
Chapter 6
Accounting for Spatial Dependence
in Ecological Data

6.1 Introduction

Inference and prediction are fundamental to all aspects of ecology and conservation.
Yet the presence of dependency in the data due to either phylogeny, space, or time
can impair the statistical inference and subsequent ecological interpretation of the
pattern(s) observed (Sokal and Oden 1978; Swihart and Slade 1985; Garland et al.
1992; Lennon 2000; Miller 2012). In this chapter, we will focus specifically on how
the presence of spatial dependency complicates our ability to make statistical
inferences and prediction (Legendre 1993), as the principles due to space are
analogous to those due to time and phylogeny (Bauman et al. 2018). It is important
to understand how statistical biases due to spatially structured data can affect answer-
ing a wide array of ecological questions ranging from species–environment relation-
ships to predicting the spread of invasive species. Consequently, there is an
increasing emphasis on formally accounting for spatial dependence in inferential
problems in ecology and conservation (Segurado et al. 2006; Dormann et al. 2007;
Hooten et al. 2007; Carroll and Johnson 2008; Beale et al. 2010; Crase et al. 2014).

Accounting for spatial dependence in modeling is, however, very challenging.
This challenge arises because spatial dependence in data can emerge for a variety of
reasons (see Chap. 5). In particular, when modeling spatial data, spatial dependence
can occur simply due to model mis-specification, such an important covariate not
being included in the model or that its functional relationship is mis-specified (e.g.,
effects may be non-linear). Spatial dependence could also occur through processes
such as localized dispersal or social behavior (Koenig 1999). In these cases, adding
environmental covariates will likely not be sufficient for appropriate inferences.

Here, we provide an overview regarding several ways in which space has been
addressed in regression-like models of species–environment relationships. Regres-
sion models are frequently used in ecology and conservation to address a variety of
problems, ranging from interpreting habitat suitability to forecasting the effects of
climate change (Guisan and Zimmermann 2000; Algar et al. 2009). Our overview is
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largely guided by some comprehensive reviews and syntheses on the topic (Keitt
et al. 2002; Dormann et al. 2007; Miller et al. 2007; Diniz et al. 2009; Bini et al.
2009; Beale et al. 2010), but we update these syntheses with more recent advances
(Crase et al. 2012; Rousset and Ferdy 2014; Bardos et al. 2015; Blangiardo and
Cameletti 2015; Ver Hoef et al. 2018). Our goals are threefold. We first describe the
problem of spatial dependence on inferences in ecology and conservation. Then, we
discuss how to diagnose problems of spatial dependence. Finally, we illustrate
common ways to address these statistical problems using a variety of approaches
aimed at accounting for spatial dependence in statistical analyses.

6.2 Key Concepts and Approaches

6.2.1 The Problem of Spatial Dependence in Ecology
and Conservation

Bivand (1980) was one of the first to explore the importance of spatial dependence
on statistical inference from correlation coefficients, a problem that Legendre (1993)
later clearly illustrated for ecology. These articles highlight how spatial correlations
may create spurious inference and ecological interpretation when spatial dependency
of the data is ignored (Fig. 6.1). Depending of the magnitude of spatial autocorre-
lation (see Chap. 5), parameter estimation can be erroneous and hence our subse-
quent understanding of ecological patterns and processes: at small values of spatial
autocorrelation (e.g., <0.2) the effect tends to be negligible, whereas when the value
of spatial autocorrelation is high (e.g.,>0.2) then the effect tends to be important and
will affect statistical inferences (Bivand 1980). The reason for this problem gener-
ally lies in the estimation of uncertainty, where standard errors and confidence
intervals around point estimates of correlation coefficients (and other parameters)
tend to be artificially narrow. This issue can be considered from the point of degrees
of freedom (df), where one df is counted for each independent observation. Yet
spatial dependence causes observations to not be independent, such that each
observation should not be counted as one df. In effect, this issue essentially leads
to “pseudo-replication” in space, a well-known problem for ecology (Hurlbert
1984).

This problem has several practical consequences for conservation. For example,
Crase et al. (2014) illustrated that ignoring spatial dependence in forecasts of species
response to climate change leads to greater estimated effects of climate change.
Ignoring spatial dependence has also been shown to affect conservation planning
and understanding habitat suitability for a wide range of species of conservation
concern (Carroll and Johnson 2008; Lichstein et al. 2002; Carroll et al. 2010).

Several approaches have been proposed to account for spatial dependence in
statistical analyses and modeling (Keitt et al. 2002; Dray et al. 2006; Carl and Kuhn
2010). In the simplest approaches, we might subset data such that sample points are
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greater than the range of estimated spatial autocorrelation (Chap. 5) (Hawkins et al.
2007), or perhaps just adjust α levels in statistical tests to be more conservative (Dale
and Fortin 2014). Some of the most common approaches focus on extending linear
regression models to accommodate spatial dependence by either using autocovariate
variables (Table 6.1) to account for spatial dependence (Augustin et al. 1996;
Wagner and Fortin 2005; Betts et al. 2006; Melles et al. 2011) or geostatistical
models (see Chap. 5; Cressie 1993). Ordination techniques for community data can
also be used to account for spatial structure in the data (see Chap. 11; Wagner 2003,
2004; Dray et al. 2012). Below we explain some of the most common approaches in
detail. To do so, we first reintroduce the generalized linear model, which was briefly
described in Chap. 2, and use this model framework to build from for accounting for
spatial dependence.

6.2.2 The Generalized Linear Model and Its Extensions

Before jumping into approaches aimed at dealing with spatial dependence, we
briefly discuss some critical background material. As a reminder, linear regression
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Fig. 6.1 The problem of spatial dependence for ecological inferences. When spatial dependence
occurs and is ignored, type I error rates increase. Shown are two, independently derived, environ-
mental variables, x1 and x2, that have spatial dependence (generated from a Gaussian random field;
see Chap. 5). If sampling occurs within the range of spatial dependence, spurious inferences can
occur when such dependence is ignored. In contrast, if sampling is implemented beyond the range
of spatial dependence, reliable inference is obtained. Shown are results from Pearson correlation
coefficient between the environmental variables taken from five sampling designs that vary in their
spatial distribution based on lag distance (each has the same number of samples). Correlations are
high when sampling is implemented within the range of spatial dependence, but declines as the lag
distance between samples increases

6.2 Key Concepts and Approaches 171

https://doi.org/10.1007/978-3-030-01989-1_5
https://doi.org/10.1007/978-3-030-01989-1_5
https://doi.org/10.1007/978-3-030-01989-1_11
https://doi.org/10.1007/978-3-030-01989-1_2
https://doi.org/10.1007/978-3-030-01989-1_5


and ANOVA are types of linear models (Nelder and Wedderburn 1972). A linear
model can be described as:

yi ¼ αþ β1xi þ εi, ð6:1Þ

where yi is the response variable for sampling unit i (e.g., density of a species at a
location), α is the intercept, β1 is the slope (coefficient), xi is the explanatory variable
measured at i, and εi is the error, which is assumed to come from a normal
distribution and be iid ¼ independent and identically distributed. That is, each
residual i is not dependent on other residuals and each comes from the same
underlying distribution. This error distribution is assumed to come from a normal
distribution with a mean of zero and an unknown finite variance, written as εi ~ N
(0, σ2). Plotting the residuals of the model, or the deviation of the predictions to the
observed data for a given value of x (Fig. 6.2), helps understand whether this
assumption is met. Note that the equivalence of linear regression and ANOVA in
this framework can be seen by considering categorical treatments (xi) in an ANOVA
as “dummy” variables (e.g., 0, 1 variables) in a regression model.

Linear models can be extended in two very useful ways. The first major exten-
sion, the generalized linear model (GLM), allows for alternative distributions for the
response variable other than the normal distribution. These other distributions
specifically come from the exponential family of distributions, which includes

Table 6.1 Common terms for spatial regression analysis in ecology

Term Description

Aerial data Spatial polygon data that are typically exhaustive tessellations of an area.

Autocovariate A predictor variable that quantifies the frequency (or related metrics) of the
response variable in the surrounding neighborhood.

Autoregressive
model

Models that use information on the neighborhood matrix to account for
spatial dependence based on deviations from the expected values.

Fixed effect Deterministic effects that are constant across samples.

Lattice data Spatial data indexed over a regularly spaced set of points.

Multilevel model A type of mixed model, where random effects are used to capture hierarchies
in the system.

Neighborhood
matrix

A square matrix (dimensions are the number of sample points) that quantifies
relationships between sampling points, such as binary neighbor connections
or distance-weighted linkages.

Random effect Effects that come from a distribution and vary across samples.

Residual The difference between the observed value of the dependent variable and the
predicted value.

Spatial filtering When fixed effect covariates in a regression are added that attempt capture
the spatial signal through the inclusion of functions of x–y coordinates or
related distance metrics.

Tessellation An arrangement of polygons closely fitted together without gaps or
overlapping boundaries.

