapping ā2 : Θ2 �→ A2 and P2’s
action under the type value θ2 is a2 = ā2(θ2). The sender’s strategy ā2 is called a
pooling strategy if he chooses the same message a2 independent of the type given
by the Nature, and is called a separating strategy if the mapping ā2 is injective. For
all other feasible mappings, ā2 is called a semi-separating strategy.

5.4.1.4 Mixed-Strategy Receiver and Sender’s Problem

We can extend the pure-strategy to the mixed-strategy σ̂1 : A2 �→ �A1 for receiver
P1 and the same σ̄2 : Θ2 �→ �A2 defined in Sect. 5.3 for sender P2. After
observing sender’s message a2 as a realization of the mix-strategy σ̄2, receiver
P1 assigns probability σ̂1(a1, a2) to her action a1 with the feasibility constraint
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∑
a1∈A1

σ̂1(a1, a2) = 1,∀a2 ∈ A2 and σ̂1(a1, a2) ≥ 0,∀a1 ∈ A1, a2 ∈ A2. The
expected objective functions for both players under the mixed-strategy are defined
as follows:

max
σ̂1(·)

∑
θ2∈Θ2

b1
1(θ2|a2)

∑
a1∈A1

σ̂1(a1, a2)J̄1(a1, a2, θ2),∀a2 ∈ A2.

max
σ̄2(·)

∑
a1∈A1

σ̂1(a1, a2)
∑

a2∈A2

σ̄2(a2, θ2)J̄2(a1, a2, θ2),∀θ2 ∈ Θ2.

(5.3)

5.4.1.5 Belief Consistency

Since the message a2 is a function of the type θ2, the observation of the message
should reveal some information of the type. Thus, the receiver updates the initial
belief b0

1(·) to form the posterior belief b1
1(·|a2) via the Bayesian rule:

b1
1(θ2|a2) = b0

1(θ2)σ̄2(a2|θ2)∑
θ2∈Θ2

b0
1(θ2)σ̄2(a2|θ2)

, if
∑

θ2∈Θ2

b0
1(θ2)σ̄2(a2|θ2) > 0,

b1
1(θ2|a2) = any probability distributions, if

∑
θ2∈Θ2

b0
1(θ2)σ̄2(a2|θ2) = 0.

(5.4)

Serving as a particular case, the receiver and the sender’s problem under the pure-
strategy should also satisfy the Bayesian update of the belief. Note that although
P1 can observe the message a2 which is a realization of σ̄2, she cannot directly
update her belief via (5.4) if the signaling game is only played once. However, (5.4)
contributes to the PBNE of the signaling game in Definition 5.4, serving as the belief
consistency constraint.

Definition 5.4 A pure-strategy perfect Bayesian Nash equilibrium of the signaling
game is a pair of strategies (â∗

1 , ā∗
2) and belief b

1,∗
1 that satisfy (5.1), (5.2), and (5.4).

A mixed-strategy perfect Bayesian Nash equilibrium of the signaling game is a pair
of strategies (σ̂ ∗

1 , σ̄ ∗
2 ) and belief b

1,∗
1 that satisfy (5.3) and (5.4). ��

The reader may already realize that we can use signaling game to model the same
cyber deception scenario in Example 5.2 only with the difference of the asymmetric
information structure, i.e., the defender P1 has a chance to observe the behavior
of the user P2 before making her decision. The information asymmetry results
in the following changes. First, P1’s mixed-strategy σ̂1(a2) is a function of her
observation, i.e., P2’s action a2. Second, instead of directly taking an expectation
over the initial belief b0

1, defender P1 obtains a posterior belief b1
1 that is consistent

with the new observation a2. Third, the type of belief can affect the PBNE even
under the cheap-talk setting when utilities of both players are independent of the
message. Finally, if there is only one type with a known b0

1, which means that the
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type value becomes common knowledge, the signaling game becomes a Stackelberg
game with leader P2 and follower P1.

5.4.2 Multi-stage with Two-Sided Incomplete Information

The deceptive techniques adopted by the attacker make it challenging for the
defender to correctly identify the type of the user even observing the manifested
behavior as shown in Example 5.2. To tilt the information asymmetry, we can
either continue to develop the intrusion detection system to increase the TPR with
decreased FPR or refer to defensive deception techniques to create a sufficient
amount of uncertainties for the attackers. Use of defensive and active deception
as a counter-deception technique will disorient and slow down the adversarial
infiltration because attackers have to judge the target’s type, i.e., whether it is a real
valuable production system or a well-pretended honeypot. Therefore, we introduce
a two-sided incomplete information Bayesian game model with a multi-stage state
transition for advanced attacks such as Advanced Persistent Threats (APTs) which
infiltrate stage by stage.

5.4.2.1 Two-Sided Private Types

This section discusses the scenarios where not only the user P2 has a type the
defender P1 also has a private type θ1 ∈ Θ1 to distinguish a system’s different levels
of sophistication and security awareness. For example, the defender’s type space
can be binary Θ1 := {θH , θL} where θH represents a defender who is well-trained
with a high-security awareness and also supported by advanced virus detection and
analysis systems. Thus, she may refer to the log file with a higher frequency and
more likely to obtain valuable information through the behavior analysis. Thus, once
the attacker requests for privilege escalation and P1 restricts and inspects the log file,
a higher reward and a higher penalty are introduced under a high-type defender θH

than a low-type defender θL, i.e., r0 = r3 · 1θL + r4 · 1θH where r4 > r3 > 0 as
shown in Table 5.3.

Table 5.3 Utility bi-matrix when user P2 is either adversarial θ2 = θb or legitimate θ2 = θg and
defender P1 is either of high type θ1 = θH or of low type θ1 = θL

θ2 = θb NOP Escalate

Permit (0, 0) (−r2, r2)

Restrict (0, 0) (r0,−r0)

θ2 = θg NOP Escalate

Permit (0, 0) (r1, r1)

Restrict (0, 0) (−r1,−r1)

Two aspects motivate us to introduce a random variable as the defender’s
type, i.e., the user P2 only knows the prior probability distribution over the
type space Θ1 yet not the value/realization of P1’s type. On the one hand, the
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modern cyberinfrastructure networks have become increasingly interdependent and
complicated, so it is hard to evaluate the system payoff accurately even given both
players’ actions. On the other hand, the adoption of defensive deception techniques
brings uncertainties and difficulties for the user, especially attackers to evaluate the
system setting. Therefore, we model the uncertainties by letting the utility function
be a function of the type, which is a random variable.

5.4.2.2 A Scenario of Advanced Persistent Threats

A class of stealthy and well-planned sequence of hacking processes called Advanced
Persistent Threats (APTs) motivates the multi-stage transition as well as two
strategic players with two-sided incomplete information [12, 31]. Unlike the non-
targeted attackers who spray a large number of phishing emails and pray for some
“phools” [2] to click on the malicious links and get compromised, nation-sponsored
APTs have sufficient amount of resources to initiate a reconnaissance phase to
understand their targeted system thoroughly and tailor their attack strategies with
the target. Multi-stage movement is an inherent feature of APTs as shown in
Fig. 5.2. The APTs’ life cycle includes a sequence of stages such as the initial
entry, foothold establishment, privilege escalation, lateral movement, and the final
targeted attacks on either confidential data or the physical infrastructures such as
nuclear power stations and automated factories. APTs use each stage as a stepping
stone for the next one. Unlike the static “smash and grab” attacks who launch
direct attacks to obtain one-shot reward and then get identified and removed, APTs
possess a long-term persistence and stage-by-stage infiltration to evade detection.
For example, APTs can stealthily scan the port slowly to avoid hitting the warning
threshold of the IDS. APTs hide and behave like legitimate users during the
escalation and prorogation phases to deceive the defender until reaching the final
stage, launch a “critical hit” on their specific targets and cause an enormous
loss.

Direct/Indirect
infection

Social engineering

Physical 
access

Web 
phishing

Privilege escalation Lateral movement Mission completeness

Data collection 
and exfiltration 

Deviate physical states

Private
key

Database

Sensor

Reconnaissance 

Insider threats

OSINT

Fig. 5.2 The multi-stage life cycle of APTs forms a tree structure. During the reconnaissance
phase, the threat actor probes the system and obtains intelligence from open-source information or
insiders. The infection can be either directly through the web phishing and the physical access or
indirectly through social engineering to manipulate the employees and then obtain a private key.
Then, APTs gain the foothold, escalate privilege, propagate laterally in the cyber network, and
finally either cause physical damages or collect confidential data
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The classical intrusion prevention (IP) techniques such as the cryptography and
the physical isolation can be ineffective for APTs because APTs can steal full
cryptographic keys by techniques such as social engineering. Stuxnet, as one of
the most well-known APTs, has proven to be able to successfully bridge the air gap
between local area networks with the insertion of infected USB drives. Similarly, the
intrusion detection (ID) approach including [5] can be ineffective if APTs acquire
the setting of the detection system with the help of insiders. Moreover, APTs
operated by human expert can analyze system responses and learn the detection
rule during their inactivity, thus deceive the system defender and evade detection.
Additionally, APTs can encrypt the data as well as their communication content
with their human experts. A well-encrypted outbound network flow will limit the
effectiveness of the data loss prevention (DLS) system which detects potential data
exfiltration transmissions and prevents them by monitoring, detecting, and blocking
sensitive data.

Hence, besides traditional defensive methods, i.e., IP, ID, DLS, it is essential
to design strategic security mechanisms to capture the competitive interaction, the
multi-stage multi-phase transition, as well as the adversarial and defensive deception
between the APTs and advanced defenders. As shown in Table 5.3, the advanced
defender with a private type is deceptive and increases the attacker’s uncertainty.
The defender is also adaptive because she forms and updates the belief of the user’s
type according to the observation of the user’s actions as shown in (5.5).

5.4.2.3 Multi-stage State Transition

As shown in Fig. 5.2, the APT attacker moves stage by stage from the initial infec-
tion to the final target without jumps of multiple stages in one step. There are also
no incentives for the attacker to go back to stages that he has already compromised
because his ultimate goal is to compromise the specific target at the final stage.
Therefore, we model the APT transition as a multi-stage game with a finite horizon
K . Each player i ∈ {1, 2} at each stage k ∈ {0, 1, · · · ,K} can choose an action ak

i

from a stage-dependent finite set A k
i because the feasible actions are different for

each player at different stages. The history hk := {a0
1, · · · , ak−1

1 , a0
2, · · · , ak−1

2 } ∈
H k contains the actions of both players up to stage k − 1 and can be obtained by
reviewing system activities from the log file. Note that user’s actions ak

2 ∈ A k
2 are

the behaviors that are directly observable such as the privilege escalation request
and the sensor access in the case study of Sect. 5.4.2.8. Since both legitimate and
adversarial users can take these activities, a defender cannot identify the user’s type
directly from observing these actions. On the other hand, the defender’s action ak

1
will be mitigation or proactive actions such as restricting the escalation request or
monitoring the sensor access. These proactive actions also do not directly disclose
the system type.

State xk ∈ X k representing the status of the system at stage t is the sufficient
statistic of the history hk because a Markov state transition xk+1 = f k(xk, ak

1, ak
2)

contains all the information of the history update hk = hk−1 ∪ {ak
1, ak

2}. Unlike the
history, the cardinality of the state does not necessarily grow with the number of
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stages. The function f k is deterministic because history is fully observable without
uncertainties. The function f k is also stage-dependent and represents different
meanings. For example, in Sect. 5.4.2.8, the state at the second last stage represents
the current privilege level, while at the final stage, the state indicates which sensors
have been compromised.

5.4.2.4 Behavior Mixed-Strategy and Believe Update

According to the information available at stage k, i.e., history hk and his/her type
θi , player i takes a behavioral mixed-strategy σk

i : H k × Θi �→ �A k
i with the

available information as the input of the function. Note that σk
i (ak

i |hk, θi) ∈ Σk
i :=

{σk
i (ak

i |hk, θi) ≥ 0 : ∑
ak
i ∈A k

i
σ k

i (ak
i |hk, θi) = 1} is the probability of taking action

ak
i given hk, θi for all stage k ∈ {0, 1, · · · ,K}.

To correspond to the challenge of incomplete information of the other player’s
type, each player i forms a belief bk

i : H k × Θi �→ �Θ−i that maps the available
information hk, θi to the distribution over the type space of the other player.
Likewise, bk

i (θ−i |hk, θi) at stage k is the conditional probability mass function
(PMF) of the other player’s type θ−i and

∑
θ−i∈Θ−i

bk
i (θ−i |hk, θi)dθ−i = 1,∀k ∈

{0, 1, · · · ,K},∀hk ∈ H k, θi ∈ Θi, i ∈ {1, 2}.
Assume that each player i knows the prior distribution of the other player’s

type, i.e., b0
i according to the historical data and the statistical analysis. If no prior

information is available, a uniform distribution is an unbiased estimate. Since the
multi-stage model provides a sequential observation of the other player’s action ak−i

which is a realization of the mixed-strategy σk
−i , player i’s belief of the other’s type

can be updated via the Bayesian rule, that is:

bk+1
i (θ−i |[hk, ak

i , ak
−i], θi) = bk

i (θ−i |hk, θi)σ
k
−i (a

k
−i |hk, θ−i )∑

θ−i∈Θi
bk
i (θ−i |hk, θi)σ

k
−i (a

k
−i |hk, θ−i )

. (5.5)

Note that the one-shot observation of the other player’s action does not directly
disclose the type because of the deception. However, since the utility function
in Sect. 5.4.2.5 is type dependent, the action made by the type-dependent policy
will serve as a message that contributes to a better estimate of the other’s type.
The accuracy of the belief will be continuously improved when more actions are
observed.

5.4.2.5 Utility Function and PBNE

At each stage k, J k
i is the utility that depends on the type and the action of both

players, the current state xk , and some external random noise wk
i with a known

distribution. We introduce the external noise to model other unknown factors that
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could affect the value of the stage utility. The existence of the external noise makes
it impossible for each player i to directly acquire the value of the other’s type θ−i

based on the combined observation of input parameters xk, ak
1 , ak

2, θi plus the output
value of the utility function J k

i . In the case study, we consider any additive noise
with a 0 mean, i.e., J k

i (xk, ak
1, ak

2 , θi , θ−i , w
k
i ) = J̃ k

i (xk, ak
1, ak

2 , θi, θ−i ) + wk
i ,

which leads to an equivalent payoff over the expectation of the external noise
Ewk

i
J k

i = J̃ k
i ,∀xk, ak

1, ak
2 , θi , θ−i .

One significant improvement from the static game to the dynamic game is that
each player i has a long-term objective to maximize the total expected payoff
Uk′:K

i . For example, attackers of APTs may sacrifice the immediate attacking
reward to remain stealthy and receive more considerable benefits in the following
stages, e.g., successfully reach the final target and complete their mission. Define
σk′:K

i := [σk
i (ak

i |hk, θi)]k=k′,··· ,K and the cumulative expected utility Uk′:K
i sums

the expected stage utilities from stage k′ to K as follows:

Uk′:K
i (σ k′:K

i , σ k′:K
−i , hK+1, θi)

:=
K∑

k=k′
Eθ−i∼bk

i ,σ k
i ,σ k−i ,w

k
i
[J k

i (xk, σ k
i , σ k

−i , θi , θ−i , w
k
i )]

=
K∑

k=k′

∑
θ−i∈Θ−i

bk
i (θ−i |hk, θi)

∑

ak
i ∈A k

i

σ k
i (ak

i |hk, θi)

·
∑

ak−i∈A k−i

σ k
−i (a

k
−i |hk, θ−i )J̃

k
i (xk, ak

i , ak
−i , θi , θ−i ).

(5.6)

Similar to the PBNE of the signaling game, the PBNE of multi-stage Bayesian
game defined in Definition 5.5 requires a K-stage belief consistency. Since the
equilibrium may not always exist, an ε-equilibrium is introduced.

Definition 5.5 In the two-person K-stage Bayesian game with two-sided incom-
plete information and a cumulative payoff function Uk′:K

i in (5.6), a sequence of

strategies σ
∗,k′:K
i ∈ ∏K

k=k′ Σk
i is called the ε perfect Bayesian Nash equilibrium for

player i, if bk
i satisfies the consistency constraint (5.5) for all k ∈ {0, 1, · · · ,K − 1}

and for a given ε ≥ 0,

Uk:K
1 (σ

∗,k:K
1 , σ

∗,k:K
2 , hK+1, θ1) ≥ sup

σk:K
1

Uk:K
1 (σ k:K

1 , σ
∗,k:K
2 , hK+1, θ1) − ε.

Uk:K
2 (σ

∗,k:K
1 , σ

∗,k:K
2 , hK+1, θ2) ≥ sup

σk:K
2

Uk:K
2 (σ

∗,k:K
1 , σ k:K

2 , hK+1, θ2) − ε.

If ε = 0, we have a perfect Bayesian Nash equilibrium.
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5.4.2.6 Dynamic Programming

Given any feasible belief at every stage, we can use dynamic programming to find
the PBNE in a backward fashion because of the tree structure and the finite horizon.
Define the value function as the utility-to-go function under the PBNE strategy pair,
that is:

V k
i (hk, θi) = Uk:K

i (σ
∗,k:K
i , σ

∗,k:K
−i , hk+1, θi).

Let V K+1
i (hK+1, θi) := 0 be the boundary condition of the value function, we

have the following recursive system equations to solve the PBNE mixed-strategies
σ

∗,k
1 , σ

∗,k
2 for all stage k = {0, 1, · · · ,K}:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

V k−1
1 (hk−1, θ1) = sup

σk−1
1 ∈Σk−1

1
E

θ2∼bk−1
1 ,σ k−1

1 ,σ
∗,k−1
2

[V k
1 ([hk−1, ak−1

1 , ak−1
2 ], θ1) + J̃ k−1

1 (xk−1, ak−1
1 , ak−1

2 , θ1, θ2)];
V k−1

2 (hk−1, θ2) = sup
σk−1

2 ∈Σk−1
2

E
θ1∼bk−1

2 ,σ
∗,k−1
1 ,σ k−1

2

[V k
2 ([hk−1, ak−1

1 , ak−1
2 ], θ2) + J̃ k−1

2 (xk−1, ak−1
1 , ak−1

2 , θ1, θ2)].

(5.7)

Under the assumption of a Markov mixed-strategy σ̃ t
i (a

k
i |xk, θi) ≡ σk

i (ak
i |hk, θi),

Ṽ k
i (xk, θi) becomes the sufficient statistics of V k

i (hk, θi). By replacing
σk

i (ak
i |hk, θi) to σ̃ k

i (ak
i |xk, θi) and V k

i (hk, θi) to Ṽ k
i (xk, θi) in (5.7), we can obtain

a new dynamic programming equation:

Ṽ k−1
i (xk−1, θi) = sup

σ̃ k−1
i

E
θ−i∼bk−1

i ,σ̃ k−1
i ,σ̃

∗,k−1
−i

[Ṽ k
i (f k(xk−1, ak−1

1 , ak−1
2 ), θi) + J̃ k−1

i (xk−1, ak−1
1 , ak−1

2 , θ1, θ2)].
(5.8)

5.4.2.7 PBNE Computation by Bi-linear Programming

To compute the PBNE, we need to solve a coupled system of the forward belief
update in (5.5) that depends on the PBNE strategies plus a backward PBNE
computation in (5.8) that can also be influenced by the type belief. If there are no
additional structures to explore, we have to use a forward and backward iteration
with the boundary condition of the initial belief b0

i (θ−i ) and final stage utility-to-go
Ṽ K+1

i (xK+1, θi) = 0. In particular, we first assign any feasible value to the type
belief bk

i , k ∈ {1, 2 · · · ,K}, then solve (5.8) from stage k = K to k = 0 and use
the resulted PBNE strategy pair to update (5.5). We iteratively compute (5.8) and
(5.5) until both the K-stage belief and the PBNE strategy do not change, which
provides a consistent pair of the PBNE and the belief. If the iteration process does
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not converge, then the PBNE does not exist. Define lmi
as the column vector of ones

with a dimension of mi , we propose a bi-linear program to solve the PBNE strategy
for any given belief bk

i , k ∈ {1, 2 · · · ,K}, which leads to Theorem 5.2. The type
space can be either discrete or continuous. We refer reader to Section 4.4 in [12] for
the proof of the theorem.

Theorem 5.2 A strategy pair (σ̃
∗,k
1 , σ̃

∗,k
2 ) with the feasible state xk ∈ X k and

the consistent belief sequence bk
i at stage k ∈ {0, 1, · · · ,K} constitutes a mixed-

strategy PBNE of the multi-stage Bayesian game in Definition 5.5, if, and only
if, there exists a sequence of scalar function pair (s∗,k(θ1), w

∗,k(θ2)) such that
σ̃

∗,k
1 (·|xk, θ1), σ̃

∗,k
2 (·|xk, θ2), s∗,k(θ1), w

∗,k(θ2) are the optimal solutions to the
following bi-linear program for each k ∈ {0, 1, · · · ,K}:

sup
σ̃ k

1 ,σ̃ k
2 ,s,w

∑
θ1∈Θ1

bk
1(θ1)

∑
θ2∈Θ2

bk
2(θ2)

∑

ak
1∈A k

1

σ̃ k
1 (ak

1 |xk, θ1)
∑

ak
2∈A k

2

σ̃ k
2 (ak

2 |xk, θ2)

2∑
i=1

[J̃ k
i (xk, ak

1, ak
2 , θ1, θ2) + Ṽ k+1

i (f k(xk, ak
1, ak

2), θi)]

+
∑

θ2∈Θ2

bk
2(θ2)w(θ2) +

∑
θ1∈Θ1

bk
1(θ1)s(θ1)

s.t. (a).
∑

θ1∈Θ1

bk
1(θ1)

∑

ak
1∈A k

1

σ̃ k
1 (ak

1 |xk, θ1)[J̃ k
2 (xk, ak

1 , ak
2 , θ1, θ2)

+ Ṽ k+1
2 (f k(xk, ak

1 , ak
2), θ2)] ≤ −w(θ2)lm2,∀θ2 ∈ Θ2

(b).
∑

θ2∈Θ2

bk
2(θ2)

∑

ak
2∈A k

2

σ̃ k
2 (ak

2 |xk, θ2)[J̃ k
1 (xk, ak

1 , ak
2 , θ1, θ2)

+ Ṽ k+1
1 (f k(xk, ak

1 , ak
2), θ1)] ≤ −s(θ1)lm1,∀θ1 ∈ Θ1.

(5.9)
��

Note that the solution of (5.9) at stage k+1 provides the value of Ṽ k+1
i and Ṽ K+1

i =
0 is a known value. Thus, we can solve (5.9) from k = K to k = 0 for any given
type belief.

5.4.2.8 An Illustrative Case Study

We adopt the same binary type space in Sect. 5.4.2.1 and consider the following
three-stage (K = 2) transition. The proactive defensive actions listed in the case
study should be combined with the reactive methods such as the firewall to defend
attacks other than APTs.
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Initial Stage

We consider the web phishing scenario for the initial entry. The state space X 0 :=
{0, 1} of the initial stage is binary. Let x0 = 0 represent that the user sends the email
from an external IP domain, while x0 = 1 represents an email from the internal
network domain. The attacker can also start from state x0 = 1 due to the insider
threats and the social engineering techniques.

To penalize the adversarial exploitation of the open-source intelligence (OSINT)
data, the defender can create avatars (fake personal profiles) on the social network
or the company website. The user P2 at the initial stage can send emails to a regular
employee a0

2 = 0, a Chief Executive Officer (CEO) a0
2 = 1, or the avatar a0

2 = 2.
The email can contain a legitimate shortening Uniform Resource Locator (URL).
If the user is legitimate, the URL will lead to the right resources, yet if the user
is malicious, the URL will redirect to a malicious site and then take control of
the client’s computer. As for the defender, suppose that P1 proactively equips the
computer with an anti-virus system that can run the email in the sandbox and
apply penetration test. However, the limited budget can only support either the
employees’ computer or the CEO’s computer. Thus, the defender also has three
possible actions, i.e., equips the CEO’ computer a0

1 = 2, the employee’s computer
a0

1 = 1, or does not equip the anti-virus system a0
1 = 0 to avoid a deployment

fee c0
0. The defender of high-security awareness θH will deploy an advanced anti-

virus system that costs higher installation fee than the regular anti-virus system,
i.e., c0

2 > c0
1, yet also provides a higher penalty to the attacker, i.e., r0

4 > r0
3 .

Define c0
0 := c0

11{θ1=θL} + c0
21{θ1=θH } as the deployment fee for two types of the

defender and r0
0 := r0

3 1{θ1=θL}+r1
4 1{θ1=θH } as the penalty for attackers. The attacker

θ2 = θb will receive a faked reward r0
5 > 0 when contacting the avatar, yet he then

arrives at an unfavorable state, thus receives limited rewards in the future stages.
The equivalent utility matrix J̃ 0

i (x0, a0
1, a0

2, θi , θ−i ) is shown in Table 5.4. Although
the legitimate user can also take action a0

2 = 2, he should assign zero probability to
that action as the payoff is −∞, i.e., a legitimate user should not contact a person
who does not exist.

Table 5.4 The utility matrix
(J̃ 0

1 , J̃ 0
2 ) for player i = 1, 2

under different types.
Although the utility matrix is
independent of the current
state x0, the action will affect
the state transition f 0 and
then the final state xK where
the utility is state-dependent

θ2 = θg Employee CEO Avatars

NOP (0, r0
1 ) (0, r0

1 ) (0,−∞)

Employee (−c0
0, r

0
1 ) (−c0

0, r
0
1 ) (−c0

0,−∞)

CEO (−c0
0, r

0
1 ) (−c0

0, r
0
1 ) (−c0

0,−∞)

θ2 = θb Employee CEO Avatars

NOP (−r0
2 , r0

2 ) (−r0
2 , r0

2 ) (0, r0
5 )

Employee (−c0
0,−r0

0 ) (−c0
0, r

0
2 ) (−c0

0, r
0
5 )

CEO (−c0
0, r

0
2 ) (−c0

0,−r0
0 ) (−c0

1, r
0
5 )

Suppose that there are three possible states X 1 = {0, 1, 2} as the output of the
initial state transition function f 0, i.e., user P2 can reach the employee’s computer
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x1 = 1, the CEO’s computer x1 = 2, or the honeypot x1 = 0. Assume that
the state transition from the initial state x0 = 1 is determined only by the user’s
action, i.e., the defender’s action does not affect the email delivery from the internal
network. On the other hand, the state transition from the external domain x0 = 0 is
represented as follows. If defender chooses not to apply malware analysis system
a0

1 = 0, then user’s action a0
2 = 0, 1, 2 will lead the initial state x0 = 0 to

state x1 = 1, 2, 0, respectively. If defender chooses a proactive deployment on the
employee’s computer a0

1 = 1, then user’s action a0
2 = 0, 2 will drive the initial state

x0 = 0 to state x1 = 0 and user’s action a0
2 = 1 will drive the initial state x0 = 0 to

state x1 = 2. The mitigation of the attack is at the tradeoff of blocking some emails
from the legitimate user. Likewise, if defender chooses a proactive deployment on
the CEO’s computer a0

1 = 2, then user’s action a0
2 = 1, 2 will lead the initial state

x0 = 0 to state x1 = 0 and user’s action a0
2 = 0 will lead the initial state x0 = 0 to

state x1 = 1.

Intermediate Stage

Without loss of generality, we use the privilege escalation scenario in Table 5.3 as
the intermediate stage k = 1. Although the utility matrix is independent of the
current state x1, the action will influence the long-term benefit by affecting the state
transition f 1 as follows. The output state space X K = {0, 1, 2, 3} represents four
different levels of privilege from low to high. If the user is at the honeypot x1 = 0,
then he will end up at the honeypot with level-zero privilege xK = 0 whatever
actions he takes. For the user who has arrived at the employee’s computer x1 = 1,
if the defender allows privilege escalation a1

1 = 0, then if the user chooses NOP
a1

2 = 0, the user arrives at level-one privilege xK = 1, else if the user requests
escalation a1

2 = 1, he arrives at level-two privilege xK = 2. If the defender restricts
the privilege escalation a1

1 = 1, then P2 arrives at state xK = 1 regardless of his
action. The user who arrive at the CEO’s computer x1 = 2 possesses a higher
privilege level. Then, action pair a1

1 = 0, a1
2 = 0 leads to xK = 2, and a1

1 = 0, a1
2 =

1 leads to xK = 3, and a1
1 = 1, a1

2 = 0/1 leads to xK = 2.

Final Stage

Table 5.5 Two players’ utility when the user is either adversarial or legitimate. Define rK
0 :=

rK
2 1{θ1=θL

1 } + rK
3 1{θ1=θH

1 } as the monitoring reward for two types of systems

θ2 = θb NOP Access

NOP (0, 0) (rK
1 , rK

4 − rK
1 )

Monitor (−cK, 0) (rK
0 − cK,−rK

0 )

θ2 = θg NOP Access

NOP (0, 0) (rK
4 , rK

4 )

Monitor (−cK, 0) (rK
4 − cK, rK

4 )
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At the final stage k = K , we use the Tennessee Eastman (TE) Challenge Process
[26] as an example to illustrate how attackers tend to compromise the sensors to
cause physical damages (state deviation) of an industrial plant and monetary losses
(Table 5.5). The user’s action is to get access to the sensor controller aK

2 = 1
or not aK

2 = 0, yet a user at different levels of privilege xK determines which
sensors he can control in the TE process. If the attacker changes the sensor reading,
the system states such as the pressure and the temperature may deviate from the
desired value, which degrades the product quality and even causes the shutdown of
the entire process if the deviation exceeds the safety threshold. Thus, the shutdown
time, as well as the product quality, can be used as the operating reward measure.
By simulating the TE process, we can determine the reward under the regular
operation of the TE process rK

4 (xK) as well as the reward under the compromised
sensor readings rK

1 (xK). Both rK
4 and rK

1 are a function of the state xK . Assume
that the attacker benefits from the reward reduction under the attacking operation
rK

4 (xK) − rK
1 (xK) and the system loss under attacks is higher than the monitoring

cost rK
4 (xK) − rK

1 (xK) > cK > 0,∀xK ∈ X K . On the other hand, the defender
chooses to monitor the sensor controller aK

1 = 1 with a cost cK or not to monitor
aK

1 = 0. Also, we assume rK
3 > rK

2 > cK > 0 because the high-type system can
collect more information from the monitoring data and the benefit outweighs the
monitor cost.

