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Abstract In the setting of energy efficient building operation, an optimal boundary
control problem governed by the heat equation with a convection term is considered
together with bilateral control and state constraints. The aim is to keep the tempera-
ture in a prescribed rangewith the least possible heating cost. In order to gain regular
Lagrange multipliers a Lavrentiev regularization for the state constraints is utilized.
The regularized optimal control problem is solved by a primal-dual active set
strategy (PDASS) which can be interpreted as a semismooth Newton method and,
therefore, has a superlinear rate of convergence. To speed up the PDASS a reduced-
order approach based on proper orthogonal decomposition (POD) is applied. An
a-posteriori error analysis ensures that the computed (suboptimal) POD solutions
are sufficiently accurate. Numerical test illustrates the efficiency of the proposed
strategy.

Keywords Convection-diffusion equation · Optimal control · State constraints ·
Primal-dual active set strategy · Model order reduction

1 Introduction

In this paper we consider a class of linear parabolic convection-diffusion equations
which model, e.g., the evolution of the temperature inside a room, which we want
to keep inside a constrained range. The boundary control implements heaters in
the room, where, due to physical restrictions on the heaters, we have to impose
bilateral control constraints. The goals are to minimize the heating cost while
keeping the state (i.e., the temperature) inside the desired state constraints. In order
to gain regular Lagrange multipliers, we utilize a Lavrentiev regularization for the
state constraints; see [24]. Then, a primal-dual active set strategy (PDASS) can be
applied, which has a superlinear rate of convergence [15] and a mesh-independent
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property [16]. For the numerical solution of the equations we apply a Galerkin
approximation combined with an implicit Euler scheme in time and, in order to
speed-up the computation of optimal solutions, we build a reduced-order model
based on proper orthogonal decomposition (POD); cf. [6, 13]. To have sufficiently
accurate POD suboptimal solutions, we adapt the a-posteriori error analysis from
[9]. Then, we are able to estimate the difference between the (unknown) optimal
controls and their suboptimal POD approximations. For generating the POD basis,
we need to solve the full system with arbitrary controls, this implies that the quality
of the basis, which means how much the reduce order model solution captures the
behavior of the full system one, depends on this initial choice for the controls. There
are several techniques for improving the POD basis like, e.g., TR-POD [2], OS-POD
[20] or adaptive strategies like in [1]. However, in this paper, we will only compare
the quality of basis generated with arbitrary controls and with the idealized ones
generated from the optimal finite element controls. Our motivation comes from the
fact that we will utilize the proposed strategy within an economic model predictive
control approach [10, Chapter 8], where the POD basis will be eventually updated
during the closed-loop realization; cf. [22]. In contrast to [9] we consider economic
costs, boundary controls, two-dimensional spatial domains and time- as well as
space-dependent convection fields.

The paper is organized in the following way: in Sect. 2 we introduce our optimal
control problem and howwe deal with state and control constraints. The primal-dual
active set strategy algorithm related to this problem is presented in Sect. 3. In Sect. 4
we briefly explain the POD method and the related a-posteriori error estimator is
presented in Sect. 5. Numerical Tests are shown in Sect. 6. Finally, some conclusions
are drawn in Sect. 7.

2 The Optimal Control Problem

2.1 The State Equation

Let Ω ⊂ R
d , d ∈ {1, 2, 3}, be a bounded domain with Lipschitz-continuous

boundary Γ = ∂Ω . We suppose that Γ is split into two disjoint subsets Γc and
Γo, where at least Γc has nonzero (Lebesgue) measure. Further, let H = L2(Ω) and
V = H 1(Ω) endowed with their usual inner products

〈ϕ,ψ〉H =
∫

Ω

ϕψ dx, 〈ϕ,ψ〉V =
∫

Ω

ϕψ + ∇ϕ · ∇ψ dx

and their induced norms, respectively. For T > 0 we set Q = (0, T ) × Ω ,
Σc = (0, T ) × Γc and Σo = (0, T ) × Γo. By L2(0, T ; V ) we denote the space
of measurable functions from [0, T ] to V , which are square integrable, i.e.,

∫ T

0
‖ϕ(t)‖2V dt < ∞.
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When t is fixed, the expression ϕ(t) stands for the function ϕ(t, ·) considered as a
function in Ω only. The space W(0, T ) is defined as

W(0, T ) = {
ϕ ∈ L2(0, T ; V )

∣∣ϕt ∈ L2(0, T ; V ′)
}
,

where V ′ denotes the dual of V . The space W(0, T ) is a Hilbert space supplied
with the common inner product; cf. [7, pp. 472–479]. For m ∈ N let bi : Γc → R,
1 ≤ i ≤ m, denote given control shape functions. For U = L2(0, T ;Rm) the set of
admissible controls u = (ui)1≤i≤m ∈ U is given as

Uad = {
u ∈ U

∣∣ uai ≤ ui(t) ≤ ubi for i = 1, . . . ,m and a.e. in [0, T ]},
where ua = (uai )1≤i≤m, ub = (ubi )1≤i≤m ∈ R

m are lower and upper bounds,
respectively, and ‘a.e.’ stands for ‘almost everywhere’. Throughout the paper we
identify the dual U′ with U. Then, for any control u ∈ Uad the state y is governed
by the following state equation

yt(t, x) − Δy(t, x) + v(t, x) · ∇y(t, x) = 0 a.e. in Q,

∂y

∂n
(t, s) + y(t, s) =

m∑
i=1

ui(t)bi(s) a.e. on Σc,

∂y

∂n
(t, s) + γoy(t, s) = γoyout(t) a.e. on Σo,

y(0, x) = y◦(x), a.e. in Ω.

(1)

We suppose the following hypotheses for the data in (1).

Assumption 2.1 We assume that γo ≥ 0, v ∈ L∞(0, T ; L∞(Ω;Rd)) with d ∈
{1, 2, 3}, yout ∈ L2(0, T ), y◦ ∈ H and b1, . . . , bm ∈ L∞(Γc).

