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Preface

The contributions included in this volume were presented at the workshop “Numer-
ical methods for optimal control problems: algorithms, analysis and applications”,
held in Rome on 19–23 June 2017, at the Istituto Nazionale di Alta Matematica—
INdAM (for more information on the workshop see the website http://www1.mat.
uniroma1.it/ricerca/convegni/2017/numoc2017/). The goal of the workshop was to
compare and (possibly) integrate a number of techniques of heterogeneous origin,
such as open-loop optimization, nonlinear and dynamic programming, and model
predictive control. Specific tools for high dimensional problems, such as state space
reduction, adaptive and sparse grids, max-plus algebra and radial basis functions,
were also addressed. The idea was to gather experts from different communities
in numerical analysis and control engineering, and the varied nature of the topics
covered in the volume reflect this goal.

Optimal control theory concerns the determination of control strategies for
complex dynamical systems, in order to optimize measures of their performance.
Nowadays, the field embraces a variety of areas ranging from process control
to traffic flow optimization, renewable-resource exploitation and management of
financial markets. In addition, since many of these systems are described by
stochastic models, optimal control theory has also been adapted to stochastic
dynamical systems, as well as to multi-agent systems. In this generality, the theory
is also of increasing interest for large-scale economic planning.

Although a widely studied topic, the numerical computation of optimal strategies
remains a problem of high complexity. Consequently, along with advances in
the theory, the development of new numerical methods is a crucial issue for
many industrial applications as well as for social and economic planning. With
the rapid growth in computational power in recent years, problems of larger and
larger scale are becoming computationally feasible in many application areas.
However, depending on the techniques used, the bottleneck for numerical algorithms
may be either, on the one hand, a lack of robustness, or, on the other, “curse
of dimensionality”—the tendency for problem complexity to grow exponentially
with respect to the number of state variables. This is particularly true for large-
scale systems, in which the number of variables and agents is usually very high.
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vi Preface

While optimal control techniques are expected to provide some of the theoretical
foundations for new, much-needed technological developments, advances in real-
life applications will require corresponding improvements in the efficiency and
reliability of such numerical methods.

The field of numerical analysis for optimal control problems is experiencing
rapid growth: new algorithms have been proposed in recent years, problems of
increasing complexity have been approached, various state-of-the-art numerical
recipes have been applied, and new ways of coupling the various techniques have
been suggested. For all these reasons, we have decided to place the focus of this
volume on the comparison of a broad range of numerical tools for this class of
problems, and on their respective advantages, drawbacks and possible interactions.

We would like to take this opportunity to express our gratitude to INdAM for its
financial support, for its continuous help with the organizational tasks, and for the
warm hospitality during the workshop. We also want to thank all the speakers who
contributed to the scientific program and this volume, and the institutions which
sponsored the workshop: the University of Bayreuth, the Sapienza University of
Rome, and Roma Tre University.

Rome, Italy Maurizio Falcone
Rome, Italy Roberto Ferretti
Bayreuth, Germany Lars Grüne
La Jolla, CA, USA William M. McEneaney
September 2018
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A Hamilton-Jacobi-Bellman Approach
for the Numerical Computation
of Probabilistic State Constrained
Reachable Sets

Mohamed Assellaou and Athena Picarelli

Abstract Aim of this work is to characterise and compute the set of initial
conditions for a system of controlled diffusion processes which allow to reach a
terminal target satisfying pointwise state constraints with a given probability of
success. Defining a suitable auxiliary optimal control problem, the characterization
of this set is related to the solution of a particular Hamilton-Jacobi-Bellman
equation. A semi-Lagrangian numerical scheme is defined and its convergence to
the unique viscosity solution of the equation is proved. The validity of the proposed
approach is then tested on some numerical examples.

Keywords Viscosity solutions · Reachable set · Discontinuous cost functions ·
Neumann boundary conditions

1 Introduction

We consider the control of stochastic differential equations in R
d of the following

form{
dX(s) = b(s,X(s), u(s))ds + σ(s,X(s), u(s))dB(s), ∀s ∈ [t, T ]
X(t) = x . (1)

Given a fixed time horizon T > 0, we aim to characterize the set of initial states
from which, with an assigned level of probability, it is possible to reach a target set
at time T satisfying some state constraints along the whole interval [t, T ].
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2 M. Assellaou and A. Picarelli

More precisely, let C and K be two non-empty subsets of R
d representing

respectively the target set and the set of state constraints and let ρ ∈ [0, 1). We
define the state constrained backward reachable set under probability of success ρ as
the set, hereafter denoted byΩρt , of initial points x ∈ R

d for which the probability
to steer the system (1) towards C maintaining the dynamics in the set K is higher
than ρ, i.e.

{
x ∈ R

d : ∃u ∈ U, P
[
Xut,x(θ) ∈ K, ∀θ ∈ [t, T ] and Xut,x(T ) ∈ C

]
> ρ

}
,

whereXut,x(·) represents the strong solution to (1) associated with the control u ∈ U.
Assumptions on the coefficients in (1) and on the set of controls U will be made
clear in the next section. Such backward reachable sets play an important role
in many applications, as the set Ωρt can be interpreted as a “safety region” for
reaching C remaining in the set K, with confidence ρ. It turns out that the set Ωρt
can be characterized by means of the so-called level set approach. At the basis
of this approach there is the idea to look at the set of interest, the set Ωρt in our
case, as the level set of a certain function solution of a suitable partial differential
equation (PDE). Such a characterization of the set is particularly useful in view of
its numerical approximation, since it opens the way to the use of a wide choice
of numerical methods designed for PDEs. Originally introduced in [25] to model
front propagation problems, this approach immediately resulted in a very powerful
method for studying backward reachable sets of continuous non-linear dynamical
systems under very general conditions. In [16, 24] this idea is used to describe
the reachable sets for deterministic problems. The link between stochastic target
problems and level set approach is established in [26]. More recently, the level
set approach has been extended to the case of state-constrained controlled systems
[9, 10] and probabilistic reachability problems [6].

In our case, we will show that it is straightforward to see that

Ω
ρ
t =
{
x ∈ R

d : ϑ(t, x) > ρ
}
, (2)

where ϑ is the value function associated to the following optimal control problem:

ϑ(t, x) := sup
u∈U

E

[
1C(X

u
t,x(T ))

∧
min
θ∈[t,T ]1K (Xut,x(θ))

]
, (3)

with the standard notation a ∧ b := min(a, b). In particular, equality (2) charac-
terises the set Ωρt for t ∈ [0, T ] by means of the function ϑ .

We point out that, in the discrete time setting, a similar approach has been consid-
ered in [1, 2, 22]. In this case, the value function is obtained recursively by solving
the dynamic programming principle. In the present paper, we are interested in the
approximation of the probabilistic backward reachable sets for time-continuous
stochastic processes by PDE techniques. In the non controlled framework, an alter-
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native numerical algorithm consist in using Monte Carlo simulations to generate a
set of trajectories starting from a given initial position. The percentage of trajectories
reaching the target without violation of the state constraints gives an approximation
of the probability of success when starting from this position. On the other hand,
for linear stochastic systems, a bound for the probability of hitting a target can
be obtained by using the enclosing hulls of the probability density function for
time intervals, see [3, 4]. However, it is worth noticing that these approaches are
used to calculate the probabilities of success but do not allow to define the entire
set of points that have the same given probability. In addition, Monte-Carlo based
methods often require a large number of simulations to obtain a good accuracy. We
will use such simulations in Sect. 5 as a comparison to validate our approach. In
the context of financial mathematics, the problem of characterizing the backward
reachable set with a given probability was first introduced by Föllmer and Leukert
[18]. This problem was also studied and converted into the class of stochastic target
problems by Touzi, Bouchard and Elie in [12]. However in these references the
possible presence of state constraints is not taken into account.

In order to apply a dynamic programming approach and characterize the value
function ϑ as the unique viscosity solution of a Hamilton-Jacobi-Bellman (HJB)
equation we face two main difficulties. First, the discontinuous cost functional
given by the presence of the indicator functions would require to make use of
the notion of discontinuous viscosity solutions. Establish uniqueness results in
such a framework is usually a very hard task, so we propose here to work on
a regularized version of problem (3). Second, the non commutativity between
expectation and maximum operator makes problem (3) not satisfying the natural
“Markovian structure” necessary to apply the dynamic programming arguments.
We here follow the ideas in [8, 10, 19, 21] and define an auxiliary optimal control
problem in an augmented state space and derive the HJB equation for this problem
recovering the value function ϑ solution of the original problem at a later stage. The
obtained HJB equation is defined in a domain and completed with mixed Dirichlet
and oblique derivative boundary conditions. Derivative conditions (to be considered
in the viscosity sense, see Definition 1) typically arise dealing with running maxima
in the cost functional (see also [8, 10]), while the Dirichlet condition will be
naturally satisfied pointwise by our value function. We discuss the numerical
approximation of the obtained HJB equation. We introduce a semi-Lagrangian (SL)
approximation scheme which incorporates the aforementioned boundary conditions
and we prove its convergence to the viscosity solution following the framework in
[7]. We recall that SL scheme for second order HJB equations have been introduced
by Menaldi in [23] and then studied by Camilli and Falcone [13]. We refer to [15]
and the references therein for an overview. Derivative boundary conditions have
been added to the scheme in [10], while the case of mixed Dirichlet-derivative
conditions has been recently studied in [21].

The paper is organised as follows. In Sect. 2 we present the problem and
give some preliminary results. The regularized problem is introduced in Sect. 2.2.
Section 3 is devoted to the development of the dynamic programming arguments
and the HJB characterization. In Sect. 4 we discuss the numerical aspects and state
the main convergence result. Numerical tests are presented in Sect. 5.
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2 Formulation of the Problem and Preliminary Results

2.1 Problem Formulation

Let {Ω,Ft , {Ft }t≥0,P} be a filtered probability space and B(·) a given p-
dimensional Brownian motion. Let T > 0. We denote by U the set of all
progressively measurable processes valued in U ⊂ R

m, U compact set. For any
u ∈ U, let us consider the following system of stochastic differential equations
(SDEs) in R

d :

{
dX(s) = b(s,X(s), u(s))ds + σ(s,X(s), u(s))dB(s), ∀s ∈ [t, T ]
X(t) = x. (4)

The following classical assumptions will be considered on the coefficients b
and σ :

(H1) σ : [0, T ]×R
d ×U → R

d×p and b : [0, T ]×R
d ×U → R

d are continuous
functions and there exists constant L > 0 such that

|b(t, x, u)− b(t, y, u)| + |σ(t, x, u)− σ(t, y, u)| <= L|x − y|.

for any t ∈ [0, T ], x, y ∈ R
d and u ∈ U .

It is well known that, under assumption (H1), for any u ∈ U there is a unique strong
solution to (4) [27, p. 42, Thm. 6.3]. We denote by Xut,x(·) such a solution.

Let C and K be nonempty open sets in R
d , representing respectively the target

set and the set of state constraints. Let ρ ∈ [0, 1) an assigned value of success
probability. We define the backward reachable set under probability of success ρ, as
the setΩρt of initial points x ∈ R

d from which it starts a trajectory Xut,x(·) such that
the probability to reach the target C at the final instant T satisfying the constraint K
in the interval [t, T ] is grater than ρ, i.e.:

Ω
ρ
t :=

{
x ∈ R

d : ∃u ∈ U, P
[
Xut,x(θ) ∈ K, ∀θ ∈ [t, T ] and Xut,x(T ) ∈ C

]
> ρ

}
.

For a given set O ⊆ R
d we will denote by 1O its indicator function, i.e.

1O(x) :=
{

1 if x ∈ O

0 otherwise.
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One can easily verify that

1C(X
u
t,x(T ))

∧
min
θ∈[t,T ]1K (Xut,x(θ)) =

⎧⎨
⎩1 if Xut,x(θ) ∈ K ∀θ ∈ [t, T ] and Xut,x(T ) ∈ C

0 otherwise,
(5)

i.e. the expression on the left hand side of (5) is an indicator function for the event

Xut,x(θ) ∈ K ∀θ ∈ [t, T ] and Xut,x(T ) ∈ C.

It follows that, for any u ∈ U, P
[
Xut,x(θ) ∈ K, ∀θ ∈ [t, T ] and Xut,x(T ) ∈ C

]
can be expressed by

E

[
1C(X

u
t,x(T ))

∧
min
θ∈[t,T ]1K (Xut,x(θ))

]
.

As a consequence, it is possible to describe the set Ωρt using optimal control tools
just looking at the evolution of the level sets of the following value function:

ϑ(t, x) := sup
u∈U

E

[
1C(X

u
t,x(T ))

∧
min
θ∈[t,T ]1K (Xut,x(θ))

]
. (6)

Proposition 1 Let assumption (H1) be satisfied. Then, for t ∈ [0, T ], we have:

Ω
ρ
t = {x ∈ R

d : ϑ(t, x) > ρ}.

Proof If x ∈ Ωρt , thanks to equality (5)

E

[
1C(X

u
t,x(T ))

∧
min
θ∈[t,T ]1K (Xut,x(θ))

]
> ρ

for some control u ∈ U and it follows ϑ(t, x) > ρ.
Let us now suppose that ϑ(t, x) > ρ. By the definition of the supremum and the

fact that U is a non empty set, one has that, for some control ū ∈ U,

E

[
1C(X

ū
t,x(T ))

∧
min
θ∈[t,T ]1K (Xūt,x(θ))

]
> ρ

and then, using again (5), x ∈ Ωρt .

Motivated by this result, we are going to focus on the characterization and
numerical approximation of the function ϑ . Problem (6) is an optimal control
problem with a discontinuous cost in a “minimum form”. This is not a standard
formulation in optimal control theory for two main reasons: first, the discontinuity
of the cost functional prevents the characterization of (6) as the unique viscosity
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solution of a HJB equation, second the loss of Markovian structure in the cost, due
to the presence of the minimum operator inside the expectation, makes the dynamic
programming arguments not directly applicable. We discuss the first issue in the
next section.

2.2 Regularized Problem

The discontinuity introduced by the presence of the indicator functions and the
consequent necessity of dealing with the notion of discontinuous viscosity solutions
(see for instance [17, Section VII.4] for their definition) pose nontrivial issues
when attempting to establish uniqueness results for the associated HJB equation.
To overcome this difficulty, from now on we will work with a regularized version
of the cost functional in (6). In particular, observing that the indicator functions 1C
and 1K can be written as

1C(z) =
{

1 if d∂C(z) < 0

0 if d∂C(z)≥0
, 1K(z) =

{
1 if d∂K(z) < 0

0 if d∂K(z)≥0

where d∂C and d∂K are respectively the signed distance function to ∂C and ∂K, we
consider the following regularized functions φεC and φεK (see Fig. 1):

φεC(x) := min(1,max(0,−1

ε
d∂C(x))), φεK(x) := min(1,max(0,−1

ε
d∂K (X)))

and the optimal control problem

ϑε(t, x) := sup
u∈U

E

[
φεC(X

u
t,x(T ))

∧
min
θ∈[t,T ]φ

ε
K(X

u
t,x(θ))

]
. (7)

Fig. 1 Regularization of the
indicator function in the case
O = (−∞, 0)



A HJB Approach for the Computation of Reachable Sets 7

Remark 1 Note that the choice of φε. is such that φε. ≤ 1. which implies

ϑε(t, x) > ρ ⇒ ϑ(t, x) > ρ.

Hence if we are able to find a numerical approximation ϑ̃ε of ϑε such that |ϑ̃ε −
ϑε | ≤ η for some η ≥ 0, we will have ϑ̃ε(t, x) > ρ + η ⇒ ϑε(t, x) > ρ ⇒
ϑ(t, x) > ρ.

This regularization allow us to deal with a continuous cost and also to obtain the
following regularity result for the associated value function:

Proposition 2 Let assumption (H1) be satisfied and let ε > 0. The value function
ϑε is Lipschitz continuous with respect to x and 1

2 -Hölder continuous with respect
to t , i.e. there exists a constant Lε > 0 such that

|ϑε(t, x)− ϑε(s, y)| ≤ Lε
(|x − y| + |t − s| 1

2 (1 + |x| + |y|))
for any t, s ∈ [0, T ], x, y ∈ R

d .

Proof Let 0 ≤ t ≤ s ≤ T , x, y ∈ R
d . Thanks to the property of minimum operator

|(a ∧ b)− (c ∧ d)| ≤ |a − c| ∨ |b − d|, one has:

|ϑε(t, x)− ϑε(t, y)| (8)

≤ sup
u∈U

E

[∣∣(φεC(Xut,x(T ))∧ min
θ∈[t,T ]φ

ε
K(X

u
t,x(θ))

) − (φεC(Xut,y(T ))∧ min
θ∈[t,T ]φ

ε
K(X

u
t,y(θ))

)∣∣]

≤ sup
u∈U

E

[∣∣φεC(Xut,x (T )) − φεC(Xut,y(T ))∣∣∨ max
θ∈[t,T ]

∣∣φεK(Xut,x(θ)) − φεK(Xut,y (θ))∣∣]

and

|ϑε(t, x)− ϑε(s, x)| (9)

≤ sup
u∈U

E

[∣∣φεC(Xus,Xut,x(s)(T ))− φεC(Xus,x(T ))∣∣∨ max
θ∈[t,s]

∣∣φεK (Xut,x(θ))− φεK (X)
∣∣

∨
max
θ∈[s,T ]

∣∣φεK (Xus,Xut,x(s)
(θ))− φεK (Xus,x(θ))

∣∣].
It can be easily verified that φεC and φεK are Lipschitz continuous functions with
Lipschitz constant 1/ε. Then by (8) and (9) we get

|ϑε(t, x)− ϑε(t, y)| ≤ 1

ε
sup
u∈U

E

[
max
θ∈[t,T ]

∣∣Xut,x(θ)−Xut,y(θ)∣∣]

and

|ϑε(t, x) − ϑε(s, x)| ≤ 1

ε
sup
u∈U

E

[
max
θ∈[t,s]

∣∣Xut,x(θ)− x∣∣∨ max
θ∈[s,T ]

∣∣Xu
s,Xut,x(s)

(θ)− x∣∣].
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Under assumption (H1), there exists some constantC > 0 such that for any 0 ≤ t ≤
s ≤ T , x, y ∈ R

d the unique strong solution to Eq. (4) satisfies

E

[
sup
θ∈[t,s]

∣∣∣Xut,x(θ)−Xut,y(θ)∣∣∣2 ] ≤ C|x − y|2, (10)

E

[
sup
θ∈[t,s]

∣∣Xut,x(θ)−Xus,x(θ)∣∣2 ] ≤ C(1 + |x|2) |t − s| (11)

(see for instance [27, Theorem 6.3]).
Hence, the result follows just taking Lε := C/ε.

Remark 2 It has been proved in [6, Theorem 3.1] that, if K = R
d and C is a

non empty, convex set with a C1 regular boundary, under the uniform ellipticity
condition, for some α > 0, ∀(t, x, u) ∈ (0, T )× R

d × U ,

σ(t, x, u)σ (t, x, u)T ≥ α1d , (12)

where 1d is the identity matrix, the following holds:

|ϑ(t, x)− ϑε(t, x)| ≤ C 1 + |x|2 + | log ε|
(T − t)d ε (13)

for some constant C depending only on α and the constants in assumption (H1). We
conjecture that analogous estimates can be obtained in the general case K �= R

d ,
but a rigorous proof of this fact is still material of ongoing research.

3 Dynamic Programming and Hamilton-Jacobi-Bellman
Equation

Aim of this section is to characterize the function ϑε as a (viscosity) solution to a
suitable HJB equation. For doing this, we closely follow the dynamic programming
arguments recently developed in [10, 19] for optimal control problems with a cost
depending on a running maximum. Therefore, in order to directly use those results
in our framework, we will rewrite the optimal control problem (7) by means of the
cost functional

J (t, x, u) := E

[
− φεC(Xut,x(T ))

∨
max
θ∈[t,T ] −φ

ε
K(X

u
t,x(θ))

]
(14)

such that the following holds

ϑε(t, x) = − inf
u∈U

J (t, x, u).
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The presence of the maximum operator inside the expectation, makes the cost in (14)
non-Markovian preventing the direct use of the Dynamic Programming Principle
(DPP), which is the first fundamental result towards the HJB characterisation. A
classical strategy to overcome this difficulty consists in adding an auxiliary variable
y that, roughly speaking, gets rid of the non-Markovian component of the cost. This
has been originally used in [8] where an approximation technique of the L∞-norm
is used, whereas in [10, 19] the HJB equation is derived without making use of any
approximation.

Let us introduce the following value function:

wε(t, x, y) := inf
u∈U

E

[
− φεC(Xut,x(T ))

∨
max
θ∈[t,T ] −φ

ε
K(X

u
t,x(θ))

∨
y

]
. (15)

Defining the process

Yut,x,y(.) := max
s∈[t,.] −φ

ε
K(X

u
t,x(s))

∨
y,

the value function (15) can also be written as

wε(t, x, y) = inf
u∈U

E

[
− φεC(Xut,x(T ))

∨
Yut,x,y(T )

]
.

Observe that the following property holds:

ϑε(t, x) = −wε(t, x,−1), (16)

so from now on only the optimal control problem (15) will be taken into account,
since the corresponding value of the function ϑε can be derived by the previous
equality. The following property is satisfied:

Proposition 3 Let assumption (H1) be satisfied. Then, there exists a constant C >
0 such that for any ε > 0, t, s ∈ [0, T ], (x, y), (x ′, y ′) ∈ R

d+1 one has

|wε(t, x, y)− wε(s, x ′, y ′)| ≤ C

ε

(
|x − x ′| + |y − y ′| + |t − s| 1

2 (1 + |x| ∨ |x ′|)
)
.

Moreover, for any family of stopping times {τu, u ∈ U} with values in [t, T ] one has

wε(t, x, y) = inf
u∈U

E

[
wε(τu,Xut,x(τ

u), Y ut,x,y(τ
u))

]
(17)

for any (t, x, y) ∈ [0, T ] ×R
d+1.

Proof The regularity ofwε with respect to t and x can be proved as in Proposition 2,
while the Lipschitzianity with respect to y is trivial.
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Thanks to the regularity ofwε , the DPP (17) follows by arguments similar to [11]
observing that for the couple of variables (Xut,x(·), Y ut,x,y(·)) the following property
holds: (

Xut,x(s)

Y ut,x,y(s)

)
=
(
Xu
θ,Xut,x (θ)

(s)

Y u
θ,Xut,x (θ),Y

u
t,x,y (θ)

(s)

)
a.s.

for any t ≤ θ ≤ s ≤ T ( with θ possibly a stopping time). We remand to [10] for a
sketch of the proof showing how the arguments in [11] adapt to our case.

3.1 HJB Equation

Proposition 3 is the main tool for proving the next result that characterizeswε as the
unique solution, in the viscosity sense, of a suitable HJB equation. In the sequel we
will restrict our domain to

D := {(x, y) ∈ R
d+1 : −φεK (x) < y < 0}.

Indeed, the knowledge of wε in D is sufficient to characterize it everywhere thanks
to the following relation:

wε(t, x, y) = y for any y ≥ 0

wε(t, x, y) = wε(x,−φεK (x)) for any y ≤ −φεK (x).
(18)

Based on this observation, it is sufficient to characterisewε in the domainD. Letting

Γ1 := {(x, y) ∈ D : y = 0}; Γ2 := {(x, y) ∈ D : y = −φεK (x)}, (19)

we are going to prove that wε is the unique solution (in the weak sense specified in
Definition 1 below) of the following HJB equation with mixed derivative-Dirichlet
boundary conditions:

⎧⎪⎪⎨
⎪⎪⎩
−∂tw +H(t, x,Dxw,D2

xw) = 0 [0, T )×D
w = 0 [0, T )× Γ1

−∂yw = 0 [0, T )× Γ2

w(T , x, y) = w0(x, y) D

(20)

with

H(t, x, p,Q) := sup
u∈U

{
−b(t, x, u)p − 1

2
T r[σσT ](t, x, u)Q

}
(21)
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and

w0(x, y) := −φεC(x)
∨

−φεK(x)
∨
y.

We point out that the derivative boundary condition −∂yw = 0 on Γ2 is typically
obtained in presence of a running maximum cost, see [8, 10], while the Dirichlet
condition wε = 0 on Γ1 is obtained by the very definition of wε . Observe also
that the constant Dirichlet condition on Γ1 is compatible with the homogeneous
derivative condition on Γ2. This prevents possible problems related with mixed
boundary conditions at the junctions where different components of the boundary
cross.

The fully nonlinearity and degeneracy of the equation requires to consider
solutions in the viscosity sense (see [14] for an overview on the subject). This notion
of solution requires also to specify in which sense boundary conditions are satisfied.
In particular, we ask the Dirichlet conditions on Γ1 to be satisfied in the strong sense,
whereas the derivative conditions onΓ2 are considered in the (weak) viscosity sense.

Definition 1 A USC functionw (resp. LSC functionw) on [0, T ]×D is a viscosity
sub-solution (resp. super-solution) of (20), if for every function ϕ ∈ C1,2([0, T ] ×
D), at each maximum (resp. minimum) point (t, x, y) of w − ϕ (resp. w − ϕ) the
following inequality holds

⎧⎪⎪⎨
⎪⎪⎩
−∂tϕ +H(t, x,Dxϕ,D2

xϕ) ≤ 0 [0, T )×D
w ≤ 0 [0, T )× Γ1

min
(−∂yϕ,−∂tϕ +H(t, x,Dxϕ,D2

xϕ)
) ≤ 0 [0, T )× Γ2

w(T , x, y) ≤ w0(x, y) D

(
resp.

⎧⎪⎪⎨
⎪⎪⎩
−∂tϕ +H(t, x,Dxϕ,D2

xϕ) ≥ 0 [0, T )×D
w ≥ 0 [0, T )× Γ1

max
(−∂yϕ,−∂tϕ +H(t, x,Dxϕ,D2

xϕ)
) ≥ 0 [0, T )× Γ2

w(T , x, y) ≥ w0(x, y) D.
)

A continuous function w on [0, T ] ×D is a viscosity solution of (20) if it is both a
sub- and super-solution.

Theorem 1 Let assumption (H1) be satisfied. Then, wε is the unique bounded and
continuous viscosity solution of the HJB equation (20).

Proof The Dirichlet and terminal conditions are ensured by the very definition ofwε

and its continuity. In particular, the continuity allows the conditions to be considered
in the strong sense. The proof of sub- and supersolution properties in [0, T )× (D ∪
Γ2) follows quite straightforward by the the arguments in [10, Theorem 3.2] and
[21, Theorem 4.1].
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Uniqueness of the solution relies on comparison results for sub and super
solution. The proof can be found in [19, Appendix A]. We point out that the fact
of considering Dirichlet conditions in a strong sense is an important requirement for
the proof of the comparison principle.

4 Numerical Approximation

In this section we discuss an approximation scheme for the unique continuous
viscosity solution wε to the equation

∂tw +H(t, x,Dxw,D2
xw) = 0 −φεK (x) < y < 0, t ∈ (0, T ] (22a)

w = 0 y = 0, t ∈ (0, T ] (22b)

−∂yw = 0 y = −φεK (x), t ∈ (0, T ] (22c)

with initial data

w(0, x, y) = wε0(x, y) −φεK (x) ≤ y ≤ 0 (22d)

(the convenient change of variable t → T − t has been here applied).
In [10, Section 4.1] a general convergence result for numerical schemes approx-

imating HJB equations under oblique derivative boundary conditions such as (22c)
is provided. Those arguments can be easily modified in order to prove convergence
also in presence of the additional Dirichlet boundary condition (22b) (see also
[21]). Following the ideas introduced in [10], we present here a semi-Lagrangian
(SL) scheme for the approximation of (22). The same scheme will be used in the
numerical experiments in Sect. 5.