Trend surface
analysis

Analyses where variation in the response variable is expressed as a function
of the geographic coordinates of the sampling locations.
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distributions such as the Poisson, binomial, Bernoulli, and gamma distributions. This
extension greatly increases the flexibility of these models, allowing for responses
such as the presence/absence of a species at a sampling location (a Bernoulli
distribution). The classic text for generalized linear models is McCullagh and Nelder
(1989). In GLMs, we specify a link function and a distribution for the errors (ε).

Perhaps the two most common types of GLMs are logistic regression and Poisson
(or log-linear) regression. For logistic regression we have:

logit pið Þ ¼ αþ β1xi, ð6:2Þ

where pi is the expected probability of a “success” and a “logit” link function is used
(i.e., log( pi/(1 � pi))). In this case, we assume a binomial error distribution. A
binomial distribution can be thought of as a distribution that arises from a series of
coin tosses. If there is only one toss, it is called a Bernoulli distribution; if there is
more than one toss (sometimes referred to as “trials”), then the distribution is called a
binomial distribution. In the latter case, we are interested in the frequency or
proportion of “successes” out of the total number of trials.

For a Poisson regression, we have:

log λið Þ ¼ αþ β1xi, ð6:3Þ

where λi is the expected count for sample i and we use a “log” link function and
assume a Poisson error distribution. The Poisson distribution is a discrete
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Fig. 6.2 A linear regression model and the residuals from that model. In standard regression
techniques, residuals (the difference of the observed value from the predicted value of the response
variable for a given value of the explanatory variable) are assumed to be independent and identically
distributed. When spatial autocorrelation occurs in the residuals of models, such autocorrelation can
impact inference if ignored. Dots represent observed data, black line is the prediction from the linear
model, and the vertical gray lines represent residuals
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distribution were values are integers greater than or equal to zero (i.e., negative
values are not allowed). The Poisson distribution assumes that the mean equals the
variance, which is often a restrictive assumption. A related distribution that relaxes
this assumption in the negative binomial distribution. There are several other types
of GLMs; however, we will focus on only a few in this book. Interested readers
should see Bolker (2008) and Bolker et al. (2009) for the use of GLMs in ecology.

The second major extension of a linear model is to allow for random effects, what
is frequently termed a random-effects model, or if fixed effects are considered
alongside random effects, a mixed model. Random effects can be contrasted with
fixed effects (the β above) in several ways. Random effects are extremely flexible in
how they can accommodate complex data structures and provide inference
unattainable with fixed effects. Some uses for random effects include: (1) conditional
inference-when you would like to make inferences on a particular sampling unit,
location, etc. (e.g., a particular watershed contained within the study area);
(2) accommodating block, split-plot, Latin-square, and other treatment structures
in experiments; (3) more generally accounting for both temporal and spatial depen-
dencies in data, such as temporal repeated measures or spatial autocorrelation;
(4) when one thinks treatment effects may vary in space or time (similar to including
an “interaction” term in a linear model); and (5) “broad-sense” inference: making
inferences for an entire region/population from a sample (in contrast to “narrow-
sense” inference, where we make inferences only for the specific samples or
locations being considered) (Littell et al. 2006; Gelman and Hill 2007; Zuur et al.
2009).

There has been some confusion in ecology regarding when an effect should be
considered random versus fixed, and how inferences may change depending on
whether a variable is considered random or fixed. Gelman and Hill (2007) discussed
how random effects have been loosely described and used in the literature, and the
resulting problems that have arisen. We do not focus on this issue; rather we will
simply consider mixed models as one means to accommodate spatial dependence.

We can formally describe a linear mixed model as:

yi ¼ αþ β1xi þ γ þ εi, ð6:4Þ

where γ is a random effect and is typically assumed to be distributed ~N(0, σ2).
When we put these two extensions together, we have generalized linear mixed
models (GLMMs), which are very powerful models that are seeing increasing use
in ecology, evolution, and conservation (Bolker et al. 2009; Thorson and Minto
2015). Note that we can also model the variance, σ2, as a variance–covariance
matrix, which is how we specifically extend this model to explicitly account for
spatial dependence, as we will see below.
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6.2.3 General Types of Spatial Models

The vast diversity of spatial regression-like models can be organized in several ways.
Three important properties include: (1) the type of response data (quantitative, count,
presence–absence); (2) whether samples are irregularly spaced samples across
continuous space or lattice/gridded data that are discrete in nature (Fig. 6.3); and
(3) the way in which spatial dependence is considered.

The type of response data used will ultimately affect the type of regression model
being fit. Different types of response data lend themselves to different distributions

a

b

Fig. 6.3 Examples of aerial data used in spatial modeling. Aerial data can come from (a) polygon-
based information (e.g., maps of counties, watersheds, etc.) or can be generated (b) from point or
line data using Voronoi tessellation. In either approach, we can describe spatial dependence through
the links among locations (right panel) with a spatial neighborhood (weights) matrix
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used in GLM-like models. Overall, most of the approaches to spatial dependence
have been better developed for normally distributed response variables than
non-normally distributed response variables (Beale et al. 2010). Dealing with
non-normal response data is generally more challenging than normally distributed
data. For instance, data such as presence–absence data (0/1 data) have much less
information content than normally distributed response variables, which impact the
ability to identify, interpret, and account for spatial dependence in models.

Samples of data frequently come from aerial data (or lattice data) where neigh-
borhoods are considered, such as samples arising from counties or watersheds. In
such cases, spatial dependence is frequently considered based on neighboring poly-
gons or related neighbors through the use of a neighborhood matrix (or spatial
weights matrix). In contrast to aerial data, samples can also come from points across
a study region. In this case, information on x–y coordinates are used either directly
(e.g., using an x-coordinate as a predictor) or indirectly (e.g., by calculating distances
between pairs of points).

Models can also be categorized based on how spatial structure is considered. For
some models, often referred to as spatial filtering models (Getis and Griffith 2002),
space is considered as predictor variables in a regression, where we attempt to “filter
out” the spatial signal through the inclusion of functions of x–y coordinates or related
distance metrics. In these cases, spatial dependence is thought to be largely domi-
nated by exogenous drivers such as spatial dependence in environmental gradients,
and often (but not always) occurs at relatively large scales (Fortin et al. 2012). In
contrast, other models focus specifically on accounting for spatial dependence in the
error terms of regression models. These models frequently assume spatial depen-
dence is more localized and dominated mostly by endogenous processes (e.g.,
localized dispersal, species interactions) (Fortin et al. 2012; Teng et al. 2018).

6.2.4 Common Models that Account for Spatial Dependence

6.2.4.1 Trend Surface Analyses

Trend surface analyses use x–y coordinates in an attempt to capture large-scale
spatial dependence in a region. There have been two common ways in which
coordinates are added to regression models: polynomial regression (Haining 2003)
and generalized additive models (GAMs) (Zuur et al. 2009).

The idea of trend surface analysis with polynomial regression is simply to include
x–y coordinates and their polynomials (e.g., x2, x3, etc.) in the regression as
covariates (Legendre 1993). Incorporating coordinates in this way is thought to be
useful to deal with large-scale dependencies arising from exogenous processes (e.g.,
climate gradients across a geographic range), but it may be more limited in account-
ing of local autocorrelation. Legendre (1993) suggested simply adding quadratic and
cubic terms for x–y coordinates to the regression model (Fig. 6.4). Adding quadratic
and cubic terms allows for some potential non-linear responses across geographic
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space. Note that trend surface analysis will not formally adjust estimates of fixed
effects for uncertainty due to spatial dependence (unlike mixed models, see below),
but they may account for dependence in model residuals.

Generalized additive models (GAMs) (Hastie and Tibshirani 1986; Wood 2006)
can be used in a similar way to trend surface analysis based on polynomial regres-
sion. GAMs use a class of equations called “smoothers” that attempt to generalize
data into smooth curves by local fitting to subsections of the data (Fig. 6.5). This
approach allows for more flexibility in capturing non-linearity in responses across
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Fig. 6.4 Incorporating
polynomial terms into a
regression model to account
for non-linearity in
environmental relationships.
Shown is an example of a
linear model, contrasted
with a model that adds a
quadratic term, and a model
that includes both a
quadratic and cubic term
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Fig. 6.5 The generalized
additive model (GAM) and
the concept of smoothers.
Shown are GAMs fit to the
data based on different
numbers of knots (vertical
lines; ranging from 3 to
8 knots). Within each knot, a
simple spline (e.g., a cubic
spline; see Fig. 6.4) is fit,
with the constraint that
splines must connect at the
knots. As the number of
knots increases, the
complexity of the smoother
function increases. Modified
from Zuur et al. (2009)
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geographic space and GAMs have frequently been used in species distribution
modeling more broadly (see Chap. 7). The simplest example of a smoother that is
likely to be familiar to scientists is the running average, where one calculates the
average value of data in a “window” across values of a covariate. While the running
average is an example of a smoother, much more efficient smoothers have been
developed. LOWESS (i.e., locally weighted regression; Cleveland 1979) is one
example of a more efficient smoother used in some GAMs. The idea is to plot the
value of the dependent variables (e.g., occurrences) along a single environmental
variable, and then to calculate a smooth curve that fits the data as closely as possible
while being parsimonious based on some sort of criterion. The algorithm fits a
smooth curve to each variable and then combines the results additively. The
approach generally employed with GAMs is to divide the data into some number
of sections, using “knots” at the ends of the sections. Then a low-order polynomial or
spline function (a spline is a function of polynomials relationships stitched together)
is fit to the data in the section, with the added constraint that the second derivative of
the function at the knots must be the same for both sections sharing that knot. This
latter criterion eliminates kinks in the curve, and ensures that it is smooth and
continuous (Fig. 6.5).