To write (1) in weak form we introduce the nonsymmetric, time-dependent
bilinear form a(t; · , ·) : V × V → R

a(t; ϕ,ψ) =
∫

Ω

∇ϕ · ∇ψ + (
v(t) · ∇ϕ

)
ψ dx +

∫
Γc

ϕψ ds + γo

∫
Γo

ϕψ ds

for ϕ,ψ ∈ V and the time-dependent linear functionalF(t) : V → V ′

〈F(t), ϕ〉V ′,V = γoyout(t)

∫
Γo

ϕ ds for ϕ ∈ V,

where 〈· , ·〉V ′,V stands for the dual pairing between V and its dual space V ′.
Moreover, the linear operatorB : Rm → V ′ is defined as

〈Bu, ϕ〉V ′,V =
m∑

i=1

ui

∫
Γc

biϕ ds for all ϕ ∈ V
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for given u = (ui)1≤i≤m ∈ R
m. Now, the state variable y ∈ W(0, T ) is called a

weak solution to (1) if

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) = 〈F(t) + B(u(t)), ϕ〉V ′,V ∀ϕ ∈ V a.e. in (0, T ],

y(0) = y◦ in H

(2)

is satisfied.

Lemma 2.1 Let Assumption 2.1 hold. Then:

1) For almost all t ∈ [0, T ] the bilinear form satisfies

∣∣a(t; ϕ,ψ)
∣∣ ≤ α ‖ϕ‖V ‖ψ‖V ∀ϕ,ψ ∈ V,

a(t; ϕ, ϕ) ≥ α1 ‖ϕ‖2V − α2 ‖ϕ‖2H ∀ϕ ∈ V

with constants α, α1 > 0 and α2 ≥ 0.
2) We haveF ∈ L2(0, T ; V ′), and the linear operatorB is bounded.

Proof The claims follow by standard arguments; cf. [7] and [5], for instance. �
Theorem 2.1 Suppose that Assumption 2.1 is satisfied. Then, (2) possesses a
unique solution y ∈ W(0, T ) for every u ∈ Uad satisfying the a-priori estimate

‖y‖W(0,T ) ≤ cy

(‖y◦‖H + ‖yout‖L2(0,T ) + ‖u‖U
)

(3)

for a constant cy > 0 which is independent of y◦, yout and u.

Proof Existence of a unique solution to (2) follows directly from Lemma 2.1 and
[7, pp. 512–520]. Moreover, the a-priori bound is shown in [25, Theorem 3.19]. �
Remark 2.1 We split the solution to (2) in one part, which depends on the fixed
initial condition y◦ and the right-hand side F, and another part depending linearly
on the control variable. Let ŷ ∈ W(0, T ) be the unique solution to the problem

d

dt
〈ŷ(t), ϕ〉H + a(t; ŷ(t), ϕ) = 〈F(t), ϕ〉V ′,V ∀ϕ ∈ V a.e. in (0, T ],

ŷ(0) = y◦ in H.

We define the subspace

W0(0, T ) = {
ϕ ∈ W(0, T )

∣∣ ϕ(0) = 0 in H
}
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endowed with the topology of W(0, T ). Let us now introduce the linear solution
operator S : U → W0(0, T ): for u ∈ U the function y = Su ∈ W0(0, T ) is the
unique solution to

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) = 〈B(u(t)), ϕ〉V ′,V ∀ϕ ∈ V a.e. in (0, T ].

From y ∈ W0(0, T ) it follows that y(0) = 0 in H . The boundedness of S follows
from (3). Now, the solution to (2) can be expressed as y = ŷ + Su. ♦

2.2 The State-Constrained Optimization Problem

We setW = L2(0, T ; H). Throughout the paper we identify the space L2(0, T ; H)

with L2(Q) and the dualW′ withW. Let y ∈ W(0, T ) be given and E : W(0, T ) →
W the canonical linear and bounded embedding operator. We deal with pointwise
state constraints of the following type

ya(t, x) ≤ Ey(t, x) ≤ yb(t, x) a.e. in Q, (4)

where ya, yb ∈ W are given lower and upper bounds, respectively. To gain regular
Lagrange multipliers we utilize a Lavrentiev regularization. Let ε > 0 be a chosen
regularization parameter and w ∈ W an additional (virtual) control. Then, (4) is
replaced by the mixed control-state constraints

ya(t, x) ≤ Ey(t, x) + εw(t, x) ≤ yb(t, x) a.e. in Q.

We introduce the Hilbert space

X = W(0, T ) × U × W

endowed with the common product topology. The set of admissible solutions is
given by

Xε
ad = {

x = (y, u,w) ∈ X
∣∣ y = ŷ + Su, ya ≤ Ey + εw ≤ yb and u ∈ Uad

}
.

The quadratic cost functional J : X → R is given by

J (x) = σQ

2

∫ T

0
‖y(t) − yQ(t)‖2H dt + σT

2
‖y(T ) − yT ‖2H

+ σ

2

m∑
i=1

‖ui‖2L2(0,T )
+ σw

2
‖w‖2W for x = (y, u,w) ∈ X.
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Assumption 2.2 Let the desired states satisfy yQ ∈ L2(0, T ; H) and yT ∈ H .
Furthermore, ε > 0, σQ, σT ≥ 0, and σ, σw > 0.

The optimal control problem is given by

min J (x) subject to (s.t.) x ∈ Xε
ad. (Pε)

Remark 2.2 Following [19] one can consider the generalized problem

min
σQ

2

∫ T

0
‖y(t) − yQ(t)‖2H dt + σT

2
‖y(T ) − yT ‖2H

+ σ

2

m∑
i=1

‖ui‖2L2(0,T )
+ f (ε)

2
‖w‖2W

(5a)

subject to the modified state equations

yt (t, x) − Δy(t, x) + v(t, x) · ∇y(t, x) = g(ε)w a.e. in Q,

∂y

∂n
(t, s) + y(t, s) =

m∑
i=1

ui(t)bi(s) a.e. on Σc,

∂y

∂n
(t, s) + γoy(t, s) = γoyout(t) a.e. on Σo,

y(0, x) = y◦(x), a.e. in Ω

(5b)

and to the inequality constraints

uai ≤ ui(t) ≤ ubi a.e. in [0, T ] for i = 1, . . . ,m,

ya(t, x) ≤ Ey(t, x) + h(ε)w(t, x) ≤ yb(t, x) a.e. in Q,

(5c)

where f , g and h are chosen nonnegative functions defined for ε ≥ 0. In [19]
convergence of a solution x̄ε = (ȳε, ūε, w̄ε) ∈ X is proved for ε → 0 in the case
of an elliptic state equation and unilateral state constraints. In our future work we
will study the application of the arguments in [19] to our parabolic setting and to
bilateral state constraints. ♦

