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Preface

All questions in ecology and problems in conservation play out in space. This simple
fact has generated a long-standing interest from scientists and practitioners, and it is
now well known that explicitly accounting for space in ecology, or spatial ecology,
is necessary for accurately answering ecological questions and providing useful
conservation solutions.

Only in the past few decades, however, has spatial ecology really matured. With
advances in data collection across both broad and fine spatial scales, data are now
widely available that are spatially explicit. At the same time, the growth in ways to
analyze, model, and interpret spatial data has also increased substantially in the past
two decades. The synergism of data availability and new models and methods for
interpreting spatial data has led to rapid advancements in our understanding of
spatial ecology and the way in which spatial concepts are applied to conservation.

Why Do We Need a New Book on Spatial Ecology
and Conservation?

Several books have been published over the years that are relevant to spatial ecology
and conservation (see Chap. 1). Some of these books have focused on spatial
ecology explicitly while others have been on related topics, such as landscape
ecology and metapopulation ecology. In addition, there have been several books
published on spatial analysis, and some focus specifically on ecological data. There
have also been books that emphasize spatial theory in ecology. These books have
been very helpful to the ecological community.

Despite these efforts, a book on spatial ecology that provides a general, applied
overview and allows readers to go “under-the-hood” to interpret concepts and
models with real data has remained absent. Our book attempts to fill this gap by
providing an introduction to relevant concepts and modeling techniques used by
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applied ecologists and conservation biologists to address ecological and conserva-
tion problems. We provide this introduction by using empirical examples to illustrate
not just what spatial ecology is, but how it is implemented. Our book covers several
topics, and in doing so, it illustrates to readers many of the commonalities among
topics to address the problem of space.

Who Should Read this Book?

This book is intended to provide a gentle introduction to the concepts and modeling
involved in the field of spatial ecology and conservation. The target audience of the
book includes students and professionals. Scientists and conservation practitioners
who seek to understand ecology and conservation should benefit from the overviews
provided. This is not a book written for experts in spatial ecology and modeling.
There are several advanced books written for experts, and our intent is not to
re-create those books. Rather, students and professionals who would like to find
out what spatial ecology is about and how it is applied to conservation problems are
the target audience.

Readers should have a general familiarity with statistics and models. Such
knowledge is essential for further extending quantitative techniques to the problem
of space. We do not expect all readers to be especially quantitative. Throughout this
book, we provide examples of spatial concepts, models, and analyses using the
program R. Readers do not need to be proficient in R, however, to use this book. We
provide an Appendix that covers some foundational topics for the use of R that
should provide readers enough information on R to interpret the examples in
this book.

The material from this book has been developed from graduate courses that the
authors teach. We have used this material both for lecture development and lab
development, where students work through the examples provided in the book. We
expect that this book could provide a useful complement to courses on spatial ecology,
landscape ecology, species distributions, spatial analysis for non-statisticians, and
applied conservation.

Organization of the Book

The goal of this book is to provide an overview of several (but not all) issues in
spatial ecology and conservation. Our book was written as an introduction to these
topics with an emphasis on learning-by-doing, where we illustrate these topics with
real data and the application of spatial modeling to these topics. For each application,
key R code is provided as an illustration of the aspects needed to understand the
essence of each topic and its potential relevance to conservation applications.
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The first part of the book (Quantifying Spatial Pattern in Ecological Data)
focuses primarily on spatial pattern analysis and modeling of relevance to ecology
and conservation. Issues such as the problem of scale, spatial dependence, land-
cover pattern and change quantification, as well as spatial prediction are introduced
and illustrated using case studies.

The second part of the book (Ecological Responses to Spatial Pattern and
Conservation) focuses on spatial ecological disciplines and topics, ranging from
species distributions and resource selection, movement and connectivity, to
metapopulation and metacommunity dynamics. Again, an overview of these eco-
logical processes and resulting spatial patterns are presented and case studies are
used to depict how to analyze them spatially.

For each chapter, we first provide a concise overview of the relevant terms and
concepts. We focus on practical issues and concepts, only briefly providing the
relevant spatial ecological theory and concepts needed to understand the spatial
analyses presented. Key terms that are required for understanding the major concepts
are highlighted in italics and defined in tables and text. The latter portion of each
chapter depicts these concepts and attempts to demystify them via worked examples
using real data and R code. We end each chapter with a “Next Steps and Advanced
Issues” section that directs readers to further approaches and issues of relevance to
each topic.

Throughout the book, R code is provided as well as the interpretation of
model outputs. We use R for several reasons: (1) R is an open-source environment
that works on Windows, Mac OS X, and Linux; (2) the R environment is flexible
enough to offer statistical, visualization, and simple programming language features;
and (3) a series of R packages have been developed by scientists, including ecolo-
gists, offering more advanced analytical methods to analyze spatial ecological data
than other software. The major drawback of R is that there is a steep learning curve to
master data manipulation within the R environment. This is why our book aims to
knock down this learning roadblock by providing not only the relevant R code but
also its interpretation. By providing key foundations in R, we hope that students and
researchers will be able to adapt the R code to analyze their own data. In general, we
take a practical approach to programming in R: in many cases, the code provided
could be made more efficient and elegant, but we use code to provide what we hope
are the most intuitive ways to go from an idea or model to the actual coding of it. We
provide an Appendix that provides some necessary background on using R for those
readers that are not familiar with this software. All data and R code can be
downloaded at the first author’s website (http://www.fletcherlab.com under “Prod-
ucts”) and at the University of Florida’s Institutional Repository (http://ufdc.ufl.edu/
ufirg).

This book could be used in a variety of ways. For readers interested primarily in
concepts, the first portion of each chapter will provide a concise overview on terms
and concepts needed for understanding spatial ecology and conservation. For those
readers who want to use spatial ecology in their own work, the examples will provide
insight to the applications of terms, concepts, and modeling approaches. For those
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unfamiliar with R, readers should first go through materials in the Appendix prior to
working through the main text.

We hope that this book will be a useful guide for learning spatial ecology and
solving applied problems facing biodiversity throughout the world.

Gainesville, FL, USA Robert Fletcher
Toronto, ON, Canada Marie-Josée Fortin
August 2018
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Chapter 1
Introduction to Spatial Ecology and Its
Relevance for Conservation

1.1 What Is Spatial Ecology?

“Space: The final frontier” Kareiva (1994)

All aspects of ecology play out in space. From Darwin’s entangled bank to
Hutchinson’s ecological theater (Hutchinson 1965; Darwin 1859), space is inherent
to all processes and research in ecology. The importance of space has captured the
imagination of biologists interested in a wide variety of topics, such as migration,
species coexistence, deforestation, and the spread of invasive species. Therefore,
how space directly and indirectly affects biodiversity and ecosystem functioning is
implicitly and/or explicitly the focus of several subdisciplines in the life sciences
(Fig. 1.1).

All of these subdisciplines share concepts and analytical methods that stem from the
field of spatial ecology: a field coined by Tilman and Karieva in 1997. Since then, the
term “spatial ecology” has been used in a wide range of ways depending on each
ecological subdiscipline and field. Biogeography focuses on species geographic distri-
butions (Lomolino 2017). Landscape ecology relates spatial heterogeneity to ecological
processes and species distribution (Turner and Gardner 2015). Movement ecology
focuses on organismal dispersal and migration (Nathan et al. 2008). Macroecology
investigates the relation of processes and species at large spatial scales (Gaston and
Blackburn 2000). Metaecology considers dispersal and spatial interactions at different
spatial scales to model ecological processes that affect species distribution and dynam-
ics (i.e., metapopulations, metacommunities, metaecosystems; Massol et al. 2011).
Spatial and landscape genetics relate how landscape features affect gene glow and
local adaptation (Manel et al. 2003; Guillot et al. 2009). Finally, conservation biology
develops and applies spatial solutions to a variety of problems, including mitigating the
effects of roads, protected area networks, and spatial prioritization in conservation
planning (Primack 2014) (Fig. 1.1).

Throughout this book, we use the term spatial ecology in a broad sense referring
to the study and modeling of the role(s) of space on ecological processes (e.g.,
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population dynamics, species interactions, dispersal) that in turn affects ecological
patterns, such as species distributions. This definition shares similarities with some
early definitions of landscape ecology (Pickett and Cadenasso 1995; Turner 1989).
Yet over the years, landscape ecology evolved to include socio-economic aspects of
landscapes as well (Wu 2017).

Research in spatial ecology aims to understand the processes that affect species
distributions and dynamics, and how these processes play out across space. Endog-
enous processes are related to the dynamics of each ecological entity (e.g., movement,
dispersal, and migration) and the interactions among entities within and across
species (population demographics, genetic variation, behavior, competition, facilita-
tion, trophic interactions, etc.). Exogenous processes are related to the response of
organisms to environmental factors that are themselves spatially structured (climate,
local habitat features, microhabitat heterogeneity, patch disturbance-succession,
environmental filtering, historical contingencies, etc.). Overall, it is the combined
action and feedback effects of these endogenous and exogenous processes that result
in the spatial patterns observed at different levels of organization though space (e.g.,
metapopulations, metacommunities, and metaecosystems) (Fig. 1.2).

Spatial ecology is increasingly applied to conservation and management to help
deliver more effective ways to conserve biodiversity. The rapid rate at which
landscapes are altered is creating spatially heterogeneous environmental conditions
that affect species ability to disperse and ultimately persist. Yet, even in homoge-
neous environments, endogenous processes alone can shape species spatial distri-
butions (Okubo 1974). This is why many of the core ecological theories and
analytical models used in spatial ecology are process-based ones. Therefore, one
of the most important cornerstones of spatial ecology as a discipline is the way in
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Fig. 1.1 Spatial
subdisciplines derived from
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a spatial ecology framework
to tackle current
conservation issues
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which the challenges of understanding the processes underlying the spatial distribu-
tion of ecological entities are tackled. Spatial ecology offers concepts and tools to
understand, predict, and map how biodiversity responds to environmental change.

1.2 The Importance of Space in Ecology

Species dynamics occur over space and time. Space affects species in multiple ways
from how they use resources and occupy space within their home range and
throughout their geographical range, how they move, disperse, and migrate through
heterogeneous landscapes, as well as how they interact with other species
(Table 1.1).

To determine the relative importance of space on ecological patterns and pro-
cesses, both mathematical and statistical models are frequently used (Dale and Fortin
2014; Cantrell et al. 2009; Fortin et al. 2012; Ovaskainen et al. 2016). These two
modeling approaches encompass stark differences from data needs, model assump-
tions, and epistemologies (Fig. 1.2). Both process-based (e.g., mathematical, sto-
chastic simulations and computational models) and phenomenological approaches
(e.g., statistical regression models) have a long history of contributing to our under-
standing of the spatial distribution of ecological entities from fine to broad scales
(Levin 1976; MacArthur and Wilson 1967). Such spatial models aim to improve our
understanding of the underlying processes acting on species distributions (e.g., to
estimate the relative importance of environmental drivers versus dispersal to species
distributions) and to perform ecological forecasting (e.g., to predict species distribu-
tions based on such processes; Pagel and Schurr 2012; Dietze 2017).

The foundation for spatial ecology can be traced largely to the seminal paper of
Watt (1947) on the relationship between spatial pattern and ecological processes.
Watt (1947) emphasized that plants occurred in bounded communities—patches—
that form a dynamic mosaic across the landscape, what has become known as the

SA-sp: Spatial autocorrelation of the species

SA-env: Spatial structure of the environment

SD: Spatial dependence of species response to 
spatially structured environment  

Space

Environment Species
SD

SA-env SA-sp

Fig. 1.2 How space affects
both the spatial structure of
the environmental
conditions and species
distribution. Species
distribution is also affected
by the spatial structure of the
environmental data (adapted
from Wagner and Fortin
2005)
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“shifting-mosaic steady state” concept (Bormann and Likens 1979). Then, in
the 1950s and 1960s, there were three key areas of research that emphasized the
importance of space for ecological processes and its relevance for conservation. First,
some influential experimental studies highlighted the importance of space for ecol-
ogy. In a seminal experiment, Huffaker (1958) showed how predator–prey dynamics
could be stable when including the potential for spatial refugia of prey, while stability
was not possible in small, homogenous habitats. This result was important because
prior to that time, spatial concepts had not been formally considered in theory and
concepts regarding species coexistence. This experiment emphasized the role of
movement in altering species interactions and community structure, a theme that
has persisted and grown over time.

A second area of conceptual development came from theoretical ecology
(Hastings and Gross 2012), where ecologists investigated how diffusion of organ-
isms through space can alter population and community dynamics (Skellam 1951;
Okubo and Levin 2001; Hilborn 1979). Skellam (1951) pioneered these ideas by
applying reaction–diffusion models originally derived for molecular processes to the
problem of dispersal and population dynamics. In this model, Skellam (1951)
assumed diffusion (or random movement) of organisms. While it is clear that
organisms do not move in a simple random manner, the utility of this approach is
that this simple formulation can go a long way in explaining observed patterns in
ecology (Kareiva 1982, 1983), and it can be extended to capture non-random issues
(e.g., advection; Reeve et al. 2008). In addition, Skellam’s work set the stage for
modeling invasive spread, a topic of great importance to conservation biology.

The third area is the application of biogeographic concepts to our understanding
of species–area relationships by Preston (1948, 1962) and later MacArthur and

Table 1.1 Examples of how space can be incorporated into spatial analyses and their effects on
ecological processes (adapted from Fortin et al. (2012))

Spatial aspects Effects on ecological processes and data

x–y coordinates Location of data according to positions of other locations (Euclidean or
relative distance)

Spatial
autocorrelation

The magnitude, spatial scale, and directionality of data values as a function of
distances between data point locations

Spatial
relationship

Locations of abiotic predictors affect the responses of biotic/ecological
variables

Spatial legacy Influence of past spatial pattern on current ecological processes and species
current spatial pattern

Spatial
contingency

Influence of nearby locations (local neighbors) on ecological processes and
species spatial pattern

Spatial
perception

How the intervening landscape features affect daily animal movement and
species dispersal ability

Multiple spatial
scales

Additive spatial scales influence current spatial pattern
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Wilson (1963, 1967). This area was particularly crucial in developing the application
of spatial ecology to practical issues of conservation (Higgs 1981). Indeed, many
ecological theories and conservation concepts, including practical solutions, stem
from island biogeography theory, where the size of islands/patches and their spatial
configuration (spacing/isolation) are critical for species persistence through variation
in colonization and extinction events (MacArthur and Wilson 1967; Laurance 2008).

The current era of spatial ecology has grown from island biogeography, where
dispersal of individuals is key and can act as a rescue effect or spatial insurance
(Loreau et al. 2003a) that protects a population from local extinction. Here, species
are often considered to act as metapopulations (Hanski 1999; Levins 1969). The
concept of spatial insurance has been extended to dispersal of several species to
maintain species assemblages and communities as metacommunities (Leibold et al.
2017, 2004) and to maintain ecosystem functions as metaecosystems (Loreau et al.
2003b; Guichard 2017).

1.3 The Importance of Space in Conservation

Conservation biologists have increasingly embraced the importance of space in the
conservation of biodiversity and ecosystem services (Schagner et al. 2013; Moilanen
et al. 2009). Space is relevant for conservation in four major ways: (1) it is essential
for spatial mapping of biodiversity and ecosystem services; (2) it provides guidance
for mitigating effects of environmental change; (3) it facilitates effective prioritiza-
tion of areas for conservation; and (4) it provides key components of tools and
models used in conservation.

Several biogeography and macroecology theories provide spatial foundations for
understanding and mapping biodiversity across the planet. The emphasis on spatial
components first emerged in the field of biogeography, where there was interest in
identifying and understanding species distributions and geographic gradients in
biodiversity throughout the world. For instance, early on scientists emphasized the
latitudinal gradient of diversity, where diversity was greater in the tropics than in the
temperate zone (Currie and Paquin 1987). Understanding this and other biogeo-
graphic (and macroecological) patterns have been, and continue to be, of interest in
conservation as it helps identify hotspots of biodiversity and endemism of conser-
vation relevance (Myers et al. 2000; Dawson et al. 2017; Orme et al. 2005).

Many approaches to mitigating the effects of environmental change embrace spatial
concepts. For example, the use of corridors in conservation explicitly emphasizes how
the spatial configuration of the environment can promote biodiversity (Crooks and
Sanjayan 2006). Translocations and re-introduction programs require understanding
how potential release locations may inhibit or foster the success of such programs
(Seddon et al. 2014). Adaptation strategies to mitigate the effects of climate change
often emphasize spatial ecological concepts (Heller and Zavaleta 2009).

1.3 The Importance of Space in Conservation 5



Conservation prioritization and planning, one of the major foci for conservation
biology, also emphasizes the importance of spatial ecology. Early rules for conser-
vation planning embraced the need to limit isolation of protected areas and maximize
their area (Diamond 1975). Later work has embraced explicit mapping of conserva-
tion prioritization strategies and how issues such as complementarity of biodiversity
among protected areas is essential for efficient conservation planning (Margules and
Pressey 2000). More recently, conservation planning for climate change emphasizes
how key areas are currently connected and how connectivity may change as climate
and land use continue to change (Pressey et al. 2007; Schmitz et al. 2015; Carroll
et al. 2017). Throughout, spatial concepts are essential for guiding effective strate-
gies for both biodiversity and ecosystem service conservation (Chan et al. 2006;
Moilanen and Wintle 2007).

Ecological concepts and analytical tools developed in the fields of landscape
ecology, geography, and spatial statistics are now commonly used in conservation so
that informed decisions about planning strategies and management can be made
(e.g., Moilanen et al. 2009). Indeed, most conservation planning and management
requires knowledge and the explicit spatial modeling of space and its major conse-
quences on species spatial variation and responses to global change. The inclusion of
space is therefore crucial when modeling species ecology and responses to a
changing world such as (1) species dispersal, (2) species interactions, (3) disturbance
dynamics, and (4) environmental change. Furthermore, as the field of conservation
aims to provide better management recommendations to mitigate threats to biodi-
versity, implicit and explicit aspects of space need to be incorporated into applied
solutions such as restoration, species reintroductions, and maintaining connectivity
among habitat patches. In all these conservation applications the spatial scale of
implementation is key (Wiens 1989; Levin 1992, 2000; McGarigal et al. 2016; Doak
et al. 1992; Fletcher et al. 2013; Gering et al. 2003).

1.4 The Growth of Frameworks for Spatial Modeling

Before modeling species dispersal, response to environmental conditions, and species
interactions, quantification of their spatial distribution is needed. This is why in
ecology and conservation the first steps toward a better understanding and manage-
ment of biodiversity often consist of (1) mapping species distributions, and (2) quan-
tifying spatial patterns of both species distributions and environmental conditions
(Ferrier 2002; Gaston and Blackburn 2000; Guisan and Thuiller 2005). Once such
quantitative information is obtained, the next modeling steps frequently aim at relating
and modeling the responses of species to environmental conditions across space and/or
the species (intraspecific and interspecific) spatial interactions (Synes et al. 2017).

Modeling the processes that affect species distribution can be done using different
degrees of complexity in the analytical tools used. The level of complexity depends on
the processes modeled and ecological theories considered. Then, knowledge gaps about
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species distribution can be gained by combining data on species behavior from empir-
ical studies and theoretical models of dispersal and related flows across space. Early
dispersal models set the stage for the development of ecological theories that embrace
space (Fig. 1.3), such as island biogeography (MacArthur and Wilson 1967), patch
dynamics (Pickett and White 1984), hierarchical theory (Wu and Loucks 1995; Allen
and Starr 1982), species coexistence (Chesson 2000), metapopulation (Hanski 1999),
metacommunity (Leibold and Chase 2017), and metaecosystem theory (Guichard
2017). Although these disciplines can be seen as separate fields, spatial ecology brings
them together through theory, models, and data analysis (Massol et al. 2011).

The emergence of modeling frameworks for spatial ecology was also fostered by
several technological advances ranging from the availability of aerial photographs,
remote sensing captors, and computing power. This allowed for conceptual and
modeling developments in spatial ecology to advance more realistic ways to repre-
sent and incorporate space into statistical and modeling approaches (Fig. 1.3).
Indeed, the ability to explicitly include the effects of space in ecological models
was also pivotal in the explosion of novel ecological questions and analytical ways
to address them over the last few decades.

Implicitly: Relative positions (i, j) 
in a regular grid

Explicitly: x-y coordinates; Euclidean distance 
between patches (black lines); effective 
functional distance based on network topology 
(grey lines)

Incorporating Space

i, j

x-y

Abiotic factors
generating spatial

autocorrelation
in environmental

gradients,
landscape

heterogeneity,
and human impacts,
such as habitat loss

and spread of invasives

Biotic processes 
creating spatial 
autocorrelation 
in distributions, 
dynamics, 
interactions, 
and
movement

Ecological responses Environmental covariates

Spatial structure of
one species

Spatial structure of 
several species

Fig. 1.3 How spatial processes affect species (response variables) and covariates (predictors), and
how space can be incorporated into models
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The quantum leap in spatial ecology modeling frameworks involved considering
and incorporating space into modeling: implicitly (kernels, moving windows, rela-
tive topological position, etc.), explicitly (x–y, diffusion, spread, individual/agent-
based models, etc.), and realistically (explicit network structure, spatial weights,
multiple spatial scales, etc.) (Fig. 1.3). It started by considering space as discrete
units. Such discretization of space opened a multitude of novel ways to model
ecological systems either in a spatially implicit fashion, where species occupancy
and abundance are modeled considering the effects of relative neighbors based on
grid topology (e.g., cellular automata models), or in a spatially explicit way, where
the actual Euclidean distances among cells (quadrats, pixels, sampling locations) are
used to model the spread of disturbance, disease, or species using dispersal kernels.
Then space was represented by the exact x–y coordinates of each individual in a
given area such that the spatially explicit movement of individuals could be modeled
using individual/agent-based modeling approaches (Grimm et al. 2005; Matthews
et al. 2007). For example, this approach enabled modeling the dynamics and
succession of tree species at the tree-level using SORTIE (Pacala et al. 1996).
Using x–y coordinates of individuals or sampling locations also allowed the spatially
explicit modeling of movement and connectivity while accounting for species
dispersal ability through spatially heterogeneous landscapes (Urban and Keitt
2001). Lastly, the spatially explicit representation of space permits us to model
processes acting over several spatial scales using meta-models (Urban 2005; Talluto
et al. 2016). The ability to model species and their responses to global change
explicitly in space opens the door to investigate the effects of the spatial legacy
(Wallin et al. 1994; James et al. 2007; Peterson 2002) of heterogeneity on ecological
processes and species persistence.

1.5 The Path Ahead

Spatial ecology and conservation has rapidly advanced over the past 20 years. With
an increasing emphasis on the use of spatial data and modeling to address both
fundamental and applied problems, the topic has matured. Spatial ecology embraces
spatial modeling and analysis, which is often applied to conservation issues.

In the remainder of this book, our path will be to provide an introduction to
several issues in spatial ecology and conservation, with an emphasis on spatial
modeling of applied ecological problems. We emphasize learning-by-doing, where
we illustrate these topics with real data and the application of spatial modeling to
these topics. We first cover topics regarding the quantification of spatial pattern in
ecological data and we then focus more specifically on topics regarding how species
respond to spatial pattern and its relevance for conservation (Table 1.2). We hope
that this coverage will deliver a strong foundation for students and professionals
alike to begin tackling ongoing issues of ecological and conservation importance.
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Part I
Quantifying Spatial Pattern in Ecological

Data



Chapter 2
Scale

2.1 Introduction

All questions in ecology and problems in conservation have a spatial and temporal
dimension, and scale is a concept that attempts to capture those dimensions and
make sense of them. Scale describes the spatiotemporal dimension of a pattern or
process. By understanding and quantifying scale, it can profoundly influence our
understanding of ecological patterns and processes, altering conclusions regarding
behavior, population viability, species interactions, evolutionary dynamics, and
conservation decisions. In addition, many patterns and processes occur at funda-
mentally different scales in space and time (Fig. 2.1). Of great interest are critical
(or characteristic) scales—scales that govern the dynamics of key ecological and
evolutionary processes (Urban et al. 1987).

The problem of scale in ecology and conservation has roots dating back for many
decades (Greig-Smith 1952; Preston 1962), yet it was in the late 1980s and early
1990s that the concept of scale emerged as a central theme. Prior to this time, there
was frequently an assumption of scale invariance, that is, that spatial patterns and
processes did not change with scale, and therefore the problem of scale was not
essential to address. Yet with seminal syntheses by John Wiens (1989), Simon Levin
(1992), and others, several arguments were put forward regarding how pervasive the
problem of scale is to ecology and conservation. At that time, it was offered that
explicit consideration of scale can help solve some debates in ecology, such as the
role of competition on community assembly, and could also help conservation and
management problems through explicit accounting for processes operating at differ-
ent scales. Since that seminal work, there have been major advances in our under-
standing of scale (Chave 2013; Jackson and Fahrig 2015), as well as new
quantitative methods to interpret the role of scale (Keitt and Urban 2005; Dray
et al. 2012; Fortin et al. 2012; Chandler and Hepinstall-Cymerman 2016).

In this chapter, we provide an overview of the issues related to scale, why it is
important, and how it is often considered in spatial ecology and conservation. Our
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goals are to highlight terminology used in understanding spatial scale, provide
examples of why scale is important, and illustrate some simple approaches to
multiscale and multilevel modeling in R with an example of reptile distribution in
the Southeastern USA. This chapter is intended to introduce this topic, but we dive
into various issues and methods related to scale and its quantification throughout
the book.

2.2 Key Concepts and Approaches

2.2.1 Scale Defined and Clarified

The term scale refers to the spatiotemporal dimension or domain of a process or a
pattern (Table 2.1). In landscape ecology, scale is frequently described by its
components: grain and extent (Fortin et al. 2012; Turner and Gardner 2015).
Grain is the finest spatial unit of measurement for a pattern or process, while extent
describes the length or area under investigation. Scope, or the ratio of grain to extent,
is also frequently mentioned in the description of scale because this ratio can play a
large role on observed patterns and processes (see below; Schneider 2001).

Grain and extent tend to covary—investigations with larger extent tended to have
larger grain as well (Wiens 1989). Part of this covariance is practical: it is difficult to
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Fig. 2.1 The problem of scale and levels of organization, viewed through a modified space-time
diagram. Scale can be interpreted in the context of the temporal dimension, the spatial dimension,
and the level of organization of a pattern or process. Temporal dimensions can be viewed as short
(e.g., daily variation in temperature) or long (e.g., glacial cycles). Spatial dimensions can be viewed
as small (or fine; e.g., spatial variation in humidity) or large (or coarse; e.g., spatial variation in
rainfall). Level of organization refers to the place in the biotic hierarchy for which a pattern or
process occurs, such as at the individual-level or at the population-level
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Table 2.1 Terms and definitions of scale concepts

Applicability to

Term Definition Phenomenon Sampling Analysis

Cartographic
ratio

Ratio between the distance on a map
and the real-world distance. Sometimes
referred to as “cartographic scale”.

X X

Characteristic
scale

The scale at which the dominant pattern
emerges.

X X

Cross-scale
interaction

Processes at one scale interact with
processes at another scale.

X

Ecological
fallacy

A logical fallacy in which inferences
about individual units are deduced from
higher-level group characteristics or
averages.

X X

Ecological
neighborhood

The region within which that an organ-
ism is active or has some influence dur-
ing an appropriate period of time.

X

Extent The total length or area under
consideration.

X X X

Grain The finest level of spatial resolution of a
data set, pattern, or process.

X X X

Hierarchy A system of interconnections wherein
the higher levels constrain the lower
levels to various degrees, depending on
the time constraints of the behavior.

X

Lag The interval or spacing (distance)
between units.

X X

Level of
organization

The place within a biotic hierarchy. X

Modifiable
aerial unit
problem

A bias that occurs when point-based
(or pixel-based) variables are aggre-
gated, such that the summaries are
influenced by the shape and scale of the
aggregation unit.

X X

Resolution The finest level of measurement; for
spatial measurements; resolution is
equivalent to grain size.

X X

Scale The spatial or temporal domain of a
pattern or process.

X X X

Scale of effect The scale (typically extent considered
around a sampling location) at which
most variability is explained. Some-
times referred to as characteristic scale.

X

Scale
invariance

When spatial patterns and processes do
not change with scale.

X X X

Scope The ratio of grain to extent. X X X

Support The size, shape, and orientation of a
sample of data. Can be applied to both
spatial and temporal support.

X X

For each term, we highlight whether it is relevant to scales of phenomena, sampling, and/or analysis
(sensu Dungan et al. 2002)
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work at large extents with data collected at fine grain sizes. However, part of this
covariance is also conceptual: often at large extents, we may expect processes
operating at very fine grains to provide mostly “noise” in the systems. As compu-
tational challenges decline and availability of high-resolution data has increased, the
covariance between grain and extent in investigations has decreased.

Dungan et al. (2002) emphasized that scale concepts have been used differently
across scientific disciplines (e.g., ecology, geography, spatial statistics). They cate-
gorized this variability based on three dimensions: scale of the phenomenon of
interest, scale in the sampling of these phenomena, and scale of the analysis based
on sampling (Fig. 2.2). Scale of the phenomenon of interest emphasizes the pattern or
process of interest, such as the scale of plankton dispersal or scales in vertebrate
movement and habitat selection (Nams 2005; Mayor et al. 2009; Shurin et al. 2009).
Scale of sampling emphasizes the characteristics of the sampling unit and sampling
design used to measure and interpret the phenomenon, such as a quadrat size or study
area extent. Scale of analysis is related to sampling scale but focuses on how samples
are used for statistical inferences of the statistical population. For example, one
possibility in analysis of spatial scale is that we might pool sampling units to
different resolutions (i.e., increase grain size) for inferences on the role of scale on
spatial pattern or process (Thompson and McGarigal 2002). Throughout this book,
we emphasize scale concepts from an ecological perspective, with most focus on the
scale of phenomenon and scale of analysis.

Scale should not be confused with the concept of “level of organization” (Allen
and Hoekstra 1990, Levin 1992). Level of organization in ecology refers to the place
within a biotic hierarchy, such as the categorization of individuals, populations, and
communities (Turner et al. 1989a). Consequently, we may apply the problem of
scale to each of these levels of organization. For example, our interpretation of the
spatial scale of competition may vary in regard to competitive interactions between
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individual heterospecifics versus competitive interactions at the meta-community
level (see Chap. 11; Holyoak et al. 2005).

Hierarchy theory is frequently used to interpret issues that cross levels of orga-
nization (Urban et al. 1987; O’Neill et al. 1989). In this context, a hierarchy is a
system that can be viewed as sets of interconnections operating at different levels.
Typically, higher levels in the hierarchy constrain lower levels while lower levels
provide details and mechanisms of relevance that may explain higher levels. In a
seminal article, Johnson (1980) emphasized four hierarchical orders in habitat
selection for animals: the geographic range, the home range, the territory, and the
foraging patch (see Chap. 8). In general, higher levels are thought to have larger
spatiotemporal scales than lower levels. For example, Cohen et al. (2016) found that
climate factors changed slowly over space, impacting disease prevalence (West
Nile virus, Lyme disease, and chytrid fungus) at broad spatial scales, while biotic
interactions changed more rapidly only explaining disease prevalence at local scales.
The hierarchy concept provides a foundation for issues of hierarchical patch dynam-
ics (Wu and Loucks 1995) and multilevel problems (Cushman and McGarigal 2002,
see below; McGarigal et al. 2016) in ecology. Often times hierarchy theory is used
more as a heuristic framework for organizing hypotheses for species and ecosystems
rather than a quantitative framework for modeling (but see Wu and David 2002).

2.2.2 Why Is Spatial Scale Important?

Spatial ecology and conservation emphasize the importance of scale to understand
ecological processes, biodiversity patterns, and to better inform conservation deci-
sions. The most common reasons for the importance of scale include that it may
alter: (1) the role of biotic and abiotic interactions; (2) the degree to which systems
are “open” versus “closed”; (3) the quantitative relationships of ecological patterns
and processes; and (4) conservation and management decisions.

There are several examples where the scale at which questions are analyzed alter
the conclusions regarding the role of biotic interactions (Wiens 1989; Levin 1992).
For example, at a small scale (fine grain), field experiments have shown that
American redstarts (Setophaga ruticilla) and least flycatchers (Empidonax minimus),
two species of migratory birds that coexist in deciduous forest habitats in North
America, are interspecific competitors, where presence of the dominant flycatcher
may inhibit the redstart from establishing territories (Sherry and Holmes 1988;
Fletcher 2007). This behavior results in a negative correlation in occurrence and
abundance at a fine grain. In contrast, at a broader, regional scale there is a positive
correlation in the occurrence and abundance of these two species, which is likely
driven by their convergence on similar foraging strategies and prey (Sherry and
Holmes 1988). To understand processes and species distribution at one scale, it is
important to account for the processes acting at both a finer and broader scale (Allen
and Hoekstra 1992).
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Second, the interpretation of “open” versus “closed” dynamics varies tremen-
dously with scale. Open dynamics emphasize that flow into and out of an area of
interest (e.g., patch, landscape, and ecosystem) occurs. This can include the flow of
energy (Cadenasso et al. 2003), resources (e.g., spatial subsidies; Polis et al. 1997),
individuals (immigration/emigration; Pulliam 1988), or alleles (gene flow; Slatkin
1985). The roles of localized movement on population dynamics have received
considerable attention to delineate local populations (Waples and Gaggiotti 2006),
where the scales of movement locally and regionally influence metapopulation
persistence (see Chap. 10). For example, giant kelp (Macrocystis pyrifera) forests
in southern California illustrate that within-patch dynamics can occur, where local
sites within patches are colonized more frequently than sites across patches, imply-
ing that within-patch dynamics are more “open” than between patch dynamics
(Cavanaugh et al. 2014). Similarly, at the community and ecosystem levels, there
has been considerable interest in understanding the roles of dispersal limitations and
flows of nutrients across space to alter metacommunity and metaecosystem pro-
cesses (Loreau and Holt 2004; Jacobson and Peres-Neto 2010).

Third, quantitative aspects of data change fundamentally with scale, in terms of
both grain and extent (Turner et al. 1989b). For example, as grain gets larger in
ecological investigations (while holding extent constant), the spatial variance tends
to get smaller, metrics of land-cover diversity decreases, and rare land-cover types
tend to disappear (Turner et al. 1989b; Horne and Schneider 1995). The form of
decrease (e.g., linear or exponential decrease) will depend on several issues, such as
the spatial patterning of heterogeneity and sampling design. Changing the grain of
data also sometimes causes quantitative bias in patterns through what has been
termed the modifiable areal unit problem (Openshaw 1984; Jelinski and Wu
1996; Dark and Bram 2007). This problem highlights that aggregated data can
have different properties than the sample data from which they were derived, and
biases can occur particularly in situations where data are aggregated into irregular
sampling units, such as county-level polygon data. In geostatistics, aggregating
(or resampling) data is referred to as change of support (Cressie 1996), where
support refers to the size, shape, and orientation of a sample of data. The modifiable
areal unit problem is related to the ecological fallacy, where inappropriate inferences
occur for individual sample units from aggregated data for which no individual-level
data occur (Piantadosi et al. 1988). For extent, several quantitative changes patterns
can also occur. As extent gets larger (while holding grain constant), spatial diversity
tends to increase as more spatial heterogeneity is captured in regards to habitat types
and species (Wiens 1989). These issues can have profound impacts on the quanti-
tative patterns in data. For example, species richness often exhibits a hump-shaped
pattern with altitude, where high species richness occurs at moderate altitudes;
however, if the extent of the investigation only captures a subset of an altitudinal
gradient, the pattern in species richness can frequently appear linear (Rahbek 2005).

Finally, conservation strategies and the effectiveness of conservation decisions
vary with scale. Prioritizing patches for connectivity conservation can vary based on
the grain and extent of areas considered, as well as assumptions regarding the scale
of dispersal for population connectivity (Pascual-Hortal and Saura 2007; Fletcher
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et al. 2013; Maciejewski and Cumming 2016). Similarly, conservation planning for
biodiversity and ecosystem services in Britain suggests that national priorities can
vary dramatically, depending on the extent (i.e., region) considered within the
country (Anderson et al. 2009). More broadly, the scale at which conservation
planning is viewed may alter the roles of complementarity (i.e., the degree to
which a species assemblage in an area complements assemblages in other protected
areas) and irreplaceability (i.e., the uniqueness of an area to overall biodiversity in a
region of interest) as key factors in the conservation planning process (Margules and
Pressey 2000; Larsen and Rahbek 2003). Based on a review of 4239 species of
vertebrates, Boyd et al. (2008) argued that the effectiveness of conservation planning
among species varies with spatial scale.

2.2.3 Multiscale and Multilevel Quantitative Problems

Because of the large role of scale in ecology and conservation, there has been
considerable focus on the development and application of quantitative methods
that address the problem of scale. A primary emphasis has been in determining the
critical scales, or characteristic scales, for ecological patterns and processes (Keitt
and Urban 2005). Critical scales have been identified in organism responses to
habitat (Holland et al. 2004; Jackson and Fahrig 2015), movement and dispersal
(Reichert et al. 2016), population dynamics (Liebhold et al. 2004), community
interactions (Andersen 1992), and conservation planning (Minor and Urban 2008).

In this context, multiscale and multilevel modeling have emerged (Fig. 2.3;
McGarigal et al. 2016). Multiscale modeling quantifies environment conditions at
multiple scales by altering either the grain or extent of the analysis, and then
evaluates which of the considered scales best explains a pattern or process (Holland
et al. 2004). This can be accomplished in several ways, the most common being
based on considering multiple extents around locations of interest (e.g., buffers
around habitat patches) to test the relative contribution of the different extents to
explain species occurrence in a region (Jackson and Fahrig 2015). For example,
Weaver et al. (2012) modeled the invasive mute swan (Cygnus olor) distribution
based on biologically relevant spatial scales—average territory size radius, the
median dispersal distance of cygnets, and average activity distance of adult
males—finding that different environmental variables were correlated with swan
distribution at different scales.

In multilevel modeling, the focus is on interpreting effects at different levels in an
organizational hierarchy (Mayor et al. 2009; Wheatley and Johnson 2009; McGarigal
et al. 2016). Such approaches often encapsulate three different perspectives. First,
models may include contrasting levels of organization (e.g., effects of forest cover at
different scales on population abundance versus genetic diversity; Jackson and Fahrig
2014). Second, a model may focus in situations where the environment is hierarchi-
cally structured and questions are asked regarding how this hierarchy might differen-
tially influence organisms. For example, individuals may use different cues to select
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nest sites within patches versus habitat at the patch-scale or those available in the
surrounding area (Chalfoun and Martin 2007). Third, a model may aim in quantifying
the variation in different responses by focal organisms that are hierarchical in nature.
Multilevel modeling can occur in space and/or time. For example, temporal multilevel

Fig. 2.3 Multiscale and multilevel modeling. Spatial modeling is increasing multiscale, where the
(a) extent and/or (b) grain of the environment is varied, with the aim to understand what grain and
extent best explains a pattern or process. Shown are two different environmental factors, one
categorical (e.g., land-use variation) and another that reflects a continuous gradient. (c) Multilevel
modeling occurs when responses at different levels of organization or hierarchies are considered.
Shown here is an example for the same landscape where an individual location is considered,
several populations are considered, and the entire spatial range of the metapopulation is considered
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modeling might include asking how environmental relationships explain animal use
between day and night, within seasons versus between seasons, and across an annual
time scale (Rettie and Messier 2000; Schooley 1994; McLoughlin et al. 2002; Guyot
et al. 2017). McGarigal et al. (2016) also classified multilevel models as those where
different levels were modeled separately, largely because each level may focus on
different types of responses. However, hierarchical and/or multilevel statistical model-
ing can provide a means where different levels can be modeled simultaneously
(Gelman and Hill 2007).

Finally, an active area of interest includes how to translate or predict across scales
(and levels of organization). These problems often focus on identifying potential
scaling coefficients that can be used to translate patterns across scales (Miller et al.
2004). For example, scale transition theory (Chesson 2012) aims to identify equa-
tions that can link population and community processes across scales based on
nonlinearities and variation at finer scales (grains) to predict emergent properties.
Currently, this work is largely theoretical (but see Melbourne and Chesson 2005,
2006) but it has the potential to be applied to situations where information is limited.
Other approaches include identifying cross-scale interactions and/or correlations,
where patterns and processes at one scale covary or interact with patterns and
processes at other scales (Falk et al. 2007; Peters et al. 2004, 2007; Schooley and
Branch 2007; Soranno et al. 2014).

2.2.4 Spatial Scale and Study Design

Given the role that scale can play in our understanding of ecological patterns and
processes, as well as its importance for conservation problems, how should spatial
scale be considered in study design? Clearly, the answer to this question will vary
depending on the phenomena of interest, yet ecologists and statisticians have
provided some important guidance (e.g., Dungan et al. 2002; Dale and Fortin
2014). Key issues include the size of the sampling unit (grain), the type of the
sample unit, and sample unit locations, including the spatial lag between samples
(distance between samples) and the size of the study area.

The sample unit size, or the grain of the data, will set the lower limit on the
resolution of inference for an investigation. It is frequently recommended that the
grain be 2�–5� smaller than the spatial extent of the phenomenon of interest
(O’Neill et al. 1996). While smaller grains might intuitively be preferred, too
small of sample units relative to the phenomenon of interest can add noise to the
data, causing potential challenges for inference. Nonetheless, if sample units can
easily be aggregated, then smaller unit size is generally preferable because they may
be pooled or aggregated as needed for phenomena under investigation (Dale and
Fortin 2014). In contrast, disaggregating data (i.e., resampling data from a coarser to
finer resolution) can sometimes be limited in terms of providing reliable information
at a fine grain (see below).
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A related issue regarding multiscale effects of land cover (Thornton et al. 2011)
and the sample unit size is whether the unit should be a pixel, a patch (Fleishman
et al. 2002), or an entire landscape (Villard et al. 1999). Fahrig (2003) referred to the
latter two designs as “patch-scale” versus “landscape-scale” designs (Fig. 2.4), and
also described “patch-landscape” designs (also known as “focal patch” designs),
where the patch is the focal unit, while covariates may be measured in the surround-
ing landscape. This latter design can be readily extended to a “local-landscape”
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Fig. 2.4 Some alternative study designs for investigating processes that may act at different levels.
(a) In patch-scale studies, ecological patterns and processes are summarized among patches within
the study area. (b) In landscape-scale studies, ecological patterns are processes are summarized
among landscapes or regions, and not among patches. (c) In patch-landscape (or “focal-patch”)
studies, the patch is the sample unit, but the surrounding environment is summarized, typically
within a buffer of a radius thought to be relevant to the ecological pattern or process, taken from
either the centroid of the patch (shown here) or from the patch boundary. (d) In “local-landscape”
studies, the pixel (or related area) is the sample unit, rather than a patch, which standardizes the area
sampled, and the surrounding landscape is considered. In all panels, maps show examples of
variation in habitat and/or the land cover. Extended from Fahrig (2003)
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design, where the pixel or local sampling unit (within a patch or irrespective of patch
boundaries) is the focus and the surrounding landscape is considered. When interest
is in predicting species distributions across landscapes or regions (Guisan and
Thuiller 2005), it is natural to view the sampling unit as the grain (e.g., remote
sensing pixel, GIS raster cell) because this allows for straightforward mapping of the
data across a landscape or region without the need to alter the summary statistics or
predictions. In contrast, some questions operate at patch scales (Diamond 1975),
while others operate at larger scales (Fahrig 2013), such that study designs might
benefit from using sampling units that reflect underlying questions or phenomena of
interest.

The extent of an investigation is frequently recommended to be at least 2�–5�
greater than the spatial extent of the phenomenon of interest (O’Neill et al. 1996),
with some studies suggesting up to 10� (Jackson and Fahrig 2015; Miguet et al.
2016). If a study area is too small, there will likely not be enough variability in the
samples to identify meaningful patterns and processes. Yet, if it is too large, there
may be several processes involved, generating patterns at multiple scales (Dale and
Fortin 2014).

The location of sample units can be described by both the spatial lag, or distance
between samples (Table 2.1), and the sampling strategy, such as spatially random
sampling, sampling across a regular grid, or spatially stratified sampling (e.g.,
stratifying random samples based on land-cover types to ensure environmental
variation is captured). While random or stratified random sampling is often done
in ecology, spatial ecologists frequently use regular/systematic or nested grids for
sampling. The benefit of regular or nested grids is that it may ensure that the
gradient-wide spectrum of spacing between sampling locations is captured, which
can potentially allow for a better detection of the spatial scales of the patterns.
Limitations of systematic sampling designs can occur if there is periodicity in the
environment that is poorly captured based on the position and lag distance used in
sampling. The spatial lag between samples will be driven based in part on the total
number of samples and the extent of the investigation. Sample lag should be smaller
than the average distance between units of the phenomenon under investigation
(Dungan et al. 2002). In general, for most scaling analyses, inferences are typically
made at distances less than 1=3 to ½ of the extent length under investigation (see
Chap. 5). Consequently, ensuring adequate lag distances of samples within this
domain can be helpful. For instance, nested grid sampling can help increase repli-
cation for lag distances used in inference with smaller total effort (Fortin et al. 1989).
The spatial lag between samples has also been debated in the context of determining
scales of effects in multiscale investigations (Holland et al. 2004; Zuckerberg et al.
2012). Some argue that when testing for scale effects of land cover on species
responses, the description of that cover (e.g., the proportion of forest within a
distance of the sampling location) should not overlap between sampling locations
due to non-independence of samples (Holland et al. 2004; Eigenbrod et al. 2017).
However, Zuckerberg et al. (2012) argued that this concern is misleading: the lack of
independence in explanatory variables (e.g., forest cover) is not relevant but rather
the lack of independence in the response variables is of critical importance.

2.2 Key Concepts and Approaches 27



In Chaps. 5 and 6, we provide an overview of the issue of spatial dependence and its
influence on spatial analyses, such as the use of spatial regression (Dormann et al.
2007; Beale et al. 2010).

2.3 Examples in R

2.3.1 Packages in R

In R, we will address some general aspects related to spatial scale using the raster
package (Hijmans 2017). raster is a package dedicated to the use of raster
(or grid) GIS layers and allows for many types of summaries, analyses, and visual-
izations. We will use this package throughout this book, but here we will introduce
some of the foundational techniques when using the raster package. In later
chapters, we will use other important packages for interpreting some problems of
scale, but here we introduce the topic primarily with the raster package.

2.3.2 The Data

We will first use simulated data to illustrate some ways in which we can alter the
scale of raster data and interpret summaries based on these changes. Simulating data
can be very helpful for a variety of problems in spatial ecology and conservation
because it provides a means to simplify the task or problem, use an example where
we “know the truth,” formulate hypotheses, and test or interpret methods that we
may later apply to real data.

We will then illustrate a simple, multiscale analysis of reptile response to the
amount of forest cover in the Southeast USA. These data come from drift fence
arrays at 78 forested sites in Alabama, Georgia, and Florida, USA.

2.3.3 A Simple Simulated Example

First, we create a toy landscape. To do so, we set up an empty raster layer and then
populate the empty cells with randomly generated values taken from a Poisson
distribution. The Poisson distribution is a discrete probability distribution (i.e., a
probability mass distribution) that is relevant for count-based (integer) data, where
the data, y, can take on the values of 0, 1, 2, etc. It assumes that the mean equals the
variance. By using a Poisson distribution, we will set values of the cells to
non-negative integers, which is a common format for storing land-cover information.

First, we load the raster package and use set.seed to set a random number
seed in R. This allows users to be able to replicate analyses where random number

28 2 Scale



generators are used. We then create a 6 � 6 raster, specifying the numbers of rows
(nrow) and columns (ncol), as well as the minimum and maximum coordinates.
We then populate the raster by taking random draws (i.e., random deviates) from the
Poisson distribution with the rpois function.

> library(raster)
> set.seed(16)#sets random number seed for repeatability
> toy <- raster(ncol=6, nrow=6, xmn=1, xmx=6, ymn=1, ymx=6)
> values(toy) <- rpois(ncell(toy), lambda=3)
> ncell(toy)
> plot(toy)
> text(toy, digits=2)

In the above code, we generate 36 values (ncell(toy)¼ 36) from the Poisson
distribution, where the mean value¼ 3. We could also use a multinomial distribution
for simulating land-cover types. A multinomial distribution models the frequency of
K land-cover types based on their probabilities of occurrence (where ∑K ¼ 1). This
can be accomplished with the rmultinom function, but we will focus on the
Poisson distribution for now because it is more straightforward to implement. We
discuss simulating raster layers with more realistic spatial patterns in Chap. 3.

Note that when raster populates the raster layer with the Poisson data (rpois), it
will start from the top left of the layer and populate right and then down. We can
check to make sure this is the case by creating a second raster layer of the same
dimensions, but rather than loading randomly generated values from a distribution,
we will populate the raster layer with a vector string:

> ncell(toy)
> toy2 <- toy
> values(toy2) <- 1:ncell(toy)
> plot(toy2)
> text(toy2, digits=2)

Altering the grain of a raster layer is straightforward. We can increase the grain
size using the aggregate function (Fig. 2.5). Two common approaches are to:
(1) take the mean value of the cells being aggregated; or (2) use a “majority rule,”
where we take the most frequent value in the cells being aggregated. We can
illustrate each of these approaches as:

> toy_mean <- aggregate(toy, fact=2, fun=mean) #mean value
> toy_maj <- aggregate(toy, fact=3, fun=modal) #majority rule

Note that these rules are helpful for different situations. For categorical data (e.g.,
vegetation types), a majority rule might be helpful because it will aggregate cells
based on the most frequent category. For continuous data (e.g., canopy cover),
taking the mean value might be more helpful than a majority rule (which would
take the mode of the values). In addition, the modal function can be limited when
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ties are common (no majority value), which will occur more frequently when
aggregating fewer cells. In this situation, the function defaults to randomly picking
one of the values, but it can be altered to return the lowest, highest, or first value.

For these toy landscapes, we can formally ask whether the means and variances
change as we increase grain size, as described above. It is straightforward to do
mathematical operations on values of raster layers. Here, we contrast means and
variances of the original raster to that of the raster where we used the mean values to
increase grain size using the cellStats function (results not shown):

> cellStats(toy, mean)
> cellStats(toy, var)

> cellStats(toy_mean, mean)
> cellStats(toy_mean, var)

In this situation, the mean value remains identical (3.412), whereas the variance
decreases as we increase the grain size (from 2.82 to 0.86).

We can reduce the grain size by resampling the data (Fig. 2.6). This can be
accomplished with the disaggregate function. When using this function, several
approaches can be used to resample the data into smaller grains. Two common
approaches are to use a simple disaggregation, which simply replicates values, or
using bilinear interpolation, which is based on a distance-weighted average of values
in both the x and y directions (hence “bi'” linear).

> toy_dis2 <- disaggregate(toy, fact=2)
> toy_dis2_bilinear <- disaggregate(toy, fact=2,
method='bilinear')

Bilinear interpolation can be useful when working with continuous data but
would not be helpful if data were based on land-cover categories.

Altering the extent is also straightforward. We can reduce the extent of the map
by use of the crop function. To do so, we need to create a new extent for cropping.
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Fig. 2.5 Increasing grain in a toy landscape. (a) A landscape where values are generated from a
Poisson distribution. Aggregating cells to increase the grain based on (b) the mean and (c) using a
majority rule

30 2 Scale



This can be a simply rectangle of coordinates or we could use a polygon file (e.g., a
shapefile). In contrast, the extent can be increased using the extent function. For
this toy example, we use new coordinates for changing the extent:

#decrease the extent
> e <- extent(2, 4, 2, 4) #first create new, smaller extent
> toy_crop <- crop(toy, e)
> plot(toy_crop)
> text(toy_crop)

#increase the extent
> e <- extent(0, 7, 0, 7) #first create new, larger extent
> toy_big <- extend(toy, e)
> plot(toy_big)
> text(toy_big)

In this case, increasing the extent is not helpful unless we also populate the data in
the new extent.

This simple example illustrates how to change the grain and extent of a raster
map, as well as some of the consequences of changing the grain and extent. Simple
examples like this one can be generally helpful when starting a new analysis problem
in spatial ecology because they can provide a tractable means of understanding what
different functions and models do.

2.3.4 Multiscale Species Response to Land Cover

Now we interpret the scale at which species may respond to habitat, such as forest
cover. To do so, we quantify the amount of forest that occurs at various distances
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from sampling points and then determine the scale at which forest cover best predicts
species occurrence.

To illustrate this general approach, we use the 2011 National Land Cover
Database (NLCD) (Homer et al. 2015) and link these land-cover data to reptile
sampling in managed forests for the Southeast USA. NLCD is a standardized land-
cover dataset created from Landsat data (grain ¼ 30 � 30 m) for the entire USA.
NLCD classifies land cover into 20 categories. For the purpose here, we are
primarily interested in forest land-cover, which is classified as deciduous (ID: 41),
evergreen (ID: 42), and mixed (ID: 43) forest. This land-cover database is particu-
larly useful because it provides a consistent land-cover classification scheme across
states. For this exercise, we have clipped the 2011 NLCD layer to the southeastern
USA (nlcd2011SE).

Reptiles were sampled with drift-fences at 85 sites (Fig. 2.7). Sampling occurred
in mature, naturally regenerated longleaf pine (Pinus palustris) savannas, slash
(P. elliottii) and loblolly (P. taeda) pine plantations, and corn (Zea mays) fields
distributed among three geographic regions within the Southeastern Plains and
Southern Coastal Plains ecoregions in the states of Florida, Georgia, and Alabama
(Fig. 2.7a; Gottlieb et al. 2017). At each site, two drift fences were set up along two
transects, with one transect located along the edge and a second located in the
interior of the sites. Drift fences were opened for 3 days each month, April to July,
2013–2015. For this exercise, we will not consider data collected in corn fields and
we will pool data within sites (using the centroids of the sampling locations for the
two transects). Here, we will focus on data collected for the southeastern five-lined
skink (Plestiodon inepectatus; Fig. 2.7b).
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Fig. 2.7 The case study for interpreting the scale of effects of land-cover on species distribution.
(a) The southeastern USA, with study sites shown. (b) The five-lined skink, a common reptile,
which was sampled with drift-fence arrays
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2.3.4.1 Multiscale Analysis of Forest Cover

We start by loading the data, defining its projection and inspecting it. We can read
the land-cover data with the raster function.

> nlcd <- raster("nlcd2011SE")
> proj4string(nlcd)

##
[1] "þproj=aea þlat_1=29.5 þlat_2=45.5 þlat_0=23 þlon_0=–96 þx_0=0
þy_0=0 þellps=GRS80 þtowgs84=0,0,0,0,0,0,0 þunits=m þno_defs"

This projection contains lots of information. Most importantly, aea refers to
Albers Equal Area projection. We define the projection so that we can make sure the
transect data are considered to be in the same projection as the land-cover data (see
Appendix for more on projections).

> nlcd_proj <- projection(nlcd)

We can inspect other aspects of the raster layer as well, including the resolution
(grain size), extent, and number of cells, with the res, extent, and ncell
functions. For example,

> res(nlcd)

##
[1] 30 30

As expected, we find that the grain of the land-cover data is 30 � 30 m. Note that
R does not consider the land-cover data as categorical, which can be shown with
is.factor(nlcd). So, we convert the layer to be considered categorical with
as.factor and inspect the number of categories of land cover with levels (note
output is suppressed here).

> nlcd <- as.factor(nlcd) #convert to factor
> levels(nlcd)

There are 16 categories of land cover, with labels reflecting the NLCD IDs. For
example, deciduous forest is ID ¼ 41.

We read in the transect data (a SpatialPointsDataFrame object, which
can be determined with the class function) with the readOGR function from the
rgdal package.

> library(rgdal)
#reptile data
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> sites <- readOGR("reptiledata")
> class(sites)

##
[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp

> summary(sites)

##
Object of class SpatialPointsDataFrame
Coordinates:
min max
coords.x1 812598.9 1373597
coords.x2 786930.5 1014229
Is projected: NA
proj4string : [NA]
Number of points: 85
Data attributes:
site management coords_x1 coords_x2
AL1 : 1 Reference :10 Min. : 812599 Min. : 786931
AL10 : 1 Thinned :10 1st Qu.: 872612 1st Qu.: 838447
AL11 : 1 Young : 8 Median :1106233 Median : 933843
AL12 : 1 Corn : 7 Mean :1094814 Mean : 918191
AL13 : 1 Unthinned : 6 3rd Qu.:1288328 3rd Qu.: 982365
AL14 : 1 Clear cut, debris LEFT: 4 Max. :1373597 Max. :1014229
(Other):79 (Other) :40

The summary function provides a lot of relevant information. First, it provides
the extent of the layer. Notice that this data set includes data collected in eight
different land-uses, seven of which are different types of conifer forest, whereas one
is corn. It also shows that there are 85 sites (points) and that it does not know what
the projection is for the layer. We set the projection to be consistent with the other
data (note that this does not change the projection; the layer was already in a
consistent projection, but R did not recognize it).

> proj4string(sites) <- nlcd_proj #set projection

We can call the SpatialPointsDataFrame using the generic functions. For
example,

> head(sites, 2)

##
site management coords_x1 coords_x2
1 AL1 Reference 846279.4 921444.9
2 AL10 Clear cut, residues removed 899063.5 989168.9
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We use the subset function that is often used on data frames to remove the corn
land use:

> sites <- subset(sites, management!="Corn")

With this subset, we work with 78 sites (nrow(sites)). Next, we crop the nlcd
layer to make the extent only be 10 km beyond the sampling transects to increase
computing speed.

#define reduced extent
> x.min <- min(sites$coords_x1)�10000
> x.max <- max(sites$coords_x1)þ10000
> y.min <- min(sites$coords_x2)�10000
> y.max <- max(sites$coords_x2)þ10000
> extent.new <- extent(x.min, x.max, y.min, y.max)
> nlcd <- crop(nlcd, extent.new)

To simplify our consideration of scaling issues, we reclassify the nlcd layer into a
binary forest/non-forest layer. This task can be accomplished in at least two ways.
First, we could reclassify land cover categories (pooling different forest land-cover
types) using some generic R commands to create a new layer that captures the forest
cover across the study region. To do so, we create a map of the same grain and
extent, and then we can reset values of the map. In this case, we want to pool land-
cover categories 41, 42, and 43 (Deciduous, Evergreen, and Mixed Forest,
respectively).

#create a new forest layer
> forest <- nlcd
> values(forest) <- 0
> forest[nlcd==41 | nlcd==42 | nlcd==43] <- 1 #forest categories

Note how with the raster package we can easily reclassify land-cover using
simple operations in R similar to other operations for vectors and matrices (Appen-
dix). In this situation, we are populating our new forest raster, which is initially set to
all 0 values, as 1 if the nlcd layer at a location is either 41, 42, or 43 (using the OR
statement, | ). The result is a new raster where forest values are 1 and all other values
are 0. Alternatively, we can use the reclassify function in the raster package
to do the same operation, which is much quicker computationally. This function
requires creating a matrix where the first column is the original land-cover categories
and the second provides information on the reclassification categories. In this case
we need to make sure that in the second column, there are all zeros except for the
rows representing nlcd categories 41, 42, and 43 (conifer, deciduous and mixed
forests). In levels(nlcd)[[1]], we find that IDs 41–43 are the 8th–10th
values in the vector. Consequently, we can create a reclassification vector as:
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#reclassification vector
> reclass <- c(rep(0,7), rep(1,3), rep(0,6))

We then create a reclassification matrix and reclassify the nlcd layer with the
reclassify function.

#create reclassification matrix
> reclass.mat <- cbind(levels(nlcd)[[1]], reclass)
> head(reclass.mat, 3)

##
ID reclass
1 0 0
2 11 0
3 21 0

> forest <- reclassify(nlcd, reclass.mat)

We then take point coordinates of sample locations and calculate the amount of
forest that surrounds each sampling location at different extents. To do so, we set the
local extents to 1000 and 5000 m (Fig. 2.8). We can then use the buffer function
to create circular buffers of different extents surrounding the sites. We consider the
first site (sites[1, ]) to illustrate and then use the same logic to apply to all sites.

#buffer sites
> buf1km <- 1000
> buf5km <- 5000

#buffer only first site
> buffer.site1.1km <- buffer(sites[1,], width=buf1km)
> buffer.site1.5km <- buffer(sites[1,], width=buf5km)

Fig. 2.8 Illustration of determining the amount of habitat surrounding a point. For a given study
extent (a), the habitat of interest is isolated (b). A buffer is placed surrounding a point (c) or polygon
and the number of cells (pixels) that contain the habitat is summed and multiplied by the area of
each cell
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The raster package has a useful function for viewing portions of raster layers.
Here we use the zoom function to zoom into the buffer we just created.

#zoom into area for viewing
> zoom(nlcd,buffer.site1.5km)
> plot(buffer.site1.5km, border="red", lwd = 5, add=T)
> plot(buffer.site1.1km, border="red", lwd = 3, add=T)
> points(sites[1,], pch=19, cex=2, add=T)

Note that the rgeos package (Bivand and Rundall 2017) has a function
gBuffer that is similar to buffer function in the raster package (in some
situations it is slightly faster). With gBuffer you can also adjust how the circular
buffer is approximated in R (see below), which can be helpful.

How can we extract appropriate information at different scales? Let us focus on
this first site. Once we can capture the information we need for one point, we then
repeat for all sites. There are several ways to accomplish this task. The simplest way
is to take the buffered layer we just created and use the crop and mask functions:

> buffer.forest1.1km <- crop(forest, buffer.site1.1km)
> buffer.forest1.1km <- mask(forest, buffer.site1.1km)

Extracting the forest area is straightforward from here. Given that the map is a
binary map of forest cover, we can use the cellStats function in the raster
package to sum the amount of forest cover (sum the 1’s for each cell to obtain the
total number of forest cells). We can then multiple this number by the grain to get the
forest area and divide by the buffer size to get the proportion of forest:

#area of each cell, in ha
> grainarea <- res(forest)[[1]]^2/10000

#area of 1km buffer
> bufferarea <- (3.14159*buf1km^2)/10000

#calculation of forest cover and % cover
> forestcover1km <- cellStats(buffer.forest1.1km, 'sum') *
grainarea

> percentforest1km <- forestcover1km / bufferarea * 100

That’s it! Now to repeat this for all of the points, we use a for loop, where we
iteratively go through all points, calculating buffers, extracting forest area for each
buffer, and then append the proportion of forest area for each point (and/or buffer
size) for each sample location. To do this more efficiently for so many points, we will
use the rasterize function to convert the buffer into a raster layer, which can be
computationally quicker than not rasterizing the buffer. We make a generic function
that can then be used to automate all of the steps for a given point. In this function, we
first crop the layer to the buffer so that we can work on a smaller extent, then we
create an empty raster that we use for rasterizing the buffer. With that new layer, we

2.3 Examples in R 37



can use the mask function to create a new raster that only includes forest cover
within the buffer.

> BufferCover <- function(coords, size, landcover, grain){
bufferarea.i <- pi*size^2/10000
coords.i <- SpatialPoints(cbind(coords[i, 1], coords[i, 2]))
buffer.i <- gBuffer(coords.i, width=size)
crop.i <- crop(landcover, buffer.i)
crop.NA <- setValues(crop.i, NA) #for the rasterization
buffer.r <- rasterize(buffer.i, crop.NA) # rasterize buffer
land.buffer <- mask(x=crop.i, mask=buffer.r)
coveramount <- cellStats(land.buffer, 'sum')*grain
percentcover <- 100*(coveramount/bufferarea.i)
return(percentcover)

}

So this function requires x–y locations of a point, the buffer distance of interest
(size), a binary land cover raster layer, and the grain area of the map (note the latter
could build into the function, but it would recalculate grain area each iteration, which
is not necessary for this example). We use this function, nesting it in a for loop, to
calculate forest cover for all the points:

#create empty vector for storing output first
> f1km <- vector(NA, length = nrow(sites))
> f2km <- vector(NA, length = nrow(sites))

> for(i in 1:nrow(sites)) {
f1km[i] <- BufferCover(coords = sites, size = 1000,
landcover = forest, grain = grainarea)
f1km[i] <- BufferCover(coords = sites, size = 2000,
landcover = forest, grain = grainarea)
print(i) #print iteration in for loop

}
#make data frame with associated site data
> forest.scale <- data.frame(site = sites$site, x =
sites$coords_x1, y = sites$coords_x2, f1km = f1km, f2km = f2km)

We then use the above function to calculate the proportion of forest cover at
different buffer sizes for all of the points. The above code shows calculations for
1000 and 2000 m, but we also ran 500, 3000, 4000, and 5000 m. In doing so, we find
that the percent of forest cover at different scales tends to be highly correlated
(Fig. 2.9). This is not surprising, given that calculations at a larger buffer size include
area considered at smaller buffer sizes. However, this correlation has implications
for the interpretation of scale effects (see below). Note that in R (and in other GIS),
as the buffer increases, the computation time also increases. See a recent package
in R, spatialEco (Evans 2017), for similar functionality regarding calculating
landscape metrics surrounding points.
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We can also repeat this process for different grains by using the aggregate
function to coarsen the map. Why might we want to do this? A primary reason is to
translate the map to a resolution of data being collected in the field that we are using
for making inferences. In this case, we are considering data collected along two,
200 � 100 m transects within forest patches, or 4 ha. If we wish to make predictions
of species–environment relationships, we may want our map grain to reflect the
sampling grain. Consequently, we would want the map to have an approximate
200 � 200 m grain. We can do this as:

#changing the grain
> forest200 <- aggregate(forest, fact=7, fun=modal)
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Fig. 2.9 Forest cover surrounding sampling locations, calculated at different scales. Shown are
scatter plots of percent forest cover for each pairwise combination of scales (buffers; inset shows an
example). Note the high degree of correlation between scales
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2.3.4.2 Multiscale Analysis of Species Responses

We now consider how we might relate these differences in grain and extent to
species occurrence to help identify the characteristic scale (or scale of effect) of
forest cover on species occurrence. This is an increasingly considered problem in
applied ecology (Holland et al. 2004; Jackson and Fahrig 2015; McGarigal et al.
2016; Miguet et al. 2016).

Several approaches have been advanced to quantify the scale(s) of effect. Pearson
(1993) was one of the first to address this problem by measuring the landscape
surrounding survey locations based on buffers of different sizes. This approach
became very popular and has been used extensively (Holland et al. 2004; Jackson
and Fahrig 2015). More recently, the use of spatial kernels has been suggested
(Heaton and Gelfand 2011). Kernels can be applied to weight land-cover data as a
function of distance from the survey location (Aue et al. 2012; Miguet et al. 2017).
Not only might kernels better capture neighborhood effects by weighting nearby
locations more than distant ones (Fig. 2.10), Chandler and Hepinstall-Cymerman
(2016) showed how this formulation can be implemented to optimally select the
scale of effect without resorting to a priori binning of different neighborhood sizes
(e.g., the 1 and 5 km buffers described above). Here, we first illustrate the use of
buffers of different sizes, and then proceed to illustrate the use of kernel-based
approaches.

Buffer Analysis. To illustrate quantifying the scale of effect, we first use a buffer-
based analysis, which is a commonly used technique (Holland et al. 2004; Jackson
and Fahrig 2015). We fit a logistic regression model for binary (0, 1) data to interpret
the relationship of forest cover and species occurrence. Logistic regression is a type
of generalized linear model for binary (or binomial) data that is analogous to linear
regression. We will discuss generalized linear models in more detail in Chap. 5, but
for the purpose of illustrating scale effects here, we can describe a logistic regression
for the effect of forest cover on species occurrence as:

logit pið Þ ¼ αþ βforesti, ð2:1Þ

where logit is defined as log( p/(1 � p)), pi is the probability of presence of a species
at location i, α is the intercept and β is the coefficient for the relationship of forest
cover surrounding locations. In a logistic regression, we assume that the errors
(residuals) come from a binomial distribution. We note that this model is a very
simple model for occurrence data and it does not account for observation errors
(MacKenzie et al. 2002) and other model complexities (Dormann et al. 2007). But it
will be useful for illustrating scale effects here.

We fit this model to the data and contrast different models based on measure-
ments of forest cover at different grains and local extents (buffer sizes). To contrast
models, we can use measures of model fit (e.g., the likelihood of the model, given the
data; Fletcher et al. 2016; Stuber et al. 2017), variation explained (Holland et al.
2004), or measures of predictive success (e.g., how well the model may predict to
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new locations; Fielding and Bell 1997). We use the log-likelihood, which has a
strong philosophical foundation in statistics. Log-likelihoods are based on the
concept of maximum likelihood and quantify the plausibility (or likelihood) of a
model’s parameters, given the data. Note that the use of model selection criteria,
such as Akaike’s Information Criterion, that penalize the log-likelihood based on the
number of parameters (Burnham and Anderson 1998), would provide identical
results to use of the log-likelihood here because we contrast models that have the
same number of parameters to identify scales of effects.

We first load the reptile data on southeastern five-lined skinks (FLSK) and merge
it to our summaries of forest cover calculated at different scales.

> flsk <- read.csv("reptiles_flsk.csv", header=T)
> flsk <- merge(flsk, forest.scale, by = "site", all = F)
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Generalized linear models, like logistic regression, can be then be implemented in
R with the glm function. For instance, a logistic regression model with forest cover
calculated at the 1 km scale can be fit as:

> pres.1km <- glm(pres ~ f1km, family = "binomial", data = flsk)
> logLik(pres.1km)

##
'log Lik.' �33.83839 (df=2)

We plot the log-likelihoods based on fitting different models like that above as a
function of forest cover calculated at different scales, ranging from 500 m to 5 km
(Fig. 2.11a). Frequently, the scale with the best fit to the data (e.g., highest
log-likelihood) is deemed the “scale of the effect” (Jackson and Fahrig 2015). In
this case, we find that, based on the log-likelihoods of the models, forest cover within
2 km is most supported by the data (Fig. 2.11a). However, when plotting the β terms
at different scales (Fig. 2.11b), we find that relationships are identical when forest
cover is measured at 2 km or greater buffer sizes. In this situation, only at 500 m do
we see a weak relationship with forest cover. In this case, there is great uncertainty
regarding the scale of the effect, which is likely a consequence of forest cover being
highly correlated across scales (Fig. 2.9). Nonetheless, there is consistent evidence
that occurrence of five-lined skinks increases with forest cover on the landscape
(based on cover measured at 1 km and greater scales).

Kernel Analysis. In contrast to using a buffer-based analysis, we can use a kernel-
based approach for estimating the scale of effect (Fig. 2.10). To do so, we extend the
approach outlined in Chandler and Hepinstall-Cymerman (2016) for logistic regres-
sion and applications on large landscapes. This approach requires customizing the
log-likelihood function for estimating parameters of the logistic regression model.
Here we briefly describe this process, but for more on the use of likelihood functions,
see Bolker (2008).

First, we illustrate how a logistic regression model can be fit from scratch. The
log-likelihood of a logistic regression model like that described in Eq. (2.1) can be
formalized as:

LðθjxÞ ¼
X
i

yilogðpiÞ þ ð1� yiÞlogð1� piÞ, ð2:2Þ

where pi is the probability of occurrence for survey i, taken from Eq. (2.1), and yi is
the observed presence or absence of the species at location i. In R, we code this as a
negative log-likelihood function:

> nll <- function(par, cov, y) {
alpha <- par[1]
beta <- par[2]
lp <- alpha þ beta*cov #linear predictor
p <- plogis(lp) #back-transform
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loglike <- -sum(y*log(p) þ (1�y)*log(1�p)) #negative jj
return(loglike)
}

In this function, we first formalize the linear predictor based on the two param-
eters, α and β, as shown in Eq. (2.1). This linear predictor, lp, is on the logit scale;
we back-transform lp to a probability scale with the plogis function. We then
quantify the negative log-likelihood. We use the negative log-likelihood because
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Fig. 2.11 Scale of effect of forest cover on the occurrence of the five-lined skink based on a buffer
analysis and a kernel analysis. (a) The log-likelihood for logistic regression models, where the
probability of skink occurrence is modeled as a function of the percent forest, calculated at different
scales using a circular buffer around points (0.5–5 km). A higher log-likelihood suggests a better fit
of the model to the data. (b) The parameter estimates for the effect of forest cover on the probability
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This optimal weight emphasizes that most weight should occur for sample locations <2 km from
the survey points. (d) The proportion of forest cover based on the optimal kernel weight and the
best-fitting buffer considered (r ¼ 0.97)
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when we fit this model to the data, we use the optim function, which minimizes the
log-likelihood rather than maximizing it. We can then fit the model to the data, where
we consider the proportion of forest within 2 km of survey locations to find the
parameter estimates using the optim function as:

#fit logistic model
> lr.buffer <- optim(par = c(0, 0), fn = nll, cov = flsk$f2km,
y = flsk$pres, hessian = T)

> lr.buffer$par

##
[1] �6.16271714 0.08561185

> lr.buffer.vc <- solve(lr.buffer$hessian) #var�cov matrix
> lr.buffer.se <- sqrt(diag(lr.buffer.vc)) #SE
> lr.buffer.se

##
[1] 1.46565540 0.02225678

Note that the optim function requires that we provide starting values for the
parameters and that requesting hessian¼ T allows for calculating the standard errors
of the parameter estimates based on the inverse of the Hessian matrix (Bolker 2008).
We can contrast these estimates to the use of the glm function described above as:

> summary(pres.2km)$coefficients

##
Estimate Std. Error z value Pr(>|z|)
(Intercept) �6.1626986 1.46453460 �4.207957 2.576899e�05
f2km 0.0856115 0.02223369 3.850530 1.178626e�04

The estimates for α and β parameters and associated SEs are identical (up to four
decimal places) to that given by the glm function. The log-likelihoods are also
identical.

We can extend the log-likelihood function to estimate the scale of effect using a
kernel approach. Different types of kernels could be considered; here we use a
Gaussian kernel as illustrated in Chandler and Hepinstall-Cymerman (2016). In
this approach, we summarize the landscape variable based on a weighted average
using the weight, w, is based on a Gaussian kernel:
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where σ is the scale parameter that determines the shape of the kernel (Fig. 2.10) and
dij is the distance between sample location i and location j surrounding i. Smaller
values of σ reflect greater weight to nearby locations, whereas larger values place an
increasingly large weight on distant values of the covariate of interest. We can add
this weighting scheme to our logistic log-likelihood function as:

> nll.kernel <- function(par, D, cov, y) {
sig <- exp(par[1]) #ensures sig > 0
alpha <- par[2]
beta <- par[3]
cov.w <- apply(D, 1, function(x) {
w0 <- exp(-x^2 / (2 * sig^2)) #Gaussian kernel
w0[w0==1] <- 0 #for truncated data
w <- w0/sum(w0) #kernel weights; sums to 1
sum(cov * w) #weighted average of raster

})
lp <- alpha þ beta * cov.w #linear predictor
p <- plogis(lp) #back-transform
loglike <- -sum(y*log(p) þ (1-y)*log(1-p)) #nll
return(loglike)

}

This function is similar to the above nll function, with the primary difference
being the calculation of cov.w, a Gaussian kernel-weighted covariate (in our case,
the proportion of forest). To calculate cov.w, the apply function is used on a
distance matrix, D, where D is a site�NCmatrix and NC is the number of cells in the
raster being considered. The apply function takes each row of D, in which the
column values represent the distance from the survey location to each raster cell.
This D matrix can be very large: in the case of forest200, it is a 78 � 3215254
matrix. In our situation, such a large matrix would bog down computations, making
the analysis impractical. But we can trick R to make this computationally efficient by
restructuring this matrix. We can truncate our distance calculations by setting a
maximum distance that we will consider, which will allow the matrix to become a
“sparse matrix.” Sparse matrices are matrices with many zeros, which can be stored
and manipulated in an efficient way (Golub and Van Loan 1996). In our case, we will
set values in D above some maximum distance, say 10 km, as zero and then ignore
these values in the cov.w calculation (by setting w0 to zero at these locations; see
nll.kernel above). We will calculate D with the rdist function in the fields
package (Nychka et al. 2017). To do so, we first convert our raster covariate,
forest200, to a data frame with the rasterToPoints function.
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> for200.df <- data.frame(rasterToPoints(forest200))
> library(fields)
> D <- rdist(as.matrix(flsk[,c("x","y")]),
as.matrix(for200.df[,c("x","y")]))

We then convert the matrix to a sparse matrix format with the Matrix package
(Bates and Maechler 2017).

> library(Matrix)
> D <- D/1000 #in km
> D[D > 10] <- 0 #truncate to only consider max dist
> D <- Matrix(D, sparse = TRUE)

This matrix is now “sparse,” which will speed the fitting of the model. Because of
the broad extent, there are many cells that are >10 km from all survey locations; for
these locations, all column values are 0. We can further speed model fitting by
removing these columns in D that are >10 km from all survey locations. We first
identify the columns in which all values are not zero for subsetting our covariate
values and then subset D:

> cov.subset <- which(colSums(D)!=0, arr.ind = T)
> D <- D[, cov.subset]

With this truncated, sparse matrix, we can now fit the kernel-based logistic
regression as:

> lr.kernel <- optim(fn = nll.kernel, hessian = T, par = c(0,�
6,8), D = D, cov = for200.df$layer[cov.subset], y = flsk$pres)

> lr.kernel$par

##
[1] 0.118360 �6.271160 8.563042

Note in our call to optim, we subset our forest data frame to only consider the
raster data that are within 10 km of at least one survey location and we use starting
values for the alpha and beta parameters that are based loosely on estimates from the
buffer analysis. From this analysis, the log(σ)¼ 0.118 and the effect of this covariate
on occurrence is β ¼ 8.56 (0.85 SE; note that cov.w is a weighted proportion of
forest cover while above when using buffer analysis, we used the percent forest
cover as a covariate). In general, the estimated cov.w is highly correlated with the
proportion of forest in the 2 km buffer (r ¼ 0.97) and the log-likelihoods are nearly
identical. However, if we contrast AIC calculated from the optim function, where
AIC¼�2LLþ 2K (LL¼ log-likelihood, K¼ number of parameters), there is more
support for using a simple buffer approach at the 2 km scale because it has one fewer
parameter:
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> AICkernel <- 2 * lr.kernel$value þ 2 * length(lr.kernel$par)
> AICbuffer <- 2 * lr.buffer$value þ 2 * length(lr.buffer$par)
> c(AICkernel, AICbuffer)

##
[1] 68.90598 66.73604

Despite the support for the 2 km buffer based on AIC due to the additional
parameter being estimated, the kernel approach is useful for three primary reasons.
First, it intuitively provides greater weight to nearby locations than distant ones,
which is a more plausible assumption regarding how the landscape may influence
organisms in many situations. Second, it delivers a more objective means to identify
the scale of effect that does not require a priori decisions regarding potential scales
to consider (as in the buffer approach). Third, it provides estimates of uncertainty
in the scale of effect—an issue that is not directly estimated with buffer
approaches. Despite these benefits, in practice there may be high uncertainty in
estimates of σ, and estimates may be sensitive to starting values. More work on
optimal estimation of the scale of effect is needed.

This example is intended to illustrate the general approach of identifying scales of
effects in environmental relationships using R, an issue of increasing interest
(Jackson and Fahrig 2015; Miguet et al. 2017). However, there are several improve-
ments to the approach that could be considered, such as accounting for detection
errors (MacKenzie et al. 2002) and considering the problem of spatial dependence
from the use of overlapping landscapes (Zuckerberg et al. 2012). In addition, other
covariates could be considered, and the scale of the effects may differ for each
covariate (McGarigal et al. 2016).

Common multilevel models may be approached in a similar way as described
here, but different models and data may be used for different levels (McGarigal et al.
2016). Alternatively, formal hierarchical statistical models could be considered
(Gelman and Hill 2007). We will discuss aspects of such models in Chap. 6.

2.4 Next Steps and Advanced Issues

2.4.1 Identifying Characteristic Scales Beyond Species–
Environment Relationships

Beyond regression techniques that correlate variables measured at different scales to
response variables, there are several other techniques that are aimed at identifying
characteristic scales of variability. The approaches vary depending on the specific
questions being addressed and the type of data used. We will address some of these
in later chapters. Some common examples are the use of spatial point pattern analysis
(Chap. 4), semivariograms (Chap. 5), spatial eigenvector mapping (Chap. 6), wave-
let analysis (Chap. 5), and certain types of network metrics (Chap. 9).
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2.4.2 Sampling and Scale

Above we discussed issues of sampling and the problem of scale. In general,
different sampling designs could be considered to understand scaling issues. The
raster package has several functions for sampling raster maps, including the
SampleRandom, SampleRegular, and SampleStratified functions. The
SampleRandom function generates a number of random samples within the extent
of a raster of interest. The SampleRegular function applies a grid of regularly
spaced points within the extent of a raster, setting the lag distance based on the total
number of points considered. The SampleStratified function generates random
samples within strata defined by the raster layer, such as selecting 20 random points
within each land-cover type on a map. Each of these functions can be useful for study
design and for interpreting how variation in study design (e.g., lag distance) may
influence the variation being captured across a region of interest. We note that one
could also develop a sampling design outside of the raster package by generating x–y
coordinates of interest (e.g., points every 100 m) and then create a
SpatialPoints data frame with this information that could then be used with
other geographic data.

2.5 Conclusions

Spatial scale is fundamental to many problems in ecology and conservation, and it is
a concept that permeates this entire book. Problems of scale require interpreting the
spatiotemporal domain of the phenomenon of interest, the sampling of the phenom-
enon, and the analysis (Dungan et al. 2002). Spatial ecology and conservation often
explicitly deals with spatial scale in addressing questions and problems of conser-
vation concern. Indeed, there has been a great deal of advancements in our under-
standing and quantification of scale and its effects.

Despite these advances, understanding how organisms respond to issues operat-
ing at different spatial scales is challenging. Here, we illustrate that summaries of
forest structure at different spatial scales are highly correlated, a common problem in
identifying relevant spatial scales for species responses to the environment. Kernel-
based approaches (Heaton and Gelfand 2011; Chandler and Hepinstall-Cymerman
2016) provide an objective means to identifying the scale of effect when using data
on species–environment relationships, yet there can still be a great deal of uncer-
tainty in such estimates. We will continue to address the problem of scale throughout
most of this book.
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Chapter 3
Land-Cover Pattern and Change

3.1 Introduction

Understanding spatial and temporal variation in land use and land cover is a topic
that bridges disciplines such as ecology, geography, sociology, and economics
(Lambin et al. 2001; Rindfuss et al. 2004; Turner et al. 2007). It is also a topic
that is well integrated into spatial ecology and conservation (Vitousek 1994; Blair
1996). The topics of habitat loss and fragmentation, agricultural intensification,
agroforestry, and urbanization all involve land-use and land-cover change
(Brockerhoff et al. 2008; Grimm et al. 2008; Ewers et al. 2009). Land-use change
has had major effects on biodiversity (Newbold et al. 2015) and it is predicted to
have unprecedented effects on biodiversity in the coming decades (Tilman et al.
2017).

Interpreting the effects of land use and land cover (hereafter LULC) requires
quantifying its spatial patterns. This quantification typically focuses on how to
interpret patterns from categorical maps (McGarigal et al. 2002). In some cases,
interest lies in quantifying continuous data (McGarigal et al. 2009), such as quan-
tifying the Normalized Difference Vegetation Index (NDVI) and its influence on
animals (Pettorelli et al. 2005). In general, quantifying spatial patterns of LULC is
complex, and there are hundreds of metrics and a variety of frameworks used to
guide the quantification of LULC (Vogt et al. 2007; Cushman et al. 2008; Walz et al.
2016).

Here, we focus on the quantification of land use and land cover, with an eye
toward then relating these patterns to ecological processes. Our goals for this chapter
are to introduce key concepts regarding land-use change, provide insight to the
quantification of such change, and illustrate how spatial patterns can be quantified at
different scales. We first discuss some foundational concepts and terms that capture
key aspects of LULC. We then provide an overview on common ways in which
spatial patterns of LULC are quantified, focusing primarily on the quantification of
land-cover variation and heterogeneity (Li and Reynolds 1995), which is typically
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based on categorical maps (McGarigal et al. 2002).We provide examples of these
approaches with land-cover data from the Southeast USA. We also provide an
overview on the use of neutral landscapes for interpreting spatial patterns (Gardner
et al. 1987; Gardner and Urban 2007; Etherington et al. 2015).

3.2 Key Concepts

3.2.1 Land Use Versus Land Cover

“Land use” and “land cover” are often used interchangeably, but each concept
captures different issues (Table 3.1) (Lambin et al. 2001). Land use refers specifi-
cally to how humans utilize landscapes of the Earth, and it often incorporates
socioeconomic issues. Land cover refers specifically to the physical material of
Earth at a location, such as water, vegetation, or concrete. Some common examples
of land use include various types of agriculture, urbanized landscapes, and
community-owned forestry practices. Land-use change can occur through land-use
extensification or through land-use intensification (Pinto-Correia and Mascarenhas
1999; Tilman et al. 2011; Macedo et al. 2012). Extensification refers to the spread in
land-use practices across a region, such that a greater total area of a land use occurs.
Land-use intensification refers to changes in an existing land use, where a greater
amount of inputs or changes occur. For example, land-use change from corn (Zea
mays) agriculture can occur via extensification where land uses, such as pastures, are
converted to corn agriculture (Wright et al. 2017), or through intensification, where
corn is grown for greater yield through increased use of fertilizers or greater
irrigation (Grassini and Cassman 2012).

3.2.2 Conceptual Models for Land Cover and Habitat Change

To interpret land-cover change in ecology, several conceptual models have been
used (Lindenmayer and Fischer 2007). These models have different fundamental
assumptions regarding variation in LULC patterns. These models vary in the
complexity for which they interpret the environment and whether the environment
is assumed to be discrete or is considered as continuous environmental gradients
(Fig. 3.1).

Perhaps the earliest conceptual model applied to land cover was the island model.
This simple model only considered discrete islands or patches of a focal cover type,
ignoring all other variation in land use and land cover. Spatial pattern is typically
quantified based on island size (or patch size, see below) and isolation. This general
conceptual model emerged from island biogeography and metapopulation theories
(MacArthur andWilson 1967; Hanski 1999; Diamond 1975) (see Chaps. 10 and 11).
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Table 3.1 Common terms and concepts used in land-use and land-cover problems in ecology

Term/concept Description

Aggregation Tendency of patch or land-cover types to be spatially adjacent or in close
proximity. Can capture several related concepts: dispersion, interspersion,
subdivision, and isolation.

Boundary A zone composed of the edges of adjacent ecosystems (see edge below).

Composition The amount and number of elements, cover types, or habitats.

Configuration Specific arrangement of spatial elements: often used synonymously with
physiognomy or spatial structure.

Contrast The magnitude of difference in a variable between adjacent patch types.
Also known as “edge contrast.”

Corridor A relatively narrow strip of a particular type that differs from the areas
adjacent on both sides.

Cover type Category within a classification scheme defined by the user that distin-
guishes among the different habitats, ecosystems, or vegetation types on a
landscape.

Dispersion The spatial distribution of a land-cover type without explicit reference to
other land-cover types.

Ecotone A region of transition between two biological communities. Typically more
gradual than an edge or boundary.

Edge Proportion of an ecosystem or cover type near its perimeter and within
which environmental conditions may differ from interior locations in the
ecosystem.

Fragmentation The breaking up of habitat or cover types into smaller, disconnected parcels.
Most appropriately used as a measure for a given amount of habitat loss.

Functional metrics Landscape metrics that use information on the species or ecological process
being considered to alter the quantification of spatial pattern, such that the
same landscape may have different patterns for different species or pro-
cesses. Examples include using information on dispersal distances or dis-
tance of edge effects to alter connectivity and core area metrics.

Landscape
heterogeneity

Variation in in landscape structure, typically measured with landscape
metrics.

Interspersion The spatial mixing of different land-cover types without explicit reference
to the dispersion of any single land-cover type.

Isolation Degree to which patches are separated from each other. Focuses on distance
between patches.

Land cover A description or classification of the physical material of Earth at a location.

Land use A description or classification of how humans utilize areas of the Earth.

Landscape metrics Group of indices (e.g., mean patch size) used to characterize composition
and spatial configuration of landscape such as diversity, homogeneity, and
fragmentation.

Matrix Background cover type(s) in a landscape, characterized by extensive cover
and high connectivity; not all landscapes have a definable matrix.

Neutral landscape A neutral or null model of landscape pattern, in which expected patterns are
generated in the absence of specific biological or ecological processes.

Patch Surface area that differs from its surroundings in nature or appearance.

(continued)
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It has been frequently used to address problems of habitat loss and fragmentation
(Haila 2002; Fahrig 2003; Fisher and Lindermayer 2007).

The island model has been extended and largely replaced by the patch-matrix-
corridor model (Forman 1995b), also known as the patch mosaic model (Turner
1989). In general, a patch represents a relatively discrete area containing homoge-
neous conditions, where, within patches, conditions are similar enough to effectively
ignore the internal variability (Wiens 1976; Forman and Godron 1981). Patches are
delineated based on discontinuities or changes in land-cover or land-use conditions.
This delineation may be contingent on the scale being considered (see Chap. 2).
Patch delineation can be done visually or through a set of rules based on adjacencies
of a land use or land cover relative to the focal location (see below). The matrix is
considered the non-focal land-cover types or elements in the landscape (Kupfer et al.
2006). It sometimes refers to the most dominant land-cover type that is not the focal
land-cover type. For example, if we were interested in dipterocarp forests of South-
east Asia, the matrix is often oil palm forestry (Sodhi et al. 2010). In recent years,
several lines of evidence suggest that the matrix can be more important than patch
area and other local factors in explaining biodiversity (Haynes et al. 2007; Prugh
et al. 2008). A corridor typically refers to linear landscape element that connects
patches and can be defined based on the structure of the landscape (i.e., structural
corridors) or through their function (i.e., functional corridors), where function is
inferred if corridors promote movement or flow (see Chap. 9). The landscape mosaic
model (Wiens 1995) is related to the patch-matrix-corridor model, but it emphasizes

Table 3.1 (continued)

Term/concept Description

Structural metrics Landscape metrics that quantify the physical structure of the environment
without respect to the species or process under considerations, such that
only one value occurs for a given landscape (or patch). Contrast with
functional metrics.

Subdivision The breaking apart of land-cover types into distinct patches. The distance
between patches is not considered.

Thematic
resolution

The resolution of land-cover and land-use classifications. As thematic
resolution increases, there is an increasing number of categories.

a b c ed

Fig. 3.1 Some common conceptual models for land-cover used for quantifying patterns and
interpreting its effects on ecological processes. Shown is an example where the real world is
conceptualized based on (a) the island model, (b) the patch-corridor-matrix model, (c) the landscape
mosaic model, (d) the habitat variegation model, and (e) the continuum model
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that there are different types of patches from various cover types, such that it
de-emphasizes a single focal habitat or cover type. For instance, different types of
natural land cover (e.g., forest and wetland), agricultural land uses, and urban areas
may all be simultaneously considered (Fahrig et al. 2011; Gottlieb et al. 2017).
This conceptual model is now often used in a variety of conservation settings,
particularly in situations where multiple objectives for land use and conservation
are considered (Polasky et al. 2008; Phalan et al. 2011). These models simplify the
landscape as a series of patches and their surrounding context. Because of this
simplification, it is a tractable conceptual model for land cover and landscape
variation, but it may not be appropriate in some situations, particularly when there
are important environmental gradients that are more continuous in form or when
patch delineation is difficult.

Conceptual models have therefore been advanced that attempt to better capture
environmental gradients. These include the habitat variegation model and the
continuum model. The habitat variegation model extends some of the ideas of
the patch-corridor-matrix model to consider the fact that disturbances can
modify environments in a continuous manner, rather than simply the wholesale
destruction of habitat (McIntyre and Barrett 1992; McIntyre and Hobbs 1999).
Thus, rather than simple classifications of habitat/non-habitat, habitat may be con-
sidered unmodified or modified from disturbances. This model emphasizes that
landscapes may be generally intact, variegated (where disturbances modify, but do
not necessarily destroy habitat), fragmented (where habitat loss creates patch
fragments), or relictual, where landscapes have nearly all habitat lost. This frame-
work has been used to understand species distributions in a variety of human-
dominated landscapes (Fischer and Lindenmayer 2002; Thornton et al.
2013; Vergara et al. 2017).

The continuum model and related gradient model emphasize that landscapes can
be considered a combination of several environmental gradients, which are often
continuous in their form (Fisher et al. 2004; Fischer and Lindenmayer 2006;
Cushman et al. 2010). These models de-emphasize the concept of patches because
environmental conditions may not be so similar within patches or disrupted between
them to generate meaningful patch delineations. In doing so, these models also
abandon the habitat/non-habitat dichotomy, such that focal habitats are also
de-emphasized. Rather, these models assume that habitat is a species-specific con-
cept (Hall et al. 1997) and that several aspects of the environment drive variation in
habitat. These models also assume that species may respond to the environment
at different spatial grains (Kotliar and Wiens 1990). This general framework has
been useful to explain communities in landscapes lacking strong contrast among
land uses (Brudvig et al. 2017). These models fit more naturally into niche concepts
in ecology (see Chap. 7) and suggest that landscape patterns should be quantified
in species-specific ways using functional metrics (rather than structural metrics;
Table 3.1).

3.2 Key Concepts 59



3.2.3 Habitat Loss and Fragmentation

The issue of habitat loss and fragmentation is one common type of land-use and
land-cover change. Understanding the role of habitat loss and habitat fragmentation
on ecological patterns and processes has been of long-standing interest in spatial
ecology and conservation (Diamond 1975; Fahrig 2003; Tscharntke et al. 2012;
Haddad et al. 2015). Early views on habitat fragmentation tended to focus on how
land conversion, such as the clearing of forests, could result in smaller, more isolated
patches, with a greater proportion of habitat edge (Fig. 3.2) (Wilcove 1985; Ries
et al. 2004). More recently, the reduction in habitat (habitat loss) is often distin-
guished from the breaking apart of habitat (habitat fragmentation), such that frag-
mentation is quantified for a given amount of habitat loss (Fahrig 2003, 2017;

Shrinkage

Bisection

Fragmentation

Perforation

Examples

Time

Land clearing 
for agriculture

Road incursion

Treefall gaps,
clear-cutting forest

Urbanization

Fig. 3.2 Ways in which habitat can be lost and fragmented over time. Habitat loss and fragmen-
tation are often conceptualized as processes that occur over time, where landscapes that are initially
contiguous undergo different patterns of loss. This land conversion can arise from the shrinkage of
habitat, bisection of habitat from land changes such as road infrastructure and development,
fragmentation (in its narrow sense) where contiguous habitat is broken into pieces, and perforation
where habitat has internal loss where holes are cut into contiguous habitat. In practice, many of
these changes occur simultaneously, such as road networks bisecting habitats, leading to fragmen-
tation of remaining habitat. Shown are changes across three time periods, with the same amount of
loss for each time period occurring for each pattern. Modified from Collinge and Forman (1998)
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Hadley and Betts 2016). In practice, these two issues are often confounded because
habitat fragmentation requires that habitat loss occurs over time (Ewers and Didham
2006; Didham et al. 2012; Villard and Metzger 2014; Fletcher et al. 2018). Techni-
cally, we might want to consider habitat fragmentation effects conditional on the
amount of loss.

There are several ways in which habitat can be lost and fragmented over time,
leading to variation in the spatial patterns of land cover, which can have major
consequences for biodiversity. Forman (1995a) and Collinge and Forman (1998)
emphasized four general patterns in a conceptual framework for land conversion:
shrinkage, bisection, fragmentation (in its narrow sense), and perforation (Fig. 3.2).
Shrinkage occurs when a contiguous land cover reduces in size, without land cover
being broken into pieces; such changes can arise from land clearing for agriculture.
Bisection occurs when a contiguous land cover becomes split into two or more
patches from road incursion or related types of land change. Fragmentation in its
narrow sense occurs when contiguous habitat is broken into pieces. Finally, perfo-
ration occurs when internal holes are punched into formerly contiguous habitat, such
as treefall in forest creating gaps or clear-cutting of contiguous forest. In this
framework, Collinge and Forman (1998) envisioned these patterns of habitat loss
would initially occur and then the shrinkage of remaining habitat would continue
over time. Alternatively, bisection, fragmentation, and perforation could continue
over time without shrinkage of remaining habitat (Fig. 3.2). Overall, Collinge and
Forman (1998) emphasized that each of these patterns of habitat loss resulted in
different amounts of edge and connectivity over time. For instance, perforation and
fragmentation can result in the greatest proportion of edge, whereas bisection and
fragmentation can lead to the greatest decreases in connectivity of land cover. In
general, each of these types of loss likely occurs together over time with ongoing
habitat loss.

There are many reasons why habitat loss and fragmentation has received consid-
erable focus and several concepts throughout this book relate directly or indirectly to
the problem of habitat loss and fragmentation. Habitat loss is considered to be one of
the most important—if not the most important—threat to biodiversity both locally
and world-wide (Wilcove et al. 1998; Brooks et al. 2002; Jetz et al. 2007). The
reason is simple: as habitats get smaller, there are fewer resources for organisms,
which ultimately reduces population sizes and alters community structure (Fahrig
2003). Understanding effects of fragmentation can provide conservation strategies to
mitigate the effects of loss, such as the use of conservation corridors to connect
remaining habitats.

Conceptually, there has also been a great deal of elegant theoretical development
to interpret the effects of habitat loss and fragmentation (Hill and Caswell 1999;
Flather and Bevers 2002). This theoretical development has emerged from two
different fields. First, the development of the equilibrium theory of island biogeog-
raphy (MacArthur and Wilson 1967) was incredibly influential. In this theory, island
area and isolation (distance from mainland) were emphasized as being critical for
extinction and immigration dynamics on islands. Shortly after its description by
MacArthur and Wilson, it was applied to terrestrial systems where habitat loss and
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fragmentation were occurring (Diamond 1975). See Chap. 11 for more on the
influence of island biogeography for community ecology and conservation planning.
Second, theoretical developments in spatial ecology began focusing on the role of
patchy resources on populations and species interactions (Huffaker 1958; Roff
1974). This theoretical development was then applied to interpret the effects of
habitat loss and fragmentation.

3.2.4 Quantifying Land-Cover Pattern

A variety of approaches have been developed to quantify LULC patterns. These
approaches typically start with a map that has been classified into different land-use
or land-cover categories. The number and detail of the categories is referred to as the
thematic resolution. Ultimately, patterns will vary depending on the thematic reso-
lution of the data. In addition, the scale of the map, both grain and extent, can affect
the quantification of pattern. Here, we focus on general issues regarding the quan-
tification of land-cover pattern via landscape metrics. In Sect. 3.3.3 we discuss
specific metrics frequently used.

3.2.4.1 Composition Versus Configuration

When quantifying variation in land use and land cover across the landscape, pattern
can arise from variation in composition and/or in configuration (Gustafson 1998).
Composition emphasizes the amount and variety of different land-use or land-cover
types, without explicit consideration of land-use or land-cover arrangement. In
contrast, configuration focuses on the arrangement and/or position of land uses or
land covers across landscapes.

Distinguishing the effects of landscape composition versus configuration is
highly relevant to many problems in ecology and conservation. Based on this
distinction, habitat loss focuses on changes in the composition of the landscapes,
whereas habitat fragmentation focuses on changes in the configuration of the
landscape (Fahrig 2003). Another issue where this distinction is relevant is related
to the habitat heterogeneity hypothesis in agricultural landscapes. This hypothesis
posits that landscapes with greater heterogeneity, either from compositional and/or
configurational heterogeneity, may harbor greater biodiversity than those with less
heterogeneity (Benton et al. 2003; Oliver et al. 2010; Fahrig et al. 2011; Fahrig 2017;
Reynolds et al. 2018). Understanding the role of compositional versus configura-
tional heterogeneity in this way is essential for promoting biodiversity in agricultural
landscapes.

For ecology, we might a priori predict that changes in composition may have
different effects on ecological patterns and processes than configuration. For
instance, changing the composition of land uses may alter resource abundance and
ultimately carrying capacity of species in a region of interest. In contrast, altering the
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configuration of land uses may influence movement-related processes (Cushman
et al. 2012) and changes in resource quality across space via changes in edge effects
(Sisk et al. 1997; Ries et al. 2004; Pfeifer et al. 2017). For conservation, problems
of composition focus on questions regarding “how much” and “what variety”
(Fahrig 2001). In contrast, configuration focuses on questions of “where” and
“under what context” (Lookingbill et al. 2010b).

Because composition focuses on “how much,” its quantification is relatively
straightforward. Compositional metrics, such as habitat amount or the proportion
of a land use/land cover and the diversity of cover types, are easily calculated and
interpreted (see Examples below). However, landscape configuration is much more
challenging to quantify. Landscape and spatial ecologists have devoted a great deal
of effort to the quantification of landscape configuration and there are now over one
hundred metrics that have been developed (Cushman et al. 2008). It is not our goal to
describe all of these composition and configuration metrics. Rather it may be useful
to interpret what general aspects of configuration that these metrics attempt to
quantify.

Configuration metrics capture several related concepts to varying degrees. These
include contrast, aggregation, dispersion, interspersion, isolation, and subdivision
(Table 3.1) (McGarigal et al. 2002). Contrast reflects configuration because it
explicitly considers the adjacency of different land-cover types, such as edge
contrast (Suarez et al. 1997; Fletcher and Koford 2003; Ries and Sisk 2010).
Aggregation and its related elements—dispersion, interspersion, isolation, and
subdivision—also focus on configuration because each attempts to quantify the
context of cells or patches in a landscape, such as the proximity of land cover to
similar or different land-cover types. Each of these issues has been shown to be
important in metapopulation persistence, the outcome of species interactions, and
other ecological processes (see Chaps. 10 and 11; Tilman and Lehman 1997;
Ovaskainen et al. 2002).

3.2.4.2 Scale for Land-Cover Quantification

Land cover can be quantified in many different ways for ecological problems.
Quantification of land-cover heterogeneity can occur at different scales or levels:
at the cell (grain) level, the patch-level, the class-level, and the landscape-level
(Fig. 3.3). In this way, metrics are typically organized as “patch-level,” “class-
level,” or “landscape-level” metrics when quantifying pattern on land-cover and
land-use maps (Cushman et al. 2008). These different levels can be applied to
problems that focus on patches, neighborhoods, or the entire landscape (sometimes
called the “scope” of the investigation) (McGarigal et al. 2002).

At the cell level, heterogeneity is quantified without respect to patches. The result
is that each cell has a summary statistic reflecting land-cover heterogeneity. The
most common example of this approach is the use of moving-window analyses,
where quantification of the land cover at or surrounding each cell (typically based on
a buffer or kernel; see Sect. 3.3.3.4) on the map is quantified, resulting in a new map

3.2 Key Concepts 63



where each cell has a unique summary value. Morphological imaging processing
occurs at the cell level as well (see Advanced Topics) (Vogt et al. 2007).

At the patch level, the focus is on quantifying aspects of patches, such as their
size, isolation, or the amount of perimeter (i.e., length of boundaries). This scale
requires the formal delineation of patches in the landscape. Patch-level metrics have
played an integral role in island biogeography (MacArthur and Wilson 1967), patch
dynamics (Pickett and Thompson 1978; Wu and Loucks 1995), and metapopulation
dynamics (Levins 1969; Hanski 1998). The island model and patch-matrix-corridor
model largely focused on patch-level metrics to interpret spatial pattern.

The class-level focuses on summarizing variation in a cover type or “class” across
the landscape. Thus, a “class” is simply a cover type or category on a map that
describes a type of land cover or land use. It can include landscape-scale summaries
of patch variation (e.g., mean patch size) or metrics that do not require patch
delineation (e.g., the proportion of forest). In this situation, focal land-cover types
are emphasized, but position relative to other land-cover types is sometimes consid-
ered (e.g., edge contrast). Class-level metrics have been instrumental in understand-
ing effects of habitat loss and fragmentation (e.g., Villard et al. 1999).

The landscape-level focuses on quantifying land-cover variation for the entire
landscape. In this situation, all land-cover types are typically considered and specific
variation for each land-cover type (i.e., class-level heterogeneity) is usually ignored
or pooled to quantify the overall pattern of the landscape. An example where
landscape-level metrics have been important comes in understanding the role of
heterogeneity on biodiversity in agricultural landscapes (Fahrig et al. 2011).

Several investigations have emphasized that many of the metrics that aim to
quantify variation in landscape composition and configuration are highly correlated
(McGarigal and McComb 1995, Fortin et al. 2003). Attempts have been made to
identify which types of metrics provide important and non-redundant, or

Cell level: 
pattern defined 
for cells or pixels

Patch level: 
pattern defined 

for patches

Class level: 
pattern defined for  

a type (class) of 
land cover 

Landscape level: 
pattern quantified 
using all classes 
for entire extent

Fig. 3.3 Land-cover patterns are frequently quantified based on different scales of heterogeneity.
Pattern can be summarized for each cell or pixel on a landscape (frequently through moving-
window analysis), for individual patches (either characteristics of the patches themselves or their
surroundings), for land-cover types or classes across the entire landscape, or through summaries
using information on all classes in the landscape
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complementary, information about patterns (Riitters et al. 1995; Neel et al. 2004;
Wang et al. 2014). Cushman et al. (2008) provided one of the most thorough
analyses of these correlations. They emphasized three important characteristics
when using these types of metrics: strength, universality, and consistency. They
attempted to identify components of landscape structure (i.e., components were
combinations of correlated metrics describing land-cover pattern) that were derived
from 103 landscape metrics. For these components, strength refers to the amount of
variation explained by a component across classes and regions, universality is the
percentage of classes or regions from which a component is found, while consis-
tency describes the stability of the component interpretation across classes and
regions. From these analyses, they identified seven major class-level components
and eight major landscape-level components that explained land-cover variation
(Cushman et al. 2008).

3.3 Examples in R

3.3.1 Packages in R

In R, there are a few libraries that can be used for land-cover quantification. We will
start with some simple examples using the raster package (for raster data)
(Hijmans and Van Etten 2012) and the rgeos package (for vector-based data)
(Bivand and Rundall 2017). SDMTools (VanDerWal et al. 2010) provides some
more advanced metrics for land-cover quantification that are largely based off of the
program Fragstats (McGarigal et al. 2002). lulcc is a package in R that focuses on
quantifying LULC change (Moulds et al. 2015). At the time of publication,
landscapemetrics was released for calculating a wide variety of landscape
metrics (Hesselbarth et al. 2018), which should also be considered, but it is not
covered here.

3.3.2 The Data

To illustrate land-cover variation across landscapes, we return to the land-cover data
used in Chap. 2 on scale. Land-cover data comes from the 2011 National Land Cover
Database (NLCD) (Homer et al. 2015). We focus primarily on one landscape
considered in Chap. 2 so that we can more readily visualize and interpret land-
cover variation.
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3.3.3 Quantifying Land-Cover Variation at Different Scales

We first load the raster layer being considered and take a look at its attributes,
including the thematic resolution being considered, the grain, and extent. In this
situation, we reclassified the NLCD layer to simplify the thematic resolution down to
six categories (Fig. 3.4): forest, developed, agriculture (rowcrops), grassland, open,
and wetlands.

> library(raster)
> library(SDMTools)

> nlcd <- raster("nlcd2011gv2sr")

#grain and extent
> res(nlcd)
> extent(nlcd)

#nlcd thematic resolution
> levels(nlcd)

The resolution is 30 � 30 m and the extent covers approximately 4 � 4 km. With
the levels function, we find that initially R did not treat the land-cover data as
factors, so we reformat the raster layer to a factor.

#convert land-cover integers to factors
> nlcd <- as.factor(nlcd)

R is now treating the land-cover categories as factors, but they are only labeled as
integer values. For mapping we may want to label the integers based on the land-
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cover type classifications. We can provide labels and plot the map. To appropriately
label the legend, the rasterVis package (Lamigueiro and Hijmans 2018) pro-
vides a straightforward approach with the levelplot function.