6.2.4.2 Eigenvector Mapping

Eigenvector mapping extends the general eigenvector approach described in Chap. 5
by using eigenvectors that describe different scales of spatial structure as predictors
in regression models (Dray et al. 2006; Griffith and Peres-Neto 2006). In effect, this
is somewhat similar to a trend surface model, but where eigenvector values, rather
than x–y coordinates, are used as predictors. The ability of this approach to capture
multiple scales of potential spatial structure is a relatively unique benefit in contrast
to other approaches. Because each eigenvector captures spatial patterns at different
scales, the combined use of several eigenvectors can potentially address problems of
anisotropy and non-stationarity in spatial autocorrelated data. However, this
approach and related techniques can sometimes lead to bias in coefficients of fixed
effects and may not improve Type I error rates (Beale et al. 2010; Emerson et al.
2015).

Spatial eigenvectors are derived from a distance matrix from sample points,
typically through the use of principal coordinates analysis (PCoA) on distance
matrices (see Chap. 5; Dray et al. 2006). In this approach, a pairwise distance matrix
is first calculated between all sampling points. This distance matrix is converted to a
binary connectivity (or weights) matrix based on some distance threshold that allows
for a minimum representation of connectivity among all points. For instance, a
“minimum spanning tree,” which is the minimum set of links that ensures all points
being considered are connected, is often used as a parsimonious way to guarantee
connectivity among all points considered (see below). With this binary connectivity
matrix, PCoA (also known as classic multidimensional scaling) is performed. PCoA
generates new components that capture the variation in the distance matrix, which
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are summarized with eigenvalues and eigenvectors, similar to Principal Components
Analysis (Legendre and Legendre 1998). The set of eigenvectors that reduce or
eliminate spatial autocorrelation in the residuals of the models is then identified. This
can be assessed through the use of Moran’s I on the residuals of models that include
eigenvectors as predictors (Dray et al. 2006). Those eigenvectors that reduce auto-
correlation the most are then used as predictors in a standard regression model to
“filter out” spatial dependence.

6.2.4.3 Autocovariate Models

In these and related models, we typically work with “areal” or “lattice” data, rather
than point-based samples. Autocovariate regression is similar to linear regression,
but an autocovariate is included into the regression model. This autocovariate can be
defined in various ways, such as a weighted mean of the response variable in
surrounding locations (Augustin et al. 1996):

autoi ¼
Pki

j¼1 wiyiPki
j¼1 wi

, ð6:5Þ

where autoi is the spatially weighted mean of the response variable, y, in the
neighborhood (with a neighbor set ki, reflecting the size of neighborhood considered)
around sample i. This autocovariate is frequently calculated based on first-order
neighbors (e.g., adjacent polygons or surrounding eight cells in a lattice), but the idea
can be extended to account for further away points, typically weighting points based
on the inverse of the distance (samples farther away get less weight than those closer
to the sample). This approach can be used in a generalized linear model context; for
instance, applying autocovariates in logistic regression, termed autologistic regres-
sion, is a common approach in ecology (Augustin et al. 1996; Wintle and Bardos
2006).

In effect, this approach assumes that if nearby locations are occupied, there
should be a greater likelihood that the focal point is occupied. This is a relatively
simple approach, although in practice, it was shown to not perform well because it
can cause bias in coefficients of fixed effects for environmental predictor variables
(Dormann et al. 2007; Beale et al. 2010). In these cases, autocovariate models tended
to de-emphasize the effect of the environmental covariates, while overemphasizing
the effects of autocovariates, leading to Type II error in inferences on environmental
covariates. This issue is at least partly driven by the fact that the autocovariate is
calculated on the raw data before fitting the explanatory variables, even though
explanatory variables may contain spatial dependence that can reduce spatial depen-
dence in the residuals of models (Crase et al. 2012). There are also difficulties with
using these models to interpolate (or extrapolate) to new locations (see below).

Crase et al. (2012) developed a related approach in which autocovariates are
quantified from the residuals of models, rather than the raw data, termed the residual
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autocorrelation approach (RAC). This approach replaces the use of the raw data (yi in
Eq. (6.5)), with yi � qi, where qi is the fitted value from an environment-only model
that ignores autocorrelation. This leads to an autocovariate that captures only the
variance not explained by explanatory variables. Crase et al. (2012) argued that this
approach better captures spatial dependence than using standard autocovariates
because explanatory variables are fitted first to the data.

Bardos et al. (2015) raised concerns regarding the validity of prior analyses
(Dormann et al. 2007; Beale et al. 2010) that emphasized bias in auto-models.
They show that a weighting scheme based on weighted means (Eq. 6.5) is not
valid for autocovariate models. Rather a weighted sums scheme should be used
instead:

autoi ¼
Xki
j¼1

wiyi: ð6:6Þ

This weighting scheme has not been evaluated as thoroughly as a weighted means
approach described above, but Bardos et al. (2015) illustrated that it may perform
better, in terms of capturing autocorrelation and providing unbiased estimates of
fixed effects.

6.2.4.4 Autoregressive Models

Autoregressive models work with aerial or lattice data, similar to autocovariate
models. The difference lies in how spatial dependence is captured with these
model formulations. Two common autoregressive models are simultaneous
autoregressive models (SAR) and conditional autoregressive models (CAR)
(Lichstein et al. 2002; Ver Hoef et al. 2018). In both SAR and CAR, spatial
dependence is captured through the use of a spatial neighborhood weights matrix
akin to autocovariate models, but dependence is described based on deviations from
the expected value given the covariates (Keitt et al. 2002).

SAR and CAR models share several similar features. In practice, a primary
difference is that SAR can accommodate anisotropic spatial dependence, while
CAR cannot. Nonetheless, the CAR is often used. Also, note that some work
suggests that both CAR and SAR perform well on regular lattices, but suffer
diminished performance on irregular lattices (e.g., county or watershed data) (Wall
2004). Both of these models use a spatial weights matrix, W, that captures the
neighborhood surrounding sampling locations. Typically, W is a binary matrix that
identifies neighbors, but it could also include non-binary data.

The general CAR model can be written in matrix notation as:

y ¼ βXþ ρW y� Xβð Þ þ ε, ð6:7Þ
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where ρ is the first-order autocorrelation between neighbors, β is a vector of
coefficients (i.e., slopes) related to the explanatory variables X described through
the “design matrix” (i.e., a N � K matrix of explanatory variable values for each
sample of data used in model fitting, where N is the total number of samples and K is
the total number of explanatory variables). In this equation, βX is the same as a
standard regression (Eq. 6.1) written in matrix form (i.e., Eq. 6.1 can be rewritten in
matrix form as y ¼ βX + ε), such that the only difference in this equation and a
standard GLM is that the ε in the standard GLM is now broken into ρW(y�Xβ)þ ε.
The (y�Xβ) captures the deviation of the observed data from that expected from the
covariates and this is multiplied by the correlation for the neighbors (ρW; note that
this only captures the neighbors because W is 0 for all non-neighbors).

There are several types of SAR models that capture different kinds of spatial
dependence, which assume that the dependence occurs in the response variable,
predictor variables, or the error (Dormann et al. 2007). The general SAR model can
be written in matrix notation as:

y ¼ βXþ ρWyþ ε: ð6:8Þ

While there are several types of SAR models, Ver Hoef et al. (2018) did not
recommend the use of certain specifications of SAR models for ecological data, such
as the use of “lag” or “SAR mixed models.” See Kissling and Carl (2008), Dale and
Fortin (2014), and Ver Hoef et al. (2018) for more details.

6.2.4.5 Multilevel Models

The effects of potential spatial dependence can be also handled by using “multilevel”
or “hierarchical” modeling. This type of modeling is a natural extension of gener-
alized linear models, where we specify random effects to account for dependencies
(correlations and hierarchical structure) in the data. Thus, multilevel models can be
considered one type GLMM. An excellent text on this approach is Gelman and Hill
(2007). Keitt et al. (2002) also touched on this approach when they contrasted
“blocking” with other approaches to addressing spatial dependence.

Multilevel models are relevant when there is a natural hierarchical structure to the
data being used (Fortin et al. 2012). For example, point samples may be collected in
a grid or along a transect (with replicate grids or transects across a region), samples
may be nested with counties or watersheds nested within larger regions (e.g., states),
etc. In the absence of such sampling structure, this framework may not be helpful for
accounting for spatial dependences. Some reasons to consider multilevel models
with spatial data: (1) it can accommodate using all the data to perform inferences
when some groups or blocks have small sample size; (2) it provides more efficient
inference for regression parameters; (3) it can appropriately include predictors at >1
level in a hierarchy (e.g., within patch, patch, and landscape predictors); and (4) it
can provide correct estimates of uncertainty (standard error, confidence interval, etc.)
(Gelman and Hill 2007). For example, if we collect multiple samples within patches
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and sample across different landscapes or region, we could specify a multilevel
regression as follows:

yi,p, l ¼ αþ β1xi þ γp þ δl þ εi, ð6:9Þ

where γp is a random effect of a patch, and δl is a random effect of the landscape or
region. In doing so, this formulation acknowledges that observations within each
region have some correlation/similarity.