5.5 Conclusion and Future Works

The area of cybersecurity is an uneven battlefield. First, an attacker merely needs
to exploit a few vulnerabilities to compromise a system while a defender has to
eliminate all potential vulnerabilities. Second, the attacker has a plenty of time
to study the targeted system yet it is hard for the defender to predict possible
settings of attacks until they have happened. Third, the attacker can be strategic and
deceptive and the defender has to adapt to variations and updates of the attacker.
In this chapter, we aim to avoid the route of analyzing every attacks and taking
costly countermeasures. However, we endeavor to tilt the unfavorable situation for
the defender by applying a series of game theory models to capture the strategic
interactions, the multi-stage persistence, as well as the adversarial and defensive
cyber deceptions. Future directions include a combination of the theoretical models
with data from the simulated or real system under attacks. The analysis of the
game theory model provides a theoretic underpinning for our understandings of
cybersecurity problems. We can further leverage the scientific and quantitative
foundation to investigate mechanism design problems to construct a new battlefield
that reverses the attacker’s advantage and make the scenario in favor of the
defender.
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5.6 Exercise

5.6.1 Question 1: Equilibrium Computation

1.1. Write a bi-linear program to compute the PBNE of multi-stage game with
one-sided incomplete information, i.e., only the user has a type θ1 ∈ Θ1, the
defender does not have a type or P1 knows her type. Represent it in a matrix
form. (Hint: Readers can refer to Corollary 1 in [12].)

1.2. Compute the mixed-strategy BNE for the static Bayesian game in Table 5.2
with unbiased belief b1(θ

b) = b1(θ
g) = 0.5. You can program it in

Matlab with the toolbox Yalmip2 and a proper non-linear solver such as
fminicon.3 (Hint: PBNE degenerates to BNE when we take K = 0.)

5.6.2 Question 2: The Negative Information Gain in Game
Theory

Consider a static Bayesian game with the binary type space Θ = {θ1, θ2} and initial
type belief b1(θ

1) = b1(θ
2) = 0.5 as shown in Table 5.6. Player 1 is the row

player and P2 is the column player. Both players are rational and maximize their
own payoffs.

Table 5.6 A static Bayesian game under two possible types θ1 and θ2

θ = θ1 a b

A (10,10) (18,4)

B (7,19) (17,17)

θ = θ2 a b

A (10,10) (18,18)

B (14,18) (20,20)

2.1. Compute the BNE strategy and the value of the game, i.e., each player’s utility
under the BNE strategy. (Hint: You should obtain a pure-strategy BNE (B, b)

and the value is (18.5, 18.5).)
2.2. Suppose that the type value is known to both players, determine the NE under

θ1 and θ2, respectively.
2.3. Compute the BNE with one-sided incomplete information, i.e., only P1 knows

the type value, which is common knowledge. The term common knowledge
means that P1 knows the type, P2 knows that P1 knows the type, and P1 knows
that P2 knows that P1 knows the type, etc.

2https://yalmip.github.io/.
3https://www.mathworks.com/help/optim/ug/fmincon.html.

https://yalmip.github.io/
https://www.mathworks.com/help/optim/ug/fmincon.html
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2.4. Compare the results in question 1–3, does more information always benefit
the player with extra information? If not, please give an explanation for the
negative information gain in the game setting?
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Network-Based Deception



Chapter 6
CONCEAL: A Strategy Composition
for Resilient Cyber Deception:
Framework, Metrics, and Deployment

Qi Duan, Ehab Al-Shaer, and Mazharul Islam

Abstract Cyber deception is a key proactive cyber resilience technique to reverse
the current asymmetry that favors adversaries in cyber warfare by creating a
significant confusion in discovering and targeting cyber assets. One of the key
objectives for cyber deception is to hide the true identity of the cyber assets in
order to effectively deflect adversaries away from critical targets, and detect their
activities early in the kill chain.

Although many cyber deception techniques were proposed including using
honeypots to represent fake targets and mutating IP addresses to frequently change
the ground truth of the network configuration (Jafarian et al., IEEE Transactions
on Information Forensics and Security 10(12):2562–2577 (2015)), none of these
deception techniques is resilient enough to provide high confidence of concealing
the identity of the network assets, particularly against sophisticated attackers. In
fact, in this chapter our analytical and experimental work showed that highly
resilient cyber deception is unlikely attainable using a single technique, but it
requires an optimal composition of various concealment techniques to maximize
the deception utility. We, therefore, present a new cyber deception framework,
called CONCEAL, which is a composition of mutation, anonymity, and diversity
to maximize key deception objectives, namely concealability, detectability, and
deterrence, while constraining the overall deployment cost. We formally define the
CONCEAL metrics for concealability, detectability, and deterrence to measure the
effectiveness of CONCEAL. Finally, we present the deployment of CONCEAL as
a service to achieve manageability and cost-effectiveness by automatically gener-
ating the optimal deception proxy configuration based on existing host/network
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configuration, risk constraints of network services, and budget constraints. Our
evaluation experiments measure both the deception effectiveness based on the above
metrics and the scalability of the CONCEAL framework.

6.1 Introduction and Motivation

Cyber deception is an act of intentional misrepresentation of facts in order to induce
an incorrect perception of reality in adversaries’ mind. As a result, an adversary can
be misled about the true configuration of the system such that their belief will be
different from the reality. This false reality can assist in deflecting adversaries to a
desired state of knowledge for invalidating their effort, slowing down their progress,
and/or learning about their goals and techniques, even when adversary’s techniques
are unknown.

We believe that an effective cyber deception technique requires at least these five
criteria: (1) It should provide a resilient concealment of the identity of cyber assets
(at least the critical ones) including the real and fake (e.g., honeypots services),
even if they are at some point discovered, (2) It should significantly increase the
potential mistakes of the attackers (detectability), (3) It should significantly increase
attackers’ effort to achieve the target (deterrence); (4) It should provide automated
configuration management that is highly transparent to users; (5) It should scalable
to a large number of services and hosts, and (6) It can be tuned to provide cost-
effective configurations based on mission risk and deception cost. Most of the
existing deception techniques fail to satisfy these criteria, thereby they provide very
limited deception effectiveness. In specific, honeypots configuration is static and
can be easily detected and blacklisted by skilled attackers. In addition, while IP
mutations are effective in slowing down reconnaissance attackers proactively, they
cannot fully hide the identity of hosts and service against fingerprinting attackers.
Moreover, deploying a large number of honeypots is expensive and unmanageable.

Since every deception technique has its own benefit and cost, and every asset
may have its own risk based on exploitability and impact, it is important to find a
composition of multiple deception techniques to achieve superlinear effectiveness
than applying them individually, while satisfying the budget, risk, and operation
constraints. In this chapter, we present a new deception framework called CON-
CEAL that composes m-mutation for address anonymization, k-anonymity for
fingerprint anonymization, and l-diversity for configuration diversification in order
to satisfy the above objectives. Here m-mutation means that for every 1/m seconds,
the addresses of the hosts are mutated, k-anonymity means that for each network
host a group of k − 1 hosts with identical fingerprints (called shadow services) are
placed in the network, and l-diversity means that for every service type (e.g., web
service), at least l−1 fake (operationally unused) services of the same type but with
different vendors, versions, or patch levels are placed in the network (e.g., Apache,
IIS, etc. for web services).
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To develop CONCEAL as a cloud service, the clients’ requests will be directed to
the CONCEAL gateway which will then translated and redirected based on the site
configuration to the appropriate real or proxy (shadow or diversity service) hosts.
To minimize the number of CONCEAL proxies, the gateway may redirect requests
destined to many IP addresses to a single physical proxy machine. Therefore, we
model the problem of finding satisfiable composition of mutation, anonymization,
and diversity as a constraint satisfaction problem using satisfiability modulo theories
(SMT) [8] to find the appropriate values of m, k, l, and the gateway configurations
that minimize the cost of physical proxies for shadow and diverse services.

Our implementation and evaluation validate the effectiveness and scalability
of the CONCEAL framework. The main tool we use for CONCEAL constraints
formalization is SMT. SMT is a powerful tool to solve constraint satisfaction
problems arise in many diverse areas including software and hardware verification,
type inference, extended static checking, test-case generation, scheduling, planning,
graph problems, etc. [8]. An SMT instance is a formula in first-order logic, where
some function and predicate symbols have additional interpretations.

6.2 Threat Model and Objectives

In this section, we first present threat model addressed by our approach, as well as
generic defense objective against this threat model.

6.2.1 Threat Model

Reconnaissance is the primary and initial step of any advanced and persistent
intrusion on enterprise networks [9]. At the network and host levels, reconnaissance
refers to the process of (1) discovering and enumerating network hosts, (2)
scanning these hosts at network- and transport-level (detecting OS and open ports),
or application-level (identifying services names), and (3) discovering exploitable
vulnerabilities for each host [15].

If attackers know the name of a host, they can obtain its IP address from DNS and
using the IP to attack that host. However, adversaries usually avoid this to remain
stealthy, as their frequent request to DNS can be detected. In addition, only public
servers can exist in the public DNS; however, internal services will still need to
be discovered through local reconnaissance. Due to these reasons, we believe that
sophisticated attackers will only rely on stealthy host/service scanning to discover
resources and propagate their attacks. Examples of network reconnaissance tools to
scanning and fingerprinting include Nmap and Nessus [15].

As attackers need to probe hosts to scan the address space and compromise
services, benign users usually reach their remote services after querying the server’s
IP address from the corresponding authoritative DNS. Some attackers may also
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issue a reverse-DNS query to obtain the domain name from the host’s address
after discovering an active IP address. However, in both cases, this can be used
for analyzing and detecting malicious behavior due to reconnaissance.

While random host IP mutation (RHM) [12] is effective for automated worms and
naive adversaries, skilled human adversaries can still use any available information
such as a host’s fingerprint to re-identify that host even if its addresses have been
mutated. This is because a host identity can still be recognized and traced by its
fingerprint in RHM. This means a skilled attacker can fingerprint a host and use that
fingerprint in future to distinguish that host. This is the major motivation to apply a
more sophisticated deception approach in this chapter.

6.2.2 Defense Objectives

The defender has the following three ways to invalidate the attacker’s knowledge
gained from reconnaissance:

• Address mutation refers to the act of changing host addresses over time. With
no address mutation, attacker can use a host IP address to identify it and avoid
re-probing that host.

• Fingerprint anonymization: refers to the notion of hiding a host fingerprint in a
pool of honeypots with identical fingerprints, thus preventing a skilled adversary
to trace a host by its fingerprint. A skilled attacker can use the potentially unique
fingerprint of a host to identify it later if host fingerprint anonymization is not
applied.

• Configuration diversification refers to the act of diversifying fingerprints of
network OS and services over time, thus making that any existing OSes or
services will have a number of similar OSes and services in the same network.

6.3 Technical Approach

6.3.1 CONCEAL Framework Key Components

CONCEAL is a multi-strategy deception technique that combines three techniques,
m-mutation, k-anonymization, and l-diversity.

Strategy 1: m-Mutation for address anonymization. For every 1/m seconds,
CONCEAL mutates addresses of hosts. The goal of mutation is to anonymize host
IP addresses over time. Note that mutating with rate m IP/Sec means an IP address
is only active for 1/m seconds. In other words, IP addresses are anonymized every
1/m seconds. Mutation rate is a trade-off between benefit and cost (for address
translation, updates, etc.). The limitation of mutation is that mutation is costly,
and sometimes there is not enough available addresses. For a skilled attacker,
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host fingerprint may serve as a quasi-identifier, which means mutation may not be
enough for deception.

Strategy 2: k-Anonymity for fingerprint anonymization. For each network host,
CONCEAL places a group of k − 1 hosts with identical fingerprints; the k − 1
addresses are redirected to one physical honeypot representing a group of shadow
hosts.

In data privacy, quasi-identifiers are anonymized by the concept of k-anonymity.
In our domain, k-anonymity is achieved by shadow hosts. That is, for each real

host, k−1 honeypots are included in address space with same fingerprints. A shadow
host exhibits an identical fingerprint of a real host.

By satisfying k-anonymity, we anonymize identity of an individual host. How-
ever the adversary can still figure out what platforms and services are running in the
real network, and the number of real hosts and unique fingerprints in the network.
Thus, attackers need to make exploits for these services only.

Cannot know 
which one is the 
honeypot I found 

before? IP2 or 
IP4?! 

IP1

IP2

IP11

IP10

IP9

IP8

IP7

IP6

IP5

IP4

IP3

IP12

IP2
OS: Redhat Linux 7
Srvs: Apache, MySQL

IP10
OS: Windows Server 2016
Srvs: IIS, SQLServer

IP4
OS: Redhat Linux 7
Srvs: Apache, MySQL

IP12
OS: Windows Server 2016
Srvs: IIS, SQLServer

Decoy 1

Shadow-decoy 1

Shadow-real 1

Real 1

What a�ackers knows?

Cannot know 
which one is the 

the real host Real 
1? IP12 or IP10

Fig. 6.1 An example of 2-anonymity

Figure 6.1 shows an example of 2-anonymity. In the system there is one real host
and one proxy (decoy) host. For both of them there is one shadow host which has a
different IP but identical configuration. The attacker cannot differentiate the shadow
hosts from real or proxy host.

Strategy 3: l-Diversity for configuration anonymization. For every service type,
CONCEAL places in the network at least l − 1 fake services of the same type but
with different vendors, versions, or patch levels. Here service types may include OS,
HTTP Server, FTP Server, etc. Services of type HTTP may include IIS 8.0, IIS 7.0,
Apache, etc.
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OS: Win 10
Srvs: Apache, MySQL

Decoy 2

Fig. 6.2 An example of 2-anonymity, 3-diversity

Figure 6.2 shows an example of 2-anonymity, 3-diversity. In the example, the
network has one real host and two proxy (decoy) hosts, while every real host and
proxy host have an identical shadow host. Here we have 3-diversity for OS, HTTP
service, and database service. 3-diversity for OS is achieved with Win Server 2016,
Win Server 2012, and Win 10; for HTTP Services is achieved with IIS 7, IIS 8, and
Apache; for database services is achieved with SQL Server, MySQL, and Oracle.

In order to find the satisfiable CONCEAL configuration, one needs to solve the
following questions:

Question 1: What m, k, and l are good for a given network? How to quantify
benefit and cost for a given (m, k, l) triple?

Question 2: Given m, k, and l, what are the optimal decoy services and
configurations needed?

Note that these two questions are not independent. Both of them are related to
budget and risk constraints. We will try to find the solution for both of them.

6.3.2 CONCEAL Effectiveness Metrics

We define the measurement for CONCEAL effectiveness (CE) as the combination
of the following three metrics:

(1) Concealability measure (CM) that is the likelihood that the attacker will fail to
identify the target despite his stealthiness.
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(2) Detectability measure (DM) that is the likelihood that the attacker being
detected despite his success.

(3) Deterrence measure (TM) that is the cost of deception on the adversary (e.g.,
number of probes).

CE is defined to be the combination of the three metrics:

CE = α1 · CM + α2 · DM + α3 · T M (6.1)

where α1, α2, and α3 are appropriate coefficients which can be determined by
different system security requirements.

As the risk of an asset increases, CE must also increase to offer cost-effective and
scalable deception. In RHM, if the scanning speed (m1) is the same as the mutation
speed m, the probability that attackers fail to identify/compromise a host (CM) is
the probability that the host is not identified by scanning due to mutation plus the
probability that a proxy (not a real host) is hit:

CM = e−1 + (1 − e−1)(1 − 1

kl
) (6.2)

The quantity e−1 results from invisible hosts due to mutation [11], and the quantity
(1 − 1

kl
) results from proxy or shadow hosts due to k-anonymity and l-diversity.

1

0.4

0.5

0.6

0.7

C
o

n
ce

al
ab

ili
ty

 M
ea

su
re 0.8

0.9

1

2 4
k

8 16

1I
I
I

=
=
=

5
10
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Figure 6.3 shows the concealability measure of CONCEAL with different k

and l.
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Deterrence (TM) is defined as the number of round of scan attempts to make
the probability of hit more than the desired threshold. If one has only mutation,
then the probability of hit (denoted as T ) with n round of scans is known to
be [11]:

T = 1 − (e−1)n (6.3)

For example, to guarantee T > 0.9 one needs to make n > 2.3 rounds of
scanning.

In general T can be computed as:

T = 1 − (CM)n (6.4)

For example, when k = 2, l = 4, to guarantee T > 0.9, one needs to make
n > 22 rounds of scanning.

Now we can calculate TM to be:

T M = log(1 − Th)/ log(CM) (6.5)

where Th is the required hitting threshold. Note that here we assume every round of
scan is an independent event.

Figure 6.4 shows the T value of CONCEAL with different k, l, and Th. We can
see that for RHM the number of required scans (TM) is very small but even for
CONCEAL with relative small k and l (such as 6) TM can be very high (more than
100). This means that the composition of mutation, diversity, and anonymity has
much better effectiveness than applying only RHM.

Detectability (DM) is defined to be the probability that a compromise attempt is
detected:

DM = (1 − 1

kl
) · d1 · d2 (6.6)

Here (1 − 1
kl

) is probability of hitting a shadow or proxy host, d1 is probability of
detecting the attack attempt at a shadow or proxy host (IDS true positive), and d2 is
the quality/robustness of deception (which means (1−d2) is the probability that the
deception is detected by the attacker).

Figure 6.5 shows the detectability measure of CONCEAL with d1 = 1, l = 2,
and different d2 and k.
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6.3.3 CONCEAL Architecture and Planner

Figure 6.6 shows the overall CONCEAL architecture. In CONCEAL architecture,
clients communicate with the target network through the CONCEAL gateway of
the target network, which is located in front of the honeypot cloud which includes
real and proxy (shadow) hosts. The configuration of real and proxy (shadow) hosts
is mutable and adjusted by the CONCEAL planner which determines the satisfiable
configuration for mutation, anonymity, and diversity.

Figure 6.7 shows the framework of CONCEAL planner. Here the CONCEAL
engine takes user input of available address space, existing host configuration
(number of hosts, OS, service type, vulnerabilities), cost of proxies and shadows,
budge limit, vulnerability impact, risk bound, and operational input, which includes
feasible configuration, mission/business-related configuration (such as context and
consistency constraints). These inputs are converted into CONCEAL constraints
and sent to the SMT solver. If the problem is solvable, the results are returned
to CONCEAL engine, which will generate the detailed host configurations. If
the problem is not solvable, then one needs to relax some of the inputs such as
increasing budget or decreasing risk bound.

The following is the formal definition of the CONCEAL planning problem. The
input of the problem includes the configuration of n real hosts C1, . . . , Cn, where

Ci =< OSi, si,1, . . . , si,k > (6.7)

Fig. 6.6 CONCEAL
architecture
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Fig. 6.7 CONCEAL planner framework

where si,j ∈ Tj , Tj is the service type, and set of vulnerabilities for every service,
impact of vulnerabilities, cost of deploying mutation (Cm), proxy (Cp), diversity
service (Cd ), anonymity (shadow) service (Ca), budget (B), and risk bound (R).
The output includes the appropriate m, k, l, number of required proxies (p), and
configuration of the proxies.

6.3.4 Formalization of Constraints

We formalize the CONCEAL constraints as the input for SMT solver.
First, we have the Budget constraint

Cp · p + Cd · l + Ca · k + Cm · m ≤ B (6.8)

Next, we have the Risk constraint

∑
i

Si · (1 − CE) · Ii ≤ R (6.9)

where Si and Ii are the severity and impact of the vulnerability of service i,
respectively.

Diversity constraint is formalized as

∀i, dis(aijk) ≥ l (6.10)
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where aijk is the binary variable that denotes that service j with type i is deployed
in proxy k, and dis(aijk) denotes the number of distinct services of type i in all
possible proxies.

We also have the unique assignment constraint

∀i, k,
∑
j

aijk ≤ 1 (6.11)

which means that every proxy can only contain one service of a fixed type.
The context constraint can be formalized as

∀i, j, v, k, (bvk = 1) → (aijk �= 1) (6.12)

which means that OS type v should not contain service j of type i, where bvk

denotes that OS type v is deployed in proxy j . For example, OS Linux should not
have any type of IIS services.

The consistency constraint can be formalized as

∀k, (ai1j1k + ai2j2k) ≤ 1 (6.13)

where j1 and j2 are incompatible or inconsistent services to co-exist in the same
proxy.

As an example, suppose we have four real hosts in the system as shown in
Fig. 6.8. The cost values of Cp, Cd , Ca , Cm are 4K, 2K, 1K, 20K, respectively,
and budget limit B is 28K, risk bound R is 8K, and m1 = 0.2. We also have context
constraint that any SQL server cannot be deployed in Linux OS.

Host OS Service/type

H1 Win10 IIS/web SQL Server/DB

H2 Win10 Azure/cloud VM/pla�orm

H3 Linux Amazon/cloud Oracle/DB

H4 Mac Apache/web Macincloud/pla�orm

Fig. 6.8 Original host configuration

The SMT solver returns that l = 3, k = 2, m = 0.2. The solution has two proxy
host H5 with Linux OS, web service Nginx, and DB service MySQL, and H6 with
Win 10 OS, platform service Zen, and cloud service Onedrive to achieve 3-diversity
(for simplicity, we only consider service diversity here). Additional shadow hosts
H7, H8, H9 ,H10, H11, H12 need to be created for hosts H1, H2, H3, H4, H5, H6 to
achieve 2-anonymity. Total cost is

(4 ∗ 2 + 4 ∗ 2 + 6 ∗ 1 + 0.2 ∗ 20)K = 26K < B = 28K
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Figure 6.9 shows details of the solution.

Host OS Service/type

H1 (original) Win10 IIS/web SQL Server/DB

H2 (original) Win10 Azure/cloud VM/pla�orm

H3 (original) Linux Amazon/cloud Oracle/DB

H4 (original) Mac Apache/web Macincloud/pla�orm

H5 (diversity) Linux Nginx/web MySQL/DB

H6 (diversity) Win10 Zen/pla�orm Onedrive/cloud

H7 (anonymity) Win10 IIS/web SQL Server/DB

H8 (anonymity) Win10 Azure/cloud VM/pla�orm

H9 (anonymity) Linux Amazon/cloud Oracle/DB

H10 (anonymity) Mac Apache/web Macincloud/pla�orm

H11 (anonymity) Linux Nginx/web MySQL/DB

H12 (anonymity) Win10 Zen/pla�orm Onedrive/cloud

Fig. 6.9 SMT solution of CONCEAL hosts

6.4 Evaluation

We evaluate the effectiveness and scalability of the CONCEAL framework. The
evaluation work is done in a machine of Intel Quad Core 3.4GHz machine with
16G memory. We use the Yices SMT solver [2] to find the solutions to the
constraints.

CONCEAL Effectiveness As we discussed, CE is the metric to measure the
effectiveness of CONCEAL. Figures 6.10, 6.11, and 6.12 show the concealability
measurement (CM), detectability measurement (DM), and deterrence measurement
(TM) values for different number of services and budget bound B, respectively.
For the TM value, the threshold Th is set to be 0.9. For the DM value, d1
and d2 are set to be 0.95. We can see that all the CM, DM, and TM values
increase with high values of B and high number of services. However the increase
of B has less significant impact when the number of services reaches some
point.
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Fig. 6.11 Detectability measurement
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Fig. 6.12 Deterrence measurement

Saving of Proxies for Different B The CONCEAL framework can save the
number of actual used proxies since multiple services can share the same proxy
as long as they are compatible. Figure 6.13 shows the percentage of saved proxies
with different B. We can see that as B decreases the percentage of saved proxies
will increase. This is because smaller B will cause the SMT solver to find smaller
value of p to reduce cost. However, smaller B may make the problem unsolvable
and increase the solving time.

Saving of Proxies for Different Number of Correlation Figure 6.14 shows the
percentage of saved proxies with different number of correlations. The X-axis
cor in the figure is the percentage of consistent services where consistent means
the services cannot exist in the same host. We can see that as cor increases the
percentage of saved proxies will decrease. This is because higher cor will cause the
SMT solver to use higher value of p to satisfy the constraints.

Solving Time for Different B Figure 6.15 shows the SMT solving time for
different B. We can see that as B increases the solving time will decrease. This
is because higher B means more resources and it will be easier for the SMT solver
to find the solution to satisfy the constraints.
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Fig. 6.13 Save of proxies with different B
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Fig. 6.14 Save of proxies with different correlation
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Fig. 6.15 Solving time with different B

Solving Time for Different Number of Correlation Figure 6.16 shows the SMT
solving time for different number of correlations cor . We can see that as cor

increases the solving time will increase. This is because higher cor means more
constraints for the SMT solver to find the satisfiable solution.

6.5 Implementation

We implemented CONCEAL as a deception of service that can be accessible
through a web interface. The CONCEAL implementation mainly consists of three
different components: (1) The web interface, (2) SMT Solver, and (3) ActiveSDN;
shown in Fig. 6.17. Each of these three services running in different process can
communicate with each other through rest APIs. Although the API descriptions
are out of the scope of this chapter, however, interested reader can look into our
implementations [1].
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Fig. 6.16 Solving time with different correlation

Fig. 6.17 CONCEAL implementation

6.5.1 Web Interface

The web interface is divided into three sections: (1) costs, (2) services, and (3) hosts.
The user will provide all of the costs like mutation, anonymity, diversity, and proxy
costs along with total risk and budget costs. For the services, user can create as
many services as she wants and those services will be added in the hosts section.
After submitting, the constraints will be solved by the SMT solver which is running
in a different process and if there exist any solution it will be shown as output,
else user need to relax the constrains and submit again. Figure 6.18 shows the web
interface.
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Fig. 6.18 CONCEAL web interface

6.5.2 SMT Solver

We implement our constraint satisfaction solver using Yices [2] in C++. All
the constraints mentioned in the Sect. 6.3.3 are implemented in our solver. The
solver is running in a different process that can be accessible through a web
interface.

6.5.3 ActiveSDN

ActiveSDN is a decision-making OpenDaylight controller [16] where we imple-
ment all the services required for CONCEAL, like mutation, anonymization, and
shadowing. After submitting the user inputs through web interface, the SMT
solver will generate the output configuration, which will be used in ActiveSDN
to deploy conceal in a Mininet network [21]. For conceal, we have three services
implemented in ActiveSDN: IP mutation, host anonymization, service diversity.



120 Q. Duan et al.

Figure 6.19, 6.20, and 6.21 show the IP mutation, host anonymization, and
service diversity functions in ActiveSDN, respectively. For IP mutation, aIP
indicates the list of available IP addresses that will be mutated using vIPs men-
tioned in how. The mutation parameter when has an attribute x which indicates
the mutation cycle (mutate aIPs after x seconds). The host anonymity function
takes the IP address of a host as an argument hostIP and its corresponding
fingerprints. For the hostIP, k new host with identical fingerprints will be cre-
ated. The service diversity function architecture is similar to host anonymity
function.

Fig. 6.19 IP mutation function

Fig. 6.20 Host anonymization function

Fig. 6.21 Service diversity function
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6.6 Related Works

Proactive techniques for disrupting reconnaissance could be broadly divided
into two categories: MTD-based and deception-based approaches. Moving target
defense relies on randomizing static system parameters, to invalidate attacker’s
reconnaissance information.

In this direction, several approaches have been proposed [11–13] for mutation
of IP addresses, especially over time. NASR [6] relies on DHCP to randomize IP
addresses over time. RHM [12] and OF-RHM [11] propose using DNS for address
randomization without changing the actual IP address of network hosts, in order to
prevent TCP/UDP sessions from being broken. RHM [12] identifies additional need
for mutating MAC addresses to defeat LAN-level reconnaissance, and mutating
domain names to counter reverse-DNS queries.

The notion of mutable networks as a frequently randomized changing of network
addresses and responses was initially proposed in [3]. The idea was later extended as
part of the MUTE network which implemented the moving target through random
address hopping and random fingerprinting [4].

Existing IP mutation techniques include dynamic network address translation
(DYNAT) [14, 17, 18], random host IP mutation (RHM) [12], OpenFlow random
host IP mutation (OF-RHM) [11], etc.

DYNAT is a technique developed to dynamically reassign IP addresses to confuse
any would-be adversaries sniffing the network. They obfuscate the host identity
information (IP and Port) in TCP/IP packet headers by translating the identity
information with preestablished keys. Both BBN [14] and Sandia [17, 18] have done
research work on DYNAT. BBN ran series of red-team tests to test the effectiveness
of DYNAT, while Sandia’s DYNAT report [17, 18] examines many of the practical
issues for DYNAT deployment.

RHM [12] and OF-RHM [11] use DNS for address randomization without
changing the actual IP address of network hosts and random mutate host IPs while
satisfying mission, operational, and cost constraints.

While these works are effective against automated scanners and worms, in our
evaluation we show that they have limited effectiveness against human attackers.

On the other hand, deception-based technologies, trying to attract attackers to
decoy hosts such as honeypots, can mislead the attacker and prolong reconnaissance
and attack progress. The work in [19] shows that honeypots are highly effective in
slowing down worm breakouts, and decreasing amount of attacks on production
hosts.

Dynamic honeypots were first proposed by Budiarto [7]. Dynamic honeypots
discover production systems on a network and use this information to create
honeypots that are similar to production hosts and mix in the surrounding network.
Shadow honeypots were proposed by Anagnostakis et al. [5], which is an identical
copy of production hosts, and used as an strategy to deploy honeypots in a
production environment.
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The work in [20] correctly identifies the need of strengthening address mutation
with decoy services against sophisticated adversaries, but their approach neglects
important theoretical aspects of anonymization such as mutation and anonymization
of host/honeypot fingerprints. Moreover, efficacy of their proposed model is not
tested against real human attackers.

None of the above approaches recognizes the need and synergy of combining
the multi-dimensional proactive defense for defeating adversarial reconnaissance
performed by skilled adversaries.

Our preliminary work of proactive multi-dimensional deception technique in [10]
tries defeating reconnaissance by skilled attackers, through mutating configuration
(name, addresses, fingerprint) of network hosts, while populating address space with
moving honeypots with strategically designed but randomly changing configura-
tions. However it does not define the clear metric for multi-dimensional deception
effectiveness and provide no synthesis to find the satisfiable combination of the
multi-dimensional techniques.

6.7 Conclusion

In this chapter we present a new deception as a service paradigm called CONCEAL
that combines m-mutation for address anonymization, k-anonymity for fingerprint
anonymization, and l-diversity for configuration diversification. We define three
CONCEAL metrics such as concealability, deterrence, and detectability to measure
the effectiveness of CONCEAL, and develop the framework to automatically
generate the optimal CONCEAL configuration that satisfies related budget, risk,
and operation constraints. We evaluated the effectiveness and scalability of the
CONCEAL framework, and implemented CONCEAL as a deception of service
based on ActiveSDN. Our implementation and evaluation validates the effectiveness
and scalability of the CONCEAL framework. The CONCEAL framework can solve
problem instances up to 250 services and the save of proxies can reach as high
as 90%.

6.8 Exercise Problems

1. An SMT exercise—Download Z3 solver and create the appropriate SMT con-
straints to solve the following constraint satisfaction problem:

Three connected chairs in a row (C1, C2, C3). We need to place aunt (180 lb),
sister (120 lb), and father (200 lb) such that

(a) Aunt doesn’t want to sit near father,
(b) Aunt doesn’t want to sit in the left chair,
(c) Sister doesn’t want to sit to the right of father,
(d) Any two adjacent chairs should not carry more than 350 lb.
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2. Given CONCEAL parameters (m, k, l) = (0.1, 3, 4), and d1 = d2 = 0.8, Th =
0.9, m1 = 0.1, calculate the following CONCEAL effectiveness metrics (1) CM;
(2) DM; (3) TM.