#add names of land-cover categories to raster
> land_cover <- levels(nlcd)[[1]]
> land_cover[,"landcover"] <- c("forest", "developed", "ag",
"grass", "open", "wetland")

levels(nlcd) <- land_cover

#plot with custom color scheme
> library(rasterVis)
> land_col <- c("green", "orange", "yellow", "brown", "white",
"blue")

> plot(nlcd, legend = T, col = land_col)
> levelplot(nlcd, col.regions = land_col, xlab = "", ylab = "")

3.3.3.1 Patch-Level Quantification

In ecology there has long been a focus on understanding variation among habitat
patches. Classic examples include forest fragments (Whitcomb et al. 1976), grass-
land meadows that are interspersed by forest (Harrison 1991), or wetland patches
(Naugle et al. 1999; Lookingbill et al. 2010a).

To quantify characteristics of patches, the first step is to delineate the patches
themselves. This step is not trivial and can have important impacts on the conclu-
sions regarding the effects of patch variation on ecological patterns and processes.
For vector maps, typically patches are delineated by the user (e.g., hand digitizing
aerial photographs). However, for raster-based maps, we typically automate patch
delineation, using one of two common rules: the four-neighbor rule (also known as
the “rook’s rule”) and the eight-neighbor rule (also known as the “Queen’s rule”)
(Fig. 3.5). Using the four-neighbor rule will invariably result in a greater number of
patches and smaller patches than using the eight-neighbor rule. Note in some
situations we might want to use a 16-neighbor rule, such as if we would like for
patch delineation to account for the potential for gap-crossing by organisms
(Bowman and Fahrig 2002), although in practice this is rarely done.

We first summarize forest cover in the landscape from a patch perspective.
Common patch-level metrics include patch size, perimeter–area ratio, core area,
and patch isolation. Patch size and isolation are common metrics used in island
biogeography, metapopulation biology, and metacommunity ecology (MacArthur
and Wilson 1967; Hanski 1998; Holyoak et al. 2005). Patch size is important
because it can predict local extinction probabilities in patches, it may be related to
resource amount and variation, and it may influence immigration rates and habitat
selection (Johnson and Igl 2001; Bowman et al. 2002), resulting in variation in

3.3 Examples in R 67



occupancy, abundance, and diversity with patch size. Patch isolation is thought to be
critical for colonization and dispersal rates, thereby influencing occupancy, abun-
dance, and diversity (Moilanen and Hanski 2001). Note that it has been argued that
patch isolation may be correlated with habitat amount at landscape scales, such that it
can be difficult to interpret if such patterns with patch isolation are from isolation
processes or through issues of habitat area at a landscape scale (Fahrig 2003, 2013).

Metrics of patch shape (e.g., perimeter–area ratio) and core area have long been
used in conservation biology (Temple and Cary 1988; Laurance 1991; Ewers and
Didham 2007) because they tell us something about the relative amounts of edge that
may influence conditions in patches. For patch shape metrics, we only need to
calculate the perimeter for each patch and we then take this value and divide by
the area of the patch. Core area is defined as the area of a patch free from edge
effects (Temple and Cary 1988). For that metric, we need to define the distance at
which edge effects penetrate into patches (referred to at the “distance of edge
influence”) (Chen et al. 1992; Harper et al. 2005; Ries et al. 2017). With that
value, we can then create buffers within patches to identify core areas (buffering
inside rather than outside of patches, like what we did in Chap. 2).
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Fig. 3.5 Patch definition: four-neighbor and eight-neighbor rules. (a) Patches delineated in the
landscape using the four-neighbor rule and (b) the eight-neighbor rule. In the landscape being
considered, a four-neighbor rule leads to 96 patches being delineated, whereas an eight-neighbor
rule results in 42 patches being delineated (right panels). Note that a 16-neighbor rule is occasion-
ally used and allows for organisms to move 1 cell in intervening land-use while still considering it
part of the same patch (such as crossing internal gaps)
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We focus on identifying patches of forest and interpreting their variation. First,
we delineate patches, then we use these delineations to calculate metrics for the
patches that describe variation in patch structure. We reclassify the NLCD layer to
create a binary layer of forest, akin to the island model of land-cover variation. To do
so, we create a reclassification matrix, similar to the approach shown in Chap. 2. In
this matrix, the first column is the original land-cover categories and the second
column is the new categories.

#create a reclassification matrix
> nlcd.cat <- unique(nlcd)
> nlcd.cat.for <- c(1, 0, 0, 0, 0, 0)

> reclass.mat <- cbind(nlcd.cat, nlcd.cat.for)

#forest binary layer from reclassification matrix
> nlcd.forest <- reclassify(nlcd, reclass.mat)
> plot(nlcd.forest)

With this new binary forest layer (Fig. 3.6a) we can delineate forest patches. Both
the raster and SDMTools packages have a means to do this, but currently the
SDMTools package only allows patch delineation based on an eight-neighbor rule
(Fig. 3.5b). Consequently, we will use the raster package to have more flexibility
in accomplishing this task using the clump function:
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Fig. 3.6 (a) A binary representation of forest land cover for the landscape shown in Fig. 3.4, and
(b) a summary metric of patch-level variation regarding the distribution of forest patch size (log
(area)) in the landscape
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#create patchIDs using clump from raster for 8-neighbor rule
> forest.patchID <- clump(nlcd.forest, directions = 8)

Note that, similar to cell IDs (see Chap. 2), this function labels patches based on
integer values, starting in the northwestern (top left) portion of the map and working
down (Fig. 3.5). With this new patch ID layer, we can calculate a variety of patch-
based metrics using the PatchStats function in SDMTools:

> for.pstat <- PatchStat(forest.patchID, cellsize =
res(nlcd.forest)[[1]])

In this function, we pass the length of cells into the cellsize argument to allow
for proper calculation of area and length measurements. These calculations are in the
units passed to the function; for instance, in the above code, we pass cellsize
based on meters, such that area is in m2 and edge is in m. This function automatically
calculates many patch-based metrics (Table 3.2) and returns a data frame, where
each row is a patch and each column is a metric.

> names(for.pstat)
[1] "patchID" "n.cell" "n.core.cell" "n.edges.perimeter"
[5] "n.edges.internal" "area" "core.area" "perimeter"
[9] "perim.area.ratio" "shape.index" "frac.dim.index" "core.area.index"

These metrics focus on area, edge, perimeter, shape, and core metrics. Edge is
reported in two ways: the number of edge segments along the perimeter and the
number of internal edges. For instance, a single cell or pixel that is an isolated patch
would have 4 units for n.edges.perimeter. In contrast, perimeter takes
n.edges.perimeter and multiplies it by the length (e.g., 4 � 200 in the

Table 3.2 Types of patch-level metrics that SDMTools calculates

Metric type Metric Interpretation

Area Number of cells/area Metrics of patch size (differences related to the
units used).

Edge Perimeter A measure of edge length, does not differentiate whether
edge is interior or exterior.

Number of edge cells
(interior/exterior)

Metrics of edge length that distinguish interior edges
(i.e., holes/perforations) versus exterior edges (patch
boundaries).

Core area/core area
index

Metrics of core area based simply on “non-edge” cells,
such that the depth of edge influence is implicitly con-
sidered to be the grain of the map.

Shape Perimeter–area ratio Metric of patch shape.

Shape index Metric of patch shape, where perimeter is divided by
square root of patch area.

Fractal dimension Metric of shape complexity based on 2 � log perimeter
to log area ratio.
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previous example). Core area (core.area) is simply based on the number of cells
that are not adjacent to a patch boundary, such that this function does not allow
explicit calculation of core area arising from greater distances from edge (see below
for alternative approaches to do so). For shape, the function provides perimeter–area
ratio, a shape index and the fractal dimension, which is another metric for describing
patch shape. Perimeter–area ratio is an intuitive metric for patch shape, but it
unfortunately varies with the size of the patch due to the scaling relationship of
perimeter (2πr) to that of area (πr2; e.g., compare a perimeter–area ratio for circles
of different sizes). The shape index alleviates this problem by scaling perimeter to
the square root of area. This metric takes on a value of 1 for regular shapes, such as a
circle, and increases (unbounded) as patch irregularity increases. The fractal dimen-
sion also does not suffer from this scaling issue and some find this metric useful
because it is straightforward to interpret this metric across scales. For this metric, the
range is from 1 to 2, with regular shapes (e.g., circle) approach a value of 1, while
highly irregular shapes approach a value of 2.

Summaries of patch metrics can be derived using functions on the data frame. For
example, we calculate the number of patches on the map, mean of patch metrics and
the standard deviation (SD) of those metrics with simple R commands:

#number of patches
> nrow(for.pstat)

##
[1] 42

#mean patch metrics
> for.pstat.mean <- colMeans(for.pstat[,2:ncol(for.pstat)])

#SD of patch metrics
> for.pstat.sd <- apply(for.pstat[,2:ncol(for.pstat)], 2, sd)

The apply function is very flexible in this way. Here it applies functions to the
columns of the data based on the second argument in the function (2; note for
applying calculations on rows of the data, one would pass 1). Similarly, we can
visualize the variation or heterogeneity in metrics, such as the log of patch area.
Patch area is often transformed to a log scale for practical reasons: biologically, we
expect a change in 10 ha to be more important when contrasting a 5 ha to a 15 ha
patch than when contrasting a 1000 ha to 1010 ha patch. For example, a histogram of
the distribution of patch areas is straightforward to implement (Fig. 3.6b).

> hist(log(for.pstat$area))

While each of these patch-level metrics captures subtly different aspects of
patch structure, many of these metrics are highly correlated (Fig. 3.7). Note that
some summaries of patch metrics are also provided when doing a class-level
analysis.
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3.3.3.2 Class-Level Quantification

We can also easily quantify patterns of land cover at the class-level. In this case, we
can focus on metrics that do not require delineating patches, such as forest area, or
we can get summary, patch-based metrics for the entire landscape (such as the
standard deviation of patch sizes, as shown above). In any class-level metric, the
metrics describe a focal land-cover class and most do not explicitly account for other
land-cover types (see landscape-level metrics below). Some exceptions include
class-level metrics that focus on edge contrast and interspersion, both of which
account for variation in other land-cover types to quantify pattern of a focal land-
cover type (see below).

To calculate class-based metrics, we use the ClassStat function from
SDMTools in a similar way as we calculated patch-based metrics:

#calculation based on forest layer
> for.cstat <- ClassStat(nlcd.forest, cellsize =
res(forest)[[1]])

#calculation based on nlcd layer (all land-cover types)
> nlcd.cstat <- ClassStat(nlcd, cellsize =
res(nlcd)[[1]])

When looking over these metrics, several metrics provided are summary statistics
for patch-level metrics (e.g., mean, minimum, maximum, and standard deviation of
patch size), while others are unique to pattern at the class level (Table 3.3). Looking
at the correlations of these metrics across classes in the landscape can help interpret
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Table 3.3 Types of class-level metrics that SDMTools calculates

Metric type Metric Interpretation

Patch Number of patches, patch
density

Number of patches, and the number of patches
relative to the study area extent. Common met-
rics of fragmentation.

Patch area (mean, sd, min,
max)

Summary statistics for the distribution of patch
sizes.

Largest patch index The size of the largest patch on the map.
Thought to be important for connectivity, based
on percolation theory.

Area Total area and proportion area The area and its proportion on the map, ignoring
patch boundaries/characteristics. Frequently
used in landscape ecology and correlated with
several metrics.

Edge Total edge, edge density Total length of edge for the class and edge
scaled to the class area. Because total edge has a
non-linear relationship with class area, edge
density is often used.

Core area (mean, sd, min, max) Summary statistics for the distribution of patch
core areas.

Shape Perimeter–area, shape, fractal
dimension (mean, sd, min,
max)

Summary statistics for the distribution of patch
shape statistics.

Landscape shape index Standardized measure of edge density that
ignores patch boundaries. A class-level analog
to the patch shape index.

Aggregation Proportion of like adjacencies Based on an adjacency matrix that relates cells
and their neighbors. It is the proportion of links
that are the same class type relative to the total
number of links. Captures aggregation, but does
not account for proportion of class area, which
can make it misleading.

Aggregation index An area-weighted mean based on class propor-
tion. Accounts for class area, such that maxi-
mum aggregation occurs when all land-cover
occurs in one patch.

Contiguity Patch cohesion index A metric that uses a ratio of perimeter relative to
the ratio of perimeter and area of patches, scaled
to the map extent. Provides information on the
physical connectedness of the land-cover and is
related to the “clumpiness” of the class.

Splitting index The ratio of the total map area to the sum of the
patch areas. Interpreted as the “effective mesh
number.”

Effective mesh size Related to the inverse of the splitting index and
redundant with the landscape division index,
but provides a measure of area (rather than
probability). Provides the area-weighted mean
patch size relative to the total map area.

Landscape division index Interpreted as the probability that two randomly
chosen cells in the landscape are not situated in
the same patch.
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the extent to which metrics are capturing similar elements of class-level structure
(Fig. 3.8).

We can check that these metrics are consistent with calculations based on the data
frame provided with the PatchStat function:

#mean patch size
> for.cstat[for.cstat$class == 1, "mean.patch.area"]
> for.pstat.mean["area"]

#standard deviation of patch shape
> for.cstat[for.cstat$class == 1, "sd.shape.index"]
> for.pstat.sd["shape.index"]

The above calculations illustrate how some class-level metrics can be derived
directly from patch-level metrics. In summary, the SDMTools package provides
several metrics for quantifying land-cover patterns at the patch and class-level,
similar to the popular program Fragstats (McGarigal et al. 2002).

What metrics does Fragstats calculate that SDMTools does not? At the patch-
and class-levels, some general types of metrics that this package does not calculate
include some important functional metrics, where we alter metrics based on species
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or process variability. These include core area metrics (where we adjust core area
based on the distance of edge influence) and edge contrast, or the relative amount of
dissimilarity between land-cover types at the edge (Ries et al. 2004; Watling and
Orrock 2010). Other types of metrics not calculated include the radius of gyration
(a measure of patch extent; Baker et al. 2015), and some patch-level isolation
metrics, such as the proximity index and the nearest neighbor distance (Gustafson
and Parker 1994; Moilanen and Nieminen 2002). Finally, note that Fragstats calcu-
lates area-weighted means of patch metrics in addition to simple mean of those patch
metrics. The rationale for this approach is that area-weighted mean metrics provide
more of a landscape-centric view because they, “reflect the average conditions of a
pixel chosen at random or the conditions that an animal dropped at a random [pixel]
the landscape would experience” (Jaeger 2000). In contrast, simple means only
provide a patch-centric view of average patch characteristics (not that of conditions
of an animal dropped randomly on the landscape because individuals landing in a
specific patch would be contingent on patch size).

While SDMTools does not calculate core area and isolation metrics, such metrics
can be calculated in a straightforward way using other packages in R. First, consider
the calculating core areas based on a distance of 100 m. To approach this problem,
we convert our raster map to a vector map with the rasterToPolygons function
and then buffer within patch polygons using the rgeos package (Fig. 3.9a).

#create polygon layer
> library(rgeos)
> forest.poly <- rasterToPolygons(forest.patchID, dissolve = T)
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Fig. 3.9 (a) Polygon representation of forest patches on the landscape, where core area (>100 m
from edge) is in light gray. (b) Raster representation of distance to forest edge (m), which can be
used to delineate core areas based on different distances to edge and for implementing the effective
area model
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#create core polygons and calculate their area
> core.poly <- gBuffer(forest.poly, width = �100, byid = T)
> core.area <- gArea(core.poly, byid = T)

This general approach is useful for delineating core areas of different sizes;
however, it may be computationally slow for large landscapes. In addition, in
many situations we may want to map more detail in edge effects, such as using the
“effective area model” (Sisk et al. 1997). The effective area model maps edge
response functions, such as variation in abundance as a function of distance from
edge, for different edge types. Such models can be implemented by creating raster
layers based on distances to boundaries. For instance, we can use the distance
function in the raster package to create a new raster layer that shows the distance
to edge. To implement this approach, we reformat our forest layer, such that forest is
NA. This function will then calculate the nearest distance from each non-NA pixel to
each NA pixel.

#re-format raster
> nlcd.forestNA <- nlcd.forest
> nlcd.forestNA[nlcd.forestNA == 1] <- NA

#create a distance to edge raster for forest land cover
> forest.dist <- raster::distance(nlcd.forestNA)

Much more information is provided with this new raster layer (Fig. 3.9b). Note
that in the above code, we specified the raster package in the call of the
distance function (raster::distance), because the SDMTools package
also has a different distance function.

Isolation-related patch metrics can be quantified using distances based on patch
centroids or edge–edge distances. Both of these types of distance metrics can be
calculated with the rgeos package.

#centroids of polygons
> forest.centroid <- gCentroid(forest.poly, byid = T)

#edge-edge distance matrix
> edge.dist <- gDistance(forest.poly, byid = T)

#centroid-centroid distance matrix
> cent.dist <- gDistance(forest.centroid, byid = T)

With these distance matrices, we can use the apply function to calculate the
nearest neighbor distances, or the minimum distance from one patch to any other
patch in on the map. To do so, we first make the diagonal of the distance matrix NA,
so that we ignore the diagonal (the focal patch, for which distance ¼ 0) when
summarizing information regarding other patches on the map. We can then use the
apply function to identify the minimum distance to another patch.

76 3 Land-Cover Pattern and Change



#patch-level nearest-neighbor distance
> diag(cent.dist) <- NA
> diag(edge.dist) <- NA

> nnd.cent <- apply(cent.dist, 1, min, na.rm = T)
> nnd.edge <- apply(edge.dist, 1, min, na.rm = T)

Note here that using edge–edge (nnd.edge) versus centroid–centroid (nnd.
cent) distances provides different results and these distances are not correlated
(r¼ 0.02). The distance matrix can also be used to derive other patch-level and class-
level summary statistics (e.g., mean distance, SD distance) in a straightforward way.

The proximity index incorporates both area and the distance matrix and is
frequently used as a metric of patch isolation (Gustafson and Parker 1992, 1994).
It is typically defined based on only considering patches within a neighborhood of a
focal patch:

proxi ¼
Xn

j¼1

a j

d2ij
ð3:1Þ

where only the patches within the neighborhood of i are considered. This metric
shares some similarity with metapopulation metrics for patch isolation (see
Chap. 10). Note that some formulations of this metric, like that described above,
only consider distances from the focal patch to all other patches in the neighborhood
while others consider distances/linkages between non-focal patches within the
neighborhood as well. We can calculate the proximity index by first creating a
vector of patch area. Then we need to alter the distance matrix to only consider
patches within a neighborhood of the patch, say 1000 m. Finally, we divide area by
the distance with the sweep function and sum across all j patches to quantify the
proximity index for patch i:

#patch area
> patch.area <- data.frame(id=for.pstat$patchID, area=for.pstat
$area)

#neighborhood for proximity index to be calculated
> h <- edge.dist
> h2 <- 1 / h^2
> h2[edge.dist>1000] <- 0
> diag(h2) <- 0

#calculate proximity index
> patch.prox <- rowSums(sweep(h2, 2, patch.area$area, "*"))

Note that in this approach, we do not want the diagonal of the distance matrix to
be NA. Rather, we use the h2 matrix as an indicator matrix for only summing
elements where distances are<1000 (not including the diagonal). With these results,

3.3 Examples in R 77



we find that the patch proximity metric is weakly correlated with both patch area
(r¼ 0.09) and nearest neighbor distance based on edge–edge distances (r¼ �0.16).

3.3.3.3 Landscape-Level Quantification

Landscape-level metrics are not considered in SDMTools, unfortunately. Here we
provide code for some prominent landscape-level metrics (Table 3.4). Some com-
mon landscape-level metrics can be gleaned from summaries of class-level metrics
in SDMTools, whereas others require writing new functions. We illustrate both
approaches below.

Landscape metrics that can readily be derived from class-level metrics include the
number of patches (NP), patch density (PD), largest patch index (LPI), total edge
(TE), edge density (ED), and aggregation index (AI). At the landscape-level, these
metrics are typically summing values for class-level metrics (e.g., NP, PD, TE), or
taking the maximum value (LPI). Some examples include:

> land.NP <- sum(nlcd.cstat$n.patches)
> land.PD <- sum(nlcd.cstat$patch.density)
> land.LPI <- max(nlcd.cstat$largest.patch.index)
> land.TE <- sum(nlcd.cstat$total.edge)/ 2

Table 3.4 Types of landscape-level metrics considered

Metric type Metric Interpretation

Patch Number of patches,
patch density

Number of patches, and the number of patches relative to
the study area extent, summarized across all land-cover
types.

Largest patch index The size of the largest patch on the map. Thought to be
important for connectivity, based on percolation theory.

Edge Total edge Total length of edge across all classes.

Edge density Total length edge across all classes scaled to the class area.

Aggregation Aggregation index An area-weighted mean based on class proportion.
Accounts for class area, such that maximum aggregation
occurs when all land-cover occurs in one patch.

Percentage of like
adjacencies

Based on an adjacency matrix that relates cells and their
neighbors. It is the proportion of links that are the same
class type relative to the total number of links. Captures
aggregation, but does not account for proportion of class
area, which can make it misleading.

Contagion A measure of dispersion and interspersion, formally
defined as the probability of finding a cell of type i next to a
cell of type j.

Diversity Land-cover richness The number of land-cover types in the landscape.

Shannon diversity A metric based on information theory that weights both the
number (richness) and evenness of land-cover types.

Shannon evenness Quantifies the distribution of relative areas among land-
cover types. The complement of evenness is dominance.
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> land.ED <- sum(nlcd.cstat$edge.density)/ 2
> land.AI <- sum(nlcd.cstat$prop.landscape *
nlcd.cstat$aggregation.index)

Here, we divide the edge metrics by 2 because each edge segment will be counted
twice when summing across class-level metrics (i.e., an edge will be counted once
for each land-cover type in the adjacency). Also, the aggregation index is simply a
weighted mean of the class-level metrics for aggregation. Note that SDMTools
scales some of these metrics in a slightly different way than the Fragstats program
when considering area/length, where SDMTools uses the square of the units
provided in the layer (e.g., m2), while Fragstats uses hectares (ha).

Land-cover richness and diversity are frequently considered. Land-cover richness
is simply the number of land-cover types in an area of interest. So, if we are only
interested in one or a few landscapes, then this is straightforward to calculate with
simple output from the raster package (or with output from SDMTools). For
example, we can calculate land cover richness for our landscape as:

> richness <- length(unique(values(nlcd)))

If we would like to calculate land-cover richness repeatedly for neighborhood,
like when using a moving window analysis (see below), we can create a function to
call for each neighborhood, x, such as:

> richness <- function(x) (length(unique(na.omit(x)))

Shannon’s diversity, D, and evenness, E, indices are other popular measures,
defined as:

D ¼ �
Xn

i¼1

Pi ln Pið Þ ð3:2Þ

And

E ¼ �Pn
i¼1 Pi ln Pið Þ
ln nð Þ : ð3:3Þ

For an entire landscape, it is straightforward to calculate D and E using output
from the table function.

> table(values(nlcd)))

##
1 2 3 4 5 6
7405 623 4010 3114 2935 3
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This function returns the number of cells for each land-cover type on the map. We
can then use this information to calculate diversity and evenness.

> C <- table(values(nlcd)))
> P <- C / sum(C)
> D <- -sum(P * log(P))
> E <- D / log(length(C))

Note that in R, log defaults to calculating the natural log (i.e., ln(x)).
Other landscape-level metrics that require new functions for their quantification

(i.e., they cannot appropriately be summarized from class-level metrics) focus
primarily on aggregation-related metrics. Aggregation-related metrics can capture
several related concepts, including dispersion and interspersion. Dispersion indices
focus on spatial mixing of a class type (ignoring other class types), while intersper-
sionmetrics focus on spatial mixing of different class types (ignoring dispersion of a
specific class type) (Table 3.1). One prominent metric is contagion, which is an
intuitive, landscape-level metric that captures both dispersion and interspersion.
Contagion has been quantified in subtly different ways. A common formulation of
contagion is (Li and Reynolds 1993, Riitters et al. 1996):

Contagion ¼ 1þ
Pn

i¼1

Pn
j¼1 Pij

� �
ln Pij

� �

2 ln nð Þ ð3:4Þ

where Pij ¼ PiPj/i, and

P j=i ¼ Nij

Ni
: ð3:5Þ

Here, n is the number of land-cover types (classes), Pi is the proportion of the
landscape of land-cover type i, Nij is the number of adjacencies between pixels of
land-cover types i and j and Ni is the total number of adjacencies of land-cover type
i and all land-cover types (including i). For this metric, we multiply the probability of
a land-cover type by the conditional probability of that type being adjacent to a
different land-cover type j and then sum this expression. Note the similarity of the
contagion index to that of Shannon’s Evenness index, E. The matrix N taken from
the elements Nij is a commonly used summary statistic in several landscape-level
metrics (Turner and Gardner 2015). Some other relevant measures that can be
derived from N include the percentage of like adjacencies and the aggregation
index (Table 3.4). Note that calculating N requires using a patch-definition rule (e.g.,
Fragstats uses a four-neighbor rule).

One way to calculate this measure is to take advantage of the adjacent
function in the raster package to calculate Nij.
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#identify adjacent cells
> adj <- adjacent(nlcd, 1:ncell(nlcd), directions = 4, pairs =
T, include = T)

> head(adj, 2)

##
from to
[1,] 1 1
[2,] 2 2

This function identifies all of the pairwise combinations of adjacencies on the
map, including like adjacencies (i.e., two cells of the same land-cover type) with the
term include ¼ T. This information can be summarized to get N with the table
function, which counts the values on the nlcd map based on the identified
adjacencies:

> N <- table(nlcd[adj[,1]], nlcd[adj[,2]])

##
1 2 3 4 5 6
1 33155 410 584 884 1755 5
2 410 1983 399 156 156 0
3 584 399 18484 74 363 0
4 884 156 74 13388 979 1
5 1755 156 363 979 11363 1
6 5 0 0 1 1 5

From there, the remaining terms are straightforward to calculate. A function for
calculating contagion using the formula of Riitters et al. (1996) is:

> contagion <- function(r){
adj <- adjacent(r, 1:ncell(r), directions = 4)
Nij <- table(r[adj[,1]], r[adj[,2]])
Nij <- unclass(Nij) #convert table format to matrix format

Ni <- rowSums(Nij)
Pj_i <- as.matrix(Nij / Ni)

Pi <- as.vector(unclass(table(values(r))) / ncell(r))
Pij <- Pi * Pj_i
n <- length(Pi)

#Ritters et al. 1996 formula
contagion <- 1 þ sum(Pij * log(Pij),na.rm = T)/(log(n^2 þ n)�
log(2))

return(contagion)
}
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The above function breaks the steps of calculating contagion into its parts. We
first calculate the Nij. Note that a rate-limiting step here is the construction ofN using
the table function. Scaling this function to larger landscapes would require using
faster alternatives, such as the data.table function. Then Pi and Pj/i are calcu-
lated. Finally, we put this together using the approach of Riitters et al. (1996),
wherein a slight modification of the denominator is used in calculating contagion.

The general approach for calculating Nij can be used to also calculate the
percentage of like adjacencies, PLADJ, at the landscape-level. This metric quantifies
the degree of dispersion of land-cover types. As this metric gets larger, the land-
cover types are more aggregated. It is defined as:

PLADJ ¼
Pn

i¼1 NiiPn
i¼1

Pn
j¼1 Nij

� �� 100 ð3:6Þ

This metric can be calculated in R with the following function:

> PLADJ <- function(r){
adj <- adjacent(r, 1:ncell(r), directions = 4)
Nij <- table(r[adj[,1]], r[adj[,2]])
Nij <- unclass(Nij)

PLADJ <- sum(diag(Nij)) / sum(Nij) * 100
return(PLADJ)
}

To provide context for these landscape-level metrics, we contrast the landscape
used so far (Fig. 3.4) with two other landscapes that were sampled in Chap. 2
(Fig. 3.10). For each landscape, we apply these functions to interpret landscape-
level variation. One landscape is dominated by forest (Fig. 3.10b), whereas the other
appears to be highly fragmented (Fig. 3.10c). It is notable that the forest-dominated
landscape has generally similar landscape-level metric values to our original land-
scape except those related to landscape diversity and evenness. This similarity is
driven by the fact that non-forest land cover is generally configured in small patches
with a large proportion of edge. The landscape that appears fragmented (Fig. 3.10c)
does have more patches, more edge, and less aggregation than the other landscapes.
Note that these numbers can vary subtly with other programs, such as Fragstats,
based largely on the underlying assumptions of the calculations (patch delineation
rules, how boundaries are considered, etc.).

Taken together, these analyses illustrate how several landscape-level metrics can
be calculated in R. It also illustrates how the use of landscape-level metrics can
sometimes be more difficult to interpret than for patch or class-level metrics, because
typically landscape-level metrics are pooling or summarizing information across all
land-cover types on the map (compare metrics for landscapes a and b in Fig. 3.10).
This pooling makes the metrics more difficult to interpret biologically than with
other types of metrics. Nonetheless, in some situations, we expect biologically that
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landscape-level metrics should better describe key issues of relevance to biodiver-
sity, such as questions regarding the role of landscape heterogeneity in agricultural
landscapes (Fahrig et al. 2011; Reynolds et al. 2018), and the importance of
“countryside” biogeography (Brosi et al. 2008; Mendenhall et al. 2014), where
interest lies in understanding the value of biodiversity across human dominated
land uses.

3.3.3.4 Moving-Window Analysis

Each of the above approaches is often applied to replicated landscapes. In Chap. 2,
for example, we calculated the proportion of forest cover surrounding different
locations (a “patch-landscape,” or “focal-patch” sampling design) (Fahrig 2003).
Another approach to landscape quantification is using a moving-window analysis,
which is akin to a “neighborhood” analysis and loosely captures some ideas of an
“ecological neighborhood” (Addicott et al. 1987).

In a moving window analysis, for each pixel on a map we quantify land cover in a
surrounding neighborhood. The result is a new map that visualizes the neighborhood
variation in land-cover properties. These maps can then be used for sampling or for
making predictive maps, such as maps of predicted species distribution (see
Chap. 7).

The raster package provides a means to implement a moving-window analysis
in a straightforward way with the focal function. Moving windows can be based
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Fig. 3.10 Contrasting landscape-level metrics for three landscapes (a–c)
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on different shaped windows, such as rectangles or circles. We first create a weight
matrix with the focalWeight function that defines the window size and shape:

#focal buffer matrix for moving windows
> buffer.radius <- 100
> fw.100m <- focalWeight(nlcd, buffer.radius, type = 'circle')

#re-scale weight matrix to 1/0 for calculations
> fw.100m <- ifelse(fw.100m > 0, 1, 0)
> fw.100m

##
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0 0 1 1 1 0 0
[2,] 0 1 1 1 1 1 0
[3,] 1 1 1 1 1 1 1
[4,] 1 1 1 1 1 1 1
[5,] 1 1 1 1 1 1 1
[6,] 0 1 1 1 1 1 0
[7,] 0 0 1 1 1 0 0

This is a square matrix where a circle is approximated based on the radius
considered. Note that the cells in this matrix reflect the grain of the map being
considered and raster creates the size of the matrix to match the length of the
radius/grain. The focalWeight function can also be used to consider Gaussian
kernels, as discussed in Chap. 2, by specifying type ¼ 'Gauss' and setting the
value for sigma (the smoothing parameter; see Fig. 2.10). For example, a Gaussian
kernel with sigma ¼ 50 would be quantified as:

> focalWeight(nlcd, c(50, 100), type = 'Gauss')

##
[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 0.00 0.01 0.01 0.01 0.01 0.01 0.00
[2,] 0.01 0.01 0.02 0.03 0.02 0.01 0.01
[3,] 0.01 0.02 0.04 0.05 0.04 0.02 0.01
[4,] 0.01 0.03 0.05 0.06 0.05 0.03 0.01
[5,] 0.01 0.02 0.04 0.05 0.04 0.02 0.01
[6,] 0.01 0.01 0.02 0.03 0.02 0.01 0.01
[7,] 0.00 0.01 0.01 0.01 0.01 0.01 0.00

Here, the two numbers for d reflect sigma and the window size to be considered
(100 m; same as above). The use of a Gaussian kernel allows for the weighting
scheme to decline with distance (Fig. 2.10).

With this weight matrix, we can then use the focal function to run a moving
window analysis. For each pixel, this function will multiple the focalWeight
matrix by the raster. If the matrix is a series of 0’s and 1’s, in effect this will mask all
values outside the neighborhood (by multiplying those values by 0).
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We illustrate two examples. First, we calculate the proportion of forest cover
surrounding each pixel. To do so, we use the sum function to sum the total forest
cover within each window (Fig. 3.11). Note that below we illustrate this process in a
couple of steps for clarity, but it could be streamlined by using a weighted average
instead (see Chap. 2). Second, we can call our own defined functions of land-cover
pattern. Here, we call our own function to calculate land-cover richness in surround-
ing each pixel to illustrate.

#forest cover moving window; number of cells
> forest.100m <- focal(nlcd.forest, w = fw.100m, fun = "sum",
na.rm=T)

#proportion
> forest.prop.100m <- forest.100m / sum(fw.100m)

#richness moving window
> richness.100m <- focal(nlcd, fw.100m, fun = richness)

Some metrics at the neighborhood scale can be more difficult to calculate in an
efficient way. For instance, calculating Shannon’s diversity is less straightforward,
because the calculation described above would take too long (the table function
used in the above description is relatively slow). A much quicker way is to create
individual maps that describe the proportion of each land cover category with a
moving window and then use raster algebra across maps to derive a new map of
diversity at the neighborhood scale. A function to accomplish this for Shannon’s
diversity is:

> diversity <- function(landcover, radius) {

n <- length(unique(landcover))
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Fig. 3.11 Moving window analysis for neighborhood quantification around cells. (a) 100 m
moving window (simple buffer with equal weighting) of the proportion of forest cover, (b)
100 m moving window of forest cover using a Gaussian kernel (sigma ¼ 50), and (c) 500 m
moving window using a simple buffer with equal weighting
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#Create focal weights matrix
fw.i <- focalWeight(landcover, radius, "circle")

#create new layer for diversity
D <- landcover
values(D) <- 0

#function for log(p)*p
log.i <- function(x) ifelse(x == 0, 0, x * log(x))

#for each landcover category, create a moving window map and sum
for (i in 1:length(n)) {
focal.i <- focal(landcover == i, fw.i)
D <- D þ calc(focal.i, log.i)
}

D <- D * �1
return(D)
}

> diversity.100m <- diversity(landcover = nlcd, radius = 100)

Overall, if we contrast this diversity map to that of land-cover richness, we find
that these two metrics across the landscape are weakly correlated (r ¼ 0.24).

3.3.4 Simulating Land Cover: Neutral Landscapes

Landscape and spatial ecologists frequently generate random or neutral landscapes
to represent land-cover variation (Gardner et al. 1987; O'Neill et al. 1992; Neel et al.
2004; Etherington et al. 2015). These landscapes vary in the degree of complexity
(Pe’er et al. 2013; Etherington et al. 2015). The application of these maps also varies
considerably (With 1997; With and King 1997). Some map representations aim to
capture a minimal amount of pattern and process to provide a “null” representation
of landscapes (Gardner and Urban 2007).

The two most common landscape characteristics considered are: (1) the propor-
tion of habitat or class of land-cover, p; and (2) the degree to which it is aggregated
(or conversely, fragmented). Most approaches focus on a binary representation of the
landscape (e.g., habitat v non-habitat), but some approaches extend this to several
land-cover types (Saura and Martinez-Millan 2000).

We start with the simplest representation of a neutral landscape, sometimes
referred to as a “simple random” landscape (Gardner et al. 1987). In this model,
the only parameter considered is p. We can simulate a neutral landscape by making
independent, random draws from probability distributions for each cell or pixel on
the landscape. Frequently, either a uniform distribution is used (U~(0,1)), or a
Bernoulli distribution is used (Binomial~( p, 1)). For the uniform distribution, if
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the draw is less than p, the cell is marked as habitat and non-habitat otherwise. A
Bernoulli distribution is a type of binomial distribution, where only one “trial” is
considered. It is often the distribution used when describing a (weighted) coin toss.
Here we illustrate the use of the Bernoulli distribution (Fig. 3.12).

#landscape dimensions
> dimX <- 128
> dimY <- 128

#simple random with 30% habitat
> sr.30 <- raster(ncol = dimX, nrow = dimY, xmn = 0, xmx = dimX,
ymn = 0, ymx = dimY)

> sr.30[] <- rbinom(ncell(sr.30), prob = 0.3, size = 1)

#simple random with 10% habitat
> sr.10 <- raster(ncol = dimX, nrow = dimY, xmn = 0, xmx = dimX,
ymn = 0, ymx = dimY)

> sr.10[] <- rbinom(ncell(sr.10), prob=0.1, size=1)

Fig. 3.12 Neutral landscapes can be generated in several ways. (a) Simple random landscapes with
different proportions of habitat. (b) Fractal landscapes can be created that vary the degree of
aggregation of habitat. Shown is H ¼ 0.7. (c) Random landscapes generated with the modified
random cluster algorithm can also create aggregated patterns. Shown is p ¼ 0.55. Upper row of
maps reflect approximately 30% habitat, while lower row is approximately 10% habitat
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Using a Bernoulli distribution is useful in the sense that it is an appropriate
probability distribution for binary outcomes; however, it does not guarantee that a
random landscape will have exactly p proportion of the landscape as habitat (or land
cover). A uniform distribution provides more precision in this way because a quantile
can be taken from the realizations of the uniform distribution across the map (see
below). Overall, simple random landscapes are a useful starting point, but the patterns
generated from these approaches are not similar to real-world patterns. Instead, they
tend to generate patterns that resemble static white noise from old television sets.

Other common approaches that incorporate aggregation in addition to simply the
amount of habitat include the use of Gaussian random fields (see Chap. 5), fractional
Brownian motion (or fractal landscapes), and the use of various clustering algo-
rithms (Keitt 2000; Saura and Martinez-Millan 2000; Chipperfield et al. 2011;
Remmel and Fortin 2013). Gaussian random fields models use parameters that
describe spatial dependence (from geostatistics; Chap. 5) to make predictions across
a region of interest. These models are formally related to fractal models that have
been widely used in ecology (Keitt 2000). We will illustrate these in Chap. 5 once
spatial dependence is formally introduced.

Neutral models based on fractal algorithms have been widely applied in spatial
ecology. The reason is that the degree of aggregation of habitat and the amount of
habitat can be precisely and independently controlled. For most of these applica-
tions, the “mid-point displacement” algorithm has been used to generate fractal
landscapes (Saupe 1988, p. 83–85). This is a relatively simple, recursive algorithm
that takes square maps of power 2 (e.g., 32, 64, 128 cells in a linear dimension) and
with each recursive partition, it breaks the line at its midpoint, adding some noise to
the value at newly created point based on the degree of aggregation, H, termed the
Hurst exponent. H is related to the fractal dimension (the precise relationship
depends on the dimensions being considered, that is, 1D, 2D, or 3D). H ranges
between 0 and 1; as H approaches 1, the map is highly aggregated (a high degree of
spatial autocorrelation; see Chap. 5), while as H approaches 0, the map becomes
much more fragmented, resembling a simple random map described above.

Fractal-like landscapes can be generated with a few different packages in R,
including the RandomFields, FieldSim, NLMR, and Voss packages (Shitov
and Moskalev 2005; Brouste et al. 2007; Schlather et al. 2015; Sciaini et al. 2018).
We note that at the time of publication, the NLMR package was released, which offers
a means to contrast several types of neutral landscapes with one R package,
including the use of the midpoint displacement algorithm (Sciaini et al. 2018).
Here, we illustrate the general idea with the fractal Brownian function, Voss2d,
in the Voss package. This package uses a recursive method described by Voss
(1985). This method is similar to the midpoint displacement algorithm where
successive random additions of Gaussian noise, except that all of the points are
modified with each recursive step and not just the newly created points, as in the
midpoint displacement algorithm (Saupe 1988). For this package, we specify H and
g, which specifies the dimensions of the landscape (2g � 2g). These types of models
will create a continuous, rugged surface that we then slice through to create a binary
map of habitat/non-habitat for a given p.
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> library(Voss)
> voss <- voss2d(g = 7, H = 0.7)
> str(voss)

##
List of 3
$ x: num [1:129] 0 0.00781 0.01562 0.02344 0.03125 ...
$ y: num [1:129] 0 0.00781 0.01562 0.02344 0.03125 ...
$ z: num [1:129, 1:129] 0.0182 0.0348 0.0494 0.0526 0.0887 ...

The object created is a list with x–y coordinates and the value of the terrain, z,
which defaults to being centered at 0. We can then create a binary representation of
this map by quantifying the quantiles of the values generated and then truncating the
fractal map based on p. Below we create maps for 10% and 30% habitat (Fig. 3.10).

#identify threshold
> voss1.thres <- quantile(voss$z, prob = 0.1)
> voss3.thres <- quantile(voss$z, prob = 0.3)

#truncate
> voss$z1 <- ifelse(voss$z < voss1.thres, 1, 0)
> voss$z3 <- ifelse(voss$z < voss3.thres, 1, 0)

Note that these maps can potentially be discretized into >2 categories, which has
been used to reflect spatial variation in environmental gradients and habitat quality
(With 1997).

An alternative approach to fractal landscapes is the modified random clusters
(MRC) algorithm (Saura and Martinez-Millan 2000). This algorithm uses a series of
successive steps to generate clustered land-cover. First, a simple random map is
generated, similar to that described above. Second, clusters are determined, which is
functionally identical to a four-neighbor patch delineation rule described earlier
(Fig. 3.4). Third, clusters are assigned to the focal land-cover type being considered,
based on an expected total proportional area, A, assigned for one land-cover type
(e.g., forest). Note that “expected” is used here, because in practice, this expectation
may not be possible, depending on the cluster size distribution of the map. Finally,
the remaining land-cover types are filled in using the same steps. This function uses
two parameters: p and A. In this setting, p controls the degree of fragmentation ( p
does not have the same meaning as used above!): it is highly non-linear and related
to the “percolation threshold” in simple random neutral landscapes (Gardner et al.
1987). The percolation threshold is the point at which habitat becomes fully
connected on a landscape, such that there is one cluster: for a simple random
landscape, like that described above, it is approximately 0.59 (Gardner et al.
1987). Because the MRC algorithm focuses on cluster assignment from a simple
random mapping process (steps 1 and 2 above), it is sensitive to this percolation
threshold. That is not necessarily a problem, but it means that most of the interesting
variability in pattern generated from this algorithm occurs when p is close to the
percolation threshold. It also means that near or above this threshold, it is likely not
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possible to generate landscapes where the observed Amatches the expected A we are
attempting to capture.

A basic form of this model can be implemented in the secr package (Efford
2018) with the randomHabitat function. We will illustrate the use of this
function by focusing on examples shown in Saura and Martinez-Millan (2000).
We first create a “mask,” which is simply the extent or shape of the area of interest
(note we could also create a mask in this package using an irregular polygon). We
then provide values of p and A to generate the random maps.

> library(secr)
> tempmask <- make.mask(nx = dimX, ny = dimX, spacing = 1)

> p55A3 <- randomHabitat(tempmask, p = 0.58, A = 0.3)
> p55A1 <- randomHabitat(tempmask, p = 0.55, A = 0.1)

> plot(p55A3, dots = FALSE, col = "green")

Taken together, the wide variety of neutral landscape maps that have been
developed provide a means of interpreting spatial pattern under conditions of limited
biological process. These types of maps have been used to address a wide variety of
issues and several generalizable insights have emerged from them (Turner and
Gardner 2015). For example, these types of models have illustrated that the extent
of the landscape under consideration can greatly affect pattern metrics due to the
truncation of extents. Neutral models have revealed potential thresholds in connec-
tivity and how connectivity of habitats can vary greatly with habitat amount (see
Chap. 9). Neutral landscapes have also been used to interpret whether observed land-
cover patterns are potentially significant (Remmel and Fortin 2013, 2017).

3.4 Next Steps and Advanced Issues

3.4.1 Testing for Pattern Differences Between Landscapes

A critical question that often arises in land-cover analysis is whether or not the
observed patterns are meaningful, unusual, or significantly altered due to some sort
of environmental change. For example, Tinker et al. (2003) were interested in
understanding whether the current patterns of forest structure in a national forest
were different than those in a nearby national park (Yellowstone), where different
management practices occurred. In such situations, it is often important to have an
understanding of the historic range of variability in landscape pattern through, for
example, a long-term time series of land cover (Gustafson 1998).

With information on land-cover maps either across space or over time, how do we
test for significant pattern on maps? The PatternClass package provides one
means to do so (Remmel and Fortin 2013, 2017). This package takes binary
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landscapes and estimates the magnitude of spatial dependence in the observed
landscape using geostatistical techniques (see Chap. 5). With this estimate, it
simulates neutral landscapes with the same magnitude of spatial dependence. Neu-
tral landscapes can then be compared with the observed land-cover pattern to infer
significance.

3.4.2 Land-Cover Quantification via Image Processing

An alternative approach to land-cover quantification comes from the application of
morphological image processing techniques to land-cover maps (Vogt et al. 2007;
Riitters et al. 2009). This approach focuses on the geometric/configuration property
of each cell in the landscape and classifies each of them into a specific category, such
as edge, core, perforated, and patch. In doing so, this approach provides an intuitive
means to visualize landscape patterns by providing a map of this cell classification.
Note that much of the requirements for this type of quantification is effectively done
in SDMTools (e.g., through the use of delineating internal and external edges), but
this package summarizes these values across the map rather than assigning the
values to the cells on the map for visualization.

3.4.3 Categorical Versus Continuous Metrics

A common criticism of land-use and land-cover analyses is that quantification is
based on categorical maps, where in reality most of these maps are derived from
underlying remote sensing imagery that is inherently continuous. Not only is this
criticism relevant to the data being processed, but it is also relevant for spatial
ecology concepts. For instance, using categorical maps for quantifying spatial
pattern implicitly focuses on the patch-matrix-corridor and landscape mosaic para-
digms, which may be misleading in situations where underlying resources vary
continuously. This has led to developments of other conceptual paradigms, such as
the continuum concept (Fischer and Lindenmayer 2006) and the related gradient
paradigm (McGarigal et al. 2009).

Surface metrics have been advanced to quantify continuous environmental var-
iation (McGarigal et al. 2009; Hoechstetter et al. 2011). These metrics capture
patterns of continuous variation on maps, such as digital elevation maps. Metrics
can focus on change (e.g., slope), aggregation (~patches), etc. McGarigal et al.
(2009) introduced surface metrics to landscape ecology. They emphasized some
parallels with types of metrics for categorical maps. Some metrics are compositional
(non-spatial), emphasizing variation in magnitudes of variables (e.g., amplitude) and
the rates of change (e.g., slope). Other metrics focus on spatial (horizontal) variabil-
ity, similar to configuration metrics. Surface metrics have been increasingly used
under a variety of contexts (Moniem and Holland 2013; Frazier 2016). There are
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currently no R packages dedicated to surface metrics, but some simple metrics can be
calculated manually within the raster package (e.g., see Chap. 6).

3.5 Conclusions

Land-use and land-cover change are primary issues influencing biodiversity and
ecosystem services across the planet (Lawler et al. 2014; Newbold et al. 2015). The
clearing and degradation of habitat can reduce biodiversity and increase extinction
risks for many species (Wilcove et al. 1998; Brooks et al. 2002). Land-use intensi-
fication for agricultural production can lower biodiversity substantially (Tscharntke
et al. 2005). Urbanization is occurring in many biodiversity hotspots, impacting
biodiversity and ecosystem services (Miller and Hobbs 2002). Effects of land-use
and land-cover change can also interact with other environmental changes, such as
climate change (Laurance and Useche 2009; Cote et al. 2016).

Quantifying these changes has emerged as a staple of much of spatial ecology,
geography, and conservation science (O’Neill et al. 1999; Malanson et al.
2006; Kupfer 2012). Several conceptual frameworks have been advanced for
interpreting these changes and hundreds of metrics have been derived for quantifi-
cation of these patterns. Yet many of these metrics are related (Riitters et al. 1995;
Fortin et al. 2003; Cushman et al. 2008; Wang et al. 2014). These metrics capture
both variation in composition and configuration occurring at different scales. Under-
standing these relationships and how metrics capture the spatial scales of composi-
tion and configuration of land use and land cover is essential for appropriate
applications. We recommend that emphasis is placed on functional, rather than
structural, metrics when possible and that conceptual frameworks should be chosen
based on the species or process under investigation. In addition, more mechanistic
data and modeling can help to illuminate the effects of land-cover and land-use
change on biological processes, which can be challenging when using pattern data
alone due to the correlated nature of such data (e.g., Figs. 3.7 and 3.8). Such
understanding may improve predictions of the effects of land-cover and land-use
change on biodiversity and help guide more effective conservation strategies.
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Chapter 4
Spatial Dispersion and Point Data

4.1 Introduction

Points of information located in space can describe a variety of ecological processes
and conservation problems, ranging from GPS locations of species occurrence to the
origin of spread of an invasive species. Point data, or data that describe distinct
locations in space, might reflect the locations of individual trees (Condit et al. 2000),
nests of birds (Bayard and Elphick 2010), patches of habitat (Lancaster et al. 2003),
or patchy disturbances (e.g., burrows; Schooley and Wiens 2001). Often the focus of
point pattern analysis is on quantifying spatial dispersion (aggregated, uniform, or
random distributions; Fig. 4.1), determining if and how dispersion varies with spatial
and temporal scale, and understanding the causes of these patterns (Illian et al. 2008;
Wiegand and Moloney 2014; Velazquez et al. 2016).

Why are point patterns important? Understanding such patterns lies at the heart of
interpreting territoriality, interference competition, social behavior, etc. Community
ecologists have long hypothesized that intraspecific aggregation can promote com-
munity coexistence (Ives and May 1985), and the spatial patterns of individuals can
help explain why aggregation occurs (Melles et al. 2009; Lara-Romero et al. 2016).
Spatial point patterns can also provide insight into species interactions (Andersen
1992; Rodriguez-Perez et al. 2012) and mechanisms of coexistence (Brown et al.
2011). From a conservation perspective, the aggregation of patches, which can be
viewed as points across a landscape, is predicted to reduce extinction rates in
populations (Ovaskainen et al. 2002). When using models, such as species–area
models, to predict the biodiversity consequences of both habitat loss and other forms
of disturbance, whether changes occur in a spatially random or in an aggregated
manner can greatly alter conclusions (Seabloom et al. 2002; Kallimanis et al. 2005).
Furthermore, understanding the spatial scale of these patterns can give insight into
processes that drive species distributions (Wiegand et al. 2009), disturbance regimes
(Yang et al. 2008), species invasion (Kelly and Meentemeyer 2002; Deckers et al.
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2005; Maheu-Giroux and de Blois 2007), and population persistence (Adler and
Nuernberger 1994).

Here, we provide an introduction and overview on the use of spatial point pattern
analysis to address ecological and conservation questions related to the spatial
dispersion of species. Spatial point pattern analysis focuses on examining patterns
of points to establish whether there are regularities in the process they represent (are
they clustered, randomly spread, or evenly distributed?), and the spatial scales
(extents) at which these patterns occur. We first describe common characteristics
of point data and related point patterns. We then provide a brief summary of different
types of statistical models used to identify spatial point patterns and the scale(s) at
which they occur. We illustrate these models with data on plant distributions and
show how point data can be simulated to better interpret why point patterns occur in
nature.

a b c

d e f

Fig. 4.1 The spatial dispersion of points and scale dependence in spatial dispersion. (a) Aggre-
gated, (b) uniform (regular), and (c) random distributions of points. (d–f) Aggregation occurring at
increasingly large spatial scales. Aggregation based on a Matérn cluster process, while regular
distribution based on a Matérn inhibition process
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4.2 Key Concepts and Approaches

4.2.1 Characteristics of Point Patterns

Point data come in a variety of forms. For the approaches considered in this chapter,
all point data consist of x–y coordinates of point locations (Fig. 4.2). An inherent
assumption is that the spatial pattern of the points was generated by a unique point
process over the entire study area. Hence, the delineation of the study area in terms
of size and location is important and will affect the point pattern observed. The shape
of the study area can be regular (e.g., rectangular) or can be based on highly irregular
polygons. Locations of points can have attributes, which can be categorical (e.g.,
species names) or quantitative (biomass, height, etc.). These attributes are often
referred to as marks. In some situations, we may also want to integrate other sources
of information or covariates (e.g., elevation) into our interpretation of point patterns.

Point patterns arise from point processes (Table 4.1) (Illian et al. 2008). Point
processes are random processes that result in realizations (i.e., observations) of point

a b

c d

Fig. 4.2 Some common characteristics of point patterns. (a) A point pattern measured in a square
plot (boundary). (b) Bivariate marks, such as those describing the presence and absence of a species
on potential habitat. (c) An example of a continuous mark, in this case the area of the point. (d) A
point pattern with an underlying gradient of interest (with variation in the gradient indicated by
different colors) that may help explain a point pattern
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patterns across space and/or time. The simplest point process that is frequently used
is the Poisson point process. A Poisson point process is based on the idea that points
are independently distributed in space (Diggle 2003). Such a distribution can be
described based on the intensity (~or density) of points, within a specified region
(see below).

Point processes are frequently described as being homogeneous or stationary
versus being inhomogeneous or non-stationary (Diggle 2003). When point processes
are homogeneous, the intensity does not vary over space (or time when considering
spatiotemporal data). Conversely, inhomogeneous point processes have spatially
(or temporally) varying intensities over the study area. In such situations, a common
objective is trying to understand what factors can explain these trends.

Thinned point processes occur when the observed point locations come from a
sample of the underlying point process (Diggle 2003; Illian et al. 2008). This
sampling, or “thinning,” can lead to inhomogeneity in the intensity function inde-
pendent of the underlying point process, which can be due to biological processes,
such differential mortality, or through study design issues. For example, presence-
only data frequently used in modeling species distributions can be viewed as thinned
point data (Warton and Shepherd 2010), which are often biased near roads and such
bias can influence predictions of models (Elith et al. 2006; Phillips et al. 2009). In
such cases, the thinning process can be estimated to account for such biased
sampling (Fithian et al. 2015). Here, we focus on data that do not come from a
thinned point process but rather are complete censuses in a region of interest.

Table 4.1 Common terms for the spatial dispersion of point data in ecology

Term Description

Aggregation A pattern of dispersion where the units are closer together than what
would be expected if they were randomly dispersed. Can operate at
different scales.

Edge effect An effect in point pattern analysis that arises near plot boundaries due to
a lack of knowledge regarding points occurring outside of plots, which
can cause bias in the interpretation of point patterns.

First-order statistics Global statistics summarizing point patterns across an entire study area.

Homogeneous point
process

When the intensity (~density) of points is constant (i.e., does not change)
over space.

Inhomogeneous point
process

When the intensity (~density) of points changes with location.

Isotropy When the point process does not change with direction.

Marks Attributes of points. Can be qualitative or quantitative.

Point process Random processes that result in realizations of point patterns across
space and/or time.

Second-order
statistics

Local statistics that summarize point patterns in a neighborhood around
a location.

Stationarity When the point process does not change over space (or time), which is
referred to as a homogeneous point process.

Thinned point process A sample from an underlying point process.
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However, we will come back to this issue when analyzing opportunistic data of
species distributions in Chap. 7 (Renner et al. 2015).

4.2.2 Summary Statistics for Point Patterns

To interpret spatial point patterns, we can measure a variety of properties of the
spatial pattern. Illian et al. (2008) categorized the various ways to summarize point
patterns based on two dimensions: (1) whether summaries are numerical or func-
tional; and (2) point or location focused (see also Wiegand and Moloney 2014).
Numerical summaries focus on “global” statistics in the sense that they consider
patterns (aggregation, randomness, or regular distributions) over the entire study
area based on count data from contiguous sampling units (e.g., quadrats). These
statistics have a long history in ecology (Clark and Evans 1954; Lloyd 1967;
Velazquez et al. 2016). They focus on summary statistics taken from all of the
points, such as the mean and variance of counts of points taken from sampling units.
For instance, evidence for aggregation or regular dispersion has traditionally come
from interpreting the simple mean–variance ratio wherein the expected absence of
spatial pattern (randomness) follows a Poisson distribution. If the mean� variance,
there tends to be evidence for regularity, if the mean ffi variance, there tends to be
evidence for randomness, and if the mean� variance, there tends to be evidence for
aggregation (Dale and Fortin 2014). Yet numerical statistics do not provide infor-
mation regarding the scale or explicit spatial patterning of the points. They are
simply contingent on how the data are collected (e.g., counts in quadrats). We will
not focus on these statistics because they provide less information on spatial aspects
of point patterns.

Functional statistics use a variety of approaches to understand the local spatial
pattern and to estimate the spatial scale of such patterns (Diggle 2003; Illian et al.
2008). Functional statistics can potentially capture the concept of ecological neigh-
borhoods for point data (Addicott et al. 1987), as described in Chap. 2, and can help
identify the spatial scale(s) at which pattern occurs (Gustafson 1998). Here, we focus
primarily on functional statistics and how they can be used in spatial ecology.

Point-focused statistics summarize patterns from the perspective of individual
focal points. For example, the pattern of points can be described based on nearest
neighbor patterns, where distances from a focal point to the next closest point are
measured. Location-focused statistics, in contrast, summarize patterns from (typi-
cally all) locations within the study area where points may or may not occur.

A third, related dimension regarding summary statistics relates to how point data
are summarized across points. First-order statistics focus on summarizing point data
based individual points without explicit focus on relations to other points. This is
typically accomplished with the intensity function, λ(x), which quantifies the relative
density of points at or around location x. This is a location-based, first-order statistic
because it summarizes information at location xwithout using explicit relational data
regarding inter-point information. Second-order statistics focus on statistical
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relationships estimated from information contained in pairs of points. For instance,
quantifying the number of points within a certain distance r of a focal point would be
a functional, point-based, second-order statistic, because this statistic uses informa-
tion on pairs of points (not locations) and can be calculated across a range of scales.
There are also higher order statistics (e.g., using information from sets of three
points) (Wiegand and Moloney 2014), but in practice, the overwhelming majority of
spatial point pattern analysis focuses on first-order and second-order statistics.

4.2.2.1 Null Models

To assess the significance of the observed point pattern, null models are typically
used. In this way, the observed point pattern is compared to point patterns generated
from null models (Baddeley et al. 2014). The Complete Spatial Randomness (CSR,
i.e., a homogeneous Poisson process) null model is commonly used (Wiegand and
Moloney 2004). Under CSR, it is assumed that: (1) the number of points (n) in a
region follows a Poisson distribution with a mean, λ (sometimes called the intensity;
λ ¼ n/A, where A is the area of the study region); and (2) given the number of points
in the region, the points are an independent random sample having the same
probability of occurring anywhere, such that points come from the uniform distri-
bution across the study region (Diggle 2003). While it is likely that CSR rarely
occurs in nature, it is the simplest null model to contrast with the observed pattern,
which can help determine whether or not the observed pattern is non-random.

To generate a CSR pattern within a regularly shaped study area, a Poisson point
process is used. In a nutshell, for a given number of points (n), we can simulate a
CSR pattern many times. These will provide confidence envelopes for CSR
(Baddeley et al. 2014). This general approach is typically referred to as Monte
Carlo simulations (Manly 2006). If the observed data fall outside of the confidence
envelopes, there is evidence for significant spatial patterns that differ from CSR.

While Monte Carlo methods are often used to explore significance under CSR,
other null models can be considered. For instance, certain point processes assume
aggregation processes (e.g., Thomas or Matérn processes) while others can capture
inhibition processes (e.g., Gibbs or Strauss processes; Illian et al. 2008). These
processes that assume non-random patterns can also be considered null models for
point patterns (see Sect. 4.3.8).

Alternatively, we might know of an underlying resource gradient that a species
uses. We could develop a null model that uses this underlying gradient as a null. For
instance, point locations can be driven, in part, by environmental gradients, such as
elevation or precipitation. With information on these gradients, we can account for
effects of gradients while asking whether points are aggregated or regularly dis-
persed (e.g., Melles et al. 2009). Such a test would ask whether the species shows
characteristic spatial patterns above and beyond the underlying resource gradient.
These types of tests are based on inhomogeneous point processes, where the
inhomogeneity is driven by environmental gradients. See Sect. 4.3.7 for an example.
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4.2.2.2 Inhomogeneous Point Process Models

A powerful advance in point pattern analysis is the development of inhomogeneous
point process models. An inhomogeneous point process model is similar to a
generalized linear model for point data, where we are modeling the intensity of
points in the study area (Illian et al. 2008, 2013; Renner et al. 2015). Typically, this
is formulated as an inhomogeneous Poisson point process (as opposed to other
processes, such as Thomas processes) which is very similar to Poisson regression.
This modeling framework is inhomogeneous because it accounts for covariates that
may influence the intensity of points, as well as the potential for non-stationarity in
point patterns (see below). The point process model can be defined as:

λðsÞ ¼ expðαþ βxðsÞ þ . . .Þ, ð4:1Þ

where λ is the intensity of the point process at locations s across the study area, x is a
covariate at location s, and α and β are parameters to be estimated. Inhomogeneous
point process models can be used in a variety of ways, both in terms of exploratory
data analysis, for inference, and for prediction and spatial mapping (see below and
Chaps. 7 and 8).

4.2.3 Common Statistical Models for Point Patterns

A variety of exploratory data analysis approaches have been derived for interpreting
point patterns. For second-order statistics, some common approaches include mea-
suring the degree of spatial aggregation between neighboring points within a circular
area of a given radius or calculating the number of points at a specific distance from a
focal point (Fig. 4.3). Each of these measurements asks subtly different questions.
Wiegand et al. (2013) illustrated how different point processes can lead to similar
patterns in some types of statistical summaries and argued that several statistics
should be used to fully capture spatial point patterns. Below we illustrate some of the
most common approaches.

4.2.3.1 Ripley’s K (and L )

We start with describing the Ripley’s K function (Ripley 1976) because it is
probably the most common second-order statistic for point patterns used in ecology.
Ripley’s K calculates the degree of spatial aggregation of points within a circle of
radius r and contrasts the observed pattern to that expected under CSR (Fig. 4.3a).
Ripley’s K is defined as:
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K rð Þ ¼ E

λ
, ð4:2Þ

where λ ¼ n/A, and E ¼ # points within radius r of an arbitrarily chosen point (not
including that point). Thus, if K(r) is larger than expected for a radius r, the observed
number of events shows evidence of clustering, whereas if K(r) is smaller than
expected for a radius r there is evidence for regularity. Given that the area of a circle
is πr2, the expected number of points in a circle of radius r under CSR is:

ECSR ¼ λπr2: ð4:3Þ

Now, if we rearrange and substitute, we get that the expected value of the
K function under CSR is:

K rð ÞCSR ¼ πr2: ð4:4Þ

This expectation regarding CSR results in an exponential increase in expected
values due to r2, which has some undesirable properties. Consequently, we can
“linearize” this function, such that the expected value under CSR equals r (Ripley
1979):

bL rð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
K rð Þ
π

r
¼ r: ð4:5Þ

a b c

rr

Fig. 4.3 Second-order statistics for interpreting spatial point patterns capture spatial information of
points in different ways. (a) The K (or L ) function uses information from all points within a
specified area (buffer of radius, r) around a focal point (square). (b) The g function (pair correlation
function) uses point information at a specified radius r from a focal point or location. This distance
is often smoothed with a kernel bandwidth, indicated by dark shading around radius r represented
by the grey line. In this situation, the bandwidth is relatively wide such that it overlaps with one
point. (c) The G function uses the nearest neighbor distances between points (arrow denotes the
nearest neighbor from a focal point)
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Graphically, plots of L(r) as a function of r will result in the 1:1 line being the
expected value under CSR. In this situation, if L(r) > r, there is evidence for
spatial aggregation, whereas if L(r) < r there is evidence for regularity. Another
popular linearization is to set the expected value ¼ 0 under CSR:

bL rð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
K rð Þ
π

r
� r: ð4:6Þ

In this case, if L(r) > 0, there is evidence for aggregation, whereas if L(r) < 0
there is evidence for regularity. When using the linearized version of the K function
(i.e., the L function), it is important to know whether it is linearized to r or 0.

In practice, Ripley’s K is calculated as follows:

bK rð Þ ¼ A
Xn
i ¼ 1
i 6¼ j

Xn
j ¼ 1
j 6¼ i

wijIr dij < r
� �
n2

, ð4:7Þ

where dij is the distance between events i and j, Ir is an indicator function taking a
value of 1 if dij < r or zero otherwise, and wij is a weighting factor that corrects for
study area edge effects. If we ignore edge correction issues (we will expand on these
below), this can simplify to:

bK rð Þ ¼ λ�1
Xn
i ¼ 1
i 6¼ j

Xn
j ¼ 1
j 6¼ i

Ir dij < r
� �

n
: ð4:8Þ

Note Eq. (4.8) is very similar to how we initially defined K. In a nutshell, this
statistic is calculating the mean number of points within a distance r, scaled to the
average intensity, λ, and we then compare it to what is expected under CSR (or other
null models).

4.2.3.2 Pair Correlation Function

While the K and L functions have a long history of use, the interpretation of the
scales at which patterns occur can be unclear. For instance, if there is a strong
aggregated pattern at approximately a 5 m radius but no effect at larger scales,
Ripley’s K functions may suggest that aggregated patterns occur at larger scales,
because r > 5 m still uses data from r < 5 m. That is, the K (and L ) function is a
cumulative function, where all points less than r are used. Consequently, distance-
based analyses (Fig. 4.3b) are often recommended either to complement or in lieu of
area-based analyses like Ripley’s K (Illian et al. 2008). The most common statistic
for a distance-based analysis is the pair correlation function, g, where:
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g rð Þ ¼
dK rð Þ
dr
2πr

: ð4:9Þ

Essentially, the g function calculates the slope of the K function at radius
r divided by the circumference of radius r. The value expected for this statistic
under CSR is 1, if g(r) > 1, there is evidence for aggregation, whereas if g(r) < 1
there is evidence for regularity. Note that in practice, this idea has sometimes been
implemented by defining a ring width (Δr) or bin size rather than using the derivative
in Eq. (4.9) (Wiegand and Moloney 2004). If bands are too narrow, data sparseness
will cause spurious irregularities in the function. If the bands are too wide, they start
to approach the K function. Rather than manually determining the ring width, we can
use a smoothing kernel to address this issue (Penttinen et al. 1992) (see below;
Chap. 6). Wiegand and Moloney (2004) also discussed the O-ring statistic, which is
related to the pair correlation function, where O(r) ¼ λg(r).

While the pair correlation function is not used as frequently as the K function in
ecology, several scientists have argued that it is more informative than the K function
because it can better isolate the relevant spatial scales of point patterns (Illian et al.
2008). In fact, the K function can be viewed as simply a cumulative version of the
pair correlation function (Baddeley 2007; Wiegand and Moloney 2014; Velazquez
et al. 2016).

4.2.3.3 Distances Between Neighbors: The G-Function

The G-function estimates the cumulative distribution of the nearest neighbor dis-
tances for a given point, sometimes referred to as the “event-to-event” distribution
(Fig. 4.3c). This function is useful for interpreting the probability of finding the
nearest neighbor for a given distance r. It can also be used when considering nearest
neighbor distance metrics in studies of habitat fragmentation (see Chap. 3) by
providing a means to interpret the spatial scaling of patch isolation. This function
can be written as:

bG rð Þ ¼ 1
N

Xn
i ¼ 1

1 di � rð Þ, ð4:10Þ

where N is the number of points and di is the distance between observed nearest
neighbors. The expected value of the G-function under CSR is:

G rð ÞCSR ¼ 1� exp �λπr2ð Þ: ð4:11Þ

When the observed G(r) is greater than GCSR(r), distances are shorter than
expected from a Poisson process, indicative of spatial aggregation. In contrast,
when G(r) < GCSR(r), distances are longer than what is expected from a Poisson
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process, indicative of a uniform dispersion. This function has an intuitive interpre-
tation; however, it ignores all point information beyond that of the nearest neighbor
(unlike K, L, or g). As a consequence, it tends to capture smaller scale heterogeneity
in point patterns relative to other summary statistics (Wiegand and Moloney 2014).
There are other related functions that focus on location rather than points (e.g., the
empty space function, F(r)), but we will not elaborate on those here.

4.2.3.4 Bivariate and Multivariate Marks

The above functions have been extended for interpreting the spatial pattern between
two types of points (Andersen 1992). This extension opens up several problems that
can be tackled by spatial point pattern analysis, such as the role of interspecific
competition on species distribution, resource selection by animals, and how human
activities may impact oviposition behavior. This idea can be more generally framed
as an analysis of marked points. Marks are simply information about the events
(points) and can be categorical (e.g., predator versus prey) or continuous (e.g., dbh of
trees).

For two categorical points (1 and 2), the sample bivariate (or cross) Ripley’s
K function can be described as:

dK12 rð Þ ¼ A
Xn1
i ¼ 1
i 6¼ j

Xn2
j ¼ 1
j 6¼ i

Ir dij < r
� �
n1

n2: ð4:12Þ

This is then repeated for K21 and a weighted average is calculated. The expecta-
tion for the function is contingent on the underlying question (see below for more
details). This general approach can be extended to several types of points (Condit
et al. 2000).

When using continuous marks, the mark correlation function is often used
(Penttinen et al. 1992):

cKm rð Þ ¼
Xn
i ¼ 1
i 6¼ j

Xn
j ¼ 1
j 6¼ i

Irmim j, ð4:13Þ

where mi is the quantitative mark at location i. The expected value is then:

Km rð ÞCSR ¼
ffiffiffiffiffiffiffiffiffiffiffiffifficKm rð Þ
πμ2

s
, ð4:14Þ

where μ is the mean value for the mark. Note that if you replace mimj with (mi� mj)
2

in Eq. (4.13), the function becomes nearly equivalent to the empirical variogram (see
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Chap. 5). Thus, the mark correlation function asks whether quantitative values of
marks tend to be positively or negatively associated (e.g., larger trees tend to be close
to other large trees).

4.2.3.5 Edge Effect Correction

The above statistics ignore the problem of edge effects. In point pattern analysis,
edge effects arise near the boundary of the study area of interest where there is no
information on points located outside the study area. Consequently, when consider-
ing a radius r from a point near a boundary, the number of observed points is likely
lower than the true number of points if points could occur outside of study area.
Statistics that do not account for edge effects tend to result in biased estimates of
spatial dispersion. It is therefore recommended to account for edge effects. Note that
under some situations, such as if the boundary is a hard (true) boundary for points, it
may make sense to not account for edge effects (Lancaster and Downes 2004).

Each of the above statistics (K, L, pair correlation g, etc.) can be adjusted for edge
effects. Some corrections use weights for points, some use buffers, and some use
some sort of wrapping (e.g., a torus) to adjust for boundary effects. A simple
correction based on weights that Ripley (1988) suggested is sometimes referred to
as an “isotropic correction.” In this case, if the radius r is completely inside the plot,
the weight, w, equals 1. If part of the circle is outside plot, this correction uses the
inverse of the fraction of circumference lying inside the plot (e.g., if ½ of circum-
ference is inside the plot, the w ¼ 2 for points inside). This correction is intuitive but
does not work well for irregular complex boundaries. The “translate correction” is a
common correction that works on all plot/window geometries (also known as
toroidal correction). This correction does not use weights but rather wraps points
around the plot like a torus.

4.2.3.6 General Assumptions

The above analyses all assume that the point process is stationary (homogeneous).
The analyses also assume therefore that the process is isotropic. Yet the above
functions can be extended to accommodate inhomogenous point processes, where
intensity varies across space.

These models also assume a complete census of the point locations, not a sample.
It has been argued that if the observed points are a random sample of the true
distribution that these analyses should still be valid (because a Poisson point process
that is thinned randomly/independently is still a Poisson point process). However, if
point locations are a biased sample, then such bias could alter the conclusions about
the point pattern.

112 4 Spatial Dispersion and Point Data



4.3 Examples in R

4.3.1 Packages in R

In R, there are a few libraries that can be used for spatial point pattern analysis.
Spatial (Venables and Ripley 2002) allows for limited point-pattern analysis,
whereas spatstat is a more flexible and comprehensive library. We will focus on
the use of spatstat (Baddeley and Turner 2005).

In spatstat, the basic data types are Point Patterns (ppp), Windows (owin),
and Pixel Images (im). A point pattern is a dataset recording the spatial locations of
all “events” or “individuals” observed in a certain region. A window is a region in
two-dimensional space. It usually represents the boundaries of the study area. A
pixel image is an array of values for each grid point in a rectangular grid inside the
window. It may contain covariate data (e.g., taken from a raster grid) or it may be the
result of calculations (such as kernel density smoothing function).

4.3.2 The Data

As an example of interpreting point data and its spatial patterns, we analyze plant
distribution data collected at the Ordway-Swisher Biological Station, a core NEON
(National Ecological Observatory Network) site for the southeastern United States
(Kampe et al. 2010; Kao et al. 2012). Prickly pear cactus (Opuntia humifusa) is a
common plant found in old fields (Fig. 4.4a) and other upland areas that have limited
canopy cover. Prickly pear cactus is of considerable interest for three reasons. First,
it is a common resource for several insects and vertebrates that use it for foraging and
breeding (Sauby et al. 2012; Grunwaldt et al. 2015; Lavelle et al. 2015). Second,
some species ofOpuntia are grown as agricultural crops in some regions of the world
(Lopez 1995; Cruz-Rodriguez et al. 2016). Third, Opuntia has invaded some areas
where it is not native, becoming a problematic species that can dominate an area
(e.g., some areas of Australia and South Africa) (Freeman 1992; Novoa et al. 2016).

This system is well-suited for exploring the possibilities of how spatial point
pattern analysis can be applied to address applied questions in ecology. We use data
ofO. humifusa locations in a 50� 50 m plot (Fig. 4.3b), which were mapped using a
high-resolution GPS (~30 cm error) as part of a larger investigation on habiat loss
and fragmentation (Fletcher et al. 2018). Each cactus location includes information
on the size of cactus, as well as the presence of an insect herbivore, Chelinidea
vittiger, that specializes on Opuntia and has been used as a biological control for
invasive Opuntia in some regions of the world (DeVol and Goeden 1973). Cactus
size can be characterized as a continuous mark, whereas the presence–absence of
C. vittiger can be characterized as a binary (or qualitative) mark. Our goal is to
interpret whether there is any evidence of spatial aggregation of cactus and the
biological control agent, along with identifying the spatial scales of pattern.
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4.3.3 Creating Point Pattern Data and Visualizing It

First, we load the spatstat package and data (cactus.csv), and we create
relevant spatstat objects. Because this study area is a square (50� 50 m), we can
provide spatstat with the corners of the study area (cactus_boundary.
csv) to delineate the window size (e.g., latitude/longitude or UTMs).

> library(spatstat)
> cactus <- read.csv('cactus.csv', header = T)
> boundary <- read.csv("cactus_boundary.csv", header = T)
> ppp.window <- owin(xrange = c(boundary$Xmin, boundary$Xmax),
Yrange = c(boundary$Ymin, boundary$Ymax))

> ppp.cactus <- ppp(cactus$East, cactus$North, window =
ppp.window)
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Fig. 4.4 Opuntia humifusa at the Ordway-Swisher Biological Station. (a) O. humifusa shows a
patchy distribution. (b) The observed point pattern of cactus locations in a 50 � 50 m plot. (c)
Quadrat counts of Opuntia humifusa and (d) the intensity mapped using a kernel plot
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spatstat can also take polygon files (e.g., shp files) for delineating the study
area. For example, we can load an .shp file of a polygon of the plot extent with the
rgdal package and create a win object from that in a straightforward manner:

> library(rgdal)
> boundary.poly <- readOGR("cactus_boundary.shp")
> ppp.window.poly <- as.owin(boundary.poly)

Once the data are in spatstat format, there are several exploratory graphs and
summary statistics that spatstat can provide. Below are a few examples (Fig. 4.4c).

> plot(ppp.cactus) #graph of point locations
> plot(density(ppp.cactus, 1)) #density/intensity plot

> summary(ppp.cactus)

##
Planar point pattern: 82 points
Average intensity 0.0262668 points per square unit

Coordinates are given to 1 decimal place
i.e. rounded to the nearest multiple of 0.1 units

Window: rectangle = [403368, 403424.6] x [3285673, 3285728] units
Window area = 3121.81 square units

This summary shows that there are 82 points (cactus patches) and provides the
observed intensity, λ. The density plot (Fig. 4.4d) can be a helpful visualization of
intensity of points across the plot. By plotting the spatial intensity in this way, we can
get an idea of whether or not there may be spatial trends in the point occurrences that
may violate the assumption of a homogeneous point process.

We can also make tallies of counts of point locations based on quadrats overlaid
on the plot (Fig. 4.4c). To determine whether these quadrat counts conform to CSR
(i.e., a homogeneous Poisson process), we can use a simple Chi-square test statistic.

> Q <- quadratcount(ppp.cactus, nx = 4, ny = 4)#12.5x12.5m quadrats
> plot(ppp.cactus)
> plot(Q, add = TRUE)
> quadrat.test(ppp.cactus, nx = 4, ny = 4,method = "Chisq")

##
Chi-squared test of CSR using quadrat counts
Pearson X2 statistic

data: ppp.cactus
X2 = 35.463, df = 15, p-value = 0.004223
alternative hypothesis: two.sided

Quadrats: 4 by 4 grid of tiles
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This test statistic suggests highly a non-random point pattern at the scale of the
quadrat that we defined. Note that this test is more akin to a first-order point pattern
analysis because it is based on the dispersion of points among sampling quadrats.

4.3.4 Univariate Point Patterns

Second-order point pattern analyses can readily be implemented in spatstat.
Below illustrates Ripley’s K and the standardized L functions (Fig. 4.5), initially
ignoring edge effects (correction¼"none").

> Knone <- Kest(ppp.cactus, correction = "none")
> plot(Knone)

> Lnone <- Lest(ppp.cactus, correction = "none")
> plot(Lnone) #standardized to a 1:1 expectation
> plot(Lnone, . – r ~ r) #standardized to a zero expectation

You will notice that for these functions, two lines are drawn. The “Lpois” line is a
dashed line that represents the expected (theoretical) value based on a Poisson
process (CSR). The way that spatstat calculates L is to linearize K such that
the expected value is r (or the radius). The other solid line represents the estimated
L (linearized K ), when we ignore edge effects.

The above analysis ignores the problem of edge effects. spatstat provides a
variety of edge corrections. We contrast an isotropic and translate correction for
adjusting for boundary effects (Fig. 4.6). The isotropic correction uses a simple
weighting scheme for the area sampled near the plot boundary (Ripley 1988), while
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Fig. 4.5 (a) Ripley’s K and the linearized L functions, where (b) is scaled such that the expectation
is r, while (c) is scaled such that the expectation is zero. For each, the solid line shows the observed
value while the dashed line shows the expectation under complete spatial randomness (a Poisson
point process). In this figure, there are no corrections for edge effects
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the translate correction uses a toroidal shift. We adjust for potential boundary effects
by typing:

> Liso <- Lest(ppp.cactus, correction = "isotropic")
> plot(Liso, . - r~r)

> Ltrans <- Lest(ppp.cactus, correction = "translate")
> plot(Ltrans, . - r ~ r)
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Fig. 4.6 The effect of edge correction on inferences from point patterns. (a) To correct for edge
effects, weights can be used to offset the number of points observed within a radius inside the plot
(gray points), depending on the amount of the radius that falls outside the plot. (b) Alternatively, the
point pattern can be shifted (e.g., a toroidal shift shown here) to account for boundary corrections.
(c) Point pattern analysis based on the L function that uses a weighting function (isotropic), and (d)
using the translate correction (toroidal shift). For c and d, the solid line shows observed value, while
the dashed line shows expected value under CSR. Contrast (c) and (d) to Fig. 4.5c

4.3 Examples in R 117



When comparing the L function that ignores boundaries to those above that
account for boundaries, notice that patterns change at larger distances—we expect
that the L function at larger distances should potentially be more biased than at
smaller distances (because larger radii will naturally overlap more with the boundary
of the study area). When we ignore edge effects, we are in effect counting fewer
points within the radius r near the boundary, so the observed value for L or K should
have an artifact of decreasing as r increases.

The analyses so far are exploratory. While the observed statistics (K, L ) appear
different than the expectation, it is unclear if these are substantially (or significantly)
different. To conduct formal inference regarding if the point pattern follows CSR, we
can use Monte Carlo simulations to calculate a confidence envelope under CSR with
the envelope function. This function can be applied to several point pattern
statistics.

> Lcsr <- envelope(ppp.cactus, Lest, nsim = 99, rank = 1,
correction = "translate", global = FALSE)

> plot(Lcsr, . � r ~ r, shade=c("hi", "lo"), legend = F)

In the envelope function, rank specifies the alpha for the simulations. For a
rank¼1, the max and min are used for envelopes, such that for 99 simulations,
α ¼ 0.01 while for 19 simulations, α ¼ 0.05. Also note that we used global ¼
FALSE. This means that these are “pointwise envelopes.” These envelopes work
better for L than K because of variance stabilizing properties.

Plots of pointwise envelopes show the stated upper and lower quantiles of
simulated patterns for any distance r (Fig. 4.7). Because such analyses are calculat-
ing envelopes for many distances, pointwise envelopes with a specified α should not
be used to reject a null model at that level (because of the multiple tests). Conse-
quently, there are alternative global tests that can be used in this way. While global
tests are under active development (Baddeley et al. 2014; Wiegand et al. 2016),
spatstat does provide one option for a global test (using global ¼ T in the
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Fig. 4.7 Confidence envelopes for complete spatial randomness of the (a) L function, (b) pair
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above model). This approach estimates the maximum deviation from the Poisson
point process across all r (i.e., D ¼ max|K(r) � Kpois(r)|). This approach is referred
to as a simultaneous envelope (or critical band) rather than a pointwise envelope
(Fig. 4.7a). If the observed line falls outside the simultaneous envelope at any point
on r, we would reject the null hypothesis.

Now, say we are more interested in estimating the distance at which spatial
patterns arise, such that using a “ring” rather than a circle (as in Ripley’s K ) is
more appropriate. To estimate the pair correlation function, g, most of the arguments
are similar to above. The main exception is that instead of calling Lest, we call pcf
(pair correlation function; Fig. 4.7b):

> Ptrans <- pcf(ppp.cactus, correction = "translate")
> plot(Ptrans)

> Penv <- envelope(ppp.cactus, pcf, nsim = 99, rank = 1, correction =
"translate", global = FALSE)

> plot(Penv, shade = c("hi", "lo"), legend = FALSE)

The pcf function uses a smoothing kernel such that distance bins are not needed.
The default bandwidth coefficient (related to sigma in a Gaussian kernel; see
Chap. 2) for the smoothing kernel is set to 0.15 (Stoyan and Stoyan 1994). We
can adjust the smoothing on the pair correlation function using the stoyan com-
mand in the pcf function. Increasing the value of the bandwidth coefficient (e.g.,
stoyan ¼ 0.4) results in a less wiggly g function (Fig. 4.7b).

Finally, we can use similar arguments for the G-function to estimate the proba-
bility of finding a nearest neighbor as a function of distance (Fig. 4.7c). spatstat
uses a similar approach as above with the Gest function. Note that for Gest, there
are subtly different ways to account for edge effects relative to above. Below we use
rs, the reduced sample correction. We can check the observed G-function calcu-
lated by spatstat to the cumulative distribution function of the empirical data
(with the ecdf function):

> Gtrans <- Gest(ppp.cactus, correction = "rs")
> plot(Gtrans, legend = F)

> Genv <- envelope(ppp.cactus, Gest, nsim = 99, rank = 1,
correction = "rs", global = FALSE)

> plot(Genv, shade = c("hi", "lo"), legend = FALSE)

#nearest neighbor distance for each point
> nn.dist <- nndist(ppp.cactus)
> plot(ecdf(nn.dist), add = T)

Note that the radius considered for the G-function is much smaller than for the
L-function or the pair correlation function. This makes sense, because the nearest
neighbor distances will emphasize the shortest distances between points.
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Taken together, the analyses using the L, g, and G-functions provide comple-
mentary insights regarding the spatial pattern of Opuntia. Using pointwise enve-
lopes, the L function suggests an aggregated pattern occurring at scales of
approximately 2–13 m, while the pair correlation function suggests that most of
the observed effect in the L function is generated from shorter distances, on the order
of 2–6 m. Similarly, the G-function suggests that nearest neighbor distances are
random at very small scales (<2 m), while distances are closer than expected at
larger scales, consistent with aggregation.

4.3.5 Marked Point Patterns

Many of the above univariate analyses can be extended to ask interesting and
important questions based on marked point patterns. First, consider the issue of
resource use versus availability in the context of marked point patterns (Lancaster
and Downes 2004). There are several insect herbivores that use Opuntia cactus. We
may be interested in interpreting the spatial dispersion of these herbivores. We want
to know the distribution of herbivores, given the underlying distribution of cactus.
For this and other complexities, such as interpreting spatial covariance between
species, we need to use a marked point pattern analysis.

In this situation, we will interpret the spatial distribution of an insect herbivore,
Chelinidea vittiger, on cactus. C. vittiger is a pest insect that has been used as a
biological control for Opuntia cactus in Australia (although with limited effective-
ness) (DeVol and Goeden 1973). It specializes onOpuntia, where it feeds and breeds
on cactus segments. It is a poor disperser (Fletcher et al. 2011) and tends to show
aggregated distribution patterns on cactus (Miller et al. 2013).

To interpret C. vittiger distribution, we can use a randomization procedure where
we relabel marks (shuffle the locations of used versus unused cacti, termed “random
labeling”) to interpret the observed pattern of the herbivore with the rlabel
function. That is, we are interested in insect dispersion, conditional on cactus
distribution. In other circumstances, we might be interested in the joint distribution
of two marked processes (e.g., competition between two species). For such situa-
tions, we can use the rshift function in a similar way as using rlabel. Rather
than shuffling labels, the rshift function performs a toroidal shift of the point
pattern of one mark while leaving the other marked point pattern constant.

First, we need to make a new spatstat object that includes the marks for
presence–absence data. In the data provided, there is information from six surveys
conducted at each patch regarding the number of C. vittiger detected per patch. Here,
we truncate the data to produce a bivariate mark of presence–absence of C. vittiger:

> cactus$CheliPA <-as.factor(ifelse(cactus$chelinidea > 0,
"presence", "absence"))
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With this new variable, CheliPA, we can create a new spatstat object.

> ppp.PA <- ppp(cactus$East, cactus$North, window = ppp.window,
marks = cactus$CheliPA)

> split(ppp.PA) #summary statistics by mark
> plot(split(ppp.PA)) #separate plots

We first interpret the spatial pattern of C. vittiger distribution, ignoring the
underlying distribution of cactus (Fig. 4.8a).

> cheli.data <- subset(cactus, chelinidea > 0)
> ppp.bug <- ppp(cheli.data$East, cheli.data$North, window =
ppp.window)

> Lbug <- envelope(ppp.bug, Lest, nsim = 99, rank = 1, i =
"presence", global = F)

Then, we contrast these results to those based on a bivariate K function (or a
bivariate pair correlation function) with a random-labeling simulation to interpret the
spatial pattern of marks (Fig. 4.8b).

> Lmulti <- envelope(ppp.PA, Lcross, nsim = 99,rank = 1, I =
"presence", global = FALSE, simulate =
expression(rlabel(ppp.PA)))
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Fig. 4.8 Bivariate L function to distinguish spatial use versus availability. (a) Spatial point pattern
analysis for Chelinidea vittiger occurrence use without conditioning on cactus pattern (availability)
shows evidence for aggregation. (b) Bivariate analysis, conditioning on cactus distribution (using a
random labeling procedure), shows that herbivores are distributed randomly. The solid line is the
observed value, while the dotted line is the expected value under CSR
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Taken together, if we only did an analysis that ignored the distribution of cactus,
we would have very different conclusions regarding the spatial pattern (Fig. 4.8),
where we would conclude that C. vittiger has an aggregated distribution. However,
this pattern is driven by the pattern of cactus, which constrains the distribution of
C. vittiger.

Finally, we can consider continuous marks through the use of the mark correla-
tion function. For this example, we consider cactus area as a continuous mark.
Consequently, we ask whether cactus tends to be aggregated by size or if there is
an inhibition process where larger cacti tend to be near smaller ones. This can be
done by creating a spatstat object where we use cactus size as the quantitative
mark and then use the markcorr function (Fig. 4.9):

> ppp.area <- ppp(cactus$East, cactus$North, windo w=
ppp.window, marks = cactus$Area)

> mcf.area <- markcorr(ppp.area)
> MCFenv <- envelope(ppp.area, markcorr, nsim = 99, correction =
"iso", global = FALSE)

> plot(MCFenv, shade = c("hi", "lo"), legend = F)

Note that in this case, if the observed value is above 1, there is evidence for a
positive mark correlation, such that large cacti tend to be near other large cacti. If the
value is<1, large cacti tend to be near smaller cacti. This analysis suggests that there
is no strong spatial pattern of cactus size across the plot (i.e., large cacti are not
aggregated).
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Fig. 4.9 (a) Patch area (~plant area) and (b) mark correlation analysis of cactus patch area, along
with 99% pointwise envelopes. Values <1 and outside the envelope indicate negative relationships
of patch area with patches r distance away, while values >1 indicate positive relationships
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4.3.6 Inhomogeneous Point Processes and Point Process
Models

Point process models allow for understanding and accounting for inhomogeneous
point processes: when point processes vary by location, such as across environmen-
tal gradients. An inhomogeneous point process model is similar to a generalized
linear model (GLM) for point data (very similar to a Poisson regression; more on
GLMs in Chap. 6), where we are modeling the intensity of points in the study area
(Renner et al. 2015).

We could use a variety of covariates to account for inhomogeneous point
processes. We will consider two types of covariates. First, we start with simply
accounting for spatial trend based on x–y coordinates (see Ch. 6 for more on spatial
trend). We can fit different point process models and inspect the model fit. Second,
we will import a raster layer that quantifies herbaceous vegetation height in the plot
(see Chap. 5 for more on these data and their interpretation). Surrounding vegetation
height may be relevant for interpreting Opuntia distribution due to light limitation
(Hicks and Mauchamp 2000) or indirect effects from variation in herbivory (Burger
and Louda 1994). To fit a point process model, we use the ppm function.

#simple intercept and trend models based on x,y coordinates
> pp.int <- ppm(ppp.cactus, ~ 1) #no trend(homogeneous)
> pp.xy <- ppm(ppp.cactus, ~ x þ y) #linear trend
> pp.xy2 <- ppm(ppp.cactus, ~ polynom(x, y, 2)) #quadratic trend

Adding x-y coordinates in a point process model can sometimes cause difficulty
for model convergence, such that it may require rescaling coordinates. In the above
models, we manually centered the ppp objects (window and point coordinates by
subtracting the mean of the x and y coordinates; code not shown) to insure conver-
gence, but the rescale function in the spatstat package could also be used. To
use a raster layer, we must convert the raster (Fig. 4.10a) to a matrix and then an
image file that spatstat can interpret. We can then fit the model and contrast
models with AIC.

#model based on covariates from a raster layer
> library(raster)
> veg.height <- raster('cactus_matrix')

#raster into an image covariate that spatstat can read
> veg.height <- data.frame(rasterToPoints(veg.height))
> veg.height <- veg.height[order(veg.height$x, veg.height$y), ]#sort
> veg.height.mat <- matrix(NA, nrow=length(unique(veg.height$x)),
ncol=length(unique(veg.height$y)))

> veg.height.mat[] <- veg.height$Height
> cov.veg <- im(mat = veg.height.mat,
Xrange = c(boundary$Xmin, boundary$Xmax),
Yrange = c(boundary$Ymin, boundary$Ymax))
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#point process model based on vegetation covariate
> pp.veg <- ppm(ppp.cactus,~ veg, covariates =
list(veg=cov.veg))

#model selection with AIC
> data.frame(model = c("int", "xy", "xy^2", "veg"),
AIC = c(AIC(pp.int), AIC(pp.xy), AIC(pp.xy2), AIC(pp.veg)))

##
model AIC
1 int 762.8697
2 xy 761.0581
3 xy^2 753.3127
4 veg 754.8890

Based on the model selection criteria (AIC), there is some evidence of spatial
heterogeneity in the intensity of points, suggesting that this could be considered an
inhomogeneous point process. The most supported model is one with a quadratic
trend, but including the raster image of vegetation height also had some support. We
can plot this estimated process with the predict function:

#plot the point process models
> plot(predict(pp.xy2, type = "trend"))
> plot(ppp.cactus, add = T)

We can also adjust for this pattern in the K function. To do so, we first need to
make an image object of the predicted point process model that spatstat can use
(similar to a raster map of the covariate of interest). We then use the Linhom
function to account for this heterogeneity when quantifying spatial dispersion
(Fig. 4.10c).
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> pp.xy.pred <- predict.ppm(pp.xy2, type = "trend”)
> Lxycsr <- envelope(ppp.cactus, Linhom, nsim = 99, rank = 1,
correction = "translate", simulate =
expression(rpoispp(pp.xy.pred)), global = F)

> plot(Lxycsr, . � r ~ r, shade = c("hi", "lo"), legend = F)

Note that the clustering previously observed is largely (but not entirely)
accounted for when considering this inhomogeneity. This general approach can be
used to control for factors that may influence patterns to ask whether clustering
or uniform distributions occur after controlling for these effects.

4.3.7 Alternative Null Models

While CSR is a useful starting point as a null model, in some situations we may be
interested in using alternative null models. Some null models can be derived from a
Poisson cluster process. Two common Poisson cluster processes considered in
ecology are Matérn cluster processes and Thomas cluster processes (Velazquez
et al. 2016). In a Matérn cluster process, there are two types of points. The first are
“parent” points, which have a Poisson distribution. Second, for each parent point,
there are “offspring” points, which are independently and uniformly distributed
around the parent points within a radius r (Fig. 4.11a). Consequently, these “off-
spring” points generate an underlying aggregated pattern. Similarly, with a Thomas
process, “offspring” points are generated with parents but with an isotropic Gaussian
distribution (similar to a Gaussian kernel described in Chap. 2). Such a process could
reflect biological phenomena such as seed dispersal from parent plants.

We can use these alternative null models in spatstat, with the above functions
(K, L, pair correlation g, etc.). For example, a K function with a Thomas process as a
null model can be quantified as:

> Kthomas <- kppm(ppp.cactus, ~ 1, "Thomas")

To interpret this model, summary(Kthomas) provides a wealth of information
regarding the fitted model. For example, it provides an estimate of the mean cluster
size (4.6 points), as well as the best fit scale for that size (3.7 m). Note that in the
above kppm function, we can also account for covariates (the “~1” states to not
consider covariates and only include an intercept in the model; ~polynom(x, y,
2) would account for the trend shown above).

We can use the envelope function here as well to interpret the point pattern.

> Kthomas.env <- envelope(Kthomas, Lest, nsim = 99, rank = 1,
global = F)

> plot(Kthomas.env, . � r ~ r, shade=c("hi", "lo"), legend = F)

4.3 Examples in R 125



These models suggest that the observed point pattern is not substantially different
from what would be expected from a Thomas process (Fig. 4.11d) or a Matérn
process (Fig. 4.11c). This result is consistent with the previous results, which
illustrated the aggregative pattern.
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Fig. 4.11 Alternative models that assume a clustered point process. (a) Most models start with
assuming that “parent” points come from an underlying Poisson point process, with “offspring”
points that are clustered within a radius or buffer from the parent points. Shown is a Poisson process
with a buffer radius in which offspring points may cluster. (b) Clustering of offspring points can
occur based on different underlying distributions. Shown are cross-sections of bivariate kernels for
a Matérn cluster process and a Thomas process, where a Matérn assumes that offspring points are
clustered around parents based on a uniform distribution (gray line), while a Thomas process
assumes clustering of offspring based on an isotropic normal distribution (black line). (c, d)
Resulting L functions based on these processes fit to the cactus data, where the solid line is the
observed value, while the dashed line is the expected values under the (c) Thomas and (d) Matérn
processes
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4.3.8 Simulating Point Processes

It is frequently useful to be able to simulate patterns. Simulations provide a means to
create a known “truth” that we can then use to evaluate potential hypotheses or
models that might be of interest to spatial ecology and conservation. Indeed,
simulations are increasingly used in ecology to interpret the accuracy and sensitivity
of models (Kery and Royle 2016). We will consider the problem of simulating
spatial data throughout this book.

We can simulate point processes. In fact, for some problems mentioned above, we
were simulating data when using Monte Carlo simulations to infer significance of
point patterns. To illustrate, we can simulate a homogeneous point process with the
same intensity, λ, as in our empirical data, using the rpoispp function:

> sim.pp <- rpoispp(lambda=intensity(ppp.cactus), nsim = 4,
win=ppp.window)

#access the x-y coordinates for points in simulation 1
> sim.pp[[1]]$x
> sim.pp[[1]]$y

In this case, we passed λ of the empirical data using the command intensity,
and requested four simulations (realizations) based on a Poisson point process with
the observed intensity. This function can be adjusted for inhomogeneous point
processes by passing a functional relationship that describes the inhomogeneous
process on the x–y plane, rather than a mean intensity:

#make a function based on ppm model coefficients
> pp2.fun <- function(x, y) {exp(pp.xy2$coef[1] þ pp.xy2$coef[2]
* x þ pp.xy2$coef[3] * y þ pp.xy2$coef[4] * I(x^2) þ
pp.xy2$coef[5] * x * y þ pp.xy2$coef[6] * I(y^2))

#or using expectation from xy^2 model
> pp2.sim <- rpoispp(pp.xy.pred, nsim = 4)

#simulate inhomogeneous point process from ppm
> pp2.sim <- rpoispp(pp2.fun, nsim = 4, win = ppp.window)

Finally, we note that other processes can be simulated, such as Matérn and
Thomas processes mentioned above, using a similar approach.
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4.4 Next Steps and Advanced Issues

4.4.1 Space-Time Analysis

Space-time analysis of point patterns is an active and developing area of research
(Cressie and Wikle 2011). In the simplest case, one could consider time of an event
(e.g., Julian date of predation on a nest) as a continuous mark to interpret whether
events are spatially clustered in time (i.e., predation occurs locally nearby in time,
such as when a predator alters movement paths upon patch discovery to be more
sinusoidal). In that situation, using a mark correlation function may provide some
insight.

More broadly, the above models for inhomogeneous K and g functions have been
extended to space-time point processes (Gabriel and Diggle 2009). These functions
can be used to identify spatiotemporal regularity or aggregation of point processes.
While spatstat provides some functionality for space-time analyses, for more on
space-time point pattern analysis, including simulating spatiotemporal data, see the
stpp package (Gabriel et al. 2013).

4.4.2 Replicated Point Patterns

The problems and approaches illustrated in this chapter reflect situations with one
landscape, region or plot. In some situations, we may have replicated plots and there
may be interest in making general conclusions regarding these replicated point
patterns.

There are at least two ecological scenarios where multiple plots may occur
(Diggle 2003). In the first, we may have several sites where point patterns are
observed. If we can assume that points could potentially disperse across sites, one
way to approach this is to consider all sites simultaneously within our study ppp
window, with areas between sites masked out of the window. With this ppp
window, analysis can proceed in a way similar to the analyses described above. A
second scenario occurs when we have replicated sites where we do not expect
dispersal between them and that these sites can be considered replicates of a
treatment (e.g., in an experiment), a land-use condition, etc. In this case, we may
want to make conclusions across replicates. Using replicated plots can be beneficial
for several reasons, including understanding sparse point patterns (e.g., point pat-
terns of rare species) and spatial variation in point processes (Bagchi and Illian
2015). This scenario has been commonly approached by separately analyzing each
site and then combining summary statistics across sites. For a detailed overview, see
Wiegand and Moloney (2014).

spatstat has recently been extended to accommodate this latter scenario,
where data from replicate plots are stored as a hyperframe (a generalization of
the data frame object used in R). Some of the above functions, such as ppm, have
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been extended to replicate point patterns. This is an area of active development
(Baddeley et al. 2015; Bagchi and Illian 2015).

4.5 Conclusions

The analysis of spatial point patterns has rapidly emerged as a frontier in spatial
ecology. There have been several developments in this field over the past 15 years.
With this increase in methods, there are now a variety of ways to approach the
problem of spatial point pattern analysis (Wiegand and Moloney 2014; Velazquez
et al. 2016).

Several issues should be considered when conducting spatial point pattern anal-
ysis (Velazquez et al. 2016). First, it is often useful to consider more than one
second-order statistic. Each of the statistics we considered (K, L, g, G) captures
different elements of spatial point patterns, such that they provide complementary
information. In most situations, analyses should adjust for edge (boundary) effects.
The potential for inhomogeneous point patterns needs to also be considered in most
situations. Finally, the use of pointwise envelopes should be treated carefully and the
use of global envelopes should be considered (Baddeley et al. 2014; Wiegand et al.
2016).

While much of the ecological work on spatial point pattern analysis has focused
on patterns of plant distributions, there are also several opportunities to apply these
approaches to answer critical questions in animal ecology (e.g., spatial patterns of
nest predation) and conservation biology (e.g., the spatial scales of effects of point
source pollution). We expect that the scope of spatial point pattern analysis will
continue to increase in the coming years to help address ecological and conservation
problems.
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Chapter 5
Spatial Dependence and Autocorrelation

5.1 Introduction

Spatial patterns are omnipresent in both environmental and ecological data (Wagner
and Fortin 2005). In Chap. 4, we focused on point patterns to characterize the degree
and spatial scale of aggregation or regular dispersion based on the x–y coordinates of
point events (e.g., tree locations, nest locations). In Chap. 5, we are interested in
interpreting spatial patterns of quantitative measures taken from sampling the
environment.

The spatial analysis of such continuous variables falls under the realm of spatial
statistics, traditionally aimed at quantifying spatial pattern and its statistical signif-
icance, and geostatistics, traditionally aimed at quantifying spatial variance and
using this information to spatially interpolate data (Oliver andWebster 1991; Cressie
1993; Haining 2003; Dale and Fortin 2014). Spatial statistics can identify the spatial
scale of patterns (i.e., the characteristic scale(s); Chap. 2). These approaches largely
focus on quantifying and interpreting spatial dependence, or the similarity of a
variable as a function of spatial location and/or geographic distance.

Tobler’s first law of geography lies at the foundation of these issues, where
“everything is related to everything else, but near things are more related than distant
things” (Tobler 1970). To operationalize this fundamental idea, spatial statistics and
geostatistics estimate spatial variance or covariance/correlation as a function of
geographic distance. Tobler’s law implies that at close distances, covariance or
correlation of measurements should be high, yet as distances increase, the covariance
or correlation should decline.

Spatial dependence can suggest key processes driving ecological patterns as a
function of scale, such as spatial interactions among organisms as well as organism
responses to environmental gradients that contain spatial dependence (Wagner and
Fortin 2005) (Fig. 5.1). Yet spatial dependence can also be a nuisance for statistical
inferences because data containing spatial dependence do not fulfill the common
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statistical assumption of independence assumed in many traditional statistics
(Legendre 1993).

Here, our goals are to provide the key concepts needed to: (1) estimate the degree
of spatial autocorrelation in data and potential spatial scale of the pattern; (2) under-
stand how the estimated spatial variance can be used to interpolate and simulate
spatial patterns using kriging and related approaches; and (3) identify the character-
istic spatial scale(s) in the data using multiscale analysis (e.g., wavelet and spectral
decomposition). We illustrate these concepts by extending our example from
Chap. 4 on Opuntia cactus.

5.2 Key Concepts and Approaches

5.2.1 The Causes of Spatial Dependence

The terms spatial dependence and spatial autocorrelation are often used inter-
changeably, yet each term has a subtle different meaning based on why similarity
of measurements in space occur (Table 5.1). To understand these differences, it is
useful to make the distinction of whether spatial pattern is driven by endogeneous or
exogeneous mechanisms (Bolker 2003). Endogeneous mechanisms are those that
directly occur from the organism or processes being considered, which result in
spatial pattern. Some common examples include localized dispersal generating
spatial clustering of organisms, or social or grouping behavior (e.g., schooling fish
or herds of ungulates). Exogeneous mechanisms, in contrast, are those that occur
outside of the organism or process being measured, such as spatial aggregation of

d = 5

d = 2

d = 1

a

b

Fig. 5.1 The problem of
spatial dependence. (a)
When considering the
environment across space,
environmental measures
such as elevation or canopy
cover tend to be more
similar at close locations and
similarity declines with
distance. (b) When
sampling these gradients,
we can interpret this spatial
dependence based on lag
distances between
measurement locations.
Shown are three lag
distances (d ¼ 1, 3, 5)
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resources or environmental gradients used by the organism of interest, which is
sometimes referred to as “indirect” mechanisms and induced spatial dependence
(Peres-Neto and Legendre 2010). In this context, spatial dependence is often con-
sidered a broad term for statistical spatial covariance that can be driven by both
exogenous and endogenous processes. Note that this has also been referred to as
spatial legacy (Peres-Neto and Legendre 2010). In contrast, spatial autocorrelation is
sometimes considered as a certain type of spatial dependence that is driven by
endogenous processes alone (Dale and Fortin 2014).

5.2.2 Why Spatial Dependence Matters

Given that spatial dependence is widespread in nature, why might we care? There are
several answers to this question. First, there are practical reasons: when spatial
dependence occurs, sampling locations within the range of dependence are no longer
independent from each other. This issue is particularly troublesome, given that many
common statistical tests assume that samples are independent. For instance, in a
linear regression model, we often write:

Table 5.1 Common terms for spatial dependence in ecology

Term Description

Anisotropy When data have properties that are direction-dependent. Contrast to isotropy.

Correlogram A plot of autocorrelation as a function of lag distance.

Endogenous
process

A process that directly arises from the organism or response variable being
considered, which results in patterns of spatial dependence.

Exogeneous
process

A process that arises from outside of the organism or response variable being
measured, such as spatial aggregation of resources or environmental gradients
used by the organism of interest. Sometimes referred to as induced spatial
dependence.

Isotropy When data are uniform in all directions, which is frequently assumed in the
analysis of spatial dependence.

Kriging A method of interpolation for which the interpolated values are modeled via
spatial covariance functions derived from variograms.

Scalogram A plot of the wavelet variance as a function of a scaling factor related to
distance.

Stationarity When spatial pattern does not change over space or time (i.e., there is no trend in
spatial dependence), which is frequently assumed in the analysis of spatial
dependence.

Spatial
autocorrelation

In a narrow sense, spatial dependence that arises from endogeneous processes.

Spatial
dependence

Similarity in a response variable as a function of spatial location/distance, which
can be driven by endogeneous or exogeneous processes.

Variogram A plot of the spatial covariance as a function of lag distance. Different quantities
are sometimes plotted, with the most common being semivariance.
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yi ¼ αþ βxi þ εi, ð5:1Þ

where y is our response variable at location i, α is the intercept, β is the deterministic
slope of the relationship of x with y, and ε is the error term. Where is independence
assumed? In the error term of the model, we assume that errors are normally
distributed with a mean of zero and a variance, σ2, which is assumed to be iid—
independent and identically distributed. This assumption means that each residual
i (i.e., the difference between the observed and predicted value for i) is not dependent
on other residuals and each comes from the same underlying distribution (see
Chap. 6 for more details). Consequently, the problem of spatial dependence arises
in our assumptions of the error in the model.

What is the problem if we violate this assumption? When spatial dependence
occurs in our data and we ignore it, it often leads to type I error, where we infer
significant patterns in the data that may in fact not exist. This is in contrast to a type II
error, where we fail to conclude a significant pattern occurs when in fact exists. The
issue of type I error arises because we are implicitly assuming that we have a larger
sample size (and thus greater degrees of freedom) than we actually do, sometimes
referred to a pseudo-replication (Hurlbert 1984). This assumption leads to artificially
small estimates of uncertainty (or artificially high precision), such as standard errors
(SEs) or confidence intervals (CIs) for parameter estimates, such as the SE of β in
Eq. (5.1). Spatial dependence is thus thought to primarily bias our interpretation of
the precision, not point estimates (e.g., we might adequately estimate β but not the
SE or CI of β). Consequently, accounting for spatial dependence in statistical
models, such as linear regression, may be necessary in some cases (see Chap. 6
for examples on how to do so). Alternatively, by identifying the scale(s) at which
spatial dependence occurs, we may better design investigations to minimize prob-
lems of spatial dependence (Oliver and Webster 1991), such as spacing sampling
locations at distances (i.e., lag distances) greater than the expected range of spatial
dependence in the data.