Problem (Pε) can be formulated as pure control constrained problem. We set
ŷa = ya−Eŷ ∈ W and ŷb = yb−Eŷ ∈ W. Then, (4) can be formulated equivalently
in the control variables u and w as follows:

ŷa(t, x) ≤ (ESu)(t, x) + εw(t, x) ≤ ŷb(t, x) a.e. in Q.
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We define Z = U × W and introduce the bounded and linear mapping

Tε : Z → Z, z = (u,w) �→ Tε(z) =
(

u

ESu + εw

)
=

(
IU 0
ES εIW

)(
u

w

)
,

(6)

where IU : U → U and IW : W → W stand for the identity operators in U and
W, respectively. Notice that Tε is invertible and T−1

ε is explicitly given as

T−1
ε (u,w) =

(
IU 0

−ε−1ES ε−1IW

) (
u

w

)
=

(
u,

1

ε
(w − ESu)

)
(7)

for all z = (u,w) ∈ Z. With za = (ua, ŷa), zb = (ub, ŷb) ∈ Z we define the closed,
bounded, convex set of admissible controls as

Zε
ad = {

z = (u,w) ∈ Z
∣∣ za ≤ Tε(z) ≤ zb

}

which depends—throughTε—from the regularization parameter ε. Let ŷQ = yQ −
ŷ ∈ L2(0, T ; H) and ŷT = yT − ŷ(T ) ∈ H . Then, we introduce the reduced cost
functional

Ĵ (z) = J (ŷ + Su, u,w)

= σQ

2

∫ T

0
‖(Su)(t) − ŷQ(t)‖2H dt + σT

2
‖(Su)(T ) − ŷT ‖2H

+ σ

2

m∑
i=1

‖ui‖2L2(0,T )
+ σw

2
‖w‖2W for z = (u,w) ∈ Z.

Now (Pε) is equivalent to the following reduced problem

min Ĵ (z) s.t. z ∈ Zε
ad. (P̂ε)

Supposing Assumptions 2.1, 2.2 and applying standard arguments [21] one can
prove that there exists a unique optimal solution z̄ = (ū, w̄) ∈ Zε

ad to (P̂ε).
The uniqueness follows from the strict convexity properties of the reduced cost
functional on Zε

ad. Throughout this paper, a bar indicates optimality.

2.3 First-Order Optimality Conditions

First-order sufficient optimality conditions are formulated in the next theorem. The
proof follows from Theorem 2.4 in [11].

Theorem 2.2 Let Assumptions 2.1 and 2.2 hold. Suppose that the feasible set Zε
ad is

nonempty and that z̄ = (ū, w̄) ∈ Zε
ad is the solution to (P̂

ε) with associated optimal
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state ȳ = ŷ + Sū. Then, there exist unique Lagrange multipliers p̄ ∈ W(0, T ) and
β̄ ∈ W, μ̄ = (μ̄i )1≤i≤m ∈ U satisfying the dual equations

− d

dt
〈p̄(t), ϕ〉H + a(t; ϕ, p̄(t)) + 〈β̄(t), ϕ〉H = σQ 〈(yQ − ȳ)(t), ϕ〉H ∀ϕ ∈ V,

p̄(T ) = σT

(
yT − ȳ(T )

)
in H

(8)

a.e. in [0, T ] and the optimality system

σ ūi −
∫

Γc

bip̄ ds + μ̄i = 0 in L2(0, T ) for i = 1, . . . ,m,

σww̄ + εβ̄ = 0 inW.

(9)

Moreover,

β̄ = max
{
0, β̄ + η(ȳ + εw̄ − yb)

} + min
{
0, β̄ + η(ȳ + εw̄ − ya)

}
, (10a)

μ̄i = max
{
0, μ̄i + ηi(ūi − ubi )

} + min
{
0, μ̄i + ηi(ūi − uai )

}
(10b)

for i = 1, . . . ,m and for arbitrarily chosen η, η1, . . . , ηm > 0, where the max- and
min-operations are interpreted componentwise in the pointwise everywhere sense.

Remark 2.3 Analogous to Remark 2.1 we split the adjoint variable p into one part
depending on the fixed desired states and into two other parts, which depend linearly
on the control variable and on the multiplier β. Recall that ŷQ as well as ŷT are
defined in Sect. 2.2. Let p̂ ∈ W(0, T ) denote the unique solution to the adjoint
equation

− d

dt
〈p̂(t), ϕ〉H + a(t; ϕ, p̂(t)) = σQ 〈ŷQ(t), ϕ〉H ∀ϕ ∈ V a.e. in [0, T ),

p̂(T ) = σT ŷT in H.

Further, we define the linear, bounded operatorsA1 : U → W(0, T ) andA2 : W →
W(0, T ) as follows: for given u ∈ U the function p = A1u is the unique solution to

− d

dt
〈p(t), ϕ〉H + a(t; ϕ, p(t)) = −σQ 〈(Su)(t), ϕ〉H ∀ϕ ∈ V a.e. in [0, T ),

p(T ) = −σT (Su)(T ) in H

and for given β ∈ W the function p = A2β uniquely solves

− d

dt
〈p(t), ϕ〉H + a(ϕ, p(t)) = −〈β(t), ϕ〉H ∀ϕ ∈ V a.e. in [0, T ),

p(T ) = 0 in H.

In particular, the solution p̄ to (8) is given by p̄ = p̂ + A1ū + A2β̄. ♦
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It follows from Theorem 2.2 that the first-order conditions for (P̂ε) can be
equivalently written as the nonsmooth nonlinear system

σ ūi − γc

∫
Γc

bip̄ ds + μ̄i = 0, i = 1, . . . ,m, (11a)

σww̄ + εβ̄ = 0, (11b)

μ̄i = max
{
0, μ̄i + ηi(ūi − ubi )

} + min
{
0, μ̄i + ηi(ūi − uai )

}
, (11c)

β̄ = max
{
0, β̄ + η(ȳ + εw̄ − yb)

} + min
{
0, β̄ + η(ȳ + εw̄ − ya)

}
(11d)

with the unknowns ū, w̄, β̄ and μ̄.