6.2.4.6 Generalized Least Squares and Spatial Mixed Models

Generalized least squares models (GLS) and spatial mixed models are similar in
scope to a multilevel model. The main conceptual difference is that we specify
spatial correlation structures explicitly in the random effects (GLMMs) or residuals
(GLS) by modeling the variance–covariance matrix over space.

In a GLS spatial model, we take a typical regression, yi ¼ α + β1xi + εi, where ε is
~ N(0, σ2) and replace the variance on the error term with a variance–covariance
matrix: ε ~ N(0, Σ) (Keitt et al. 2002). In a GLMM spatial model, a similar approach
is taken, but a variance–covariance matrix is added for the random effect: γ ~ N(0, Σ)
rather than the residuals (Littell et al. 2006). In both cases, parametric correlation
functions are fit to explain the variance–covariance matrix by specifying model-
based correlation structures, akin to model-based variogram structures we described
in Chap. 5. These correlation structures are sometimes referred to as Gaussian
random fields (Thorson and Minto 2015). For example, in the GLS we will consider
below, we will fit a spatial exponential covariance (see Chap. 5):

P ¼ σ2
1 exp �dij

α

� �

exp �dij
α

� �
1

2
664

3
775, ð6:10Þ

where σ2 is the non-spatial variance estimated, dij is the distance between two
observations i and j, and α is a parameter to be estimated (related to the range).
With mixed effects, one can specify models that only account for spatial autocorre-
lation within the regions/groups specified by the random effect. For instance,
Fletcher (2005) used this general approach to account for within-patch spatial
dependence of species distribution while assuming that among-patch dependence
was negligible. Similar to CAR and SAR, GLS has a strong foundation for normally
distributed response variables, but the application of these models to non-normal
data is more challenging (Rousset and Ferdy 2014). Note the utility of GLS may
depend upon the scale of environmental relationships being considered. For
instance, Diniz et al. (2003) found that GLS tended to de-emphasize covariates

182 6 Accounting for Spatial Dependence in Ecological Data

https://doi.org/10.1007/978-3-030-01989-1_5
https://doi.org/10.1007/978-3-030-01989-1_5


operating across large spatial scales while overemphasizing covariates operating at
more local scales.

6.2.5 Inference Versus Prediction

An implicit but pervasive issue regarding spatial regression and other modeling
approaches considered in this book regards whether the goal of the work is for
inference or prediction. When our goal is inference, we are interested in estimating
factors influencing response variables (Stephens et al. 2007). In contrast, if our goal
is prediction, we aim to build models that can make accurate predictions or pro-
jections across space and time (Boyce et al. 2002), including both interpolating
between sample locations and predicting to new areas (i.e., model transferability; see
Chap. 7 for more). Ecologists and conservation biologists often use models in both
ways, but ultimately these are very different goals and model building and evaluation
will be (or should be) different depending on the goal.

Spatial regression models can be helpful in problems of inference, where we are
interested in understanding spatial or environmental relationships, such as factors
related to species distribution and abundance. These approaches can potentially
provide more reliable inference in regard to parameter estimates and their uncer-
tainty, as well as more reliable statistical hypothesis tests. However, the use of these
models for prediction, projection, or interpolation can sometimes be difficult,
depending on the type of model considered. For example, with autocovariate
models, prediction requires information on the response variable (e.g., occurrence)
across the region being predicted, because the regression model includes this
information in the form of the autocovariate (Augustin et al. 1996). In contrast,
trend surface and related spatial filtering models are straightforward to use in
prediction because only the physical locations are used as predictors. In some
cases, spatial regression models are used for prediction where the dependence term
is ignored (e.g., using only the fixed effects from a mixed effects model). Depending
on the goal of spatial modeling, the utility of the above approaches may vary.

6.3 Examples in R

6.3.1 Packages in R

In R, there are a few libraries that can be used for spatial regression models. We use
the mgcv package for fitting generalized additive models (Wood 2006), lme4 for
fitting multilevel models (Bates et al. 2015), and vegan (Oksanen et al. 2018) and
spdep (Bivand and Piras 2015) for fitting eigenvector maps. We use the spdep
package for models requiring lattice data (autocovariate, SAR, CAR) and interpreting
autocorrelation in the residuals of models. We fit spatial GLS and mixed models with
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MASS (Venables and Ripley 2002) and spaMM (Rousset and Ferdy 2014), but other
packages can be used, particularly Bayesian modeling packages (e.g., spBayes)
(Finley et al. 2015).

6.3.2 The Data

Monitoring programs are often hierarchically structured and filled with spatio-
temporal dependence in the data. The Northern Region Landbird Monitoring Pro-
gram is one such example (Hutto and Young 2002). Sampling locations consisted of
point counts (100-m radius), along a transect (typically 10 points/transect; transects
are approximately 3 km long), with transects randomly selected within USFS Forest
Regions across Montana and Idaho (Fig. 6.6). Ten-minute point counts were
conducted by trained observers, where all birds seen or heard were recorded. Here
we only consider birds detected within 100-m of the point. These points were also
resampled over time, although we will not consider these temporal repeated mea-
sures here.

To interpret spatial regression models, we consider a simple environmental
relationship of species occurrence along an elevation gradient. Elevation is

Fig. 6.6 The Northern Region Landbird Monitoring Program applies a hierarchical sampling
design for surveying bird communities. This monitoring program covered (a) northern Idaho and
western Montana, where (b) transects were distributed across different watersheds, with typically
10 points per transect. Here we focus on the occurrence of (c) varied thrush (picture courtesy of
Matthew Dodder at http://www.birdguy.net/)
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frequently considered to be an important, though often indirect, factor correlated
with species distribution. We focus on the occurrence of the varied thrush (Ixoreus
naevius) (Fig. 6.6), a migratory bird that breeds in the western USA. Varied thrush
have declined in the western USA over the past several decades, based on Breeding
Bird Survey data (Sauer et al. 2017), with the annual decline of approximately 2–3%
per year (1966–2015: �2.47, 95% CI: �3.19, �1.79; 2005–2015: �3.32, 95% CI:
�5.14, �1.56). Furthermore, they are often considered an old-growth, interior
species (Brand and George 2001; Betts et al. 2018). Consequently, this species has
been of some interest for conservation.

We fit logistic regression models and their spatial extensions to infer and predict
the distribution of varied thrush as a function of elevation in this mountainous
region. Here we focus on modeling detection/non-detection of thrushes (0/1 data).
Elevation was derived from a 30-m resolution Digital Elevation Model (DEM). Prior
to analysis, all GIS layers were aggregated to a common 200-m resolution, reflecting
the grain of the sampling unit (100-m-radius point counts).

With this sampling design, there are likely observation errors in detecting varied
thrushes, such that models that explicitly account for imperfect detection would be
useful (McCarthy et al. 2012). Rota et al. (2011) estimated that detection probabil-
ities of varied thrushes with this sampling design was relatively high ( p ¼ 0.87/
count), which is likely driven by their distinctive and loud song. We do not consider
that sampling error here to focus specifically on the problem of spatial dependence.
See sect. 6.4 for further discussion on sampling errors.

6.3.3 Models that Ignore Spatial Dependence

To begin, we import a raster layer of elevation with the raster package and use
this layer to also derive other key variables related to elevation, such as slope and
aspect (Fig. 6.7).
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Fig. 6.7 The raster data considered come from a digital elevation model, including elevation
(in km), aspect (in radians), and slope. Note that slope is double square-root transformed for
visualization
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> library(raster)
> elev <- raster("elev.gri")

#create aspect and slope layers from the elevation layer
> elev.terr <- terrain(elev, opt = c("slope", "aspect"), unit =
"radians")

The terrain function in the raster package takes an elevation layer (e.g.,
DEM) and returns raster layers that are calculated from elevation, including slope,
aspect, topographic position index, terrain ruggedness index (TRI), roughness, and
flow direction (Wilson et al. 2007) (Table 6.2). Here, we just calculate slope and
aspect (Fig. 6.7). Note that for this function, the projection must be set on the raster
layer for implementation. This function defaults to aspect being calculated in
radians, using the algorithm in Horn (1981).

We can merge the slope and aspect layers into a single raster stack that holds all
raster layers. We create a single object that holds all of the data with the stack
function:

#makes a multilayered file for extraction
> layers <- stack(elev, elev.terr)
> names(layers) <- c("elev", "slope", "aspect")

We first consider a non-spatial logistic regression model. To do so, we use the
extract function to grab covariate values from layers at the sample locations
from the survey data and we then merge the covariates with our data on thrush
occurrence using cbind.

