
Chapter 5
Spatial Dependence and Autocorrelation

5.1 Introduction

Spatial patterns are omnipresent in both environmental and ecological data (Wagner
and Fortin 2005). In Chap. 4, we focused on point patterns to characterize the degree
and spatial scale of aggregation or regular dispersion based on the x–y coordinates of
point events (e.g., tree locations, nest locations). In Chap. 5, we are interested in
interpreting spatial patterns of quantitative measures taken from sampling the
environment.

The spatial analysis of such continuous variables falls under the realm of spatial
statistics, traditionally aimed at quantifying spatial pattern and its statistical signif-
icance, and geostatistics, traditionally aimed at quantifying spatial variance and
using this information to spatially interpolate data (Oliver andWebster 1991; Cressie
1993; Haining 2003; Dale and Fortin 2014). Spatial statistics can identify the spatial
scale of patterns (i.e., the characteristic scale(s); Chap. 2). These approaches largely
focus on quantifying and interpreting spatial dependence, or the similarity of a
variable as a function of spatial location and/or geographic distance.

Tobler’s first law of geography lies at the foundation of these issues, where
“everything is related to everything else, but near things are more related than distant
things” (Tobler 1970). To operationalize this fundamental idea, spatial statistics and
geostatistics estimate spatial variance or covariance/correlation as a function of
geographic distance. Tobler’s law implies that at close distances, covariance or
correlation of measurements should be high, yet as distances increase, the covariance
or correlation should decline.

Spatial dependence can suggest key processes driving ecological patterns as a
function of scale, such as spatial interactions among organisms as well as organism
responses to environmental gradients that contain spatial dependence (Wagner and
Fortin 2005) (Fig. 5.1). Yet spatial dependence can also be a nuisance for statistical
inferences because data containing spatial dependence do not fulfill the common
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statistical assumption of independence assumed in many traditional statistics
(Legendre 1993).

Here, our goals are to provide the key concepts needed to: (1) estimate the degree
of spatial autocorrelation in data and potential spatial scale of the pattern; (2) under-
stand how the estimated spatial variance can be used to interpolate and simulate
spatial patterns using kriging and related approaches; and (3) identify the character-
istic spatial scale(s) in the data using multiscale analysis (e.g., wavelet and spectral
decomposition). We illustrate these concepts by extending our example from
Chap. 4 on Opuntia cactus.

5.2 Key Concepts and Approaches

5.2.1 The Causes of Spatial Dependence

The terms spatial dependence and spatial autocorrelation are often used inter-
changeably, yet each term has a subtle different meaning based on why similarity
of measurements in space occur (Table 5.1). To understand these differences, it is
useful to make the distinction of whether spatial pattern is driven by endogeneous or
exogeneous mechanisms (Bolker 2003). Endogeneous mechanisms are those that
directly occur from the organism or processes being considered, which result in
spatial pattern. Some common examples include localized dispersal generating
spatial clustering of organisms, or social or grouping behavior (e.g., schooling fish
or herds of ungulates). Exogeneous mechanisms, in contrast, are those that occur
outside of the organism or process being measured, such as spatial aggregation of
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Fig. 5.1 The problem of
spatial dependence. (a)
When considering the
environment across space,
environmental measures
such as elevation or canopy
cover tend to be more
similar at close locations and
similarity declines with
distance. (b) When
sampling these gradients,
we can interpret this spatial
dependence based on lag
distances between
measurement locations.
Shown are three lag
distances (d ¼ 1, 3, 5)
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resources or environmental gradients used by the organism of interest, which is
sometimes referred to as “indirect” mechanisms and induced spatial dependence
(Peres-Neto and Legendre 2010). In this context, spatial dependence is often con-
sidered a broad term for statistical spatial covariance that can be driven by both
exogenous and endogenous processes. Note that this has also been referred to as
spatial legacy (Peres-Neto and Legendre 2010). In contrast, spatial autocorrelation is
sometimes considered as a certain type of spatial dependence that is driven by
endogenous processes alone (Dale and Fortin 2014).

5.2.2 Why Spatial Dependence Matters

Given that spatial dependence is widespread in nature, why might we care? There are
several answers to this question. First, there are practical reasons: when spatial
dependence occurs, sampling locations within the range of dependence are no longer
independent from each other. This issue is particularly troublesome, given that many
common statistical tests assume that samples are independent. For instance, in a
linear regression model, we often write:

Table 5.1 Common terms for spatial dependence in ecology

Term Description

Anisotropy When data have properties that are direction-dependent. Contrast to isotropy.

Correlogram A plot of autocorrelation as a function of lag distance.

Endogenous
process

A process that directly arises from the organism or response variable being
considered, which results in patterns of spatial dependence.

Exogeneous
process

A process that arises from outside of the organism or response variable being
measured, such as spatial aggregation of resources or environmental gradients
used by the organism of interest. Sometimes referred to as induced spatial
dependence.

Isotropy When data are uniform in all directions, which is frequently assumed in the
analysis of spatial dependence.

Kriging A method of interpolation for which the interpolated values are modeled via
spatial covariance functions derived from variograms.

Scalogram A plot of the wavelet variance as a function of a scaling factor related to
distance.

Stationarity When spatial pattern does not change over space or time (i.e., there is no trend in
spatial dependence), which is frequently assumed in the analysis of spatial
dependence.

Spatial
autocorrelation

In a narrow sense, spatial dependence that arises from endogeneous processes.

Spatial
dependence

Similarity in a response variable as a function of spatial location/distance, which
can be driven by endogeneous or exogeneous processes.

Variogram A plot of the spatial covariance as a function of lag distance. Different quantities
are sometimes plotted, with the most common being semivariance.
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yi ¼ αþ βxi þ εi, ð5:1Þ

where y is our response variable at location i, α is the intercept, β is the deterministic
slope of the relationship of x with y, and ε is the error term. Where is independence
assumed? In the error term of the model, we assume that errors are normally
distributed with a mean of zero and a variance, σ2, which is assumed to be iid—
independent and identically distributed. This assumption means that each residual
i (i.e., the difference between the observed and predicted value for i) is not dependent
on other residuals and each comes from the same underlying distribution (see
Chap. 6 for more details). Consequently, the problem of spatial dependence arises
in our assumptions of the error in the model.

What is the problem if we violate this assumption? When spatial dependence
occurs in our data and we ignore it, it often leads to type I error, where we infer
significant patterns in the data that may in fact not exist. This is in contrast to a type II
error, where we fail to conclude a significant pattern occurs when in fact exists. The
issue of type I error arises because we are implicitly assuming that we have a larger
sample size (and thus greater degrees of freedom) than we actually do, sometimes
referred to a pseudo-replication (Hurlbert 1984). This assumption leads to artificially
small estimates of uncertainty (or artificially high precision), such as standard errors
(SEs) or confidence intervals (CIs) for parameter estimates, such as the SE of β in
Eq. (5.1). Spatial dependence is thus thought to primarily bias our interpretation of
the precision, not point estimates (e.g., we might adequately estimate β but not the
SE or CI of β). Consequently, accounting for spatial dependence in statistical
models, such as linear regression, may be necessary in some cases (see Chap. 6
for examples on how to do so). Alternatively, by identifying the scale(s) at which
spatial dependence occurs, we may better design investigations to minimize prob-
lems of spatial dependence (Oliver and Webster 1991), such as spacing sampling
locations at distances (i.e., lag distances) greater than the expected range of spatial
dependence in the data.

The second reason why we might care about spatial dependence is that describing
spatial dependence in our data may provide insights toward understanding key
biological processes that generate the spatial patterns we are observing. For instance,
when spatial dependence arises, is this pattern revealing the scale of social behavior,
environmental variation in key resources, or dispersal (Brown et al. 1995; Koenig
1998; Fletcher and Sieving 2010; Cohen et al. 2016)? While quantifying spatial
dependence alone may not provide rigorous answers to such questions, it may
generate hypotheses or further predictions to help isolate the causes of spatial
dependence.

Finally, spatial dependence can alter conclusions regarding conservation threats
for many species and conservation strategies (Carroll and Pearson 2000; Landeiro
and Magnusson 2011; Yoo and Ready 2016). For example, Koenig and Liebhold
(2016) illustrated that there has been increasing spatial synchrony (one form of
spatial dependence; see Chap. 10) in wintering birds across North America with
warming temperatures over a 50 year time period. They emphasized that such
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synchrony may have detrimental effects of population persistence through a reduc-
tion in demographic rescue (i.e., when dispersal reduces the probability of extinction
of local populations).

5.2.3 Quantifying Spatial Dependence

There is a variety of ways to quantify spatial dependence. Here, we focus on the use
of correlograms and semivariograms, which are complementary approaches fre-
quently used in ecology and spatial statistics.

5.2.3.1 Correlograms

To understand how spatial statistics estimate spatial autocorrelation, it is useful to
recall formulas for correlations, variances, and covariances. The spatial statistics we
present emerge clearly from these classical statistics.