3. In the example shown in Fig. 6.3, we can see that if k or l is greater than some
threshold values, the CM value only increases marginally. Given l = 5, find the
threshold for k such that doubling the value of k will only improve CM by less
than 10%.

4. In the example shown in Fig. 6.8, is there any other satisfiable values of (m, k, l)

for CONCEAL planning problem (Hint: Use SMT to encode CONCEAL
planning constraints and add an additional constraint to exclude the obtained
solution in the chapter)?

5. In the example shown in Fig. 6.8, we set α1 = 1, and α2 = α3 = 0, this means
that we only consider CM for the effectiveness. If we set α1 = 1, α2 = 0.01,
α3 = 0 and Th = 0.9, and other values remain the same, is the problem be still
solvable?
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Chapter 7
NetShifter: A Comprehensive
Multi-Dimensional Network Obfuscation
and Deception Solution

Gahng-Seop Ahn, Kyung Joon Kwak, Alexey Bogaevskiy, Jason Li,
Gregory Briskin, and Robert Vaeth

Abstract Adaptive defense is a cyber defense strategy in which a set of system
configurations are dynamically changed to increase uncertainty and complexity for
adversaries that try to discover and exploit vulnerabilities. To improve cyber agility
of networks, the NetShifter performs multi-dimensional network-level adaptive
defense in full scale beyond physical constraints of the networks by adopting the
software-defined network (SDN).

Keywords Adaptive network defense · Software defined network · Network
obfuscation

7.1 Introduction

Conventional cyber defense endeavors to protect systems that operate in relatively
static configurations. Such static configurations bring great advantage for adver-
saries in that they have time to discover and exploit vulnerabilities. Attackers are
continually changing their tactics and seeking out new vulnerabilities. Conventional
cyber defense strategies that present security barrier for static systems are not
effective enough. Network obfuscation and deception is a cyber defense strategy in
which a set of system configurations is dynamically changing to increase uncertainty
and complexity for adversaries seeking to discover and exploit vulnerabilities.
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Although network obfuscation and deception is a promising and appealing idea,
it is still in the early stages of maturation process. Specifically, existing network
obfuscation and deception solutions for enterprise networks are not sufficient
in thwarting adversary attempt to perform reconnaissance, launch an attack, and
exfiltrate information. The shortcomings are mostly due to physical constraints of
the network (i.e., effective within a given subnet/enclave). The set of configurations
to be played are constrained by static physical wired connections and physical
locations. Also, IP addresses of hosts and services are tied within an enclave unless
additional measures are applied to route the packets. In addition, the time scale of
dynamics in network obfuscation and deception is still an issue to investigate and
explore the trade-off design space. In order to be a true game changer in enterprise
network security solution, a comprehensive and highly dynamic obfuscation and
deception techniques are needed.

NetShifter is a highly dynamic network obfuscation and deception solution that
overcomes limitations of existing solutions. Figure 7.1 illustrates an operational
view of NetShifter in a representative enterprise network infrastructure. NetShifter
is a multi-dimensional network obfuscation and deception solution that mutates and
randomizes multiple aspects of the network configurations simultaneously, each of
which adds dimensions of complexity that cyberattacker must analyze. The solution
employs comprehensive network and host level SDN-based network obfuscation
and deception techniques and adds additional layers of network obfuscation by
leveraging state-of-the-art virtualization techniques and DNS deception methods.

Specifically, NetShifter performs network obfuscation and deception techniques
including: (1) packet header randomization, (2) host/server IP address mutation, (3)
DNS/IP address binding mutation, (4) route/flow mutation, (5) topology mutation,
and (6) service randomization.

Fig. 7.1 Operational view of NetShifter solution
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7.2 Summary of Existing Network Obfuscation
and Deception Solutions

A summary of the existing network obfuscation and deception research efforts,
which employ software-defined networking (SDN) to provide network obfuscation
and deception capability, is presented in Sect. 7.2.1. SDN allows for abstraction of
the data plane and control plane. Network operators manage network capabilities
and services through the centralized control point. Network obfuscation and decep-
tion introduces a dynamic environment in order to delay, deter, or prevent attacks on
a system. SDN can play a key role to provide attack surface obfuscation.

A summary of existing network obfuscation and deception solutions that are
not leveraging the SDN is presented in Sect. 7.2.2. Some of the features in those
solutions can be re-developed using SDN.

It is worth noting that the existing network obfuscation and deception solutions in
the literature are limited by physical constraints of the network (i.e., effective within
a given subnet/enclave) or have not been tested beyond the physical constraints.
The set of configurations to be played in network obfuscation and deception
are constrained by static physical wired connections and physical locations. For
instance, the solutions presented in [1, 12, 13] dynamically change routes between
source and destination within available routes in a static physical topology. Hence,
attacker may be able to discover the static physical topology by combining all
variances of routes. Furthermore, the number of disjoint paths that can be used for
random route mutation is limited in wired network. IP address hopping solutions
[2–6] also face the similar challenge due to limited IP address spaces assigned to
a subnet or an enclave. The IP addresses of hosts and services are tied within an
enclave unless additional measures are applied to route the packets. In addition,
the time scale of dynamics in network obfuscation and deception is still an issue
to investigate and explore the trade-off design space. For example, recent soft-
ware defined network (SDN) technology-based network obfuscation and deception
solutions [4] randomize IP addresses per flow. However, long-lived IP flows such
as secure socket layer (SSL) connections will hinder network configuration from
dynamically changing, which gives an attacker sufficient time to analyze network
behavior and topology.

7.2.1 SDN-Based Solutions

The OpenFlow random host mutation (OF-RHM) [4] uses solver and equation to
randomize source and destination IP addresses. It keeps real IP address of a host
unchanged and uses virtual IP addresses for routing purpose. Even with a limited
and fragmented unused address space, each host will mutate with its required rate
such that no IP address is reused (assigned to any host more than once) for a
reasonably long time. This prevents, deters, and mitigates scanning-based attacks.
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The authors of the OF-RHM also proposed random route mutation [1] that enables
changing randomly the route of the multiple flows in a network simultaneously to
defend against reconnaissance, eavesdrop, and DoS attacks, while preserving end-
to-end QoS properties. This solution can be deployed as add-on functionality to their
SDN-based solution.

The SDN Shuffle [5] uses host-based address manipulation and only introduces
the minimal time to perform NAT translations on packets after the connection was
established. The computational overhead occurs at reasonable rate at the network
layer. A malicious application running at the user-level on the client or server
could learn the synthetic address of the communicating counterpart and attempt
to establish a concurrent connection in order to launch an attack. The SDN Shuffle
does not require mapping state in network switches or NAT devices thus eliminating
potential scalability concerns.

The SDN-based solutions for moving target defense network protection [6]
enforce network obfuscation in response to a TCP port scan. Steps can be imple-
mented in SDN in order to enforce network obfuscation in response to a TCP port
scan. The algorithm will reveal extra open and closed ports for the attacker but will
also generate obfuscated port traffic (ACK, PUSH-ACK) against more advanced
reconnaissance tests. SDN programmability can offload the packet generation
effort to separate distributed or hosted programs without overloading the network
infrastructure. Traffic to a destination that can be blocked according to a filtering
policy can be silently dropped and SDN utilities can generate varying responses
that will confuse the attacker.

7.2.2 Non-SDN-Based Solutions

Dynamic network address translation (DYNAT) [9] is a protocol obfuscation
technique to protect the network traffic. DYNAT can be deployed to workstations,
servers, routers, and gateways. DYNAT randomizes parts of a network packet
header. This randomization can make it more difficult for cyberattackers to deter-
mine what is happening on a network, who is communicating with whom, what
services are being used, and where the important systems are located depending on
how the technique is deployed.

Randomized intrusion-tolerant asynchronous services (RITAS) [10] is a tech-
nique that builds a set of fault-tolerant consensus-based protocols on top of TCP and
the IPSec protocol. TCP provides a reliable channel and IPSec provides integrity to
the data being transmitted. This technique is to be used between a set of processes.
The processes are assumed to be fully connected and each pair of processes
shares a secret key. Using randomization, this technique implements a dynamic
network that is capable of guaranteed delivery given limited number of malicious
nodes.

Network address space randomization (NASR) [11] is a technique that involves
changing the IP address of systems more frequently. The authors modified a
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dynamic host configuration protocol (DHCP) server to have short IP address leases
and to force an IP address change when a lease expires. The side effect of changing
these IP addresses constantly is that persistent or active connections would be
dropped during the address change. Domain name system (DNS) servers can be
used for outside access to servers and services to mitigate the impact a constantly
changing IP address would have on end users.

A mutable network (MUTE) [12] is a technique that involves changing IP
addresses, port numbers, and routes to destinations inside of a network. This
technique is proposed to be implemented as a sort of virtual overlay to the existing
network so the original IP address and information on the systems never changes.
The packets can be changed based on rules distributed among routing entities. It can
change the source and destination IP address as well as source and destination ports.

Dynamic backbone (DynaBone) [13] is a technique that involves creating multi-
ple inner virtual overlay networks inside of a larger outer virtual overlay network.
Each of the inner networks can be using a different networking and routing protocol
or hosting a different service to increase diversity among them. The entry points
to these internal overlays have a collection of sensors that monitor performance
and possible attack traffic. If an internal overlay is detected to be under attack or
is suffering performance issues, traffic can be routed through different overlays
(dynamic network aspect of DynaBone). This technique is built on top of XBone
that is a dynamic network overlay technique that allows multiple simultaneous
virtual overlays to co-exist.

Self-shielding dynamic network architecture (SDNA) [2] is a hypervisor-based
technique that rewrites packets entering and exiting the OS to prevent the OS from
observing real addresses in the network. By inserting a hypervisor within each
network node, SDNA makes the network’s appearance dynamic to observers while
at the same time retaining the necessary semantics for transparency to legitimate
users. SDNA is comprised of a combination of existing networking techniques,
hypervisor technology, authentication, and IPv6.

7.3 NetShifter System Architecture

The NetShifter system architecture is illustrated in Fig. 7.2. NetShifter is developed
mainly based upon software defined networks (SDN) architecture and OpenFlow
standard implementation. NetShifter is a hybrid solution that uses SDN devices
residing with legacy network devices with very minimal configuration changes.
The hybrid solution ensures relatively easy acceptance to existing enterprise
network operators and administrators. Each OpenFlow enabled routers/switches are
controlled by an SDN controller using the OpenFlow standard. Distributed SDN
controllers can also be used in the NetShifter architecture. In Fig. 7.2, we simplify
the architecture to use a single SDN controller as an example. For large-scale
enterprise networks, distributed SDN controllers can be used.
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Fig. 7.2 NetShifter system architecture

The NetShifter controller is developed as a holistic and comprehensive SDN
application that interacts with an SDN controller to perform the network obfuscation
and deception techniques listed in the NetShifter controller box in Fig. 7.2. The
NetShifter controller also dynamically reconfigures a DNS proxy to provide fast
flux capability using well-defined APIs/standard protocol.

NetShifter can use both software and hardware OpenFlow implementations.
We have tested NetShifter with hardware OpenFlow implementations such as HP
switches and LinkSys routers as well as software OpenFlow implementation such
as OpenVSwitch (OVS). OVS is a production quality, multilayer virtual switch.
NetShifter can use OVS operating in virtual infrastructure that runs many enterprise
network applications and services as shown in Fig. 7.2. Due to its open and vendor
agnostic design approach, NetShifter is dynamically programmable and relatively
transparent to legacy networks.

NetShifter leverages state-of-the-art virtualization solution to migrate an applica-
tion or service from one physical location to another while the application or service
is running (i.e., live application and service migration). While the application or
service is migrating, underlying network devices will adapt to forward user traffic
to right location, which is critical to be user transparent.

NetShifter augments a DNS proxy to create a DNS network obfuscation and
deception cache. The cache is updated to change IP addresses dynamically for a
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given service domain name and redirects service request to the designated server
when it is migrated to a new location or its IP address is mutated.

7.4 NetShifter Network Obfuscation and Deception
Techniques

NetShifter is a multi-dimensional network obfuscation and deception solution that
applies multiple network obfuscation and deception techniques simultaneously. The
network obfuscation and deception techniques that are performed in NetShifter
solution are presented in this section.

7.4.1 IP Address Mutation Across Enclaves

IP address is a primary element of network obfuscation and deception space
because static IP addresses assigned to a host/server offer great advantages for
cyberattackers to discover an attack surface. Many IP address mutation (i.e.,
hopping or randomization) techniques [4–8] have been proposed in the literature.
These techniques are limited, due to the physical constraints of military/enterprise
network. DHCP-based [7] or NAT-based [8] network obfuscation and deception
techniques are inevitably limited within a subnet. Other techniques [4–6] have not
been tested to randomize IP address using a pool of IP addresses assigned for other
enclaves nor provide any considerations or additional measures to enable it. Among
these approaches, the technique presented in [4] that uses advanced SDN technology
seems to be well-defined and practical, although it is still limited.

NetShifter also uses advanced SDN technology to mutate IP address of a
host/server. However, NetShifter overcomes the limitation of existing IP address
mutation solutions and uses the pool of IP addresses that is not tied to an enclave.
The connectivity of the network with the mutated IP addresses will be maintained
by using SDN technology and GRE/VPN tunneling.

In NetShifter solution, the IP address of a node (i.e., host or server) is not changed
directly at the host/server. Instead, the IP address of packets to/from the node is
mutated by an OpenFlow enabled switch (OF) that connects the node as shown in
Fig. 7.3. OpenFlow enabled devices can dynamically update TCP/IP/ICMP header
fields (e.g., source/destination IP, source/destination port, TOS, VLAN ID, etc.)
based on specific matching rules and actions. Note that OpenFlow standard allows
to manipulate more than 30 L2/L3 packet headers on the fly by using simple SDN
flow rules. The NetShifter controller (NC) updates SDN flow rules on the OpenFlow
enabled switch (OF) to enforce IP address mutation as shown in Fig. 7.3.

For example, the target node shown in Fig. 7.3 uses static IP address X0 at time
t0 and after time t1. At time t1, the NetShifter controller (NC) updates flow rules
on the OpenFlow enabled switch (OF) that connects the target node to enforce the
mutation of IP address from X0 to X1. According to the updated SDN flow rules,
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the OpenFlow enabled switch (OF) mutates the source IP address in the header of
packets from the node as X1. As a result, nodes that receive those packets will
see the source IP address X1. Also, the OpenFlow enabled switch mutates the
destination IP address in the header of packet to the node as X0. As a result, the
node will receive those packets and see the destination IP address X0. Therefore,
the IP address of the node is perceived as X1 after time t1 from the network while
the user of the node will not see any changes in IP address configuration. In this
sense, NetShifter’s IP address mutation is end-user transparent.

In NetShifter, the pool of mutable IP addresses of a node includes all available
IP addresses of enclaves participating NetShifter solution. Hence, IP address of
hosts and servers will be mutated randomly in a pool of all available IP addresses
assigned for the organization across enclaves. NetShifter can also include private IP
addresses, such as address ranges 192.168.0.0/16, 172.16.0.0/12, 10.0.0.0/8, to the
pool, thus making sure that the randomized IP addresses are chosen from a relatively
large set of IP addresses.

The connectivity of the network with the mutated IP addresses will be maintained
by using SDN technology and GRE (or VPN) tunneling. The method for delivering
a packet destined to IP address assigned to a different enclave can be explained
using Fig. 7.4. This method requires an OpenFlow (OF) enabled device connected

Fig. 7.3 End-user transparent IP address mutation

Fig. 7.4 Delivery of packets with mutated IP address across enclaves
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to the gateway router (GW) in each enclave and GRE (or VPN) tunnels established
between those OF devices. In enterprise networks, an inter-enclave GRE (or VPN)
tunnel setups may be readily available, and thus can be re-used for NetShifter
solution. When a packet destined to a mutated IP address reaches one of the GW
routers, an OF device that is connected to the GW router forwards the packet using
the SDN flow rules that is updated by the NetShifter controller. OpenFlow standard
enables SDN flow rules to be enforced quickly on every OpenFlow enabled devices.
The GW routers are legacy devices that do not support SDN flow rules. The OF
devices use the inter-enclave GRE (or VPN) tunnel to pass the packet according
to the SDN flow rules without conflicting with legacy routing rules of the GW
routers.

For example, if the mutated IP address of the target node shown in Fig. 7.4
belongs to Enclave 2, the backbone network will forward the packet to the GW
router of Enclave 2 based on legacy routing. The GW router will also forward the
packet to the OF device in Enclave 2 based on legacy routing. Then, the OF device
in Enclave 2 will forward the packet to the OF device in Enclave 1 through the GRE
tunnel based on SDN flow rules. Also, the OF devices in Enclave 1 will forward
the packet to the target node based on SDN flow rules. The NetShifter controller
updates the SDN flow rules to make sure the packets are delivered successfully to
the target node.

7.4.2 Flow Migration

A network obfuscation and deception solution to randomize a route between a
given source and destination pair is necessary to defeat cyberattackers who try to
launch an eavesdropping or denial of service attacks on a node or a link in the
route. In [1], a route randomization using overlay networking is proposed. In [6],
authors mentioned that route randomization can be implemented by using SDN
and integrating software-defined custom policies. NetShifter leverages the SDN and
software-defined policies to migrate and randomize the route.

In NetShifter solution, an OpenFlow (OF) enabled device randomizes the route
of a flow according to SDN flow rules updated by the NetShifter controller (NC).
For example, when a flow (i.e., a traffic session) is initiated from a source to a
destination at time t0, the OF device forwards the traffic to a router R1 as shown
in the left of Fig. 7.5. At time t1, the NetShifter updates SDN flow rules on the OF
device. Then, the OF device forwards the traffic to another router R2 according to
the updated SDN flow rules as shown in the right of Fig. 7.5. As a result, the flow
has migrated from R1 to R2.



134 G.-S. Ahn et al.

7.4.3 Topology Mutation

The topology of a network is critical information that can be used for planning
an effective cyberattack. Hence, a network obfuscation and deception solution to
mutate the topology is necessary. In wired network, the physical connections are
static and re-wiring is difficult. To make the connections flexible, NetShifter solution
takes a hybrid approach that uses SDN devices residing with legacy network devices
with very minimal configuration changes. The topology mutation will be controlled
by the NetShifter controller using OpenFlow standard.

For example, OpenFlow (OF) enabled devices are placed between legacy routers
as shown in Fig. 7.6. The NetShifter controller (NC) updates these OF devices with
the SDN flow ruleset #1 to enforce traffic forwarding as shown in the left of Fig. 7.6.
As a result, the perceived topology is set to the virtual topology #1. If NC updates
these OF devices with the SDN flow ruleset #2, the perceived topology will be set
to the virtual topology #2.

Fig. 7.5 Flow migration

Fig. 7.6 Topology mutation
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7.4.4 DNS/IP Binding Mutation

We developed DNS/IP binding mutation that dynamically mutates the binding
between a domain name and an IP address exploiting fast flux DNS. The domain
name system (DNS) is a hierarchical decentralized naming system for computers,
services, or any resource connected to the Internet or a private network. It associates
information with domain names assigned to each of the participating entities. Fast
flux DNS is a technique that takes advantage of the way load balancing is built
into the domain name system. DNS allows an administrator to register multiple
IP addresses associated with a single fully qualified domain name. Typically, the IP
addresses associated with a host domain do not change very often, if at all. However,
it is possible to hide a host server’s IP address to domain name mapping by using
very short time-to-live (TTL) settings for the DNS resource records and swapping
the records’ associated IP addresses in and out with high frequency using sets of
round-robin IP addresses. Website hostnames, for example, may be associated with
a new set of IP addresses as often as every 3–6 min. NetShifter’s DNS/IP binding
mutation introduces a novel extension to this method, whereas NetShifter DNS
proxy is augmented to create a DNS network obfuscation and deception cache. DNS
resource records (RR) inside the cache are updated to rotate IP address numbers for
a given service domain name. NetShifter network obfuscation and deception port
redirectors are used as “blind” proxies-redirectors to forward requests to the real
Internet server. These “blind” proxies-redirectors have very short life span, with
the next proxy starting (using the next rotating IP address to be referenced in the
DNS RR record) when the current redirector’s lifetime is about to expire. When
an attacker attempts DNS record harvesting, she gets a current “snapshot” of the
entire DNS record cache from the NetShifter’s DNS proxy. These domain name
records contain the transient IP addresses of the current port redirectors, instead of
IP addresses of the real servers. The snapshot will become obsolete in a matter of
minutes, due to continuous IP address rotation. In the case of a legitimate user trying
to connect to an Internet server using domain name, her request will be forwarded
to a real Internet server through the currently active port redirector. This novel
network obfuscation and deception technique aimed to conceal the network address-
to-domain-name mappings, and it can be used for HTTP, SMTP, SIP, IMAP, POP,
and other Internet services.

7.4.5 Service Randomization

Services in enterprise network are potential attack surfaces for cyberattacks. We
developed two service randomization techniques that randomize the location of the
server (i.e., service migration) or randomize the IP address of the server (i.e., service
IP address mutation).
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Using virtualization technology, a server running as a virtual machine (VM) can
be migrated from one physical location to another physical location with minimal
disruption without any loss of service states in the memory. For example, a server
VM in enclave 1 can migrate from Enclave 1 to Enclave 2 as shown in Fig. 7.7. The
NetShifter controller (NC) can control the VM migration using interfaces provided
by virtualization products (e.g., VirtualBox, VMware, Xen, etc.). The NetShifter
can also control the DNS server (or proxy) to update the DNS/IP address binding
for the service. Hence, the legitimate users can still access the service in the new
location.

Alternatively, NetShifter can control OF devices to perform IP address mutation
(as described in Sect. 7.4.1) of the service as shown in Fig. 7.7. The IP address
mutation can be performed across enclaves as we have explained in Sect. 7.4.1.
Hence, the service IP address mutation can provide an equivalent result as the
service migration.

7.5 Case Study

This section provides case study of how NetShifter can operate in enterprise
network. We established an enterprise network testbed and demonstrated the
operation of NetShifter in the following use cases:

• Case 1: IP address mutation within an enclave
• Case 2: Cross domain IP address mutation
• Case 3: Flow migration/topology mutation
• Case 4: Service migration

7.5.1 Enterprise Network Testbed

For the demonstration of the use cases, we established an enterprise network testbed
using COTS devices including OpenFlow capable routers, conventional routers,
hosts, and servers as shown in Fig. 7.8.

The testbed mimics realistic enterprise networks that are interconnected through
a wide area network (WAN) or Internet. The testbed consists of three enclaves. Each
enclave forms a small local area network (LAN) with COTS network devices (i.e.,
routers and switches).

We use LinkSys routers as OpenFlow enabled routers in the testbed. Each
OpenFlow enabled routers/switches are controlled by the NetShifter controller
which is implemented as an SDN application on an OpenDaylight (ODL) OpenFlow
controller. The NetShifter controller updates SDN flow rules on OpenFlow enabled
devices using the OpenFlow standard to perform NetShifter network obfusca-
tion and deception techniques. In addition, the NetShifter controller dynamically
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reconfigures DNS server to provide fast flux capability to add another layer
of complexity in the NetShifter solution. A network accessible storage (NAS)
maintains an image of application server (e.g., web server) to support service
migration.

Server VM Server VM’Enclave 1 Enclave 2

1. Service Migration

Enclave 1    Enclave 2

Virutual
Infrastructure

Virtual
Infrastructure

DNS
Fast flux

2. Service IP Address Mutation

IP address X1    IP address X2

OVSOVS

Fig. 7.7 Service randomization

Fig. 7.8 Enterprise network testbed

We deployed a tunneling device between the gateway and the SDN routers
in each enclave because the LinkSys routers do not support GRE tunneling. The
tunneling devices are implemented using COTS Linux box devices. The tunneling
devices establish a GRE tunnel with each tunneling devices in other enclaves. We
can use other COTS OpenFlow enabled routers/switch that supports GRE tunneling.
Then, we do not need to use those tunneling devices.

We emulate the reconnaissance from an attacker using zenmap tool, which is an
open source network scanning tool that provides graphical user interface.
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7.5.2 Case 1: IP Address Mutation Within an Enclave

This case shows user transparent IP address mutation of a web server within an
enclave. Also, DNS/IP binding mutation is demonstrated to support users to access
the web server using an updated IP address.

In Fig. 7.9, the IP address of Host 1 is 10.101.2.33 at time t0. Also, the DNS
server provides IP binding of www.target.i-a-i.com as 10.101.2.33 at time t0. At
time t1, the NetShifter controller sends commands to the OpenFlow router and
the DNS server to mutate IP address to 10.101.2.150, which is an IP address in
the same subnet/enclave as the original IP address. According to the commands,
the OpenFlow router mutates the IP address in the header of packets being sent
to/from Host 1. Also, the DNS server mutates the IP bind of www.target.i-a-i.com
as 10.101.2.150. Hence, Host 2 can access Host 1 (web server) anytime with the aid
of the DNS server.

We emulated an attacker that performs reconnaissance from outside as shown in
Fig. 7.9 using zenmap tool. The attacker scans an address space of 10.101.2.0/24 at
time t0 and after time t1. The attacker finds the original IP address (10.101.2.150)
of Host 1 (web server) at time t0 as shown in the left of Fig. 7.10. After time t1,
the attacker cannot find the original IP address after t0 as a result of the IP address
mutation. Instead, the attacker finds the mutated IP address (10.101.2.150) as shown
in the right of Fig. 7.10.

7.5.3 Case 2: IP Address Mutation Across Enclaves

IP address mutation of a web server across enclaves is demonstrated in this section.
Also, DNS/IP binding mutation and GRE tunneling is performed to support users to
access the web server.

Fig. 7.9 Case 1

www.target.i-a-i.com
www.target.i-a-i.com
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Fig. 7.10 Case 1 result on zenmap tool

In Fig. 7.11, the IP address of Host 4 is 10.102.3.15 at time t0. Also, the DNS
server provides IP binding of www.target.i-a-i.com as 10.102.3.15 at time t0.

At time t1, the NetShifter controller sends commands to the OpenFlow router
and the DNS server to mutate IP address to 10.101.2.31, which is an IP address
in a different enclave as the original IP address (10.102.3.15) as shown in
Fig. 7.12. Also, the DNS server mutates the IP bind of www.target.i-a-i.com as
10.101.2.31.

The wide area network (WAN) and the gateway routers forward the packets
with destination IP addresses in 10.101.0.0/16 to Enclave 1. However, Host 4 is
actually located in Enclave 2. To avoid this conflict, a GRE tunnel is used. The
packets with destination IP address 10.101.2.31 are forwarded to Enclave 2 using
the GRE tunnel between the tunneling device in Enclave 1 and the tunneling
device in Enclave 2 as shown in Fig. 7.12. Hence, Host 1 can access Host 4 (web
server) anytime with the aid of the DNS server, tunneling devices, and OpenFlow
routers.

Fig. 7.11 Case 2 at time t0

www.target.i-a-i.com
www.target.i-a-i.com
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Fig. 7.12 Case 2 after time t1

Fig. 7.13 Case 2 result on zenmap tool

The attacker scans an address space of 10.102.3.0/24 at time t0 and after time
t1. The attacker finds the original IP address (10.102.3.15) of Host 4 (web server)
at time t0 as shown in the left of Fig. 7.13. After time t1, the attacker cannot
find the original IP address as a result of the IP address mutation. If the attacker
scans the address space of 10.101.2.0/24, the attacker will find the mutated IP
address (10.101.2.31) as shown in the right of Fig. 7.13. It will be much more
difficult for attackers to link the original IP address with the mutated IP address
compared to Case 1. The attacker may not even try to scan the address space of
10.101.2.0/24. The attacker may scan entire address space of 10.0.0.0/4, which
will take a very long time and make the attacker easier to be detected by cyber
defenders.
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7.5.4 Case 3: Flow Migration/Topology Mutation

In this case, we demonstrate the flow migration and the topology mutation in
NetShifter solution. At time t0, the network traffic from Host 1 to Host 3 and the
network traffic from Host 1 to Host 4 are forwarded through the route illustrated as
yellow arrows in Fig. 7.14.

Fig. 7.14 Case 3 at time t0

Fig. 7.15 Case 3 after time t1

At time t1, the NetShifter controller sends SDN flow rules to OpenFlow routers
to forward the network traffic from Host 1 to Host 3 and the network traffic from
Host 1 to Host 4 through the route illustrated as yellow arrows in Fig. 7.15. As a
result, the traffic flow from Host 1 to Host 4 has migrated from the COTS router R1
to the COTS router R2. Also, as a collective result of the SDN flow rules for the
network traffic from Host 1 to Host 3 and the network traffic from Host 1 to Host 4,
the virtual topology is mutated at time t1.
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When Host 1 in Enclave 1 scans Enclave 2 network and draw network diagram
using zenmap tool at time t0, Host 1 sees the topology of Enclave 2 network as
shown in the left of Fig. 7.16. After time t1, Host 1 sees the topology of Enclave 2
network as shown in the right of Fig. 7.16 which is different from the topology at
time t0.

Fig. 7.16 Case 3 result on zenmap tool

7.5.5 Case 4: Service Migration

Using this case, the service migration in NetShifter solution is demonstrated using
virtual machine (VM) migration.

In this case, Host 1 and Host 2 serve as virtual infrastructures on which the
web server VM can be resided. At time t0, the web server virtual machine (VM)
is residing on Host 1 as shown in Fig. 7.17. The IP address of the web server VM is
10.101.2.33 at time t0. Also, the DNS server provides IP binding of www.target.i-
a-i.com as 10.101.2.33 at time t0.

At time t1, the NetShifter controller sends commands to Host 1 and Host 2. Then,
Host 1 and Host 2 perform the migration of web server VM from Host 1 to Host 2.
Also, the NetShifter controller sends commands to the DNS server to mutate the IP
address of the web server VM. According to the commands, the DNS server mutates
the IP bind of www.target.i-a-i.com as 10.103.2.11. Hence, user laptop 1 can access
Host 1 (web server) anytime with the aid of the DNS server.

The attacker scans an address space of 10.101.2.0/24 at time t0 and after time
t1. The attacker finds the original IP address (10.101.2.11) of the web server VM
at time t0 as shown in the left of Fig. 7.18. After time t1, the attacker cannot find
the original IP address as a result of the service migration. If the attacker scans
the address space of 10.103.2.0/24, the attacker will find the mutated IP address
(10.103.2.11) as shown in the right of Fig. 7.18.

www.target.i-a-i.com
www.target.i-a-i.com
www.target.i-a-i.com
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It will be much more difficult for attackers to link the original IP address with
the mutated IP address compared to Case 1. Furthermore, it may be more difficult
to attackers to figure out whether a network obfuscation and deception solution
is being performed compared to Case 2. In Case 2, the attacker may notice some
inconsistency of configurations because only the IP address is mutated to other
Enclave and the actual location is not changed. In Case 3, the actual location is
changed and the IP address is changed according to the location. Hence, the attacker
cannot see any inconsistency of configurations.