Remark 2.4 Optimality system (11) can also be expressed as a variational in-
equality; cf. [17, 25]. Since the admissible set Zε

ad is convex and the strictly

convex reduced objective Ĵ is Fréchet-differentiable, first-order sufficient optimality
conditions for (P̂ε) are given as

〈∇Ĵ (z̄), z − z̄〉Z ≥ 0 ∀z ∈ Zε
ad, (12)

where the gradient ∇Ĵ of Ĵ at a given z = (u,w) ∈ Zε
ad is

∇Ĵ (z) =
((

σui − 〈bi, p(·)〉L2(Γc)

)
1≤i≤m

σww

)
(13)

with p = p̂ + A1u. ♦

3 The Primal-Dual Active Set Strategy (PDASS)

To solve (P̂ε) we utilize a semismooth Newton method which can be interpreted
as a primal-dual active set strategy; cf. [15, 18, 27]. For more details we refer to
[9, 11]. Suppose that zk = (uk,wk) ∈ Z is a current iterate for k ∈ N0. Then, we
set y0 = ŷ + Su0, p0 = p̂ + A1u

0 − σwA2w
0/ε,

yk = ŷ + Suk, βk = −σw

ε
wk,

pk = p̂ + A1u
k + A2β

k, μk
i =

∫
Γc

bip
k ds − σuk

i for i = 1, . . . ,m.
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Now we define the associated active sets

AU
ai (z

k) = {
t ∈ [0, T ] ∣∣μk

i + σ(uk
i − uai ) < 0 a.e.

}
, i = 1, . . . ,m,

AU
bi (z

k) = {
t ∈ [0, T ] ∣∣μk

i + σ(uk
i − ubi ) > 0 a.e.

}
, i = 1, . . . ,m,

AW
a (zk) =

{
(t, x) ∈ Q

∣∣ βk + σw

ε2

(
yk + εwk − ya

)
< 0 a.e.

}
,

AW
b (zk) =

{
(t, x) ∈ Q

∣∣ βk + σw

ε2

(
yk + εwk − yb

)
> 0 a.e.

}
.

(14a)

The associated inactive sets are defined as

IUi (zk) = [0, T ] \ (
AU

ai (z
k) ∪ AU

bi (z
k)

)
for i = 1, . . . ,m,

IW(zk) = Q \ (
AW

a (zk) ∪ AW
b (zk)

)
.

(14b)

Now it turns out that the new state yk+1 and the new adjoint pk+1 are given by the
two coupled problems

d

dt
〈yk+1(t), ϕ〉H + a(yk+1(t), ϕ) −

m∑
i=1

χIUi (zk)(t)
1

σ

∫
Γc

bip
k+1(t)ds̃

∫
Γc

biϕ ds

= 〈F(t), ϕ〉V ′,V +
m∑

i=1

(
χAU

ai (z
k)(t)uai (t) + χAU

bi
(zk)(t)ubi (t)

) ∫
Γc

biϕ ds

∀ϕ ∈ V a.e. in (0, T ],
yk+1(0) = y◦.

and

− d

dt
〈pk+1(t), ϕ〉H + a(t; ϕ, pk+1(t)) + σQ 〈yk+1(t), ϕ〉H

+ σw

ε2

〈
yk+1(t)

(
χAW

a (zk)(t) + χAW
b (zk)(t)

)
, ϕ

〉
H

= σQ 〈yQ(t), ϕ〉H + σw

ε2

〈
ya(t)χAW

a (zk)(t) + yb(t)χAW
b (zk)(t), ϕ

〉
H

,

∀ϕ ∈ V a.e. in [0, T ),

pk+1(T ) = σT

(
yT − yk+1(T )

)
,

respectively, which can be expressed as

(
Ak

11 Ak
12

Ak
21 Ak

22

) (
yk+1

pk+1

)
=

(
Q1(z

k; y◦, ua, ub, bi, σ, γc, yout)

Q2(z
k; ya, yb, yQ, yT , ε, σw)

)
. (15)



POD-Based Economic Optimal Control of Heat-Convection Phenomena 73

We haveA k
11 = A+ Ã

k

11 andA
k
22 = A � + Ã

k

22, where the k-independent operator
A : W(0, T ) → L2(0, T , V ′) is defined as

〈Ay, ϕ〉L2(0,T ;V ′),L2(0,T ;V ) =
∫ T

0
〈yt (t), ϕ(t)〉V ′,V + a(t; y(t), ϕ(t)) dt

for y ∈ W(0, T ) and ϕ ∈ L2(0, T ; V ). The new control variable zk+1 =
(uk+1, wk+1) is given by the linear system

∫
Γc

bip
k+1 ds − σuk+1

i = 0 in IUi (zk), i = 1, . . . ,m,

uk+1
i = uai in AU

ai (z
k), i = 1, . . . ,m,

uk+1
i = ubi in AU

bi (z
k), i = 1, . . . ,m,

wk+1 = 0 in IW(zk),

yk+1 + ε wk+1 = ya in AW
a (zk),

yk+1 + ε wk+1 = yb in AW
b (zk).

(16)

We resume the previous strategy in Algorithm 1.