Recall the formula for a simple Pearson linear correlation, r, for two variables, z1
and z2:

rðz1, z2Þ ¼
Pn

i¼1
ðz1i � �z1Þðz2i � �z2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðz1i � �z1Þ2

Pn

i¼1
ðz2i � �z2Þ2

s ¼ Covðz1, z2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðz1ÞVarðz2Þ

p , ð5:2Þ

where r(z1, z2) ranges from �1 to 1. The key is to extend this idea over space.
Moran’s I test statistic extends the standard Pearson correlation over space

(increasing lag distances) to estimate the degree of spatial autocorrelation for a
quantitative variable, z, as:

I ¼ n

W

Pn
i¼1

Pn
j¼1 wij

�
zi � �z

��
z j � �z

�

Pn
i¼1

�
zi � �z

�2 , ð5:3Þ

whereW is a weight matrix that describes the dependency between locations i and j.
Typically, this is a neighborhood indicator matrix, where wij ¼ 1 if i and j are
adjacent and 0 otherwise. Note this matrix is often row standardized, such that
∑jwij ¼ 1. This statistic can also be calculated for different distance categories, or
bins, to interpret spatial dependence as a function of distance as:
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I dð Þ ¼ n

W dð Þ

Pn
i¼1
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j¼1 wij dð Þ�zi � �z

��
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�

Pn
i¼1

�
zi � �z

�2 : ð5:4Þ

Notice how similar Moran’s I and Pearson correlation coefficients are: in essence
Moran’s I(d ) is a Pearson’s coefficient computed for one variable against itself
according to increasing distances among sampling locations (d ) (Fig. 5.1). The
plot of I(d ) as a function of distance class is called a spatial correlogram: its shape
helps to interpret how the spatial pattern varies with distance and to estimate the
spatial scale of the pattern. When z is normally distributed and that there are enough
pairs of sampling locations per distance class (usually more than 20 pairs), the I(d )
will vary between +1 (where positive values indicate positive spatial autocorrelation)
and �1 (where negative values indicate negative spatial autocorrelation), while
values close to 0 indicates the absence of spatial pattern. Thus, Moran’s I behaves
as a Pearson correlation coefficient, and it is frequently used by ecologists because of
its intuitive interpretation. Yet, when I(d ) is computed with less than 20 pairs, its
value can be greater than 1 or smaller than �1. To avoid this known “boundary” or
“edge effect” (Chap. 4), correlograms are often computed only up ½ or 2=3 of the
maximum distance between the sampling locations to ensure adequate sample size
for each distance bin (Dale and Fortin 2014). Note that Eq. (5.3) provides a common,
global test for spatial dependence, while Eq. (5.4) is typically only used for the
generation of correlograms. We focus on the use of correlograms because they
provide much richer and intuitive information regarding spatial dependence.

Moran’s I is an isotropic (i.e., pooled in all directions) averaged value of spatial
autocorrelation per distance class for the entire extent of a study area. To detect the
potential for anisotropy (i.e., spatial autocorrelation that varies in different direc-
tions) in the spatial pattern, the estimation of spatial autocorrelation can be computed
using both distance and angle classes (i.e., different directions).

As Moran’s I is a dimensionless number, it can be compared across different
variables. One limitation of Moran’s I is that it is sensitive to outliers (e.g., one or a
few points can generate significant, erroneous autocorrelation). This is why some
researchers transform the data (e.g., log-transformation of the response variable) to
reduce the impacts of outliers. Because of this sensitivity, a similar statistic, Geary’s
c, has been developed. Geary’s c values range from 0 (positive spatial autocorrela-
tion) to 2 (negative spatial autocorrelation) and 1 indicates the absence of spatial
autocorrelation. Yet Geary’s c is also somewhat sensitive to outliers. As Geary’s c is
in essence the standardized equivalent of the semivariance presented below, we will
not focus on Geary’s here (but see Dale and Fortin 2014 for details).

Significance for each Moran’s I coefficient can be based on Monte Carlo ran-
domizations or through normal approximations. If significance is assessed using
normal approximations then the assumption of stationarity needs to be valid.
Stationarity is a term that describes a situation where the process that generated
the spatial pattern does not vary in across a study area (e.g., mean and variance are
similar throughout the region of interest) (Haining 2003). As the same data are used
to compute I(d ) at increasing distances, the I(d ) values are not independent. This is
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the same statistical issue encountered previously regarding spatial point pattern
analysis (Chap. 4), which requires the use of multiple comparison corrections.
Therefore, a Bonferroni adjustment correction (or something similar) should be
applied that accounts for the number of distance classes computed, k, to adjust the
significance level (Brunsdon and Comber 2015). For instance, using a Bonferroni
correction, for a I(d ) to be statistically significant, its probability needs to be smaller
or equal to 0.05/k (e.g., for k¼ 15, the adjusted probability to be significant based on
a Bonferroni correction is 0.05/25 ¼ 0.003).

5.2.3.2 Variograms

Geostatistics comes at the same goal of estimating spatial dependency through a
slightly different means (Cressie 1993). Instead of starting with a correlation coef-
ficient (i.e., standardized covariance) such as the Moran’s I, geostatistics stem from
the sample variance and covariance instead:

Var zð Þ ¼ 1
n� 1

Xn

i¼1

�
zi � �z

�2
, ð5:5Þ

Cov z1; z2ð Þ ¼ 1
n� 1

Xn

i¼1

�
z1, i � �z1

��
z2, i � �z2

�
: ð5:6Þ

The semivariance, γ, is calculated as:

γ dð Þ ¼ 1
2n dð Þ

Xn dð Þ

i

��
z xið Þ � z xi þ dð Þ�2, ð5:7Þ

where z is the value of the variable at location xi, and n(d ) is the number of pairs of
sampling locations at distance class d. Note the similarities with the variance
equation.

The term “semi” comes from the fact that we divide by 2 (it helps to stabilize the
statistical properties of the metric). Again, plotting γ as a function of d produces a
semivariogram, often simply referred to as a variogram. Note that semivariance is on
the same units as the data (e.g., km). Unlike Moran’s I, but like variance, γ(d ) �
0 and there is no upper bound. For interpreting the shape of the semivariogram, small
values (closest to 0) indicate strong spatial covariance (i.e., strong spatial pattern),
whereas larger values indicate less spatial covariance (i.e., weak or no spatial
pattern). It is a rule of thumb to only interpret 2=3 of the total distance (extent)
considered, similar to that for Moran’s I (Cressie 1993; Dale and Fortin 2014); for
larger distances, the n(d ) is typically too small for reliable inference.

Semivariance computed from observed data are called “empirical,” “experimen-
tal,” or “observed” variograms. Empirical variograms simply plot the semivariances
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as a function of distance class, d (the spatial lag distance). Theoretical (or model-
based) variograms can be fitted to an empirical variogram to spatially interpolate
data at unsampled locations and to formally estimate the spatial scale of the pattern.
In the presence of spatial pattern, three parameters relevant to interpreting the
semivariance can be estimated from the fitted theoretical variogram: the range, sill,
and nugget (Fig. 5.2). The nugget is the y-intercept at the origin that is greater than
zero. It explains the variability in the data that occurs at very short distances, which
could occur from measurement errors, sampling bias, or other random factors. The
range indicates the distance up which the spatial dependence occurs, such that
beyond the range, the data are no longer spatially autocorrelated. The sill is the
value of semivariance beyond the estimated range, i.e., the variability that cannot be
attributed to spatial autocorrelation. Note that some theoretical models assume that
there is no sill (e.g., an exponential model; Fig. 5.3) while others assume that there is
no nugget (i.e., the intercept ¼ 0) (see Dale and Fortin 2014). If our interest is in
spatial interpolation (which historically was the goal of variogram analysis and

Sill

Range d

N
ug

ge
t

Pa
rti

al
 s

ill

γFig. 5.2 Empirical and
theoretical variograms,
including the parameters of
the variogram model. The
empirical variogram shown
as black points/line, while
the theoretical variogram
shown as a curved,
asymptotic gray line

Spherical Exponential Gaussian Matérn

Lag distance

Se
m

iv
ar

ia
nc

e 0.3
0.5 1

Fig. 5.3 Some common theoretical variogram models. For the Matérn variogram, different levels
of kappa, a parameter in this model, are shown (note that when kappa ¼ 0.5, the Matérn variogram
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geostatistics), we need to estimate parameters of model-based semivariograms and
determine their relative fit to the data, using, for example, model-selection
approaches (Burnham and Anderson 1998).

5.2.3.3 Kriging

To spatially interpolate across a region (e.g., make a predictive map of the response
variable) based on the degree of spatial dependence, kriging is often used. Kriging is
essentially a weighted moving average technique that uses estimates from a
semivariogram (range, nugget, and sill) to perform spatial interpolation. More
specifically, it is a set of linear regressions that determine the best combination of
weights to interpolate across a region of interest by minimizing the variance from the
spatial covariance in the data, where weights are derived from the estimates from the
variogram (Dale and Fortin 2014; Oliver and Webster 2014).

The general form of the kriging model can be described as (Brunsdon and
Comber 2015):

z ¼ f xið Þ þ v xið Þ þ εi, ð5:8Þ

where f(xi) is a deterministic trend function (e.g., the response is non-stationary and
may change with latitude or longitude), v(xi) describes the spatial dependence based
on variogram parameters, and εi is the error. When there is no deterministic trend,
ordinary kriging is used to interpolate based solely on the variogram parameters. In
contrast, universal kriging assumes a large-scale, deterministic trend in the data, f(xi)
(non-stationarity). This component is sometimes referred to as trend-surface analy-
sis, which will be discussed in Chap. 6. Mathematical details about the different
types of kriging algorithms can be found in Cressie (1993) and Haining (2003).
Oliver and Webster (2014) provided a useful, practical tutorial on kriging.

In general, kriging is preferred for spatial interpolation in contrast to other
simpler approaches. For example, a common, intuitive approach is inverse distance
weighting (IDW) interpolation. IDW interpolates based on estimates that provide
greater weight from nearby locations rather than distant ones. However, unlike
kriging, this approach does not provide an objective means to determine the mag-
nitude of distance-based weighting or the extent (maximum distance/limiting radius)
for weighting. IDW also cannot provide SEs or other measures of uncertainty for
predictions. Kriging, in contrast, has been shown to provide the best linear unbiased
prediction for unsampled locations and can provide SEs for predictions. Reliable use
of kriging requires proper estimation of the variogram model (Oliver and Webster
2014).
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5.2.3.4 Some Extensions

For binary data, semivariance can be calculated with indicator functions by replacing
z(xi) in Eq. (5.7) with an indicator function (Rossi et al. 1992). Monte Carlo
randomizations are typically used to infer significance in such situations.