Fig. 7.17 Case 4

7.6 Summary

This chapter has presented an overview of NetShifter, a comprehensive multi-
dimensional network obfuscation and deception solution. The key features of
NetShifter include:

• Multi-dimensional network obfuscation and deception: NetShifter applies
multiple network obfuscation and deception techniques simultaneously. It obfus-
cates and randomizes multiple aspects of the network configurations, each
of which adds dimensions of complexity that cyberattacker must analyze. In
particular, NetShifter employs the following list of obfuscation and deception
techniques.
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Fig. 7.18 Case 4 result on zenmap tool

• Cross-enclave network obfuscation and deception: With coordination between
multiple NetShifter obfuscation and deception techniques, NetShifter assigns
random/private IP that does not belong to current subnet/enclave to mislead both
insider and outside attackers while traffic is forwarded to proper services and the
destination.

• Transparency to users/end hosts: Configurations of the network will be
controlled by using centralized or distributed controllers, in order to effectively
manage large-scale network operation in which user does not need to be aware
of any configuration updates or require any actions. The connectivity of hosts
and servers will be maintained by NetShifter solution without user notification
or actions.

• Resiliency even to insider attacks: By obfuscating network topology and traffic
as well as anonymizing server and user activity, NetShifter provides high level of
complexity for outsider attacker to infer network topology and user activity. The
insider attacker will not see anything different from the outside attacker except
for the change of IP address assigned to the host because of the separation of
control plane and data plane in NetShifter.

• Easy Deployment and transition: NetShifter can be implemented in a different
format, depending on user preferences and network administrative policy. Net-
Shifter can be realized as an SW-based solution by installing an SW package
on virtual infrastructure. NetShifter also can be implemented as a hardware
appliance in the loop (e.g., dongle or SDN-enabled router/switch) that resides
between legacy network devices. Such implementation flexibility makes Net-
Shifter relatively easily deployed in diverse operational environment with unique
requirements and constraints.

NetShifter is mainly based on SDN, virtualization techniques, and legacy
network services, which makes NetShifter easily extended to cloud-based service
and applications to secure virtual infrastructure and network traffic, while managing
the service/application more effectively.
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By performing innovative and comprehensive obfuscation and deception tech-
niques, NetShifter will make it harder for the adversary to discover and analyze
network topology and user activity.

7.7 Exercises

Problem 1: List 3 fields in IP packet header that can be modified to confuse an
eavesdropper.

Problem 2: Define an OpenFlow rule to change packet destination IP address
from 10.1.1.1 to 10.2.2.1.

Problem 3: List design considerations to properly route destination IP address
10.2.2.1 to the right host (i.e., destination IP address 10.1.1.1).
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Chapter 8
Deception-Enhanced Threat Sensing
for Resilient Intrusion Detection

Frederico Araujo, Gbadebo Ayoade, Kevin W. Hamlen, and Latifur Khan

Abstract Enhancing standard web services with deceptive responses to cyberat-
tacks can be a powerful and practical strategy for improved intrusion detection.
Such deceptions are particularly helpful for addressing and overcoming barriers to
effective machine learning-based intrusion detection encountered in many practical
deployments. For example, they can provide a rich source of training data when
training data is scarce, they avoid imposing a labeling burden on operators in
the context of (semi-)supervised learning, they can be deployed post-decryption
on encrypted data streams, and they learn concept differences between honeypot
attacks and attacks against genuine assets.

The approach presented in this chapter examines how deceptive web service
responses can be realized as software security patches that double as feature
extraction engines for a network-level intrusion detection system. The resulting
system coordinates multiple levels of the software stack to achieve fast, automatic,
and accurate labeling of live web data streams, and thereby detects attacks with
higher accuracy and adaptability than comparable non-deceptive defenses.

8.1 Introduction

Detecting previously unseen cyberattacks before they reach unpatched, vulnerable
web servers (or afterward, for recovery purposes) is an increasingly central compo-
nent to multi-layered defense of modern computer networks. High-impact zero-day
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vulnerabilities now appear at a weekly or daily rate, and studies indicate that over
75% of websites have unpatched vulnerabilities [19]. The cost of data breaches
resulting from software exploits was estimated at $2.1 trillion for 2019 [14].

Intrusion detection [10] is an important means of mitigating such threats. Rather
than implementing vulnerability-specific mitigations (which is difficult when the
vulnerability is unknown to defenders), intrusion detection systems more generally
alert administrators when they detect deviations from a model of normal behavior in
the observed data [20]. This capitalizes on the observation that the most damaging
and pernicious attacks discovered in the wild often share similar traits, such as the
steps intruders take to open back doors, execute files and commands, alter system
configurations, and transmit gathered information from compromised machines.
Starting with the initial infection, such malicious activities often leave telltale
traces that can be identified even when the underlying exploited vulnerabilities are
unknown to defenders. The challenge is therefore to capture and filter these attack
trails from network traffic, connected devices, and target applications, and develop
defense mechanisms that can effectively leverage such data to disrupt ongoing
attacks and prevent future attempted exploits.

However, despite its great power, the deployment of machine learning
approaches for web intrusion detection is often hindered by a scarcity of realistic,
current cyberattack data with which to train the system, and by the difficulty of
accurately and efficiently labeling such datasets, which are often prohibitively
large and complex. This can frustrate comprehensive, timely training of intrusion
detection systems (IDSes), causing the IDS to raise numerous false alarms and
elevating its susceptibility to attacker evasion techniques [6, 9, 13, 16, 18].

To mitigate these dilemmas, this chapter presents a deception-based approach to
enhance IDS web data streams for faster, more accurate, and more timely evolution
of intrusion detection models to emerging attacks and attacker strategies.

8.2 Deceptive Collection of Attack Data

Deception has long been recognized as a key ingredient of effective cyber warfare
(cf., [23]), but many realizations limit the potential power of deception by isolating
and separating deceptive assets from the data stream in which intrusions must
actually be detected. A typical example is the use of dedicated honeypots to
collect attack-only data streams [21]. Such approaches unfortunately have limited
training value in that they often mistrain IDSes to recognize only attacks against
honeypots, or only attacks by unsophisticated adversaries unable to identify and
avoid honeypots. For example, attacks that include substantial interactivity are
typically missed, since the honeypot offers no legitimate services, and therefore
collects no data characterizing attacks against legitimate services.

One way to overcome this limitation is to integrate deceptive attack response
capabilities directly into live, production web server software via honey-
patching [2–4]. Honey-patches are software security patches that are modified
to avoid alerting adversaries when their exploit attempts fail. Instead of merely
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blocking the attempted intrusion, the honey-patch transparently redirects the
attacker’s connection to a carefully isolated decoy environment running an
unpatched version of the software. Adversaries attempting to exploit a honey-
patched vulnerability therefore observe software responses that resemble unpatched
software, even though the vulnerability is actually patched. This deception allows
the system to observe subsequent actions by the attacker until the deception is
eventually uncovered. Thus, honey-patches offer equivalent security to conventional
patches, but can also enhance IDS web data streams by feeding them a semantically
rich stream of pre-labeled (attack-only) data for training purposes. These deception-
enhanced data streams thus provide IDSes with concept-relevant, current,
feature-filled information with which to detect and prevent sophisticated, targeted
attacks.

Honey-patches are often easy to implement via only a minor change to a vendor-
released software patch. For example, buffer overflow vulnerabilities are typically
patched by adding a bounds check that tests whether a dereferenced pointer or array
index falls within the bounds of the buffer. Such patches can easily be reformulated
into honey-patches by retaining the check, but changing what happens when the
check fails. Instead of aborting the connection or reporting an error, the honey-
patch redirects the connection to an unpatched decoy, where the buffer overflow is
permitted to succeed.

1 read a[i]

1

2 abort();
3 read a[i]

if (i ≥ length(a)) 1 if (i ≥ length(a))
2 fork_to_decoy();
3 read a[i]

Fig. 8.1 Pseudo-code for a buffer overflow vulnerability (left), a patch (middle), and a honey-
patch (right)

Figure 8.1 demonstrates the approach using pseudo-code for a buffer-overflow
vulnerability, a conventional patch, and a honey-patch. The honey-patch retains the
logic of the conventional patch’s security check, but replaces its remediation with
a deceptive fork to a decoy environment. The decoy contains no valuable data and
offers no legitimate services; its sole purpose is to monitor attacker actions, such as
shellcode or malware introduced by the attacker after abusing the buffer overflow
to hijack the software. The infrastructure for redirecting attacker connections to
decoys can remain relatively static, so that honey-patching each newly discovered
vulnerability only entails replacing the few lines of code in each patch that respond
to detected exploits.

Honey-patches constitute an integrated deception mechanism that offers some
important advantages over conventional honeypots. Most significantly, they observe
attacks against the defender’s genuine assets, not merely those directed at fake assets
that offer no legitimate services. They can therefore capture data from sophisti-
cated attackers who monitor network traffic to identify service-providing assets
before launching attacks, who customize their attacks to the particular activities
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of targeted victims (differentiating genuine servers from dedicated honeypots),
and who may have already successfully infiltrated the victim’s network before
their attacks become detected. The remainder of this chapter examines how the
deception-enhanced data harvested by honey-patches can be of particular value
to network-level defenses, such as firewalls equipped with machine learning-based
intrusion detection.

8.3 Intrusion Detection Challenges

Despite the potential power of machine learning in intrusion detection applications,
its success in operational environments can be hampered by specific challenges that
arise in the cybersecurity domain. In this section we argue that cyber deception can
be a highly effective strategy for avoiding or overcoming many of these challenges.

Fundamentally, machine learning algorithms perform better at identifying simi-
larities than at discovering previously unseen outliers. Since normal, non-attack data
is usually far more plentiful than realistic, current attack data, many classifiers must
be trained almost solely from the former, necessitating an almost perfect model of
normality for any reliable classification [18]. Deceptive defenses help to offset this
imbalance by providing a continuous source of realistic attack data specialized to
the defender’s network and assets.

Feature extraction [7] is also unusually difficult in intrusion detection contexts
because security-relevant features are often not known by defenders in advance.
The task of selecting appropriate features to detect an intrusion (e.g., features
that generate the most distinguishing intrusion patterns) can create a bottleneck in
building effective models, since it demands empirical evaluation. Identification of
attack traces among collected workload traces for constructing realistic, unbiased
training sets is particularly challenging. Current approaches usually require manual
analysis aided by expert knowledge [6, 9], which reduces the model’s evolutionary
and update capabilities, making it susceptible to attacker evasions. The approach
presented in this chapter shows how including deceptions within software security
patches can overcome this difficulty.

A third obstacle is analysis of encrypted data. Encryption is widely employed to
prevent unauthorized users from accessing sensitive web data transmitted through
network links or stored in file systems. However, since network-level detectors
typically discard cyphered data, their efficacy is greatly reduced by the widespread
use of encryption technologies [13]. In particular, attackers benefit from encrypting
their malicious payloads, making it harder for standard classification strategies to
distinguish attacks from normal activity. Deceptive defenses can often be placed
after decryption within the software stack, evading this problem.

High false positive rates are another practical challenge for adoption of machine
learning approaches [16]. Raising too many alarms renders intrusion detection
meaningless in most cases, as actual attacks are often lost among the many alarms.
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Studies have shown that effective intrusion detection therefore demands very low
false alarm rates [5]. Deception-enhanced data streams can ameliorate this by
improving the concept-relevance of the collected training data, improving attack
detection accuracy.

8.4 Mining Deception-Enhanced Threat Data

To mitigate these challenges, this chapter introduces an approach to enhance
intrusion detection with threat data sourced from honey-patched [4] applications.
Figure 8.2 shows an overview of the approach. Unlike conventional approaches,
our framework incrementally builds a model of legitimate and malicious behavior
based on audit streams and attack traces collected from honey-patched web servers.
This augments the classifier with security-relevant feature extraction capabilities not
available to typical network intrusion detectors, effectively reducing the anomaly
detection task to a semi-supervised learning process.

Such capabilities are transparently built into the framework, requiring no addi-
tional developer effort (apart from routine patching) to convert the target application
into a potent feature extractor for anomaly detection. Since traces extracted from
decoys are always contexts of true malicious activity, this results in an effortless
labeling of the data and supports the generation of higher-accuracy detection
models.

Honey-patches add a layer of deception to confound exploits of known (patch-
able) vulnerabilities. Previously unknown (i.e., zero-day) exploits can also be
mitigated through IDS cooperation with the honey-patches. For example, a honey-
patch that collects identifying information about a particular adversary seeking
to exploit a known vulnerability can convey that collected information to train a
classifier, which can then potentially identify the same adversary seeking to exploit a
previously unknown vulnerability. This enables training intrusion detection models
that capture features of the attack payload, and not just features of the actual
exploitation of the vulnerability, thus more closely approximating the true invariant
of an attack.

To facilitate such learning, our approach classifies sessions as malicious, not
merely the individual packets, commands, or bytes within sessions that comprise
each attack. For example, observing a two-phase attack consisting of (1) exploitation
of a honey-patched vulnerability, followed by (2) injection of previously unseen
shellcode might train a model to recognize the shellcode. Subsequent attacks that
exploit an unpatched zero-day to inject the same (or similar) shellcode can then
be recognized by the classifier even if the zero-day exploit is not immediately
recognized as malicious. Conventional, non-deceptive patches often miss such
learning opportunities by terminating the initial attack at the point of exploit, before
the shellcode can be observed.



152 F. Araujo et al.

network

patched service

unpatched service
honey-patched service

attack modeling attack detection

feature extraction

model update classifier

attack/audit 
traces

monitoring
stream (unknown)

attack/audit
data

monitoring
data

alerts

monitoring

Fig. 8.2 System architecture overview

Our approach therefore essentially repurposes security patches in an IDS setting
as automated, application-level feature extractors. The maintenance burden for these
extractors is relatively low: most of the patch code is maintained by the collective
expertise of the entire software development community, as they discover new
vulnerabilities and release patches for them. Via honey-patching, defenders can
reimagine those patches as highly accurate, rapidly co-evolving feature extraction
modules for an IDS. The extractor detects previously unseen payloads that exploit
known vulnerabilities at the application layer, which can be prohibitively difficult
to detect by a strictly network-level IDS.

By living inside web servers that offer legitimate services, a deception-enhanced
IDS can target attackers who use one payload for reconnaissance but reserve another
for their final attacks. The facility of honey-patches to deceive such attackers
into divulging the latter is useful for training the IDS to identify the final attack
payload, which can reveal attacker strategies and goals not discernible from the
reconnaissance payload alone. The defender’s ability to thwart these and future
attacks therefore derives from a synergy between the application-level feature
extractor and the network-level intrusion detector to derive a more complete model
of attacker behavior.

8.5 Use Case: Booby-Trapping Software for Intrusion
Detection

8.5.1 Architectural Overview

The architecture depicted in Fig. 8.2 embodies this approach by leveraging
application-level threat data gathered from attacker sessions misdirected to decoys.
Within this framework, developers use honey-patches to misdirect attackers to
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decoys that automatically collect and label monitored attack data. The intrusion
detector consists of an attack modeling component that incrementally updates the
anomaly model data generated by honey-patched servers, and an attack detection
component that uses this model to flag anomalous activities in the monitored
perimeter.

The decoys into which attacker sessions are forked can be managed as a pool of
continuously monitored containers (e.g., LXC on Linux). Each container follows
the following life cycle: Upon attack detection, the honey-patching mechanism
acquires the first available container from the pool. The acquired container holds
an attacker session until (1) the session is deliberately closed by the attacker, (2)
the connection’s keep-alive timeout expires, (3) the ephemeral container crashes,
or (4) a session timeout is reached. The last two conditions are common out-
comes of successful exploits. In any of these cases, the container is released
back to the pool and undergoes a recycling process before becoming available
again.

After decoy release, the container monitoring component extracts the session
trace (delimited by the acquire and release timestamps), labels it, and stores the
trace outside the decoy for subsequent feature extraction. Decoys only host attack
sessions, so precisely collecting and labeling their traces (at both the network and
OS level) is effortless.

Evaluating the framework requires distinguishing three separate input data
streams: (1) the audit stream, collected at the target honey-patched server, (2)
attack traces, collected at decoys, and (3) a monitoring stream, which consists
of a actual test stream collected from regular servers. Each of these streams
contains network packets and operating system events captured at each server
environment. To minimize performance impact, a powerful and highly efficient
software monitor is recommended. Recommended candidates include sysdig (to
track system calls and modifications made to the file system) and tcpdump (to mon-
itor ingress and egress of network packets). Specifically, monitored data is stored
outside the decoy environments to avoid possible tampering with the collected
data.

Using the continuous audit stream and incoming attack traces as labeled input
data, the intrusion detector incrementally builds a machine learning model that
captures legitimate and malicious behavior. The raw training set (composed of
both audit stream and attack traces) is piped into a feature extraction compo-
nent that selects relevant, non-redundant features (see Sect. 8.5.2) and outputs
feature vectors—audit data and attack data—that are grouped and queued for
subsequent model update. Since the initial data streams are labeled and have
been preprocessed, feature extraction becomes very efficient and can be performed
automatically. This process repeats periodically according to an administrator-
specified policy. Finally, the attack detection module uses the most recently
constructed attack model to detect malicious activity in the runtime monitoring
data.
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8.5.2 Detection Models

To assess our framework’s ability to enhance intrusion detection data streams, we
have designed and implemented two feature set models: (1) Bi-Di detects anomalies
in security-relevant network streams, and (2) N-Gram finds anomalies in system
call traces. The feature set models and classifier presented in this section serve
as illustrative use case. Applications of the IDS framework should consider other
machine learning models and contrast trade-offs and their effectiveness for attack
detection.

8.5.2.1 Network Packet Analysis

Bi-Di (bi-directional) is a packet-level network behavior analysis approach that
extracts features from sequences of packets and bursts—consecutive packets ori-
ented to the same direction (viz., uplinks from client to server, or downlinks from
server to client). It uses distributions from individual burst sequences (uni-bursts)
and sequences of two adjacent bursts (bi-bursts). To be robust against encrypted
payloads, we limit feature extraction to packet headers.

Network packets flow between client (Tx) and server (Rx). Bi-Di constructs
histograms using features extracted from packet lengths and directions. To over-
come dimensionality issues associated with burst sizes, bucketization is applied
to group bursts into correlation sets (e.g., based on frequency of occurrence).
Table 8.1 summarizes the features used in our approach. It highlights new features
proposed for uni- and bi-bursts as well as features proposed in the prior works
[1, 12, 15, 22].

Uni-burst Features include burst size, time, and count—i.e., the sum of the sizes of
all packets in the burst, the amount of time for the entire burst to be transmitted, and
the number of packets it contains, respectively. Taking direction into consideration,
one histogram for each is generated.

Bi-burst Features include time and size attributes of Tx-Rx-bursts and Rx-Tx-bursts.
Each is comprised of a consecutive pair of downlink and uplink bursts. The size and
time of each are the sum of the sizes of the constituent bursts, and the sum of the
times of the constituent bursts, respectively.

Bi-bursts capture dependencies between consecutive packet flows in a TCP
connection. Based on connection characteristics, such as network congestion, the
TCP protocol applies flow control mechanisms (e.g., window size and scaling,
acknowledgement, sequence numbers) to ensure a level of consistency between Tx
and Rx. This influences the size and time of transmitted packets in each direction.
Each packet flow (uplink and downlink) thereby affects the next flow or burst until
communicating parties finalize the connection.
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Table 8.1 Packet, uni-burst,
and bi-burst features

Category Features

Packet (Tx/Rx) Packet length

Uni-burst (Tx/Rx) Uni-burst size
Uni-burst time
Uni-burst count

Bi-burst (Tx-Rx/Rx-Tx) Bi-burst size
Bi-burst time

Algorithm 1: Ens-SVM
Data: training data: T rainX, testing data: T estX

Result: a predicted label LI for each testing instance I
1 begin
2 B ← updateModel(Bi-Di, TrainX)

3 N ← updateModel(N-Gram, TrainX)

4 for each I ∈ TestX do
5 LB ← label(B,I )
6 LN ← label(N,I )
7 if LB == LN then
8 LI ← LB

9 else

10 LI ← label

(
arg max
c∈{B,N}

confidence(c,I ), I

)

11 end
12 end
13 end

8.5.2.2 System Call Analysis

The monitored data also includes system streams comprising a collection of OS
events, where each event contains multiple fields including event type (e.g., open,
read, select), process name, and direction. Our prototype implementation was
developed for Linux x86_64 systems, which exhibit about 314 distinct possible
system call events. Our framework builds histograms from these system calls using
N-Gram—a system-level approach that extracts features from contiguous sequences
of system calls.

There are four feature types: Uni-events are system calls, and can be classified
as enter or exit events. Bi-events are sequences of two consecutive events, where
system calls in each bi-event constitute features. Similarly, tri- and quad-events are
sequences of three and four consecutive events (respectively).

Bi-Di and N-Gram differ in feature granularity; the former uses coarser-grained
bursting while the latter uses only individual system call co-occurrences.
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8.5.3 Attack Classification

Bi-Di and N-Gram both use SVM for classification. Using a convex optimization
approach and mapping non-linearly separated data to a higher dimensional linearly
separated feature space, SVM separates positive (attack) and negative (benign)
training instances by a hyperplane with the maximum gap possible. Prediction labels
are assigned based on which side of the hyperplane each monitoring/testing instance
belongs.

Ens-SVM Bi-Di and N-Gram can be combined to obtain a better predictive model.
A naïve approach concatenates features extracted by Bi-Di and N-Gram into a
single feature vector and uses it as input to the classification algorithm. However,
this approach has the drawback of introducing normalization issues. Alternatively,
ensemble methods combine multiple classifiers to obtain a better classification
outcome via majority voting techniques. For our purposes, we use an ensemble,
Ens-SVM, which classifies new input data by weighing the classification outcomes
of Bi-Di and N-Gram based on their individual accuracy indexes.
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attack generator

attack automation
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activities

BBC News
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Records
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network monitoring
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system monitoring
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Fig. 8.3 Web traffic generation and testing harness

Algorithm 1 describes the voting approach for Ens-SVM. For each instance in
the monitoring stream, if both Bi-Di and N-Gram agree on the predictive label
(line 7), Ens-SVM takes the common classification as output (line 8). Otherwise,
if the classifiers disagree, Ens-SVM takes the prediction with the highest SVM
confidence (line 10). Confidence is rated using Platt scaling [17], which uses the
following sigmoid-like function to compute the classification confidence:

P(y = 1|x) = 1

1 + exp (Af (x) + B)
(8.1)

where y is the label, x is the testing vector, f (x) is the SVM output, and A and
B are scalar parameters learned using maximum likelihood estimation (MLE). This
yields a probability measure of how much a classifier is confident about assigning a
label to a testing point.
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8.6 Evaluation Testbed

Objective, scientific evaluation of cyber deceptions is often very difficult, because
evaluations on live attackers tend to be subjective (there is usually no way to know
whether an anonymous attacker was genuinely deceived or just “playing along”),
anecdotal (samples of hundreds or thousands of provably distinct attackers are
required to draw quantifiable conclusions), and impossible to replicate. Much of the
prior work in this space has been criticized on those grounds. Our work therefore
offers a more rigorous evaluation methodology, which demonstrates that objectively
quantifiable success metrics for IDSes significantly improve when exposed to
deception-enhanced data, and the experimental results are reliably reproducible at
large sample sizes.

8.6.1 Realistic Web Traffic Generation

To demonstrate the practical advantages and feasibility of deception-enhanced
intrusion detection, we built a web traffic generator and test harness. Figure 8.3
shows an overview of our evaluation testbed, inspired by prior work [8]. It streams
realistic encrypted legitimate and malicious workloads onto a honey-patched web
server, resulting in labeled audit streams and attack traces (collected at decoys) for
training set generation.

Legitimate Data Normal traffic is created by automating complex user actions on a
typical web application as shown in Table 8.2, leveraging Selenium to automate user
interaction with a web browser (e.g., clicking buttons, filling out forms, navigating
a web page). We generated web traffic for 12 different user activities (each repeated
200 times), including web page browsing, e-commerce website navigation, blog
posting, and interacting with a social media web application. The setup included a
CGI web application and a PHP-based Wordpress application hosted on a monitored
Apache web server. To enrich the set of user activities, the Wordpress application
was extended with Buddypress and Woocommerce plugins for social media and e-
commerce web activities, respectively.

To create realistic interactions with the web applications, our framework feeds
from online data sources, such as the BBC text corpus, online text genera-
tors for personally identifiable information (e.g., usernames, passwords), and
product names to populate web forms. To ensure diversity, we statistically sam-
pled the data sources to obtain user input values and dynamically generated
web content. For example, blog title and body is statistically sampled from the
BBC text corpus, while product names are picked from the product names data
source.
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Table 8.2 Summary of synthetic data generation

Normal workload summary

Activity Application Description

Post CGI web app Posting blog on a guestbook CGI web
application

Post Wordpress Posting blog on Wordpress

Post Wordpress Buddypress plugin Posting comment on social media web
application

Registration Wordpress Woocommerce plugin Product registration and product description

E-commerce Wordpress Woocommerce plugin Ordering of a product and checkout

Browse Wordpress Browsing through a blog post

Browse Wordpress Buddypress Browsing through a social media page

Browse Wordpress Woocommerce plugin Browsing product catalog

Registration Wordpress User registration

Registration Wordpress Woocommerce plugin Coupon registration

Attack Data Attack traffic is generated based on real vulnerabilities as shown in
Table 8.3. For this evaluation, we selected 16 exploits for eight well-advertised,
high-severity vulnerabilities. These include CVE-2014-0160 (heartbleed), CVE-
2014-6271 (shellshock), CVE-2012-1823 (improper handling of query strings by
PHP in CGI mode), CVE-2011-3368 (improper URL validation), CVE-2014-0224
(change cipher specification attack), CVE-2010-0740 (malformed TLS record),
CVE-2010-1452 (Apache mod_cache vulnerability), and CVE-2016-7054 (buffer
overflow in OpenSSL with support for ChaCha20-Poly1305 cipher suite). In
addition, nine attack variants exploiting CVE-2014-6271 (shellshock) were created
to carry out different malicious activities (i.e., different attack payloads), such as
leaking password files and invoking bash shells on the remote web server. These
vulnerabilities are important as attack vectors because they range from sensitive
data exfiltration to complete control and remote code execution. To emulate realistic
attack traffic, we interleaved attacks and normal traffic following the strategy of
Wind Tunnel [8].

Dataset The traffic generator is deployed on a separate host to avoid interference
with the testbed server. To account for operational and environmental differences,
our framework simulates different workload profiles (according to time of day),
against various target configurations (including different background processes and
server workloads), and network settings, such as TCP congestion controls. In total,
we generated 12 GB of (uncompressed) network packets and system events over a
period of three weeks. After feature extraction, the training data comprised 1200
normal instances and 1600 attack instances. Monitoring or testing data consisted
of 2800 normal and attack instances gathered at unpatched web servers, where the
distribution of normal and attack instances varies per experiment.



8 Deception-Enhanced Threat Sensing for Resilient Intrusion Detection 159

8.6.2 Experimental Results

Using this dataset, we trained the classifiers presented in Sect. 8.5.2 and assessed
their individual performance against test streams containing both normal and attack
workloads. In the experiments, we measured the true positive rate (tpr) where
true positive represents the number of actual attack instances that are classified as
attacks, false positive rate (fpr) where false positive represents the number of actual
benign instances classified as attacks, accuracy (acc), and F2 score of the classifier,
where the F2 score is interpreted as the weighted average of the precision and recall,
reaching its best value at 1 and worst at 0. An RBF kernel with Cost = 1.3 × 105

and γ = 1.9 × 10−6 was used for SVM [15].

Detection Accuracy To evaluate the accuracy of intrusion detection, we tested each
classifier after incrementally training it with increasing numbers of attack classes.
Each class consists of 100 distinct variants of a single exploit, as described in
Sect. 8.6.1, and an n-class model is one trained with up to n attack classes. For
example, a 3-class model is trained with 300 instances from 3 different attack
classes. In each run, the classifier is trained with 1200 normal instances and 100 ∗ n

attack instances where n ∈ [1, 16] attack classes. In addition, in each run, we
execute ten experiments where the attacks are shuffled in a cross-validation-like
fashion and the average is reported. This ensures training is not biased towards any
specific attacks.

Table 8.3 Summary of attack workload

# Attack type Description Software

1 CVE-2014-0160 Information leak OpenSSL

2 CVE-2012-1823 System remote hijack PHP

3 CVE-2011-3368 Port scanning Apache

4–10 CVE-2014-6271 System hijack (7 variants) Bash

11 CVE-2014-6271 Remote password file read Bash

12 CVE-2014-6271 Remote root directory read Bash

13 CVE-2014-0224 Session hijack and information leak OpenSSL

14 CVE-2010-0740 DoS via NULL pointer dereference OpenSSL

15 CVE-2010-1452 DoS via request that lacks a path Apache

16 CVE-2016-7054 DoS via heap buffer overflow OpenSSL

Testing on Decoy Data The first experiment measures the accuracy of each
classifier against a test set composed of 1200 normal instances and 1600 uniformly
distributed attack instances gathered at decoys. Figure 8.4a–b presents the results,
which serve as a preliminary check that the classifiers can accurately detect attack
instances resembling the ones comprised in their initial training set.
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(a) tpr (c) tpr (e) tpr

(b) tpr (d) tpr (f) tpr

Fig. 8.4 Classification accuracy of Bi-Di, N-Gram, and Ens-SVM for 0–16 attack classes for (a)–
(b) training and testing on decoy data, (c)–(d) training on decoy data and testing on unpatched
server data, and (e)–(f) training on regular-patched server data and testing on unpatched server
data

Testing on Unpatched Server Data The second experiment also measures each
classifier’s accuracy, but this time the test set was derived from monitoring streams
collected at regular, unpatched servers, and having a uniform distribution of attacks.
Figure 8.4c–d shows the results, which indicate that the detection models of each
classifier generalize beyond data collected in decoys. This is critical because it
demonstrates the classifier’s ability to detect previously unseen attack variants.
Our framework thus enables administrators to add an additional level of protection
to their entire network, including hosts that cannot be promptly patched, via the
adoption of a honey-patching methodology.

The results also show that as the number of training attack classes increases—
which are proportional to the number of vulnerabilities honey-patched—a steep
improvement in the true positive rate of both classifiers is observed, reaching an
average tpr of above 92% for the compounded Ens-SVM, while average false
positive rate in all experiments remained below 0.01%. This demonstrates the
positive impact of the feature-enhancing capabilities of deceptive application-level
attack responses like honey-patching.