Remark 3.1 Algorithm 1 has to be discretized for their numerical realizations. In
our tests carried out in Sect. 6 we utilize the implicit Euler method for the time
integration. For the spatial approximationwe apply a finite element Galerkin scheme
with piecewise linear finite elements on a triangular mesh. ♦

Algorithm 1 PDASS method for (P̂ε)
1: Choose starting value z0 = (u0, w0) ∈ Z; set k = 0 and flag = false;
2: Determine y0 = ŷ + Su0 and p0 = p̂ + A1u

0 − σwA2w
0/ε;

3: repeat
4: Get AU

ai (z
k), AU

bi
(zk), IUi (zk), i = 1, . . . , m, and AW

a (zk), AW
b (zk), IW(zk) from (14);

5: Compute the solution (yk+1, pk+1) by solving (15);
6: Compute zk+1 = (uk+1, wk+1) ∈ Z from (16);
7: Set k = k + 1;
8: if AU

a1(z
k) = AU

a1(z
k−1) and . . . and AU

am(zk) = AU
am(zk−1) then

9: if AU
b1(z

k) = AU
b1(z

k−1) and . . . and AU
bm

(zk) = AU
bm

(zk−1) then
10: if AW

a (zk) = AW
a (zk) and AW

b (zk) = AW
b (zk−1) then

11: flag = true;
12: end if
13: end if
14: end if
15: until flag = true;
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4 Proper Orthogonal Decomposition

For properly chosen admissible controls z = (u,w) ∈ Zε
ad we set y = ŷ + Su and

p = p̂ + A1u − σw

ε
A2w. Then, we introduce the linear subspace

V = span
{
y(t), p(t)

∣∣ t ∈ [0, T ]} ⊂ V (17)

with d = dimV ≥ 1. We call the set V the snapshots subspace. Let {ψi}di=1 denote
an orthonormal basis for V, then each snapshot can be expressed as

y(t) =
d∑

i=1

〈y(t), ψi 〉V ψi and p(t) =
d∑

i=1

〈p(t), ψi 〉V ψi a.e. in [0, T ]
(18)

The method of proper orthogonal decomposition (POD) consist in choosing an
orthonormal basis {ψi}di=1 in V such that for every � ∈ N with � ≤ d the mean
square error between the snapshots y, p and their corresponding �-th partial sum
of (18) is minimized:

min
∫ T

0

∥∥∥y(t) −
�∑

i=1

〈y(t), ψi 〉V ψi

∥∥∥2
V

+
∥∥∥p(t) −

�∑
i=1

〈p(t), ψi 〉V ψi

∥∥∥2
V
dt

s.t. {ψi}�i=1 ⊂ V and 〈ψi,ψj 〉V = δij for 1 ≤ i, j ≤ �,

(19)
where δij is the Kronecker delta.

Definition 4.1 A solution {ψi}�i=1 to (19) is called a POD basis of rank �. We define
the subspace spanned by the first � POD basis functions as V � = span {ψ1, . . . , ψ�}.

Using a Lagrangian framework, the solution to (19) is characterized by the
following optimality conditions (cf. [6, 13]):

Rψ = λψ, (20)

where the operator R : V → V given by

Rψ =
∫ T

0
〈y(t), ψ〉V y(t) + 〈p(t), ψ〉V p(t) dt for ψ ∈ V

is compact, nonnegative and self-adjoint operator. Thus, there exist an orthonormal
basis {ψi}i∈N for V and an associated sequence {λi}i∈N of nonnegative real numbers
so that

Rψi = λiψi, λ1 ≥ · · · ≥ λd > 0 and λi = 0, for i > d. (21)
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Moreover V = span{ψi}di=1. It can be also proved, see [6], that we have the
following error formula for the POD basis {ψi}�i=1 of rank �:

∫ T

0

∥∥∥y(t) −
�∑

i=1

〈y(t), ψi 〉V ψi

∥∥∥2
V

+
∥∥∥p(t) −

�∑
i=1

〈p(t), ψi 〉V ψi

∥∥∥2
V
dt =

d∑
i=�+1

λi .

Remark 4.1 For the numerical realization, the Hilbert space V has to be discretized
by, e.g., piecewise finite elements and the integral over [0, T ] has to be replaced by
a trapezoidal approximation; see [13]. ♦

If a POD basis {ψi}�i=1 of rank � is computed, we can derive a reduced-order
model for (2): for any u ∈ U the function y� = S�u ∈ W(0, T ) is given by

d

dt
〈y�(t), ψ〉H + a(t; y�(t), ψ) = 〈B(u(t)), ψ〉V ′,V ∀ψ ∈ V � a.e. in (0, T ].

(22)

For any u ∈ Uad the POD approximation y� for the state solution is y� = ŷ +S�u.
Analogously a reduced-order model can be derived for the adjoint equation; see,
e.g.,[13]. The POD Galerkin approximation of (P̂ε) is given by

min Ĵ �(z) = J (ŷ + S�u, z) s.t. z ∈ Z
ε,�
ad , (P̂

�
)

where the set of admissible controls is

Z
ε,�
ad = {

z = (u,w) ∈ Z
∣∣u ∈ Uad and ŷa ≤ (ES�u)(t, x) + εw(t, x) ≤ ŷb}.

5 A-Posteriori Error Analysis

In this section we present an a-posteriori error estimate which is based on a
perturbation argument [8] and has been already utilized in [26]. As done in [9],
this estimate can be generalized for the mixed control-state constraints case. As
first, suppose that Assumptions 2.1 and 2.2 hold. Recall that the linear, invertible
operator Tε has been introduced in (6). In particular, z = (u,w) belongs to Zε

ad if
z = (u,w) = T(z) ∈ Zad holds with the closed, bounded and convex subset

Zad = {
z = (u,w) ∈ Z

∣∣ua ≤ u ≤ ub in U and ŷa ≤ w ≤ ŷb inW
} ⊂ Z.

Note that—compared to the definition of the admissible set Zε
ad—the set Zad does

not depend on the solution operatorS and on the regularization parameter ε. Now,
we consider instead of (P̂ε) the following optimal control problem

min Ĵ
(
T−1

ε z
)

s.t. z = (u,w) ∈ Zad. (P̂ε)
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If z̄ = (ū, w̄) solves (P̂ε), then z̄ = Tε(z̄) is the solution to (P̂ε). Conversely, if z̄
solves (P̂ε), then z̄ = T−1

ε (z̄) is the solution to (P̂ε). According to [9] we have the
following result:

Theorem 5.1 Suppose that Assumptions 2.1 and 2.2 hold. Let z̄ = (ū, w̄) be the
optimal solution to (P̂ε).

1) z̄ = Tε(z̄) is the solution to (P̂ε).
2) Suppose that a point zap = (uap,wap) ∈ Zad is computed. We set zap =

T−1
ε (zap), i.e., zap = (uap, wap) fulfills uap = uap and wap = ε−1 (wap −

ESuap). Then, there exists a perturbation ζ = (ζ u, ζw) ∈ Z, which is
independent of z̄, so that

‖z̄ − zap‖Z ≤ 1

σz

‖T �
ε ζ‖Z with σz = min{σ, σw} > 0. (23)

where T�
ε denotes the adjoint of the operator Tε; cf. (7).