> point.data <- read.csv("vath_2004.csv", header=T)
> coords <- cbind(point.data$EASTING, point.data$NORTHING)
> land.cov <- extract(x = layers, y = coords)
> point.data <- cbind(point.data, land.cov)

Table 6.2 Terrain metrics that the raster package can calculate based on elevation data

Metric Description

Aspecta The compass direction that a slope faces.

Flow direction The direction of the greatest drop in elevation (or smallest rise) from focal
cell and its eight neighboring cells, coded as integer values in powers of
2 (starting east of focal cell and moving in a clockwise direction; 1, 2, 4, 8,
16, 32, 64, and 128).

Roughness Difference between the maximum and minimum value of the focal cell
and its eight neighboring cells.

Slope The change in elevation, described as the difference in elevation between
two points divided by the distance.

Terrain ruggedness
index

Absolute difference between the value of a cell and the value of its eight
neighboring cells (eight-neighbor rule).

Topographic posi-
tion index

Difference between the value of a cell and the mean value of its eight
neighboring cells (eight-neighbor rule).

aCan be measured in degrees or radians
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We consider a simple set of logistic regression models. We expect that elevation
may help explain varied thrush occurrence, where thrushes may be most likely to
occur at either low or moderate elevations. Consequently, we consider quadratic
terms in the logistic regression model to account for potential non-linearities
(Fig. 6.4) in occurrence as a function of elevation. We also consider slope and aspect
as proxies for local variation in environmental conditions. First, we transform the
explanatory variables to a mean of 0 and a variance of 1 (sometimes referred to as a
z-transformation or “centering and scaling”). Centering and scaling can help
improve model convergence and facilitates comparing coefficients for different
parameters.

> point.data$elevs <- scale(point.data$elev, center = T, scale = T)
> point.data$slopes <- scale(point.data$slope, center = T, scale = T)
> point.data$aspects <- scale(point.data$aspect, center = T, scale = T)

Note that the default for the scale function is to both center and scale, but we
explicitly request this here to illustrate. Now we can fit logistic regression models of
varying complexity.

> VATH.elev <- glm(VATH ~ elevs, family = "binomial", data =
point.data)

> VATH.all <- glm(VATH ~ elevs þ slopes þ aspects, family =
"binomial", data = point.data)

> VATH.elev2 <- glm(VATH ~ elev þ I(elev^2), family = "binomial", data
= point.data)

Note that to specify a quadratic term in R, we write I(elev^2). This could also
be accomplished through the poly() (see below). We can contrast model fit using
AIC:

> round(AIC(VATH.elev, VATH.all, VATH.elev2), 2)

##
df AIC
VATH.elev 2 583.10
VATH.all 4 584.84
VATH.elev2 3 566.54

> summary(VATH.elev2)

##
Call:
glm(formula = VATH ~ elev þ I(elev^2), family = "binomial", data = point.
data)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.6088 -0.5787 -0.5032 -0.3231 3.0804
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Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.984 1.990 -4.012 6.01e-05 ***
elev 10.698 3.227 3.316 0.000915 ***
I(elev^2) -4.476 1.281 -3.494 0.000475 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 584.34 on 804 degrees of freedom
Residual deviance: 560.54 on 802 degrees of freedom
AIC: 566.54

Number of Fisher Scoring iterations: 6

For each of these models, we can use the summary function to view the
coefficients estimated from the model and related diagnostics. While this small set
of candidate models is far from a complete set, from this comparison there is some
evidence of thrush occurrence increasing at moderate elevations. This can be
concluded because the linear elevation term is positive while the quadratic term is
negative (both of which are significant based on p-values, or Pr(>|z|), which
will cause a humped-shaped relationship with elevation. We can plot this relation-
ship by first generating a new data set to predict onto and then use the predict
function (Fig. 6.8):

> elev <- seq(min(point.data$elev), max(point.data$elev), length = 15)
> newdata <- data.frame(elev = elev)

>glm.pred<-predict(VATH.elev2,newdata=newdata,type="link",se =T)
> ucl <- glm.pred$fit þ 1.96*glm.pred$se.fit
> lcl <- glm.pred$fit - 1.96*glm.pred$se.fit
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Fig. 6.8 (a) Predicted relationship (with 95% prediction intervals) of varied thrush occurrence with
elevation based on a standard logistic regression model. (b) Correlogram using the raw response
data, where gray region shows the 99% null envelope from a permutation test. (c) Mapping
predictions from model
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#create data frame and back-transform to probability scale
> glm.newdata <- data.frame(newdata, pred = plogis(glm.pred$fit),
lcl = plogis(lcl),ucl = plogis(ucl))

> plot(glm.newdata$elev, glm.newdata$pred, ylim = c(0,0.5))
> lines(glm.newdata$elev, glm.newdata$lcl)
> lines(glm.newdata$elev, glm.newdata$ucl)

We can also plot predictions of this model across the study region by predicting
onto the raster stack layer. To do so, the raster package defaults to making
predictions on the link scale, but we can then back-transform the predictions on
the raster to the probability scale (Fig. 6.8c).

> glm.raster <- predict(model = VATH.elev2, object = layers)
> glm.raster <- exp(glm.raster) / (1 þ exp(glm.raster))
> plot(glm.raster, xlab = "Longitude", ylab = "Latitude")

In this model and subsequent models, we will generally focus on two issues. First,
is there evidence for spatial autocorrelation in the residuals of the models? Second,
how do estimated relationships, that is, the coefficients and standard errors (SEs),
change depending on the model?

We can determine if spatial dependence might be problematic for inferences by
considering if there is evidence for spatial dependence in the residuals of the model
(Dormann et al. 2007; Beale et al. 2010). First, we consider if there is spatial
autocorrelation in the response variable. For interpreting spatial autocorrelation,
we will use the correlogram function described in Chap. 5 when we used the
spdep package. The function in Chap. 5 was altered to allow specification of
different bins for lag distances and the maximum distance considered. This function
is useful because it can be readily used for both binary data (0/1 response data) and
for other response variable distributions (e.g., residuals), although other functions,
such as the correlog function in the ncf package (Bjørnstad and Falck 2001)
could also do the trick. We call this function icorrelogram and add it to our data
frame with the source function. We then plot the resulting the correlogram
(Fig. 6.8b).

#import function
> source('icorrelogram.r')

To inspect this function, simply type:

> icorrelogram

##
function(locations,z, binsize, maxdist){

distbin <- seq(0,maxdist,by=binsize)
Nbin <- length(distbin)-1
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moran.results <- data.frame(dist = rep(NA,Nbin),
Morans.i =NA,null.lcl=NA, "null.ucl"=NA)

for (i in 1:Nbin){
d.start <- distbin[i]
d.end <- distbin[i+1]
neigh <- dnearneigh(x=locations, d1=d.start, d.end, longlat=F)
wts <- nb2listw(neighbours=neigh, style='B', zero.policy=T)
mor.i <- moran.mc(x=z, listw=wts, nsim=200, alternative="greater",

zero.policy=T)

moran.results[i, "dist"]<-(d.end+d.start)/2
moran.results[i, "Morans.i"]<-mor.i$statistic
moran.results[i, "null.lcl"]<-quantile(mor.i$res, probs = 0.025,na.
rm = T)
moran.results[i, "null.ucl"]<-quantile(mor.i$res, probs = 0.975,na.
rm = T)

}
return(moran.results)
}

This function identifies neighbors between points using the dnearneigh func-
tion for different distance classes. It then takes the object created, reformats it to a list
of relevance to theW spatial neighbor matrix, and uses a moran.mc function to run
a permutation-based Moran’s I. The distance classes, Moran’s I and the null enve-
lope from the permutations are then stored in a data frame. We can run the function
on the observed data and plot (Fig. 6.8):

#run correlogram function
> VATH.cor <- icorrelogram(locations = coords, z
= point.data$VATH, binsize = 1000, maxdist = 15000)

> head(VATH.cor)

##
Dist Morans.i Null.lcl Null.ucl
1 500 0.34 -0.06 0.06
2 1500 0.10 -0.03 0.03
3 2500 0.01 -0.02 0.03

#plot correlogram
> plot(VATH.cor$Dist, VATH.cor$Morans.i, ylim = c(-0.5, 0.5))
> abline(h=0, lty = "dashed")
> lines(VATH.cor$Dist, VATH.cor$Null.lcl)
> lines(VATH.cor$Dist, VATH.cor$Null.ucl)

Now we consider if there is spatial autocorrelation in the residuals of the logistic
regression model.