Both Moran’s I(d ) and the semivariance γ function can be extended to address
spatial correlations between two variables, termed “cross-correlograms” and “cross-
semivariograms,” respectively (Goovaerts 1994; Wackernagel 2003). For instance, a
cross-variogram between variables u and v can be defined as:

γuv dð Þ ¼ 1
2n dð Þ

Xn dð Þ

i

��
zu xið Þ � zu xi þ dð Þ�� zv xið Þ � zv xi þ dð Þð �, ð5:9Þ

Semivariance, like Moran’s I, is a “global” statistic. These models have also been
extended to estimate variation in local intensity of spatial dependencies, referred to
as LISA, or Local Indicators of Spatial Association (Anselin 1995; Boots 2002).
These local measures are sometimes used to identify hotspots of intensity across
landscapes (Nelson and Boots 2008).

5.2.3.5 Statistical Nuisance

Finally, spatial dependence can often be more of a statistical nuisance issue for
ecological and conservation problems. In these cases, we might want to adjust
conventional analyses (e.g., linear regression) to deal with dependence. This can
be done in a variety of ways (Keitt et al. 2002; Beale et al. 2010). For example,
conventional generalized linear models (GLMs) have been extended to adjust for
spatial dependence by directly modeling the covariance of the residuals (generalized
least square regression, GLS). Another common practice is to assess whether or not
spatial dependence remains after a conventional analysis. This is frequently done by
calculating Moran’s I on the residuals from a model (Dormann et al. 2007). If there is
evidence for autocorrelation of the residuals, then the conventional analysis should
be replaced with one that formally adjusts for spatial dependence. We will consider
these approaches in detail in Chap. 6.

5.3 Examples in R

5.3.1 Packages in R

There are a few libraries to choose from for quantifying spatial dependence. We will
focus on using geoR (Ribeiro and Diggle 2016), spdep (Bivand and Piras 2015),
gstat (Pebesma 2004), pgirmess (Giraudoux 2018), and ncf (Bjørnstad and
Falck 2001). Spatial (Venables and Ripley 2002) allows for limited geostatistical
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analysis (empirical correlograms and variograms), which comes with the VR Bundle
when installing R. spdep has more options for correlograms and other spatial features
(Bivand 2006). geoR provides a model-based variogram analysis based on maximum
likelihood, while gstat has several geostatistics features, including the use of cross-
variograms. We will also use the ncf package, which can fit spline (smoothed/non-
parametric) correlograms and can provide a bootstrap approach for assessing statistical
significance. We will implement kriging in with geoR and gstat.

5.3.2 The Data

As an example of interpreting spatial dependence, we return to the system consid-
ered in Chap. 4: old fields and prickly pear cactus (Opuntia humifusa) at the Ordway-
Swisher Biological Station. In Chap. 4, we focused on data of O. humifusa locations
in a 50 � 50 m plot, which were mapped using a high-resolution GPS (~30 cm
error). Here, we focus on data from the surrounding matrix: samples of vegetation
height taken systematically through the plot across a grid of sampling points spaced
2-m apart (Fig. 5.4) as part of a larger study on habitat loss and fragmentation
(Fletcher et al. 2018). This information is relevant to movement of a pest insect
considered in Chap. 4, Chelinidea vittiger (Schooley and Wiens 2004; Fletcher et al.
2014; Acevedo and Fletcher 2017) and we can use these measurements to first
interpret spatial dependence of vegetation in the matrix and then create a map of
vegetation height (via kriging) for understanding connectivity between O. humifusa
patches (connectivity is covered in Chap. 9).

Our goals are to first interpret spatial dependence with the use of Moran’s I and
correlograms. We then use variograms to interpret the scale of spatial dependence
and illustrate how model-based variograms can be used in kriging. Next, we
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Fig. 5.4 A map of
vegetation height
measurements (cm) taken
every 2 m on the plot
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illustrate how kriging-related approaches can be used for generating spatial maps,
similar in concept to what we illustrated in Chap. 3 with neutral landscape models.
We end by introducing approaches to interpret multiscale spatial dependence.

5.3.3 Correlograms

We first import and visualize our data ('cactus_matrix.csv'). We will use a
couple of different packages for calculating Moran’s I and correlograms, contrasting
what each can provide. We contrast these options because each uses different
methods to infer statistical significance of potential spatial dependence, each varies
in the complexity of coding required, and each can be helpful under different
circumstances.

# load the matrix data into R:
> matrix <- read.csv(cactus_matrix.csv', header = T)
> head(matrix, 3)

##
x y Height
1 0 0 35
2 0 2 65
3 0 4 75

With the data loaded, we can plot the data in several ways to interpret it. For
example, we plot variation in vegetation height (Height) based on x–y coordinates,
using a gray scale (with 12 breaks using the cut function) to fill points (using
pch¼21, which allows the fill of points to differ) to visualize variation in the matrix
(Fig. 5.4).

> plot(matrix[,"y"] ~ matrix[,"x"],
pch =21, bg = gray.colors(12)[cut(matrix[,3], breaks = 12)])

In correlogram (and variogram) analyses, we should truncate the range of lag
distances at which we consider spatial dependence to approximately ½ to 2=3 the total
distance observed. We can determine this distance by creating a pairwise distance
matrix from the sampling locations. Because of the small spatial scale at which this
plot occurs, we do not need to worry about projections for this calculation.

#calculate a distance matrix
> coords <- cbind(matrix$x, matrix$y)
> colnames(coords) <- c("x", "y")
> distmat <- as.matrix(dist(coords))

#maximum distance to consider in correlogram/variogram
> maxdist <- 2/3 * max(distmat)
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To interpret spatial dependence with Moran’s I, we start with the simplest
approach and package and work up to less simple, but more flexible approaches.
The first is the pgirmess package, which is a wrapper package for the spdep
package. The spdep package has several useful spatial analysis functions, but it is
less user-friendly than some other common spatial packages. The pgirmess
package is more user-friendly in this way (but less flexible). We will use pgirmess
and then contrast it to the ncf and spdep packages for generating different types of
correlograms. In this package, we use the correlog function, specifying the
coordinates for each sample and the measurement (i.e., height). We also specify
that we want to use method ¼ “Moran” (this package can also calculate Geary’s
c), the number of distance classes to consider, and we ask for the test to be two-sided
(i.e., testing for both the potential of positive and negative spatial dependence).

> library(pgirmess)

#correlog from pgirmess
> correlog.pgirmess <- correlog(coords, matrix$Height, method =
"Moran", nbclass = 14, alternative = “two.sided”)

#summary
> head(round(correlog.pgirmess, 2))

##
dist.class coef p.value n
[1,] 4.45 0.19 0.00 21692
[2,] 9.36 0.08 0.00 37708
[3,] 14.27 �0.01 0.22 51132
[4,] 19.18 �0.04 0.00 55500
[5,] 24.09 �0.02 0.00 61012
[6,] 28.99 �0.01 0.12 58540

In the above code, we find that the correlog function creates a matrix that contains
each distance class considered (with dist.class reflecting the center of each bin),
the Moran coefficient for that distance, the p-value, and the sample size (number of pairs
of locations used) for that distance. This package uses normal approximations to test for
the significance of spatial autocorrelation (i.e., it assumes the response variable is
normally distributed and uses asymptotic theory to derive p-values). This approximation
can be fast and relatively easy to implement, but it makes some key assumptions (e.g.,
normality in the residuals of the response data). We can then plot the correlogram

#correlogram plot
> plot(correlog.pgirmess)
> abline(h = 0)

The plot provides a visualization of Moran’s I as a function of distance, with
distances of significant spatial dependence shown in red (Fig. 5.5a is a generalized plot
that contrasts this approach with those described below). This analysis suggests that
positive spatial dependence is significant out to approximately 10 m, with some
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evidence of negative spatial dependence at moderate distances. Note that this approach
defaults to calculating Moran’s I for distances up to the maximum distance in the
observed data; however, we should ignore distances beyond ½ to 2=3 of the maximum
distance.

An alternative approach is to use the ncf package. This package can provide
non-parametric tests of significance for correlograms. It can also provide spline
correlograms (Bjørnstad and Falck 2001). In spline correlograms, Moran’s I is
estimated with cubic splines that provide a smooth relationship across a variable
of interest (more on this in Chap. 6) such that binning of distances is not required.
This aspect is one benefit of using this package. This package has two approaches for
interpreting potential significance of the correlogram. The first is a bootstrap
approach (Efron 1979) to generate pointwise confidence intervals for the
correlogram, such that evidence for spatial dependence is inferred when the confi-
dence intervals do not overlap zero. Bootstrapping is a resampling technique used
for inferring uncertainty in sample estimates and/or statistical significance in data.
Bootstrapping involves resampling the data with replacement many times, where for
each sample the variable of interest is calculated (in this case, Moran’s I ). The
distribution of values of the estimate can then be used to approximate confidence
intervals. A second approach ncf uses is the use of Monte Carlo permutations to
generate a null envelope for spatial dependence, analogous to what we used in
Chap. 4 for point patterns.

To use the ncf package, we need to either detach the pgrimess package or call
the relevant function in ncf differently. This is because one of the functions we will
use in the ncf package, correlog, has the same name as the one used above for
pgrimess. If we do not want to detach pgirmess we can call the function from
ncf as ncf::correlog.
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Fig. 5.5 (a) Contrasting distance-binned correlograms and (b) a spline correlogram. For (a), three
approaches taken from different R packages are shown. For (b), the bootstrap confidence envelopes
are shown. Pgrimess uses normal approximations to infer significance, ncf uses Monto Carlo
permutations, while spdep is the most flexible package and can use either normal approximations
or permutations to infer significance
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> library(ncf)

#correlogram with Monte Carlo test
> correlog.ncf <- ncf::correlog(x = matrix$x, y = matrix$y, z =
matrix$Height, increment = 5, resamp = 99)

> plot(correlog.ncf)
> abline(h = 0)

With this approach, we find similar evidence for spatial dependence based on the
Monte Carlo permutations (Fig. 5.5a). However, in this case we may interpret that
positive spatial dependence occurs at slightly greater distances than observed when
using normal approximations with pgrimess. Note that in this function, the entire
distance range is also considered although we should ignore distances beyond½ to 2=3

of the maximum distance for inferences.
We can contrast these results with the use of spline correlograms with the

spline.correlog function. We request a bootstrapping approach to infer sig-
nificance in this situation.