Training on Regular-Patched Server Data To compare our approach against anal-
ogous, standard IDSes that do not employ deception, we trained each classifier on
data collected from non-deceptive, regular-patched servers, and tested them on the
unpatched server data, using the same set of attacks. Figure 8.4e–f shows the results,
which outline the inherent challenges of traditional intrusion detection models on
obfuscated, unlabeled attack traces. Unlike honey-patches, which capture and label
traces containing patterns of successful attacks, conventional security patches yield
traces of failed attack attempts, making them unfit to reveal patterns of attacks
against unpatched systems.
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Table 8.4 Base detection rates for approximate targeted attack scenario (PA ≈ 1%) [11]

Classifier tpr fpr acc F2 bdr

OneSVM-Bi-Di 55.56 13.17 68.96 59.69 4.09

OneSVM-N-Gram 84.77 0.52 91.07 87.09 62.22

Bi-Di 86.69 0.25 92.29 89.02 77.79

N-Gram 86.52 0.01 92.30 88.89 98.98

Ens-SVM 92.76 0.01 95.86 94.12 99.05

Baseline Evaluation This experiment compares the accuracy of our detection
approach to the accuracy of an unsupervised outlier detection strategy, which is
commonly employed in typical intrusion detection scenarios [9], where labeling
attack data is not feasible or prohibitively expensive. For this purpose, we imple-
mented two one-class SVM classifiers, OneSVM-Bi-Di with a polynomial kernel
and ν = 0.1 and OneSVM-N-Gram with a linear kernel and ν = 0.001, using Bi-Di
and N-Gram models for feature extraction, respectively. We fine-tuned the one-class
SVM parameters and performed a systematic grid search for the kernel and ν to get
the best results.

One-class SVM uses an unsupervised approach, where the classifier trains
on one class and predicts whether a test instance belongs to that class, thereby
detecting outliers—test instances outside the class. To perform this experiment,
we incrementally trained each classifier with an increasing number of normal
instances, and tested the classifiers after each iteration against the same unpatched
server test set used in the previous experiments. The results presented in Table 8.4
highlight critical limitations of conventional outlier intrusion detection systems:
reduced predictive power, lower tolerance to noise in the training set, and higher
false positive rates.

In contrast, our supervised approach overcomes such disadvantages by auto-
matically streaming onto the classifiers labeled security-relevant features, without
any human intervention. This is possible because honey-patches identify security-
relevant events at the point where such events are created, and not as a separate,
post-mortem manual analysis of traces.

8.6.3 Discussion

Methodology Our experiments show that just a few strategically chosen honey-
patched vulnerabilities accompanied by an equally small number of honey-patched
applications provide a machine learning-based IDS sufficient data to perform
substantially more accurate intrusion detection, thereby enhancing the security of
the entire network. Thus, we arrive at one of the first demonstrable measures of
value for deception in the context of cybersecurity: its utility for enhancing IDS
data streams.
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Supervised Learning Our approach facilitates supervised learning, whose wide-
spread use in the domain of intrusion detection has been impeded by many
challenges involving the manual labeling of attacks and the extraction of security-
relevant features [9]. Our results demonstrate that the language-based, active
response capabilities provided via application-level honey-patches significantly
ameliorates both of these challenges. The facility of deception for improving other
machine learning-based security systems should therefore be investigated.

Intrusion Detection Datasets One of the major challenges in evaluating intrusion
detection systems is the dearth of publicly available datasets, which is often
aggravated by privacy and intellectual property considerations. To mitigate this
problem, security researchers often resort to synthetic dataset generation, which
affords the opportunity to design test sets that validate a wide range of require-
ments. Nonetheless, a well-recognized challenge in custom dataset generation is
how to capture the multitude of variations and features manifested in real-world
scenarios [6]. Our evaluation approach builds on recent breakthroughs in dataset
generation for IDS evaluation [8] to create statistically representative workloads that
resemble realistic web traffic, thereby affording the ability to perform a meaningful
evaluation of IDS frameworks.

8.7 Conclusion

This chapter outlined the implementation and evaluation of a new approach for
enhancing web intrusion detection systems with threat data sourced from decep-
tive, application-layer, software traps. Unlike conventional machine learning-based
detection approaches, our framework incrementally builds models of legitimate and
malicious behavior based on audit streams and traces collected from these traps.
This augments the IDS with inexpensive and automatic security-relevant feature
extraction capabilities. These capabilities require no additional developer effort
apart from routine patching activities. This results in an effortless labeling of the
data and supports a new generation of higher-accuracy detection models.

8.8 Exercises

8.8.1 Software Engineering Exercises

1.∗ Give an example of a high-profile software exploit cyberattack whose impact has
been reported recently in the news, and for which the cyber-deceptive software
techniques described in this chapter might have proved beneficial, if deployed.
Based on any technical details available, advise how such a defense might have
helped in that scenario, and discuss potential implementation issues or risks
involved.
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2.∗∗ For each of the following vulnerability types, find an example patch for one
such vulnerability (e.g., from MITRE CWE), and then write code that refor-
mulates the patch into a honey-patch. In your honey-patch, use the function call
fork_to_decoy() to indicate where your code would fork the attacker’s connection
to a decoy environment. Remember, a good honey-patch implementation should
not impact legitimate users!

a. buffer underflow/overflow (overwrite, overread, underwrite, or underread)
b. C format string vulnerability
c. TOCTOU (time-of-check / time-of-use) vulnerability
d. SQL injection
e. XSS (cross-site scripting)

3.∗∗∗ Install older (non-fully patched) versions of OpenSSL and Apache, and identify
from a CVE list some of the unpatched vulnerabilities. Implement a honey-patch
for any of the CVEs. Invite classmates to operate as a red team to penetrate your
server. Were they able to distinguish the decoy environment from any successful
compromise? Would any data collected from detected attacks potentially help
your server resist subsequent exploit attempts?

8.8.2 Machine Learning Exercises

1.∗ Given a set of data traces with packet data, what type of features can be extracted
from packets?

2.∗ Similarly, given a set of data traces with system calls, what type of features can
be extracted to train a machine learning classifier?

3.∗ Given the confusion matrix in Table 8.5, and defining positives to be alarms
raised by the defense, calculate the following metrics: accuracy, FPR, and TPR.

Table 8.5 Confusion matrix
Total no. of instances: 160

Actual classes

Attack Benign

Predicted classes
Attack 20 30

Benign 10 100

4.∗∗ Why is false positive rate (FPR) important in evaluating machine learning based
intrusion detection systems?

5.∗∗ Implement an IDS using support vector machine that leverages packet data traces
to classify and detect attack in collected data traces. For this exercise, you can
follow the following steps:

• Extract packet information: Use the dpkt python toolkit to extract packet
information, such as length, count, packet direction, and packet time.
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• Build a histogram of the packet length for each trace. Each trace will generate
an instance to train your classifier.

• After generating your dataset, use the Scklearn python machine learning
module to build an SVM classifier.

6.∗∗∗ Implement an ensemble classifier using support vector machine to leverage both
packet data and system call data to classify attack traces. You can follow the steps
described in previous question to complete this exercise.

7.∗∗ Calculate the following metrics with the classifier you implemented in exercises 5
and 6: accuracy and FPR. How do you explain the significance of the FPR
compared to the accuracy?

8.∗∗∗ Run your algorithm on data collected from a honey-patched system (see software
engineering exercises 2–3) and compare the performance to the data collected on
a system with no honey-patch.

9.∗∗∗ Based on software engineering exercise 3, implement your own data collection
mechanism that captures packet and system call level data. Apply your machine
learning implementation from exercise 5 on the data traces collected. Compare
your performance with the supplied data. To complete this exercise, you can
use tcpdump (already installed on Linux systems) to collect packet trace data
and sysdig1 to collect system call data. To reduce noise in your data collection,
run each attack independently and collect the associated traces. Remember to run
each attack and trace collection multiple times to account for variations in system
operation.
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Chapter 9
HONEYSCOPE: IoT Device Protection
with Deceptive Network Views

Reham Mohamed, Terrence O’Connor, Markus Miettinen, William Enck,
and Ahmad-Reza Sadeghi

Abstract The emergence of IoT has brought many new device manufacturers to the
market providing novel products with network connectivity. Unfortunately, many of
these new entrants to the market lack security engineering experience and focus
heavily on time-to-market. As a result, many home and office networks contain
IoT devices with security flaws and no clear path for security updates, making
them attractive targets for attacks, e.g., recent IoT-centric malware such as Mirai.
In this chapter, we discuss a network centric approach to protecting vulnerable
IoT devices. We describe a system called HoneyScope, which seeks to achieve
two goals. First, each IoT device has a different view of its local network, which
limits the damage when a device is compromised. Second, virtual IoT devices
are created to confuse and deceive attacker with sophisticated motivations (e.g.,
fake WiFi connected cameras). To achieve these goals, HoneyScope uses an SDN-
based security gateway to create virtualized views of the network and nodes therein
providing fine-grained control over the communications that individual devices may
have.

9.1 Introduction

One of the big challenges facing IoT networks in homes and small offices—
in comparison to traditional networks—is their relatively high susceptibility to
security threats. Numerous heterogeneous IoT devices are being deployed in small
office, home office (SOHO) networks, broadening the potential attack surface for
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adversaries, as many new IoT devices are affected by inherent security vulnera-
bilities. This is due to hundreds of new IoT manufacturers entering a market that
is largely untapped and considered unsaturated, providing players that are first-to-
market opportunities to gain considerable market share. As many manufacturers’
focus is therefore on quickly shipping their products, this leaves little time and
resources to focus on proper security design, implementation, and testing of new
device models. Moreover, manufacturers are often producing low-cost devices
(such as connected light bulbs or smart plugs) with hardly any or no budget at
all for security. This results in many IoT device vendors shipping products that
contain security vulnerabilities that are relatively easy to exploit by knowledgeable
attackers.

Due to the newness of IoT, there is a lack of regulations and laws governing
development and production of IoT devices. There exist also no dominant security
standards that all device vendors would adhere to.

In most cases, the responsibility of securing devices is therefore left to end-users.
Access to devices is typically controlled using default easy-to-guess credentials, but
vendors do not force users to update them during the device on-boarding procedure.
Many users will, however, not understand the risks (among others) associated with
such default passwords, and many of them will not even care, leaving devices at the
mercy of potential attackers. Other devices, on the other hand, are designed to work
in a plug and play mode by default, leaving no room for users to modify security
settings, even if they would like to.

Another major security threat is given by benign but intrusive functionality of
devices that can possibly breach the privacy of users by, e.g., recording private
conversations, taking photos, or recording videos and automatically uploading such
information to the cloud without the user’s consent. Already now smart voice
assistants like Amazon Alexa and Google Assistant have been, intentionally and
accidentally alike, triggered by viral ads like Burger King’s ad that forced Google
Assistant to recite the definition of the Whopper from Wikipedia [8], or other
incidents like one affecting Amazon’s Alexa, which—as explained by Amazon—
misheard the wake word during the conversation of a wife with her husband before
sending a recording of it to the wife’s colleague [1].

9.1.1 Principle of “Need to See”

At the root of our approach to deception in SOHO networks is the principle of
need to see, which is a variant of the traditional principle of need to know used
in environments with sensitive information. A key observation is that while future
SOHO networks may be filled with tens of IoT devices, most devices do not interact
with one another. First, many devices communicate exclusively with the Internet.
Second, for devices that communicate within the network, interaction is often with
a small set of controller devices, such as smartphones and smart speakers (e.g.,
Alexa, Google Home). Therefore, there is no need for most IoT devices to see one
another on the network.
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The simplest security policy in any setting is that of strict isolation. It is simple
to express and enforce. WiFi isolation is built into all commodity routers and access
points. In fact, most hotels use WiFi isolation to ensure that guests can access
the Internet, but not interact with one another directly. However, WiFi isolation is
not suitable for SOHO networks. First, SOHO networks contain traditional devices
where isolation impedes functionality, e.g., desktops, laptops, printers, and network
attached storage (NAS) devices. Second, some intra-network communication is
needed for controller devices to coordinate actions with IoT devices. Third, some
IoT devices may be designed to work directly with one another, such as those
from the same manufacturer (e.g., WeMo, D-Link) or using the same standardized
protocols (e.g., HomeKit). Therefore, the need to see in SOHO environments is
more complex than strict isolation.

9.1.2 Deception Through Network Views

WiFi isolation is a degenerative type of network view. That is, each device can only
see itself and the network gateway. Consider the more general model, where there
exists a policy for each network device that defines which other network devices it
can see. More formally, let N be the set of devices on the network. Each n ∈ N has
a policy Pn ∈ P(N), where P(N) is the power set of N .1 The policy Pn defines a
specific network view for n.

The network view presented to an adversary, whether it be a compromised or
misbehaving device, influences its perspective of the attack surface of the network.
There is also no requirement that each n ∈ N is a physical device. For example,
N can include a virtual WiFi baby monitor camera that simply plays a feed on
a loop. Such virtual deception devices can be used in several ways. Consider the
scenario where one of the users’ IoT devices is compromised and is used as an
attack pivot, which proceeds to scan for other vulnerable network devices. First, the
virtual deception device can act as a honeypot. Under normal scenarios, the virtual
deception device should not receive any network connections from real devices.
Second, the virtual deception device may make the adversary believe she has control
of a real device, e.g., watching a live feed of a baby. Gaining access to the baby
camera may be the adversary’s goal, and the simulated feed may keep the adversary
from burglarizing the home.

Network views provide usability in addition to deception. For example, the
network view policy can exclude the virtual deception devices from the view of
controller devices (e.g., smartphones). In this way, users will not be confused by the
potentially many virtual deception devices.

1The power set of S is the set of all subsets of S.
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9.1.3 HONEYSCOPE

In the remainder of this chapter, we present HONEYSCOPE, a security framework
for small office and home office (SOHO) networks built on top of the concept
of network views. HONEYSCOPE is a protection layer built on top of the local
network and provides a fine-grained control over the communications of individual
IoT devices in the network. HONEYSCOPE uses software defined networking (SDN)
technologies [9] to realize device- and device-group-specific views of the network
that reduce the attack surface against vulnerable devices in the network, contain
effects of device infections in case of successful device compromise, and enforce
effective measures for blocking unwanted release of contextual data from within
the network to the outside. At the same time HONEYSCOPE acts as a deceptive
obfuscation layer that decouples the network appearance of devices from their actual
physical interfaces, providing the network owner fine-grained control over how
devices and the network topology are presented to other devices and to the outside.

9.2 Design of HONEYSCOPE

The core idea on which HONEYSCOPE builds is to provide device-group-specific
views on the local IoT network in order to be able to control the exposure of devices
and contain potential security incidents, without adversely affecting the benign
functionality of devices. HONEYSCOPE seeks to realize this through following
design principles.

Grouping of Devices According to Their Vendor Due to the lack of proper
interoperability standards for IoT devices, many device manufacturers offer vendor-
specific interoperability solutions, often supported by vendor-specific cloud-based
back-end services. Due to this approach, many IoT devices seldom—if ever—have
the need to communicate with devices that do not fall within their vendor-specific
device category. HONEYSCOPE uses this property to compartmentalize the local IoT
network by placing individual IoT devices into vendor-specific groups. By limiting
communication to happen only within the vendor group (and potentially the vendor
cloud service), the attack surface of IoT devices inside the group can be effectively
reduced and security attacks across vendor groups effectively mitigated.

Grouping of Devices According to Their Functionality The differentiation
between device groups can also happen based on properties other than the device’s
manufacturer. For a number of specific applications like smart lighting there already
exist to some degree protocols that enable interoperability between devices of
different vendors (e.g., ZigBee Light Link). To support such (future) functionality,
HONEYSCOPE supports orthogonally also groupings that are based on the declared
functionality of devices, if this functionality requires interoperability across vendor-
specific groups. As mentioned, this grouping is orthogonal to the vendor-specific
groups, meaning that devices can be in parallel member of a vendor-specific group
and one or more functionality-specific groups.
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Vulnerable Device Isolation HONEYSCOPE isolates devices that are known to
have vulnerabilities in a specific group with a very constrained view on other devices
in the network. The vulnerable device group shall not have access to any other
devices in the local IoT network, nor shall external devices be able to communicate
with devices in this group. The only exception is access to vendor cloud services that
are necessary to maintain the benign functionality of the device. This has twofold
goals: (1) to protect vulnerable devices from being compromised by malware or
active attacks originating from outside the network, and (2) to protect the rest of the
IoT network’s devices in case an adversary manages to compromise a vulnerable
device.

Deceptive Views of the Network HONEYSCOPE also provides the possibility to
create various deceptive views of the real, physical network. Each physical device
in the IoT network has a virtual representation in the HONEYSCOPE virtualization
layer. This allows the network owner to define how devices are perceived by other
devices and the outside network. The deceptive views may also include virtual
representations of non-existent devices to provide honey views of the network that
allow to completely obfuscate the true topology of the actual physical network setup.

9.2.1 HONEYSCOPE Implementation Approaches

There are multiple options for HONEYSCOPE to implement network views.

Option 1: Multiple (V)LANs One way to realize the group separation of HON-
EYSCOPE would be to use a number of LANs or VLANs to represent the different
groups of the local network. However, this would be incompatible with existing
discovery protocols, as devices on separate LANs would be unable to discover each
other. For example, mDNS, which is used by HomeKit, assumes that all devices are
on the same LAN.

Option 2: Multiple SSIDs A second option is to use separate SSIDs of a WiFi
access point. The main drawback of using this approach lies in the increased com-
plexity of the bootstrapping process, as each device would need to be provisioned
on the correct SSID. This would in general be a too complex task to be handled
correctly by regular users. For example, many IoT devices have a bootstrap process
that includes a smartphone app that automatically copies the SSID and WPA2
password from the smartphone. Therefore, the user would need to navigate multiple
SSIDs when setting up devices.

Option 3: Use of SDN Technologies for Group Separation Software defined net-
work (SDN) technology such as OpenFlow provides a unified network abstraction
in which all devices in the network are controlled by the SDN controller, allowing
fine-grained control over network connectivity of individual nodes. SDN provides
the most versatility to programmatically implement network views. It also allows the
architecture to extend to an arbitrary number of access points, which is increasingly
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common as newer WiFi protocols such as 802.11ac provide faster performance
when devices are close to the access point.

HONEYSCOPE uses SDN technology to control the topology of the IoT network
in order to provide maximal flexibility to manage nodes in the local network and to
realize a virtualization layer implementing the security design of HONEYSCOPE and
enforce its security policies. In effect, the local WiFi access point acts as a security
gateway controlled by a HONEYSCOPE SDN controller. The task of the security
gateway is to realize the HONEYSCOPE virtualization layer by enforcing network
connectivity policies defining the device group topology and create required virtual
representations of nodes belonging to the honey views comprising the deception
aspect of the HONEYSCOPE framework.

Erickson et al. [10] have developed a mechanism for identifying vulnerable
devices and blocking them from accessing and attacking other devices in the
network. Using this mechanism, they eliminate Man-In-the-Middle attacks at the
link and service discovery layers. To realize this mechanism, they use a different
SSID and WPA password for each device. However, this approach does not work
properly with IoT networks as the IoT devices get the network information from
their companion app on the mobile device of the user. HONEYSCOPE would
overcome this drawback by using one SSID, and one LAN for all devices in the
network using the SDN technology.

9.2.2 HONEYSCOPE Network Structure

Fig. 9.1 HONEYSCOPE

layered architecture
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The HONEYSCOPE architecture consists of three main layers as shown in
Fig. 9.1. The top level is the HONEYSCOPE controller: an SDN controller that
controls and manages the HONEYSCOPE router controlling the local IoT network.
This Open vSwitch-based router uses the OpenFlow protocol to communicate with
the HONEYSCOPE SDN controller to manage the IoT devices in the local network.

The SDN controller is responsible for creating the network views for each IoT
device connected to the local LAN. This is done by grouping devices into vendor-
and function-specific groups as discussed above in Sect. 9.2 and applying a specified
network view on each group in the network. The created virtual network views are
unidirectional views. For example, if group x can view and send information to
group y, this does not necessarily mean that group y can access and view group x.

Fig. 9.2 HONEYSCOPE grouped IoT network

9.2.2.1 HONEYSCOPE Groups

There are five default groups that are created by the HONEYSCOPE controller in
addition to the device vendor-specific groups and the function-specific groups as
shown in Fig. 9.2:

• Control group: This group consists of controlling devices such as smartphones
or tablets that should be able to control and therefore have access to any of the
IoT devices in the network. Devices in this group can view and have access to any
device in the IoT network. It is the only group in which devices have a virtual
network view that looks like the real, physical network. All devices from any
other groups can communicate with any device in this group as well, except for
devices in the vulnerable devices group. Also, devices in this group don’t see the
deceptive virtual devices in the HoneyNet group. Typically, the smartphone of
the home owner is the main device mapped to this group.
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• Vulnerable devices: This group contains any detected vulnerable IoT devices in
the local network. Devices in this group cannot view and do not have access to
any devices in other groups in the network except the HoneyNet group. They
are thus isolated from other IoT devices. The virtual network view for this
group only contains a unidirectional connection to it from the control group and
a bidirectional communication possibility with the HoneyNet group. Only the
control group can send updates, messages, or information to this group.

• Unidentified devices: Devices that cannot be identified by the controller, such
as devices that have just been released onto the market and are therefore yet
unknown to the system providing device identification, are added to this group.

• HoneyNet group: This group’s main task is to create virtual devices to deceive
the intruder, like the virtual baby camera discussed in Sect. 9.1.2 providing a fake
instance of a device to confuse the adversary in case it is able to intrude into the
network.

• Vendor-specific groups: When a device is joining the network, the SDN
controller identifies its type based on its communication behavior, and adds it to
the corresponding manufacturer group. Devices in each group can communicate
with each other but don’t have access to devices from other groups they are
not members of. An example of a vendor specific could be, e.g., the smart
home automation gadgets provided by D-Link. These include smart power plugs,
motion sensors, water sensors, IP cameras, door and window sensors, and alarm
sirens. All of these devices can be configured to work together using rules defined
in a cloud-assisted vendor-specific smartphone app. It makes therefore sense to
place all such devices from this vendor to the same group.

• Function-specific groups: Devices from different manufacturers may need to
be placed in function-specific groups when functional interoperability is needed.
For example, devices providing smart lighting (e.g., smart light bulbs, switches)
would be placed in a lighting-specific group in order to enable the light switch of
one manufacturer to control smart light bulbs of another vendor.

• Non-IoT devices group: In the local network there are also other non-IoT
devices like desktops, laptops, NAS devices, etc. that should be treated separately
from IoT devices, as their functionality is much richer than that of typical IoT
devices. Such devices are therefore added to a dedicated group that contains non-
IoT and legacy devices. Devices in this group have a flexible virtual network view
configurable by the user allowing the devices to view and interact with other IoT
or non-IoT devices. The view for each device is defined according to the need
of this device to communicate with other devices (e.g. interacting with printers,
or specific IoT devices in the network) and can be derived, e.g., based on the
set of applications installed on the device. For example, a non-IoT device like a
laptop should be able to view other laptops in the network, in addition to printers,
VoIP phones, cameras, smartphones, and tablets. Smartphones and tablets are
located in the control group, while printers and VoIP phones are located in the
non-IoT devices group. The laptop may also need access to IP cameras located
in the function-specific “camera” group. This way, the laptop will have a virtual
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network view that allows it to have access to the non-IoT group, the control
group, and the camera group.

As shown in Fig. 9.2, there are intersection points between vendor-specific and
function-specific groups. For example, in this network, there is a Philips Hue smart
device in both the lighting group (function-specific) and the Philips group (vendor-
specific). The function-specific groups contain devices from different vendors but
they share the same function and usage, so they need to communicate together in a
separate group.

Fig. 9.3 Grouping and isolation processes

9.2.3 Device Type Identification

Most devices joining the network do not explicitly advertise what type of device they
are. They need therefore to be identified before assigning them to HONEYSCOPE

groups. When a device joins the local IoT network, the SDN controller identifies its
type by using the developed IoT sentinel model by Miettinen et al. [12] for unknown
device type identification. IoT sentinel is based on identifying the device type by
profiling the communication behavior of the device and using machine learning
classifiers to identify its device type. It uses a database that contains pre-captured
behaviors for most of the current IoT devices in the market, and from this database,
the device type is determined and defined. The main idea of IoT sentinel is to create
device fingerprints by monitoring the communication behavior of the new added
device during the setup phase. From this generated fingerprint, IoT sentinel is able
to map the device to its corresponding device type using machine learning-based
classifiers.
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If the device is identified successfully, it is added to its corresponding group in the
local network: a vendor-specific group and possibly one or more function-specific
groups.

For example, if the device was detected to be a Philips Hue light, it will be added
to the Philips Hue group as well as the lighting group. When the device is added to
the corresponding group, the SDN controller creates a virtual network view that
matches the groups the device is added to. If IoT sentinel fails to successfully
identify the joining device, the device will be added to the unidentified group
which contains all unidentified devices in the network. The joining device will be
able to view the control group, the HoneyNet group, and any other devices in the
unidentified group.

The HONEYSCOPE IoT network will be defined by different customized network
views for each device added to it according to this device type identification process.

IoT sentinel will notify the SDN controller if any vulnerabilities become known
for any of the IoT devices registered with the SDN controller. For obtaining this
information, IoT sentinel utilizes an IoT security service, which aggregates network-
wide information about known vulnerabilities associated with particular IoT device
types. If a vulnerability is detected that affects a particular device, it will be moved
from its group, regardless whatever this group is, to the vulnerable group. This
way, the device will be isolated from other devices in the network not to affect
any of them until the device vulnerability has been removed, e.g., by applying an
appropriate firmware patch. The device will not have any access to any devices in
the local network. However, devices in the control group will have a unidirectional
connection to it, e.g., in order to check device status or send updates and other
messages.

9.3 HONEYSCOPE Components

9.3.1 HONEYSCOPE Controller

There are many SDN controllers that can be used with HONEYSCOPE. However, we
selected RYU controller [6] which is based on Python, because of its support for
the higher and newest versions of the OpenFlow protocol [11], it supports the 1.5
OpenFlow standard. In addition to that, it has the Nicira extensions for OpenFlow
matching [5]. Although Nicira is a vendor specific implementation, it is luckily
implemented in OpenvSwitch. It provides some additional criteria to match on. We
have developed a Ryu application to implement the management and control of the
whole network.

9.3.2 HONEYSCOPE Security Gateway

For the gateway router, our prototype uses a Linksys WRT1900AC [2] router
running a modified OpenWRT firmware. OpenWRT gives developers flexibility in
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creating the network design and flashing the desired operating system image to it
[4]. The Linksys router is considered as one of the most stable hardware that can be
used with OpenWRT. However, one of the main drawbacks of using it is its limited
memory. OpenvSwitch [3] is installed on the Linksys router to enable using SDN
and OpenFlow. Instead of the normal bridge in the router, an OVS bridge is added to
work properly with SDN. OpenvSwitch is a multiplayer virtual switch that provides
more automation and programmability. SDN needs such automation to be able to
perform the separation between the control plane and the data plane smoothly.

As mentioned in the previous section, one of the main goals of HONEYSCOPE

is to divide the local IoT network to groups in which devices are visible to each
other while they are invisible to any other devices out of this specific group’s range.
Figure 9.3 describes the process of grouping and isolating the new added devices.
When a device joins the local IoT network, the SDN controller examines the packets
coming from and to this device and processes the device’s behaviors to be able to
identify the device type accordingly.

Fig. 9.4 Communication between network groups

9.3.3 Communication Between Network Groups

As shown in Fig. 9.4, the direction of the arrows represents how the communication
goes between any two groups, for example, the communication between the control
group and the vulnerable group is unidirectional from the control to the vulnerable
group, as communication in the other direction is denied. As shown, there is no
communication between different vendor-specific or function-specific groups, nor
between any of these groups and the vulnerable group. Each of these groups cannot
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view or access other groups. There is no need for these devices to communicate and
by isolating them we reduce the attack surface of devices in the local IoT network.

The communication between the control group and the vulnerable group requires
special arrangements. As mentioned, the control group has access to the vulner-
able group through unidirectional communication. However, the vulnerable group
doesn’t have access to the control group and can’t send any packets to devices in it.
However, in some use cases like when devices in the vulnerable group need to be
configured or software updates need to be installed on them, there needs to be a way
for the controlling devices to discover devices in the vulnerable group.

Fig. 9.5 Communication
between control and
vulnerable groups

Software updates for most IoT devices are facilitated using a specific smartphone
application to get updates from the manufacturer servers and install them onto the
device. The mobile application downloads the firmware update and uploads it to the
corresponding IoT device. Note that in some cases the IoT device connects directly
to the manufacturer’s servers without the help of its mobile application. In such
cases access to the control group may not be required.

To be able to perform software updates with the help of the controlling device,
IoT devices in the vulnerable group use multicast and broadcast-based discovery
protocols to allow the controlling device (e.g., smartphone, or tablet of the user) to
be aware of them.

To enable the controlling device to discover vulnerable devices, a virtual
discovery proxy is used for facilitating limited communication for this discovery
purpose from the vulnerable group towards the control group as shown in Fig. 9.5,
demonstrating how the communication between these groups is handled. The
discovery proxy is activated by the controlling device (e.g., by activating a special
configuration/update mode of the system). When activated, the proxy will forward
broadcast and multicast messages from devices in the vulnerable group to the
specific controlling device that activated the discovery mode. Thus, the controlling
device can discover the presence of IoT devices while limiting their communication
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to any other devices in the local IoT network. We envisage that the user can activate
the discovery mode of HONEYSCOPE with the help of a smartphone application on
the controlling device, thereby activating the discovery proxy. The communication
between both groups can be summarized as follows:

• Communication from any control device to the vulnerable devices: this is granted
by direct communication from the control device to the vulnerable group.

• Communication from vulnerable devices group to the control group: This
communication is denied. It can only temporarily enabled through the discovery
proxy when the controlling device initiates a special discovery mode. It acts
like a “virtual VPN” between the controlling device and vulnerable group,
strictly limiting the delivery of multicast and broadcast packets of devices in the
vulnerable group to the controlling group only.

9.3.4 Case Study

Here we will discuss an exemplary scenario to demonstrate how HONEYSCOPE adds
a level of security to the local IoT network. Assume there is a D-Link IP camera in
the local IoT network that is susceptible to be infected by an IoT malware like
Mirai [7]. At first, when this IP camera is joining the network, it will be identified
and added to the D-Link and camera groups. Only D-Link devices, in addition to all
cameras in the network, can view and have access to this D-Link camera.

Once the IoT security service notifies HONEYSCOPE that the camera is vulnera-
ble to, e.g., Mirai, the SDN controller will move the camera to the vulnerable devices
group and remove it from both the D-Link and camera groups.