Let N ≥ 1 be an integer (number of time steps), and let

h := T

N
and tn := nh

for n = 0, . . . , N . Let Δx = (Δx1, . . . ,Δxd) ∈ (R∗+)d and Δy > 0, and let Gη
(where η ≡ (Δx,Δy)) be the space grid

Gη :=
{
(xi, yj ) = (iΔx, jΔy), for (i, j) ∈ Z

d × Z

}
.

The grid is considered uniform for simplicity of presentation. We also assume that
the discretization in the y coordinate is aligned with the boundary of the domain,
this allows us to get the Dirichlet condition exactly.

We look for a fully discrete scheme for the viscosity solution of (22) on the time-
space grid {t0, . . . , tN } × (Gη ∩ D). Following the ideas in [10, 21] the numerical
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scheme is defined starting from a standard scheme for (22a), which is then mixed
with a step of “projection” on Γ2 and the use of the Dirichlet condition on Γ1. The
approximation of equation (22a) we consider is the SL scheme proposed by Camilli
and Falcone [13] and also used in [15]. We recall that first schemes of this type have
been introduced by Menaldi in [23].

Let σu = σ(·, ·, u) and bu = b(·, ·, u), and let (σuk )k=1,...,p denote the column
vectors of σu. We consider the following operator T:

T(ϕ)(t, x, y) := min
u∈U

1

2p

( ∑
k=1,...,2p

[
ϕ(t, ., y)

](
x + hbu(t, x) +√

hσ̄ uk (t, x)
))

(23)

with the following vector definition in R
d :

σ̄ u2k−j :=
√
p (−1)jσuk (24)

for k = 1, . . . , p and j ∈ {0, 1}. Now [·] ≡ [·]x stands for a monotone, P1
interpolation operator on the x-grid (xi), satisfying in particular:

⎧⎨
⎩
(i) [ϕ](xi) = ϕ(xi), for any i ∈ Z

d ,

(ii) |[ϕ](x)− ϕ(x)| ≤ C|Δx|2‖D2
xϕ‖∞ for any ϕ ∈ C2(Rd,R),

(iii) for any functions ϕ,ψ : Rd → R, ϕ ≤ ψ ⇒ [ϕ] ≤ [ψ].
(25)

We point out that (23), if considered without interpolation, is a discretization in
time of the Dynamic Programming Principle. In particular, such an approximation
uses an Euler-Maruyama scheme (see [20] for instance) coupled with a finite state
discretization of the Gaussian distribution to approximate the dynamicsXut,x(·).

The numerical scheme is defined as follows:

Algorithm Initialization step, for n = 0, for all i, j :

W 0
i,j = wε0(xi, yj ).

Then, for n = 0, . . . , N − 1:

Step 1 ComputeWn+1
i,j = T(W)(tn, xi, yj ), for all (xi, yj ) ∈ Gη ∩D;

Step 2 Assign Wn+1
i,j = Wn+1

i,jxi
, for all (xi, yj ) : yj ≤ −φεK (xi);

Wn+1
i,j = yj , for all (xi, yj ) : yj ≥ 0;.

where for every x ∈ R
d , jx ∈ Z is defined by

jx := min
{
j ∈ Z : jΔy ≥ −φεK (x)

}
and we used the following short notation

Wn
i,j = W(tn, xi, yj ).
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Hereafter we will denote by W = (Wn
ij )
n=1...N
(i,j)∈Zd+1 the solution of the numerical

scheme defined by the algorithm above on {t0, . . . , tN } × Gη. We point out that the
necessity of defining W also at mesh points outside D comes from the fact that the
SL scheme involves values outside the domain. However, this is not a issue in virtue
of (18) (see Step 2 above).

We also denote by Wη,h the continuous extension of W to [0, T ] × R
d × R

obtained by linear interpolation.

Remark 3 The numerical solutionWη,h is Lipschitz continuous in y with Lipschitz
constant independent of η and h. This can be derived by the very definition of the
operator T in (23). Indeed, givenWn L−Lipschitz continuous in y one can observe
that

|Wn+1
i,j −Wn+1

i,j ′ | = |T(W)(tn, xi, yj ∨ yjxi )−T(W)(tn, xi , yj ′ ∨ yjxi )|
≤ L|(yj ∨ yjxi )− (yj ′ ∨ yjxi )| ≤ L|yj − yj ′ |.

Hence, beingW 0 Lipschitz continuous, the same property holds forWn for all n =
1 . . .N . Then, since the linear interpolation (used to pass fromW toWη,h) preserve
Lipschitz constants, we can obtain the desired property.

Remark 4 The core of the scheme in Step 1 can be written as

S(t, x, y,Wn+1
i,j ,W) := Wn+1

i,j −T(W)(tn, xi, yj ) = 0.

It is immediate to verify that S is monotone in the sense of Barles and Souganidis
[7], i.e. for every h, η > 0, r ∈ R, for all function φ,ψ such that φ ≥ ψ , inequality

S(t, x, y, r, φ) ≤ S(t, x, y, r, ψ)

holds.
The choice of σ̄ uk in (24) leads to the following consistency estimate, for any

ϕ ∈ C2,4((0, T )× R
d ×R):∣∣∣∣1hS(t, x, y, ϕ(t, x, y), φ)−

(
∂tϕ +H(t, x,Dxϕ,D2

xϕ)

)∣∣∣∣
≤ C1

(
|bu(t, x)|2‖D2

xϕ‖∞ + |bu(t, x)||σu(t, x)|2‖D3
xϕ‖∞ + |σu(t, x)|4‖D4

xϕ‖∞

‖∂2
t tϕ‖∞

)
h+ C2 ‖D2

xϕ‖∞
|Δx|2
h

.

These are classical properties of SL schemes, see [15] for instance. In particular, the
error term in |Δx|2/h comes the interpolation error estimate (ii) (observe that we
do not need to interpolate with respect to y) and the term in h from classical Taylor
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expansions. Then, in order to ensure consistency of the scheme, Δx and h have to
be chosen so that |Δx|2/h → 0 as Δx, h → 0. This usually leads to the choice
Δx ∼ h in numerical simulations.

Moreover, it is easy to verify that the scheme admits a bounded solution in
{t0, . . . , tN } × (Gη ∩D), so that the scheme is also stable.

We recall that monotonicity, consistency and stability are the fundamental prop-
erties necessary for proving convergence of numerical schemes in the framework of
viscosity solutions, see [7].

Theorem 2 Let assumption (H1) be satisfied. Let Wη,h be the solution of the
scheme defined by the Algorithm above, where T is the SL scheme (23)–(24). Then,
if

|Δx|2
h

→ 0 as Δx, h→ 0 (26)

Wη,h converges to wε in [0, T ] ×D as η, h→ 0.

Proof The proof follows the strategy in [7] and [10]. Let us define for (t, x, y) ∈
[0, T ] ×D

W(t, x, y) := lim sup
[0,T ]×D�(s,ξ,γ )→(t,x,y)

η,h→0

Wη,h(s, ξ, γ ),

W(t, x, y) := lim inf
[0,T ]×D�(s,ξ,γ )→(t,x,y)

η,h→0

Wη,h(s, ξ, γ ).

One clearly has W(t, x, y) ≤ W(t, x, y) for any (t, x, y) ∈ [0, T ] × D.
Convergence follows by the comparison principle once shown that W and W
are respectively a sub- and supersolution of the HJB equation in the sense of
Definition 1.

We sketch the proof of the subsolution property, the supersolution part can be
proved in a similar way. Given a smooth test function ϕ, let (t̄, x̄, ȳ) be a maximum
point for (W−ϕ), with (W−ϕ)(t̄ , x̄, ȳ) = 0, and let (ηk, hk, tk, xk, yk) be such that
(tk, xk, yk) ∈ [0, T ]×D, ηk, hk → 0, (tk, xk, yk)→ (t̄, x̄, ȳ),Wηk,hk (tk, xk, yk)→
W(t̄, x̄, ȳ) and

(Wηk,hk − ϕ)(tk, xk, yk) = max(Wηk,hk − ϕ) = δk → 0

(the existence of such a sequence follows by classical arguments in viscosity
theory).

If (x̄, ȳ) ∈ D the result follows as in [7] using the properties of monotonicity
and consistency of the scheme in a sufficiently small neighborhood of (x̄, ȳ) still
contained in D.
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If (x̄, ȳ) ∈ Γ2 one can work under the condition −∂yϕ(t̄, x̄, ȳ) > 0, otherwise
the subsolution property is automatically satisfied. In this case the result follows
observing that, by the very definition of the scheme (see Step 2 of the algorithm)
and its monotonicity, one can derive

ϕ(tk, xk, yk)+ δk ≤ T(ϕ)(tk, xk, yk ∨ yjxk ) ≤ T(ϕ)(tk, xk, yk)

so that the subsolution property follows again by the consistency of the scheme.
It remains to prove that W satisfies the Dirichlet condition pointwise on Γ1.

For this purpose it is worth to observe that Wη,h is Lipschitz continuous in y (see
Remark 3), i.e. there exists some constant L > 0 (independent of η, h, t, x) such
that

|Wη,h(t, x, y)−Wη,h(t, x, y ′)| ≤ L|y − y ′|

for any t ∈ [0, T ], x ∈ R
d, y, y ′ ∈ R. Therefore one has

|Wη,h(s, ξ, γ ) − (−1)| = |Wη,h(s, ξ, γ ) −Wη,h(s, ξ, 0)| ≤ L|γ |

so that on Γ1 (i.e. for ȳ = 0)

lim inf
[0,T ]×D�(s,ξ,γ )→(t̄,x̄,ȳ)

η,h→0

Wη,h(s, ξ, γ ) = −1.

5 Numerical Tests

In this section we present some numerical tests for probabilistic reachability
problems in presence of state constraints. To solve the HJB equation (22), we
use the fully discrete SL scheme introduced in Sect. 4 implemented on the ROC-
HJ solver available at the link https://uma.ensta-paristech.fr/soft/ROC-HJ/. The
minimum in (23) is performed on a subset of control values {u1, . . . , uNu } that
represents a discretization of U with a mesh size Δu. In all the simulations the
regularization parameter will be chosen to be ε = 1.E − 08.

5.1 Example 1

We consider the following controlled stochastic system:

dX(s) =
((−1 −4

4 −1

)
X(s)+ u(s)

)
ds +

(
0.7 0
0 0.7

)(
dB1(s)

dB2(s)

)
(27)

https://uma.ensta-paristech.fr/soft/ROC-HJ/
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Fig. 2 (Example 1) Backward reachable sets at t = 0.75 for a time horizon T = 1.75 and ρ = 0.4
without (left) and with (right) obstacle. The target set, the obstacle and the backward reachable set
Ω0.4

0.75 are represented respectively by the green square, the red rectangle and the blue region

where u(s) =
(
u1(s)

u2(s)

)
, ui(s) ∈ [−0.1, 0.1], for i = 1, 2 and B1, B2 are two

independent Brownian motions.
The linear system (27) has been used in [6] to validate the HJB approach in

the characterization of an approximated probabilistic reachable set without state
constraints and in [5] to illustrate an approximation of the probability of reaching a
target by using enclosing hulls of probability density functions.

We set T = 1.75 and define the target C := (0.5, 1.5)× (−0.5, 0.5) (green
square in Fig. 2). The constraint is given by the presence of an obstacle, represented
in Fig. 2 (right) by the red rectangle, i.e. K := R

2 \ ([−6,−2] × [2, 4]). We
compute the set Ωρt (blue region) for t = 0.75 and ρ = 0.4 in presence (Fig. 2,
right) or not (Fig. 2, left) of the obstacle. To approximate the auxiliary function
wε solution to (22), the numerical simulation is performed on a computational
domain [−8, 8]2×[−1, 0]. The corresponding values of ϑε are then obtained using
relation (16).

Figure 3 (top) shows the set Ωρt for ρ = 0.4 at different time t ∈ {0.25; 0}
in presence of the obstacle. Then, in Fig. 3 (bottom) we simulate different optimal
paths starting from a given point of the backward reachable set using the algorithm
described below.

Algorithm (Trajectory Reconstruction) Initialization: Set X0 = x̄.
For k = 0 to N − 1:

Step 1 Compute optimal control at t = tk:

uk = arg minu∈{u1,...,uNu }E[W(tk+1,X
u
k+1,−1)]
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Fig. 3 (Example 1). Top: backward reachable set (blue region) at times t ∈ {0.25, 0} for a final
time horizon T = 1.75 in presence of the obstacle (red rectangle). Bottom: reconstruction of some
optimal paths starting from point x̄ = (4, 1) (bottom, left) and x̄ = (3,−4) (bottom, right)

where for ui ∈ {u1, . . . , uNu }

Xk+1 := Xk + b(tk,Xk, ui)h+ σ(tk,Xk, ui)
√
hξ,

here ξ := (ξ1, ξ2) with ξi (i = 1, 2) random variables following a N(0, 1)
distribution.

Step 2 Compute the point of the optimal trajectory:

Xk+1 := Xk + b(tk,Xk, uk)h+ σ(tk,Xk, uk)
√
hξ

where again ξi ∼ N(0, 1) for i = 1, 2.
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Table 1 (Example 1)
Percentage p of M simulated
trajectories that reach the
target set without hitting the
obstacle, with a
corresponding confidence
interval (C.I.), and a Monte
Carlo error estimate
(MC-error)

M p C.I. MC-error

x̄1 6000 0.4630 (0.4504, 0.4756) 0.0126

12,000 0.4624 (0.4535, 0.4713) 0.0089

25,000 0.4603 (0.4541, 0.4664) 0.0062

50,000 0.4618 (0.4574, 0.4661) 0.0045

100,000 0.4628 (0.4597, 0.4659) 0.0031

x̄2 6000 0.3915 (0.3593, 0.4037) 0.0122

12,000 0.3991 (0.3705, 0.4078) 0.0087

25,000 0.4026 (0.3966, 0.4087) 0.0061

50,000 0.4016 (0.3996, 0.4081) 0.0043

100,000 0.4015 (0.3985, 0.4045) 0.0030

In order to validate our approach, we compare the value of the scheme in a
given point with the percentage of trajectories reaching the target without hitting
the obstacle. We consider the case t = 0.25 and two different starting points
x̄1 := (4.0, 1.0)T and x̄2 := (3.0, 0.0)T . The approximation of the level-set
function obtained by numerically solving the corresponding HJB equation on the
gridΔx1 = Δx2 = 0.0125,Δy = 0.1, h = 0.025 at points x̄1 and x̄2 is respectively
−W(t, x̄1,−1) � 0.459± 0.004 and −W(t, x̄2,−1) � 0.404± 0.009.

The results of Monte Carlo simulations are reported in Table 1. One can conclude
that the approximated value of the level set function belongs in each case to the
confidence interval.

5.2 Example 2

We now test our method on the same example used in [10, Section 6]. Let us
consider the following dynamics:

dX(s) = u(s)
(

1
0

)
ds + u(s)σ (X(s))dB(s), s ≥ t,

where B is a one-dimensional Brownian motion, U = [0, 1] ⊂ R and the volatility
σ(x) is given by

σ(x) := 5 dΘ(x)

(
0
1

)

where dΘ denotes the distance function to the set

Θ := {(x1, x2), |x2| ≥ 0.3
}
.
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Fig. 4 (Example 2) Approximation of Ωρt at t = 0 for different levels ρ ∈ [0, 1, 0.9] (indicated
by the color bar) computed with Δx1 = Δx2 = 0.005,Δy = 0.1, h = 0.01 (same mesh
parameters used in [10])

The target set is C = (0, 0.4) × (−0.5, 0.5) (green rectangle in Fig. 4) and the
state constraint is K = R

2 \ ([−0.4, 0.2]× [−0.1, 0.1]) (i.e. the entire space except
the red square obstacle in Fig. 4). We fix T = 0.5 and consider the computational
domain [−1, 1]2 × [−1, 0].

The strong degeneracy of the diffusion term in this example allowed in [10] to
obtain the “almost sure” backward reachable set, corresponding here to the limit
case ρ = 1. Figure 4 shows the approximation of Ωρt for t = 0 and different levels
ρ ∈ [0, 1, 0.9]. The black region corresponds to the exact backward reachable set for
ρ = 1. Indeed, due to the simple dynamics considered it is possible for this example
to infer the exact set Ω1

0 , i.e. the set of points from where the target is reached and
the constraint satisfied with probability one, see [10] for a further discussion. One
can observe that as ρ approaches the value 1, we recover the results obtained in [10].
A loss of precision appears at corners. This was already noticed in [10] and it is due
to the smoothing effects of the diffusion term (see [10, Figure 2, Section 6]) which
can be reduced with the refinement of the mesh.

6 Conclusions

In this paper we have used the HJB theory for characterising the probabilistic
backward reachable set for a system of controlled diffusions in presence of state
constraints. We have shown that such a set is a level set of the value function
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associated to a suitable optimal control problem. To deal with the discontinuity
of the cost functional associated to this problem, arising from the use of indicator
functions for representing probabilities, we have defined a regularised problem.
Precise estimates of the error introduced by this regularisation are still object of
ongoing research.

Following the approach in [10, 19, 21], for the regularised problem we have
obtained a characterization by a HJB equation with mixed Dirichlet-derivative
boundary conditions. We have defined a fully discrete SL approximation scheme
and we have proved its convergence to the unique viscosity solution of the equation.
Then, we have used such a scheme in order to validate our approach on some
numerical tests. We focused on the examples studied in [6] and [10], adding state
constraints to the first one and variable levels of probability to the second one. More
complex tests on concrete models are a promising future direction of work.

Acknowledgements The authors are sincerely grateful to Olivier Bokanowski and Hasnaa Zidani
for their guidance at the early stage of this paper.
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An Iterative Solution Approach for a
Bi-level Optimization Problem for
Congestion Avoidance on Road Networks

Andreas Britzelmeier, Alberto De Marchi, and Matthias Gerdts

Abstract The paper introduces an iterative solution algorithm for a bi-level
optimization problem arising in traffic control. The bi-level problem consists of
a shortest path problem on the upper level, which aims at minimizing the total
path cost of a set of cars in a road network. The cost coefficients in the shortest
path problem represent the expected driving time on each edge, accounting for
congestions, and depend on the solutions of a set of lower level optimal control
problems, each one describing the behavior of a single minimum-time driven car.
On the other hand, each lower level problem is built upon the path planned by the
upper level. This leads to a strong coupling between upper level problem and lower
level problem. This coupling is decomposed by an iterative procedure fixing either
the costs or the paths in the upper level and the lower level, respectively. Numerical
experiments illustrate the procedure and indicate that the iterative algorithm leads
to suitable distribution of cars in the network.

Keywords Bi-level optimization · Traffic control · Time-optimal control ·
Network optimization · Iterative methods

1 Introduction

Increasing traffic loads due to a steadily growing population and rising commerce,
poses a problem especially to urban areas. Nevertheless the economical aspect of
CO2 pollution is an imminent threat to the health of humans. Reducing traffic
seems to be the main idea to solve these problems. However, banning cars from
cities or cramming people into public transportations, seems not to be an attractive
and productive solution. A different approach would be to reduce the total time a
car needs to reach its destination in the sense that the flux of cars is optimized.
Considering the introduction of automatic or autonomous cars, this could be
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achieved by controlling the cars such that their paths and velocity is optimized
with respect to avoid traffic jams. In this paper we propose a bi-level optimal
control problem and an iterative scheme for optimizing the network-wide traffic
flow. The upper level problem controls the overall vehicle distribution with an
adaptive shortest path algorithm. The route planning for each car is based on shared
costs, derived from coupling single cars behaviour. The lower level is concerned
with providing optimal velocity profiles and density updates to the shortest path
algorithm, such that speed limits are simulated. Palagachev and Gerdts [8] propose
two approaches for solving a bi-level optimization problem. Either by treating
the lower level problem as a parametric optimization problem, which is solved
whenever it is required for the upper level, or by reducing the problem to a single
level problem by replacing the lower level through its necessary conditions. A semi-
analytic solution approach for minimum-time velocity profiles can be found in [1].

It should be noticed that, within the aforementioned problem, drivers can be
seen as players in a differential game, insofar as they are aware of future traffic
distribution starting from the current one. In this case, if a solution exists, it likely
represents a global equilibrium among drivers on the network; it has been argued in
[3] that this solution is strictly related to Wardrop’s equilibrium [11]. More details
and references can be found in [3].

The paper is organized as follows. Section 2 provides an overview on the bi-level
optimization problem. Sections 3 and 4 formulate and propose numerical methods
to solve the upper and lower level optimization problems. Section 5 discusses how
the two levels interface with each other and finally in Sect. 6 we apply the iterative
procedure and report numerical results.

2 Problem Formulation and Solution Approach

A road network can be represented by a graph � = (V ,E) consisting of a vertex
set V and an edge set E, see [2, 6]. An edge is the topological description of a
road segment, and a vertex corresponds to an intersection. Edges have properties
like, e.g., length, speed limit, maximum density (i.e. maximum number of vehicles
per unit length). A set of cars C move on the graph �, in the sense that cars are
initially positioned on a vertex and aim at reaching another vertex by following a
suitable path (i.e. a sequence of edges) on the graph �. These agents interact at the
microscopic scale, yielding macroscopic effects like congestions, traffic waves and
self-organizational phenomena, compare [4, 6, 7, 10].

The problem here is how to plan a route for each and every car, from the initial to
the desired point, taking into account traffic jam, driver’s behavior, vehicle dynamics
and speed limits. Drivers are supposed to aim at the minimum-time control of their
own car, while obeying speed limits and constraints on the vehicle dynamics. Thus,
the overall problem is here formulated as a bi-level optimization problem (BOP),
where route planning is represented by the upper level optimization problem and
the lower level optimization problem is adopted to predict how drivers will behave,
given a certain path. The route planning, also referred to as upper level optimization
problem (UL-OP), aims at finding the minimum-cost path for each car, given its
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initial and final position. Instead, the lower level optimization problem (LL-OP)
represents an optimal control problem with vehicle and road constraints. These
two problems exchange information in the sense that they depend on each other.
The UL-OP can be seen as constrained by solutions of the LL-OP, because the
cost of each edge depends on the actual traffic jam, in terms of car density. On the
other hand, the UL-OP affects the LL-OP, because the minimum-time control, and
consequent optimal speed profile, depends on the planned path with corresponding
length of edges and speed limits.

Some assumptions and simplifications are adopted throughout the present work:
Road geometry is time-invariant; speed limits are considered constant in time and
space on each single road segment.

In summary, the traffic control problem results in the following bi-level optimiza-
tion problem whose details are described in Sects. 3 and 4:

The Upper Level Optimization Problem (UL-OP) reads as follows:

Minimize
∑
k∈C

ck(xk)�zk (1)

with respect to (zk, xk, vk, uk), k ∈ C,
subject to Azk = bk, zk ≥ 0, k ∈ C

(xk, vk, uk) ∈ M(zk), k ∈ C.
Herein, M(zk) denotes the set of minimizers of the following Lower Level
Optimization Problem (LL-OP):

Minimize T (2)

subject to ẋ(t) = v(t), v̇(t) = fk(v(t), u(t)),
x(0) = 0, x(T ) = Lk,
v(0) = v0

k , v(t) ∈ [0, vk(x(t))],
u(t) ∈ Uk.

The index k indicates that the corresponding quantities depend on zk . The
function fk represents the vehicle dynamics, the box Uk defines control
constraints, vk : R+ → R+ and Lk are speed limits and length of the driving
path, respectively. Further ck defines the edge costs, which are depending
on the result xk of the LL-OP. A denotes the (reduced) node-edge incidence
matrix of the network. The set of cars is described byC. The vector bk denotes
a unit vector, which indicates the starting position in the network and zk holds
the path indicator variables.
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There are basically a few main techniques for solving bi-level optimization
problems. The first approach keeps the bi-level structure and treats the LL-OP as
a parametric optimization problem, which is being solved whenever the solution
algorithm for the UL-OP requires it [8]. The second technique, instead, is based
on the formulation of first order necessary optimality conditions for the LL-OP.
Then, the LL-OP is replaced by its necessary conditions, which are considered
as constraints in the UL-OP. This reduces the bi-level problem into a single-level
nonlinear optimization problem, but in general this is not equivalent to the original
problem, since necessary conditions might be not sufficient [8]. A third approach is
based on the substitution of the LL-OP with its value function. This generates an
equivalent single-level optimization problem.

In this paper, we chose to follow an approach that resembles the first one
discussed above, but we treat the two levels as coupled optimization problems, while
iteratively solving one after the other. In general, during the iterative procedure,
first the UL-OP is solved to compute the required input variables for the LL-
OP. Further solving the LL-OP leads to an update of the weights of the UL-OP
for the next iteration until a stopping criterion is satisfied. Considering such an
iterative procedure, the LL-OP and UL-OP are solved the same number of times
and the levels are treated as uncoupled problems, just coupled at the interface by the
procedure itself. The procedure is explained in more detail in Algorithm 2.

Since we are not yet aware of any formal convergence result for such an iterative
scheme, one purpose of this paper is to experimentally investigate if the procedure
converges or if oscillations can be observed. Please note that the above bi-level
problem is a hard problem and also the alternative second and third solution
approaches mentioned before are very difficult to realize numerically owing to non-
smoothness issues.

3 Upper Level: Route Planning

Let the road network be described through a directed graph� = (V ,E, c, s, t), with
vertices V = {1, 2, . . . , n} and edges E. For simplicity we assume that the vertices
are numbered such that the initial vertex is given by s := 1 whereas the target vertex
is t := n. The cost cij of each edge (i, j) ∈ E is often associated to the length of
the corresponding road segment, such that c : E → R+ defines a cost function, see
[2]. The shortest path problem for an individual car starting at s and moving to t can
be formulated mathematically as follows, compare [9]:

Minimize
∑
(i,j)∈E

cij zij subject to Az = e1, zij ≥ 0, (i, j) ∈ E,

where zij is the load transported along the edge (i, j) ∈ E, e1 is the canonical
unit vector, and A denotes the reduced node-edge incidence matrix of �. Note
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that A is a totally unimodular matrix and hence the linear optimization problem
possesses a binary solution with zij ∈ {0, 1} for all (i, j) ∈ E. The shortest path
then consists of all edges (i, j)with zij = 1. An efficient implementation for solving
the above linear program is based on a primal-dual algorithm as described in, e.g.
[9], and leads to the famous Dijkstra’s algorithm [5] in Algorithm 1. Please note
that extensions like the A� algorithm exist. After termination of Algorithm 1 d(i)
contains the length of a shortest path from s to i and p(i) contains the predecessor
of i on such a shortest path.

Algorithm 1: Dijkstra algorithm
Input: Set W = {s}, d(s) = {0} and d(i) =∞ for all i ∈ V \ {s}.
forall the i ∈ V \ {s} and (s, i) ∈ E do

−→ set d(i) = c1i , p(i) = s
end
whileW �= V do

−→ find k ∈ V \W where d(k) = min{d(i) : i ∈ V \W }
−→ W = W ∪ k
forall the i ∈ V \W with (k, i) ∈ E do

if d(i) > (d(k) + cki ) then
−→ d(i) = d(k) + cki
−→ p(i) = k

end
end

end

Now we are interested in minimizing the total path length, which is obtained
by summing up the lengths of all individual shortest paths of the cars in the road
network. To this end let ck = (ckij )(i,j)∈E > 0 denote the cost vector of car k ∈ C,

zk = (zkij )(i,j)∈E the corresponding path indicator variables, and bk = (bki )i∈V the
unit vector that indicates the starting node of car k ∈ C. With this notation, the task
to minimize the total path length for all cars in C yields the following upper level
problem UL-OP:

Minimize
∑
k∈C
(ck)�zk =

∑
k∈C

∑
(i,j)∈E

ckij z
k
ij

subject to Azk = bk, zk ≥ 0, k ∈ C.
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Please note that UL-OP is a separable optimization problem and its solution
can be obtained by solving individual shortest path problems for all cars in C and
summing up the lengths.