The second reason why we might care about spatial dependence is that describing
spatial dependence in our data may provide insights toward understanding key
biological processes that generate the spatial patterns we are observing. For instance,
when spatial dependence arises, is this pattern revealing the scale of social behavior,
environmental variation in key resources, or dispersal (Brown et al. 1995; Koenig
1998; Fletcher and Sieving 2010; Cohen et al. 2016)? While quantifying spatial
dependence alone may not provide rigorous answers to such questions, it may
generate hypotheses or further predictions to help isolate the causes of spatial
dependence.

Finally, spatial dependence can alter conclusions regarding conservation threats
for many species and conservation strategies (Carroll and Pearson 2000; Landeiro
and Magnusson 2011; Yoo and Ready 2016). For example, Koenig and Liebhold
(2016) illustrated that there has been increasing spatial synchrony (one form of
spatial dependence; see Chap. 10) in wintering birds across North America with
warming temperatures over a 50 year time period. They emphasized that such
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synchrony may have detrimental effects of population persistence through a reduc-
tion in demographic rescue (i.e., when dispersal reduces the probability of extinction
of local populations).

5.2.3 Quantifying Spatial Dependence

There is a variety of ways to quantify spatial dependence. Here, we focus on the use
of correlograms and semivariograms, which are complementary approaches fre-
quently used in ecology and spatial statistics.

5.2.3.1 Correlograms

To understand how spatial statistics estimate spatial autocorrelation, it is useful to
recall formulas for correlations, variances, and covariances. The spatial statistics we
present emerge clearly from these classical statistics.

Recall the formula for a simple Pearson linear correlation, r, for two variables, z1
and z2:

rðz1, z2Þ ¼
Pn

i¼1
ðz1i � �z1Þðz2i � �z2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1
ðz1i � �z1Þ2

Pn

i¼1
ðz2i � �z2Þ2

s ¼ Covðz1, z2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðz1ÞVarðz2Þ

p , ð5:2Þ

where r(z1, z2) ranges from �1 to 1. The key is to extend this idea over space.
Moran’s I test statistic extends the standard Pearson correlation over space

(increasing lag distances) to estimate the degree of spatial autocorrelation for a
quantitative variable, z, as:

I ¼ n

W

Pn
i¼1

Pn
j¼1 wij

�
zi � �z

��
z j � �z

�

Pn
i¼1

�
zi � �z

�2 , ð5:3Þ

whereW is a weight matrix that describes the dependency between locations i and j.
Typically, this is a neighborhood indicator matrix, where wij ¼ 1 if i and j are
adjacent and 0 otherwise. Note this matrix is often row standardized, such that
∑jwij ¼ 1. This statistic can also be calculated for different distance categories, or
bins, to interpret spatial dependence as a function of distance as:
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I dð Þ ¼ n

W dð Þ
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j¼1 wij dð Þ�zi � �z

��
z j � �z

�

Pn
i¼1

�
zi � �z

�2 : ð5:4Þ

Notice how similar Moran’s I and Pearson correlation coefficients are: in essence
Moran’s I(d ) is a Pearson’s coefficient computed for one variable against itself
according to increasing distances among sampling locations (d ) (Fig. 5.1). The
plot of I(d ) as a function of distance class is called a spatial correlogram: its shape
helps to interpret how the spatial pattern varies with distance and to estimate the
spatial scale of the pattern. When z is normally distributed and that there are enough
pairs of sampling locations per distance class (usually more than 20 pairs), the I(d )
will vary between +1 (where positive values indicate positive spatial autocorrelation)
and �1 (where negative values indicate negative spatial autocorrelation), while
values close to 0 indicates the absence of spatial pattern. Thus, Moran’s I behaves
as a Pearson correlation coefficient, and it is frequently used by ecologists because of
its intuitive interpretation. Yet, when I(d ) is computed with less than 20 pairs, its
value can be greater than 1 or smaller than �1. To avoid this known “boundary” or
“edge effect” (Chap. 4), correlograms are often computed only up ½ or 2=3 of the
maximum distance between the sampling locations to ensure adequate sample size
for each distance bin (Dale and Fortin 2014). Note that Eq. (5.3) provides a common,
global test for spatial dependence, while Eq. (5.4) is typically only used for the
generation of correlograms. We focus on the use of correlograms because they
provide much richer and intuitive information regarding spatial dependence.

Moran’s I is an isotropic (i.e., pooled in all directions) averaged value of spatial
autocorrelation per distance class for the entire extent of a study area. To detect the
potential for anisotropy (i.e., spatial autocorrelation that varies in different direc-
tions) in the spatial pattern, the estimation of spatial autocorrelation can be computed
using both distance and angle classes (i.e., different directions).

As Moran’s I is a dimensionless number, it can be compared across different
variables. One limitation of Moran’s I is that it is sensitive to outliers (e.g., one or a
few points can generate significant, erroneous autocorrelation). This is why some
researchers transform the data (e.g., log-transformation of the response variable) to
reduce the impacts of outliers. Because of this sensitivity, a similar statistic, Geary’s
c, has been developed. Geary’s c values range from 0 (positive spatial autocorrela-
tion) to 2 (negative spatial autocorrelation) and 1 indicates the absence of spatial
autocorrelation. Yet Geary’s c is also somewhat sensitive to outliers. As Geary’s c is
in essence the standardized equivalent of the semivariance presented below, we will
not focus on Geary’s here (but see Dale and Fortin 2014 for details).

Significance for each Moran’s I coefficient can be based on Monte Carlo ran-
domizations or through normal approximations. If significance is assessed using
normal approximations then the assumption of stationarity needs to be valid.
Stationarity is a term that describes a situation where the process that generated
the spatial pattern does not vary in across a study area (e.g., mean and variance are
similar throughout the region of interest) (Haining 2003). As the same data are used
to compute I(d ) at increasing distances, the I(d ) values are not independent. This is
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the same statistical issue encountered previously regarding spatial point pattern
analysis (Chap. 4), which requires the use of multiple comparison corrections.
Therefore, a Bonferroni adjustment correction (or something similar) should be
applied that accounts for the number of distance classes computed, k, to adjust the
significance level (Brunsdon and Comber 2015). For instance, using a Bonferroni
correction, for a I(d ) to be statistically significant, its probability needs to be smaller
or equal to 0.05/k (e.g., for k¼ 15, the adjusted probability to be significant based on
a Bonferroni correction is 0.05/25 ¼ 0.003).

5.2.3.2 Variograms

Geostatistics comes at the same goal of estimating spatial dependency through a
slightly different means (Cressie 1993). Instead of starting with a correlation coef-
ficient (i.e., standardized covariance) such as the Moran’s I, geostatistics stem from
the sample variance and covariance instead:

Var zð Þ ¼ 1
n� 1

Xn

i¼1

�
zi � �z

�2
, ð5:5Þ

Cov z1; z2ð Þ ¼ 1
n� 1

Xn

i¼1

�
z1, i � �z1

��
z2, i � �z2

�
: ð5:6Þ

The semivariance, γ, is calculated as:

γ dð Þ ¼ 1
2n dð Þ

Xn dð Þ

i

��
z xið Þ � z xi þ dð Þ�2, ð5:7Þ

where z is the value of the variable at location xi, and n(d ) is the number of pairs of
sampling locations at distance class d. Note the similarities with the variance
equation.

The term “semi” comes from the fact that we divide by 2 (it helps to stabilize the
statistical properties of the metric). Again, plotting γ as a function of d produces a
semivariogram, often simply referred to as a variogram. Note that semivariance is on
the same units as the data (e.g., km). Unlike Moran’s I, but like variance, γ(d ) �
0 and there is no upper bound. For interpreting the shape of the semivariogram, small
values (closest to 0) indicate strong spatial covariance (i.e., strong spatial pattern),
whereas larger values indicate less spatial covariance (i.e., weak or no spatial
pattern). It is a rule of thumb to only interpret 2=3 of the total distance (extent)
considered, similar to that for Moran’s I (Cressie 1993; Dale and Fortin 2014); for
larger distances, the n(d ) is typically too small for reliable inference.

Semivariance computed from observed data are called “empirical,” “experimen-
tal,” or “observed” variograms. Empirical variograms simply plot the semivariances
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as a function of distance class, d (the spatial lag distance). Theoretical (or model-
based) variograms can be fitted to an empirical variogram to spatially interpolate
data at unsampled locations and to formally estimate the spatial scale of the pattern.
In the presence of spatial pattern, three parameters relevant to interpreting the
semivariance can be estimated from the fitted theoretical variogram: the range, sill,
and nugget (Fig. 5.2). The nugget is the y-intercept at the origin that is greater than
zero. It explains the variability in the data that occurs at very short distances, which
could occur from measurement errors, sampling bias, or other random factors. The
range indicates the distance up which the spatial dependence occurs, such that
beyond the range, the data are no longer spatially autocorrelated. The sill is the
value of semivariance beyond the estimated range, i.e., the variability that cannot be
attributed to spatial autocorrelation. Note that some theoretical models assume that
there is no sill (e.g., an exponential model; Fig. 5.3) while others assume that there is
no nugget (i.e., the intercept ¼ 0) (see Dale and Fortin 2014). If our interest is in
spatial interpolation (which historically was the goal of variogram analysis and
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geostatistics), we need to estimate parameters of model-based semivariograms and
determine their relative fit to the data, using, for example, model-selection
approaches (Burnham and Anderson 1998).

5.2.3.3 Kriging

To spatially interpolate across a region (e.g., make a predictive map of the response
variable) based on the degree of spatial dependence, kriging is often used. Kriging is
essentially a weighted moving average technique that uses estimates from a
semivariogram (range, nugget, and sill) to perform spatial interpolation. More
specifically, it is a set of linear regressions that determine the best combination of
weights to interpolate across a region of interest by minimizing the variance from the
spatial covariance in the data, where weights are derived from the estimates from the
variogram (Dale and Fortin 2014; Oliver and Webster 2014).

The general form of the kriging model can be described as (Brunsdon and
Comber 2015):

z ¼ f xið Þ þ v xið Þ þ εi, ð5:8Þ

where f(xi) is a deterministic trend function (e.g., the response is non-stationary and
may change with latitude or longitude), v(xi) describes the spatial dependence based
on variogram parameters, and εi is the error. When there is no deterministic trend,
ordinary kriging is used to interpolate based solely on the variogram parameters. In
contrast, universal kriging assumes a large-scale, deterministic trend in the data, f(xi)
(non-stationarity). This component is sometimes referred to as trend-surface analy-
sis, which will be discussed in Chap. 6. Mathematical details about the different
types of kriging algorithms can be found in Cressie (1993) and Haining (2003).
Oliver and Webster (2014) provided a useful, practical tutorial on kriging.

In general, kriging is preferred for spatial interpolation in contrast to other
simpler approaches. For example, a common, intuitive approach is inverse distance
weighting (IDW) interpolation. IDW interpolates based on estimates that provide
greater weight from nearby locations rather than distant ones. However, unlike
kriging, this approach does not provide an objective means to determine the mag-
nitude of distance-based weighting or the extent (maximum distance/limiting radius)
for weighting. IDW also cannot provide SEs or other measures of uncertainty for
predictions. Kriging, in contrast, has been shown to provide the best linear unbiased
prediction for unsampled locations and can provide SEs for predictions. Reliable use
of kriging requires proper estimation of the variogram model (Oliver and Webster
2014).
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5.2.3.4 Some Extensions

For binary data, semivariance can be calculated with indicator functions by replacing
z(xi) in Eq. (5.7) with an indicator function (Rossi et al. 1992). Monte Carlo
randomizations are typically used to infer significance in such situations.

Both Moran’s I(d ) and the semivariance γ function can be extended to address
spatial correlations between two variables, termed “cross-correlograms” and “cross-
semivariograms,” respectively (Goovaerts 1994; Wackernagel 2003). For instance, a
cross-variogram between variables u and v can be defined as:

γuv dð Þ ¼ 1
2n dð Þ

Xn dð Þ

i

��
zu xið Þ � zu xi þ dð Þ�� zv xið Þ � zv xi þ dð Þð �, ð5:9Þ

Semivariance, like Moran’s I, is a “global” statistic. These models have also been
extended to estimate variation in local intensity of spatial dependencies, referred to
as LISA, or Local Indicators of Spatial Association (Anselin 1995; Boots 2002).
These local measures are sometimes used to identify hotspots of intensity across
landscapes (Nelson and Boots 2008).

5.2.3.5 Statistical Nuisance

Finally, spatial dependence can often be more of a statistical nuisance issue for
ecological and conservation problems. In these cases, we might want to adjust
conventional analyses (e.g., linear regression) to deal with dependence. This can
be done in a variety of ways (Keitt et al. 2002; Beale et al. 2010). For example,
conventional generalized linear models (GLMs) have been extended to adjust for
spatial dependence by directly modeling the covariance of the residuals (generalized
least square regression, GLS). Another common practice is to assess whether or not
spatial dependence remains after a conventional analysis. This is frequently done by
calculating Moran’s I on the residuals from a model (Dormann et al. 2007). If there is
evidence for autocorrelation of the residuals, then the conventional analysis should
be replaced with one that formally adjusts for spatial dependence. We will consider
these approaches in detail in Chap. 6.

5.3 Examples in R

5.3.1 Packages in R

There are a few libraries to choose from for quantifying spatial dependence. We will
focus on using geoR (Ribeiro and Diggle 2016), spdep (Bivand and Piras 2015),
gstat (Pebesma 2004), pgirmess (Giraudoux 2018), and ncf (Bjørnstad and
Falck 2001). Spatial (Venables and Ripley 2002) allows for limited geostatistical
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analysis (empirical correlograms and variograms), which comes with the VR Bundle
when installing R. spdep has more options for correlograms and other spatial features
(Bivand 2006). geoR provides a model-based variogram analysis based on maximum
likelihood, while gstat has several geostatistics features, including the use of cross-
variograms. We will also use the ncf package, which can fit spline (smoothed/non-
parametric) correlograms and can provide a bootstrap approach for assessing statistical
significance. We will implement kriging in with geoR and gstat.

5.3.2 The Data

As an example of interpreting spatial dependence, we return to the system consid-
ered in Chap. 4: old fields and prickly pear cactus (Opuntia humifusa) at the Ordway-
Swisher Biological Station. In Chap. 4, we focused on data of O. humifusa locations
in a 50 � 50 m plot, which were mapped using a high-resolution GPS (~30 cm
error). Here, we focus on data from the surrounding matrix: samples of vegetation
height taken systematically through the plot across a grid of sampling points spaced
2-m apart (Fig. 5.4) as part of a larger study on habitat loss and fragmentation
(Fletcher et al. 2018). This information is relevant to movement of a pest insect
considered in Chap. 4, Chelinidea vittiger (Schooley and Wiens 2004; Fletcher et al.
2014; Acevedo and Fletcher 2017) and we can use these measurements to first
interpret spatial dependence of vegetation in the matrix and then create a map of
vegetation height (via kriging) for understanding connectivity between O. humifusa
patches (connectivity is covered in Chap. 9).

Our goals are to first interpret spatial dependence with the use of Moran’s I and
correlograms. We then use variograms to interpret the scale of spatial dependence
and illustrate how model-based variograms can be used in kriging. Next, we
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Fig. 5.4 A map of
vegetation height
measurements (cm) taken
every 2 m on the plot
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illustrate how kriging-related approaches can be used for generating spatial maps,
similar in concept to what we illustrated in Chap. 3 with neutral landscape models.
We end by introducing approaches to interpret multiscale spatial dependence.

5.3.3 Correlograms

We first import and visualize our data ('cactus_matrix.csv'). We will use a
couple of different packages for calculating Moran’s I and correlograms, contrasting
what each can provide. We contrast these options because each uses different
methods to infer statistical significance of potential spatial dependence, each varies
in the complexity of coding required, and each can be helpful under different
circumstances.

# load the matrix data into R:
> matrix <- read.csv(cactus_matrix.csv', header = T)
> head(matrix, 3)

##
x y Height
1 0 0 35
2 0 2 65
3 0 4 75

With the data loaded, we can plot the data in several ways to interpret it. For
example, we plot variation in vegetation height (Height) based on x–y coordinates,
using a gray scale (with 12 breaks using the cut function) to fill points (using
pch¼21, which allows the fill of points to differ) to visualize variation in the matrix
(Fig. 5.4).

> plot(matrix[,"y"] ~ matrix[,"x"],
pch =21, bg = gray.colors(12)[cut(matrix[,3], breaks = 12)])

In correlogram (and variogram) analyses, we should truncate the range of lag
distances at which we consider spatial dependence to approximately ½ to 2=3 the total
distance observed. We can determine this distance by creating a pairwise distance
matrix from the sampling locations. Because of the small spatial scale at which this
plot occurs, we do not need to worry about projections for this calculation.

#calculate a distance matrix
> coords <- cbind(matrix$x, matrix$y)
> colnames(coords) <- c("x", "y")
> distmat <- as.matrix(dist(coords))

#maximum distance to consider in correlogram/variogram
> maxdist <- 2/3 * max(distmat)
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To interpret spatial dependence with Moran’s I, we start with the simplest
approach and package and work up to less simple, but more flexible approaches.
The first is the pgirmess package, which is a wrapper package for the spdep
package. The spdep package has several useful spatial analysis functions, but it is
less user-friendly than some other common spatial packages. The pgirmess
package is more user-friendly in this way (but less flexible). We will use pgirmess
and then contrast it to the ncf and spdep packages for generating different types of
correlograms. In this package, we use the correlog function, specifying the
coordinates for each sample and the measurement (i.e., height). We also specify
that we want to use method ¼ “Moran” (this package can also calculate Geary’s
c), the number of distance classes to consider, and we ask for the test to be two-sided
(i.e., testing for both the potential of positive and negative spatial dependence).

> library(pgirmess)

#correlog from pgirmess
> correlog.pgirmess <- correlog(coords, matrix$Height, method =
"Moran", nbclass = 14, alternative = “two.sided”)

#summary
> head(round(correlog.pgirmess, 2))

##
dist.class coef p.value n
[1,] 4.45 0.19 0.00 21692
[2,] 9.36 0.08 0.00 37708
[3,] 14.27 �0.01 0.22 51132
[4,] 19.18 �0.04 0.00 55500
[5,] 24.09 �0.02 0.00 61012
[6,] 28.99 �0.01 0.12 58540

In the above code, we find that the correlog function creates a matrix that contains
each distance class considered (with dist.class reflecting the center of each bin),
the Moran coefficient for that distance, the p-value, and the sample size (number of pairs
of locations used) for that distance. This package uses normal approximations to test for
the significance of spatial autocorrelation (i.e., it assumes the response variable is
normally distributed and uses asymptotic theory to derive p-values). This approximation
can be fast and relatively easy to implement, but it makes some key assumptions (e.g.,
normality in the residuals of the response data). We can then plot the correlogram

#correlogram plot
> plot(correlog.pgirmess)
> abline(h = 0)

The plot provides a visualization of Moran’s I as a function of distance, with
distances of significant spatial dependence shown in red (Fig. 5.5a is a generalized plot
that contrasts this approach with those described below). This analysis suggests that
positive spatial dependence is significant out to approximately 10 m, with some
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evidence of negative spatial dependence at moderate distances. Note that this approach
defaults to calculating Moran’s I for distances up to the maximum distance in the
observed data; however, we should ignore distances beyond ½ to 2=3 of the maximum
distance.

An alternative approach is to use the ncf package. This package can provide
non-parametric tests of significance for correlograms. It can also provide spline
correlograms (Bjørnstad and Falck 2001). In spline correlograms, Moran’s I is
estimated with cubic splines that provide a smooth relationship across a variable
of interest (more on this in Chap. 6) such that binning of distances is not required.
This aspect is one benefit of using this package. This package has two approaches for
interpreting potential significance of the correlogram. The first is a bootstrap
approach (Efron 1979) to generate pointwise confidence intervals for the
correlogram, such that evidence for spatial dependence is inferred when the confi-
dence intervals do not overlap zero. Bootstrapping is a resampling technique used
for inferring uncertainty in sample estimates and/or statistical significance in data.
Bootstrapping involves resampling the data with replacement many times, where for
each sample the variable of interest is calculated (in this case, Moran’s I ). The
distribution of values of the estimate can then be used to approximate confidence
intervals. A second approach ncf uses is the use of Monte Carlo permutations to
generate a null envelope for spatial dependence, analogous to what we used in
Chap. 4 for point patterns.

To use the ncf package, we need to either detach the pgrimess package or call
the relevant function in ncf differently. This is because one of the functions we will
use in the ncf package, correlog, has the same name as the one used above for
pgrimess. If we do not want to detach pgirmess we can call the function from
ncf as ncf::correlog.
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Fig. 5.5 (a) Contrasting distance-binned correlograms and (b) a spline correlogram. For (a), three
approaches taken from different R packages are shown. For (b), the bootstrap confidence envelopes
are shown. Pgrimess uses normal approximations to infer significance, ncf uses Monto Carlo
permutations, while spdep is the most flexible package and can use either normal approximations
or permutations to infer significance
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> library(ncf)

#correlogram with Monte Carlo test
> correlog.ncf <- ncf::correlog(x = matrix$x, y = matrix$y, z =
matrix$Height, increment = 5, resamp = 99)

> plot(correlog.ncf)
> abline(h = 0)

With this approach, we find similar evidence for spatial dependence based on the
Monte Carlo permutations (Fig. 5.5a). However, in this case we may interpret that
positive spatial dependence occurs at slightly greater distances than observed when
using normal approximations with pgrimess. Note that in this function, the entire
distance range is also considered although we should ignore distances beyond½ to 2=3

of the maximum distance for inferences.
We can contrast these results with the use of spline correlograms with the

spline.correlog function. We request a bootstrapping approach to infer sig-
nificance in this situation.

#spline correlogram with 95% pointwise bootstrap CIs
> spline.corr <- spline.correlog(x = matrix$x, y = matrix$y, z =
matrix$Height, xmax = maxdist, resamp = 100, type = "boot")

#plot with point-wise 95% CIs from bootstrap
> plot (spline.corr)

This correlogram suggests that the slight negative spatial dependence identified
with the above approaches at moderate distances is too weak to infer a statistical
pattern (i.e., the bootstrap confidence intervals overlap zero) (Fig. 5.5b).

Finally, we illustrate using the spdep package for correlograms. This package
provides greater flexibility in the development of correlograms than other packages.
For example, we can generate indicator correlograms for binary (0, 1) response data
(see above). With this package, we will first calculate a general Moran’s I that is
sometimes used as an overall test of spatial dependence in data (Bivand et al. 2013).
We then show how to create a customized correlogram using a similar approach.

To interpret spatial dependence with the spdep package, we must manually create
the spatial weights matrix,W, shown in Eqs. (5.3) and (5.4). Note that spdep actually
stores W in a list format rather than matrix format, because in many cases the former
can be more compact and take up less storage computationally. CalculatingW can be
accomplished using the knearneigh, the dnearneigh, or the cell2nb func-
tions. Here, we use the dnearneigh function, which creates a list, where each
element is a vector for the neighbor IDs for each sample. Neighbors are identified
based on distances specified with dnearneigh. The knearneigh finds the
k closest neighbors, which could vary in distance with some sampling designs,
while the cell2nb identifies data on regular grids, like that used here, but it is less
generalizable sowe do not focus on this function. Belowwe specify d1¼ 0 (minimum
distance) and d2 ¼ 3 (maximum distance), which with these data results in an eight-
neighbor function (i.e., queen’s rule) (Fig. 5.6).
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> library(spdep)

#make a neighborhood list:
> neigh <- dnearneigh(x = coords, d1 = 0, d2 = 3, longlat = F)

#plot the neighborhood
> plot(neigh, coordinates(coords))

To then calculate Moran’s I, we convert the neigh object to a spatial weights
list. As part of this procedure, we specify style¼'W', which means that we will
create a row-standardized W:

> wts <- nb2listw(neighbours = neigh, style = 'W', zero.policy = T)

With these spatial weights, we can now calculate Moran’s I. spdep allows for
inferring significance through normal approximations using moran.test (similar
to pgirmess) or through Monte Carlo permutations using moran.mc (similar to
ncf):

> mor.mc <- moran.mc(x = matrix$Height, listw = wts,
nsim = 999, zero.policy = T)

> mor.norm <- moran.test(x = matrix$Height, listw = wts,
randomisation = F, zero.policy = T)

> mor.mc

##
Monte-Carlo simulation of Moran I

data: matrix$Height
weights: wts
number of simulations + 1: 1000

statistic = 0.27366, observed rank = 1000, p-value = 0.001
alternative hypothesis: greater

> mor.norm

Fig. 5.6 Neighborhood
matrix used for calculating
Moran’s I from d ¼ 0–3.
This matrix identifies
neighbors based on an eight-
neighbor rule (Queen’s rule;
see Chap. 3)
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##
Moran I test under normality

data: matrix$Height
weights: wts

Moran I statistic standard deviate = 13.819, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance
0.2736595356 �0.0014814815 0.0003964261

In this case, both approaches yield identical estimates of Moran’s I (0.274) and
both provide a global test suggesting that spatial dependence is statistically
significant.

Now we take the above approach calculate Moran’s I for specific lag distance
categories, generate a permutation value for each category, and then put together for
a correlogram. We first create a data frame for storing the output and then provide a
for loop that repeats the above process for each lag distance.

#first, create a df for storing data
> correlog.sp <- data.frame(dist = seq(5, 0.5 * max(distmat), by
= 5), MoransI = NA, Null.LCL = NA, Null.UCL = NA, Pvalue = NA)

#Calculate Moran's I for lag distances
> for (i in 1:nrow(correlog.sp)){

d.start <- correlog.sp[i, "dist"] � 5
d.end <- correlog.sp[i, "dist"]
neigh <- dnearneigh(x = coords, d1 = d.start, d2 = d.end,
longlat = F)
wts <- nb2listw(neighbours = neigh, style = 'W', zero.policy
= T)
mor.i <- moran.mc(x = matrix$Height, listw = wts, nsim = 99,
zero.policy = T)

#summarize results from spdep
correlog.sp[i, "dist"] <- (d.end + d.start)/2
correlog.sp[i, "MoransI"] <- mor.i$statistic
correlog.sp[i, "Null.LCL"] <- quantile(mor.i$res, p = 0.025)
correlog.sp[i, "Null.UCL"] <- quantile(mor.i$res, p = 0.975)
correlog.sp[i, "Pvalue"] <- mor.i$p.value
}
> plot(y = correlog.sp$MoransI, x = correlog.sp$dist)
> abline(h = 0)
> lines(correlog.sp$dist, correlog.sp$Null.LCL, col = "red")
> lines(correlog.sp$dist, correlog.sp$Null.UCL, col = "red")

We have now seen several ways to calculate correlograms, each of which pro-
vides different benefits and limitations. In this case, the correlograms showed
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generally similar patterns (Fig. 5.6). The use of normal approximations to interpret
the significance of spatial autocorrelation (pgirmess and spdep packages) can be
helpful with large data sets, where Monte Carlo tests can prove computationally
expensive. However, Monte Carlo tests can be helpful when data are not normally
distributed. The ncf package provides a means to not resort to binning of lag
distances, which can be helpful and provides a straightforward bootstrapping pro-
cedure to infer significance. The spdep package allows great flexibility for calcu-
lating correlograms, but is less user-friendly.

5.3.4 Variograms

To illustrate empirical and model-based semivariograms, we use both the geoR and
gstat packages. We primarily focus on the geoR package because it enables
likelihood-based comparisons (e.g., AIC) between model-based variograms, which
is useful for identifying the best variogram model for inferences and interpolation
(Oliver and Webster 2014), and it provides an interesting Monte Carlo approach.
The gstat package provides more options for different types of model-based
variograms and can calculate cross-variograms so we briefly illustrate its use as
well. We first create a geoR object that consists of the x–y coordinates and the value
at each coordinate, which in this case is vegetation height. We refer to the measure-
ments at sampling locations as z.

#load packages
> library(geoR)
> library(gstat)

#create a geoR object
> geo.veg <- as.geodata(matrix)

The geoR package provides a useful scheme for visualizing the raw data:
plot(geo.veg) provides a four-panel plot. The first panel shows the sampling
locations, where the measurements, z (vegetation height in this example), are shown
as a color ramp, with low values being blue and high values red. The second and
third panels show z values as a function of x and y coordinates. These panels can help
for visually interpreting whether there is potential anisotropy in the data (direction-
ality or trend in z as a function of x–y locations). The final panel provides a histogram
(and density plot) of the z values.

We can calculate the empirical variogram for the data using the variog function
in the geoR package. We will set the maximum distance considered based on our
above code. Note that to calculate an empirical variogram, we bin lag distances.
geoR will automatically do that for us, but we can also manually define the break
points in the lag distance categories used for the semivariogram (Fig. 5.7):
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#Empirical semivariogram
> emp.geoR <- variog(geo.veg, max.dist = maxdist)
> plot(emp.geoR)

#standardize break points to a minimum 3-m lag distance
> emp.geoR <- variog(geo.veg, max.dist = maxdist,
breaks = c(seq(0, maxdist, by = 3)))

> plot(emp.geoR)

In gstat, we can create empirical variograms by first creating an object that
gstat can read (specifying the coordinates of the data) and then using the
variogram function in gstat:

> gstat.veg <- matrix
> coordinates(gstat.veg) <- ~x + y
> emp.gstat <- variogram(Height ~ 1, cutoff = maxdist, width =
3, gstat.veg)

> plot(emp.gstat)

Comparing the two packages illustrates that they provide essentially identical
empirical variograms.

The above variograms assumed isotropy—no directionality in spatial depen-
dence. We can subset our data based on direction to visually consider whether
there might be evidence for anisotropy in spatial dependence using the variog4
function in geoR or by adding the alpha argument to the variogram function in
gstat. In both cases, data are subset such that four varigrams are calculated for the
0�, 45�, 90�, 135� directions (Fig. 5.8a), where 0� covers the range from �22.5� to
22.5�, 45� covers 22.5� to 67.5�, etc.:
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Fig. 5.7 Empirical and
theoretical (exponential,
black dashed, and spherical,
gray solid, models)
variograms for interpreting
spatial dependence of
vegetation height. Also
shown are the 99% null
pointwise envelopes
(shaded region)
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#in geoR, variogram in each direction
> emp4.geoR <- variog4(geo.veg, max.dist = maxdist)
> plot(emp4.geoR)

#in gstat
> emp4.gstat <- variogram(Height ~ 1, cutoff = maxdist, alpha =
c(0, 45, 90, 135), gstat.veg)

> plot(emp4.gstat)

In this plot (Fig. 5.8b), strong differences in the empirical variograms would
suggest that anisotropy might be occurring in the data. Note, however, that to
calculate these directional variograms, geoR and gstat are subsetting the data
into four subsets, such that less data are used in each individual variogram. Conse-
quently, the directional variograms may bounce around more than the variogram
considered with all of the data. Why are only 0�, 45�, 90�, 135� considered? If
directions between 180� and 360� were considered, for example, it would result in
the same variogram patterns, because the calculation of the variogram is symmetric
(the squared term in Eq. (5.7); [z(xi) � z(xi + d )]2 ¼ [z(xi + d ) � z(xi)]

2).
We can fit theoretical variograms to the data using maximum likelihood tech-

niques with the likfit function in geoR and contrast different variogram models
using model selection criteria (e.g., Akaike’s Information Criterion, AIC) (Oliver
and Webster 2014). To do so, we must provide initial values for the partial sill (i.e.,
sill—nugget; Fig. 5.2) and the range, for which we can make an educated guess
based on the empirical variogram. To fit exponential and spherical variogram models
(Fig. 5.3):
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Fig. 5.8 Directional variography subsets the data to interpret variation in spatial dependence in
different directions. (a) 0�, 45�, 90�, and 135� are typically considered (with windows �22.5�).
Larger values (between 180� and 360�) provide the same patterns because the semivariance formula
is symmetric. (b) Directional variograms for vegetation height on the plot
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#exponential variogram
> mlexp <- likfit(geo.veg, cov.model = "exp", ini = c(700, 10))

#spherical variogram
> mlsph <- likfit(geo.veg, cov.model = "sph", ini = c(700, 10))
> summary(mlexp)

##
Summary of the parameter estimation
-----------------------------------
Estimation method: maximum likelihood

Parameters of the mean component (trend):
beta
43.0708

Parameters of the spatial component:
correlation function: exponential
(estimated) variance parameter sigmasq (partial sill) = 504.7
(estimated) cor. fct. parameter phi (range parameter) = 5.884
anisotropy parameters:
(fixed) anisotropy angle = 0 ( 0 degrees )
(fixed) anisotropy ratio = 1

Parameter of the error component:
(estimated) nugget = 732

Transformation parameter:
(fixed) Box-Cox parameter = 1 (no transformation)

Practical Range with cor=0.05 for asymptotic range: 17.62812

Maximised Likelihood:
log.L n.params AIC BIC
"-3298" "4" "6603" "6621"

non spatial model:
log.L n.params AIC BIC
"-3368" "2" "6739" "6748"

Call:
likfit(geodata = geoR.veg, ini.cov.pars = c(500, 15), cov.model = "exp")

> AIC(mlexp, mlsph)

##
df AIC
mlexp 4 6603.375
mlsph 4 6603.830
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The output from these models provides several key insights. For our purposes, we
will focus on two types of important output. First, for each model, the log-likelihood,
AIC and BIC (Bayesian Information Criterion) are provided for interpreting model
fit and model selection. These values are provided for the spatial model considered,
as well as a “non-spatial” model, which would assume a constant variance (i.e.,
variance does not change with lag distance). The output also provides estimates of
the range, nugget, and partial sill for the model under consideration. For some
theoretical variograms, the “practical range” is also provided. The practical range
uses an approximation (which varies, depending on the theoretical variogram model)
to determine the effective range distance when the variogram function shows a
smoothed asymptotic relationship to the sill (e.g., exponential models; Fig. 5.3).
For instance, in an exponential variogram it is typically defined as the distance where
the variance reaches 95% of the estimated sill. In this example, the exponential
variogram fits the data slightly better than the spherical variogram, based on AIC.
Both of these models fit the data substantially better than a non-spatial model.

We can fit an exponential variogram in gstat as:

> exp.gstat <- fit.variogram(emp.gstat, vgm("Exp"))

Note that while gstat does not implement model selection based on likelihood
techniques, it does provide a wider variety of model-based variograms that geoR.
These alternatives can be perused with the vgm() and show.vgm() functions.

Finally, we can overlay plots of the theoretical variograms with the empirical
variograms (Fig. 5.7):

> plot(emp.geoR)
> lines(mlexp, col = “blue”)
> lines(mlsph, col = “red”)

We can use model selection to contrast spatial and non-spatial models provided in
the output of the likfit function. Another useful approach is to determine confi-
dence envelopes of spatial randomness (analogous to envelopes calculated in
Chap. 4). Null envelopes can then be overlaid with the empirical and theoretical
variograms. In geoR, we can obtain null envelopes Monte Carlo permutations. The
code below executes 99 permutations, where vegetation height is shuffled among x–
y coordinates and plots the maximum and minimum values at each distance lag
relative to the empirical variogram:

> emp.env <- variog.mc.env(geo.veg, obj.var = emp.geoR)
> plot(emp, envelope = emp.env)
> lines(mlexp, col = “blue”)

These envelopes describe the variance as a function of lag distance under spatial
randomness, given the underlying data. Consequently, when our observed
variogram falls outside of this envelope, there is some signature of significant spatial
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dependence in the data. In this case, we observe that the variogram only falls outside
of the null envelope at distances<10 m, loosely similar to our conclusions on spatial
dependence using correlograms (Fig. 5.5).

5.3.5 Kriging

With our theoretical variogram model, we can create an interpolated map using
kriging. We could potentially make kriged predictions onto our observed sampling
locations or onto a grid that covers the entire plot. We will illustrate the latter, where
we use the expand.grid function to create a new set of locations. Note that
distances between this expanded grid will provide the resolution of the map that we
create. First, we krige with geoR (Fig. 5.9a).

#grid with 1-unit intervals (1-m)
> new.grid.1m <- expand.grid(0:max(matrix$x), 0:max(matrix$y))

#kriging: krige.control, cov.pars: partial sill, range
> krig.geoR.exp <- krige.conv(geoR.veg, locations = new.grid.1m,
krige = krige.control(cov.pars = c(mlexp$cov.pars[1],
mlexp$cov.pars[2]), nugget = mlexp$nugget,
cov.model = "exp", type.krige = "OK"))

#get the prediction values for the kriged surface
> image(krig.geoR.exp, main = "kriged estimates")

Fig. 5.9 Kriged map of vegetation height based on the exponential model (a). Also shown is the
background sampling grid (2 � 2 m) for reference. (b) Inverse distance weighting interpolation
(IDW)
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In the above code, we take the estimates from the exponential variogram and use
them in ordinary kriging (type.krige ¼ "OK") for spatial interpolation. The
output includes predictions that we can use for mapping, as well as uncertainty in
those predictions. In our case, the initial sampling grid was detailed at a high
resolution, such that the uncertainty is very low. Note also that the kriged image
uses our z values at the observed samples and only makes predictions for unsampled
areas on our new grid. We can also plot the uncertainty in the predictions:

> image(krig.geoR.exp, val = sqrt(krig.geoR.exp $krige.var),
main = "kriging SE")

Here, the model does not estimate variance for the sampled points; it fixes the
variance to zero for those locations. Consequently, one could remove those sampled
points from the mapping of the uncertainty in kriged predictions. This kriged map
could then be used as a raster image for other purposes.

We can also implement kriging in gstat with the krige function.

> new.grid.1m <- expand.grid(x = 0:max(matrix$x), y =
0:max(matrix$y))

> gridded(new.grid.1m) <- ~x + y
> krig.gstat <- krige(Height ~ 1, gstat.veg, new.grid.1m, model
= exp.gstat)

#plot
> image(krig.gstat, main = "kriging-gstat")

In gstat, we need to have labels for the x–y coordinates in the new grid (unlike
geoR). As an aside, inverse distance weighting interpolation is also straightforward
in gstat with the idw function (Fig. 5.9b):

> idw.gstat <- idw(Height ~ 1, gstat.veg, new.grid.1m)

We can check the similarity in the kriged predictions from geoR and gstat and
inverse distance weighting by calculating the correlation between predictions as:

> cor(cbind(geoR.exp = krig.geoR.exp$predict,
gstat.exp = krig.gstat$var1.pred,
gstat.idw = idw.gstat$var1.pred))

##
geoR.exp gstat.exp gstat.idw
geoR.exp 1.000 1.000 0.984
gstat.exp 1.000 1.000 0.984
gstat.idw 0.984 0.984 1.000

The two packages provide identical predictions based on kriging. In this case, the
inverse distance weighting also provides nearly identical predictions to kriging. This
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is not surprising, given the dense, regular sampling in the plot. With sparse and/or
irregularly spaced sampling, we might expect these approaches to be less correlated.

5.3.6 Simulating Spatially Autocorrelated Data

Once the parameters of a theoretical variogram have been estimated, one can use
these values to generate simulated spatially autocorrelated data having the same
statistical properties of the observed spatial pattern using an annealing algorithm
(Cressie 1993) or a Gaussian random fields algorithm, both of which are stochastic
distribution functions (Lantuéjoul 2002). These procedures, and others, are often
used to generate null reference distributions to test significance of observed spatial
patterns in ecological data (e.g., Remmel and Fortin 2013). Note that when simu-
lating Gaussian random fields, the simulations by default have a mean of zero.

We can use the gstat or RandomFields package (Schlather et al. 2015) to
simulate spatial patterns based on the variogram parameters. Here, we show the use
of RandomFields, which has more flexibility in this regard than gstat. We will
also provide include the mean value of observed vegetation height (otherwise, the
mean value of the simulated random field would be approximately zero).

#variogram models to simulate
> library(RandomFields)
> model.exp <- RMexp(var = mlexp$cov.pars[1], scale =
mlexp$cov.pars[2]) + RMnugget(mlexp$nugget) + RMtrend(mean =
mean(matrix$Height))

> dimx <- 1:50
> dimy <- 1:50

#simulate
> sim.exp <- RFsimulate(model = model.exp, x = dimx, y = dimy)
> data.sim <- as.matrix(sim.exp)

#plot with image
> image(dimx, dimy, data.sim,xlab = "x", ylab = "y”)

#plot with raster package
> library(raster)
> RMexp.grid <- raster(data.sim)
> plot(RMexp.grid)

These simulated maps (Fig. 5.10) are called “unconditional Gaussian random
fields.” If we provide sample values for mapping (as in kriging), then the maps
would be considered “conditional Gaussian random fields.” Note that even when
adjusting for the mean value of vegetation height with the RMtrend function, this
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approach does end up simulating some values less than zero, which is not biolog-
ically plausible, because it is a Gaussian (normally distributed) random field. The
RandomFields package has options for simulating fields that can circumvent this
problem, but it is beyond the scope of this book.

The approach above can also be used to more generally create spatially
autocorrelated maps of different degrees, similar in function to the neutral landscape
approaches described in Chap. 3. For example, we illustrate how altering the partial
sill and range parameters can generate different types of neutral landscape maps
(Fig. 5.11) with the following alternative scenarios:

> model.exp.ps2r5 <- RMexp(var = 20, scale = 5) + RMnugget(var = 2)
> model.exp.ps8r5 <- RMexp(var = 80, scale = 5) + RMnugget(var = 2)
> model.exp.ps2r20 <- RMexp(var = 20, scale = 20) + RMnugget(var = 2)

The above scenarios take a base model, where the range ¼ 5, the nugget ¼ 2 and
the partial sill ¼ 20 and then increased the partial sill 4� and the range 4�. When
plotting realizations of these models (similar to above), it is clear that changes in
the partial sill increases the magnitude of variation and increases in the range
parameter makes the map smoother. When truncating these maps similar to a neutral
landscape scenario where we alter the proportion of habitat or land cover on the
landscape (Chap. 3), however, changing the partial sill has negligible effects on the
map while increasing the range leads to much greater aggregation of the land
cover (Fig. 5.11).

Fig. 5.10 Two realizations of simulating spatial dependence under the exponential variogram
model fit to the vegetation data using unconditional Gaussian random fields
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5.3.7 Multiscale Analysis

With the availability of remotely sensed data and increasingly large databases that
span broad extents, areas under investigation are usually large enough to include the
effects of several process acting at various spatial scales that generate observed
spatial patterns. With the potential of such multiscale effects, the first step consists
therefore to identify the key spatial scales of the patterns. There are two multiscale
analysis methods that can be used to decompose the key spatial scales from remotely
sensed data or other data from a study area: Fourier spectral decomposition and
hierarchical wavelet decomposition analysis (Keitt and Urban 2005).

5.3.7.1 Wavelets and Fourier Series

Fourier’s technique and wavelets are related (Dale et al. 2002). Fourier’s technique
assumes the data have been generated by stationary processes that occur across the
entire area of interest. With this approach, processes are envisioned as a series of sine
and cosine waves operating at different scales that sum together to drive observed

Increasing 
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Random field 20% threshold

Baseline

40% threshold

Fig. 5.11 Using unconditional Gaussian random fields to simulate neutral landscapes with varying
spatial dependence based on an exponential variogram model. The first row is taken from a model
with partial sill¼ 20, range¼ 5, and nugget¼ 2. The second row increases the partial sill 4�, while
the third row increases the range 4�. Shown is the continuous random field and two thresholds of
this map, similar to the use of neutral landscape models described in Chap. 3
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variation (Fig. 5.12). This formulation can be helpful in many situations when broad
extents are considered; indeed, linear trends across broad extents are unlikely in
many situations (Austin 2002).

When the stationary assumption is not fulfilled, a wavelet discrete transform can
be used, as we illustrate in the example below. Wavelets transforms use a similar
approach to Fourier decomposition but with two key differences. First, wavelet
transforms come in a variety of shapes (the “haar,” “Mexican hat,” etc.; Dale et al.
2002), such that users need not assume only sine/cosine functions to describe spatial
variation. Second, wavelet transforms do not assume stationarity, but instead allow
for local variation in wavelet templates at different resolutions to be fit to
observed data.

These techniques tend to be applied to dyadic grids of data, where the dimensions
of the grid are of a power 2 (e.g., 32 � 32, 128 � 128), similar to our use of fractal
algorithms in Chap. 3. The reason for this constraint is that it allows us to recursively
decompose the spatial variation on the map. For instance, if we have a map of
dimensions 64 � 64, this map can be broken into successive blocks representing
different spatial resolutions, such as four blocks of 32 � 32 units, to interpret spatial
variation. Note that wavelet analysis has been extended to work with maps that do
not comply with this constraint, but that is beyond the scope of our application here.

Wavelets can be discrete or continuous. Here, we focus on the simplest, discrete
transform, the Haar (Fig. 5.13). Using observed data, the discrete wavelet transform
can be computed for each sampling location, or pixel, for a series of wavelet template
scales that are as a power of two. Then, the wavelet values can be mapped and all
scales analyzed. The plot of wavelet variance against the scaling factor is called a
scalogram (Dale and Fortin 2014). The highest wavelet variance values indicate the
spatial scales that fit the data best.

We calculate wavelets using the waveslim package (Whitcher 2015). We use
the Haar wavelet, which is a common type of wavelet used in spatial analysis
(Fig. 5.13). To calculate wavelets, we need to pass the maximum scale being
considered, which should be a power of 2 (8, 16, 32, 64, etc.). First, we reformat
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Fig. 5.12 How Fourier transforms work. Fourier transforms assume that observed variation comes
from multiple processes operating at different scales. This approach uses sine/cosine waves of
different amplitudes and periods to capture such variation. These broad and fine-scale waves are
combined to interpret observed variation. This approach assumes stationarity, where waves operate
across the entire extent of interest, unlike wavelet transforms
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the data into a square matrix using the acast function from the reshape2
package (Wickham 2007):

> library(reshape2)
> matrix.mat <- acast(matrix, x ~ y, value.var = "Height")
> dim(matrix.mat)

##
[1] 26 26

This reformatting emphasizes that the sampling grid used is a 26 � 26 grid. For
the purposes here, we will subset the grid to become a dyadic grid that is 16 � 16.

> max.scale <- 4

#DWT: Discrete Wavelet Transform
> library(waveslim)
> x.dwt <- dwt.2d(matrix.mat[1:16, 1:16], 'haar', J = max.scale)

This function creates new matrices that describe the wavelet variance at different
scales. To do so, it creates three bands of variation, labeled LH, HL, and HH. We
sum the squared values of these bands to quantify a total measure of wavelet
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Fig. 5.13 Wavelets and scalograms. (a) The Haar template, which is a common discrete wavelet
template. (b) The scalogram from the fitting the Haar template to a portion of the observed data,
where variance is plotted as a function of scale. (c) Maps of the spatial variation identified at each
scale (scales 1–3) from wavelet analysis
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variance. We can then calculate the proportion of variance at each scale and plot the
scalogram (Fig. 5.13b).

#Sum the wavelet spectrums
> t.var <- (sum(x.dwt$LH1^2 + x.dwt$HL1^2 + x.dwt$HH1^2)
+ sum(x.dwt$LH2^2 + x.dwt$HL2^2 + x.dwt$HH2^2)
+ sum(x.dwt$LH3^2 + x.dwt$HL3^2 + x.dwt$HH3^2)
+ sum(x.dwt$LH4^2 + x.dwt$HL4^2 + x.dwt$HH4^2))

#proportional variance
> x.lev.1 <- (sum(x.dwt$LH1^2 + x.dwt$HL1^2 + x.dwt$HH1^2)) / t.var
> x.lev.2 <- (sum(x.dwt$LH2^2 + x.dwt$HL2^2 + x.dwt$HH2^2)) / t.var
> x.lev.3 <- (sum(x.dwt$LH3^2 + x.dwt$HL3^2 + x.dwt$HH3^2)) / t.var
> x.lev.4 <- (sum(x.dwt$LH4^2 + x.dwt$HL4^2 + x.dwt$HH4^2)) / t.var

> var.all.dwt <- c(x.lev.1, x.lev.2, x.lev.3, x.lev.4)
> sum(var.all.dwt)

#Scalogram: plotting global Wavelet spectrum profiles
> plot(var.all.dwt, pch = 21, type = "b", lwd = 1, ylab = "Average
Variance", xlab = "Scale")

The scalogram suggests that most of the spatial variation occurs at the finest
distance considered. Finally, we can plot the wavelet images (Fig. 5.13c) at each
scale using the raster package. Below we show an example of scale 1.

#Map Wavelet values according to scales
> wave.raster1 <- raster((x.dwt$LH1^2 + x.dwt$HL1^2 +
x.dwt$HH1^2))

> plot(wave.raster1)

These measures of variation at different scales can then be used as predictor
variables in regression or related analyses to account for spatial dependence arising
at different scales (Keitt and Urban 2005). The key to do so is to link the sub-
matrices to the appropriate response data in a hierarchical way.

5.3.7.2 Eigenvector Spectral Decomposition

When data are sampled from an irregular grid or layout in a contiguous fashion, an
eigenvector spectral decomposition can be used to identify the key scales that match
the data. Here, we use principal coordinates of neighborhood matrices, PCNM,
which is a special case of the generalized Moran’s Eigenvector Map (Dray et al.
2006, 2012). Unlike the wavelet analysis that is performed on the data given the
spatial layout of contiguous pixels, the PCNM multiscale analysis is performed on
the x–y coordinates of the sampling locations. In this approach, there are potentially
as many PCNM spatial scales as there are sampling locations. PCNM uses a
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Principal Coordinates Analysis (PCoA; Gower 1966), which is also referred to as
metric multidimensional scaling or classical scaling (Legendre and Legendre 2012).
PCoA shares some similarities to the more common principal components analysis
(PCA), but it focuses on using distance or similarity matrices (rather than the original
data, as in PCA) to position objects in a space of lower dimensionality than the
original data, with a focus on Euclidean distance space. PCNM provides eigenvec-
tors that can capture spatial structure: as the eigenvectors increase, they capture
increasingly finer scales of space that resemble sin waves of smaller and smaller
periods (Fig. 5.14), analogous to Fourier’s technique.

Once the PCNMs are computed they can be used as spatial predictors either in a
multiple regression (Dormann et al. 2007) or other analyses, such as redundancy
analysis for community data (see Chap. 11). Because there as many PCNM eigen-
vectors as the number of locations, model selection is necessary to reduce the
number of eigenvectors considered. Narrowing the number of spatial scales can
also be guided using knowledge about the scales of processes that may have
generated the data; for example large-scale trend, intermediate patchiness, and
small-scale patchiness. If we were to only consider the first few eigenvectors, this
may be functionally similar to what has been referred to a trend surface analysis,
where x or y coordinates are used as predictors (and potentially their polynomial
terms, such as x2 or x3) in regression models to allow for large-scale variation in
spatial dependence (see Chap. 6). In contrast, the larger eigenvectors capture fine-
scale variation in spatial dependence.

We illustrate the eigenvector method with the grid used for kriging above. We can
use the vegan package (Oksanen et al. 2018) to first determine the PCNM based on
a distance matrix calculated from the sample locations. Eigenvectors for each
sampling location are calculated.

PCNM1 PCNM5 PCNM13

Fig. 5.14 Eigenvector mapping captures spatial variation at different scales. The first few eigen-
vectors capture broad-scale spatial variation, similar to what would be captured if a linear or
polynomial term of x–y coordinates was considered (e.g., in trend surface analysis) whereas the
latter eigenvectors capture increasingly fine scale variation. Shown are the first three eigenvectors
selected with forward, stepwise regression on the observed vegetation data, where dark pixels
indicate higher values of the eigenvectors
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> library(vegan)

#PCNM on distance matrix based on coords
> xypcnm <- pcnm(dist(coords))

#eigenvectors:
> xypcnm$vectors

We can visualize the eigenvectors in a variety of ways. Here we create a raster of
the eigenvectors with the raster package and plot (Fig. 5.14).

#create raster
pcnm1.raster <- rasterFromXYZ(data.frame(x = matrix$x, y =
matrix$y, z = xypcnm$vectors[,1]))
plot(pcnm1.raster)

Once we have generated the eigenvectors, we can use them as predictors for
vegetation height. Given the large number of eigenvectors that are generated, a
common approach is to use a procedure to select a subset of the eigenvectors for
further inclusion (Bauman et al. 2018). One approach is forward selection procedure
to determine the eigenvectors that best explain the response variable (Dray et al.
2006; Blanchet et al. 2008). Other options are possible, such as using the reduction in
spatial autocorrelation in the residuals of models (see Chap. 6; Dray et al. 2006;
Dormann et al. 2007). Here, we simply focus on a forward selection procedure
suggested by Blanchet et al. (2008), which has been shown to reliably capture
multiscale spatial dependence in some situations (Bauman et al. 2018). This
approach can be implemented in the adespatial package (Dray et al. 2018). In
this approach, we first fit a full (global) model with all eigenvectors as covariates.
From this model, we extract the adjusted R2 value, which provides a measure of the
variation explained from the eigenvectors (adjusted for the number of variables in
the model). Blanchet et al. (2008) then proposed a forward selection approach with a
“double-stopping” rule; that is, the forward selection terminates either when the
current model reaches the adjusted R2 of the full model, or when new eigenvectors
are no longer significant, based on a prespecified α. Below, we implement this
approach, using a conservative α ¼ 0.005, given the large number of potential
covariates included.

> library(adespatial)
> height <- matrix$Height
> xypcnm.df <- data.frame(xypcnm$vectors)

#fit full model
> xypcnm.full <- lm(height ~ ., data = xypcnm.df)
> R2adj <- summary(xypcnm.full)$adj.r.squared
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#forward selection with adespatial
> xypcnm.for <- forward.sel(height, xypcnm$vectors, adjR2thresh =
R2adj, alpha = 0.005, nperm = 999)

In this case, we find that ten eigenvectors are retained in the linear regression
model to explain the spatial variation in vegetation height (the total number retained
might vary slightly due to the stochastic nature of the permutation test used; see
Fig. 5.14 for plots of three of the selected eigenvectors). In Chap. 6, we dive deeper
into spatial regression and how this method and others can account for spatial
dependence while interpreting environmental relationships.

5.4 Next Steps and Advanced Issues

5.4.1 Local Spatial Dependence

Throughout this chapter, we have focused on “global” spatial statistics that assume
stationarity. However, the intensity of spatial dependence can often vary across a
region. When the stationary assumption is not valid, other methods can be used.
There are two general ways in which uncovering local spatial dependence can occur
(Brunsdon and Comber 2015). First, some approaches take global indices and use
decomposition methods to understand the role of individual locations on the global
statistic. For example, local indicators of spatial association, or LISA (Anselin
1995; Boots 2002), take indices like Moran’s I to determine the contribution of
each observation to the global statistic, which can subsequently be mapped to
understand spatial variation in spatial dependence. The examples of using Moran’s
I in this chapter can be extended to interpret local Moran’s I in both the ncf and
spdep packages. Second, moving window analyses can be done to understand
spatial dependencies in the chosen windows. In this approach, global statistics are
applied, but only to the neighborhood (window) under consideration. See Chap. 3
for examples of moving window analyses.

5.4.2 Multivariate Spatial Dependence

In ecology, data are frequently multivariate. For instance, in community ecology we
often work with matrices of species occurrence or abundance. In these cases, we may
be interested in understand and accounting for multivariate spatial dependence (Dray
et al. 2012). Many of the methods described in this chapter can be extended to
multivariate data (Wackernagel 2003). When two types of data occur, cross-
correlograms and cross-variograms can be used to understand the spatial dependence
between variables (Wagner 2003). See Chap. 11 for some discussion of these
approaches in the context of spatially structured communities.
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5.5 Conclusions

The detection, characterization, and significance testing of spatial pattern is the first
step to understand spatial ecological data and the processes that generated them.
Spatial dependence commonly occurs in ecological data and it is often argued that
failure to account for spatial dependence can impact inferences in ecology (Legendre
1993; Dormann et al. 2007; Beale et al. 2010). Here, we illustrate ways in which
spatial dependence can be diagnosed in ecological data. This type of diagnosis can
be useful to provide insights into why patterns occur in data and whether spatial
dependence can be problematic for inferences on ecological patterns and processes.

Both correlograms and variograms provide useful insights for interpreting the
magnitude and extent of spatial dependence in data. These approaches provide much
richer information than single tests of spatial dependence, such as using a single
Moran’s I test statistic (Eq. 5.3). Correlograms have the benefit of providing a
standardized metric (i.e., correlation coefficient) that can be compared across vari-
ables, while variograms provide a means to formally estimate the scale of spatial
dependence through the use of model-based variograms and estimating the spatial
range. Variogram modeling can also be used for interpolating spatial data via
kriging, providing a formal means for predicting ecological patterns across space.
A variety of techniques have been used for inferring the significance of spatial
dependence, with Monte Carlo permutations providing perhaps the most flexibility
in their applications. Multiscale analyses can also provide useful insights, in partic-
ular in situations where questions and/or data come from broad extents where
multiple scales of spatial dependence may operate.
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Chapter 6
Accounting for Spatial Dependence
in Ecological Data

6.1 Introduction

Inference and prediction are fundamental to all aspects of ecology and conservation.
Yet the presence of dependency in the data due to either phylogeny, space, or time
can impair the statistical inference and subsequent ecological interpretation of the
pattern(s) observed (Sokal and Oden 1978; Swihart and Slade 1985; Garland et al.
1992; Lennon 2000; Miller 2012). In this chapter, we will focus specifically on how
the presence of spatial dependency complicates our ability to make statistical
inferences and prediction (Legendre 1993), as the principles due to space are
analogous to those due to time and phylogeny (Bauman et al. 2018). It is important
to understand how statistical biases due to spatially structured data can affect answer-
ing a wide array of ecological questions ranging from species–environment relation-
ships to predicting the spread of invasive species. Consequently, there is an
increasing emphasis on formally accounting for spatial dependence in inferential
problems in ecology and conservation (Segurado et al. 2006; Dormann et al. 2007;
Hooten et al. 2007; Carroll and Johnson 2008; Beale et al. 2010; Crase et al. 2014).

Accounting for spatial dependence in modeling is, however, very challenging.
This challenge arises because spatial dependence in data can emerge for a variety of
reasons (see Chap. 5). In particular, when modeling spatial data, spatial dependence
can occur simply due to model mis-specification, such an important covariate not
being included in the model or that its functional relationship is mis-specified (e.g.,
effects may be non-linear). Spatial dependence could also occur through processes
such as localized dispersal or social behavior (Koenig 1999). In these cases, adding
environmental covariates will likely not be sufficient for appropriate inferences.

Here, we provide an overview regarding several ways in which space has been
addressed in regression-like models of species–environment relationships. Regres-
sion models are frequently used in ecology and conservation to address a variety of
problems, ranging from interpreting habitat suitability to forecasting the effects of
climate change (Guisan and Zimmermann 2000; Algar et al. 2009). Our overview is
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largely guided by some comprehensive reviews and syntheses on the topic (Keitt
et al. 2002; Dormann et al. 2007; Miller et al. 2007; Diniz et al. 2009; Bini et al.
2009; Beale et al. 2010), but we update these syntheses with more recent advances
(Crase et al. 2012; Rousset and Ferdy 2014; Bardos et al. 2015; Blangiardo and
Cameletti 2015; Ver Hoef et al. 2018). Our goals are threefold. We first describe the
problem of spatial dependence on inferences in ecology and conservation. Then, we
discuss how to diagnose problems of spatial dependence. Finally, we illustrate
common ways to address these statistical problems using a variety of approaches
aimed at accounting for spatial dependence in statistical analyses.

6.2 Key Concepts and Approaches

6.2.1 The Problem of Spatial Dependence in Ecology
and Conservation

Bivand (1980) was one of the first to explore the importance of spatial dependence
on statistical inference from correlation coefficients, a problem that Legendre (1993)
later clearly illustrated for ecology. These articles highlight how spatial correlations
may create spurious inference and ecological interpretation when spatial dependency
of the data is ignored (Fig. 6.1). Depending of the magnitude of spatial autocorre-
lation (see Chap. 5), parameter estimation can be erroneous and hence our subse-
quent understanding of ecological patterns and processes: at small values of spatial
autocorrelation (e.g., <0.2) the effect tends to be negligible, whereas when the value
of spatial autocorrelation is high (e.g.,>0.2) then the effect tends to be important and
will affect statistical inferences (Bivand 1980). The reason for this problem gener-
ally lies in the estimation of uncertainty, where standard errors and confidence
intervals around point estimates of correlation coefficients (and other parameters)
tend to be artificially narrow. This issue can be considered from the point of degrees
of freedom (df), where one df is counted for each independent observation. Yet
spatial dependence causes observations to not be independent, such that each
observation should not be counted as one df. In effect, this issue essentially leads
to “pseudo-replication” in space, a well-known problem for ecology (Hurlbert
1984).

This problem has several practical consequences for conservation. For example,
Crase et al. (2014) illustrated that ignoring spatial dependence in forecasts of species
response to climate change leads to greater estimated effects of climate change.
Ignoring spatial dependence has also been shown to affect conservation planning
and understanding habitat suitability for a wide range of species of conservation
concern (Carroll and Johnson 2008; Lichstein et al. 2002; Carroll et al. 2010).

Several approaches have been proposed to account for spatial dependence in
statistical analyses and modeling (Keitt et al. 2002; Dray et al. 2006; Carl and Kuhn
2010). In the simplest approaches, we might subset data such that sample points are
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greater than the range of estimated spatial autocorrelation (Chap. 5) (Hawkins et al.
2007), or perhaps just adjust α levels in statistical tests to be more conservative (Dale
and Fortin 2014). Some of the most common approaches focus on extending linear
regression models to accommodate spatial dependence by either using autocovariate
variables (Table 6.1) to account for spatial dependence (Augustin et al. 1996;
Wagner and Fortin 2005; Betts et al. 2006; Melles et al. 2011) or geostatistical
models (see Chap. 5; Cressie 1993). Ordination techniques for community data can
also be used to account for spatial structure in the data (see Chap. 11; Wagner 2003,
2004; Dray et al. 2012). Below we explain some of the most common approaches in
detail. To do so, we first reintroduce the generalized linear model, which was briefly
described in Chap. 2, and use this model framework to build from for accounting for
spatial dependence.

6.2.2 The Generalized Linear Model and Its Extensions

Before jumping into approaches aimed at dealing with spatial dependence, we
briefly discuss some critical background material. As a reminder, linear regression
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Fig. 6.1 The problem of spatial dependence for ecological inferences. When spatial dependence
occurs and is ignored, type I error rates increase. Shown are two, independently derived, environ-
mental variables, x1 and x2, that have spatial dependence (generated from a Gaussian random field;
see Chap. 5). If sampling occurs within the range of spatial dependence, spurious inferences can
occur when such dependence is ignored. In contrast, if sampling is implemented beyond the range
of spatial dependence, reliable inference is obtained. Shown are results from Pearson correlation
coefficient between the environmental variables taken from five sampling designs that vary in their
spatial distribution based on lag distance (each has the same number of samples). Correlations are
high when sampling is implemented within the range of spatial dependence, but declines as the lag
distance between samples increases
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and ANOVA are types of linear models (Nelder and Wedderburn 1972). A linear
model can be described as:

yi ¼ αþ β1xi þ εi, ð6:1Þ

where yi is the response variable for sampling unit i (e.g., density of a species at a
location), α is the intercept, β1 is the slope (coefficient), xi is the explanatory variable
measured at i, and εi is the error, which is assumed to come from a normal
distribution and be iid ¼ independent and identically distributed. That is, each
residual i is not dependent on other residuals and each comes from the same
underlying distribution. This error distribution is assumed to come from a normal
distribution with a mean of zero and an unknown finite variance, written as εi ~ N
(0, σ2). Plotting the residuals of the model, or the deviation of the predictions to the
observed data for a given value of x (Fig. 6.2), helps understand whether this
assumption is met. Note that the equivalence of linear regression and ANOVA in
this framework can be seen by considering categorical treatments (xi) in an ANOVA
as “dummy” variables (e.g., 0, 1 variables) in a regression model.

Linear models can be extended in two very useful ways. The first major exten-
sion, the generalized linear model (GLM), allows for alternative distributions for the
response variable other than the normal distribution. These other distributions
specifically come from the exponential family of distributions, which includes

Table 6.1 Common terms for spatial regression analysis in ecology

Term Description

Aerial data Spatial polygon data that are typically exhaustive tessellations of an area.

Autocovariate A predictor variable that quantifies the frequency (or related metrics) of the
response variable in the surrounding neighborhood.

Autoregressive
model

Models that use information on the neighborhood matrix to account for
spatial dependence based on deviations from the expected values.

Fixed effect Deterministic effects that are constant across samples.

Lattice data Spatial data indexed over a regularly spaced set of points.

Multilevel model A type of mixed model, where random effects are used to capture hierarchies
in the system.

Neighborhood
matrix

A square matrix (dimensions are the number of sample points) that quantifies
relationships between sampling points, such as binary neighbor connections
or distance-weighted linkages.

Random effect Effects that come from a distribution and vary across samples.

Residual The difference between the observed value of the dependent variable and the
predicted value.

Spatial filtering When fixed effect covariates in a regression are added that attempt capture
the spatial signal through the inclusion of functions of x–y coordinates or
related distance metrics.

Tessellation An arrangement of polygons closely fitted together without gaps or
overlapping boundaries.

Trend surface
analysis

Analyses where variation in the response variable is expressed as a function
of the geographic coordinates of the sampling locations.
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distributions such as the Poisson, binomial, Bernoulli, and gamma distributions. This
extension greatly increases the flexibility of these models, allowing for responses
such as the presence/absence of a species at a sampling location (a Bernoulli
distribution). The classic text for generalized linear models is McCullagh and Nelder
(1989). In GLMs, we specify a link function and a distribution for the errors (ε).

Perhaps the two most common types of GLMs are logistic regression and Poisson
(or log-linear) regression. For logistic regression we have:

logit pið Þ ¼ αþ β1xi, ð6:2Þ

where pi is the expected probability of a “success” and a “logit” link function is used
(i.e., log( pi/(1 � pi))). In this case, we assume a binomial error distribution. A
binomial distribution can be thought of as a distribution that arises from a series of
coin tosses. If there is only one toss, it is called a Bernoulli distribution; if there is
more than one toss (sometimes referred to as “trials”), then the distribution is called a
binomial distribution. In the latter case, we are interested in the frequency or
proportion of “successes” out of the total number of trials.

For a Poisson regression, we have:

log λið Þ ¼ αþ β1xi, ð6:3Þ

where λi is the expected count for sample i and we use a “log” link function and
assume a Poisson error distribution. The Poisson distribution is a discrete
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Fig. 6.2 A linear regression model and the residuals from that model. In standard regression
techniques, residuals (the difference of the observed value from the predicted value of the response
variable for a given value of the explanatory variable) are assumed to be independent and identically
distributed. When spatial autocorrelation occurs in the residuals of models, such autocorrelation can
impact inference if ignored. Dots represent observed data, black line is the prediction from the linear
model, and the vertical gray lines represent residuals
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distribution were values are integers greater than or equal to zero (i.e., negative
values are not allowed). The Poisson distribution assumes that the mean equals the
variance, which is often a restrictive assumption. A related distribution that relaxes
this assumption in the negative binomial distribution. There are several other types
of GLMs; however, we will focus on only a few in this book. Interested readers
should see Bolker (2008) and Bolker et al. (2009) for the use of GLMs in ecology.

The second major extension of a linear model is to allow for random effects, what
is frequently termed a random-effects model, or if fixed effects are considered
alongside random effects, a mixed model. Random effects can be contrasted with
fixed effects (the β above) in several ways. Random effects are extremely flexible in
how they can accommodate complex data structures and provide inference
unattainable with fixed effects. Some uses for random effects include: (1) conditional
inference-when you would like to make inferences on a particular sampling unit,
location, etc. (e.g., a particular watershed contained within the study area);
(2) accommodating block, split-plot, Latin-square, and other treatment structures
in experiments; (3) more generally accounting for both temporal and spatial depen-
dencies in data, such as temporal repeated measures or spatial autocorrelation;
(4) when one thinks treatment effects may vary in space or time (similar to including
an “interaction” term in a linear model); and (5) “broad-sense” inference: making
inferences for an entire region/population from a sample (in contrast to “narrow-
sense” inference, where we make inferences only for the specific samples or
locations being considered) (Littell et al. 2006; Gelman and Hill 2007; Zuur et al.
2009).

There has been some confusion in ecology regarding when an effect should be
considered random versus fixed, and how inferences may change depending on
whether a variable is considered random or fixed. Gelman and Hill (2007) discussed
how random effects have been loosely described and used in the literature, and the
resulting problems that have arisen. We do not focus on this issue; rather we will
simply consider mixed models as one means to accommodate spatial dependence.

We can formally describe a linear mixed model as:

yi ¼ αþ β1xi þ γ þ εi, ð6:4Þ

where γ is a random effect and is typically assumed to be distributed ~N(0, σ2).
When we put these two extensions together, we have generalized linear mixed
models (GLMMs), which are very powerful models that are seeing increasing use
in ecology, evolution, and conservation (Bolker et al. 2009; Thorson and Minto
2015). Note that we can also model the variance, σ2, as a variance–covariance
matrix, which is how we specifically extend this model to explicitly account for
spatial dependence, as we will see below.
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6.2.3 General Types of Spatial Models

The vast diversity of spatial regression-like models can be organized in several ways.
Three important properties include: (1) the type of response data (quantitative, count,
presence–absence); (2) whether samples are irregularly spaced samples across
continuous space or lattice/gridded data that are discrete in nature (Fig. 6.3); and
(3) the way in which spatial dependence is considered.

The type of response data used will ultimately affect the type of regression model
being fit. Different types of response data lend themselves to different distributions

a

b

Fig. 6.3 Examples of aerial data used in spatial modeling. Aerial data can come from (a) polygon-
based information (e.g., maps of counties, watersheds, etc.) or can be generated (b) from point or
line data using Voronoi tessellation. In either approach, we can describe spatial dependence through
the links among locations (right panel) with a spatial neighborhood (weights) matrix
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used in GLM-like models. Overall, most of the approaches to spatial dependence
have been better developed for normally distributed response variables than
non-normally distributed response variables (Beale et al. 2010). Dealing with
non-normal response data is generally more challenging than normally distributed
data. For instance, data such as presence–absence data (0/1 data) have much less
information content than normally distributed response variables, which impact the
ability to identify, interpret, and account for spatial dependence in models.

Samples of data frequently come from aerial data (or lattice data) where neigh-
borhoods are considered, such as samples arising from counties or watersheds. In
such cases, spatial dependence is frequently considered based on neighboring poly-
gons or related neighbors through the use of a neighborhood matrix (or spatial
weights matrix). In contrast to aerial data, samples can also come from points across
a study region. In this case, information on x–y coordinates are used either directly
(e.g., using an x-coordinate as a predictor) or indirectly (e.g., by calculating distances
between pairs of points).

Models can also be categorized based on how spatial structure is considered. For
some models, often referred to as spatial filtering models (Getis and Griffith 2002),
space is considered as predictor variables in a regression, where we attempt to “filter
out” the spatial signal through the inclusion of functions of x–y coordinates or related
distance metrics. In these cases, spatial dependence is thought to be largely domi-
nated by exogenous drivers such as spatial dependence in environmental gradients,
and often (but not always) occurs at relatively large scales (Fortin et al. 2012). In
contrast, other models focus specifically on accounting for spatial dependence in the
error terms of regression models. These models frequently assume spatial depen-
dence is more localized and dominated mostly by endogenous processes (e.g.,
localized dispersal, species interactions) (Fortin et al. 2012; Teng et al. 2018).

6.2.4 Common Models that Account for Spatial Dependence

6.2.4.1 Trend Surface Analyses

Trend surface analyses use x–y coordinates in an attempt to capture large-scale
spatial dependence in a region. There have been two common ways in which
coordinates are added to regression models: polynomial regression (Haining 2003)
and generalized additive models (GAMs) (Zuur et al. 2009).

The idea of trend surface analysis with polynomial regression is simply to include
x–y coordinates and their polynomials (e.g., x2, x3, etc.) in the regression as
covariates (Legendre 1993). Incorporating coordinates in this way is thought to be
useful to deal with large-scale dependencies arising from exogenous processes (e.g.,
climate gradients across a geographic range), but it may be more limited in account-
ing of local autocorrelation. Legendre (1993) suggested simply adding quadratic and
cubic terms for x–y coordinates to the regression model (Fig. 6.4). Adding quadratic
and cubic terms allows for some potential non-linear responses across geographic

176 6 Accounting for Spatial Dependence in Ecological Data



space. Note that trend surface analysis will not formally adjust estimates of fixed
effects for uncertainty due to spatial dependence (unlike mixed models, see below),
but they may account for dependence in model residuals.

Generalized additive models (GAMs) (Hastie and Tibshirani 1986; Wood 2006)
can be used in a similar way to trend surface analysis based on polynomial regres-
sion. GAMs use a class of equations called “smoothers” that attempt to generalize
data into smooth curves by local fitting to subsections of the data (Fig. 6.5). This
approach allows for more flexibility in capturing non-linearity in responses across
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Fig. 6.4 Incorporating
polynomial terms into a
regression model to account
for non-linearity in
environmental relationships.
Shown is an example of a
linear model, contrasted
with a model that adds a
quadratic term, and a model
that includes both a
quadratic and cubic term

3 knots 4 knots

6 knots 8 knots

y

x

y

x

Fig. 6.5 The generalized
additive model (GAM) and
the concept of smoothers.
Shown are GAMs fit to the
data based on different
numbers of knots (vertical
lines; ranging from 3 to
8 knots). Within each knot, a
simple spline (e.g., a cubic
spline; see Fig. 6.4) is fit,
with the constraint that
splines must connect at the
knots. As the number of
knots increases, the
complexity of the smoother
function increases. Modified
from Zuur et al. (2009)
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geographic space and GAMs have frequently been used in species distribution
modeling more broadly (see Chap. 7). The simplest example of a smoother that is
likely to be familiar to scientists is the running average, where one calculates the
average value of data in a “window” across values of a covariate. While the running
average is an example of a smoother, much more efficient smoothers have been
developed. LOWESS (i.e., locally weighted regression; Cleveland 1979) is one
example of a more efficient smoother used in some GAMs. The idea is to plot the
value of the dependent variables (e.g., occurrences) along a single environmental
variable, and then to calculate a smooth curve that fits the data as closely as possible
while being parsimonious based on some sort of criterion. The algorithm fits a
smooth curve to each variable and then combines the results additively. The
approach generally employed with GAMs is to divide the data into some number
of sections, using “knots” at the ends of the sections. Then a low-order polynomial or
spline function (a spline is a function of polynomials relationships stitched together)
is fit to the data in the section, with the added constraint that the second derivative of
the function at the knots must be the same for both sections sharing that knot. This
latter criterion eliminates kinks in the curve, and ensures that it is smooth and
continuous (Fig. 6.5).

6.2.4.2 Eigenvector Mapping

Eigenvector mapping extends the general eigenvector approach described in Chap. 5
by using eigenvectors that describe different scales of spatial structure as predictors
in regression models (Dray et al. 2006; Griffith and Peres-Neto 2006). In effect, this
is somewhat similar to a trend surface model, but where eigenvector values, rather
than x–y coordinates, are used as predictors. The ability of this approach to capture
multiple scales of potential spatial structure is a relatively unique benefit in contrast
to other approaches. Because each eigenvector captures spatial patterns at different
scales, the combined use of several eigenvectors can potentially address problems of
anisotropy and non-stationarity in spatial autocorrelated data. However, this
approach and related techniques can sometimes lead to bias in coefficients of fixed
effects and may not improve Type I error rates (Beale et al. 2010; Emerson et al.
2015).

Spatial eigenvectors are derived from a distance matrix from sample points,
typically through the use of principal coordinates analysis (PCoA) on distance
matrices (see Chap. 5; Dray et al. 2006). In this approach, a pairwise distance matrix
is first calculated between all sampling points. This distance matrix is converted to a
binary connectivity (or weights) matrix based on some distance threshold that allows
for a minimum representation of connectivity among all points. For instance, a
“minimum spanning tree,” which is the minimum set of links that ensures all points
being considered are connected, is often used as a parsimonious way to guarantee
connectivity among all points considered (see below). With this binary connectivity
matrix, PCoA (also known as classic multidimensional scaling) is performed. PCoA
generates new components that capture the variation in the distance matrix, which
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are summarized with eigenvalues and eigenvectors, similar to Principal Components
Analysis (Legendre and Legendre 1998). The set of eigenvectors that reduce or
eliminate spatial autocorrelation in the residuals of the models is then identified. This
can be assessed through the use of Moran’s I on the residuals of models that include
eigenvectors as predictors (Dray et al. 2006). Those eigenvectors that reduce auto-
correlation the most are then used as predictors in a standard regression model to
“filter out” spatial dependence.

6.2.4.3 Autocovariate Models

In these and related models, we typically work with “areal” or “lattice” data, rather
than point-based samples. Autocovariate regression is similar to linear regression,
but an autocovariate is included into the regression model. This autocovariate can be
defined in various ways, such as a weighted mean of the response variable in
surrounding locations (Augustin et al. 1996):

autoi ¼
Pki

j¼1 wiyiPki
j¼1 wi

, ð6:5Þ

where autoi is the spatially weighted mean of the response variable, y, in the
neighborhood (with a neighbor set ki, reflecting the size of neighborhood considered)
around sample i. This autocovariate is frequently calculated based on first-order
neighbors (e.g., adjacent polygons or surrounding eight cells in a lattice), but the idea
can be extended to account for further away points, typically weighting points based
on the inverse of the distance (samples farther away get less weight than those closer
to the sample). This approach can be used in a generalized linear model context; for
instance, applying autocovariates in logistic regression, termed autologistic regres-
sion, is a common approach in ecology (Augustin et al. 1996; Wintle and Bardos
2006).

In effect, this approach assumes that if nearby locations are occupied, there
should be a greater likelihood that the focal point is occupied. This is a relatively
simple approach, although in practice, it was shown to not perform well because it
can cause bias in coefficients of fixed effects for environmental predictor variables
(Dormann et al. 2007; Beale et al. 2010). In these cases, autocovariate models tended
to de-emphasize the effect of the environmental covariates, while overemphasizing
the effects of autocovariates, leading to Type II error in inferences on environmental
covariates. This issue is at least partly driven by the fact that the autocovariate is
calculated on the raw data before fitting the explanatory variables, even though
explanatory variables may contain spatial dependence that can reduce spatial depen-
dence in the residuals of models (Crase et al. 2012). There are also difficulties with
using these models to interpolate (or extrapolate) to new locations (see below).

Crase et al. (2012) developed a related approach in which autocovariates are
quantified from the residuals of models, rather than the raw data, termed the residual
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autocorrelation approach (RAC). This approach replaces the use of the raw data (yi in
Eq. (6.5)), with yi � qi, where qi is the fitted value from an environment-only model
that ignores autocorrelation. This leads to an autocovariate that captures only the
variance not explained by explanatory variables. Crase et al. (2012) argued that this
approach better captures spatial dependence than using standard autocovariates
because explanatory variables are fitted first to the data.

Bardos et al. (2015) raised concerns regarding the validity of prior analyses
(Dormann et al. 2007; Beale et al. 2010) that emphasized bias in auto-models.
They show that a weighting scheme based on weighted means (Eq. 6.5) is not
valid for autocovariate models. Rather a weighted sums scheme should be used
instead:

autoi ¼
Xki
j¼1

wiyi: ð6:6Þ

This weighting scheme has not been evaluated as thoroughly as a weighted means
approach described above, but Bardos et al. (2015) illustrated that it may perform
better, in terms of capturing autocorrelation and providing unbiased estimates of
fixed effects.

6.2.4.4 Autoregressive Models

Autoregressive models work with aerial or lattice data, similar to autocovariate
models. The difference lies in how spatial dependence is captured with these
model formulations. Two common autoregressive models are simultaneous
autoregressive models (SAR) and conditional autoregressive models (CAR)
(Lichstein et al. 2002; Ver Hoef et al. 2018). In both SAR and CAR, spatial
dependence is captured through the use of a spatial neighborhood weights matrix
akin to autocovariate models, but dependence is described based on deviations from
the expected value given the covariates (Keitt et al. 2002).

SAR and CAR models share several similar features. In practice, a primary
difference is that SAR can accommodate anisotropic spatial dependence, while
CAR cannot. Nonetheless, the CAR is often used. Also, note that some work
suggests that both CAR and SAR perform well on regular lattices, but suffer
diminished performance on irregular lattices (e.g., county or watershed data) (Wall
2004). Both of these models use a spatial weights matrix, W, that captures the
neighborhood surrounding sampling locations. Typically, W is a binary matrix that
identifies neighbors, but it could also include non-binary data.

The general CAR model can be written in matrix notation as:

y ¼ βXþ ρW y� Xβð Þ þ ε, ð6:7Þ
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where ρ is the first-order autocorrelation between neighbors, β is a vector of
coefficients (i.e., slopes) related to the explanatory variables X described through
the “design matrix” (i.e., a N � K matrix of explanatory variable values for each
sample of data used in model fitting, where N is the total number of samples and K is
the total number of explanatory variables). In this equation, βX is the same as a
standard regression (Eq. 6.1) written in matrix form (i.e., Eq. 6.1 can be rewritten in
matrix form as y ¼ βX + ε), such that the only difference in this equation and a
standard GLM is that the ε in the standard GLM is now broken into ρW(y�Xβ)þ ε.
The (y�Xβ) captures the deviation of the observed data from that expected from the
covariates and this is multiplied by the correlation for the neighbors (ρW; note that
this only captures the neighbors because W is 0 for all non-neighbors).

There are several types of SAR models that capture different kinds of spatial
dependence, which assume that the dependence occurs in the response variable,
predictor variables, or the error (Dormann et al. 2007). The general SAR model can
be written in matrix notation as:

y ¼ βXþ ρWyþ ε: ð6:8Þ

While there are several types of SAR models, Ver Hoef et al. (2018) did not
recommend the use of certain specifications of SAR models for ecological data, such
as the use of “lag” or “SAR mixed models.” See Kissling and Carl (2008), Dale and
Fortin (2014), and Ver Hoef et al. (2018) for more details.

6.2.4.5 Multilevel Models

The effects of potential spatial dependence can be also handled by using “multilevel”
or “hierarchical” modeling. This type of modeling is a natural extension of gener-
alized linear models, where we specify random effects to account for dependencies
(correlations and hierarchical structure) in the data. Thus, multilevel models can be
considered one type GLMM. An excellent text on this approach is Gelman and Hill
(2007). Keitt et al. (2002) also touched on this approach when they contrasted
“blocking” with other approaches to addressing spatial dependence.

Multilevel models are relevant when there is a natural hierarchical structure to the
data being used (Fortin et al. 2012). For example, point samples may be collected in
a grid or along a transect (with replicate grids or transects across a region), samples
may be nested with counties or watersheds nested within larger regions (e.g., states),
etc. In the absence of such sampling structure, this framework may not be helpful for
accounting for spatial dependences. Some reasons to consider multilevel models
with spatial data: (1) it can accommodate using all the data to perform inferences
when some groups or blocks have small sample size; (2) it provides more efficient
inference for regression parameters; (3) it can appropriately include predictors at >1
level in a hierarchy (e.g., within patch, patch, and landscape predictors); and (4) it
can provide correct estimates of uncertainty (standard error, confidence interval, etc.)
(Gelman and Hill 2007). For example, if we collect multiple samples within patches
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and sample across different landscapes or region, we could specify a multilevel
regression as follows:

yi,p, l ¼ αþ β1xi þ γp þ δl þ εi, ð6:9Þ

where γp is a random effect of a patch, and δl is a random effect of the landscape or
region. In doing so, this formulation acknowledges that observations within each
region have some correlation/similarity.

6.2.4.6 Generalized Least Squares and Spatial Mixed Models

Generalized least squares models (GLS) and spatial mixed models are similar in
scope to a multilevel model. The main conceptual difference is that we specify
spatial correlation structures explicitly in the random effects (GLMMs) or residuals
(GLS) by modeling the variance–covariance matrix over space.

In a GLS spatial model, we take a typical regression, yi ¼ α + β1xi + εi, where ε is
~ N(0, σ2) and replace the variance on the error term with a variance–covariance
matrix: ε ~ N(0, Σ) (Keitt et al. 2002). In a GLMM spatial model, a similar approach
is taken, but a variance–covariance matrix is added for the random effect: γ ~ N(0, Σ)
rather than the residuals (Littell et al. 2006). In both cases, parametric correlation
functions are fit to explain the variance–covariance matrix by specifying model-
based correlation structures, akin to model-based variogram structures we described
in Chap. 5. These correlation structures are sometimes referred to as Gaussian
random fields (Thorson and Minto 2015). For example, in the GLS we will consider
below, we will fit a spatial exponential covariance (see Chap. 5):

P ¼ σ2
1 exp �dij

α

� �

exp �dij
α

� �
1

2
664

3
775, ð6:10Þ

where σ2 is the non-spatial variance estimated, dij is the distance between two
observations i and j, and α is a parameter to be estimated (related to the range).
With mixed effects, one can specify models that only account for spatial autocorre-
lation within the regions/groups specified by the random effect. For instance,
Fletcher (2005) used this general approach to account for within-patch spatial
dependence of species distribution while assuming that among-patch dependence
was negligible. Similar to CAR and SAR, GLS has a strong foundation for normally
distributed response variables, but the application of these models to non-normal
data is more challenging (Rousset and Ferdy 2014). Note the utility of GLS may
depend upon the scale of environmental relationships being considered. For
instance, Diniz et al. (2003) found that GLS tended to de-emphasize covariates
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operating across large spatial scales while overemphasizing covariates operating at
more local scales.

6.2.5 Inference Versus Prediction

An implicit but pervasive issue regarding spatial regression and other modeling
approaches considered in this book regards whether the goal of the work is for
inference or prediction. When our goal is inference, we are interested in estimating
factors influencing response variables (Stephens et al. 2007). In contrast, if our goal
is prediction, we aim to build models that can make accurate predictions or pro-
jections across space and time (Boyce et al. 2002), including both interpolating
between sample locations and predicting to new areas (i.e., model transferability; see
Chap. 7 for more). Ecologists and conservation biologists often use models in both
ways, but ultimately these are very different goals and model building and evaluation
will be (or should be) different depending on the goal.

Spatial regression models can be helpful in problems of inference, where we are
interested in understanding spatial or environmental relationships, such as factors
related to species distribution and abundance. These approaches can potentially
provide more reliable inference in regard to parameter estimates and their uncer-
tainty, as well as more reliable statistical hypothesis tests. However, the use of these
models for prediction, projection, or interpolation can sometimes be difficult,
depending on the type of model considered. For example, with autocovariate
models, prediction requires information on the response variable (e.g., occurrence)
across the region being predicted, because the regression model includes this
information in the form of the autocovariate (Augustin et al. 1996). In contrast,
trend surface and related spatial filtering models are straightforward to use in
prediction because only the physical locations are used as predictors. In some
cases, spatial regression models are used for prediction where the dependence term
is ignored (e.g., using only the fixed effects from a mixed effects model). Depending
on the goal of spatial modeling, the utility of the above approaches may vary.

6.3 Examples in R

6.3.1 Packages in R

In R, there are a few libraries that can be used for spatial regression models. We use
the mgcv package for fitting generalized additive models (Wood 2006), lme4 for
fitting multilevel models (Bates et al. 2015), and vegan (Oksanen et al. 2018) and
spdep (Bivand and Piras 2015) for fitting eigenvector maps. We use the spdep
package for models requiring lattice data (autocovariate, SAR, CAR) and interpreting
autocorrelation in the residuals of models. We fit spatial GLS and mixed models with
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MASS (Venables and Ripley 2002) and spaMM (Rousset and Ferdy 2014), but other
packages can be used, particularly Bayesian modeling packages (e.g., spBayes)
(Finley et al. 2015).

6.3.2 The Data

Monitoring programs are often hierarchically structured and filled with spatio-
temporal dependence in the data. The Northern Region Landbird Monitoring Pro-
gram is one such example (Hutto and Young 2002). Sampling locations consisted of
point counts (100-m radius), along a transect (typically 10 points/transect; transects
are approximately 3 km long), with transects randomly selected within USFS Forest
Regions across Montana and Idaho (Fig. 6.6). Ten-minute point counts were
conducted by trained observers, where all birds seen or heard were recorded. Here
we only consider birds detected within 100-m of the point. These points were also
resampled over time, although we will not consider these temporal repeated mea-
sures here.

To interpret spatial regression models, we consider a simple environmental
relationship of species occurrence along an elevation gradient. Elevation is

Fig. 6.6 The Northern Region Landbird Monitoring Program applies a hierarchical sampling
design for surveying bird communities. This monitoring program covered (a) northern Idaho and
western Montana, where (b) transects were distributed across different watersheds, with typically
10 points per transect. Here we focus on the occurrence of (c) varied thrush (picture courtesy of
Matthew Dodder at http://www.birdguy.net/)
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frequently considered to be an important, though often indirect, factor correlated
with species distribution. We focus on the occurrence of the varied thrush (Ixoreus
naevius) (Fig. 6.6), a migratory bird that breeds in the western USA. Varied thrush
have declined in the western USA over the past several decades, based on Breeding
Bird Survey data (Sauer et al. 2017), with the annual decline of approximately 2–3%
per year (1966–2015: �2.47, 95% CI: �3.19, �1.79; 2005–2015: �3.32, 95% CI:
�5.14, �1.56). Furthermore, they are often considered an old-growth, interior
species (Brand and George 2001; Betts et al. 2018). Consequently, this species has
been of some interest for conservation.

We fit logistic regression models and their spatial extensions to infer and predict
the distribution of varied thrush as a function of elevation in this mountainous
region. Here we focus on modeling detection/non-detection of thrushes (0/1 data).
Elevation was derived from a 30-m resolution Digital Elevation Model (DEM). Prior
to analysis, all GIS layers were aggregated to a common 200-m resolution, reflecting
the grain of the sampling unit (100-m-radius point counts).

With this sampling design, there are likely observation errors in detecting varied
thrushes, such that models that explicitly account for imperfect detection would be
useful (McCarthy et al. 2012). Rota et al. (2011) estimated that detection probabil-
ities of varied thrushes with this sampling design was relatively high ( p ¼ 0.87/
count), which is likely driven by their distinctive and loud song. We do not consider
that sampling error here to focus specifically on the problem of spatial dependence.
See sect. 6.4 for further discussion on sampling errors.

6.3.3 Models that Ignore Spatial Dependence

To begin, we import a raster layer of elevation with the raster package and use
this layer to also derive other key variables related to elevation, such as slope and
aspect (Fig. 6.7).
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Fig. 6.7 The raster data considered come from a digital elevation model, including elevation
(in km), aspect (in radians), and slope. Note that slope is double square-root transformed for
visualization
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> library(raster)
> elev <- raster("elev.gri")

#create aspect and slope layers from the elevation layer
> elev.terr <- terrain(elev, opt = c("slope", "aspect"), unit =
"radians")

The terrain function in the raster package takes an elevation layer (e.g.,
DEM) and returns raster layers that are calculated from elevation, including slope,
aspect, topographic position index, terrain ruggedness index (TRI), roughness, and
flow direction (Wilson et al. 2007) (Table 6.2). Here, we just calculate slope and
aspect (Fig. 6.7). Note that for this function, the projection must be set on the raster
layer for implementation. This function defaults to aspect being calculated in
radians, using the algorithm in Horn (1981).

We can merge the slope and aspect layers into a single raster stack that holds all
raster layers. We create a single object that holds all of the data with the stack
function:

#makes a multilayered file for extraction
> layers <- stack(elev, elev.terr)
> names(layers) <- c("elev", "slope", "aspect")

We first consider a non-spatial logistic regression model. To do so, we use the
extract function to grab covariate values from layers at the sample locations
from the survey data and we then merge the covariates with our data on thrush
occurrence using cbind.

> point.data <- read.csv("vath_2004.csv", header=T)
> coords <- cbind(point.data$EASTING, point.data$NORTHING)
> land.cov <- extract(x = layers, y = coords)
> point.data <- cbind(point.data, land.cov)

Table 6.2 Terrain metrics that the raster package can calculate based on elevation data

Metric Description

Aspecta The compass direction that a slope faces.

Flow direction The direction of the greatest drop in elevation (or smallest rise) from focal
cell and its eight neighboring cells, coded as integer values in powers of
2 (starting east of focal cell and moving in a clockwise direction; 1, 2, 4, 8,
16, 32, 64, and 128).

Roughness Difference between the maximum and minimum value of the focal cell
and its eight neighboring cells.

Slope The change in elevation, described as the difference in elevation between
two points divided by the distance.

Terrain ruggedness
index

Absolute difference between the value of a cell and the value of its eight
neighboring cells (eight-neighbor rule).

Topographic posi-
tion index

Difference between the value of a cell and the mean value of its eight
neighboring cells (eight-neighbor rule).

aCan be measured in degrees or radians
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We consider a simple set of logistic regression models. We expect that elevation
may help explain varied thrush occurrence, where thrushes may be most likely to
occur at either low or moderate elevations. Consequently, we consider quadratic
terms in the logistic regression model to account for potential non-linearities
(Fig. 6.4) in occurrence as a function of elevation. We also consider slope and aspect
as proxies for local variation in environmental conditions. First, we transform the
explanatory variables to a mean of 0 and a variance of 1 (sometimes referred to as a
z-transformation or “centering and scaling”). Centering and scaling can help
improve model convergence and facilitates comparing coefficients for different
parameters.

> point.data$elevs <- scale(point.data$elev, center = T, scale = T)
> point.data$slopes <- scale(point.data$slope, center = T, scale = T)
> point.data$aspects <- scale(point.data$aspect, center = T, scale = T)

Note that the default for the scale function is to both center and scale, but we
explicitly request this here to illustrate. Now we can fit logistic regression models of
varying complexity.

> VATH.elev <- glm(VATH ~ elevs, family = "binomial", data =
point.data)

> VATH.all <- glm(VATH ~ elevs þ slopes þ aspects, family =
"binomial", data = point.data)

> VATH.elev2 <- glm(VATH ~ elev þ I(elev^2), family = "binomial", data
= point.data)

Note that to specify a quadratic term in R, we write I(elev^2). This could also
be accomplished through the poly() (see below). We can contrast model fit using
AIC:

> round(AIC(VATH.elev, VATH.all, VATH.elev2), 2)

##
df AIC
VATH.elev 2 583.10
VATH.all 4 584.84
VATH.elev2 3 566.54

> summary(VATH.elev2)

##
Call:
glm(formula = VATH ~ elev þ I(elev^2), family = "binomial", data = point.
data)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.6088 -0.5787 -0.5032 -0.3231 3.0804
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Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -7.984 1.990 -4.012 6.01e-05 ***
elev 10.698 3.227 3.316 0.000915 ***
I(elev^2) -4.476 1.281 -3.494 0.000475 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 584.34 on 804 degrees of freedom
Residual deviance: 560.54 on 802 degrees of freedom
AIC: 566.54

Number of Fisher Scoring iterations: 6

For each of these models, we can use the summary function to view the
coefficients estimated from the model and related diagnostics. While this small set
of candidate models is far from a complete set, from this comparison there is some
evidence of thrush occurrence increasing at moderate elevations. This can be
concluded because the linear elevation term is positive while the quadratic term is
negative (both of which are significant based on p-values, or Pr(>|z|), which
will cause a humped-shaped relationship with elevation. We can plot this relation-
ship by first generating a new data set to predict onto and then use the predict
function (Fig. 6.8):

> elev <- seq(min(point.data$elev), max(point.data$elev), length = 15)
> newdata <- data.frame(elev = elev)

>glm.pred<-predict(VATH.elev2,newdata=newdata,type="link",se =T)
> ucl <- glm.pred$fit þ 1.96*glm.pred$se.fit
> lcl <- glm.pred$fit - 1.96*glm.pred$se.fit
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Fig. 6.8 (a) Predicted relationship (with 95% prediction intervals) of varied thrush occurrence with
elevation based on a standard logistic regression model. (b) Correlogram using the raw response
data, where gray region shows the 99% null envelope from a permutation test. (c) Mapping
predictions from model
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#create data frame and back-transform to probability scale
> glm.newdata <- data.frame(newdata, pred = plogis(glm.pred$fit),
lcl = plogis(lcl),ucl = plogis(ucl))

> plot(glm.newdata$elev, glm.newdata$pred, ylim = c(0,0.5))
> lines(glm.newdata$elev, glm.newdata$lcl)
> lines(glm.newdata$elev, glm.newdata$ucl)

We can also plot predictions of this model across the study region by predicting
onto the raster stack layer. To do so, the raster package defaults to making
predictions on the link scale, but we can then back-transform the predictions on
the raster to the probability scale (Fig. 6.8c).

> glm.raster <- predict(model = VATH.elev2, object = layers)
> glm.raster <- exp(glm.raster) / (1 þ exp(glm.raster))
> plot(glm.raster, xlab = "Longitude", ylab = "Latitude")

In this model and subsequent models, we will generally focus on two issues. First,
is there evidence for spatial autocorrelation in the residuals of the models? Second,
how do estimated relationships, that is, the coefficients and standard errors (SEs),
change depending on the model?

We can determine if spatial dependence might be problematic for inferences by
considering if there is evidence for spatial dependence in the residuals of the model
(Dormann et al. 2007; Beale et al. 2010). First, we consider if there is spatial
autocorrelation in the response variable. For interpreting spatial autocorrelation,
we will use the correlogram function described in Chap. 5 when we used the
spdep package. The function in Chap. 5 was altered to allow specification of
different bins for lag distances and the maximum distance considered. This function
is useful because it can be readily used for both binary data (0/1 response data) and
for other response variable distributions (e.g., residuals), although other functions,
such as the correlog function in the ncf package (Bjørnstad and Falck 2001)
could also do the trick. We call this function icorrelogram and add it to our data
frame with the source function. We then plot the resulting the correlogram
(Fig. 6.8b).

#import function
> source('icorrelogram.r')

To inspect this function, simply type:

> icorrelogram

##
function(locations,z, binsize, maxdist){

distbin <- seq(0,maxdist,by=binsize)
Nbin <- length(distbin)-1
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moran.results <- data.frame(dist = rep(NA,Nbin),
Morans.i =NA,null.lcl=NA, "null.ucl"=NA)

for (i in 1:Nbin){
d.start <- distbin[i]
d.end <- distbin[i+1]
neigh <- dnearneigh(x=locations, d1=d.start, d.end, longlat=F)
wts <- nb2listw(neighbours=neigh, style='B', zero.policy=T)
mor.i <- moran.mc(x=z, listw=wts, nsim=200, alternative="greater",

zero.policy=T)

moran.results[i, "dist"]<-(d.end+d.start)/2
moran.results[i, "Morans.i"]<-mor.i$statistic
moran.results[i, "null.lcl"]<-quantile(mor.i$res, probs = 0.025,na.
rm = T)
moran.results[i, "null.ucl"]<-quantile(mor.i$res, probs = 0.975,na.
rm = T)

}
return(moran.results)
}

This function identifies neighbors between points using the dnearneigh func-
tion for different distance classes. It then takes the object created, reformats it to a list
of relevance to theW spatial neighbor matrix, and uses a moran.mc function to run
a permutation-based Moran’s I. The distance classes, Moran’s I and the null enve-
lope from the permutations are then stored in a data frame. We can run the function
on the observed data and plot (Fig. 6.8):

#run correlogram function
> VATH.cor <- icorrelogram(locations = coords, z
= point.data$VATH, binsize = 1000, maxdist = 15000)

> head(VATH.cor)

##
Dist Morans.i Null.lcl Null.ucl
1 500 0.34 -0.06 0.06
2 1500 0.10 -0.03 0.03
3 2500 0.01 -0.02 0.03

#plot correlogram
> plot(VATH.cor$Dist, VATH.cor$Morans.i, ylim = c(-0.5, 0.5))
> abline(h=0, lty = "dashed")
> lines(VATH.cor$Dist, VATH.cor$Null.lcl)
> lines(VATH.cor$Dist, VATH.cor$Null.ucl)

Now we consider if there is spatial autocorrelation in the residuals of the logistic
regression model.

#residuals from quadratic elevation model
> VATH.elev2.res <- residuals(VATH.elev2, type = "deviance")
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Note that we request the deviance-based residuals. For GLM-type models, there
are several related residuals that could be calculated, the default being a deviance-
based residual. For a binomial or Bernoulli GLM, this type of residual is calculated as:

di ¼ si
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

�
yilog

�byi�þ 1� yið Þlog�1� byi�q
, ð6:11Þ

where di is the deviance of observation i, yi is the observation, by is the predicted
value, and si ¼ 1 if yi ¼ 1 and �1 if yi ¼ 0. The deviance residuals are potentially
more useful in GLMs in comparison to others because they are directly related to the
overall deviance (and likelihood) of the model, where the sum of the deviance
residuals equals the deviance of the model (�2log-likelihood). We can visualize
spatially the residuals by mapping them. More formally, we can assess this using the
icorrelogram function:

#correlogram on residuals
> corr.res <- icorrelogram(locations = coords, z =
VATH.elev2.res, binsize = 1000, maxdist = 15000)

Here, we find evidence for spatial autocorrelation in the residuals of the model
(Fig. 6.9). Note that rather than using correlograms, we could have used
semivariograms on the residuals to interpret spatial autocorrelation in the residuals
(Beguin et al. 2012).

It is important to understand the interpretation of the use of residuals in this
analysis in comparison to the raw data. For instance, if we fit an intercept-only
(mean) model and contrast correlograms from the raw data and the residuals of the
mean model:

> VATH.int <- glm(VATH ~ 1,family = "binomial", data = point.data)
> VATH.int.res <- residuals(VATH.int, type = "deviance")

> corr.int.res <- icorrelogram(locations = coords, z =
VATH.int.res, binsize = 1000, maxdist = 15000)

> cor(VATH.cor$Morans.i, corr.int.res$Morans.i)

##
[1] 1

We find that the Moran’s I is identical (r ¼ 1). This illustrates the equivalence of
considering residuals from regression models in correlograms when no predictors
are considered to that of the raw data (Bivand et al. 2013).

Because of the spatial dependence in the residuals, we consider either subsetting
the data based on the approximate range of spatial autocorrelation or regression-like
models that attempt to account for spatial autocorrelation. First, we subset the data.
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Given the sampling design and the shape of the correlogram (Fig. 6.8b), it would be
natural to only consider one point per transect. Note we could also potentially pool
across all points on each transect, however, such an approach would increase the
spatial grain of the analysis, which might not be ideal. Below we use a function to
pick one random point from each transect.

#shuffle points on transects
> rand.vector <- with(point.data, ave(POINT, as.factor(TRANSECT),
FUN=function(x) sample(length(x))))

#pick one random point on transect and remove rest
> point.datasub <- point.data[rand.vector == 1,]

#coordinates from subset data
> coords.sub <- cbind(point.datasub$EASTING, point.datasub$NORTHING)
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Fig. 6.9 Correlograms on the residuals of the models considered. Note that for subsetting the data,
correlograms were calculated for wider lag distance bins because of less data being used
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With this data subset, we then refit the logistic regression model.

> VATH.sub <- glm(VATH ~ elev þ I(elev^2), family = "binomial", data =
point.datasub)

> summary(VATH.sub)

##
Call:
glm(formula = VATH ~ elev þ I(elev^2), family = "binomial", data = point.
datasub)

Deviance Residuals:
Min 1Q Median 3Q Max
-0.5673 -0.5408 -0.4677 -0.3022 2.6507

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.158 4.498 -1.369 0.171
elev 8.254 7.519 1.098 0.272
I(elev^2) -3.860 3.076 -1.255 0.209

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 109.89 on 166 degrees of freedom
Residual deviance: 105.18 on 164 degrees of freedom
AIC: 111.18

Number of Fisher Scoring iterations: 6

When we subset the data, our sample size decreases substantially, from 805 to
167 points. Not surprisingly, the SEs on the parameter estimates increase substan-
tially and there is no longer strong evidence for an elevation effect. We can interpret
whether this subsetting removed the spatial autocorrelations in the residuals of the
model. Note that for this subset, we need to use a larger lag distance than 1-km
because we no longer have data points <1 km (or alternatively, one could just
increase the first few bin sizes). We calculate the correlogram using a 2-km lag
distance.

> VATH.sub.res <- residuals(VATH.sub)

#correlogram on residuals
> corr.sub.res <- icorrelogram(locations = coords.sub, z =
VATH.sub.res, binsize = 2000, maxdist = 15000)

This subsetting suggests that spatial autocorrelation is no longer problematic
(Fig. 6.9), but there is a cost in terms of reduced power. Regression models that
use all of the data but account for spatial dependence might be a useful alternative in
this case.
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6.3.4 Models that Account for Spatial Dependence

We consider several types of models that account for spatial dependence. These
include: trend surface models, eigenvector-based models, autocovariate models
(autologistic regression), autoregressive models (a CAR model), a multilevel
model, generalized least squares, and spatial GLMMs.

6.3.4.1 Trend Surface Models

We consider two types of trend surface models. In the first model, we simply extend
our logistic regression model to include x–y coordinates, along with their quadratic
and cubic polynomial terms with the I() function.

> VATH.trend <- glm(VATH ~ elev þ I(elev^2) þ EASTING þ NORTHING þ
I(EASTING^2) þ I(EASTING^3) þ I(NORTHING^2) þ I(NORTHING^3),
family = "binomial", data = point.data)

> summary(VATH.trend)

##
Call:
glm(formula = VATH ~ elev þ I(elev^2) þ EASTING þ NORTHING þ
I(EASTING^2) þ I(EASTING^3) þ I(NORTHING^2) þ I(NORTHING^3),
family = "binomial", data = point.data)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.0301 -0.5425 -0.2959 -0.1743 2.8718

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.861eþ00 6.332eþ00 -1.557 0.11943
elev 8.795eþ00 3.138eþ00 2.803 0.00507 **
I(elev^2) -3.195eþ00 1.248eþ00 -2.559 0.01049 *
EASTING 2.208e-04 4.769e-05 4.631 3.65e-06 ***
NORTHING -8.018e-05 5.076e-05 -1.580 0.11420
I(EASTING^2) -1.263e-09 2.806e-10 -4.502 6.72e-06 ***
I(EASTING^3) 2.090e-15 5.122e-16 4.081 4.48e-05 ***
I(NORTHING^2) 2.296e-10 1.366e-10 1.681 0.09275 .
I(NORTHING^3) -2.049e-16 1.179e-16 -1.738 0.08216 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 584.34 on 804 degrees of freedom
Residual deviance: 486.89 on 796 degrees of freedom
AIC: 504.89

Number of Fisher Scoring iterations: 6
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In the above model, we manually added quadratic and cubic terms. A more
automated way to do this is with the poly function, where specifying poly
(EASTING,3) would add the linear, quadratic and cubic terms. Note that the
poly function also standardizes polynomials to be orthogonal, removing the cor-
relation between terms (which in many situations would be preferred). While the
above model is straightforward to implement, it is limited in the spatial variation in
can capture. An alternative to this model is to consider a generalized additive model
(GAM), where we allow spline functions to capture spatial variation. The mgcv
package provides a means to automate the selection of spline variation through the
use of generalized cross-validation procedures. This model can be run as:

> library(mgcv)
> VATH.gam <- gam(VATH ~ elev þ I(elev^2) þ s(EASTING, NORTHING),
family = "binomial", data = point.data)

In this model formulation, elevation is considered in a similar way as above but
splines are considered for both Easting (x) and Northing (y) coordinates with the s
command. This syntax defaults to automated selection of the number of knots being
considered. We can manually adjust the number of knots (Fig. 6.5) by adding some
syntax to the s command. We will look at GAMs in more detail in Chap. 7. In this
case, the use of the gam formulation reduces spatial autocorrelation in the residuals
(Fig. 6.9); however, it does not appear to fully remove the spatial dependence.

6.3.4.2 Eigenvector Mapping

To account for spatial dependence with eigenvector mapping, there are three steps.
First, we create a neighborhood weights matrix with the spdep package. We can do
this in several ways. Here we calculate a neighborhood weights matrix by using the
maximum distance needed for a minimum spanning tree—the minimum set of
connections needed to fully connect points across the landscape. The distance
needed for a minimum spanning tree can be determined with the vegan package
using the spantree function (note: this distance could also be determined using
the pcnm function and finding the threshold, as discussed in Chap. 5).