#spline correlogram with 95% pointwise bootstrap CIs
> spline.corr <- spline.correlog(x = matrix$x, y = matrix$y, z =
matrix$Height, xmax = maxdist, resamp = 100, type = "boot")

#plot with point-wise 95% CIs from bootstrap
> plot (spline.corr)

This correlogram suggests that the slight negative spatial dependence identified
with the above approaches at moderate distances is too weak to infer a statistical
pattern (i.e., the bootstrap confidence intervals overlap zero) (Fig. 5.5b).

Finally, we illustrate using the spdep package for correlograms. This package
provides greater flexibility in the development of correlograms than other packages.
For example, we can generate indicator correlograms for binary (0, 1) response data
(see above). With this package, we will first calculate a general Moran’s I that is
sometimes used as an overall test of spatial dependence in data (Bivand et al. 2013).
We then show how to create a customized correlogram using a similar approach.

To interpret spatial dependence with the spdep package, we must manually create
the spatial weights matrix,W, shown in Eqs. (5.3) and (5.4). Note that spdep actually
stores W in a list format rather than matrix format, because in many cases the former
can be more compact and take up less storage computationally. CalculatingW can be
accomplished using the knearneigh, the dnearneigh, or the cell2nb func-
tions. Here, we use the dnearneigh function, which creates a list, where each
element is a vector for the neighbor IDs for each sample. Neighbors are identified
based on distances specified with dnearneigh. The knearneigh finds the
k closest neighbors, which could vary in distance with some sampling designs,
while the cell2nb identifies data on regular grids, like that used here, but it is less
generalizable sowe do not focus on this function. Belowwe specify d1¼ 0 (minimum
distance) and d2 ¼ 3 (maximum distance), which with these data results in an eight-
neighbor function (i.e., queen’s rule) (Fig. 5.6).
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> library(spdep)

#make a neighborhood list:
> neigh <- dnearneigh(x = coords, d1 = 0, d2 = 3, longlat = F)

#plot the neighborhood
> plot(neigh, coordinates(coords))

To then calculate Moran’s I, we convert the neigh object to a spatial weights
list. As part of this procedure, we specify style¼'W', which means that we will
create a row-standardized W:

> wts <- nb2listw(neighbours = neigh, style = 'W', zero.policy = T)

With these spatial weights, we can now calculate Moran’s I. spdep allows for
inferring significance through normal approximations using moran.test (similar
to pgirmess) or through Monte Carlo permutations using moran.mc (similar to
ncf):

> mor.mc <- moran.mc(x = matrix$Height, listw = wts,
nsim = 999, zero.policy = T)

> mor.norm <- moran.test(x = matrix$Height, listw = wts,
randomisation = F, zero.policy = T)

> mor.mc

##
Monte-Carlo simulation of Moran I

data: matrix$Height
weights: wts
number of simulations + 1: 1000

statistic = 0.27366, observed rank = 1000, p-value = 0.001
alternative hypothesis: greater

> mor.norm

Fig. 5.6 Neighborhood
matrix used for calculating
Moran’s I from d ¼ 0–3.
This matrix identifies
neighbors based on an eight-
neighbor rule (Queen’s rule;
see Chap. 3)
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##
Moran I test under normality

data: matrix$Height
weights: wts

Moran I statistic standard deviate = 13.819, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance
0.2736595356 �0.0014814815 0.0003964261

In this case, both approaches yield identical estimates of Moran’s I (0.274) and
both provide a global test suggesting that spatial dependence is statistically
significant.

Now we take the above approach calculate Moran’s I for specific lag distance
categories, generate a permutation value for each category, and then put together for
a correlogram. We first create a data frame for storing the output and then provide a
for loop that repeats the above process for each lag distance.

#first, create a df for storing data
> correlog.sp <- data.frame(dist = seq(5, 0.5 * max(distmat), by
= 5), MoransI = NA, Null.LCL = NA, Null.UCL = NA, Pvalue = NA)

#Calculate Moran's I for lag distances
> for (i in 1:nrow(correlog.sp)){

d.start <- correlog.sp[i, "dist"] � 5
d.end <- correlog.sp[i, "dist"]
neigh <- dnearneigh(x = coords, d1 = d.start, d2 = d.end,
longlat = F)
wts <- nb2listw(neighbours = neigh, style = 'W', zero.policy
= T)
mor.i <- moran.mc(x = matrix$Height, listw = wts, nsim = 99,
zero.policy = T)

#summarize results from spdep
correlog.sp[i, "dist"] <- (d.end + d.start)/2
correlog.sp[i, "MoransI"] <- mor.i$statistic
correlog.sp[i, "Null.LCL"] <- quantile(mor.i$res, p = 0.025)
correlog.sp[i, "Null.UCL"] <- quantile(mor.i$res, p = 0.975)
correlog.sp[i, "Pvalue"] <- mor.i$p.value
}
> plot(y = correlog.sp$MoransI, x = correlog.sp$dist)
> abline(h = 0)
> lines(correlog.sp$dist, correlog.sp$Null.LCL, col = "red")
> lines(correlog.sp$dist, correlog.sp$Null.UCL, col = "red")

We have now seen several ways to calculate correlograms, each of which pro-
vides different benefits and limitations. In this case, the correlograms showed
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generally similar patterns (Fig. 5.6). The use of normal approximations to interpret
the significance of spatial autocorrelation (pgirmess and spdep packages) can be
helpful with large data sets, where Monte Carlo tests can prove computationally
expensive. However, Monte Carlo tests can be helpful when data are not normally
distributed. The ncf package provides a means to not resort to binning of lag
distances, which can be helpful and provides a straightforward bootstrapping pro-
cedure to infer significance. The spdep package allows great flexibility for calcu-
lating correlograms, but is less user-friendly.

5.3.4 Variograms

To illustrate empirical and model-based semivariograms, we use both the geoR and
gstat packages. We primarily focus on the geoR package because it enables
likelihood-based comparisons (e.g., AIC) between model-based variograms, which
is useful for identifying the best variogram model for inferences and interpolation
(Oliver and Webster 2014), and it provides an interesting Monte Carlo approach.
The gstat package provides more options for different types of model-based
variograms and can calculate cross-variograms so we briefly illustrate its use as
well. We first create a geoR object that consists of the x–y coordinates and the value
at each coordinate, which in this case is vegetation height. We refer to the measure-
ments at sampling locations as z.

#load packages
> library(geoR)
> library(gstat)

#create a geoR object
> geo.veg <- as.geodata(matrix)

The geoR package provides a useful scheme for visualizing the raw data:
plot(geo.veg) provides a four-panel plot. The first panel shows the sampling
locations, where the measurements, z (vegetation height in this example), are shown
as a color ramp, with low values being blue and high values red. The second and
third panels show z values as a function of x and y coordinates. These panels can help
for visually interpreting whether there is potential anisotropy in the data (direction-
ality or trend in z as a function of x–y locations). The final panel provides a histogram
(and density plot) of the z values.

We can calculate the empirical variogram for the data using the variog function
in the geoR package. We will set the maximum distance considered based on our
above code. Note that to calculate an empirical variogram, we bin lag distances.
geoR will automatically do that for us, but we can also manually define the break
points in the lag distance categories used for the semivariogram (Fig. 5.7):
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#Empirical semivariogram
> emp.geoR <- variog(geo.veg, max.dist = maxdist)
> plot(emp.geoR)

#standardize break points to a minimum 3-m lag distance
> emp.geoR <- variog(geo.veg, max.dist = maxdist,
breaks = c(seq(0, maxdist, by = 3)))

> plot(emp.geoR)

In gstat, we can create empirical variograms by first creating an object that
gstat can read (specifying the coordinates of the data) and then using the
variogram function in gstat:

> gstat.veg <- matrix
> coordinates(gstat.veg) <- ~x + y
> emp.gstat <- variogram(Height ~ 1, cutoff = maxdist, width =
3, gstat.veg)

> plot(emp.gstat)

Comparing the two packages illustrates that they provide essentially identical
empirical variograms.

The above variograms assumed isotropy—no directionality in spatial depen-
dence. We can subset our data based on direction to visually consider whether
there might be evidence for anisotropy in spatial dependence using the variog4
function in geoR or by adding the alpha argument to the variogram function in
gstat. In both cases, data are subset such that four varigrams are calculated for the
0�, 45�, 90�, 135� directions (Fig. 5.8a), where 0� covers the range from �22.5� to
22.5�, 45� covers 22.5� to 67.5�, etc.:
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Fig. 5.7 Empirical and
theoretical (exponential,
black dashed, and spherical,
gray solid, models)
variograms for interpreting
spatial dependence of
vegetation height. Also
shown are the 99% null
pointwise envelopes
(shaded region)
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#in geoR, variogram in each direction
> emp4.geoR <- variog4(geo.veg, max.dist = maxdist)
> plot(emp4.geoR)

#in gstat
> emp4.gstat <- variogram(Height ~ 1, cutoff = maxdist, alpha =
c(0, 45, 90, 135), gstat.veg)

> plot(emp4.gstat)

In this plot (Fig. 5.8b), strong differences in the empirical variograms would
suggest that anisotropy might be occurring in the data. Note, however, that to
calculate these directional variograms, geoR and gstat are subsetting the data
into four subsets, such that less data are used in each individual variogram. Conse-
quently, the directional variograms may bounce around more than the variogram
considered with all of the data. Why are only 0�, 45�, 90�, 135� considered? If
directions between 180� and 360� were considered, for example, it would result in
the same variogram patterns, because the calculation of the variogram is symmetric
(the squared term in Eq. (5.7); [z(xi) � z(xi + d )]2 ¼ [z(xi + d ) � z(xi)]