So far, we assumed that the cost vectors ck , k ∈ C, are given vectors.
This assumption will be dropped in the sequel by taking into account individual
trajectories for each car on the shortest paths. To this end, the costs of each edge
follow an evolution, depending on the congestion of the roads and therefore on the
speed of the vehicles on the same edge e. Thus, the cost vectors will depend on
the solution of lower level optimal control problems, which will be discussed in the
following Sect. 4.

4 Lower Level: Minimum Time Driving

We aim at computing minimum-time trajectories on a given path in the road
network. The vehicle dynamics are described by a second-order time-invariant
linear system for simplicity. We take into account a linear drag force. The validity
of this assumption significantly depends on the velocity regime, but it simplifies
the derivation of a semi-analytical solution to the LL-OP. There exist results also
accounting for both, linear and quadratic drag forces, see [1]. We point out that this
simplification is not necessary for the proposed iterative scheme, but it reduces the
computational time required for solving the lower level problem LL-OP.

Each individual car minimizes the time required to arrive at the destination
subject to acceleration and speed limits. It is noticeable that at this level agents
do not interact, in fact, no coupling between cars is present in LL-OP (2). This
inaccuracy is more negligible as density gets lower and traffic congestions are
avoided. In this section we focus on a single car. Each vehicle is characterized by
its mass mD > 0, its linear drag coefficient cD ≥ 0, its initial speed v0 ≥ 0 and its
maximum braking and pushing forces Fbrake ∈ (−∞, 0) and Fpush ∈ (0,+∞).
Let us introduce the drag parameter c := cD/mD ≥ 0 and control bounds
u := Fbrake/mD and u := Fpush/mD. Let a path p = (p0, . . . , pN ) with vertices
pj ∈ V , j = 0, . . . , N , be given. With each edge ej = (pj , pj+1) on the path
we associate a (physical) distance �j , j ∈ {0, . . . , N − 1}. The total length of the
path is then Lp = ∑N−1

j=0 �j . We assume that a piecewise constant speed limit
function v : [0, Lp] → R is given with v(x) := vj > 0 for x ∈ [aj , aj + �j ),
j ∈ {0, . . . , N − 1}, and aj :=∑j−1

k=0 �k.
Each vehicle aims at solving the following path minimum-time optimization

problem:

Minimize T (3)

subject to ẋ(t) = v(t), v̇(t) = u(t)− cv(t),
x(0) = 0, x(T ) = Lp,
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v(0) = v0, v(t) ∈ [0, v(x(t))],
u(t) ∈ [u, u].

Because of its particular structure, mostly the time cost and the edge-wise constant
speed limit, it is possible to reduce Problem (3) to an ordered sequence of simpler
edge minimum-time optimization problems. These have to be solved starting from
the first edge and iterating until the end of path p. Let us consider edge e = ej
with length L := �j > 0, speed limit v := vj > 0 and end-point speed limit
vT := min

(
vj , vj+1

)
> 0. On edge e we have to solve the following optimal

control problem:

Minimize T (4)

subject to ẋ(t) = v(t), v̇(t) = u(t)− cv(t),
x(0) = 0, x(T ) = L,
v(0) = v0, v(T ) ∈ [0, vT ],
v(t) ∈ [0, v], u(t) ∈ [u, u].

Problem (4) resembles the minimum-time optimal control problem subject to ve-
locity constraints and limited acceleration discussed in [1]. However, an additional
constraint is present, that is the final speed constraint. In the following we focus on
the solution of Problem (4) for the case v0 < v > vT , which is the most crucial
case. An analogous derivation for the other cases is straightforward.

As suggested in [1], let us introduce the following auxiliary functions, both for
numerical stability and notational clarity:

E(t, w) := 1 − ewt
w

, E2(t, w) := ewt − 1 −wt
w2 . (5)

Then, analogously to [1], we claim there exist two distinct time instants, denoted τ1
and τ2 and such that 0 < τ1 < τ2 < T , that are switching times for the optimal
control, whose expression reads

u(t) =

⎧⎪⎪⎨
⎪⎪⎩
u, 0 < t < τ1,

cv, τ1 < t < τ2,

u, τ2 < t < T,

(6)

for a.e. t ∈ [0, T ]. We like to emphasize that u : [0, T ] → R is uniquely
identified by switching times and final time T . The optimal control (6) consists
of an initial pushing phase, up to the maximum allowed speed, a second phase
where speed is kept constant at the speed limit until the final braking phase. The
structure of (6) resembles a bang-bang control, but it shows an intermediate phase
due to the velocity constraint. Problem (4) is transformed into a boundary value
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problem (BVP) collecting optimal control (6) and differential-algebraic constraints
in (4). The unknowns of this BVP are switching times τ1 and τ2 and final time T .
We remark that Problem (4) and the BVP are equivalent if and only if control (6)
locally minimizes the Hamiltonian function of Problem (4), as claimed above (the
proof is left to the reader). By considering the vehicle model and initial conditions
in (4) along with the optimal control (6), it is possible to compute the time evolution
of vehicle velocity and position, for t ∈ [0, T ], i.e.

v(t) =

⎧⎪⎪⎨
⎪⎪⎩
v0e

−ct + uE(−t, c), 0 ≤ t ≤ τ1,
v(τ−1 ), τ1 ≤ t ≤ τ2,
v(τ−2 )e−c(t−τ2) + uE(τ2 − t, c), τ2 ≤ t ≤ T,

(7)

x(t) =

⎧⎪⎪⎨
⎪⎪⎩
x0 + v0E(−t, c)+ uE2(−t, c), 0 ≤ t ≤ τ1,
x(τ−1 )+ v(τ−1 )(t − τ1), τ1 ≤ t ≤ τ2,
x(τ−1 )+ v(τ−1 )(τ2 − τ1)+ v(τ−1 )E(τ2 − t, c)+ uE2(τ2 − t, c), τ2 ≤ t ≤ T .

(8)

The analytical solution of this Cauchy problem greatly simplifies the solution of
the aforementioned BVP, transforming it into an equivalent non-linear system. This
task can be achieved by enforcing boundary conditions and state constraints in (4)
to speed profile and trajectory (7)–(8). In particular, the following conditions must
be satisfied by the solution of Problem (4):

v(τ1) = v, v(T ) = vT , x(T ) = L. (9)

The first makes the pushing phase to stop when the speed limit is reached; similarly,
the second constraint means that, at the final time T , the vehicle speed has to be as
high as possible, otherwise it would not be a minimum-time speed profile. Finally,
the third condition ensures that the final position is reached at the final time T .
Conditions (9) can be rewritten by using (7)–(8), yielding the non-linear system
ϕ(z) = 0, where z = (τ1, δ, T )

�, δ := T − τ2, and ϕ : R3 → R3 is defined by

ϕ(z) :=

⎛
⎜⎜⎝

v0e
−cτ1 + uE(−τ1, c)− v

ve−cδ + uE(−δ, c)− vT
x0 + v0E(−τ1, c) + uE2(−τ1, c)+ v(T − δ − τ1)+ vE(−δ, c)+ uE2(−δ, c)− L

⎞
⎟⎟⎠ .
(10)

It is possible to explicitly write the Jacobian ϕ′ and then to take advantage of it by
using Newton-type solvers to find z� such that ϕ(z�) = 0, where

ϕ′(z) =
⎡
⎣ (u− cv0)e

−cτ1 0 0
0 (u− cv)e−cδ 0

v0e
−cτ1 − v + uE(−τ1, c) v(e

−cδ − 1)+ uE(−δ, c) v

⎤
⎦ . (11)
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Non-linear solvers typically require an initial guess. A reasonable and easy-to-
compute initial guess can be estimated by considering the limit c → 0+; in
fact, typically the parameter c is small. Let us define ϕ0 : R3 → R3, such that
ϕ0(z) := limc→0+ ϕ(z) for any z ∈ R3.

Then, a reasonable initial guess is given by the solution of ϕ0(z
�) = 0, that is

z� =
(
v − v0

u
,
vT − v
u

,
L− x0

v
+ (v − v0)

2

2 v u
− (vT − v)2

2 v u

)�
. (12)

The following Sect. 5 describes how the lower level optimal control problems are
coupled with the upper level shortest path problem in Sect. 3.

5 Levels Coupling

The interface between levels, namely UL-OP and LL-OP, plays a key role in the
solution process of the bi-level optimization problem. In fact, this crucially affects
the exchange of information among levels.

Considering the k-th car, the information flow from UL-OP to LL-OP consists
of the ordered sequence of edge lengths and speed limits uniquely identified by the
planned path pk , that is the solution of UL-OP. These values constrain the LL-OP,
both as boundary conditions and state constraints.

On the other hand, given optimal speed profiles vk(·) and a trajectories xk(·) for
every car k ∈ C, an edge cost ck , compare Sect. 3, has to be defined, based on
an estimate of travel time, accounting for possible traffic jam and driver’s behavior.
Given the solutions to LL-OP for every car, one can reconstruct the number of cars
ne(t) in any edge e ∈ E as a function of time, ne : R+ → R+ with

ne(t) := card{k | xk(t) ∈ e} (13)

(herein, we identified the edge e with its physical distance range for notational
simplicity). For any edge e ∈ E, having length Le > 0 and speed limit ve > 0, the
edge density function ρe : R+ → R+ is defined, such that ρe(t) := ne(t)/Le for
any t . Inspired by the LWR model in [7], that is a first-order PDE-based macroscopic
model widely used for traffic flow, let us introduce also the edge speed function
ve : R+ → R+, such that

ve(t) := ve
(

1 − ρe(t)

ρe

)
(14)

for any t , where ρe > 0 is the maximum edge density. Note that the edge speed ve
does not reflect vehicles speed along this edge, but it is just an estimate accounting
for traffic jam (ve is a non-increasing function of ne and ρe). We notice also that
for ne(t) = 1, using Eq. (14), the edge speed ve(t) is lower than the speed limit ve,
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which is not what we want to achieve. One possible way to fix this inaccuracy is to
replace ne with max(ne−1, 0), in order to make the driver not to interact with itself.

As an edge cost we consider an estimate of the time needed to run across the edge
itself. To evaluate this time duration, a representative edge speed value is needed,
here denoted by v̂e and chosen to be

v̂e := (1 − θ) 1

Th

∫ Th

0
ve(t) dt + θ min

t∈[0,Th]
ve(t) (15)

given hyper-parameter θ ∈ [0, 1] and time horizon Th > 0. With this definition it
always holds

0 ≤ min
t∈[0,Th]

ve(t) ≤ v̂e ≤ 1

Th

∫ Th

0
ve(t) dt ≤ ve

for any edge speed function ve, in any edge e ∈ E. The hyper-parameter θ has been
introduced to estimate an edge speed v̂e representative of the predicted evolution
of vehicle trajectories and their interactions. Note that this estimate may be really
rough and in general it leads to sub-optimal solutions, especially when long edges
are present.

The edge cost ce, for e ∈ E, is expressed in terms of the time needed to travel
along edge e, based on estimate v̂e. This cost is defined as the minimum-time run,
plus an augmentation of the traffic-related time, to possibly give more importance
to congestions, through a parameter λ ≥ 0:

ce := Le

ve
+ λ
(
Le

v̂e
− Le

ve

)
. (16)

Using (16) in the shortest path problem in Sect. 3 leads to a nonlinear coupling
with the lower level problem LL-OP in Sect. 4. This coupling acts in both directions
and the resulting bi-level optimization problem is very hard to solve in general. As
a first approach towards its solution we propose the iterative procedure in Sect. 2,
which results in the following Algorithm 2.

Numerical experiments are documented in the following Sect. 6.

6 Numerical Results

In the previous sections we presented the algorithms for solving the upper and lower
level of the proposed bi-level optimization problem, the coupling of those levels,
especially the cost function, was discussed in Sect. 5.

First we want to test the overall functionality of the proposed iterative bi-
level algorithm. Thereafter, regarding the proposed parameters θ and λ in the cost
function, which implies the connection from the lower to the upper level, we want
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Algorithm 2: Iterative procedure as a method to solve BOP
Input: Road network � = (V ,E, c, s, t), with cars position, speed and target,

{sj , v0
j , tj }j∈C , parameters {cj , uj , uj }j∈C , hyper-parameters θ ∈ [0, 1], λ ≥ 0.

k← 0;
for e← E do

cke ← Le/ve; // edge cost initialization
end
while not converged do

for j ← C do
pkj ← shortestPath

({cke }e∈E, sj , tj ); // UL-OP

end
for j ← C do

lkj ←
{
Le | e ∈ pkj

}
; // upper → lower

vkj ←
{
ve | e ∈ pkj

}
;(

xkj , v
k
j , u

k
j

)
← minTime

(
lkj , v

k
j , v

0
j , cj , uj , uj

)
; // LL-OP

end
for e← E do

ck+1
e ← edgeCost

(
{xkj }j∈C, θ, λ

)
; // lower → upper

end
k← k + 1;

end

to analyze the impingement of these parameters on the numerical results as well as
the convergence. Therefore we vary one parameter while fixing the other one and
vice versa. Finally we take a closer look at the behaviour of a single car.

6.1 General Evaluation of the Bi-level Algorithm

The algorithms discussed above are implemented in a MATLAB program. For a
first test we set the number of cars nc = 500, θ = 0.5 and λ = 1000, the drag is
neglected (c = 0). The road network (Fig. 1) is randomly generated on a 2000 ×
2000 [m] grid, the connections between the chosen gridpoints are derived through
applying a Delaunay triangulation. The limits on the acceleration for the LL-OP
is set to u ∈ [−3, 2] [m/s2], the maximum velocity therefore is chosen randomly
for each car from a set [10, 20] [m/s], as well as the initial speed v0 ∈ [6, 10]
[m/s], and the number of iterations Niter = 10. Figure 2 shows the result of the
bi-level algorithm as in the behaviour of the cost function and the evolution of the
final time of every car. Considering the cost function, due to the weighing with
λ, the meaning of the values is negligible. Nevertheless we notice a reduction in
the cost for every car during the first 3 steps. The algorithm converges to different
optimal solutions for sets of cars with the same costs. This can be explained such
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Fig. 1 Randomly generated road network, connections through Delaunay triangulation

Fig. 2 Numerical tests for the evolution of the cost function and the final time over 10 iterations,
nc = 500 cars, θ = 0.5 and λ = 1000. (a) Cost function. (b) Final time

that to avoid congestions the algorithm distributes the cars over the road network
with respect to keeping the costs low. This leads to sets of vehicles with the same
minimal cost to pass from start to their destination. However we also notice that
there remains an oscillating behaviour, which seems to resemble two equally good
solutions regarding the overall distribution of the vehicles. One solution however
yields higher costs. This oscillating characteristic is also mirrored in the final time.
In the first three steps the final time decreases. After that, the jumping between
two solutions occurs. This oscillating effect was also observed in [3], herein the
oscillations might occur between two competing equilibria, respectively Wardrop’s
equilibria.
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Concluding, the algorithm finds optimal paths as well as velocity profiles for
every car, while avoiding congestions, through consideration of the vehicle density
on every edge which is taken into account as an update on the edge cost in every
iteration.

6.2 Influence of the Parameters θ and λ

Considering the path planning in the UL-OP, which highly depends on the cost of the
edges, the parameters θ and λ, which control the cost function, impact the result of
the upper level path planning algorithm. Therefore we compare different parameter
settings and analyze their effect on the cost function and the final time. Note that
especially in the case of the cost function the values are not directly comparable,
due to the different scaling factors. Hence we are more interested on the trend of the
cost function itself.

Initially we examine λ, while fixing θ = 0.5. The number of cars nc = 400 is
slightly reduced to speed up the computation. The other values remain as they were
set in Sect. 6.1. Figure 3 shows the comparison of the progression of the final time
and the cost function for λ = 1 and λ = 1000 over the iterations.

Comparing the cost profiles, the increase of λ and therefore emphasizing the
congestion as an increase in the cost of certain edges, leads to a convergence in
the cost function. Thus the algorithm generates bundles of cars with the same cost,

Fig. 3 Implication of the weight factor λ on the evolution of the cost function and the final time
for every car, with fixed θ = 0.5, nc = 400, and 25 vertices—96 edges. (a) Cost function, λ = 1.
(b) Final time, λ = 1. (c) Cost function, λ = 1000. (d) Final Time, λ = 1000
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meaning multiple optima are achieved for such car bundles, and more important
with a drastic decrease in the cost. Considering the final time, we notice an increase
in the final time along side the increase in λ. For λ = 1 the cost functions as well as
the final time remain almost constant, this is due to the underestimation of the traffic
load. The traffic gets almost neglected, since the addition to the density on an edge
is in the range of 0.1. Hence the increase in time for λ = 1000 is justified, since
some cars get redirected on longer routes to their destination to avoid congestions.
Through the stronger weight the traffic jam becomes emphasized. As a result we
can draw the conclusion that a higher weight factor λ is recommended to achieve
convergence and for a better distribution of the cars on the network.

Considering the hyper-parameter θ , which influences the estimated representa-
tive edge speed v̂e, a higher value of θ shifts the representative edge speed in the
direction of the minimum edge velocity, whereas a lower θ emphasizes the mean
velocity along the edge over time, see Eq. (15). The influence of θ on the cost
function as well as the final time is shown in Fig. 4. Comparing the evolution of
the cost function, we notice that the convergence and bundling effect grows with
rising θ . However the magnitude of aberrations simultaneously rises, this effect can
be countered by introducing additional constraints such that not only the average
majority improves while others pay the price for it. Considering the evolution of
the final time, the average final time decreases with increasing θ . With θ = 1
the representative edge velocity is given through the minimum velocity value,
which represents the worst case. The vehicles velocity on the same edge becomes
devalued. This way the algorithm strives for a better distribution of the cars on the
network, with the result that the vehicles on average reach their destination faster.
We conclude that a higher value, respectively closer to θmax = 1 is recommended.

7 Conclusions

In this paper we presented an iterative algorithm for solving a bi-level optimal
control problem. Furthermore we presented a model for a combined single car and
network control through density updates and optimal time control. Considering the
numerical results we could show that an increase in the hyper-parameters θ , λ affect
the optimal solution and emphasize the convergence. The upper level control leads
to an optimal distribution of cars among the edges of the network, such that in
the lower level OCP an optimal speed profile for each car can be computed with
the upper level solution as a constraint. Despite the increase in the final time, which
results from longer paths due to a compromise for congestion avoidance, we showed
that the density update on the edge cost affects the solution of each car and as a result
to bundling of cars with the same cost.
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Fig. 4 Implication of the hyper-parameter θ on the evolution of the cost function and the final
time for every car, with fixed λ = 100, nc = 400, and 25 vertices—96 edges. (a) Cost function,
θ = 0. (b) Final time, θ = 0. (c) Cost function, θ = 0.5. (d) Final time, θ = 0.5. (e) Cost function,
θ = 1. (f) Final time, θ = 1
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Computation of Optimal Trajectories
for Delay Systems: An
Optimize-Then-Discretize Strategy
for General-Purpose NLP Solvers

Simone Cacace, Roberto Ferretti, and Zahra Rafiei

Abstract We propose an “optimize-then-discretize” approach for the numerical
solution of optimal control problems for systems with delays in both state and
control. We first derive the optimality conditions and an explicit representation
of the gradient of the cost functional. Then, we use explicit discretizations of
the state/costate equations and employ general-purpose Non-Linear Programming
(NLP) solvers, in particular Conjugate Gradient or Quasi-Newton schemes, to easily
implement a descent method. Finally, we prove convergence of the algorithm to
stationary points of the cost, and present some numerical simulations on model
problems, including performance evaluation.

Keywords Delay systems · Optimality conditions · Numerical approximation ·
NLP solvers

1 Introduction

A large class of practical control systems in engineering, chemical processes and
economics are modeled in presence of time delays, which introduce in the problem
the additional difficulty of an intrinsically infinite-dimensional nature of the state
space.

The first extension of the maximum principle to optimal control problems with
a constant state delay has been given in Kharatishvili in [16], while a maximum
principle for problems with multiple constant delays in state and control variables
has been obtained by Halanay in [13]. More recent generalizations have considered
the case of time-dependent delays in the state variables [2], and the presence of state
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constraints [1] and mixed control-state constraints [11]. Some of these results can
be derived via a suitable technique (introduced in [12]) to recast a problem with
discrete delays in the form of a non-delayed problem.

To our knowledge, the most complete numerical study of the problem is carried
out in [11]. In this work, a “discretize-then-optimize” approach is used to first write
the discrete approximation of the control problem, and then solve the Kuhn–Tucker
optimality conditions for this latter problem. In this framework, the discretized
state equation is treated as a set of equality constraints, which is complemented
with the inequality constraints on the control and the state. The result is a set of
optimality conditions involving (discretized) state and Kuhn–Tucker multipliers,
which parallels the continuous conditions provided by the maximum principle.
Among the recent “discretize-then-optimize” literature, we also quote [4], in which
minimization is carried out on the discretized problem without making use of
optimality conditions.

In this paper, we propose a somewhat different approach. Once simplified the
problem by avoiding constraints involving the state, we treat it as a minimization
with constraints on the control alone, in which the computation of the gradient
(which is the base for Steepest Descent, Conjugate Directions or Quasi-Newton
solvers) is carried out via an “optimize-then-discretize” strategy. The discrete
gradient is obtained by discretizing the continuous form of the gradient, which is
in some sense a byproduct of the maximum principle. A result of convergence for
the approximate optimal solutions is also proved.

Note that the use of descent methods for optimal control problems dates back to
the 60s [6, 7, 14, 15], whereas the finite difference discretization of delay differential
equations has a relatively recent literature (see [3] for an up-to-date review). On the
other hand, apart from [11], we are unaware of literature mixing the two techniques
to treat optimal control problems for delay systems. Among the various techniques
proposed, “optimize-then-discretize” strategies are relatively infrequent; however,
within this line of research, it is worth to quote the dissertation [8], along with the
discretization of the maximum principle proposed in [5].

The paper is structured as follows. In Sect. 2 the construction of the gradient
for the cost functional is recalled. Sections 3 and 4 give a basic form for the
discretization and a convergence result for the resulting sequence of approximate
optimal controls. Last, Sect. 5 provides some numerical tests, and a performance
assessment for the proposed algorithm.

2 Optimal Control Problems with Time Delays
and Optimality Conditions

In this section, we present a formal derivation of the optimality conditions for con-
trol problems with time delays in both state and control, assuming enough regularity
to perform the computations. In particular, we obtain an explicit expression for the
gradient of the cost functional of the problem with respect to the control, which will
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be useful for its numerical resolution. We refer the reader to [12] and [11] for a
detailed and rigorous proof.

We consider the following delayed differential equation

⎧⎪⎪⎨
⎪⎪⎩
ẋ(t) = f (t, x(t), x(t − r), u(t), u(t − s)), t ∈ [a, b]
x(t) = x0(t), t ∈ [a − r, a],
u(t) = u0(t), t ∈ [a − s, a],

(1)

where f : [a, b]×R
n×R

n×R
m×R

m → R
n is the delayed dynamics, with delays

r and s respectively in the state and control variables, x(t) ∈ R
n is the state and

u(t) ∈ R
m is the control belonging to the class of admissible controls

U = {u : [a − s, b] → U ⊆ R
m, u measurable}.

Moveover, x0(t) ∈ R
n and u0(t) ∈ R

m are given initial functions.
The optimal control problem consists in minimizing the functional

J (u) =
∫ b

a

(L(t, x(t), x(t − r), u(t), u(t − s)) dt + g(x(b)), (2)

among all the controls u ∈ U and subject to the delayed differential equation (1),
where L : [a, b] ×R

n ×R
n ×R

m ×R
m → R is the running cost and g : Rn → R

is the final cost.
For a generic scalar or vector function z depending on the delayed and undelayed

states and controls, we will use in what follows the compact notation z(t) in place of
z(t, x(t), x(t− r), u(t), u(t− s)), and denote by zx , zy , zu, zv the partial derivatives
of z with respect to the state, the delayed state, the control and the delayed control.
To make explicit the dependency of the trajectories on the control, we will possibly
denote by x[u](t) the solution of (1).

We summarize below the set of basic assumptions which will be used throughout
the paper.

Basic assumptions:

• The functions f (x, y, u, v) andL(x, y, u, v) are twice continuously differ-
entiable with respect to all arguments, and f is Lipschitz continuous w.r.t.
x and y;

• The delays r, s satisfy r, s ≥ 0, (r, s) �= (0, 0) and r
s
∈ Q for s > 0 or

s
r
∈ Q for r > 0;

• g ∈ C1(Rn);
• Either U is a bounded convex set, or L is convex and coercive w.r.t. u and
v.
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We will now sketch the derivation of a formula for the gradient of J in the case
of delayed control systems of the form (1).

First, by computing the variation of x[u] with respect to u along the direction
ϕ : [a − s, b] → R

m such that ϕ(t) = 0 for t ∈ [a − s, a], we find out that the
function

η[u, ϕ](t) := lim
θ→0

x[u+ θϕ](t)− x[u](t)
θ

satisfies the following linearized delayed differential equation

{
η̇(t) = fx(t)η(t)+ fy(t)η(t − r)+ fu(t)ϕ(t)+ fv(t)ϕ(t − s) t ∈ [a, b]
η(t) = 0 t ∈ [a − r, a]

(3)

We consider the variation of J (u) with respect to u in direction ϕ: we get

< δJ(u), ϕ > =
∫ b
a

[
Lx(t) · η(t)+ Ly(t) · η(t − r)+ Lu(t) · ϕ(t)+ Lv(t) · ϕ(t − s)

]
dt

+gx(x(b)) · η(b) .

By the change of variable t ← t − r and using the property η = 0 in [a − r, a], we
easily obtain that

∫ b

a

Ly(t) · η(t − r) dt =
∫ b

a

χ[a,b−r](t)Ly(t + r) · η(t) dt ,

where χ[a,b−r] is the characteristic function of the interval [a, b − r]. Similarly, by
the change of variable t ← t − s and using the property ϕ = 0 in [a − s, a], we
obtain

∫ b

a

Lv(t) · ϕ(t − s) dt =
∫ b

a

χ[a,b−s](t)Lv(t + s) · ϕ(t) dt .

Then, we have

< δJ (u), ϕ > =
∫ b

a

[
Lx(t)+ χ[a,b−r](t)Ly(t + r)

] · η(t)dt (4)

+
∫ b

a

[
Lu(t)+χ[a,b−s](t)Lv(t+s)

] · ϕ(t) dt + gx(x(b)) · η(b) .
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Now, we introduce the following adjoint equation with a final condition

⎧⎪⎪⎨
⎪⎪⎩
λ̇T (t) = − [Lx(t)+ λT (t)fx(t)]

−χ[a,b−r](t)
[
Ly(t + r)+ λT (t + r)fy(t + r)

]
,
t ∈ [a, b]

λT (b) = gx(x(b)).
(5)

Note that, compared to the state equation, the adjoint equation is still delayed, but
backward in time with negative delay −r .