Proof Since Tε has a bounded inverse, part 1) follows. The second claim can be
shown by adapting the proof of Proposition 1 in [9].

Remark 5.1

1) The perturbation ζ can be computed following [9, Section 1.5].
2) In our numerical realization the approximate solution zap is given by the POD

suboptimal solution z̄� = (ū�, w̄�) ∈ Z
ε,�
ad to (P̂

�
). Thus, we proceed as in [12,

26] and utilize (23) as an a-posteriori error estimate in the following manner:We
set

zap = (uap,wap) ∈ Z with uap = ū� and wap = εw̄� + ES �ū�. (24)

From z̄� ∈ Z
ε,�
ad we infer that zap ∈ Zad. It follows from (7) and (24) that

zap = T−1
ε (zap) =

(
uap, ε−1 (

wap − ESuap
))

=
(
ū�, w̄� + ε−1E

(
S � − S

)
ū�

)

fulfills (23). Moreover, we found that

z̄ − zap = z̄ − z̄� +
(
0, ε−1E

(
S − S �

)
ū�

)
.

Consequently, (23) is not only an a-posteriori error estimate for z̄ − z̄�, but also
for ε−1E(S − S �)ū�. ♦
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6 Numerical Tests

All the tests in this section have been made on a Notebook Lenovo ThinkPad T450s
with Intel Core i7-5600UCPU@ 2.60GHz and 12GB RAM. The codes are written
in C language and we use the tools of PETSc, [3, 4], and SLEPc, [14, 23], for our
numerical computations. In the tests we apply a discrete variant of Algorithm 1.
For solving the linear system in step 5 of Algorithm 1, we use GMRES with an
incomplete LU factorization as preconditioner. For all tests, T = 1 is chosen, and
the domain Ω will be the unit square (0, 1) × (0, 1), where we supposed to have
four ‘heaters’, which we call controls for simplicity, placed as shown in Fig. 1, with
the following shape functions:

b1(x) =
{
1 if x1 = 0, 0 ≤ x2 ≤ 0.25,
0 otherwise.

b2(x) =
{
1 if 0.25 ≤ x1 ≤ 0.5, x2 = 1,
0 otherwise.

b3(x) =
{
1 if x1 = 1, 0.5 ≤ x2 ≤ 0.75,
0 otherwise.

b4(x) =
{
1 if 0.5 ≤ x1 ≤ 0.75, x2 = 0,
0 otherwise.

We choose the physical parameter γo = 0.03 and as initial condition y◦(x) =
| sin(2πx1) cos(2πx2)| for x = (x1, x2) ∈ Ω , as shown in Fig. 1. The velocity field
is chosen as v(t, x) = (v1(t, x), v2(t, x)) for all t ∈ [0, T ], with:

v1(t, x) =

⎧⎪⎨
⎪⎩

−1.6 if t < 0.5, x ∈ VF1
,

−0.6 if t ≥ 0.5, x ∈ VF2
,

0 otherwise
v2(t, x) =

⎧⎪⎨
⎪⎩
0.5 if t < 0.5, x ∈ VF1

,

1.5 if t ≥ 0.5, x ∈ VF2
,

0 otherwise

and

VF1 ={
x = (x1, x2)

∣∣ 12x2 + 4x1 ≥ 3, 12x2 + 4x1 ≤ 13
}
,

VF2 ={
x = (x1, x2)

∣∣ x1 + x2 ≥ 0.5, x1 + x2 ≤ 1.5
}
.

Fig. 1 Spatial domain Ω with the four boundary controls and the velocity fields (grey); initial
condition y◦(x). (a) t < 0.5. (b) t ≥ 0.5. (c) y◦(x)
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By these choices, this test represents the following scenario: the boundary controls
are heaters and the velocity field, which is both space and time dependent, models
the air flow in the room, which clearly changes in time. We also suppose that we
have an outside temperature yout(t) = −1 for t ∈ [0, 0.5) and yout(t) = 1 for
t ∈ [0.5, T ]. We fix as target yQ(t, x) = min(2.0 + t, 3.0) and yT (x) = yQ(T , x),
as state constraints ya(t) = 0.5 + min(2t, 2.0) and yb = 3.0. The time dependent
lower constraints ya(t) is chosen to gradually rise the temperature in time, in order
to save heating. Moreover, we choose the control constraints uai = 0 and ubi = 7
for i = 1, . . . , 4. We build the POD basis in two different ways: the first POD basis
(POD-M1) is built using the FE snapshots generated solving the state equation with
the controls ui(t) = 3.5 for t ∈ [0, T ] and i = 1, . . . ,m. The second POD basis
(POD-M2) is constructed using the FE optimal control related to the considered
test. We expect that the second basis will produce better results, since it contains
information regarding the optimal solution. For the implicit Euler method we choose
the equidistant time step Δt = 0.01. The spatial discretization is carried out by
piecewise linear finite elements (FE) on a triangular mesh with Nx = 625 nodes.

6.1 Test 1: Economic Optimal Control

The cost functional weights are σT = σQ = 0 and σw = σ = 1. This choice is
motivated by economic optimal control: we do not want to reach a target, but we
focus our attention only on respecting the state constraints, keeping the controls as
small as possible. For more information on economic optimal control we refer to
[10, Chapter 8], for instance. In this test, as first, we study the behaviour of the
PDASS for different values of ε. We will then analyse how this regularization pa-
rameter influences the POD approximation and the tightness of the error estimator.
Finally, we will compare the POD-M1 and POD-M2 approximation for a fixed value
of ε. As can be seen from Fig. 2 and as expected, when ε decreases the minimum
temperature in the room gets progressively close to the lower constraints ya(t) at
each time instance, while the average temperature and the maximum one remain for
more time inside the constraints’ range. The gradual decay of the temperature at the
last time steps is due to the terminal condition for the dual variable p: from (8), since
in this test σT = 0 holds, we have that p(T ) = 0. Therefore, the computation of the
optimal control, which is affected by this condition, lead to the previously noticed
phenomena. As reported in Table 1, the number of PDASS iterations increases when
ε decreases: when ε is small, the virtual controlw is big in the active points, thus the
algorithm employs more iterations to minimize the cost functional, where u and w

have the same weights, respecting also the control constraints. It can be shown that
εw = (ya − y) χAW

a (z) + (yb − y) χAW
b (z) holds, hence, the L2-norm of εw can be

used to measure howmuch the constraints are violated during all the evolution of the
solution. As can be seen from Table 1, this value confirms what we already stated
commenting Fig. 2. In Table 2, the relative errors between the solution computed
with the POD-M2 approximation and the FE one are reported for the same number
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Fig. 2 Test 1: Temperature behaviour at each time-step for different ε. (a) ε = 1. (b) ε = 0.1. (c)
ε = 0.01. (d) ε = 0.001