2).
We can fit theoretical variograms to the data using maximum likelihood tech-

niques with the likfit function in geoR and contrast different variogram models
using model selection criteria (e.g., Akaike’s Information Criterion, AIC) (Oliver
and Webster 2014). To do so, we must provide initial values for the partial sill (i.e.,
sill—nugget; Fig. 5.2) and the range, for which we can make an educated guess
based on the empirical variogram. To fit exponential and spherical variogram models
(Fig. 5.3):
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Fig. 5.8 Directional variography subsets the data to interpret variation in spatial dependence in
different directions. (a) 0�, 45�, 90�, and 135� are typically considered (with windows �22.5�).
Larger values (between 180� and 360�) provide the same patterns because the semivariance formula
is symmetric. (b) Directional variograms for vegetation height on the plot
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#exponential variogram
> mlexp <- likfit(geo.veg, cov.model = "exp", ini = c(700, 10))

#spherical variogram
> mlsph <- likfit(geo.veg, cov.model = "sph", ini = c(700, 10))
> summary(mlexp)

##
Summary of the parameter estimation
-----------------------------------
Estimation method: maximum likelihood

Parameters of the mean component (trend):
beta
43.0708

Parameters of the spatial component:
correlation function: exponential
(estimated) variance parameter sigmasq (partial sill) = 504.7
(estimated) cor. fct. parameter phi (range parameter) = 5.884
anisotropy parameters:
(fixed) anisotropy angle = 0 ( 0 degrees )
(fixed) anisotropy ratio = 1

Parameter of the error component:
(estimated) nugget = 732

Transformation parameter:
(fixed) Box-Cox parameter = 1 (no transformation)

Practical Range with cor=0.05 for asymptotic range: 17.62812

Maximised Likelihood:
log.L n.params AIC BIC
"-3298" "4" "6603" "6621"

non spatial model:
log.L n.params AIC BIC
"-3368" "2" "6739" "6748"

Call:
likfit(geodata = geoR.veg, ini.cov.pars = c(500, 15), cov.model = "exp")

> AIC(mlexp, mlsph)

##
df AIC
mlexp 4 6603.375
mlsph 4 6603.830
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The output from these models provides several key insights. For our purposes, we
will focus on two types of important output. First, for each model, the log-likelihood,
AIC and BIC (Bayesian Information Criterion) are provided for interpreting model
fit and model selection. These values are provided for the spatial model considered,
as well as a “non-spatial” model, which would assume a constant variance (i.e.,
variance does not change with lag distance). The output also provides estimates of
the range, nugget, and partial sill for the model under consideration. For some
theoretical variograms, the “practical range” is also provided. The practical range
uses an approximation (which varies, depending on the theoretical variogram model)
to determine the effective range distance when the variogram function shows a
smoothed asymptotic relationship to the sill (e.g., exponential models; Fig. 5.3).
For instance, in an exponential variogram it is typically defined as the distance where
the variance reaches 95% of the estimated sill. In this example, the exponential
variogram fits the data slightly better than the spherical variogram, based on AIC.
Both of these models fit the data substantially better than a non-spatial model.

We can fit an exponential variogram in gstat as:

> exp.gstat <- fit.variogram(emp.gstat, vgm("Exp"))

Note that while gstat does not implement model selection based on likelihood
techniques, it does provide a wider variety of model-based variograms that geoR.
These alternatives can be perused with the vgm() and show.vgm() functions.

Finally, we can overlay plots of the theoretical variograms with the empirical
variograms (Fig. 5.7):

> plot(emp.geoR)
> lines(mlexp, col = “blue”)
> lines(mlsph, col = “red”)

We can use model selection to contrast spatial and non-spatial models provided in
the output of the likfit function. Another useful approach is to determine confi-
dence envelopes of spatial randomness (analogous to envelopes calculated in
Chap. 4). Null envelopes can then be overlaid with the empirical and theoretical
variograms. In geoR, we can obtain null envelopes Monte Carlo permutations. The
code below executes 99 permutations, where vegetation height is shuffled among x–
y coordinates and plots the maximum and minimum values at each distance lag
relative to the empirical variogram:

> emp.env <- variog.mc.env(geo.veg, obj.var = emp.geoR)
> plot(emp, envelope = emp.env)
> lines(mlexp, col = “blue”)

These envelopes describe the variance as a function of lag distance under spatial
randomness, given the underlying data. Consequently, when our observed
variogram falls outside of this envelope, there is some signature of significant spatial
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dependence in the data. In this case, we observe that the variogram only falls outside
of the null envelope at distances<10 m, loosely similar to our conclusions on spatial
dependence using correlograms (Fig. 5.5).

5.3.5 Kriging

With our theoretical variogram model, we can create an interpolated map using
kriging. We could potentially make kriged predictions onto our observed sampling
locations or onto a grid that covers the entire plot. We will illustrate the latter, where
we use the expand.grid function to create a new set of locations. Note that
distances between this expanded grid will provide the resolution of the map that we
create. First, we krige with geoR (Fig. 5.9a).

#grid with 1-unit intervals (1-m)
> new.grid.1m <- expand.grid(0:max(matrix$x), 0:max(matrix$y))

#kriging: krige.control, cov.pars: partial sill, range
> krig.geoR.exp <- krige.conv(geoR.veg, locations = new.grid.1m,
krige = krige.control(cov.pars = c(mlexp$cov.pars[1],
mlexp$cov.pars[2]), nugget = mlexp$nugget,
cov.model = "exp", type.krige = "OK"))

#get the prediction values for the kriged surface
> image(krig.geoR.exp, main = "kriged estimates")

Fig. 5.9 Kriged map of vegetation height based on the exponential model (a). Also shown is the
background sampling grid (2 � 2 m) for reference. (b) Inverse distance weighting interpolation
(IDW)
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In the above code, we take the estimates from the exponential variogram and use
them in ordinary kriging (type.krige ¼ "OK") for spatial interpolation. The
output includes predictions that we can use for mapping, as well as uncertainty in
those predictions. In our case, the initial sampling grid was detailed at a high
resolution, such that the uncertainty is very low. Note also that the kriged image
uses our z values at the observed samples and only makes predictions for unsampled
areas on our new grid. We can also plot the uncertainty in the predictions:

> image(krig.geoR.exp, val = sqrt(krig.geoR.exp $krige.var),
main = "kriging SE")

Here, the model does not estimate variance for the sampled points; it fixes the
variance to zero for those locations. Consequently, one could remove those sampled
points from the mapping of the uncertainty in kriged predictions. This kriged map
could then be used as a raster image for other purposes.

We can also implement kriging in gstat with the krige function.

> new.grid.1m <- expand.grid(x = 0:max(matrix$x), y =
0:max(matrix$y))

> gridded(new.grid.1m) <- ~x + y
> krig.gstat <- krige(Height ~ 1, gstat.veg, new.grid.1m, model
= exp.gstat)

#plot
> image(krig.gstat, main = "kriging-gstat")

In gstat, we need to have labels for the x–y coordinates in the new grid (unlike
geoR). As an aside, inverse distance weighting interpolation is also straightforward
in gstat with the idw function (Fig. 5.9b):

> idw.gstat <- idw(Height ~ 1, gstat.veg, new.grid.1m)

We can check the similarity in the kriged predictions from geoR and gstat and
inverse distance weighting by calculating the correlation between predictions as:

> cor(cbind(geoR.exp = krig.geoR.exp$predict,
gstat.exp = krig.gstat$var1.pred,
gstat.idw = idw.gstat$var1.pred))

##
geoR.exp gstat.exp gstat.idw
geoR.exp 1.000 1.000 0.984
gstat.exp 1.000 1.000 0.984
gstat.idw 0.984 0.984 1.000

The two packages provide identical predictions based on kriging. In this case, the
inverse distance weighting also provides nearly identical predictions to kriging. This
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is not surprising, given the dense, regular sampling in the plot. With sparse and/or
irregularly spaced sampling, we might expect these approaches to be less correlated.

5.3.6 Simulating Spatially Autocorrelated Data

Once the parameters of a theoretical variogram have been estimated, one can use
these values to generate simulated spatially autocorrelated data having the same
statistical properties of the observed spatial pattern using an annealing algorithm
(Cressie 1993) or a Gaussian random fields algorithm, both of which are stochastic
distribution functions (Lantuéjoul 2002). These procedures, and others, are often
used to generate null reference distributions to test significance of observed spatial
patterns in ecological data (e.g., Remmel and Fortin 2013). Note that when simu-
lating Gaussian random fields, the simulations by default have a mean of zero.

We can use the gstat or RandomFields package (Schlather et al. 2015) to
simulate spatial patterns based on the variogram parameters. Here, we show the use
of RandomFields, which has more flexibility in this regard than gstat. We will
also provide include the mean value of observed vegetation height (otherwise, the
mean value of the simulated random field would be approximately zero).

#variogram models to simulate
> library(RandomFields)
> model.exp <- RMexp(var = mlexp$cov.pars[1], scale =
mlexp$cov.pars[2]) + RMnugget(mlexp$nugget) + RMtrend(mean =
mean(matrix$Height))

> dimx <- 1:50
> dimy <- 1:50

#simulate
> sim.exp <- RFsimulate(model = model.exp, x = dimx, y = dimy)
> data.sim <- as.matrix(sim.exp)

#plot with image
> image(dimx, dimy, data.sim,xlab = "x", ylab = "y”)

#plot with raster package
> library(raster)
> RMexp.grid <- raster(data.sim)
> plot(RMexp.grid)

These simulated maps (Fig. 5.10) are called “unconditional Gaussian random
fields.” If we provide sample values for mapping (as in kriging), then the maps
would be considered “conditional Gaussian random fields.” Note that even when
adjusting for the mean value of vegetation height with the RMtrend function, this
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approach does end up simulating some values less than zero, which is not biolog-
ically plausible, because it is a Gaussian (normally distributed) random field. The
RandomFields package has options for simulating fields that can circumvent this
problem, but it is beyond the scope of this book.