#residuals from quadratic elevation model
> VATH.elev2.res <- residuals(VATH.elev2, type = "deviance")
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Note that we request the deviance-based residuals. For GLM-type models, there
are several related residuals that could be calculated, the default being a deviance-
based residual. For a binomial or Bernoulli GLM, this type of residual is calculated as:

di ¼ si
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

�
yilog

�byi�þ 1� yið Þlog�1� byi�q
, ð6:11Þ

where di is the deviance of observation i, yi is the observation, by is the predicted
value, and si ¼ 1 if yi ¼ 1 and �1 if yi ¼ 0. The deviance residuals are potentially
more useful in GLMs in comparison to others because they are directly related to the
overall deviance (and likelihood) of the model, where the sum of the deviance
residuals equals the deviance of the model (�2log-likelihood). We can visualize
spatially the residuals by mapping them. More formally, we can assess this using the
icorrelogram function:

#correlogram on residuals
> corr.res <- icorrelogram(locations = coords, z =
VATH.elev2.res, binsize = 1000, maxdist = 15000)

Here, we find evidence for spatial autocorrelation in the residuals of the model
(Fig. 6.9). Note that rather than using correlograms, we could have used
semivariograms on the residuals to interpret spatial autocorrelation in the residuals
(Beguin et al. 2012).

It is important to understand the interpretation of the use of residuals in this
analysis in comparison to the raw data. For instance, if we fit an intercept-only
(mean) model and contrast correlograms from the raw data and the residuals of the
mean model:

> VATH.int <- glm(VATH ~ 1,family = "binomial", data = point.data)
> VATH.int.res <- residuals(VATH.int, type = "deviance")

> corr.int.res <- icorrelogram(locations = coords, z =
VATH.int.res, binsize = 1000, maxdist = 15000)

> cor(VATH.cor$Morans.i, corr.int.res$Morans.i)

##
[1] 1

We find that the Moran’s I is identical (r ¼ 1). This illustrates the equivalence of
considering residuals from regression models in correlograms when no predictors
are considered to that of the raw data (Bivand et al. 2013).

Because of the spatial dependence in the residuals, we consider either subsetting
the data based on the approximate range of spatial autocorrelation or regression-like
models that attempt to account for spatial autocorrelation. First, we subset the data.
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Given the sampling design and the shape of the correlogram (Fig. 6.8b), it would be
natural to only consider one point per transect. Note we could also potentially pool
across all points on each transect, however, such an approach would increase the
spatial grain of the analysis, which might not be ideal. Below we use a function to
pick one random point from each transect.

#shuffle points on transects
> rand.vector <- with(point.data, ave(POINT, as.factor(TRANSECT),
FUN=function(x) sample(length(x))))

#pick one random point on transect and remove rest
> point.datasub <- point.data[rand.vector == 1,]

#coordinates from subset data
> coords.sub <- cbind(point.datasub$EASTING, point.datasub$NORTHING)
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Fig. 6.9 Correlograms on the residuals of the models considered. Note that for subsetting the data,
correlograms were calculated for wider lag distance bins because of less data being used
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With this data subset, we then refit the logistic regression model.

> VATH.sub <- glm(VATH ~ elev þ I(elev^2), family = "binomial", data =
point.datasub)

> summary(VATH.sub)

##
Call:
glm(formula = VATH ~ elev þ I(elev^2), family = "binomial", data = point.
datasub)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.5673 -0.5408 -0.4677 -0.3022 2.6507

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.158 4.498 -1.369 0.171
elev 8.254 7.519 1.098 0.272
I(elev^2) -3.860 3.076 -1.255 0.209

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 109.89 on 166 degrees of freedom
Residual deviance: 105.18 on 164 degrees of freedom
AIC: 111.18

Number of Fisher Scoring iterations: 6

When we subset the data, our sample size decreases substantially, from 805 to
167 points. Not surprisingly, the SEs on the parameter estimates increase substan-
tially and there is no longer strong evidence for an elevation effect. We can interpret
whether this subsetting removed the spatial autocorrelations in the residuals of the
model. Note that for this subset, we need to use a larger lag distance than 1-km
because we no longer have data points <1 km (or alternatively, one could just
increase the first few bin sizes). We calculate the correlogram using a 2-km lag
distance.

> VATH.sub.res <- residuals(VATH.sub)

#correlogram on residuals
> corr.sub.res <- icorrelogram(locations = coords.sub, z =
VATH.sub.res, binsize = 2000, maxdist = 15000)

This subsetting suggests that spatial autocorrelation is no longer problematic
(Fig. 6.9), but there is a cost in terms of reduced power. Regression models that
use all of the data but account for spatial dependence might be a useful alternative in
this case.
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6.3.4 Models that Account for Spatial Dependence

We consider several types of models that account for spatial dependence. These
include: trend surface models, eigenvector-based models, autocovariate models
(autologistic regression), autoregressive models (a CAR model), a multilevel
model, generalized least squares, and spatial GLMMs.

6.3.4.1 Trend Surface Models

We consider two types of trend surface models. In the first model, we simply extend
our logistic regression model to include x–y coordinates, along with their quadratic
and cubic polynomial terms with the I() function.

> VATH.trend <- glm(VATH ~ elev þ I(elev^2) þ EASTING þ NORTHING þ
I(EASTING^2) þ I(EASTING^3) þ I(NORTHING^2) þ I(NORTHING^3),
family = "binomial", data = point.data)

> summary(VATH.trend)

##
Call:
glm(formula = VATH ~ elev þ I(elev^2) þ EASTING þ NORTHING þ
I(EASTING^2) þ I(EASTING^3) þ I(NORTHING^2) þ I(NORTHING^3),
family = "binomial", data = point.data)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.0301 -0.5425 -0.2959 -0.1743 2.8718

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.861eþ00 6.332eþ00 -1.557 0.11943
elev 8.795eþ00 3.138eþ00 2.803 0.00507 **
I(elev^2) -3.195eþ00 1.248eþ00 -2.559 0.01049 *
EASTING 2.208e-04 4.769e-05 4.631 3.65e-06 ***
NORTHING -8.018e-05 5.076e-05 -1.580 0.11420
I(EASTING^2) -1.263e-09 2.806e-10 -4.502 6.72e-06 ***
I(EASTING^3) 2.090e-15 5.122e-16 4.081 4.48e-05 ***
I(NORTHING^2) 2.296e-10 1.366e-10 1.681 0.09275 .
I(NORTHING^3) -2.049e-16 1.179e-16 -1.738 0.08216 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 584.34 on 804 degrees of freedom
Residual deviance: 486.89 on 796 degrees of freedom
AIC: 504.89

Number of Fisher Scoring iterations: 6
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In the above model, we manually added quadratic and cubic terms. A more
automated way to do this is with the poly function, where specifying poly
(EASTING,3) would add the linear, quadratic and cubic terms. Note that the
poly function also standardizes polynomials to be orthogonal, removing the cor-
relation between terms (which in many situations would be preferred). While the
above model is straightforward to implement, it is limited in the spatial variation in
can capture. An alternative to this model is to consider a generalized additive model
(GAM), where we allow spline functions to capture spatial variation. The mgcv
package provides a means to automate the selection of spline variation through the
use of generalized cross-validation procedures. This model can be run as:

> library(mgcv)
> VATH.gam <- gam(VATH ~ elev þ I(elev^2) þ s(EASTING, NORTHING),
family = "binomial", data = point.data)

In this model formulation, elevation is considered in a similar way as above but
splines are considered for both Easting (x) and Northing (y) coordinates with the s
command. This syntax defaults to automated selection of the number of knots being
considered. We can manually adjust the number of knots (Fig. 6.5) by adding some
syntax to the s command. We will look at GAMs in more detail in Chap. 7. In this
case, the use of the gam formulation reduces spatial autocorrelation in the residuals
(Fig. 6.9); however, it does not appear to fully remove the spatial dependence.

6.3.4.2 Eigenvector Mapping

To account for spatial dependence with eigenvector mapping, there are three steps.
First, we create a neighborhood weights matrix with the spdep package. We can do
this in several ways. Here we calculate a neighborhood weights matrix by using the
maximum distance needed for a minimum spanning tree—the minimum set of
connections needed to fully connect points across the landscape. The distance
needed for a minimum spanning tree can be determined with the vegan package
using the spantree function (note: this distance could also be determined using
the pcnm function and finding the threshold, as discussed in Chap. 5).

> library(vegan)
> spantree.em <- spantree(dist(coords), toolong = 0)
> max(spantree.em$dist)

##
[1] 41351.09

We then identify neighborhoods with the dnearneigh function using this
distance. With these neighbors, we extract the distances between neighbors with
the nbdists function. Finally, we transform distances as suggested in Dormann
et al. (2007) with the lapply function (because nbdists object is in list form),
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and then create a list in the format relevant to the W matrix with the nb2listw
function:

> dnn <- dnearneigh(coords, 0, max(spantree.em$dist))
> dnn_dists <- nbdists(dnn, coords)
> dnn_sims <- lapply(dnn_dists, function(x) (1 - ((x / 4)^2)))
> ME.weight <- nb2listw(dnn, glist = dnn_sims, style = "B",
zero.policy = T)

With thisWmatrix, we use the ME function in the spdep package to identify the
most important eigenvectors that reduce spatial dependence, based on a permutation
bootstrap test on Moran’s I for the residuals (Griffith and Peres-Neto 2006). In this
function, we include the relevant covariates in the model formula, but we also add
the neighborhood matrix (in list form):

> VATH.ME <- ME(VATH ~ elev þ I(elev^2), family = "binomial", listw =
ME.weight, data = point.data)

> VATH.ME$selection

##
Eigenvector ZI pr(ZI)
0 NA NA 0.01
1 796 NA 0.01
2 804 NA 0.03
3 805 NA 0.20

> head(fitted(VATH.ME),2)

##
vec796 vec804 vec805
[1,] 0.003042641 -0.008629250 0.01187249
[2,] 0.003088077 -0.008737222 0.01196633

The ME function provides output regarding the eigenvectors selected but we need
to then refit the logistic regression model with this eigenvectors included as
covariates.