> library(vegan)
> spantree.em <- spantree(dist(coords), toolong = 0)
> max(spantree.em$dist)

##
[1] 41351.09

We then identify neighborhoods with the dnearneigh function using this
distance. With these neighbors, we extract the distances between neighbors with
the nbdists function. Finally, we transform distances as suggested in Dormann
et al. (2007) with the lapply function (because nbdists object is in list form),
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and then create a list in the format relevant to the W matrix with the nb2listw
function:

> dnn <- dnearneigh(coords, 0, max(spantree.em$dist))
> dnn_dists <- nbdists(dnn, coords)
> dnn_sims <- lapply(dnn_dists, function(x) (1 - ((x / 4)^2)))
> ME.weight <- nb2listw(dnn, glist = dnn_sims, style = "B",
zero.policy = T)

With thisWmatrix, we use the ME function in the spdep package to identify the
most important eigenvectors that reduce spatial dependence, based on a permutation
bootstrap test on Moran’s I for the residuals (Griffith and Peres-Neto 2006). In this
function, we include the relevant covariates in the model formula, but we also add
the neighborhood matrix (in list form):

> VATH.ME <- ME(VATH ~ elev þ I(elev^2), family = "binomial", listw =
ME.weight, data = point.data)

> VATH.ME$selection

##
Eigenvector ZI pr(ZI)
0 NA NA 0.01
1 796 NA 0.01
2 804 NA 0.03
3 805 NA 0.20

> head(fitted(VATH.ME),2)

##
vec796 vec804 vec805
[1,] 0.003042641 -0.008629250 0.01187249
[2,] 0.003088077 -0.008737222 0.01196633

The ME function provides output regarding the eigenvectors selected but we need
to then refit the logistic regression model with this eigenvectors included as
covariates.

#new glm with ME covariates
> VATH.evm <- glm(VATH ~ elev þ I(elev^2) þ fitted(VATH.ME), family =
"binomial", data = point.data)

> summary(VATH.evm)

##
Call:
glm(formula = VATH ~ elev þ I(elev^2) þ fitted(VATH.ME), family =
"binomial",
data = point.data)
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Deviance Residuals:
Min 1Q Median 3Q Max
-1.5359 -0.5175 -0.4027 -0.1416 2.7454

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.401 1.948 -4.312 1.62e-05 ***
elev 8.776 3.029 2.898 0.00376 **
I(elev^2) -3.112 1.168 -2.664 0.00773 **
fitted(VATH.ME)vec796 -14.742 3.198 -4.610 4.03e-06 ***
fitted(VATH.ME)vec804 -8.644 3.242 -2.666 0.00767 **
fitted(VATH.ME)vec805 38.110 8.789 4.336 1.45e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 584.34 on 804 degrees of freedom
Residual deviance: 499.73 on 799 degrees of freedom
AIC: 511.73

Number of Fisher Scoring iterations: 7

In this case, the approach identifies three eigenvectors to include, each of which
explains occurrence to some degree. However, the inclusion of these eigenvectors
does not remove spatial autocorrelation in the residuals of the model (Fig. 6.9).
Overall, the main difference in this approach relative to the trend surface model
described above is the creation of the eigenvector covariates and determining which
of these covariates to include in the final logistic regression model.

6.3.4.3 Autocovariate Models

To fit autocovariate models, we calculate new autocovariates and then use these
covariates in a standard logistic regression model. We will calculate these
autocovariates with the autocov_dist function in the spdep package. Because
most of the significant autocorrelation in the residuals occurs <1 km (Fig. 6.8b), we
will calculate the autocovariates at this scale.

> auto1km <- autocov_dist(point.data$VATH, coords, nbs = 1000, type =
“one”, style = "B", zero.policy = T)

The type¼ provides the weighting scheme. When inverse is specified, points are
weighted by the inverse of the distance between the focal point and the neighboring
point. If “one” is specified, all points within the distance (nbs) are given equal
weight. style describes how the covariate will be calculated, with "B" reflecting a
binary coding. Bardos et al. (2015) stated that using style ¼ "B" provides a valid
weighting scheme for autocovariate models.
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We then fit standard logistic regression models with these covariates included.

> VATH.auto1km <- glm(VATH ~ elev þ I(elev^2) þ auto1km, family =
"binomial", data = point.data)

> summary(VATH.auto1km)

##
Call:
glm(formula = VATH ~ elev þ I(elev^2) þ auto1km, family = "binomial",
data = point.data)

Deviance Residuals:
Min 1Q Median 3Q Max
-2.0314 -0.4131 -0.3809 -0.2902 2.9077

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -6.6518 1.9660 -3.383 0.000716 ***
elev 6.9046 3.1222 2.211 0.027006 *
I(elev^2) -2.8061 1.2106 -2.318 0.020450 *
auto1km 0.8665 0.1008 8.596 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 584.34 on 804 degrees of freedom
Residual deviance: 470.99 on 801 degrees of freedom
AIC: 478.99

Number of Fisher Scoring iterations: 6

In this case, the inclusion of the autocovariate in the model is very significant,
while the coefficients for the elevation effect decrease. In addition, the inclusion of
the autocovariate removes the spatial autocorrelation in the residuals (Fig. 6.9).

6.3.4.4 Autoregressive Models

Fitting autoregressive models to non-normal data is challenging. One approach is to
use Bayesian modeling. While there are some packages for fitting spatial
autoregressive models with Bayesian modeling (e.g., see the spBayes package;
Finley et al. 2015), using Bayesian methods for spatial regression is often compu-
tationally demanding. A new alternative is using “Integrated Nested Laplace
Approximation” or INLA (Blangiardo and Cameletti 2015). The value of this
approach is that it greatly reduces the computational demands of Bayesian modeling.
However, it does only apply to certain types of Bayesian models. For example,
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INLA can be used to fit CAR models for binary data. To do so, we need to create a
neighborhood weights matrix of the "dgTMatrix" form, which is a type of a
sparse matrix (sparse matrices are those that have very few observations and are
largely filled with zeros. There are efficient ways to store and manipulate these types
of matrices in R). We first create a neighborhood matrix by creating Thiessen
polygons from the point data with the deldir and dismo packages (Fig. 6.3).
Thiessen polygons, also known as Voronoi polygons, are based on Delaunay
triangulation. These polygons partition a region into convex polygons such that
each polygon contains exactly one point.

> library(INLA)
> library(deldir)
> library(dismo)

> thiessen <- voronoi(coords)

#plot thiessen polygons
> plot(thiessen)
> points(coords, col = "red")

> point.poly <- poly2nb(thiessen)

#plot neighborhood matrix
> plot(point.poly, coords, col = "red", add = T)

#format neighborhood matrix
> adj <- nb2mat(point.poly, style = "B")
> adj <- as(adj, "dgTMatrix")

With this neighborhood matrix, we can then fit the CAR model. To do so, for
INLA we need to first specify the type of the model fitting, including the covariates
being considered. For the CAR model, we add an observation-level covariate to the
data frame (id) and then specify "besag" for the CAR model. We then fit the
model with the inla function:

> point.data$id <- 1:nrow(point.data)
> VATH.inla <- inla(VATH ~ elev þ I(elev^2) þ f(id, model = "besag",
graph = adj), family = "binomial", data = point.data,
control.predictor = list(compute = TRUE))

> summary(VATH.inla)

##
Call:
c("inla(formula = form, family = \"binomial\", data = point.data, ", "
control.predictor = list(compute = TRUE))")
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Time used:
Pre-processing Running inla Post-processing Total
2.8085 3.2775 0.5343 6.6203

Fixed effects:
mean sd 0.025quant 0.5quant 0.975quant mode kld
(Intercept) -8.0537 1.9683 -12.1721 -7.9648 -4.4301 -7.7824 0
elev 10.8093 3.1908 4.9396 10.6618 17.4881 10.3574 0
I(elev^2) -4.5148 1.2666 -7.1800 -4.4519 -2.1971 -4.3222 0

Random effects:
Name Model
ID Besags ICAR model

Model hyperparameters:
mean sd 0.025quant 0.5quant 0.975quant mode
Precision for ID 18537.90 18336.86 1248.75 13131.81 66833.34 3386.31

Expected number of effective parameters(std dev): 2.993(0.0029)
Number of equivalent replicates : 268.99

Marginal log-Likelihood: -899.24
Posterior marginals for linear predictor and fitted values computed

This approach allows for a binomial CAR model (note that if our response data
were normally distributed, we could use the spautolm function in the spdep
package). The spaMM package can also fit CAR models to binomial data, but the
above model in that package takes >50� longer to fit than with INLA. Also, the
INLA approach is computationally much faster than using other Bayesian modeling
approaches, which is a major benefit of this package. With the inla package, we
must manually calculate residuals to interpret spatial autocorrelation:

#manual deviance residual calculation:
> VATH.inla.fit <- VATH.inla$summary.fitted.values$mean
> si <- ifelse(point.data$VATH==1, 1, -1)
> VATH.inla.res <- si * (-2 * (point.data$VATH * log(VATH.inla.fit) þ (1 -
point.data$VATH) * log(1 - VATH.inla.fit)))^0.5

#correlogram on residuals
> cor.inla.res <- icorrelogram(locations = coords, z = VATH.inla.res,
binsize = 1000, maxdist = 15000)

In this case, we find that the CAR model removes most, but not all, of the
autocorrelation in the residuals (Fig. 6.9). This may be due to the fact that the
CAR model is only using first-order neighbors, such that only dependence between
neighboring points (~300 m apart) is captured. As the observed spatial dependence
in the residuals extends out to 1–2 km (Fig. 6.8b), this smaller scale is not sufficient
in this case.
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6.3.4.5 Multilevel Models

A simple multilevel model can also be fit to these data by considering transects as a
random effect in the regression model. In doing so, we effectively “block” with
transects, treating points within transects has having potential spatial dependence
(Keitt et al. 2002). Because this structure is not spatially explicit, we effectively
assume that dependence is constant within transects (e.g., neighboring points have
the same dependence as points located along the ends of the transects). These models
can be fit using the lme4 package. Prior to the model fitting, we need to make sure
that transect is considered a factor. Then we can fit the model with glmer function.

> library(lme4)

#random effects should be a factor
> str(point.data)
> point.data$TRANSECT <- as.factor(point.data$TRANSECT)

#glmm using lme4
> VATH.glmm <- glmer(VATH ~ elev þ I(elev^2) þ (1|TRANSECT), family =
"binomial", data = point.data)

> summary(VATH.glmm)

##
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) ['glmerMod']
Family: binomial ( logit )
Formula: VATH ~ elev þ I(elev^2) þ (1 | TRANSECT)
Data: point.data

AIC BIC logLik deviance df.resid
498.4 517.2 -245.2 490.4 801

Scaled residuals:
Min 1Q Median 3Q Max
-1.3520 -0.1755 -0.1541 -0.1129 5.7688

Random effects:
Groups Name Variance Std.Dev.
TRANSECT (Intercept) 4.456 2.111
Number of obs: 805, groups: TRANSECT, 167

Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.470 3.262 -2.596 0.00942 **
elev 9.459 5.155 1.835 0.06653 .
I(elev^2) -4.043 1.979 -2.043 0.04106 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
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Correlation of Fixed Effects:
(Intr) elev
elev -0.981
I(elev^2) 0.946 -0.988

When fitting random effects, we specify (1|TRANSECT), which signals that our
transect is being considered as a random intercept. We will see more uses of random
effects and their specification in Chap. 11. In this case, we find that by adding a
random transect effect to the model structure, positive spatial dependence in the
residuals vanishes (Fig. 6.9), although now there is some slight negative autocorre-
lation in the residuals at short distances. Also, note that the SEs increase and that the
elevation effect is only weakly significant (Fig. 6.10).

6.3.4.6 GLS and Mixed Models

GLS and spatially explicit mixed models are difficult to implement for non-normal
response data. For normal response data, the nlme package can accommodate
spatial correlation structures in the model residuals (sometimes referred to as “R-
side” correlation structures) or in the random effects (sometimes referred to as “G-
side” correlation structures) (Littell et al. 2006).

Given the hierarchical structure of the data, we can fit spatial mixed models where
spatial correlation is calculated within transects or across the entire region. The
glmmPQL function in MASS package can be used for GLS and spatial mixed models.

Elevation Elevation2

GLS

Multi−level

CAR

Autocovariate

Eigenvector

GAM

Trend surface

Sub−sampling

Standard

0 10 20
Estimate (95% CI)

−10.0 −7.5 −5.0 −2.5 0.0 2.5

Fig. 6.10 Estimates of elevation relationships based on the spatial models considered
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However, this approach uses penalized “quasi-likelihood” and has been shown to
have poor properties (Rousset and Ferdy 2014). Because maximum likelihood is not
used, we cannot use model selection approaches with this function. Nonetheless, we
can still estimate environmental relationships that account for spatial dependence.
Here, we fit an exponential correlation function within transects, by identifying
transect as a random effect and using the corExp command:

> library(MASS)
> library(nlme)
> VATH.pql <- glmmPQL(VATH ~ elev þ I(elev^2), random = ~1|TRANSECT,

correlation = corExp(form = ~ EASTING þ
NORTHING), family = "binomial", data = point.data)

A similar model can be fit that considers spatial dependence throughout the
region (not just within transects). This model takes considerable time to run, but
we illustrate it as an example. To do so, we create an observation-level factor. This
factor is then fit into the model as a random effect (Dormann et al. 2007).

> GROUP <- factor(rep("obs", nrow(point.data)))

> VATH.gls <- glmmPQL(VATH ~ elev þ I(elev^2), random = ~1|GROUP,
correlation = corExp(form = ~ EASTING þ NORTHING),
family = "binomial", data = point.data)

Penalized quasi-likelihood has some limitations, including potential bias in
estimating random and fixed effects, as well as an inability to use model selection.
A recent development that fits similar models without use of penalized quasi-
likelihood may overcome some of these limitations (Rousset and Ferdy 2014). The
spaMM package uses maximum likelihood to estimate a spatial GLMMwith Laplace
approximation. A similar formulation to that above can be fit with this package using
the corrHLfit function:

> library(spaMM)
> VATH.spamm.ml <- corrHLfit(VATH ~ elev þ I(elev^2) þ
Matern(1|EASTINGþNORTHING),
HLmethod = "ML", data = point.data, family = binomial(), ranFix =
list(nu=0.5)))

In this function, we specify a general Matérn spatial correlation structure. The
negative exponential function used above is a specific form of a Matérn correlation
structure, which in this case is called by setting nu ¼ 0.5 in the randFix
statement (see Chap. 5). Overall, this model provides similar estimates and results
to the gls model in this situation. For both, spatial autocorrelation is not removed in
the residuals when fitting the spatial correlation function across the entire region
(Fig. 6.9). However, when only fitting the function within transects with the pql
model, we find that spatial autocorrelation is removed in the residuals.
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6.4 Next Steps and Advanced Issues

6.4.1 General Bayesian Models for Spatial Dependence

Proper accounting for spatial dependence in non-normal data can be difficult. In this
chapter, we have focused on approaches that aim to address this issue in a variety of
ways, but each of these approaches has some limitations. Bayesian models that
capture spatial dependence provide a flexible means to accommodate spatial depen-
dence. The INLA package provides one straightforward approach to do so, but
INLA is limited to only certain types of regression models. More flexibility can be
achieved through modeling spatial dependence using the bugs language (via
Winbugs or Jags) (Kery and Royle 2016). In these approaches, either CAR/SAR
types of models can be fit or GLS and mixed model-like formulations can be fit. This
is often accomplished through the hierarchical formulation of spatial dependence
coming from a multivariate normal distribution. These types of models are often
thought to be useful for accounting for spatial dependence, although they can be
challenging to fit (Beale et al. 2010).

6.4.2 Detection Errors and Spatial Dependence

Throughout this chapter, we have ignored the problem of sampling error, such as
imperfect detection of species, to focus more simply on the issue of accounting for
spatial autocorrelation. However, observation errors are common in data sets and
these errors frequently need to be accounted for (MacKenzie et al. 2002). Several
models exist for accounting for imperfect detection, both in terms of false positive
and false negative errors (Miller et al. 2011). False negative errors are more
common, where a species or individual occurs in an area but we fail to detect
it. Occupancy, N-mixture, and distance sampling models are common approaches
to account for these issues (Kery and Royle 2016). False positive errors occur when
we misidentify species: we record that a species occurs in an area when in fact it
does not. False positive errors are more difficult to account for, but some models
exist that do so (Miller et al. 2011). We do not focus on these models in this book,
largely because there have been several excellent books that illustrate these models,
including their implementation in R (Royle and Dorazio 2008; Kery and Royle
2016).

There has been recent interest in extending these models to account for spatial
autocorrelation (Hines et al. 2010; Johnson et al. 2013). Initial attempts used
autocovariates like those shown here to account for spatial dependence (Royle and
Dorazio 2008). More recently, geostatistical models have been developed as well
(Johnson et al. 2013; Broms et al. 2014). Most of these models require customized
code and implementation with Winbugs or Jags interfaced through the use of R
(Carroll and Johnson 2008; Rota et al. 2011). However, some specialized R
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packages can also accommodate spatial dependence in this context. The hSDM and
stocc packages provide occupancy implementations that can accommodate spatial
dependence (Johnson et al. 2013).

6.5 Conclusions

Tobler’s first law of geography emphasizes that spatial dependence is common in
nature. Given that ignoring this fact can lead to spurious inferences (Bivand 1980;
Legendre 1993), accounting for spatial dependence in ecological data is often
needed. Doing so, however, can be challenging. Here, we illustrate a variety of
approaches to accounting for spatial dependence, contrasting their utility when using
binary response data. In this case, trend surface and related environmental filtering
(GAMs, eigenvector mapping) did not remove the spatial dependence in the resid-
uals. CAR models also did not remove the spatial dependence, presumably because
of the small neighborhood considered. Autocovariate and multilevel models did
remove spatial dependence in the residuals by appropriately capturing the spatial
scale of dependence in the data. Similar to Beale et al. (2010) and Dormann et al.
(2007), we find that autocovariate models tended to shrink the effects of the
environment relative to other approaches. In general, we recommend the use of
mixed models and CAR models that can account for local spatial dependence and
adjust uncertainty (SEs/CIs) of environmental relationships. This example illustrates
that appropriately capturing the scale of spatial dependence in model structure is
important for well-specified spatial models.

Throughout this discussion, we have used geographic coordinates and distances
to make inferences about spatial dependence and adjust for this issue in understand-
ing environmental relationships. Yet in many situations, effective distances that
capture the complexity of the environment (e.g., shopping malls as barriers to
organism movement and resource acquisition) may be more relevant. Spatial
weights matrices can capture such complexities when warranted (Dray et al.
2006). Ver Hoef et al. (2018) also emphasized how spatial neighborhoods used in
autoregressive models capture similar ideas to the use of network modeling in
connectivity assessments (see Chap. 9). This is an interesting and important linkage
that we expect will receive more attention in the coming years.

Care should be taken when applying spatial models, particularly for non-normal
response variables. There is ongoing debate regarding the utility of different model-
ing approaches to account for spatial dependence (Dormann et al. 2007; Betts et al.
2009; Dormann 2009). In addition, while several lines of evidence suggest that
spatial autocorrelation is problematic for conventional regression modeling, counter
examples have also been emphasized (Diniz et al. 2003; Hawkins et al. 2007).
Further advances in this area will no doubt provide a useful set of tools for spatial
ecologists and conservation biologists alike.
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Part II
Ecological Responses to Spatial Pattern

and Conservation



Chapter 7
Species Distributions

7.1 Introduction

Understanding and predicting species distributions lies at the heart of ecology.
Predictive models of species distributions are increasingly used in both basic and
applied ecology to predict the effects of future climate change (Thomas et al. 2004),
land-use change (Feeley and Silman 2010; Martin et al. 2013), species invasion
(Peterson 2003; Elith et al. 2010; Jimenez-Valverde et al. 2011), agricultural suit-
ability (Evans et al. 2010; Plath et al. 2016), best places for species reintroduction
(Hirzel et al. 2004; Martinez-Meyer et al. 2006), identify new protected areas
(Wilson et al. 2005), and to refine biodiversity inventories (Raxworthy et al. 2003).

Over the past two decades, there has been an explosion in the advancement and
application of predictive distribution models (Guisan and Zimmermann 2000; Elith
and Leathwick 2009; Renner et al. 2015). Species distribution models (SDMs),
ecological niche models (ENMs), climate envelope models, and habitat suitability
models (HSMs) all describe models that relate species distribution (occurrence or
abundance) to the environment through the quantification of response surfaces (i.e.,
relationships of species distribution with environmental variables; Guisan and Zim-
mermann 2000; Guisan et al. 2017) (Fig. 7.1). Other related models include resource
selection functions, occupancy models, and GAP models (Scott et al. 1993; Manly
et al. 2002; Rodrigues et al. 2004; MacKenzie et al. 2006). These models are used for
both inference on environmental relationships as well as prediction and projection,
where the estimated functions are used to map distributions over space and time.
These types of models have been developed in different sub-disciplines and each has
a unique focus on the types of questions addressed, the scales at which questions are
typically asked, and the specific types of data that are used. However, they all
emphasize the relationship of species distribution with the environment.

Here, we describe the key concepts relevant to predicting species distributions,
the types of data typically used, some common modeling algorithms, and illustrate
how models are frequently evaluated. Our general goal is to illustrate how concepts,
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data and models are used to create maps of species distributions for addressing
ecological questions and conservation problems. For more information regarding
general species distribution concepts, see the excellent books by Franklin (2009),
Peterson et al. (2011), and Guisan et al. (2017).

7.2 Key Concepts and Approaches

7.2.1 The Niche Concept

No concept in ecology has been more variously defined or more universally confused than
‘niche’. Nonetheless, the concept has become symbolic of the whole field of ecology. Real
and Brown (1991)

Species distribution modeling generally relies on niche concepts for developing
models (Austin 2002, 2007; Hirzel and Le Lay 2008). Most of the applications of
niche theory is heuristic—that is to say that scientists tend to use general ideas that
emerge from niche theory. Understanding the relevance of the niche concept is
essential for building, interpreting, and applying distribution models to ecological,
evolutionary, and conservation problems. Other theoretical developments have also
been used in the context of predicting species distributions, such as habitat selection
(Fretwell and Lucas 1970) and metapopulation theory (Pulliam 1988; Hanski and
Ovaskainen 2003), but here we focus on developments related to niche theory.

Data:
species and environment

Models:
algorithms and response curves

Predicted distribution:
current, past and/or future
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Fig. 7.1 A general framework of modeling species distributions. Data on species location are
linked to spatial data on the environment with quantitative models. These models vary considerably
in their assumptions about species responses to environmental gradients. With estimated response
curves, species distributions are mapped in space and/or time. Modified from Guisan et al. (2017)
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7.2.1.1 A Brief History of the Niche Concept and a Plethora of Niches

The term niche was originally coined by Joseph Grinnell in the early 1900s. Grinnell
was interested in the biogeography of birds and what limited their geographic range.
He specifically considered the problem of spatial overlap in congener thrasher
species in California (Grinnell 1917). His interpretation of the niche was largely
based on the idea of species–environment relationships, emphasizing the role of
habitat and behavioral adaptations as key components of a species’ niche. For
example, the California thrasher (Toxostoma redivivum) that he studied is well
adapted to its environment, foraging in shrubs and having adaptive behaviors to
reduce predation risk (e.g., camouflage).

In the 1920s–1930s, Elton advanced the niche concept, taking a different per-
spective. He emphasized the functional role of the species in its environment in
relation to food and enemies, in which species could impact the environment through
trophic interactions (Elton 1927). Elton focused on what a species does rather than
where a species occurs, such that he focused on both the species response to, as well
as the effect on, the environment. This perspective was quite distinct from Grinnell’s
perspective.

In the 1950s, Hutchinson took a quantitative perspective on the niche, consider-
ing it a “N-dimensional hypervolume where a species could persist” (Hutchinson
1957). In this way, an N-dimensional hypervolume reflects the idea that there are
N environmental variables that are required for species persistence, each of which
can be viewed as a different dimension in environmental space, and it is the
intersection of suitable values of all N variables, or the hypervolume, that identifies
the niche (Blonder et al. 2014). This work catalyzed the application of niche
concepts—including niche breadth, niche overlap, and niche partitioning—by
emphasizing measurable properties or dimensions of the niche. Hutchinson also
distinguished between fundamental versus realized niches, where the fundamental
niche was the environmental hypervolume in which a species could potentially
persist (sometimes referred to as the physiological or potential niche), while the
realized niche was a subset of this space where species actually occurred (Fig. 7.2).
He assumed that the realized niche was smaller than the fundamental niche due to
species interactions, particularly competition. This distinction is often made in the
development of species distribution models (e.g., Guisan and Thuiller 2005).
Hutchison (1957) defined the niche as a property of the species, not a property of
the environment. As a consequence, for Hutchison, there were no “empty niches” in
the world.

Pulliam (2000) and a seminal book by Chase and Leibold (2003) advanced the
niche concept. Pulliam (2000) emphasized that dispersal limitation could result in
many places that have environmental conditions that fall within a species’ niche yet
remain unoccupied. He also emphasized that the realized niche could in fact be larger
than the fundamental niche in situations where species occurred in sink habitats (see
Chap. 10). Chase and Liebold (2003) sought to unify niche concepts, integrating
Eltonian and Hutchinsonian views in a common framework. They defined the niche
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as, “The joint description of the environmental conditions that allow a species to
satisfy its minimum requirements so that the birth rate of a local population is equal
to or greater than its death rate along with the set of per capita effects of that species
on these environmental conditions” (Table. 7.1).

An important aspect of niches defined by Hutchison, and advanced by Pulliam
(2000), Chase and Liebold (2003), and others, is that of fitness. From these perspec-
tives, the niche embodies conditions where positive population growth occurs.
Models of species distribution, in contrast, typically only use information on species
occurrence or abundance (see below). Because species occurrence or abundance
may not correlate with resource quality or positive population growth (Van Horne
1983; Schlaepfer et al. 2002; Robertson and Hutto 2006), using information on
occurrence or abundance alone may not be sufficient for modeling the niche. That
nuance may be fine under some situations, but it makes it clear that predicting
species distributions may not be the same as predicting the niche. Indeed, there
has been much debate regarding exactly what species distribution models really
predict and how it relates to the niche concept (Franklin 2009; Araújo and Peterson
2012; Peterson and Soberón 2012).

7.2.1.2 Geographic Versus Environmental Space

When translating the niche concept to spatial models, a key distinction is geographic
versus environmental space. This distinction was emphasized by Hutchinson’s
perspective on the niche, where he distinguished the niche from the geographic
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Fig. 7.2 Environmental gradients and the niche. Shown are two environmental variables relevant
for the fundamental and realized niche of a species. The current biotope constrains the observed
niche of a species, where the current biotope does not include all conditions of the fundamental
niche. Changes in the biotope from environmental change causes a shift in the realized niche.
Modified from Franklin (2009) and Williams and Jackson (2007)
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space that contains environmental variation, or the biotope (Whittaker et al.
1973; Colwell and Rangel 2009) (Fig. 7.2). A consequence of this distinction is
that the niche is clearly an attribute of a species or population (one cannot have
“empty niches”), which also helps to understand the differences between niches and
habitats (see Chap. 8). Often we aim to make inferences on environmental space
(e.g., functions that describe species responses to environmental conditions) and
then we wish to map these responses in geographic space to make predictions or
projections of species distributions (Fig. 7.1).

The current biotope and future biotope may vary considerably, and our under-
standing of niches is constrained by the biotope where species currently occur
(Fig. 7.2). For instance, when using niche concepts to understand and predict the
effects of climate change, current data on species niches may be insufficient because
portions of the fundamental niche may not be expressed under current conditions
(Williams and Jackson 2007). Similar problems arise with predicting the spread of
invasive species using information on the environment in the native range of the
species (Peterson 2003; Broennimann et al. 2007). Experiments can help partially
resolve this issue (Buckley and Kingsolver 2012).

Table 7.1 Common terms and definitions used in species distribution modeling

Term Definition

Biotope The community’s environment (independent of a species).

Correlative distribution
model

Predictive models that are based on response functions derived from
species distribution and environmental factors.

Fundamental niche The environmental hypervolume in which a species could potentially
persist.

Mechanistic distribution
model

Predictive models based on either experiments or known relation-
ships of species with critical limiting factors, such as thermal toler-
ances of species.

Niche The joint description of the environmental conditions that allow a
species to satisfy its minimum requirements so that the birth rate of a
local population is equal to or greater than its death rate along with
the set of per capita effects of that species on these environmental
conditions.

Realized niche The environmental hypervolume in which a species occurs, or a
subset of the fundamental niche where favorable biotic interactions
occur.

Sample selection bias Bias that can arise when samples of species distribution are
nonrandom from the underlying distribution. Common in data col-
lected opportunistically.

Species prevalence How common a species is across the extent under consideration.
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7.2.1.3 Limiting Factors and the Niche

Several factors can limit the dimensions of the niche (Araújo and Guisan 2006).
Soberón categorized these factors as being one of three categories: abiotic, biotic,
and movement-related limitations (Soberón 2007, 2010; Soberón and Peterson
2005). He visualized and interpreted these limiting factors using Venn diagrams
and set theory, what are referred to a “BAM” diagrams (Biotic-Abiotic-Mobility
diagrams; Fig. 7.3). Where these three factors intersect defines the current geo-
graphic distribution of a species. A captures favorable abiotic conditions and
non-interactive variables (“scenopoetic variables”) where the intrinsic growth rate
of a species is positive, what has been termed the Grinnellian fundamental niche
(James et al. 1984). B emphasizes the area where biotic interactions (sometimes
referred to as Eltonian factors) allow for positive population growth. M represents
the area that is accessible to organisms, that is, the colonizable area (Barve et al.
2011). In this context, the geographic expression of the realized niche has
been described as the intersection of B and A, where conditions are suitable but
movement limitations may or may not preclude species occurrence (Peterson et al.
2011; Soberón and Peterson 2005). Soberón argued that biotic factors are typically
only relevant at fine spatial grains and thus can potentially be ignored in predicting
broad-scale distributions and ranges of species (Soberón 2010; Busby 1991), termed
the Eltonian Noise Hypothesis (Soberón and Nakamura 2009), although this con-
clusion is often debated (e.g., Wisz et al. 2013).

In general, the relative importance of these limiting factors may vary across
species and across spatial scales (Pearson and Dawson 2003; Soberón and Peterson
2005). For example, Lira-Noriega et al. (2013) found that the importance of dispersal-
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Fig. 7.3 BAM diagrams, illustrating the intersection of abiotic, biotic and movement-related
limiting factors of relevance to the niche within a study region, G (or biotope). In this framework,
A is considered the Grinnellian fundamental niche, which may or may not be occupied in a region
depending on biotic interactions and movement limitations. In (a) similar overlap of limiting factors
occurs. (b) At a fine spatial scale (small grain and extent), the fundamental niche is entirely
accessible, but may not be fully occupied due to biotic interactions. (c) At a broad spatial scale
(coarse grain and large extent), movement limitations may prevent colonization of some portions of
the fundamental niche, while biotic interactions at a coarse grain have been hypothesized to have
small effects on distribution. Modified from Soberón and Peterson (2005)
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related constraints for distributions of mistletoe (Phoradendron californicum) varied
as a function of spatial resolution of models, where dispersal-related constraints were
more important at fine resolutions. It has also been argued that this framework helps
illuminate differences in approaches and philosophies for modeling species distribu-
tions (Soberón and Nakamura 2009).

7.2.2 Predicting Distributions or Niches?

The focus on predicting and mapping distributions has led to a wide array of terms to
describe such models and projections. Often these models are referred to as “eco-
logical niche models,” “environmental niche models,” “habitat suitability models,”
or “species distribution models” (Franklin 2009; Peterson et al. 2011; Guisan et al.
2017). In this context, a common question arises: are these efforts actually modeling
niches (Peterson and Soberón 2012)? One argument is that if the focus is on
environmental space, rather than geographic space, these modeling efforts are
more squarely in the vein of modeling the niche (Peterson and Soberón 2012). Yet
as all modern concepts regarding the niche emphasize that it is the environmental
space is when species can persist (Holt 2009), we suggest refraining from
interpreting these models as that of the niche when only distribution information
(and no demographic information) is used for model building. While such models
can provide hypotheses regarding niches, they are best viewed as modeling
distributions.

7.2.3 Mechanistic Versus Correlative Distribution Models

The vast diversity of species distribution models can be organized in several ways.
Two useful properties include whether models are correlative (e.g., phenomenolog-
ical) or mechanistic (i.e., process-based), and the types of response data that are used.

Correlative distribution models take information on species distribution, such as
presence records, and relate them to environmental covariates, based on some sort of
formal relationship. These models are typically phenomenological—models that
describe or explain patterns without regard to underlying mechanisms. In contrast,
mechanistic distribution models are typically based on either experiments or known
relationships of species with critical limiting factors, such as thermal tolerances of
species (Buckley 2008; Kearney and Porter 2009). It is often argued that mechanistic
models may be more valuable when extrapolating model predictions to new places
or times; however, formal comparisons between correlative and mechanistic models
have revealed similar model performance in some situations (Buckley et al. 2010).
Furthermore, there are strengths and limitations to both approaches and it has been
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argued that perhaps this is a false dichotomy in the characterization of distribution
models (Dormann et al. 2012).

7.2.4 Data for Correlative Distribution Models

Correlative models can also be categorized based on whether presence-only,
presence–absence (or detection-non-detection; MacKenzie et al. 2002), or count
(abundance) data are used (Brotons et al. 2004; Lutolf et al. 2006; Potts and Elith
2006; Aarts et al. 2012). Presence-only data, or data where only a sample of presence
locations are available (and no information is available on absence or abundance),
are commonly used in correlative distribution modeling (Elith et al. 2006). There are
many sources of such data, including museum and herbaria specimens, information
from citizen science programs, and atlas programs (Graham et al. 2004). Presence-
only data can be used in isolation or they can be compared to background points,
sometimes called “pseudo-absences” to build distribution models. The latter
approach has been shown to frequently produce more accurate species distribution
models than using presence data alone (Elith et al. 2006). The value of using
background points is that it provides information on the biotope and if presence
locations reflect a non-random distribution of the underlying environment available
to organisms (Fig. 7.4). Two challenges with using background points are determin-
ing the number of background points and their spatial distribution (VanDerWal et al.
2009; Barbet-Massin et al. 2012). Some studies have attempted to select background
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Fig. 7.4 The use of background or pseudo-absence points for presence-only modeling can provide
relevant information on the biotope in the region for comparison to presence locations based on the
difference between the environment at presence locations relative to the background locations. In
(a) presence and background points have a similar distribution of environmental values, suggesting
random distribution relative to the environmental gradients, whereas in (b) presence locations
suggest a non-random distribution where the species is more likely to occur at high values of the
environmental gradient
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points that may be more likely to be considered absences based on using certain
rules, such as only creating background points at minimum distances away from
presence points; however, it is more common to simply generate randomly distrib-
uted background points. Renner et al. (2015) recently argued that many background
points should be generated—more than commonly implemented in the literature—
based on describing the use of background points in the context of inhomogeneous
point process models (see below).

Presence-only data have the benefit of being plentiful across broad geographic
areas. Furthermore, it is sometimes argued that such data circumvent the problem of
false negatives in presence–absence data (i.e., recording an absence when in fact the
species is present) (Guisan et al. 2007). Nonetheless, important limitations of such
data include that there is often sample selection bias in opportunistic presence-only
data and that the prevalence of the species is unknown. Both of these issues are valid
concerns. Sample selection bias occurs when samples are a nonrandom sample from
the region of interest, which often occurs in presence-only data when observations
are more likely to be documented near easily accessible areas, such as near roads or
urban areas (Kadmon et al. 2004; Loiselle et al. 2008; Phillips et al. 2009; McCarthy
et al. 2012). Such bias can result in the identification of spurious environmental
relationships and inaccurate predictions of distributions, in which models may
provide predictions of sampling bias rather than underlying distributions. Unknown
species prevalence arises because presence-only data do not provide information on
how common the species is in the extent under consideration, because it is unclear if
the presence-only samples reflect a small or large proportion of the underlying
distribution. For instance, 30 presence records may be available for a species in a
large study region, which could be because the species is rare and this number
reflects the prevalence of the rare species, or it could be that the species is common
and it was just inadequately sampled. This uncertainty leads to the conclusion that
the probability of occurrence cannot be directly estimated with presence-only data
(Yackulic et al. 2013) without making strong assumptions (Royle et al. 2012; Hastie
and Fithian 2013). Instead, these models predict a relative measure of occurrence
that is assumed to be proportional to the true probability of occurrence, similar to
interpretations of resource selection functions relative to resource selection proba-
bility functions (see Chap. 8).

Presence–absence data, on the other hand, typically come from planned, stan-
dardized surveys. These types of data allow for formal modeling of the probability of
occurrence of species (and can potentially account for observation errors and
imperfect detection in the estimation of occurrence). These types of data are also
thought to suffer less from sample selection bias. The rationale is that even when
sampling may be biased across space or over time, because models are comparing
occurrence observations to absence (or non-detection observations), effects of sam-
ple selection bias on estimated environmental relationships should be limited. Some
have argued that because absence data may result from observation errors (false-
negative errors), that it may be beneficial to only use presence data to help circum-
vent that problem (Guisan et al. 2007). However, in most situations imperfect
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absence data is still useful and can improve model predictions and interpretation
(e.g., Brotons et al. 2004; Rota et al. 2011).

Count data are also sometimes used in distribution modeling (Guisan and Harrell
2000; Potts and Elith 2006), and are generally derived from planned survey data.
Such data have the potential to provide abundance or density estimates. Count data
provide greater information content and resolution in potential species–environment
relationships (Cushman and McGarigal 2004); however, count data often require
greater sampling intensity. Because distribution models are less frequently built with
count data, for the remainder of this chapter we focus primarily on presence-only and
presence–absence data.

7.2.5 Common Types of Distribution Modeling Techniques

We provide an overview on common modeling approaches for species distributions.
Our summary is not comprehensive; rather we aim to emphasize very different
techniques that capture the spectrum of variation in modeling algorithms. We
illustrate envelope models (Pearson and Dawson 2003), the use of generalized linear
and additive models (Guisan et al. 2002), regression trees and forests (Prasad et al.
2006; Elith et al. 2008), and Maxent (Phillips et al. 2006). We conclude by noting
that many of these models can be derived more generally as inhomogeneous point
process models (Renner et al. 2015), which may be helpful for better interpreting the
relationships among model techniques.

These types of modeling algorithms are sometimes organized into three philo-
sophically different approaches: profile methods, statistical models, and machine-
learning algorithms. Profile methods are simple approaches that use environmental
distances or similarity-based measures to relate environmental variability at pres-
ence locations to other locations across the region of interest. Some examples
include envelope models (e.g., BIOCLIM), Mahalonobis distance, and DOMAIN
(Carpenter et al. 1993; Rotenberry et al. 2006). Statistical methods are typically
variants of linear models, such as generalized linear and additive models (Guisan
and Zimmermann 2000) (see Chap. 6). In these approaches, a model is specified
and then fit to the data via maximum likelihood or related techniques (e.g.,
ordinary least-squares). Statistical methods frequently focus on estimation of
parameters and providing measures of uncertainty. Machine-learning techniques
focus on identifying (and classifying) structure in complex data, often for situa-
tions where non-linearities and interactions are expected to occur, with the fre-
quent goal of accurate prediction or classification (Olden et al. 2008). These
philosophical distinctions can, however, be unclear, as some algorithms can be
described from both a statistical and machine-learning perspective (e.g., Phillips
et al. 2006; Elith et al. 2011).
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7.2.5.1 Envelope Models

Envelope models are presence-only models, wherein the distribution of environ-
mental variation at presence locations is used to create an “envelope” of suitability.
For example, the upper and lower quantiles of environmental covariates (e.g.,
5–95% of elevation values) provide a means to create an envelope, where environ-
mental conditions above or below those quantiles are deemed to be locations outside
of the envelope (Fig. 7.5). There are many variations on this theme, but in general
these approaches assume that all environmental variables considered are relevant,
such that locations must be within the envelope of all variables.

The earliest applications of this approach focused on climatic variables and large-
scale geographic range modeling. Busby (1991) developed software for this problem,
BIOCLIM,which used climatic variables in a GIS to determine envelopes.More recent
developments have attempted to gain more information out of envelope approaches
by considering multivariate relationships among variables and through the use of
similarity or kernel density measures to obtain relative measures of suitability.

7.2.5.2 GLMs and GAMs

In prior chapters, we introduced the use of generalized linear models (GLMs) and
generalized additive models (GAMs). Both of these approaches are frequently
applied to the problem of modeling species distributions. For distribution modeling,
logistic models are typically used based on binary response data; however, these
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models are flexible and can also accommodate abundance response variables (Potts
and Elith 2006). For presence-only data, presence points are typically contrasted to
background points (Elith et al. 2006). While initial applications of this approach
were somewhat ad hoc, this form of logistic regression can approximate more
theoretically motivated inhomogeneous point process models (see below). See
Chap. 6 for more detailed discussion of these methods.

Although GLMs have been widely used, a primary concern for their implemen-
tation in distribution modeling is the fact that may not adequately capture non-linear
response functions, which are often emphasized in niche theory (Austin 2007).
Because GAMs can accommodate non-linearity through the use of splines, they
are frequently used as a logical extension of GLMs. Nonetheless, the types of
non-linearity captured by GAMs (see Chap. 6) are less general than some other
methods, such as Maxent and regression trees.

7.2.5.3 Regression Trees and Forests

An alternative to the generalized linear (and additive) modeling framework is the use
of classification and regression trees (CART), also known as classification tree
analysis (CTA), or recursive partitioning (RP). Classification trees work with data
whose response variables are discrete, while regression trees work with continuous
response variables. Like GAMs, they do not rely on a priori hypotheses about the
relationship between independent and dependent variables. This method consists of
recursive partitions of the values of predictors into groups that are as homogeneous
as possible in terms of the response (Fig. 7.6). The tree is built by repeatedly splitting
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Fig. 7.6 A classification tree. (a) The splits of the tree and (b) how these splits result in species
responses to environmental gradients. Modified from Elith et al. (2008)
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the data, defined by a simple rule based on a single explanatory variable. At each
split, the data are partitioned into two exclusive groups, each of which is as
homogeneous as possible. A common approach is to grow a large tree and then
prune it (i.e., reduce its size/complexity) by collapsing the weakest links identified
through cross-validation and various indices (e.g., the “Gini” index; Breiman et al.
1984). The result can be thought of as a dichotomous tree that helps to classify
locations of species occurrence. When the trees are short, they can be intuitive and
visually appealing in terms of describing factors explaining distribution. As tree size
grows, their interpretation can become more difficult.

Some advantages of this approach include the ability to easily handle non-linear
relationships and interactions, outcomes are unaffected by monotonic transforma-
tions, trees are insensitive to outliers, and trees can accommodate missing data in
predictor variables by using surrogates (Breiman et al. 1984; De’ath and Fabricius
2000). Nonetheless, CTA often performs poorly compared to GLMs, GAMs, and
other models for species distribution modeling (Elith et al. 2008), in part because it
has difficulty in modeling smooth functions and that CTA can be sensitive to small
changes in the training (model building) data (Hastie et al. 2009; Guisan et al. 2017).
However, two extensions of CTA—Boosted Regression Trees and Random For-
ests—are quickly being adopted because of their high predictive performance. We
will focus on these methods, rather than CTA.

Random Forests and Boosted Regression Trees have gained popularity primarily
because they typically provide high predictive accuracy relative to CTA and some
other SDM algorithms (Elith et al. 2006; Prasad et al. 2006; Cutler et al. 2007).
Rather than producing a single classification tree, these approaches are ensemble
techniques that compile information from several models, using either “bagging” or
“boosting.” Bagging is a type of a bootstrap procedure, where several models are
created through bootstrap sampling of the data (i.e., sampling with replacement) and
predictions from models are combined in some way. Boosting uses sequential model
development (a forward, stage-wise procedure), where with each iteration
(sequence) there is an increasing emphasis on the training observations that are
difficult to classify.

In Boosted Regression Trees, small, parsimonious trees are fit to the training data,
with small trees sequentially added to the existing regression tree (Friedman 2002).
The approach is stage-wise (rather than step-wise), meaning that with each iteration
where new trees are added, the existing tree is left unchanged. The final model is a
linear combination of many trees, analogous to a multiple regression model where
each term is a parsimonious tree (Elith et al. 2008). There are two key parameters of
interest when fitting a Boosted Regression Tree: the learning rate (or shrinkage
parameter), which quantifies the contribution of each individual tree to the model,
and the tree complexity, which controls the types of interactions considered. These
parameters in combination will determine the number of trees used for predictions.
Boosting has been shown to increase predictive abilities of models (Elith et al. 2006),
reduce bias, and reduce variance in estimates, even when complex environmental
relationships occur. For more on Boosted Regression Trees, see Elith et al. (2008).
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Random Forests is a form of bagging, or bootstrap aggregation, where many trees
are grown from bootstrap samples of the data, thereby producing a “forest” (Breiman
2001; Cutler et al. 2007). Predictions are made from each tree in the forest. Each tree
gives a classification, such that each the tree “votes” for that class. The forest then
chooses the classification having the most votes (across all the trees in the forest).
Each tree is grown with the following steps. First, the training data are sampled with
replacement (i.e., the data are bootstrapped). This sample is the training set for
growing the tree. Second, for each node in the tree, n variables are selected at random
out of N total variables (typically n � N ) and are used to split the node in the tree.
n is held constant during the forest growing, where each tree is grown to the largest
extent possible (Breiman 2001). Accuracy and error rates are computed for each
sample using the “out-of-bag” samples (those not used in the bootstrap sample) and
are then averaged over all predictions. Some benefits of Random Forests include the
following: (1) it can run efficiently on large datasets; (2) it can handle many
explanatory variables and potential interactions; (3) it is argued to not over-fit; and
(4) it can be used in several different types of problems (e.g., classification, survival
analysis, clustering, missing value imputation) (Cutler et al. 2007).

7.2.5.4 Maximum Entropy

Maxent is a widely used approach for species distribution modeling, which uses the
concept of maximum entropy (Phillips et al. 2006). Elith et al. (2006) provided a
comprehensive analysis of the utility of different modeling algorithms for presence-
only data and concluded that Maxent was one of the most useful algorithms. This
result, coupled with available software that is relatively straightforward to imple-
ment, has led to widespread use of Maxent. In addition, it is frequently noted that
Maxent is one of the only common distribution modeling algorithms designed
specifically for presence-only data, because Maxent does not assume that back-
ground points are locations where the species does not occur (i.e., it is not assuming
background points are absences), unlike the standard usage of GLMs, GAMs, and
regression trees with presence–background data (but see Ward et al. 2009). As such,
it might be particularly well suited for presence-only data.

The Maxent modeling framework can be described from several perspectives
(Merow et al. 2013). In general, Maxent can be thought of as a log-linear model
(Elith et al. 2011) and some parameterizations can be described more generally as an
inhomogeneous point process model (Renner and Warton 2013; Phillips et al. 2017).
The concept of maximum entropy states the best approximation of an unknown
distribution is the one that is most spread out (or uniform), subject to some types of
constraints (Franklin 2009). In this case, the constraints are derived from the
expected value of the distribution estimated from the presence-only data. In its
original formulation, Phillips et al. (2006) provided a geographic perspective regard-
ing a Maxent probability distribution, where the Maxent distribution is equivalent to
maximizing the likelihood of a Gibb’s probability distribution, which can be written
as:
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where z is a vector of J environmental variables at locations si and λ is a vector of
coefficients (Phillips et al. 2006). The numerator of Eq. (7.1) is a log-linear model,
while the denominator is a normalization constant, such that Σ p ¼ 1. Note that this
latter aspect of the algorithm results in very small values for predictions at individual
locations, but one can rescale p to make it more interpretable relative to other
modeling algorithms (Elith et al. 2011; Phillips et al. 2017).

The Maxent package commonly used also includes other aspects of modeling that
is not based on the idea of maximum entropy per se but rather general techniques
employed in machine-learning modeling, such as model regularization and the use of
“basis” functions or “features” to create non-linear response functions (Phillips et al.
2006; Phillips and Dudik 2008). In statistics, model regularization is an approach of
shrinkage of parameter coefficients towards zero, which reduces potential over-
fitting of models (Tibshirani 1996). Basis functions or features are similar to the
use of splines in GAMs, where features are an expanded set of transformations of the
original covariates (Elith et al. 2011; Hefley et al. 2017). The practical difference
between features used in Maxent and that of splines in GAMs is that Maxent can
consider some functions that are not polynomial smoothers (e.g., cubic splines; see
below). Maxent considers six types of features: linear, quadratic, product, threshold,
hinge, and categorical (Fig. 7.7).

Because of these components to the Maxent program, there has been some
confusion regarding why Maxent may be useful: is it because of the concept of
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maximum entropy or is it due to some of these other aspects? For instance, Gaston
and Garcia-Vinas (2011) found that logistic regression that used a similar model
regularization technique as Maxent (i.e., the “lasso”—least absolute shrinkage and
selection operator) performed as well as Maxent, while logistic regression without
regularization performed poorly. An important note: while Maxent can be run using
presence–absence rather than presence–background (available) data, the underlying
theory of the Maxent algorithm is based on presence-only data. Consequently,
Maxent should not be used for presence–absence analysis of species distributions
(Guillera-Arroita et al. 2014).

7.2.5.5 Point Process Models

It has been recently shown that several of the above modeling frameworks that focus
on presence-only data can be derived more generally as spatial point process models
(PPMs), including the use of Maxent, GLMs, GAMs, and Boosted Regression Trees
(Aarts et al. 2012; Fitian and Hastie 2013; Renner and Warton 2013; Renner et al.
2015; Phillips et al. 2017). Previously, we have discussed point process models in
the context of understanding spatial point patterns (Chap. 4). Here, the idea is that
presence-only data can be viewed as point locations across a bounded region of
interest, such that inhomogeneous point process models can describe the intensity
(~density) of species, λ, in the region. The realization that many of the above SDM
algorithms can be viewed as inhomogeneous point process models provides a
unification of different modeling frameworks and it helps provide guidance for
some recurring problems in distribution modeling (Warton and Shepherd 2010;
Renner and Warton 2013; Phillips et al. 2017).

A point process is inhomogeneous when intensity varies across a region. Varia-
tion in intensity is captured by spatially explicit covariates by modeling intensity
based on a log-linear relationship:

logλðsÞ ¼ αþ βzðsÞ, ð7:2Þ

where s is the species location. Consequently, PPMs are similar to Poisson regres-
sion (one type of generalized linear model; see Chap. 6), but the focus is on spatial
locations of point occurrences rather than focus being on the point occurrences
themselves (Fithian and Hastie 2013). In the likelihood of a point process model,
there is a component that focuses specifically on estimating the background envi-
ronmental conditions. This component can be approximated with background points
(Berman and Turner 1992), referred to as “quadrature points” (because these points
approximate the function that describes the background environment). Fithian and
Hastie (2013) showed that by providing large weights to background points, logistic
regression can approximate the inhomogeneous point process model and retrieve
reliable parameter estimates of environmental relationships.

In a related way, Renner and colleagues (Renner and Warton 2013; Renner et al.
2015) showed howMaxent and other models can be derived as point process models
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in this framework. Why is this useful? By showing a common derivation, it
illustrates the relationships among these techniques and better isolates exactly how
they are different and implicit ways in which they are similar (e.g., some assump-
tions thought to not be relevant to Maxent but are relevant to GLMs may need to be
reconsidered). In addition, this derivation provides important insight in some key
aspects of species distribution modeling. For example, Warton and Shepherd (2010)
and Renner et al. (2015) provided interesting discussions on how PPMs help clarify
the role of background points and the number background points that should be
included in analyses of presence-only data. Renner et al. (2015) emphasized that
more background points should be used to estimate point processes than what is
typically done in species distribution modeling. Also, the key for background points
is that they should adequately capture the environment, such that they suggest that
regular grids of points may be helpful, rather than random point generation.

The application of the PPM framework for species distribution modeling fre-
quently only requires minor changes in model development. Renner et al. (2015) and
Fithian and Hastie (2013) provided several examples of how these models can be
implemented. In general, point process models can be fit in ways similar to other
models, but typically more background points are used and presence and back-
ground points may be weighted differently (Fithian and Hastie 2013; Renner et al.
2015).

7.2.6 Combining Models: Ensembles

Because of the major differences in assumptions among modeling algorithms and
their variable utility under different situations, ecologists have increasing used an
“ensemble” approach to modeling (Araújo and New 2007). In a nutshell, ensemble
models are typically (weighted) averages or related summaries of different model
predictions (Fig. 7.8). For instance, in hurricane forecasting, ensemble predictions of
hurricane paths are frequently used to get “consensus” predictions.

To make ensembles, we might take the median probability from a suite of models
or take a weighted average, where the weights come from a measure of predictive
accuracy (e.g., AUC or TSS). It is often argued that ensemble predictions can be
more accurate than predictions from single models (Marmion et al. 2009). Nonethe-
less, care should be taken when using and interpreting ensembles, because some
modeling algorithms are fundamentally predicting different currencies than others
(e.g., envelope methods, GLM). For instance, profile methods typically predict
environmental similarity while GLM-like models predicts (relative) probabilities
of occurrence.
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7.2.7 Model Evaluation

Models can be evaluated in several ways. In the wildlife literature, there is a strong
focus on model selection (e.g., AIC) (Burnham and Anderson 1998). Model selec-
tion can be very useful for contrasting the fit of models to data to compare hypoth-
eses. However, model selection alone does not provide explicit information on the
predictive performance of models, that is, the ability of models to predict to new
locations in space or time, which is often of primary interest in distribution modeling
(Hijmans 2012). In this way, predictions from models are frequently used for spatial
interpolation (e.g., mapping species distributions), projections (e.g., evaluating
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Fig. 7.8 Ensemble modeling integrates predictions from several models to make predictions of
species distribution (e.g., occurrence). Ensemble predictions can be based on a variety of
approaches. Shown are (weighted) averages of model predictions, frequencies of predicted occur-
rence based on binary summaries of model predictions, and the use of a bounded box, where at least
one model predicts occurrence
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alternative scenarios of expected climate change), and forecasting (e.g., making
probabilistic predictions of species distribution in a new time or place).

To evaluate models, the primary approach is to build models with a portion of
the data (sometimes called the “training” data) and then use the model to predict
observations not used in the model building stage (sometimes called “test data” or
“validation data”). This approach is commonly referred to as external validation
(or cross validation) to distinguish it from internal validation (or resubstitution;
see Fielding and Bell 1997), where a model is assessed based on predictions used
to build the model. In general, external validation is thought to provide a much
more honest assessment of the model performance than resubstitution. There are
several approaches for partitioning data to be used for model building and testing.
Prospective (independent) sampling, where new data are collected at different
locations or time periods than for the data used in model training, is perhaps the
most reliable approach but requires greater effort (Fielding and Bell 1997). In the
absence of prospective sampling, K-fold partitioning is frequently used (Boyce
et al. 2002). In K-fold partitioning, the data are split into K groups, or folds, and
K�1 folds are used to predict the remaining fold that is left out of modeling
training, such that K models are built and evaluated using each data point once as
test data. This approach is an efficient way to split data for model evaluation.
Folds are often created based on taking a random sample (without replacement)
from the data for each fold, although this can result in test and training data being
spatially interspersed (with the potential for spatial dependence in responses; see
Chap. 6). Other approaches to creating folds include making spatial blocks of data
(“K-fold block validation”) (Wenger and Olden 2012) or stratifying random
samples to ensure the same number of presence locations occur in each fold,
such that the spatial distribution between training and testing data share similar
characteristics (Hijmans 2012).

Once models are built and predictions are made onto new data, summary metrics
are typically used to assess the predictive performance of models. The types of
summary metrics and their utility depend on the type of response variable and
evaluation data used in assessing models. We briefly summarize some common
approaches with presence–absence models, presence-only models, and abundance
models.

7.2.7.1 Evaluation with Presence–Absence Data

To evaluate predictions from presence–absence (or detection–non-detection data),
we can either consider model discrimination or model calibration (Pearce and Ferrier
2000). Model discrimination assesses how well a model can tell the presences from
absences (or background points) in the testing data set. In contrast,model calibration
attempts to measure the agreement between predicted probabilities of occurrence
and observed proportions of locations occupied in the testing data set.
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Model Discrimination. For interpreting model discrimination, often the focus is on
metrics that can be derived from the confusion matrix, or a summary table of pre-
dictions of presence–absence relative to observed presence–absence (Table 7.2). Typ-
ically, this matrix is obtained by truncating probabilistic predictions to 0/1 data, by
selecting a threshold for truncating predictions. However, we note that Lawson et al.
(2014) recently showed that the use of the confusion matrix need not require truncating
predictions. There are several metrics that can be derived from the confusion matrix
(Fielding and Bell 1997), including metrics that focus on certain types of errors in
predictions (e.g., false positive or false negative errors), or overall model predictive
accuracy (e.g., the correct classification rate). Here we focus on two metrics commonly
used in distribution modeling: Kappa and the True Skill Statistic.

Kappa is a commonly used metric that expresses the agreement not obtained
randomly between two qualitative variables. Kappa is a popular metric because it
takes into account both omission and commission errors (Table 7.3). It is also less
problematic than some simpler metrics taken from the confusion matrix, such as the
correct classification rate (CCR) (Table 7.3), which can give a misleading interpre-
tation of model performance because high CCR can occur when models predict all
presences or all absences for common or rare species, respectively.

The True Skill Statistic (TSS), sometimes called the Hanssen–Kuipers Skill
Score, has been traditionally used for assessing the accuracy of weather forecasts.
TSS is typically defined as: sensitivityþ specificity� 1. Like Kappa, TSS takes into
account both omission and commission errors, as well as successes as a result of
random guessing. It ranges from �1 to þ1, where þ1 indicates perfect agreement
and values of zero or less indicate a performance no better than random. However, in
contrast to Kappa, TSS is less affected by species prevalence (see Alouche et al.
2006). TSS is also thought to not be affected by the size of the validation set. TSS is a

Table 7.3 Common metrics derived from the confusion matrix (see Table 7.2 for constants used)

Metric Equation

False positive rate (errors of commission) b/(b + d )

False negative rate (errors of omission) c/(a + c)

Sensitivity (True positive rate) a/(a + c)

Specificity (True negative rate) d/(b + d )

Correct classification rate (a + d )/N

Prevalence (a + c)/N

Kappa [(a + d ) � (((a + c)(a + b) 1 (b + d )(c + d ))/N )]/
[N � (((a + c)(a + b) þ (b + d )(c + d ))/N )]

True Skill Statistic a/(a + c) þ d/(b + d ) � 1

Table 7.2 The confusion
matrix

Predicted

Observed

Present Absent

Present a b

Absent c d
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special case of Kappa when the proportions of presences and absences in the
validation set are equal.

A common question pertains to how thresholds should be set for defining the
confusion matrix. There are several approaches that have been used. Thresholding
can be based on a general cutoff (e.g., predicted probability¼ 0.5), the prevalence of
species in the training data, or more complex approaches, such as searching for the
threshold that maximizes kappa or some other evaluation metric (Liu et al. 2005,
2013). Simple measures, such as using the prevalence (i.e., the proportion of sites
occupied in the training data) can be useful (Liu et al. 2005). Liu et al. (2013)
recommended searching for the value that maximizes the sum of specificity and
sensitivity. In some cases, the type of error might matter (e.g., false positive or false
negative rates may be more problematic in applications) and can be considered in
this decision-making process (Fielding and Bell 1997).

Another popular metric for model discrimination is the Area under the Receiver
Operating Characteristic (ROC) Curve (AUC), a curve representing the relationship
between the false positive fraction (1 � specificity) and the sensitivity (true positive
rate) for a range of thresholds. Good model performance is characterized by a curve
that maximizes sensitivity for low values of (1 � specificity), that is, when the curve
passes close to the upper left corner of the plot. The area under this curve (AUC)
measures model discrimination. An AUC value of 0.5 can be interpreted as the
model performing no better than a random prediction, with scores approaching
1 indicating progressively better performance. A value of 0.8 for the AUC means
that for 80% of the time, a random selection from presence locations will have a
prediction greater than a random selection from the absence locations (Fielding and
Bell 1997). Thus, it is a rank-based discrimination metric and has a formal relation-
ship to a Wilcoxon sign test. This metric is popular in part because is not dependent
on using a threshold. AUC is widely used, but it is not without criticism (Lobo et al.
2008; Peterson et al. 2008). Some known issues with AUC is that it can vary
depending on the spatial extent considered, where a larger extent tends to increase
AUC. Because of this sensitivity, AUC can be misleading when compared in
absolute terms across studies (although within an investigation it may be comparable
among model algorithms). This criticism is relevant to other performance metrics as
well. It is also frequently argued that the entire range considered by AUC is not
biologically meaningful (Lobo et al. 2008). Finally, AUC was developed for
presence–absence types of data. Its application to presence-only data should be
used with caution.

Model Calibration. Model calibration is an important way to evaluate presence–
absence models, where predicted probabilities are contrasted to observed proportion
presences (or observed probabilities) in testing data. For example, a model could
have good discrimination and yet consistently under (or over) predict the probability
of occurrence. Such bias could be problematic when applying models to conserva-
tion problems.

Model calibration can be accomplished through two general approaches. First, a
common way to interpret how well as model is calibrated is through the use of
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calibration plots. In this approach, predicted probabilities of occurrence and
observed proportions of sites occupied are contrasted. To do so, often validation
data are pooled based on predicted probabilities. By pooling observations from
validation data, the proportion of locations occupied can be calculated (rather than
relying solely on binary data). This is akin to some types of goodness-of-fit tests in
statistics. These plots can be compared qualitatively or more quantitatively, such
as comparing regression lines (e.g., intercepts, slopes) fit through different cali-
bration plots (Guisan et al. 2017). Second, in addition to calibration plots, some
metrics can be used, such as metrics that focus on the variation explained, error,
and likelihoods (Lawson et al. 2014). In particular, the cross-validated log-likeli-
hood and/or deviance (�2 � log-likelihood) can be calculated as a measure of
model calibration (Lawson et al. 2014; Fithian et al. 2015), which have a strong
foundation in statistical theory. In this context, the cross-validated log-likelihood
(LLcv) is defined as:

LLcv ¼
X
i

log piyi þ 1� pið Þ 1� yið Þð Þ, ð7:3Þ

where pi is the predicted probability for observation i and yi is the observed presence
or absence of the species in the test data.

7.2.7.2 Evaluation with Presence-Only Data

Evaluating presence-only models can be challenging. When test data are presence–
absence, the approaches mentioned above are frequently employed (Elith et al. 2006;
Hijmans 2012), although care should be taken because of the subtle differences in
model training and testing data. However, when test data are also presence-only, the
approaches for presence–absence data should not be used. In such situations,
evaluations should be based only on presence locations (and not the background
or pseudo-absence locations) (Hirzel et al. 2006). One popular index is the Boyce
Index (Boyce et al. 2002). The rationale of this index is to compare the predicted
frequency of suitability values at evaluation points for a b classes (where b are bins
of suitability; e.g., 0.0–0.2, 0.21–0.4, etc.) to the expected frequency of points based
on a random distribution of points across the study area. This approach has been
extended to reduce the sensitivity of bin classes on observed outcomes (Hirzel et al.
2006). Phillips and Elith (2010) also provided an extension of calibration plots for
presence-only data.

7.2.7.3 Evaluation of Abundance (Count) Responses

Evaluating non-binary responses (e.g., abundance data) is, in many ways, more
straightforward that evaluating models based on binary data. In these cases, no
transformation of predictions is needed, unlike models based on binary responses.
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These approaches typically focus on how well models are calibrated rather than
discrimination. Common statistics include the root mean squared error, the coeffi-
cient of determination (R2), and correlation coefficient (Potts and Elith 2006). Root
mean squared error, RSME, is defined as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

pi � yið Þ2
s

, ð7:4Þ

where pi is the prediction for observation i and yi is the observed value. In addition,
statistics such as the deviance or cross-validated log likelihood can be used.

7.3 Examples in R

We illustrate the process of fitting species distribution models to presence-only data.
Our goals are to contrast common modeling techniques and illustrate how models
can be interpreted and evaluated. We also illustrate how different types of model
evaluation can alter the conclusions regarding the utility of species distribution
models.

7.3.1 Packages in R

In R, there are several libraries that can be used for species distribution modeling.
Four common “wrapper” packages include dismo (Hijmans et al. 2017), sdm
(Naimi and Araújo 2016), ecospat (Di Cola et al. 2017), and biomod2 (Thuiller
et al. 2016). These packages call other packages to perform a variety of species
distribution models, including all those mentioned above and several others. Each of
the models considered in dismo and biomod2 could be implemented with other
packages in R. For the purposes of illustration, here we will largely use individual
packages because this provides greater flexibility and transparency in model devel-
opment. We will also use dismo for implementation of some models not
available in other packages. We use the PresenceAbsence package for model
evaluation, which has a comprehensive set of evaluation metrics (Freeman and
Moisen 2008), but several other packages can also evaluate models.

7.3.2 The Data

We will return to the data used in Chap. 6 on spatial regression for illustrating
species distribution modeling techniques: the Northern Region Landbird Monitoring
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Program (Hutto and Young 2002). In this monitoring program, sampling locations
consisted of point counts (100-m radius) along a transect (10 points/transect; tran-
sects were approximately 3 km long), with transects randomly selected within USFS
Forest Regions across Montana and Idaho. These points were also resampled over
time (temporal repeated measures), although we will not consider these temporal
repeated measures here. We will subset data to consider presence-only observations
to illustrate presence-only modeling, but we will use presence–absence data for
model evaluation, similar to prior syntheses on presence-only modeling techniques
(e.g., Elith et al. 2006).

We again focus on the varied thrush. McCarty et al. (2012) modeled the occur-
rence of several species in this region, including the varied thrush. The varied thrush
is a species of conservation interest, in part because it has declined in the region over
the past 30 years (see Chap. 6), and it is considered an “interior” and “old-growth”
species (Brand and George 2001; Betts et al. 2018). McCarty et al. (2012) considered
the following covariates: canopy cover, the presence of mesic forest, elevation, and
mean annual precipitation (see also George 2000). We consider each of these factors.
Original GIS layers for canopy cover and mesic forest were 15-m resolution digital
land-cover maps developed by the United States Forest Service Northern Region
Vegetation Mapping Program (USFS R1-VMP), using Landsat TM imagery and
aerial photography (Brewer et al. 2004). McCarty et al. (2012) used a Principal
Components Analysis (PCA) to reduce the number of canopy cover variables from
three to two. One principal component reflected a linear gradient of canopy cover,
which we use here, whereas the other component reflected a non-linear gradient
(high factor loadings on intermediate categories of canopy cover). We consider the
proportion of mesic forest within a 1-km buffer. The 1-km landscape scale was
chosen on the basis of other investigations in this region that showed strong
correlations of avian distribution at this scale (Tewksbury et al. 2006; Fletcher and
Hutto 2008), although other scales could be considered to best determine the scale of
effect (see Chap. 2). Elevation was derived from a 30-m resolution Digital Elevation
Model. Prior to analysis, all GIS layers were aggregated to a 200-m resolution,
reflecting the grain of the sampling unit (100-m-radius point counts). Mean annual
precipitation data come from the PRISM Climate Group at Oregon State University
(http://www.prismclimate.org).

7.3.3 Prepping the Data for Modeling

There are several steps to prepping data for distribution modeling, depending on the
data sources. In particular, working with opportunistic data often requires vetting
observation and collating information to create relevant data frames for modeling
purposes. See Di Cola et al. (2017) for more on these issues.

We first load the response data and subset the data based on presence–absence, as
well as the x-y coordinates for presence–absence locations, to allow for simple
extraction for modeling. There are two sources of data we consider. The first
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comes from the entire region collected in 2004 (vath.data). The second we
consider as independent (prospective sampling) validation data (vath.val) col-
lected in the region in 2007–2008 at a subset of points considered in 2004.

> vath.data <- read.csv(file = "vath_ 2004.csv", header = T)
> vath.val <- read.csv(file = "vath_VALIDATION.csv", header = T)

#subset to presence-only / absence-only
> vath.pres <- vath.data[vath.data$VATH == 1,]
> vath.abs <- vath.data[vath.data$VATH == 0,]
> vath.pres.xy <- as.matrix(vath.pres[,cbind("x", "y")])
> vath.abs.xy <- as.matrix(vath.abs[,cbind("x","y")])

#validation
> vath.val.pres <-
as.matrix(vath.val[vath.val$VATH == 1, cbind("x", "y")])

> vath.val.abs <-
as.matrix(vath.val[vath.val$VATH == 0, cbind("x","y")])

> vath.val.xy <- as.matrix(vath.val[,cbind("x","y")])

Next, we will load raster grids that contain relevant spatial information on the
covariates we will consider (Fig. 7.9).

> library(raster)
> elev <- raster("elev.gri") #elevation layer (km)
> canopy <- raster("cc2.gri") #linear gradient from PCA
> mesic <- raster("mesic.gri") #presence of mesic forest
> precip <- raster("precip.gri") #mean precip (cm)

#check maps
> compareRaster(elev, canopy)

##
[1] TRUE

> compareRaster(elev, mesic)

##
Error in compareRaster(elev, precip) : different extent

In this situation, these maps do not align because they are of slightly different
resolutions and extent, where the mesic forest is a resolution of 210 � 210 m while
the others are 200 � 200 m. The elevation and canopy layers have the same extent,
but the others are slightly different. As a consequence, we cannot create a raster stack
(or brick) of these data. To rectify this problem, we resample the precipitation and
mesic forest layers to be consistent with the elevation and canopy layers. Note that
we use the “ngb” method for mesic, a categorical (binary) variable, and
“bilinear” method for precip, a continuous variable.
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#resample to align layers
> mesic <- resample(x = mesic, y = elev, "ngb")
> precip <- resample(x = precip, y = elev, "bilinear")

#crop to same extent
> mesic <- mask(mesic, elev)
> precip <- mask(precip, elev)

> compareRaster(elev, precip, canopy, mesic)

##
[1] TRUE
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Fig. 7.9 Explanatory variables considered in model building, including elevation (in km), canopy
cover (a derived metric taken from a Principal Components Analysis), the percent of mesic forest
cover within 1 km of each location, and mean precipitation (cm)
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This resampling and masking aligns the raster data. Before we create a raster
stack, we also add a larger scale covariate for mesic forest: the proportion of mesic
forest in the surround 1 km.

#make 1 km wet forest
> fw.1km <- focalWeight(mesic, 1000, 'circle')
> mesic1km <- focal(mesic, w = fw.1km, fun = "sum", na.rm = T)

We can now create a raster stack of the environmental covariates (Fig. 7.9).

> layers <- stack(canopy, elev, mesic, mesic1km, precip)
> names(layers) <- c("canopy", "elev", "mesic", "mesic1km", "precip")

> plot(layers)
> pairs(layers, maxpixels = 1000)

Because mesic and mesic1km are highly correlated, we only consider mesic1km
in further modeling. We can use the dropLayer function to remove that layer from
the raster stack:

> layers <- dropLayer(layers, 3)

We can generate background points in several ways. The dismo package
includes the randomPoints function for generating random points without
replacement. For distribution modeling, we may want to generate points without
replacement, because sampling with replacement would potentially create duplicate
records (but see Renner et al. 2015). In addition, the raster package has the
sampleRandom and sampleRegular functions, which can also generate avail-
ability points (without replacement). The randomPoints and sampleRandom
functions are similar, but there is one key difference in the context of distribution
modeling: the randomPoints function allows the user to also provide the pres-
ence points and, if so, it will not generate available points that those locations. We
will illustrate the use of this package, generating 2000 background points. We
choose this number for computational purposes only. In practice, we may want to
increase this number substantially (Renner et al. 2015), but 2000 should be sufficient
for illustration here.

> library(dismo)
> back.xy <- randomPoints(layers, p = vath.pres.xy, n = 2000)
> colnames(back.xy) <- c("x", "y")

With these locations and the points we identified above for presence and valida-
tion data, we extract covariate values at each point with the extract function,
remove potential NAs (where random points were generated but not all environ-
mental data occur), and link them into a single data frame:
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> pres.cov <- extract(layers, vath.pres.xy)
> back.cov <- extract(layers, back.xy)
> val.cov <- extract(layers, vath.val.xy)

#link data
> pres.cov <- data.frame(vath.pres.xy, pres.cov, pres = 1)
> back.cov <- data.frame(back.xy, back.cov, pres = 0)
> val.cov <- data.frame(vath.val, val.cov)

#remove any potential NAs
> pres.cov <- pres.cov[complete.cases(pres.cov),]
> back.cov <- back.cov[complete.cases(back.cov),]
> val.cov <- val.cov[complete.cases(val.cov),]

> all.cov <- rbind(pres.cov, back.cov) #combine data

These data can now be used with a variety of modeling techniques.

7.3.4 Contrasting Models

7.3.4.1 Envelopes

Envelope models can be readily fit in the dismo package. In these models, we only
use the presence locations. To create the envelope, the bioclim function in dismo
calculates the percentiles of observed environmental covariates at presence locations
and the values of covariates at each location on the map are compared to these
percentiles. The closer the value of the location to the median value of a covariate at
presence locations, the more suitable that location is deemed to be. Then, the
minimum similarity value across covariates is used (analogous to Liebig’s Law of
the Minimum; Austin 2007). In our dataset, the envelope can be calculated as:

> bioclim.vath <- bioclim(layers, vath.pres.xy)

Here, the model will consider all covariates in the layer stack. We can plot the
environmental variation at (~envelopes) the presence locations and produce a
predictive map from this model:

#envelope plots
> plot(bioclim.vath, a = 1, b = 2, p = 0.85) #canopy-elev 85%
> plot(bioclim.vath, a = 1, b = 2, p = 0.95) #canopy-elev 95%
> plot(bioclim.vath, a = 1, b = 3, p = 0.85) #canopy-mesic 85%
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#map it
> bioclim.map <- predict(layers, bioclim.vath)
> plot(bioclim.map, axes = F, box = F, main = "bioclim")

This map (Fig. 7.10) reflects the similarity of locations to environmental
covariates at presence locations. It is scaled such that a value of 1 would be locations
that have the median value of all covariates considered, while a value of zero would
reflect locations where at least one covariate is outside the range of environmental
covariates at presence locations.

While this model is simple in form, it illustrates the extent to which locations fall
within the environmental variation of observed locations. Note that in doing so, it
may often over-predict distributions.

7.3.4.2 GLMs and GAMs

Generalized linear models (GLMs) and generalized additive models (GAMs) are
frequently used in distribution modeling. In these cases, presence–absence or

Bioclim GLM GAM

MaxentRandom Forests

28
00

00
52

00
00

30000 270000

0.00

0.25

0.50

0.75

28
00

00
52

00
00

30000 270000

0.05
0.10
0.15
0.20

28
00

00
52

00
00

30000 270000

0.1

0.2

0.3

28
00

00
52

00
00

30000 270000

0.0
0.2
0.4
0.6
0.8

28
00

00
52

00
00

30000 270000

0.2
0.4
0.6
0.8

Fig. 7.10 Predictive maps taken from several distribution modeling techniques
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presence–background data are used (Fithian and Hastie 2013). We fit a simple GLM
(see Chap. 6 for more on GLMs and spatial regression models):

> glm.vath <- glm(pres ~ canopy þ elev þ I(elev^2) þ mesic1km þ
precip, family = binomial(link = logit), data = all.cov)

> summary(glm.vath)

##
Call:
glm(formula = pres ~ canopy þ elev þ I(elev^2) þ mesic1km þ precip,
family = binomial(link = logit), data = all.cov)

Deviance Residuals:
Min 1Q Median 3Q Max
�0.8053 �0.3377 �0.2130 �0.1274 3.5746

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) �12.186128 2.001925 �6.087 1.15e�09 ***
canopy 0.655128 0.282635 2.318 0.02045 *
elev 13.207998 3.251465 4.062 4.86e�05 ***
I(elev^2) �5.477279 1.293859 �4.233 2.30e�05 ***
mesic1km 1.127415 0.376421 2.995 0.00274 **
precip 0.011051 0.004529 2.440 0.01468 *
- - -
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 773.28 on 2093 degrees of freedom
Residual deviance: 667.91 on 2088 degrees of freedom
AIC: 679.91

Number of Fisher Scoring iterations: 8

In this model, we consider linear relationships for all covariates, except elevation,
which we allow to be a non-linear (quadratic) relationship (I(elev^2)) because
we expect that thrushes may be most likely to occur at moderate elevations (see
Chap. 6). We do not consider model selection here, but model selection could be
performed manually with a variety of packages, such as MuMIn (Barton 2018). This
model suggests that there is a strong non-linear effect of elevation and a linear,
positive effect of mesic forest within the surrounding 1 km. The other two covariates
show weaker, positive linear relationships.

We can make a predicted map with:

> glm.map <- predict(layers, glm.vath, type = "response")
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In this case, we specify type ¼'response' to make predictions on the
probability scale. Otherwise, predictions would be on the link scale (here, the logit
scale).

Generalized additive models can be fit with a few packages; here we illustrate the
use of the mgcv package (Wood 2006). The default approach in mgcv is to
optimally determine the number of knots via generalized cross-validation and to
use thin-plate splines as a smoother. In this syntax, the s() function specifies that a
spline will be applied to a covariate.

> library(mgcv)
> gam.vath <- gam(pres ~ s(canopy) þ s(elev) þ s(mesic1km) þ
s(precip), family = binomial(link = logit), data = all.cov,
method = "ML")

> summary(gam.vath)

##
Family: binomial
Link function: logit

Formula:
pres ~ s(canopy) þ s(elev) þ s(mesic1km) þ s(precip)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) �4.068 0.252 �16.14 <2e�16 ***
- - -
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(canopy) 1.000 1.000 4.373 0.03651 *
s(elev) 3.157 3.997 23.796 9.28e�05 ***
s(mesic1km) 1.000 1.000 1.550 0.21316
s(precip) 4.403 5.226 19.671 0.00158 **
- - -
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R-sq.(adj) = 0.0709 Deviance explained = 17.3%
-ML = 335.55 Scale est. = 1 n = 2094

Results from this default GAM are generally similar to the GLM. We can tune the
GAM by manually setting the number of knots (see Chap. 6, Fig. 6.5), requesting a
different type of smoother function, or by allowing for potential interactions between
predictor variables. We illustrate examples of each of these types of tuning. Also,
note that we could include linear, rather than smoother terms, to the model by
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removing the 's' command around covariates. First, we specify the number of
knots used manually, for example:

> gam.vath.knot3 <- gam(pres ~ s(canopy, k = 3) þ s(elev, k = 3)
þ s(mesic1km, k = 3) þ s(precip, k = 3), method = "ML", family =
binomial(link = logit), data = all.cov)

> gam.vath.knot6 <- gam(pres ~ s(canopy, k = 6) þ s(elev, k = 6)
þ s(mesic1km, k = 6) þ s(precip, k = 6), method = "ML", family =
binomial(link = logit), data = all.cov)

As the number of knots increase, the complexity of the smoother increases. Note
that we also ask for model fitting with maximum likelihood (method¼"ML"),
which allows us to make formal comparisons among models using model selection
criteria. We can incorporate the potential for interactions between smoothers using a
“tensor” product term. Tensor product smoothers address the potential for capturing
interactions among variables that can be on different units of measurement (Wood
2006). They can be incorporated as:

> gam.vath.tensor <- gam(pres ~ te(canopy, elev, precip,
mesic1km), family = binomial(link = logit), method = "ML", data
= all.cov)

Finally, we can contrast thin-plate spline smoothers (the default in mgcv) to other
smoother functions, such as a cubic spline ('cr'):

> gam.vath.cr <- gam(pres ~ s(canopy, bs = "cr") þ s(elev, bs =
"cr") þ s(mesic1km, bs = "cr") þ s(precip, bs = "cr"), family =
binomial(link = logit), method = "ML", data = all.cov)

The relationships modeled when altering the number of knots and the smoother
do not change much at all in this example (see Fig. 7.11 for some example plots).
Overall, this model refines our understanding relative to the GLM, suggesting that
varied thrush respond non-linearly to precipitation gradients in addition to elevation.
This model tuning can be formally evaluated with model selection criteria, such as
AIC:

> AIC(gam.vath, gam.vath.knot3, gam.vath.knot6, gam.vath.tensor, gam.
vath.cr)

##
df AIC
gam.vath 12.2 663.9
gam.vath.knot3 7.7 670.3
gam.vath.knot6 10.4 662.0
gam.vath.tensor 25.8 658.1
gam.vath.cr 12.9 663.9
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In this case, we find that there is some support for only having six knots in the
smoother and the use of the tensor product. We can then map the model in a way
similar to above:

> gam.map <- predict(layers, gam.vath.knot6, type = "response")

7.3.4.3 Regression Trees and Forests

Here, we focus on the application of Random Forest models using the
randomForest package (Liaw and Wiener 2002). For Boosted Regression
models, see the gbm package and the tutorial in Elith et al. (2008). The
randomForest package can model both categorical (classification) and
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Fig. 7.11 Tuning a generalized additive model. Top panel contrasts (a, b) the number of knots used
for modeling relationships of thrush occurrence with elevation (3 versus 6 knots). Bottom panel
contrasts (c) Thin-plate spline versus (d) cubic spline (for automated knot selection) for
precipitation
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continuous (regression) response variables. We will implement a classification
model. The default model function can be implemented as:

> library(randomForest)
> rf.vath <- randomForest(as.factor(pres) ~ canopy þ elev þ
mesic1km þ precip, data = all.cov, na.action = na.omit)

There are two parameters that are frequently adjusted for model tuning: mtry and
ntree. mtry is the number of explanatory variables that are sampled for each tree,
while ntree is the number of trees that are grown to produce the forest. We use the
tuneRF function to determine the optimal values for mtry:

> rf.vath.tune <- tuneRF(y = as.factor(all.cov$pres), x =
all.cov[,c(3:6)], stepFactor = 0.5, ntreeTry = 500)

Here we specify ntreeTry ¼ 500, which is the default in the function. In
general, it is thought that predictions are less sensitive to ntree than mtry. The
tuneRF function adjusts mtry at different intervals (stepFactor), determining
which value minimizes the predictive error (out-of-bag error). With this tuning, we
update the model with mtry¼1 based on the out-of-bag error:

> rf.vath <- randomForest(as.factor(pres) ~ canopy þ elev þ
mesic1km þ precip, data = all.cov, mtry = 1, ntree = 500,
na.action = na.omit)

We can then map the Random Forest prediction, similar to other models
(Fig. 7.10).

> rf.map <- predict(layers, rf.vath, type = "prob", index = 2)
> plot(rf.map)

The primary difference here is that we specify 'index ¼ 2' because the
predict function will make predictions for each class (there can be �2). In this
case, it provides predictions for 0 and 1, with 1 being the second column from the
predict object (thus, we ask for index ¼ 2 to plot predictions).

7.3.4.4 Maximum Entropy

The use of maximum entropy for species distribution modeling relies on the Maxent
program, which is a stand-alone Java software that is freely downloaded (http://
biodiversityinformatics.amnh.org/open_source/maxent/). We can call this package
in R via dismo. Note Phillips et al. (2017) also recently released the maxnet
package for fitting Maxent models in R based on its relationship to the
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inhomogeneous point process model (see Sect. 7.2.5.5 for more). This package may
be preferred in many cases because it does not require linking to the stand-alone
Maxent program. We first focus on the use of dismo to call the Maxent software,
because of its widespread use and useful interface for comparing across models, but
briefly illustrate the use of maxnet in Sect. 7.2.5.5.

To call the stand-alone Maxent software from R, Java (https://www.oracle.com/
java/index.html) must be installed on your computer. Note that if you run R on a
64 bit platform, you will need to make sure to install Java for 64 bit. Also, rJava
(Urbanek 2017) will need to be installed and loaded in R. Once Maxent is
downloaded, the maxent.jar file must be placed in the java folder of the dismo
package. The location of this file can be found with the following:

> system.file("java", package = "dismo")

The maxent function calls Maxent to fit the model:

#default
> max.vath <- maxent(layers, p = vath.pres.xy)

The default maxent function takes presence-only points (vath.pres.xy) and
generates 10,000 background points for comparison, extracting environmental data
from these points and the presence points. We can manually provide background
points instead, which can be useful to control the precise number and location of
points used when comparing modeling techniques.

#default, but provide background points
> max.vath <- maxent(layers, p = vath.pres.xy, a = back.xy)

We can tune the Maxent model in several ways (Merow et al. 2013). Two
common approaches are to: (1) adjust the regularization of the model; and (2) adjust
the types of features considered (Fig. 7.12). We illustrate examples of both of these
adjustments.

Default Beta=0.3 Beta=3 Linear+quadratic

Elevation Mesic Canopy Precipitation
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Fig. 7.12 Tuning aMaxent model. Shown are the default response curves, setting the regularization
multiplier (β) to 0.3 and 3, and only considering linear and quadratic features

7.3 Examples in R 247

https://www.oracle.com/java/index.html
https://www.oracle.com/java/index.html


First, the regularization parameter can be changed manually. In this context,
Maxent uses the lasso technique for regularization, such that coefficients that do
not explain variation in presence locations are penalized and shrink toward zero. In
this way, the default value for regulation is proportional to the number of presence
locations and the variability in the environmental covariate at presence locations
(Elith et al. 2011). The parameter, β, is a constant that is multiplied by the default
regularization value. As β increases, a greater penalty is imposed. We can check this
by adjusting beta and plotting changes in response curves (Fig. 7.12).

> maxent.beta3 <- maxent(layers, p = vath.pres.xy, a = back.xy,
args = c("betamultiplier=3"))

In the above model, we specify a beta multiplier of 3 (the default setting is 1).
Typically, this multiplier is altered to be> 1 because of concerns regarding potential
overfitting of environmental relationships, but in Fig. 7.12 we illustrate setting the
multiplier to be < 1 as well. We can also alter model complexity in terms of the
features considered:

> maxent.features <- maxent(layers, p = vath.pres.xy, a =
back.xy, args = c("noproduct", "nohinge", "nothreshold"))

In the above model, we tell Maxent to not use product (interactions), hinge, or
threshold features. This reduces the model complexity to only consider linear and
quadratic features, similar to a simple GLM. We can interpret the impacts of this
tuning on partial relationships with the dismo package (see below for customizing
partial plots) (Fig. 7.12):

> response(max.vath, expand = 0)
> response(maxent.beta3, expand = 0)
> response(maxent.features, expand = 0)

In the above response functions, we specify expand ¼ 0 to constrain the
response plots only to the range of data considered. We can also evaluate the models
with the evaluate function from the dismo package to get AUC statistics for
each model. This function requires passing validation presence and absence points.
Here, we use the validation samples (output not shown).

> evaluate(p = vath.val.pres, a = vath.val.abs, max.vath, layers)
> evaluate(p = vath.val.pres, a = vath.val.abs, maxent.beta3, layers)
> evaluate(p = vath.val.pres, a = vath.val.abs, maxent.features,
layers)

This comparison suggests that each of these models are similar, in terms of AUC.
See Sect. 7.2.7Model Evaluation for a more detailed evaluation assessment. Finally,
we can map the model (Fig. 7.10), similar to above :

> max.map <- predict(layers, max.vath)
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Note that the prediction values for this Maxent model tend to be much higher than
the GLM, GAM, and Random Forest model (Fig. 7.10). Why is that? Maxent
provides different ways to plot and interpret the predictions. The default approach
in this function is the “logistic” output, whereas the underlying Maxent model output
is termed “raw” output. In the raw output, probabilities across the region sum to
1, such that the probability in any given location is very low and is essentially a
probability density, sometimes referred to as relative occurrence rate (ROR; Merow
et al. 2013). This can be requested in the predict function as:

> max.raw.map <- predict(layers, max.vath, args = "outputformat
= raw")

The logistic output is a transformation of the raw output, aimed at providing
probabilities that are more akin to probabilities of occurrence (Elith et al. 2011). In
doing so, the average prediction for a location where a presence point occurrence
with the logistic output approaches 0.5. Another alternative to the logistic and raw
outputs is the cumulative log-log (cloglog) output (Fithian et al. 2015), which is
better rooted in probability theory and is now the default output in the stand-alone
Maxent software (Phillips et al. 2017). These different response outputs should not
change the rank suitabilities from models, but they will change the absolute values
such that care should be taken when implementing and interpreting output.

7.3.4.5 Point Process Models

Finally, we note that most of the above models can be recast formally as inhomo-
geneous point process (IPP) models. There are several benefits for doing so, because
this perspective provides a means to better understand the number of background
points needed, understand the role of spatial dependence, and interpret goodness-of-
fit and related model diagnostics (Fithian and Hastie 2013; Phillips et al. 2017).

To implement the above models as point process models, Renner et al. (2015)
suggested that many more background points should be considered because they are
interpreted as “quadrature” points used for approximating an integral in the point
process function that describes the background environment. Warton and Shepherd
(2010) argued that it is natural to do so by creating a grid of background points
(rather than random point generation), which could be created with the
sampleRegular function in the raster package. With these points, point
process models can be fit with a variety of packages. A simple updating of the
above GLMs and GAMs with a point process formulation would be (Renner et al.
2015):

> glm.ppm <- glm(pres ~ canopy þ elev þ I(elev^2) þ mesic1km þ
precip, family = binomial(link=logit), weights = 1000^(1-pres),
data = all.cov)
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> gam.ppm <- gam(pres ~ s(canopy) þ s(elev) þ s(mesic1km) þ
s(precip), family = binomial(link = logit), weights = 1000^(1-
pres), data = all.cov)

We use weighted regressions in the above models to approximate the inhomoge-
neous point process, where we provide arbitrarily large weights to the background
points. Also note that when implementing this model, we should include a larger
number of background points than what is shown here, potentially sampled in a
regular grid. The number of background points can be formally determined in this
context by altering the number of background points until the likelihood of the
model stabilizes (Renner and Warton 2013; Renner et al. 2015).

We can also fit a Maxent model with a point process formulation using the
maxent function in the dismo package:

> maxent.ppm <- maxent(layers, p = vath.pres.xy, a = back.xy,
args = c("noremoveduplicates"))

The key difference in the above model is that in the maxent function we specify
to not remove duplicate records (multiple presence locations within a cell on the
map). If we did not pass our own background points, we would also need to add
"noaddsamplestobackground" and increase the number of background
points generated (e.g., "maximumbackground ¼ 50000" for 50,000 points).

Finally, the maxnet package can be used as well, which uses the glmnet
package (Friedman et al. 2010) to fit a Maxent-formulated IPP (based on the idea of
“infinitely weighted logistic regression”) (Fithian and Hastie 2013) that uses the
same regularization and features that the stand-alone Maxent package provides. In
this case, maxnet requires a different data format than the maxent function in
dismo, where we provide a vector of presence and background locations and a data
frame or matrix of covariates at those locations:

> library(maxnet)
> library(glmnet)
> max.cov <- all.cov[,c("canopy", "elev", "mesic1km", "precip")]
> maxnet.ppm <- maxnet(all.cov$pres, max.cov)

In this function, features can be requested and the regularization constant adjusted
in the following way:

> maxnet.beta3.linquad <- maxnet(all.cov$pres, max.cov, regmult
= 3, maxnet.formula(all.cov$pres, max.cov, classes = "lq"))

The classes statement provides a means to select features for the model, with
all features being ‘lqhpt’ (linear, quadratic, hinge, product, threshold). We do not
focus on these model IPP formulations below, but the interested reader should see
Renner et al. (2015).
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7.3.5 Interpreting Environmental Relationships

Each of these distribution modeling algorithms uses some sort of function regarding
species distribution and environmental factors. A challenge is to interpret these
functions in a meaningful way across models.

A common approach to do so is through use of partial response plots (or “partial
plots”). In these plots, we vary one environmental covariate across the range of
observed variation while setting all other environmental covariates to a constant,
typically their mean or median. We then make predictions on this new data set to
interpret how the models are relating species occurrence to environmental factors.
Note that this approach will not adequately illuminate potential interactions between
variables if they are considered in models (e.g., through the use of tensor products in
GAMs or in Random Forest models). However, it can still be useful for interpreting
patterns that underlie the predictions for each algorithm. Elith et al. (2005) general-
ized this idea to model algorithms that only make predictions on raster grids with
what they term the “evaluation strip,” or the addition of data to a raster grid that
serves a similar purpose as making predictions to new data with partial response
plots.

There are some packages that provide functions for calculating partial plots (e.g.,
the response function used above in the dismo package), and some of the
wrapper packages, such as biomod2 provide general functions in this way. Here,
we illustrate how users can manually accomplish this task, which provides a means
to alter graphics or subtle aspects of predictions (e.g., adding uncertainty in pre-
dictions). The following code focuses on creating partial plots for the elevation
covariate, but see Fig. 7.13 for plots of all covariates. We first generate a new data set
(elev.partial.data) for predictions:

Elevation Mesic Canopy Precipitation

Bioclim GLM GAM Random Forests Maxent
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Fig. 7.13 Partial plots from models for elevation (km), proportion of mesic forest within 1km, can-
opy cover (relative units based on a PCA), and precipitation (cm). For each covariate, all other
covariates were set to their median value
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> canopy.median <- median(back.cov$canopy)
> precip.median <- median(back.cov$precip)
> mesic1km.median <- median(back.cov$ mesic1km)

> elev.range <- seq(min(back.cov$elev),
max(back.cov$Elev), length = 100)

We put the covariates into a data frame and use the expand.grid function to
expand the data for all possible combinations:

> elev.partial.data <- data.frame(expand.grid(Elev = elev.range,
Canopy = canopy.median, precip = precip.median, mesic1km =
mesic1km.median))

We then make predictions from each model onto this new data set:

> bio.pred.elev <- predict(bioclim.vath, elev.partial.data)
> glm.pred.elev <- predict(glm.vath, elev.partial.data, type =

"response")
> gam.pred.elev <- predict(gam.vath, elev.partial.data, type =

"response")
> rf.pred.elev <- predict(rf.vath, elev.partial.data, type =
"prob")

> rf.pred.elev <- rf.pred.elev[,2]
> max.pred.elev <- predict(max.vath, elev.partial.data)

Finally, we can use the plot function or ggplot2 (Wickham 2009) to create a
partial prediction plot. Here we show the use of plot to illustrate plotting the
Bioclim, GLM, and Random Forest predictions.

#create data frame
> part.elev.df <- data.frame(elevation = elev.range, bioclim =
bio.pred.elev, glm = glm.pred.elev, gam = gam.pred.elev, rf =
rf.pred.elev, max = max.pred.elev)

#plot
> plot(part.elev.df$elevation, part.elev.df $bioclim, type = 'l')
> lines(part.elev.df$elevation, part.elev.df$glm, type = 'l',
col = "red")

> lines(part.elev.df$elevation, part.elev.df$rf, type = 'l', col
= "blue")

These partial plots illustrate the widely divergent environmental functions iden-
tified across algorithms in modeling thrush occurrence (Fig. 7.13). Overall, the
partial responses for Random Forests are highly complex and non-linear, while the
partial responses for the other algorithms are smoother and less complex. Note that
the absolute predictions vary as well. This pattern occurs between the modeling
algorithms because of the different currencies that they are modeling. Bioclim is
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modeling similarity and the predictions from Maxent are based on the logistic
output, which tends to make the average prediction for presence locations approx-
imately 0.5 (Elith et al. 2011). In contrast, the GLM, GAM and Random Forests are
discriminating presence points versus background points, such that as we increase
the number of background points, the probabilities on the y-axis will decrease
(because increasing the background points decreases the intercept term value in
the model). For instance, if we generated the same number of background points as
presence points, the intercept on these latter models would generate predictions on
these partial plots with means close to 0.5.

7.3.6 Model Evaluation

The above models can be evaluated in a variety of ways and there several packages
for model evaluation. The dismo package includes the evaluation function,
but here we use the PresenceAbsence package (Freeman and Moisen 2008),
which includes a more comprehensive set of evaluation metrics. To use the
PresenceAbsence package, we create a data frame that includes (in the follow-
ing order): (1) site IDs for the validation (evaluation) data; (2) the observed
responses in the validation data; and (3) model predictions for those locations.
This data frame can have predictions from N models, where columns for predictions
are 3 to Nþ3. We first illustrate model evaluation based on the prospective sampling
dataset from 3 to 4 years later in time, and then illustrate how model evaluation can
be accomplished with K-fold validation (Boyce et al. 2002), a common approach to
model evaluation.

For the prospective sampling validation data set, we simply take each of the
above models and make predictions for the new locations:

> val.cov.pred <- val.cov[,cbind("canopy", "elev", "mesic1km",
"precip")]

> bio.val <- predict(bioclim.vath, val.cov.pred)
> glm.val <- predict(glm.vath, val.cov.pred, type = "response")
> gam.val <- predict(gam.vath, val.cov.pred, type = "response")
> rf.val <- predict(rf.vath, val.cov.pred, type = "prob")
> rf.val <- rf.val[,2]
> max.val <- predict(max.vath, val.cov.pred)

With these predictions, we then create a data frame that is formatted for the
PresenceAbsence package and we will create a data frame for storing the model
evaluation results.

> val.data <- data.frame(siteID = 1:nrow(vath.val), obs =
vath.val$VATH, bio = bio.val, glm = glm.val, gam = gam.val, rf =
rf.val, max = max.val)
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> summary.eval <- data.frame(matrix(nrow = 0,ncol = 9))
> names(summary.eval)<-c("model", "auc", "corr", "ll",
"threshold", "sens", "spec", "tss", "kappa")

For model evaluation, we will calculate three continuous metrics: AUC, the
biserial correlation coefficient, and the cross-validated log-likelihood (Lawson et al.
2014). We will also calculate four binary metrics taken from the confusion matrix:
sensitivity, specificity, kappa, and the true skill statistic. The PresenceAbsence
package can determine thresholds based on a variety of criteria, such as prevalence in
the test or training data, maximizing kappa or maximizing the sum of specificity and
sensitivity (see ?optimal.thresholds). Here, we focus on using a threshold
that maximizes the sum of specificity and sensitivity (opt.methods¼3 in the
optimal.thresholds function), which was recommended by Liu et al.
(2013). In the following for loop, we calculate each of these metrics for each
model and populate our summary data frame with the output. We first load the
PresenceAbsence package and detach glmnet, because the latter package
also includes a function for calculating AUC.

> library(PresenceAbsence)
> detach("package:glmnet")
> nmodels <- ncol(val.data)�2
> for(i in 1:nmodels){
auc.i <- auc(val.data, which.model = i)
kappa.opt <- optimal.thresholds(val.data, which.model = i,
opt.methods = 3)

sens.i <- sensitivity(cmx(val.data, which.model = i, threshold
= kappa.opt[[2]]))
spec.i <- specificity(cmx(val.data, which.model = i, threshold

= kappa.opt[[2]]))
tss.i <- sens.i$sensitivity þ spec.i$specificity � 1
kappa.i <- Kappa(cmx(val.data, which.model = i, threshold =
kappa.opt[[2]]))

corr.i <- cor.test(val.data[,2], val.data[,i þ 2])$estimate
ll.i <- sum(log(val.data[,i þ 2] * val.data[,2] þ (1 �
val.data[,i þ 2]) * (1 � val.data[,2])))
ll.i <- ifelse(ll.i == "�Inf", sum(log(val.data[,i þ 2] þ
0.01) * val.data[,2] þ log((1 � val.data[,i þ 2])) * (1 �
val.data[,2])), ll.i)
summary.i <- c(i, auc.i$AUC, corr.i, ll.i, kappa.opt[[2]],
sens.i$sensitivity, spec.i$specificity, tss.i, kappa.i[[1]])

summary.eval <- rbind(summary.eval, summary.i)
}

Note that in the above code, we add a small constant to the log-likelihood
calculation because the log(0) is undefined (e.g., when the predicted value is 0, as
can be the case in the Bioclim model). Based on these summary statistics, it is clear
that none of these models appear to predict well to the prospective sampling data set
(Table 7.4), despite the fact that these models had clear environmental relationships
(see, e.g., summary(glm.vath) and summary(gam.vath)). This result
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illustrates the potential challenge of generating accurate species distribution models
that can predict accurately over time (Eskildsen et al. 2013; Vallecillo et al. 2009). In
this case, the Bioclim and Random Forests models tended to predict the worst of the
models considered based on model discrimination, whereas the Maxent model pre-
dicts poorly using the logistic output based on the cross-validated log-likelihood, a
model calibration metric. We include cross-validated log-likelihoods because they
are useful calibration metrics (Lawson et al. 2014); however, they are most properly
applied to models trained with presence–absence data rather than presence-only
data.

We can also evaluate models with calibration plots. Calibration plots can be
easily generated with the PresenceAbsence package. For the above models, we
use the calibration.plot function. An example for the Maxent model is:

> calibration.plot(val.data, which.model = 5, N.bins = 5, xlab =
"Predicted", ylab = "Observed", main = "maxent")

Note that this function requires the user to define the number of bins that will be
used to pool binary data.

A more common approach is to use K-fold validation (Boyce et al. 2002). In that
approach we subset the training data into subsets, or folds. We then fit models
holding out one fold while using K�1 folds for model training. This is then repeated
K times. The above evaluation code can be readily applied each fold and then we
summarize across folds. We consider fivefolds and apply this approach to the
presence–background data used for model training. The dismo package has a
function kfold that will create a vector of k groups based on random allocation
to groups, with the constraint that each group is of equal size.

In this K-fold case, we are using presence–background data for model evaluation.
In general, using such data for model evaluation is limited because no absence data
are available for evaluation. In such situations, it is often recommended to use
evaluation metrics that only make use of information on presence locations (Guisan
et al. 2017). Here, we use the Boyce index, a common metric for evaluating
presence-only predictions that does not rely on absence data (Boyce et al. 2002),
which can be calculated with the ecospat package (Broennimann et al. 2018). We
also calculate the same metrics as above for illustrative purposes. In practice, the
Boyce index and other metrics aimed specifically for evaluation with presence-only

Table 7.4 Evaluation of
modeling algorithms based
on external validation
(presence–absence data
collected 3–4 years later)

Model AUC LLcv TSS Kappa

Bioclim 0.586 �685 0.136 0.027

GLM 0.673 �519 0.287 0.106

GAM 0.651 �528 0.237 0.092

Random Forests 0.625 �607 0.182 0.039

Maxent 0.669 �971 0.259 0.164
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data should be emphasized (Engler et al. 2004; Hirzel et al. 2004). See Guisan et al.
(2017) for more information.

#number of k-folds considered
> folds <- 5

#create k-folds
> kfold_pres <- kfold(pres.cov, k = folds)
> kfold_back <- kfold(back.cov, k = folds)

Above we apply the kfold function separately to the presence and background
data. This ensures that each fold will contain the same number of presence points. Then
we can apply a for loop or something similar to go through each fold. We do not
provide the entire for loop here but illustrate how data can be subset for each fold, k.

#partition data based on each k-fold
> kfolds <- 1
> val.pres.k <- pres.cov[kfold_pres == kfolds, ]
> val.back.k <- back.cov[kfold_back == kfolds, ]
> val.k <- rbind(val.pres.k, val.back.k)

> train.pres.k <- pres.cov[kfold_pres != kfolds, ]
> train.back.k <- back.cov[kfold_back != kfolds, ]
> train.k <- rbind(train.pres.k, train.back.k)

We apply each of these new data sets (either train.k, or each component of the
training data set, depending on the model algorithm) to the model algorithms of
interest described above and make predictions onto the validation data (val.k).
With this data format, the Boyce index can be calculated for a given model i within
the for loop mentioned above regarding external validation as:

> library(ecospat)
> boyce.i <- ecospat.boyce(fit = val.data[,i þ 2], obs =
val.data[1:nrow(val.pres.k),i þ 2], res = 100, PEplot = F)

Note that Biomod2 and sdm have built-in cross-validation functions; however,
here we illustrate how to accomplish K-fold validation manually, which allows users
to customize how K-fold validation is accomplished (see also ecospat for func-
tions regarding cross-validation). For example, there has been recent criticism
regarding how folds are delineated (Hijmans 2012). In the code above, we randomly
select points to folds, yet these points are not likely spatially independent. An
alternative is to use “block” K-fold validation, where spatial blocks are randomly
selected, rather than sample points (Wenger and Olden 2012). In this case, we
might randomly select transects or watersheds as blocks for validation purposes.
This would be straightforward to accomplish above by sampling transects in lieu of
points.
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Based on K-fold validation, we get a different perspective on the utility of these
models (Table 7.5), where summary statistics tend to be higher than with prospec-
tive sampling. We also find that the more complex models tend to be favored
more, with the Random Forest model tending to predict relatively better when
using K-fold validation.

7.3.7 Combining Models: Ensembles

With predicted maps, it is straightforward to create model ensembles. A common
approach is to make a weighted average of predictions from models based on AUC
for each model or some other model evaluation metric (Marmion et al. 2009). We
emphasize, however, that because different algorithms model different currencies,
we suggest that averaging of predictions should only be made for models that are
modeling the same currency. Here, we show how we can create an ensemble based
on the GLM and GAM model (Fig. 7.14), which are predicting the same response
quantity (and thus on similar currencies; unlike Bioclim and Maxent), but differ in
their environmental functions being considered.

Table 7.5 Evaluating modeling algorithms based on K-fold validation

Model Boyce AUC TSS Kappa

Bioclim 0.525 0.737 0.440 0.080

GLM 0.737 0.781 0.473 0.156

GAM 0.798 0.802 0.462 0.135

Random Forests 0.791 0.839 0.572 0.211

Maxent 0.851 0.803 0.500 0.154
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Fig. 7.14 (a) An ensemble from the GLM and GAM using a weighted mean based on AUC scores
taken from K-fold validation, and the difference in ensemble predictions and predictions from (b)
the GLM, and (c) the GAM
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> models <- stack(glm.map, gam.map)
> names(models) <- c("glm", "gam")

#weighted average based on AUC from prospective sampling
> AUC.glm <- summary.eval[summary.eval$model == "glm", "auc"]
> AUC.gam <- summary.eval[summary.eval$model == "gam", "auc"]
> auc.weight <- c(AUC.glm, AUC.gam)

> ensemble.auc <- weighted.mean(models, auc.weight)
> plot(ensemble.auc)

Other approaches to ensemble modeling can include truncating predictions to
binary information of predicted presence/absence and then summarizing this infor-
mation in a variety of ways. Such truncation might be preferred when combining
very different modeling techniques. For instance, with that information, models
could be integrated by: (1) quantifying a bounded box of predicted occurrence, or
the region where at least one algorithm predicts occurrence; or (2) mapping the
frequency of predicted occurrence from different model algorithms (Araújo and New
2007) (Fig. 7.8).

7.4 Next Steps and Advanced Issues

7.4.1 Incorporating Dispersal

A common criticism for distribution models is that they typically ignore dispersal-
related limitations (Barve et al. 2011). Some approaches simply apply constraints to
the mapping process (Cardador et al. 2014), some model colonization processes with
time series data (see Chap. 10) (Bled et al. 2013; Yackulic et al. 2015), while others
link distribution models with simulations of the dispersal process (Smolik et al.
2010). In general, there is a great need to incorporate movement into the prediction
of species distributions and this is an active area of development (Miller and
Holloway 2015; Boulangeat et al. 2012). The MigClim package provides some
functionality for incorporating dispersal constraints into distribution modeling
(Engler et al. 2012).

7.4.2 Integrating Multiple Data Sources

Given the limitations of presence-only data and yet the wide availability of such
data, it is tempting to integrate presence-only data with other data that suffer fewer
biases. Recent modeling advances aim to unite opportunistic presence-only data with
presence–absence, occupancy or abundance data to make more reliable predictions
by using multiple sources of data simultaneously in model development, termed
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integrated species distribution models (Fithian et al. 2015; Koshkina et al. 2017;
Pacifici et al. 2017). Such integration can help to minimize bias as well as providing
a means to incorporate species prevalence, which is helpful for making predictions
of the probability of occurrence. These modeling efforts have been shown to reduce
potential bias and increase predictive accuracy of models (Dorazio 2014; Fithian
et al. 2015; Fletcher et al. 2016).