We employ the adjoint equation to write the first integral in (4) in terms of λ: we
get

< δJ (u), ϕ > =
∫ b

a

[
−λ̇T (t)− λ(t)T fx(t) − χ[a,b−r](t)λT (t + r)fy(t + r)

]
· η(t)dt

+
∫ b

a

[
Lu(t)+ χ[a,b−s](t)Lv(t + s)

] · ϕ(t)dt + gx(x(b)) · η(b).
Integrating by parts and using the delayed equation (3) for η, it follows that

< δJ (u), ϕ > = −λT (b) · η(b)+
∫ b

a

λT (t) [η̇(t)− fx(t)η(t)] dt

−
∫ b
a

χ[a,b−r](t)λT (t + r)fy(t + r)η(t)dt

+
∫ b
a

[
Lu(t)+ χ[a,b−s](t)Lv(t + s)

] · ϕ(t)dt + gx(x(b)) · η(b)
= −gx(x(b)) · η(b)

+
∫ b
a

λT (t)
[
fu(t)ϕ(t)+ fy(t)η(t − r)+ fv(t)ϕ(t − s)

]
dt

−
∫ b
a

χ[a,b−r](t)λT (t + r)fy(t + r)η(t)dt

+
∫ b
a

[
Lu(t)+ χ[a,b−s](t)Lv(t + s)

] · ϕ(t)dt + gx(x(b)) · η(b).
Again, by changing variables we obtain

∫ b

a

λT (t)fy(t)η(t − r)dt =
∫ b

a

χ[a,b−r](t)λT (t + r)fy(t + r)η(t)dt,

∫ b

a

λT (t)fv(t)ϕ(t − s)dt =
∫ b

a

χ[a,b−s](t)λT (t + s)fv(t + s)ϕ(t)dt,
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which gives

< δJ (u), ϕ > =
∫ b

a

[(
Lu(t)+ λT (t)fu(t)

)

+χ[a,b−s](t)
(
Lv(t + s)+ λT (t + s)fv(t + s)

)]
· ϕ(t)dt.

Last, introducing the Hamiltonian

H(t, x, y, u, v, λ) = L(t, x, y, u, v)+ λT f (t, x, y, u, v),

we end up with

< δJ (u), ϕ >=
∫ b

a

[
Hu(t)+ χ[a,b−s](t)Hv(t + s)

] · ϕ(t)dt. (6)

Then, a control-constrained local minimum u∗ satisfies, for any u ∈ U, the well-
known condition

< δJ (u∗), u− u∗ >≥ 0, (7)

which reduces to δJ (u∗) = 0 if the control is unconstrained (U = R
m).

A more general and rigorous version of the above computations leads to the
following Pontryagin-type optimality conditions:

Theorem 1 ([11]) Let the basic assumptions hold, and let (x̂, û) be locally optimal
for the functional J in (2) subject to the delayed differential equation (1). Then,
there exists an adjoint state function λ̂ ∈ W 1,∞([a, b],Rn) such that the following
conditions hold a.e. for t ∈ [a, b]:
1. Adjoint equation:

˙̂
λT (t) = −Ĥx(t)− χ[a,b−r](t)Ĥy(t + r)

where Ĥx , Ĥy denote the partial derivatives ofH computed on the optimal triple
(x̂, û, λ̂);

2. Transversality:

λ̂T (b) = gx(x̂(b));

3. Minimum condition for Hamiltonian: for any u ∈ U,

Ĥ (t)+ χ[a,b−s](t)Ĥ (t + s) = Ĥ (t, x̂(t), x̂(t − r), û(t), û(t − s), λ̂(t))
+χ[a,b−s](t)H(t + s, x̂(t + s), x̂(t + s − r),
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û(t + s − r), û(t + s), û(t), λ̂(t + s))
≤ Ĥ (t, x̂(t), x̂(t − r), u, û(t − s), λ̂(t))
+χ[a,b−s](t)H(t + s, x̂(t + s), x̂(t + s − r),
û(t + s − r), û(t + s), u, λ̂(t + s)). (8)

Following [11], we remark that the rationality assumption on the delays r and
s is crucial to handle the general lack of regularity of the solution to the delayed
equation. Indeed, under this assumption, it is possible to make a partition of the time
interval [a, b] in an integer number of sub-intervals, and define suitable restrictions
of the state and the control, such that the delayed equation can be recast as a system
of ordinary (non-delayed) equations (see [12]). Accordingly, the optimal control
problem with delays is transformed into a standard optimal control problem in
higher dimension, in which the continuity of the unknowns at the end points of
the sub-intervals is imposed as an additional constraint. The optimality conditions
for the delayed case in Theorem 1 then follow, by applying standard optimality
conditions and rebuilding the solution on the whole interval by merging the optimal
solutions on the sub-intervals. We remark that an even more general version of
Pontryagin’s Maximum Principle for delayed control systems has been recently
given in [18].

3 Discretization

Two basic strategies are available for solving numerically the optimal control prob-
lem under consideration. One is the so called “discretize-then-optimize” procedure,
which first discretizes both the functional J in (2) and the state equation (1), then
uses some NLP solver to obtain, working on the discrete problem, an approximation
of the optimal triple (x̂, û, λ̂).

Alternatively, one can an apply an “optimize-then-discretize” procedure, namely,
first discretize the optimality conditions and then search for an approximation of the
optimal triple. Again, a general solver can be employed.

Here, we still follow an “optimize-then-discretize” approach, but we do not solve
the whole optimality system. We rather discretize the state and adjoint equations,
then take advantage of the explicit expression of the gradient of J derived in
the previous section. This allows one to build a descent method which is easy to
implement. Indeed, it is enough to use a NLP solver only for the optimization
in the control variables, passing iteratively the values of the functional J and its
gradient depending on the updated state and costate. Note that, with respect to other
techniques, we are not considering the state equation as a set of equality constraints,
and the minimization is carried out with respect to the discrete control variables
alone, thus reducing the dimension of the problem and avoiding equality constraints.
Inequality constraints of the form u(t) ∈ U can easily be handled by a descent
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method, at least in the case U is convex, as assumed here, and in particular for the
typical case of box constraints.

As a start, we construct a uniform grid on the interval [a, b], with N + 1 nodes
ti = a + ih, for i = 0, . . . , N and h = (b − a)/N , and assume that the delays can
be written as r = kh and s = lh for some integers k, l. For i = 0, . . . , N , we denote
by Xi ≈ x(ti) ∈ R

n, Ui ≈ u(ti ) ∈ R
m and Λi ≈ λ(ti ) ∈ R

n the approximations
at grid points of respectively the state, control and adjoint variables. Via negative
indices, the initial conditions are defined as Xi = x0(ti) ∈ R

n for i = −k, . . . , 0
and Ui = u0(ti ) ∈ R

m for i = −l, . . . ,−1.
In the simplest setting, the state equation can be discretized by means of the

forward Euler scheme [3]:⎧⎪⎪⎨
⎪⎪⎩
Xi+1 = Xi + hf (ti, Xi,Xi−k, Ui, Ui−l ) i = 0, . . . , N − 1

Xi = x0(ti ) i = −k, . . . , 0
Ui = u0(ti) i = −l, . . . ,−1.

(9)

The adjoint equation can also be discretized using the Euler scheme with a negative
step −h:

⎧⎪⎪⎨
⎪⎪⎩
Λi = Λi+1 + h [Hx(ti , Xi,Xi−k , Ui, Ui−l , Λi)

+χ[a,b−r](ti )Hy(ti + r,Xi+k, Xi, Ui+k , Ui−l+k,Λi+k)
] i = N − 1, . . . , 0

ΛN = gx(XN).
(10)

Accordingly, a rectangle quadrature rule can be used to discretize both the functional
J in (2) and its variation (6):

J (u) ≈ J h(U,X) := h
N−1∑
i=0

L(ti, Xi,Xi−k, Ui, Ui−l )+ g(XN), (11)

<δJ (u), ϕ > ≈ (J hu (U,X,Λ), ϕ)h := h
N−1∑
i=0

[Hu(ti, Xi,Xi−k, Ui, Ui−l , Λi)

+χ[a,b−s](ti)Hv(ti+s , Xi+l , Xi−k+l , Ui+l , Ui,Λi+l )
]
ϕ(ti) . (12)

We have denoted here by U ∈ R
mN a vector collecting all discretized control

variables, in the form

U =
⎛
⎜⎝

U0
...

UN−1

⎞
⎟⎠ .
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By the arbitrariness of ϕ we get, for i = 0, . . . , N − 1, the components of J hu as
(row) vectors in R

m, that we denote by J hu :

J hu (U,X,Λ)i = h [Hu(ti, Xi,Xi−k, Ui, Ui−l , Λi) (13)

+χ[a,b−s](ti)Hv(ti + s,Xi+l , Xi−k+l , Ui+l , Ui,Λi+l )
]
.

We will use in what follows the shorthand notations J h(U) and J hu (U) whenever
we do not need to stress the dependence of J h and J hu on the state and the costate.

With this basic discretization, the same result could be obtained by a “discretize-
then-optimize” strategy. However, (9)–(13) can also be discretized with more
accurate as well as heterogeneous techniques, which might not lead to the same
endpoint. In particular, we quote here the higher-order schemes used in [10], as well
as the symplectic solvers described in [9, Section 5.3.2].

We finally choose our favourite NLP solver and implement the following iterative
Algorithm 1.

Algorithm 1 Minimization algorithm

1: Assign an initial guess U(0), a tolerance ε, an integer kmax and set k = 0
2: repeat
3: Compute X(k) using the forward scheme (9)
4: Compute Λ(k) using the backward scheme (10)
5: Compute J h(U(k), X(k)) and J hu (U

(k), X(k),Λ(k)) using (11) and (13)
6: Update U(k) using the NLP solver with J h, J hu and set k = k + 1
7: until

∣∣J h(U(k), X(k))− J h(U(k−1), X(k−1))
∣∣ < ε or k > kmax

8: Set U∗ = U(k)

Note that any constraint on the control (typically, a box constraint) can be
enforced in Step 6. Here, convexity of U plays a crucial role, and inequality
constraints could be treated, for example, by projection. On the other hand, handling
nonconvex constraints would lead to more complex algorithms. Note also that the
stopping condition

∣∣∣J h(U(k),X(k))− J h(U(k−1), X(k−1))

∣∣∣ < ε
is applicable to both constrained and unconstrained problems.

4 Convergence

We prove now that the sequence of approximate optimal controls obtained via the
previous procedure is a (locally) minimizing sequence for the exact cost functional.
To this end, we define the piecewise constant counterpart of the discrete control U
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as

uh∗(t) =
N−1∑
i=0

U∗
i χ[ti ,ti+1)(t). (14)

We can prove the following convergence result for the approximate optimal controls
in the form (14). In addition to the basic assumptions, we assume that the set U is
bounded and that the discrete optimal controlU∗ satisfies the constrained stationary
point condition

(J hu (U
∗), U − U∗)h ≥ 0 (15)

for any U ∈ U
N , where, according to (12),

(J hu (U
∗), U − U∗)h =

N−1∑
i=0

J hu (U
∗)i (Ui − U∗

i )

= h
N−1∑
i=0

[
Hu(ti , Xi,Xi−k, U∗

i , U
∗
i−l , Λi)

+χ[a,b−s](ti )Hv(ti + s,Xi+l , Xi−k+l , U∗
i+l , U∗

i , Λi+l )
]
(Ui − U∗

i ).

Theorem 2 Let the basic assumptions hold, with a bounded set of control values
U. If U∗ satisfies (15), then, for some constant C independent of h and any u ∈ U :

< δJ (uh∗), u− uh∗ >≥ −Ch, (16)

and any convergent subsequence of uh∗ converges to a constrained stationary point
of J as h→ 0.

Proof It is clear that, if a (sub)sequence uhk∗ of approximate optimal controls
converges as h → 0, then (16) implies the constrained minimum condition (7) in
the limit. Therefore, we only need to prove (16). Throughout the various steps of the
proof, we will use the symbol C to denote a constant, which might not be the same
at any occurrence.

Step 1—uniform error estimate on x and λ First, note that the assumption that both
delays r and s are multiples of h implies that, since uh∗ is constant on each time
interval [ti , ti+1], the related state xh∗ (t) = x[uh∗](t) is piecewise smooth. Moreover,
the L∞ bound on the control implies also a uniform bound on the state. In these
conditions, the numerical error introduced in a single step is uniformly bounded
by an O(h2) and therefore, via the stability of the Euler scheme, for all admissible
piecewise constant controls of the form (14) the global error satisfies

∥∥∥xh∗ (ti)−X∗
i

∥∥∥ ≤ Ch, (17)
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withX∗ denoting the discrete evolutions associated to U∗, and C = C(a, b,X0,U).
Consider now the costate equation (5) and its discretization (10). The costate λh∗
associated to uh∗ and xh∗ is again smooth on each interval [ti , ti+1], and by the same
arguments as above, we get

∥∥∥λh∗(ti)−Λ∗
i

∥∥∥ ≤ Ch, (18)

with Λ∗ defined accordingly.

Step 2—error estimate on the directional derivative at uh∗ First, we introduce the
shorthand notation

H ∗,h
u (ti )+ χ[a,b−s](ti)H ∗,h

v (ti + s) := Hu(ti, X∗
i , X

∗
i−k, U∗

i , U
∗
i−l , Λ∗

i )

+χ[a,b−s](ti )Hv(ti + s,X∗
i+l , X∗

i−k+l , U∗
i+l , U∗

i , Λ
∗
i+l ),

and denote byH ∗(t) the Hamiltonian computed on the triple (xh∗ , λh∗, uh∗) at the time
t . By (17)–(18), and taking into account that the control arguments coincide, we can
give for t ∈ [ti , ti+1] the bound

∣∣∣H ∗
u (t)+ χ[a,b−s](ti)H ∗

v (t + s)−H ∗,h
u (ti)− χ[a,b−s](ti)H ∗,h

v (ti + s)
∣∣∣ ≤ Ch.

(19)

Note that, since U is arbitrary, (15) holds if and only if each of the terms in (15)
satisfies

J hu (U
∗)i (Ui−U∗

i ) =
[
H ∗,h
u (ti )+ χ[a,b−s](ti )H ∗,h

v (ti + s)
]
(Ui−U∗

i ) ≥ 0 (20)

for all Ui ∈ U and i ∈ [0, N − 1]. Therefore, we have:

< δJ (uh∗), u− uh∗ >=
N−1∑
i=0

∫ ti+1

ti

[
H ∗
u (t)+ χ[a,b−s](ti)H ∗

v (t + s)
]
(u(t)− U∗

i )dt

= O(h)+ h
N−1∑
i=0

[
H ∗,h
u (ti )+ χ[a,b−s](ti)H ∗,h

v (ti + s)
] 1

h

∫ ti+1

ti

(u(t)− U∗
i )dt

= O(h)+ h
N−1∑
i=0

[
H ∗,h
u (ti )+ χ[a,b−s](ti)H ∗,h

v (ti + s)
]
(Ui − U∗

i ). (21)

In (21), the vector Ui denotes the integral mean

Ui = 1

h

∫ ti+1

ti

u(t)dt
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(clearly, the integral mean of the constant vector U∗
i is the vector itself), and the

O(h) term is uniformly bounded as

|O(h)| ≤ C diam(U)(b − a)h,

C being the same constant appearing in (19). Note that the convexity of U implies
that Ui ∈ U.

Finally, taking into account (20), (21) is equivalent to (16). � 
We finally remark that, in case of higher order approximations of (9)–(13), the

final rate of convergence turns out to be the lowest among the convergence rates
of all discretizations. However, an increase of the accuracy would also require to
define a higher order construction for the approximate optimal control (14) (e.g., a
piecewise polynomial form). In this case, neither the uniform error estimate on the
evolution nor the enforcement of the constraint uh∗ ∈ U are obvious, and a rigorous
proof would need more technical arguments.

5 Numerical Simulations

In this section we solve numerically some model delayed optimal control problems
taken from [11]. For performance comparison, but also to show that the proposed
method can be easily implemented as a black box, we employ three different
NLP solvers, namely Steepest-Descent with fixed step β (SD[β]), Limited-memory
Broyden–Fletcher–Goldfarb–Shanno (LBFGS) with 10 updates of the approximate
Hessian, and Conjugate Gradient (CG), all with the same stopping tolerance ε =
10−12. Looking at the convergence tables, it is apparent that the number of iteration
of the various solvers has a weak dependence, if any at all, on the discretization
steps.

For all the examples but the last one, the results have been compared with
reference solutions obtained with an extremely fine discretization, and the rate of
convergence of the optimal values as been computed. In all cases, we have obtained
a first-order convergence, which confirms the theoretical analysis.

All tests were performed on a Lenovo Ultrabook X1 Carbon, using 1 CPU Intel
Quad-Core i5-4300U 1.90 Ghz with 8 Gb Ram, running under the Linux Slackware
14.1 operating system. The algorithm is written in C++ and employs the LBFGS
and CG solvers implemented in the dlib C++ library (www.dlib.net).

Test 1
Let x : [0, 5] → R and u : [0, 5] → R. We want to minimize the quadratic cost

J =
∫ 5

0

(
x2(t)+ u2(t)

)
dt ,

www.dlib.net
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subject to

⎧⎪⎪⎨
⎪⎪⎩
ẋ(t) = x(t − 2)+ u(t − 1) t ∈ [0, 5]
x(t) = 1 t ∈ [−2, 0]
u(t) = 0 t ∈ [−1, 0].

The Hamiltonian is given by

H(x, y, u, v, λ) = x2 + u2 + λ(y + v) .

We get the following adjoint equation

{
λ̇(t) = −2x(t)− χ[0,3](t)λ(t + 2) t ∈ [0, 5]
λ(5) = 0

and gradient

< δJ (u), ϕ >=
∫ 5

0

(
2u(t)+ χ[0,4](t)λ(t + 1)

)
ϕ(t)dt .

Figure 1 shows the optimal solution for N = 500. In Table 1 we report the
results obtained by the three solvers under grid refinement, including the number
of iterations to reach convergence, the corresponding CPU times, the error and the
rate of convergence with respect to a reference solution computed on a fine grid of
106 nodes, attaining the optimal value J ∗ = 26.98748461.

All the solvers compute the same solution up to the tolerance ε. We see that in
this case LBFGS and CG are comparable in terms of iterations, but LBFGS performs
better in terms of computational time. On the other hand, SD[0.01] requires a large
number of iterations due to the restriction on the step size. This step is tuned by trial
and error, and larger values would result in a lack of convergence.

Test 2
Let x : [0, 3] → R and u : [0, 3] → R. We want to minimize

J =
∫ 3

0

(
x2(t)+ u2(t)

)
dt ,

subject to ⎧⎪⎪⎨
⎪⎪⎩
ẋ(t) = x(t − 1)u(t − 2) t ∈ [0, 3]
x(t) = 1 t ∈ [−1, 0]
u(t) = 0 t ∈ [−2, 0].
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Fig. 1 Optimal solution for Test 1. (a) State x, (b) costate λ, (c) control u

The Hamiltonian is given by

H(x, y, u, v, λ) = x2 + u2 + λyv .
We get the following adjoint equation{

λ̇(t) = −2x(t)− χ[0,2](t)λ(t + 1)u(t − 1) t ∈ [0, 3]
λ(3) = 0,

and gradient

< δJ (u), ϕ >=
∫ 3

0

(
2u(t)+ χ[0,1](t)λ(t + 2)x(t + 1)

)
ϕ(t)dt .
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Fig. 2 Optimal solution for Test 2. (a) State x, (b) costate λ, (c) control u

Figure 2 shows the optimal solution for N = 600, whereas in Table 2 we report the
results obtained by the three solvers. In this case the reference solution is computed
on a fine grid of 1.5× 106 nodes, attaining a value J ∗ = 2.76159073, which agrees
up to the 6th significant digit with the analytical solution obtained in [11].

LBFGS is still the faster solver, both in terms of iterations and CPU times. On
the other hand, in this case SD[0.1] performs better than CG in computational time,
due to both a fortunate choice for the fixed step size, and the low complexity of a
single iteration.

Test 3
Let x : [0, 0.2] → R

3 and u : [0, 0.2] → R
2. We want to minimize

J =
∫ 0.2

0

(
‖x(t)‖2 + 0.01‖u(t)‖2

)
dt ,
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subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −x1(t)− R(x1(t), x2(t), x3(t)) t ∈ [0, 0.2]
ẋ2(t) = −x2(t)+ 0.9u2(t − 0.02)+ 0.1u2(t) t ∈ [0, 0.2]
ẋ3(t) = −2x3(t)+ 0.25R(x1(t), x2(t), x3(t))− 1.05u1(t)x3(t − 0.015) t ∈ [0, 0.2]
x1(0) = 0.49

x2(0) = −0.0002

x3(t) = −0.02 t ∈ [−0.015, 0]
u2(t) = 1 t ∈ [−0.02, 0],

where

R(x1, x2, x3) = (1 + x1)(1 + x2) exp

(
25x3

1 + x3

)
.

The Hamiltonian is given by

H(x1, x2, x3, y3, u1, u2, v2, λ1, λ2, λ3) = x2
1 + x2

2 + x2
3 + 0.01u2

1 + 0.01u2
2

+λ1(−x1 − R(x1, x2, x3))

+λ2(−x2 + 0.9v2 + 0.1u2)

+λ3(−2x3 + 0.25R(x1, x2, x3)− 1.05u1y3).

We get the following adjoint system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̇1(t) = −2x1(t)+ λ1(t)− (−λ1(t)+ 0.25λ3(t))Rx1(x1(t), x2(t), x3(t)) t ∈ [0, 3]
λ̇2(t) = −2x2(t)+ λ2(t)− (−λ1(t)+ 0.25λ3(t))Rx2(x1(t), x2(t), x3(t)) t ∈ [0, 3]
λ̇3(t) = −2x3(t)+ 2λ3(t)− (−λ1(t)+ 0.25λ3(t))Rx3(x1(t), x2(t), x3(t))

+1.05χ[0,0.185](t)λ3(t + 0.015)u1(t + 0.015)
t ∈ [0, 3]

λ1(0.2) = 0

λ2(0.2) = 0

λ3(0.2) = 0,

and the gradient reads

< δJ (u), ϕ > =
∫ 0.2

0
(0.02u1(t)− 1.05λ3(t)x3(t − 0.015))ϕ1(t)dt

+
∫ 0.2

0
(0.02u2(t)+ 0.1λ2(t)

+ 0.9χ[0,0.18](t)λ2(t + 0.02))ϕ2(t)dt.
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Fig. 3 Optimal solution for Test 3. (a) State (x1, x2, x3), (b) costate (λ1, λ2, λ3), (c) control
(u1, u2)

Figure 3 shows the optimal solution for N = 400. In Table 3 we report the results
obtained by the three solvers. The reference solution for this test is computed on a
fine grid of 106 nodes, attaining an optimal value J ∗ = 0.02133289.

Also this test confirms that LBFGS is the faster solver, despite the larger number
of iterations with respect to CG. On the other hand, SD with fixed step size is
relatively slow, but still remains the easiest method to implement without using
third-party libraries.

Test 4
We consider a more challenging version of Test 3, namely to minimize

J =
∫ 0.2

0

(
‖x(t)‖2 + 0.01u2(t)

2
)
dt ,
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subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = −x1(t)− R(x1(t), x2(t), x3(t)) t ∈ [0, 0.2]
ẋ2(t) = −x2(t)+ 0.9u2(t − 0.02)+ 0.1u2(t) t ∈ [0, 0.2]
ẋ3(t) = −2x3(t)+ 0.25R(x1(t), x2(t), x3(t))

−u1(t)x3(t − 0.015)(x3(t)+ 0.125) t ∈ [0, 0.2]
x1(0) = 0.49

x2(0) = −0.0002

x3(t) = −0.02 t ∈ [−0.015, 0]
x(0.2) = (0, 0, 0)
|u1(t)| ≤ 500 t ∈ [0, 0.2]
u2(t) = 1 t ∈ [−0.02, 0]

We observe that the functional J no longer depends on the first component u1 of
the control, which is replaced by the constraint |u1| ≤ 500. Moreover, the delayed
equation for x3 has an additional dependency on the state, on which a terminal
condition is also imposed.

The convergence of numerical approximations for this example is extremely slow
([11] reports an optimal value J ∗ = 0.011970541 obtained in about 18 h for a
grid with 16000 nodes). This is caused by the lack of coercivity of J w.r.t. u1,
along with the occurrence of singular arcs, which result in a very ill-conditioned
discrete problem. In this setting, we expect that better result could be obtained
by solving the entire optimality system, while carrying out a minimization with
respect to control (as in the scheme under consideration) could result in a chattering
solution.

Here, the terminal condition on the state is enforced via a standard penalization
technique, i.e., by adding the term C‖x(0.2)‖2 in the functional J . This yields the
final condition λ(0.2) = 2Cx(0.2) for the adjoint variables. In practice, we use
an external loop, in which the penalty coefficient C is brought from 10 to 106,
by iteratively increasing the penalization once the algorithm reaches the prescribed
accuracy tolerance.

For a complete comparison with [11], we use a grid with exactly 16000 nodes
and employ LBFGS, the NLP solver that performed better in all the previous tests.
Figure 4 shows all the components of the computed optimal solution. The results are
in good quantitative agreement with those presented in [11], except for the control
u1, which strongly chatters along the singular arcs. Including the whole loop for the
penalization, we obtain the value J ∗ = 0.011977486 in about 14 min.
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Fig. 4 Optimal solution for Test 4. (a), (b), (c) state (x1, x2, x3), (d), (e), (f) costate (λ1, λ2, λ3),
(g) and (h) control (u1, u2), and (i) regularized control u1 via convolution

While chattering is clearly an undesired feature, convergence to the optimal cost
is still guaranteed by Theorem 1. Moreover, the singular arcs are easily detectable,
and suitable post-processing techniques might be applied to recover a smoother
control (e.g., by low-pass filtering, see [17] and the references therein). Figure 4i
shows a regularization of u1 computed by convolution with a symmetric kernel (a
moving average replacing the second component U∗

i,2 of the control by the average
obtained over a symmetric window on the time steps i − 10 to i + 10). For this
regularized control, we obtain a cost J = 0.011983521, which differs about 0.05%
from the cost of the non-regularized control, and about 0.1% from the optimal value
computed in [11].
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Fig. 4 (continued)
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POD-Based Economic Optimal Control
of Heat-Convection Phenomena

Luca Mechelli and Stefan Volkwein

Abstract In the setting of energy efficient building operation, an optimal boundary
control problem governed by the heat equation with a convection term is considered
together with bilateral control and state constraints. The aim is to keep the tempera-
ture in a prescribed range with the least possible heating cost. In order to gain regular
Lagrange multipliers a Lavrentiev regularization for the state constraints is utilized.
The regularized optimal control problem is solved by a primal-dual active set
strategy (PDASS) which can be interpreted as a semismooth Newton method and,
therefore, has a superlinear rate of convergence. To speed up the PDASS a reduced-
order approach based on proper orthogonal decomposition (POD) is applied. An
a-posteriori error analysis ensures that the computed (suboptimal) POD solutions
are sufficiently accurate. Numerical test illustrates the efficiency of the proposed
strategy.