The approach above can also be used to more generally create spatially
autocorrelated maps of different degrees, similar in function to the neutral landscape
approaches described in Chap. 3. For example, we illustrate how altering the partial
sill and range parameters can generate different types of neutral landscape maps
(Fig. 5.11) with the following alternative scenarios:

> model.exp.ps2r5 <- RMexp(var = 20, scale = 5) + RMnugget(var = 2)
> model.exp.ps8r5 <- RMexp(var = 80, scale = 5) + RMnugget(var = 2)
> model.exp.ps2r20 <- RMexp(var = 20, scale = 20) + RMnugget(var = 2)

The above scenarios take a base model, where the range ¼ 5, the nugget ¼ 2 and
the partial sill ¼ 20 and then increased the partial sill 4� and the range 4�. When
plotting realizations of these models (similar to above), it is clear that changes in
the partial sill increases the magnitude of variation and increases in the range
parameter makes the map smoother. When truncating these maps similar to a neutral
landscape scenario where we alter the proportion of habitat or land cover on the
landscape (Chap. 3), however, changing the partial sill has negligible effects on the
map while increasing the range leads to much greater aggregation of the land
cover (Fig. 5.11).

Fig. 5.10 Two realizations of simulating spatial dependence under the exponential variogram
model fit to the vegetation data using unconditional Gaussian random fields
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5.3.7 Multiscale Analysis

With the availability of remotely sensed data and increasingly large databases that
span broad extents, areas under investigation are usually large enough to include the
effects of several process acting at various spatial scales that generate observed
spatial patterns. With the potential of such multiscale effects, the first step consists
therefore to identify the key spatial scales of the patterns. There are two multiscale
analysis methods that can be used to decompose the key spatial scales from remotely
sensed data or other data from a study area: Fourier spectral decomposition and
hierarchical wavelet decomposition analysis (Keitt and Urban 2005).

5.3.7.1 Wavelets and Fourier Series

Fourier’s technique and wavelets are related (Dale et al. 2002). Fourier’s technique
assumes the data have been generated by stationary processes that occur across the
entire area of interest. With this approach, processes are envisioned as a series of sine
and cosine waves operating at different scales that sum together to drive observed

Increasing 
sill

Increasing
range

Random field 20% threshold

Baseline

40% threshold

Fig. 5.11 Using unconditional Gaussian random fields to simulate neutral landscapes with varying
spatial dependence based on an exponential variogram model. The first row is taken from a model
with partial sill¼ 20, range¼ 5, and nugget¼ 2. The second row increases the partial sill 4�, while
the third row increases the range 4�. Shown is the continuous random field and two thresholds of
this map, similar to the use of neutral landscape models described in Chap. 3
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variation (Fig. 5.12). This formulation can be helpful in many situations when broad
extents are considered; indeed, linear trends across broad extents are unlikely in
many situations (Austin 2002).

When the stationary assumption is not fulfilled, a wavelet discrete transform can
be used, as we illustrate in the example below. Wavelets transforms use a similar
approach to Fourier decomposition but with two key differences. First, wavelet
transforms come in a variety of shapes (the “haar,” “Mexican hat,” etc.; Dale et al.
2002), such that users need not assume only sine/cosine functions to describe spatial
variation. Second, wavelet transforms do not assume stationarity, but instead allow
for local variation in wavelet templates at different resolutions to be fit to
observed data.

These techniques tend to be applied to dyadic grids of data, where the dimensions
of the grid are of a power 2 (e.g., 32 � 32, 128 � 128), similar to our use of fractal
algorithms in Chap. 3. The reason for this constraint is that it allows us to recursively
decompose the spatial variation on the map. For instance, if we have a map of
dimensions 64 � 64, this map can be broken into successive blocks representing
different spatial resolutions, such as four blocks of 32 � 32 units, to interpret spatial
variation. Note that wavelet analysis has been extended to work with maps that do
not comply with this constraint, but that is beyond the scope of our application here.

Wavelets can be discrete or continuous. Here, we focus on the simplest, discrete
transform, the Haar (Fig. 5.13). Using observed data, the discrete wavelet transform
can be computed for each sampling location, or pixel, for a series of wavelet template
scales that are as a power of two. Then, the wavelet values can be mapped and all
scales analyzed. The plot of wavelet variance against the scaling factor is called a
scalogram (Dale and Fortin 2014). The highest wavelet variance values indicate the
spatial scales that fit the data best.

We calculate wavelets using the waveslim package (Whitcher 2015). We use
the Haar wavelet, which is a common type of wavelet used in spatial analysis
(Fig. 5.13). To calculate wavelets, we need to pass the maximum scale being
considered, which should be a power of 2 (8, 16, 32, 64, etc.). First, we reformat

x
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lu

e

+
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Broad-scale 
variation

Fine-scale
variation

Combined

Fig. 5.12 How Fourier transforms work. Fourier transforms assume that observed variation comes
from multiple processes operating at different scales. This approach uses sine/cosine waves of
different amplitudes and periods to capture such variation. These broad and fine-scale waves are
combined to interpret observed variation. This approach assumes stationarity, where waves operate
across the entire extent of interest, unlike wavelet transforms
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the data into a square matrix using the acast function from the reshape2
package (Wickham 2007):

> library(reshape2)
> matrix.mat <- acast(matrix, x ~ y, value.var = "Height")
> dim(matrix.mat)

##
[1] 26 26

This reformatting emphasizes that the sampling grid used is a 26 � 26 grid. For
the purposes here, we will subset the grid to become a dyadic grid that is 16 � 16.

> max.scale <- 4

#DWT: Discrete Wavelet Transform
> library(waveslim)
> x.dwt <- dwt.2d(matrix.mat[1:16, 1:16], 'haar', J = max.scale)

This function creates new matrices that describe the wavelet variance at different
scales. To do so, it creates three bands of variation, labeled LH, HL, and HH. We
sum the squared values of these bands to quantify a total measure of wavelet
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Fig. 5.13 Wavelets and scalograms. (a) The Haar template, which is a common discrete wavelet
template. (b) The scalogram from the fitting the Haar template to a portion of the observed data,
where variance is plotted as a function of scale. (c) Maps of the spatial variation identified at each
scale (scales 1–3) from wavelet analysis

5.3 Examples in R 161



variance. We can then calculate the proportion of variance at each scale and plot the
scalogram (Fig. 5.13b).

#Sum the wavelet spectrums
> t.var <- (sum(x.dwt$LH1^2 + x.dwt$HL1^2 + x.dwt$HH1^2)
+ sum(x.dwt$LH2^2 + x.dwt$HL2^2 + x.dwt$HH2^2)
+ sum(x.dwt$LH3^2 + x.dwt$HL3^2 + x.dwt$HH3^2)
+ sum(x.dwt$LH4^2 + x.dwt$HL4^2 + x.dwt$HH4^2))

#proportional variance
> x.lev.1 <- (sum(x.dwt$LH1^2 + x.dwt$HL1^2 + x.dwt$HH1^2)) / t.var
> x.lev.2 <- (sum(x.dwt$LH2^2 + x.dwt$HL2^2 + x.dwt$HH2^2)) / t.var
> x.lev.3 <- (sum(x.dwt$LH3^2 + x.dwt$HL3^2 + x.dwt$HH3^2)) / t.var
> x.lev.4 <- (sum(x.dwt$LH4^2 + x.dwt$HL4^2 + x.dwt$HH4^2)) / t.var

> var.all.dwt <- c(x.lev.1, x.lev.2, x.lev.3, x.lev.4)
> sum(var.all.dwt)

#Scalogram: plotting global Wavelet spectrum profiles
> plot(var.all.dwt, pch = 21, type = "b", lwd = 1, ylab = "Average
Variance", xlab = "Scale")

The scalogram suggests that most of the spatial variation occurs at the finest
distance considered. Finally, we can plot the wavelet images (Fig. 5.13c) at each
scale using the raster package. Below we show an example of scale 1.

#Map Wavelet values according to scales
> wave.raster1 <- raster((x.dwt$LH1^2 + x.dwt$HL1^2 +
x.dwt$HH1^2))

> plot(wave.raster1)

These measures of variation at different scales can then be used as predictor
variables in regression or related analyses to account for spatial dependence arising
at different scales (Keitt and Urban 2005). The key to do so is to link the sub-
matrices to the appropriate response data in a hierarchical way.

5.3.7.2 Eigenvector Spectral Decomposition

When data are sampled from an irregular grid or layout in a contiguous fashion, an
eigenvector spectral decomposition can be used to identify the key scales that match
the data. Here, we use principal coordinates of neighborhood matrices, PCNM,
which is a special case of the generalized Moran’s Eigenvector Map (Dray et al.
2006, 2012). Unlike the wavelet analysis that is performed on the data given the
spatial layout of contiguous pixels, the PCNM multiscale analysis is performed on
the x–y coordinates of the sampling locations. In this approach, there are potentially
as many PCNM spatial scales as there are sampling locations. PCNM uses a
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Principal Coordinates Analysis (PCoA; Gower 1966), which is also referred to as
metric multidimensional scaling or classical scaling (Legendre and Legendre 2012).
PCoA shares some similarities to the more common principal components analysis
(PCA), but it focuses on using distance or similarity matrices (rather than the original
data, as in PCA) to position objects in a space of lower dimensionality than the
original data, with a focus on Euclidean distance space. PCNM provides eigenvec-
tors that can capture spatial structure: as the eigenvectors increase, they capture
increasingly finer scales of space that resemble sin waves of smaller and smaller
periods (Fig. 5.14), analogous to Fourier’s technique.

Once the PCNMs are computed they can be used as spatial predictors either in a
multiple regression (Dormann et al. 2007) or other analyses, such as redundancy
analysis for community data (see Chap. 11). Because there as many PCNM eigen-
vectors as the number of locations, model selection is necessary to reduce the
number of eigenvectors considered. Narrowing the number of spatial scales can
also be guided using knowledge about the scales of processes that may have
generated the data; for example large-scale trend, intermediate patchiness, and
small-scale patchiness. If we were to only consider the first few eigenvectors, this
may be functionally similar to what has been referred to a trend surface analysis,
where x or y coordinates are used as predictors (and potentially their polynomial
terms, such as x2 or x3) in regression models to allow for large-scale variation in
spatial dependence (see Chap. 6). In contrast, the larger eigenvectors capture fine-
scale variation in spatial dependence.