7.4.3 Dynamic Models

When time series of location data occur, we may model dynamics of distributions. In
this approach, often the focus is on understanding local extinction-colonization
dynamics (MacKenzie et al. 2003; Yackulic et al. 2015). In this framework, species
distribution (e.g., occupancy) over time is a derived parameter from estimated
colonization-extinction dynamics. Benefits of modeling dynamics include that it
provides a means to better understand the role of different limiting factors on species
distribution (e.g., dispersal limitation) (Broms et al. 2016), whether occurrence at
locations reflect underlying habitat quality (Pulliam 2000), it can help identify if
species distributions tend to be at equilibrium (a prominent assumption when
projecting distributions) (Yackulic et al. 2015), and it can allow predictions of
range dynamics (Guillera-Arroita 2017). We will address these dynamical models
in Chap. 10.

7.4.4 Multi-species Models

There is also increasing interest in modeling the distribution of multiple species
simultaneously (Ferrier and Guisan 2006). This can be done in a variety of ways, and
it typically focuses on species co-occurrence (Dorazio et al. 2006; Ferrier et al. 2007;
Ovaskainen et al. 2010; Araújo et al. 2011). Simultaneously modeling multiple
species can be advantageous for several reasons. First, it can provide insight into
potential species interactions and how those change over space or time. Second, one
species might be a good predictor of another species, not necessarily due to interac-
tions but because it is an indirect indicator of environmental conditions. We will
address some of these techniques in Chap. 11.

7.4.5 Sampling Error and Distribution Models

Throughout this chapter, we have ignored the problem of sampling error, such as
imperfect detection of species, to focus more simply on the issues variation in model
algorithms and model evaluation. However, observation errors are common in data
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sets and these errors frequently need to be accounted for to obtain reliable estimates
of environmental relationships. Several models exist for accounting for imperfect
detection, both in terms of false positive and false negative errors (Miller et al.
2011; Guillera-Arroita et al. 2017). False negative errors are more common, where a
species or individual occurs in an area but we fail to detect it. Several investigations
suggest that accounting for false negative errors can improve the predictive perfor-
mance of distribution models (Rota et al. 2011; Lahoz-Monfort et al. 2014; Guillera-
Arroita 2017). One major challenge in the interpretation, however, is that these
models predict occupancy across a geographic region, and yet evaluation data
are often detection-non detection (typically true occupancy data are not available
for evaluating models). Distribution models that account for imperfect detection can
be fit with a variety of R packages, including the unmarked (Fiske and Chandler
2011), hSDM (Vielledent et al. 2014), and stocc (Johnson 2015) packages.

7.5 Conclusions

Understanding, predicting, and projecting species distributions provides a means to
answer major questions in ecology and can deliver decision support for many
conservation problems (Gill et al. 2001; Norris 2004; Wiens et al. 2010; Guisan
et al. 2013). The use of species distribution models in ecology, evolution, and
conservation has a long tradition (Rotenberry and Wiens 1980; Austin 1987; Don-
ovan et al. 1987), and yet it has exploded over the past 15 years with new advances in
modeling algorithms and newly available data sources regarding species locations
and geo-spatial data of environmental factors (Graham et al. 2004; Dickinson et al.
2010; Fick and Hijmans 2017).

Many of the species distribution modeling techniques currently being used can be
described as inhomogeneous point process models. This realization has several
consequences for the implementation and interpretation of species distribution
models (Renner and Warton 2013; Renner et al. 2015). We recommend that this
framework be generally used to guide correlative species distribution modeling.

Our example illustrates that reliably applying and evaluating species distribution
models can be challenging. Extrapolating predictions beyond the environmental
conditions used for model building, an issue that commonly occurs when projecting
the effects of climate change (Thomas et al. 2004), can be difficult because little
information exists on such relationships. Evaluating models with commonly used
techniques, such as K-fold validation, can sometimes provide a false sense of model
performance (Wenger and Olden 2012) and suggest that more complex models are
valuable when in fact simpler models may be sufficient for reliable predictions in
space and time (cf. Tables 7.4 and 7.5).

Despite this increased use distribution models, these models still have limitations
and there use and application should be done with care. Greater focus on mechanistic
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modeling and leveraging information on why species distribution varies over space
and time may further advance our understanding of species distribution and our
ability to predict changes in distribution with ongoing environmental change.
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Chapter 8
Space Use and Resource Selection

8.1 Introduction

Understanding habitat and resource selection is at the foundation of much research
and applications in wildlife ecology (Morrison et al. 2006), and it has been empha-
sized in ecological theory (Rosenzweig 1981; Pulliam and Danielson 1991; Morris
2003). It is also highly relevant for spatial ecology and conservation (Battin 2004;
Resetarits 2005; Fagan and Lutscher 2006), because habitat selection is frequently
viewed to operate at different spatial and temporal scales (Johnson 1980; Orians and
Wittenberger 1991; Rettie and Messier 2000). Identifying critical habitat is essential
for conservation planning and recovery criteria for imperiled species (Thompson and
McGarigal 2002; Turner et al. 2004; Taylor et al. 2005).

Habitat selection, resource selection, and space use are related concepts for spatial
ecology and conservation. Here, we first distinguish these concepts, briefly describe
relevant theory for space use and habitat selection, and finally provide an overview of
common ways to quantify space use and resource selection with radiotelemetry data.
We focus on radiotelemetry data in this chapter because such data provide a means to
illustrate all of these concepts and problems and radiotelemetry is a common technique
for addressing applied problems. However, resource and habitat selection can also be
understood through the use of species distribution data that are not based on trajecto-
ries derived from individuals (e.g., radiotelemetry). For those approaches, see
Chap. 7. Throughout, we emphasize how these concepts play out over space and the
role of spatial scale in understanding habitat and resource selection.
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8.2 Key Concepts and Approaches

8.2.1 Distinguishing Among the Diversity of Habitat-Related
Concepts and Terms

There have been a wide variety of concepts and terms to describe and understand
habitat and resource selection over the years and often these terms are used loosely.
The term habitat has two distinct uses. First, it can be used in a species-specific way,
wherein habitat refers to a collection of environmental features (e.g., shelter) and
resources (e.g., food) necessary for the occupancy of an organism. This definition
shares many similarities with the concept of the niche (Chap. 7). Second, habitat is
sometimes referred to as a specific set of environmental features that may represent a
type of vegetation, plant community, or cover type etc. This latter term suggests that
habitat is independent of a specific organism or species. Hall et al. (1997) argued that
only the first definition of habitat is correct, yet there has been debate on whether that
narrow definition of habitat should only be used and how well that definition cross-
walks with related concepts of habitat use, selection, and preference (Table 8.1; Lele

Table 8.1 Common terms and definitions used in resource selection and space use investigations

Term Definition

Ecological trap When poor-quality habitats are preferred over better alternatives.
Can lead to an “attractive sink.”

Habitat A collection of environmental features and resources necessary for
the occupancy of an organism, or a specific set of environmental
features that may represent a type of vegetation, plant community,
or cover type.

Habitat use/usage The quantity of a component (food/resource) utilized by a con-
sumer over a fixed period of time.

Habitat availability The accessibility and procurability of a component to a consumer.

Habitat selection The process in which an animal chooses the component.

Habitat preference A particular habitat component being chosen more often if offered
on an equal basis with others.

Habitat quality The extent to which a habitat to promotes positive population
growth, through high survival and/or reproduction.

Resource A feature of the environment required for growth, maintenance,
and/or reproduction. Resources may (or may not) be consumed.

Resource selection The disproportionate use of resources relative to their availability.

Resource selection proba-
bility function

A function that estimates the probability of use for resource units of
different types.

Resource selection
function

A resource selection probability function multiplied by an arbitrary
constant, such that it is proportional to resource selection proba-
bility functions.

Home range Area traversed by the individuals in its normal activities of food
gathering, mating, and caring for young.

Utilization distribution The distribution of an animal’s position in the plane.

Territory Area defended by individuals.
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et al. 2013). We do not debate these terms here, but rather emphasize that it is
necessary to be clear in the use of habitat when considering these topics.

The terms “habitat” and “resources” are sometimes used interchangeably. Yet
resource is a more general term than habitat, which captures features of the
environment that individuals need for growth, maintenance, or reproduction, such
that it could include habitat, food, and mates. In contrast, “habitat” does not
typically include mates and it may or may not include food (e.g., prey are often
not considered habitat for predators; Crowder and Cooper 1982; Underwood et al.
2004; Keim et al. 2011).

8.2.2 Habitat Selection Theory

Habitat selection and resource selection theory were largely developed in the 1960s–
1980s, where it primarily advanced from behavioral ecology. Prior to this time, there
were many developments in understanding the proximate and ultimate causes of
habitat selection (Lack 1933; Svärdson 1949), yet a general theory for habitat
selection had not emerged. In the 1960s and 1970s, there was a great emphasis on
optimality and borrowing ideas from economics to approach questions and concepts
in behavioral ecology. Indeed, some of the key insights from early theory on habitat
selection were directly analogous to related developments in behavioral ecology that
also focused on optimality, such as the polygyny threshold model (Orians 1969).
Models derived from habitat selection theory are often consistent with distribution
patterns for some species (Krivan et al. 2008; Hache et al. 2013), even though
assumptions are often violated (Kennedy and Gray 1997; Hugie and Grand 1998).

8.2.2.1 Ideal Free Distribution and Its Extensions

A fundamental development in habitat selection theory occurred when Fretwell and
Lucas (1970) described the Ideal Free Distribution (IFD). This theory aims at
understanding variation in habitat selection and the resulting fitness consequences
in situations where habitats vary in quality and population density. In this theory,
individuals are assumed to behave ideally, be free to select those habitats where
fitness (e.g., reproduction) is highest, and fitness is assumed to decline with increas-
ing population density (Fig. 8.1; Fretwell and Lucas 1970). These assumptions are
key components of the IFD model of habitat selection and its subsequent extensions
(Fretwell and Lucas 1970; Morris 2003). Extensions included relaxing these primary
assumptions to include non-ideal behaviors (Shochat et al. 2005), despotic and
preemptive behaviors preventing “free” settlement (Fretwell and Lucas 1970;
Pulliam 1988; Rodenhouse et al. 1997), and to account for Allee effects (Fretwell
and Lucas 1970), or positive density dependence as low population sizes (Stephens
and Sutherland 1999). This general theory has also been extended to include species
interactions and predation risk (Rosenzweig 1981; Moody et al. 1996), perceptual

8.2 Key Concepts and Approaches 273



constraints (Abrahams 1986), social behavior (Beauchamp et al. 1997; Nocera et al.
2009), and stochasticity (Morris 2003).

There are several general principles that have arisen from this theoretical devel-
opment of relevance to interpreting space use and resource selection across land-
scapes. Theoretical development suggests that high-quality habitats should be
preferred, used more consistently over space and time, and may be selected more
rapidly and by dominant individuals (e.g., older or larger individuals) (Robertson
and Hutto 2006; McLoughlin et al. 2010). Even when individuals are not ideal, if
individuals can gain reliable information via sampling the environment, these
expectations should generally hold (Pulliam and Danielson 1991). Habitat selection
theory also suggests that spatial patterns in distribution may arise, such as spatial
autocorrelation in distributional patterns arising from spillover into nearby habitats
(McLoughlin et al. 2010). Some developments, such as the idea of site-dependent
population regulation in habitat selection (Rodenhouse et al. 1997), provide mech-
anisms for density-dependence and changes in population growth.

More recently, theoretical developments have focused on understanding how
environmental change may impact habitat selection. This work emphasizes that
density or abundance can be a poor indicator of habitat quality (Van Horne 1983).
Such situations frequently capture the idea of an ecological trap: where poor-quality
habitat is preferred over better alternatives (Schlaepfer et al. 2002), leading to
non-ideal habitat selection (Arlt and Part 2007). The concept of ecological traps
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Fig. 8.1 (a) Ideal free and (b) ideal despotic distributions for two habitats that vary in quality (H1

and H2). In (a), fitness declines with increasing population size and habitat 2 (H2) is only used once
population size is greater than N*. In (b), dominant competitors occur, shifting the fitness–
population size relationship and reducing N* (shown in bold)
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has received a great deal of interest, in part because of their potential for detrimental
effects on populations (Donovan and Thompson 2001; Kokko and Sutherland 2001;
Fletcher et al. 2012; Hale et al. 2015). Though in practice, ecological traps might be
relatively rare (Sergio and Newton 2003; Bock and Jones 2004; Robertson and
Hutto 2006).

8.2.2.2 Home Range Concepts and Space Use

The concept of the home range dates back to the early twentieth century. Burt (1943)
is often credited with first formalizing the concept of home range (Fig. 8.2), defining
it as the, “area traversed by the individuals in its normal activities of food gathering,
mating, and caring for young.” He contrasted the home range from the territory, or
an area defended by individual from other conspecific or heterospecific individuals
(Nice 1941). He emphasized that a home range did not need to cover the same area
during the entire life of an individual; that is, home ranges could change over time
and could be spatially separated, such as breeding and non-breeding home ranges.
Typically, home ranges will be larger in size than territories and can vary in size
based on both environmental conditions (e.g., resource abundance), individual traits
(e.g., age, sex), and population-level issues (e.g., population density).

Most theoretical developments regarding home ranges have focused on under-
standing why and how mechanistically home ranges may emerge (Borger et al.
2008; Moorcroft and Barnett 2008; Nabe-Nielsen et al. 2013; Potts and Lewis 2014).
For central-place foragers (Orians and Pearson 1979), such as nesting birds, it is
clear that reproduction places constraints on movement, which can lead to home
range behavior. In the absence of such constraints, it can be unclear as to why stabile
home ranges emerge, given that simple models of movement, such as diffusion and

Fig. 8.2 Home range
concepts, adapted from Burt
(1943). Shown is an
example of the relationships
between home ranges (ligth
grey; dashed lines) and
territories (dark grey; solid
lines) with key sites
(e.g., nesting sites) also
overlaid (squares)
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random walks (see below) cannot generate stable home ranges (Borger et al. 2008).
Several factors can potentially generate stable home ranges, however, such as spatial
memory, multiscale resource selection, benefits of motor learning in familiar envi-
ronments, trade-offs in travel time and resource acquisition, and/or focal point
attraction (Stamps 1995; Mitchell and Powell 2004; Gautestad and Mysterud
2005; Gautestad 2011; Merkle et al. 2014; Riotte-Lambert et al. 2015).

Understanding variation in space use within and between home ranges lies at the
heart of many problems involved in understanding critical habitats at different scales
(Johnson 1980). Interpreting the intensity of space use within home ranges often
involves quantifying the utilization distribution of an individual over space (and
possibly time). The utilization distribution is the two-dimensional relative frequency
distribution of an animal over a given period of time (Van Winkle 1975). The
utilization distribution can be thought of as a probabilistic representation of use in
a home range and is related to some applications of the ecological neighborhood
discussed in Chap. 2. Consequently, it provides a spatially explicit representation of
the intensity of space use, which can be linked to critical environmental features that
explain the intensity of use (Marzluff et al. 2004; Hooten et al. 2013).

8.2.2.3 Movement Concepts and Theory

Resource selection and space use arise from movement of individuals. It is also
critical for connectivity (see Chap. 9). In recent years, there has been a convergence
of movement-related principles and that of resource selection (Mueller and Fagan
2008; Schick et al. 2008; Zheng et al. 2009; Morales et al. 2010; Zeller et al. 2016;
Hooten et al. 2017). Consequently, we briefly discuss relevant ideas and advance-
ments of movement ecology here.

Movement has long been envisioned as a random walk or diffusive process in
ecology. Skellam (1951) pioneered this work by incorporating diffusive movement
into population dynamics models. Diffusion assumes that movement is random and
it provides a means to quantify the probability that a particle moving randomly
across the environment will be at a specific location at a given point in time. The
expected probability value can be derived from an underlying continuous space,
continuous time process (Kareiva 1982). Diffusion models can be extended to
account for advection: where certain environments increase movement rates (Skalski
and Gilliam 2003; Reeve et al. 2008). In contrast, random walks are typically derived
as discrete space, discrete time processes (Fig. 8.3). The general idea is the same:
individuals move randomly, but the formulation is different because of the discrete
nature of the model. Random walks have been extended in a variety of ways
(Codling et al. 2008), the most common of which is the use of correlated random
walks (CRWs), wherein there is directionality to movement (Kareiva and Shigesada
1983). In this formulation, it is assumed that the direction traveled at time
t will depend on the direction traveled at t�1. In general, this extension results in
movements that are much more directional and superficially similar to observed
movements in nature (Fig. 8.3). Random walks have also been extended to account
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for memory, social interactions, and other issues (Codling et al. 2008; Gautestad and
Mysterud 2010; Smouse et al. 2010; Delgado et al. 2014).

Often in movement ecology a distinction is made regarding whether the focus is
on individuals (Lagrangian perspectives) or on the population (Eulerian perspec-
tives) (Nathan et al. 2008). In general, diffusion models are often applied at the
population level while random walk models are typically applied at the individual
level (Borger et al. 2008). With increasing availability of GPS telemetry data
(Tomkiewicz et al. 2010), a Lagrangian perspective is often used to interpret space
use and resource selection (Horne et al. 2007; Avgar et al. 2016).

Nathan et al. (2008) outlined a framework aimed at unifying disparate approaches
to understanding movement ecology. They emphasized that four general factors
drive movement: the intrinsic state of an individual, the motion capacity, the
navigation capacity, and the external environment. Intrinsic state captures how
variation among individuals, such as their physiological state and personality traits
(Zera and Denno 1997; Harrison et al. 2015), may impact the likelihood and
direction of movement. Motion capacity focuses on the biomechanics of movement
(Damschen et al. 2008; Turlure et al. 2016). Navigation capacity focuses on how and
the scale at which organisms acquire information to influence movement decisions,
such as individual perceptual constraints and the perceptual range (Zollner and Lima
1997; Fletcher et al. 2013). Finally, the external environment provides a broad
category of extrinsic issues that may impact movement, such as land use (Doherty
and Driscoll 2018). Feedbacks can occur with each of these four factors. For
example, the external environment can impact the intrinsic state of individuals and
their navigation capacity.

d1

d2

d3

θ1

θ2

a b

r = 0.0 r = 0.5

r = 0.99r = 0.9

Fig. 8.3 (a) Movement trajectories of individuals as described by step lengths, d, (b) and relative
angles (i.e., turning angles, θ). (b) Random walk movement patterns, where both simple (r¼ 0) and
correlated random walks (r > 0) are illustrated, with the degree of correlation described by r
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8.2.3 General Types of Habitat Use and Selection Data

Habitat use and resource selection have been considered over the decades in a variety
of ways. This field envisions the problem of selection at different spatial and
temporal scales, and a wide variety of data is used to infer selection.

Habitat and resource selection is frequently viewed as being hierarchical (John-
son 1980; Orians and Wittenberger 1991; Rettie and Messier 2000). In a classic
article, Johnson (1980) classified resource selection into four hierarchical levels. He
defined first-order selection as that of the selection of the geographical range of a
species. Second-order selection occurs at the home range of an individual. Third-
order selection relates to the use of habitat components within a home range or
territory, while fourth-order selection relates to the actual procurement of food
items. This hierarchy clearly operates at different spatiotemporal scales.

This hierarchy is very relevant to the ways in which resource and space use are
evaluated. While there are several methods for evaluating resource selection and
preference, such as choice experiments and the timing (order) of use (Robertson and
Hutto 2006), most investigations focus on contrasting habitat or resource use to
some measure of availability (Beyer et al. 2010; Aarts et al. 2013). Depending on the
hierarchy being considered, different sets of resource use and availability data
are used.

Thomas and Taylor (1990, 2006) organized investigations regarding the ways in
which scientists interpret resource use and availability. They identified four general
study designs (see also Manly et al. 2002). In Design I, data are collected at the
population level and individuals are not identified, such as focusing on information
regarding variation in density, abundance, or occupancy across a resource gradient.
We do not focus on Design I here, because it largely overlaps with applications
regarding species distribution modeling (see Chap. 7). In Design II, use by individ-
uals is quantified and compared to availability information measured at the popula-
tion level (not specific to each individual). In Design III, both use and availability
data are quantified for each individual. In Design IV, use and availability are
measured repeatedly over time in a paired manner for each individual, thereby
allowing for variation individual resource selection over time and space (Arthur
et al. 1996; Thomas and Taylor 2006).

8.2.4 Home Range and Space Use Approaches

The analysis of home ranges has a long history in animal ecology. The general goal
of home-range analysis is typically to estimate (and map) the utilization distribution
of individuals and understand variation in utilization distributions. The utilization
distribution (UD) provides a quantitative perspective on space use, which can then
be related to several problems regarding environmental gradients, critical habitats,
and conservation.
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In recent years, there has been an explosion of methods that take advantage of
more detailed GPS telemetry data (Kie et al. 2010; Tomkiewicz et al. 2010; Kays
et al. 2015). Here, we provide an overview of some of the more common methods,
noting that each of these methods have been extended in a variety of ways, and other
methods exist. For more detailed reviews, see Moorcroft and Lewis (2006) and
Worton (1987).

The simplest home range estimator is the minimum convex polygon (MCP; Mohr
1947), which is a type of a convex hull. This approach places a convex box, or hull,
around the outer most location points (Fig. 8.4). One can consider all points or only
use a proportion of points (95%, 90%, etc.) when creating the hull to remove effects

increasing
bandwidth

ba

x y

dc

Fig. 8.4 Home range and utilization distribution estimators. (a) Minimum convex polygons use
convex hulls to delineate the outward boundaries of use. Shown are 100% and 50% minimum
convex polygons. (b) Kernel density estimators use probability distributions to smooth the expected
use around known use locations. Shown is an example with a bivariate normal distribution,
illustrating changing bandwidth of the kernel for a single point location. (c) Brownian bridge
estimators assume random motion between points along a trajectory. Shown is the expected use
between two point locations (reflected in the modes of the distribution). Note that the expectation is
higher for locations between the two points than locations not between points. (d) Local convex
hulls take points and create a series of minimum convex polygons using a subset of points that are
neighbors, which are stitched together to estimate a home range. Shown is an example where the
4-nearest neighbors are used
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of outlier points on the hull. While this approach has been used for decades, it is
known to be limited in its ability to quantify utilization distributions for several
reasons. First, MCP does not provide a formal estimate of UDs, because it does not
estimate a relative intensity of use. Second, as a bounding box, it typically over-
estimates space use by including areas unsuitable to individuals.

Kernel density estimation (KDE) also has a long history in space use and home
range estimation (Worton 1989; Seaman and Powell 1996; Benhamou and Cornelis
2010). Kernel home range estimators use different types of probability density
functions (similar to what we used in Chaps. 2–4) for interpolating space use. This
general approach is potentially useful because it can capture intensity of use across
space. For KDE, we essentially interpolate around each point location based on a
kernel function (Fig. 8.4), where the height and spread of the interpolation is based
the bandwidth (or “smoothing parameter” or “window width”; Seaman and Powell
1996) of the kernel distribution. Fixed and adaptive kernel estimators have been
developed for applying bandwidths (Worton 1989). In a fixed bandwidth, all points
use the same bandwidth, while in an adaptive bandwidth, bandwidths can vary
across points. Adaptive bandwidths are thought to result in biased estimates of
home ranges, where estimates tend to be larger than true home ranges, while fixed
bandwidths tend to perform better (Seaman and Powell 1996). For KDEs, point
locations are assumed to be independent (Worton 1989), which can be problematic
due to temporal autocorrelation (Swihart and Slade 1985), particularly when point
locations come from a fine temporal resolution, such as with GPS telemetry data.
Violation of this independence assumption can cause problems for bandwidth
estimation (Gitzen et al. 2006).

The Local convex hull (LoCoH) is a generalization of the MCP and is thought of
as a non-parametric kernel method (Getz andWilmers 2004; Getz et al. 2007). In this
approach, convex hulls for successive locations are created using nearest neighbors
(defined with different types of criteria; see below and Getz et al. 2007), which are
merged together to quantify the home range (Fig. 8.4). This nonparametric approach
is potentially useful because it honors hard boundaries and locations that animals
may not use (and may otherwise be included in estimates from MCP or KDE).
Because LoCoH uses successive locations, it implicitly captures time-related issues;
it has been extended to explicitly account for time as well (T-LoCoH; Lyons et al.
2013). See Benhamou and Cornelis (2010) for an alternative way to deal with
boundary issues in KDE.

Brownian bridge movement models (Horne et al. 2007) provide a different view
on home range analysis by explicitly incorporating movement trajectories into the
interpretation of the home range and thus providing more of a mechanistic perspec-
tive on the role of movement in home range estimation (in contrast to kernel
methods). This approach is based on the idea of a conditional random walk between
successive locations (Fig. 8.4), or a random walk conditioned on the time and
distance between locations, and the Brownian motion variance (“Brownian” is a
term borrowed from physics to describe simple diffusion processes). The model has
been used in a variety of ways, but for home range analysis it is relevant because it
estimates the probability that an individual occurred in an area of a given period of
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time (Horne et al. 2007). This model is more likely to result in estimating connected
home ranges than kernel-based approaches, since it estimates use between succes-
sive locations via a random-walk process. Importantly, this model does not assume
that locations are independent, unlike kernel methods.

Finally, we note that there have been efforts to use mechanistic home range
models (Moorcroft et al. 1999; Mitchell and Powell 2004; Moorcroft and Barnett
2008). This general approach focuses on processes that may generate home range
patterns in contrast to the above approaches, which tend to focus simply on quan-
tifying home range patterns themselves (without regard to why these patterns
emerge). These models are often based on the extension of correlated random
walk (CRW) models to capture other key mechanisms that can generate home
range patterns, such as response to conspecific scent marks, movement bias toward
the center of the home range, avoidance of steep terrain, or memory (Moorcroft et al.
1999, 2006; Hooten et al. 2017). These models typically rely on differential equa-
tions and require an advanced understanding of calculus; as a consequence, these
approaches will not be considered in more detail here (see Moorcroft and Lewis 2006
for more details).

8.2.5 Resource Selection Functions at Different Scales

Resource selection functions (RSFs) are a group of statistical models that quantify
variation in resource use by animals, and are defined as any function that is
proportional to the probability of use of a resource unit (Boyce and McDonald
1999; Manly et al. 2002; Lele et al. 2013). They come in many flavors (Manly
et al. 2002), depending in part on the type of data being considered as well as the
scale in which resource selection is being considered. Resource selection functions
also share many features with species distribution models (see Chap. 7) and some
RSFs can be considered one type of species distribution model (Franklin 2009; Aarts
et al. 2012).

Often a distinction is made between resource selection functions (RSFs) and
resource selection probability functions (RSPFs) (Boyce and McDonald 1999). The
former typically contrasts use to availability of resources such that these functions
tend to model a relative measure of use, one that is proportional to the probability of
use. In contrast, RSPFs model the probability of use, either from contrasting use to
non-use, or through making distributional assumptions regarding the relationships of
relative use to the probability of use by capitalizing on the theory of weighted
distributions (see Lele and Keim 2006; Lele et al. 2013). Weighted distributions
have been shown with simulations to reliably estimate all parameters of RSPFs when
sample size is relatively high (>500 use points; Rota et al. 2013). The contrast
between RSFs and RSPFs is analogous to species distribution models (Chap. 7) that
model the probability of occurrence versus a relative probability through the use of
presence-only data.
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Here, we categorize RSFs based on the type of information being used, such as a
collection of use points or a trajectory of use by an individual. We categorize RSFs in
this way because of their implementation for spatial ecology concepts and applica-
tions. For instance, in the spatial ecology literature, “point selection” is distinguished
from “step selection” and “path selection” (Zeller et al. 2012), because these
different types of RSFs capture resource selection during movement or dispersal in
different ways (see Chap. 9). We describe each briefly below, but for a thorough
overview, see the excellent books by Manly et al. (2002) and Hooten et al. (2017).

8.2.5.1 Point Selection

Point selection takes use locations and typically compares use to information about
availability, without reference to the trajectory of movement or use that occurred
(Fig. 8.5). This approach has a long history in the modeling of resource selection and
space use. A simple point selection function for categorical data, termed a “selection
ratio”, can be described as:

wi ¼ oi=πi, ð8:1Þ

where wi is the proportion of resource units from category i related to the proportion
available, oi is the proportion of used units in category i, and πi ¼ ai/a, or the
proportion of units of i that are available. Here, ai is the amount or area of category i,
and a is the total amount (or area) of all categories. As such, wi is frequently
considered a measure of preference for resource category i. This type of selection
ratio has been termed the “Manly selectivity measure”, but this general construct
dates back to early studies of resource use and availability (Savage 1931). There are
several variants on this idea (Manly et al. 2002).
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Fig. 8.5 (a) Point, (b) step, and (c) path selection approaches to resource selection. Shown is a
minimum convex polygon for a radio-tracked individual, with filled points illustrating a sample of
use locations and white points are a sample of available locations. For (b), only local availability
(A) for the first two usage (U) points is shown
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An alternative to this approach for categorical data was the development of
compositional analysis (Aebischer et al. 1993). This approach became a popular
alternative in the 1990s and early 2000s because addresses some fundamental
limitations of selection ratios, such as a lack of independence among resource use
samples of an individual (it treats individuals as sample units) and the unit-sum
constraint, where avoidance of one type of resource unit may lead to concluding
selection for another (Johnson 1980). Compositional analysis is a form of multivar-
iate analysis of variance (MANOVA), applicable to resource selection Designs II
and III (Manly et al. 2002). While it became very popular, it has been criticized
because it assumes multivariate normality, assumes data from different individuals
are independent, and in some cases arbitrary constants must be added to the data
(because it is based on log-ratios).

A more general form of point selection is the logistic regression RSF, which can
be applied to different types of covariates (e.g., continuous and categorical) and
extended to account for spatiotemporal dependence and repeated measures (Manly
et al. 2002; Aarts et al. 2008). Here, it is formalized as:

wx ¼ exp β0 þ β1x1 þ β2x2 . . .þ βkxkð Þ
1þ exp β0 þ β1x1 þ β2x2 . . .þ βkxkð Þ , ð8:2Þ

where there are K covariates of interest, and βk is the log odds ratio associated with a
1-unit change in resource k and as such provides a measure of resource use for
resource k, and x is the location. Similar RSFs can be constructed based on the
amount of use (i.e., log-linear RSFs), or temporally explicit use (e.g., proportional
hazards models). The numerator of the RSF in Eq. (8.2) is directly related to
Eq. (8.1). See below and Manly et al. (2002) for more details.

This type of RSF shares many similarities of the use of GLMs for predicting
species distributions (Chap. 7). Note that similar to presence-only models described
in Chap. 6, the intercept, β0 is not identifiable when applied to use-availability data
(i.e., because it will be contingent on the number of available points used). Also,
logistic regression RSFs can potentially provide biased estimates in some situations
(Keating and Cherry 2004). In particular, concerns have been raised that when using
logistic regression with use-availability data, “contamination” can occur, that is,
when 0’s used in the logistic regression are locations where use actually occurs. Yet
there has been some debate regarding if contaminated availability data are really
problematic with real-world data (Johnson et al. 2006; Beyer et al. 2010).

Lately, the use of inhomogeneous point process models have been implemented
to interpret resource selection (Aarts et al. 2012; Johnson et al. 2013; Northrup et al.
2013; Hooten et al. 2017), similar to their use for modeling species distributions (see
Chap. 7). Aarts et al. (2012) illustrated how a variety of RSFs approximate the
inhomogeneous point process model. To illustrate this point, they highlight how
RSFs can be quantified in environmental space (e.g., Eq. 8.1) or geographic space.
For instance, RSFs based on geographic space would consider each location in space
as a distinct resource or habitat, such that use is based on where species occur in
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geographic space rather than focusing on the frequency of use based on environ-
mental conditions. They also highlight that some models discretize the environment
or geographic space (both in terms of use and resource data) while others treat it as
continuous. Counts and presence–absence data, for example, are based on a discrete
area that is sampled or summarized, whereas point location data may represent an
infinitely small area (i.e., it can be treated as continuous). Inhomogeneous point
process models for resource selection focus on continuous, geographic space, which
can be approximated using discrete data taken from resources summarized in
environmental or geographic space. Aarts et al. (2012) showed how logistic regres-
sion and Poisson regression can approximate the inhomogeneous point process
model. In this way, weights are typically used in the regression model, which may
reflect the area or volume sampled with availability points (or “quadrature” points;
see Chap. 7). The benefit for using a point process framework is that, similar to
species distribution modeling, it clarifies the role of data (e.g., availability points)
and it highlights the similarities among models that have been considered more
distinct in the past.

Similarly, Johnson et al. (2013) advanced the use of space-time point process
models, where events (points where use occurs) are modeled explicitly over time.
The benefit of considering space-time point process models is that this framework
can readily account for environmental conditions changing over time, impacting
availability of resources and use. This framework has been advanced as a more
general and flexible framework for resource selection functions (Hooten et al. 2017).
Note that for many point process models, standard software can be used (as shown in
Chap. 7).

8.2.5.2 Step Selection

With the increased availability of high-resolution GPS telemetry, step-selection
functions are frequently used (Fortin et al. 2005; Thurfjell et al. 2014). In a step-
selection function, use at time t is contrasted to availability at time t (Fig. 8.5).
Availability can be derived at different spatial scales, such that it varies over time.
Typically, movement trajectories are used to quantify step lengths (i.e., the distance
moved between time t�1 and t) and turning angles between successive locations.
This information is then used in some way to interpret availability at time t given an
individual location at t�1 (Fig. 8.5). This data format results in matched data, or a
“choice set,” where a use location is paired with one or more available locations.
Such matched data are more broadly known as a matched case-control design.
Statistical models such as the discrete-choice and related conditional logit models
are frequently used to interpret resource selection in this context because these types
of models can honor the matched sample design (Cooper and Millspaugh 1999;
Fortin et al. 2005; Duchesne et al. 2010). While these types of models have largely
been assumed to provide synonymous inference to logistic RSFs, the choice prob-
ability modeled is subtly different (Lele et al. 2013), where it models the probability
of choosing one unit of resource i when offered relative to the choice set at time t.
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These models may be useful for linking resource selection and movement across
space (Forester et al. 2009; Duchesne et al. 2015), such that they have been widely
used in spatial ecology (Thurfjell et al. 2014; Zeller et al. 2016).

Although step selection functions are increasingly used, there are several deci-
sions that are necessary for their development and little consensus currently occurs
regarding best practices for their development (Thurfjell et al. 2014). First, most
applications of step selection functions focus on the resource used at the end point of
each step (and available step), yet some investigators consider resources across the
entire step/line segment (Zeller et al. 2012). Second, when generating available
points or steps, some have simply buffered around the use location at time t and
selected random points within the buffer without respect to distance from the point
for comparison with use at time tþ 1. This latter approach is known to generate bias
in selection coefficients and is not recommended (Forester et al. 2009). Rather,
available points should follow either the observed step distribution (sampling step
lengths from the observed distribution) or through a parametric distribution fit to the
observed step lengths. Third, for a step selection function, repeated time steps will
typically have a temporal dependence that needs to be accounted for when estimat-
ing resource selection. Some applications use an approach based on generalized
estimating equations (Fortin et al. 2005; Prima et al. 2017) while others have applied
mixed models to accommodate spatiotemporal dependence (Duchesne et al. 2010).

8.2.5.3 Path Selection

An alternative to step selection is to consider entire paths or trajectories of individ-
uals moving across landscapes (Fig. 8.5). The utility of considering entire paths or
relevant components of paths (e.g., a daily path, seasonal path, etc.; sometimes
referred to collectively as “bursts”) is that may provide more useful information on
selection during the movement process and it may help reduce problems of temporal
autocorrelation in analysis and interpretation of data (Cushman et al. 2011). Path-
selection functions have been used in a variety of contexts, such as estimating the
resistance of the matrix to movement (Zeller et al. 2016) and interpreting individual
variation in dispersal biology (Elliot et al. 2014).

In a path-selection function, a used path is defined and contrasted to a random
path. Random paths can be generated in a variety of ways. For instance, the use path
can simply be rotated from the origin location. This type of random path preserves
the topology of the observed path. In contrast, observed paths can be rotated and
shifted in the region of interest. Finally, random paths could be generated from the
estimated components of the used path (e.g., the distribution of step lengths and
turning angles), similar to a step-selection function but inferred at the level of the
entire path. This latter approach has seen less use in resource selection modeling but
is commonly used for simulations in spatial ecology (Beyer et al. 2013).
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8.3 Examples in R

8.3.1 Packages in R

In R, there are several libraries that can be used for resource and habitat selection
modeling. We will focus on the use of adehabitat (Calenge 2006), which was
broken into three packages we will consider: adehabitatHR,
adehabitatHS, and adehabitatLT. adehabitatHR focuses on home
range analysis, adehabitatHS focuses on habitat selection analysis, and
adehabitatLT provides a platform for interpreting and analyzing movement
trajectories.

8.3.2 The Data

For the purposes of understanding resource selection and habitat use, we use
radiotelemetry data from Florida panthers (Puma concolor coryi) in south Florida.
The Florida panther is a critically endangered mammal confined to southern Florida.
Over the past 30 years, there have been thorough efforts to understand space use,
home ranges, and resource selection for the Florida panther using radiotelemetry
(Maehr and Cox 1995; Cox et al. 2006; Land et al. 2008; Onorato et al. 2011; Frakes
et al. 2015; McCarthy and Fletcher 2015). Across much of this time, panthers were
typically located every 1–3 days using fixed wing aircraft and locations had an
estimated accuracy of 489 m (Cox et al. 2006). The overwhelming majority (97%) of
telemetry locations were collected from 0700 to 1559 and most (88%) from 0700 to
1159 (Cox et al. 2006), limiting inference primarily to the early day when panthers
are typically resting. However, Land et al. (2008) contrasted inferences from VHF
and GPS telemetry data where points were taken throughout the day and night (when
panthers are more active), finding that resource selection was similar with these two
data sources.

Here, we illustrate resource selection and space use topics from a small portion of
VHF data of radiotelemetered panthers. Our data come from six panthers, three
subadults and three adults, each of which has a variable number of relocations
(Fig. 8.6). Our goals for this example are twofold. First, we illustrate how such
data can be used to interpret space use through quantifying utilization distributions
with various methods, each of which provides complementary insights. Second, we
contrast approaches to understanding resource selection, which differ in the way
they capture issues of spatial and temporal scale during the process of resource
selection.
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8.3.3 Prepping the Data for Modeling

First, we load a raster layer of land-cover types (panther_landcover.
grd) for the region and a shape file of panther telemetry locations. We consider a
raster-based, land-cover map, aggregated to a 500 m resolution (reflecting the
approximate grain of telemetry error). This map was generated by the Florida Fish
and Wildlife Commission in 2003, with the original map containing 43 land-cover
types and a map resolution of 15 m. While there are more recent land-cover mapping
efforts, this map is the best mapping effort for the time period of the panther
data (2006). We also import an .shp file of panther locations (panthers.
shp) and overlay the two data sources.

> library(raster)
> library(rgdal)

#land cover
> land <- raster("panther_landcover.grd")
> projection(land)

CatID Sex Age # Locations # Months monitored
100 Male Adult 127 11
131 Male Adult 118 11
137 Male Adult 131 11
130 Male Sub-adult 85 9
143 Male Sub-adult 129 11
147 Male Sub-adult 123 9
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Fig. 8.6 Telemetry data for the Florida panther in south-central Florida. (a) A Florida panther. (b)
Map of use locations for each panther across the study region. (c) The number of panthers and the
number of use locations for each panther
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#Add panther data
> panthers <- readOGR("panthers.shp")
> projection(panthers)

These two maps have the same CRS, so we will not need to modify either map for
visualizing and analyzing the data (we do store the CRS as crs.land for later
use). We briefly explore the data and plot it to understand variation in the data
(Fig. 8.6).

#explore panther data
> summary(panthers)
> unique(panthers$CatID) #the unique cat IDs
> panthers$CatID <- as.factor(panthers$CatID)

#plot
> plot(land)
> points(panthers, col = panthers$CatID)

To simplify this analysis, we reclassify the land-cover data into fewer categories
with the reclassify function from the raster package:

#reclassify map into fewer landcover categories
> classification <- read.table("landcover reclass.txt", header = T)
> head(classification)

##
Landcover Description ChangeTo Description2
1 1 CoastalStrand 0 coastalwetland
2 2 Sand 0 coastalwetland
3 23 saltmarsh 0 coastalwetland
4 24 mangroveswamp 0 coastalwetland
5 25 scrubmangrove 0 coastalwetland
6 26 tidalflat 0 coastalwetland

This table describes the original classification scheme and the scheme that we are
reclassifying. The new categories can be seen with:

> levels(classification$Description2)

##
[1] "barrenland" "coastalwetland" "cropland" "cypressswamp"
"dryprairie"
[6] "exotics" "freshwatermarsh" "hardwoodswamp" "openwater"
[12] "pasture/grassland" "pinelands" "scrub/shrub" "uplandforest"
"urban"

We can then use the reclassify function, but need to convert the data frame
into matrix format to do so.
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> class <- as.matrix(classification[,c(1,3)])
> land_sub <- reclassify(land, rcl = class)

We also create some new layers that represent continuous covariates of key land-
cover types for panthers by using a moving-window analysis (see Chap. 3) of two
forest types, specifically upland forests and forested wetlands. Both of these forest
types have previously been shown to be important for resource selection in Florida
panthers (Kautz et al. 2006; McCarthy and Fletcher 2015). For this moving window,
we calculate the portion of each forest in a 5 km radius, roughly reflecting the median
distance moved between successive locations in this data set:

#forested wetlands
> wetforest <- land_sub
> values(wetforest) <- 0
> wetforest[land_sub == 9 | land_sub == 11] <- 1

#forested uplands
> dryforest <- land_sub
> values(dryforest) <- 0
> dryforest[land_sub == 10 | land_sub == 12] <- 1

#moving window to get neighborhood proportion
> fw <- focalWeight(land_sub, 5000, 'circle')
> dry.focal <- focal(dryforest,w = fw, fun = "sum", na.rm = T)
> wet.focal <- focal(wetforest,w = fw, fun = "sum", na.rm = T)

#merge raster data
> layers <- stack(land_sub, wet.focal, dry.focal)
> names(layers) <- c("landcover", "wetforest", "dryforest")
> plot(layers)

Plotting these maps highlights that wet forest habitats are largely in the southwest
portion of Florida, while dry forest (upland) forest is scattered throughout the study
area (Fig. 8.7). With these data, we can turn to estimating space use through home
range analysis.

8.3.4 Home Range Analysis

There are a variety of approaches to estimating home ranges of animals. Here, we
will illustrate several approaches. For adhabitatHR, we take panthers and
select the column of the data frame that includes the animal identification number
(CatID) to calculate Minimum Convex Polygons with the mcp function:
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> library(adhabitatHR)
> mcp95 <- mcp(panthers[,"CatID"], percent = 95)
> mcp50 <- mcp(panthers[,"CatID"], percent = 50)

> plot(land_sub)
> plot(panthers, col = panthers$CatID, add = T)

Above we plot the panther locations and overlay the 100%, 95%, and the 50%
MCP (Fig. 8.8), the latter of which is sometimes referred to as the “core area” used
(Seaman and Powell 1996). The objects created by mcp are spatial polygons. We can
extract more information from this analysis, such as the area of MCPs (see below).

Another common approach to home range analysis is through the use of kernel
methods. We considered kernels briefly when considering spatial point patterns
in Chap. 4, and for scale issues in Chaps. 2 and 3. Here, we use a similar approach.
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Fig. 8.7 Covariates considered in resource selection analyses. (a) A reclassified land-cover layer,
(b) the proportion of wetland forest within 5 km, and (c) the proportion of upland forest within 5 km
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For KDEs, there are two key issues to consider. First, there are a few different types
of kernels that can be applied. A classic kernel relies on the bivariate normal
distribution (aka, a Gaussian kernel); it is bivariate because the normal distribution
is considered in both the x and y dimension. One common non-normal approach
includes the Epanechnikov kernel (Epanechnikov 1969). Second, there are a variety
of ways to identify appropriate bandwidths, which alter the degree of smoothing in
the kernel and the extent of interpolation (Worton 1995). The default technique for
estimating a smoothing bandwidth is an ad hoc approach based simply on the
number of locations and the variance of the x–y coordinates, termed href. Below
we calculate both the bivariate normal kernel and the Epanechnikov kernel (Fig. 8.9)
using href:
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Fig. 8.8 Home ranges
based on minimum convex
polygons for two panthers,
one adult (Cat 100) and one
sub-adult (Cat 147). Shown
are the raw locations
(points) and the 50%, 95%,
and 100% minimum convex
polygons for each panther
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> kernel.href.bivar <- kernelUD(panthers[,"CatID"], h = "href", kern =
"bivnorm")

> kernel.href.epa <- kernelUD(panthers[,"CatID"], h = "href", kern =
"epa")

> image(kernel.href.bivar)
> image(kernel.href.epa)

The object created is an estUD object, which essentially stores information for
each individual in list form. We can extract information regarding the utilization
distribution based on the bivariate normal kernel for the first individual as:

> kernel.href.bivar[[1]]@data

Note that this information is in vector format, where each value reflects a pixel on
the map used; this vector does not include values for all pixels on our map (i.e., the
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Fig. 8.9 Home ranges estimated using kernel methods for Cat 100 (a, b) and Cat 147 (c, d). Shown
are the raw locations (points), utilization distributions quantified with bivariate normal kernels (a, c)
and the Epanechnikov kernel (b, d), and the 50% and 95% contours

292 8 Space Use and Resource Selection



length is not equal to ncell(land_sub)). We can also extract what values of
h were used for each animal (here shown is animal 2):

> kernel.href.bivar[[2]]@h

href can sometimes lead to over-smoothing of the utilization distribution. We
can manually change h, such as setting it to a lower value than that estimated by
href (which ranged from approximately 1600–9000 in this example). Alternatively,
least-squares cross validation (hlscv) is another approach recommended to estimate
reliable bandwidths (Worton 1989). Yet, sometimes this method (and related ones)
does not converge. We can estimate home-ranges use hlscv in the above function
by calling, h ¼ “LSCV”. For this example, hlscv does not converge for some of
the animals.

We can also estimate home ranges using the local convex hull approach
(LoCoH). With this general approach, there are different ways to generate local
convex hulls. Getz et al. (2007) argued that a-LoCoH, or the “adaptive sphere-of-
influence” is a superior approach for LoCoH in contrast to a fixed sphere, r-LoCoH,
or a fixed number of points, k-LoCoH, all of which can be implemented with
adehabitatHR.

We illustrate both a-LoCoH and k-LoCoH for panther 147. In each approach, we
first need to search for the best parameter regarding neighbors that delineate local
hulls. This is frequently done by increasing the parameters that are used for hull
construction (k, a, and r) and calculating changes in home range area. In this context,
k is the number of nearest neighbors minus one from which hulls are created, and a is
a parameter where convex hulls are created such that the sum of their distances from
the maximum number of nearest neighbors is �a. In general, as k, a, or r increases,
there will be fewer unused areas (or holes), such that the home range polygon will
have a coarser grain (Getz et al. 2007). As these parameters increase, the estimated
home range area may level off once all spurious holes within the home range are
covered, but home range area should increase again when one or more real holes in
use become covered (Getz et al. 2007). Getz et al. (2007) recommended starting k at
N0.5 (where N is the number of points for an individual), while a can be initiated at
the maximum distance between pairs of points. We use these rules of thumb below.

#subset to only consider panther 147
> panther147 <- panthers[panthers$CatID == 147,]

#initialize
> k.int <- round(nrow(coordinates(panther147))^0.5, 0)
> a.int <- round(max(dist(coordinates(panther147))), 0)

> k.search <- seq(k.int, 10*k.int, by = 5)#number of points
> a.search <- seq(a.int, 2*a.int, by = 3000)#distance in m

8.3 Examples in R 293



> LoCoH.a.range <- LoCoH.a.area(SpatialPoints(coordinates
(panther147)), arange = a.search)

> LoCoH.k.range <- LoCoH.k.area(SpatialPoints(coordinates
(panther147)), krange = k.search)

> plot(LoCoH.a.range)
> plot(LoCoH.k.range)

In the above search, we evaluate the changes in home range area as k and
a increase. In this case, we select some parameter estimates from these graphs
where home range area tends to asymptote and then calculate the home range
based on those parameters (top panels of Fig. 8.10). Note that in these data, there
is not a strong asymptote, so we simply pick values where the rate of change slows.

> a.search[5]
> k.search[11]

> LoCoH.a.124062 <-
LoCoH.a(SpatialPoints(coordinates(panther147)), a = a.search[5])

> plot(LoCoH.a.124062)

> LoCoH.k.61 <- LoCoH.k(SpatialPoints(coordinates(panther147)),
k = k.search[11])

> plot(LoCoH.k.61)

By altering the parameters based on the LoCoH.a.area and LoCoH.k.area
plots, we see that a-LoCoH appears to be less sensitive to changes in a than k-
LoCoH is to changes in k (lower panels of Fig. 8.10). Overall, the LoCoH approach
appears to adequately capture the highly irregular space use by panther 147, unlike
the minimum convex polygon (and to a lesser extent, the kernel approach).

Brownian bridge models can also be estimated with adebhabitatHR. The
general approach of Horne et al. (2007) can be implemented with the kernelbb
function. These models require a different format for the data that captures the
trajectory of each individual. Our location data can be converted to trajectory data
with the adehabitatLT package. For applications to Brownian bridges, we must
ensure that the trajectory has time-related information (e.g., date; typeII ¼ TRUE
below). To make this trajectory information, we format the date information as a
POSIXct object in R. This is a useful format for doing calculations based on dates
and is needed for the creation of a trajectory-based object.

#reformat Juldate to a POSIXct object for date
substrRight <- function(x, n){
substr(x, nchar(x)-nþ1, nchar(x))
}

panthers$Juldate <- as.character(panthers$Juldate)
panther.date <- as.numeric(substrRight(panthers$Juldate, 3))
panthers$Date <- as.Date(panther.date, origin=as.Date("2006-01-01"))
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#create POSIXct object
panthers$Date <- as.POSIXct(panthers$Date,"%Y-%m-%d")

> panther.ltraj <- as.ltraj(xy = coordinates(panthers), date = panthers
$Date, id = panthers$CatID, typeII = T)

> plot(panther.ltraj)

Storing the data in this way provides a useful means to visualize trajectories
(Fig. 8.11) from radiotelemetry data, as well as to quantify aspects of the trajectory
(see Step Selection Section 8.3.5.2 below). With this trajectory, we must specify two
parameters to fit a Brownian bridge. First, the parameter sig1 must be estimated.
This parameter is related to the speed of the individual. As the value of this parameter
increases, the assumed tortuosity of the path increases. Second, the parameter sig2
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Fig. 8.10 The use of local convex hulls for home range estimation. (a) k-LoCoH, which uses the k-
nearest neighbors in hull delineation. (b) a-LoCoH, which uses an adaptive radius for delineating
neighbors. For each, top panels show searches for identifying the best values for k and a. Maps
show changes in home range delineations with (a) increases in k, and (b) increases in a (Values
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must be quantified. This parameter is related to h in KDE methods and can reflect the
error in the location data. As this parameter increases, the smoothing increases.

We estimate the first parameter using maximum likelihood with the liker
function (see Horne et al. 2007):

#telemetry error
> sigma2 <- 450

> sigma1 <- liker(panther.ltraj, sig2 = sigma2, rangesig1 = c(2, 100))

> sigma1

##
Maximization of the log-likelihood for parameter
sig1 of brownian bridge

100 : Sig1 = 13.7718 Sig2 = 450
130 : Sig1 = 18.0881 Sig2 = 450
131 : Sig1 = 13.968 Sig2 = 450
137 : Sig1 = 15.1451 Sig2 = 450
143 : Sig1 = 10.8288 Sig2 = 450
147 : Sig1 = 7.1992 Sig2 = 450

Cat 100

Cat 137

Cat 130

Cat 143 Cat 147

Cat 131

Fig. 8.11 Trajectories of each panther. Background lines reflect 10 � 10 km grids
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Given the variation in estimates of sig1, we may want to fit the Brownian bridge
separately for each cat. We fit a Brownian bridge model to panther 147 as (Fig. 8.12):

> bb.147 <- kernelbb(panther.ltraj[6], sig1 = 7.2, sig2 = sigma2, grid =
100)

where grid refers to the size of the grid needed to be estimated. The grid sets the
grain of the analysis. As grid size increases, so does the computation time. Increasing
grid size may be useful for visualizing the utilization distribution, although if interest
is solely on estimating home range size, a fine grain may not be needed (although it
may increase the precision of the estimate). The object created by kernelbb is an
estUDm object, from which we can extract a variety of information.
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Beyond simply mapping, we can summarize the home range analyses in a variety
of ways. We can contrast home range area estimates between the MCP, the kernel
approach, and the Brownian bridge (output not shown):

#home range area estimates based on 95%
> kernel.95 <- getverticeshr(kernel.href.bivar, percent = 95)
> bb.95 <- getverticeshr(bb.147, percent = 95)

#contrast area
> mcp95$area
> kernel.95$area
> bb.95$area

While home range estimators have proven valuable for interpreting space use and
utilization distributions, most applications do not directly provide inferences on
resource selection and habitat preferences. For this, we turn to resource selection
functions.

8.3.5 Resource Selection Functions

With the above data, we use resource selection functions to interpret habitat use
patterns. This can be done in a variety of ways. We illustrate several general
approaches based on point selection, step selection, and path selection functions.

8.3.5.1 Point Selection Functions

The most common approach for estimating resource selection functions is to contrast
use points versus available points (a “point selection” analysis). Available points can
be generated in a variety of ways, depending on the scale at which resource selection
is interpreted.

We first consider the situation where we want to estimate selection ratios for land-
cover (or vegetation) types—categorical variables. We then extend the general idea
to models that can accommodate categorical and continuous covariates.

For a Design II analysis, we contrast use versus availability across the entire study
area extent. First, we reformat the use point data in a way that has the appropriate
format for adehabitatHS. That package requires that each individual is a row in a
data frame and each column is a land-cover type. We extract land-cover types at use
points with the extract function in the raster package, and then reshape the
data to a proper format with the reshape2 package (Wickham 2007) for input into
adehabitatHS:

> library(reshape2)
> use <- extract(layers, panthers)
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> use <- data.frame(use)
> use$CatID <- as.factor(panthers$CatID)

#use reshape2, dcast function:
> useCatID <- dcast(use, CatID ~ landcover, length, value.var = "CatID")
> newclass.names <- unique(classification[,3:4])
> names(useCatID) <- c("CatID", as.character(newclass.names[1:13,2]))

We generate 1000 random points (though in practice, more points might be
needed; Northrup et al. 2013) and extract land-cover categories at those points to
gain information on availability across the extent of interest with the
sampleRandom function:

#use sampleRandom function from raster to create availability
> set.seed(8)
> rand.II <- sampleRandom(landcover, size = 1000)
> rand.II.land <- data.frame(rand.II)

#sum up counts of each landcover type
> table(rand.II.land)

With these available points, we reshape them for inclusion with use points.

#sum up counts of each landcover type
> avail.II <- tapply(rand.II.land, rand.II.land, length)

> names(avail.II) <- as.character(newclass.names[1:14, 2])
> avail.II

#remove exotics, which was not observed in sample of use
> avail.II <- avail.II[c(-14)]

For a Design III resource selection analysis, we derive available points within the
home ranges of individuals. A common approach to do so is through the sampling of
a minimum convex polygon, although other approaches are possible (e.g., Rota et al.
2014). To illustrate, we take 200 samples from each individual home range, based on
a 99% MCP for each individual. To do so, we use a for loop, where for each
individual, we calculate the home range and then use the spsample function in the
sp package to generate random points within the home range polygon that is created
(note sampleRandom from the raster package used above will not constrain
sampling to the MCP polygon):

> library(sp)
> cat.unique <- unique(panthers$CatID)
> samples <- 200
> rand.III <- matrix(nrow = 0, ncol = 2)
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#loop for all individuals
> for(i in 1:length(cat.unique)){
id.i <- cat.unique[i]
cat.i <- panthers[panthers$CatID == id.i,]
mcp.i <- mcp(SpatialPoints(coordinates(cat.i)), percent = 99)
rand.i <- spsample(mcp.i, type = "random", n = samples)
rand.i.sample <- extract(land_sub, rand.i)

#make a matrix of CatID and rand samples
cat.i <- rep(cat.unique[i], length(rand.i))
rand.cat.i <- cbind(cat.i, rand.i.sample)
rand.III <- rbind(rand.III, rand.cat.i)
}

Now we reshape the data with the dcast function in reshape2 package.

> rand.III <- data.frame(rand.III)
> rand.III$cat.i <- as.factor(rand.III$cat.i)
> colnames(rand.III)=c("cat.i","landcover")
> avail.III <- dcast(rand.III, cat.i ~ landcover, length, value.var =
"cat.i")

> names(avail.III) <- c("CatID", as.character(newclass.names[1:13,2]))
> avail.III

With such formatted data for Design II and III resource selection, we use the
adehabitatHS package to calculate selection ratios (Eq. 8.1). For selection ratios
in a Design II (one set of availability data for all individuals; Fig. 8.13):

> library(adehabitatHS)
> sel.ratioII <- widesII(u = useCatID[,c(2:ncol(useCatID))],
a = as.vector(avail.II),
avknown = F, alpha = 0.05)

> summary(sel.ratioII)
> sel.ratioII
> sel.ratioII$wi #selection ratios
> sel.ratioII$se.wi #selection ratio SEs
> plot(sel.ratioII)

In the above approach, we provide use samples and available samples, and we
note that availability is assumed to be not known (avknown ¼ F) but rather it is
estimated through the sample availability points. In this case, we could have taken
proportions from GIS data (or potentially sampled an arbitrarily large number of
availability points) and set avknown ¼ T, but we use a random sample approach to
be consistent with other resource selection approaches described below. For selec-
tion ratios in a Design III (different availability for each individual):

> sel.ratioIII <- widesIII(u = useCatID[,c(2:ncol(useCatID))],
a = avail.III[,2:14],
avknown = FALSE, alpha = 0.05)
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> summary(sel.ratioIII)
> sel.ratioIII
> sel.ratioIII$wi #selection ratios
> sel.ratioIII$se.wi #selection ratio SEs
> plot(sel.ratioIII)

These selection ratios are useful when covariates of interest are categorical. The
tests assumed that individuals are independent samples and that selection (prefer-
ences) is the same among individuals (Manly et al. 2002). These assumptions can
be potentially overcome with mixed effects models (Thomas et al. 2006).

The above approaches do not accommodate cases when covariates are continu-
ous. When covariates are continuous, a more common approach is the use of
regression-based RSF models (and related extensions) to make inference on resource
selection (Manly et al. 2002; Keating and Cherry 2004; Johnson et al. 2006).
Logistic RSFs can be fit with standard functions in R, such as the glm function.

0 4 8 12 0 4 8 12 0 4 8 12

Urban

Upland forest

Scrub/shrub

Pinelands

Pasture/grassland

Open water

Hardwood swamp

Freshwater marsh

Dry prairie

Cypress swamp
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Coastal wetland

Barren

Estimate (95% CI)
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Fig. 8.13 Selection ratios calculated with a (a) Type II analysis for the Manly selectivity measure,
(b) Type III analysis for the Manly selectivity measure, and (c) logistic regression (Design II
analysis). Note that for the logistic regression, we show odds ratios from the log-linear function,
w ¼ exp(β1)
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This approach is very similar to fitting a GLM model for presence-only distribution
data (Chap. 7). Here, we briefly illustrate this for a Design II analysis.

Logistic RSF type models can be fit in a variety of ways. For a Design II analysis,
we specify two RSF models as:

#create data frame
> use.cov <- data.frame(use[,1:3], use = 1)
> back.cov <- data.frame(rand.II, use = 0)
> all.cov <- data.frame(rbind(use.cov, back.cov))

#run two models
> rsf.all <- glm(use ~ landcover þ wetforest þ dryforest, family
= binomial(link = logit), data = all.cov)

> rsf.forest <- glm(use ~ wetforest þ dryforest, family =
binomial(link = logit), data = all.cov)

In the first model, we include categorical land-cover type (at used and available
points), as well as continuous metrics of the proportion of wet and dry forest in the
surrounding landscape (see above). In the second model, we remove land-cover
type, because there are several categories and thus several df (13) are required for
this model. We can ask whether the inclusion of land-cover type is warranted either
with model selection criteria (e.g., Akaike’s Information Criterion) or using a
likelihood-ratio test as:

> anova(rsf.forest, rsf.all, test = "LRT")

In this case, the likelihood ratio test, as well as model selection criteria (with
landcover, AIC ¼ 1706.7; removing land-cover, AIC ¼ 1795.4), suggest that land-
cover type should be included in the model. Note that this logistic RSF is assuming
that all points are independent of each other, which might not be warranted. The
GLM framework can be extended to deal with such non-independence (see Chap. 5)
(Aarts et al. 2008). We can contrast the results of using a logistic regression
framework to Type II selection ratios calculated above by fitting a land cover only
model and extracting w by exponentiating the beta coefficients (e.g., selection for
upland forest, w ¼ exp(βuplandforest); Fig. 8.13), also known as the odds ratios
estimated in the logistic regression (Manly et al. 2002). In this context, the odds
ratios from the logistic regression are nearly identical to the Type II selection ratios
(r ¼ 1); however, there tends to be greater uncertainty in the estimates when using
logistic regression (Fig. 8.13).

Finally, we note that an inhomogeneous point process model could be approxi-
mated with the logistic model to interpret resource selection (Aarts et al. 2012). An
efficient way to approach resource selection from this perspective is to use a regular
grid of available points across the region of interest. Weights can then be applied
based on the area sampled (e.g., the grain of the grid). Note that Aarts et al. (2012)
used weights for a Poisson regression approximation in this way, but not for logistic
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regression; however, see Fithian and Hastie (2013) for another example of using
weighted logistic regression to approximate the inhomogeneous point process
model. The inhomogeneous point process model for resource selection can be
approximated with a weighted logistic regression as:

> library(sp)

#get polygon boundary for study area
> raster.extent <- land > -Inf
> studyregion <- rasterToPolygons(raster.extent, dissolve=TRUE)

#create regular grid
> rand.grid <- spsample(studyregion, cellsize = 1000, type="regular")
> grid.1km <- SpatialPoints(rand.grid, proj4string = CRS(crs.land))
> grid.area <- 1000 * 1000

#extract covariates
> rand.cov.grid <- extract(layers, grid.1km)
> use.cov.grid <- data.frame(use[,1:3], use = 1, grid.area = 1)
> back.cov.grid <- data.frame(rand.cov.grid, use = 0, grid.area = grid.
area)

> all.cov.grid <- data.frame(rbind(use.cov.grid, back.cov.grid))

#logistic approximation to ipp
> rsf.ipp.forest <- glm(use ~ wetforestþ dryforest, weight = grid.area,
family = binomial(link = logit),data = all.cov.grid)

We use the sp package to generate a regular grid of points, spaced 1 km apart.
The spsample function requires a polygon boundary of the extent of interest for
sampling, which we create with the rasterToPolygons function. We then
extract the covariates and create a data frame that includes the weights. Overall,
this model provides similar estimates to the logistic model described above for
dryforest, but slightly higher estimates for wetforest.

8.3.5.2 Step Selection Functions

For resource selection functions that use information on steps and paths of trajecto-
ries, we will use the adehabitatLT package. This package can accommodate
trajectory data from individuals and will provide several helpful summary statistics
from such types of data. The as.ltraj function that we used to create the
panther.ltraj object above for Brownian bridges creates a list file for each
trajectory (here summarized at the cat level; that is, one trajectory per individual cat).
This list has several useful summary statistics, including: (1) the original x–y
locations (note that the number of rows in the ltraj object is the same as the
number of points); (2) the change in x–y coordinates (distance moved in x–y
directions from time t to t þ 1); (3) the distance moved from t to t þ 1; (4) change
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in time (difference in time intervals between successive locations); (5) mean squared
displacement; (6) the absolute angle change; and (7) the relative angle change. The
absolute angle change is the angle moved relative to the x-axis, while the relative
angle change is the turning angle between moves (e.g., 0 means that the individual
proceeded in the same direction). Note that these angles are provided in radians
(0–2π) rather than degrees (0–360�). The object created can be visualized in several
ways.

#plot trajectories
> plot(panther.ltraj)
> plot(panther.ltraj, id = "147")

We then use this information to calculate the average step lengths and turning
angles by individuals. For instance, we can plot histograms and rose diagrams to
visualize the variation in step lengths and turning angles, respectively (plots not
shown):

#distance for second CatID
> panther.ltraj[[2]][,6]
> hist(panther.ltraj[[2]][,6], main = "Second CatID")

#plots of relative movement angles for second CatID
#relative angles: change in direction from previous time step
> rose.diag(na.omit(panther.ltraj[[2]][,10]), bins = 12, prop = 1.5)
> circ.plot(panther.ltraj[[2]][,10], pch = 1)

Step selection functions can be generated by contrasting the location selected at
time t to alternative, available locations to the individual at time t, based on
information regarding step lengths and potentially turning angles. Here, we consider
an example where for each location used, we generate three available locations that
sample habitat availability. In practice, we might want to generate many more
availability points (Northrup et al. 2013).

> stepdata <- data.frame(coordinates(panthers))
> stepdata$CatID <- as.factor(panthers$CatID)
> names(stepdata) <- c("X", "Y", "CatID")
> n.use <- dim(stepdata)[[1]]
> n.avail <- n.use * 3

Now we generate random samples of step lengths and relative turning angles
from our observed distribution:

#convert trajectory back to data frame for easy manipulation
> traj.df <- ld(panther.ltraj)

#sample steps/angles with replacement
> avail.dist <- matrix(sample(na.omit(traj.df$dist), size =
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n.avail, replace = T), ncol = 3)
> avail.angle <- matrix(sample(na.omit(traj.df$rel.angle), size
= n.avail, replace = T), ncol = 3)

#name columns
> colnames(avail.dist) <- c("a.dist1", "a.dist2", "a.dist3")
> colnames(avail.angle) <- c("a.angle1", "a.angle2", "a.angle3")

#link available distances/angles to observations
> traj.df <- cbind(traj.df, avail.dist, avail.angle)

Here, we created available data for step lengths and relative turning angles from
our observed data. When considering multiple animals, it is common to draw relative
turn angles and step distances from observed data for all individuals, except the focal
animal, to reduce problems of potential circularity (Thurfjell et al. 2014).

With these available distances and relative turn angles, we can calculate the x–y
coordinates of available locations. To do so, we need to clearly understand how the
trajectory data frame stores information in relation to locations at time t and t þ 1.
What we want is to take the location at time t and use our available distances and turn
angles to generate available coordinates in tþ 1 to contrast to use in tþ 1. In our data
frame, x–y coordinates for each use location are based on time t, where the distance
and turn angles for that row in the data frame can generate x–y locations in tþ 1 (the
next row of data). For example, we can take the x–y coordinates for row 2 and
calculate the x–y coordinates in t þ 1 (row 3) with the absolute or relative angles
using trigonometry (output not shown):

#calculate coordinates in tþ1 from t using absolute angle:
> traj.df[2, "x"] þ traj.df[2, "dist"] * cos(traj.df[2,
"abs.angle"])

> traj.df[2, "y"] þ traj.df[2, "dist"] * sin(traj.df[2,
"abs.angle"])

#calculate coordinates in t þ 1 from t using relative angle:
> traj.df[2, "x"] þ traj.df[2, "dist"] *
cos(traj.df[1,"abs.angle"] þ traj.df[2, "rel.angle"])

> traj.df[2, "y"]þ traj.df[2, "dist"] * sin(traj.df[1,
"abs.angle"]þ traj.df[2, "rel.angle"])

#check
> traj.df[3, c("x", "y")]

Note that for the use of relative angles, we need information on the absolute angle
in t�1. With this structure in mind, we create new values in the data frame, where
available x–y coordinates are created and linked to the appropriate use coordinates.
We first create a new column in the data frame, which contains the absolute angle for
t�1. We illustrate calculations using a for loop. The reason for this loop is that we
do not want the absolute angle for t�1 in situations where the previous row of data is
a different individual. In that case, absolute angle should be an NA.
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> traj.df$abs.angle_t_1 <- NA
> for(i in 2:nrow(traj.df)){
traj.df$abs.angle_t_1[i] <- ifelse(traj.df$id[i] ==
traj.df$id[i - 1], traj.df$abs.angle[i - 1], NA)

}

Alternatively, we could apply the same logic without the use of a for loop as:

> traj.df$abs.angle_t_1 <- c(NA,
traj.df$abs.angle[1:nrow(traj.df) � 1])

> traj.df[!duplicated(traj.df$id), "abs.angle_t_1"] <- NA

Then, we calculate new x,�y coordinates using trigonometry. For brevity, we
show code for calculating only one availability point:

#calculate use coords for tþ1
> traj.df$x_t1 <-
traj.df[, "x"] þ traj.df[,"dist"] * cos(traj.df[, "abs.angle"])

> traj.df$y_t1 <- traj.df[, "y"] þ traj.df[, "dist"] * sin(traj.df[,
"abs.angle"])

#calculate avail coords for tþ1
> traj.df$x_a1 <- traj.df[, "x"] þ traj.df[, "a.dist1"] *
cos(traj.df[, "abs.angle_t_1"] þ traj.df[, "a.angle1"])

> traj.df$y_a1 <- traj.df[, "y"] þ traj.df[, "a.dist1"] *
sin(traj.df[, "abs.angle_t_1"] þ traj.df[, "a.angle1"])

With these new coordinates, we reshape the data for step selection into a long
format. Again, we only show one set of availability points, but note that when
appending, we append all data together:

#reformat data for step selection
> traj.df <- traj.df[complete.cases(traj.df),] #remove NAs

> traj.use <- data.frame(use = rep(1,nrow(traj.df)),
traj.df[,c("id", "pkey", "date", "x_t1", "y_t1")])

> traj.a1 <- data.frame(use = rep(0,nrow(traj.df)),
traj.df[,c("id", "pkey", "date", "x_a1", "y_a1")])

> names(traj.use) <- c("use", "id", "pair", "date", "x", "y")
> names(traj.a1) <- c("use", "id", "pair", "date", "x", "y")

#append use and available data together
#note that traj.a2/a3 should be created in same way as traj.a1
> stepdata.final <- rbind(traj.use, traj.a1, traj.a2, traj.a3)

This new data frame stores a use and availability choice set based on each pair
(pkey) for each individual cat (id). With this information, we then use the
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extract function in the raster package to get information on environmental
covariates between paired use and availability locations.

#create a spatial points data frame
> step.coords <- SpatialPoints(stepdata.final[,c("x", "y")],
proj4string = CRS("crs.land"))

#extracts covariates from layers
> cov <- extract(layers, step.coords)

#add covariates to dataframe of use/available
> stepdata.final <- data.frame(cbind(stepdata.final, cov))

Finally, we fit two types of conditional logit models and contrast them to a
conventional logistic regression RSF. Conditional logit models are related to stan-
dard logistic regression but honor the matched data by including strata that identify
each choice set. In the first model, we simply have pair as our strata of interest. In
the second model, we add individual cats (CatID) as a cluster (Fortin et al. 2005).
This latter approach is sometimes used to account for a lack of independence within
individuals, and is akin to the use of generalized estimating equations for accounting
for spatial or temporal dependence (Fieberg et al. 2009).

> library(survival)
#conditional logistic
> logit.ssf <- clogit(use ~ wetforest þ dryforest þ strata(pair), data =
stepdata.final)

#including catID as cluster (~GEE)
> logit.cat.ssf <- clogit(use ~ wetforest þ dryforest þ strata(pair) þ
cluster(id), method = "approximate", data = stepdata.final)

#logistic ignoring the local pairing structure of the data
> logit.rsf <- glm(use ~ wetforest þ dryforest, family = "binomial",
data = stepdata.final)

In this case, the conditional logit RSFs based on step-selection functions provide
qualitatively similar conclusions regarding habitat–use relationships (Table 8.2; note
that the values might change slightly because of the stochastic nature of selecting a
small number of availability points). The primarily qualitative difference is that they
identify forested wetlands as being selected, while the standard logistic regression
does not identify significant relationships based on 95% CI with this land-cover type
(though the point estimates are positive). It is important to keep in mind that the
standard RSF and an RSF for matched case-control data are subtly different in terms
of the interpretation of coefficients (see Sect. 8.2.5.2; Lele et al. 2013) and it is clear
in this case that quantitative values differ between approaches, where coefficients
tend to be larger with the conditional logit model (Table 8.2).
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8.3.5.3 Path Selection Functions

The previous use of trajectories to implement step selection functions can be readily
generalized to the problem of path selection functions. For a path selection function,
we contrast resource use on the observed path to that of available paths. To calculate
available paths, we simply need to randomly shift the trajectory in a different
direction. Random shifts can be accomplished by using the NMs.
randomShiftRotation function in adehabitatLT. This function allows
for shifting a trajectory angle or location, without changing the trajectory shape.
We illustrate this process for one trajectory, which can then be extended the problem
to generating an RSF based on a path selection function similar to that described
above.

We will focus on panther 147. We generate one realization (nrep ¼ 1) of each
path by specifying:

> panther147.traj <- panther.ltraj[6]
> path.model <- NMs.randomShiftRotation(panther147.traj, rshift
= F, rrot = T, nrep = 1)

Note, here we set rshift ¼ F and rrot ¼ T, which means that the trajectories
will be randomly rotated along the barycenter of the path (the center of mass of the
path), but the trajectory will not be shifted to a different location. An alternative
approach is using the Rotation function in spdep package (Bivand 2006).

The above call sets up the model. To simulate realizations from the model we call:

> path.avail <- testNM(path.model)

#reformat list output for plotting:
> path.avail.df <- data.frame(path.avail[[1]])
> path.avail.ltraj <- as.ltraj(xy = path.avail.df[, c("x","y")], date =
path.avail.df[, "date"], id =
rep(147,nrow(path.avail.df)))

#plot to compare
> plot(path.avail.ltraj)
> plot(panther.ltraj, id = "147")

Table 8.2 Coefficients from RSF models

Forested wetland Upland forest

Model β (SE) 95% CI β (SE) 95% CI

Logistic 0.32 (0.20) �0.08 to 0.68 1.24 (0.49) 0.27–2.19

Conditional logistic 0.72 (0.34) 0.06 to 1.40 2.18 (0.70) 0.81–3.55

Conditional logistic (GEE) 0.71 (0.27) 0.20 to 1.24 2.18 (1.11) 0.00–4.37
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We can see from these plots that the trajectory was rotated along approximately
the center of the trajectory (Fig. 8.14).

Rather than simply shifting the trajectory, one could also consider correlated
random walks (Fig. 8.3) for the entire pathway. In this way, we estimate the
parameters of a correlated random walk from observed data and generate trajectories
to contrast observed trajectories. We can use the NMs.randomCRW function to
simulate correlated random walks based on parameters estimated from trajectory
data.

> CRW.model <- NMs.randomCRW(panther147.traj, rangles = T, rdist
= T, nrep = 1)

> CRW.avail <- testNM(CRW.model)

This object has the same structure as above. We reformat it to plot the CRW
trajectory:

> CRW.avail.df <- data.frame(CRW.avail[[1]])
> CRW.avail.ltraj <- as.ltraj(xy = CRW.avail.df[,c("x", "y")],
date = CRW.avail.df[, "date"], id = rep(147, nrow(CRW.avail.df)))

> plot(panther.ltraj, id = "147")
> plot(CRW.avail.ltraj)

Comparing plots clearly shows how in this null model, we arrive at a different
shaped trajectory, but one that is based on the CRW parameters estimated from the
observed trajectory. Note also that in this case, the CRW starts at the origin of the
observed trajectory (Fig. 8.14).

Either approach can be repeated for different individuals or “bursts” (i.e., differ-
ent trajectories that may occur within individuals, such as migratory movements in
the spring and fall). With this information, it is straightforward to extract land-cover

Observed Rotated path CRW

Fig. 8.14 An example showing the approach to path selection. (a) The observed trajectory of Cat
147, (b) a randomly rotated path to be used as an “available path,” and (c) a realization of a
correlated random walk (CRW) based on the trajectory of Cat 147. Background lines are a
10 � 10 km grid
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data from used and random trajectories and contrast them with conditional logit
models, like what we described above for step selection functions (Section 8.3.5.2).

8.4 Next Steps and Advanced Issues

8.4.1 Mechanistic Models and the Identification of Hidden
States

There is increasing interest in using “mechanistic” models for interpreting home
ranges. Benhamou and Cornelis (2010) extended the Brownian bridge model in a
few useful ways, termed biased random bridge models. This approach does not
assume simple diffusion like the Brownian bridge model but rather incorporates an
advection term which causes directionality in the assumed movement process from
one location to the next. These models can be implemented with the BRB function in
the adehabitatHR package.

With trajectory data, we may want to classify behavioral states of animals at
different times (Gurarie et al. 2016). For many animals, behavioral states can be
inferred based on variation in turning angles and step lengths from trajectory data.
For instance, foraging states may reflect short step lengths and a wide variance in
turning angles, while dispersal or related states are expected to reflect longer step
lengths and smaller turning angles. While much of the focus of the identification of
hidden states lies in understanding movement trajectories (Patterson et al. 2009),
such state identification is also useful for more generally interpreting variation in
resource selection and space use.

Several approaches have been developed to interpret hidden states. Gurarie et al.
(2016) classified this diversity of approaches into (1) metric-based, (2) classification
and segmentation, (3) phenomenological time-series analysis, and (4) mechanistic
movement modeling. In metric-based analyses, variation in metrics, such as fractal
dimension or first-passage time (Fauchald and Tveraa 2003), are used to qualita-
tively understand variation in movements. In classification and segmentation,
partitioning and/or clustering algorithms are used (Calenge 2006). In phenomeno-
logical time-series analysis, changes over time are inferred through temporal auto-
correlation functions or through temporal change-point analysis (Gurarie et al.
2009). Finally, mechanistic movement modeling typically uses “hidden Markov”
approaches, where random walk models assumed for different latent behavioral
states (Jonsen et al. 2005; Morales et al. 2004; Beyer et al. 2013). In general, these
types of approaches can be useful if different behavioral states result in very different
distributions of step lengths and turning angles (Beyer et al. 2013). However,
approaches can be sensitive to misspecification and biases in data collection (Gurarie
et al. 2016). Most of these approaches can be implemented in R. For instance, hidden
Markov models can be fit with a recent package, moveHMM (Michelot et al. 2016)
and change point analyses can be fit with bcpa.
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8.4.2 Biotic Interactions

Resource selection analyses have also been extended in recent years to account for
potential biotic interactions, either through conspecific interactions or through
heterospecific interactions. Of great interest has been predator–prey resource selec-
tion (Hebblewhite et al. 2005). In addition, there is increasing interest on the role of
conspecifics in driving movements and resource selection (Fletcher 2006;
Campomizzi et al. 2008; McLoughlin et al. 2010). With telemetry data, simulta-
neous models of potential interactions can be fit when multiple conspecific or
heterospecific individuals are in proximity (Delgado et al. 2014; Perez-Barberia
et al. 2015). This approach is, however, often limited by available data and in
inference regarding impacts of other non-tagged individuals impacting movement
and resource selection.

8.4.3 Sampling Error and Resource Selection Models

A common form of error in the use of radiotelemetry data is measurement error (i.e.,
location error). Location error can be particularly problematic when errors are
spatially biased (Frair et al. 2010). For example, location errors can be larger in
areas of large elevational relief or in some types of vegetation that may interfere with
GPS fixes (Frair et al. 2004).

Location errors can be accounted for formally in a variety of ways. One approach
is to use a spatially weighted scheme from which GPS fixes are sampled (Frair et al.
2004). Another common approach is the use state-space models (Patterson et al.
2008; Breed et al. 2012). In state-space models, the observation process and eco-
logical process are defined separately, where the observation process includes
information regarding sampling error and/or bias. This information can be based
on prior studies or can be estimated directly with the data. State-space models are
often fit with Bayesian techniques, but see the bsam package in R.

8.5 Conclusions

Habitat and resource selection are fundamental to animal ecology and modeling
resource selection is generally relevant to modeling species distributions more
broadly (Franklin 2009; Dorazio 2012). Over the past 15 years, there have major
advances in resource selection modeling. In general, the incorporation of fine
spatiotemporal resolution of animal space use and movement via GPS telemetry
and related sensors is allowing new questions in resource selection and space use
to be answered (Cagnacci et al. 2010; Kays et al. 2015; Wilmers et al. 2015).
These advances have made, and will likely continue to make, important
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contributions to the conservation of critical habitats across landscapes and regions
(Kautz et al. 2006; Hebblewhite and Haydon 2010; Colchero et al. 2011; Costa
et al. 2012; Queiroz et al. 2016).

With these advances, the intersection of movement and resource selection is
coming more into focus (Moorcroft and Barnett 2008; Van Moorter et al. 2016).
The use of step selection and path selection functions embrace that resources are
selected as organisms move through the landscape (or seascape) (Cushman et al.
2011; Thurfjell et al. 2014). We expect the nexus of resource selection and move-
ment will continue to develop, which may help unify these concepts and link them to
population dynamics and connectivity (Morales et al. 2010; Vasudev et al. 2015).
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Chapter 9
Connectivity

9.1 Introduction

The importance of space for ecology and conservation relies on the importance of
connectivity. It is well known that connectivity can influence populations and
communities through a variety of mechanisms, including demographic rescue,
inbreeding avoidance, colonization of unoccupied habitat, mass effects, and
the spread of disease (Hanski 1998; Chisholm et al. 2011; Rudnick et al. 2012).
Consequently, knowledge of connectivity can enhance our understanding of species
current and potential distribution patterns, population demography, genetic variabil-
ity, evolutionary processes, and overall viability of species in heterogeneous land-
scapes, as well as provide insights into the dynamics of metacommunities (Leibold
et al. 2004; Carrara et al. 2012). It is also critical for the maintenance of key
ecosystem processes and services (Margosian et al. 2009; Mitchell et al. 2013).
Connectivity is increasingly relevant for conservation aimed at ameliorating nega-
tive impacts of human-induced environmental change on long-term species persis-
tence and biodiversity (Crooks and Sanjayan 2006; Heller and Zavaleta 2009). As a
consequence, there has been an explosion our understanding and quantification of
connectivity over the past 20 years.

Here, we provide an overview on the concept of connectivity and its relevance for
applied ecology. We first outline the various interpretations regarding connectivity
and theoretical developments that emphasize its importance. Connectivity has been
conceptualized from a variety of perspectives; here we aim to show the similarities
and differences of these perspectives. We then describe three general approaches to
quantifying connectivity. We illustrate how these approaches are implemented
through two examples on endangered species.
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9.2 Key Concepts and Approaches

9.2.1 The Multiple Meanings of Connectivity

The term “connectivity” has been used loosely in ecology, evolution, and conser-
vation. Despite this loose usage, the concept of connectivity consistently emphasizes
two issues: the structure of the landscape (or seascape) and the movement or flow
of organisms, matter, or energy. A distinction is frequently made in connectivity
research regarding whether connectivity should capture structural or functional
concepts. Structural concepts emphasize landscape configuration and contiguity
only, implicitly assuming that physical proximity is the key issue that underlies
connectivity. Structural concepts do not attempt to capture species- or process-
specific variability. Functional concepts for connectivity explicitly attempt to cap-
ture the movement or flow process and integrate this process with the structure of the
landscape to interpret and quantify connectivity (Fig. 9.1).

The terms for connectivity can be organized in at least three ways: (1) the way in
which it is measured (e.g., structural versus functional connectivity), (2) the scale(s)
at which connectivity is measured; and (3) the process that is being captured.
Calabrese and Fagan (2004) classified connectivity metrics into three general cate-
gories based on the way connectivity is measured: structural, potential, and actual
connectivity (Fig. 9.1). Structural connectivity focuses on simply quantifying

Landscape
contiguity

Potential 
movement path

based on 
landscape

Observed
movement path

influenced 
by landscape

Fig. 9.1 Hierarchical relationships regarding landscape connectivity. Landscape structure can
describe structural connectivity, while potential connectivity occurs when landscape structure is
linked to movement capacity (e.g., motion capacity, navigation capacity) of species or other
processes. Realized, or actual, connectivity quantifies observed movements across landscapes.
Such movements can impact a variety of biological patterns and processes (e.g., genetic connec-
tivity, demographic connectivity)
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landscape contiguity to interpret connectivity. Potential connectivity is a type of
functional connectivity that quantifies how individuals could move across land-
scapes and how the landscape may alter movement. It typically uses indirect,
auxiliary information regarding species- or process-specific movements and flow.
Actual (i.e., observed) or realized connectivity is another type of functional connec-
tivity that measures movement and flow to directly quantify or estimate landscape
connectivity (Table 9.1).

Connectivity can also be measured at different scales. Metapopulation biology
has long focused on patch isolation (or its inverse, patch connectivity), while
landscape ecology has frequently quantified connectivity for entire landscapes
(Tischendorf and Fahrig 2000; Moilanen and Hanski 2001). Meso-scales—above
the patch and below the entire landscape—have also been considered (Bodin and
Noberg 2007; Fletcher et al. 2013b). Patch connectivity is frequently of interest
when conservation practices are aimed toward local or site level actions (Acevedo
et al. 2015; Rubio et al. 2015). Meso-scale connectivity can be important in cases
where movements between nearby patches are relatively common (e.g.,
gap-crossing; Bélisle and Desrochers 2002; Richard and Armstrong 2010), such

Table 9.1 Different types of connectivity

Term Definition

Demographic
connectivity

The degree to which population growth is affected by dispersal across the
landscape. Most sensitive to the relative contribution of dispersal to local
recruitment.

Effective
connectivity

Connectivity that includes the successful reproduction of individuals post-
movement. A landscape-scale extension of effective dispersal.

Functional
connectivity

Connectivity that incorporates information on observed or potential movement
properties of an organism.

Genetic
connectivity

Linkages between local populations based on gene flow. Requires effective
dispersal and is one form of population and effective connectivity. Most sensi-
tive to the absolute number of dispersers.

Hydrologic
connectivity

Water-mediated transfer of matter, energy, and/or organisms across the
landscape.

Landscape
connectivity

Most frequently defined as the degree to which the landscape influences
movement.

Migratory
connectivity

The movement of individuals annually or seasonally between locations (e.g.,
between breeding and non-breeding areas).

Population
connectivity

Linkages between local populations through dispersal across a landscape.

Potential
connectivity

A type of functional connectivity that focuses on where individuals could move
and how the landscape may alter movement. It may differ from realized or actual
connectivity for a variety of behavioral (e.g., natal preferences) and population
(e.g., density dependence) processes.

Realized
connectivity

A type of functional connectivity that focuses directly on the extent of movement
across landscapes and how the landscape alters observed movement. Sometimes
referred to as “actual connectivity.”

Structural
connectivity

Connectivity that only considers habitat contiguity in its interpretation.
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that connectivity is more limited at scales beyond the patch level. Landscape-scale
connectivity may be most relevant for regional and continental conservation plan-
ning (Minor and Lookingbill 2010).

In addition to these aspects of quantifying pattern, connectivity terms also vary
based on the process of interest. Demographic connectivity, genetic connectivity,
migratory connectivity, and hydrologic connectivity are just a few common exam-
ples of this use (Table 9.1) (Pringle 2001; Webster et al. 2002; Lowe and Allendorf
2010). With this usage, the component of movement or flow being considered
should be relevant to the overarching process of interest. For example, Lowe and
Allendorf (2010) argued that genetics is frequently used to make inferences on
demographic connectivity, or population connectivity that focuses on the relative
contribution of dispersal to population growth occurring on ecological time scales
(Kool et al. 2013), but that genetic data have little information to provide regarding
the effects of movement on population growth. Movement for genetic connectivity
emphasizes that infrequent movements can be sufficient for genetic mixing, even
though such movements may play little role in population growth rates on ecological
time scales.

9.2.2 The Connectivity Concept

Over the past several decades, there has been considerable theoretical development
to understand and predict connectivity. Here, we briefly summarize these develop-
ments across different levels of organization (individuals, populations, communi-
ties), focusing on two issues. First, how is the space (or the landscape/seascape)
considered? Second, what is the role of movement and how is movement predicted
to influence biological patterns and processes across space?

At the individual level, developments have primarily occurred in the context of
applying foraging theory and related behavioral ecology theory (e.g., information
theory) to landscapes (Ims 1995; Bélisle 2005; Fletcher et al. 2013a). This theory
often focuses on proximate, short-term movement responses of individuals to land-
scape structure, such as the scale at which individuals perceive habitat and the role of
different types of decision-making on dispersal and/or searching behavior through
landscapes, with an emphasis on the subsequent effects of these decisions on
individual fitness (Zollner and Lima 1999; Fletcher 2006; Pe’er and Kramer-Schadt
2008). Early aspects of foraging theory were concerned with travel time between
patches to explain expected residency time (Charnov 1976), which translated to
focus simply on distances between resource patches. Since that time, theoretical
development has used spatially explicit, individual-based simulations to capture
aggregation of habitat and other structural issues of connectivity to interpret indi-
vidual dispersal success (e.g., Tyler and Hargrove 1997; Fletcher 2006; Pe’er and
Kramer-Schadt 2008). This theoretical development has suggested that several
biotic and abiotic factors may alter realized connectivity, such as local habitat quality
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leading to little movement in landscapes of high structural connectivity (Bélisle
2005).

At the population level, much theoretical development has occurred in both
metapopulation ecology and population genetics. We briefly outline each of these
domains (see Chap. 10 for more information). Early metapopulation theory predicted
that distance among patches influences colonization rates of unoccupied habitats and
can also influence rescue effects (Hanski 1998). More recent metapopulation theory
has incorporated other aspects of landscape structure on colonization dynamics, such
as patch aggregation (Hiebeler 2000), matrix effects (Moilanen and Hanski 1998),
disturbance (Johst and Drechsler 2003; Kallimanis et al. 2005), asymmetric resis-
tance (Vuilleumier et al. 2010), and succession (Verheyen et al. 2004). Results from
metapopulation theory suggest that connectivity has benefits on population persis-
tence at intermediate levels: when connectivity is too low, frequent local extinctions
occur that are not balanced with colonization, yet when connectivity is too high,
population synchrony results, which can increase vulnerability to global
(metapopulation) extinction (Heino et al. 1997; Matter 2001). Related source–sink
theory incorporates the effects of connectivity through variation in immigration and
emigration rates (Pulliam 1988; Thomas and Kunin 1999). In this theory, landscape
structure is frequently emphasized simply as the proportion of source and sink
habitats on the landscape (Pulliam and Danielson 1991; Runge et al. 2006). In
both of these sets of theoretical development, regional population size is empha-
sized, either indirectly via variation in patch size (assuming larger patches harbor
more individuals that serve as propagules for dispersal), or directly through estimates
of population abundance. Landscape ecology theory focusing on populations has
also emphasized the role of the matrix in terms of disperser mortality and movements
near patch boundaries (Fahrig 1998; Bender and Fahrig 2005).

For population genetics, early theory incorporated migration, or the extent to
which a local population’s alleles are replaced by immigrant alleles, as a probabi-
listic process between subpopulations. Propagule movement is a critical component
of migration, with effective dispersal (i.e., dispersal followed by successful post-
dispersal reproduction) being required (Pfluger and Balkenhol 2014). Geographic
distance and some aspects of habitat configuration were incorporated early on in this
theoretical development, such as stepping-stone models, which predicted increased
genetic homogenization at shorter distances (Wright 1943; Kimura andWeiss 1964).
The role of migration has been shown to have direct effects on pairwise genetic
distance (genetic divergence), where the genetic distance between populations
cannot be large unless the migration rate is very low (Larson et al. 1984). This result
emphasizes that small genetic distances can be maintained even at infrequent levels
of effective dispersal (Lowe and Allendorf 2010). Landscape genetics theory has
recently emphasized the role of the landscape matrix, such as isolation-by-resistance
relationships (McRae 2006), and landscape heterogeneity, in regard to isolation-by-
environment relationships (Sexton et al. 2014; Wang and Bradburd 2014). There is
also increasing emphasis on integrating both population-level and individual-level
genetic variation with spatial statistics to better capture complex landscape structure
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and isolate the roles of movement on genetic structure, despite a general lack of
theoretical development (Guillot et al. 2009).

At the community level, much of the theoretical underpinnings on effects of
connectivity stems from island biogeography and metacommunity ecology (see also
Chap. 11). In island biogeography, MacArthur and Wilson (1967) identified several
aspects of the landscape (island configuration) that can influence immigration rates
of species. These include distance to mainland, aggregation of islands, and the
presence of corridors and stepping-stones, each of which is highly relevant when
interpreting landscape connectivity (Saura et al. 2014). Classic island biogeography
theory neglected aspects of the landscape matrix on predictions of connectivity,
although more recent theory has attempted to capture such issues (Cook et al. 2002).
Less theory has focused specifically on the effects of connectivity for species
interactions, with most of this theory being developed in the context of specific
types of interactions (e.g., Roy et al. 2004).

These theoretical developments that focus on different levels of organization
shares common themes, yet connectivity is often interpreted differently in terms of
the role of movement and the way the landscape is considered. Movement has been
captured in different ways, with some developments requiring that movements result
in individuals recruiting into a new breeding population (e.g., population genetics
theory), what has been termed effective connectivity (Robertson et al. 2018). Fur-
thermore, movement is frequently interpreted at different temporal and spatial scales
(Lowe and Allendorf 2010). The effects of landscape structure on this diverse
theoretical development is also variable, in terms of the complexity of landscape
structure being captured and the scales at which connectivity is interpreted
(Tischendorf and Fahrig 2000; Moilanen and Hanski 2001). While recent theory
tends to consistently emphasize the role of the matrix in terms of matrix resistance
(Table 9.2), some matrix-related issues such as the role of hard barriers have not been
consistently treated among theoretical developments. For instance, physical and
ecological barriers that generate population structure are often emphasized in genet-
ics, yet in population ecology such hard barriers are less frequently emphasized in
understanding of connectivity (but see McRae et al. 2012; Fletcher et al. 2013b).

9.2.3 Factors Limiting Connectivity

Traditionally, connectivity assessments have emphasized the role of space as the
primary limitation of observed connectivity, such as the focus on isolation-by-
distance relationships in population genetics. In recent years, there has been growing
awareness that other factors can limit observed connectivity. Much of the work on
the role of the matrix impacting movement rates fall into this realm of limiting
factors for connectivity.

Vasudev et al. (2015) borrowed from niche theory to organize factors influencing
observed connectivity into three general categories of constraints: spatial, environ-
mental, and intrinsic constraints (Fig. 9.2). Spatial constraints focus on the role of
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physical distance among locations as a limiting factor. Environmental constraints
focus on how environmental variation can limit connectivity in a variety of ways,
including the role of abiotic and biotic factors extrinsic to the organism that can alter
movement. Intrinsic constraints are organismal constraints that can limit connectiv-
ity at different levels of biological organization. For example, at the individual level,
physiological condition or phenotypic attributes (e.g., sex) may influence the like-
lihood, distance, and direction of movement (Turlure et al. 2011), thereby impacting
realized connectivity (Baguette et al. 2013). At the population level, issues such as
density-dependent dispersal or variation in dispersal modes can impact connectivity.

Table 9.2 Common terms and definitions used in connectivity

Term Description

Conductance A measure of permeability of a location to movement. Typically quan-
tified as the inverse of resistance (1/resistance).

Corridor A relatively linear feature of habitat (frequently assumed to be low
quality) that structurally connects habitats across a landscape.

Cost layer Spatial data (e.g., raster data) that describe the difficulty posed (inverse of
permeability) by each cell in the landscape to movement.

Circuit theory Models that apply the concept of random walks to networks (electrical
circuits). Used for connectivity mapping.

Dispersal traps Locations across landscapes that capture situations where there are not
formidable spatial or intrinsic constraints to movement, yet environment
factors make the locations have high risk of mortality.

Effective distance A measure of distance that accounts for non-geographic (environmental)
factors.

Least-cost analysis A type of connectivity analysis where potential paths are identified based
on the minimum cumulative cost to potential movement.

Graph theory Models that apply algorithms for relational data to interpret connectivity.
Typically applied to patch networks, where nodes are considered
patches, and links represent actual or potential movement.

Habitat availability Considering connectivity based on reachable habitat, where the patch
itself is a space where connectivity occurs, in addition to connections
between patches.

Linkage Locations on the landscape that facilitate movements between habitats or
patches. Corridors are one type of linkage. Linkages are also sometimes
referred to in a population context as describing dispersal or flow
between patches (i.e., population linkage).

Network A collection of patches across a landscape that is linked by movement or
flow of materials, energy, or organisms.

Pinch-point A location where a bottleneck in potential or actual connectivity occurs,
such that movement may be funneled through the location.

Resistance A measure of the relative barrier of a location to movement. Typically
considered the inverse of conductance (or permeability).

Undervalued dis-
persal routes

Locations across the landscape that are could be used for dispersal and
promote connectivity based on the spatial location and environmental
attributes, yet are rarely used due to intrinsic constraints to dispersal.
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At the species level, motion capacity and other species-specific traits can impact
movement and thus connectivity (Nathan et al. 2008). Some issues, such as the
quantification of effective distance based on matrix resistance (see below) represent
an intersection of these constraints (e.g., space and environment for effective
distances). This organization of the constraints of connectivity suggests that con-
nectivity can be limited for a variety of reasons, even for highly mobile species. As a
consequence, understanding factors that limit dispersal and connectivity may be
necessary for the accurate prediction and conservation of connectivity.

9.2.4 Three Common Perspectives on Quantifying
Connectivity

There have been three common approaches to quantifying connectivity in ecology.
First, connectivity has been, and continues to be, quantified based primarily on
structural features (i.e., structural connectivity) of the landscape and the use of
programs such as Fragstats to calculate proximity-related measures (McGarigal
et al. 2002) (see Chap. 3). Second, the use of spatially explicit measures of connec-
tivity based on the resistance of the landscape (i.e., potential functional connectivity)
are increasingly used to map connectivity across landscapes and make inferences on
issues such as potential conservation corridors (Zeller et al. 2012). Third, the use of
patch-based network analysis or graph theory measures of both structural and
potential connectivity are increasingly common (Urban and Keitt 2001; Fall et al.
2007; Urban et al. 2009; Rayfield et al. 2011). Many of these latter measures can be
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Fig. 9.2 Visualizing limiting factors on successful dispersal and realized connectivity based on
spatial (S), environmental (E), and intrinsic (I) constraints. The overlap of these limiting factors in
geographic space illustrate dispersal with dispersal traps, undervalued dispersal routes, and poten-
tial dispersal routes. Modified from Vasudev et al. (2015)
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thought of as extensions of metapopulation concepts that attempt to better capture
aspects of landscape configuration.

9.2.4.1 Structural Connectivity of Land Cover

There is a long history in quantifying connectivity of land cover. These metrics
typically focus on distances between patches or cells in the landscape, the area of
patches or land cover, and/or their juxtaposition. Consequently, these connectivity
metrics are generally thought to be measures of landscape configuration or a
combination of landscape configuration and composition (see Chap. 3). Distances
between patches (e.g., nearest-neighbor distance) are simple measures of proximity,
and, while intuitive, tend to not predict movement and distributions very well
(Moilanen and Nieminen 2002; Winfree et al. 2005). Metrics that use multiple
distances between patches coupled with their areas (e.g., the proximity index;
Chap. 3) can capture more realistic complexity (Gustafson and Parker 1994).
Patch area is generally thought to be a useful proxy to incorporate into connectivity
assessments for two reasons: (1) the target effect (i.e., larger area patches are more
likely to have propagules intercept them, thus influencing immigration/colonization)
(Lomolino 1990); and (2) population size/propagule pressure, where larger patches
tend to have more individuals or propagules that can be a source of colonists into
other areas (Hanski 1999). For the target effect, the emphasis in connectivity metrics
lies in the size of the focal patch (more precisely, the circumference), while for
propagule pressure, the emphasis lies in the size of patches surrounding the focal
patch.

Fahrig (2003) argued that habitat area in the landscape is typically inversely
correlated with metrics of patch isolation. As the amount of habitat surrounding a
fragment declines, that fragment must be more isolated. Consequently, habitat area
may be a useful proxy for connectivity surrounding a patch or fragment, although
with habitat area comes several other changes in potential processes (e.g., population
size), so it is unclear if this structural measure can isolate the role of connectivity in
practice.

9.2.4.2 Landscape (Matrix) Resistance

An alternative approach to quantifying connectivity focuses on mapping potential
corridors and/or the permeability of the landscape to movement. In this approach,
spatially explicit maps (typically raster layers) are used to quantify potential flow
across the landscape (Fig. 9.3). Land-cover and related raster maps are transformed
into maps of “resistance” or “friction,” where values of the raster maps describe the
potential for movement (or lack of movement) through the cell. These resistance
values are then used to create a transition matrix, which is a sparse matrix based on
local connections between adjacent cells (typically using either a four-neighbor or
eight-neighbor rule; Fig. 9.4). Resistance can be determined from a variety of

9.2 Key Concepts and Approaches 329



sources, such as information from expert opinion, data on habitat use, or movement
data (Zeller et al. 2012). The determination of resistance values is a critical step in
these approaches, as several techniques have been shown to be sensitive to resistance
values (Rayfield et al. 2010).

a b c

Habitat
patch 

Movement

Fig. 9.3 Resistance-based and network-based (graph theory) perspectives for connectivity in
ecology. (a) Across landscapes, network theory is also used to convert raster maps into sparse
networks, where cells (pixels) are linked to neighbors based on “resistance” to movement, such that
(b) connectivity can then be mapped (red ¼ least-cost path). (c) Patch-based networks focus on
habitat patches (e.g., forest fragments) and the potential movement of individuals between them
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Fig. 9.4 From land-cover permeability to transition matrices. Left panel shows a toy land-cover
raster layer where increasing values reflect increasing permeability to movement (conductance¼ 1 /
resistance). Middle panel shows the resulting sparse transition matrices created by taking the mean
value between pairs of cells connected with a four-neighbor or eight-neighbor rule (darker values
indicate greater conductance values). Right panel illustrates new raster layers that show the average
conductance per cell
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To estimate resistance, information on species distribution, habitat use, or move-
ment can be used. When working with empirical data (rather than expert opinion) on
species distribution, the use of point selection and related methods can be used (see
Chap. 8). These approaches quantify resistance based on the inverse of metrics of
habitat use based on species presence locations. For instance, point selection func-
tions can be used that are essentially selection ratios regarding habitat
preference (see Chap. 8). Yet the use of habitat use data for interpreting resistance
has been criticized for several reasons. For example, Vasudev et al. (2015) argued
that by definition movement through the matrix is outside of a species niche (see
Chap. 7), while information on habitat use is typically within the niche of species.

In contrast to information on species distribution and habitat use, movement data
can be used to interpret resistance, which are often based on radiotelemetry data or
mark–recapture data. For radiotelemetry data, step selection functions, and path
selection functions are frequently used (see Chap. 8). Step selection functions
focus on contrasting steps from one point to the next (e.g., consecutive radiotelem-
etry fixes) and how land-cover alters steps. Path selection functions focus on the
land-cover used along entire paths and contrasts this to alternative paths of the same
length and shape. Both of these approaches can potentially be useful, but ideally
should be implemented on individuals and paths where dispersal is occurring rather
than focusing on steps and paths of individuals moving within territories or home
ranges (Harju et al. 2013). Mark–recapture data (e.g., spatial capture–recapture or
multistate capture–recapture; Brownie et al. 1993; Royle et al. 2018) have been used
less frequently to estimate resistance, but can be useful in this context by optimizing
resistance values based on assumed movement processes (e.g., random walks, least-
cost movement) to fit observed movement data between locations (Hanks and
Hooten 2013; Royle et al. 2013; Graves et al. 2014; Peterman 2018). In a similar
way, Howell et al. (2018) recently showed how resistance values can be estimated
from data on colonization–extinction dynamics, which may be more readily avail-
able across landscapes than mark–recapture data.

With these resistance maps, potential paths between locations can be identified
through several algorithms, such as the use of least-cost analysis or the use of circuit
theory (Bunn et al. 2000; McRae et al. 2008; Etherington 2016). These approaches
generally convert resistance maps to transition matrices and use network analysis to
interpret potential connectivity.

The application of least-cost paths identifies paths (or corridors) of least resis-
tance between two or more locations. This is frequently accomplished through the
use of Dijkstra’s algorithm for identifying shortest paths (Dijkstra 1959). This
algorithm has been widely used in corridor and connectivity analysis, in part because
of the fact that it is computationally quicker to calculate than other algorithms and in
part because it can identify “optimal” paths. Nonetheless, the use of least-cost paths
has been criticized for several reasons, including the implicit assumptions of goal-
oriented search between locations, animals will take the optimal least-cost path
regarding potential movement, and its reliance on a single path (Sawyer et al.
2011). The latter concern has been addressed through the use of least-cost corridor
analysis, an extension of least-cost paths that attempts to identify wider corridors
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(rather than paths) of low resistance (Pinto and Keitt 2009). In addition, applications
of what has been termed factorial least-cost path analysis can address some of these
concerns (Rudnick et al. 2012). In that approach, least-cost paths are identified
between several points in the landscape (e.g., a grid of point locations) and the
least-cost paths are summed for the entire landscape.

The use of circuit theory assumes random walks between locations to calculate a
resistance distance (McRae 2006). Incorporating variation in resistance into the
random walk theory leads to a biased random walk process, such that the average
probability of movement is assumed to vary based on resistance. By assuming a
random walk, rather than a path of least resistance, flow can be predicted across
entire landscapes. This approach has been argued to be useful by accounting for
redundancy in paths for connectivity (McRae et al. 2008; Fletcher et al. 2014), and in
its ability to identify “pinch-points” or bottlenecks that may arise across landscapes.
Some criticisms of this approach include that plants and animals may not move in a
way that resembles simple random walks, it is computationally more expensive than
least-cost path analysis, and that sometimes results are difficult to interpret across
large landscapes because flow tends to be predicted as being diffuse. Note that on
very large graphs, it has been argued that the use of random walks, like those in
circuit theory, become less helpful because the resistance distance converges on the
local properties (i.e., the degree or strength; see below) at a cell level (von Luxburg
et al. 2014). This issue has been neglected in the ecological literature but has been
repeatedly acknowledged in the network literature.

Saerens et al. (2009) derived theory that formally links the idea of least-cost paths
and resistance distances as being along a continuum of movement possibilities. They
show that these ideas can be coupled through what they call a randomized shortest-
path by using a tuning parameter, θ. When θ ¼ 0, the model reduces to a random
walk (equivalent to a circuit theory approach). As θ increases, the model approaches
a least-cost path. Note that the absolute value of θ will vary depending on the extent
of the study region.

9.2.4.3 Patch-Based Graphs

Over the last two decades, graph theory is increasing used for quantifying connec-
tivity (Urban and Keitt 2001; Urban et al. 2009; Galpern et al. 2011; Albert et al.
2017; Drake et al. 2017; Haase et al. 2017; Martensen et al. 2017). Graph theory is a
mathematical framework widely used in computer science, operations research and
information technology. It deals with the efficient flow of information or connectiv-
ity between objects, sometimes referred to relational data. Graph theory and network
analysis are related. Traditionally, graph theory has been more of a subject of basic
mathematics that focused on proofs regarding relational data, while network analysis
has had a more applied focus that emphasizes the use of spectral methods and linear
algebra to interpret flow on networks (Strogatz 2001).

The potential benefits of graph theory and related network analysis for spatial
ecology is at least fourfold (Proulx et al. 2005; Fall et al. 2007; Urban et al. 2009).
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First, these approaches provide a means to formally capture potential indirect
linkages that may be important for connectivity, such as that of stepping stones
(Saura et al. 2014). Second, these approaches are often useful for quantifying
connectivity at different spatial scales. Third, graph theory and network analyses
are often helpful for visualizing potential connectivity in space (and time). Finally,
such analyses tend to be computationally efficient, allowing for the analysis and
visualization of very large numbers of linkages and patches across landscapes.