Keywords Convection-diffusion equation · Optimal control · State constraints ·
Primal-dual active set strategy · Model order reduction

1 Introduction

In this paper we consider a class of linear parabolic convection-diffusion equations
which model, e.g., the evolution of the temperature inside a room, which we want
to keep inside a constrained range. The boundary control implements heaters in
the room, where, due to physical restrictions on the heaters, we have to impose
bilateral control constraints. The goals are to minimize the heating cost while
keeping the state (i.e., the temperature) inside the desired state constraints. In order
to gain regular Lagrange multipliers, we utilize a Lavrentiev regularization for the
state constraints; see [24]. Then, a primal-dual active set strategy (PDASS) can be
applied, which has a superlinear rate of convergence [15] and a mesh-independent
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property [16]. For the numerical solution of the equations we apply a Galerkin
approximation combined with an implicit Euler scheme in time and, in order to
speed-up the computation of optimal solutions, we build a reduced-order model
based on proper orthogonal decomposition (POD); cf. [6, 13]. To have sufficiently
accurate POD suboptimal solutions, we adapt the a-posteriori error analysis from
[9]. Then, we are able to estimate the difference between the (unknown) optimal
controls and their suboptimal POD approximations. For generating the POD basis,
we need to solve the full system with arbitrary controls, this implies that the quality
of the basis, which means how much the reduce order model solution captures the
behavior of the full system one, depends on this initial choice for the controls. There
are several techniques for improving the POD basis like, e.g., TR-POD [2], OS-POD
[20] or adaptive strategies like in [1]. However, in this paper, we will only compare
the quality of basis generated with arbitrary controls and with the idealized ones
generated from the optimal finite element controls. Our motivation comes from the
fact that we will utilize the proposed strategy within an economic model predictive
control approach [10, Chapter 8], where the POD basis will be eventually updated
during the closed-loop realization; cf. [22]. In contrast to [9] we consider economic
costs, boundary controls, two-dimensional spatial domains and time- as well as
space-dependent convection fields.

The paper is organized in the following way: in Sect. 2 we introduce our optimal
control problem and how we deal with state and control constraints. The primal-dual
active set strategy algorithm related to this problem is presented in Sect. 3. In Sect. 4
we briefly explain the POD method and the related a-posteriori error estimator is
presented in Sect. 5. Numerical Tests are shown in Sect. 6. Finally, some conclusions
are drawn in Sect. 7.

2 The Optimal Control Problem

2.1 The State Equation

Let Ω ⊂ R
d , d ∈ {1, 2, 3}, be a bounded domain with Lipschitz-continuous

boundary Γ = ∂Ω . We suppose that Γ is split into two disjoint subsets Γc and
Γo, where at least Γc has nonzero (Lebesgue) measure. Further, letH = L2(Ω) and
V = H 1(Ω) endowed with their usual inner products

〈ϕ,ψ〉H =
∫
Ω

ϕψ dx, 〈ϕ,ψ〉V =
∫
Ω

ϕψ +∇ϕ · ∇ψ dx

and their induced norms, respectively. For T > 0 we set Q = (0, T ) × Ω ,
Σc = (0, T ) × Γc and Σo = (0, T ) × Γo. By L2(0, T ;V ) we denote the space
of measurable functions from [0, T ] to V , which are square integrable, i.e.,

∫ T
0
‖ϕ(t)‖2

V dt <∞.
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When t is fixed, the expression ϕ(t) stands for the function ϕ(t, ·) considered as a
function in Ω only. The spaceW(0, T ) is defined as

W(0, T ) = {ϕ ∈ L2(0, T ;V ) ∣∣ϕt ∈ L2(0, T ;V ′)
}
,

where V ′ denotes the dual of V . The space W(0, T ) is a Hilbert space supplied
with the common inner product; cf. [7, pp. 472–479]. For m ∈ N let bi : Γc → R,
1 ≤ i ≤ m, denote given control shape functions. For U = L2(0, T ;Rm) the set of
admissible controls u = (ui)1≤i≤m ∈ U is given as

Uad =
{
u ∈ U

∣∣ uai ≤ ui(t) ≤ ubi for i = 1, . . . ,m and a.e. in [0, T ]},
where ua = (uai )1≤i≤m, ub = (ubi )1≤i≤m ∈ R

m are lower and upper bounds,
respectively, and ‘a.e.’ stands for ‘almost everywhere’. Throughout the paper we
identify the dual U′ with U. Then, for any control u ∈ Uad the state y is governed
by the following state equation

yt(t, x)−Δy(t, x)+ v(t, x) · ∇y(t, x) = 0 a.e. in Q,

∂y

∂n
(t, s)+ y(t, s) =

m∑
i=1
ui(t)bi(s) a.e. on Σc,

∂y

∂n
(t, s)+ γoy(t, s) = γoyout(t) a.e. on Σo,

y(0, x) = y◦(x), a.e. in Ω.

(1)

We suppose the following hypotheses for the data in (1).

Assumption 2.1 We assume that γo ≥ 0, v ∈ L∞(0, T ;L∞(Ω;Rd)) with d ∈
{1, 2, 3}, yout ∈ L2(0, T ), y◦ ∈ H and b1, . . . , bm ∈ L∞(Γc).

To write (1) in weak form we introduce the nonsymmetric, time-dependent
bilinear form a(t; · , ·) : V × V → R

a(t; ϕ,ψ) =
∫
Ω

∇ϕ · ∇ψ + (v(t) · ∇ϕ)ψ dx +
∫
Γc

ϕψ ds + γo
∫
Γo

ϕψ ds

for ϕ,ψ ∈ V and the time-dependent linear functional F(t) : V → V ′

〈F(t), ϕ〉V ′,V = γoyout(t)
∫
Γo

ϕ ds for ϕ ∈ V,

where 〈· , ·〉V ′,V stands for the dual pairing between V and its dual space V ′.
Moreover, the linear operator B : Rm → V ′ is defined as

〈Bu, ϕ〉V ′,V =
m∑
i=1

ui

∫
Γc

biϕ ds for all ϕ ∈ V
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for given u = (ui)1≤i≤m ∈ R
m. Now, the state variable y ∈ W(0, T ) is called a

weak solution to (1) if

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) = 〈F(t)+B(u(t)), ϕ〉V ′,V ∀ϕ ∈ V a.e. in (0, T ],

y(0) = y◦ in H
(2)

is satisfied.

Lemma 2.1 Let Assumption 2.1 hold. Then:

1) For almost all t ∈ [0, T ] the bilinear form satisfies

∣∣a(t; ϕ,ψ)∣∣ ≤ α ‖ϕ‖V ‖ψ‖V ∀ϕ,ψ ∈ V,
a(t; ϕ, ϕ) ≥ α1 ‖ϕ‖2

V − α2 ‖ϕ‖2
H ∀ϕ ∈ V

with constants α, α1 > 0 and α2 ≥ 0.
2) We haveF ∈ L2(0, T ;V ′), and the linear operatorB is bounded.

Proof The claims follow by standard arguments; cf. [7] and [5], for instance. �
Theorem 2.1 Suppose that Assumption 2.1 is satisfied. Then, (2) possesses a
unique solution y ∈ W(0, T ) for every u ∈ Uad satisfying the a-priori estimate

‖y‖W(0,T ) ≤ cy
(‖y◦‖H + ‖yout‖L2(0,T ) + ‖u‖U

)
(3)

for a constant cy > 0 which is independent of y◦, yout and u.

Proof Existence of a unique solution to (2) follows directly from Lemma 2.1 and
[7, pp. 512–520]. Moreover, the a-priori bound is shown in [25, Theorem 3.19]. �
Remark 2.1 We split the solution to (2) in one part, which depends on the fixed
initial condition y◦ and the right-hand side F, and another part depending linearly
on the control variable. Let ŷ ∈ W(0, T ) be the unique solution to the problem

d

dt
〈ŷ(t), ϕ〉H + a(t; ŷ(t), ϕ) = 〈F(t), ϕ〉V ′,V ∀ϕ ∈ V a.e. in (0, T ],

ŷ(0) = y◦ in H.

We define the subspace

W0(0, T ) =
{
ϕ ∈ W(0, T ) ∣∣ ϕ(0) = 0 in H

}
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endowed with the topology of W(0, T ). Let us now introduce the linear solution
operator S : U → W0(0, T ): for u ∈ U the function y = Su ∈ W0(0, T ) is the
unique solution to

d

dt
〈y(t), ϕ〉H + a(t; y(t), ϕ) = 〈B(u(t)), ϕ〉V ′,V ∀ϕ ∈ V a.e. in (0, T ].

From y ∈ W0(0, T ) it follows that y(0) = 0 in H . The boundedness of S follows
from (3). Now, the solution to (2) can be expressed as y = ŷ +Su. ♦

2.2 The State-Constrained Optimization Problem

We set W = L2(0, T ;H). Throughout the paper we identify the space L2(0, T ;H)
with L2(Q) and the dual W′ with W. Let y ∈ W(0, T ) be given and E : W(0, T )→
W the canonical linear and bounded embedding operator. We deal with pointwise
state constraints of the following type

ya(t, x) ≤ Ey(t, x) ≤ yb(t, x) a.e. inQ, (4)

where ya, yb ∈ W are given lower and upper bounds, respectively. To gain regular
Lagrange multipliers we utilize a Lavrentiev regularization. Let ε > 0 be a chosen
regularization parameter and w ∈ W an additional (virtual) control. Then, (4) is
replaced by the mixed control-state constraints

ya(t, x) ≤ Ey(t, x)+ εw(t, x) ≤ yb(t, x) a.e. in Q.

We introduce the Hilbert space

X = W(0, T )× U×W

endowed with the common product topology. The set of admissible solutions is
given by

Xεad =
{
x = (y, u,w) ∈ X

∣∣ y = ŷ +Su, ya ≤ Ey + εw ≤ yb and u ∈ Uad
}
.

The quadratic cost functional J : X → R is given by

J (x) = σQ

2

∫ T

0
‖y(t)− yQ(t)‖2

H dt + σT

2
‖y(T )− yT ‖2

H

+ σ

2

m∑
i=1

‖ui‖2
L2(0,T ) +

σw

2
‖w‖2

W for x = (y, u,w) ∈ X.
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Assumption 2.2 Let the desired states satisfy yQ ∈ L2(0, T ;H) and yT ∈ H .
Furthermore, ε > 0, σQ, σT ≥ 0, and σ, σw > 0.

The optimal control problem is given by

min J (x) subject to (s.t.) x ∈ Xεad. (Pε)

Remark 2.2 Following [19] one can consider the generalized problem

min
σQ

2

∫ T

0
‖y(t)− yQ(t)‖2

H dt + σT

2
‖y(T )− yT ‖2

H

+ σ

2

m∑
i=1

‖ui‖2
L2(0,T ) +

f (ε)

2
‖w‖2

W

(5a)

subject to the modified state equations

yt (t, x)−Δy(t, x)+ v(t, x) · ∇y(t, x) = g(ε)w a.e. inQ,

∂y

∂n
(t, s)+ y(t, s) =

m∑
i=1
ui(t)bi(s) a.e. onΣc,

∂y

∂n
(t, s)+ γoy(t, s) = γoyout(t) a.e. onΣo,

y(0, x) = y◦(x), a.e. in Ω

(5b)

and to the inequality constraints

uai ≤ ui(t) ≤ ubi a.e. in [0, T ] for i = 1, . . . ,m,

ya(t, x) ≤ Ey(t, x)+ h(ε)w(t, x) ≤ yb(t, x) a.e. in Q,
(5c)

where f , g and h are chosen nonnegative functions defined for ε ≥ 0. In [19]
convergence of a solution x̄ε = (ȳε, ūε, w̄ε) ∈ X is proved for ε → 0 in the case
of an elliptic state equation and unilateral state constraints. In our future work we
will study the application of the arguments in [19] to our parabolic setting and to
bilateral state constraints. ♦

Problem (Pε) can be formulated as pure control constrained problem. We set
ŷa = ya−Eŷ ∈W and ŷb = yb−Eŷ ∈ W. Then, (4) can be formulated equivalently
in the control variables u and w as follows:

ŷa(t, x) ≤ (ESu)(t, x)+ εw(t, x) ≤ ŷb(t, x) a.e. inQ.
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We define Z = U×W and introduce the bounded and linear mapping

Tε : Z→ Z, z = (u,w) %→ Tε(z) =
(

u

ESu+ εw
)
=
(
IU 0
ES εIW

)(
u

w

)
,

(6)

where IU : U → U and IW : W → W stand for the identity operators in U and
W, respectively. Notice that Tε is invertible and T−1

ε is explicitly given as

T−1
ε (u,w) =

(
IU 0

−ε−1ES ε−1IW

)(
u

w

)
=
(
u,

1

ε
(w− ESu)

)
(7)

for all z = (u,w) ∈ Z. With za = (ua, ŷa), zb = (ub, ŷb) ∈ Z we define the closed,
bounded, convex set of admissible controls as

Zεad =
{
z = (u,w) ∈ Z

∣∣ za ≤ Tε(z) ≤ zb
}

which depends—throughTε—from the regularization parameter ε. Let ŷQ = yQ−
ŷ ∈ L2(0, T ;H) and ŷT = yT − ŷ(T ) ∈ H . Then, we introduce the reduced cost
functional

Ĵ (z) = J (ŷ +Su, u,w)

= σQ

2

∫ T

0
‖(Su)(t)− ŷQ(t)‖2

H dt + σT

2
‖(Su)(T )− ŷT ‖2

H

+ σ

2

m∑
i=1

‖ui‖2
L2(0,T ) +

σw

2
‖w‖2

W for z = (u,w) ∈ Z.

Now (Pε) is equivalent to the following reduced problem

min Ĵ (z) s.t. z ∈ Zεad. (P̂ε)

Supposing Assumptions 2.1, 2.2 and applying standard arguments [21] one can
prove that there exists a unique optimal solution z̄ = (ū, w̄) ∈ Zεad to (P̂ε).
The uniqueness follows from the strict convexity properties of the reduced cost
functional on Zεad. Throughout this paper, a bar indicates optimality.

2.3 First-Order Optimality Conditions

First-order sufficient optimality conditions are formulated in the next theorem. The
proof follows from Theorem 2.4 in [11].

Theorem 2.2 Let Assumptions 2.1 and 2.2 hold. Suppose that the feasible set Zεad is

nonempty and that z̄ = (ū, w̄) ∈ Zεad is the solution to (P̂ε) with associated optimal
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state ȳ = ŷ +Sū. Then, there exist unique Lagrange multipliers p̄ ∈ W(0, T ) and
β̄ ∈W, μ̄ = (μ̄i )1≤i≤m ∈ U satisfying the dual equations

− d

dt
〈p̄(t), ϕ〉H + a(t; ϕ, p̄(t))+ 〈β̄(t), ϕ〉H = σQ 〈(yQ − ȳ)(t), ϕ〉H ∀ϕ ∈ V,

p̄(T ) = σT
(
yT − ȳ(T )

)
in H

(8)

a.e. in [0, T ] and the optimality system

σ ūi −
∫
Γc

bip̄ ds + μ̄i = 0 in L2(0, T ) for i = 1, . . . ,m,

σww̄ + εβ̄ = 0 inW.

(9)

Moreover,

β̄ = max
{
0, β̄ + η(ȳ + εw̄ − yb)

}+ min
{
0, β̄ + η(ȳ + εw̄ − ya)

}
, (10a)

μ̄i = max
{
0, μ̄i + ηi(ūi − ubi )

}+ min
{
0, μ̄i + ηi(ūi − uai )

}
(10b)

for i = 1, . . . ,m and for arbitrarily chosen η, η1, . . . , ηm > 0, where the max- and
min-operations are interpreted componentwise in the pointwise everywhere sense.

Remark 2.3 Analogous to Remark 2.1 we split the adjoint variable p into one part
depending on the fixed desired states and into two other parts, which depend linearly
on the control variable and on the multiplier β. Recall that ŷQ as well as ŷT are
defined in Sect. 2.2. Let p̂ ∈ W(0, T ) denote the unique solution to the adjoint
equation

− d

dt
〈p̂(t), ϕ〉H + a(t; ϕ, p̂(t)) = σQ 〈ŷQ(t), ϕ〉H ∀ϕ ∈ V a.e. in [0, T ),

p̂(T ) = σT ŷT in H.

Further, we define the linear, bounded operatorsA1 : U → W(0, T ) and A2 :W→
W(0, T ) as follows: for given u ∈ U the function p = A1u is the unique solution to

− d

dt
〈p(t), ϕ〉H + a(t; ϕ, p(t)) = −σQ 〈(Su)(t), ϕ〉H ∀ϕ ∈ V a.e. in [0, T ),

p(T ) = −σT (Su)(T ) in H

and for given β ∈W the function p = A2β uniquely solves

− d

dt
〈p(t), ϕ〉H + a(ϕ, p(t)) = −〈β(t), ϕ〉H ∀ϕ ∈ V a.e. in [0, T ),

p(T ) = 0 in H.

In particular, the solution p̄ to (8) is given by p̄ = p̂ +A1ū+A2β̄. ♦
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It follows from Theorem 2.2 that the first-order conditions for (P̂ε) can be
equivalently written as the nonsmooth nonlinear system

σ ūi − γc
∫
Γc

bip̄ ds + μ̄i = 0, i = 1, . . . ,m, (11a)

σww̄ + εβ̄ = 0, (11b)

μ̄i = max
{
0, μ̄i + ηi(ūi − ubi )

}+ min
{
0, μ̄i + ηi(ūi − uai )

}
, (11c)

β̄ = max
{
0, β̄ + η(ȳ + εw̄ − yb)

}+ min
{
0, β̄ + η(ȳ + εw̄ − ya)

}
(11d)

with the unknowns ū, w̄, β̄ and μ̄.

Remark 2.4 Optimality system (11) can also be expressed as a variational in-
equality; cf. [17, 25]. Since the admissible set Zεad is convex and the strictly

convex reduced objective Ĵ is Fréchet-differentiable, first-order sufficient optimality
conditions for (P̂ε) are given as

〈∇Ĵ (z̄), z − z̄〉Z ≥ 0 ∀z ∈ Zεad, (12)

where the gradient ∇Ĵ of Ĵ at a given z = (u,w) ∈ Zεad is

∇Ĵ (z) =
((
σui − 〈bi, p(·)〉L2(Γc)

)
1≤i≤m

σww

)
(13)

with p = p̂ +A1u. ♦

3 The Primal-Dual Active Set Strategy (PDASS)

To solve (P̂ε) we utilize a semismooth Newton method which can be interpreted
as a primal-dual active set strategy; cf. [15, 18, 27]. For more details we refer to
[9, 11]. Suppose that zk = (uk,wk) ∈ Z is a current iterate for k ∈ N0. Then, we
set y0 = ŷ +Su0, p0 = p̂ +A1u

0 − σwA2w
0/ε,

yk = ŷ +Suk, βk = −σw
ε
wk,

pk = p̂ +A1u
k +A2β

k, μki =
∫
Γc

bip
k ds − σuki for i = 1, . . . ,m.
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Now we define the associated active sets

AU
ai (z

k) = {t ∈ [0, T ] ∣∣μki + σ(uki − uai ) < 0 a.e.
}
, i = 1, . . . ,m,

AU
bi (z

k) = {t ∈ [0, T ] ∣∣μki + σ(uki − ubi ) > 0 a.e.
}
, i = 1, . . . ,m,

AW
a (z

k) =
{
(t, x) ∈ Q ∣∣βk + σw

ε2

(
yk + εwk − ya

)
< 0 a.e.

}
,

AW
b (z

k) =
{
(t, x) ∈ Q ∣∣βk + σw

ε2

(
yk + εwk − yb

)
> 0 a.e.

}
.

(14a)

The associated inactive sets are defined as

IUi (z
k) = [0, T ] \ (AU

ai (z
k) ∪AU

bi (z
k)
)

for i = 1, . . . ,m,

IW(zk) = Q \ (AW
a (z

k) ∪AW
b (z

k)
)
.

(14b)

Now it turns out that the new state yk+1 and the new adjoint pk+1 are given by the
two coupled problems

d

dt
〈yk+1(t), ϕ〉H + a(yk+1(t), ϕ)−

m∑
i=1

χIUi (z
k)(t)

1

σ

∫
Γc

bip
k+1(t)ds̃

∫
Γc

biϕ ds

= 〈F(t), ϕ〉V ′,V +
m∑
i=1

(
χAU

ai (z
k)(t)uai (t)+ χAU

bi (z
k)(t)ubi (t)

) ∫
Γc

biϕ ds

∀ϕ ∈ V a.e. in (0, T ],
yk+1(0) = y◦.

and

− d

dt
〈pk+1(t), ϕ〉H + a(t; ϕ, pk+1(t))+ σQ 〈yk+1(t), ϕ〉H

+ σw

ε2

〈
yk+1(t)

(
χAW

a (z
k)(t)+ χAW

b (z
k)(t)
)
, ϕ
〉
H

= σQ 〈yQ(t), ϕ〉H + σw

ε2

〈
ya(t)χAW

a (z
k)(t)+ yb(t)χAW

b (z
k)(t), ϕ

〉
H
,

∀ϕ ∈ V a.e. in [0, T ),
pk+1(T ) = σT

(
yT − yk+1(T )

)
,

respectively, which can be expressed as

(
Ak11 Ak12

Ak21 Ak22

)(
yk+1

pk+1

)
=
(
Q1(z

k; y◦, ua, ub, bi, σ, γc, yout)
Q2(z

k; ya, yb, yQ, yT , ε, σw)

)
. (15)
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We have A k
11 = A+ Ã

k

11 and A k
22 = A � + Ã

k

22, where the k-independent operator
A : W(0, T )→ L2(0, T , V ′) is defined as

〈Ay, ϕ〉L2(0,T ;V ′),L2(0,T ;V ) =
∫ T

0
〈yt (t), ϕ(t)〉V ′,V + a(t; y(t), ϕ(t)) dt

for y ∈ W(0, T ) and ϕ ∈ L2(0, T ;V ). The new control variable zk+1 =
(uk+1, wk+1) is given by the linear system

∫
Γc

bip
k+1 ds − σuk+1

i = 0 in IUi (z
k), i = 1, . . . ,m,

uk+1
i = uai in AU

ai (z
k), i = 1, . . . ,m,

uk+1
i = ubi in AU

bi (z
k), i = 1, . . . ,m,

wk+1 = 0 in IW(zk),

yk+1 + ε wk+1 = ya in AW
a (z

k),

yk+1 + ε wk+1 = yb in AW
b (z

k).

(16)

We resume the previous strategy in Algorithm 1.

Remark 3.1 Algorithm 1 has to be discretized for their numerical realizations. In
our tests carried out in Sect. 6 we utilize the implicit Euler method for the time
integration. For the spatial approximation we apply a finite element Galerkin scheme
with piecewise linear finite elements on a triangular mesh. ♦

Algorithm 1 PDASS method for (P̂ε)
1: Choose starting value z0 = (u0, w0) ∈ Z; set k = 0 and flag = false;
2: Determine y0 = ŷ +Su0 and p0 = p̂ +A1u

0 − σwA2w
0/ε;

3: repeat
4: Get AU

ai (z
k), AU

bi (z
k), IUi (z

k), i = 1, . . . , m, and AW
a (z

k), AW
b (z

k), IW(zk) from (14);
5: Compute the solution (yk+1, pk+1) by solving (15);
6: Compute zk+1 = (uk+1, wk+1) ∈ Z from (16);
7: Set k = k + 1;
8: if AU

a1(z
k) = AU

a1(z
k−1) and . . . and AU

am(z
k) = AU

am(z
k−1) then

9: if AU
b1(z

k) = AU
b1(z

k−1) and . . . and AU
bm(z

k) = AU
bm(z

k−1) then
10: if AW

a (z
k) = AW

a (z
k) and AW

b (z
k) = AW

b (z
k−1) then

11: flag = true;
12: end if
13: end if
14: end if
15: until flag = true;
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4 Proper Orthogonal Decomposition

For properly chosen admissible controls z = (u,w) ∈ Zεad we set y = ŷ +Su and
p = p̂ +A1u− σw

ε
A2w. Then, we introduce the linear subspace

V = span
{
y(t), p(t)

∣∣ t ∈ [0, T ]} ⊂ V (17)

with d = dimV ≥ 1. We call the set V the snapshots subspace. Let {ψi}di=1 denote
an orthonormal basis for V, then each snapshot can be expressed as

y(t) =
d∑
i=1

〈y(t), ψi 〉V ψi and p(t) =
d∑
i=1

〈p(t), ψi 〉V ψi a.e. in [0, T ]
(18)

The method of proper orthogonal decomposition (POD) consist in choosing an
orthonormal basis {ψi}di=1 in V such that for every � ∈ N with � ≤ d the mean
square error between the snapshots y, p and their corresponding �-th partial sum
of (18) is minimized:

min
∫ T

0

∥∥∥y(t)− �∑
i=1

〈y(t), ψi 〉V ψi
∥∥∥2

V
+
∥∥∥p(t) − �∑

i=1

〈p(t), ψi 〉V ψi
∥∥∥2

V
dt

s.t. {ψi}�i=1 ⊂ V and 〈ψi,ψj 〉V = δij for 1 ≤ i, j ≤ �,
(19)

where δij is the Kronecker delta.

Definition 4.1 A solution {ψi}�i=1 to (19) is called a POD basis of rank �. We define
the subspace spanned by the first � POD basis functions as V � = span {ψ1, . . . , ψ�}.

Using a Lagrangian framework, the solution to (19) is characterized by the
following optimality conditions (cf. [6, 13]):

Rψ = λψ, (20)

where the operator R : V → V given by

Rψ =
∫ T

0
〈y(t), ψ〉V y(t)+ 〈p(t), ψ〉V p(t) dt for ψ ∈ V

is compact, nonnegative and self-adjoint operator. Thus, there exist an orthonormal
basis {ψi}i∈N for V and an associated sequence {λi}i∈N of nonnegative real numbers
so that

Rψi = λiψi, λ1 ≥ · · · ≥ λd > 0 and λi = 0, for i > d. (21)
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Moreover V = span{ψi}di=1. It can be also proved, see [6], that we have the
following error formula for the POD basis {ψi}�i=1 of rank �:

∫ T

0

∥∥∥y(t)− �∑
i=1

〈y(t), ψi 〉V ψi
∥∥∥2

V
+
∥∥∥p(t) − �∑

i=1

〈p(t), ψi 〉V ψi
∥∥∥2

V
dt =

d∑
i=�+1

λi .

Remark 4.1 For the numerical realization, the Hilbert space V has to be discretized
by, e.g., piecewise finite elements and the integral over [0, T ] has to be replaced by
a trapezoidal approximation; see [13]. ♦

If a POD basis {ψi}�i=1 of rank � is computed, we can derive a reduced-order
model for (2): for any u ∈ U the function y� = S�u ∈ W(0, T ) is given by

d

dt
〈y�(t), ψ〉H + a(t; y�(t), ψ) = 〈B(u(t)), ψ〉V ′,V ∀ψ ∈ V � a.e. in (0, T ].

(22)

For any u ∈ Uad the POD approximation y� for the state solution is y� = ŷ +S�u.
Analogously a reduced-order model can be derived for the adjoint equation; see,
e.g.,[13]. The POD Galerkin approximation of (P̂ε) is given by

min Ĵ �(z) = J (ŷ +S�u, z) s.t. z ∈ Z
ε,�
ad , (P̂

�
)

where the set of admissible controls is

Z
ε,�
ad =

{
z = (u,w) ∈ Z

∣∣u ∈ Uad and ŷa ≤ (ES�u)(t, x)+ εw(t, x) ≤ ŷb}.

5 A-Posteriori Error Analysis

In this section we present an a-posteriori error estimate which is based on a
perturbation argument [8] and has been already utilized in [26]. As done in [9],
this estimate can be generalized for the mixed control-state constraints case. As
first, suppose that Assumptions 2.1 and 2.2 hold. Recall that the linear, invertible
operator Tε has been introduced in (6). In particular, z = (u,w) belongs to Zεad if
z = (u,w) = T(z) ∈ Zad holds with the closed, bounded and convex subset

Zad =
{
z = (u,w) ∈ Z

∣∣ua ≤ u ≤ ub in U and ŷa ≤ w ≤ ŷb in W
} ⊂ Z.