We illustrate the eigenvector method with the grid used for kriging above. We can
use the vegan package (Oksanen et al. 2018) to first determine the PCNM based on
a distance matrix calculated from the sample locations. Eigenvectors for each
sampling location are calculated.

PCNM1 PCNM5 PCNM13

Fig. 5.14 Eigenvector mapping captures spatial variation at different scales. The first few eigen-
vectors capture broad-scale spatial variation, similar to what would be captured if a linear or
polynomial term of x–y coordinates was considered (e.g., in trend surface analysis) whereas the
latter eigenvectors capture increasingly fine scale variation. Shown are the first three eigenvectors
selected with forward, stepwise regression on the observed vegetation data, where dark pixels
indicate higher values of the eigenvectors
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> library(vegan)

#PCNM on distance matrix based on coords
> xypcnm <- pcnm(dist(coords))

#eigenvectors:
> xypcnm$vectors

We can visualize the eigenvectors in a variety of ways. Here we create a raster of
the eigenvectors with the raster package and plot (Fig. 5.14).

#create raster
pcnm1.raster <- rasterFromXYZ(data.frame(x = matrix$x, y =
matrix$y, z = xypcnm$vectors[,1]))
plot(pcnm1.raster)

Once we have generated the eigenvectors, we can use them as predictors for
vegetation height. Given the large number of eigenvectors that are generated, a
common approach is to use a procedure to select a subset of the eigenvectors for
further inclusion (Bauman et al. 2018). One approach is forward selection procedure
to determine the eigenvectors that best explain the response variable (Dray et al.
2006; Blanchet et al. 2008). Other options are possible, such as using the reduction in
spatial autocorrelation in the residuals of models (see Chap. 6; Dray et al. 2006;
Dormann et al. 2007). Here, we simply focus on a forward selection procedure
suggested by Blanchet et al. (2008), which has been shown to reliably capture
multiscale spatial dependence in some situations (Bauman et al. 2018). This
approach can be implemented in the adespatial package (Dray et al. 2018). In
this approach, we first fit a full (global) model with all eigenvectors as covariates.
From this model, we extract the adjusted R2 value, which provides a measure of the
variation explained from the eigenvectors (adjusted for the number of variables in
the model). Blanchet et al. (2008) then proposed a forward selection approach with a
“double-stopping” rule; that is, the forward selection terminates either when the
current model reaches the adjusted R2 of the full model, or when new eigenvectors
are no longer significant, based on a prespecified α. Below, we implement this
approach, using a conservative α ¼ 0.005, given the large number of potential
covariates included.

> library(adespatial)
> height <- matrix$Height
> xypcnm.df <- data.frame(xypcnm$vectors)

#fit full model
> xypcnm.full <- lm(height ~ ., data = xypcnm.df)
> R2adj <- summary(xypcnm.full)$adj.r.squared
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#forward selection with adespatial
> xypcnm.for <- forward.sel(height, xypcnm$vectors, adjR2thresh =
R2adj, alpha = 0.005, nperm = 999)

In this case, we find that ten eigenvectors are retained in the linear regression
model to explain the spatial variation in vegetation height (the total number retained
might vary slightly due to the stochastic nature of the permutation test used; see
Fig. 5.14 for plots of three of the selected eigenvectors). In Chap. 6, we dive deeper
into spatial regression and how this method and others can account for spatial
dependence while interpreting environmental relationships.

5.4 Next Steps and Advanced Issues

5.4.1 Local Spatial Dependence

Throughout this chapter, we have focused on “global” spatial statistics that assume
stationarity. However, the intensity of spatial dependence can often vary across a
region. When the stationary assumption is not valid, other methods can be used.
There are two general ways in which uncovering local spatial dependence can occur
(Brunsdon and Comber 2015). First, some approaches take global indices and use
decomposition methods to understand the role of individual locations on the global
statistic. For example, local indicators of spatial association, or LISA (Anselin
1995; Boots 2002), take indices like Moran’s I to determine the contribution of
each observation to the global statistic, which can subsequently be mapped to
understand spatial variation in spatial dependence. The examples of using Moran’s
I in this chapter can be extended to interpret local Moran’s I in both the ncf and
spdep packages. Second, moving window analyses can be done to understand
spatial dependencies in the chosen windows. In this approach, global statistics are
applied, but only to the neighborhood (window) under consideration. See Chap. 3
for examples of moving window analyses.

5.4.2 Multivariate Spatial Dependence

In ecology, data are frequently multivariate. For instance, in community ecology we
often work with matrices of species occurrence or abundance. In these cases, we may
be interested in understand and accounting for multivariate spatial dependence (Dray
et al. 2012). Many of the methods described in this chapter can be extended to
multivariate data (Wackernagel 2003). When two types of data occur, cross-
correlograms and cross-variograms can be used to understand the spatial dependence
between variables (Wagner 2003). See Chap. 11 for some discussion of these
approaches in the context of spatially structured communities.

5.4 Next Steps and Advanced Issues 165

https://doi.org/10.1007/978-3-030-01989-1_6
https://doi.org/10.1007/978-3-030-01989-1_3
https://doi.org/10.1007/978-3-030-01989-1_11


5.5 Conclusions

The detection, characterization, and significance testing of spatial pattern is the first
step to understand spatial ecological data and the processes that generated them.
Spatial dependence commonly occurs in ecological data and it is often argued that
failure to account for spatial dependence can impact inferences in ecology (Legendre
1993; Dormann et al. 2007; Beale et al. 2010). Here, we illustrate ways in which
spatial dependence can be diagnosed in ecological data. This type of diagnosis can
be useful to provide insights into why patterns occur in data and whether spatial
dependence can be problematic for inferences on ecological patterns and processes.

Both correlograms and variograms provide useful insights for interpreting the
magnitude and extent of spatial dependence in data. These approaches provide much
richer information than single tests of spatial dependence, such as using a single
Moran’s I test statistic (Eq. 5.3). Correlograms have the benefit of providing a
standardized metric (i.e., correlation coefficient) that can be compared across vari-
ables, while variograms provide a means to formally estimate the scale of spatial
dependence through the use of model-based variograms and estimating the spatial
range. Variogram modeling can also be used for interpolating spatial data via
kriging, providing a formal means for predicting ecological patterns across space.
A variety of techniques have been used for inferring the significance of spatial
dependence, with Monte Carlo permutations providing perhaps the most flexibility
in their applications. Multiscale analyses can also provide useful insights, in partic-
ular in situations where questions and/or data come from broad extents where
multiple scales of spatial dependence may operate.

References

Acevedo MA, Fletcher RJ Jr (2017) The proximate causes of asymmetric movement across
heterogeneous landscapes. Landsc Ecol 32:1285–1297

Anselin L (1995) Local indicators of spatial association: LISA. Geogr Anal 27(2):93–115
Austin MP (2002) Spatial prediction of species distribution: an interface between ecological theory

and statistical modelling. Ecol Model 157(2–3):101–118
Bauman D, Drouet T, Dray S, Vleminckx J (2018) Disentangling good from bad practices in the

selection of spatial or phylogenetic eigenvectors. Ecography 41:1–12
Beale CM, Lennon JJ, Yearsley JM, Brewer MJ, Elston DA (2010) Regression analysis of spatial

data. Ecol Lett 13(2):246–264. https://doi.org/10.1111/j.1461-0248.2009.01422.x
Bivand R (2006) Implementing spatial data analysis software tools in R. Geogr Anal 38(1):23–40.

https://doi.org/10.1111/j.0016-7363.2005.00672.x
Bivand R, Piras G (2015) Comparing implementations of estimation methods for spatial econo-

metrics. J Stat Softw 63(18):1–36
Bivand RS, Pebesma EJ, Gomez-Rubio V (2013) Applied spatial data analysis with R. Use R! 2nd

edn. Springer, New York
Bjørnstad ON, Falck W (2001) Nonparametric spatial covariance functions: estimation and testing.

Environ Ecol Stat 8(1):53–70. https://doi.org/10.1023/a:1009601932481
Blanchet FG, Legendre P, Borcard D (2008) Forward selection of explanatory variables. Ecology

89(9):2623–2632. https://doi.org/10.1890/07-0986.1

166 5 Spatial Dependence and Autocorrelation

https://doi.org/10.1111/j.1461-0248.2009.01422.x
https://doi.org/10.1111/j.0016-7363.2005.00672.x
https://doi.org/10.1023/a:1009601932481
https://doi.org/10.1890/07-0986.1


Bolker BM (2003) Combining endogenous and exogenous spatial variability in analytical popula-
tion models. Theor Popul Biol 64(3):255–270. https://doi.org/10.1016/s0040-5809(03)00090-x

Boots B (2002) Local measures of spatial association. Ecoscience 9(2):168–176
Brown JH, Mehlman DW, Stevens GC (1995) Spatial variation in abundance. Ecology 76

(7):2028–2043. https://doi.org/10.2307/1941678
Brunsdon C, Comber L (2015) An introduction to R for spatial analysis and mapping. Sage

Publications, Inc, London
Burnham KP, Anderson DR (1998) Model selection and inference: a practical information-theoretic

approach. Springer, New York
Carroll SS, Pearson DL (2000) Detecting and modeling spatial and temporal dependence in

conservation biology. Conserv Biol 14(6):1893–1897. https://doi.org/10.1046/j.1523-1739.
2000.99432.x

Cohen JM, Civitello DJ, Brace AJ, Feichtinger EM, Ortega CN, Richardson JC, Sauer EL, Liu X,
Rohr JR (2016) Spatial scale modulates the strength of ecological processes driving disease
distributions. Proc Natl Acad Sci U S A 113(24):E3359–E3364. https://doi.org/10.1073/pnas.
1521657113

Cressie NAC (1993) Statistics for spatial data. Wiley, Chichester
Dale MRT, Fortin MJ (2014) Spatial analysis: a guide for ecologists, 2nd edn. Cambridge

University Press, Cambridge
Dale MRT, Dixon P, Fortin MJ, Legendre P, Myers DE, Rosenberg MS (2002) Conceptual and

mathematical relationships among methods for spatial analysis. Ecography 25(5):558–577.
https://doi.org/10.1034/j.1600-0587.2002.250506.x