Table 1 Test 1: results for the FE discretization for different ε

Spatial discretization ε Ĵ (z) ‖εw‖W Iterations

FE 1.0 0.931 1.3563 4

FE 0.1 7.584 0.2874 7

FE 0.01 9.066 0.0216 9

FE 0.001 120.329 0.0150 21

of basis and for different ε. In the last column, we have listed the values of the
a-posteriori estimate for the difference ‖uFE − uPOD‖, which is defined as

‖uFE − uPOD‖2 =
m∑

i=1

‖uFEi − uPODi ‖2L2(0,T ).
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Table 2 Test 1: results for the POD-M2 discretization for different ε and same number of basis

Spatial discretization ε rel-err(T ) rel-err rel-err(Act.S.) ‖uFE − uPOD‖ Err.Est.

POD-M2-10 Basis 1.000 0.002 0.003 0 0.0003 0.0004

POD-M2-10 Basis 0.100 0.006 0.004 0.001 0.0076 0.0167

POD-M2-10 Basis 0.010 0.004 0.007 0.024 0.3705 3.3604

POD-M2-10 Basis 0.001 0.700 0.648 0.465 7.359 �2 · 105

We also need to clarify how we have computed the relative errors:

rel-err(T ) =‖yFE(T ) − yPOD(T )‖H /‖yFE(T )‖H ,

rel-err =‖yFE − yPOD‖L2(0,T ;H)/‖yFE‖L2(0,T ;H),

rel-err(Act.S.) =
∣∣∣AFE ∪ APOD − AFE ∩ APOD

∣∣∣ / (NxNt ) ,

where AFE = (
AW

a ∪ AW
b

)
(zFE) and Nt is the number of time steps. The rel-

err(Act.S.) in particular points out how much the active sets of state constraints
related to the optimal solution computed with the reduced order model are far to the
one computed in the FE discretization. As one can see, the POD approximation gets
worse as ε decreases. For example, for ε = 0.001 the optimal control computed
with the reduced order model is completely far from the one computed with the full
order discretization. This is justified from the fact that there are more dynamics to
approximate for smaller ε, since the number of iterations of the PDASS algorithm
is greater. If we want to obtain, for example, an approximation error less than 0.01
in the case of POD-M2 we have to take at least 4 basis for ε = 1, 9 for ε = 0.1, 28
for ε = 0.01 and 58 for ε = 0.001. In addition, since in Theorem 5.1 wap depends
on ε−1 and therefore also the error estimator, we have that its tightness depends
on the regularization parameter. The previous statement is confirmed by the data
reported in Table 2: the greater is ε the tighter is the error estimator. For example,
for ε = 1 we have that it is only 1.3 times greater than the true error, instead it is 5.67
times the true one for ε = 0.01. From now to the end of the subsection, ε is fixed
to 0.01. In Table 3 we present some results for Algorithm 1 for the FE and POD
approximations using the two different strategies to build the POD bases. The norm
of εw and also the cost functional gets closer to their values computed through the
FE discretization as soon as the number of basis increases. Moreover, the PDASS
algorithm applied to the reduced system converges almost in the same iterations’
number of the full one. Even if we are able to solve the reduced linear system of
Algorithm 1 around 80–100 times faster than the full one, the total algorithm speed-
up is approximatively 4. This is due to the fact that we have to compute the active
sets for the state constraints at each algorithm’s iteration and this means that the
reduced algorithm has to project into the FE discretization the approximated POD
solution, compute the active sets, which costs O(NNt ), and project back into the
POD subspace those sets. To better compare POD-M1 and POD-M2 approaches, we
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Table 3 Test 1: results for the FE and POD discretizations for ε = 0.01

Spatial discretization POD basis elements Ĵ (z) ‖εw‖W rel-err(Act.S.) Iterations Speed-up

FE – 9.066 0.0216 – 9 –

POD-M1 10 9.659 0.0339 0.127 10 3.91

POD-M1 15 9.123 0.0223 0.019 10 3.58

POD-M1 20 9.119 0.0221 0.010 9 3.48

POD-M2 10 9.181 0.0252 0.024 9 4.01

POD-M2 15 9.090 0.0229 0.014 9 3.90

POD-M2 20 9.076 0.0218 0.003 9 3.45

Table 4 Test 1: error values for the POD suboptimal solutions

Spatial discretization POD basis elements rel-err(T ) rel-err ‖uFE − uPOD‖ Error estimator

POD-M1 10 0.068 0.115 1.344 7.620

POD-M1 15 0.003 0.004 0.174 2.361

POD-M1 20 0.003 0.003 0.136 1.549

POD-M2 10 0.004 0.007 0.371 3.360

POD-M2 15 0.003 0.002 0.128 1.321

POD-M2 20 0.001 0.001 0.065 0.179

also report the relative errors between the solution computed with the full and the
reduced systems in Table 4. From this table, as expected, we can notice that the POD
basis generated with the optimal solution performs better than the other basis: when
the algorithm is getting closer to the optimal control, the information brought by the
optimal snapshots is more helpful than the one brought by snapshots generated with
an arbitrary control, which is usually far from the optimal one. This is also clear in
Fig. 3, where we plot the differences between the optimal controls computed solving
the full system and the reduced ones for 20 POD basis: the controls computed with
POD-M2 are closer to the FE optimal controls than the ones obtained using the
POD-M1 reduced system. This explains why we need an a-posteriori error estimator
for the POD basis: we can estimate the quality of our basis and we can decide to
consider a greater number of basis or to generate new basis from a different initial
control. In Fig. 4, we show the comparison between the true error ‖uFE−uPOD‖ and
the a-posteriori error estimator. Due to the previous discussion on the quality of the
POD approximation, we can notice that as expected it is tighter for POD-M2 than
for POD-M1 and it becomes for both approximations tighter and smaller as soon as
the number of POD basis increases, although with some oscillation.