#new glm with ME covariates
> VATH.evm <- glm(VATH ~ elev þ I(elev^2) þ fitted(VATH.ME), family =
"binomial", data = point.data)

> summary(VATH.evm)

##
Call:
glm(formula = VATH ~ elev þ I(elev^2) þ fitted(VATH.ME), family =
"binomial",
data = point.data)
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Deviance Residuals:
Min 1Q Median 3Q Max
-1.5359 -0.5175 -0.4027 -0.1416 2.7454

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.401 1.948 -4.312 1.62e-05 ***
elev 8.776 3.029 2.898 0.00376 **
I(elev^2) -3.112 1.168 -2.664 0.00773 **
fitted(VATH.ME)vec796 -14.742 3.198 -4.610 4.03e-06 ***
fitted(VATH.ME)vec804 -8.644 3.242 -2.666 0.00767 **
fitted(VATH.ME)vec805 38.110 8.789 4.336 1.45e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 584.34 on 804 degrees of freedom
Residual deviance: 499.73 on 799 degrees of freedom
AIC: 511.73

Number of Fisher Scoring iterations: 7

In this case, the approach identifies three eigenvectors to include, each of which
explains occurrence to some degree. However, the inclusion of these eigenvectors
does not remove spatial autocorrelation in the residuals of the model (Fig. 6.9).
Overall, the main difference in this approach relative to the trend surface model
described above is the creation of the eigenvector covariates and determining which
of these covariates to include in the final logistic regression model.

6.3.4.3 Autocovariate Models

To fit autocovariate models, we calculate new autocovariates and then use these
covariates in a standard logistic regression model. We will calculate these
autocovariates with the autocov_dist function in the spdep package. Because
most of the significant autocorrelation in the residuals occurs <1 km (Fig. 6.8b), we
will calculate the autocovariates at this scale.

> auto1km <- autocov_dist(point.data$VATH, coords, nbs = 1000, type =
“one”, style = "B", zero.policy = T)

The type¼ provides the weighting scheme. When inverse is specified, points are
weighted by the inverse of the distance between the focal point and the neighboring
point. If “one” is specified, all points within the distance (nbs) are given equal
weight. style describes how the covariate will be calculated, with "B" reflecting a
binary coding. Bardos et al. (2015) stated that using style ¼ "B" provides a valid
weighting scheme for autocovariate models.
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We then fit standard logistic regression models with these covariates included.

> VATH.auto1km <- glm(VATH ~ elev þ I(elev^2) þ auto1km, family =
"binomial", data = point.data)

> summary(VATH.auto1km)

##
Call:
glm(formula = VATH ~ elev þ I(elev^2) þ auto1km, family = "binomial",
data = point.data)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.0314 -0.4131 -0.3809 -0.2902 2.9077

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.6518 1.9660 -3.383 0.000716 ***
elev 6.9046 3.1222 2.211 0.027006 *
I(elev^2) -2.8061 1.2106 -2.318 0.020450 *
auto1km 0.8665 0.1008 8.596 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 584.34 on 804 degrees of freedom
Residual deviance: 470.99 on 801 degrees of freedom
AIC: 478.99

Number of Fisher Scoring iterations: 6

In this case, the inclusion of the autocovariate in the model is very significant,
while the coefficients for the elevation effect decrease. In addition, the inclusion of
the autocovariate removes the spatial autocorrelation in the residuals (Fig. 6.9).

6.3.4.4 Autoregressive Models

Fitting autoregressive models to non-normal data is challenging. One approach is to
use Bayesian modeling. While there are some packages for fitting spatial
autoregressive models with Bayesian modeling (e.g., see the spBayes package;
Finley et al. 2015), using Bayesian methods for spatial regression is often compu-
tationally demanding. A new alternative is using “Integrated Nested Laplace
Approximation” or INLA (Blangiardo and Cameletti 2015). The value of this
approach is that it greatly reduces the computational demands of Bayesian modeling.
However, it does only apply to certain types of Bayesian models. For example,
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INLA can be used to fit CAR models for binary data. To do so, we need to create a
neighborhood weights matrix of the "dgTMatrix" form, which is a type of a
sparse matrix (sparse matrices are those that have very few observations and are
largely filled with zeros. There are efficient ways to store and manipulate these types
of matrices in R). We first create a neighborhood matrix by creating Thiessen
polygons from the point data with the deldir and dismo packages (Fig. 6.3).
Thiessen polygons, also known as Voronoi polygons, are based on Delaunay
triangulation. These polygons partition a region into convex polygons such that
each polygon contains exactly one point.

> library(INLA)
> library(deldir)
> library(dismo)

> thiessen <- voronoi(coords)

#plot thiessen polygons
> plot(thiessen)
> points(coords, col = "red")

> point.poly <- poly2nb(thiessen)

#plot neighborhood matrix
> plot(point.poly, coords, col = "red", add = T)

#format neighborhood matrix
> adj <- nb2mat(point.poly, style = "B")
> adj <- as(adj, "dgTMatrix")

With this neighborhood matrix, we can then fit the CAR model. To do so, for
INLA we need to first specify the type of the model fitting, including the covariates
being considered. For the CAR model, we add an observation-level covariate to the
data frame (id) and then specify "besag" for the CAR model. We then fit the
model with the inla function:

> point.data$id <- 1:nrow(point.data)
> VATH.inla <- inla(VATH ~ elev þ I(elev^2) þ f(id, model = "besag",
graph = adj), family = "binomial", data = point.data,
control.predictor = list(compute = TRUE))

> summary(VATH.inla)

##
Call:
c("inla(formula = form, family = \"binomial\", data = point.data, ", "
control.predictor = list(compute = TRUE))")
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Time used:
Pre-processing Running inla Post-processing Total
2.8085 3.2775 0.5343 6.6203

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -8.0537 1.9683 -12.1721 -7.9648 -4.4301 -7.7824 0
elev 10.8093 3.1908 4.9396 10.6618 17.4881 10.3574 0
I(elev^2) -4.5148 1.2666 -7.1800 -4.4519 -2.1971 -4.3222 0

Random effects:
Name Model
ID Besags ICAR model

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant mode
Precision for ID 18537.90 18336.86 1248.75 13131.81 66833.34 3386.31

Expected number of effective parameters(std dev): 2.993(0.0029)
Number of equivalent replicates : 268.99

Marginal log-Likelihood: -899.24
Posterior marginals for linear predictor and fitted values computed

This approach allows for a binomial CAR model (note that if our response data
were normally distributed, we could use the spautolm function in the spdep
package). The spaMM package can also fit CAR models to binomial data, but the
above model in that package takes >50� longer to fit than with INLA. Also, the
INLA approach is computationally much faster than using other Bayesian modeling
approaches, which is a major benefit of this package. With the inla package, we
must manually calculate residuals to interpret spatial autocorrelation:

#manual deviance residual calculation:
> VATH.inla.fit <- VATH.inla$summary.fitted.values$mean
> si <- ifelse(point.data$VATH==1, 1, -1)
> VATH.inla.res <- si * (-2 * (point.data$VATH * log(VATH.inla.fit) þ (1 -
point.data$VATH) * log(1 - VATH.inla.fit)))^0.5

#correlogram on residuals
> cor.inla.res <- icorrelogram(locations = coords, z = VATH.inla.res,
binsize = 1000, maxdist = 15000)

In this case, we find that the CAR model removes most, but not all, of the
autocorrelation in the residuals (Fig. 6.9). This may be due to the fact that the
CAR model is only using first-order neighbors, such that only dependence between
neighboring points (~300 m apart) is captured. As the observed spatial dependence
in the residuals extends out to 1–2 km (Fig. 6.8b), this smaller scale is not sufficient
in this case.
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6.3.4.5 Multilevel Models

A simple multilevel model can also be fit to these data by considering transects as a
random effect in the regression model. In doing so, we effectively “block” with
transects, treating points within transects has having potential spatial dependence
(Keitt et al. 2002). Because this structure is not spatially explicit, we effectively
assume that dependence is constant within transects (e.g., neighboring points have
the same dependence as points located along the ends of the transects). These models
can be fit using the lme4 package. Prior to the model fitting, we need to make sure
that transect is considered a factor. Then we can fit the model with glmer function.