Note that—compared to the definition of the admissible set Zεad—the set Zad does
not depend on the solution operator S and on the regularization parameter ε. Now,
we consider instead of (P̂ε) the following optimal control problem

min Ĵ
(
T−1
ε z
)

s.t. z = (u,w) ∈ Zad. (P̂ε)
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If z̄ = (ū, w̄) solves (P̂ε), then z̄ = Tε(z̄) is the solution to (P̂ε). Conversely, if z̄
solves (P̂ε), then z̄ = T−1

ε (z̄) is the solution to (P̂ε). According to [9] we have the
following result:

Theorem 5.1 Suppose that Assumptions 2.1 and 2.2 hold. Let z̄ = (ū, w̄) be the
optimal solution to (P̂ε).

1) z̄ = Tε(z̄) is the solution to (P̂ε).
2) Suppose that a point zap = (uap,wap) ∈ Zad is computed. We set zap =

T−1
ε (z

ap), i.e., zap = (uap, wap) fulfills uap = uap and wap = ε−1 (wap −
ESuap). Then, there exists a perturbation ζ = (ζ u, ζw) ∈ Z, which is
independent of z̄, so that

‖z̄ − zap‖Z ≤ 1

σz
‖T �

ε ζ‖Z with σz = min{σ, σw} > 0. (23)

where T�ε denotes the adjoint of the operator Tε; cf. (7).

Proof Since Tε has a bounded inverse, part 1) follows. The second claim can be
shown by adapting the proof of Proposition 1 in [9].

Remark 5.1

1) The perturbation ζ can be computed following [9, Section 1.5].
2) In our numerical realization the approximate solution zap is given by the POD

suboptimal solution z̄� = (ū�, w̄�) ∈ Z
ε,�
ad to (P̂

�
). Thus, we proceed as in [12,

26] and utilize (23) as an a-posteriori error estimate in the following manner: We
set

zap = (uap,wap) ∈ Z with uap = ū� and wap = εw̄� + ES �ū�. (24)

From z̄� ∈ Z
ε,�
ad we infer that zap ∈ Zad. It follows from (7) and (24) that

zap = T−1
ε (z

ap) =
(
uap, ε−1 (wap − ESuap

))
=
(
ū�, w̄� + ε−1E

(
S � −S

)
ū�
)

fulfills (23). Moreover, we found that

z̄ − zap = z̄− z̄� +
(

0, ε−1E
(
S−S �

)
ū�
)
.

Consequently, (23) is not only an a-posteriori error estimate for z̄ − z̄�, but also
for ε−1E(S−S �)ū�. ♦
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6 Numerical Tests

All the tests in this section have been made on a Notebook Lenovo ThinkPad T450s
with Intel Core i7-5600U CPU @ 2.60 GHz and 12 GB RAM. The codes are written
in C language and we use the tools of PETSc, [3, 4], and SLEPc, [14, 23], for our
numerical computations. In the tests we apply a discrete variant of Algorithm 1.
For solving the linear system in step 5 of Algorithm 1, we use GMRES with an
incomplete LU factorization as preconditioner. For all tests, T = 1 is chosen, and
the domain Ω will be the unit square (0, 1) × (0, 1), where we supposed to have
four ‘heaters’, which we call controls for simplicity, placed as shown in Fig. 1, with
the following shape functions:

b1(x) =
{

1 if x1 = 0, 0 ≤ x2 ≤ 0.25,
0 otherwise.

b2(x) =
{

1 if 0.25 ≤ x1 ≤ 0.5, x2 = 1,
0 otherwise.

b3(x) =
{

1 if x1 = 1, 0.5 ≤ x2 ≤ 0.75,
0 otherwise.

b4(x) =
{

1 if 0.5 ≤ x1 ≤ 0.75, x2 = 0,
0 otherwise.

We choose the physical parameter γo = 0.03 and as initial condition y◦(x) =
| sin(2πx1) cos(2πx2)| for x = (x1, x2) ∈ Ω , as shown in Fig. 1. The velocity field
is chosen as v(t, x) = (v1(t, x), v2(t, x)) for all t ∈ [0, T ], with:

v1(t, x) =

⎧⎪⎨
⎪⎩
−1.6 if t < 0.5, x ∈ VF1

,

−0.6 if t ≥ 0.5, x ∈ VF2
,

0 otherwise
v2(t, x) =

⎧⎪⎨
⎪⎩

0.5 if t < 0.5, x ∈ VF1
,

1.5 if t ≥ 0.5, x ∈ VF2
,

0 otherwise

and

VF1 =
{
x = (x1, x2)

∣∣ 12x2 + 4x1 ≥ 3, 12x2 + 4x1 ≤ 13
}
,

VF2 =
{
x = (x1, x2)

∣∣ x1 + x2 ≥ 0.5, x1 + x2 ≤ 1.5
}
.

Fig. 1 Spatial domain Ω with the four boundary controls and the velocity fields (grey); initial
condition y◦(x). (a) t < 0.5. (b) t ≥ 0.5. (c) y◦(x)
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By these choices, this test represents the following scenario: the boundary controls
are heaters and the velocity field, which is both space and time dependent, models
the air flow in the room, which clearly changes in time. We also suppose that we
have an outside temperature yout(t) = −1 for t ∈ [0, 0.5) and yout(t) = 1 for
t ∈ [0.5, T ]. We fix as target yQ(t, x) = min(2.0 + t, 3.0) and yT (x) = yQ(T , x),
as state constraints ya(t) = 0.5 + min(2t, 2.0) and yb = 3.0. The time dependent
lower constraints ya(t) is chosen to gradually rise the temperature in time, in order
to save heating. Moreover, we choose the control constraints uai = 0 and ubi = 7
for i = 1, . . . , 4. We build the POD basis in two different ways: the first POD basis
(POD-M1) is built using the FE snapshots generated solving the state equation with
the controls ui(t) = 3.5 for t ∈ [0, T ] and i = 1, . . . ,m. The second POD basis
(POD-M2) is constructed using the FE optimal control related to the considered
test. We expect that the second basis will produce better results, since it contains
information regarding the optimal solution. For the implicit Euler method we choose
the equidistant time step Δt = 0.01. The spatial discretization is carried out by
piecewise linear finite elements (FE) on a triangular mesh with Nx = 625 nodes.

6.1 Test 1: Economic Optimal Control

The cost functional weights are σT = σQ = 0 and σw = σ = 1. This choice is
motivated by economic optimal control: we do not want to reach a target, but we
focus our attention only on respecting the state constraints, keeping the controls as
small as possible. For more information on economic optimal control we refer to
[10, Chapter 8], for instance. In this test, as first, we study the behaviour of the
PDASS for different values of ε. We will then analyse how this regularization pa-
rameter influences the POD approximation and the tightness of the error estimator.
Finally, we will compare the POD-M1 and POD-M2 approximation for a fixed value
of ε. As can be seen from Fig. 2 and as expected, when ε decreases the minimum
temperature in the room gets progressively close to the lower constraints ya(t) at
each time instance, while the average temperature and the maximum one remain for
more time inside the constraints’ range. The gradual decay of the temperature at the
last time steps is due to the terminal condition for the dual variable p: from (8), since
in this test σT = 0 holds, we have that p(T ) = 0. Therefore, the computation of the
optimal control, which is affected by this condition, lead to the previously noticed
phenomena. As reported in Table 1, the number of PDASS iterations increases when
ε decreases: when ε is small, the virtual controlw is big in the active points, thus the
algorithm employs more iterations to minimize the cost functional, where u and w
have the same weights, respecting also the control constraints. It can be shown that
εw = (ya − y) χAW

a (z)
+ (yb − y) χAW

b (z)
holds, hence, the L2-norm of εw can be

used to measure how much the constraints are violated during all the evolution of the
solution. As can be seen from Table 1, this value confirms what we already stated
commenting Fig. 2. In Table 2, the relative errors between the solution computed
with the POD-M2 approximation and the FE one are reported for the same number
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Fig. 2 Test 1: Temperature behaviour at each time-step for different ε. (a) ε = 1. (b) ε = 0.1. (c)
ε = 0.01. (d) ε = 0.001

Table 1 Test 1: results for the FE discretization for different ε

Spatial discretization ε Ĵ (z) ‖εw‖W Iterations

FE 1.0 0.931 1.3563 4

FE 0.1 7.584 0.2874 7

FE 0.01 9.066 0.0216 9

FE 0.001 120.329 0.0150 21

of basis and for different ε. In the last column, we have listed the values of the
a-posteriori estimate for the difference ‖uFE − uPOD‖, which is defined as

‖uFE − uPOD‖2 =
m∑
i=1

‖uFE
i − uPOD

i ‖2
L2(0,T ).
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Table 2 Test 1: results for the POD-M2 discretization for different ε and same number of basis

Spatial discretization ε rel-err(T ) rel-err rel-err(Act.S.) ‖uFE − uPOD‖ Err.Est.

POD-M2-10 Basis 1.000 0.002 0.003 0 0.0003 0.0004

POD-M2-10 Basis 0.100 0.006 0.004 0.001 0.0076 0.0167

POD-M2-10 Basis 0.010 0.004 0.007 0.024 0.3705 3.3604

POD-M2-10 Basis 0.001 0.700 0.648 0.465 7.359 �2 · 105

We also need to clarify how we have computed the relative errors:

rel-err(T ) =‖yFE(T )− yPOD(T )‖H/‖yFE(T )‖H ,
rel-err =‖yFE − yPOD‖L2(0,T ;H)/‖yFE‖L2(0,T ;H),

rel-err(Act.S.) =
∣∣∣AFE ∪APOD −AFE ∩APOD

∣∣∣ / (NxNt ) ,
where AFE = (AW

a ∪AW
b

)
(zFE) and Nt is the number of time steps. The rel-

err(Act.S.) in particular points out how much the active sets of state constraints
related to the optimal solution computed with the reduced order model are far to the
one computed in the FE discretization. As one can see, the POD approximation gets
worse as ε decreases. For example, for ε = 0.001 the optimal control computed
with the reduced order model is completely far from the one computed with the full
order discretization. This is justified from the fact that there are more dynamics to
approximate for smaller ε, since the number of iterations of the PDASS algorithm
is greater. If we want to obtain, for example, an approximation error less than 0.01
in the case of POD-M2 we have to take at least 4 basis for ε = 1, 9 for ε = 0.1, 28
for ε = 0.01 and 58 for ε = 0.001. In addition, since in Theorem 5.1 wap depends
on ε−1 and therefore also the error estimator, we have that its tightness depends
on the regularization parameter. The previous statement is confirmed by the data
reported in Table 2: the greater is ε the tighter is the error estimator. For example,
for ε = 1 we have that it is only 1.3 times greater than the true error, instead it is 5.67
times the true one for ε = 0.01. From now to the end of the subsection, ε is fixed
to 0.01. In Table 3 we present some results for Algorithm 1 for the FE and POD
approximations using the two different strategies to build the POD bases. The norm
of εw and also the cost functional gets closer to their values computed through the
FE discretization as soon as the number of basis increases. Moreover, the PDASS
algorithm applied to the reduced system converges almost in the same iterations’
number of the full one. Even if we are able to solve the reduced linear system of
Algorithm 1 around 80–100 times faster than the full one, the total algorithm speed-
up is approximatively 4. This is due to the fact that we have to compute the active
sets for the state constraints at each algorithm’s iteration and this means that the
reduced algorithm has to project into the FE discretization the approximated POD
solution, compute the active sets, which costs O(NNt ), and project back into the
POD subspace those sets. To better compare POD-M1 and POD-M2 approaches, we
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Table 3 Test 1: results for the FE and POD discretizations for ε = 0.01

Spatial discretization POD basis elements Ĵ (z) ‖εw‖W rel-err(Act.S.) Iterations Speed-up

FE – 9.066 0.0216 – 9 –

POD-M1 10 9.659 0.0339 0.127 10 3.91

POD-M1 15 9.123 0.0223 0.019 10 3.58

POD-M1 20 9.119 0.0221 0.010 9 3.48

POD-M2 10 9.181 0.0252 0.024 9 4.01

POD-M2 15 9.090 0.0229 0.014 9 3.90

POD-M2 20 9.076 0.0218 0.003 9 3.45

Table 4 Test 1: error values for the POD suboptimal solutions

Spatial discretization POD basis elements rel-err(T ) rel-err ‖uFE − uPOD‖ Error estimator

POD-M1 10 0.068 0.115 1.344 7.620

POD-M1 15 0.003 0.004 0.174 2.361

POD-M1 20 0.003 0.003 0.136 1.549

POD-M2 10 0.004 0.007 0.371 3.360

POD-M2 15 0.003 0.002 0.128 1.321

POD-M2 20 0.001 0.001 0.065 0.179

also report the relative errors between the solution computed with the full and the
reduced systems in Table 4. From this table, as expected, we can notice that the POD
basis generated with the optimal solution performs better than the other basis: when
the algorithm is getting closer to the optimal control, the information brought by the
optimal snapshots is more helpful than the one brought by snapshots generated with
an arbitrary control, which is usually far from the optimal one. This is also clear in
Fig. 3, where we plot the differences between the optimal controls computed solving
the full system and the reduced ones for 20 POD basis: the controls computed with
POD-M2 are closer to the FE optimal controls than the ones obtained using the
POD-M1 reduced system. This explains why we need an a-posteriori error estimator
for the POD basis: we can estimate the quality of our basis and we can decide to
consider a greater number of basis or to generate new basis from a different initial
control. In Fig. 4, we show the comparison between the true error ‖uFE−uPOD‖ and
the a-posteriori error estimator. Due to the previous discussion on the quality of the
POD approximation, we can notice that as expected it is tighter for POD-M2 than
for POD-M1 and it becomes for both approximations tighter and smaller as soon as
the number of POD basis increases, although with some oscillation.

6.2 Test 2: Cost of Tracking Type

For the second test, we fix ε = 0.1 and we use the same data of Test 1, except for
the cost functional weights which are chosen in the following way: σT = σQ = 1
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Fig. 3 Test 1: |uFE(t)− uPOD(t)| with � = 20 basis functions. (a) POD-M1. (b) POD-M2

Fig. 4 Test 1: comparison between ‖uFE−uPOD‖ and its a-posteriori error estimate. (a) POD-M1.
(b) POD-M2

and σ = 0.01. Regarding σw , we split the section in two parts: as first we study the
model’s behaviour when its value decreases, then we investigate the case σw = 0.
Regarding this last condition, we want to point out that in the continuous model
the terms connected to σw in the cost functional, adjoint equation and in the
error estimator are zero: this means that w is not uniquely defined, since the only
condition that w has to satisfy is ya(t, x) ≤ Ey(t, x) + εw(t, x) ≤ yb(t, x) a.e. in
Q, which clearly has no unique solution for fixed values of ya, yb, ε and y. By the
way, due to the fact that σw = 0, we can observe that w is not more influencing
the computation of the optimal control in the PDASS algorithm, so our optimal
control will respect the control constraints and be the minimum of the reduced
cost functional Ĵ , but the solution may not be in the state constraints’ range. From
Table 5 we can noticed that the smaller σw is the more the algorithm focuses on
reaching the target and the less on respecting the state constraints. In addition, when
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Table 5 Test 2: results for the FE discretization for different σw

Spatial discretization σw Ĵ (z) ‖εw‖W ‖y(T )− yT ‖ ‖y − yQ‖ Iterations

FE 1.0000 0.318 0.015 0.159 0.618 9

FE 0.0100 0.311 0.036 0.156 0.624 5

FE 0.0001 0.309 0.161 0.155 0.623 4

Table 6 Test 2: results for the POD-M2 discretization for different σw and same number of basis

Spatial discretization σw rel-err(T ) rel-err rel-err(Act.S.) ‖uFE − uPOD‖ Err.Est.

POD-M2-10 Basis 1.0000 0.0019 0.0036 0.0014 0.1689 0.3051

POD-M2-10 Basis 0.0100 0.0013 0.0014 0.0007 0.0937 0.1456

POD-M2-10 Basis 0.0001 0.0013 0.0012 0.0005 0.0931 14.1898

σw decreases the conditions for the PDASS algorithm are less restrictive, therefore
it uses less iteration to compute the solution. As showed in Table 6, also the POD-
M2 approximation becomes better when σw gets smaller, but there is a worsening in
the a-posteriori estimation: this is connected to the term σ−1

z in (23), which makes
the estimation increasing. For σw = 0 instead, we have a simplified error estimator,
which produces better results compared to the case σw > 0 really small. As in
Test 1, in Tables 7 and 8 we report the results of the finite elements solution (FE)
and the reduced order ones (POD-M1,POD-M2) for σw = 0, with different choices
of basis’ number. As can be observed from Table 7, for this choice of parameters
we have an improve of the speed-up gained in solving the reduced system, because
in this context we do not have to compute the active sets for the state constraints.
Therefore, we can have a speed-up for the algorithm similar to the one we get for
solving the reduced linear system at each PDASS algorithm’s step. In addition, the
case σw = 0.0001 (or smaller) is equal to σw = 0, which is not surprising, since this
means that already for this value of σw , we are almost ignoring the state constraints,
due also to the choice on ε, but the advantage of taking σw = 0 is to have a tighter
error estimator and a greater speed-up. As last, in this test it is confirmed that the
number of POD basis functions needed to approximate the full order model really
depends on the choice of the controls used for building the snapshots: we can see
that for 4 basis, we can not capture in a good way the FE behaviour with POD-M1
basis, but with 10 basis we get results similar to POD-M2. The optimal trajectories
at time T = 1.0 are reported in Fig. 5: we can notice that the FE and the POD-M2
ones are similar already for 7 basis, which is not the case for POD-M1.

7 Conclusions

With efficient building operation in mind, we have studied an optimal control
problem of a parabolic convection-diffusion equations, with a time-dependent
advection field, bilateral constraints for the boundary controls and pointwise state
constraints, which have been treated with a Lavrentiev regularization. For solving
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Table 8 Test 2: error values for the POD suboptimal solutions

Spatial discretization POD basis elements rel-err(T ) rel-err ‖uFE − uPOD‖ Error estimator

POD-M1 4 0.091 0.087 1.711 6.170

POD-M1 7 0.056 0.026 0.421 0.781

POD-M1 10 0.002 0.002 0.103 0.166

POD-M2 4 0.044 0.062 1.416 5.770

POD-M2 7 0.004 0.004 0.200 0.379

POD-M2 10 0.001 0.001 0.093 0.142

Fig. 5 Test 2: optimal trajectories at time t = 1.0. (a) FE. (b) POD-M1-7Basis. (c) POD-M2-
7Basis

this optimal control problem we have applied the primal-dual active set strategy
presented in [15], which has a super-linear rate of convergence. In order to speed-
up the computational time of the algorithm, we have employed the POD method
and utilized the a-posteriori error estimator in [9]. In the numerical test section,
we have also shown how the variation of the regularization parameter ε and of the
cost functional weight σw influences the behaviour of the solution and of the POD
approximation. In addition, concerning the speed-up due to the POD method, we
have noticed that this is reduced because of the computation of the state constraints’
active sets, therefore it will be interesting in future work to treat the state constraints
with other methods, e.g. the augmented Lagrangian algorithm. As shown in [22], the
PDASS and its POD version can be combined with MPC, in order to face long-time
horizon problems, which can be really costly to solve directly with the PDASS.

Acknowledgements The authors gratefully acknowledge support by the German Science Fund
DFG grant VO 1658/4-1 Reduced-Order Methods for Nonlinear Model Predictive Control.
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Order Reduction Approaches for the
Algebraic Riccati Equation and the LQR
Problem

Alessandro Alla and Valeria Simoncini

Abstract We explore order reduction techniques to solve the algebraic Riccati
equation (ARE), and investigate the numerical solution of the linear-quadratic
regulator problem (LQR). A classical approach is to build a low dimensional
surrogate model of the dynamical system, for instance by means of balanced
truncation, and then solve the corresponding ARE. Alternatively, iterative methods
can be used to directly solve the ARE and use its approximate solution to estimate
quantities associated with the LQR. We propose a class of Petrov-Galerkin strategies
based on Krylov subspaces that simultaneously reduce the dynamical system while
approximately solving the ARE by projection. This methodology significantly
generalizes a recently developed Galerkin method, based on Krylov subspaces, by
using a pair of projection spaces, as it is often done in model order reduction (MOR)
of dynamical systems. Numerical experiments illustrate the advantages of the new
class of methods over classical approaches when dealing with large matrices.
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1 Introduction

Optimal control problems for partial differential equations (PDEs) are an extremely
important topic for many industrial applications in different fields, from aerospace
engineering to economics. The problem has been investigated with different strate-
gies as open-loop (see e.g. [23]) or closed-loop (see e.g. [18, 19]).

In this work we are interested in feedback control for linear dynamical systems
and quadratic cost functionals which is known as the Linear Quadratic Regulator
(LQR) problem. Although most models are nonlinear, LQR is still a very interesting
and powerful tool, for instance in the stabilization of nonlinear models under
perturbations, where a control in feedback form can be employed.

The computation of the optimal policy in LQR problems requires the solution of
an algebraic Riccati equation (ARE), a quadratic matrix equation with the dimension
of the dynamical system. This is a major bottleneck in the numerical treatment of
the optimal control problem, especially for high dimensional systems such as those
stemming from the discretization of a PDE.

Several powerful solution methods for the ARE have been developed throughout
the years for small dynamical systems, based on spectral decompositions. The large
scale case is far more challenging, as the whole spectral space of the relevant
matrices cannot be determined because of memory and computational resource
limitations. For these reasons, this algebraic problem is a very active research topic,
and major contributions have been given in the past decade. Different approaches
have been explored: variants of the Newton method have been largely employed in
the past [11, 27], while only more recently reduction type methods based on Krylov
subspaces have emerged as a feasible effective alternative; see, e.g., [12, 24, 38] and
references therein. The recent work [36] shows that a Galerkin class of reduction
methods onto Krylov subspaces for solving the ARE can be naturally set into the
MOR framework for the original dynamical system. This fact is particularly striking
because most literature has so far treated the solution of the Riccati equation as a
distinct problem from the reduction process, whereas it is now clear that the MOR
perspective provides a natural setting also for the solution of the Riccati equation.
In the context of linear-quadratic optimal regulator problems,H2 andH∞ controller
design and balancing-related model reduction often an approximation to the Riccati
solution matrix is assumed to be available, from which other key quantities are
determined; see the discussion in [36]. By exploiting the same space for the
reduction of the model and the projection of the Riccati equation, it is possible
to determine an approximate control function satisfying certain optimality property
[36]. Here we deepen the MOR connection by using the Petrov-Galerkin Krylov
subspaces commonly used in MOR to directly approximate the Riccati solution.

As already mentioned, the LQR problem is more complicated when dealing with
PDEs because its discretization leads to a very large system of ODEs and, as a
consequence, the numerical solution of the ARE is computationally more demand-
ing. To significantly lower these computational costs and memory requirements,
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model order reduction techniques can be employed. Here, we distinguish between
two different concepts of reduction approaches.

A first methodology projects the dynamical system into a low dimensional
system whose dimensions are much smaller than the original one; see, e.g., [14].
Therefore, the corresponding reduced ARE is practical and feasible to compute
on a standard computer. The overall methodology thus performs a first-reduce-
then-solve strategy. This approach has been investigated with different model
reduction techniques like Balanced Truncation (BT) in e.g.[4], Proper Orthogonal
Decomposition (POD, [39, 40]) in e.g. [5, 28] and via the interpolation of the rational
functions, see e.g. [7, 15, 20]. A different approach has been proposed in [35] where
the basis functions are computed from the solution of the high dimensional Riccati
equation in a many query context. For the sake of completeness, we would like
to mention that model order reduction has been applied to the Linear Quadratic
Gaussian (LQG) problem which may involve the solution of two Riccati equations
(see e.g. [9, 10, 16]).

We note that basis generation in the context of model order reduction for optimal
control problems is an active research topic (see e.g. [2, 3, 28, 30]). Furthermore,
the computation of the basis functions is made by a Singular Value Decomposition
(SVD) of the high dimensional data which can be very expensive. One way to
overcome this issue was proposed in [1] by means of randomized SVD which is
a fast and accurate alternative to the SVD, and it is based on random samplings.

A second methodology follows a reduce-while-solve strategy. In this context,
recent developments aim at reducing the original problem by subspace projection,
and determining an approximate solution in a low dimensional approximation space.
Proposed strategies either explicitly reduce the quadratic equation (see, e.g., [38]
and references therein), or approximately solve the associated invariant subspace
problem (see, e.g., [8] and its references). As already mentioned, these recently
developed methods have shown to be effective alternatives to classical variants of
the Newton method, which require the solution of a linear matrix equation at each
nonlinear iteration; see, e.g., [13] for a general description.

The aim of this paper is to discuss and compare the aforementioned MOR
methodologies for LQR problems. In particular, we compare the two approaches of
reducing the dynamical system first versus building surrogate approximation of the
ARE directly, using either Galerkin or Petrov-Galerkin projections. The idea of us-
ing a Petrov-Galerkin method for the ARE appears to be new, and naturally expands
the use of two-bases type as typically employed for transfer function approximation.

To set the paper into perspective we start recalling LQR problem and its order
reduction in Sect. 2. In Sect, 3 we describe reduction strategies of dynamical
systems used in the small size case, such as proper orthogonal decomposition and
balanced truncation. Section 4 discusses the new class of projection strategies that
attack the Riccati equation, while delivering a reduced model for the dynamical
system. Finally, numerical experiments are shown in Sect. 5 and conclusions are
derived in Sect. 6.
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2 The Linear-Quadratic Regulator Problem and Model
Order Reduction

In this section we recall the mathematical formulation of the LQR problem. We
refer the reader for instance to classical books such as e.g. [31] for a comprehensive
description of what follows. We consider a linear time invariant system of ordinary
differential equations of dimension n:

ẋ(t) = Ax(t)+ Bu(t), x(0) = x0, t > 0, (1)

y(t) = Cx(t)+Du(t),

with A ∈ R
n×n, B ∈ R

n×m,C ∈ R
p×n and D ∈ R

p×m. Usually, x(t) : [0,∞] →
R
n is called the state, u(t) : [0,∞] → R

m the input or control and y(t) : [0,∞] →
R
p the output. Furthermore, we assume that A is passive. This may be viewed as a

restrictive hypothesis, since the problems we consider only require that (A,B) are
stabilizable and (AT ,CT ) controllable, however this is convenient to ensure that the
methods we analyze are well defined. In what follows, without loss of generality, we
will considerD ≡ 0. We also define the transfer function for later use:

G(s) = C(sI − A)−1B. (2)

Next, we define the quadratic cost functional for an infinite horizon problem:

J (u) :=
∫ ∞

0
y(t)T y(t)+ u(t)T Ru(t) dt, (3)

where R ∈ R
m×m is a symmetric positive definite matrix. The optimal control

problem reads:

min
u∈Rm

J (u) such that x(t) solves (1). (4)

The goal is to find a control policy in feedback form as:

u(t) = −Kx(t) = −R−1BT Px(t), (5)

with the feedback gain matrix K ∈ R
m×n and P ∈ R

n×n is the unique symmetric
and positive (semi-)definite matrix that solves the following ARE:

AT P + P A− PBR−1BT P + CT C = 0, (6)

which is a quadratic matrix equation for the unknown P .
We note that the numerical approximation of Eq. (6) can be very expensive

for large n. Therefore, we aim at the reduction of the numerical complexity by
projection methods.
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Let us consider a general class of tall matrices V,W ∈ R
n×r , whose columns

span some approximation spaces. We chose these two matrices such that they are
biorthogonal, that is WT V = Ir . Let us now assume that the matrix P , solution
of (6), can be approximated as

P ≈ WPrWT .