When it is moved to the vulnerable group, the infected camera will have a
new limited virtual network view in which it can’t view any devices in the local
network except the virtual devices in the HoneyNet group, and can be viewed by
the controlling devices as well. This way, other devices in the D-Link and camera
groups will be protected from the vulnerable device should it be infected by the IoT
malware.

The communication between the controlling devices and the vulnerable devices
is unidirectional: this is to enable the controlling device, e.g., to send software
updates for fixing the vulnerability of the camera. After that, the camera can again
be added back to the D-Link and camera groups.

9.4 Conclusion

This chapter has provided an overview of the architecture, design, and the deception
function of HONEYSCOPE. HONEYSCOPE is based on creating virtual deceptive
network views for each IoT device in the local IoT network. SDN technology is
used to manage the network by using an SDN controller that is responsible for
creating these deceptive network views for each device according to its identified
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device type. For device type identification, the IoT sentinel system is used. Through
the use of deceptive network views, HONEYSCOPE is able to provide a higher layer
of security to the local IoT network against both external and internal attacks.

9.5 Hands-on Exercises

1. (Intermediate) In this exercise, you will use the Mininet SDN emulation
environment (http://mininet.org/) to implement the core network views concept
behind HONEYSCOPE. The best way to become familiar with Mininet is to go
through the tutorial. Once you are familiar with Mininet, construct the topology
shown in the left half of Fig. 9.6. The goal of this exercise is to construct the
network views policy shown in the right half of Fig. 9.6. To accomplish this,
you may wish to modify Mininet’s “Learning Switch” tutorial to enforce access
control based on hard-coded MAC addresses. Use the OpenFlow protocol to
program a switch to perform custom packet forwarding. Implement a software
defined network controller that can read frame and packet source and destination
fields in order to implement the HONEYSCOPE network views policy. Test
network visibility using the ping command. Note that for this exercise, you
only need to worry about unicast traffic. Finally, you may choose to use the Pox
controller, which is the default with Mininet, or choose another controller such
as Ryu, ONOS, or OpenDaylight. Mininet can be configured to use a remote
controller (e.g., a controller outside the control of Mininet).

Group 2

Group 1

Ctl

B

D

GW

A

C

Network Views

GW

Ctl B DA C

Switch

Network Topology

Fig. 9.6 Network topology and views for exercises. GW is the gateway and Ctl is a controlling
device such as a smartphone. Arrowheads indicate network visibility. For example, GW and Ctl

can see A, B, C, and D; however, A and B cannot see C and D

2. (Advanced) In this exercise, you will extend Exercise 1 to real hardware. To
complete this exercise, you will need a router/access point capable of running
OpenWRT/LEDE (https://openwrt.org/) and a Raspberry Pi. Start by setting
up OpenWRT with OpenVSwitch (OVS) and your controller running on the
Raspberry Pi. The WiFi SDN project at Helsinki is a good starting place (https://
wiki.helsinki.fi/display/WiFiSDN/Software-Defined+Wi-Fi+Networks+with+
Wireless+Isolation). Once the data plane and control plane is setup, port your

http://mininet.org/
https://openwrt.org/
https://wiki.helsinki.fi/display/WiFiSDN/Software-Defined+Wi-Fi+Networks+with+Wireless+Isolation
https://wiki.helsinki.fi/display/WiFiSDN/Software-Defined+Wi-Fi+Networks+with+Wireless+Isolation
https://wiki.helsinki.fi/display/WiFiSDN/Software-Defined+Wi-Fi+Networks+with+Wireless+Isolation
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solution to Exercise 1 to this environment. Note the controller will only see one
port: wlan0. However, by enabling WiFi isolation mode, all of the network
traffic will be forced through the soft-switch, allowing the controller to define
flow-mod rules that restrict which devices can receive packets from one another.
Again, for this exercise, only worry about unicast traffic.

3. (Advanced) In the previous two exercises, you only considered unicast traffic.
However, many IoT devices depend on multicast protocols (e.g., HomeKit uses
mDNS), which may leak information between network groups. Further, IoT
discovery protocols (e.g., SSDP) rely on multicast protocols for advertisement
and discovery of network services, providing information about IoT device
applications and services outside the scope of HONEYSCOPE policies. Extend
Exercise 2 to also mediate multicast traffic. To test your solution, explore the use
of Avahi (https://www.avahi.org/) and nss-mdns (https://github.com/lathiat/nss-
mdns) from Linux. Alternatively, macOS devices advertise services via mDNS
(aka Bonjour). Hint: consider making copies of multicast packets and sending
the copies to hosts allowed by the policy.

References

1. Amazon’s Alexa recorded private conversation and sent it to random contact. https://www.
theguardian.com/technology/2018/may/24/amazon-alexa-recorded-conversation. Accessed:
2018-06-20.

2. Linksys WRT 1900AC. https://www.linksys.com/us/p/P-WRT1900AC/. Accessed: 2018-06-
03.

3. OpenvSwitch. https://www.openvswitch.org/. Accessed: 2018-06-03.
4. OpenWRT. https://openwrt.org/. Accessed: 2018-06-03.
5. RYU Nicira extensions. http://ryu.readthedocs.io/en/latest/nicira_ext_ref.html. Accessed:

2018-06-03.
6. RYU SDN controller. https://osrg.github.io/ryu/. Accessed: 2018-06-03.
7. Manos Antonakakis, Tim April, Michael Bailey, Matt Bernhard, Elie Bursztein, Jaime

Cochran, Zakir Durumeric, J Alex Halderman, Luca Invernizzi, Michalis Kallitsis, et al.
Understanding the Mirai botnet. In USENIX Security Symposium, 2017.

8. H. Chung, M. Iorga, J. Voas, and S. Lee. Alexa, can I trust you? Computer, 50(9):100–104,
2017.

9. ONF Market Education Committee et al. Software-defined networking: The new norm for
networks. ONF White Paper, 2012.

10. Jeremy Erickson, Qi Alfred Chen, Xiaochen Yu, Erinjen Lin, Robert Levy, and Z. Morley
Mao. No one in the middle: Enabling network access control via transparent attribution.
In Proceedings of the 2018 on Asia Conference on Computer and Communications Security,
ASIACCS ’18, pages 651–658, New York, NY, USA, 2018. ACM.

11. Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer
Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March 2008.

12. Markus Miettinen, Samuel Marchal, Ibbad Hafeez, N. Asokan, Ahmad-Reza Sadeghi, and
Sasu Tarkoma. IoT Sentinel: Automated device-type identification for security enforcement in
IoT. In Proc. 37th IEEE International Conference on Distributed Computing Systems (ICDCS
2017), June 2017.

https://www.avahi.org/
https://github.com/lathiat/nss-mdns
https://github.com/lathiat/nss-mdns
https://www.theguardian.com/technology/2018/may/24/amazon-alexa-recorded-conversation
https://www.theguardian.com/technology/2018/may/24/amazon-alexa-recorded-conversation
https://www.linksys.com/us/p/P-WRT1900AC/
https://www.openvswitch.org/
https://openwrt.org/
http://ryu.readthedocs.io/en/latest/nicira_ext_ref.html
https://osrg.github.io/ryu/


Part IV
Malware Deception



Chapter 10
gExtractor: Automated Extraction
of Malware Deception Parameters
for Autonomous Cyber Deception

Mohammed Noraden Alsaleh, Jinpeng Wei, Ehab Al-Shaer,
and Mohiuddin Ahmed

Abstract The lack of agility in cyber defense gives adversaries a significant
advantage for discovering cyber targets and planning their attacks in stealthy and
undetectable manner. While it is very hard to detect or predict attacks, adversaries
can always scan the network, learn about countermeasures, and develop new evasion
techniques. Active Cyber Deception (ACD) has emerged as effective means to
reverse this asymmetry in cyber warfare by dynamically orchestrating the cyber
deception environment to mislead attackers and corrupting their decision-making
process. However, developing an efficient active deception environment usually
requires human intelligence and analysis to characterize the attackers’ behaviors
(e.g., malware actions). This manual process significantly limits the capability of
cyber deception to actively respond to new attacks (malware) and in a timely
manner.

In this chapter, we present a new analytic framework and an implemented tool,
called gExtractor, to analyze the malware behavior and automatically extract the
deception parameters using symbolic execution in order to enable the automated
creation of cyber deception plans. The deception parameters are environmental
variables on which attackers depend to discover the target system and reach their
goals; yet, they can be reconfigured and/or misrepresented by the defender in the
cyber environment. Our gExtractor approach contributes to the scientific and system
foundations of reasoning about autonomous cyber deception. Our prototype was
developed based on customizing symbolic execution engine for analyzing Microsoft
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Windows malware. Our analysis of over fifty of recent malware instances shows that
gExtractor has successfully identified various critical parameters that are effective
for cyber deception.

10.1 Introduction

Malware attacks have evolved to be highly evasive against prevention and detection
techniques. It has been reported that at least 360, 000 new malicious files were
detected every day and one ransomware attack was reported every 40 seconds in
2017 [27]. This reveals severe limitations in the prevention and detection tech-
nologies, such as anti-virus, perimeter firewalls, and intrusion detection systems.
Active Cyber Deception (ACD) has emerged as an effective defense for cyber
resilience [13] that can corrupt and steer adversaries’ decisions to: (1) deflect them
to false targets, (2) distort their perception about the environment, (3) deplete their
resources, and (4) discover their motives, tactics, and techniques [1, 14].

Advanced cyber threats often start with intensive reconnaissance by interacting
with cyber to learn the true values of its parameters, such as keyboard layout,
geolocation, hardware ID, IP address, service type, OS/platform type, and registry
keys to discover vulnerable targets and achieve their goals. We call such parameters
“Critical Parameters.” ACD can be particularly effective during this phase by
providing false perceptions about the configuration of the cyber environment to
achieve the deception goals [1]. There are two key mechanisms to accomplish
this: (1) parameter mutation to frequently change the ground truth (i.e., the real
value of the system parameter) of cyber configuration such as IP address [16] or
route [12], or (2) parameter misrepresentation to change only the value returned
to the attacker (i.e., the ground truth is intact). We call such critical parameters
that can be feasibly and cost-effectively mutated or misrepresented the “Deception
Parameters.” Figure 10.1b shows the two deception mechanisms with respect to
the environment parameter p. It shows that the adversary knowledge about p was
falsified by either changing p to a new value (mutation) or lying about its true
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=
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Fig. 10.1 Attacker’s dependency on system parameters. (a) Mutation. (b) Misrepresentation
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value (misrepresentation). Both mechanisms are needed in cyber deception because
mutation can be infeasible or too expensive, and misrepresentation can sometimes
be uncovered.

An effective planning of cyber deception requires a sequence of mutations and/or
misrepresentations of deception parameters in order to steer the adversary to the
desired deception goals. The key challenge that we address in this research is to
identify the most appropriate deception parameters against any arbitrary malware
by symbolically executing and analyzing the malware binary. In this chapter, we
present a systematic approach and automated tool to analyze malware binary
code and identify (1) “what” deception parameters are the most appropriate to
accomplish the deception goals and (2) “how” to effectively mutate or misrepresent
their values. This requires deception-oriented analysis of malware behaviors that
goes beyond existing dynamic analysis that is usually tailored towards attack
detection. Thus, we extended the existing dynamic analysis and symbolic execution
frameworks to track the execution of malware symbolically, and analyze system and
library API calls that particularly entail interactions with the cyber environment.
We then identify the deception parameters that can impact the malware decision-
making. Since these parameters can be interdependent and they might exhibit
varying deception accuracy and cost, our analysis guarantees the selection of
consistent sets of parameters that can obtain resilient and cost-effective deception
plans. We summarize our contributions as follows:

• We present gExtractor, a deception-oriented malware symbolic execution analy-
sis that intercepts and tracks the malware interactions with the environment, and
maps them to specific deception parameters.

• We developed formal constraints to extract deception parameters that constitute
consistent, resilient, and cost-effective deception.

• We implemented gExtractor and evaluated it using various types of malware
codes. Our evaluation demonstrates the ability of gExtractor to extract effective
deception parameters, as manually verified by experts.

While some previous work, such as Moving Target Defense (MTD) [12, 18, 36,
38, 41, 44, 45] and decoy technologies [3, 25, 37] attempt to invalidate attacker’s
perception, the deception parameters and schemes were engineered manually, which
significantly limits the ability for creating deception actions automatically against
novel malware. The ultimate goal of this research is to automate active cyber
deception against novel malware attacks. Thus, unlike IPS/IDS, our objective is
to detect and deceive, rather than detect and block, by enabling the malware to
execute in a real or virtual deception environment configured based on the extracted
deception parameters. To the best of our knowledge, this is the first work that uses
automated reasoning to infer deception parameters based on malware analysis.

We implemented gExtractor on top of the Selective Symbolic Execution engine
(S2E) [7] with the assist of our custom plugins to execute malware in a real
controlled environment, intercept system and library API calls, mark the relevant
symbolic information, and collect contextual logs. This facilitates the construction
of a comprehensive malware behavior model that covers all possible execution
paths. The constructed model is further processed to: (1) prune out execution paths
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that are not relevant to the deception goals, and (2) eliminate the don’t-care symbolic
variables that have no impact on the deception goals.

To demonstrate the value of our approach, we used gExtractor to analyze over
fifty recent malware instances. We present in the evaluation section representatives
of three major malware families: Cryptocurrency-mining malware, ransomware,
and Credential-stealing malware. For each representative, we modeled its behavior,
extracted candidate deception parameters, and show how they can be used to design
different deception schemes for different goals. Our case studies presented in this
chapter show that our approach can discover effective deception parameters. For
example, the bitcoin miner case study (Sect. 10.4.1) reveals multiple parameters
including Windows Script Host engine, win32_processor WMI (Windows Manage-
ment Instrumentation) class that can be used to deflect the malware by misinforming
false platform type, and the bitcoin hashing results that can be used to corrupt the
results in mining pool and depleting the adversary resources (i.e., score).

The gExtractor program can be incorporated in the production systems to
automatically analyze, extract, and deceive malware without human intervention.
Although there are various techniques to trigger the detection of malware such
as signature analysis [10], behavior analysis [28], decoy software [37], and decoy
bugs [3], the focus of this research is on extracting the deception parameters to
automate creating deception actions and schemes.

The rest of this chapter is organized as follows: In Sect. 10.2, we present the
process of constructing the malware behavior model by executing the malware
symbolically. Then, we present our approach to refine the malware behavior models
and extract candidate deception parameters in Sect. 10.3. Real malware case studies
are presented in Sect. 10.4. Finally, we discuss the related works and conclude in
Sects. 10.5 and 10.6, respectively.

10.2 Modeling Attack Behavior Using Binary Symbolic
Execution

To extract the complete behavior of a cyberattack, we execute its binaries (i.e.,
malware) symbolically and build a model that represents its behavior with respect
to selected system parameters. Given that the correct set of system parameters is
selected, symbolic execution can cover all relevant execution paths. Before going
through the technical steps of the symbolic malware analysis, we present the attack
behavior model.

10.2.1 Attack Behavior Model

The attack behavior model describes how the attack behaves based on the results of
its interaction with the environment. The malware interacts with its environment
through system and user library APIs characterized by their input and output
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arguments. Some of these arguments may be attacker-specific variables and cannot
be controlled by the environment, while other parameters can be reconfigured or
misrepresented. We assume that a mapping between the selected system or library
APIs’ arguments and the corresponding parameters in the environment, such as files,
registry entries, system time, processes, keyboard layout, geolocations, hardware
ID, C&C, Internet connection, IP address or host name, and communication
protocols, is given. For example, the from argument of the recvfrom API can be
mapped to a system parameter that represents the IP address of the sender machine.

We define the attack behavior model as a graph of Points of Interaction (PoI)
nodes and Fork nodes. The PoIs refer to the points in the malware control flow
at which the malware interacts with the environment by invoking system or
library APIs. The fork nodes represent the points in the control flow at which the
malware makes a control decision based on the results of its interactions with the
environment.

To formally model the attack behavior, let Γ be the set of selected System and
Library APIs, where each γ ∈ Γ takes a fixed number of input augments (Iγ =
{i1, . . . , in}) and returns a fixed number of output arguments (Oγ = {o1, . . . , om}).
We model the attack behavior as the directed graph G = (P, μ,E, ν), where:

• P is a set of nodes that represent the PoI and Fork nodes. The type function
μ : P → {PoI ,Fork} × (Γ ∪ ∅) associates nodes with their types. If the node
represents a PoI, μ further maps it to the appropriate system and library API from
the set Γ .

• E ⊆ P ×P is the set of edges that represents the dependency between the nodes
in P . A directed edge e = (pi, pj ) is added from node pi to node pj if there is
a control or data dependency between them. The dependency function ν : E →
LO associates each edge to a constraint expressed as a logic formula in the logic
LO with support for quantifier-free integer, real, and bit-vector linear arithmetic.
Expressions in LO are defined over the set of output arguments O =

⋃
γ∈Γ

Oγ .

In Fig. 10.2, we show an example of attack behavior model that represents a
portion of the Blaster worm that delivers a copy of the worm to an exploited victim.
Round nodes represent PoIs and square nodes represent fork points. The solid edges
represent control dependency, while dashed ones represent data dependency. In this
model, the worm first sends an instruction to a remote command shell process
running on the exploited victim through the send library API, then it waits for a
download request through the recvfrom API call. The attack code checks if these
operations are executed successfully and terminates otherwise as depicted through
the conditions shown on the outbound edges from the fork nodes 2 and 5. At node
7, the worm starts reading its executable file from the disk into a memory buffer,
through fread, and sending the content of the buffer to the remote victim, through
the sendto API. There is a data dependence between the third argument of the sendto
call, which represents the number of bytes to transmit, and the return value of the
fread call, which represents the number of bytes read from the worm file.
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1
send(fd, “tftp -i 1.2.3.4 GET msblast.exe”, …)
Instruct the victim to request the worm 
binary through TFTP

2 Fork
At 0x403728

4 recvfrom(fd, buf, …)
Receive the download command

5

7
block_size = fread(buf, …)
Read a portion of the file

Fork
At 0x403917

8
sendto(fd, buf, block_size, …)
Send the portion to the victim

3

terminate

6

terminate

send() return value > 0

send() return 

value <= 0

Data dependency
(buf, block_size)

recvfrom() 

return value <= 0

recvfrom() return value > 0

9
send(fd,”start msblast.exe”, …)
Send instruction to start the newly 
downloaded replica

Attack Goal

Fig. 10.2 Example of attack behavior model

10.2.2 Malware Symbolic Execution

We utilize the S2E engine to symbolically execute malware binaries. The path
coverage and the progress of the executed program depends on the correct marking
of symbolic variables. Since we are interested in the interactions of the malware
with its environment through selected system and library APIs, we intercept these
calls and mark their output arguments as symbolic. This allows us to capture
the malware decisions based on those arguments and track the corresponding
execution paths. In the current version of our implementation, we select about 130
APIs that cover activities related to networking, file system and registry manip-
ulation, system information and configuration, system services control, and UI
operations.

Marking Symbolic Variables To mark the appropriate symbolic variables, we take
advantage of the Annotation plugin provided by S2E, which combines monitoring
and instrumentation capabilities and executes user-supplied scripts, written in LUA
language, at run time when a specific annotated instruction or function call is
encountered. We define an annotation entry for each API. The annotation entry
consists of the module name, the address of the API within the module, and
the annotation function. We identified the module names and addresses using
static/dynamic code analysis tools, such as IDA and Ollydbg. The annotation
function is executed at the exit of the intercepted call. It reads the addresses of
the return and output arguments of the call and marks the appropriate memory
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locations and registers as symbolic. Note that output arguments may have different
sizes and structures. Hence, we need custom scripts to mark each individual output
argument of the intercepted APIs. The return values of APIs are typically held in
the EAX register and we use special method provided by S2E to mark its value as
symbolic. It should be noted that system calls and user library APIs are invoked by
all applications in the environment, not only the malware process. Therefore, our
annotation functions check the name of the process that invokes them and ignore
calls from irrelevant processes.

Building the Attack Behavior Model After preparing the appropriate annotation
entries, we execute the malware using S2E to collect the execution traces. We
configured the annotation functions to record the arguments, the call stack, and
other meta-data, such as the time-stamp and the execution path number for each
intercepted system and library call. By design, S2E intercepts branch statements
whose conditions are based on symbolic variables and forks new states of the
program for each possible branch. We collect the traces and branching conditions of
all execution paths and build the attack behavior model as follows:

• We create a PoI node for each system or library API call logged by our annotation
functions. Similarly, the traces contain special log entries for state forking
operations. Those are used to create the Fork nodes in our model.

• For each node in the model, we add a control dependency edge from the node
preceding it in the execution path. If the preceding node is a Fork node, the edge
will be associated with a branching condition in terms of the symbolic variables.

• To capture the data dependency, we check the values of all the input arguments
upon the entry of each API call. If the value is a symbolic expression, this implies
that it is a transformation of previously created symbolic variables. Hence, we
add a data dependency edge from the PoI nodes in which the symbols of the
expression were created.

10.3 Deception Parameters Extraction

Given the attack behavior model generated through symbolic execution, we extract a
set of system parameters that help in designing effective deception schemes to meet
the deception goals. Recall that the attack behavior model describes the complete
behavior of a malware with respect to selected system parameters. However, that
does not mean that every parameter in the attack behavior model is a feasible
candidate for deception. That is, mutating or misrepresenting its value may not be
sufficient to successfully deceive the attacker. We analyze the attack behavior model
to select the appropriate set(s) of deception parameters that can help in designing
deception schemes without dictating particular ones.

We present the following four criteria that must be considered to decide on which
parameters are appropriate for effective deception and which are not:
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1. Goal Dependency. The selected deception parameters can directly or indirectly
affect the outcomes of the attack in terms of whether the attacker can reach her
goal. Hence, parameters that are used only in execution paths that do not lead to
particular goals might be excluded.

2. Resilience. In cases where multiple attack paths lead to particular goals, selected
parameters must provide deception in all the paths, not only one.

3. Consistency. The selected deception parameters must preserve the integrity
of the environment from the attacker’s point of view. As system parameters
may be interdependent, deception schemes must take this into consideration,
such that misrepresenting one parameter without misrepresenting its dependents
accordingly does not disclose the deception.

4. Cost-Effectiveness. Although multiple parameters may exist in the execution
paths leading to particular goals, mutating or misrepresenting different parame-
ters may require different costs and provide different benefits from the defender’s
point of view. Defenders must select the most cost-effective set of parameters for
deception.

The complete attack behavior model contains many execution paths that may
not be relevant to our deception analysis. To extract the parameters that satisfy the
deception parameters criteria, we (1) identify the set of execution paths that are
relevant to deception, (2) eliminate the don’t-care symbolic variables, and (3) select
a set of the remaining parameters based on their cost.

10.3.1 Identifying Relevant Paths

Recall that deception is not about blocking attacks, rather, it is about misleading and
forcing them to follow particular paths that serve the desired deception goals. Hence,
the selection of relevant execution paths from the attack behavior model depends on
the deception goal. Following our definitions of the four goals of deception, the
paths relevant to distortion keep the malware misinformed about the environment
to slow it down or force it to make more environment checks. This is reflected
in the paths that exhibit aggressive interactions and queries with and about the
environment. On the other hand, the relevant paths for depletion and discovery are
those that lead the malware to interact with the remote master or adversaries, while
paths in which the malware loses interest and abandons the system are relevant to
the deflection goal.

Definition 10.1 (Relevant Paths) A relevant path with respect to a particular
deception goal is an execution path that exhibits particular patterns of interactions
with the environment that can be leveraged by the defender to achieve the deception
goal.

Regardless of which deception goal is desired, it can be represented as a single
call or a sequence of calls to system and library APIs leveraging existing tools that
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identify specific behaviors through patterns of call sequences, such as [8, 33, 35].
Then, the PoI nodes in our attack behavior model will be used to identify the
execution paths that exhibit that particular sequence of calls. By pruning out all
other paths that do not exhibit the desired sequence, we end up with a portion of the
original behavior model that contains only the paths relevant to the deception goal.
In Fig. 10.3a, we show a simple example of an attack behavior model that has two
paths, one leads to the desired goal and the other leads to attack termination. In this
case, the left path is considered irrelevant and it will be pruned out. For a concrete
real-world example, in order to deceive the FTP Credential-Stealer malware in
Sect. 10.4.2 with honey FTP passwords, the environment must not run OllyDbg
because otherwise the malware would follow an execution path irrelevant to the
deception goal.

10.3.2 Eliminating Don’t-Care Variables

To clarify this step, we need first to define the execution path constraints. A
path constraint is a logical expression that captures the conditions on the selected
symbolic variables that need to be met in order for the execution to follow that
particular path. Recall that we associate a set of symbolic variables to each PoI
node p in the attack behavior model (p ∈ P,μ(p) = PoI ), which correspond to its
output arguments. Later in the execution, an expression will be generated for each
branch at the following forking nodes in terms of the symbolic variables causing the
fork. Those expressions are captured in the resulting edges of the fork nodes and
mapped through the dependency function ν(.).

Fig. 10.3 Attack behavior
model refinement. (a)
Relevant path selection. (b)
Don’t-care elimination

Goal

Fork
Irrelevant 

Path

(a) (b)

Goal

Fork

≥ <

Don’t-care
variable

The constraint of an entire path in our attack behavior model is simply the
conjunction of the logical expressions associated with all the edges that belong to
the path. Formally, let P = {p1, p2, . . . , pn}, where (∀i∈[1,n] : pi ∈ P ) represents
a node path in the attack behavior model. Further, let ei,j ∈ E denote the edge
between the nodes pi ∈ P and pj ∈ P . The path constraint of the execution
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path represented by P can be computed as
∧

i∈[1,n−1] μ(ei,i+1), where μ(ei,i+1)

is the expression of the edge ei,i+1. We define the don’t-care symbolic variables as
follows.

Definition 10.2 (Don’t-Care Variables) A don’t-care variable with respect to
particular deception goal is a symbolic variable that is part of one or multiple
execution path constraints and its value is irrelevant to the desired deception goals.

As Fig. 10.3b illustrates, although there is a decision taken based on the symbolic
variable v1, the desired goal will be reached regardless of the variable’s value. This
makes v1 a don’t-care variable with respect to the desired goal and it can be excluded
from further deception analysis.

After eliminating the irrelevant paths and the don’t-care variables, we end up
with refined path constraints for the relevant paths. The parameters extracted based
on this refined model complies are guaranteed to satisfy the goal dependency. We
further analyze the parameters and consider the cost of using each of them in
deception and select the set of parameters that can achieve the desired deception
goal using the minimum cost.

10.4 Evaluation

We analyzed over 50 recent malware variants using gExtractor and extracted
candidate deception parameters for each of them. The variants we analyzed rep-
resent most common types of malware, including cryptocurrency-mining malware,
ransomware, worms, spyware, and credential-stealing malware. To demonstrate
that our systematic approach can indeed extract effective deception parameters,
we selected two of the most prevalent malware, namely Bitcoin Miner and FTP
Credential-Stealer. We discuss in detail the process of building the attack behavior
model, extracting deception parameters, and we suggest deception schemes utilizing
them.

10.4.1 Case Study I: Bitcoin Miner

We analyzed a recent bitcoin mining malware (MD5: efd1326e5289a935919
5120fd6c55290) that works in several stages. First, it drops and runs a Visual Basic
(VB) script. Second, the script queries the Windows Management Instrumentation
(WMI) service for the processor’s information, such as the availability of GPU and
the system architecture (32-bit or 64-bit), to download the right executable file for
the target system from an external distribution website, winxcheats.tk. Third, the
downloaded executable (csrs.exe) downloads yet another executable (AudioHD.exe)
from getsoed9.beget.tech. The last program (AudioHD.exe) interacts with a bitcoin
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mining pool server at xmr.pool.minergate.com to perform the mining on behalf of
an account, which is hard-coded in the executable.

Malware Behavior Using gExtractor, we construct the behavior model of this
malware (see the simplified version in Fig. 10.4), which covers the malware
execution stages. We use common patterns of API calls to recognize signifi-
cant malware activity. For example, the use of APIs that create new processes
(e.g., ShellExecuteExA and WshShell.Run) indicates the beginnings of consecutive
malware stages. Moreover, interacting with a well-known bitcoin mining pool
server through networking and HTTP APIs reveals that one goal of this mal-
ware is to use the victim machine to perform bitcoin mining on behalf of the
attacker. Therefore, we refine the malware behavior model by recognizing the
relevant paths that lead to that goal and design deception schemes around it. After
mapping the symbolic variables of the relevant paths’ constraints to the system
parameters, our analysis reveals the following necessary conditions for successful
mining:

1. The file C:\Windows\system32\wscript.exe exists.
2. Windows Script Host (WSH) engine is enabled to run Visual Basic scripts [29].
3. WMI service and Microsoft Win32 WMI provider are running.
4. win32_processor WMI class reports the correct processor information.
5. The distribution website (http://winxcheats.tk) is available and hosts the exe-

cutable file (under /miners/3/csrs.exe).

Fig. 10.4 Simplified
behavior model of the bitcoin
miner
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6. The second distribution site (getsoed9.beget.tech) is available and hosts the
second executable file (AudioHD.exe).

7. The bitcoin mining pool server (xmr.pool.minergate.
com) is still running correctly.

8. The hard-coded account (iden1930@mail.ru) is authenticated successfully at the
mining pool server.

9. The target system can run the file AudioHD.exe successfully.

To clarify how gExtractor facilitates the detection of such conditions, let us
take condition 2 as an example. We mark the output parameter “Buffer” of the
RegQueryValueExW API call, which is required to successfully complete the second
stage of the malware, as symbolic. The API’s input parameter, hKey, refers to the
registry key “HKLM\SOFTWARE\Microsoft\Windows Script Host\Settings\” and
the other input parameter “ValueName” is set to “Enabled”. Then, we observe that
“Buffer” is used in a conditional jump, and in one path the message “Windows
Script Host access is disabled on this machine” is displayed before the process
terminates, while in another path we do not see this message. Alternatively, we see
multiple queries to the WMI service. The first path will be regarded as irrelevant and
pruned out by gExtractor and we will only consider the latter. Similarly, gExtractor
can detect the dependence of this malware on the remaining conditions by tracking
the decisions taken based on the associated symbolic variables and refining the
behavior model.

Deception Parameters We analyzed the refined bitcoin miner behavior model
with respect to different deception goals: deflection, distortion, depletion, and
discovery. We identified the major deception parameter that satisfies our cri-
teria defined in Sect. 10.3 and can be utilized to achieve each goal. In the
following, we discuss a number of recommended deception schemes based on
these parameters and we provide a summary with estimated deception costs in
Table 10.1.