Conceptually, a graph is simply a collection of points that are interconnected by
lines (Dale and Fortin 2010). Points are called vertices (or sometimes called nodes)
and connection between vertices are represented by edges (or sometimes called links
or arcs). In the context of connectivity, patches are nodes, links describe information
about movement, and the network or graph represents the entire collection of patches
and the links between them (Fig. 9.2). Consequently, this approach requires patch
delineation and focuses on both patch connectivity and summaries of connectivity
for the entire landscape based on these patches. Hence, a key step in creating a graph
is the quantification of links that reflect movement or flow (see below).

Mathematically, most graphs are represented in matrix form by an adjacency
matrix A (also sometimes referred to as a transition matrix). The indices of this
matrix represent the vertices of the graph (Fig. 9.5). For instance, if the graph has
seven patches, then A will be a 7 � 7 matrix (adjacency matrices are “square”
matrices). If i and j represent a row and a column in the adjacency matrix, an element
Aij in the matrix A will represent the relationship between vertex i and vertex
j (Fig. 9.5). Then:

Aij
¼ 1 if there is a connection between i and j;
¼ 0 otherwise

�
ð9:1Þ

Note that the diagonal of the adjacency matrix is frequently set to zero; self-links
would represent fidelity or philopatry in the context of movement and landscape
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Fig. 9.5 A toy patch-based graph with binary links and the resulting adjacency matrix

9.2 Key Concepts and Approaches 333



connectivity. Element A3,2 ¼ 1, which means that there is a connection between v3
and v2 (vertex C and B in Fig. 9.5, respectively).

In the above example, we focused on one of the simplest types of graphs, which is
called an undirected, unweighted graph. Undirected means that if there is a connec-
tion between v1 and v2, there will be necessarily a connection between v2 and v1.
Unweighted means that links or edges are binary (0,1), while a weighted graph can
have links that are not binary (integers, continuous values, probabilities). Another
way of representing the relationship between vertices is using a directed graph. In
directed graphs, if there is a connection between say v1 and v2 that does not
necessarily mean that there is a connection between v2 and v1. In these graphs, we
typically plot the directional relationship between vertices using arrows. Clearly,
weighted, directed graphs have the potential to contain the most information on
movement and connectivity. However, there is often interest to simplify adjacency
matrices because weighted, directed graphs can be more difficult to visualize,
information on weights is sometimes limited, and it can be computationally more
demanding than using simpler unweighted graphs. We emphasize, however, that
when information on weights is available, typically this information will provide
better inference for connectivity problems.

Frequently, we make assumptions regarding the likelihood that patches are
potentially connected, rather than having observed data on movements (Fletcher
et al. 2016). One common way to define a potential connectivity is to use the
maximum known dispersal distance, h, for the species (Urban and Keitt 2001).
Then if the distance between patches is less than h then there is a potential
connection between the two patches. A second way is to use dispersal kernel
information to parameterize links. In this situation, distance (or effective distance,
such as least-cost distance) between patches is used to quantify the probability of
potential movement. For example, in metapopulation biology, a negative exponen-
tial kernel is frequently considered. In this case:

Aij ¼ exp �αdij
� �

, ð9:2Þ

where α is the inverse of the mean dispersal distance for the species. Finally, if we
have observed dispersal events, we can parameterize A based on the number of
observed dispersal events between i and j (Fletcher et al. 2011).

With this general framework, there have been dozens of metrics used to quantify
connectivity at different scales, ranging from the patch scale to the entire landscape
(Rayfield et al. 2011). Rayfield et al. (2011) classified these metrics along two
dimensions: the scale at which the metric captured connectivity (e.g., patch, land-
scape) and the connectivity property being captured. The connectivity properties
they considered were: route-specific flux, route redundancy, route vulnerability, and
connected habitat area. Route-specific flux emphasizes the (relative) amount of
movement or flow through a patch. Route redundancy aims to capture the degree
to which alternate routes for movement occur between patches. Route vulnerability
accounts for the degree to which the landscape funnels potential movement, such as
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the occurrence of pinch-points or bottlenecks in potential movement. Connected
habitat area focuses on all movement pathways to quantify the effective colonizable
(or reachable) area from the perspective of the species. Depending on the application
(e.g., habitat restoration or conservation planning), different properties of connec-
tivity may be more or less relevant.

Here, we do not attempt to show all these metrics but rather focus on a handful of
metrics that have been fruitfully employed and capture connectivity at different
spatial scales. Some of these approaches share strong similarities with connectivity
metrics based on metapopulation theory (see Chap. 10). In fact, in some of the
original applications of graph theory to connectivity, much of the rationale and
development came directly from ideas in metapopulation ecology (Urban and Keitt
2001). These approaches extend metapopulation ecology to capture connectivity
more readily at different scales, as well as capturing indirect linkages that might be
masked with metapopulation approaches (Saura and Rubio 2010).

9.3 Examples in R

We illustrate these common approaches to predicting and mapping connectivity by
addressing the problem of movement across landscapes for two endangered species.
Our goals for these examples are to show how landscape resistance can be incorpo-
rated into connectivity modeling, show the similarity and differences in approaches
for mapping connectivity and prioritizing patches for connectivity conservation, and
highlight how different types of connectivity metrics can capture properties of
connectivity operating at different spatial scales.

9.3.1 Packages in R

In R, there are a few libraries that can be used for connectivity analysis.
gdistance allows for calculations of least-cost paths and related distance-based
metrics (van Etten 2012). For patch-based connectivity, igraph (Csardi and
Nepusz 2006) and statnet (Handcock et al. 2008) provide comprehensive
network-based and graph-based metrics. For statistical modeling of connectivity
(movement) data on patch-based graphs (Snijders 2011), ergm and latentnet
provide useful, but underused, statistical modeling approaches that are part of the
statnet platform, and several packages provide (partial) Mantel tests that are
commonly used for assessing significance of connectivity with genetics data.
SDMTools provides some Fragstats-like summaries of structural connectivity
(VanDerWal et al. 2010), although note that this package does not include some
of the common metrics available in Fragstats (see Chap. 3; McGarigal et al. 2002).
Finally, MetaLandSim (Mestre et al. 2016) calculates some recently derived patch-
based network measures for connectivity (Pascual-Hortal and Saura 2006; Saura and
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Pascual-Hortal 2007) that are not available in the more general purpose igraph and
statnet libraries. We focus on the use of gdistance and igraph.

9.3.2 The Data

We use two data sets to illustrate the diverse ways in which functional connectivity
is quantified (see Chap. 3 for quantifying structural connectivity). Our goal is to
contrast approaches and inferences for connectivity when we focus on connectivity
mapping based on matrix resistance, and connectivity prioritization based on patch-
based graphs.

In the first example, we return to the endangered Florida panther considered in
Chap. 8. For this chapter, we interpret connectivity and potential corridors among
protected lands in south Florida. Florida panthers are critically endangered mammals
confined to southern Florida. For the recovery of this species, the US Fish and
Wildlife Service requires that populations expand north of their current distribution.
This issue has led to great interest in identifying potential corridors for panthers and
understanding connectivity for this species (Kautz et al. 2006). Prior work has used
radiotelemetry data to interpret landscape resistance based on point and home range
selection functions (Kautz et al. 2006). We use this information to quantify potential
connectivity between protected areas in south Florida.

The second example focuses on patch-based network approaches through the use
of occurrence and mark–recapture data on the endangered snail kite (Rostrhamus
sociabilis plumbeus). In the USA, snail kites are restricted to patchily distributed
wetlands in central and south Florida (Reichert et al. 2015). Long-term mark–resight
monitoring has been conducted for this species, providing information on dispersal
of individuals among wetlands over time. Consequently, a patch-based graph theory
approach is a natural framework for interpreting connectivity among wetlands
(nodes) based on observed and potential movement from mark–resight data (Fletcher
et al. 2011; Reichert et al. 2016). In the example provided, we use data on within-
breeding season movements (March–June) of snail kites, from 1997 to 2013, based
on standardized resight surveys approximately 18–21 days apart (Reichert et al.
2016). These movements are assumed to reflect snail kites moving between succes-
sive potential breeding locations (i.e., within-season breeding dispersal) (Fletcher
et al. 2011).

9.3.3 Functional Connectivity Among Protected Areas
for Florida Panthers

For interpreting functional connectivity among protected areas, we use two spatial
data layers (Fig. 9.6): a vegetation raster layer developed by the Florida Fish and
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Wildlife Conservation Commission, which is largely consistent with the information
used in Kautz et al. (2006). This layer was used in Chap. 8, but here we reclassify the
layer to interpret land-cover resistance to movement. We also use a vector-based
shape file of some protected areas in southern Florida. We begin by importing the
data with the raster and rgdal packages and taking a look at some of the data
properties.

> library(raster)
> library(rgdal)
> land <- raster("panther_landcover")
> projection(land)

##
[1] "þproj=aea þlat_1=24 þlat_2=31.5 þlat_0=24 þlon_0=-84
þx_0=400000 þy_0=0 þellps=GRS80 þunits=m þno_defs"

> res(land)

##
[1] 500 500
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Fig. 9.6 Landscape resistance and the Florida panther. Florida panthers are known to move widely
across southern Florida. As part of the recovery plan for this endangered species, dispersal of
panther from southern Florida into central and northern Florida is needed. Landscape connectivity
analyses have been done based on least-cost paths to address this goal. Map shows a resistance layer
for panthers, parameterized from point selection analyses by Kautz et al. (2006). Polygons show
five protected areas, where panthers commonly use southern protected areas
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#public areas in need of connections
> public <- readOGR("panther_publicland.shp")
> proj4string(public)

##
[1] "þproj=aea þlat_1=24 þlat_2=31.5 þlat_0=24 þlon_0=-84
þx_0=400000 þy_0=0 þellps=GRS80 þunits=m þno_defs"

In the above, we find that both layers have the same projection and that the raster
layer has a 500 m resolution. We can also view the attribute table for the public
shape file with public@data. For connectivity analyses, we focus on identifying
connections from the centroids of each protected area. We can calculate centroids
with the gCentroid function from the rgeos package:

#get centroids of protected areas
> library(rgeos)
> public_centroids <- gCentroid(public, byid = T)

We reclassify the land-cover map to create a cost (or resistance) map. To do so,
we import a reclassification table that includes four columns: (1) current land-cover
value; (2) current land-cover description; (3) new land-cover value (resistance
value); and (4) new land-cover description. This reclassification is taken from
Kautz et al. (2006), who used a resource-selection analysis on telemetered panthers
to parameterize a cost layer. Once imported, we can use the reclassify function
in the raster package to create the cost map.

> classification <- read.table("resistance reclass.txt",
header = T)

> class <- as.matrix(classification[,c(1,3)])
> land_cost <- reclassify(land, rcl = class)

9.3.3.1 Effective Distances

With this cost layer, we can calculate distances between protected areas. Several
distance metrics have been proposed. We consider four metrics. First, we calculate
the Euclidean distance between locations, or the distance “as the crow flies.” This
distance measure ignores the resistance of the landscape. Second, we calculate the
least-cost distance between locations. Least-cost distances are the shortest distances
based on the shortest path between locations (i.e., the path that includes the mini-
mum sum of costs). With these paths, either the least-cost distance (cumulative cost)
is used or the least-cost path length (i.e., the physical length of the path) is used;
Etherington and Holland (2013) argued that least-cost distance is generally more
appropriate than least-cost path length. Third, we can calculate an effective distance
based on circuit theory. In this approach, random walks are assumed, which
acknowledge the potential for alternative paths to alter the effective distance
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calculation. Here, we calculate commute distance, which quantifies the expected
time for an individual to move from one location to another and back again. This
metric is slight different than the more commonly used “resistance distance”
(a metric that describes the effective resistance between two locations) in interpre-
tation, but it is tends to be linearly proportional to, and highly correlated with,
resistance distance (McRae et al. 2008; Marrotte and Bowman 2017). Finally, we
consider a randomized-shortest path algorithm (Saerans et al. 2009; Panzacchi et al.
2016, which can provide results similar to least-cost paths and circuit theory by
altering a parameter, θ, in the model. The gdistance package can calculate each
of these distance metrics. We first need to create a transition layer from which
distances will be calculated:

> library(gdistance)
#create a 'conductance' transition layer:
> land_cond <- transition(1 / land_cost, transitionFunction = mean, 8)

#make correction for diagonal connections (8-neighbor rule)
> land_cond <- geoCorrection(land_cond, type = "c", multpl = F)

What is this transition layer? It converts the nodes (raster cells) into a sparse
network of connections (see Fig. 9.4 for a toy example), here based on the means of
conductance values between pairs of nodes (see transitionFunction ¼
mean). Using the mean of conductance values is the most common approach to
building transition layers, but such layers could be built with different functions
(Etten and Hijmans 2010). For example, variables such as the slope of the environ-
ment (Chap. 6) may be important to resistance in some situations, yet this effect
likely depends upon the direction an organism is moving (with moving uphill having
greater resistance than downhill). Note that we also make a correction for this
transition layer to account for diagonal connections; it is recommended that for
least-cost analysis, type ¼ “c”, whereas for circuit theory analysis, type ¼ “r”
(Etten and Hijmans 2010). In this example these two types of corrections provide
identical results, so we simplify by only correcting with type ¼ “c”. Now,
we calculate each distance measure and look at how correlated they are:

#Euclidean distance
> geo.dist <- pointDistance(public_centroids, lonlat = F)
> geo.dist <- as.dist(geo.dist)

#least-cost distance
> lc.dist <- costDistance(land_cond, public_centroids)

#Commute distance (proportional to resistance distance)
> circuit.dist <- commuteDistance(land_cond, public_centroids)

#randomized shortest path distance
> rSP.dist_t001 <- rSPDistance(land_cond, from =
public_centroids, to = public_centroids, theta = 0.001)
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For our calculation of the randomized shortest path, we set θ ¼ 0.001. We arrived
at this value after exploring alternative values to identify a model that makes
predictions intermediate of least-cost and circuit analysis (see Sect. 9.3.3.4 for
more details). In this situation, the effective distance metrics are all highly correlated
with Euclidean distance (Fig. 9.7). This correlation is common, but it has been
shown that the relationship between these distance metrics can be non-linear
(Marrotte and Bowman 2017). Also, note that these distance calculations illustrate
the computational demands of using circuit-theoretic approaches: on the authors’
computer, the commuteDistance and rSPDistance functions took much
longer to complete than did the costDistance function (costDistance
<1 s; commuteDistance ~400 s; rSPDistance ~747 s).
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Fig. 9.7 Correlations of effective distances (scaled to mean of 0 variance of 1) between protected
areas, calculated based on Euclidean distance, least-cost distance, commute distance (random walk/
circuit theory) and randomized shortest paths (with θ ¼ 0.001)
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9.3.3.2 Least-Cost Paths

We now focus in on mapping these potential connectivity metrics between two
protected areas: the Florida Panther Wildlife Refuge, a critical area for panther
populations, and a nearby protected area, Okaloacoochee Slough State Forest. We
can use the above approaches to map potential paths for connectivity for which the
effective distances were calculated. First, we look at the least-cost path. To speed
computation, we crop our raster layer to focus simply on this pair of protected areas
as an illustrative example.

#crop maps to speed computation and zoom in for interpretation
> fpwr_ossf_extent <- extent(642000, 683000, 237000, 298000)
> land_sub <- crop(land, fpwr_ossf_extent)
> land_cost_sub <- crop(land_cost, fpwr_ossf_extent)
> land_cond_sub <- transition(1 / land_cost_sub, transitionFunction =
mean, 8)

> land_cond_sub <- geoCorrection(land_cond_sub, type = "c", multpl = F)

> fpwr_ossf_lcp <- shortestPath(land_cond,
public_centroids@coords[5,], public_centroids@coords[3,],
output = "SpatialLines")

> plot(land_cost_sub, axes = F)
> plot(public, add = T)
> points(public_centroids, col = "grey30")
> lines(fpwr_ossf_lcp, col = "red")

In this case, the path illustrates that the route for least resistance is not equivalent
to the Euclidean distance (Fig. 9.8). Instead, it includes some circuitry due to the
resistance of the landscape. Yet this path only identifies a single line segment, the
width of the grain of the landscape map. We can remove this potential limitation with
the application of least-cost corridors.

9.3.3.3 Least-Cost Corridors

One criticism of least-cost paths is that they focus on a single path, which may not be
reliable for connectivity in the long-run. A potential solution is to map a least-cost
corridor, or the wider area in which there is a low cost between two (or more areas)
(Pinto and Keitt 2009). Mapping least-cost corridors is straightforward but requires a
few steps. First, we calculate the cumulative costs/resistances from each location,
creating two maps (Fig. 9.9a, b).

> fpwr.cost <- accCost(land_cond_sub,
public_centroids@coords[5,])

> ossf.cost <- accCost(land_cond_sub,
public_centroids@coords[3,])

9.3 Examples in R 341



We then overlay the costs by adding the two layers (Fig. 9.9c) and clip the new
layer based on a specific quantile of cost. Here, we clip based on the lowest 10% cost
(Fig. 9.9d), but this can be altered to increase or decrease the corridor width (where
increasing the quantile will increase the width).

a b c d e

25
00

00
27

00
00

29
00

00

655000 675000 655000 675000 655000 675000 655000 675000 655000 675000

Fig. 9.9 The steps for creating a least-cost corridor. (a, b) Cumulative resistance from centroids of
each protected area. (c) The sum of the cumulative resistances. (d) The least-cost corridor, based on
the lowest 10% quantile of resistance. (e) The land cover identified in the least-cost corridor
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> leastcost_corridor <- overlay(fpwr.cost, ossf.cost, fun = function
(x, y){return (x þ y)})

#get lower quantile of accumulated cost
> quantile10 <- quantile(leastcost_corridor, probs = 0.10, na.rm =
TRUE)

> leastcost_corridor10 <- leastcost_corridor
> values(leastcost_corridor10) <- NA
> leastcost_corridor10[leastcost_corridor < quantile10] <- 1

> plot(leastcost_corridor10,legend = F,axes = F)
> points(public_centroids, col = "grey30")
> lines(fpwr_ossf_lcp, col = "red")

Finally, we might be interested in understanding the land-cover (or related
attributes, such as ownership) along these predicted paths for conservation planning.
We can use the raster package to extract this information in a straightforward way
from least-cost paths or corridors (Fig. 9.9e).

#identify land-cover along the lcp
> lcp.land <- extract(land, fpwr_ossf_lcp)
> table(lcp.land)

##
lcp.land
7 8 9 10 12 15 17 18 19 20 27 30 31 32 35 41
1 11 19 6 19 4 16 1 17 14 1 5 5 2 2 1

#identify land-cover along the least-cost corridor
> corridor.land <- crop(land, leastcost_corridor10)
> corridor.land <- mask(corridor.land, leastcost_corridor10)
> plot(corridor.land, axes = F, legend = F)
> table(as.vector(corridor.land))

##
6 7 8 9 10 12 15 17 18 19 20 27 30 31 32 34 35 37 41 42
40 4 33 143 16 137 36 220 11 97 76 16 41 72 6 15 26 4 6 1

For both cases, we fine that the most common land-cover type identified in the
least-cost path and least-cost corridor is freshwater marsh (ID ¼ 12) and cypress
swamp (ID ¼ 17; see classification), two land-cover types that are conducive
to movement for Florida panthers (Kautz et al. 2006).

9.3.3.4 Flow Mapping

We now contrast the least-cost path and corridor to randomized shortest-path
analysis and alter the tuning parameter, θ, to interpret this model. This model can
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be implemented in gdistance and the resulting predicted maps of flow can be
visualized.

We use the passage function to map the potential flow, similar in spirit to the
mapping of current flow in circuit theory (McRae et al. 2008). This function maps
the number of potential movements through cells before arriving in a destination
location from a source location (van Etten 2012). We focus only on mapping flow
between refuges considered in our mapping of least-cost paths and corridors
(Fig. 9.10).

#random walk (akin to a current map in Circuitscape)
> passage.map_t0 <- passage(land_cond_sub,
origin = public_centroids@coords[3,],
goal = public_centroids@coords[5,], theta = 0)

#alter theta to converge on a lcp
> passage.map_t001 <- passage(land_cond_sub,
origin = public_centroids@coords[3,],
goal = public_centroids@coords[5,], theta = 0.001)

When mapping probabilities of passage as a function of the tuning parameter, θ,
we find some interesting conclusions. First, when θ ¼ 0, such that we are mapping a
biased random walk, the probability of movement at each cell in the landscape is
very low, suggesting that movement is very diffuse and there are no hard boundaries
to movement in this portion of the landscape (i.e., there is high route redundancy and
little route vulnerability; Rayfield et al. 2011). As θ increases, the probabilities of
passage become more well-defined and increase around the least-cost corridor and
least-cost path. These comparisons illustrate the relationship between random walks
and circuit theory to that of least-cost paths.
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Fig. 9.10 Mapping probabilities of passage based on randomized shortest paths. When θ ¼ 0 the
model converges onto a simple random walk (akin to circuit theory). As θ increases, the model
converges on a least-cost path
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9.3.4 Patch-Based Networks and Graph Theory

We now turn to the use of patch-based graphs (networks) to interpret connectivity.
We contrast some common metrics for quantifying potential connectivity to realized
connectivity for the endangered snail kite.

In our example on snail kites, we consider several types of graphs. We construct
three networks: a binary network based on the mean observed movement distance, a
probability network based on a negative exponential function (using the mean
movement distance), and an observed movement network that uses the number of
observed movements within breeding seasons for snail kites (Fig. 9.11) (Reichert
et al. 2016). Our focus is on within-season breeding dispersal of snail kites, where
kites track wetland conditions across their geographic range for breeding.

To create a graph, igraph can handle several types of data formats. We will
focus on simply passing adjacency matrices into igraph. First, we import the
observed movement matrix (kite_movement.csv) along with some node attri-
butes on coordinates and patch areas. We can then use these data to create new
adjacency matrices:

> A.obs <- read.csv("kite_movement.csv", header = T)
> nodes <- read.csv("kite_nodes.csv", header = T)
> area <- nodes$area #in km^2

#create distance matrix
> coords <- cbind(nodes$XCoord, nodes$YCoord)
> distmat <- pointDistance(coords, lonlat = F)
> distmat <- distmat / 1000 #in km
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9.3.4.1 Dispersal Kernels

Before we create graphs that represent movement, we illustrate the construction of
dispersal kernels. Dispersal kernels quantify the probability of dispersal as a function
of distance from the original location, such as the natal site for natal dispersal, or a
breeding site for breeding dispersal (Greenwood 1980; Greenwood and Harvey
1982). In this case, we create dispersal kernels from within-season movements.
Dispersal kernels can be quantified in a variety of ways; here we provide a simple
illustration. We first reformat the observed movement matrix to represent the number
of movements between patches as a function of distance.

> link.loc <- which(A.obs > 0, arr.ind = T)
> within_disp <- cbind(distmat[link.loc], A.obs[link.loc])

#repeat distances based on frequency of observations
> within_disp <- rep(within_disp[,1], within_disp[,2])
> names(within_disp) <- "distance"

With these reformatted data, we fit a variety of potential dispersal kernel functions
to the data. This can be accomplished with the fitdistrplus and fdrtool
packages (Delignette-Muller and Dutang 2015; Klaus and Strimmer 2015). The
fitdistrplus package can fit many kernel densities to the data. We use the
fdrtool package to fit a 1Dt distribution, which is a commonly used distribution
that captures the potential for “fat-tailed” dispersal kernels, that is, situations where
infrequent, but long-distance dispersal occurs (Clark et al. 1999). We contrast the
1Dt distribution with other commonly assumed dispersal kernels, including the log-
normal, exponential, and Weibull distributions:

> library(fitdistrplus)
> library(fdrtool)
> disp.lnorm <- fitdist(data = within_disp,
distr = "lnorm", method = "mle")

> disp.exp <- fitdist(data = within_disp,
distr = "exp", method = "mle")

> disp.weib <- fitdist(data = within_disp,
distr = "weibull", method = "mle")

> disp.1dt <- fitdist(data = within_disp,
distr ="halfnorm", start = list(theta = 0.01),
method = "mle")

> disp.AIC <- gofstat(list(disp.exp, disp.lnorm, disp.weib,
disp.1dt), fitnames = c("exponential", "lognormal", "Weibull", "1Dt"))

> disp.AIC$aic

##
exponential lognormal Weibull 1Dt
4110.798 4111.573 4093.400 4103.977
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Based on model AIC, the Weibull distribution appears to be the best fit to the data
(Fig. 9.11). However, below we use the exponential distribution, given its common
usage in metapopulation ecology and landscape connectivity (Hanski 1994; Saura
and Pascual-Hortal 2007). The exponential distribution is frequently used because it
requires only one parameter, α, which describes the inverse of the mean movement
(or dispersal) distance for a species. Such information is more frequently available in
the literature for use for connectivity modeling (Calabrese and Fagan 2004).

9.3.4.2 Creating a Network or Graph

With the above information on dispersal, we now create graphs based on different
transition matrices, A.

#create adjacency matrix with mean distance
> A.mean.dist <- mean(within_disp)
> A.mean.dist

##
[1] 72.32945

> A.mean <- matrix(0, nrow = nrow(A.obs), ncol = ncol(A.obs))
> A.mean[distmat < A.mean.dist] <- 1
> diag(A.mean) <- 0

#create adjacency matrix with negative exponential
> A.prob <- matrix(0, nrow = nrow(A.obs),ncol = ncol(A.obs))
> alpha <- 1 / A.mean.dist #inverse of mean distance
> A.prob <- exp(-alpha * distmat)
> diag(A.prob) <- 0

Above, we create a binary matrix based on the mean dispersal distance (72 km);
however, the maximum dispersal distance is also often used in connectivity model-
ing (Urban and Keitt 2001). With these matrices, we create igraph objects for
visualization and analysis (Fig. 9.12). Note that each of these matrices have different
types of information, with A.mean being an undirected, unweighted network, A.
prob being an undirected, weighted network, and A.obs being a directed,
weighted network. We create an igraph object for each matrix using the
graph.adjacency function:

> graph.Amean <- graph.adjacency(A.mean, mode = "undirected")
> graph.Aprob <- graph.adjacency(A.prob, mode = "undirected",
weighted = T)

> graph.Aobs <- graph.adjacency(A.obs, mode = "directed", weighted = T)

In igraph, we can access information about the network structure in a variety of
ways. For instance, to access the information on the nodes/vertices, we use the
V function, whereas for edges/links, we use the E function:
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V(graph.Aobs) #vertex labels

##
þ 29/29 vertices:
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

head(E(graph.Aobs)) #edge pairs (edge list)

##
þ 6/95 edges:
[1] 3->5 3->26 3->27 4->9 4->10 4->14

head(E(graph.Aobs)$weight) #edge weights

##
[1] 1 1 1 2 11 2

We visualize the patch-based graphs with the standard plot function in R. Note
that here we use the coordinates of the patches to position the nodes (patches) in
space:

#visualize
> plot(graph.Amean, layout = coords, vertex.label = NA)
> plot(graph.Aprob, layout = coords, edge.width =
E(graph.Aprob)$weight, vertex.label = NA)
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Fig. 9.12 Networks (graphs) based on assumptions about linkages for within breeding season
movements of the snail kite. (a) An undirected, binary graph based on the mean movement distance.
(b) An undirected, weighted graph based on a negative exponential dispersal kernel. (c) Observed
movements taken from mark–resight data (a weighted, directed graph)
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There are several ways to use the plot function in igraph to make stunning
network figures. In particular, we could overlay the patch-based graph on raster or
vector GIS layers by first plotting these layers and then making sure that the above
function includes 'add¼T' (under the assumption that the geographic layers are all
based on the same CRS). In addition, ggplot2 (Wickham 2009) can be used as
well (which was used for Fig. 9.12). We do not focus on those details here, however.

9.3.4.3 Patch-Scale Connectivity

Connectivity metrics frequently describe node-level, or patch-scale, connectivity.
These measures are sometimes referred to as centrality measures. In the social
sciences, Borgatti and Everett (2006) classified these measures based on the type
of flow (e.g., random walks) and whether they are “radial” or “medial” measures.

Radial measures focus on quantifying flow that starts or terminates from a patch.
In contrast, medial measures focus on the number of paths that flow through a patch.
The latter is highly relevant to the concept of stepping stones (Gilpin 1980), whereas
the former is relevant to classical measures of patch connectivity (Hanski 1994).
Some common radial centrality measures include degree, strength (similar to degree
but for weighted graphs), eigenvector centrality, and closeness centrality. Degree
simply describes the number of links and strength is the sum of the weights of links
to/from patch i to all other directly connected patches. For a directed graph, it is
defined as:

wi ¼
X
j

Aij, ð9:3Þ

where wi is the strength when using a weighted adjacency matrix (when using a
binary adjacency matrix, this equation would provide degree). For an undirected
graph, only the upper triangle of A would be summed, such that would be:
wi ¼ ∑j > iAij. Eigenvector centrality attempts to capture neighbor linkages (indirect
links), such that if a neighbor (direct link) is connected to many other patches, the
focal patch would have higher eigenvector centrality than if the neighbor was
unconnected to other patches. It is based on the leading eigenvector of the adjacency
matrix (compare this with some metapopulation concepts in Chap. 10). Closeness
centrality is the inverse of the average shortest-path distance from patch i to all other
connected patches in the network. Closeness centrality has also been extended to
random walks, rather than shortest paths. In particular, “Information centrality” has
been shown to be a random-walk equivalent of closeness centrality based on shortest
paths (note that igraph will not calculate information centrality but the package
statnet can). Consequently, closeness centrality captures patch connectivity but
at a larger scale than degree or strength, where indirect linkages (shortest paths)
throughout the network are considered. Each of these measures can also be extended
to directed graphs. We note that for weighted graphs, both closeness and
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betweenness algorithms in igraph are based on costs/resistances etc., not conduc-
tance/movements (e.g., the inverse in linkage values). That is, when using igraph
above, we focused on links reflecting movements, such that higher values represent
greater flow; however, for closeness and betweenness, we use link values that reflect
greater cost or lower probabilities of movements.

The most common medial measure is betweenness centrality. Betweenness
centrality for patch k quantifies the number of shortest paths between all i and j in
the network that go through patch k. This measure has also been extended to random
walks, rather than shortest paths (Carroll et al. 2012; Newman 2005). Each of these
centrality measures is straightforward to calculate in igraph. For example:

> Amean.degree <- degree(graph.Amean)
> Amean.eigen <- evcent(graph.Amean)
> Amean.close <- closeness(graph.Amean)
> Amean.between <- betweenness(graph.Amean)

When mapping these metrics across the landscape (Fig. 9.13), it is clear that these
patch-based metrics capture different aspects of connectivity. To calculate between-
ness (or closeness) for a weighted graph, we would alter links as:
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Fig. 9.13 Mapping patch-based and meso-scale measures of connectivity for the snail kite. For
degree, eigenvector centrality, closeness centrality, dPC, and betweenness centrality, dot size is
proportional to patch connectivity. For modules, dot color represents different modules
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> Aprob.between <- betweenness(graph.Aprob, weights = 1 / E(graph.
Aprob)$weight)

Area can also be incorporated into patch-based metrics of connectivity. In fact,
most metapopulation metrics of connectivity explicitly include area into calcula-
tions, as do some related graph metrics (Urban and Keitt 2001). See Chap. 10 for
more details regarding metapopulation concepts and metrics.

9.3.4.4 Meso-Scale Connectivity

At the meso-scale, we can calculate components (or clusters) or modularity. Com-
ponents, c, are subgraphs (or clusters), where any two vertices are connected to each
other by paths, but different components are not connected. Modularity, Q, is based
on a similar idea, where modules are groups of nodes identified that have more
linkages within modules than what would be expected based on chance:

Q ¼ 1
2m

X
ij

Aij � Pij

� �
δ Ii; I j
� �

, ð9:4Þ

where m is the total number of possible links in an undirected network, Aij is the
element of the adjacency matrix that describes movement/gene flow between
patches i and j, Pij is an expected value, and δ(Ii, Ij) is an indicator matrix that is
equal to 1 if i and j are members of the same module and zero otherwise. The
common expected value is based on degree (or strength), wiwj/2m, where w is the
patch degree (strength). This expected value is useful in that both the distribution
and the total amount of observed (or potential) movement on the network are
conserved (∑ijAij ¼ ∑ijPij ¼ 2m); however, other null models can be used.
Modules are typically identifying by maximizing Q based on iteratively altering δ
(note that this maximization is a computationally hard problem, and there have
been dozens of algorithms proposed to maximize Q). This algorithm can accom-
modate weights and directionality, and it can identify structure within components.
It has also been extended to account for spatial issues, such as localized dispersal
(Fletcher et al. 2013b). Modularity can be calculated with observed movements
(Reichert et al. 2016), data on gene flow (Fortuna et al. 2009), or using networks
based on potential connectivity (Foltete and Vuidel 2017; Fletcher et al. 2018).
Modularity assumes a “hard partition” in which there is no mixing or overlap
among modules, but there have been related concepts that relax that assumption
(Valle et al. 2017). igraph can calculate components and modularity for simple
graphs in a straightforward way:

#number of components and node memberships
> Amean.Ncomponents <- clusters(graph.Amean)$no
> Amean.Membcomponents <- clusters(graph.Amean)$membership
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For components, we find that the entire network is connected—there is only one
component. However, there may still be spatial structure in connectivity that can be
revealed via modularity.

#modularity
> Amean.modularity <- cluster_louvain(graph.Amean)
> modularity(Amean.modularity)

##
[1] 0.4559035

> membership(Amean.modularity)

##
[1] 1 2 1 3 1 2 1 1 3 3 2 3 3 3 3 1 3 2 3 3 1 1 1 3 1 1 1 1 1

The cluster_louvain function uses the “Louvain” method for maximizing
modularity and identifying modules, which is has been shown to work well in terms
of its accuracy and computational speed, particularly for very large graphs (Blondel
et al. 2008). This function cannot be implemented in igraph on a directed graph;
however, modularity on directed graphs is best considered by customizing the
modularity function to explicitly account for directionality in the null model
(Fletcher et al. 2013b). Finally, note that patch-based metrics of connectivity can
be quantified that account for modular structure. That is, we can determine the
connectivity of patches within modules versus between them (Fletcher et al.
2013b). When we apply the modularity function to the snail kite adjacency matrix,
we find that modularity identifies three modules within the one component
(Fig. 9.13).

9.3.4.5 Landscape-Scale Connectivity

There are several graph-based metrics for quantifying connectivity across the entire
network. Some common measures include connectance, the landscape coincidence
probability, the integral index of connectivity, and the probability of connectivity.
Connectance is a simple measure for unweighted (binary) graphs, and is defined as
the number of observed links over the total number of possible links. The landscape
coincidence probability is based on understanding connectivity of components in the
landscape and is defined as:

LCP ¼
XNC
i¼1

ci
AL

� �2

, ð9:5Þ

where NC is the number of components, ci is the total area of each component, and
AL is the total area of the landscape considered (area of habitat or nodes plus
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non-habitat). This metric could also be applied to modules, rather than components.
In R, these metrics can be calculated as:

#connectance
> connectance <- graph.density(graph.Amean)

#LCP
> ci <- tapply(area, clusters(graph.Amean)$membership, sum)
> AL <- 63990 #approximate study area in km^2, taken from study area
polygon (not shown)

> LCP <- sum((ci / AL)^2)

The integral index of connectivity (IIC) and probability of connectivity (PC) have
been shown to have useful properties for quantifying connectivity at the landscape
scale (Pascual-Hortal and Saura 2006; Saura and Pascual-Hortal 2007). IIC is based
on a binary network and is described as:

IIC ¼
Pn

i¼1

Pn
j¼1

aia j

1þ nlij
A2
L

, ð9:6Þ

where ai is the area of patch i and nlij is the number of links in the shortest path from
i to j. In R, this is straightforward to calculate. First, we need to create a matrix of
shortest paths and then take a vector of patch areas to calculate IIC.

> nl.mat <- shortest.paths(graph.Amean)

#Replace inf (in cases with isolated patches) with large values

> nl.mat[is.infinite(nl.mat)] <- 1000

> IICmat <- outer(area, area) / (1 þ nl.mat)
> IIC <- sum(IICmat) / AL^2

The PC index (Saura and Pascual-Hortal 2007) is currently one of the most
frequently used metrics for connectivity at the landscape scale. It is based on a
weighted matrix, rather than a binary matrix, and it shares some similarities with
metapopulation capacity (Hanski and Ovaskainen 2000; see Chap. 10; Saura and
Rubio 2010). It is defined as:

PC ¼
Pn

i¼1

Pn
j¼1 aia jp∗ij
A2
L

, ð9:7Þ

where p∗ij is the maximum product probability between patches. p∗ij is calculated
from a probabilistic transition matrix, typically with links described as in Eq. (9.2)
(exp(�αdij)).This metric is directly related to the neighborhood habitat area index
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Hn of Hanski (p 83 of Hanski 1999), where the only difference is the use of p∗ij
taken from exp(�αdij) rather than exp(�αdij) directly, and the denominator in Hn is
the sum of the patch areas rather than the total area (habitat þ non-habitat). What is
p∗ij , exactly? The maximum product probability comes from theoretical develop-
ments on network reliability. It reflects the idea that the shortest path between two
locations, i and j, may not reflect direct routes between the two patches but rather
may require passing through k. Hock and Mumby (2015) described the rationale for
this measurement and its relationship to least-cost paths in detail. If we view links
as probabilistic connections (rather than resistance), then we might expect that the
probability of movement between two patches will be reflected as the product of
probabilities along the path, assuming each transition (step) is independent. The use
of least-cost algorithms, however, determine paths based on the sum—rather than
the product—of linkages. This can fact can result in potentially identifying inap-
propriate least-cost paths (or distances; Fig. 9.14). But if we take the negative
logarithm of these probabilities, we can use conventional least-cost (or shortest-
path) algorithms to quantify p∗ij . We can do this in R with the weighted probabilistic
graph we created above:

#shortest path based on negative log-transformed weights
> pstar.mat <- shortest.paths(graph.Aprob, weights = log(E(
graph.Aprob)$weight))

> pstar.mat <- exp(-pstar.mat) #back-transform to probabilities

#numerator of PC
> PCnum <- outer(area, area) * pstar.mat

#probability of connectivity
> PC <- sum(PCnum)/AL^2

0.1

0.5 0.6 

0.8 0.3

Fig. 9.14 A toy example illustrating the idea of maximum product probability paths for networks
(modified from Hock and Mumby 2015). Shown are two patches with three potential paths between
them, with the probability of movement for links shown. In this case, the cost distance between the
two large patches would be equal going through the upper and lower paths with stepping stones
(i.e., the sum of costs is identical), both of which would have a greater likelihood than the direct link
probability between patches (0.1). However, the maximum product probability path would go
through the lower stepping stone (0.6 � 0.5 ¼ 0.3) rather than the upper stepping stone
(0.8� 0.3¼ 0.24). This can be quantified by using least-cost path algorithms based on the negative
log of the link probabilities
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Note that a patch-based metric, dPC, is related to PC (Saura and Pascual-Hortal
2007). This metric describes the patch-level importance to PC and is calculated
based on the change in PC with the removal of a given patch. It is straightforward to
calculate based on above, by sequentially removing patches and calculating the
change in PC (Saura and Pascual-Hortal 2007). Consequently, dPC describes the
proportional contribution of a patch to PC.

dPC has been further decomposed into three fractions (Bodin and Saura
2010; Saura and Rubio 2010). These fractions represent the role that a patch plays
in regards to connectivity within the patch (dPCintra), connectivity between patches
based on flow to or from the focal patch (dPCflux), and the patch’s role in connec-
tivity between other patches and not the focal patch, such as being a stepping stone
(dPCconnector). These fractions are described as:

dPC ¼ dPCintra þ dPCflux þ dPCconnector: ð9:8Þ

dPCintra acknowledges that the larger the patch is, the more habitat it provides
that is reachable for organisms (e.g., within patch dispersal opportunities). It is
defined as:

dPCintra, i ¼ a2iPn
i¼1

Pn
j¼1 aia jp∗ij

� 100: ð9:9Þ

dPCflux is related to other radial connectivity metrics that capture area-weighted
flow. This metric is analogous to some other patch-based connectivity metrics used
in metapopulation ecology.

dPCflux, i ¼
Pn

i¼1

Pn
j¼1 aia jp∗ij � a2iPn

i¼1

Pn
j¼1 aia jp∗ij

� 100: ð9:10Þ

dPCconnector is a medial-based metric of connectivity that isolates the role of
patches in acting as stepping stones or connectors between other patches. It can be
most readily quantified based on the remaining difference as:

dPCconnector ¼ dPC� dPCintra � dPCflux: ð9:11Þ

A function for calculating PC, dPC and its related fractions is:

> prob.connectivity <-
function(prob.matrix,area,landarea){
pc.g <- graph.adjacency(prob.matrix, mode = "undirected",weighted = T)
pstar.mat <- shortest.paths(pc.g, weights = �
log(E(pc.g)$weight))
pstar.mat <- exp(-pstar.mat) #back-transform
PCmat <- outer(area, area) * pstar.mat
PC <- sum(PCmat) / landarea^2
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N <- nrow(prob.matrix)
dPC <- rep(NA,N)
for (i in 1:N) {
prob.mat.i <- prob.matrix[�i, �i]
area.i <- area[�i]
pc.g.i <- graph.adjacency(prob.mat.i, mode = "undirected",
weighted = T)
pstar.mat.i <- shortest.paths(pc.g.i,
weights = -log(E(pc.g.i)$weight))
pstar.mat.i <- exp(-pstar.mat.i)
PCmat.i <- outer(area.i, area.i) * pstar.mat.i
PC.i <- sum(PCmat.i) / landarea^2
dPC[i] <- (PC-PC.i) / PC * 100

}
#fractions
dPCintra <- area^2 / sum(PCmat) * 100
dPCflux <- 2*(rowSums(PCmat) - area^2)/sum(PCmat) * 100
dPCconn <- dPC - dPCintra - dPCflux

patch.metrics <- data.frame(dPC, dPCintra, dPCflux, dPCconn)
pc.list <- list(PC = PC,patch = patch.metrics)
return(pc.list)
}

For the snail kite data, we compare relationships among the patch-level connec-
tivity metrics (Fig. 9.15). When using the probability adjacency matrix, it is
clear that these metrics capture different elements of connectivity. Patch strength
and eigenvector centrality are highly correlated (and closeness to a lesser extent).
dPC is highly correlated with patch area, while betweenness appears less correlated
with these other patch metrics.

9.3.5 Combining Connectivity Mapping with Graph Theory

Patch-based graph analyses can be applied to raster maps (Carroll et al. 2012). To
illustrate this idea, we can revisit the panther example where we calculated least-cost
paths. But now, we calculate betweenness centrality for each cell in the landscape.
This metric is very relevant in the context of raster maps (not all graph measures are
as useful for raster data) because, when applied to resistance or cost surfaces, it can
identify locations where the most least-cost paths pass on a landscape. That is, for
each cell on the map, it will identify the number of least-cost paths that cross that cell
(based on every pair of cells in the landscape).

To illustrate this idea, we convert our raster layer used in the Florida panther
example into a transition matrix. Note that for this analysis, we use the cost raster,
rather than converting it to a conductance layer as we did previously. Then, we use
igraph to calculate betweenness for each pixel in the map. Finally, we re-project
these betweenness metrics back onto a raster map.
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#create a transition matrix for use in igraph
> land_cost_subt <- transition(land_cost_sub, transitionFunction
= mean, 8)

> land_cost_subt <- geoCorrection(land_cost_subt, type = "c")

> land.matrix <- transitionMatrix(land_cost_subt)#sparse matrix

#now take the sparse matrix and use igraph for analysis
> land.graph <- graph.adjacency(land.matrix, mode =
"undirected", weighted = T)

> land.between <- betweenness(land.graph)

#map betweenness
> land.between.map <- setValues(land_cost_sub, land.between)
> plot(land.between.map)
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Fig. 9.15 Correlations of patch-based connectivity metrics for the snail kite. Shown are patch
values based on the probability adjacency matrix. Also included is patch area (area)
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When we contrast this with the least-cost path analysis, there are some interesting
similarities (Fig. 9.16). First, the betweenness mapping reveals the least-cost path
identified previously (Fig. 9.8). However, it also reveals another path in the land-
scape that may be relevant for connectivity.

Note that the mapping of betweenness centrality shares many similarities with the
idea of factorial least-cost paths (Rudnick et al. 2012; Elliot et al. 2014). In that
approach a grid is placed over the landscape, least-cost paths are calculated between
all points on the grid, and these paths are overlaid to generate a connectivity map.
This approach could easily be implemented in R using the sampleRegular
function in the raster package. The main difference then between factorial
least-cost paths and mapping betweenness centrality is the grain of the analysis:
for mapping betweenness centrality, the grain is the grain of the map being used,
while for factorial least cost paths, the grain is contingent on the grain of the grid
being considered.

9.4 Next Steps and Advanced Issues

9.4.1 Connectivity in Space and Time

While connectivity modeling emphasizes the role of space in potential and realized
movement, connectivity can change over time for a variety of reasons (Zeigler and
Fagan 2014), such as population trends impacting the number of individuals avail-
able for movement, seasonality effects, or effect of changes in climate or land use.
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Fig. 9.16 Mapping
betweenness centrality to
interpret connectivity in a
landscape with two
protected areas. Brighter
values reflect greater
betweenness centrality
across the landscape. The
least-cost corridor is
outlined in white for
comparison
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Such variation can alter interpretation of connectivity (Reichert et al. 2016). Impor-
tantly, there is always a temporal component to connectivity, although frequently
this dimension is implicit rather than explicit in modeling. For instance, when using
patch-based graphs, are linkages based on long-term potential movement or short-
term (e.g., within-season, annual movements)?

An active area of development in network analysis is that of temporal networks:
changes in network structure over time (Holme and Saramaki 2012). These devel-
opments have extended standard metrics and models to explicitly model changes in
network flow over time. These developments have yet to be well integrated into
connectivity modeling (but see Martensen et al. 2017). However, such approaches
may prove valuable for interpreting effects of ongoing environmental change.

9.4.2 Individual-Based Models

An alternative approach to the methods presented in this Chapter is the use of
individual-based (agent-based) simulation models for predicting and interpreting
connectivity. These approaches are very useful for formally capturing individual
variation in movement, behavioral issues such as the effect of perceptual ranges on
connectivity (Pe’er and Kramer-Schadt 2008), how landscape change may impact
movement, and understanding the impacts of connectivity on population viability
and community dynamics (Schumaker et al. 2014). Nonetheless, these approaches
require very detailed knowledge about the process of interest. These approaches
have been used much less frequently than the network approaches described in this
chapter (Fletcher et al. 2016), but they can be helpful in many situations.

9.4.3 Diffusion Models

Diffusion models have also been developed for interpreting connectivity (Reeve
et al. 2008; Ovaskainen et al. 2008). These models frequently focus on population
dynamics and the spread of individuals through a diffusive process, akin to the use of
random walks (Ferrari et al. 2014). Extensions include adding advection, or direc-
tion, to the diffusion process and allowing for habitat-specific diffusion rates (Reeve
et al. 2008). These models are elegant and can concisely track aspects of connectiv-
ity; however, they are challenging to fit to data.

9.4.4 Spatial Capture–Recapture

Capture–recapture modeling has been extended to spatially explicit modeling
of mark–recapture data across sampling grids (Royle et al. 2014). While the
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focus is often on density estimation, these approaches have been extended to
estimate aspects of connectivity, such as least-cost paths and estimates of resistance
(Royle et al. 2013, 2018; Sutherland et al. 2015). These efforts might be particu-
larly valuable for certain types of data, such as camera-trapping grids.

9.5 Conclusions

Our understanding and quantification of connectivity has been largely catalyzed by
increased interest in conserving connectivity with ongoing environmental change
(Crooks and Sanjayan 2006; Lawler et al. 2013). Connectivity is now being incor-
porated into applied problems involving population viability analysis (Stevens and
Baguette 2008), invasive species management (Drake et al. 2017; Minor and Gard-
ner 2011), pest control (Margosian et al. 2009), and conservation planning for
climate and land-use change (Albert et al. 2017). We now know that connectivity
has consistent, positive impacts on populations and communities (Gilbert-Norton
et al. 2010; Haddad et al. 2003, 2015, 2014; Fletcher et al. 2016), and it is frequently
championed as a means to promote the persistence of biodiversity with ongoing
environmental change (Heller and Zavaleta 2009).

Future advancements in our understanding and application of connectivity will
require a greater emphasis on estimating connectivity effects for wild populations
and communities, particularly in regard to using explicit movement and dispersal
data to understand how such movement impact populations and communities. Better
incorporation of the problem of scale and how connectivity varies with spatial and
temporal scale is also needed (Pascual-Hortal and Saura 2007). Finally, isolating
connectivity effects relative to other issues influencing biodiversity will help under-
stand the importance of connectivity relative to other known issues for populations
and communities (e.g., habitat amount; Hodgson et al. 2011). By addressing these
outstanding issues, we will better understand the relative importance of connectivity
for biodiversity and deliver more effective conservation strategies.
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Chapter 10
Population Dynamics in Space

10.1 Introduction

Populations and their dynamics have intrigued scientists for centuries (Malthus
1798). Population biology was initially primarily interested in changes in population
numbers at single locations and why populations may persist or go extinct (Gause
1932; Lotka 1927). The relevance of life-history variation among populations and
species was also heavily emphasized in being relevant for interpreting population
dynamics and evolutionary change (Cole 1954; Pianka 1970).

As population biology continued to develop, experiments and theoretical devel-
opment in the 1950s–1970s showed that spatial variation can be an important
mechanism for population persistence and change (Huffaker 1958; Roff 1974).
This work largely emphasized the role of movement and dispersal in altering
population dynamics (Skellam 1951; Levin 1976). In the 1980s, an emphasis on
spatial heterogeneity in resources and its impacts on birth and death rates flourished
(Keddy 1981), leading to the concept of source–sink dynamics (Keddy 1981; Holt
1985; Pulliam 1988). Since that time, there has been a consistent interest in spatial
population biology and its relevance for understanding the effects of environmental
change.

Population biology also has a prominent place in conservation and management
(Ehrlich and Daily 1993; Caughley 1994; Reed et al. 2002; Carroll et al. 2003; Traill
et al. 2010). Preventing population extinction lies at the core of policy throughout the
world (Mace et al. 2008; Schwartz 2008). Restoration strategies frequently empha-
size restoring populations, and management aimed at reducing impacts of pest and
invasive species focus on limiting population growth and spread (Sakai et al. 2001;
McKay et al. 2005; Schrott et al. 2005). Over the past several decades, the role of
space in population dynamics and trends has been illuminated (Hanski et al.
1996; Channell and Lomolino 2000; Wilson et al. 2004), and spatially structured
population dynamics have emerged as a key component for conservation and
management strategies (Lundberg et al. 2000; Chan et al. 2006).
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Our general objective for this chapter is to provide an overview of the role of
space on populations, with an eye toward conservation-relevant issues. To do so, we
first discuss some common frameworks for understanding and conserving spatially
structured populations. We use the term spatially structured population as a broad
umbrella term for a population that includes some amount of spatial heterogeneity
(Table 10.1). This term captures many spatially focused concepts in population
biology. We then illustrate some of these concepts with data on spatial variation in
abundance and colonization–extinction dynamics.

Table 10.1 Common population terms using in spatial population modeling

Term Definition

Area-isolation
paradigm

A common framework for metapopulation biology, where patch area is
assumed to explain local extinction rates and patch isolation is assumed
to explain local colonization rates.

Colonization The establishment of a species in a formerly unoccupied habitat via
dispersal.

Closed population When a population does not change over a specified period of time (i.e.,
no movements in or out of the population and no births or deaths).

Extinction When a species becomes absent from a formerly occupied patch or
region. Can be “local,” “regional,” or for the entire species.

Extinction debt The number of species committed to extinction, but are not yet extinct,
following a disturbance event and/or land clearing.

Demography The study of the size, structure, and distribution of populations, with a
focus on the vital rates that alter these patterns (e.g., births, deaths).

Immigration credit The number of species committed to eventual immigration following a
disturbance event and/or land clearing.

Landscape
demography

The demographic properties of populations and their drivers at multiple
scales.

Local population A group of individuals that are geographically distinct from other indi-
viduals. Similar to a “population,” but term typically used to contrast
with a metapopulation.

Metapopulation A set of local populations connected through dispersal.

Open population A population where over a specified period of time, births, deaths,
immigration or emigration may occur. Contrast with closed population.

Population A group of individuals of the same species that are genetically or
geographically distinct from other groups of individuals.

Population projection
model

A model that predicts the state of a population in a future time. Often
used for population viability analyses.

Population viability
analysis

A general approach to assess the risk of extinction of a population or
species over a given time frame. Involves projecting changes in popu-
lation structure over time, often under different environmental scenarios.

Pseudo-sink A local habitat that appears to have characteristics of a sink but is above
carrying capacity, such that as the local population size decreases below
carrying capacity, it may no longer resemble a sink.

Rescue effect When local extinction is reduced due to higher connectivity causing a
greater number of immigrants into patches, which elevates local
population size.

(continued)
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10.2 Key Concepts and Approaches

10.2.1 Foundational Population Concepts

Understanding spatial population biology requires understanding fundamental con-
cepts for populations. It is beyond the scope of this book to go into details regarding
population biology in general. Interested readers should consult Gotelli (2008),
Begon et al. (2009), or Rockwood (2009). Here, we introduce only key concepts
and issues that will be relevant for interpreting spatially structured populations.

Populations have been defined in a variety of ways, using both ecological and
evolutionary criteria (Waples and Gaggiotti 2006). All definitions of populations
generally assume that individuals within a population interact equally (in genetics
literature, this assumption is generally referred to as panmixia). Population defini-
tions can also vary as a function of spatial scale, an issue that has been emphasized in
metapopulation biology (see Sect. 10.2.2.1).

Populations are often described as being either “open” or “closed”. An open
population is one in which dynamics may occur over a specified period of time, such
as movement into (immigration) or out of (emigration) the population, or changes in
numbers through birth and death processes. In contrast, a closed population is one in
which populations numbers do not change over a given time period. Clearly, as the
time period of interest increases in length, a formerly closed population may become
an open one. Consequently, temporal scale is also important for interpreting
populations and their dynamics. Open versus closed populations is an important
distinction in spatial ecology, because open populations can be impacted through
movement-related processes, a focus of spatially structured population biology.

Table 10.1 (continued)

Term Definition

Sieve A local habitat or population where births exceed deaths and emigration
� immigration, such that it may be unlikely to persist due to high rates
of emigration.

Sink A local habitat or population where deaths exceed births and immigra-
tion exceeds emigration, such that the population may not persist
(or may persist at a lower population size) in the absence of immigration.

Source A local habitat or population where births exceed deaths and emigration
exceeds immigration, such that the population provides individuals to
other populations.

Spatial synchrony The correlated temporal fluctuations among populations, where typically
the magnitude of correlation varies with geographic distance.

Spatially structured
population

A population that has some form of spatial heterogeneity in terms of
individual distributions and/or variation in demographic rates.

Stochastic patch
occupancy model

A spatial modeling approach that focuses on modeling the presence and
absence of species on discrete habitat patches as a Markov chain.
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10.2.2 Spatial Population Concepts

Spatial population concepts have a long history in ecology and conservation. In
general, these ideas can be organized based on two different paradigms. First, there is
a large branch of theory and empirical work that focuses on patch occupancy,
extinction, and colonization dynamics (Fig. 10.1). This work ignores demographic
vital rates, such as fecundity or survival, and tends to be emphasized when working
across broad spatial and temporal scales (many locations or samples over time). This
work has been the focus of classic metapopulation biology (Levins 1969; Hanski
1999). In contrast, spatial demography, or landscape demography (Gurevitch et al.
2016), focuses on variation in demographic rates over space and time. As a conse-
quence of the challenging nature of estimating demographic rates at multiple loca-
tions, this focus has largely occurred at relatively small spatial and/or temporal scales
(Norris 2004), where demographic rates are measured and interpreted at a small
collection of patches or locations (Table 10.2).

10.2.2.1 Metapopulations

Metapopulation Theory. Metapopulation concepts and theory have been essential
to the development of spatial population biology. Metapopulation concepts tend to
distinguish between local dynamics occurring at the patch level versus regional
(or metapopulation) dynamics. For instance, patches can suffer high probabilities
of local extinction even though the likelihood of regional extinction is low.

Simple probabilistic processes can illustrate why metapopulations are so impor-
tant (Gotelli and Kelley 1993). For instance, if we assume that the probability of

ba

Fig. 10.1 Spatial population dynamics viewed through different spatial lenses. (a) A
metapopulation approach that focuses on patch dynamics, where open circles represent unoccupied
patches and filled circles represent occupied patches; and (b) spatially explicit approaches that focus
on spatial demography and/or track individuals. Shown is a cellular automata that acknowledges
gradients in land cover
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local extinction in one year is pe, and that local extinction probabilities over time are
independent, then the probability of persistence over 2 years is:

1� peð Þ 1� peð Þ: ð10:1Þ

For t years, the probability of persistence is then:

1� peð Þt: ð10:2Þ

If we consider a situation where there are N patches with pe for each patch, the
probability of metapopulation persistence in one year is:

1� ðpeÞN : ð10:3Þ

From this simple equation, the importance of multiple patches in a meta-
population becomes clear (Fig. 10.2). The above equation arrives at this conclusion
by assuming that each patch operates independently, such that there is no spatial
synchrony. It is essentially calculating the probability that at least one patch does not
go locally extinct (hence, 1 minus the product of each going extinct). This proba-
bility of persistence can be calculated for different numbers of patches, illustrating
the importance of “spreading the risk” for population viability (den Boer 1968).

Levins (1969) first developed the ideas of metapopulation dynamics in his classic
metapopulation model. In this model, Levins distinguished a local population
from the metapopulation. A local population is similar to the population concept
mentioned above, while a metapopulation is a “population of populations.” In this
model, Levins assumes that local patches are occupied as a balance of extinction,
E (proportion of sites going extinct/time), and immigration rates I (proportion of sites

Table 10.2 Different paradigms for spatially structured populations

Characteristic Metapopulation Spatial demography

State variable(s)a Occupancy, colonization,
extinction

Demographic rates, popu-
lation growth

Number of patches or locations Many Few

Ability to capture individual
variation

No Yes

Dispersal component Colonization, rescue effects Immigration, emigration

Consideration of spatial hetero-
geneity in habitat quality and the
matrix

Limited to moderate Highly variable

Types of models Stochastic patch occupancy,
Spatially structured Levins’
model

Matrix models, Cellular
automata, Individual-based
models

aMajor elements of the model whose rates of change are given by differential or difference
equations
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colonized/time) of local populations. We can formalize the change in the fraction of
patches occupied, f, per unit time with a differential equation as:

d f
dt

¼ I � E: ð10:4Þ

As a consequence, when metapopulations are at equilibrium (i.e., no change in f ),
we set the left-hand side of Eq. (10.4) to zero, such that E ¼ I.

Levins took this idea and then assumed that immigration rates would be a
function of the number of sites occupied (providing propagules) and the proportion
of sites unoccupied that could become colonized (1 � f ):

I ¼ cf 1� fð Þ, ð10:5Þ

where c is the rate of individuals emigrating from occupied patches. Thus, I is a
product of c and f, or the total rate of individuals emigrating from all occupied
patches (i.e., internal colonization is permitted, unlike the basic model of island
biogeography; see Chap. 11), times (1 � f ), or the proportion of sites that could be
colonized. Levins then assumed that:

E ¼ ef , ð10:6Þ

where e is the probability of local extinction, such that the extinction rate for the
entire metapopulation is the product of e times the sites occupied (because only
occupied sites can become extinct). Putting this together, we have the Levins model:
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Fig. 10.2 Metapopulation
persistence over 1 year, as a
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d f
dt

¼ cf 1� fð Þ � ef : ð10:7Þ

With this model, we can determine the equilibrium fraction of sites occupied,
f*, by setting df/dt ¼ 0 and solving the equation, which becomes:

f∗ ¼ 1� e

c
: ð10:8Þ

Consequently, this model predicts that the metapopulation will only persist
( f* > 0) when c > e.

There are several assumptions of this classic metapopulation model. The model
assumes that patches are homogeneous in their characteristics (e.g., area, quality,
isolation), there is no spatial structure, patches are asynchronous in their dynamics
(i.e., they have independent colonization and extinction dynamics), c and e are
constant, there are no time lags, and there is a large number of patches (Gotelli
2008). There are several variants of this model, such as altering the formulation to
allow for rescue effects, or the effects of recurrent immigration lowering extinction
rates, and a focus on external propagule pressure only (similar to island biogeogra-
phy; Gotelli 1991).

One assumption that has received a great deal of interest is the assumption that
local populations are not synchronized in their dynamics (Ranta et al. 1997; Koenig
1998; Bjørnstad et al. 1999; Liebhold et al. 2004; Koenig and Liebhold 2016; Walter
et al. 2017). Understanding spatial synchrony (or lack thereof) is of interest for a
variety of reasons. First, high spatial synchrony may lead to greater vulnerability of
species to environmental stochasticity and it can increase the likelihood of local and
metapopulation extinction (Heino et al. 1997; Matter 2001). Second, there is interest
in why synchrony occurs (Bjørnstad et al. 1999): does it occur due to localized
dispersal, spatial dependence in trophic interactions, or through abiotic (e.g.,
weather) variation limiting population dynamics (which is known as the Moran
effect)?

The metapopulation framework has also been recasted at the individual level. For
instance, Tilman and Lehman (1997) considered the problem where “local
populations” are considered to be discrete locations on a landscape capable of only
housing a single individual, similar to a territory of an individual bird or occupancy
of a sessile individual, where priority effects and preemption prevents other individ-
uals from also occupying that location.

Hanski (1994) relaxed some of these assumptions and developed a framework of
applying these metapopulation ideas to real data by developing what he termed the
incidence function model, one type of stochastic patch occupancy model (Caswell
and Etter 1993; Moilanen 1999). In the incidence function model (IFM), colonization
and extinction rates are assumed to vary across patches as a function of patch size and
isolation, thereby relaxing assumptions regarding homogenous patches, no spatial
structure and constant c and e. This general set of assumed relationships in
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colonization–extinction dynamics is often referred to as the area-isolation paradigm
(Hanski 1998; Fleishman et al. 2002).

Hanski assumed that local extinction rates were dependent on population size. He
specified the functional form of extinction rate for patch i with patch area A as:

Ei ¼ z

Ax
i

, ð10:9Þ

where z and x are constants. Based on this equation, as patch area increases, the
likelihood of extinction in patch i declines, but the functional form of the decline
varies with z and x. When x is small (<1) even large patches are expected to suffer
extinction; z can be considered a parameter that captures the magnitude of environ-
mental stochasticity on patch extinction (Fig. 10.3). In general, extinction–area
relationships are commonly assumed in population biology. There are at least
three reasons for this relationship: (1) larger areas contain greater numbers of
individuals (i.e., larger population size); (2) larger areas have greater spatial hetero-
geneity in resources, such that as conditions change, there may still be resources
available somewhere within patches; and (3) larger areas allow for dynamics akin to
metapopulation dynamics that operate within patches (Connor and McCoy
1970; Holt 1992; Hanski 1999). A common extension of this framework is to adjust
patch area with a measure of “effective area” if patches vary in habitat quality and/or
edge effects (Moilanen and Hanski 1998).

Colonization rates for patch i, Ci, in the incidence function model were based on
spatial isolation and were quantified as a function of the number of potential
immigrants, Mi:
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Fig. 10.3 Functional relationships assumed in the incidence function model and related stochastic
patch occupancy models. Extinction relationships are often formalized asEi ¼ z

A x
i
, where z and x are

constants that modify the shape of the extinction relationship E with patch area, A. (a) Extinction
relationships when z is varied, (b) extinction relationships were x is varied. For variation in
colonization, a negative exponential kernel, exp(�αdij), is frequently used, where dij is the distance
between patch i and j and α is the inverse of the mean dispersal distance. (c) Changes in the negative
exponential kernel under different values of α
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Ci ¼ M2
i

M2
i þ y2

, ð10:10Þ

where y is a constant that determines how fast the colonization rate increases with the
number of immigrants. M was quantified as:

Mi ¼ βSi ð10:11Þ
Si ¼

X
j

p jexp �αdij
� �

A j, ð10:12Þ

where pj is an indicator variable regarding whether patch j is occupied, α is the
inverse of the mean dispersal distance for the species, and β is a constant to be
estimated. As α increases, the effect of distance increases (Fig. 10.3c). Si essentially
sums the areas of occupied patches, weighting them by their distance to the focal
patch j (where the weight is described by dispersal distance). Note that Si has
frequently been used as a potential connectivity metric (Moilanen and Nieminen
2002) and dij has sometimes been replaced with effective distance measures, such as
least-cost distances that capture matrix resistance (see Chap. 9).

The above formulation emphasizes a negative exponential dispersal kernel for
colonization (Fig. 10.3). Hanski (1999) argued that the exact for dispersal kernel is
often not that important in metapopulation dynamics, because such dynamics are
frequently driven by relatively short dispersal events. However, for some problems,
such as range expansion and the spread of invasive species, this function may not be
warranted, particularly when dispersal has a “fat tail”: when there are occasional
very long-distance colonization events (see Chap. 9). A variety of fat-tail relation-
ships have been suggested (Clark et al. 1999); an approach that is a minor extension
to the negative exponential function above is (Shaw 1995; Moilanen 2002):

1
1þ αd γ

ij

, ð10:13Þ

where γ is a constant.
With these descriptions of extinction and colonization rates, Hanski then speci-

fied an equilibrium measure of incidence or occurrence, Ji, as:

Ji ¼ Ci

Ci þ Ei
, ð10:14Þ

(see also Diamond 1972 for a similar approach in the context of island biogeogra-
phy). This last point was provocative, in the sense that this relationship could be used
to potentially take a snapshot of occurrence data to then estimate Ci and Ei. However,
doing so makes the assumption that the metapopulation is in long-term, quasi-
equilibrium, such that the metapopulation is persistent (Moilanen 2000). Removing
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this assumption means that any observed trend in metapopulation occupancy is real
(i.e., not simply a stochastic realization of a population at quasi-equilibrium). There
are consequences for either assumption. This general idea has been applied in a
variety of conservation-focused problems, such as interpreting long-term effects of
deforestation (Ferraz et al. 2007) and occupancy dynamics of Golden Eagles (Aquila
chrysaetos; Martin et al. 2009).

This metapopulation framework has been applied to a variety of species and
systems. For example, Hokit et al. (2001) applied this approach to the Florida scrub
lizard (Sceloporus woodi), an endangered lizard found in patchily distributed
uplands in Florida. They contrasted predictions from the incidence function model
to a population projection model (see Sect. 10.2.4.3), finding that both types of
models provided generally similar results of the predicted distribution of this species.

A related topic from metapopulation theory is the concept of metapopulation
capacity (Adler and Nuernberger 1994; Hanski and Ovaskainen 2000).
Metapopulation capacity was derived from extensions of the Levins’ model to
generalize to interpreting metapopulation persistence in irregular landscapes. Hanski
and Ovaskainen (2000) popularized this idea by showing how this concept could be
used to evaluate metapopulation viability based on what they termed an appropriate
landscape matrix. They defined the landscape connectivity matrix M as:

M ¼ AiAj

�
expð�αdi jÞ

�
, ð10:15Þ

andMii ¼ 0. The metapopulation capacity is defined as the leading eigenvalue of
M, λM. Patch importance to metapopulation capacity, Pi, can be approximated using
the leading eigenvectors of M, x:

P ¼ x2λM: ð10:16Þ

Note the similarity of using this measure of patch importance to that described in
Chap. 9 (using eigenvector centrality of a connectivity matrix). In addition, we
highlight that metapopulation capacity shares a similar functional form to the
probability of connectivity described in Chap. 9 (Saura and Pascual-Hortal 2007),
as well as the neighborhood habitat area metric of Hanski (1999). See Saura and
Rubio (2010) for a discussion on some of the similarities and differences between
these metrics. Metapopulation capacity can be applied to any landscape where patch
locations and sizes are known and an estimate of α exists. It can be used to evaluate
issues of both habitat loss and fragmentation (Fig. 10.4), as well as potential habitat
restoration (Hanski and Ovaskainen 2000; Ovaskainen et al. 2002).

Another approach for interpreting metapopulation viability is to quantify mean
metapopulation lifetime (Frank and Wissel 2002). This metric has a similar goal to
the metapopulation capacity, but it is an absolute metric that assumes stochastic,
rather than deterministic, extinction. The metapopulation mean lifetime is derived
from a stochastic metapopulation model that aims to approximate the viability of
metapopulations. This model was initially developed by Frank and Wissel (2002)
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and later extended to metapopulations on complex networks (Drechsler 2009;
Drechsler and Johst 2010; Kininmonth et al. 2010; Johst et al. 2011). The model
makes similar assumptions to metapopulation capacity regarding area-isolation
relationships on extinction and colonization probabilities, yet contains more param-
eters to describe extinction–colonization dynamics and effects of environmental
variability. It has been applied to a variety of conservation problems (Drechsler
and Johst 2010; Johst et al. 2011).

Conservation Lessons from Metapopulation Theory. Metapopulation theory
emphasizes that currently unoccupied patches can be critical for long-term meta-
population persistence (Hanski 1998). The colonization–extinction dynamics captured
by metapopulation theory highlight that unoccupied patches may be colonized in the
future. This issue is important in interpreting species distribution (Barve et al. 2011),
habitat quality (Mortelliti et al. 2010), and conservation strategies (Bulman et al. 2007).

Metapopulation theory also suggests that minimum viability metapopulation
sizes may occur (Hanski et al. 1996), where a minimum number of patches may
be required to ensure long-term metapopulation persistence. This general idea
extends arguments in conservation biology regarding minimum viable populations
required for long-term persistence (Flather et al. 2011; Traill et al. 2007).

0

20

40

60

0 10 20 30 40 50 60 70 80 90

Habitat loss (%)

M
et

ap
op

ul
at

io
n 

ca
pa

ci
ty

aggregated
loss

random
loss

Fig. 10.4 An illustration of lessons from metapopulation theory for habitat loss and fragmentation,
where random habitat loss is predicted to have negative effects on metapopulation capacity relative
to aggregated loss. Shown is an example where random and aggregated loss occur. In this example,
we use Gaussian Random Fields (see Chap. 5) to generate landscapes. Metapopulation capacity is
calculated under the two scenarios of habitat loss. Shown are 20 realizations (with boxplots and
lowess ribbons illustrating variation across realizations). In this situation, dispersal limitation is
imposed by assuming a small mean dispersal distance relative to the landscape size and cells (rather
than patches) are used in quantifying metapopulation capacity (such that patch area does not vary).
If dispersal is not limited, predictions for aggregated and random loss converge
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Several spatial aspects of metapopulation networks have been suggested to be
important for metapopulation persistence and how metapopulations should be man-
aged. For example, Frank and Wissel (1998) emphasized the importance of the
correlation length of local extinction processes (or the spatial correlation in extinc-
tion) relative to the dispersal range of species in metapopulation dynamics. From
their model development, if the dispersal range is shorter than the correlation length
of extinction processes, then metapopulation viability over the long term may
be low.

A variety of metapopulation models have focused on patterns of habitat destruc-
tion, suggesting that critical thresholds of loss occur for metapopulation persistence
(Bascompte and Sole 1996). In addition, many models suggest that the pattern of
destruction matters, where random loss is often expected to be more detrimental to
metapopulation persistence than non-random (often, aggregated) loss (Fig. 10.4)
(Dytham 1995; Moilanen and Hanski 1995). Some metapopulation modeling has
also considered the roles of patch loss relative to the reduction in patch size on
metapopulation persistence. Patch loss ultimately impacts colonization rates, while
reductions in patch size are expected in increase local extinction rates and reduce
colonization rates (Hanski 1999), such that reductions in patch size may have greater
effects than patch removal for a given amount of loss (Hanski and Ovaskainen
2000). Habitat disturbance (rather than destruction) has also been considered exten-
sively, where the effects of disturbance vary depending on the spatiotemporal
patterns that disturbance creates (Johst and Drechsler 2003; Kallimanis et al.
2005). In these applications, it is often emphasized that extinction debts may
occur: when species are committed to extinction (but have not yet gone extinct)
from disturbance or habitat destruction (Tilman et al. 1994; Hanski and Ovaskainen
2002; Kuussaari et al. 2009; Hylander and Ehrlen 2013). Immigration credits may
also occur and are relevant for conservation, where species may eventually immi-
grate (or colonize) an area after a disturbance or restoration event (Jackson and Sax
2010; Talluto et al. 2017).

Limitations. While metapopulation theory and application have seen widespread
use, there are recurrent questions regarding its relevance to many systems (Harrison
1991; Baguette 2004). Hanski (1999, 2004) argued that the metapopulation
approach is potentially useful when three criteria exist. First, space is discrete
(e.g., patchy habitats). Second, processes operate on (at least) two scales: the local
population and metapopulation scales. Third, habitat is large and permanent enough
to allow persistence of breeding local populations for at least a few generations.

10.2.2.2 Spatial Demography

Metapopulation ideas regarding colonization–extinction dynamics can be contrasted
with interpreting spatial variation in demography and related vital rates, such as
births (B), deaths (D), emigration (E), and immigration (I ). This focus was at the core
of ideas regarding source–sink dynamics (Holt 1985), balanced dispersal models
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(Diffendorfer 1998), and what is termed “structured metapopulation models”
(Diekmann 1993).

Source–Sink Dynamics. The concept of source–sink dynamics was popularized in
a seminal article by Ron Pulliam (1988), but other important early work comes from
Holt (1985) and Paul Keddy (1981, 1982). Pulliam focused on how vital rates can
explain population size N at time t as:

Nt ¼ Nt�1 Bþ I � D� Eð Þ, ð10:17Þ

such that:

λt ¼ Nt=Nt�1 ¼ Bþ I � D� E, ð10:18Þ

where λt is the finite rate of increase (or loosely, the population growth rate). Pulliam
defined a source where λt > 1 and a sink where λt < 1, such that B> D and E> I for
sources, whereas for sinks B < D and E < I. However, after defining sources and
sinks in this way, he then focused solely on variation in birth and death processes,
ignoring the roles of emigration and immigration. That shift in focus led to much
confusion in spatial demography (Runge et al. 2006). Sources and sinks have also
sometimes been coined as “net exporters” and “net importers” (focusing on the E and
I components), which has further muddled the concept. Two related concepts are
pseudo-sinks, which are locations that appear to be sinks but are essentially above
carrying capacity, and sieves (Cronin 2007), where emigration rates are very high,
such that a population with high birth rates may go locally extinct due to high
emigration.

Thomas and Kunin (1999) generalized these ideas to spatially structured
populations by noting that most populations can be described along two dimensions,
a mobility axis and a compensation axis. The mobility axis relates to how a
population is involved in regional (immigration and emigration) relative to local
(births, deaths) population dynamics. The compensation axis describes whether
populations are exporting individuals (sources, sieves) or importing them (e.g.,
sinks, pseudo-sinks). This framework emphasizes a continuum in the dynamics
and relationships of vital rates.

Overall, the source–sink concept has provided a great deal of insights to popu-
lation biology and conservation. Pulliam (1988) emphasized several novel insights.
First, the source–sink concept acknowledges that when individuals reside in sinks,
those environments are outside of the fundamental niche of a species (Pulliam 2000).
Second, source–sink dynamics can complicate the interpretation of potential species
interactions. For instance, if a habitat is a source for one species but a sink for
another, one might inappropriately conclude that asymmetric interspecific competi-
tion is occurring between species. Third, when sources occur, classic metapopulation
dynamics may be less likely, because local extinction of sources may be rare. Those
situations may be more akin to “island–mainland” metapopulations (Gotelli 1991).
Finally, this concept has been very important in regard to habitat prioritization for
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conservation purposes, where practitioners may be less willing to invest in sink
habitats for prioritization (Liu et al. 2011).

Balanced Dispersal. The balanced dispersal model for spatial demography shares
some similarities with source–sink models but it makes different assumptions
(Diffendorfer 1998). In the balanced dispersal model, sites vary in their carrying
capacities but sinks do not occur (McPeek and Holt 1992). Dispersal rates (emigra-
tion from patches) are inversely related to local carrying capacities, such that
dispersal probability is high from sites with low carrying capacities and dispersal
probability is low from sites with high carrying capacities. Consequently, the
number of individuals dispersing between patches becomes “balanced”
(Diffendorfer 1998). This model is essentially an extension of the Ideal Free
Distribution model (see Chap. 8). This model has received some empirical support
over the years (Doncaster et al. 1997).

Landscape Demography. The ideas regarding source–sink dynamics and related
issues have recently coalesced into the concept of landscape demography (Gurevitch
et al. 2016). Landscape demography is “the study of demographic properties of
populations and their drivers at multiple scales, and of how the relationships among
populations and their drivers at any one scale influence demographic outcomes at
other scales” (Gurevitch et al. 2016). Issues of scaling in population demography
have long been acknowledged (Thomas and Kunin 1999), although empirical work
on these issues has been slow to accumulate (but see Cavanaugh et al. 2014).

10.2.3 Population Viability Analysis

In a conservation context, population viability analysis (PVA) is often used to
interpret the likelihood of (quasi) extinction in populations (Morris and Doak
2002; Reed et al. 2002). Several types of PVAs have been formulated over the
years, many of which use different types of data and information for modeling. The
utility of PVA has been debated; however, PVA can be useful particularly when
applied in a relative way by comparing alternative scenarios of future change rather
than for absolute predictions or forecasting of viability (Beissinger and Westphal
1998; Reed et al. 2002). In addition, PVA has been shown to accurately predict
population viability in many systems (Brook et al. 2000).

For spatially structured populations, four general approaches tend to be used
(Morris and Doak 2002). First, time-series data of changes in population abundance
across locations can be used. Second, stochastic patch occupancy models are often
used. Third, site-specific demographic data can be used, such as site-specific
variation in birth rates or death rates. Finally, spatially explicit, individual-based
models can be used.

Time-series data of changes in population abundance across locations are often
available from monitoring programs. These data can be harnessed to understand and
predict changes in abundance over time. If locations can be considered independent,
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then estimates of population change can be quantified for each population using
standard, non-spatial approaches (Morris and Doak 2002). With such estimates, the
likelihood of extinction across all sites can be calculated with probability theory. If
population dynamics across locations are correlated, then this correlation needs to be
accounted for because it can have strong effects on population viability. For
instance, if there are strong correlations among locations, then strings of “bad
years” will occur spatially across sites, increasing the likelihood of extinction. In
contrast, temporally autocorrelated environments can sometimes lead to population
growth based on strings of “good years,” termed inflationary effects (Gonzalez and
Holt 2002; Roy et al. 2005; Matthews and Gonzalez 2007). We would expect
correlations to arise across sites due to dispersal processes or spatial dependence in
abiotic and biotic conditions across sites.

Stochastic patch occupancy models (SPOMs) share some similarities with the
abundance approach, but work with sparser information in terms of changes in
occurrence and these approaches tend to emphasize metapopulation processes,
particularly local colonization and extinction dynamics (Moilanen 2004). The
focus is on using time-series of occurrence or occupancy to estimate colonization
and extinction dynamics. These estimates can then be used to project dynamics
forward in time to interpret population viability. The incidence function model
(Hanski 1994) described above is one example of a SPOM. The value of this
approach is its ability to work with relatively limited data, which can potentially
be collected across many locations in a region.

The third approach is to use demographic population viability analyses. These
approaches typically involve the use of population matrix models (Caswell 2001).
Population matrix models are widely used in population ecology to estimate the
finite rate of increase (~population growth rate), and to understand which demo-
graphic parameters (e.g., juvenile survival) limit population growth via various
methods, such as sensitivity and elasiticity analysis and life table response experi-
ments (de Kroon et al. 2000). With these matrices, population dynamics can be
projected forward in time to interpret population viability. In addition, both asymp-
totic (i.e., long-term) and transient dynamics can be interpreted (Ezard et al. 2010).
These types of approaches can be used to infer the roles of local demography relative
to movement (immigration and emigration) on population dynamics at different
scales (Runge et al. 2006).

Finally, spatially explicit, individual-based models are often used in population
viability analyses (Dunning et al. 1995; DeAngelis and Mooij 2005). These models
typically couple spatially explicit maps, such as raster grids, with individual-based
(or agent-based) algorithms regarding dispersal, reproduction and survival (Grimm
et al. 2005). Individual-based approaches allow for straightforward inclusion of
individual variation in population processes (e.g., individual variation in dispersal
or reproduction), as well as spatial variation in composition, configuration, and
quality of habitats (Fahrig 1997, 2001; Wiegand et al. 2005). Yet these approaches
are often very complex, require detailed data, and are problem-specific, making it
difficult to extend results to interpret generalizable patterns and processes (Norris
2004).
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10.2.4 Common Types of Spatial Population Models

10.2.4.1 Stochastic Patch Occupancy Models

Stochastic patch occupancy models (SPOMs) have been developed in a variety of
ways (Moilanen 2004), with the Incidence Function Model being among the first
(Hanski 1994). The spatially realistic Levins’ model is another example (Hanski
1999), as is the dynamic occupancy model (MacKenzie et al. 2003).

SPOMs are discrete time, first-order Markov chain models. They are discrete time
in the sense that they are typically applied with temporal data that occurs across years
or seasons. First-order Markov chain models are those in which the state at time
t depends only on the state in time t � 1 (e.g., a second-order Markov chain would
depend on t � 1 and t � 2). The Markov chain has 2N possible states, where N is the
number of patches. It is 2N because in each patch there are two possible states
(occupied or unoccupied), yield a total combination of 2N. There has historically
been a focus on the area-isolation paradigm when modeling states; however, other
factors have long been considered as well (Moilanen and Hanski 1998). Once the
parameters of SPOMs have been estimated, simulations can be used to project
potential metapopulation dynamics over time.

There have been three major limitations of these models (Moilanen 2002). First,
they require that all sites are sampled. If not all sites are sampled, estimates for
colonization can be biased, where colonization probability tends to be over-
estimated. Second, they assume that area is properly measured. If there are errors
in estimates of patch size, the scaling of occupancy and area is expected to decrease.
Third, they assume that sites are accurately surveyed, with no observation error (i.e.,
sampling error). When false negative error rates occur, where sites that are occupied
are estimated as being unoccupied, this issue can cause large errors in SPOMs
(Moilanen 2002). Dynamic occupancy models address this later issue.

10.2.4.2 Dynamic Occupancy Models

The stochastic patch occupancy framework can be generalized to issues of sampling
error using state-space models. State-space models distinguish ecological processes
(states) with observations (space), which are related to the state but may have error
and/or bias associated with them. Because the states, here zi, the occupancy of a
species at site i, are generally only partially observed, we treat them as latent
variables: unmeasured (or indirectly measured) variables for which we are interested
in estimating. More broadly, zi ~ Bernoulli(ψ i), where ψ i is the probability of
occurrence at site i (a Bernoulli distribution is one form of a binomial distribution
where only one trial occurs). This general framework in the context of extinction–
colonization dynamics is referred to as a dynamic occupancy modeling framework
(MacKenzie et al. 2003). This framework was extended from earlier efforts that
focused on colonization and extinction estimation but ignored the problem of
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detectability (Erwin et al. 1998; Clark and Rosenzweig 1994; Erwin et al. 1998).
Here, we focus less on the problem of observation error, because it has been covered
extensively elsewhere (MacKenzie et al. 2003, 2006; Royle and Kery 2007); rather,
we use this general framework because of its flexibility when making inferences
from ecological data.

The dynamics of species occupancy can be described and estimated with time-
series data by assuming a first-order Markov process, where zi at time t is contingent
on zi at time t �1, as well as local colonization, γ, and local extinction, ε, processes.
If we define ϕ ¼ 1 � ε, then:

zi, t ¼ Bernoulli zi, t�1ϕi, t�1 þ 1� zi, t�1ð Þγi, t�1

� �
: ð10:19Þ

In the above equation, when zi,t�1 ¼ 0, then the first term on the right side of the
equation goes to zero and zi,t comes from a Bernoulli distribution with a probability
of γi,t�1. When zi,t�1 ¼ 1, the second term on the right side of the equation goes to
zero, such that zi,t now comes from is a Bernoulli distribution with a probability
1 � εi,t�1, or 1 minus the probability of local extinction. In this formulation, the
observation process states that we may not perfectly estimate z based on detectability
issues, p, such that our observed data,Y, is a function of detectability, whereYt ~ ztp.
Detectability can vary over time and/or across sites.

To implement this model, we need to estimate z at t ¼ 1 and subsequent
colonization and extinction parameters. Covariates can be included for z, γ, and ε
(and p), providing a great deal of flexibility in the modeling process and interpreta-
tion of colonization–extinction dynamics. This framework has also been
implemented to generalize the incidence function model (Risk et al. 2011).

10.2.4.3 Spatial Population Matrix Models

There is a huge literature on population matrix models; interested readers should
consult Caswell (2001). We briefly illustrate some ways in which these models can
be applied to spatially structured populations. First, consider a one-site, two-stage
model (a stage is a class of the life cycle of a species where demographic rates are
assumed to be similar among individuals) that incorporates a juvenile j and adult
a life stage. This scenario can be written in matrix notation as:

Ntþ1 ¼ N j, t

Na, t

� �
βS j βSa
S j Sa

� �
, ð10:20Þ

where Nt+1 is the number of individuals at time t þ 1, Sj is the survival of juveniles,
Sa is the survival of adults, and β is the fecundity of adults (i.e., the number of young
an individual produces at time t; often the focus is on the number of females
produced by adult females). This 2 � 2 demographic transition matrix in
Eq. (10.20) is often referred to as A. This formulation is based on a “pre-breeding
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census,” where we survey the population just prior to breeding. Note that for some
species, “states” are more continuous (e.g., plant size), which can be honored
through the use of integral projection models. The matrix in Eq. 10.20 can be
rewritten as a set of difference equations to better interpret how the matrix model
works:

N j, tþ1 ¼ N j, t βS j

� �þ Na, t βSað Þ
Na, tþ1 ¼ N j, t S j

� �þ Na, t Sað Þ: ð10:21Þ

A simple extension of this model to capture a situation where a species resides in
a two-patch system that potentially has source–sink dynamics can be described as
(Stevens 2009):

Ntþ1 ¼ N1
t

N2
t

� �
S1a þ β1S1j M12

M21 S2a þ β2S2j

 !
, ð10:22Þ

where M12 is the migration of individuals from site 2 to site 1 (Fig. 10.5). In the
above matrix, we assume a pre-breeding census.

Such models can be extended to multiple locations by expanding out the matrix
notation (Caswell 2001) into four sub-matrices. In the above example, we can
rewrite our matrix model to include two sites, 1 and 2, with no movement between
them as:

A ¼
β1S

j
1 β1S

a
1

S j
1 Sa

1

0 0
0 0

0 0
0 0

β2S
j
2 β2S

a
2

S j
2 Sa

2

0
BBB@

1
CCCA: ð10:23Þ

We can account for movement between sites as:

Site 1

Site 2

Juveniles AdultsFig. 10.5 Spatial
demography as a life-cycle
graph for a simple, stage-
structured population with
two age classes, juveniles, j,
and adults, a, at two sites.
Solid lines show local
recruitment and survival,
while dashed lines show
effect of migration/
movement between sites
1 and 2. Note that for adults,
survival and fidelity can
occur (a self loop)
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A ¼
β1S

j
11 β1S

a
11

S j
11 Sa

11

β2S
j
21 β2S

a
21

S j
21 Sa

21

β1S
j
12 β1S

a
12

S j
12 Sa

12

β2S
j
22 β2S

a
22

S j
22 Sa

22

0
BBB@

1
CCCA: ð10:24Þ

In this latter parameterization, we keep track of whether individuals survive
and stay in their location (Sii) versus survive and move (Sij). Other parameterizations
of spatially structured matrix models have also been developed, including those that
decompose matrices into local dynamics and movement, models that formulate
different types of movement such as diffusion and patch-specific movement rates,
and models that incorporate dispersal kernels directly (Lebreton 1996; Lebreton
et al. 2000; Neubert and Caswell 2000; Caswell et al. 2003; Ozgul et al. 2009).

Spatial population matrix models are powerful approaches to interpret spatially
structured population dynamics and the factors that govern them. For example,
Cattau et al. (2016) used these approaches to interpret how an invasion of
non-native prey was impacting the population growth rate of the endangered snail
kite (Rostrhamus sociabilis) in the United States, finding that the invasive prey
increased survival and altered movement, leading to increases in population growth.
These types of models have been fruitfully applied to interpret the spread of invasive
species as well (Jongejans et al. 2011). Despite this utility, these approaches are less
frequently used than other spatial models due to the large amount of information
needed to parameterize them.

10.3 Examples in R

10.3.1 Packages in R

In R, there are a few libraries that can be used for spatial population dynamics.
Non-spatial demographic models can be constructed with the popbio and
popdemo packages (Stubben and Milligan 2007; Stott et al. 2018). MetaLandSim
has some functionality for fitting some types of stochastic patch occupancy models
and exploring their predictions (Mestre et al. 2016). secr provides functions for
spatial capture–recapture models (Efford 2018). unmarked provides functions for
estimating extinction–colonization dynamics (Fiske and Chandler 2011). Population
synchrony can be estimated with the ncf or synchrony packages (Bjørnstad and
Falck 2001; Gouhier and Guichard 2014).
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10.3.2 The Data

To illustrate spatial population dynamics, we consider a spatial time-series of patch
dynamics for the wind-dispersed orchid, Lepanthes rupestris, over a 5-year period
(Acevedo et al. 2015). The dynamics of this species can be understood in a
metapopulation context, because L. rupestris lives in spatially discrete, ephemeral
habitats, where colonization–extinction dynamics have been observed (Tremblay
et al. 2006; Kindlmann et al. 2014). Moreover, many epiphytic and epilithic orchids
are subject to colonization and extinction dynamics due to their small population
sizes and stochastic reproductive success driven, in part, by dispersal and pollinator
limitation (Ackerman et al. 1996; Tremblay 1997; Tremblay and Ackerman 2001).

Lepanthes rupestris is a small, wind-dispersed orchid (leaves 1.3–4.3 cm, shoots
15 cm in height and flowers of <6 mm) commonly found along the riverbeds of the
Luquillo Mountains in Puerto Rico. L. rupestris anchors its roots in patches of moss
growing on trees (epiphytic) or boulders (epilithic) along streams. Rocks tend to have
larger population sizes and higher occupancy rates than trees (Tremblay et al. 2006).
The mean dispersal distance of seeds is approximately 4.8 m (Tremblay 1997).

A permanent plot for the study of the metapopulation dynamics of L. rupestriswas
established in Quebrada Sonadora in the Luquillo Experimental Forest (18� 180 N,
65� 470 W) in 1999 (Tremblay et al. 2006). This permanent plot is composed of 1000
occupied and unoccupied boulders and tree trunks (patches hereafter; Tremblay et al.
2006). Initially, a total of 250 occupied patches (165 boulders and 85 trees) were
identified. A patch was considered occupied if at least one living individual was
present. Unoccupied patches were identified by randomly selecting three suitable
patches (of any phorophyte with moss cover) with no individuals of any stage inside a
5 m radius of an initially occupied patch (Tremblay et al. 2006). These patches are
spatially configured as a linear network following the river topography along a steep
elevation gradient (Fig. 10.6). Most patches (975) were mapped to within approxi-
mately 10 cm (x, y, z positions) relative to the center of each patch usingmetal rulers, a
sighting compass and a clinometer (Fig. 10.6). The presence–absence of L. rupestris
was surveyed twice a year (at the beginning of the year and in the summer); here, we
focus on data from 2000 to 2004 where all spatial information was available (i.e.,
coordinates, patch size). Patch size was estimated as the total moss area on the
phorophyte, measured using a 150 cm2 grid.

In this sampling design, the primary sampling periods are years (2000–2004,
n ¼ 5). The secondary sampling periods consisted of two censuses that were
performed within each year. One census was conducted at the beginning of the
year (between January and February) and the second in the summer (between July
and August). This sampling formulation allows the system to be open to coloniza-
tions and extinctions during the wet season. Tropical storms are common during the
wet season causing flash floods, which may be responsible for most local extinctions
and anomalous strong winds, which may increase the magnitude of dispersal events
potentially resulting in more local colonizations (Acevedo et al. 2015).
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We first import the data and explore the temporal variation in abundance and
occurrence. The orchid.csv file contains population counts at each of
841 patches over ten surveys.

> surveys <- read.csv("orchid.csv")
> names(surveys)

##
[1] "siteID" "x" "y" "z" "area" "phorophyte"
[7] "primary_period" "secondary_period" "survey_number" "date"
[11] "N"

This file contains patch coordinates and patch sizes (“area”), along with ten
surveys in a long format. There are five primary periods and two secondary survey
periods (ten total surveys per patch). We will assume that within primary periods the
population is closed, while between primary periods the population is open to
colonization–extinction dynamics. This type of sampling design is frequently
referred to as a “robust design” or “Polluck’s robust design” (Pollock 1982).

First, we create a new column to truncate abundance to 0–1 data:

> surveys$presence <- ifelse(surveys$N > 0, 1, 0)

Then, we use the reshape2 package (Wickham 2007) to reformat the data to a
wide format. A wide format is useful for both interpreting colonization–extinction
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Fig. 10.6 (a) The wind-dispersed orchid, Lepanthes rupestris, exhibits colonization–extinction
dynamics. (b) A map of the patches considered along a river, where 841 patches occurred, 266 were
observed to be occupied in at least 1 year (Cancel et al. 2014)
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dynamics and population synchrony. We do this separately for all sampling periods
and for only primary periods (years), where we summarize both abundance and
detection–non-detection data.

> library(reshape2)
#reshape for all/secondary periods
> surveys.occ <- dcast(surveys, siteID þ x þ y þ z þ phorophyte
þ area ~ survey_number, value.var = "presence")

> surveys.ab <- dcast(surveys, siteID þ x þ y þ z þ phorophyte þ
area ~ survey_number , value.var = "N")

#reshape for primary periods
> surveys.pri.occ <- dcast(surveys, siteID þ x þ y þ z þ
phorophyte þ area ~ primary_period, value.var = "presence",
max, fill = 0)

> surveys.pri.ab <- dcast(surveys, siteID þ x þ y þ z þ
phorophyte þ area ~ primary_period, value.var = "N", max, fill = 0)

Note that for the reshaping based on primary periods, we take the maximum value
when aggregating data. If we do not specify the fill option, there will be a warning
with aggregating by the maximum value (although the aggregation will still be
correct). Another option could be taking the mean; the sum would not make sense
because we would potentially be double counting individuals.

We can plot the network. We first determine which patches were occupied at least
once over the time period and then map the patches with occupancy highlighted
(Fig. 10.6):

#get occupancy of patches across entire period
> occ.total <- apply(surveys.occ[,7:16], 1, max)
> Nsites <- length(occ.total)
> Noccupied <- sum(occ.total)

#plot
> occ.color <- c("white", "red")
> plot(surveys.occ$x, surveys.occ$y,
pch = 21, bg = occ.color[as.factor(occ.total)],
cex = log(surveys.occ$area þ 1) / 4)

The above code creates a map of patches, with point size proportional to the log of
patch area and patches that were observed to be occupied at least once are in red
while other patches are in white. Note the summary shows that out of 841 patches,
266 were observed to be occupied at least once.
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10.3.3 Spatial Correlation and Synchrony

Understanding spatial correlation in population parameters is essential for spatially
structured populations, both in terms of understanding mechanistically why spatial
dynamics occur and for assessing population viability (Bjørnstad et al. 1999; Koenig
1999; Walter et al. 2017). For viability, it may be sufficient to quantify spatial
dependence between pairs of sites or specific locations of interest (Morris and
Doak 2002). For understanding and predicting spatial dynamics, we may want to
quantify spatial dependence as a function of distance or other aspects of geography.

We consider spatial synchrony in time series data. Spatial synchrony can be
considered by understanding the spatiotemporal correlation of population size,
occurrence, or demographic rates as a function of geographic or effective distance,
sometimes referred to as a spatial correlation function (Bjørnstad and Bascompte
2001). Typically, spatial synchrony analyses focus on either time series of popula-
tion size (e.g., log(Nt)) or population growth rates over space (e.g., log(Nt+1/Nt), or
log(Nt+1) � log(Nt)) (Bjørnstad et al. 1999). Population change as a response
variable can be useful because it reduces effects of population trends on estimating
spatial synchrony. Synchrony in other processes, such as spatial synchrony in
colonization and extinction rates, have also been considered (Sutherland et al. 2012).

Spatial synchrony is frequently quantified with correlograms (Bjørnstad et al.
1999), although we note that more recent applications focus on a wider variety of
flexible models (e.g., wavelets; Walter et al. 2017). The ncf package provides a
correlogram function Sncf specifically for interpreting spatial synchrony in time-
series data (Bjørnstad and Falck 2001). This approach uses a Mantel correlogram: a
multivariate correlogram that is a direct analog to univariate correlograms (see
Chap. 5) (Borcard and Legendre 2012). Recall that a correlogram can be described
using a Moran’s I correlation coefficient for each distance category d as:

I dð Þ ¼ n

W dð Þ

Pn
i¼1

Pn
j¼1 wij dð Þ�zi � �z

��
z j � �z

�
Pn

i¼1

�
zi � �z

�2 , ð10:25Þ

where W is a weight matrix that describes the dependency between locations i and
j (e.g., whether two locations are within a specified distance category), and z is the
response variable. This idea can be extended to multivariate data (e.g., time-series)
using the Mantel correlation. Mantel correlations focus on quantifying the correla-
tion between two distance matrices (Dale and Fortin 2014). A Mantel correlation for
a distance category d is defined as:

rMðdÞ ¼ 1
nðn�1Þ

2
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where sx is the standard deviation from matrix x, and n is the number of observations
in the matrix. Note that Mantel correlation values should not be interpreted as
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equivalent to Pearson correlation values; rather focus should be on the shape of the
correlogram values as a function of distance (Borcard and Legendre 2012). The
interpretation of these correlograms is the following. When rM is significantly
positive, the similarity of values in the time series across sites of distance d is higher
than what would be expected by chance, while when rM is significantly negative,
similarity is lower than what would be expected by chance.

In this situation, we pass the x–y coordinates of patches along with a site-by-time
matrix of abundance/occurrence observations for each site. Here, we focus on the
raw abundance data summarized at the primary period time scale. We first subset the
number of patches to remove patches that had no observations over the entire time
period and then log-transform the data. We log transform to stabilize variance and to
interpret population change (λ ¼ log(Nt+1/Nt) ¼ log(Nt+1) � log(Nt)).

> surveys.log.ab <- surveys.pri.ab
> surveys.log.ab$Total <- rowSums(surveys.log.ab[,7:11])
> surveys.log.ab <- subset(surveys.log.ab, Total > 0)
> surveys.log.ab[,7:11] <- log(surveys.log.ab[,7:11] þ 1)

#population change
> surveys.log.ab$g2001 <- surveys.log.ab$y2001 �surveys.log.ab$y2000
> surveys.log.ab$g2002 <- surveys.log.ab$y2002 �surveys.log.ab$y2001
> surveys.log.ab$g2003 <- surveys.log.ab$y2003 �surveys.log.ab$y2002
> surveys.log.ab$g2004 <- surveys.log.ab$y2004 �surveys.log.ab$y2003

With this information, we quantify the spatial correlation. We consider the spatial
dependence for the first year of the time series using a univariate spline correlogram
(see Chap. 5) and then consider the entire time series of log abundance and
population growth.

> library(ncf)
> abund.synchrony1 <- spline.correlog(x = surveys.log.ab$x,
y = surveys.log.ab$y,
z = surveys.log.ab[,7],
xmax =200, resamp = 200)

#time series: log abundance
> abund.synchrony <- Sncf(x = surveys.log.ab$x,
y = surveys.log.ab$y,
z = surveys.log.ab[,7:11],
xmax = 200, resamp = 200)

#time series: growth
> growth.synchrony <- Sncf(x = surveys.log.ab$x,
y = surveys.log.ab$y,
z = surveys.log.ab[,13:16],
xmax = 200, resamp = 200)
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> summary(abund.synchrony)$Regional.synch

##
[1] 0.05048885

> summary(abund.synchrony)$Squantile

##
0% 2.5% 25% 50% 75% 97.5% 100%
0.01418591 0.01829298 0.03760531 0.04755823 0.06126896 0.08696007 0.10989193

With the default plotting for the time-series data, the horizontal lines show
regional mean correlations (dotted lines) and zero synchronies (dashed lines). This
analysis suggests that there is significant, but weak, spatial synchrony in abundance
(r ¼ 0.05, 95% CI: 0.02–0.09) and population growth (r ¼ 0.04, 95% CI:
0.01–0.07). The correlograms also show only very weak evidence of spatial syn-
chrony (Fig. 10.7). We can also check for potential anisotropy (directionality) in
synchrony with the Sncf2D function.

Is this surprising? Spatial synchrony is often observed in plants and animals;
however, the scale at which it operates is often assumed to be relatively large (e.g.,
across a species’ range). Nonetheless, this example provides some insight as to how
and why we model spatial synchrony. Beyond general estimates of spatial syn-
chrony, there is increasing focus on understanding spatially explicit variation in
synchrony, which may be vary due to spatial heterogeneity across landscapes and
regions that alter dispersal and environmental variation of relevance to synchrony
(Defriez and Reuman 2017a, b; Walter et al. 2017).
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Fig. 10.7 Spatial dependence and synchrony in Lepanthes rupestris. (a) A Moran’s correlogram
for abundance in the first year of sampling. (b) A Mantel correlogram testing for spatial synchrony
over time based on the log(abundance) observed on patches. (c) A Mantel correlogram testing for
spatial synchrony over time based on the change in log(abundance), λ, observed on patches
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10.3.4 Metapopulation Metrics

To interpret spatiotemporal variation in populations, we consider some classic
metrics from the metapopulation area-isolation paradigm and related metrics for
patch-level characteristics (Moilanen and Nieminen 2002). These metrics focus on
patch area and different ways in which patch isolation can be quantified. From our
surveys.occ data frame, we use x-y coordinates and patch area to create these
metrics:

#patch area
> area <- surveys.occ$area

#distance matrix
> dist.matrix <- as.matrix(dist(cbind(surveys.occ$x, surveys.occ$y,
surveys.occ$z)))

Note that the dist function can readily take coordinate data in three dimensions
to calculate distances. We could consider effective distance metrics that incorporate
the matrix like those described in Chap. 9, or other issues, such as wind direction
(Acevedo et al. 2015), but for here we simply consider Euclidean distance. We can
calculate S for each patch as a metric of patch connectivity (Eq. 10.12). In the below
code, we set α to equal the mean dispersal distance from previous work on
L. rupestris.

#define alpha
> meandist <- 4.8
> alpha <- 1/meandist

#S, ignoring occupancy
> g <- exp(�alpha * dist.matrix)
> diag(g) <- 0
> g.sweep <- sweep(g, 2, area, "*")
> S <- rowSums(g.sweep)

The above code breaks S into its components, where we first create a new matrix
from the distance matrix, where linkages are exp(�αdij), and for the diagonal, dii¼ 0.
We then multiple each value by the area j using the sweep function (similar to
apply function) and sum across j for each patch i using rowSums function.

The above function ignores occupancy. That might be helpful in situations
where information on occupancy for every patch is not available. However, this
metric was originally envisioned as capturing potential immigrants from nearby
patches, such that unoccupied patches should be ignored. To incorporate occupancy,
we can calculate a time-specific variant of S using a “naïve” measure of occupancy
(one that does not formally account for observation error). To do so, we take the
abund.primary matrix and only consider patches where abundance >0 for each
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primary period. We can then update our calculation by only considering occupied
patches in the summation of S. An example for the first year is:

> Socc1 <- rowSums(g.sweep[,surveys.pri.occ$y2000 > 0])

In this case, patch connectivity metrics using naïve occupancy are highly corre-
lated over this time period (r � 0.93).

A simpler metric that is often used in landscape ecology is the amount of habitat
in the surrounding landscape. This metric lies at the heart of the habitat amount
hypothesis of Fahrig (2013). In this case, we can use the mean dispersal distance to
define a relevant scale for landscape context (Moilanen and Nieminen 2002) and
calculate a buffer metric that describes the proportion of habitat in the surrounding
landscape. To do so, we first create a binary matrix that describes whether distances
between patches are less than or greater than the mean dispersal distance. Note, that
we code this as 0 for distances> the mean dispersal distance, and 1 for those<mean
distance. In that way, we can use this matrix as an indicator matrix of pairs of patches
that are within the dispersal distance of L. rupestris.

> dist.binary <- ifelse(dist.matrix > meandist, 0, 1)
> diag(dist.binary) <- 0
> buffer <- rowSums(sweep(dist.binary, 2, area, "*"))

The rationale for the above code is similar for how S was calculated; here we are
simply using rowSums to add up the patch areas within the mean dispersal distance
of each patch i. With these metrics we can proceed to understand spatial dynamics
based on the area-isolation paradigm. We combine these covariates into a data frame
for further processing below:

> site.cov <- data.frame(siteID = surveys.occ$siteID, area, S, buffer)

For analyses below, we also center and scale S and buffer variables (with the
scale function; see Chap. 6), while we take the log of area. Taking the log of area
not only improves our ability to fit models to the data (as does centering and scaling),
but importantly, it makes biological sense. We expect that the effect of a 1 unit
increase in a 10 cm2 moss patch is going to have a much bigger effect on occupancy
and colonization–extinction dynamics than a 1 unit increase on a 1000 cm2 patch.

10.3.5 Estimating Colonization–Extinction Dynamics

We can fit first-order Markov models for colonization–extinction dynamics with the
colext function in the unmarked package in R when we have a robust-design
framework (Pollock 1982). A robust design framework is often used in mark–
recapture analyses, where we distinguish primary and secondary sampling periods.
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We assume that the population is open between primary periods, such that coloni-
zation and extinction can occur, but that it is closed within primary periods (across
secondary samples). The latter is generally necessary for formally accounting for
detectability in colonization–extinction dynamics (but see Dail and Madsen 2013).
An example would be surveys that occur each year (primary periods) for monitoring
trends in populations, but repeated surveys are conducted within years (secondary
samples).

Before considering colonization–extinction dynamics, we can use these data to
focus solely on occupancy with an “implicit-dynamics” approach (MacKenzie et al.
2006). In this approach, we ignore colonization–extinction dynamics and rather
focus on estimating effects of covariates on average patch occupancy over time.
Note that this is akin to modeling repeated measures of occupancy. Ideally, we
would formally account for repeated measures through the use of random effects or
other approaches (e.g., generalized estimating equations; see Chap. 6); however,
unmarked cannot easily accommodate random effects. Accounting for such tem-
poral dependence is often accommodated using Bayesian inference (e.g., Rota et al.
2011), which is beyond the scope of our example. So here we will assume that site
occupancy data each year is an independent sample and proceed with caution. Note,
we could also potentially include primary periods as fixed effects, rather than
random effects to at least partially address this issue, which we do below.

To model occupancy with an implicit-dynamics approach, we need to format data
in a long format, where primary visits are repeated over time:

> surveys.sec.occ <- dcast(surveys, siteID þ x þ y þ z þ
phorophyte þ primary_period ~ secondary_period, value.var =
"presence")

#merge with site covariates
> surveys.sec.occ <- merge(site.cov, surveys.sec.occ, by =
"siteID")

In this model formulation, we can have site-level covariates (e.g., patch area), as
well as observation-level covariates (e.g., date of survey). Note that the latter
covariates can only be incorporated into the detection process rather than the
occupancy process (because occupancy is not assumed to change within primary
periods). We need to create covariates with a similar long format as the
detection data.

For survey-specific detection, we focus on day of the year. To manipulate date
information it is useful to convert date objects into POSIX objects. Below, we
convert our date information, get the day of the year (yday for a POSIX object),
center and scale the variable, and reformat the data into a detection history format.