6.2 Test 2: Cost of Tracking Type

For the second test, we fix ε = 0.1 and we use the same data of Test 1, except for
the cost functional weights which are chosen in the following way: σT = σQ = 1
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Fig. 3 Test 1: |uFE(t) − uPOD(t)| with � = 20 basis functions. (a) POD-M1. (b) POD-M2

Fig. 4 Test 1: comparison between ‖uFE−uPOD‖ and its a-posteriori error estimate. (a) POD-M1.
(b) POD-M2

and σ = 0.01. Regarding σw , we split the section in two parts: as first we study the
model’s behaviour when its value decreases, then we investigate the case σw = 0.
Regarding this last condition, we want to point out that in the continuous model
the terms connected to σw in the cost functional, adjoint equation and in the
error estimator are zero: this means that w is not uniquely defined, since the only
condition that w has to satisfy is ya(t, x) ≤ Ey(t, x) + εw(t, x) ≤ yb(t, x) a.e. in
Q, which clearly has no unique solution for fixed values of ya, yb, ε and y. By the
way, due to the fact that σw = 0, we can observe that w is not more influencing
the computation of the optimal control in the PDASS algorithm, so our optimal
control will respect the control constraints and be the minimum of the reduced
cost functional Ĵ , but the solution may not be in the state constraints’ range. From
Table 5 we can noticed that the smaller σw is the more the algorithm focuses on
reaching the target and the less on respecting the state constraints. In addition, when



POD-Based Economic Optimal Control of Heat-Convection Phenomena 83

Table 5 Test 2: results for the FE discretization for different σw

Spatial discretization σw Ĵ (z) ‖εw‖W ‖y(T ) − yT ‖ ‖y − yQ‖ Iterations

FE 1.0000 0.318 0.015 0.159 0.618 9

FE 0.0100 0.311 0.036 0.156 0.624 5

FE 0.0001 0.309 0.161 0.155 0.623 4

Table 6 Test 2: results for the POD-M2 discretization for different σw and same number of basis

Spatial discretization σw rel-err(T ) rel-err rel-err(Act.S.) ‖uFE − uPOD‖ Err.Est.

POD-M2-10 Basis 1.0000 0.0019 0.0036 0.0014 0.1689 0.3051

POD-M2-10 Basis 0.0100 0.0013 0.0014 0.0007 0.0937 0.1456

POD-M2-10 Basis 0.0001 0.0013 0.0012 0.0005 0.0931 14.1898

σw decreases the conditions for the PDASS algorithm are less restrictive, therefore
it uses less iteration to compute the solution. As showed in Table 6, also the POD-
M2 approximation becomes better when σw gets smaller, but there is a worsening in
the a-posteriori estimation: this is connected to the term σ−1

z in (23), which makes
the estimation increasing. For σw = 0 instead, we have a simplified error estimator,
which produces better results compared to the case σw > 0 really small. As in
Test 1, in Tables 7 and 8 we report the results of the finite elements solution (FE)
and the reduced order ones (POD-M1,POD-M2) for σw = 0, with different choices
of basis’ number. As can be observed from Table 7, for this choice of parameters
we have an improve of the speed-up gained in solving the reduced system, because
in this context we do not have to compute the active sets for the state constraints.
Therefore, we can have a speed-up for the algorithm similar to the one we get for
solving the reduced linear system at each PDASS algorithm’s step. In addition, the
case σw = 0.0001 (or smaller) is equal to σw = 0, which is not surprising, since this
means that already for this value of σw , we are almost ignoring the state constraints,
due also to the choice on ε, but the advantage of taking σw = 0 is to have a tighter
error estimator and a greater speed-up. As last, in this test it is confirmed that the
number of POD basis functions needed to approximate the full order model really
depends on the choice of the controls used for building the snapshots: we can see
that for 4 basis, we can not capture in a good way the FE behaviour with POD-M1
basis, but with 10 basis we get results similar to POD-M2. The optimal trajectories
at time T = 1.0 are reported in Fig. 5: we can notice that the FE and the POD-M2
ones are similar already for 7 basis, which is not the case for POD-M1.

7 Conclusions

With efficient building operation in mind, we have studied an optimal control
problem of a parabolic convection-diffusion equations, with a time-dependent
advection field, bilateral constraints for the boundary controls and pointwise state
constraints, which have been treated with a Lavrentiev regularization. For solving
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Table 8 Test 2: error values for the POD suboptimal solutions

Spatial discretization POD basis elements rel-err(T ) rel-err ‖uFE − uPOD‖ Error estimator

POD-M1 4 0.091 0.087 1.711 6.170

POD-M1 7 0.056 0.026 0.421 0.781

POD-M1 10 0.002 0.002 0.103 0.166

POD-M2 4 0.044 0.062 1.416 5.770

POD-M2 7 0.004 0.004 0.200 0.379

POD-M2 10 0.001 0.001 0.093 0.142

Fig. 5 Test 2: optimal trajectories at time t = 1.0. (a) FE. (b) POD-M1-7Basis. (c) POD-M2-
7Basis

this optimal control problem we have applied the primal-dual active set strategy
presented in [15], which has a super-linear rate of convergence. In order to speed-
up the computational time of the algorithm, we have employed the POD method
and utilized the a-posteriori error estimator in [9]. In the numerical test section,
we have also shown how the variation of the regularization parameter ε and of the
cost functional weight σw influences the behaviour of the solution and of the POD
approximation. In addition, concerning the speed-up due to the POD method, we
have noticed that this is reduced because of the computation of the state constraints’
active sets, therefore it will be interesting in future work to treat the state constraints
with other methods, e.g. the augmented Lagrangian algorithm. As shown in [22], the
PDASS and its POD version can be combined with MPC, in order to face long-time
horizon problems, which can be really costly to solve directly with the PDASS.
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