Table 10.1 Deception schemes against the bitcoin mining malware

Parameter Goal Deception action Estimated cost

wscript.exe Deflection Replace it with a version that
rewrites the input VB script
for better protection

No CC; high OC; high DC

WSH engine Discovery Enable its capability to run
VB scripts

Low CC; no OC; no DC

WMI class Distortion Change the way that it han-
dles requests (e.g., returning
misinformation about proces-
sors)

No CC; low OC if used on a
honeypot; medium DC

The resulting hash Depletion Corrupt the resulting hash No CC; no OC; high DC

(CC: configuration cost, OC: operation cost, DC: development cost)
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Deflection Schemes For this purpose, we can enhance the designated script host
C:\Windows\system32\wscript.exe. If the malicious VB script initiates a connection
to a critical server, the enhanced wscript.exe can rewrite the VB script statement so
that it connects to a honey server instead. This scheme could have high development
cost because it requires a change to a Windows system utility, for which we do
not have a source code. In terms of operation cost, this scheme can have high cost
because it can confuse benign applications that need to run VB scripts, even if this is
on a honeypot. However, it has little configuration cost because the current Windows
OS does not have a configuration option to replace wscript.exe with an alternative
version.

Discovery Schemes We can use the Windows Script Host (WSH) engine to con-
struct a discovery strategy against malware that needs to run VB scripts. The WSH
enables applications to run VB scripts and JScripts, and it provides a configuration
option (via Windows registry) to enable/disable the VB script support. By enabling
it, we can observe malware behavior through its VB scripts and have a better
understanding of the malware. This strategy incurs only a low configuration cost.

Distortion Schemes Through the “win32_processor WMI class” parameter, we
can construct a distortion scheme that returns misinformation about the system’s
architecture in order to confuse the malware (or the attacker behind the malware)
who queries the win32_processor class interface. This strategy requires a change
to the implementation of the win32_processor class interface, so there can be some
development cost, and it can have a low operation cost if it is used on a honeypot.

Depletion Schemes The last parameter in Table 10.1 is the resulting hash, which
the malware sends reliably to the mining pool server. We can create a depletion
strategy by corrupting the results so that they become invalid. Deceiving the
malware to send excessive invalid results that damages the attacker’s reputation or
causes financial losses (e.g., the mining pool server bans her account, freezes her
mining wallet, or applies a penalty to her account). This scheme requires writing
code to carry out the scheme, so it has some development costs. It has no operation
cost because it modifies only the data of the malware.

We have experimentally confirmed the feasibility of depleting the attacker by
corrupting the resulting hashes. In order to profit from mining on a victim machine,
the attacker communicates with the mining pool server under her mining username
in order to receive the credit. Therefore, at mining time, the attacker username must
be present on the victim machine. We leveraged this fundamental “vulnerability” of
this malware (i.e., revealing the mining username) for an effective deception. Based
on our study of multiple mining pools, they establish various penalty policies for
participants who submit invalid hashes. In Table 10.2, we summarize the negative
impact of submitting invalid shares to several public mining pools. We can see that
misbehaving users are often banned to some extent and their wallets can even be
locked.

To prove the effectiveness of this depletion scheme, we built a tool that delib-
erately sends invalid hashes on behalf of a particular user. Different mining pool
servers may implement different protocols to authorize jobs and submit resulting
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Table 10.2 Negative impact of submitting invalid hashes

Mining pool Banned Payouts locked Balance reduced

moneroocean.stream For 1–10 min No No

xmrpool.net Yes No No

supportxmr.com Yes Yes No

www.viaxmr.com Temporary No No

minergate.com No No Yes

slushpool.com Yes No No

moriaxmr.com For 10 min No No

ratchetmining.com For 10 min No No

hashes. However, most of them use a protocol called STRATUM over HTTP [39]
and they define their own methods that can be used by the users to log into the
server, get new jobs, and submit resulting hashes. We obtain the names and the
required parameters of these methods along with other communication settings by
analyzing the mining malware. Then, we submit a login request to the pool server.
In response, the pool server returns a job and an Id that corresponds to the username.
At that point, a legitimate miner will use the job data to generate a hash and send it
back to the server. However, our tool will generate and send a random result instead,
which will most likely be recognized as an invalid hash by the pool server.

To confirm that the mining pool servers penalize users who send invalid hashes,
we created a user account at Minergate and sent a large number of random hashes on
behalf of our new user. After submitting around 40, 000 invalid hashes, the account
balance decreases from 0.00002398 to 0.00001973 which complies with the policy
of Minergate. Figures 10.5 and 10.6 show the change in the account state before
and after we sent the random hashes. Note that we have no means to verify whether
a real attacker will be penalized if her username is used, because we do not have
access to her account balance. However, when we perform the same actions using
the attacker’s username (iden1930@mail.ru) extracted from the malware analysis,
the response from the mining pool server indicates that the submitted shares are
detected as invalid. Since our account is penalized in compliance with the policy,
we believe that the attacker’s account should be punished as well.

Fig. 10.5 Account status before mining for Aeon coin

xmrpool.net
supportxmr.com
www.viaxmr.com
minergate.com
slushpool.com
moriaxmr.com
ratchetmining.com
iden1930@mail.ru
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Fig. 10.6 Account status after submission of 40,000 invalid shares for Aeon coin

Fig. 10.7 Simplified model
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10.4.2 Case Study II: FTP Credential-Stealer

In this case study, we analyze a recent malware (MD5: 7572fb188134d141eac175
1b19b79a70) that scans the victim system for sensitive information, such as FTP
login passwords and then sends the stolen information to a remote server.
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Malware Behavior This malware consists of two processes. The first process
employs multiple methods to check whether the malware is being analyzed, then
terminates immediately if the checking result is positive. If no signs of analysis
are detected, the first process drops and launches another piece of malware, which
collects sensitive information from the victim system and sends it to a remote server
under the adversary’s control. A simplified version of the behavior model of this
malware, generated by gExtractor, is shown in Fig. 10.7.

The first malware process is heavily obfuscated and employs multiple tricks to
evade analysis and ensures a safe execution environment: (1) it tests whether the
executable file’s name contains any of the strings “sandbox,” “malware,” “virus,”
or “self”; (2) it scans the list of running processes for known dynamic analysis tools,
such as procmon.exe, procmon64.exe, procexp.exe, ollydbg.exe, and windbg.exe; (3)
it checks the BeingDebugged flag in its PEB (Process Environment Block) [11]
at multiple places of its code section; (4) it checks whether it is running inside a
virtual machine by matching the result of the CPUID instruction with “KVMKVM,”
“XenVMM,” “Microsoft Hv,” and “pri hyperv”; (5) it extracts the second malware
binary from its resource section, decrypts it, and then uses process injection to
launch it in a second process. If any sign of malware analysis is detected, the
malware immediately terminates.

In the second process, the malware collects sensitive information from the
Windows registry and the local file system and sends it to a remote site as follows.
First, it searches certain Windows registry keys, which correspond to a specific list
of FTP clients, for saved login credentials. For example, to steal information related
to WinSCP, it searches for the key “Software\Martin Prikryl.” If the key is found,
it recursively enumerates the subkeys with the names “HostName,” “UserName,”
“Password,” “RemoteDirectory,” and “PortNumber,” reads their values, and stores
them in a stream object for later exfiltration. Strings such as “Software\Martin
Prikryl” and “HostName” are hard-coded in the malware. Second, it looks up
files whose path contains particular patterns (e.g., “WS_FTP,” “LastSessionFile,”
“FTPRush,” “Quick.dat,” and “History.dat”), and if any such file exists, it stores
the file’s path and content in the stream object. To optimize the search, it focuses
on known folders, identified by their Constant Special Item ID List (CSIDL) values,
such as the users’ public documents, desktop, and local settings. It also searches the
folders of installed applications discovered by their “UninstallString” registry val-
ues under the registry key HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\
Uninstall.

After collecting the targeted information, the malware extracts the data from the
stream object (via the API call sequence {GetHGlobalFromStream, GlobalLock}),
then it constructs and sends an HTTP POST message to “http://www.luxzar.com/
drake/november/omg/hot/gate.php”. The HTTP communication is conducted by the
API call sequence {InternetCrackUrlA, ObtainUserAgentString, socket, connect,
setsocketopt, send, closesocket}.

http:// www.luxzar.com/drake/november/omg/hot/ gate.php
http:// www.luxzar.com/drake/november/omg/hot/ gate.php
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Deception Parameters We employ the methods discussed in Sect. 10.3 to the
behavior model we obtain from the above analysis. We recognize a number of
deception parameters that enable different deception schemes, as summarized in
Table 10.3.

Discovery Schemes Since the malware applies many checks to evade analysis,
these checks can be used to inspire effective discovery schemes that encourage the
malware to run normally. Specifically, we can rename common analysis tools if we
must run them and modify the behavior of the CPUID instruction so that it gives an
impression that the environment is not a virtual machine, which is commonly the
case for malware analysis. The cost of renaming common dynamic analysis tools
is low. However, the cost of manipulating the result of the CPUID instruction can
be high: it is cheap if the environment has a way to intercept CPUID instructions
in software (e.g., on top of QEMU), but it is infeasible otherwise. Alternatively,
the registry entries of the FTP clients, such as WinSCP, can be leveraged to lure the
attacker to honeypots so we can learn more about its capabilities and intents. We can
create honey FTP accounts, save the honey login credentials in WinSCP, and run the
malware so it delivers the honey login credentials to the attacker. The configuration
cost of this kind of scheme is medium because it is necessary to set up the honey
FTP server and deploy monitoring tools.

Depletion Schemes The registry entries of the FTP clients can also be leveraged
to feed the attacker fake login credential and deplete her resources and effort.
For example, we can install WinSCP in the environment and save many sessions
with fake values for the information targeted by the attacker (e.g., username and
password) decreasing the likelihood of her landing on legitimate victims. An even
better scheme is to create an encrypted version of an invalid password and save
it in the Windows registry entry for WinSCP, which will give the attacker an
additional burden to decrypt the password, thus further depleting the attacker’s
resources.

Deception Schemes Using the File System Similar to registry entries, files that
contain sensitive information are useful parameters for multiple goals: depletion,
deflection, distortion, and discovery. For example, we can plant honeyfiles with
seemingly sensitive but useless information to waste the energy of the attacker
who tries to act upon the content of the honeyfiles. Although the general idea is
well known, the specific details as to which files should be planted can be greatly
informed by analyzing the malware decisions. The cost of carrying out these kinds
of strategies can vary depending on the purposes of the files: it may require simple
editing of a file on one hand, or development of tools to create the files on the
other; the operation cost may also vary depending on the purpose of the files: if
they are used only by attackers, the cost is low, but if they are used by benign
users, the cost can be quite steep, since the honey content can confuse benign
users.
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10.4.3 Challenges and Future Work

Through our case studies, we recognized a few technical challenges with respect
to our approach. First, it is non-trivial to build a general deception parameter
extraction technique due to inherent limitations of symbolic execution. For example,
to avoid following back edges in a loop we have to supply the exact addresses of
the source and destination instructions, which is unfortunately malware specific.
One solution would be to automatically recognize back edges. Second, a naive use
of symbolic execution cannot effectively discover interesting malware dependency
on the environment because the execution can slip into paths leading to other
than the desired goals, such as getting stuck in loops. We plan to develop new
plugins that would guide the symbolic execution engine towards more meaningful
paths leveraging existing approaches that were previously proposed to address
similar challenges in dynamic taint analysis and mixed concrete and symbolic
execution [20, 34].

10.5 Related Work

Randomization and moving target defense are well-investigated techniques towards
agile cyber that can proactively disrupt advanced attacks. Randomization tech-
niques, such as instruction set randomization [32], compiler-generated software
diversity [15], and address space layout randomization [38], introduce unpre-
dictability to confuse the adversary and invalidate her assumptions about the
system. Moving target defense techniques, such as [12, 17, 19, 36, 44–46], mutate
specific static system parameters proactively over time. For example, NASR [2]
randomizes IP addresses based on DHCP over time. Similarly, the authors in [44]
propose to periodically migrate VMs to make it harder for adversaries to locate
targeted VMs. In another direction, deception techniques, such as honeynets and
honeypots [3, 21, 25, 37], divert attackers away from their targets to consume their
resources and protract their reconnaissance. Although these techniques and many
other similar ones have been successful, within acceptable performance overheads,
in deterring and deceiving the targeted attacks, they were designed in an ad hoc
manner to counteract specific attacks. Our proposed analytic framework makes this
process systematic and decreases the need for manual intervention and the reliance
on human intelligence to design effective active cyber deception schemes.

Analyzing and exposing behaviors of malware is another research topic that
has been extensively discussed in the literature [4, 6, 22, 26, 42, 43]. Forced
execution [40] and X-Force [31] were designed for brute-force exhausting path
space without providing semantics information for each path’s trigger condition.
To discover the trigger conditions, Brumley et al. [5] applied taint analysis
and symbolic execution to derive the condition of malware’s hidden behavior.
Moser [30] introduced a snapshot-based approach that could be applied to expose
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malware’s environment-sensitive behaviors. Hasten [23] proposed as an automatic
tool to identify and skip malware’s stalling code. In [24], Kolbitsch et al. proposed
a multipath execution scheme for Java-script-based malware. Other research [9, 40]
proposed techniques to force the execution of different malware functionalities.
While our work needs to analyze malware, we have a different goal: to automatically
discover system parameters that can be mutated or misrepresented to deceive, rather
than detect, malware. We can benefit from all existing malware analysis techniques,
and in this chapter we choose symbolic execution in particular.

10.6 Conclusion

We present the first analytic framework towards automated creation of deception
schemes based on rigorous malware binary code execution and automated reasoning
of attack behaviors and decision-making process. We have implemented a tool that
models the complete behavior of given malware in terms of its interactions with
and dependence on the environment. We further analyze the malware behavior
beyond traditional dynamic and symbolic malware analysis to track the malware
decisions with respect to system parameters and identify those relevant to deception.
Moreover, since multiple competing parameters may be identified, we employ
optimization module theories based on Z3 to select the optimal set of parameters
that can deliver consistent, resilient, and cost-effective deception. We analyzed over
50 recent malware and demonstrated through three detailed case studies how our
deception-oriented analysis can lead to effective deception schemes against major
malware types: cryptocurrency mining malware, credential-stealing malware, and
ransomware. In addition, we have experimentally verified the deception schemes
against bitcoin mining malware and ransomware.

10.7 Exercises

1) Download and install the Cuckoo sandbox and use it to analyze the Cerber
ransomware (SHA256:e5a24badeecd951
40bddff4bb668aca96f33c9b5fc870cdbbd3a9092e809a4ea). Based on Cuckoo
analysis result, answer the following:

a. The malware will search directories for files using the “FindFirstFileExW”
API. Report the first directory the malware searches.

b. The malware tries to connect to a pool of IP addresses over TCP. Report the
port number used in the frequent sendto API calls.

2) Study the documentation of the API recvfrom in Microsoft Developer Network
(MSDN) and identify the system parameters that can influence its output
arguments.



10 gExtractor: Automated Extraction of Malware Deception Parameters. . . 205

3) Download S2E [7] and follow the documentation to create an analysis environ-
ment for Windows XP.

a. Activate the Annotations plugin in S2E and write a function annotation for
the “GetFileAttributes” API in Kernel32.dll at address 0x7c80b7dc.

b. Modify your annotation function to write the value of the EAX register as
symbolic at the function return. Name the symbolic variable as “gfAttrib-ret.”

c. After executing the malware in S2E mode, open the messages log and locate
the forking operations with respect to the variables “gfAttrib-ret” and report
forking constraints.

4) Consider the following two execution paths for a ransomware. In Path 1, the
malware scans the victim’s machine, encrypts the files, sends the statistics to the
C&C server, and displays a hard-coded instructions to the victim. In Path 2, the
malware encrypts the files, sends the statistics to the C&C server, and receives a
message from the C&C to display to the victim. Which path is more appropriate
for depletion and how can that be implemented?
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Chapter 11
Malware Deception with Automatic
Analysis and Generation of
HoneyResource

Zhaoyan Xu, Jialong Zhang, Zhiqiang Lin, and Guofei Gu

Abstract Malware often contains many system-resource-sensitive condition
checks to avoid any duplicate infection, make sure to obtain required resources,
or try to infect only targeted computers, etc. If we are able to extract the system
resource constraints from malware binary code, and manipulate the environment
state as HoneyResource, we would then be able to deceive malware for defense
purpose, e.g., immunize a computer from infections, or trick malware into believing
something. Towards this end, this chapter introduces our preliminary systematic
study and a prototype system, AUTOVAC, for automatically extracting the system
resource constraints from malware code and generating HoneyResource (e.g.,
malware vaccines) based on the system resource conditions.

Keywords Malware analysis · Malware immunization · Malware deception

11.1 Introduction

Malware is a severe threat to our computer systems. To combat malware, the state-
of-the-art defense at end hosts mainly focuses on detection techniques, which often
fall into two categories: signature-based detection and behavior-based detection. A
signature-based approach typically attempts to extract some unique string patterns
from malware binaries. Unfortunately, the signature generation and update speed
usually cannot keep up with the quickly increasing malware samples each day
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in the wild due to the wide use of polymorphisms/packers in malware. While a
behavior-based approach could be relatively more stable in terms of detecting the
same set of malware and their variants, it is typically very expensive and may cause
a noticeable performance overhead on end hosts.

Therefore, the need of new lightweight and complementary techniques for
effective malware defense is still pressing. Interestingly, we find malware infection
works similarly to pandemic diseases. If we were able to deceive the malware that
it has infected the protected host, we would have been able to prevent it from
infecting a wider range of machines (considering the case of botnets). Fortunately,
we find malware that often contains system-resource-sensitive condition checks or
constraints to avoid any duplicate infection, make sure to obtain required resources,
or try to infect only targeted computers, etc. For instance, many fast-spreading
malware programs (e.g., Conficker [26]) will clearly mark an infected machine as
infected such that they can avoid wasting time and effort in re-infecting the machine.
As such, such resource manipulating scheme can be considered as a more effective
and safer way for malware deception. In this context, such resource is one kind of
HoneyResource which tricks malware into believing the existence/non-existence of
itself.

In general, any system resource/environment variables that are directly or
indirectly used in path conditions (such as registry, mutex), or those that lead to
the failure of certain system calls, can all be considered as HoneyResource, because
these external environment states can impact the behavior of the malware. While it
might lead to an over-approximation by considering all these state variables, we can
run tests to eliminate the mistakenly classified environment variables.

Based on the above observation, we propose AUTOVAC, a new technique to
automatically generate HoneyResource for effective and efficient malware decep-
tion. While theoretically manipulating any variable that leads to a conditional
check of malware execution could potentially be used as a HoneyResource, we
would like to focus on the variables whose states can be controlled by the external
environment such as registry, certain file names, etc. As such, the environment
resources accessed by malware are of our interest. Specifically, we design a program
analysis technique to determine whether the manipulation of these resources can
successfully prevent malware’s infection/execution. We treat such resources as our
malware HoneyResource and derive concrete information needed for generating
HoneyResource. After we generate the HoneyResource, we then inject them into
end hosts. For example, HoneyResource is able to serve as a kind of vaccine for
malware. To the best of our knowledge, AUTOVAC is the first systematic work of
using program analysis to automatically generate HoneyResource for real-world
malware deception.

In summary, we make the following contributions:

• We conduct the first systematic study of malware HoneyResource. We discuss
all possible mutable resources of our interest and present a taxonomy of malware
HoneyResource.
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• We design and implement AUTOVAC, which can automatically track the malware
path constraints as well as their propagation, associate them with the external
environment resources, and automatically generate HoneyResource.

• We evaluate our system with a large set of real-world malware samples. Experi-
mental results show that it is truly possible to generate working HoneyResource
for many real-world malware families, such as Conficker, Sality, and Zeus, and
use HoneyResource as a complementary approach in practice.

11.2 Problem Statement and Approach Overview

11.2.1 Malware HoneyResource Background

11.2.1.1 Definition of Malware HoneyResource

From our viewpoint, a malware HoneyResource is a computational preparation
that deceives a particular malware program, e.g., trick it into believing something,
or prevent its infection. Essentially, malware, like any generic program, usually
conducts a series of operations on system resources and outputs the computation
result.

Thus, we define a malware HoneyResource as a specific system resource (or
a collection of them) that is created or used by malware in order for its normal
infection and execution. Such malware HoneyResource typically has two kinds of
behavior:

• It simulates the existence of certain computer organism (system environmen-
t/resource) such that malware will perform certain activities, e.g., exit upon the
awareness of such existence (because it does not want to re-infect the victim
again, or the victim does not have a targeted environment, etc.).

• It prevents malware from creating/accessing certain critical computer organism
such that malware cannot obtain its essential resources to fulfill the functions.

Fig. 11.1 System architecture
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11.2.1.2 A Taxonomy of Malware HoneyResource

Besides the aforementioned categories of malware HoneyResource, we can further
define different types from different perspectives.

First, from the perspective of identification, the HoneyResource identifier is
defined as a combination of resource type and name of malware-targeted resources.
To avoid unwanted side effect to benign software running on end host, the
HoneyResource identifier should be as unique and deterministic as possible. Thus,
in our taxonomy, an identifier can be categorized as: static (e.g., constant value),
partial static (e.g., it conforms to a specific regular expression), or algorithm-
deterministic (e.g., it is calculated with customized algorithms).

To deceive different malware families, the effectiveness of a malware Hon-
eyResource can vary. Based on the effectiveness, we can classify malware Hon-
eyResource into two types: full deception that can completely cease the malware
execution (e.g., negating the first few condition checks to prevent any malicious
behavior execution), and partial deception that significantly affects the execution of
some major functions in malware (e.g., malware is not able to keep persistent in the
system if rebooted, or malware is not able to perform key network communication
such as C&C, and self-updating).

In terms of HoneyResource delivery and deployment, there could be two cate-
gories: direct injection and creation of HoneyResource daemon. Direct injection is
very lightweight, e.g., a specific mutex name or file name, and the HoneyResource
can be simply injected into the target computer once and it will be effective
afterwards. HoneyResource daemon requires running a service program (i.e., a
daemon) on the targeted machine, and such daemon can prevent the creation (or
other access types) of certain specific files, registries, libraries, system services,
windows, and processes to further prevent malware from obtaining critical resources
or information to fulfill its functionalities (such as for partial deception). More
details are presented in Sect. 11.5.

It is worth noting that an ideal malware HoneyResource is those with
full deception and one-time direct injection. However, other types of Hon-
eyResource are also useful, as discussed later and shown in our evaluation
(Sect. 11.6).

11.2.1.3 Use Case of HoneyResource

As a complementary technique to existing malware defense, HoneyResource may
not be used to protect machines from all malware attacks. However, they can be used
for current, high-profile, large-scale malware propagation and infections, which may
last for a period of time, e.g., several days, weeks, or months. If we can capture
the binary at the initial infection stage, we can quickly generate HoneyResource
and protect our uninfected machines from the attacks, until a better detection or
prevention solutions (e.g., a system/software patch to fix the vulnerability) are
available and fully deployed.
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11.2.1.4 Target and Assumptions

Not all malware can have HoneyResource. Our target is those malware that has
specific system-resource-sensitive behavior, illustrated in the following scenarios:

• Some malware can work only in the scenario in which none of the same malware
instances is present in the host. Thus, they have to uniquely mark their infected
systems through creating and checking certain deterministic identifiers such as
mutex, file, as shown in the Conficker example. Our HoneyResource can hence
appear to be the malware vaccine to fool the malware and stop its infection.

• Some malware has issues in handling the failure of certain system resource
access. Our HoneyResource can try to enforce such failures to make the malware
run into their undesired status (e.g., process termination, or important functions
being disabled).

• Some targeted malware is designed to work in a specific system environment.
Our HoneyResource can attempt to make each protected system different from
malware targeted environment, so as to protect machines from the infection.

It is true that some malware may not use system resource checks to make their
infection decision. That is, AUTOVAC does have limitations and we discuss in
great detail on the possible evasions in Sect. 11.7. We note that while evasions
are possible, most of these scenarios are not within the scope and assumptions
of our approach. The intention of AUTOVAC is not to replace existing defense
approaches, but to complement them from a new perspective. As we show later,
once we can successfully extract interested system resource constraints and generate
HoneyResource, we can effectively and efficiently deceive malware.

11.2.2 Approach Overview

An overview of AUTOVAC is illustrated in Fig. 11.1. At a high level, it consists of
three phases: Candidate Selection, HoneyResource Generation, and HoneyResource
Delivery/Deployment.

In Phase-I (Sect. 11.3), we will first filter out malware samples that are
unlikely to contain HoneyResource. In this step, we profile the normal execution
of the malware to obtain an overview of the malware’s accessed system resources,
including the types of resources and the names of the corresponding resource-
identifiers, the operations (e.g., create, and read/write) on the resources, and the
corresponding results (e.g., succeed, or fail).

During our profiling, we will also apply a variant of dynamic taint analysis [7] to
determine whether the malware’s execution will be affected by certain resources it
has accessed. The implication is that malware has to be sensitive to its resource
access result. Otherwise, malware’s behavior is deterministic regardless of its
resource environment and no HoneyResource willexist for it. Hence, if we find
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no program branches that depend on any system resource, we filter this malware
because it does not contain HoneyResource that we can extract. At the end of this
phase, we obtain a list of candidate resources that can affect the control flow of the
malware execution.

In Phase-II (Sect. 11.4), our task is to generate HoneyResource by testing their
exclusiveness and impact on malware execution. It contains three sub-steps.

• Step-I: Exclusiveness Analysis In general, system resources are also being used
by benign programs. In this step, we would like to filter the resource identifiers
that are not exclusive to malware itself (e.g., some benign programs also use
them), in order to avoid false positives.

• Step-II: Impact Analysis The goal of this step is to measure the potential impact
of a certain system resource, i.e., whether it can affect the execution of some
interested malware functions. We start a second-round execution monitoring by
manipulating the result of the specific malware’s resource operation, which will
generate a manipulated trace. We apply program alignment techniques [8] to
compare the execution differences between the manipulated trace and the normal
trace and determine if the system resource can (significantly) impact the malware
functions, e.g., cause malware to stop the execution. At the end of this step,
we generate a list of resources that can effectively stop the malware’s infection
(full deception), or significantly affect the malware’s certain functions (partial
deception).

• Step-III: Determinism Analysis We also have to measure the determinism
of the specific system resource identifier, e.g., filename or mutex name. An
effective malware HoneyResource should be deterministic, such that it can be
accurately reproduced/predicted to affect the targeted malware. A deterministic
value could be a fixed/static value, or a value that is generated from a deter-
ministic algorithm (from deterministic resources) or even partial static if certain
part is deterministic. To decide if a specific resource identifier is deterministic,
we perform backward taint analysis and program slicing to fully understand the
identifier generation logic and the parameters it depends on. Based on that, we
further analyze the root-cause of the identifier generation and generate a program
slice responsible for the identifier generation logic.

In Phase-III, we deploy the malware HoneyResource at an end host. There are
also two situations: direct injection and HoneyResource daemon. We will present
their details in Sect. 11.5.

11.3 Phase-I: Candidate Selection

Given a malware sample, AUTOVAC will first determine whether it is possible to
generate a HoneyResource, and at the same time collect the behavior information to
facilitate the next step analysis. Since our HoneyResourceis essentially composed
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of system resources that have a direct or indirect (through propagation) impact on
the malware execution, we adopt a variant of dynamic taint analysis [7] to achieve
this.

11.3.1 Taint Sources

Taint sources define the origins of the tainted data. Our current focus is on
those system-resource-related data that can possibly impact the malware behavior.
However, there is a wide range of system resources and certainly some of them
cannot be used such as system-assigned random objects. As such, we have to
systematically study these resources and identify our taint source. In particular, we
use the following criteria to decide whether a system resource should be tainted.

• Unique Presence Our focused system resources should be commonly used by
malware, and these resources should be uniquely identified. Thus, those transient
system resources, e.g., events, signals, and critical sections, are out of our
interest.

• Less Impact to Benign Software Our targeted resources should have little or
minor impact to benign programs. This requirement would exclude many system-
wide objects and information, such as timers, performance counters, input/output
devices, and removable devices, because they are commonly accessed by benign
programs

• Easier Deployment Our targeted resources should be lightly deployed onto end
hosts. To this end, injecting some specific files or mutex into the end host would
be viable options. Therefore, files, mutex, or registry will be our main targeted
resources.

11.3.1.1 API Labeling

After applying the above criteria, eventually mutex, static files, and registry items
are of our particular interest. Meanwhile, the propagation use of these resources
such as process, library, GUI window, and services are also of our interest because
these resources depend on some deterministic resource identifiers. However, at the
instruction level, these resource-identifiers often get accessed through system APIs.
Thus, we have to examine each Windows API to define our taint sources.

More specifically, all the system resource access APIs (e.g., NtQueryObject)
are of our interest. AUTOVAC will taint the return values as well as the affected
arguments of these functions. In our design, we examined over 800 windows APIs
and we classified them into the following two categories:

• Tainting the return value Most APIs only affect the return values (always stored
in EAX), such as OpenMutex, and NtSaveKey. For them, we just taint the
return value.
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• Tainting the argument Some APIs store the affected values in the arguments.
For instance, NtOpenKey and NtOpenFile store the return handler in their
first parameters.

Besides tainting the return values or arguments, we also need to record the con-
crete values of the arguments to these APIs because eventually our HoneyResource
work by affecting the system environments which are their arguments. Meanwhile,
not all the arguments are of our interest, and only those resource-identifiers. This is
also a tedious procedure to identify these resource-identifiers. Table 11.1 shows an
example on how we label the two Windows APIs.

Table 11.1 Labeling examples for OpenMutex/ReadFile

OpenMutex ReadFile

Resource type Mutex File

Resource-identifier 3rd parameter: lpName 1st parameter: hFile for Handle Map

Success EAX: Valid handle value EAX: TRUE

Failure EAX: NULL, EAX: FALSE

GetLastError: 0x02 GetLastError: 0x1E

11.3.2 Taint Propagation

AUTOVAC has to propagate taint labels for data operations. That is, for any
instruction whose source operand has been associated with the tainted labels,
we taint the destination operand with the same label. Then, whenever we find a
comparison (i.e., predicate) instruction whose operands have been tainted (e.g.,
test,cmp), we will flag this malware most likely having a HoneyResource and
pass it to our next phase analysis.

11.3.2.1 Output from Phase-I

As our Phase-I runs the malware in normal settings, it provides a great opportunity
to collect the normal malware behavior. To this end, we log all the executed APIs
as well as their parameters, along with the precise calling context information
including the call stack and the caller-PC (program counter). In addition, our log file
also contains the list of the system-resource-sensitive APIs that have been executed,
and their propagated taint record that is used in the predicate.
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11.4 Phase-II: HoneyResource Generation

Once a malware sample has been flagged to “possibly have a HoneyResource”
in Phase-I, it will be fed to our Phase-II to perform a deeper analysis, including
exclusiveness analysis (Sect. 11.4.1), impact analysis (Sect. 11.4.2), and determin-
ism analysis (Sect. 11.4.3). In this section, we present these analyses in greater
detail.