> surveys$day <- as.POSIXlt(strptime(surveys$date, "%m/%d/%Y"))
> surveys$julian <- scale(surveys$day$yday)[,1]
> date <- dcast(surveys, siteID þ primary_period ~
secondary_period, value.var = "julian")
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With these data, we create a data frame for occupancy data that unmarked can
interpret:

> occ.data <- unmarkedFrameOccu(y = surveys.sec.occ[,10:11],
siteCovs = surveys.sec.occ[,c(2:4,8)],
obsCovs = list(date=date[,3:4]))

We can use the summary function to inspect the data object created to make sure
that unmarked is interpreting the data appropriately. With this data frame, we can
run a variety of models to interpret average occupancy. Here, we first consider
whether date and area explain detectability.

> occ.p.int <- occu(~ 1 ~ 1, occ.data)
> occ.p.date <- occu(~ date ~ 1, occ.data)
> occ.p.area <- occu(~ area ~ 1, occ.data)
> occ.p.datearea <- occu(~ date þ area ~ 1, occ.data)

In this formulation, the first formula (tilde) describes the detection process, while
the second tilde describes the occupancy process. We can contrast models with
model selection criteria and retrieve parameter estimates with the summary function.
To create a model selection table, we first pass the model objects into a list and then
use the modSel function in unmarked.

> model.p.list <- fitList( "p.null" = occ.p.int,
"p.area" = occ.p.area,
"p.date" = occ.p.date,
"p.datearea" = occ.p.datearea)

> modSel(model.p.list)

##
nPars AIC delta AICwt cumltvWt
p.datearea 4 6435.15 0.00 1.0eþ00 1.00
p.area 3 6449.43 14.29 7.9e�04 1.00
p.date 3 6523.12 87.97 7.9e�20 1.00
p.null 2 6542.74 107.59 4.3e�24 1.00

Based on AIC, there is overwhelming support for both date and area explaining
detectability.

> summary(occ.p.datearea)

##
Call:
occu(formula = ~date þ area ~ 1, data = occ.data)

Occupancy (logit-scale):
Estimate SE z P(>|z|)
�0.797 0.0414 �19.3 1.19e�82
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Detection (logit-scale):
Estimate SE z P(>|z|)
(Intercept) �1.100 0.1753 �6.27 3.58e�10
date 0.229 0.0577 3.97 7.09e�05
area 0.704 0.0458 15.37 2.74e�53

AIC: 6435.148
Number of sites: 4205
optim convergence code: 0
optim iterations: 30
Bootstrap iterations: 0

These estimates suggest that as date and area increase, detectability increases.
Now, with this information about detectability, we consider if area and isolation
explain occupancy.

> occ.area.p.datearea <- occu(~ date þ area ~ area, occ.data)
> occ.S.p.datearea <- occu(~ date þ area ~ S, occ.data)
> occ.buffer.p.datearea <- occu(~ date þ area ~ buffer,
occ.data)

> occ.areaS.p.datearea <- occu(~ date þ area ~ area þ S,
occ.data)

> occ.areabuffer.p.datearea <- occu(~ date þ area ~ area þ
buffer, occ.data)

> model.occ.list <- fitList( "null" = occ.p.datearea,
"area" = occ.area.p.datearea,
"S" = occ.S.p.datearea,
"buffer" = occ.buffer.p.datearea,
"areaþS" = occ.areaS.p.datearea,
"areaþbuffer" = occ.areabuffer.p.datearea)

> modSel(model.occ.list)

##
nPars AIC delta AICwt cumltvWt
areaþS 6 6064.64 0.00 1.0eþ00 1.00
areaþbuffer 6 6082.49 17.86 1.3e�04 1.00
area 5 6088.34 23.70 7.1e�06 1.00
S 5 6425.41 360.77 4.6e�79 1.00
buffer 5 6429.92 365.28 4.8e�80 1.00
null 4 6435.15 370.51 3.5e�81 1.00
phoro 5 6436.89 372.25 1.5e�81 1.00

In the above, we first add the log area to explain occupancy, followed by S and the
metric of habitat area (buffer). The most supported model includes both patch area
and the S metric that reflects patch isolation effects (as S increases, patch connec-
tivity increases). We inspect the most supported model:
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> summary(occ.areaS.p.datearea)

##
Call:
occu(formula = ~date þ area ~ area þ S, data = occ.data)

Occupancy (logit-scale):
Estimate SE z P(>|z|)
(Intercept) �2.899 0.1187 �24.42 9.99e�132
area 0.562 0.0307 18.31 6.58e�75
S 0.185 0.0365 5.09 3.68e�07

Detection (logit-scale):
Estimate SE z P(>|z|)
(Intercept) 1.303 0.2184 5.97 2.39e�09
date 0.300 0.0660 4.55 5.46e�06
area 0.137 0.0544 2.52 1.19e�02

AIC: 6064.639
Number of sites: 4205
optim convergence code: 0
optim iterations: 48
Bootstrap iterations: 0

There are several interesting results here. First, as both patch area and connec-
tivity increase, occupancy increases (Fig. 10.8). Based on the ratio of the estimates to
the SEs (z-value), the effect of patch area appears to be stronger than for patch
isolation. Also, note that now the effect of patch area on detectability is much smaller
than previously when we were exploring detectability alone. Patch area still explains
some variation in detectability, but it seems like much of the variation we initially
observed was actually due to occupancy. This is not too surprising: while covariate
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Fig. 10.8 Predictions from an “implicit-dynamics” occupancy model, where colonization and
extinction are not formally estimated. Shown are partial relationships for the effect of (a) patch
area and (b) patch connectivity for the probability of occurrence of Lepanthes rupestris
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effects on detectability and occupancy are not typically confounded, the model does
use some shared information during the estimation process. As a consequence, we
need to be careful with interpreting covariate effects that may be relevant to both
detectability and occupancy.

While the above modeling is useful for understanding variation in site occupancy,
it is unclear whether this is driven by lower extinction rates with increasing patch
area, or greater colonization rates (or both). To understand these dynamics, we can
explicitly model these effects with dynamic occupancy models.

In a dynamic occupancy model, we can consider covariates that may explain
variation in occupancy at time 1, subsequent colonization and extinction, and
detectability. Covariates can be defined at the site/patch level with no temporal
variation (siteCovs in unmarked) or with temporal variation at the
annual (or primary) level (yearlySiteCovs), or for individual surveys within
patches (temporal variation at survey level; obsCovs). In this situation, site
covariates include patch area, buffer area, and S when incidence is ignored.
YearlySiteCovs include time-dependent S that incorporates incidence. For
observation-level covariates, we simply use a time category (each survey).

We first create a data frame that includes all relevant data using the
unmarkedMultFrame function:

#format
> Nprimary <- length(levels(surveys$primary_period))
> date.wide <- dcast(surveys, siteID ~ survey_number, value.var
= "julian")

> primary.cov <- data.frame(Socc = scale(c(Socc1, Socc2, Socc3,
Socc4, Socc5))[,1])

#create unmarked object
> DO.data <- unmarkedMultFrame(y = occ.matrix,
siteCovs = site.cov,
obsCovs = list(date =
date.wide[,2:11]),
yearlySiteCovs = primary.cov,
numPrimary = Nprimary)

With the summary function, we note that in these data, there are 1969 detections
and 6641 non-detections across 841 patches, 266 of which had at least one detection
over time. To illustrate some simple comparisons, we consider a few different
models. First, we contrast a simple model with no covariates for each parameter
and contrast it to a model that includes date and area as covariates on detection
probability:

> DO.psi.int.col.int.eps.int.p.int <- colext(psiformula = ~1,
gammaformula = ~ 1, epsilonformula = ~ 1, pformula = ~ 1, DO.data)

> DO.psi.int.col.int.eps.int <- colext(psiformula = ~1,
gammaformula = ~ 1, epsilonformula = ~ 1, pformula = ~ date þ
area, DO.data)

400 10 Population Dynamics in Space



Comparing these models again suggests that date and area are useful covariates
for estimating variation in detection probability. Note that in the summary, all
parameters are on the link (i.e., logit) scale. We can back-transform them to the
probability scale using the plogis function; alternatively, unmarked has a nice
function for doing so:

> backTransform(DO.psi.int.col.int.eps.int.p.int, type = "det")

##
Backtransformed linear combination(s) of Detection estimate(s)

Estimate SE LinComb (Intercept)
0.843 0.00814 1.68 1

Transformation: logistic

Overall, estimates suggest high (though not perfect: p ¼ 0.843 þ 0.008 SE)
survey-specific detectability of this species. Because we had two surveys in this
study, the probability of detection across the secondary sampling period is
1 � (1 � 0.843)2 ¼ 0.98. Colonization and extinction rates can also be back-
transformed with this function (using type ¼ "col" and type ¼ "ext",
respectively). In addition, rates of colonization and extinction are low on average,
with patch extinction occurring slightly more frequently than colonization.

Using this general approach, we explore several models for effects of area and
isolation on colonization–extinction dynamics (code not shown). The summary of
these models is:

> modSel(model.DO.list)

##
nPars AIC delta AICwt cumltvWt
psi-areaþS,ext-area 9 3504.27 0.00 5.1e�01 0.51
psi-areaþS,ext-areaþS 10 3505.57 1.30 2.6e�01 0.77
psi-areaþS,ext-area, col-S 10 3505.88 1.61 2.3e�01 1.00
psi-areaþS,null 8 3520.49 16.23 1.5e�04 1.00
psi-areaþS, col-S 9 3522.08 17.81 6.9e�05 1.00
psi-constant,ext-area 7 3590.02 85.76 1.2e�19 1.00
psi-constant,ext-areaþS 8 3591.29 87.02 6.4e�20 1.00
psi-constant,ext-area, col-S 8 3591.39 87.12 6.1e�20 1.00
psi-constant,null 6 3606.40 102.13 3.4e�23 1.00
psi-constant, col-S 7 3607.71 103.45 1.8e�23 1.00
psi-constant,p-null 4 3631.58 127.32 1.1e�28 1.00

> summary(DO.psi.areaS.col.int.eps.area)

##
Call:
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colext(psiformula = ~areaþ S, gammaformula = ~1, epsilonformula = ~area,
pformula = ~date þ area, data = DO.data)

Initial (logit-scale):
Estimate SE z P(>|z|)
(Intercept) �2.881 0.2610 �11.04 2.59e�28
area 0.560 0.0676 8.28 1.24e�16
S 0.189 0.0809 2.33 1.98e�02

Colonization (logit-scale):
Estimate SE z P(>|z|)
-4.14 0.176 -23.5 3.65e-122

Extinction (logit-scale):
Estimate SE z P(>|z|)
(Intercept) �1.21 0.439 �2.75 6.01e�03
area �0.62 0.136 �4.56 5.19e�06

Detection (logit-scale):
Estimate SE z P(>|z|)
(Intercept) 1.278 0.2004 6.38 1.81e�10
date 0.257 0.0606 4.24 2.21e�05
area 0.111 0.0492 2.25 2.44e�02

AIC: 3504.267
Number of sites: 841
optim convergence code: 0
optim iterations: 97
Bootstrap iterations: 0

Based on model comparisons, there is some evidence that patch area and con-
nectivity, S, have strong positive effects on occupancy at time 1, similar to the
implicit dynamics model. Assuming constant initial occupancy, such that the patch
area and connectivity effects are captured entirely in the colonization and extinction
parameters, is not well supported. Patch area also has a strong negative effect on
patch extinction (Fig. 10.9). Patch connectivity, S, is not a strong predictor of
colonization. We can plot partial predictions from these models in ways similar to
previous chapters (e.g., see Chap. 7) by creating a new data sets for predictions and
using the predict function. Below we show an example for the patch area effect
on extinction (Fig. 10.9):

#create new data set
> Smean <- mean(site.cov$S)
> Srange <- seq(min(site.cov$S), max(site.cov$S), length = 20)
> Arearange <- seq(min(site.cov$area), max(site.cov$area),length = 20)

> Areamean <- mean(site.cov$area)
> Datemean <- mean(as.matrix(date.wide[,2:11]))
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> newdata.iso <- expand.grid(area = Areamean, S = Srange, date =
Datemean)

> newdata.area <- expand.grid(area = Arearange, S = Smean, date =
Datemean)

#extinction
> ext.pred <- predict(DO.psi_areaS.col_int.eps_area,
newdata.area, type = 'ext')

> newdata.ext <- cbind(newdata.area,ext.pred)
> newdata.ext$areaback <- exp(newdata.ext$area) - 1

> plot(newdata.ext$areaback, newdata.ext$Predicted, ylim = c(0, 0.5))
> lines(newdata.ext$areaback, newdata.ext$lower)
> lines(newdata.ext$areaback, newdata.ext$upper)

When contrasting these results to that of the implicit dynamics approach, it is
clear that the area effect on average occupancy was driven partially by extinction
dynamics. Given that area explains occupancy in time 1 as well, dynamics prior to
surveys (before year 2000) likely contribute to occupancy, presumably from changes
in extinction rates.

10.3.6 Projecting Dynamics

Estimates of colonization–extinction dynamics can be used to project potential
dynamics (see Sect. 10.2.3). Accounting for uncertainty is more complex, although
Bayesian models have been developed that can track appropriate uncertainty (Chan-
dler et al. 2015). Here, we provide a simple example to illustrate projections.

With patch-specific colonization and extinction probabilities, we project forward
starting with an initial estimate of patch occupancy. Recall that occupancy in
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Fig. 10.9 Predictions from a dynamic occupancy model, where colonization and extinction are
formally estimated. Shown are partial relationships for the effect of (a) patch area and (b) patch
connectivity for the probability of occurrence of Lepanthes rupestris during the first time period,
and (c) the effect of patch area on extinction probability
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time t can be predicted from colonization and extinction probabilities coupled with
occupancy in time t � 1. Here, we pass vectors of initial occupancy, the time period
of interest for projections, and patch-specific estimates of colonization and extinction
probabilities taken from the dynamic occupancy model.

#predict onto site covariates to get site-specific col-ext
> newdata.fit <- data.frame(site.cov, date = Datemean)
> ext.fit <- predict(DO.psi.areaS.col.int.eps.area, newdata.fit,
type = 'ext')

> col.fit <- predict(DO.psi.areaS.col.int.eps.area, newdata.fit,
type = 'col')

> psi.fit <- predict(DO.psi.areaS.col.int.eps.area, newdata.fit,
type = 'psi')

> col.pred <- col.fit$Predicted
> ext.pred <- ext.fit$Predicted
> psi.pred <- psi.fit$Predicted

#simulation parameters
> timeframe <- 100 #time steps to simulate
> reps <- 20 #realizations

With these parameters, we use a function that draws binomial realizations from
the colonization and extinction probabilities to create an output array of simulated
scenarios. This function creates a three-dimensional array for output, where the first
dimension is the realization, the second is the sites, and the third is time:

#function for simulating
> colext.sim <- function(occ.int, col, ext, timeframe, reps)
{
Nsite <- length(occ.int)
colext.out <- array(NA,dim = c(reps, Nsite, timeframe))

#z:time 1
colext.out[,,1] <- rbinom(Nsite, prob = occ.int, size = 1)

#z:time 2-T
for(j in 1:reps){
for(t in 2:timeframe){
prob.jt <- colext.out[j,,t � 1] * (1 � ext) þ (1 �
colext.out[j,,t � 1]) * col
colext.out[j,,t] <- rbinom(Nsite, prob = prob.jt, size = 1)
}#end i
}#end j

return(colext.out)
}
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With this function we can simulate dynamics over time. These dynamics can be
summarized in a variety of ways, such as visualizing patch-specific trajectories or the
fraction of sites occupied over time.

> colext.proj <- colext.sim(occ.int = psi.pred, col = col.pred,
ext = ext.pred, timeframe = timeframe, reps = reps)

#site-specific means across realizations
> colext.patch.mean <- apply(colext.proj, 1:2, mean)
> colext.patch.mean <- t(colext.patch.mean)

#landscape mean over time
> colext.land.mean <- apply(colext.proj, 1, mean)

Interestingly, even though patch extinction rates tend to be higher than coloniza-
tion rates based on our modeling, these projections suggest a slight increase in the
frequent of patches occupied over time (Fig. 10.10). How is this so?

Recall that in the Levins’ model, persistence was only possible if c > e. In this
example, γ < ε. However, these estimated extinction and colonization rates differ for
at least two reasons. First, estimates vary by patch, whereas Levins’ model assumes
that rates do not differ across patches. Second, and more importantly, the parameters
in the Levins’ model are not equivalent to the colonization–extinction parameters
here. In Levins’model, c is the rate of individuals emigrating from occupied patches,
whereas for the dynamic occupancy model γ is the probability that an empty patch
becomes colonized over one primary period. Overall, the long-term average occu-
pancy in this context should converge on the predicted equilibrium occupancy value
for a patch (MacKenzie et al. 2003; Ferraz et al. 2007):
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ψ∗
i ¼ γi

γi þ εi
: ð10:27Þ

When using the estimates of colonization and extinction, we find that ψ∗ ¼ 0.31,
which is relatively consistent with the long-term projections from these simulations.

10.3.7 Metapopulation Viability and Environmental Change

A frequently used metric to interpret the potential viability of metapopulations is the
metapopulation capacity (Hanski and Ovaskainen 2000). This metric can be used as
a relative metric to contrast different landscapes and/or when landscapes experience
environmental change. The metapopulation capacity only relies on information
regarding patch area and isolation. It can be calculated as:

> meta.cap <- function(A, distmat)
{
M <- outer(A, A) * distmat
tmp <- eigen(M)
vector.M <- Re(tmp$vector[, 1]^2) #patch-specific eigenvectors
lambda.M <- Re(tmp$value[1]) #metapopulation capacity
return(list(lambda.M, vector.M))
}

In this function, we pass a vector of patch areas along with a square distance
matrix for the patches. The function then calculates a connectivity matrix M and
takes the leading eigenvalue of the matrix as the metapopulation capacity. It also
takes the leading eigenvectors of the matrix as a measure of the contribution of
patches to the overall metapopulation capacity.

With this metric, we can start to interpret the potential effects of habitat loss,
fragmentation, and restoration on metapopulation capacity (e.g., Fig. 10.4). For
instance, we can randomly remove patches in the orchid network, calculating
metapopulation capacity with each patch removal. To do so, we remove 10% of
the patches at each iteration.

> reps <- 20
> Npatches <- length(surveys.occ$siteID)
> metacap.rand <- matrix(0,10,reps)

> for (z in 1:reps){

rand <- sample(surveys.occ$siteID) #shuffles patches
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#randomly remove patches, 10%/time step
for (i in 1:9){
removal <- i * 10
N.removal <- round(removal * length(rand) / 100, 0)
remove <- rand[1:N.removal]
patch.i <- surveys.occ[!(surveys.occ$siteID%in%remove),]
area.i <- patch.i$area
dist.i <- as.matrix(dist(cbind(patch.i$x, patch.i$y, patch.i$z)))
metacap.i <- meta.cap(A = area.i, distmat = dist.i)
metacap.rand[i,z] <- metacap.i[[1]]
} #for i
print(z)
} #for z

In this case, we are simulating the random, cumulative removal of patches,
calculating metapopulation capacity after each % patch removal. To do so, we
randomly shuffle the patch IDs, and then remove these patches cumulatively from
our vector of patch area and recalculate a distance matrix for each patch removal. On
average, the decline in metapopulation capacity in this situation is nearly linear (i.e.,
there does not appear to be any distinct thresholds or tipping points where
metapopulation capacity rapidly declines) (Fig. 10.11). This general framework can
be used to address a wide variety of perturbations, such as altering patch area,
isolation, and restoration (Hanski and Ovaskainen 2000).
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10.4 Next Steps and Advanced Issues

10.4.1 Spatial Population Matrix Models

Spatial matrix models are often used for answering questions in landscape demog-
raphy. However, these models can be challenging to fit because they require
detailed, spatially explicit information on demographic rates (Ozgul et al. 2009;
Cattau et al. 2016). When mark–recapture data are available, one approach to
quantify movement and survival components for spatial matrix models is the use
of multistate mark–recapture models (Hestbeck et al. 2010; Bailey et al. 2010). In
addition, reverse-time mark–recapture models can be used to partition survival,
recruitment, and movement across sites (Nichols et al. 2000; Sanderlin et al.
2012). Such modeling frameworks can be useful for interpreting a variety of issues,
such as source–sink dynamics (Runge et al. 2006).

10.4.2 Diffusion and Spatial Dynamics

There is a long history in population ecology to formulating spatial dynamics using
diffusion-based models (Skellam 1951). Diffusion models have been widely applied
to the problem of invasive spread (Neubert et al. 2000; Fagan et al. 2002). More
recently, diffusion models have been extended to capture spatial heterogeneity, such
as edge or boundary effects, and predict connectivity in population dynamics
(Ovaskainen 2004, 2008; Ovaskainen et al. 2008; Reeve et al. 2008). The utility
of these models is that random dispersal can be integrated into models in an elegant
way that may provide generalizable conclusions regarding spatial dynamics. These
models require a strong foundation in calculus and require customizing models for
specific problems.

10.4.3 Agent-Based Models

In spatial ecology and conservation, agent-based, or individual-based, spatially
explicit models are increasingly used. These models require detailed information
on the environment and how species use the environment. These types of models are
useful for scenario modeling and interpreting specific effects on management and
related land-use changes (Pulliam et al. 1992). Standard protocols exist for the
development and reporting of these complex models (Grimm et al. 2005). These
models are infrequently implemented in R directly because of computational limi-
tations of R for handling these types of models. One notable exception is the
simecol package, which can fit certain types of individual-based models (Petzoldt
and Rinke 2007). Alternatively, models can interface R with other software, the
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RNetlogo package (Thiele et al. 2012), which interfaces with a popular agent-
based modeling software, NetLogo (Sklar 2007). Other solutions include writing
models in lower-level programming languages (e.g., Cþþ).

10.4.4 Integrated Population Models

Another approach to integrating demographic rates and spatial aspects of movement
is the use of integrated population models. In integrated models, different types of
data are coupled to estimate population parameters, such as mark–recapture data,
count data, and data on reproduction (Schaub et al. 2007; Abadi et al. 2010; Zipkin
and Saunders 2018). This type of approach can be particularly useful in increasing
precision and reducing bias in population modeling. The complexity and detail of
these types of models often requires customized Bayesian approaches, which can be
run through R with various wrapper packages.

10.5 Conclusions

Spatial issues have been of long interest to population biologists. Spatial issues were
critical in theoretical developments of metapopulation ecology and population genet-
ics (Wright 1943, 1951; Hanski 1999), and much of the work on species distribution,
colonization, dispersal, and connectivity (e.g., Chaps. 7–9) falls within the realm of
spatially structured populations. Furthermore, understanding spatially structured
population dynamics is highly relevant for many conservation issues, including
source–sink dynamics, habitat management, and the application of population via-
bility analysis.

Two major paradigms for understanding spatially structured populations include
the metapopulation paradigm and the spatial demography (or landscape demogra-
phy) paradigm (Hanski 1999; Gurevitch et al. 2016). The questions and problems
that each of these paradigms address vary based on the spatial and temporal scales
being captured and the state variables of interest. Understanding and quantifying
colonization–extinction dynamics can help aid in understanding metapopulation
viability and dynamics at broad spatial (and temporal) scales. Spatial demography
is often used to understand dynamics across smaller spatial scales, where the focus is
on variation in demographic vital rates, such as survival and reproduction—param-
eters central for estimating spatial variation in population size and growth rate. Each
of these paradigms uses different quantitative modeling approaches. We expect that
these paradigms will grow together over time with increases in data availability and
the use of data fusion and integrative modeling approaches.
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Chapter 11
Spatially Structured Communities

11.1 Introduction

Biodiversity is the variety of life. It is fundamental to all aspects of ecology and
conservation biology. Biodiversity can be measured at different levels of organiza-
tion and at different scales (Noss 1990; Magurran 2003). For instance, the number
species in a local area, or species richness, is commonly measured in field investi-
gations (Myers et al. 2000; Gotelli and Colwell 2001), whereas genetic diversity is a
fundamental concept in evolutionary biology (Ellstrand and Elam 1993; Keller and
Waller 2002). Over the last two decades, there has also been a great deal of interest in
functional and phylogenetic diversity (Petchey and Gaston 2002; Cadotte et al.
2009; Cavender-Bares et al. 2009; Devictor et al. 2010; Mouchet et al. 2010).

To understand patterns of biodiversity over space and time and to effectively
implement biodiversity conservation, concepts from community ecology are essen-
tial. Community ecology focuses on the importance of interactions among species
and how communities assemble to drive variation in biodiversity (Mittelbach 2012).
The importance of space in the outcomes of species interactions and community
assembly has long been emphasized (Huffaker 1958; Diamond 1975). As a conse-
quence, modern theory and concepts for community ecology emphasize the role of
space (Vellend 2010; Leibold and Chase 2017), and many problems in conservation
emphasize spatial issues for protecting or maintaining biodiversity (Moilanen et al.
2009; Rands et al. 2010).

Here, we provide an overview of how space influences biological communities, why
space is important for biodiversity conservation, and we illustrate some common
approaches for modeling communities over space and time. Space is generally important
for understanding biodiversity for at least three reasons. First, somemeasures of diversity,
such as beta diversity, are inherently spatial, focusing on the change in diversity across
spatial and/or environmental gradients (Soininen et al. 2007; Anderson et al. 2011).
Second, space can provide a mechanism for biodiversity patterns by altering community
assembly and disassembly processes (Leibold et al. 2004). Third, incorporating spatial
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issues into conservation strategies aimed at promoting biodiversity can provide new
insight and can help solve some problems (Karp et al. 2012). We illustrate these issues
through the use of spatial modeling of biological communities.

11.2 Key Concepts and Approaches

11.2.1 Spatial Community Concepts

Spatially structured communities can be described in several ways. For instance,
diversity can be measured based on different types of variation (e.g., species-level,
genetic) and it can be measured at different scales. In addition, there have been a
wide range of concepts and theoretical developments on spatially structured com-
munities. We first provide some terms and definitions regarding the ways in which
diversity and communities are quantified across space. We then briefly provide an
overview of some key spatial ecology concepts for communities, starting with early
work on species–area relationships and moving to more contemporary concepts
regarding metacommunities and hierarchies in community assembly.

11.2.1.1 A Diversity of Diversities

Species diversity is a major component of biodiversity. Species diversity is often
partitioned into three types: alpha diversity, beta diversity, and gamma diversity
(Fig. 11.1 and Table 11.1). Alpha diversity is the number of species residing at a
locality and is often referred to as species richness. Beta diversity has been contex-
tualized in a variety of ways, but it generally focuses on the turnover or change in
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Table 11.1 Terms and concepts frequently considered in spatial community ecology

Term Definition

Alpha diversity The number of species residing at a locality.

Beta diversity The change in species across environmental, spatial, or temporal
gradients.

Competition-coloniza-
tion tradeoff

When species that are good colonizers are poor competitors, and
species that are good competitors are poor colonizers. This tradeoff
can facilitate coexistence across landscapes.

Community assembly
rules

Rules that make predictions for what species will occur in a location,
given the species pool.

Gamma diversity The total number of species in a region.

Habitat diversity
hypothesis

One proposed mechanism for the species–area relationship. This
hypothesis predicts that variation in the environment (habitat,
resources, etc.) increases with area, leading to potentially more
species.

Limiting similarity A category of community assembly rules whereby a community is
assembled via interspecific competition, such that species that coexist
have low similarity in key traits of relevance to local resources.

Mass effect When community structure is driven by species source-sink dynamics.

Metacommunity A set of local communities linked by dispersal.

Ordination Analyses that aim to summarize the variation of multivariate data into
reduced dimensions or space by arranging species and/or locations
along gradients. Typically based on eigen-analysis.

Nestedness The change in species between two (or more) locations that arises
from the loss of certain species.

Neutral community
models

Models that assume community assembly is driven entirely by sto-
chastic forces.

Passive sampling A mechanism for species–area relationships that is based solely on
sampling effort. As sample effort increases in larger patches or islands,
the number of species detected increases.

Patch dynamics When community assembly is viewed through the lens of variation in
colonization-extinction dynamics, wherein better dispersers are fre-
quently assumed to be poorer competitors.

Rank-abundance curve Relative abundance of species plotted as a function of their rank
abundance (most abundant species ¼ rank 1). Used to visualize
skewness in community composition.

Species–area
relationship

The pattern whereby the number of species increases with habitat area.

Species pool The total number of potential species in a region that are capable of
colonizing localities.

Species sorting When community structure over space is driven by individual species
responses to environmental heterogeneity, such that certain local
conditions may favor certain species and not others. In this concept,
dispersal is not assumed to be a limiting factor.

Target effect A mechanism for species–area relationships, whereby immigration is
greater to larger habitats simply because larger areas are bigger targets
for dispersers. This relationship typically scales with the linear diam-
eter of habitats rather than the area per se.

Turnover The change in species between two (or more) locations based on
species replacement.
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species across environmental, spatial, or temporal gradients (Anderson et al. 2011).
Beta diversity is sometimes split into its nestedness and turnover components
(Baselga 2010). Nestedness between two locations refers to the change in species
based on the loss of species, where one location may be “nested”within another; that
is, it is a nested subset of the location that contains more species (Wright and Reeves
1992). The idea of nestedness in biological communities has received a great deal of
interest over the years (Wright et al. 1998; Mac Nally and Lake 1999; Kerr et al.
2000; Fernandez-Juricic 2002; Driscoll 2008), in part because it was a fundamental
issue involved in the SLOSS (single-large versus several small) debate (Wright and
Reeves 1992). Turnover, on the other hand, refers to a change in species via species
replacement (not loss) (Williams 1996). Gamma diversity typically refers to the
species pool in the region, or the species that are potentially available for colonizing
local sites or communities (Karger et al. 2016). Understanding the interplay and
dependence of each of these components of species diversity is of long-standing
interest to community ecologists (Ricklefs 1987; Partel et al. 1996; Caley and
Schluter 1997; McPeek and Brown 2000; Koleff and Gaston 2002; Podani and
Schmera 2011; Lessard et al. 2012; Fukami 2015).

11.2.1.2 Species–Area Relationships

One of the few laws in ecology is the species–area relationship (Lawton 1999): the
number of species increases with area (island area, patch area, etc.) (Fig. 11.2). This
relationship has been documented throughout the world. There is a long history of
exploring why this relationship exists and using this relationship to forecast changes
in species diversity with ongoing environmental change (Gonzalez 2000; Seabloom
et al. 2002; Thomas et al. 2004; Dobson et al. 2006).
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Fig. 11.2 The species–area relationship, shown on the (a) raw (original) scale, and (b) a log–log
scale (log10 scale)
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Arrhenius (1921) was one of the first scientists to formally quantify the species–
area relationship, describing the relationship as a power function. Preston (1962)
further developed this idea. He defined this relationship as:

S ¼ cAz, ð11:1Þ

where S is the number of species, A is area, and c and z are constants that describe the
shape of the relationship of species with area. This relationship describes a pattern
where the number of species quickly increases with area and then the rate of change
slows (a power function relationship). It can be linearized when transformed to a
log–log (base 10) scale as:

log Sð Þ ¼ log cð Þ þ zlog Að Þ: ð11:2Þ

There has been interest in understanding variation in z, because it describes the
magnitude of the species–area relationship. Often z values tend to range from 0.10 to
0.25 (Drakare et al. 2006). We note that in practice, there are actually several types of
species–area relationships that have been documented, where different types of
sampling designs and functional forms (e.g., power, logistic) have been used to
interpret species–area relationships (Scheiner 2003).

Given the ubiquity of the species–area relationship, the immediate question that
arises is why this relationship occurs. Understanding why the relationship occurs is
essential for understanding the importance of this pattern. Several hypotheses have
been put forward to explain SAR; here we focus on a few common ones. First, the
habitat diversity hypothesis suggests that as area increases, habitat diversity
increases, such that the increase in number of species simply reflects an increase in
the diversity of habitat or resources. Second, the target effect hypothesis posits that
larger areas are more likely to be colonized, even simply by chance (or passive
diffusion) due to an increasing circumference of the area (Bowman et al. 2002).
Third, the passive sampling hypothesis states that SAR relationships are simply a
reflection of greater sampling effort as area increases (Coleman et al. 1982), such that
10, 10 ha sites would yield the same number of species as 1, 100 ha site. Conse-
quently, this hypothesis implies that there is nothing special about habitat area per se,
and that the number of species per unit area sampled will not increase with increasing
patch or island area. This hypothesis has similar rationale to the habitat amount
hypothesis (Fahrig 2013). Finally, a great deal of interest and effort has focused on
the hypothesis that SAR relationships arise from a balance of immigration and
extinction effects that may change as a function of area. This hypothesis underlies
the Equilibrium Theory of Island Biogeography (MacArthur and Wilson 1967).

11.2.1.3 Equilibrium Theory of Island Biogeography

Arguably, the most important conceptual development to our understanding of
communities across space was the development of the Equilibrium Theory of Island
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Biogeography (ETIB). MacArthur and Wilson (1967, 1963) developed this theory in
detail to understand and predict the number of species residing on an island and the
turnover rate of species on islands. The underlying premise of this development is
that the number of species in an area is a balance between recurrent immigration of
new species and recurrent extinction of species in a local area. When immigration
and extinction are balanced, the number of species and the rate of species turnover is
at equilibrium. This model is a neutral model (Caswell 1976), in the sense that
species identity does not inform the model and expectations in the model are driven
entirely by stochastic forces.

Immigration rates of new species per unit time are assumed to decline as the
number of species increases on the island, eventually reaching 0 when the number of
species on the island is equal to P, the species pool, or the mainland source pool of
species. Simply put, as fewer species are able to immigrate from the mainland,
immigration rates should decline. Often, this immigration curve is drawn as being
non-linear (~exponential decline), to reflect the idea that some species might be
better at dispersing than others, where good dispersers will immigrate rapidly, while
poor dispersers will be slow to immigrate. Extinction rates are assumed to increase as
the number of species on the island increases, where the abscissa is zero
(no extinctions can occur when no species inhabit the island). Extinction rates are
assumed to occur stochastically, such that extinction rates increase with the number
of species simply because there is a greater number of potential species to go extinct.
Again, this relationship is also frequently drawn as a non-linear (exponential)
relationship, where interspecific competition may increase the extinction rate as
the number of species increases (a linear rate would assume that all species behave
independently of each other).

This theory received the most attention when MacArthur and Wilson invoked
island area and isolation from mainland as critical factors that may alter immigration
and extinction rates. MacArthur and Wilson (1967) assumed that as island area
increased, the extinction rate should decline relative to smaller islands. The rationale
for this assumption is that larger islands will harbor larger populations, where
population size is proportional to island size (note: density is assumed to be constant,
or in some cases decline; MacArthur 1972), such that demographic stochasticity may
play a smaller role in extinction risk of individual species. This component of ETIB
leads to specific predictions regarding species–area relationships—that species num-
ber increases with area and that turnover rates decline. MacArthur and Wilson also
assumed that island isolation would alter immigration rates, where increasing isola-
tion should reduce immigration. Note that since their seminal work, area effects have
also been considered to alter immigration rates, where target effects occur (larger
islands lead to greater immigration rates) (Lomolino 1990), and isolation has also
been considered to alter extinction rates, where less isolated islands are expected to
have lower extinction rates via rescue effects (immigration rates preventing extinc-
tion) (Brown and Kodric-Brown 1977). While much of the focus of this work has
been on area and isolation, MacArthur andWilson (1967) also developed a variety of
related issues, such as the role of corridors, stepping stones, and island aggregation
on expected numbers of species.
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This theory has been instrumental in community ecology and conservation
(Whitcomb et al. 1976; Whittaker et al. 2005). Nonetheless, it is now known that
this framework does not capture many of the pressing issues influencing biodiversity
across space and over time, such as edge and matrix effects, landscape complemen-
tarity, species interactions, and situations where no “mainlands” occur (Haila
2002; Laurance 2008). Importantly, this theory does not predict the distribution of
individual species nor species identity (and related traits) in the community. Since
this seminal work, several extensions have been made to accommodate some of
these issues (Holt 1992; Cook et al. 2002; Gravel et al. 2011). One major advance-
ment has been the development of metacommunity theory (Holyoak et al. 2005).

11.2.1.4 Metacommunities

The metacommunity concept extends ideas from metapopulation ecology (Chap. 10)
and community ecology to explicitly understand variation in communities across
space (Wilson 1992; Leibold et al. 2004; Holyoak et al. 2005; Leibold and Chase
2017). This concept aims to unite several processes that have been hypothesized to
be critical to community structure over space (Vellend 2010). At its core, a
metacommunity consists of local communities (i.e., communities residing at a
particularly locality, such as a patch) that are linked spatially through dispersal.
Leibold et al. (2004) identified four paradigms that have been applied to understand-
ing metacommunities: the patch-dynamics paradigm, the species-sorting paradigm,
the mass effects paradigm, and the neutral paradigm.

The patch-dynamics paradigm is a direct extension of two-species metapopulation
models to N species. This paradigm emphasizes that species diversity may be limited
by species interactions (e.g., competition) and dispersal. The focus is on colonization-
extinction dynamics of N species, where it is often assumed that patches are similar
and each patch is capable of containing populations of each species. In this paradigm,
competition-colonization tradeoffs among species are often assumed (Levins and
Culver 1971). In the competition-colonization tradeoff, it is assumed that poor
dispersers are dominant competitors, while good dispersers tend to be poor compet-
itors, which has been observed when contrasting some annual and perennial plants.
This tradeoff provides a stabilizing mechanism for species coexistence across land-
scapes or regions. Tilman et al. (1994) popularized this general framework when
modeling communities under scenarios of habitat destruction (see also Neuhauser
1998). This paradigm generally emphasizes that community structure is limited by
variation in dispersal limitations.

In contrast to the patch-dynamics paradigm, the species-sorting paradigm empha-
sizes that environmental gradients drive variation in species diversity, while dis-
persal is less of a limiting force but rather dispersal allows species to track variation
in resource gradients across landscapes. It assumes that diversity is driven by spatial
niche separation above and beyond spatial dynamics arising from variation in
dispersal and colonization (Holyoak et al. 2005).
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The mass-effects paradigm is largely an extension of source-sink population
dynamics (Chap. 10) to community assembly. In this paradigm, variation in immi-
gration and emigration rates across landscapes and their impact on local population
dynamics are emphasized. Variation in immigration and emigration rates can gen-
erate rescue effects (Brown and Kodric-Brown 1977) and can thereby offset com-
petitive exclusion. In this paradigm, the role of dispersal is emphasized in being a
key factor driving variation in local densities and it is assumed that patches vary in
their suitability, leading to variation in immigration/emigration rates.

Finally, the neutral paradigm assumes that all species are similar in the compet-
itive abilities, dispersal abilities, and fitness. This paradigm assumes that stochastic
processes of species loss and gain drive variation in diversity. One of the first popular
neutral models for species diversity was the Equilibrium Theory of Island Biogeog-
raphy (MacArthur and Wilson 1967). The neutral paradigm has been emphasized by
Hubbell and colleagues (Hubbell 2001) to explain community structure. Thus,
dispersal and spatial dynamics are highly relevant to the neutral paradigm, although
these dynamics are assumed to be driven by stochastic forces (Economo and Keitt
2008; Lowe and McPeek 2014; Guichard 2017).

11.2.1.5 Hierarchies from Regional Pools to Local Assemblages

There has been a great deal of interest in scaling from regional species pools to local
assemblages by using community assembly rules to interpret how species may
coexist. Community assembly rules are rules that make predictions for what species
will occur in a location, given the regional species pool (Keddy 1992). Diamond
(1975) was the first to consider the problem of assembly rules by considering how
species traits (e.g., body size) could explain species composition of birds on islands.
Predictions for assembly have also been made based on limiting similarity of key
species’ traits and for the role of environmental filtering in wetlands (Van der Valk
1981). Environmental filtering occurs when local environmental (abiotic) conditions
“filter out” species from the regional pool (i.e., the environment selects against
certain species), such that some species do not occur at certain localities due to the
poor environmental conditions for that species (Cadotte and Tucker 2017). At its
core, the assumption for environmental filtering is that species absence is not driven
by biotic interactions (Kraft et al. 2015).

Poff (1997) took the general concept of environmental filtering and applied it in a
hierarchical, landscape context (Fig. 11.3). In this framework, environmental filters
operate at different scales, placing constraints on local communities. Different
spatial constraints (e.g., spatial isolation, resource heterogeneity) operate at different
spatial scales, and species traits (e.g., dispersal mode, foraging breadth) will lead to
selective filtering of certain species based on these traits. It is often envisioned that
environmental filters operate at relatively broad scales, while biotic interactions
govern constraints at local scales (akin to ideas in species distribution modeling;
see Chap. 7). This idea comes out of applications of hierarchy theory in landscape
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ecology (O’Neill et al. 1989; Urban et al. 1987), with Poff (1997) placing an
emphasis specifically on local community assembly.

11.2.1.6 Communities and Conservation

Components of biodiversity are often used as targets for conservation. For instance,
species richness is frequently considered as a key indicator of biodiversity across
landscapes, albeit an imperfect one. Beta diversity is increasingly emphasized in
conservation (Karp et al. 2012; Socolar et al. 2016), in part because of concerns of
biotic homogenization: where environmental change causes communities to be more
similar across space due to an increase in generalist and exotic species (Olden and
Rooney 2006). At a larger scale, Identifying bioregions, or biographic regions that
harbor similar communities, has been helpful for interpreting ecological dynamics
and developing broad-scale conservation strategies (Vilhena and Antonelli 2015). At
a global scale, identifying and mapping biodiversity hotspots across the planet has
been central to conservation initiatives (Myers et al. 2000; Brooks et al. 2002; Orme
et al. 2005).

These components of diversity are frequently integrated in spatial conservation
planning through the identification of sites with high local diversity and how a
collection of sites or protected areas combine to reach conservation goals through
several conservation concepts (Kukkala and Moilanen 2013). For instance, compre-
hensiveness refers to the objective of capturing the full spectrum of biodiversity in
the region of interest while representativeness describes the extent to which a
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Fig. 11.3 Space-time hierarchies of environmental filtering. Shown are hierarchical filters and
some examples of constraints and factors that operate at each scale to drive community structure
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collection of sites (or protected areas) meets that goal (Kukkala and Moilanen 2013).
Concepts that directly capture alpha and beta diversity are irreplaceability and
complementarity. Irreplacibility describes the importance of a potential site for
conservation, in terms of its unique contribution to the overall biodiversity goal,
such that if the site is lost the ability to reach conservation goals is hampered (Ferrier
et al. 2000). Complementarity in conservation planning represents the degree to a
site (or group of sites) contributes to unrepresented features—typically species—to
an existing set of protected sites (Margules and Pressey 2000). A site has higher
complementarity when it contains species not protected by existing sites. Thus,
when high turnover occurs between one or more protected areas and another site
being considered for conservation, there is high complementarity for that site.

The role of species interactions across space is also increasingly considered in
conservation strategies. In particular, certain types of interactions, such as plant-
pollinator interactions are important for maintaining ecosystem services, and such
interactions can vary across landscapes (Winfree et al. 2009). Trophic interactions
are also important in some conservation planning, particularly in marine and fresh-
water environments (Baskett et al. 2007; Decker et al. 2017). As a consequence,
spatial modeling of communities and related ecosystem services has increased over
the years and is essential for these types of conservation efforts (Brosi et al. 2008;
Moilanen et al. 2009; Kaiser-Bunbury and Bluthgen 2015).

11.2.2 Common Approaches to Understanding Community–
Environment Relationships

Predicting and mapping communities over space is challenging. There are several
types of modeling frameworks for communities. Frameworks that focus on environ-
mental filtering and species sorting as the primary drivers of (meta) communities are
most commonly used, likely in part because these frameworks are more feasible to
implement than other frameworks that emphasize other metacommunity processes
(e.g., variation in dispersal). Ferrier and Guisan (2006) classified community-level
models into three categories: (1) predict first, assemble later; (2) assemble first,
predict later; and (3) assemble and predict simultaneously (see also D’Amen et al.
2017). Here, we follow this categorization to illustrate several themes regarding the
spatial modeling of communities.

11.2.2.1 Predict First, Assemble Later

One way in which models for communities have been developed is simply to model
each species separately (see, e.g., Chaps. 6 and 7) and then with this multi-species
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information, aggregate or pool across species to predict communities across space.
In the species distribution modeling literature, this general approach is commonly
referred to as “stacked species distribution models”, or S-SDM (Guisan and Rahbek
2011). This approach implicitly emphasizes that species may respond individualis-
tically to environmental relationships, a “Gleasonian” perspective for community
structure.

Predictions for models of individual species can be combined in a variety of
ways. For example, probabilities of occurrence can be truncated to expected
presence–absence and then summed across species to derive species richness.
Alternatively, individual model outputs could be used to interpret spatial variation
in community composition by applying predictions to similarity or distance-based
metrics (see below). Consequently, this approach uses model predictions as inputs
for community classification and summary metrics, rather than the raw data.

11.2.2.2 Assemble First, Predict Later

In this approach, communities are first summarized in some way without reference to
the environment. For instance, species richness may be quantified, community types
(e.g., number of foraging guilds) may be summarized, or community (dis)similarity
may be estimated.

Species richness can be estimated in a variety of ways. Typically, the raw count of
species is a biased estimator of species richness. Instead, community ecologists
attempt to adjust raw counts in at least three different ways. First, rarefaction is
commonly used (Gotelli and Colwell 2001). Rarefaction acknowledges that the
number of species observed will be a function of the number of individuals detected:
as the number of individuals detected increases, we expect that that number of
species detected will also increase. This relationship is typically asymptotic, such
that rarefaction curves can be used to interpret the point at which sampling for the
community was sufficient for interpreting species richness. When using rarefaction
curves estimated at different localities, the species richness estimate is often trun-
cated to the site with the lowest number of individuals, thereby allowing less biased
comparison among locations regarding species richness. We note that rarefaction
approaches have also been extended to account for spatial dependence in species
data (Bacaro et al. 2016). Second, some estimators adjust counts of species based on
the number of “singletons” (i.e., number of species detected once) or “doubletons”
(i.e., the number of species detected twice) in the data (Palmer 1990; Nichols et al.
1998). This is sometimes referred to as species richness estimation through extrap-
olation, rather than through truncation, as in rarefaction (Colwell and Coddington
1994). The idea here is that if singletons and/or doubletons are rare in the data, then it
is likely that few species have been missed. In contrast, if singletons and/or double-
tons are frequent, then it is likely that many species have been missed and sampling
was not sufficient. The jackknife estimator and Chao estimators for species richness
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are both based on this general idea (Palmer 1990). The third approach is to formally
estimate species-specific detectability and subsequently derive species richness
once species-specific detectability is estimated. This approach is an extension of
occupancy modeling (MacKenzie et al. 2002), termed “multi-species occupancy
modeling” (Dorazio et al. 2006; Royle and Dorazio 2008; Kery and Royle 2016).

Summarizing community composition typically involves the use of (dis)similar-
ity matrices. These matrices quantify the pairwise (dis)similarity between all sam-
pling locations (i.e., they are square matrices). Similarity can be quantified in several
ways (Koleff et al. 2003; Barwell et al. 2015). For abundance data, a Bray–Curtis
index is frequently used:

βij ¼
Bþ C

2Aþ Bþ C
, ð11:3Þ

where A is the sum of the minimum abundance of species between site i and j (i.e.,
the number of individuals occurring at both sites), B is the number of individuals
unique to site i and C is the number of individuals unique to site j. For binary data of
species occurrence, a common approach is to use the Sørenson dissimilarity index
(another common measure is the Jaccard Index):

βsor, ij ¼
bþ c

2aþ bþ c
, ð11:4Þ

where a is the number of species common to sites i and j, b is the number of species
in site i that are not in site j and c is the number of species in site j that do not occur in
site i.

The Sørenson and Bray–Curtis indices are functionally very similar but work
with binary and count data, respectively. Both of these metrics range from 0 to
1. Dissimilarity is simply 1 � similarity and can sometimes be considered a distance
metric (note, however, that some dissimilarity matrices do not satisfy the “triangle
inequality” and are thus not measures of ecological distance). With this approach, we
may be interested in only considering the nestedness and turnover components of
beta diversity (Fig. 11.1; Baselga 2010). For the Sørenson index, turnover between
two sites is:

βturn, ij ¼
min b; cð Þ

aþmin b; cð Þ : ð11:5Þ

Nestedness can then be described as the fraction of βsor,i,j not explained by βturn,i,j:

βnest, ij ¼ βsor, ij � βturn, ij: ð11:6Þ

With these newly assembled matrices and community summary statistics, we can
then proceed to predict changes in communities across space.
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11.2.2.3 Predict and Assemble Together

Rather than treating the assembly of communities and their prediction over space
as separate components, several modeling approaches integrate these steps for-
mally into a single modeling framework. Multivariate regression (Ovaskainen
et al. 2010), constrained gradient ordination techniques (e.g., canonical correspon-
dence analysis) (Palmer 1993), multi-species occupancy modeling (Dorazio et al.
2006; Iknayan et al. 2014), and joint community models (Warton et al. 2015a) are
just some techniques that approach the problem in this way. In this case, modeling
frameworks typically provide predictions for each species, thereby honoring spe-
cies identity, such that species richness is typically a derived parameter from this
modeling framework (blurring the lines between predict first and assemble later
approaches and predict and assemble together).

11.2.3 Spatial Models for Communities

Depending on the framework considered for community modeling, there are a
variety of modeling approaches that could be considered. Here, we provide a brief
overview of those approaches that are commonly used, with a focus on approaches
that have not been considered elsewhere in the book. We first describe these
common approaches and then explicitly address how the problem of space can
be accommodated with these models and related issues for communities.

Spatial community models typically either work with summaries of species,
such as species richness (Rahbek and Graves 2001), distance-based matrices
regarding similarity in community composition (Ferrier et al. 2007), or work
directly with species-level variation in occurrence or abundance (Rahbek and
Graves 2001; Ovaskainen et al. 2010). Recently, it has been argued that the latter
shows better properties than using distance-based summary statistics (Warton et al.
2012), because distance-based analyses can conflate dispersion versus location
effects (Fig. 11.4). Some have organized these approaches into algorithmic models
and statistical, model-based approaches (Warton et al. 2015b). Algorithmic models
are those that are defined based on a set of algorithmic steps taken to interpret the
data and these typically do not take fully into account the statistical properties of
the data; examples include several techniques based on ordination (see below).
Model-based approaches focus on explicit, multivariate statistical models that
attempt to capture the statistical properties of the data (Warton et al. 2015b);
most approaches are extensions of the generalized linear model.
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11.2.3.1 Multivariate Regression Analysis

Regression models can be extended to simultaneously model multiple species in a
community. In this case, there are multiple response variables and as such, these
models are referred to as multivariate regression techniques (rather than “multiple
regression,” which refers to situations where there is >1 explanatory variable).

Multivariate regression can be implemented in a variety of ways (Legendre 1993;
Lichstein 2007; Wang et al. 2012). Traditionally, this approach used distance
matrices of response and explanatory variables and used permutation tests to assess
significance, because of the lack of independence of site pairs in the matrix formu-
lation. In this approach, matrix regression can be described as:

dij ¼ αþ β xi � x j

�� ��, ð11:7Þ

where dij is the distance (e.g., compositional dissimilarity) between locations i and
j and |xi � xj| is the absolute value of the difference in environmental variable
x between locations.

More recently, generalized linear models (GLMs) have been advocated (Wang
et al. 2012; Warton et al. 2012) as a way to analyze community data. This GLM
approach may be useful for community data because it can be applied to non-normal
response variables typically used in community-level modeling without resorting to
summarizing species composition based on distance matrices (Warton et al. 2015a).
In this case, GLMs are fit to each species separately, similar to a “predict first-
assemble later” strategy; however, multi-species (community-level) inference is
made based on the suite GLM models fit. Statistical tests have been developed to
account for correlations among species (via permutation tests) as well as using
combined summary statistics (e.g., sums of squares across models) to make
community-wide inference.
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Fig. 11.4 An illustration of (a) location versus (b) dispersion effects for two groups observed in
ordination techniques that use distance-based approaches. Adapted from Anderson et al. (2008) and
Warton et al. (2012)
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The GLM approach can also be extended to generalized linear mixed model
(GLMM) formulations, allowing to account for potential dependencies between
species. GLMMs can also reduce the need for permutation tests for inferences
(as used in some multivariate regression approaches). In Chap. 6, we specified a
generalized linear model for the presence–absence of a single species as:

logit pið Þ ¼ αþ βxi, ð11:8Þ

where pi is the expected value for the probability of occurrence for sampling unit
i, α is the intercept, β1 is the slope (coefficient), xi is the explanatory variable
measured at i. Multivariate GLMMs extend this idea to K species as:

logit pikð Þ ¼ αþ βxi þ γk þ δkxi, ð11:9Þ

where now the response variable is the presence–absence of species k at location i.
We can account for different species prevalence by adding a species-level random
intercept, γk, and for variation environment relationships among species through the
use of species-specific random coefficients (aka random slopes), δk, for an environ-
mental variable x (Bates et al. 2015; Warton et al. 2015a) (Fig. 11.5). In these cases,
random effects are typically assumed to be distributed as ~N(0, σ2). This general
approach lies at the heart of several advances in community-level analyses and has
been extended to account for imperfect detection (Dorazio et al. 2006),
metacommunity colonization-extinction dynamics (Dorazio et al. 2010), hierarchical
spatial scaling effects on communities (Ovaskainen et al. 2016a), the potential for
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Fig. 11.5 An illustration of the difference between (a) random intercepts and (b) random coeffi-
cients (or random slopes) in generalized linear mixed models. Note that for (b), both random
intercept and coefficients are shown. Grey lines are species-specific responses, while black line is
the average response across species
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biotic interactions between pairs of species by altering the variance–covariance
matrices of random effects (Ovaskainen et al. 2010), as well as trait-based depen-
dencies (Dorazio and Connor 2014).

11.2.3.2 Canonical Ordination: Redundancy and Canonical
Correspondence Analysis

Direct gradient analysis, also known as canonical ordination or constrained ordina-
tion analysis, is often used by community ecologists to interpret how communities
respond to environmental gradients. In this case, rather than only considering the
species community in the ordination (as in principal components analysis, PCA, and
correspondence analysis, CA; see Legendre and Legendre 2012), the community is
related to environmental and/or spatial data in the context of the ordination. Two of
the most common approaches are redundancy analysis (RDA) and canonical corre-
spondence analysis (CCA).

Redundancy analysis is a method that effectively combines regression-like tech-
niques with ordination (specifically, PCA). The general idea of RDA is that it is a
multivariate linear regression where the fitted values are then subjected to PCA,
which provides eigenvectors of the fitted values (Borcard et al. 2011). RDA then
takes these eigenvectors and computes new orthogonal (i.e., independent) axes that
are linear combinations of all explanatory variables, where the first axis explains the
most variation in the response variables, the second axis explains the next most, and
so on. This aspect of RDA is reflected in the decrease in eigenvalues for each axis
(similar to PCA). The analysis can then be summarized based on species scores, site/
location scores (summarizing species scores for each site), and site constraints (the
linear combinations of environmental variables for each site). This approach is
appropriate when one expects linear environmental relationships, although similar
to linear regression (see Chaps. 6 and 7), polynomial terms can be added when
warranted to capture some types of non-linear relationships.

Canonical correspondence analysis is similar to RDA but rather than using PCA
in its formulation, it uses correspondence analysis (CA). It captures Gaussian
relationships of species responses to environmental gradients. Because niche theory
often envisions species responses across environmental gradients as hump-shaped,
Gaussian curves, CCA has had major appeal since its introduction in the 1980s (Ter
Braak 1987). However, there are known limitations of CCA, particularly its use of a
χ2 distance among sites. This distance measure is known to be a poor distance metric
for community composition analyses. Consequently, there is currently a greater
focus on the use of RDA for direct gradient ordination analyses (Borcard et al.
2011), and we focus on RDA below.
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11.2.3.3 Generalized Dissimilarity Modeling

Generalized dissimilarity modeling (GDM) is increasingly used to understand
and predict beta diversity across space for ecology and conservation problems
(Ferrier et al. 2007; Thimassen et al. 2011; Fitzpatrick and Keller 2015; Jewitt
et al. 2016; Rose et al. 2016). This approach is a non-linear extension of multivariate
regression, where the response variables are measures of community dissimilarity,
and predictors often include spatial (e.g., distance matrices) and environmental
factors.

The GDM approach was derived to accommodate two forms of non-linearity in
community modeling. First, because dissimilarity is constrained to the 0–1 scale,
non-linearities of the response variable occur. This non-linearity is addressed by
formulating the problem as a generalized linear model with a custom link function
and error distribution (Ferrier et al. 2007). The link function, η, used is:

η ¼ �log 1� μð Þ: ð11:10Þ

where μ is the expected value. Note that a beta distribution could also be used, which
is a continuous distribution bounded to the 0–1 scale. Second, the rate of turnover at
different locations on environmental gradients is expected to be non-linear. To
address this issue, GDM fits non-linear, monotonic functions directly to the envi-
ronmental variables, which are referred to as I-spline basis functions (Ferrier et al.
2007). I-splines are similar to the splines discussed in Chaps. 6 and 7, with the
general difference being that they are constrained to be non-decreasing functions.
This constraint makes sense in this case because we expect a priori that turnover rates
should increase with increasing distance across environmental gradients. Similar to
standard matrix regression (see above), significance is inferred through permutation
tests.

11.2.3.4 The Problem of Space

Most of the above mentioned approaches only indirectly account for spatial depen-
dence in community modeling. Spatial dependence in community modeling is often
overlooked (Urban et al. 2002), but Dray et al. (2012) argued that it may alter
inferences in our understanding and conservation of communities. Furthermore, they
argued that spatial dependence only needs to occur in a portion of the community for
it to potentially impact inferences.

Partial ordinations have long been used to account for potential spatial depen-
dence via the inclusion of a geographic distance matrix in modeling (Borcard et al.
1992). Such matrices could be based on Euclidean or some other (effective) distance
metric (see Chap. 9). The distance matrix (a square matrix of pair-wise distances
between sites) is frequently used as a predictor or “controlling” variable (Borcard
et al. 1992). Partial ordination is often used to then partition variance based on
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different spatial and environmental factors (Cushman and McGarigal 2002). Yet
partitioning generally assumes only additivity in the explanatory variables and it can
yield negative components of variance due to interactions between variables. As
such, partitioning should be used with caution.

Partial Mantel tests have also been frequently used to account for space. Mantel
tests are statistical tests of the correlation between two distance matrices of the same
rank (i.e., the same dimensions). Mantel tests calculate a correlation coefficient
between the two matrices, and significance is inferred via permutation tests. These
matrices are symmetric, distance-based matrices, so the number of distances is n
(n�1)/2, or the number of observations in the upper (or lower) triangle of the
matrices. Typically, the Pearson correlation coefficient is used (see Chap. 5). To
assess significance of the Mantel correlation, the rows and columns of one the
matrices are shuffled many times and the Mantel correlation is calculated on these
randomized matrices. Significance is then inferred based on the proportion of times
the observed correlation is higher than that of the correlations from the randomized
matrices.

In a spatial context, Mantel tests can provide a single global test of autocorrelation
for community data when comparing a spatial distance matrix (e.g., geographic
distance) the community dissimilarity matrix. It is important to note here that the
implicit assumption is that autocorrelation is linear gradient (i.e., the Mantel test
typically uses a linear correlation coefficient). Also, there has been some criticism of
this approach for a variety of reasons (Guillot and Rousset 2013; Legendre et al.
2015).

The Mantel correlogram is a multivariate extinction of the correlogram described
in Chap. 5, which quantifies spatial autocorrelation as a function of distance
(Bjørnstad and Falck 2001; Borcard and Legendre 2012). For each distance bin,
the Mantel correlogram simply calculates a normalized correlation coefficient based
on comparing the species dissimilarity matrix to a binary matrix, where sites within
the distance bin are 0 and all others are 1. Stringing these correlation coefficients
together results in a Mantel correlogram. Significance is inferred via permutation in
the same manner as with a standard Mantel test.

Multivariate variograms can also be used. Wagner (2003) pioneered the applica-
tion of multivariate variograms to community data in ecology. In this application,
she derived the variogram matrix, C(d ), for communities, where the diagonal is the
semivariance for species i at distance class d (see Chap. 5) and the off-diagonals
represent the pairwise cross-variograms for species i and j at distance class d. Cross-
variograms are similar to variograms except that they quantify the distance-
dependent covariance between two types of observations; in this case, two species.
A cross-variogram for species i and j can be quantified as:

γi, j dð Þ ¼ 1
2nd

X
z
�
xi

� �� z xi þ dð Þ� z
�
x j

� �� z x j þ d
� ��

, ð11:11Þ

where γ is a measure of covariance, n is the number of observations at distance bin d,
and z is the observation at location xi. The variogram matrix can be used in a variety
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of ways to interpret spatial dependence of communities. Beyond the species-specific
variogram for spatial dependence and pairwise cross-variogram for spatial covari-
ance between pairs of species, Wagner (2003) emphasized two other properties.
First, the sum of the diagonal of C(d ), she referred to as the empirical variogram of
complementarity, or the spatial complementary of species composition at locations.
Second, the sum of C(d ) (diagonal þ off-diagonals) can be considered the empirical
variogram for sample-level species richness.

Multivariate variograms can be extended to ordination techniques, commonly
referred to as multiscale ordination. The idea is similar to that described above for
species composition and richness. In a nutshell, the C(d ) matrices are summed
across distance classes to create a global matrix C of empirical variance–covariance.
This matrix is then subjected to ordination techniques, typically either PCA (Wagner
2003) or CA (Wagner 2004). Eigenvalues from the ordination can then be
partitioned among distance classes and plotted as a function of distance, providing
an empirical variogram of ordination axes that describe the spatial covariance of
complementary in the species assemblage.

While geographic distance matrices are frequently used in Mantel tests and
related analyses (e.g., GDM), the use of geographic distance matrices for inferring
and controlling for spatial dependence in community-level modeling may be limited
(Dray et al. 2012), due to the difficulty of proper interpretation (Legendre et al. 2015)
and potential low power in detecting spatial structures (Legendre et al. 2005). Yet
Borcard and Legendre (2012) contrasted multivariate variograms and Mantel
correlograms using simulations, finding that under the simulated conditions,
the power of these multivariate approaches was high and similar to univariate
approaches.

An alternative to the use of distance matrices is using spatial weighting matrices,
which come in several forms (Dray et al. 2012). Spatial eigenvector mapping (Dray
et al. 2006) described in Chaps. 5 and 6 is one technique that is based upon spatial
weighting matrices. Like a distance matrix, a spatial weighting matrix is a site-by-
site matrix (i.e., a square matrix) that describes the potential pairwise linkages
between sites. Weights can be binary or weighted (continuous, non-negative). This
weighting matrix can also be directed (links between i and j 6¼ j and i) to account for
directed flows across landscapes (Blanchet et al. 2008). The subsequent incorpora-
tion of spatial weighting matrices can often occur in ways similar to the inclusion of
geographic distances in the methods described above. This general approach pro-
vides great flexibility in formally capturing the role of space on communities.

11.3 Examples in R

11.3.1 Packages in R

In R, there are a few libraries that can be used for community-related models.
Some common packages include the vegan package for ordination techniques
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(Dixon 2003), betapart for interpreting beta diversity metrics (Baselga and Orme
2012), gdm for fitting generalized dissimilarity models (Manion et al. 2018),
mvnabund and VGAM for multivariate GLM models for abundance and occurrence
(Wang et al. 2012).

11.3.2 The Data

We return to the data shown in Chaps. 6 and 7 regarding bird distribution in Montana
and Idaho, USA (Hutto and Young 2002). Sampling locations consist of point
counts (100-m radius), along a transect (10 points/transect; transects are approxi-
mately 3 km long), with transects randomly selected within USFS Forest Regions
across Montana and Idaho. Previously, we considered only one species; here, we
extend our questions and analysis to the community. To do so, we only consider
species adequately sampled by point counts (e.g., we remove waterfowl, raptors, and
nocturnal species). In this example, we pool data across 3 years (2000, 2002, and
2004) for each point location. We consider three covariates used in Chap. 7:
elevation, precipitation, and canopy cover.

11.3.3 Modeling Communities and Extrapolating in Space

We first illustrate common ways to approach modeling without explicit focus on
incorporating space into the analysis. We then extend these ideas to formal account-
ing of space.

To begin, we will import a raster layers of elevation and canopy cover, as well as
data on species detections at points, using the raster package.

> library(raster)

> Elev <- raster("elev.gri") #elevation layer (km)
> Canopy <- raster("cc2.gri") #linear gradient, from PCA
> Precip <- raster("precip.gri") #precipitation (cm)

#convert precipitation to meters
> Precip <- Precip / 100
> layers <- stack(Canopy, Elev, Precip)
> names(layers) <- c("canopy", "elev", "precip")

#species data
> birds <- read.csv("birdcommunity.csv")

These community data come in a format that is common for data entry purposes,
where each row of data reflects a detection of a species at a site. We need to re-format
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the data to produce a species by site data frame, where the columns are species and
the rows are sites (Fig. 11.1). Also, note that the coordinates for the site data are in
WGS84, which is not the same coordinate reference system as the raster data.

We first convert these data to a SpatialPointsDataFrame and transform
the data to the projection of the raster data.

> birds.latlong <- data.frame(x = birds$LONG_WGS84, y =
birds$LAT_WGS84)

> birds.attributes <- data.frame(transect = birds$TRANSECT,
point = birds$STOP, species = birds$SPECIES, pres =
birds$PRES)

#define CRS
> crs.latlong <- CRS("þproj=longlat þdatum=WGS84")
> crs.layers <- CRS("þproj=aea þlat_1=46 þlat_2=48 þlat_0=44
þlon_0=-109.5 þx_0=600000 þy_0=0 þellps=GRS80 þdatum=NAD83
þunits=m þno_defs")

#create SpatialPointsDataFrame
> birds.spdf <- SpatialPointsDataFrame(birds.latlong, data =
birds.attributes, proj4string = crs.latlong)

#transform CRS for sites to layers CRS
> birds.spdf <- spTransform(birds.spdf, crs.layers)

#data frame with new x,y coordinates
> birds.df <- data.frame(birds.spdf@data, x =
coordinates(birds.spdf)[,1], y = coordinates(birds.spdf)[,2])

> head(birds.df, 2)

##
transect point species pres x y
1 452511619 5 AMDI 0 59142.22 173151.8
2 452511619 6 AMDI 0 58834.36 173185.7

Now, we reformat the data to a wide format to create a format of a site � species
data frame with the reshape2 package (Wickham 2007).

> library(reshape2)
> species.site <- dcast(birds.df, transect þ point þ x þ y ~
species, value.var = "pres")

#no attributes (species only)
> spp.matrix <- species.site[, �c(1:4)]

Finally, we will check for very rare species, creating a vector of names of species
with detections on >20 points:
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#subset based on frequency of occurrence
> prevalence <- colSums(spp.matrix)
> prevalence.20 <- prevalence[prevalence > 20]
> species.20 <- names(prevalence.20)

We use this list of species to subset the data for species with detections on >20
points (out of the 1145 points). To do so, we use the %in% command to select
columns with column names matching our vector of species to retain:

> species.matrix <- spp.matrix[,colnames(spp.matrix) %in% species.20]

We can summarize this species matrix in a variety of ways. For instance, we can
calculate the observed number of species per point (see below), as well as how
prevalent species are across the points sampled (Fig. 11.6). In this case, observed
(uncorrected) species richness varies considerably, with 12.8 species being observed
on average. The prevalence of most species is low: only a few species are commonly
observed across most points (Fig. 11.6b). Community composition and similar can
also be calculated. For instance, the Sorenson index for community dissimilarity can
be calculated as:

> sorenson <- vegdist(species.matrix, method = "bray")
> sorenson.mat <- as.matrix(sorenson)

Where the method “bray” reduces to the Sørenson with binary data (as is the
case here). With these data, we extract relevant environmental information from the
points and check for correlations among environmental variables:

> site.cov <- extract(layers, species.site[,c("x","y")])
> cor(site.cov)
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Fig. 11.6 Summarizing community-data for the Landbird Monitoring Program. Data come from
782 points sampled during 3 years (2000, 2002, and 2004). Shown are point-level observations of
(a) species richness (for species >20% point locations) and (b) species prevalence
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##
canopy elev precip
canopy 1.00 0.01 0.13
elev 0.01 1.00 �0.04
precip 0.13 �0.04 1.00

These environmental variables are not strongly correlated at sampling locations,
so in modeling we can consider each of these variables without any substantial
concerns regarding collinearity (Dormann et al. 2013). With this information, we can
now proceed to spatial modeling of communities.

11.3.3.1 Predict First, Assemble Later

First, we model each species separately and combine them to make predictions
across the region, sometimes referred to as “stacked species distribution models,”
or S-SDMs (Dubuis et al. 2011; D’Amen et al. 2015). To do so, we will illustrate
with similar approaches as described in Chaps. 6 and 7, where we use a logistic
regression framework to model each species individually, and store relevant output
for each species in lists for post-processing. Note, if we were interested in
community-level inferences, such as if the community overall changed with eleva-
tion or canopy cover, we could use the mvabund package (Wang et al. 2018) to
automatically model each species as a function of covariates (using the manyglm
function). The primary benefit of that package is that there are summary inference-
related tests that can be applied to the species-specific logistic regression models.
Here, we illustrate applying these models manually, which could provide more
flexibility on the types of models considered for each species.

> pred.map <- list() #stores map predictions
> pred.coef <- list() #stores coefficients

Storing in a list format can be particularly helpful when each species has different
amounts of summary statistics, such as if different covariates are used for each
species (e.g., species-specific model selection). Below we consider each of the
environmental covariates and include a potential non-linear effect of elevation on
species distribution.

> Nspecies <- ncol(species.matrix)
> Nsites <- nrow(species.matrix)

#create covariate vectors for simpler processing
> canopy <- site.cov[,"canopy"]
> elev <- site.cov[,"elev"]
> precip <- site.cov[,"precip"]

#Run a GLM for each species
> for (i in Nspecies){
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species.i <- glm(species.matrix[,i] ~ canopy þ poly(elev,2) þ
precip, family = binomial)

#coefficients from model
pred.coef[[i]] <- coef(species.i)

#predictions for mapping
logit.pred <- predict(model = species.i, object = layers, fun = predict)
prob.pred <- exp(logit.pred) / (1 þ exp(logit.pred))
pred.map[[i]] <- prob.pred
}

#convert list to a multi-layered raster stack
> prob.map.stack <- stack(pred.map)
> names(prob.map.stack) <- colnames(species.matrix)

Note that initially predictions are on the link (logit) scale, but we back-transform
predictions to the probability scale for mapping. We can check out maps for any
species and the estimated coefficients. Here, we check for the first species in the
species matrix, the American robin (Turdus migratorius; map not shown):

# Plot prediction for species 1
> plot(prob.map.stack$AMRO, xlab = "Long", ylab =
"Lat",
main="AMRO - Predict first, assemble later")

> pred.coef[[1]]

##
(Intercept) canopy poly(elev, 2)1 poly(elev, 2)2 precip
�1.4362196 �0.1011538 1.3322123 6.8103904 0.3742213

Now, with these species-specific maps, we can assemble the predicted commu-
nity in a variety of ways. We could convert the probability maps to binary maps of
presence–absence based on some sort of threshold (see Chap. 7) (Algar et al.
2009; Dubuis et al. 2011). For example, Dubuis et al. (2011) created binary pre-
dictions by selecting a species-specific threshold that maximizes the sum of sensi-
tivity and specificity (D’Amen et al. 2015). With models where predictions are
probabilities of occurrence, a more natural way may be to create binary maps
based on realizations from the binomial distribution because we assume in the
logistic model that observations come from this distribution. Here, we illustrate the
use of random deviates (realizations) from the binomial distribution and contrast this
to using a simple threshold of species prevalence, which has been shown to be a
useful threshold technique for single species models (Liu et al. 2005).

We first illustrate one realization from the binomial distribution. To do so, we
create a function for generating binary maps from the predicted probabilities:

> binary.map <- function(map){
values.i <- values(map)
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binom.i <- rbinom(length(values.i),prob = values.i, size = 1)
map <- setValues(map, binom.i)
return(map)

}

This function takes a single map, extracts the values on the map and uses
rbinom to generate one realization (random deviate) based on the predicted
probability. We can then implement this function on the raster stack, where the
function will execute on each layer of the stack individually:

> binary.map.stack <- binary.map(prob.map.stack)

With these predicted, binary maps, we can assemble a variety of summaries at the
community level. For instance, we calculate species richness as:

#Species richness from predictions
> spp.binomial.map <- sum(binary.map.stack)

This map illustrates how using a single random deviate from a binomial distri-
bution based on the predicted probability of occurrence can lead to a great deal of
noise in the predictions, where the map shows little spatial pattern. If we do this
several times and then plot the mean or median predicted richness, we get a different
perspective, where we observe spatial pattern in predicted richness across the region
based on the covariates considered (Fig. 11.7a). Below we repeat the binary.map
function, and with each realization from the binomial distribution we add it to our
raster stack using the addLayer function (this loop is relatively slow to run):
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Fig. 11.7 Contrasting maps for species richness based on predict then assemble and assemble then
predict approaches. For predict then assemble, maps differ when using (a) random deviates from the
binomial distribution, or (b) species-specific thresholds based on prevalence. (c) Map based on
assemble then predict, which tends to predict lower overall species richness
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#richness from 19 total random deviates:
> for (i in 1:18){
binary.map.i <- binary.map(prob.map.stack)
richness.i <- sum(binary.map.i)
spp.binomial.map <- addLayer(spp.binomial.map, richness.i)
print(i)

}

#summarize distributions
> spp.mean.map <- mean(spp.binomial.map)
> plot(spp.mean.map)

We can contrast the above approach to the use of thresholding probabilities,
which is more commonly applied. We illustrate the application of thresholds by
using the prevalence of each species to truncate probabilities to 0, 1 (Fig. 11.7b).

> spp.t.map <- pred.map
> for (i in 1:Nspecies){
thresh.i <- sum(species.matrix[,i]) / Nsites
spp.t.map[[i]][which(spp.t.map[[i]][] > thresh.i)] =
1
spp.t.map[[i]][which(spp.t.map[[i]][] <= thresh.i)] =
0
}

Note that other approaches could be used to stack predictions from models. For
example, probabilities from species-specific models could be summed across species
(Distler et al. 2015). However, when data used in S-SDMs are presence-only data
(e.g., herbarium collections), summing probabilities is problematic, as these proba-
bilities are not probabilities of occurrence, but are instead relative probabilities
assumed to be proportional to occurrence (Hastie and Fithian 2013; Yackulic et al.
2013). Pearson et al. (2004) argued that in presence-only situations, false negative
error rates (i.e., omission errors) should be minimized, such that thresholds are
selected that minimize predicting absences (or unsuitable habitat) where observed
presence locations occurred. For instance, using presence-only data, Newbold et al.
(2009) used a threshold that resulted in a sensitivity to 95% (see also Mateo et al.
2012). More recently, Liu et al. (2013) argued that maximizing the sum of sensitivity
and specificity is most appropriate. Other approaches that have been used with
presence-only data include selecting thresholds that maximize agreement with
independent data on species richness or other variants of sensitivity thresholds
(Pineda and Lobo 2009, 2012; Milanovich et al. 2012; Zhang et al. 2016).

11.3.3.2 Assemble First, Predict Later

In contrast to modeling each species separately and then compiling model pre-
dictions, we can assemble the community first and then model it. The simplest
scenario is to compile the total number of species detected/site (or something similar,
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such as the use of rarefaction) and then model species richness directly using a GLM
like before, but in this case it would be a count-based GLM, such as Poisson
regression. Other approaches include assembling measures of species composition
and similarity.

Modeling Species Richness. Poisson regression is a natural GLM for count-based
data. Poisson regression assumes that the data come from a Poisson distribution, or
integer data�0. However, the Poisson distribution assumes that themean¼ variance,
which often is not the case. Instead, it is more common in ecological data to observe
that the variance increases with the mean. When this pattern occurs, GLM models
based on the Poisson distribution can be over-dispersed, which can lead to inferences
being too liberal (i.e., more likely to commit a type I error; Zeileis et al. 2008). In
such cases, quasi-Poisson or negative binomial regression are natural alternatives.
Quasi-Poisson models tend to estimate the same coefficients as a Poisson, but will
also estimate a scale parameter from the data, which is then used to adjust for over-
dispersion in inferences. Quasi-Poisson models can be used with the glm function,
but specifying "family¼ quasipoisson". More commonly, negative binomial
regression is used when data are over-dispersed. Negative binomial regression does
not make the assumption that the mean¼ variance, but rather estimates an additional
scaling parameter, typically referred to as theta. Negative binomial models can be
run with the glm.nb function in the MASS package (Venables and Ripley 2002).
Quasi-Poisson and negative binomial models have the same number of parameters
but make different assumptions regarding the relationship of the variance as a
function of the mean: the quasi-Poisson assumes a linear relationship, while the
negative binomial assumes a quadratic relationship (Hoef and Boveng 2007).

We can diagnose the potential for over-dispersion in several ways. A crude
approach is to look at the ratio of the residual deviance to the degrees of freedom
in the model. If this ratio, c, is�1, that suggests over-dispersion. An alternative is to
use the dispersiontest function in the AER package (Kleiber and Zeileis
2008). This test is based on asking whether the mean equals the variance in the
Poisson model (Cameron and Trivedi 1990).

We fit the Poisson model and then determine if there is any evidence for over-
dispersion. We first assemble richness data and then fit a Poisson GLM.

> richness <- rowSums(species.matrix])

> pois.rich <- glm(richness ~ canopy þ poly(elev,2) þ precip,
family = poisson)

> summary(pois.rich)

##
glm(formula = richness ~ canopy þ poly(elev, 2) þ precip, family =
poisson)

Deviance Residuals:
Min 1Q Median 3Q Max
-3.6603 -0.6006 -0.0088 0.6149 2.9355

11.3 Examples in R 445



Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.72432 0.03549 76.770 < 2e-16 ***
canopy -0.19808 0.02889 -6.856 7.06e-12 ***
poly(elev, 2)1 -1.52544 0.29129 -5.237 1.63e-07 ***
poly(elev, 2)2 -1.14501 0.29472 -3.885 0.000102 ***
precip -0.18532 0.04015 -4.615 3.92e-06 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 775.20 on 781 degrees of freedom
Residual deviance: 658.86 on 777 degrees of freedom
AIC: 4077.3

For this model, the residual deviance is 658.86 on 777 df, or c ¼ 0.85, which
suggests over-dispersion is absent. We can test this more formally with the AER
package:

> dispersiontest(pois.rich, trafo = 1)

This tests confirms that over-dispersion is absent ( p ¼ 1.0). If there was a signal
for over-dispersion, we could contrast this model to the quasi-Poisson and negative
binomial models, such as:

> qpois.rich <- glm(richness ~ canopy þ poly(elev,2) þ precip,
family = quasipoisson)

> nb.rich <- glm.nb(richness ~ canopy þ poly(elev,2) þ precip)

We contrast predictive maps from these “assemble first” models to the prior map
created based on “assemble later”:

#map the Poisson model
> pois.raster <- predict(pois.rich, layers)
> spp.raster <- exp(pois.raster) #back-transform to count scale

To highlight spatial variability between models, we can map their differences:

> spp.diff <- spp.mean.map - spp.raster

There are several important differences between these approaches. In general,
using S-SDMs tend to overpredict species richness (Dubuis et al. 2011; D’Amen
et al. 2015), particularly when using species-specific thresholding (Fig. 11.7b). Yet
these approaches do tend to be correlated (Newbold et al. 2009). We can check this
as:
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> richness.stack <- stack(spp.mean.map, spp.binomial.thres.map,
spp.raster)

> names(richness.stack) <- c("binom-rich", "thres-rich", "pois-rich")
> richness.map.corr <- layerStats(richness.stack, 'pearson',
na.rm = T)

> richness.map.corr

##
$'pearson correlation coefficient'
binom.rich thres.rich pois.rich
binom.rich 1.0000000 0.4150215 0.8118022
thres.rich 0.4150215 1.0000000 0.5685640
pois.rich 0.8118022 0.5685640 1.0000000

$mean
binom.rich thres.rich pois.rich
6.811837 24.379847 6.784896

In this case, there is a much stronger positive correlation when using binomial
realizations from the logistic model than when thresholding predictions. More
fundamentally, by modeling species individually, S-SDMs do not put explicit
constraints on the number of species occurring at a site (e.g., S-SDMs assume biotic
interactions and available energy are not limiting locally) and implicitly suggests a
Gleasonian and species-sorting perspective to community assembly.

Modeling species richness could also be done with subsets of the total number of
species, such as the number of endemics or the number of species in a functional
group. Related metrics, such as calculating Simpson’s or Shannon diversity
(Magurran 2004), could also be modeled directly using a similar approach, although
the type of GLM used might differ, depending on the distribution of the response
variable being considered. Ordination metrics have also been modeled directly in
this way (Faith et al. 2003; Chang et al. 2004). For example, we might extract
ordination axes from our community data (see below) and then model those axes
directly.

Dissimilarity Modeling. Another application of assemble first is focused on
interpreting beta diversity by first assembling species into a species dissimilarity
matrix. With that information, one can use generalized dissimilarity modeling
(GDM) (Ferrier et al. 2007), Mantel tests (Legendre et al. 2005), or distance-based
redundancy analysis (Legendre and Anderson 1999) to model beta diversity across
space. Here, we focus on GDM; see below for some applications of Mantel tests and
redundancy analysis.

The gdm package can fit generalized dissimilarity models (GDMs). There are
several ways in which data can be formatted for the gdm package, which is typically
accomplished with the formatsitepairs function prior to implementation of
the GDM algorithm. We illustrate one format that most closely aligns with the data
formats used above. Briefly, we take a site-by-species data matrix for the response
variables and a site-by-covariates matrix for the explanatory variables. It requires a

11.3 Examples in R 447



site id column, then x–y coordinates can be specified for each site (coordinates can
also be passed into the model function separately), and the remaining site-by-species
data. Other formats gdm accepts include list formats and passing dissimilarity
matrices that have been previously created rather than the raw input data.

> library(gdm)
> siteID <- 1:nrow(species.matrix)
> site.utm <- data.frame(x = species.site$x, y = species.site$y)

> gdm.species.matrix <- data.frame(cbind(siteID, site.utm,
species.matrix))

> gdm.site.matrix <- data.frame(cbind(siteID, site.cov))

The gdm package uses a dissimilarity matrix of species composition between
sites as the response variables. We use a Sørenson dissimilarity matrix. We format
the data with the formatsitepair function:

#get gdm formatted object
> gdm.data <- formatsitepair(gdm.species.matrix, bioFormat = 1,
dist = "bray", abundance = F, XColumn = "x", YColumn = "y",
siteColumn = "siteID", predData = gdm.site.matrix)

Note that gdm passes the raw species data to the vegan package to calculate a
dissimilarity matrix. In this case, we specify the Bray–Curtis dissimilarity metric and
because abundance ¼ F, such that this metric collapses to the Sørenson index.
With this newly formatted object, we can run the GDM algorithm with the gdm
function:

> gdm.dist <- gdm(gdm.data, geo = T)
> summary(gdm.dist)

The geo ¼ T command tells the function that our geographic distance matrix
should be used as a covariate in the model. The summary function provides several
key results. First, it provides information on the deviance explained by the model.
This can be thought of as a metric similar to metrics of the variation explained (R2).
Note that if we re-fit the above model without our geographic information (using
geo ¼ F), the proportion of deviance explained drops only from 13.2% to 12.7%
such that geographic effects explain little variation in dissimilarity overall in this
dataset. For each covariate, the summary function also provides information on the
coefficients fit to the explanatory variables. Recall that one aspect of GDM is the use
of I-splines: non-linear, monotonic (non-decreasing) splines for interpreting turnover
across environmental or spatial gradients. The gdm function defaults to using three
knots (see Chap. 6 for discussion of the use of knots in splines) to create I-splines and
the summary output provides information on the spline fitting. The user can manu-
ally alter the number of knots and their location with splines and knots
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commands. It is also straightforward to interpret the estimated environmental rela-
tionships from the model object that is created. For example, we can plot the partial
response plots as:

> plot(gdm.dist , plot.layout = c(3,2))

These plots (Fig. 11.8) provide several insights. First, the maximum height of
each spline describes the total magnitude of change along the gradient for the
explanatory variable (Manion et al. 2018). In this case, elevation captures the largest
change, while the geographic distance captures the least. The shape of the spline
provided information on the rate of change (turnover) in the community and where
the rate of change is greatest.

We can also make spatial predictions from a gdm model object in several ways,
but care should be taken. First, we can use the predict function to assess model fit,
that is, plot the predicted dissimilarity as a function of the observed dissimilarity
(output not shown):

> gdm.fit <- predict(gdm.dist, gdm.data)
> plot(gdm.data$distance, gdm.fit, xlim = c(0,1), ylim = c(0,1),
lines(c(0,1),c(0,1)))

In this case, the model is a relatively poor fit to the data. This is not too surprising,
given the low amount of deviance explained by the model. We can also predict over
space. There are several steps to do so. First, we need to transform the raster layers
based on the GDM model:
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Fig. 11.8 (a) GDM partial plots and predictions of dissimilarity. (b) Mapping dissimilarity, where
similar colors represent similar communities
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> gdm.trans.data <- gdm.transform(gdm.dist, layers)
> plot(gdm.trans.data)

The gdm.transform function takes a gdm object and transforms the raster
layers for further analysis into “biological space” (Manion et al. 2018), such that the
values represent the dissimilarity along each gradient where the minimum value for
the covariate is zero and the maximum reflects the maximum dissimilarity across the
gradient. Consequently, the result of this function is a prediction of dissimilarity for
each environmental gradient. Note that the order of the raster layers must be in the
same order as specified in the GDM model. To make an overall prediction of
dissimilarity based on all variables, we need to combine predictions for each
covariate (raster layer). We can either: (1) scale and sum each individual variable
when the number of variables are small; or (2) use principal components analysis
(PCA) when the number of variables is large (see vignette in Manion et al. 2018).
Here we show an example using PCA. PCA is an ordination technique for reducing
the dimensionality of multivariate data, wherein PCA produces new variables (i.e.,
principal components) from multivariate data that are linear combinations of the
original multivariate data. We will not focus on the details of how PCA works here;
interested readers should see Legendre and Legendre (1998). For relatively large
rasters, we can first sample the raster values and then use these values in a PCA.

> sample.trans <- sampleRandom(gdm.trans.data, 10000)
> sample.pca <- prcomp(sample.trans)

#inspect
> summary(sample.pca)

##
Importance of components:
PC1 PC2 PC3 PC4 PC5
Standard deviation 0.1556 0.08892 0.04303 0.02779 0.01519
Proportion of Variance 0.6924 0.22600 0.05292 0.02208 0.00659
Cumulative Proportion 0.6924 0.91841 0.97133 0.99341 1.00000

> round(sample.pca$rotation,2) #eigenvectors

##
PC1 PC2 PC3 PC4 PC5
xCoord 0.04 �0.13 0.07 0.26 �0.95
yCoord �0.02 0.10 0.03 0.96 0.25
canopy 0.04 0.01 1.00 �0.04 0.06
elev 0.77 �0.63 �0.03 0.04 0.13
precip 0.64 0.76 �0.03 �0.04 �0.09
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Here, the first two principal components explain 92% of the variation (taken from
the “Importance of components” table). The eigenvectors provide informa-
tion on the linear combinations of the original data that make up the new PC
variables. In this case, the first two components are elevation and precipitation
effects, while the third focuses on canopy cover. This result makes sense, given
the partial predictions (Fig. 11.8a) and correlations among variables. With this PCA,
we can then predict the pc scores onto the data. Here, we just focus on the first three
principal components, using the index¼1:3 command.

> gdm.pca <- predict(gdm.trans.data, sample.pca, index = 1:3)

This will provide predictions for each PC. One way to create an integrated
prediction is via rescaling the PCs to a 0–1 scale and summing them by using the
plotRGB function from the raster package (see vignette in Manion et al. 2018).

#scale to 0-1 range
> gdm.pca <- (gdm.pca - minValue(gdm.pca)) /
(maxValue(gdm.pca) - minValue(gdm.pca))

> plotRGB(gdm.pca, r = 1, g = 2, b = 3, scale = 1)

In the above plot, we specify that the first PC reflects the red channel, the second
the green channel, etc.; scale ¼ 1 notifies the plotRGB function that the
maximum values are 1 for the PC data. Note that by scaling the PCs in a standardized
way and then using the plotRGB command, we are implicitly weighting each PC
similarly. Taken together, this predictive map (Fig. 11.8b) reflects differences in
community composition across space, with similar values reflecting similar
communities.

11.3.3.3 Assemble and Predict Together

Increasingly, community models assemble and predict together. There are several
advantages of doing so. Some frequently used techniques include some types of
constrained ordination (Guisan et al. 1999) and multivariate GLM-like models,
sometimes referred to as “joint species distribution models” (Dorazio et al. 2006;
Ovaskainen et al. 2010; Wang et al. 2012).

Direct Gradient Analysis. Direct gradient analysis, such as RDA and CCA, is
frequently used in community modeling. The vegan package can implement RDA
and CCA; here, we focus on RDA. These models use a site-by-species matrix as the
response variables. Blanchet et al. (2014) noted that the case of using binary data in
an RDA is equivalent to the use of a distance-based RDA (see below; Legendre and
Anderson 1999) when dissimilarity is quantified based on the simple matching
coefficient:
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1� aþ d

aþ bþ cþ d

� �0:5

, ð11:12Þ

where a, b, and c are defined as in Eq. (11.4), and d is the number of sites where both
species are absent. In this way, a simple RDA can be fit as:

> rda.bird <- rda(species.matrix ~ canopy þ poly(elev,2) þ precip)
> rda.bird

##
Call: rda(formula = species.matrix ~ canopy þ poly(elev, 2) þ precip)

Inertia Proportion Rank
Total 7.1866 1.0000
Constrained 0.8163 0.1136 4
Unconstrained 6.3703 0.8864 53
Inertia is variance

Eigenvalues for constrained axes:
RDA1 RDA2 RDA3 RDA4
0.4356 0.2517 0.0769 0.0522

Eigenvalues for unconstrained axes:
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
0.3771 0.3384 0.3102 0.2809 0.2553 0.2274 0.2111 0.2033
(Showed only 8 of all 53 unconstrained eigenvalues)

The output provided by typing rda.bird shows the proportion of the total
inertia (~variance) explained by the constraining axes. It also provides the eigen-
values for the constraining axes along with eigenvalues for the top unconstrained
axes. What does this really mean? Recall that RDA can be thought of as a multi-
variate regression where the fitted values from separate regressions for each species
are then subjected to PCA (Borcard et al. 2011). RDA computes new axes that are
linear combinations of all explanatory variables. There will be as many constrained
axes as there are explanatory variables, though the first axis will explain more
variation than the second, the second more variation than the third, etc. Eigenvalues
for each axis are proportional to the variation explained based on the new axes, while
eigenvectors reflect the weight of each explanatory variable for explaining that axis.
The eigenvalues of the unconstrained (PCA) axes represent the amount of residual
variation that is not captured by the explanatory covariates. The summary function
provides site and species scores, along with the summary of inertia described above.
Specifically, this shows the 'species scores', and the 'site con-
straints', which reflect where the species and sites (point count locations) fall
in this constrained multivariate ordination space. We can extract the site and species
scores for plotting and further interpretation with the scores function (output not
shown):
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> scores(rda.bird, choices = 1:2, display = "sites")
> scores(rda.bird, choices = 1:2, display = "species")

These scores can be plotted using “biplots” with the plot function, which is a
common way to visualize ordination data (Fig. 11.9a, b).

Permutation tests, where rows of the community matrix are shuffled, to assess the
significance of the RDA axes can be accomplished with the anova function:

> anova(rda.bird)

##
Permutation test for rda under reduced model
Permutation: free
Number of permutations: 999

Model: rda(formula = species.matrix ~ canopy þ poly(elev, 2) þ precip)
Df Variance F Pr(>F)
Model 4 0.8163 24.893 0.001 ***
Residual 777 6.3703
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

The term “anova” is a bit of a misnomer here—it is not an analysis of variance
test. However, the output of the permutation test can be summarized in a similar way
and provided like a standard ANOVA table. In this case, despite the fact that the
RDA axes explain little variation in variance (inertia), these axes are considered
significant based on the permutation test. Each covariate can also be tested sequen-
tially (by ¼ 'term') or at the same time:

> anova(rda.bird, by = 'mar')#marginal tests
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Fig. 11.9 Redundancy analysis on the bird community. (a) biplot based on site scores, (b) biplot
with species scores (shown are four-letter species codes based on the American Ornithological
Society’s standardized codes), and (c) mapping predictions of species scores for the varied thrush
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##
Permutation test for rda under reduced model
Marginal effects of terms
Permutation: free
Number of permutations: 999

Model: rda(formula = species.matrix ~ canopy þ poly(elev, 2) þ precip)
Df Variance F Pr(>F)
canopy 1 0.1291 15.752 0.001 ***
poly(elev, 2) 2 0.4043 24.658 0.001 ***
precip 1 0.2427 29.607 0.001 ***
Residual 777 6.3703
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Results from this permutation show that each explanatory variable explains
significant variation in the species data. There are several other ways to summarize
RDA and we will not cover all of them here. See Borcard et al. (2011) for more
details.

Finally, we can map elements of our RDA model across the region of interest
(Fig. 11.9). In this case, we can make predictions based on site scores (the linear
combinations of environmental covariates) or species scores as:

#first convert raster to data frame
> layers.df <- as.data.frame(layers, xy = T, na.rm = T)

#predict site scores onto new data frame
> rda.site.pred <- predict(rda.bird, layers.df, type = "lc")

#predict species scores onto new data frame
> rda.species.pred <- predict(rda.bird, layers.df, type = "response")

Predictions can be mapped in space. In Fig. 11.9, we illustrate mapping the
species scores for the varied thrush (to compare with mapping in Chap. 7). Species
scores could be truncated to 0, 1 data based on optimal thresholds that split
occurrence observations (Liu et al. 2005), and then summed for predictions of
species richness, similar to the S-SDM approach explained above.

In contrast to using a species occurrence matrix, we could instead use a dissim-
ilarity matrix in RDA, termed distance-based redundancy analysis, or dbRDA
(Legendre and Anderson 1999). In that case, we would be assembling first (com-
munity dissimilarity) and then interpreting dissimilarity between locations, analo-
gous to generalized dissimilarity modeling. This form of RDA can be accomplished
with the capscale function in the vegan package. See Blanchet et al. (2014) for
discussion on the relationship of dbRDA to RDA.

Multivariate Regression. Several univariate modeling approaches have been
extended to model multiple species simultaneously, sometimes referred to as joint
species distribution models (jSDM) (Clark et al. 2014; Pollock et al. 2014;
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Ovaskainen et al. 2016b). These include multivariate logistic regression models,
multi-species occupancy models, multivariate machine learning methods (e.g., neu-
ral networks), and multivariate adaptive regression splines. These methods can be
very complex; here, we illustrate some simpler implementations that illustrate these
types of models.

We start with a multivariate logistic regression that is formulated through the use
of species-level random effects. In Chap. 6, we used random effects as a potential
means of accounting for spatial dependence. Specifically, we fit multilevel models
by adding random effects (e.g., transects, grids, or watersheds) that capture spatial
hierarchies in the data. In doing so, we were adding “random-intercepts” to the
modeling framework. Another type of random effect is a “random coefficient” (aka a
“random slope”). This type of random effect allows for an effect of a predictor
variable to change with the random effect (Fig. 11.5). If we add species as a random
coefficient, then this would allow us to consider that species may respond differently
to environmental covariates.

To implement a multivariate logistic model, we need to use community data in a
long, rather than wide, format. To do so, we will merge the species.matrix and
site.cov objects and then use the melt function with the reshape2 package.

> species.matrix.df <- data.frame(cbind(site.cov,
species.matrix))

> sp.multi <- melt(species.matrix.df, id.vars = c("elev",
"canopy", "precip"), variable.name = "SPECIES", value.name =
"pres")

With this format, we can start with a random intercept model with the glmer
function in the lme4 package:

> library(lme4)
> multi.int <- glmer(pres ~ canopy þ elev þ I(elev^2) þ precip
þ(1|SPECIES), family = "binomial", data = sp.multi,
glmerControl(optimizer = "bobyqa"))

> summary(multi.int)

##
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [
glmerMod]
Family: binomial ( logit )
Formula: pres ~ canopy þ elev þ I(elev^2) þ precip þ (1 | SPECIES)
Data: sp.multi
Control: glmerControl(optimizer = "bobyqa")

AIC BIC logLik deviance df.resid
35404.4 35456.1 �17696.2 35392.4 41440
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Scaled residuals:
Min 1Q Median 3Q Max
�2.4474 �0.4686 �0.2841 �0.1620 6.7555

Random effects:
Groups Name Variance Std.Dev.
SPECIES (Intercept) 1.751 1.323
Number of obs: 41446, groups: SPECIES, 53

Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) �1.59635 0.24292 �6.572 4.98e�11 ***
canopy �0.35606 0.03881 �9.175 < 2e�16 ***
elev 0.89779 0.23139 3.880 0.000104 ***
I(elev^2) �0.42630 0.08412 �5.068 4.02e�07 ***
precip �0.32776 0.05357 �6.118 9.47e�10 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Correlation of Fixed Effects:
(Intr) canopy elev I(l^2)
canopy 0.041
elev �0.623 �0.048
I(elev^2) 0.595 0.045 �0.986
precip �0.200 �0.121 0.014 �0.006

In this case, we are modeling the presence–absence of each species and including
canopy, elevation and precipitation as predictors for each species. We include
species as a random intercept, but no other effect of species. This model formulation
would then account for variation in species occurrence (i.e., prevalence), but it
assumes that all species respond to environmental variables similarly. Consequently,
the above model is not very helpful in most situations. However, we can extend this
model by adding random coefficients of species and their relationships with canopy
and elevation:

#random coefficient model by species
> multi.coef <- glmer(pres ~ elev þI(elev^2) þ canopy þ precip þ
(1|SPECIES)þ(0 þ elev|SPECIES) þ(0 þ I(elev^2)|SPECIES) þ (0 þ
canopy|SPECIES) þ (0 þ precip|SPECIES), family = "binomial",
data = sp.multi)

In this case, we also include random coefficients for the species effect with
environmental variables (e.g., (0 þ elev|SPECIES)). The syntax for random
effects structure in lme4 can be a bit daunting (Bates et al. 2015). Above, the 0 tells
lme4 that there is no random intercept of species (because we have already specified
it separately) but elev|SPECIES states that there is a random coefficient of
species with elevation. This allows species to respond differently to these covariates.
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However, it does assume that these random coefficients come from the same normal
distribution. In doing so, it implicitly assumes species respond somewhat similarly to
these covariates and for species with very little information, it will pull those species’
coefficients toward the mean across species (Dorazio et al. 2010). That assumption
can be relaxed to some degree using Bayesian methods, which can account for
phylogenetic dependence among species and the potential for species interactions
altering outcomes (Ovaskainen and Soininen 2011), but we do not cover those
methods here. Note that we may want to scale variables (using the scale function)
prior to fitting this model to help improve model convergence. We can view output
from this model as:

> summary(multi.coef)

##
Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [
glmerMod]
Family: binomial ( logit )
Formula: pres ~ elev þ I(elev^2) þ canopy þ precip þ (1 | SPECIES) þ (0 þ
elev | SPECIES) þ (0 þ I(elev^2) | SPECIES) þ (0 þ canopy |
SPECIES) þ (0 þ precip | SPECIES)
Data: sp.multi
Control: glmerControl(optimizer = "bobyqa")

AIC BIC logLik deviance df.resid
32514.0 32600.3 �16247.0 32494.0 41436

Scaled residuals:
Min 1Q Median 3Q Max
�8.1046 �0.4232 �0.2506 �0.0462 25.7761

Random effects:
Groups Name Variance Std.Dev.
SPECIES (Intercept) 5.0330 2.2434
SPECIES.1 elev 2.7689 1.6640
SPECIES.2 I(elev^2) 0.5695 0.7547
SPECIES.3 canopy 0.9091 0.9534
SPECIES.4 precip 3.3542 1.8314
Number of obs: 41446, groups: SPECIES, 53

Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) �2.2549 0.3623 �6.224 4.84e-10 ***
elev 2.2226 0.3625 6.131 8.73e-10 ***
I(elev^2) �1.0261 0.1493 �6.871 6.37e-12 ***
canopy �0.5030 0.1398 �3.598 0.000321 ***
precip �0.5416 0.2609 �2.076 0.037882 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

11.3 Examples in R 457



Correlation of Fixed Effects:
Intr) elev I(l^2) canopy
elev �0.381
I(elev^2) 0.331 �0.547
canopy 0.010 �0.008 0.005
precip �0.041 �0.003 0.002 �0.008

Parameters estimated from the model can be viewed as (output not shown):

> fixef(multi.coef)
> ranef(multi.coef)
> coef(multi.coef) #combines fixed and random effects
> coef(multi.coef)$SPECIES[,"CC2"]

Interestingly, in some cases when random coefficients are added, the effect may
no longer be significant (when without the random coefficient they are). Why would
that be? In general, if there is a great deal of variation in effects of an explanatory
variable across species, then, once captured, the marginal effect may vanish. Pre-
dictions from the model can be compiled similar to above as:

> glmm.map <- list() #stores map predictions

# extract maps for all species
> for (i in 1:Nspecies){
logit.raster <- coef(multi.coef)$SPECIES[i,1]þ
coef(multi.coef)$SPECIES[i,"elev"] * Elev þ
coef(multi.coef)$SPECIES[i,"canopy"] * Canopy
prob.raster <- exp(logit.raster) / (1 þ exp(logit.raster))
glmm.map[[i]] <- prob.raster
}

Note that here we are grabbing the species-specific random coefficients to make
predictions. We can also make partial predictions of environmental relationships for
each species, similar to what we did in Chap. 6. Partial predictions (or response
curves) provide a means to visualize how the response variable changes with a
covariate, while holding all other covariates constant (typically at their mean value).
To do so, we look more closely at the output from this model and contrast it to the
individual models we created using the S-SDM approach. Below, we contrast out-
puts for the black-capped chickadee (Poecile atricapillus):

> coef(multi.coef)$SPECIES[2,] #GLMM coefficients

##
(Intercept) elev I(elev^2) canopy precip
BCCH �0.2874097 2.089603 �1.322244 �0.2010582 �1.359818
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> pred.coef[[2]] #GLM coefficients from S-SDM
(Intercept) canopy poly(elev, 2)1 poly(elev, 2)2 precip
0.09001473 �0.17531427 �15.42057383 �5.72431042 �1.43894282

We find that the multivariate model generally estimates similar coefficients for the
variables, except for elevation. The different coefficients can be partly explained by
the way in which elevation was modeled using the poly function for the S-SDM
(which re-scales the variable to ensure each polynomial term is orthogonal) but with
the I function for the multivariate regression. We can generate partial plots by first
creating a new data set for predictions. Below, we focus on elevation effects:

> site.cov.df <- data.frame(site.cov)
> elev.range <- seq(min(site.cov.df$elev),
max(site.cov.df$elev), length = 20)

> precip.mean <- mean(site.cov.df$precip)
> canopy.mean <- mean(site.cov.df$canopy)

> newdata.glmm <- data.frame(expand.grid(SPECIES = species.20,
precip = precip.mean, elev = elev.range, canopy =
canopy.mean))

Note that we set the other variables to their mean values and then use the
expand.grid function to create a new data frame for predictions. With these
data we can use the predict function to generate partial plots for each species:

> pred <- predict(multi.coef, newdata.glmm, type = "response")
> glmm.pred <- cbind(newdata.glmm, pred)

These predictions show that most species are relatively rare and do not respond
strongly to elevation and precipitation in the landscape, whereas some of the more
common species respond both positively and negatively to these variables
(Fig. 11.10). We can use this model in a similar way to our S-SDM to predict
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Fig. 11.10 Partial predictions for elevation effects for each of the 53 species from the random
coefficient model for (a) elevation and (b) precipitation, and the (c) resulting prediction for species
richness across the region
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species richness across the region. We could use a simple thresholding technique or
obtain binomial realizations from the model using the binary.map function to
derive species richness from the glmm.map output in an identical way as shown in
Sect. 11.3.3.1. This model leads to similar predictions for species richness than the
approach taken in the S-SDM code above (compare Fig.11.10c to Fig. 11.7a).

11.3.4 Spatial Dependence in Communities

While the above modeling frameworks provide a means for predicting and mapping
communities across space, most of what we have illustrated does not account
directly for spatial dependence (Dray et al. 2012).

We consider several approaches for addressing the problem of space. First, we
consider the spatial dependence of the community data via multivariate correlograms
and variograms. Multivariate correlograms can be fit with several packages. We start
with a Mantel test on geographic distance and follow it with a Mantel correlogram,
which uses a distance matrix regarding community composition as the response
variable:

#calculate distance matrix
> dist.matrix <- as.matrix(dist(site.utm))

#Mantel test
> mantel(sorenson, dist.matrix, method = "pearson", permutations =
999)

##
Mantel statistic based on Pearson's product-moment correlation

Call:
mantel(xdis = sorenson, ydis = dist.matrix, method = "pearson",
permutations = 999)

Mantel statistic r: 0.1141
Significance: 0.001

Upper quantiles of permutations (null model):
90% 95% 97.5% 99%
0.0147 0.0191 0.0221 0.0265
Permutation: free
Number of permutations: 999

The Mantel test finds significant ( p < 0.001), but weak (r ¼ 0.11), correlation of
community dissimilarity with geographic distance, consistent with the geographic
effects observed in the GDM (Fig. 11.8). More broadly, we can calculate a Mantel
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correlogram with the vegan package to better understand spatial dependence in
species dissimilarity:

#correlogram
> mantel.corr <- mantel.correlog(sorenson, XY = site.utm, cutoff
= T, r.type = "pearson", nperm = 99)

Here, we find modest evidence for spatial dependence in the community data
(Fig. 11.11a). Consequently, we may wish to revisit some of the above modeling
approaches to explicitly account for spatial dependence.

11.3.5 Community Models with Explicit Accounting
for Space

We can extend direct gradient ordination methods to account for space. In this case,
we are doing a partial RDA, in which geographic distance is conditioned or
“partialled out” before considering the environmental covariates. Note that it is not
possible to pass the entire geographic matrix into a partial RDA; instead, we need to
summarize the spatial structure in some way. Consequently, we create a spatial
weights matrix from a Euclidean distance matrix. With this distance matrix, we can
use a principal coordinates analysis on a truncated distance matrix to capture spatial
structure, as we did in Chap. 6. In this case, we can use the pcnm function in the
vegan package:

#Principal Components on Neighborhood Matrices
> pcnm.dist <- pcnm(dist.matrix)

−0.10

−0.05

0.00

0.05

0.10

0 50 100 150 200

Distance (km)

M
an

te
l c

or
re

la
tio

n

5.0

5.5

6.0

6.5

0 50 100 150 200

Distance (km)

Va
ria

nc
e

ba

Fig. 11.11 Interpreting community-level spatial dependence. (a) The Mantel correlogram based on
species dissimilarity, and (b) the multivariate variogram from residuals in the RDA
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The pcnm function defaults to setting the truncation to the minimum distance that
provides a connected network using the minimum spanning tree of the distance
matrix. We then fit a partial RDA, controlling for space.

#partial RDA
> rda.partial <- rda(species.matrix ~ canopy þ elev þ precip þ
Condition(scores(pcnm.dist, choices = 1:10)))

In the above model, we arbitrarily use the first ten PCNM axes from the PCNM
analysis. We could more formally screen pcnm variables for their effects using the
permutation test described above and then incorporate variables that explain varia-
tion in species occurrence:

> rda.distance <- rda(species.matrix ~ (scores(pcnm.dist)))
> rda.distance
> anova(rda.distance, by = 'axis', permutations = 200)

We find that the first two axes explain the majority of the spatial variation. We
then re-fit the partial RDA with only those pcnm variables of importance. In this
case, once we partial out spatial effects, the environmental covariates are still
considered important based on permutation tests. This is consistent with results
from the GDM showing that turnover could largely be explained by environmental,
rather than geographic, variation.

To understand the spatial dependence in the residuals of community ordination
models, we can use “multiscale ordination,” or a multivariate variogram on the
residuals of a RDA (or CCA) model (Wagner 2004).