Dormann CF, McPherson JM, Araújo MB, Bivand R, Bolliger J, Carl G, Davies RG, Hirzel A,
Jetz W, Kissling WD, Kuehn I, Ohlemueller R, Peres-Neto PR, Reineking B, Schroeder B,
Schurr FM, Wilson R (2007) Methods to account for spatial autocorrelation in the analysis of
species distributional data: a review. Ecography 30(5):609–628. https://doi.org/10.1111/j.2007.
0906-7590.05171.x

Dray S, Legendre P, Peres-Neto PR (2006) Spatial modelling: a comprehensive framework for
principal coordinate analysis of neighbour matrices (PCNM). Ecol Model 196(3–4):483–493.
https://doi.org/10.1016/j.ecolmodel.2006.02.015

Dray S, Pelissier R, Couteron P, Fortin MJ, Legendre P, Peres-Neto PR, Bellier E, Bivand R,
Blanchet FG, De Caceres M, Dufour AB, Heegaard E, Jombart T, Munoz F, Oksanen J,
Thioulouse J, Wagner HH (2012) Community ecology in the age of multivariate multiscale
spatial analysis. Ecol Monogr 82(3):257–275. https://doi.org/10.1890/11-1183.1

Dray S, Bauman D, Blanchet G, Borcard D, Clappe S, Guenard G, Jombart T, Larocque G,
Legendre P, Madi N, Wagner HH (2018) adespatial: multivariate spatial analysis. R package
version 0.2-0

Efron B (1979) Bootstrap methods - another look at the jackknife. Ann Stat 7(1):1–26. https://doi.
org/10.1214/aos/1176344552

Fletcher RJ Jr, Sieving KE (2010) Social-information use in heterogeneous landscapes: a prospec-
tus. Condor 112:225–234

Fletcher RJ Jr, Acevedo MA, Robertson EP (2014) The matrix alters the role of path redundancy on
patch colonization rates. Ecology 95(6):1444–1450

Fletcher RJ, Reichert BE, Holmes K (2018) The negative effects of habitat fragmentation operate at
the scale of dispersal. Ecology 99(10):2176–2186

Giraudoux P (2018) pgirmess: spatial analysis and data mining for field ecologists. R package
version 1.6.9

Goovaerts P (1994) Study of spatial relationships between two sets of variables using multivariate
geostatistics. Geoderma 62(1–3):93–107. https://doi.org/10.1016/0016-7061(94)90030-2

Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika 53(3–4):325–338

Haining R (2003) Spatial data analysis: theory and practice. Cambridge University Press,
Cambridge

Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr
54(2):187–211. https://doi.org/10.2307/1942661

References 167

https://doi.org/10.1016/s0040-5809(03)00090-x
https://doi.org/10.2307/1941678
https://doi.org/10.1046/j.1523-1739.2000.99432.x
https://doi.org/10.1046/j.1523-1739.2000.99432.x
https://doi.org/10.1073/pnas.1521657113
https://doi.org/10.1073/pnas.1521657113
https://doi.org/10.1034/j.1600-0587.2002.250506.x
https://doi.org/10.1111/j.2007.0906-7590.05171.x
https://doi.org/10.1111/j.2007.0906-7590.05171.x
https://doi.org/10.1016/j.ecolmodel.2006.02.015
https://doi.org/10.1890/11-1183.1
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1016/0016-7061(94)90030-2
https://doi.org/10.2307/1942661


Keitt TH, Urban DL (2005) Scale-specific inference using wavelets. Ecology 86(9):2497–2504.
https://doi.org/10.1890/04-1016

Keitt TH, Bjørnstad ON, Dixon PM, Citron-Pousty S (2002) Accounting for spatial pattern when
modeling organism-environment interactions. Ecography 25(5):616–625

Koenig WD (1998) Spatial autocorrelation in California land birds. Conserv Biol 12(3):612–620.
https://doi.org/10.1046/j.1523-1739.1998.97034.x

Koenig WD, Liebhold AM (2016) Temporally increasing spatial synchrony of North American
temperature and bird populations. Nat Clim Chang 6(6):614. https://doi.org/10.1038/
nclimate2933

Landeiro VL, Magnusson WE (2011) The geometry of spatial analyses: implications for conser-
vation biologists. Natureza & Conservacao 9(1):7–19. https://doi.org/10.4322/natcon.2011.002

Lantuéjoul C (2002) Geostatistical simulation, models, and algorithms. Springer, Berlin
Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74(6):1659–1673
Legendre P, Legendre L (2012) Numerical Ecology, 3rd Edition. Elsevier, Amsterdam
Nelson TA, Boots B (2008) Detecting spatial hot spots in landscape ecology. Ecography 31

(5):556–566. https://doi.org/10.1111/j.0906-7590.2008.05548.x
Oksanen J, Guillaume B, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB,

Simpson GL, Solymos P, Stevens HH, Szoecs E, Wagner H (2018) Vegan: community ecology
package. R version 2.4-6

Oliver MA, Webster R (1991) How geostatistics can help you. Soil Use Manag 7(4):206–217.
https://doi.org/10.1111/j.1475-2743.1991.tb00876.x

Oliver MA, Webster R (2014) A tutorial guide to geostatistics: computing and modelling
variograms and kriging. Catena 113:56–69. https://doi.org/10.1016/j.catena.2013.09.006

Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30
(7):683–691. https://doi.org/10.1016/j.cargo.2004.03.012

Peres-Neto PR, Legendre P (2010) Estimating and controlling for spatial structure in the study of
ecological communities. Glob Ecol Biogeogr 19(2):174–184. https://doi.org/10.1111/j.1466-
8238.2009.00506.x

Remmel TK, Fortin MJ (2013) Categorical, class-focused map patterns: characterization and
comparison. Landsc Ecol 28(8):1587–1599. https://doi.org/10.1007/s10980-013-9905-x

Ribeiro PJ, Jr., Diggle PJ (2016) geoR: analysis of geostatistical data. vol R package version 1.7-5.2
Rossi RE, Mulla DJ, Journel AG, Franz EH (1992) Geostatistical tools for modeling and

interpreting ecological spatial dependence. Ecol Monogr 62(2):277–314. https://doi.org/10.
2307/2937096

Schlather M, Malinowski A, Menck PJ, Oesting M, Strokorb K (2015) Analysis, simulation and
prediction of multivariate random fields with package random fields. J Stat Softw 63(8):1–25

Schooley RL, Wiens JA (2004) Movements of cactus bugs: patch transfers, matrix resistance, and
edge permeability. Landsc Ecol 19(7):801–810

Tobler WR (1970) Computer movie simulating urban growth in Detroit region. Econ Geogr 46
(2):234–240. https://doi.org/10.2307/143141

Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York
Wackernagel H (2003) Multivariate geostatistics: an introduction with applications, 3rd edn.

Springer, Berlin
Wagner HH (2003) Spatial covariance in plant communities: integrating ordination, geostatistics,

and variance testing. Ecology 84(4):1045–1057. https://doi.org/10.1890/0012-9658(2003)084[
1045:scipci]2.0.co;2

Wagner HH, Fortin MJ (2005) Spatial analysis of landscapes: concepts and statistics. Ecology 86
(8):1975–1987. https://doi.org/10.1890/04-0914

Whitcher B (2015) waveslim: basic wavelet routines for one-, two- and three-dimensional signal
processing. R package version 1.7.5

Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21(12):1–20
Yoo J, Ready R (2016) The impact of agricultural conservation easement on nearby house prices:

incorporating spatial autocorrelation and spatial heterogeneity. J For Econ 25:78–93. https://doi.
org/10.1016/j.jfe.2016.09.001

168 5 Spatial Dependence and Autocorrelation

https://doi.org/10.1890/04-1016
https://doi.org/10.1046/j.1523-1739.1998.97034.x
https://doi.org/10.1038/nclimate2933
https://doi.org/10.1038/nclimate2933
https://doi.org/10.4322/natcon.2011.002
https://doi.org/10.1111/j.0906-7590.2008.05548.x
https://doi.org/10.1111/j.1475-2743.1991.tb00876.x
https://doi.org/10.1016/j.catena.2013.09.006
https://doi.org/10.1016/j.cargo.2004.03.012
https://doi.org/10.1111/j.1466-8238.2009.00506.x
https://doi.org/10.1111/j.1466-8238.2009.00506.x
https://doi.org/10.1007/s10980-013-9905-x
https://doi.org/10.2307/2937096
https://doi.org/10.2307/2937096
https://doi.org/10.2307/143141
https://doi.org/10.1890/0012-9658(2003)084[1045:scipci]2.0.co;2
https://doi.org/10.1890/0012-9658(2003)084[1045:scipci]2.0.co;2
https://doi.org/10.1890/04-0914
https://doi.org/10.1016/j.jfe.2016.09.001
https://doi.org/10.1016/j.jfe.2016.09.001

	Chapter 5: Spatial Dependence and Autocorrelation
	5.1 Introduction
	5.2 Key Concepts and Approaches
	5.2.1 The Causes of Spatial Dependence
	5.2.2 Why Spatial Dependence Matters
	5.2.3 Quantifying Spatial Dependence
	5.2.3.1 Correlograms
	5.2.3.2 Variograms
	5.2.3.3 Kriging
	5.2.3.4 Some Extensions
	5.2.3.5 Statistical Nuisance


	5.3 Examples in R
	5.3.1 Packages in R
	5.3.2 The Data
	5.3.3 Correlograms
	5.3.4 Variograms
	5.3.5 Kriging
	5.3.6 Simulating Spatially Autocorrelated Data
	5.3.7 Multiscale Analysis
	5.3.7.1 Wavelets and Fourier Series
	5.3.7.2 Eigenvector Spectral Decomposition


	5.4 Next Steps and Advanced Issues
	5.4.1 Local Spatial Dependence
	5.4.2 Multivariate Spatial Dependence

	5.5 Conclusions
	References