Then the residual matrix can be defined as

R(Pr) = ATWPrWT +WPrWT A−WPrWT BR−1BTWPrW
T + CT C.

The small dimensional matrix Pr can be determined by imposing the so-called
Petrov-Galerkin condition, that is orthogonality of the residual with respect to
range(V ), which in matrix terms can be stated as V TR(Pr)V = 0. Substituting
the residual matrix and exploiting the bi-orthogonality of V andW we obtain:

ATr Pr + PrAr − PrBrR−1BTr Pr + CTr Cr = 0, (7)

where

Ar = WTAV, Br = WT B, Cr = CV.

It can be readily seen that Eq. (7) is again a matrix Riccati equation, in the unknown
matrix Pr ∈ R

r×r , of much smaller dimension than P , provided that V and W
generate small spaces. We refer to this equation as the reduced Riccati equation. The
computation of Pr allows us to formally obtain the approximate solution WPrWT

to the original Riccati equation (6), although the actual product is never computed
explicitly, as the approximation is kept in factorized form.

The optimal control for the reduced problem reads

ur(t) = −Krxr(t) = −R−1BTr Prxr (t)

with the reduced feedback gain matrix given by Kr = KV ∈ R
m×r . Note that this

ur(t) is different from the one obtained by first approximately solving the Riccati
equation and with the obtained matrix defining an approximation to u(t); see [36]
for a detailed discussion.

The Galerkin approach is obtained by choosing V = W with orthonormal
columns when imposing the condition on the residual.

To reduce the dimension of the dynamical system (1), we assume to approximate
the full state vector as x(t) ≈ V xr(t) with a basis matrix V ∈ R

n×r , where xr(t) :
[0,∞)→ R

r are the reduced coordinates. Plugging this ansatz into the dynamical
system (1), and requiring a so called Petrov-Galerkin condition yields

ẋr (t) = Arxr(t)+ Bru(t), xr (0) = WT x0, t > 0, (8)

yr(t) = Crxr .
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The reduced transfer function is then given by:

Gr(s) = Cr(sIr − Ar)−1Br. (9)

The presented procedure is a generic framework for model reduction. It is clear
that the quality of the approximation depends on the approximation properties of the
reduced spaces. In the following sections, we will distinguish between the methods
that directly compute V,W upon the dynamical systems (see Sect. 3) and those that
readily reduce the ARE (see Sect. 4). In particular, for each method we will discuss
both Galerkin and Petrov-Galerkin projections, to provide a complete overview of
the methodology. The considered general Petrov-Galerkin approach for the ARE
appears to be new.

3 Reduction of the Dynamical System

In this section we recall two well-known techniques as POD and BT to compute the
projectorsW,V starting from the dynamical systems.

3.1 Proper Orthogonal Decomposition

A common approach is based on the snapshot form of POD proposed in [39], which
works as follows. We compute a set of snapshots x(t1), . . . , x(tk) of the dynamical
system (1) corresponding to a prescribed input ū(t) and different time instances
t1, . . . , tk and define the POD ansatz of order r for the state x(t) by

x(t) ≈
r∑
i=1

(xr)i (t)ψi, (10)

where the basis vectors {ψi}ri=1 are obtained from the SVD of the snapshot matrix
X = [x(t1), . . . , x(tk)], i.e. X = ΨΣΓ T , and the first r columns of Ψ =
(Ψ1, . . . , Ψn) form the POD basis functions of rank r . Hence we choose the basis
vectors V = W = (Ψ1, . . . , Ψr ) for the reduction in (8). Then, the evolution
dynamics can be projected using a Galerkin method as in [29].

This technique strongly relies on the choice of a given input u, whose optimal
selection is usually unknown. In this work, we decide to collect snapshots following
the approach suggested in [28] as considers a linearization of the ARE (which
corresponds to a Lyapunov equation). Therefore, the snapshots are computed by
the following equation:

ẋ(t) = AT x(t), x(0) = ci, for i = 1, . . . , p, (11)
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where ci is the i-th column of the matrix C. The advantage of this approach is that
Eq. (11) is able to capture the dynamics of the adjoint equation which is directly
related to the optimality conditions, and we do not have to choose a reference input
ū(t). In order to obtain the POD basis, one has to simulate the high dimensional
system and subsequently perform a SVD. As a consequence, the computational
cost may become prohibitive for large scale problems. Algorithm 1 summarizes
the method.

Algorithm 1 POD method to compute the reduced Riccati
Require: A,C, r
1: for i = 1, . . . , p do
2: Simulate system (11) with initial condition ci .
3: Build the snapshots matrix X = [X, xi(t1), . . . , xi (tk)]
4: end for
5: Compute the reduced SVD of X = VΣWT

6: Solve the reduced Riccati equation (7) for Pr .

3.2 Balanced Truncation

The BT method is a well-established model order reduction technique for linear time
invariant systems (1). We refer to [4] for a complete description of the topic. It is
based on the solution of the reachability Gramian R and the observability Gramian
O which solve, respectively, the following Lyapunov equations

AR+ RAT + BBT = 0, ATO +OA+ CT C = 0. (12)

We determine the Cholesky factorization of the Gramians

R = ΦΦT O = ΥΥ T . (13)

Then, we compute the reduced SVD of the Hankel operator Υ TΦ and set

W = ΥUΣ1/2, V = Υ VΣ1/2,

where U,V ∈ R
n×r are the first r columns of the left and right singular vectors of

the Hankel operator and Σ = diag(σ1, . . . , σr ) matrix of the first r singular values.
The idea of BT is to neglect states that are both, hard to reach and hard to observe.

This is done by eliminating states that correspond to low Hankel singular values
σi . This method is very popular in the small case regime (e.g. n ≈ O(103)) also
because the whole procedure can be verified by a-priori error bounds in several
system norms, and the Lyapunov equations can be solved very efficiently. In the
large scale these equations need to be solved approximately; see, e.g., [12, 17].

In summary, the procedure first solves the two Lyapunov equations at a given
accuracy for large matrices and then determines biorthogonal bases for the reduction
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spaces by using a combined spectral decomposition of the obtained solution
matrices. For consistency with the other projection strategies, in the large scale
setting we solve Eq. (12) using adaptive rational Krylov subspaces as in [17]. We
refer to [37] for alternatives. The algorithm is summarized in Algorithm 2.

Algorithm 2 BT method to compute the reduced Riccati
Require: A,B,C and the dimension of the reduced problem r

1: Compute R,O from (12) and their Cholesky factorization (13)
2: Compute the reduced SVD of the Hankel operator
3: Set W = ΥUΣ1/2, V = ΥVΣ1/2,

4: Solve the reduced Riccati equation (7) for Pr .

4 Adaptive Reduction of the Algebraic Riccati Equation

In the previous section the reduced problem was obtained by a sequential procedure:
first system reduction of a fixed order r and then solution of the reduced Riccati
equation (7). A rather different strategy consists of determining the reduction bases
while solving the Riccati equation. In this way, we combine both the reduction of
the original system and of the ARE. While the reduction bases V and W are being
generated by means of some iterative strategy, it is immediately possible to obtain a
reduced Riccati equation by projecting the problem onto the current approximation
spaces. The quality of the two spaces can be monitored by checking how well the
Riccati equation is solved by means of its residual; if the approximation is not
satisfactory, the spaces can be expanded and the approximation improved.

The actual space dimensions are not chosen a-priori, but tailored with the
accuracy of the approximate Riccati solution. Mimicking what is currently available
in the linear equation literature, the reduced problem can be obtained by imposing
some constraints that uniquely identify an approximation. The idea is very natural
and it was indeed presented in [24], where a standard Krylov basis was used as
approximation space. However, only more recently, with the use of rational Krylov
bases, a Galerkin approach has shown its real potential as a solver for the Riccati
equation; see, e.g., [22, 38]. A more general Petrov-Galerkin approach was missing.
We aim to fill this gap. In the following we give more details on these procedures.

Given an approximate solution P̃ of (6) written as P̃ = WYWT for some Y to
be determined, the former consists to require that the residual matrix is orthogonal
to this same space, range(W ), so that in practice V = W . The Petrov-Galerkin
procedure imposes orthogonality with respect to the space range(V ), where V is
different fromW , but with the same number of columns.

In [24] a first implementation of a Galerkin procedure was introduced, and the
orthonormal columns of V spanning the (block) Krylov subspace Kr (A

T ,CT ) =
range([CT ,AT CT , . . . , (AT )r−1CT ]); see also [26] for a more detailed treatment
and for numerical experiments. Clearly, this definition generates a sequence of
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nested approximation spaces, that is Kr (A
T ,CT ) ⊆ Kr+1(A

T ,CT ), whose
dimension can be increased iteratively until a desired accuracy is achieved. More
recently, in [22] and [38], rational Krylov subspaces have been used, again in the
Galerkin framework. In particular, the special case of the extended Krylov subspace
Kr (A

T ,CT ) + Kr ((A
T )−1, (AT )−1CT ) was discussed in [22], while the fully

rational space

Kr (A
T , CT , σ ) := range([CT , (AT−σ2I )

−1CT , . . . , (AT−σ2I )
−1 · · · (AT−σrI )−1CT ])

was used in [38]. The rational shift parameters σ = {σ2, . . . , σr } can be computed
on the fly at low cost, by adapting the selection to the current approximation quality
[17]. Note that dim(Kr (A

T ,CT , σ )) ≤ rp, where p is the number of columns of
CT . In [38] it was also shown that a fully rational space can be more beneficial than
the extended Krylov subspace for the Riccati equation. In the following section we
are going to recall the general procedure associated with the Galerkin approach, and
introduce the algorithm for the Petrov-Galerkin method, which to the best of the
authors’ knowledge is new. In both cases we use the fully rational Krylov subspace
with adaptive choice of the shifts.

It is important to realize that Kr (A
T ,CT , σ ) does not depend on the coefficient

matrix BBT of the second-order term in the Riccati equation. Nonetheless, experi-
mental evidence shows good performance. This issue was analyzed in [33, 36] where
however the use of the matrixB during the computation of the parameters was found
to be particularly effective; a justification of this behavior was given in [36]. In the
following we thus employ this last variant when using rational Krylov subspaces.
More details will be given in the next section.

4.1 Galerkin and Petrov-Galerkin Riccati

In the Galerkin case, we will generate a matrixW whose columns span the rational
Krylov subspace Kr (A

T ,CT , σ ) in an iterative way, that is one block of columns
at the time. This can be obtained by an Arnoldi-type procedure; see, e.g., [4].
The algorithm, hereafter GARK for Galerkin Adaptive Rational Krylov, works as
follows:

Algorithm 3 GARK method to compute the reduced Riccati equation
Require: A,C, σ
1: for r = 1, 2, . . . do
2: Expand the space Kr (A

T , CT , σ );
3: Update the reduced matrices Ar,Br and Cr with the newly generated vectors;
4: Solve the reduced Riccati equation for Pr ;
5: Check the norm of the residual matrix R(Pr)
6: If satisfied stop with P r and the basis W of Kr (A

T , CT , σ ).
7: end for
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The residual norm can be computed cheaply without the actual computation of
the residual matrix; see, e.g., [38]. The parameters σj can be computed adaptively
as the space grows; we refer the reader to [17] and [36] for more details.

In the general Petrov-Galerkin case, the matrix W is generated the same way,
while we propose to compute the columns of V as the basis for the rational Krylov
subspace Kr (A,B, σ ); note that the starting block is now B, and the coefficient
matrix is the transpose of the previous one. The two spaces are now constructed and
expanded at the same time, so that the two bases can be enforced to be biorthogonal
while they grow. For completeness, we report the algorithm in the Petrov-Galerkin
setting in Algorithm 4 (hereafter PGARK for Petrov-Galerkin Adaptive Rational
Krylov).

Algorithm 4 PGARK method to compute the reduced Riccati equation
Require: A,B,C, σ
1: for r = 1, 2, . . . do
2: Expand the spaces Kr (A

T , CT , σ ), Kr (A,B, σ );
3: Update the reduced matrices Ar,Br and Cr with the newly generated vectors;
4: Solve the reduced Riccati equation for Pr ;
5: Check the norm of the residual matrix R(Pr)
6: If satisfied stop with P r and the basis W of Kr (A

T , CT , σ ).
7: end for

The parameters σj are computed for one space and used also for the other space.
In this more general case, the formula for the residual matrix norm is not as cheap as
for the Galerkin approach. We suggest the following procedure. We first recall that
for rational Krylov subspace Kr (A,B, σ ) the following relation holds (we assume
here full dimension of the generated space after r iterations):

ATW = WAr + ŵaTr , ar ∈ R
(r+1)m,

for certain vector ŵ orthogonal toW , which changes as the iterations proceeds, that
is as the number of columns W grows; we refer the reader to [32] for a derivation
of this relation, which highlights that the distance of range(W ) from an invariant
subspace of A is measured in terms of a rank-one matrix. We write

R(Pr) = ATWPrWT +WPrWT A−WPrWT BR−1BTWPrW
T + CT C

= WArPrWT + ŵaTr PrWT +WPrATr WT +WPrarŵT
−WPrBrR−1BTr PrW

T +WEETWT

= ŵaTr PrWT +WPrarŵT

= [W, ŵ]
[

0 Prar

aTr Pr 0

]
[W, ŵ]T ,
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where we also used the fact that CT = WE for some matrix E. If [W, ŵ] had
orthonormal columns, as is the case for Galerkin, then ‖R(Pr)‖2 = 2‖Prar‖2,
which can be cheaply computed.

To overcome the nonorthogonality of [W, ŵ], we suggest to perform a reduced
QR factorization of [W, ŵ] that maintains its columns orthogonal. This QR
factorization does not have to be redone from scratch at each iteration, but it can be
updated as the matrix W grows. If [W, ŵ] = QWRW with RW ∈ R

(r+1)m×(r+1)m

upper triangular, then

‖R(Pr)‖ = ‖RW
[

0 Prar

aTr Pr 0

]
RTW ‖.

The use of coupled (bi-orthogonal) bases has the recognized advantage of explicitly
using both matrices C and B in the construction of the reduced spaces. This coupled
basis approach has been largely exploited in the approximation of the dynamical
system transfer function by solving a multipoint interpolation problem; see, e.g., [4]
for a general treatment and [6] for a recent implementation. In addition, coupled
bases can be used to simultaneously approximate both system Gramians leading to
a large-scale BT strategy; see, e.g., [25] for early contributions using bi-orthogonal
standard Krylov subspaces.1 On the other hand, a Petrov-Galerkin procedure has
several drawbacks associated with the construction of the two bases. More precisely,
the two bi-orthogonal bases are generated by means of a Lanczos-type recurrence,
which is known to have both stability and breakdown problems in other contexts
such as linear system and eigenvalue solving. At any iteration it may happen that
the new basis vectorswj and vj are actually orthogonal or quasi-orthogonal to each
other, giving rise to a possibly incurable breakdown [21]. We have occasionally
experienced this problem in our numerical tests, and it certainly occurs whenever
CB = 0. In our specific context, an additional difficulty arises. The projected matrix
Ar = WTAT V is associated with a bilinear rather than a linear form, so that its field
of values may be unrelated to that of AT . As a consequence, it is not clear the type
of hypotheses we need to impose on the data to ensure that the reduced Riccati
equation (7) admits a unique stabilizable solution. Even in the case ofA symmetric,
the two bases will be different as long as C �= BT . All these questions are crucial
for the robustness of the procedure and deserve a more throughout analysis which
will be the topic of future research.

From an energy-saving standpoint, it is worth remarking that the Petrov-Galerkin
approach uses twice as many memory allocations than the Galerkin approach,
while performing about twice the number of floating point operations. In particular,
constructing the two bases requires two system solves, with AT − sj I and with
A−s̄j I respectively, at each iteration. Therefore, unless convergence is considerably

1We are unaware of any available implementation of rational Krylov subspace based approaches
for large scale BT either with single or coupled bases, that simultaneously performs the balanced
truncation while approximating the Gramians.
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faster, the Petrov-Galerkin approach may not be superior to the Galerkin method in
the solution of the ARE.

5 Numerical Experiments

In this section we present and discuss our numerical tests. We first compare the
methods we have introduced in the previous sections on two test cases. Then
we linger over the large scale implementation of BT we have adopted to make
comparisons with projection based strategies, to highlight the difficulties that may
arise when the approximation is performed in two separate steps.

We consider the discretization of the following linear PDE

wt − εΔw + γwx + γwy−cw = 1ΩBu inΩ × (0,+∞),
w(·, 0) = w0 inΩ,

w(·, t) = 0 in ∂Ω × (0,∞),
(14)

where Ω ⊂ R
2 is an open interval, w : Ω × [0,∞] → R

2 denotes the state, and
the parameters ε, γ and c are real positive constants. The initial value is w0 and
the function 1ΩB is the indicator function over the domain ΩB ⊂ R

2. Note that we
deal with zero Dirichlet boundary conditions. The problem in (14) includes the heat
equation, for ε �= 0, γ = 0, c = 0, reaction-diffusion equations for ε �= 0, γ =
0, c �= 0 and a class of convection-diffusion equations for ε �= 0, γ �= 0 and c = 0.
Furthermore, we define an output of interest by:

s(t) := 1

|ΩC |
∫
ΩC

w(x, t) dt, (15)

where ΩC ⊂ R
2. Space discretization of Eq. (14) by standard centered finite

differences together with a rectangular quadrature rule for (15) lead to a system
of the form (1). In general, the dimension n of the dynamical system (1) is rather
large (i.e., n & 1000) and the numerical treatment of the corresponding ARE is
computationally expensive or even unfeasible. Therefore, model order reduction is
appropriate to lower the dimension of the optimal control problem (4). We will
report experiments with small size problems, where all discussed methods can be
employed, and with large size problems, where only the Krylov subspace based
strategies are applied.

The numerical simulations reported in this paper were performed on a Mac-Book
Pro with 1 CPU Intel Core i5 2.3 GHz and 8GB RAM and the codes are written in
MatlabR2013a. In all our experiments, small dimensional Lyapunov and Riccati
equations are solved by means of built-in functions of the Matlab Control Toolbox.
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Whenever appropriate, the quality of the current approximation of the ARE is
monitored by using the relative residual norm:

RP = ‖R(Pr)‖F
‖C‖2

F

, (16)

and the dimension of the surrogate model r is chosen such that RP < 10−6. After
the ARE solution is approximated the ultimate goal is to compute the feedback
control (5). Therefore, we also report the error in the computation of feedback gain
matrixK as the iterations proceed:

EK = ‖Kr −K‖F
‖K‖F , (17)

and we measure the quality of our surrogate model also by the H2-error

EG = ‖Gr −G‖H2

‖G‖H2

. (18)

where

‖G(s)‖H2 :=
1

2π

(∫ +∞

−∞
‖G(iω)‖2

F dω

)1/2

.

In particular, the approximation of the transfer function is one of the main targets
of MOR, where the reduced system is used for analysis purposes, while the
approximation of the feedback gain matrix is monitored to obtain a good control
function.

5.1 Test 1: 2D Linear Heat Equation

In the first example we consider the linear reaction-diffusion equation. In (14) we
chose γ = 0, ε = 1, c = 400,Ω = [0, 1] × [0, 1], and ΩB = [0.4, 0.6] ×
[0.4, 0.6]. In (1), the matrix A is obtained by centered five points finite difference
discretization. We consider a small problem stemming from a spatial discretization
step Δx = 0.05, leading to a system of dimension n = 441. The matrix C in (1) is
given by the indicator function over the domain ΩC = [0.3, 0.7] × [0.3, 0.7] and
R ≡ Im in (3).

The left panel of Fig. 1 shows the residual norm history of the reduced ARE (7)
when the two projection matrices V,W are computed by each of the four algorithms
explained in the previous sections. We can thus appreciate how the approximation
proceeds as the reduced space is enlarged. We note that POD requires more basis
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Fig. 1 Test 1: Convergence history of the relative residual norm RP (left), Error EK of the feedback
gain matrix (middle), Error EG for the approximation of reduced transfer function (right)

functions to achieve the desired tolerance for RP than the other approaches, while
the BT algorithm is the fastest. The POD method is a snapshot dependent method
and thus it is crucially influenced by the choice of the initial input u(t) and
the results may be different for other choices of the snapshots set. All the other
proposed techniques are, on the contrary, input/output independent. We note that
under this setting the PGARK is not stable for the first reduced coordinates; see
some additional comments on the issue in Test 2.

In the middle panel of Fig. 1, we show how well the feedback gain matrix K
can be approximated with reduction methods. It is interesting to see that the basis
functions computed by GARK and PGARK are able to approximate the matrix K
very well. Furthermore, we note that BT does not decrease monotonically.

Finally, we would like to show the quality of the computed basis functions in
the approximation of the dynamical system in the right panel of Fig. 1. In this
example, BT approximates the transfer function very well with a lower number of
basis functions.
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Fig. 2 CPU time as the problem dimension n increases for BT, GARK and PGARK. Left: Test 1.
Right: Test 2

Last remark goes to the iterative methods GARK and PGARK . We showed that,
although the basis functions are built upon information of the ARE, they are also
able to approximate the dynamical systems and the feedback gain matrix. This is
clearly not unexpected, as the generated approximation spaces are tightly related
to classical model order reduction strategies with (rational) Krylov subspaces [4].
Nonetheless, as opposed to MOR methods, the quality of the generated spaces all
leans on solving the Riccati equation, which also provides important quantities
for the dynamical systems. This is a crucial point that motivates us to further
investigate these methods in the context of the LQR problem. Projection methods
are specifically designed to handle large dimension n. Together with the large scale
version of BT, in Fig. 2 we report the CPU time of the iterative methods, for
Δx ∈ {0.1, 0.05, 0.025, 0.0125, 0, 00625, 0.003125}. We note that the methods
reach the desired accuracy in a few seconds even for n = O(105). On the contrary,
POD would be way more expensive since its cost heavily depends on the original
dimension of the problem n, e.g., via the computation of the snapshots.

5.2 Test 2: 2D Linear Convection-Diffusion Equation

We consider the linear convection-diffusion equation in (14) with γ = 50, ε =
1, c = 0,Ω = [0, 2] × [0, 2] andΩB = [0.2, 0.8] × [0.2, 0.8]. In (1), the matrix
A is given by centered five points finite difference discretization plus an upwind
approximation of the convection term (see e.g. [34]). The spatial discretization step
is Δx = 0.1 and leads to a system of dimension n = 441. The matrix C in (1) is
given by the indicator function over the domain ΩC = [0.1, 0.9] × [0.1, 0.9], and
R ≡ Im in (3).
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Fig. 3 Test 2: History of the relative residual norm (left), Error EK of the feedback gain matrix
(middle), Transfer function error EG as the approximation space grows (right)

The left panel of Fig. 3 shows the residual norm history associated with the
reduced ARE (7), with different projection techniques. We note that the methods
converge with a different number of basis functions. We also note that in this
example we can observe instability of the PGARK method as discussed in Sect. 4.1.
As it is typically done in the algebraic linear system setting, in case of incidental
quasi-orthogonality of the basis vectors in PGARK, one could “look a-ahead” and
generate subsequent vectors, by accordingly modifying the implementation; see,
e.g., [21] and references therein. We have not pursued this here, but it should be
implemented if a robust piece of software is desired.

Middle panel of Fig. 3 reports the error in the approximation of the feedback gain
matrix K . It is very interesting to observe that even on this convection dominated
problem all the methods can reach an accuracy of order 10−6.

Finally, we show the error in the approximation of the transfer function in the
right panel of Fig. 3. In this example, we can see that the PGARK method performs
better than the others but it is rather unstable; this well known instability problem
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will be analyzed in future work. The discussion upon the quality of the basis function
we had in Test 1 still hold true. The iterative methods are definitely a feasible
alternative to well-known techniques as BT and POD.

In the right panel of Fig. 2, we show the CPU time of BT, GARK and PGARK
for different dimensions n of the dynamical system. We note that, again, the
Galerkin projection reaches the desired accuracy faster than the two Petrov-Galerkin
methods (PGARK and BT). This is an interesting result, since it seems to show that
generating two spaces is not strictly necessary to achieve good accuracy at high
performance.

5.3 Test 3: A Discussion on Large Scale Balanced Truncation

In this experiment we report on some of the shortcomings we have experienced
with the version of balanced truncation that we have implemented for handling
the large scale setting; here the Lyapunov equations were solved using projection
onto rational Krylov spaces. These problems mainly arise because of the two-step
procedure: first the approximate solution of the two Lyapunov equations in (12),
then the projection of the Riccati equation onto the spaces of the two obtained
approximate Gramians. This is precisely what can be avoided in the projected
Petrov-Galerkin approach. Indeed, while constructing the same spaces as those used
by the Gramian solvers, GARK readily obtains an approximation to the sought after
Riccati solution, without the intermediate approximation of the Gramians.

The first difficulty consists of choosing the stopping tolerance for iteratively
solving the two Lyapunov equations, so that the two Gramians are good enough
to produce an acceptable Riccati approximate solution. A tolerance simply smaller
than that used in the stopping criterion for the Riccati equation is not sufficient.
Rather, it should be a few orders of magnitude higher. In Table 1 we report what
happens to the Riccati solution for the data in the two previous examples (here
n = 103,041), for different values of the Lyapunov solvers tolerance.

For the sake of the analysis, we also considered a matrix A stemming from the
five point stencil finite difference discretization of the operator

L(w) = (e−xywx)x + (exywy)y + 1/5(x + y)wx (19)

in the unit square, and the same values of B and C as in Test 1. Results are reported
in the rightmost group of columns in Table 1.

Clearly, the Lyapunov equation tolerance granting convergence to the Riccati
equation is data dependent. For the data in Test 2, requiring a tolerance one order of
magnitude lower than the final one is enough, whereas this is not so for Test 1. For
the operator L the situation is even more severe.

The second difficulty arises in case the iterative schemes for approximately
computing the two Gramians converge to the requested accuracy in a quite different
number of iterations. In this case, the Riccati equation can be projected onto a space
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Table 1 Final achieved residual norm (RP ) in the balanced truncation procedure, depending on
the accuracy of the two Lyapunov solves

Test 1 Test 2 L(w)

Lyap # Lyap Riccati # Lyap Riccati # Lyap Riccati

tol its space dim RP its space dim RP its space dim RP
10−5 4–4 4 8 · 10−5 4–4 4 1 · 10−4 19–18 17 4 · 10−2

10−6 5–5 5 2 · 10−5 6–6 5 4 · 10−7 21–20 19 9 · 10−4

10−7 5–6 4 9 · 10−7 6–6 5 4 · 10−7 23–22 20 1 · 10−4

10−8 6–6 4 9 · 10−7 6–7 5 1 · 10−7 25–25 22 6 · 10−5

10−9 7–7 5 7 · 10−7 8–8 5 1 · 10−7 28–27 24 8 · 10−7
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10-8
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10-4

10-2

100

102
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Fig. 4 Convergence history for GARK, PGARK and BT for L(w) in (19) and specific B and C

whose dimension is at most the one obtained by the lowest rank basis. The projection
procedure then stops, irrespective of the final accuracy of the obtained approximate
Riccati solution. This phenomenon is reported in Fig. 4, for the data associated
with (19) and the selections C = 1 and B = [−1, 1,−1, 1, . . . , 1] (alternating
ones). The employed Lyapunov solver for B converges in 14 iterations, with a
solution of rank 10, while the solver for C takes 28 iterations, and yields a solution
of rank 27. The balanced truncation procedure terminates after 10 iterations, with
an unsatisfactory relative residual norm above 10−3. The figure also reports the
convergence of the projection methods, which are able to reach the desired accuracy
with similar convergence history.
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6 Conclusions

We have proposed a comparison of different model order reduction techniques for
the ARE. We distinguished between two different strategies: (1) First reduction
of the dynamical system complexity and then the solution of the corresponding
reduced ARE whereas; (2) Simultaneous solution of the ARE and determination
of the reduction spaces. The strength of the second strategy is its flexibility for very
high dimensional problem, where problems in the class (1) may have memory and
computational difficulties, or, in the case of large scale BT, parameter tuning issues.
Experiments on both small and large dimensional problems confirm the promisingly
good approximation properties of rational Krylov methods as compared to more
standard approaches for the approximation of more challenging quantities in the
LQR context.
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Fractional PDE Constrained
Optimization: Box and Sparse
Constrained Problems

Fabio Durastante and Stefano Cipolla

Abstract In this paper we address the numerical solution of two Fractional Par-
tial Differential Equation constrained optimization problems: the two-dimensional
semilinear Riesz Space Fractional Diffusion equationwith box or sparse constraints.
Both a theoretical and experimental analysis of the problems is carried out.
The algorithmic framework is based on the L-BFGS-B method coupled with a
Krylov subspace solver for the box constrained problem within an optimize-then-
discretize approach and on the semismooth Newton–Krylov method for the sparse
one. Suitable preconditioning strategies by approximate inverses and Generalized
Locally Toeplitz sequences are taken into account. The numerical experiments are
performed with benchmarked software/libraries enforcing the reproducibility of the
results.