> library(lme4)

#random effects should be a factor
> str(point.data)
> point.data$TRANSECT <- as.factor(point.data$TRANSECT)

#glmm using lme4
> VATH.glmm <- glmer(VATH ~ elev þ I(elev^2) þ (1|TRANSECT), family =
"binomial", data = point.data)

> summary(VATH.glmm)

##
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: VATH ~ elev þ I(elev^2) þ (1 | TRANSECT)
Data: point.data

AIC BIC logLik deviance df.resid
498.4 517.2 -245.2 490.4 801

Scaled residuals:
Min 1Q Median 3Q Max
-1.3520 -0.1755 -0.1541 -0.1129 5.7688

Random effects:
Groups Name Variance Std.Dev.
TRANSECT (Intercept) 4.456 2.111
Number of obs: 805, groups: TRANSECT, 167

Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.470 3.262 -2.596 0.00942 **
elev 9.459 5.155 1.835 0.06653 .
I(elev^2) -4.043 1.979 -2.043 0.04106 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Correlation of Fixed Effects:
(Intr) elev
elev -0.981
I(elev^2) 0.946 -0.988

When fitting random effects, we specify (1|TRANSECT), which signals that our
transect is being considered as a random intercept. We will see more uses of random
effects and their specification in Chap. 11. In this case, we find that by adding a
random transect effect to the model structure, positive spatial dependence in the
residuals vanishes (Fig. 6.9), although now there is some slight negative autocorre-
lation in the residuals at short distances. Also, note that the SEs increase and that the
elevation effect is only weakly significant (Fig. 6.10).

6.3.4.6 GLS and Mixed Models

GLS and spatially explicit mixed models are difficult to implement for non-normal
response data. For normal response data, the nlme package can accommodate
spatial correlation structures in the model residuals (sometimes referred to as “R-
side” correlation structures) or in the random effects (sometimes referred to as “G-
side” correlation structures) (Littell et al. 2006).

Given the hierarchical structure of the data, we can fit spatial mixed models where
spatial correlation is calculated within transects or across the entire region. The
glmmPQL function in MASS package can be used for GLS and spatial mixed models.

Elevation Elevation2

GLS

Multi−level

CAR

Autocovariate

Eigenvector

GAM

Trend surface

Sub−sampling

Standard

0 10 20
Estimate (95% CI)

−10.0 −7.5 −5.0 −2.5 0.0 2.5

Fig. 6.10 Estimates of elevation relationships based on the spatial models considered
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However, this approach uses penalized “quasi-likelihood” and has been shown to
have poor properties (Rousset and Ferdy 2014). Because maximum likelihood is not
used, we cannot use model selection approaches with this function. Nonetheless, we
can still estimate environmental relationships that account for spatial dependence.
Here, we fit an exponential correlation function within transects, by identifying
transect as a random effect and using the corExp command:

> library(MASS)
> library(nlme)
> VATH.pql <- glmmPQL(VATH ~ elev þ I(elev^2), random = ~1|TRANSECT,

correlation = corExp(form = ~ EASTING þ
NORTHING), family = "binomial", data = point.data)

A similar model can be fit that considers spatial dependence throughout the
region (not just within transects). This model takes considerable time to run, but
we illustrate it as an example. To do so, we create an observation-level factor. This
factor is then fit into the model as a random effect (Dormann et al. 2007).

> GROUP <- factor(rep("obs", nrow(point.data)))

> VATH.gls <- glmmPQL(VATH ~ elev þ I(elev^2), random = ~1|GROUP,
correlation = corExp(form = ~ EASTING þ NORTHING),
family = "binomial", data = point.data)

Penalized quasi-likelihood has some limitations, including potential bias in
estimating random and fixed effects, as well as an inability to use model selection.
A recent development that fits similar models without use of penalized quasi-
likelihood may overcome some of these limitations (Rousset and Ferdy 2014). The
spaMM package uses maximum likelihood to estimate a spatial GLMMwith Laplace
approximation. A similar formulation to that above can be fit with this package using
the corrHLfit function:

> library(spaMM)
> VATH.spamm.ml <- corrHLfit(VATH ~ elev þ I(elev^2) þ
Matern(1|EASTINGþNORTHING),
HLmethod = "ML", data = point.data, family = binomial(), ranFix =
list(nu=0.5)))

In this function, we specify a general Matérn spatial correlation structure. The
negative exponential function used above is a specific form of a Matérn correlation
structure, which in this case is called by setting nu ¼ 0.5 in the randFix
statement (see Chap. 5). Overall, this model provides similar estimates and results
to the gls model in this situation. For both, spatial autocorrelation is not removed in
the residuals when fitting the spatial correlation function across the entire region
(Fig. 6.9). However, when only fitting the function within transects with the pql
model, we find that spatial autocorrelation is removed in the residuals.
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6.4 Next Steps and Advanced Issues

6.4.1 General Bayesian Models for Spatial Dependence

Proper accounting for spatial dependence in non-normal data can be difficult. In this
chapter, we have focused on approaches that aim to address this issue in a variety of
ways, but each of these approaches has some limitations. Bayesian models that
capture spatial dependence provide a flexible means to accommodate spatial depen-
dence. The INLA package provides one straightforward approach to do so, but
INLA is limited to only certain types of regression models. More flexibility can be
achieved through modeling spatial dependence using the bugs language (via
Winbugs or Jags) (Kery and Royle 2016). In these approaches, either CAR/SAR
types of models can be fit or GLS and mixed model-like formulations can be fit. This
is often accomplished through the hierarchical formulation of spatial dependence
coming from a multivariate normal distribution. These types of models are often
thought to be useful for accounting for spatial dependence, although they can be
challenging to fit (Beale et al. 2010).

6.4.2 Detection Errors and Spatial Dependence

Throughout this chapter, we have ignored the problem of sampling error, such as
imperfect detection of species, to focus more simply on the issue of accounting for
spatial autocorrelation. However, observation errors are common in data sets and
these errors frequently need to be accounted for (MacKenzie et al. 2002). Several
models exist for accounting for imperfect detection, both in terms of false positive
and false negative errors (Miller et al. 2011). False negative errors are more
common, where a species or individual occurs in an area but we fail to detect
it. Occupancy, N-mixture, and distance sampling models are common approaches
to account for these issues (Kery and Royle 2016). False positive errors occur when
we misidentify species: we record that a species occurs in an area when in fact it
does not. False positive errors are more difficult to account for, but some models
exist that do so (Miller et al. 2011). We do not focus on these models in this book,
largely because there have been several excellent books that illustrate these models,
including their implementation in R (Royle and Dorazio 2008; Kery and Royle
2016).

There has been recent interest in extending these models to account for spatial
autocorrelation (Hines et al. 2010; Johnson et al. 2013). Initial attempts used
autocovariates like those shown here to account for spatial dependence (Royle and
Dorazio 2008). More recently, geostatistical models have been developed as well
(Johnson et al. 2013; Broms et al. 2014). Most of these models require customized
code and implementation with Winbugs or Jags interfaced through the use of R
(Carroll and Johnson 2008; Rota et al. 2011). However, some specialized R
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packages can also accommodate spatial dependence in this context. The hSDM and
stocc packages provide occupancy implementations that can accommodate spatial
dependence (Johnson et al. 2013).

6.5 Conclusions

Tobler’s first law of geography emphasizes that spatial dependence is common in
nature. Given that ignoring this fact can lead to spurious inferences (Bivand 1980;
Legendre 1993), accounting for spatial dependence in ecological data is often
needed. Doing so, however, can be challenging. Here, we illustrate a variety of
approaches to accounting for spatial dependence, contrasting their utility when using
binary response data. In this case, trend surface and related environmental filtering
(GAMs, eigenvector mapping) did not remove the spatial dependence in the resid-
uals. CAR models also did not remove the spatial dependence, presumably because
of the small neighborhood considered. Autocovariate and multilevel models did
remove spatial dependence in the residuals by appropriately capturing the spatial
scale of dependence in the data. Similar to Beale et al. (2010) and Dormann et al.
(2007), we find that autocovariate models tended to shrink the effects of the
environment relative to other approaches. In general, we recommend the use of
mixed models and CAR models that can account for local spatial dependence and
adjust uncertainty (SEs/CIs) of environmental relationships. This example illustrates
that appropriately capturing the scale of spatial dependence in model structure is
important for well-specified spatial models.

Throughout this discussion, we have used geographic coordinates and distances
to make inferences about spatial dependence and adjust for this issue in understand-
ing environmental relationships. Yet in many situations, effective distances that
capture the complexity of the environment (e.g., shopping malls as barriers to
organism movement and resource acquisition) may be more relevant. Spatial
weights matrices can capture such complexities when warranted (Dray et al.
2006). Ver Hoef et al. (2018) also emphasized how spatial neighborhoods used in
autoregressive models capture similar ideas to the use of network modeling in
connectivity assessments (see Chap. 9). This is an interesting and important linkage
that we expect will receive more attention in the coming years.

Care should be taken when applying spatial models, particularly for non-normal
response variables. There is ongoing debate regarding the utility of different model-
ing approaches to account for spatial dependence (Dormann et al. 2007; Betts et al.
2009; Dormann 2009). In addition, while several lines of evidence suggest that
spatial autocorrelation is problematic for conventional regression modeling, counter
examples have also been emphasized (Diniz et al. 2003; Hawkins et al. 2007).
Further advances in this area will no doubt provide a useful set of tools for spatial
ecologists and conservation biologists alike.
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