11.4.1 Exclusiveness Analysis

The goal of our exclusiveness analysis is to exclude the resources that have been
used in benign software. For instance, some resources such as library names
uxtheme.dll, and mscrt.dll could be used in benign programs. We must
exclude them otherwise our HoneyResource will have false positives.

In Phase-I, AUTOVAC has logged all the resource-identifiers, and next we would
like to query whether or not each identifier is unique to the malware. Our basic idea
is inspired by a Googling approach used in the previous studies [27]. Essentially, we
use Google query APIs to search resource-identifiers. Based on the return results and
their context, we infer whether these resources are already associated with benign
software. We refer the readers to [27] for more details. In short, from our search
query, if the resource-identifiers does not conflict with benign software or there is
no any matching search result, then we proceed with further analysis.

11.4.2 Impact Analysis

Given a list of the system resources that can (in)directly affect the malware
execution and the corresponding APIs provided in Phase-I, AUTOVAC will run the
malware again in a controlled environment such that we can mutate the return value
or involved arguments and test whether malware will exhibit different behavior or
not. Our current design is to mutate each involved API one at a time and compare
the behavior with our normal execution captured in Phase-I.

11.4.2.1 Trace Differential Analysis

Then, the next question is how we compare the malware behavior in two traces: one
is a normal execution, and the other is a resource mutated execution.

Finding the differences in two traces has been discussed in the previous literature
(e.g., [8, 25]). It is essentially a program alignment problem [8]. The basic idea is
to align two execution points that are equivalent to each other and then compute
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the differences only between the unaligned instructions. In our scenario, we try to
obtain the high-level information such as whether the malware will terminate rather
than the minor instruction-level execution differences. Thus, in our design, we use
the API call sequences (as we have already logged all the executed APIs and their
calling context information) and present an API sequence alignment algorithm as
shown in Algorithm 2.

In particular, we adopted an alignment algorithm from Zeller [8], which uses the
execution context for each instruction for the comparison. If the instruction and its
execution context are equivalent (line 4), they are aligned together. However, we do
not need to compare instruction by instruction, but rather at the granularity of APIs.
Thus, we define a calling execution context as a triple:

Algorithm 2: Differential Analysis on the API-Call Traces∏
m: Manipulated Call Trace,

∏
n: Natural Call Trace

Δm: Unaligned Call Trace in
∏

m, Δn: Unaligned Call Trace in
∏

n,
f∏: 〈 name, caller eip, parameter list〉, fΔ: 〈 name, parameter list〉

1 Δm ← ∅,Δn ← ∅
2 for call f∏

m
in

∏
m do

3 for call f∏
n

in
∏

m do
4 if isAligned(f∏

m
, f∏

n
) then

5 GOTO FIND_ALIGNED

6 Δm = Δm

⋃
fΔm

7 Δn = ∏
n

8 FIND_ALIGNED:
9 Δn = ∏

m[0, index(f∏
n
)]

10 {fΔi
} = Diff(Δm, Δn)

11 return {fΔi
}

<API-name, Caller-PC, Parameter list>

For the parameter list, we only compare the static parameters that are identical
across different executions. Note that all these information has been logged either in
Phase-I for the normal execution, or logged in Phase-II for the mutated execution.
Also, the reason we have to log the Caller-PC is for the preciseness.

As illustrated in Algorithm 2, our analysis begins from the start of the trace, then
proceeds with a linear searching for each system/library call in the mutated trace
and examines whether it could be aligned with some call in the normal run trace
(line 2− 8). If we find an anchor point, we generate two difference sets Δm and Δn.

Next, we examine the two Δ sets to evaluate the further differences and
classify the HoneyResource type. Specifically, we define three kinds of deception
effects.
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11.4.2.2 Full Deception

If we find APIs such as ExitThread, TerminateProcess, and Terminate
Thread in Δ, then certainly the mutated system resources can be served as a full
deception HoneyResource, because the malware has killed itself.

11.4.2.3 Partial Deception

Some HoneyResource may significantly weaken certain important functions of
malware. We consider them as partial deception. More specifically, we currently
focus on the following four types of partial deception:

• Type-I: Disable Kernel Injection An important malicious function of malware
is to raise its privilege. The common way they use is to inject a kernel driver
into an end host. There are several system calls (mainly undocumented), such
as OpenSCManager have been used for this. Furthermore, some malware
commonly copies itself as a new file with its name ending with .sys, which
implies that some kernel driver is created by the malware.

• Type-II: Disable Massive Network Behavior If we find that the normal
execution is full of network-related functions, while the manipulated execution is
clean from such calls, we consider such deception as Type-II Partial Deception.

• Type-III: Disable Malware Persistence Malware typically modifies specific
registry entries such as Run subkeys in multiple register paths. Other autostart
approaches include: (a) file operations on startup folder or system.ini
files, (b) creation of new service entries, and (c) access of winlogon binary.
Through differential analysis, we can tell if these operations are lost in the
mutated execution while present in the normal execution.

• Type-IV: Disable Benign Process Injection To be more evasive, malware
often inject themselves into some benign processes. Processes such as
explorer.exe and svchost.exe are common targets. If we find such
a clear pattern in the differential analysis, we consider these HoneyResource as
Type-IV partial deception.

11.4.2.4 No Deception

If none of the above APIs are in the Δ, then we classify this HoneyResource with
no effect to stop or affect malware behavior.

11.4.3 Determinism Analysis

We next need to verify the determinism of the extracted resource-identifiers.
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11.4.3.1 Backward Taint Tracking and Program Slicing

Given a resource-identifier, we need to identify whether it is deterministic or entirely
random. We choose to trace the root-cause for the generation of the resource-
identifier.

To back track the procedure of how malware generates an identifier, we perform
a backward taint tracking. The basic idea is to include all the instructions that have
contributed to the creation of the resource-identifier, which is the argument of the
API of our interest. To this end, starting from data-use of the argument, we back
track each executed instruction to check whether or not their operands have been
involved to define the data. If so, we taint the source operand as the same symbol
and continue the backward propagation. We perform the analysis offline on logged
traces.

The termination of our backward tracking is the point to identify the root-cause
that generates the identifier’s name. We continue backward propagation until tainted
source is either from read-only regions (e.g., static strings), or constant values, or
the return value of the system APIs. Based on these different sources, we decide
whether the generation of the identifier is deterministic or not.

An identifier has a non-deterministic type if and only if all elements of its compo-
sition are resulted from some random functions (e.g., GetPerformanceCounter
and GetTempFileName). As illustrated in the left part of Fig 11.2, if the
termination data point is from a read-only segment such as .rdata, or constant
values, we can easily mark it as static. Similarly, if an identifier is constructed using
some non-deterministic value combined with some constant value, we can mark it
as partial static, and such an identifier will be deployed using a slightly different
strategy compared to the scenario of purely static identifier.

An identifier could be algorithm-deterministic, namely its identifier is generated
through certain computation. Some appear-to-be random name can be generated
from some invariable seed, such as computer name or hardware serial number.
Algorithm-deterministic names will be backward propagated to some semantic-
known APIs. We use these APIs to decide the root-cause type when generating
the name. One example is shown in the middle part of Fig. 11.2. We use the
GetComputerName to infer that the input should be a computer name.

For such algorithm-deterministic identifier, we also need to find the generation
logic because we need to replay and compute it for each end host. We apply
the existing backward program slicing[18] techniques to extract an independent,
executable program slice for that. At the end of this step, we delete all the entirely
random (non-deterministic) identifiers.

11.4.4 Malware Clinic Test

To further reduce the possible false positives, we design a Malware Clinic Test at
the end of this phase. Malware Clinic Test aims to inject our HoneyResource into
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real environments and test whether it will affect the normal use of a computer
system. This test environment is automatically configured by running multiple
benign software and services. Even though the scheme of clinic test is simple, it
is essential to ensure the quality of our generated HoneyResource. If it affects the
normal usage, it will be discarded.

Fig. 11.2 Sample Malware code and the traced behavior

11.5 Phase-III: HoneyResource Delivery and Deployment

After we generate the HoneyResource, we next describe how to deliver and deploy
the HoneyResource to an end-user computer.

11.5.1 Direct Injection

Direct injection works for static identifiers. If a HoneyResource stops malware
execution by frustrating the presence checking of static type of resources, we inject
it by creating or deleting the resources. For instance, if the malware needs to open
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certain static file (or registry) before proceeding the malicious functionality, then
we remove the static file (or registry), or vice versa. Moreover, we accordingly
adjust the injected file’s access privilege to disallow certain operation such as
read and write. In these cases, when a low-privilege malware program attempts
to access a resource, which is a common case at the initial infection stage, static
HoneyResource efficiently stop further malicious behavior.

11.5.2 HoneyResource Daemon

Daemon works for algorithm-deterministic identifier and partially static identifier.
For an algorithm-deterministic identifier, we have extracted a program slice of
the resource-identifier generation logic with knowledge about its input, such as
a computer name or an IP address. To generate the HoneyResource, we collect
these information ahead and run the captured program slice. Such procedure works
very similar to Inspector Gadget [18]. Our daemon process runs periodically to
check whether the input has been changed and the HoneyResource needs to be re-
generated.

Daemon is also designed for identifying resource name represented using regular
expressions (i.e., distinguishable partial static HoneyResource). Specifically, at the
end host, we dynamically intercept the APIs and resolve their resource-identifiers.
If the daemon monitors that a resource identifier matches with our partial static
HoneyResource, it will return the predefined result to stop the malware execution.

11.6 Evaluation

We have implemented AUTOVAC. While our online dynamic analysis can be imple-
mented using virtual machine monitors such as TEMU [4], we use DynamoRIO [2]
to implement due to its simplicity and flexibility in binary instrumentation. Our
differential analysis module is implemented using offline parsing of the execution
logs. Also, to perform tainted analysis, we translate the X86 instructions into an
intermediate language BIL [10], and then we develop our own parser code to identify
the resource-sensitive branches and perform differential analysis. Our exclusiveness
analysis involves a search engine query component, for which we implement using
the API provided by Google. In this section, we present our evaluation results.

11.6.1 Experiment Dataset

Our test dataset consists of 1,716 malware samples, which are collected from
multiple online malware repositories (e.g., [1, 3]) with mostly from Anubis [1].
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We also leverage an online malware classification tool, VirusTotal [5], to obtain the
classification information for these malware. We summarize classification results in
Table 11.2. We can see that these malware samples fall into 6 categories such as
Backdoor (722 samples), Downloader (574 samples), and Trojan (184 samples).

Table 11.2 Malware’s
classification from VirusTotal

Category # Malware Percentage

Trojan 184 10.72%

Backdoor 722 42.07%

Downloader 574 33.44%

Adware 73 4.25%

Worm 104 6.06%

Virus 59 3.43%

Total 1,716 100%

11.6.2 Evaluation Result on Candidate Selection

In the first step (Phase-I), we monitor malware’s access to system resources.
We conduct this experiment by running these 1,716 malware samples in our
analysis environment and each sample runs for 1 min (we tend to believe that the
resource checks usually happen in the early stage of the malware execution and
we thus choose this 1-min threshold). We hook 89 system/library calls as tainted
sources that are related to resource operations. The resources in our evaluation
include file, mutex, registry, window, process, library, and service. We measure
the basic operations for these resources such as read/write for file and registry,
and open/create for other resources. Meanwhile, for each execution instance of the
hooked function, we examine their callers’ PC and make sure that it does not belong
to the system library’s address space. Thus, we do not count the functions that are
called inside the system/library calls.

For 1,716 malware samples, we successfully tracked 460,323 occurrences of
these API calls. Through our taint analysis in this phase, we identified that
371,015(80.3%) occurrences of the calls will possibly deviate the execution of the
malware samples. This result confirms that real-world malware is indeed resource
sensitive.

Among these 371,015 occurrences, we further made a statistic study based on
the resource type and its corresponding operations. The result is shown in Fig. 11.3.
From the figure, we can see that around 37.39% of the resource accesses account for
file operation. Mutex (7.07%) and registry (20.08%) are also commonly accessed by
malware. We consider these three types of resources that can be efficiently delivered
using the injection scheme. Meanwhile, malware’s logic is also commonly sensitive
to other types of resources such as windows (13.14%), process (8.02%), library
(6.6%), and service (3.4%).
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Fig. 11.3 Statistics on Malware’s resource-sensitive behaviors

11.6.3 Evaluation on HoneyResource Generation

Table 11.3 HoneyResource samples (Operation type symbols—check Existence (E), Create (C),
Read (R), and Write (W), Impact symbol—Termination (T), Process Hijacking (H), Persistence
(P), Kernel Injection (K), and Network Massive Attack (N))

Seq Type OperType Impact Identifier Malicious sample Md5

1 Mutex E T !VoqA.I4 df1df624c5da833d3882d22a2e2456c9

2 File C,R,W P,H %system32%
\twinrsdi.exe

1b6fb589f36654af0ef44aa92f94324a

3 File C,E,R, P,H,N %system32%
\dwdsregt.exe

24784256bbbb936dc1e0999c307883c8

4 File C,E,R,W K,P %system32%
\driver\qatpcks.sys

27d18e20e253391112d50b2b49440aea

5 Mutex E T GTSKISNAUOI ee5878eab962b032c78c1d6eec7ec917

6 Mutex E P,H fx221 af48ecfcc1812d6f814a26792107b80e

7 Mutex C,E T )ryt-24qtqq26sn]9c b534b75da5fc3b9b178c60bf10b1feca

8 Mutex C,E,R P,H _AVIRA_2109 04a93b1f08a1675c67c9975a7024c3d6

9 File C,E,R,W P,H %system32% \
shlmon.exe

af48ecfcc1812d6f814a26792107b80e

10 File C,E,R,W T,P %system32%\
sdra64.exe

04a93b1f08a1675c67c9975a7024c3d6

In the evaluation, we analyzed all 1, 716 malware in a controlled environment. In
total, we generated 536 HoneyResource that belong to 210 malware samples. The
result is presented in Table 11.4. For each column, we classify the HoneyResource
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as full deception or partial deception (Type-I to Type-IV). We also list the statistics
on the HoneyResource distribution among different resource types in Table 11.4.
Among all HoneyResource, we find that 373 HoneyResource have static identifiers,
and 163 samples have algorithm-deterministic or partial static identifiers.

Table 11.4 Evaluation on HoneyResource generation

Resource Full Type-I Type-II Type-III Type-IV All

File 31 19 17 110 61 238

Registry 10 11 3 72 19 115

Mutex 5 3 3 16 3 30

Process 2 5 2 18 5 32

Windows 0 4 3 8 3 18

Library 19 5 1 10 19 54

Service 7 4 0 17 21 49

Total 74 51 29 251 131 536

Table 11.5 HoneyResource statistics on different Malware families

Backdoor Trojan Worm Adware Downloader Virus

Type

File 33% 27% 24% 30% 45% 81%

Registry 15% 29% 21% 13% 20% 19%

Windows 3% 14% 0% 47% 11% 0%

Mutex 8% 12% 29% 0% 2% 0%

Process 8% 7% 14% 0% 10% 0%

Library 26% 9% 4% 0% 7% 0%

Service 7% 2% 8% 10% 5% 0%

Deployment

Direct 67% 79% 63% 69% 69% 84%

Daemon 33% 21% 37% 31% 31% 16%

To zoom-in the details of these HoneyResource, we select 10 representative sam-
ples and describe them in Table 11.3. We can see that most of these HoneyResource
stop several logic of malware’s infections. In some cases, different operations on
the resources can even cause different effects on malware’s logic. For example, for
the last malware in Table 11.3, we find that the failure of creating a file will stop
malware’s process hijacking logic, and the failure of writing a file will crash the
malware process (Table 11.4).

For the generated 536 HoneyResource, we also combined their types with the 210
malware’s classification information to see what is the common HoneyResource
type for different kinds of malware. The result is shown in Table 11.5. From
this table, we can see that the file resources are the common HoneyResource
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for many malware families. Meanwhile, the windows resource HoneyResource
is better suitable for adware because the windows resource HoneyResource is
attempting to prevent adware from creating their malicious windows. If such
operations fail, adware will possibly stop their further action. Last but not least,
mutex HoneyResource works better for worm and backdoor malware. This is also
reasonable, because these malware highly depend on the mutex to prevent duplicate
infection.

We also report the statistics of our delivery for these 536 HoneyResource.
As shown in Table 11.5, direct injection is the most common way to deploy
HoneyResource on end hosts. Also, only about 20%–30% HoneyResource need a
daemon for the deployment.

11.6.4 Case Studies

Next, we present two representative case studies to illustrate in greater detail on
how each of our resource access-based HoneyResource can be used for malware
infection immunization. In such case, our HoneyResource can work as malware
HoneyResource to stop malware infection.

11.6.4.1 File-Based HoneyResource

One HoneyResource for Zeus/Zbot [6] family is a static file named sdra64.exe
which is stored in the system32 directory. We observe that if Zeus successfully
creates this file, it will continue writing malicious bytes into that file using bytes in
its resource and start a new process using this file.

Delivery: We deliver a HoneyResource by deliberately creating sdra64.exe
at an end host. This file is owned by a super user and does not allow any creation
operation by others. In this way, our HoneyResource prevents Zeus’s attempt to start
the malicious process.

11.6.4.2 Mutex-Based HoneyResource

One mutex HoneyResource is for Conficker, which is an algorithm-deterministic
HoneyResource. This mutex HoneyResource can efficiently stop Conficker’s infec-
tion at its initialization stage.

Several other mutex examples include _AVIRA_21099, _AVIRA_2109,
_AVIRA_2108, which belong to Zeus/Zbot[6] malware. This set of HoneyRe-
source can stop multiple malware logic such as kernel injection, process hijacking,
and network communication.

Delivery: Direct injection is an efficient approach to deliver mutex HoneyRe-
source. We simply create a deterministic _AVIRA_ mutex in the system to prevent
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Zbot’s injection. For Conficker, we run the HoneyResource slice once at the end
host and generate the mutex name for each computer.

11.6.5 HoneyResource Effect Analysis

In this test, we evaluate the effect of our HoneyResource on the malware samples.
As reported in Sect. 11.6.3, our HoneyResource can stop or weaken 210 samples’
malicious behaviors. In this test, we run these 210 samples in both deployed
environment and the normal infection environment for 5 min. Then, we compare
the differences of their native system calls (all the NT native calls) in these two
environments. We define a metric Behavior Decreasing Ratio, BDR = Nn−Nd

Nn
,

where Nn is the number native system calls in the normal environment, while Nd

is that number in the deployed environment. The larger BDR is, the more reduction
of functions by the HoneyResource. In Fig. 11.4, we report the distribution of BDR
according to different effectiveness type.

20% 30% 40% 50% 60% 70% 80% 90% 100%

Full Deception Disable Kernal Injection Disable Massive Network

Disable Persistence Logic Disable Process Hijacking

Fig. 11.4 Distribution of BDR

From this figure, we can see that the full deception HoneyResource are obviously
the most effective ones and they all terminate the execution of malware (the reason
why their BDR is not 100% is simply because of their initial executions before exit
that also have some native system calls). Our partial deception HoneyResource all
effectively achieve their goals by disabling key functions in the malware (through a
careful manual examination, we confirm that all unwanted malicious logic has been
disabled). One such example for Zeus is shown in Table 11.6. Even in the worst case
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Table 11.6 Example of a high-profile Malware HoneyResource

Malware HoneyResource Type Impact description

Zeus/Zbot _AVIRA_2109 Mutex Stop process hijacking

in terms of BDR, our partial deception HoneyResource can still reduce at least 24%
malware’s important system call activities. Note that BDR will certainly increase if
we keep running the malware sample in a longer time period.

To further verify that our HoneyResource are effective for different variants in
the same malware family, we choose 6 high-profile malware samples and perform
another test. These samples are high-profile malware such as Conficker, Zeus/Zbot,
and Sality, and for these 6 samples we have extracted a total of 17 different
HoneyResource in our previous test. We then further collect 5 variants (binaries
are different from what we have collected in the original dataset) belonging to each
family (thus 30 new variants in total). Then, we run the 30 newly collected variants
in both normal and deployed environments, similar to the previous experiment. We
carefully analyze the execution differences and manually verify that whether the
injected HoneyResource have achieved the goal or not. The result is showed in
Table 11.7. Note that the 4th column indicates the number of malicious functions
that can be stopped if ideally these HoneyResource work for all variants, the 5th
column indicates the actual number from our test, and the 6th column shows the
percentage of success.

From the result, we can see that overall our HoneyResource can take effect
in almost all variants. However, we do find that some HoneyResource can work
for some variants but fail on others. One example is the file HoneyResource
sdra64.exe which we did not find its use in 2 other Zbot variants. Fortunately,
for each malware, we have extracted more than one HoneyResource. Thus, even
some may not be effective for all variants, the combination of these HoneyResource
can still achieve satisfiable results. We believe that this test also highlights the
importance of using an automatic tool (such as our AUTOVAC) to analyze malware
samples to extract as many HoneyResource as possible, a goal otherwise very hard
to achieve through manual analysis.

Table 11.7 Effectiveness evaluation on Malware variants

Malware HoneyResource# Type Ideal case Verified Ratio

Zeus/Zbot 6 Mutex, file 30 23 77%

Conficker 2 Mutex 10 10 100%

Qakbot 2 Registry 10 10 100%

IBank 1 File 5 5 100%

Sality 3 Mutex, file 15 12 80%

PosionIvy 3 Mutex, file 15 10 67%

Total 17 85 70 82%
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11.6.5.1 False Positive Test

Our next test is on the false positive evaluation, i.e., whether our generated
HoneyResource will affect the normal program executions. We design a simple
malware clinic test as mentioned in Sect. 11.4.4.

First, we install 5 different virtual machines running over 40 benign software
(which includes the most common software typically seen on normal users’
computers such as all kinds of browsers, programming environments, multimedia
applications, Office toolkits, IM and social networking tools, anti-virus tools, and
P2P programs). Then, we equally inject our HoneyResource into each test machine
and monitor their system logs over a period of a week. The result shows that our
HoneyResource did not cause any problem to our running environments.

One could argue that this automatic test may underestimate users’ interaction.
Hence, we conduct another test to install 200 HoneyResource on 4 lab machines.
All these four machines are for normal everyday use. The result also shows that our
generated HoneyResource did not cause any trouble for the operation of existing
benign programs. While our clinic test could have a limited scope, we believe
that a well-designed clinic test is still helpful to refine our automatically generated
HoneyResource in a real-world scenario.

11.6.6 Performance Overhead

11.6.6.1 HoneyResource Generation Overhead

First, we measured the overhead of the automatic extraction. We run our test on
machines with Intel Core i5 CPU and 6GB memory.

• Generating the HoneyResource In our test, we measure the time spent on
analyzing the function traces, extracting the identifiers and filtering out common
identifiers using search engine and pre-built whitelist. For each sample, it took
789 s to fulfill all these tasks on average. For backward slicing, we find that it
took 214 s on average for each identifier. Meanwhile, the longest case is 530
seconds and the shortest case is 30 s.

• Impact Analysis We measure the overhead of our offline parsing part to handle
two execution traces with 1-min malware running time. The overhead for 500
cases is around 24 h. It means that for each case, it takes around 2 − 3 min to
verify its impact.

We note that the generation is a one-time effort in the analysis environment. The
more important overhead that users care about is the one on their end hosts.
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11.6.6.2 Deployment Overhead

We now report the deployment overhead on each end host.
For static and algorithm-deterministic HoneyResource, the overhead is negligible

(almost zero) because in most of the time we only need to install some system
resource or replay the resource-identifier-generation slice for one time. In our
experiment, it takes only 34s to install all the 373 static HoneyResource onto one
end-host machine. It includes copying/activating the resources and correctly setting
up their privileges. For 44 algorithm-deterministic HoneyResource, we need to run
program slices on the machine. It takes 1,131s (25.70s for each HoneyResource on
average) to deploy all the HoneyResource. Note these HoneyResource are packed
with installation scripts and there are no user interactions involved.

For partial static HoneyResource, it adds a little more overhead to the end
host. The overhead mainly comes from the identifier comparison after we intercept
the call. In our test, the highest extra overhead is below 4.5% for injecting 119
partial static HoneyResource. Among 4.5% overhead, around 3.9% comes from
the function hooking, which is relatively stable even the HoneyResource number
increases. Hence, it could be expected that even the number of partial static
HoneyResource has been expanded by 10 times, we could still efficiently control
the overhead under 12% for each host. More importantly, in most cases, we do not
need to inject all the HoneyResource at the same time (to be discussed in Sect. 11.7).

11.7 Limitations and Future Work

Our system is not perfect. In this section, we discuss its limitations and outline our
future efforts.

11.7.1 Evasions from Malware

It is possible to evade our HoneyResource if malware authors are aware that we are
using certain resource as the HoneyResource. They can drop the specific resource
checking logic or change the resource name in the new version. However, the former
will possibly lead to re-infection and thus may be not desired. While the latter
approach is possible, if we consider the wide and random propagation of worm
or botnet malware, our HoneyResource still makes the malware harder to decide
whether the system has actually been infected or not. Hence, if the malware binary
cannot run when over two instances on the same machine, our HoneyResource can
bring the malware into a dilemma that the target system may have actually been
infected before or it has installed our HoneyResource system. Even though malware
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can run with multiple instances, periodically changing the identifiers may finally
result in multiple instances running in one machine. It also creates extra risks of
being detected.

Certainly, malware authors could obfuscate the malware code to frustrate our
HoneyResource generation such as using control dependence to propagate data [24].
In fact, in some cases, there is actually no propagation chain and the conditional
check is directly operated with the resource values. While future malware could
deliberately introduce additional data propagation and obfuscate through control
dependence, to address such problem will be one of our future efforts.

11.7.2 Limitation on Dynamic Analysis

In AUTOVAC, we intensively apply multiple data flow tracking techniques such as
taint analysis and program slicing. Therefore, AUTOVAC unavoidably suffers from
the problems brought by these dynamic analysis techniques [13]. For instance, in
our candidate selection/analysis, our taint analysis could cause overtainting [7]
thus resulting in more candidate resources to analyze. Fortunately, due to our
impact analysis and exclusive analysis, we can still easily filter out those unsuitable
HoneyResource.

In addition, some imprecise interpretation of differential function calls may cause
the underestimation of the actual impact of certain resources. Some previous work
[22] has discussed several approaches to gain a better understanding of malware’s
high-level behaviors. We could leverage these techniques to refine our result in
future work.

11.7.3 Potential False Positive

Some of our automated analysis techniques (e.g., the use of search engine) may
also return incomplete/inaccurate results. Meanwhile, our exclusiveness analysis
and clinic test may not cover all benign programs such that it is possible to have
some resource collision between our HoneyResource and some benign programs.
Improving these issues is our another venue of future work.

11.7.4 Deployment Issues

One concern for the HoneyResource deployment is that injecting a large number
of HoneyResource into end hosts may annoy the user. Note that most generated
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HoneyResource in practice are just some files, mutexes, and registry entries, whose
sizes are tiny or even with 0 byte. This is pretty lightweight compared with the
case that AV tools typically store millions of signatures on an end host. In addition,
as mentioned before, as a complementary technique to existing solutions, our
prevention scheme can be mainly used for some high-profile, large-scale, and severe
malware infections, instead of for all malware.

11.7.5 Deception Goals

In this work, we mostly focus on how to use HoneyResource to stop or impact
the proper infection/execution of malware for the defense purpose. While these are
important deception goals, many times we are also interested in deceiving malware
into continuing the normal execution so that we can observe more activities,
understand the intention from the malicious operators behind malware, or even
mislead them for the defense purpose. Our future work will investigate more on
this direction.

11.8 Related Work

11.8.1 Immunization-Based Defense

In [14], Manuel et al. proposed an end-to-end approach to make end hosts
immune from fast-propagating worms through collaborative worm detection and
self-certifying alerts. Packet Vaccine [32] followed this direction and derived
the network signatures of malicious packets to be used at the network level to
filter unwanted packets. Different from these previous work, AUTOVAC does not
investigate the exploits nor vulnerabilities that malware targets, and instead it
analyzes the system resource constraints of malware and attempts to extract effective
HoneyResource to immunize a clean system from future malware infection.

In a concurrent study, Andre et al. [28] proposed the idea of using infection mark-
ers to prevent malware infection. While both are inspired by the biological vaccine
concept, we systematically explore this problem and our HoneyResource are more
general and broader than simple infection markers. Employed techniques are also
substantially different; instead of treating the malware as a black box, AUTOVAC

conducts more fine-grained binary analysis on malware internals, performs more
analysis (e.g., exclusiveness, impact) in the automatic HoneyResource generation,
and has more delivery/deployment options.
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11.8.2 Dynamic Malware Analysis

Due to the severe threat of malware, tons of research has been carried out on
analyzing malware behavior (e.g., [9, 12, 16, 20, 22]) and classifying malware
(e.g., [15, 19, 30]). Certainly, AUTOVAC complements these techniques by exploring
a new direction to stop malware infections.

In AUTOVAC, we design several dynamic binary analysis techniques to automate
the production of malware HoneyResource. There has been a significant amount
of work [11, 16–18, 21, 29] on dynamic binary analysis. In particular, prior
research [23, 29] has explored the enforced execution and reverting to trigger
malware’s dormant functions [23, 29]. Our enforced execution applies similar
techniques introduced in the forced execution [29] but we focus on these environ-
ment/system resource-sensitive branches.

We also leverage taint analysis and program alignment techniques. Different
from full taint analysis in the previous work [17, 18] and block-level program
alignment [25], our proposed solution avoids the overhead caused by full execution
tracking with a particular focus on the targeted malware behavior in our problem
domain.

11.9 Conclusion

In this chapter, we present AUTOVAC, a new complementary malware defense
scheme that aims to automatically extract malware HoneyResource from given
malware samples. Our evaluation shows that it is an appealing approach that
works on many real-world malware families. In particular, the HoneyResource
can be used to deceive malware for stopping its infection. To demonstrate the
real-world practicability, we have implemented our prototype system using several
dynamic program analysis techniques, and conducted empirical evaluations on a
large set of real-world malware samples. Our experimental results show that we can
successfully extract working HoneyResource for many malware families including
Conficker, Sality, and Zeus.

11.10 Exercise

Ex. 1 Discuss the reasons why malware authors want to avoid duplicate infection?
What is the effect of duplicate infection?

Ex. 2 Analyze the following assembly code. Is there any memory/register that will
be tainted by AUTOVAC after the execution? Why?
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Listing 1: Code Example

1 msg byte "mutex_test", 10
2 handle dword ?
3
4 section .text
5 go:
6 push msg
7 push dword 0
8 push dword 0
9 call _OpenMutex

10 xor eax, eax
11 push -11
12 call _GetStdHandle
13 mov handle, eax

Ex. 3 Review the reference paper [7] and Sect. 11.7, and discuss how the limitation
of tainted analysis may affect the effectiveness of AUTOVAC.

Ex. 4 Similar to biological HoneyResource which commonly has some side effect
for patients, malware HoneyResource could also have some side effect on a user’s
system. Discuss possible side effects and how to prevent them.
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