> mso(rda.bird, site.utm, grain = 1000, perm = 200)

#variogram based on residuals
> plot(mso.rda$vario$H, mso.rda$vario$CA)

In this function, grain refers to the bin size for distance classes, so here we choose
a 1-km grain (Fig. 11.11b). This analysis finds evidence for spatial dependence at
distances<3 km, consistent with what we found in Chap. 6, but it identifies a smaller
range in spatial dependence than the correlogram based on raw dissimilarity.

We have already seen how space can be accounted for in GDMs. In addition,
Chap. 6 shows how space could be accounted for in S-SDMs through the use of
spatial regression models fit to each species. To date, spatial dependence for
multivariate regression techniques has been less explored than for univariate spatial
regression approaches. In principle, adding spatial weighting functions, such as
eigenvector mapping, could be straightforward to implement. Other approaches
covered in Chap. 6 may be more difficult to implement.
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11.4 Next Steps and Advanced Issues

11.4.1 Decomposition of Space–Environment Effects

Isolating the role of space relative to environmental effects is important for under-
standing the mechanisms of community assembly and factors that may limit com-
munity structure. There has been a long tradition in some areas of community
ecology to decompose the spatial effect from environmental effects using variance
partitioning methods (Borcard et al. 1992; Peres-Neto et al. 2006). In this approach,
several models are fit with and without key covariates (e.g., geographic distance in
and out of the model) (Cushman and McGarigal 2002). By quantifying changes in
the variance explained (or inertia explained in some modeling approaches, such as
RDA), isolating the role of space and environmental effects can be quantified. While
such approaches can be helpful, caution must be used because variance partitioning
relies on some implicit assumptions, such as the assumption that interactions do not
occur between covariates and that biologically these variables are conceptually and
empirically independent. Variance partitioning can be implemented several ways in
R; see the varpart function in the vegan package for one approach.

11.4.2 Accounting for Dependence Among Species

There is increasing interest in explicitly modeling the dependence among species in
spatial modeling of communities, what is frequently referred to as joint species
distribution models (Clark et al. 2014; Pollock et al. 2014; Warton et al. 2015a).
Such dependence can arise for a variety of reasons, including effects of species
interactions, phylogenetic dependence, and the fact that species may use similar
environmental gradients, such that the distribution of one species may help predict
the distribution of another. The generalized linear mixed model approach and its
extensions are common ways to address these issues. In the above code, we provided
the simplest implementation where we assumed that species came from a common
distribution. However, more complex dependences can be addressed. In most of
these situations, Bayesian hierarchical models are used to capture potential latent
variables that may capture the species dependence in a formal way. See the boral
and HMSC packages that can fit such models (Hui 2016; Ovaskainen et al. 2017).

11.4.3 Spatial Networks

Communities are often described as networks of interacting species (Bascompte
2007; Ings et al. 2009). In Chap. 9, we considered spatial networks, where nodes
were patches and links were reflected movement or flow. In a community context,
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nodes typically represent species and links represent interspecific interactions. The
network approach to communities has revealed several insights into community
structure and stability. In particular, a network approach can potentially capture
indirect effects in communities, such as diffuse species interactions and indirect
interactions, as well as providing a means to quantify and interpret emergent
structure in communities. Increasingly, there has been interest in applying this
general approach in space as a means to interpret metacommunity dynamics and
related spatial issues (Araújo et al. 2011; Gonzalez et al. 2011). For example, spatial
networks of species interactions have been used to determine spatial beta diversity
(Poisot et al. 2012, 2017). Community networks are starting to be used to tackle
conservation problems as well (Kaiser-Bunbury and Bluthgen 2015).

11.5 Conclusions

Spatial modeling of communities is an important and rapidly advancing topic in
spatial ecology and conservation (Dray et al. 2012; Warton et al. 2015b; D’Amen
et al. 2017). Much of this work has focused on predicting and mapping community
structure, including species richness and beta diversity across space. This informa-
tion is often used in conservation planning both locally and globally (Myers et al.
2000; Brooks et al. 2002; Wilson et al. 2006; Gray et al. 2016; Cardinale et al. 2018).

Despite these rapid advances, there are many challenges to understanding and
modeling spatially structured communities. While there has been rapid growth in the
theory of spatially structured communities (Gravel et al. 2011; Leibold and Chase
2017), often data are limited for interpreting how different factors govern commu-
nity structure across space. The use of species co-occurrence data for these questions
has a long history (e.g., Diamond 1975), but it can be unclear the extent to which
co-occurrence can provide information on limiting factors, such as dispersal limita-
tion and species interactions (Borthagaray et al. 2014; Freilich et al. 2018). Current
challenges for spatial modeling of communities include better capturing dependen-
cies among species, spatial dependence, and the potential for dispersal limitation to
impact observed outcomes (Cumming et al. 2010; Rota et al. 2016; Clark et al. 2017;
Tikhonov et al. 2017). Furthermore, better integration of community theory with
empirical modeling of communities (e.g., Dorazio et al. 2010) is needed to interpret
why communities assemble and better predict how they may change over time.
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Chapter 12
What Have We Learned? Looking Back
and Pressing Forward

12.1 The Impact of Spatial Ecology and Conservation

Nearly 25 years ago, Peter Kareiva emphasized that space was the final frontier for
ecology (Kareiva 1994). To understand the importance of space, the field of spatial
ecology has emerged as a central focus for many topics in ecology and conservation
(see Chap. 1). Looking back at the last two decades, it is impressive just how much
the problem of space has intrigued the minds of ecologists and conservation biolo-
gists. This focus has arisen from both theoretical and applied developments, most
notably the growth of landscape ecology, spatial analysis, and the increased avail-
ability of spatial data. This growth has made huge impacts on the field, and we
expect those impacts to increase with time. Several key insights have emerged from
spatial ecology, many of which have been emphasized throughout this book.

Ecological and spatial theories are now well developed that emphasize the role of
space on populations and communities (Hastings and Gross 2012). For populations,
metapopulation theory has made several general insights (Hanski 1999; Hanski and
Ovaskainen 2003), many of which are supported through empirical investigations
(e.g., Hames et al. 2001; but see Baguette 2004). In recent years, metacommunity
theory has developed rapidly and is still growing (Leibold and Chase 2017), with
ongoing tests of the utility of this theoretical development in explaining community
structure (Logue et al. 2011). Metaecosystem theory has also emerged, borrowing
ideas from metacommunity theory and placing them squarely in the context of
ecosystem ecology (Loreau et al. 2003; Loreau and Holt 2004; Massol et al.
2011; Gravel et al. 2016).

The role of spatial and temporal scale is now widely recognized and integrated
into most ecological and conservation problems (Levin 1992; Hein et al. 2006; Boyd
et al. 2008; Hastings 2010; Power 2010). Spatial scale can alter conclusions on the
drivers of species and communities, and conservation decisions are impacted by the
scale at which problems are viewed. Multiscale and multilevel modeling of species–
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environment relationships are becoming standard (Boyce 2006; Mayor et al. 2009;
Nichols et al. 2008; McGarigal et al. 2016).

Spatial dependence and autocorrelation are widely recognized as being pervasive
(Bini et al. 2009), being both nuisance issues that researchers must account for but
also opportunities for a better understanding of ecological processes and more
accurate predictions of ecological patterns (Legendre 1993). A wide variety of
approaches are now used to diagnose and account for spatial dependence (Dale
and Fortin 2009; Beale et al. 2010; Bardos et al. 2015), and in some cases ignoring
this autocorrelation has proved dangerous (Crase et al. 2014).

Space use, resource selection, and species distribution are related, fundamental
topics for ecology and these approaches now primarily focus on a spatially explicit
understanding of how and why distribution varies (Guisan and Zimmermann 2000;
Wilson et al. 2004; Guisan and Thuiller 2005; Aarts et al. 2012; Wisz et al. 2013).
Several insights have emerged from these efforts regarding the role of abiotic, biotic,
and movement limitations in driving distribution (Soberón 2007). Biotic interactions
are often thought to drive distributions at local scales, movement limitations at
moderate scales, and abiotic factors at large scales (Pulliam 2000; Soberón 2010;
Barve et al. 2011). These efforts have also made insights regarding how habitat
quality and distribution are related in space and time.

Insights from spatial ecology are now making major impacts for conservation.
Spatial concepts are at the forefront of information used for conservation problems
and decision-making. Ongoing issues, such as the land-sharing versus land-sparing
debate for limiting impacts of agriculture on biodiversity (Perfecto and Vandermeer
2010), are firmly grounded in spatial ecology (Fischer et al. 2014). Many conserva-
tion planning priorities, such as facilitating species complementary and representa-
tion in reserve design (Margules and Pressey 2000; Kukkala and Moilanen 2013),
rest on spatial ecology concepts. The use of indicators for conservation decisions
also increasingly acknowledges spatial ecology concepts (Lindenmayer et al. 2000).
Several policies around the world have integrated elements of spatial ecology. For
example, the Conservation Reserve Enhancement Program in the USA uses spatial
information regarding riparian buffer widths in their allocations to farmers.

Spatial modeling tools are now well integrated into conservation. These tools
have been used for prioritizing lands for future acquisition (e.g., the delineation of
new protected areas). Tools are commonly used for forecasting the effects of climate
change, such as the use of species distribution models, and identifying climate
adaptation strategies where conservation is needed most (Heller and Zavaleta
2009; Bellard et al. 2012; Guisan et al. 2013). Ecosystem services are increasingly
viewed from a spatial perspective and spatial mapping of such services is now
common (Naidoo et al. 2008; Kandziora et al. 2013; Schagner et al. 2013; Verhagen
et al. 2017). These types of exercises are now used in policy decision-marking (Maes
et al. 2012). Connectivity modeling is increasingly used to identifying limitations for
populations with land-use and climate change (Pascual-Hortal and Saura 2006;
Crooks and Sanjayan 2006; Rudnick et al. 2012; Lawler et al. 2013).
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12.2 Looking Forward: Frontiers for Spatial Ecology
and Conservation

With the advancement of spatial ecology concepts and tools, and their illustration in
this book, it is useful to identify new directions and ongoing challenges for the field.
Here, we provide an idiosyncratic discussion of prospects.

Throughout this book, we have focused primarily on the spatial dimension of
ecology and conservation. This emphasis was inspired by many key developments in
ecology and conservation, such as the realization of the importance of spatial scale
and the developments of metapopulation, metacommunity, and metaecosystem
ecology. Yet this spatial emphasis always plays out in the context of time (Hastings
2010). Understanding spatiotemporal dynamics are increasingly emphasized being
necessary to interpret ecological dynamics and to better contextualize conservation.
For instance, understanding movement ecology and accurately predicting connec-
tivity are contingent on the time scale being considered (Zeigler and Fagan 2014). A
variety of spatiotemporal modeling approaches are being developed to predict
ecological patterns and processes (Gelfand 2007; Chen et al. 2011; Thorson et al.
2016; Martensen et al. 2017; Wittemyer et al. 2017).

In ecology, it is increasingly recognized that ecological and evolutionary pro-
cesses can operate simultaneously and feedback on each other (Schoener 2011).
Furthermore, evolutionary processes are often relevant to conservation. Yet spatial
eco-evolutionary interactions are only beginning to be explored. For example,
despite decades of research on habitat loss and fragmentation, and the fact that
environmental change can have strong selection pressures on dispersal (Cheptou
et al. 2008), empirical work on the spatial effects of land-use and related environ-
mental change on eco-evolutionary processes is limited (Farkas et al. 2015; Legrand
et al. 2017).

While the importance of scale is now well known and many tools exist for
diagnosing scaling effects (Keitt and Urban 2005; Chandler and Hepinstall-
Cymerman 2016), integrating patterns and processes across levels of organization
and scales remains an important frontier in ecology (Peters et al. 2007; Chave 2013;
Carmona et al. 2016). Such integration will require formal linking of different types
of data operating at different spatial and temporal scales (Talluto et al. 2016).

In applied ecology and conservation, coupled human-natural systems is a frame-
work that emphasizes feedbacks of humans and human decision-making on biodi-
versity and how biodiversity may then feedback into human decision-making (Liu
et al. 2007; Turner et al. 2007). Several examples exist, each of which highlights the
complex interplay of humans and their environment (Hull et al. 2015; Liu et al.
2015). While spatial concepts and modeling tools are often used to explore such
topics, further methodological and conceptual advancements are needed. In partic-
ular, modeling frameworks that honor feedbacks and potential mismatches of sam-
pling and process scales are needed. All these modeling approaches will require
ecological data to parameterize them.
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Forecasting changes in biodiversity in space and time is increasingly needed for
guiding decision-making and for accurately predicting the effects of environmental
change (Clark et al. 2001; Botkin et al. 2007; Barnosky et al. 2012). Accurate
forecasting over the near-term and the long-term can be incredibly challenging,
however. Understanding the time frame for which spatiotemporal forecasts can be
usefully made, termed the “ecological forecast horizon,” is an ongoing priority
(Petchey et al. 2015). To make useful predictions, embracing different types of
uncertainty is required. Uncertainty can arise from a variety of sources (Regan
et al. 2002; Nichols et al. 2011), and oftentimes either uncertainty is ignored or is
only partially addressed.

Finally, the use of “big” data is increasingly embraced in ecology and conserva-
tion (Kelling et al. 2009). Big spatial data are now being collected in a variety of
ways. These types of data include remotely sensed data (Kerr and Ostrovsky 2003;
Turner et al. 2003), data from citizen science programs (Dickinson et al. 2010), and
field data where automated data collection occurs (Tomkiewicz et al. 2010). For
example, drones are now being used to obtain high-resolution data on plants and
animals (Anderson and Gaston 2013). Acoustic arrays capture spatial variation in
activity of animals and their communication, as well as other aspects of the “sound-
scape” (Blumstein et al. 2011; Mennill et al. 2012; Merchant et al. 2015). The use of
high-resolution GPS telemetry data has exploded in recent years (Cagnacci et al.
2010). In each of these cases, ecologists will need to use new analytical and
modeling tools for interpreting ecological patterns and processes with big data
(Hochachka et al. 2007; Olden et al. 2008; Kampichler et al. 2010).

12.3 Where to Go from Here for Advanced Spatial
Modeling?

Throughout this book, we have provided an introduction to a broad suite of topics and
problems in spatial ecology and conservation. Our aim for this book was to provide a
foundation and springboard rather than an in-depth, advanced account of each of these
problems. There are several excellent books dedicated to specific topics covered here,
such as species distributions (Franklin 2009; Peterson et al. 2011; Guisan et al. 2017),
resource selection and animal movement (Hooten et al. 2017), connectivity (Crooks
and Sanjayan 2006), point patterns (Baddeley et al. 2015), geostatistics and spatial
statistics more broadly (Cressie 1993; Cressie andWikle 2011;Dale and Fortin 2014),
spatial population biology (Hanski 1999; Ovaskainen et al. 2016), metacommunity
ecology (Holyoak et al. 2005), and spatial conservation planning (Moilanen et al.
2009). Some of these books focus more on ecological modeling (Franklin 2009),
while others provide a detailed accounting of concepts and theory (Hanski 1999).
There are also several excellent books also specifically focus on the use of R for
general spatial analysis and modeling outside of ecology and conservation (Bivand
et al. 2013; Baddeley et al. 2015: Brunsdon and Comber 2015). Finally, for landscape
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ecology problems, Gergel and Turner (2017) provided a useful set of exercises that
illustrate a variety of software that can be used.

There are also several modeling approaches and tools in R that we did not cover.
Some of them focus on using advanced statistics, such as Bayesian spatial modeling,
while others cover more specific topics, such as point pattern analysis on 1D
surfaces. In general, R is rapidly advancing for spatial modeling and analysis. We
encourage the reader to check out: http://rspatial.org. Another useful link for a
summary on various R packages for spatial data is: https://cran.r-project.org/web/
views/Spatial.html.

The topics covered in this book are increasingly merged together for more
complex problems. For example, systematic conservation planning is often
implemented in conservation biology (Margules and Pressey 2000). In this general
approach, spatially explicit information on land use, biodiversity, connectivity, and
socioeconomic costs are developed, often using spatial concepts described in this
book (Loiselle et al. 2003; Rondinini et al. 2006; Carvalho et al. 2016; Gunton et al.
2017). With this information, optimization routines are often used to identify (near)
optimal decisions for land prioritization and key areas under threat from environ-
mental change (Pressey et al. 2007). From a modeling perspective, many of the
inputs required can be implemented with tools described here, although for optimi-
zation, R has not been fully developed for integrating this information. Rather,
programs such as Marxan and Zonation are frequently used (Moilanen 2007;
Watts et al. 2009).

Another advanced approach for spatial modeling that is commonly used is agent-
based (or individual-based) modeling (DeAngelis and Mooij 2005; Grimm et al.
2005). Agent-based modeling can be useful for capturing highly detailed complexity
of variation in the spatial environment and how individuals respond to the environ-
ment (be it individual plants or animals). Agent-based models are often used to gain
a detailed understanding of scenarios that may impact a location, such as climate
change, management strategies (DeAngelis et al. 1998), or disturbance regimes.
They are also increasingly used to interpret population viability (Pulliam et al. 1992;
Schumaker et al. 2014). We did not cover agent-based modeling in this book because
it is often very case specific and frequently R is not the best platform for agent-based
modeling. Rather, agent-based modeling is commonly performed with lower-level
programming languages, such as Cþþ. One common software designed for agent-
based modeling is NetLogo (Sklar 2007). This software can now be implemented
through R with the RNetLogo package (Thiele and Grimm 2010; Thiele et al.
2012).

12.4 Beyond R

Throughout this book, we have used R to illustrate spatial ecological concepts and
models. R is incredibly useful for many problems in spatial ecology and conserva-
tion, and it is excellent for teaching these principles. Nonetheless, R does have its
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limits for spatial modeling. R has limits in its ability to use, manipulate, and model
spatial data. In particular, R typically accesses objects and data stored in memory. As
a consequence, there is a hard limit on the size of data that can be used in R, where
limits are based on the memory on the user’s computing platform (see memory.
size and memory.limits functions). This limit makes working with large
spatial data cumbersome and impractical in some situations. R can also be awkward
for viewing spatial data: it is straightforward to zoom into locations on maps (see for
example Chap. 2), but the ability to rapidly alter the visualization is impractical in
most situations. In these cases, there are at least two solutions. First, there are several
ways to link R with other types of spatial software. Second, one may wish to exit R
and work with other software.

R can be coupled with other useful packages for spatial analysis. QGIS (http://
qgis.org/) and GRASS (https://grass.osgeo.org/) GIS are both open-source GIS
software that can interface with R. QGIS is more of an all-purpose GIS, while
GRASS is specifically tailored for spatial modeling. In R, QGIS can be called
through the recently developed RQGIS package (Muenchow et al. 2017), which
can also provide a means to access some GRASS functions. Within GRASS, R can
be called with the rgrass7 package (Bivand 2017). There is also some limited
linkages of ArcGIS extensions with R (e.g., the geospatial modeling environment)
and ArcGIS now has a toolbox extension that allows users to call R from within
ArcGIS.

Other software can used for spatial modeling. These include other GIS software,
such as ArcGIS, QGIS, GRASS, and PostGIS. ArcGIS is useful for mapping, but is
limited for spatial modeling (particularly statistical models). QGIS and GRASS GIS
have several spatial modeling functions that make them useful alternatives to
R. PostGIS is increasingly used for big data, such as GPS telemetry, because of its
ability to manipulate large amounts of spatial data. Other spatial analysis programs
include Programitta for point pattern analysis (Wiegand and Moloney 2014), and
Passage (Rosenberg and Anderson 2011) for several types of analyses. More
all-purpose software is also sometimes used, such as Python, Matlab, and Cþþ.
In particular, Python is frequently used (e.g., Etherington et al. 2015), in part because
of the fact that ArcGIS uses the Python programming language.

12.5 Conclusions

We have come a long way in our understanding of when space is (and is not!) critical
for ecology, and how spatial ecology can help guide management and conservation
decisions. Spatial issues are now foundational bedrock for most ecological questions
and conservation problems. Looking forward, we expect these issues will be even
more embraced with the flood of spatial data now available. The steps ahead to take as
much as possible advantage of the large amount of data are to develop: (1) method-
ologies that combine data with different spatial and temporal resolutions; and
(2) meta-models that couple ecological, evolutionary, and human processes from
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one scale to another (Talluto et al. 2016; Ferguson et al. 2017). Such advancements
will help ecologists to formally link spatial issues with other key issues to better
understand how biodiversity and ecosystem function will respond to environmental
change, such that they will play an increasingly essential role in ecology and
conservation.
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Appendix A: An Introduction to R

Introduction

In this book, we use R to illustrate several important concepts and analyses in spatial
ecology and conservation. In the context of spatial ecology and conservation, R is an
impressive, do-it-all software, where we can seamlessly go back and forth from
spatial data to models, mapping, and analysis, all while visualizing the data and
results that we find. For spatial analysis relevant to spatial ecology and conservation,
R is particularly strong, both in terms of depth and breadth, which makes it a very
useful software for the topic of this book.

R is a high-level, command-driven language. While there is sometimes a steep
learning curve to using R, there are several benefits of using R. First and foremost,
the use of commands (rather than GUI/menu-driven approaches) allows for “scripts”
to be written, which facilitates reproducible science. This benefit cannot be
overstated. The ability to go back and repeat data summaries and analyses is
incredibly important in science, and is one important element of reproducible science
(Casadevall and Fang 2010; Munafo et al. 2017). It may also make your life easier if
you notice an error in data or realize that you need to add some more data to your
analysis. Second, by using scripts, we can potentially automate mundane tasks that
we have to repeatedly do. This benefit helps free some of our time to focus on more
interesting and important issues. Third, R is an open software, meaning that users,
like yourself, can contribute to its development. Finally, R is free. This is perhaps our
students’ favorite reason for using R.

Here, we provide a brief overview on the use of R, particularly focused on key issues
that come up throughout the book. While there are several detailed and helpful books on
the use of R in general, and two specifically on spatial data in R (Bivand et al. 2013;
Brunsdon and Comber 2015), we intend this Appendix to provide an introduction that
will allow readers to understand the main chapters of our book without having to go to
other books for interpreting R-specific details of programming that are presented in the
main chapters. To illustrate the use of R, we use the data described in Chap. 6.
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R Beginnings: Before Any Analysis

We assume that many readers of this book may be new users of R. For instance, in
graduate courses at the University of Florida, we find that about 1=3 to 1=2 of students
have not used R or do not feel comfortable using R when they begin the course on
this topic. Beginning R can be a daunting task, but one that is ultimately worthwhile.

Often new users of R jump right into data analysis and modeling without having a
solid foundation of how R works. This can lead to frustration. Here we provide some
key basics that will hopefully limit those frustrations so that users can focus on the
more interesting and fun topics of spatial ecology and conservation.

R Packages

Much of the heavy lifting done in R is through various R packages (or libraries). We
use a variety of R packages throughout the book, but we will really just scratch the
surface of R packages. There are literally thousands of R packages. R comes with
several packages installed (e.g., MASS) and enabled (e.g., stats, graphics), but
most of the ones we use we in the book will need to be downloaded from the CRAN
website manually and loaded for use. For R packages relevant to spatial data
analysis, see: http://cran.r-project.org/web/views/Spatial.html. It is important to
keep in mind that while many packages, particularly those that come installed with R,
have been well vetted, users can download and use packages that have not been well
vetted. Consequently, when you first open R, you will see on the console, “R is free
software and comes with ABSOLUTELY NO WARRANTY”. Through the years
the R base system version changed and it now at version 3.4.3 at the time of this
writing; some R packages were developed for this version, while others were
developed for previous versions of R.

Editors for R

To facilitate writing R scripts an advanced editor can help. Editors allow you to more
easily interpret code than using the script prompt in R, because different commands
and statements will be coded in different colors and fonts. While this may seem like
not a big deal, in practice this can be an enormous help.

R comes with an editor, but it is very minimalistic. For Mac users, many find that
the editor that comes with R is sufficient, but Windows users typically like to
download other editors rather than using the editor provided in the R download.
Some common editors people use include: RStudio, Tinn-R, Notepadþþ, Vim (and
Vim-R), and Emacs Speaks Statistics. RStudio has quickly become perhaps the most
common editor for running R. See http://rstudio.org/. It is generally easy to use and
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has some really nice functionality. This is what we typically use for teaching. It has
several advanced features that make it helpful. Prior to the development of RStudio,
Tinn-R was a popular editor for R. Notepadþþ (with NppToR package for sending
code to R) is a general editor (not specific to R), but it is very intuitive and easy to
use. Finally, Emacs Speaks Statistics (ESS; http://ess.r-project.org/) is an editor that
works well on Macs.

The R Prompt, Console, and Editor

Once you have downloaded and installed R (and perhaps an editor for R, such as
RStudio), you can fire it up. We can work in R in two general ways. First, we can
work directly on the command line, which looks like:

>

On the line we can type a variety of code and hit enter. For example, you type:

> 3 þ 7

You will get:

##
[1] 10

So R can be used as a calculator. But that is not its main power. While you can
type directly on the command line, most of the work you will do will be writing code
on the Editor and then passing parts (or all) of the code to the console to run analyses.

In the code we provide, you will often see statements that start with #. These
statements are comments regarding the code in R. R ignores them. For example, if
you write.

#R is a calculator
> 3 þ 7

And hit enter, R ignores everything after # and provides:

##
[1] 10

We can also make and store new variables or summary statistics from analyses:

> d <- 3 þ7
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or

> d = 3 þ 7

The¼ sign may be used in place of the <- operator for the purpose of assignment,
but there are some situations where the former does not work for assignment,
whereas the latter always does. In this book, we use <- throughout. Note that you
must then type d and hit enter to retrieve the result:

> d

##
[1] 10

If you see a “þ” symbol on the R prompt, it indicates that R expects more code. If
you want to escape this line and start over, simply hit the Esc button on your
computer. Importantly, R is case-sensitive, so “Ecology” and “ecology” are NOT
considered the same!

Getting Help in R

One common criticism of R is that the documentation is not as useful as some other
software programs. However, once you understand the way in which R summarizes
help information, it can be quite useful. For any function, you can retrieve some
useful information on various functions with the following code, which focuses on
using the lm function (linear model function) in R:

> ?lm

Or equivalently:

> help(lm)

Both commands provide information on linear models in R. Note that this
command takes you to a standardized window, which provides details on the various
options for the function, shows you what the default options are (under Usage), what
the function returns (e.g., the results of a linear regression), and it provides examples
of its implementation. Examples are designed such that you can copy the code to
your console and they should work without any additional code or information
needed. This standardized output can be very helpful. You can also get help on
packages by either typing the specific function in the package (as above), or asking
for general help:

> help(package="MASS")
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The above command will provide you with information on the MASSpackage,
which comes with the R program. Many packages come with vignettes that provide
examples on the use of the package. There are also a variety of message boards and
list-serves online that provide a means to have questions answered by other R users.
These forums have an impressively large number of examples, questions, and
answers that can be found by using search terms in search engines on the Internet.
One important list-serve for spatial analysis is the R-sig-geo mailing list (https://stat.
ethz.ch/mailman/listinfo/r-sig-geo).

R Classes

Understanding how R works requires understanding R classes. There are several
types of R classes—these are structures used for storing and handling data. You need
to understand these to fully understand R and leverage its capabilities. There are
general types of classes used in R as well classes specific to spatial data (see below)
and objects that can be created from various analyses done in R. Common R classes
include: variables, vectors, matrices, arrays, data frames, and lists.

We have already seen the use of variables above. For instance, we can create a
variable, x, and give it a value of 4:

> x <- 4

Vectors of data are commonly used. A vector is typically a string of numbers
(think a column of data in a spreadsheet). We can create a vector in a variety of ways:

> x.vector <- vector(mode = "numeric", length = 4)
> x.vector <- 1:10
> x.vector <- c(0,4,0,1)

In the first line above, we explicitly name a vector and define it as “numeric,”
which means the vector can hold numeric data that are real numbers (positive or
negative, with decimals). The second line creates a string from 1 to 10 (in integers).
The third example uses the c function (or concatenate function) to string together the
four numbers that follow c.

We can access information from a vector in a variety of ways. If we simply type
the vector name, the entire vector will appear. Alternatively, we can call elements of
the vector using a variety of commands. Below, we first view the entire vector, then
grab elements 1–3, and finally access all elements that are >1.

#accessing data from a vector
> x.vector
> x.vector[2]
> x.vector[1:3]
> x.vector[x.vector > 1]
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We can expand on the vector concept by creating matrices and arrays. A matrix is
essentially a vector in 2-dimesions, typically thought of as rows and columns in a
spreadsheet. Arrays extend matrices in >2 dimensions. These are a bit harder to
visualize but can be very helpful in some applications, such as if we want to store
several matrices of the same dimensions. It is important to note that matrices and
arrays must have the same type of data in each dimension. Below, we illustrate
making a square, 5 � 5 matrix, and subsequently making an array, that is essentially
composed of 2, 5 � 5 matrices.

#making a matrix
> x.matrix <- matrix(0, nrow = 5, ncol = 5)

#making an array
> x.array <- array(0, dim = c(5, 5, 2))

Similar to vectors, we can access elements of matrices in a variety of ways. Note
that in this case, we use single brackets with two elements, where the first element
represents the rows in the matrix and the second element represents the columns.

#accessing data from a matrix
> x.matrix
> x.matrix[2,2] <- 5
> x.matrix[,2] <- 2
> x.matrix[3,] <- 3
> diag(x.matrix)<- 1

Data frames are commonly used. The constraint mentioned above regarding
matrices and arrays requiring the same type of data is relaxed with data frames.
Data frames can be thought of as a two-dimensional matrix where different columns
of data can have different data types. For instance, one column could have characters
(e.g., names of sites), while another column might include numeric values. Data
frames are often the type of R class used when going from a spreadsheet to R. We
can populate new data frames in a variety of ways. Below is an example with three
columns of data, one with character information, a second with numeric information,
and the third we population with NA (no data):

> x.df <- data.frame(site = c("North", "South", "Mid"), x = 1:3, y = NA)

Finally, lists are very handy and are commonly used to store R output. A list is a
set of any of the above classes. For instance, one component of a list could be a
vector, another an array and even another a data frame. This flexibility is why so
much output in R is stored as a list. Here is an example where we create a list of a
vector and a matrix.

#making a list that is a combination of data objects above
> x.list <- list(x.vector, x.matrix)
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To access information elements from lists, we use a double-bracket notation for
the main elements (rather than single brackets as used for vectors, matrices, and
arrays). Single brackets can be used to access lower-level information. For instance,
in this example we can use double brackets to view the vector and matrix, but
combine double bracket and single-bracket notation to access specific elements of
the matrix.

> x.list[[1]]
> x.list[[2]]
> x.list[[2]][1, 2]

Getting Data Into and Out of R

If we save spreadsheets or database files as a .txt or .csv file type, we can then import
the .txt file into R. We will import two data files, which are used in Chap. 6 on spatial
prediction. The first is a data file that includes point-count data from Montana as part
of a landbird monitoring program. In this monitoring program, transects were placed
across the region, with 10 point counts on each transect, placed approximately 300 m
apart. It includes presence–absence data (or detection, non-detection data) on one
species, the varied thrush. The second file includes potential covariates that might be
of interest, in terms of explaining thrush distribution.

Before we import these data, it is useful to set the working directory. The working
directory is a folder on your computer where R will default to looking at when
importing data and it will also be the default location for exporting or saving data.
This can be done in at least two different ways. First, we can use the setwd
function:

> setwd(‘C:/Desktop/’) #your working directory may be different!
#Or equivalently:

> setwd(‘C:\\Desktop\\’)

If you use the above commands, make sure that the path is correct! One way to
check is to open up Windows Explorer and find where the folder is. You can right
click on the folder and select “Properties.” In the pop-up window on the General tab,
you will find the path after “Location.” The alternative way to ensure the directory is
correct is to use drop-down menus. In R: use the menu options (File>Change dir). In
RStudio, use the menu options to do the same (>Session>Set Working
Directory>Choose Directory).

Once we have set the working directory, we can import the data files using the
read.table or read.csv functions:

> landbird <- read.csv("vath_2004.csv", header = T)
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The header ¼ T statement (T is for “True”) tells R that your file has a header
line. Note that header labels should not include spaces (if they do, R will alter the
names). The read.table function defaults to storing the data as a data frame,
which can be manipulated to some degree (e.g., you can add columns of data). You
can then call columns (vectors) of data with the header label (more on this below).
Also note that in the above code, we did not specify a path/directory for where the
data are stored, so R will look in the working directory. The same file could be
accessed by providing the entire path:

> landbird <- read.csv("C:/ Spatial Ecology Book/Data/vath_2004.csv",
header = T)

If you are having problems with the read.table statement, it is likely because
the working directory is not set to the correct folder. Consider opening the file in
Windows Explorer (or Mac equivalent) and copying-and-pasting the directory path
to reduce the likelihood of typing errors. Another way to accomplish this goal is to
use file.choose():

> landbird <- read.table(file.choose(), header = T)

The file.choose statement will let you use point-and-click windows methods
for finding and importing your file. Here, we also provide the covariate data as a .csv:

> landbird_cov <-read.csv("vath_covariates.csv", header = T)

We can also export data from R in a straightforward way. For example, there are
several write functions (write.table, write.csv, writeRaster, etc.). To
export the array described above we can use the write.table or write.csv
function:

> write.table(x.array, file = "array.txt", sep = " ")
> write.csv(x.array, file = "array.csv")

Finally, you can save all of your work in R. This is accomplished by:

> save.image(“Appendix_results.RData”)

Note that you need to specify the extension .RData. You can then reload this
information later, which can be very helpful when restarting an R session (so that
analyses and models will not need to be rerun).

> load(“Appendix_results.RData”)

496 Appendix A: An Introduction to R



This is particularly useful when you have done analyses that take a considerable
amount of time. It also provides a means to have an organized workspace that you
can share with others.

Functions in R

Much of what you will work on in R involves the use of functions. Commands such
as load, write.table, and data.frame are all functions that perform one or
more series of operations.

One very important and useful component of R is the ability to write your own
functions. The primary reason why you might want to write your own functions is to
help automate some sort of operation(s). For example, we could make a function that
calculates the mean of a series of numbers (a vector):

> mean.function <- function(x){
`N <- length(x)
`mean.x <- sum(x)/N
`return(mean.x)
}
> mean.function(x.vector)

So, how does this work? The function created requires that we pass an R class (x).
Note that we are not formally declaring in this case whether x is a scalar (single
number), a vector, or a matrix, so we have to be careful in this way. Then, within the
curly brackets we first determine the number of records using the length function.
With that we can then calculate the mean by summing all of the values and dividing
by N. return tells R what it should provide when the function is run. If we have not
included return, R would provide the last calculation (in this case, it would be fine).

If you write functions, a common way to make them available in any r script is
through the use of the source command. To do so, you would want to have a file
that contains the relevant functions that you might want to use, say it is called
myfunctions.R. Then in any R script, you can call the functions by stating:

> source("myfunctions.R")

In this example, myfunctions.R is stored in the working directory. If your
functions are not stored in the working directory, the entire path should be explicitly
stated.
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Data Access, Management, and Manipulation in R

Accessing Data

We can access data stored in R objects in a variety of ways, particularly for data
frames. To see the headers of a data frame, simply type:

> names(landbird)

Other useful functions for getting a feel for your data include:

> head(landbird)
> tail(landbird, 3)

The str function is particularly useful. It shows how the R object is structured.

> str(landbird)

Now we can immediately do some simple summaries, by calling the data we
imported. For example, if you want to access a vector in the data set, you can use:

#three ways to access the first column of data
> landbird[ , 1]
> landbird [,"SURVEYID"]
> landbird$SURVEYID

#accessing row 1 of data
> landbird[1, ]

The above commands provide us with a means to grab different parts of data in a
streamlined way. If you want to know the numbers of columns and rows of your data
(the dimensions), type:

> dim(landbird)

Or just the rows or columns:

> nrow(landbird)
> ncol(landbird)

If you want to know the unique values observed for a given variable, such as the
values of POINT, type:

> unique(landbird$POINT)
> levels(landbird$POINT)
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Note that levels is useful for factor variables, while unique is applicable to
any variable.

Merging, Appending, and Removing

A common issue in data management is combining two different data sets that have
the same unique identifier. For example, let us say you have data on bird presence–
absence in one spreadsheet and you have another spreadsheet that has covariate (e.g.,
vegetation) information that was measured at these locations. The merge function is
helpful for combining data sets:

> landbird < -merge(landbird, landbird_cov, by = "SURVEYID", all=T)

Above we over-wrote the landbird data frame to add the covariates to the data
frame. Now take a look at this new data frame, by using str(landbird). What do
you see? You can also merge based on>1 variable with the c function. For instance,
if we had different years of data, we could use a statement within the merge
function like by ¼ c("SURVEYID", "YEAR").

You can append data by simply using the rbind function. This function
combines rows of data (cbind combines columns of data). Note that the data you
append must have the same format (including the same headers when combining
data frames) as the existing data.

Data Subsetting and Summaries

Often, we may want to acquire subsets of data. In R, there are a few ways to subset
data. If we want a subset of the data, such as the points where varied thrush were
detected, we could type:

> landbird.pres <- landbird[landbird$VATH == 1, ]

#or with subset:
> landbird.pres <- subset(landbird, VATH == 1)

#subset based on two variables
> landbird.pres.mesic <- subset(landbird, VATH == 1 & Mesic == 1)

Summary statistics can be calculated using several approaches. You can also
make simple calculations easily on the vectors of data. For example, you can get
summary statistics, such as the mean value for elevation (Elev), the standard
deviation, min, or a specific quantile:
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> mean(landbird$Elev)
> sd(landbird$Elev)
> min(landbird$Elev)
> quantile(landbird$Elev, probs = 0.05)#lower 5% quantile

Let us say you want to calculate one of these functions (e.g., the mean) on a subset
of the data. Simply type:

> tapply(landbird$Elev, landbird$VATH, mean)

Or equivalently,

> tapply(X= landbird$Elev, INDEX = landbird$VATH, FUN = mean)
#two variables:

> tapply(landbird$Elev, list(landbird$VATH, landbird$Mesic), FUN
= mean)

The above calculates the mean elevation value for locations where varied thrush
were detected and locations where it was not detected (it calculates the function on
the first variable based on the levels of the second variable). If we wanted to
simultaneously calculate summary statistics for many variables, we could use the
sapply or lapply functions, which calculate the means for multiple variables for
all the data (not a subset, like tapply), or the summary function:

> summary(landbird)

Three commonly used packages for manipulating and summarizing data are the
reshape2, plyr, and dplyr packages, created by Hadley Wickham (2007). The
plyr package provides a straightforward way to do summaries of data, such as
means and standard deviations, similar in some respects to the tapply function,
through the use of the ddply function:

#summarize by VATH presence/absence
> ddply(landbird, .(VATH), summarize,
`elev.mean = mean(Elev),
`elev.sd=sd(Elev))

This function returns a data frame that summarizes the data. In this case, it will
provide the mean and standard deviation of elevation for locations where varied
thrush were present and absent. Similarly, we could get means as a function of two
variables by altering the first line of data:

> ddply(landbird, .(VATH, Mesic), summarize,
`elev.mean = mean(Elev),
`elev.sd = sd(Elev))
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The dplyr package has largely replaced the plyr package, because it has more
functionality. It requires a bit more background for its use, but once one becomes
familiar with the syntax it is very powerful. It is beyond the scope to cover the dplyr
package, but the above approach with ddply can be re-created in the dplyr
package as:

> landbird %>% #pipe
`group_by(VATH, Mesic) %>% #categories for grouping
`summarise(elev.mean= mean(Elev),
`elev.sd=sd(Elev))

The use of dplyr partially rests on the idea of making an all-purpose language
for data manipulation. In this case, the use of %>% is a “pipe” operator, where we are
calling a data frame (landbird) and then can make other calls to functions in the
code; that is, it allows for the output of one function to be the input for another.
group_by provides a means to then get summaries of the data by the categories
mention in the group.

Reformatting Data

There are several ways to create new variables, such as changing continuous data to
binary (0/1) data or to a set of categories. If you want to convert continuous data into
binary data (i.e., 0/1 data) or categorical data, we can do this in at least two ways. For
this example, we can convert the continuous value of elevation to a new factor
variable, of low and high elevation, based on the median value.

> elev.median <- median(landbird$Elev)

> landbird$Elev_cat <- "low"
> landbird$Elev_cat[landbird$Elev > elev.median] <- "high"

#or
> landbird$Elev_cat2 <- as.factor(ifelse(landbird$Elev > elev.median,
"high", "low"))

If we take a look at the structure of the data again (using str(landbird)), we
find the new columns, but that R still considers the first variable we created to be a
character, rather than a factor. To change the structure to categorical:

> landbird$Elev_cat <- factor(landbird$Elev_cat)

Note that if>2 categories need to be created, the cut function can accommodate
this task.
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The reshape2package focuses on the task of restructuring data, or “reshaping”
data. Oftentimes, data can generally be considered to be in “wide” or “long” formats
(Fig. A.1). The distinction is clear when working with data on repeated measures,
such as repeated surveys at a location over time. In a wide format, repeated samples
for a given location will be represented by additional columns of data, such as each
year of sampling, and only one row occurs for each sample location. In contrast, in a
long format, there may be only one column, “Year,” and each sampling location may
have several rows of data, one for each year (Fig. A.1). The reshape2 package
makes it straightforward to go from wide to long format using the melt function,
and going from long to wide format using the cast function.

As an example, we take the landbird data, which has each point (POINT) within
each transect in a long format, and convert it to a wide format using the dcast
function.

> transect.vath <- dcast(landbird, TRANSECT ~ POINT, value.var =
"VATH")

In this case, dcast creates a new data frame where each row is a transect and the
columns are the point counts (1–10) along each transect, with the values in each
column being the presence or absence of the varied thrush. Note that in the above
formula, variables on the left side of the tilde (~; TRANSECT) are identification
variables to keep, whereas variables on the right side of the tilde are variables that
will be swung into wide format. This type of restructuring of data can be very helpful
if interest is in creating “detection histories” used for mark–recapture or occupancy
modeling or creating site by species matrices for community data. If we were starting
with wide format data and would like to convert it to long format (which is the most
common format used for statistical modeling in R), we would use the melt
function. Here, we can melt the wide-formatted data we just created:

> transect.long.vath <- melt(transect.vath, id.vars = "TRANSECT",
variable.name = "POINT", value.name = "VATH")

Location Year Species
A 2014 36
A 2015 35
A 2016 38
B 2014 23
B 2015 18
… … …

Species
Location 2014 2015 2016
A 36 35 38
B 23 18 17
C 44 48 46

a b

Fig. A.1 (a) Wide versus (b) long versus formats for hypothetical data on species richness at
different sampling locations (A, B, C) over time
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Note that this new data frame is longer than the original data frame because it
includes NAs for transects where<10 points occurred. We can remove those lines of
data, if we wish using a variety of approaches, such as the complete.cases
function:

> transect.long.vath <-transect.long.vath[complete.cases(transect.
long.vath[,3]),]

Finally, another common approach to summarizing and reformatting data is using
the apply function. The apply function takes matrices or data frames and applies
a function (either an existing function or a custom function, like stderr described
above) to either the rows or the columns of data. For instance, we can use apply to
sum up the detections by row for the wide-format data just created by:

> apply(transect.vath[,2:11], 1, sum, na.rm = T)

For the apply function, the first statement reflects the data of interest, the second
statement reflects whether the function is applied to rows (1) or columns (2), the third
statement provides the function (here, sum), and the last simply states to ignore NA
values. In this case, this argument would be equivalent to the rowSums function:

> rowSums(transect.vath[,2:11], na.rm=T)

While the rowSums (and colSums) function works well in this regard, the
power of the apply function is that we could just as easily use a customized
function to do row or column operations. In general, using functions like apply
that focus on vectors tend to be much computationally faster than using for loops and
related functions that pass through rows or columns one row/column at a time.

Graphics in R

R is very well known for its excellent graphics. Simply put, you can make some of
the best graphics producible in R, if given the time and motivation (i.e., it can make
fantastic graphics, but it is not always easy to do so!). In this book, we will typically
not show the code we used for making graphics for figures, but nearly all of the
graphics were made using R (either with the base graphics package or using the
ggplot2package). Below we provide some details regarding the interpretation of
viewing figures as shown in the chapters of the book.

The main function for graphing is plot. It can do quite a lot. For instance, we
can make a simple graph as:

> plot(landbird$EASTING, landbird$NORTHING)
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The first command is displayed on the horizontal axis and the second on the
vertical axis. In this case, we are plotting the UTM coordinates (Easting, Northing)
of each site. To avoid confusion, you could also type:

> plot(x = landbird$EASTING, y = landbird$NORTHING)

Or

> plot(NORTHING ~ EASTING, data = landbird)

The tilde is used in many R stats packages to describe y as a function (~) of x.
There are numerous arguments in the plot function that allows us to specify more
control over the figure. For example, the following code adds x, y labels:

> plot(NORTHING ~ EASTING, data = birds, xlab = "easting (UTMs)", ylab =
"northing (UTMs)")

We can also make other types of plots. For example, we can plot the pattern of
elevation and mesic and Easting, which presumably should be correlated:

> plot(landbird$Elev, landbird$Mesic)
> plot(landbird$Elev, landbird$EASTING)

One can also make a multi-panel scatter plot by calling several columns (or rows)
of data you want to consider:

> plot(landbird[ ,c(4:5,7)]

Or equivalently

> pairs(landbird[ ,c(4:5,7)])

This calls plots for each combination of columns 5–7 (easting, northing,
elevation).

We can also calculate boxplots to summarize distributions of data.

> boxplot(landbird$Elev)

Finally, we can easily graph histograms of the data as well:

> hist(landbird$Elev, xlab = "Elev", main = "")

There are numerous other neat ways that R can provide figures, but it is beyond
the scope of this introduction to provide examples. For those interested in graphics,
see ggplot2 and lattice.
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Spatial Data in R

Spatial data are data that have a spatial reference, that is, the data are associated with
geographic locations. These locations have coordinate values and a reference system
associated with these coordinates. Reference systems are representations of Earth
(e.g., the shape of Earth). Locations can have associated information, frequently
termed attribute data.

Spatial data come in many forms. Two general types of data include vector-based
data and grid (or raster) based data (Fig. A.2). Vector-based data include data in the
form of points, lines, or polygons, while raster data are based on lattice grids. Both of
these data types are useful, but often (though not always) in spatial ecology and
conservation we use raster data for analyses and modeling, rather than vector data.
Note that we can potentially convert data from vector to raster and vice versa, as we
shall see below.

Using Spatial Classes

There are a variety of classes for spatial data in R (Bivand et al. 2013). It is beyond
the scope of this book to address these thoroughly (see Bivand et al. 2013), but here
we cover common data types and objects used in the book.

R developers created the sppackage to help unify different types of spatial data.
This package can accommodate both vector and raster data (Fig. A.2), including
lines, points, polygons, and grid data. Often this package is loaded with other spatial
packages in R, so in the book we rarely call this package because it is loaded with
calls to other packages.

For vector data, there are three key data classes that several packages use (e.g.,
sp, rgeos): SpatialPoints, SpatialLines, and SpatialPolygons.
There can be data frames associated with each of these, or attribute data, which
provide information for points, lines, or polygons. In such cases, there are data
frames associated with the spatial objects that store information relevant to each
point, line, or polygon, and are referred to as SpatialPointsDataFrames,

Point
(e.g., tree)

Line
(e.g., road)

Polygon
(e.g., wetland)

1 0 0 5 0
1 1 0 0 6
1 0 0 6 0
2 2 6 4 4
0 3 0 0 4

Grid
(e.g., elevation)

SpatialPoints SpatialLines SpatialPolygons SpatialPixel, SpatialGrid
Raster layer, Raster stack

Fig. A.2 Different types of spatial data and their common associated classes in R
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SpatialLinesDataframes, etc. At the time of publication, the sf package
(“simple features”) was launched and we expect sf will be increasingly used for
vector data although we do not focus on it in the book.

As an example, we can take the data frame on bird data used above and create a
SpatialPoints data frame. We first extract the UTM coordinates from the data
frame and associated attributes when want to include with the spatial data.

> points.coord <- cbind(landbird$EASTING, landbird$NORTHING)
> points.attributes <-
`data.frame(transect = landbird$TRANSECT, point = landbird$POINT,
VATH = landbird$VATH)

#create spatial points data frame
> points.spdf <- SpatialPointsDataFrame(points.coord, data = points.
attributes)

> plot(points.spdf)

We can then look at the coordinates in the following way.

> coordinates(points.spdf)

For the attribute data, we can access and extraction information in similar ways to
non-spatial R classes. For instance, we can look up the names of the attribute data
and we can subset the spatial data we just created to only consider locations where
varied thrush were detected:

#look up names of attribute data
> names(points.spdf)

#subset
> points.spdf.pres <- points.spdf[points.spdf$VATH == 1,]
> plot(points.spdf.pres)

Spatial lines and spatial polygons can be treated in similar ways. For example, we
can convert the spatial points data above regarding point locations on transects into a
SpatialLines data frame, with one line for each point. To do so, we use the
lapply and split functions to create a list of points associated with each transect
(105 transects). We can then use this list to create a SpatialLines object and
then add attribute data (one row of data/line) to create a SpatialLines data
frame:

#list of lines for each transect
> points.lines <- lapply(split(points.spdf, points.spdf$transect),
function(x) Lines(list(Line(coordinates(x))), x$transect[1L]))

> str(points.lines)

When looking at the structure of this new object, it shows that we created a list,
where each element of the list (e.g., points.lines[[1]]) represents the x–y
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coordinates for each point on the transect and the transect ID, such that there are
105 list elements (105 transects). We then convert this to a SpatialLines object
and then create a SpatialLinesDataFrame:

> points.sl <- SpatialLines(points.lines)

#add line attributes
> transect.data <- data.frame(transect = unique(landbird$TRANSECT))
> rownames(transect.data) = transect.data$transect #must add ids

> points.sldf <- SpatialLinesDataFrame(points.sl, data = transect.
data)

We can then plot the lines across the region or zoom into one transect by
subsetting the data and re-plotting:

> plot(points.sldf)

#subset and re-plot
> points.sldf1 <- points.sldf@lines[[1]]
> plot(points.sldf1@Lines[[1]]@coords[])
> lines(points.sldf1@Lines[[1]]@coords)

As an example of spatial polygon data, we consider a map of watersheds in the
region. These data come from the level 8 hydrologic unit classification system of the
USGS and USDA. To read these data, we use the readOGR function from the
rgdal package, asking for the folder that contains a vector polygon (.shp) file:

> watersheds<-readOGR("water")

We can glean relevant summary information about this layer in a similar way to
data frames.

> head(watersheds,4)
> summary(watersheds)
> dim(watersheds)

These summaries show that there are 63 watersheds in the region and that this
layer contains several columns of data, most of which are not relevant for our
purposes here. We can plot this watershed layer and add text to the figure:

#plot
> plot(watersheds, col = "gray")
> invisible(text(getSpPPolygonsLabptSlots(watersheds),
`Labels = as.character(watersheds$NAME), cex = 0.4))
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Several standard data manipulation features can be used on
SpatialPolygons. For example, we can subset the layer in a way similar to a
data frame. Below we subset to one watershed, the Bitterroot:

#subset and plot one watershed
> huc_bitterroot <- watersheds[watersheds$NAME == "Bitterroot",]
> plot(huc_bitterroot)
> plot(points.spdf, col = "red", add = T)

If we want to write SpatialPolygons, SpatialPoints, or
SpatialLines to a file for importing into GIS software, such as ArcGIS, we
use the writeOGR function:

#write shp files to folder
> writeOGR(huc_bitterroot, dsn = "water", layer = "bitterroot", driver
= "ESRI Shapefile")

Because these layers have several files associated with them, we call a folder for
the files to be placed with the dsn ¼ statement.

For raster data, we typically use objects from the rasterpackage, although the
sppackage also handles raster data. Rasterlayer, rasterbrick, or
rasterstack objects are very user-friendly and are a workhorse for spatial data
analysis in ecology. Note that raster stack and brick objects are made up of several
raster layers of the same grain and extent. These objects are useful when working
with and manipulating several layers of geographic data. We can load raster layers
with the raster function:

> elev <- raster("elev.asc") #elevation layer

To interpret this raster layer, several aspects of the layer can be readily gleaned,
such as the resolution (grain) and extent of the layer, the number of cells in the layer
and its dimensions.

> res(elev)
> extent(elev)
> dim(elev)
> ncell(elev)
> summary(elev)

The above example only considers one raster layer, but often times we work with
several raster layers for a region. When these raster layers have the same grain and
extent, we can create a raster stack (or raster brick), which is a useful way to have a
raster object that contains information from all rasters. Below we load another raster
layer that contains information on the presence of mesic forest cover.
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> mesic <- raster("mesic.grd")
>plot(mesic)

To make a raster stack, we check to make sure this raster is comparable to the
layer on elevation and then use the stack function to combine.

> compareRaster(elev, mesic)

#create raster stack
> layers <- stack(elev, mesic)
> plot(layers)

There are a variety of useful functions for extracting and manipulating raster data,
which we illustrate throughout the book. Some manipulations include cropping
rasters, extracting values from rasters, and summarizing raster values in particular
regions (or zones).

Projections and Transformations

A common issue in the use of geographic/spatial data is appropriately dealing with
geographic projections. Because of the spherical nature of the Earth, we need a
means to take spatial information and project it onto a flat surface. For example, a
common model is the WGS84, or the World Geodetic System 1984, which is an
ellipsoid model for the shape of the Earth.

When working with spatial data, all maps contain some distortion (e.g., in shape,
distance, direction) from taking the spherical Earth and projecting it onto a flat
surface. This can be done in many ways through the use of different types of
coordinate systems. We always want to be careful about the coordinate systems
being used. In general, each coordinate system is defined by four components:
(1) measurement framework (geographic or planimetric); (2) units of measurement;
(3) map projection; and (4) reference locations (e.g., datum).

There are two kinds of measurement frameworks for coordinate systems: geo-
graphic and projected coordinate systems (or planar coordinate systems). Geo-
graphic coordinate systems (GCS) use latitude/longitude coordinates for locations
on the surface of the Earth whereas projected coordinate systems use analytical
transformations for mapping to a flat surface and rectangular coordinates.

A GCS includes an angular unit of measure, a prime meridian, and a datum (based
on a spheroid). Meridians are lines of longitude and the prime meridian is the line
that is considered the origin. A datum defines the position of the spheroid relative to
the center of the Earth and is a reference from which measurements are made.

A projected coordinate system is defined on a flat, two-dimensional surface.
Unlike a geographic coordinate system, a projected coordinate system has constant
lengths, angles, and areas across the two dimensions. A projected coordinate system
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is always based on a geographic coordinate system that is based on a sphere or
spheroid.

The most important thing is to know what type of coordinate system you are
working with in regard to the GIS layers you are using. However, some coordinate
systems may be better than others for certain problems, depending on what you are
doing and the scale that you are doing it. For global applications, geographic
coordinate systems, such as WGS84, work best. For most large extent, but not
global, applications (e.g., the U.S.A. or even regions of the U.S.A.), it is best to
use an equal-area projection (e.g., State Plane Coordinate System), which allows for
accurate delineations of polygons and distances. For smaller areas (e.g., a few
watersheds), using localized projections may work best for measurements, because
little to no distortion will occur. In this situation, there are different areas or zones
where finely tuned projections occur. But you need to be aware that mapping/
measuring across zones can be problematic.

To describe projections, spatial data in R typically use what is called a coordinate
reference system (CRS). R uses a PROJ.4 formatted character string to describe the
CRS. For example, for geographic data collected in the latitude–longitude coordi-
nate system, we can define the CRS as:

> crs.latlong <- CRS("þproj=longlat þellps=WGS84")

The raster layers we used above for elevation and mesic forest have a different
projection. This projection is based on the Albers Conical Equal Area. It can be
defined as:

> crs.layers <- CRS("þproj=aea þlat_1=46 þlat_2=48
`þlat_0=44 þlon_0=-109.5 þx_0=600000 þy_0=0
`þellps=GRS80 þdatum=NAD83 þunits=m þno_defs")

The above definition contains all information needed to create a CRS, which was
taken from metadata from the R1-VMP map (Brewer et al. 2004) used for creating
the mesic layer described above. Specifically, we state that the proj¼ aea (Albers
equal area), we set the standard latitude parallel 1 to 46, and the standard latitude
parallel 2 to 48, the Central Meridan to �109.5, the latitude of origin to 44, the units
to meters, and the ellipsoid model to Geodetic Reference System 80 (GRS80).

We can determine the current coordinate system for spatial data with the
proj4string function:

> proj4string(points.spdf)

In this case, R has not added a coordinate system to these points. However, we
know that these points are in the same coordinate system as in the R1-VMP. We can
set this CRS as:

> proj4string(points.spdf) <- crs.layers
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Sometimes we might want to transform projections in R of various spatial data for
proper overlaying of different data sources or because we might want to make
calculations (e.g., distance measurements) based on different datum. For instance,
if our original spatial data is in a latitude–longitude format, where the datum is
decimal degrees, we might want to transform the projection to another format, where
the datum is in meters. The sppackage has a function, spTransform, which is
intended to accomplish this task. In this case, we can use this function to transform
our projection. To transform the spatial points to WGS84, we can use this function.
First, take a peek at the coordinates of this object, which are in UTMs:

> coordinates(points.spdf)
> points.spdf.wgs84 <- spTransform(points.spdf, crs.latlong)

Now take look at the new coordinates:

> coordinates(points.spdf.wgs84)

These new coordinates are now in decimal degrees, which is consistent with the
WGS84 projection. For converting rasters, we can take a similar approach with the
projectRaster function from the rasterpackage.

Next Steps: Where to for Further R Mastery?

This Appendix is meant to provide a concise overview of using R, one that aims to
facilitate understanding the examples provided throughout this book. Indeed, we use
information provided in this Appendix to help guide students and new users of R
before diving into specific topics covered in this book.

For further knowledge in using R, there are several excellent sources. For
statistics, there are several books that provide more general overviews (Crawley
2007), as well as books focused on specific types of modeling, such as generalized
linear mixed models (Zuur et al. 2009). For spatial analysis, Bivand et al. (2013)
provided a comprehensive discussion of both handling spatial data in R and spatial
analysis. For an overview of ecological models, Bolker (2008), Borcard et al. (2011),
and Legendre and Legendre (2012) are excellent sources.

References

Bivand RS, Pebesma EJ, Gomez-Rubio V (2013) Applied spatial data analysis with R. Use R! 2nd
edn. Springer, New York

Bolker B (2008) Ecological models and data in R. Princeton University Press, Princeton, NJ
Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New York

Appendix A: An Introduction to R 511



Brewer CK, Berglund D, Barber JA, Bush R (2004) Northern region vegetation mapping project
summary report and spatial datasets, version 42. Northern Region USFS

Brunsdon C, Comber L (2015) An introduction to R for spatial analysis and mapping. Sage
Publications, Inc, London

Casadevall A, Fang FC (2010) Reproducible science. Infect Immun 78:4972–4975
Crawley MJ (2007) The R book. Wiley, Chichester
Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, Amsterdam
Munafo MR, Nosek BA, Bishop DVM, Button KS, Chambers CD, du Sert NP, Simonsohn U,

Wagenmakers E-J, Ware JJ, Loannidis JPA (2017) A manifesto for reproducible science. Nat
Hum Behav 1:0021

Wickham H (2007) Reshaping data with the reshape package. J Stat Softw 21:1–20
Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and

extensions in ecology with R. Springer, New York

512 Appendix A: An Introduction to R



Index

A
Allee effects, 273
Anisotropy, 135, 138, 150–152, 178, 393
Assumption

independence, 134, 136
stationary, 112, 160, 165

Autocovariates, 171, 172, 179, 180, 183, 194,
197, 198, 204, 205

B
Barrier

ecological, 326
physical, 326

Biodiversity, x, 1–3, 5, 6, 21, 23, 55, 58, 61, 62,
64, 83, 92, 101, 213, 321, 360, 419,
420, 425, 427, 476–479, 481

Biotic
homogenization, 427
interactions, 21, 218, 311, 426, 447, 476

Biotic abiotic movement (BAM), 218, 476
Biotope, 216–218, 220
Bivariate

cross-correlograms, 142, 165
cross-semivariograms, 142

Bonferroni adjustment correction, 139
Buffer sizes, 37, 38, 40, 42

C
Calibration plot

threshold-independent, 232
Climate change, 5, 6, 92, 169, 170, 213, 217,

231, 260, 476, 479

Clustering, 88, 108, 125, 126, 134, 226, 310
Colonization-extinction dynamics, 259, 331,

370, 373, 376, 379, 380, 385, 388,
389, 395–403, 405, 409, 421,
425, 433

Community
Gleason, 429, 447
species assemblage, 437

Community environment relationships, 428–431
Complementarity, 6, 23, 428, 437
Connectivity

demographic, 321–324
flow, 323, 332–334
functional, 322, 323, 328, 336, 338–344
gap-crossing, 323
immigration/colonization, 329
integral index, 352
least-cost corridor, 331, 341–343, 358
limit, 326–328
network, 333, 335, 339, 347–349,

351, 352
patch-based, 330, 332, 334, 335, 345, 352,

355–357
probability, 345, 346, 352, 357, 378
propagule pressure, 329, 375
realized, 322–324, 327, 328, 345
resistance, 328–332, 335, 336
stepping-stones, 326, 333, 349, 355
structural, 322, 323, 328, 335, 336

Conservation
corridor, 5, 61, 328, 343
planning, 1, 6, 23, 170, 271, 335, 343, 360,

427, 428, 464, 476, 478, 479
prioritization, 1, 5, 6, 336, 381

© Springer Nature Switzerland AG 2018
R. Fletcher, M.-J. Fortin, Spatial Ecology and Conservation Modeling,
https://doi.org/10.1007/978-3-030-01989-1

513

https://doi.org/10.1007/978-3-030-01989-1


Correlogram
Mantel, 391, 393, 436, 437, 460, 461
multivariate, 165, 391, 436, 460
spline, 143, 146, 147, 392

Covariance, 18, 120, 133, 135, 137, 139, 141,
142, 182, 436, 437

D
Data

aggregation, 101, 105–107, 226
big, 478, 480
binomial, 40, 200
category, 149
count, 28, 105, 175, 220, 222, 409, 430,

445, 495
covariates, 45, 113, 186, 199, 496
disaggregation, 30
forest cover, 40, 43
geo-spatial, 260, 480
GPS telemetry, 277, 279, 280, 284, 286,

311, 478, 480
grid, 147, 160, 175, 505
imperfect absence, 221
independence, 134, 280
independent and identically distributed

(IID), 136, 172, 173
integrating multiple, 258
mark–recapture, 331, 336, 359, 408, 409, 502
marks/marked, 103, 111, 112, 120–122,

260, 348
National Land cover Dataset (NLCD), 65, 66
non-detection observations, 221
Normalized Difference Vegetation Index

(NDVI), 55
point, 101–129
presence–absence, 113, 120, 176, 220–222,

228, 231–234, 236, 241, 255, 258,
284, 388, 429, 433, 442, 456, 495

presence-only, 104, 220–224, 226, 228,
229, 231, 233–236, 255, 258, 444

projection, 33, 34, 144, 186, 439, 509–511
pseudo-absences, 220, 234
radiotelemetry, 271, 286, 295, 311, 331, 336
sample selection bias, 221
simulated, 28–31, 157
sources, 220, 236, 258, 260, 286, 287,

329, 511
species prevalence, 217, 221, 232, 259,

433, 442
state, 311, 384
time-series, 382, 383, 385, 388, 391, 393
trajectory, 282, 294, 295, 303, 305, 309, 310

Dataset
bioclim, 222, 240, 254, 255
bird distribution, 438
Breeding Bird Survey, 185
endangered Florida panther (Puma concolor

coryi), 286, 336
endangered snail kite, 336, 345, 387
Northern Region Landbird Monitoring

Program, 184, 235
Prickly pear cactus (Opuntia humifusa),

113, 143
varied thrush (Ixoreus naevius), 184, 185,

453, 454, 495, 499, 500, 502, 506
wind-dispersed orchid (Lepanthes

rupestris), 388, 389
Design

block, 160
sampling, 20, 22, 27, 48, 83, 147, 184, 185,

191, 388, 389, 423
Detection errors, 47, 204, 205
Detection probability, 400, 401
Dispersal

distance mean, 23, 57, 334, 347, 379, 388,
394, 395

limitation, 22, 215, 258, 259, 379,
425, 464

range, 380
Disperser, immigrant, 120, 323, 325, 370, 376,

394, 421, 424, 425
Dispersion, 446

over-, 445, 446
Distance matrix

dissimilarity, 436, 448
Euclidean, 8, 9, 163, 338, 340, 341, 394,

435, 461
geographic, 436, 437, 448, 460, 461
similarity, 431

Distribution
Bernoulli, 86, 88, 173, 191, 384, 385
beta, 435
exponential, 347
gamma, 173
log-normal, 346
multinomial, 29
negative exponential, 203, 334, 345, 348,

376, 377
normal, 126, 172, 204, 279, 291, 457
Poisson, 28–30, 104–106, 125, 173, 445
Weibull, 346, 347

Diversity
alpha

evenness, 78–80, 82
Shannon, 78–80, 85, 447

514 Index



beta
nestedness, 420–422, 430
turnover, 9, 420, 422, 430, 435

gamma, 420–422
habitat, 421, 423
richness, 78, 79, 420, 427, 429, 447

E
Ecological

fallacy, 19, 22
response, ix, 7
trap, 272, 274

Ecosystem
services, 5, 23, 92, 321, 428, 476

Edge effects, 57, 63, 76, 104, 109, 112,
116–119, 138, 376

Effective
area, 75, 76, 376
dispersal, 323, 325

Environmental
change, 3, 5, 6, 90, 92, 216, 261, 274, 321,

359, 360, 369, 406, 407, 422, 427,
477–479, 481

conditions, 2, 3, 6, 57, 59, 187, 215–217,
223, 228, 259, 260, 275, 284, 426

filtering, 2, 205, 426–428
stochasticity, 274, 375, 376, 424

Equilibrium
occupancy, 405

Error
distribution, 172, 173, 435
false positive, 204, 232, 233, 260
residual, 40

F
Fractal dimension, 70, 71, 73, 88, 310
Fragmentation, 55, 57, 58, 60, 62, 64, 73, 89,

110, 378, 379, 406, 477
Function

I-spline, 435, 448
Functional statistics, 105

G
Geostatistics, 22, 88, 133, 139, 140, 143, 478
Gradient

environment, 56, 59, 89, 106, 123, 133, 135,
176, 214, 216, 224, 278, 425, 434,
435, 448, 450, 463

Graph
adjacency matrix, 73, 333, 349

directed, 334, 349, 352, 437
links, 350
nodes, 226, 327, 333, 336, 345, 347, 348,

351, 463
undirected, 334, 347–349, 351
unweighted, 334, 347, 352
weighted, 334, 348–350, 354

H
Habitat

critical, 23, 271, 276, 278, 312, 321,
325, 380

disturbance, 6, 59, 101, 325, 380
fragmentation, 55, 58, 60–62, 64, 110, 378,

379, 406, 477
habitat loss, 55, 57–62, 64, 101, 378, 379,

406, 407
quality, 89, 259, 272–274, 324, 373, 376, 476
restoration, 335, 378

Home range
biased random bridge models, 310
Brownian bridge movement, 280
convex hulls, 279, 280, 293
kernel density estimation (KDE), 280
local convex hulls (LoCoH), 279, 280,

293, 295
minimum convex polygons (MCP), 279,

280, 289, 291, 298, 299
Hypothesis

habitat area, 423
tests, 183

I
Index

Bray–Curtis, 430, 448
dispersion, 80
diversity, 57, 79, 430
evenness, 79, 80
Gini, 225
Jaccard, 430
Shannon, 79, 80
Sørenson, 430, 448

Individual traits, 275, 425
Isolation-by-distance, 326
Isolation-by-resistance, 325
Isotropic, 112, 116, 117, 125, 126, 138

K
Kernel dispersal

“fat-tailed” dispersal, 346

Index 515



L
Land

cover, ix, 9, 22, 26, 27, 30–47, 55–92, 158,
236, 287, 288, 290, 298, 299, 302,
309, 329, 337, 338, 342, 343

cover types, 22, 27, 29, 35, 48, 57, 58,
62–64, 66, 72, 75, 78–82, 86, 89,
287, 289, 298, 302, 307, 343

sharing, 476
sparing, 476

Landscape
composition, 64
configuration, 63, 322, 329
connectivity matrix, 378
demography, 370, 372, 382, 408, 409

Landscape feature
corridor, 58, 64, 91
matrix, 58, 64
patch, 58, 64, 91

Landscape matrix effect
friction, 329
permeability, 329
resistance, 329

Landscape metrics
class-level, 63, 65, 78
functional, 57, 58, 78
landscape-level, 63, 65, 78–83
patch-level, 63, 64
structural, 57, 58, 65

Landscape model
continuum, 58, 59, 91
gradient, 24, 59, 91, 425
habitat variegation, 58, 59
island, 56, 58, 64
mosaic, 3, 58, 91
patch, 26, 59, 64
patch-matrix-corridor, 58, 64, 91

Land-use
extensification, 56
intensification, 55, 56, 92
land use and land cover (LULC), 9, 55–57,

60, 62, 65, 91, 92
Local

local indicators of spatial association
(LISA), 142, 165

spatial pattern, statistics, 105
Long-distance colonization, 377

M
Machine learning methods

Boosted Regression Trees, 225
classification and regression trees

(CART), 224
classification tree analysis (CTA), 224, 225

Maximum entropy, 226–228, 246–249
Metacommunities, ix, 1, 2, 5, 7, 67, 321, 326,

421, 425, 426, 428, 433, 475,
477, 478

Metaecosystems, 1, 2, 5, 7, 475, 477
Meta-models, 8, 480
Metapopulation

capacity, 353, 378, 379, 406, 407
incidence function model (IFM), 375, 376,

378, 383
island–mainland, 381
persistence, 22, 63, 325, 373, 374, 378–380
source–sink, 380, 381, 409

Metrics
surface, 91

Migrations, 1–3, 325, 386
Model

agent-based, 8, 359, 383, 408, 409, 479
bagging, 225, 226
balanced dispersal model, 381, 382
Bayesian hierarchical model, 463
Bayesian models, 184, 198, 200, 204, 403
calibration, 231, 233, 234, 255
climate envelope models, 213
combining models, 229, 257, 258
correlative, 217, 219–222, 260
data validation, 231, 234, 237, 239, 253, 256
diffusion, 4, 8, 276, 277, 359, 387, 408
distance-based matrices, 431, 436
dynamic, 4, 8, 259, 276
dynamic occupancy, 384, 385, 400,

403–405
ecological niche models (ENMs), 213, 219
ensembles, 229, 230, 257, 258
envelopes, 106, 222, 223, 229, 240, 241
evaluation, 230, 231, 235, 236, 248,

253–257, 259
false negative errors, 204, 221, 232,

260, 384
first-order Markov chain, 384
GAP, 213
Gaussian random fields, 88, 157, 171, 182
habitat suitability models (HSMs), 213, 219
hierarchical, 24, 25, 47, 181, 463
individual-based, 359, 373, 382, 383,

408, 479
kappa, 140, 232, 257
K-fold partitioning, 231
log-likelihood, 41–44, 154, 234, 254
mechanistic, 92, 217, 219, 220, 260,

281, 310
multi-species occupancy, 430, 431, 455
neutral, 57, 88, 90, 144, 159, 424, 426
non-linear, 169, 177, 187, 224, 225, 252,

435, 441, 448

516 Index



observation errors, 40, 185, 204, 221, 259,
384, 385

occupancy, 8, 204, 213, 258, 260, 375,
376, 382–385, 387, 399, 400, 402,
430, 502

over-fitting, 227
partitioning, 88, 231, 310, 463
penalized quasi-likelihood, 203
phenomenological, 3, 219, 310
predictive distribution models, 213
process-based, 2, 3, 219
profile methods, 222, 229
recursive partitioning (RP), 88, 224
second-order Markov chain, 384
species distribution models (SDMs), 178,

213–217, 219, 220, 225, 226, 228,
229, 235, 246, 255, 259, 260, 278,
281, 284, 426, 429, 441, 451, 454,
463, 476

stacked species distribution, 429, 441
state-space, 311, 384
stochastic patch occupancy models

(SPOMs), 371, 373, 375, 376,
382–384, 387

threshold-dependent, 233
type I errors, 136, 178, 445
weighted regression, 178, 250

Model community-level
assemble and predict simultaneously, 428
assemble first, predict later, 428–430,

444–451
predict first, assemble later, 428, 429, 431,

432, 441–444
Model machine learning

maxent, 222, 226–228, 246–250, 253,
255, 257

random forests, 225, 249, 255
Model selection

Akaike's Information Criterion (AIC), 41,
47, 124, 152, 230, 302

Bayesian Information Criterion (BIC), 154
Modifiable areal unit problem, 22
Monte Carlo, 106, 118, 127, 138, 142, 146–148,

150, 154, 166
Morphological image processing, 91
Movement ecology

brownian motion, 88, 280
correlated random walks (CRWs), 276,

277, 281
Eulerian model, 277
fractal dimension, 310
hidden Markov approaches, 310
Lagrangian model, 277

motion capacity, 277, 322, 328
navigation capacity, 277, 322
random walk, 275–277, 310, 331, 344
state-space models, 384
step lengths, 277, 284, 310
turning angles, 277, 284, 310

Moving windows, 8, 63, 64, 79, 83–86,
165, 289

Multilevel, 18, 21, 23–25, 172, 181–183, 194,
201, 202, 205, 455, 475

Multi-scale, 18, 23–28, 31–47, 144, 164, 166,
276, 437, 475

eigenvalue methods, 437
fourier series, 159–162
Principal Coordinates of Neighbourhood

Matrices (PCNM), 162, 163
spectral decomposition, 134, 159, 162–165
wavelet, Moran's Eigenvector Map

(MEM), 162
Multivariate analysis

canonical correspondence analysis (CCA),
431, 434, 451, 462

canonical ordination, 434
constrained gradient ordination, 431
correspondence analysis (CA), 434
direct gradient analysis, 434, 451–454
distance-based redundancy analysis

(dbRDA), 454
joint community models, 431
MANOVA, 283
Mantel tests, 436, 460
multi-species occupancymodeling, 431, 455
ordination, 431, 434, 437, 450–452
partial mantel tests, 436
partial ordination, 435
principal component analysis (PCA), 434,

437, 450, 452
redundancy analysis (RDA), 434, 451, 452,

454, 462
regression, 431–435, 452, 454–460, 462

Multivariate spatial dependence, 165

N
Neighborhood

buffer, 40, 85
habitat area index, 353
minimum spanning tree, 195
moving window, 79, 83–86, 165
proximity index, 75, 77, 329

Network
betweenness, 350
closeness centrality, 349

Index 517



Network (cont.)
connectance, 352
eigenvector centrality, 349, 350, 356, 378
graph, 330, 332, 333, 335, 345, 347–349, 352
information centrality, 349
metrics, 47, 328, 335
minimum spanning tree, 462
modularity, 351
patch degree, 327, 328, 330, 333, 335, 336,

349, 351
spatial, 1, 9, 332, 463, 464

Neutral landscapes, 56, 57, 86–91, 144, 158, 159
Niche

Elton, 215
empty, 215, 217
fundamental, 215–218, 381
Grinnell, 215, 218
Hutchinson, 215, 216
potential, 215
realized, 215–218

Non-ideal behaviors, 273
Non-stationary inhomogeneous, 104, 141
Null envelopes, 146, 154, 155, 188, 190

O
Organization

level, 2, 18–21, 23–25, 324, 326, 327,
419, 477

Overlapping landscapes, 47

P
Package

adehabitat, 286
adehabitatHR, 286, 293, 310
adehabitatHS, 286, 298, 300
adehabitatLT, 286, 294, 303, 308
AER, 445, 446
bcpa, 310
betapart, 438
biomod2, 251, 256
boral, 463
bsam, 311
deldir, 199
dismo, 199, 235, 239, 240, 246–248, 250,

251, 253, 255
ecospat, 235, 255, 256
Ergm, 335
Fdrtool, 346
FieldSim, 88
fitdistrplus, 346
Gbm, 245

gdistance, 335, 336, 339, 344
gdm, 438, 447, 448, 450
geoR, 142, 150–152, 154–156
ggplot2, 252, 349, 503, 504
gstat, 142, 150–152, 154, 156, 157
hSDM, 205, 260
igraph, 335, 336, 345, 347, 349–352, 356
inla, 198–200, 204
latentnet, 335
lme4, 183, 201, 456
lulcc, 65
MASS, 183, 202, 445, 490, 493
MetaLandSim, 335, 387
mgcv, 183, 195, 243, 244
MigClim, 258
moveHMM, 310
mvnabund, 438
ncf, 142, 145, 146, 150, 165, 189, 387, 391
nlme, 202
PatternClass, 90
pgirmess, 142, 145, 146, 148, 150
popbio, 387
popdemo, 387
PresenceAbsence, 235, 253–255
RandomFields, 88, 157, 158
randomForest, 245
raster, 28, 33, 35, 37, 48, 65, 69, 79, 80, 83,

84, 92, 157, 162, 164, 185, 186, 189,
239, 249, 288, 298, 299, 307, 337,
338, 343, 358, 451, 508, 511

rasterVis, 67
reshape2, 161, 298, 300, 389, 439, 455,

500, 502
resource selection, 303, 338
rgdal, 33, 115, 337
rgeos, 37, 65, 75, 76, 338, 505
rgrass7, 480
rJava, 247
RNetlogo, 409, 479
ROCR, 235
RQGIS, 480
sdm, 235, 256
SDMTools, 65, 69, 70, 72–76, 78, 79, 91, 335
secr, 90, 387
simecol, 408
sp, 299, 303, 438, 505, 508, 511
spamM, 184, 200, 203
spatial, 145, 164
spatialEco, 38
spatstat, 113–116, 118–125, 128
spBayes, 184, 198
spdep, 142, 145–148, 150, 165, 183, 189,

195–197, 200, 308

518 Index



statnet, 335, 349
stocc, 205, 260
stpp, 128
synchrony, 387, 390
T-LocoH, 280
unmarked, 260, 387, 395–397, 400, 401
vegan, 163, 183, 195, 437, 448, 451, 454,

461, 463
VGAM, 438
Voss, 88
waveslim, 160

Paradigm
area-isolation, 370, 376, 384, 394, 395
mass effects, neutral, 425, 426
patch dynamics, 425
species-sorting, 425

Parameter estimation, 153, 170
Partialled out, control for, 461
Patch

area, 58, 70, 71, 73, 77, 78, 122, 329, 345,
353, 354, 356, 357, 370, 376, 379,
390, 394–396, 398–400, 402, 403,
406, 407, 422

connectivity, 323, 333, 349, 350, 395, 398,
399, 402, 403

core area, 67, 68, 70, 71, 73, 75
dynamics, 7, 21, 22, 64, 388, 421, 425
edge, 68, 70, 71, 73, 75, 76, 78, 82, 91,

333, 376
isolation, 5, 56, 57, 63, 64, 67, 68, 75–77,

110, 323, 329, 370, 375, 376, 394,
398, 399, 406, 407

shape, 68, 70, 71, 73
size, 56, 57, 64, 67–70, 72, 73, 75, 325, 375,

380, 384, 388, 389
Patch delineation

4-neighbor rule, rook's rule, 67, 68, 80
8-neighbor rule, queen's rule, 67, 147, 148
16-neighbor rule, 67, 68

Path
Dijkstra’s algorithm, 331
least-cost, 331, 332, 337–339, 341–344,

354, 356, 358, 360
mapping flow, 344
optimal, 331
randomized shortest, 332, 339, 340,

343, 344
selection functions, 285, 308–310, 331
shortest, 331, 338–340, 343, 344, 349, 350,

353, 354
Percolation, 73, 78, 89
Phenomenological time-series analysis, 310
Phylogenetic dependency, 457, 463

Point analysis
bivariate, 103, 111, 121
edge effect, 112, 116
envelopes, 122, 125, 129
G-function, 110, 120
marked (marks), 111, 120
multivariate, 111, 112
O-ring statistic, 110
pair correlation function, 108, 110, 118, 119
radius, 107, 108, 112, 117, 118
ring, 110, 119
Ripley’s K, 107, 109, 116, 119
Ripley’s L, 107–109

Point process
inhomogeneous, 104, 123–125, 221, 222,

224, 226, 228, 247, 249, 250, 260,
283, 284, 302, 303

Pollinator, 388
Population

closed, 370, 371, 389
colonization, 321, 325, 329, 370, 372, 373,

375, 376, 379, 380, 383, 388,
389, 409

density, 273, 275
density-dependence, 274, 323, 327
dynamics, 2, 4, 9, 22, 23, 276, 312, 359,

369, 426
emigration, 370, 371, 381, 383, 426
extinction, 5, 101, 137, 325, 369, 370, 372,

373, 375, 376, 378, 380, 382,
383, 389

genetics, 321, 324–326, 371, 409
growth, 216, 218, 272, 274, 323, 324, 369,

373, 381, 383, 387, 391–393, 409
immigration, 329, 370, 371, 373, 381,

383, 426
integrated population models, 409
local, 22, 216, 217, 323, 325, 370, 373, 375,

380, 426
minimum viable populations (MVP), 379
panmixia, 371
persistence, 22, 63, 137, 325, 360, 369, 373,

374, 378–380
size, 61, 273, 274, 325, 329, 370, 376, 381,

388, 391, 409, 424
spatially structured, 370, 371, 373, 381,

382, 385, 387, 391, 409
transition matrix models, 353, 385
viability analysis (PVA)

elasiticity analysis, 383
sensitivity analysis, 383

Population spatially-structured populations,
370, 371, 381, 382, 387, 391, 409

Index 519



Potential immigrants, 376, 394
Predictions, 27, 39, 88, 104, 107, 136, 141, 155,

156, 169, 172, 173, 183, 188, 189,
213, 217, 219, 221, 222, 225–227,
229–234, 243, 246, 249, 251–253,
255–260, 326, 328, 340, 378, 379,
382, 387, 399, 402, 421, 424, 426,
429, 431, 441–444, 447, 449–451,
453, 454, 458–460, 476, 478, 495

Predictive accuracy
area under the curve (AUC), 229
Cohen’s kappa, 232
receiver operating characteristic curve

(ROC), 233
true skill statistic (TSS), 232

Process
complete spatial randomness (CSR), 106, 116
diffusion, 280, 359
discrete in space, 276
discrete in time, 384
dispersal, 4, 20, 258, 383
disturbance, 102, 325, 380
endogenous, 2, 135, 176
exogenous, 2, 135, 176
inhomogeneous, 104, 106, 107, 123–125,

127–129, 221, 222, 224, 226, 228,
246, 249, 250, 260, 283, 284, 302, 303

Matérn, 102, 106, 125–127
point, 9, 103, 104, 106, 107, 112, 115, 116,

118, 123–125, 127, 128, 221, 222,
224, 226, 228, 229, 247, 249, 250,
260, 283, 284, 302, 303

Poisson point, 104, 106, 107, 112, 116, 118,
119, 126, 127

thinned point, 104
Thomas, 106, 126, 127

Proportion, 27, 37, 38, 43–46, 57, 60, 61, 63,
64, 73, 78, 80, 83, 85, 86, 88, 158,
162, 173, 221, 233, 234, 236, 239,
279, 282, 290, 302, 325, 373, 374,
395, 436, 448, 452

Protected areas, 1, 6, 23, 213, 336–344, 358,
427, 476

Pseudo-replication, 136, 170

R
Randomization

bootstrapping, 225, 226
bootstrap sampling, 225
Monte Carlo, 138, 142
permutation, 154
sampling with replacement, 225

Rarefaction
Chao estimators, 429
jackknife estimator, 429

Raster layers, 28–30, 33, 37, 38, 48, 66, 76,
123, 185, 186, 287, 329, 336, 338,
341, 356, 438, 449, 508, 510

Rate
colonization, 325, 370, 372, 376, 377, 380,

400, 401, 405
extinction, 101, 370, 374–376, 380, 391,

400, 401, 403, 405, 424
immigration, 67, 326, 373, 374, 424

Regression
conditional autoregressive models (CAR),

183, 194, 199, 204
fixed effects, 172, 177, 178, 204
generalised least square regression (GLS),

142, 182, 183, 204
generalized additive models (GAMs), 176,

177, 183, 223, 224, 226, 228
generalized dissimilarity modeling (GDM),

435, 462
generalized estimating equations, 307
generalized linear mixed models (GLMMs),

182, 194, 433
generalized linear models (GLMs), 40, 42,

123, 142, 171–174, 179, 223, 224,
226, 228, 433, 445

linear, 40, 135, 136, 141, 142, 165,
171–173, 179, 434, 492

link function, 173
local, 176, 177
logistic, 40, 42, 43, 46, 173, 179, 185–188,

190, 192, 194, 196–198, 224, 228,
250, 283, 284, 301, 302, 307,
441, 455

monotonic, 225
multi-species occupancy models, 455
multivariate, 204, 431–435, 452,

454–460, 462
multivariate adaptive regression splines, 455
multivariate GLMMs, 433
multivariate logistic regression, 455
multivariate machine learning methods, 455
negative binomial regression, 445
neural networks, 455
N-mixture, 204
Poisson, 107, 123, 173, 228, 284, 302, 445
polynomial, 176, 177
quasi-Poisson, 445
random effects, 455
random-intercepts, 455
root mean squared error (RSME), 220

520 Index



simultaneous autoregressive models (SAR),
183, 204

spatial, 9, 28, 165, 172, 175, 183, 184, 198,
235, 242, 462

spatial eigenvector mapping, 462
spatial filtering, 183

Relationship
Gaussian, 434
linear, 228, 242, 445
non-linear, 73, 169, 225, 242, 424, 434
species-area, 422, 423

Resampling
majority rule, 29

Rescue effects, 5, 325, 370, 373, 375, 424, 426
Reserve design, 476
Resolution thematic, 58, 62, 66
Resource

compositional analysis, 283
cross-walks, 272
path selection, 282, 285, 308, 309, 312
point selection, 282–284, 298–300, 302, 303
random path, 285
resource selection functions (RSFs),

281–284, 298–309
resource selection probability functions

(RSPFs), 221, 272, 281
step selection, 282, 284, 285, 298,

303–307, 312
Resource selection

first-order, 278
second-order, 278
third-order, 278
fourth-order, 278
hierarchical, 278
predator–prey, 311

Response curves, 214, 247, 248, 458
Response plots, 248, 251, 449
Richness

land cover, 78, 79, 85, 86
species, 22, 419, 420, 427, 429, 431, 437, 440,

443–447, 454, 459, 460, 464, 502

S
Sample selection bias, 217, 221
Sampling

errors, 185, 204, 259, 260, 311, 384
scale, 20
units, 20, 22, 25, 27, 105, 172, 174, 185,

236, 433
Scale

analysis, 9
critical, 23

cross-scale interactions, 19, 25
effects, 27, 38, 40
focal patch, 26, 377
landscape, 26, 64, 68, 236, 323, 324, 352,

353, 355, 356
meso-scale, 323, 350–352
multilevel, 23–25, 47, 181, 182, 475
patch-scale, 24, 26, 27, 334, 349, 351
phenomenon, 19, 20, 25, 27, 48
sampling, 20
spatio-temporal, 18, 48, 278, 283, 285, 477
temporal, 21, 101, 271, 278, 286, 360, 372,

409, 475, 477
Scalogram, 135, 160–162
Second-order statistics, 104, 105, 107, 108, 129
Semivariance, 135, 138–140, 142, 152, 436
Semivariograms, 47, 137, 139, 141, 150, 191
Single-large versus several small (SLOSS), 422
Site scores, 453, 454
Smoother

locally weighted polynomial regression
(LOWESS), 178

Social behavior, 101, 136, 169, 274
Software

ArcGIS, 480, 508
BIOCLIM, 222, 223, 257
BIOMOD, 235, 251, 256
Fragstats, 65, 74, 79, 80, 82, 328, 335
GIS, 27, 28, 38, 185, 223, 236, 300, 349,

480, 508, 510
GRASS, 480
Marxan, 479
Matlab, 480
Passage, 480
PostGIS, 480
Programitta, 480
QGIS, 480
winbugs, 204
Zonation, 479

Space use, 271–312, 476
Space-time analysis, 128
Spatial

autocorrelation, 4, 88, 133–166, 170, 171,
173, 174, 179, 182, 189–192, 195,
197, 198, 200, 203–205, 274,
436, 476

correlations, 142, 170, 182, 202, 203, 380,
391, 392

demography, 372, 373, 380–382, 386, 409
dependence, 28, 47, 88, 91, 133–166,

169–205, 231, 249, 375, 383,
391–393, 435, 437, 455, 460–462,
464, 476

Index 521



Spatial (cont.)
ecology, vii–ix, 1–9, 17, 21, 28, 31, 48, 55,

60, 62, 88, 91, 92, 105, 127, 129,
271, 282, 285, 332, 371, 408, 420,
464, 475–479, 489, 490, 505

eigenvector mapping, 47, 163, 178, 195,
437, 462

heterogeneity, 1, 9, 22, 124, 369–371, 373,
376, 393, 408

lags, 25, 27, 140
legacy, 4, 8, 135
patterns, viii, ix, 2–4, 6, 8, 9, 17, 19, 20, 22,

55–57, 61, 90, 91, 101, 103, 105, 106,
111, 113, 119–122, 129, 133–136,
138–140, 157, 159, 166, 178, 274, 443

point pattern analysis, 47, 101, 102, 106,
107, 111–113, 121, 129, 139

point process models, 123, 228, 229, 247,
249, 260

quantification, 8, 55, 57, 92
synchrony, 136, 371, 373, 375, 391, 393
trend surface analysis, 172, 176
variance, 9, 22, 133, 134

Spatial interpolation
inverse distance weighting, 156
kriging, 135, 141, 155–157
spatially interpolate, 133, 140

Spatial resolution
extent, study area, 20, 73, 298
grain, 18, 22, 24, 25, 33, 59, 508
grain size, 19, 20, 29, 31
scope, 182, 505

Spatial statistics
Geary’s c, 138, 145
Moran’s I, 137–139, 142, 143, 145–149,

165, 166, 179, 191, 196, 391
Spatiotemporal

analysis, 128, 391
connectivity, 477
correlation, 391
dimension, 17, 18
pattern, 128

Species
competition, 2, 111, 215, 381, 421, 425
detectability, 401, 430
distribution, viii, ix, 1–3, 5, 6, 9, 21, 27, 32,

59, 83, 101, 104, 105, 111, 178, 182,
185, 213–261, 271, 278, 281, 283,
284, 311, 331, 379, 409, 426, 429,
441, 451, 454, 463, 476, 478

interactions, 2, 4, 6, 9, 17, 62, 63, 101, 176,
215, 259, 273, 326, 381, 419, 425,
428, 457, 463, 464

persistence, 5, 8, 215, 321

richness, 22, 419, 420, 427, 429–431, 437,
440, 443–447, 454, 459, 460, 464

scores, 434, 452–454
traits, 426

Species–area relationship (SAR), 423
Species–environment relationships, 39, 47, 48,

169, 215, 222, 476
Stationary homogeneous, 104, 112
Statistic first-order, 104–106
Statistic second-order, 105–108, 129
Statistical

inferences, 20, 133, 169, 170
nuisance, 142

Statistics
ANOVA, 172, 453
autocovariate, 179, 180, 197, 198
degree of freedom, 170
goodness-of-fit tests, 234
Pearson linear correlation, 137

Stochasticity
demographic, 424
environmental, 375, 376

Study area, 25–27, 78, 103–107, 109, 112–115,
118, 123, 138, 159, 174, 234

T
Territory, 21, 23, 101, 272, 275, 278, 331, 375
Theory

behavioral ecology, 273, 324
biogeography, 5, 326
circuit, 327, 331, 332, 338–340, 344
Equilibrium Theory of Island Biogeography

(ETIB), 61, 423–426
foraging, 324
graph, 327, 328, 330, 332, 336, 345, 356,

358
habitat selection, 273–277
hierarchy, 21, 426
ideal free distribution (IFD), 273, 274, 382
information, 78, 324
island biogeography, 5, 7, 56, 326
landscape ecology, 325, 426
macroecology, 5
mainland, 61, 425
metacommunity, 7, 326, 421, 425, 475
metaecosystem, 7, 475
metapopulation, 214, 325, 335, 372,

378–380, 475
niche, 214, 224, 326, 434
probability, 249, 383
scale transition, 25
shifting-mosaic steady state, 4
source–sink, 325

522 Index



Tobler's first law of geography, 133, 205
Trajectory patch-specific, 405
Transition matrix, 329, 331, 333, 347, 353,

356, 385
Trophic interactions, 2, 215, 375, 428

U
Uncertainty, 42, 47, 48, 136, 141, 146, 156,

170, 177, 181, 183, 205, 221, 222,
251, 302, 403, 478

V
Validation samples, 248, 253
Variables

covariate, 45, 164, 182, 298, 395, 463, 499
dummy, 172
response, 7, 9, 27, 47, 135, 136, 138, 141,

145, 164, 172, 173, 176, 179,

181–183, 189, 205, 224, 231, 246,
391, 432, 434, 435, 447, 448, 451,
458, 460

Variance partitioning methods, 463
Variogram

cross-variogram, 142, 143, 150, 165, 436, 437
empirical, 111, 139, 140, 143, 150–152,

154, 437
model-based, 140, 141, 143, 150, 154,

166, 182
multivariate, 165, 436, 437, 461, 462
nugget, 140, 141, 152, 159
practical range, 154
range, 140, 152, 154, 159, 166
sill, 140, 141, 152, 154, 159
theoretical, 140, 151, 152, 154, 155, 157

W
Wavelet analysis, 47, 134, 159–162

Index 523


	Preface
	Why Do We Need a New Book on Spatial Ecology and Conservation?
	Who Should Read this Book?
	Organization of the Book

	Acknowledgments
	Contents
	Chapter 1: Introduction to Spatial Ecology and Its Relevance for Conservation
	1.1 What Is Spatial Ecology?
	1.2 The Importance of Space in Ecology
	1.3 The Importance of Space in Conservation
	1.4 The Growth of Frameworks for Spatial Modeling
	1.5 The Path Ahead
	References

	Part I: Quantifying Spatial Pattern in Ecological Data
	Chapter 2: Scale
	2.1 Introduction
	2.2 Key Concepts and Approaches
	2.2.1 Scale Defined and Clarified
	2.2.2 Why Is Spatial Scale Important?
	2.2.3 Multiscale and Multilevel Quantitative Problems
	2.2.4 Spatial Scale and Study Design

	2.3 Examples in R
	2.3.1 Packages in R
	2.3.2 The Data
	2.3.3 A Simple Simulated Example
	2.3.4 Multiscale Species Response to Land Cover
	2.3.4.1 Multiscale Analysis of Forest Cover
	2.3.4.2 Multiscale Analysis of Species Responses


	2.4 Next Steps and Advanced Issues
	2.4.1 Identifying Characteristic Scales Beyond Species-Environment Relationships
	2.4.2 Sampling and Scale

	2.5 Conclusions
	References

	Chapter 3: Land-Cover Pattern and Change
	3.1 Introduction
	3.2 Key Concepts
	3.2.1 Land Use Versus Land Cover
	3.2.2 Conceptual Models for Land Cover and Habitat Change
	3.2.3 Habitat Loss and Fragmentation
	3.2.4 Quantifying Land-Cover Pattern
	3.2.4.1 Composition Versus Configuration
	3.2.4.2 Scale for Land-Cover Quantification


	3.3 Examples in R
	3.3.1 Packages in R
	3.3.2 The Data
	3.3.3 Quantifying Land-Cover Variation at Different Scales
	3.3.3.1 Patch-Level Quantification
	3.3.3.2 Class-Level Quantification
	3.3.3.3 Landscape-Level Quantification
	3.3.3.4 Moving-Window Analysis

	3.3.4 Simulating Land Cover: Neutral Landscapes

	3.4 Next Steps and Advanced Issues
	3.4.1 Testing for Pattern Differences Between Landscapes
	3.4.2 Land-Cover Quantification via Image Processing
	3.4.3 Categorical Versus Continuous Metrics

	3.5 Conclusions
	References

	Chapter 4: Spatial Dispersion and Point Data
	4.1 Introduction
	4.2 Key Concepts and Approaches
	4.2.1 Characteristics of Point Patterns
	4.2.2 Summary Statistics for Point Patterns
	4.2.2.1 Null Models
	4.2.2.2 Inhomogeneous Point Process Models

	4.2.3 Common Statistical Models for Point Patterns
	4.2.3.1 Ripley´s K (and L)
	4.2.3.2 Pair Correlation Function
	4.2.3.3 Distances Between Neighbors: The G-Function
	4.2.3.4 Bivariate and Multivariate Marks
	4.2.3.5 Edge Effect Correction
	4.2.3.6 General Assumptions


	4.3 Examples in R
	4.3.1 Packages in R
	4.3.2 The Data
	4.3.3 Creating Point Pattern Data and Visualizing It
	4.3.4 Univariate Point Patterns
	4.3.5 Marked Point Patterns
	4.3.6 Inhomogeneous Point Processes and Point Process Models
	4.3.7 Alternative Null Models
	4.3.8 Simulating Point Processes

	4.4 Next Steps and Advanced Issues
	4.4.1 Space-Time Analysis
	4.4.2 Replicated Point Patterns

	4.5 Conclusions
	References

	Chapter 5: Spatial Dependence and Autocorrelation
	5.1 Introduction
	5.2 Key Concepts and Approaches
	5.2.1 The Causes of Spatial Dependence
	5.2.2 Why Spatial Dependence Matters
	5.2.3 Quantifying Spatial Dependence
	5.2.3.1 Correlograms
	5.2.3.2 Variograms
	5.2.3.3 Kriging
	5.2.3.4 Some Extensions
	5.2.3.5 Statistical Nuisance


	5.3 Examples in R
	5.3.1 Packages in R
	5.3.2 The Data
	5.3.3 Correlograms
	5.3.4 Variograms
	5.3.5 Kriging
	5.3.6 Simulating Spatially Autocorrelated Data
	5.3.7 Multiscale Analysis
	5.3.7.1 Wavelets and Fourier Series
	5.3.7.2 Eigenvector Spectral Decomposition


	5.4 Next Steps and Advanced Issues
	5.4.1 Local Spatial Dependence
	5.4.2 Multivariate Spatial Dependence

	5.5 Conclusions
	References

	Chapter 6: Accounting for Spatial Dependence in Ecological Data
	6.1 Introduction
	6.2 Key Concepts and Approaches
	6.2.1 The Problem of Spatial Dependence in Ecology and Conservation
	6.2.2 The Generalized Linear Model and Its Extensions
	6.2.3 General Types of Spatial Models
	6.2.4 Common Models that Account for Spatial Dependence
	6.2.4.1 Trend Surface Analyses
	6.2.4.2 Eigenvector Mapping
	6.2.4.3 Autocovariate Models
	6.2.4.4 Autoregressive Models
	6.2.4.5 Multilevel Models
	6.2.4.6 Generalized Least Squares and Spatial Mixed Models

	6.2.5 Inference Versus Prediction

	6.3 Examples in R
	6.3.1 Packages in R
	6.3.2 The Data
	6.3.3 Models that Ignore Spatial Dependence
	6.3.4 Models that Account for Spatial Dependence
	6.3.4.1 Trend Surface Models
	6.3.4.2 Eigenvector Mapping
	6.3.4.3 Autocovariate Models
	6.3.4.4 Autoregressive Models
	6.3.4.5 Multilevel Models
	6.3.4.6 GLS and Mixed Models


	6.4 Next Steps and Advanced Issues
	6.4.1 General Bayesian Models for Spatial Dependence
	6.4.2 Detection Errors and Spatial Dependence

	6.5 Conclusions
	References


	Part II: Ecological Responses to Spatial Pattern and Conservation
	Chapter 7: Species Distributions
	7.1 Introduction
	7.2 Key Concepts and Approaches
	7.2.1 The Niche Concept
	7.2.1.1 A Brief History of the Niche Concept and a Plethora of Niches
	7.2.1.2 Geographic Versus Environmental Space
	7.2.1.3 Limiting Factors and the Niche

	7.2.2 Predicting Distributions or Niches?
	7.2.3 Mechanistic Versus Correlative Distribution Models
	7.2.4 Data for Correlative Distribution Models
	7.2.5 Common Types of Distribution Modeling Techniques
	7.2.5.1 Envelope Models
	7.2.5.2 GLMs and GAMs
	7.2.5.3 Regression Trees and Forests
	7.2.5.4 Maximum Entropy
	7.2.5.5 Point Process Models

	7.2.6 Combining Models: Ensembles
	7.2.7 Model Evaluation
	7.2.7.1 Evaluation with Presence-Absence Data
	7.2.7.2 Evaluation with Presence-Only Data
	7.2.7.3 Evaluation of Abundance (Count) Responses


	7.3 Examples in R
	7.3.1 Packages in R
	7.3.2 The Data
	7.3.3 Prepping the Data for Modeling
	7.3.4 Contrasting Models
	7.3.4.1 Envelopes
	7.3.4.2 GLMs and GAMs
	7.3.4.3 Regression Trees and Forests
	7.3.4.4 Maximum Entropy
	7.3.4.5 Point Process Models

	7.3.5 Interpreting Environmental Relationships
	7.3.6 Model Evaluation
	7.3.7 Combining Models: Ensembles

	7.4 Next Steps and Advanced Issues
	7.4.1 Incorporating Dispersal
	7.4.2 Integrating Multiple Data Sources
	7.4.3 Dynamic Models
	7.4.4 Multi-species Models
	7.4.5 Sampling Error and Distribution Models

	7.5 Conclusions
	References

	Chapter 8: Space Use and Resource Selection
	8.1 Introduction
	8.2 Key Concepts and Approaches
	8.2.1 Distinguishing Among the Diversity of Habitat-Related Concepts and Terms
	8.2.2 Habitat Selection Theory
	8.2.2.1 Ideal Free Distribution and Its Extensions
	8.2.2.2 Home Range Concepts and Space Use
	8.2.2.3 Movement Concepts and Theory

	8.2.3 General Types of Habitat Use and Selection Data
	8.2.4 Home Range and Space Use Approaches
	8.2.5 Resource Selection Functions at Different Scales
	8.2.5.1 Point Selection
	8.2.5.2 Step Selection
	8.2.5.3 Path Selection


	8.3 Examples in R
	8.3.1 Packages in R
	8.3.2 The Data
	8.3.3 Prepping the Data for Modeling
	8.3.4 Home Range Analysis
	8.3.5 Resource Selection Functions
	8.3.5.1 Point Selection Functions
	8.3.5.2 Step Selection Functions
	8.3.5.3 Path Selection Functions


	8.4 Next Steps and Advanced Issues
	8.4.1 Mechanistic Models and the Identification of Hidden States
	8.4.2 Biotic Interactions
	8.4.3 Sampling Error and Resource Selection Models

	8.5 Conclusions
	References

	Chapter 9: Connectivity
	9.1 Introduction
	9.2 Key Concepts and Approaches
	9.2.1 The Multiple Meanings of Connectivity
	9.2.2 The Connectivity Concept
	9.2.3 Factors Limiting Connectivity
	9.2.4 Three Common Perspectives on Quantifying Connectivity
	9.2.4.1 Structural Connectivity of Land Cover
	9.2.4.2 Landscape (Matrix) Resistance
	9.2.4.3 Patch-Based Graphs


	9.3 Examples in R
	9.3.1 Packages in R
	9.3.2 The Data
	9.3.3 Functional Connectivity Among Protected Areas for Florida Panthers
	9.3.3.1 Effective Distances
	9.3.3.2 Least-Cost Paths
	9.3.3.3 Least-Cost Corridors
	9.3.3.4 Flow Mapping

	9.3.4 Patch-Based Networks and Graph Theory
	9.3.4.1 Dispersal Kernels
	9.3.4.2 Creating a Network or Graph
	9.3.4.3 Patch-Scale Connectivity
	9.3.4.4 Meso-Scale Connectivity
	9.3.4.5 Landscape-Scale Connectivity

	9.3.5 Combining Connectivity Mapping with Graph Theory

	9.4 Next Steps and Advanced Issues
	9.4.1 Connectivity in Space and Time
	9.4.2 Individual-Based Models
	9.4.3 Diffusion Models
	9.4.4 Spatial Capture-Recapture

	9.5 Conclusions
	References

	Chapter 10: Population Dynamics in Space
	10.1 Introduction
	10.2 Key Concepts and Approaches
	10.2.1 Foundational Population Concepts
	10.2.2 Spatial Population Concepts
	10.2.2.1 Metapopulations
	10.2.2.2 Spatial Demography

	10.2.3 Population Viability Analysis
	10.2.4 Common Types of Spatial Population Models
	10.2.4.1 Stochastic Patch Occupancy Models
	10.2.4.2 Dynamic Occupancy Models
	10.2.4.3 Spatial Population Matrix Models


	10.3 Examples in R
	10.3.1 Packages in R
	10.3.2 The Data
	10.3.3 Spatial Correlation and Synchrony
	10.3.4 Metapopulation Metrics
	10.3.5 Estimating Colonization-Extinction Dynamics
	10.3.6 Projecting Dynamics
	10.3.7 Metapopulation Viability and Environmental Change

	10.4 Next Steps and Advanced Issues
	10.4.1 Spatial Population Matrix Models
	10.4.2 Diffusion and Spatial Dynamics
	10.4.3 Agent-Based Models
	10.4.4 Integrated Population Models

	10.5 Conclusions
	References

	Chapter 11: Spatially Structured Communities
	11.1 Introduction
	11.2 Key Concepts and Approaches
	11.2.1 Spatial Community Concepts
	11.2.1.1 A Diversity of Diversities
	11.2.1.2 Species-Area Relationships
	11.2.1.3 Equilibrium Theory of Island Biogeography
	11.2.1.4 Metacommunities
	11.2.1.5 Hierarchies from Regional Pools to Local Assemblages
	11.2.1.6 Communities and Conservation

	11.2.2 Common Approaches to Understanding Community-Environment Relationships
	11.2.2.1 Predict First, Assemble Later
	11.2.2.2 Assemble First, Predict Later
	11.2.2.3 Predict and Assemble Together

	11.2.3 Spatial Models for Communities
	11.2.3.1 Multivariate Regression Analysis
	11.2.3.2 Canonical Ordination: Redundancy and Canonical Correspondence Analysis
	11.2.3.3 Generalized Dissimilarity Modeling
	11.2.3.4 The Problem of Space


	11.3 Examples in R
	11.3.1 Packages in R
	11.3.2 The Data
	11.3.3 Modeling Communities and Extrapolating in Space
	11.3.3.1 Predict First, Assemble Later
	11.3.3.2 Assemble First, Predict Later
	11.3.3.3 Assemble and Predict Together

	11.3.4 Spatial Dependence in Communities
	11.3.5 Community Models with Explicit Accounting for Space

	11.4 Next Steps and Advanced Issues
	11.4.1 Decomposition of Space-Environment Effects
	11.4.2 Accounting for Dependence Among Species
	11.4.3 Spatial Networks

	11.5 Conclusions
	References

	Chapter 12: What Have We Learned? Looking Back and Pressing Forward
	12.1 The Impact of Spatial Ecology and Conservation
	12.2 Looking Forward: Frontiers for Spatial Ecology and Conservation
	12.3 Where to Go from Here for Advanced Spatial Modeling?
	12.4 Beyond R
	12.5 Conclusions
	References


	Appendix A: An Introduction to R
	Introduction
	R Beginnings: Before Any Analysis
	R Packages
	Editors for R
	The R Prompt, Console, and Editor
	Getting Help in R
	R Classes
	Getting Data Into and Out of R
	Functions in R

	Data Access, Management, and Manipulation in R
	Accessing Data
	Merging, Appending, and Removing
	Data Subsetting and Summaries
	Reformatting Data

	Graphics in R
	Spatial Data in R
	Using Spatial Classes
	Projections and Transformations

	Next Steps: Where to for Further R Mastery?
	References

	Index