Keywords Fractional differential equation · Constrained optimization ·
Preconditioner · Saddle matrix

1 Introduction

Partial fractional differential equations model different phenomena not appropri-
ately modeled by partial differential equations with ordinary derivatives: from the
models of viscoplasticity and viscoelasticity to the modeling of diffusion processes
in porous media and, indeed, many other problems exhibiting non-local properties;
see [30] for a gallery of possible applications. Thus, the study of their controllability
and the research of efficient algorithms for this task are becoming always more
relevant. Already the discretize-then-optimize framework [2, 16] and the optimize-

F. Durastante (�)
Dipartimento di Informatica, Università di Pisa, Pisa (PI), Italy
e-mail: fabio.durastante@di.unipi.it

S. Cipolla
Dipartimento di Matematica, Università di Padova, Padova (PD), Italy
e-mail: cipolla@math.unipd.it

© Springer Nature Switzerland AG 2018
M. Falcone et al. (eds.), Numerical Methods for Optimal Control Problems,
Springer INdAM Series 29, https://doi.org/10.1007/978-3-030-01959-4_6

111

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01959-4_6&domain=pdf
mailto:fabio.durastante@di.unipi.it
mailto:cipolla@math.unipd.it
https://doi.org/10.1007/978-3-030-01959-4_6


112 F. Durastante and S. Cipolla

then-discretize one [1, 14] have been investigated in some directions. Particularly,
in [14] we dealt with the FDE constrained optimization problem:

⎧⎪⎪⎨
⎪⎪⎩

min J (y, u) = 1

2
‖y − zd‖2

2 +
λ

2
‖u‖2

2,

subject to −Kx1
∂2αy

∂|x1|2α −Kx2
∂2βy

∂|x2|2β + b · ∇y + cyζ = u,
y ≡ 0, (x1, x2) ∈ ∂Ω,

(1)

where ζ ∈ N, b ∈ C1(Ω,R2), c ∈ C(Ω), u ∈ L
2(Ω), Kx1,Kx2 ≥ 0 and Kx1 +

Kx2 > 0, α, β ∈ (1/2, 1), Ω = [a, b] × [c, d], in term of the symmetric Riesz
derivative (Definition 1). This is an instance of the general problem:

⎧⎨
⎩min J (y, u) = 1

2
‖y − zd‖2

2 +
λ

2
‖u‖2

2,

subject to e(y, u) = 0,
(2)

where J and e are two continuously Fréchet derivable functionals such that,

J : Y × U → R, e : Y × U → W,

with Y,U and W reflexive Banach spaces. If we suppose that ey(y, u) ∈ B(Y,W)
is a bijection (where B(Y,W) is the set of bounded linear operators), using the
Implicit Function Theorem, we can deduce the existence of a (locally) unique
solution y(u) to the state equation e(y, u) = 0. We can then reformulate the problem
in the form

min
u∈U f (u) = min

u∈U J (y(u), u), (3)

where J (y(u), u) is the reduced cost functional.
In the applications not all the controls u ∈ U are admissible, i.e., controls that

satisfy further requirements are sought. The first example we consider here is to
enforce u ∈ Uad ⊆ U � L

2 in Problem (1), where

Uad � {u ∈ U : ua ≤ u(x) ≤ ub a.e. in Ω,ua, ub ∈ R and ua < ub} ⊂ U.
(4)

We have obtained in this way the Box-constrained problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min J (y, u) = 1

2
‖y − zd‖2

2 +
λ

2
‖u‖2

2,

subject to −Kx1
∂2αy

∂|x1|2α −Kx2
∂2βy

∂|x2|2β + b · ∇y + cyζ = u,
y ≡ 0, (x1, x2) ∈ ∂Ω,
u ∈ Uad.

(5)
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Then we focus on the problem of finding sparse controls for the Problem (1) that
amounts to substitute the regular quadratic-convex functional J (y, u) in (1) with:

⎧⎪⎪⎨
⎪⎪⎩

min Ĵ (y, u) = 1

2
‖y − zd‖2

2 +
λ

2
‖u‖2

2 + η‖u‖1,

subject to −Kx1
∂2αy

∂|x1|2α −Kx2
∂2βy

∂|x2|2β + b · ∇y + cyζ = u,
y ≡ 0, (x1, x2) ∈ ∂Ω,

for η > 0, (6)

being ‖ · ‖1 the L
1 norm. The non-differentiability of the ‖ · ‖1 norm gives back a

semismooth convex problem.
This paper is then divided as follows: in Sect. 2 we focus on the existence

of solutions for Problem (5) and (6), then in Sect. 3 we provide an algorithmic
framework in which these kinds of problems can be easily solved. In conclusion,
we substantiate our proposals with some numerical examples in Sect. 4.

2 Existence of Solution with Box and Sparse Constraints

We need to face the numerical solution of the two-dimensional Riesz space
fractional diffusion equation [30], that reads as

{
−Kx1

∂2αy

∂|x1|2α −Kx2
∂2βy

∂|x2|2β + b · ∇y + cy = u, (x1, x2) ∈ Ω,
y ≡ 0, (x1, x2) ∈ ∂Ω,

(7)

where b ∈ C1(Ω,R2), c ∈ C(Ω), u ∈ L
2(Ω), Kx1,Kx2 ≥ 0 and Kx1 +Kx2 > 0,

α, β ∈ (1/2, 1), Ω = [a, b] × [c, d], where the symmetric Riesz fractional operator
is defined as follows.

Definition 1 Given a function u(x1, x2) and given 1/2 < μ ≤ 1 and n− 1 < 2μ ≤
n, we define the symmetric Riesz derivative as,

∂2μu(x1, x2)

∂|x1|2μ = −c2μ

(
RLD

2μ
a,x1

+ RLD
2μ
x1,b

)
u(x1, x2), c2μ = 1

2 cos(μπ)

and

RLD
2μ
a,xu(x1, x2) = 1

Γ (n− 2μ)

(
∂

∂x1

)n ∫ x1

a

u(ξ, x2)dξ

(x1 − ξ)2μ−n+1
,

RLD
2μ
x,bu(x1, x2) = 1

Γ (n− 2μ)

(
− ∂

∂x1

)n ∫ b

x1

u(ξ, x2)dξ

(ξ − x1)2μ−n+1 ,

and analogously on the x2 direction.
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We have that the existence of both the solutions of Problems (5) and (6) is
guaranteed by classic arguments; see, particularly, [15, Chapter 5, 6] and the
discussion in [14] and references therein for adapting it to the case of fractional
differential equations. Moreover, the construction of the optimality conditions and
the selection of the computational framework is taken directly from [15].

We recall here only the two relevant results, extended to the case of fractional
partial differential equation constraints, which are needed for establishing the
computational procedures in Sect. 3.

Theorem 1 ([14]) The optimality condition of the first order for problem (1), given
λ > 0, is expressed as:

∇f (u) ≡ p + λu = 0, u ∈ U, (8)

where p ∈ W ′ is obtained through the solution of the adjoint equation
{
−Kx1

∂2αp

∂|x1|2α −Kx2
∂2βp

∂|x2|2β −∇ · (pb) + ζ cyζ−1p = y − zd, (x1, x2) ∈ Ω,
p ≡ 0, (x1, x2) ∈ ∂Ω.

(9)

and y is the solution of equation (7) for a given control u ∈ U .

By coupling together Theorem 1 and [15, Theorem 6.1] we can state the
following result:

Theorem 2 The optimality conditions for Problem (6) are given by:

{
−Kx1

∂2αy

∂|x1|2α −Kx2
∂2βy

∂|x2|2β + b · ∇y + cy = u, (x1, x2) ∈ Ω,
y ≡ 0, (x1, x2) ∈ ∂Ω,

(10)

{
−Kx1

∂2αp

∂|x1|2α −Kx2
∂2βp

∂|x2|2β −∇ · (pb) + ζ cyζ−1p = y − zd, (x1, x2) ∈ Ω,
p ≡ 0, (x1, x2) ∈ ∂Ω.

(11)

p + λu+ v = 0, (12)

u− max(0, u+ c(v − η))− min(0, u+ c(v + η)) = 0, ∀c > 0, (13)

where p ∈ W ′ is an adjoint status.

Observe that the existence of the solution for Problem (6) the requirement λ > 0
is sufficient; as observed in [32], without this requirement, we need to add box-
constraints to the formulation of (6) to ensure the existence of a solution.
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3 Algorithms

Optimal control problem for differential equations, either with integer or fractional
derivatives, in the optimize-then-discretize approach, is a composite computational
problem, i.e., it requires the solution of at least two different kinds of problems:

1. a large scale optimization problem,
2. the numerical integration of several differential equations; one of them in this

case is also nonlinear.

In the following Sects. 3.1–3.3 we discuss each of these computational phases
separately showing where and how they connect. The focus will be producing an
overall efficient strategy for the solution of the whole problem.

3.1 Finite Differences Discretization

It is possible to treat the discretization of the Riesz space-fractional differential
equation (7) by means of the second order accurate fractional centered derivative
scheme for Riesz derivative from [26] coupled with the usual finite difference
scheme for the convective and reactive terms. GivenN ∈ N we consider the uniform
grid {xi,j = (a + ih, c + jh)}i,j for i, j = 0, . . . , N with h = b−a/N = d−c/N and
the compact notation yi,j = y(xi,j ), bi,j = (b1(xi,j ), b2(xi,j )), ci,j = c(xi,j ) and
ui,j = u(xi,j ), from which we obtain the following set of algebraic equations:

1

hα

⎛
⎜⎝Kx1

x−a
h∑

k=− b−x
h

ς
(α)
i y−k,j +Kx2

x−a
h∑

k=− b−x
h

ς
(β)
j yi,−k

⎞
⎟⎠+

+b(1)i,j
yi+1,j − yi−1,j

2h
+ b(2)i,j

yi,j+1 − yi,j−1

2h
+ ci,j yζi,j = ui,j

(14)

for each i, j = 0, . . . , N and the coefficients ς(α)k are given by:

ς
(α)
k = (−1)kΓ (α + 1)

Γ (α/2 − k + 1)Γ (α/2 + k + 1)
, (15)

and similarly for β. Collecting the terms in (14) we can represent it in matrix form1

as:

H(y; u) ≡
[
Kx1(R

(α)
x1

⊗ I)+Kx2(I ⊗ R(β)x2
)+ B

]
y + Cyζ − u = 0, (16)

1The power of vectors is computed elementwise.
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where I is the identity matrix relative to the grid size, R(α)x1 and R(β)x2 are the dense
Toeplitz matrix associated with the one-dimensional fractional order derivatives in
the two directions, the B and C are respectively the evaluation on the relative nodes
of the (i, j)-finite difference grid {xi,j }i,j of the functions b = (b(1), b(2)), together
with the convective terms obtained with centered differences, and c. The associated
Jacobian, needed for the solution with the Newton method of (14), is then given
simply by:

JH (y) = Kx1(R
(α)
x1

⊗ I)+Kx2(I ⊗ R(β)x2
)+ B + ζC diag(yζ−1). (17)

The discretization of the adjoint equation (9) is obtained in the same way, we just
need to observe that in this case, it becomes a linear equation in which the actual
value of y is used as a coefficient. Thus, using again the same notation, we have the
following parametric family of matrices discretizing the adjoint equation:

A′(y) = Kx1(R
(α)
x1

⊗ I)+Kx2(I ⊗ R(β)x2
)+ B ′ + ζC diag(yζ−1) (18)

where:

B ′ =

⎡
⎢⎢⎢⎢⎣
B1 J2

−J1 B2
. . .

. . .
. . . JN

−JN−1 BN

⎤
⎥⎥⎥⎥⎦ ,

with:

Bj =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
b

(2)
j,2
2h

− b
(2)
j,1
2h

. . .
. . .

. . .
. . .

b
(2)
j,N

2h

− b
(2)
j,N−1
2h 0

⎤
⎥⎥⎥⎥⎥⎥⎦
, Jj =

⎡
⎢⎢⎢⎢⎢⎢⎣

b
(1)
j,1
2h 0 0 0

0
b

(1)
j,2
2h 0 0

0 0
. . . 0

0 0 0
b

(1)
j,N

2h

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Observe that this implies that the discretization matrix of the adjoint equation varies
at each step of the minimization process.

3.2 Optimization Routines

3.2.1 Box-Constrained Optimization Problems

Concerning the optimization routines for Problem (5), we use two well known and
benchmarked search direction methods: the projected gradient method [22] and
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the L-BFGS-B method [13]. The projected gradient method represents a natural
generalization of the gradient method, where the constraints are guaranteed through
a projection operation on the set Uad, i.e.,

u(k+1) = ΠUad
(u(k) − μk∇f (u(k))) � max(ua,min(ub,u(k) − μk∇f (u(k)))),

where the steplength parameter μk is chosen by a projected line search rule
(see [22]).

L-BFGS-B is a more sophisticated generalization of the Limited Memory BFGS
method [24] since the (necessary) descent condition for a search direction is not
preserved by projecting onto ΠUad

; see [22]. This problem is solved in L-BFGS-B
by a two phases approach: after a preliminary step where a set of active constrained
is identified by a projected gradient strategy, a reduced Quasi-Newton quadratic
model for the inactive constraints is used in order to generate the next search
direction. We use the implementation from [24]. Thus, we need only the two
procedures for computing both f (u(k)) and the gradient ∇f (u(k)). As it is clear
from Theorem 1, each gradient and function evaluation requires the solution of two
FPDEs, and hence this turns out to be the dominating computational cost per step
for the both the projected gradient and the L-BFGS-B methods. The computation of
f requires the solution of the state equation (7) and is achieved by Newton method
as

while res > tol && it <= itmax
yold = y;
d = JH(yold)\H(yold,u + F);
y = yold - d;
res = norm(H(y,u),2);
it = it + 1;

end
f = 0.5*(y-z)'*(y-z) + lambda/2*(u'*u);

where the functions JH(yold) and H(y,u) computes (17) and (16); see Sect. 3.1
for the details. Then the gradient ∇f (u(k)) is computed by using the solution y of
the state equation computed at the previous step, together with the solution of the
adjoint equation

v = y-z;
p = Adual(y)\(v+Fdual);
g = lambda*u+p;

where Adual(y) is the function generating the matrix discretization of the adjoint
equation in (18).

The motivations for our choices are twofold: on one hand we believe that gradient
type—i.e., first order methods—and Quasi-Newton methods—i.e., approximated
second order methods—represent the state of the art of large scale optimization
schemes for smooth problems, on the other, the choice of implementation-ready
routines could enforce and simplify the reproducibility of our results.
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3.2.2 Semismooth Newton Iteration

Using Theorem 2 it is clear that the solution of Problem (6) is indeed equivalent to
the task of finding a zero of the function:

F(y, u, p, v)=

⎡
⎢⎢⎢⎢⎣

−Kx1
∂2αy

∂ |x1|2α −Kx2
∂2βy

∂ |x2|2β + b · ∇y + cy − u
−Kx1

∂2αp

∂ |x1|2α −Kx2
∂2βp

∂ |x2|2β − ∇ · (pb)+ ζcyζ−1p − y + zd
p + λu+ v

u− max(0, u+ c(v − η))− min(0, u+ c(v + η))

⎤
⎥⎥⎥⎥⎦ ≡ 0.

(19)

The function F is semismooth due to the presence of the min/max functions,
inheritance of the L

1 norm we added in the functional. A canonical choice is the
use of the semismooth Newton’s iteration for finding a solution of Problem (19),
see [15, 20, 31, 33]. We decided to follow the well consolidated practice and we
refer the interested reader to the above references for more information on the
semismooth Newton’s method. For the sake of completeness we recall here just that
the semismooth Newton’s iteration can be expressed formally as the classic one, i.e.,
defining w = (y, u, p, v)T , we have

w(k+1) = w(k) − (JF (w(k)))−1F(w(k)),

being JF (w(k)) the generalized Jacobian evaluated in the point w(k). We recall,
moreover, that under suitable standard assumptions, the semismooth Newton’s
method converges locally superlinearly.

3.3 Fast and Reliable Solution of Sequences of FDEs

As discussed in Sect. 3, the main cost of the optimization procedure is represented
by the repeated solution of both the state and the adjoint equations from Theorem 1.
The solution of such problems occur in both the computation of the reduced
functional f , the gradient ∇f and thus also inside the linesearch procedure. This
implies that to achieve a reasonable computational time we need to be able of
solving in an efficient and reliable way both the nonlinear state equation (7) and
the linear adjoint equation (9).

The fast solution of FDEs has attracted many efforts over time. For our aim,
where repeated FDEs solutions are needed, the chosen framework is the one of
preconditioned iterative solvers. In particular, preconditioned Krylov solvers can
exploit both the structure of the problem and the information achieved from the
solutions at the previous steps. Already in this setting we should mention the
existence of several approaches: the ones based on circulant or circulant-like
preconditioners [23, 27, 28], on band-Toeplitz preconditioners [17], or on multigrid
preconditioner [25, 29] and on incomplete factorizations [10, 21].
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In this case, we will use the preconditioners from [10] which exploit the short-
memory principle, i.e., the decaying of the entries of the discretization matrices
of the FDEs, in order to gain information on their inverse. The procedure is
based on discarding elements of prescribed small modulus in the calculation of an
approximate inverse of the matrices of the sequences {JH (y(k))}k and {A′(y(k))}k .
This technique will produce explicit preconditioners for Krylov subspace methods
called the approximate inverse preconditioners; see, e.g., [6, 11, 12]. We focus on
incomplete biconjugation algorithms for non-Hermitian matrices, thus we consider
the following factorization

A−1 = WD−1ZT ,

where the matricesW and Z are lower triangular and are actually the inverse of the
triangular factors in the usual LDU decomposition. We will use an algorithm based
on a biconjugate Gram–Schmidt process for the bilinear form associated with A.
In order to make this preconditioner cost effective, we need to enforce the sparsity
in the inverse factors by carrying out such biconjugation process incompletely, i.e.,
applying a dropping rule based on the magnitude of the elements. In this way, we
obtain an approximate inverse preconditioner in factorized form

A−1 ≈ W̃ D̃−1Z̃T . (20)

We have set the focus on the incomplete biconjugation process from [12] since
its left-looking/outer products formulation permits to obtain sparser factors under
suitable conditions; see Fig. 1 for an example of the sparse factors W̃ , Z̃ for one of
the test problems. As we have done for the case without box-constraints in [14],
we focus on this particular choice since it permits to use an effective strategy for
updating preconditioners in (20) with a low computational effort. Observe that it is
usually expensive to rebuild a new preconditioner for each new matrix, even in the
low-cost framework we mentioned before, while on the other hand, reusing the same
preconditioner cannot be appropriate if the matrices in the sequences change much
from one step to another. In [10] the authors have specialized the update techniques
from [4, 5, 8, 9] for updating sequences of matrices coming from discretization of
FPDEs, i.e., if JH (y(0)) = LDU is the reference matrix of our sequence, we can
consider a decomposition of the form:

JH (y(k)) =JH (y(0))+ JH (y(k))− JH (y(0))
=L(D + L−1(JH (y(k))− JH (y(0)))U−1)U,

that, by using the approximation in (20), gives back an updated preconditioner of
the form:

JH (y(k))−1 ≈ P−1 = W̃ (D + g(Z̃T (JH (y(k))− JH (y(0)))W̃ ))−1Z̃T ,
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Fig. 1 Sparse factor (20) for the reference preconditioners for JH (y) and A′(y) for Problem (5)
with λ = 1e − 9 and coefficients (25) and σ1 = σ2 = 0.1, c1 = 0.25, c2 = 1, α = 1.5, β = 1.3,
ua = −13, and ub = 5. The dropping tolerance for the construction is δ = 1e − 1

where g is a suitable sparsifying function, e.g., the extraction of the diagonal or
of a banded approximation of its matrix argument, and we have exploited the
link between the LDU factorization and the approximate inverse factorization; see
again [5, 6, 9, 11] for the details.
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3.3.1 Preconditioners for the Sequence of Jacobian in Semismooth
Newton Method

The generalized Jacobian for F(y, u, p, v) in (19), by means of the same notation
and discretizations of Sect. 3.1 and assuming c = λ−1, can be expressed as:

JF (y,u,p, v) =

⎡
⎢⎢⎣
M −I 0 0
Y 0 A′(y) 0
0 λI I I

0 I − χ1 0 −χ2

⎤
⎥⎥⎦ ∈ R

4n2×4n2
(21)

with

M =
[
Kx1(R

(α)
x1

⊗ I)+Kx2(I ⊗ R(β)x2
)+ B

]
+ ζC diag(yζ−1),

Y =ζ(ζ − 1)C diag(yζ−2)− I,
χ1 = diag

(
1{u+(v−η)/λ>0}(u, v)+ 1{u+(v+η)/λ<0}(u, v)

)
,

χ2 =1

λ
diag
(
1{−η+λu+v>0}(u, v)+ 1{η+λu+v<0}(u, v)

)
,

where 1C denotes the characteristic function of the set C computed in an ele-
mentwise way; in Fig. 2 we report the pattern of JF for several iteration of the
semismooth Newton algorithm, i.e., for several values of (y,u,p, v).

This is indeed a sequence of large and sparse linear systems with nonsymmetric
saddle matrices (see the review [7] for general information on problems with this
structure), for which preconditioning is necessary. Ignoring the structure of JF and
applying one of the factorization algorithms from Sect. 3.3, combined with some
form of reordering to promote its existence and stability, will not work: usually
both heavy fill-in phenomena and unstable pivot sequences tend to occur; see
again [7, 11, 18]. For this case we will proceed in a different way. We start from
the concept of spectral approximation for the matrix sequences {M ∈ R

n2×n2}n and
{A′(y) ∈ R

n2×n2}n to obtain a matrix sequence approximating {JF ∈ R
4n2×4n2}n

more favorable for preconditioning. This approach is inspired by the work in [17, 25]
for the discretization of the fractional differential equations. It uses the tools of
Generalized Locally Toeplitz (GLT) sequences from [19]. In here we recall just the
properties we need in the following steps; see again [19] and references therein for
a full account of the theory and the precise definition of GLT sequences.

Definition 2 (Asymptotic Eigenvalue Distribution) Given a sequence of ma-

trices {Xn}n ∈ C
dn×dn with dn = dimXn

n→+∞−→ ∞ monotonically and a
μ-measurable function f : D→ R, with μ(D) ∈ (0,∞), we say that the sequence
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Fig. 2 Example of the structure of Jacobian matrices JF for several iterations of the semismooth
Newton algorithm

{X}n is distributed in the sense of the eigenvalues as the function f and write
{Xn}n ∼λ f if and only if, for any F continuous with bounded support, we have

lim
n→∞

1

dn

dn∑
j=0

F(λj (Xn)) = 1

μ(D)

∫
D

F(f (t))dt,

where λj (·) indicates the j -th eigenvalue.

Definition 3 (Asymptotic Singular Values Distribution) Given a sequence of

matrices {Xn}n ∈ C
dn×dn with dn = dimXn

n→+∞−→ ∞ monotonically and a μ-
measurable function f : D → R, with μ(D) ∈ (0,∞), we say that the sequence
{X}n is distributed in the sense of the singular values as the function f and write
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{Xn}n ∼σ f if and only if, for any F continuous with bounded support, we have

lim
n→∞

1

dn

dn∑
j=0

F(σj (Xn)) = 1

μ(D)

∫
D

F(|f (t)|)dt,

where σj (·) indicates the j -th singular value.

Proposition 1 (GLT Sequences Properties)

GLT1 {An}n ∼GLT χ ⇒ {An}n ∼σ χ . Moreover, if {An}n is a sequence of
Hermitian matrices⇒ {An}n ∼λ χ;

GLT2 {An}n ∼GLT χ and An = Xn + Yn with each Xn Hermitian, norm bounded
‖Xn‖2 = O(1), and ‖Yn‖2 → 0 ⇒ {An}n ∼λ χ;

GLT3 Sequences of Toeplitz matrices are such that {Tn(f )}n ∼GLT f if f ∈
L

1[−π, π]; similarly diagonal sampling matrix sequence of size n generated
by a continuous (also Riemann-integrable) a : [0, 1] → C is:

{
Dn(a) = diag

(
a

(
j

n

))n
j=1

}
n

∼GLT a;

{Zn}n ∼GLT 0 if and only if {Zn} ∼σ 0;
GLT4 The set of GLT matrices is a ∗-algebra:

If {An}n ∼GLT κ and {Bn}n ∼GLT ξ then

• {A∗n}n ∼GLT κ,
• {αAn + βBn}n ∼GLT ακ + βξ for all α, β ∈ C,
• {AnBn}n ∼GLT κξ .

Now we are going to use these instruments to find a preconditioner P for (21)
whose blocks are formed by “simpler spectral approximations” of the matrix
sequences {M ∈ R

n2×n2}n and {A′(y) ∈ R
n2×n2}n, i.e., by matrices whose spectral

distributions (in the sense of Definition 2) approximate the spectral distributions of
{M ∈ R

n2×n2}n and {A′(y) ∈ R
n2×n2}n giving an overall saddle matrix P that is

easier to invert.

Proposition 2 The sequence of matrices {hαR(α)x1 }n obtained from (14) is a GLT

sequence with {hαR(α)x1 }n ∼GLT gα(θ) with

gα(θ) = (
(
−(eiθ − e−iθ )α

)
. (22)

Proof The proof is straightforward by GLT3. Matrices R(α)x1 are symmetric Toeplitz

matrices whose coefficients are given by (15), moreover the sequence {ς(α)k }k is in
�1 since

α ∈ (1, 2), |ς(α)k | ∼ 1

π

∣∣∣∣Γ (α + 1)

k1+α

∣∣∣∣ , k→+∞.
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Thus, the �1-norm converges by asymptotic confrontation with an absolutely
summable series. At last we have that R(α)x1 = Tn(gα(θ)) by direct inspection since

the ς(α)k are the Fourier coefficients of gα(θ); see also [26].

Observe that by GLT3 and GLT1 we have also R(α)x1 ∼λ gα(θ). Therefore, the
GLT symbol is a spectral symbol that gives a good approximation of the eigenvalues
of the matrix. In Fig. 3a, b we have given a representation of: (1) the symbols gα(θ)
for several values of α ∈ (1, 2]; (2) the comparison of the eigenvalues (computed
numerically) ofR(α)x1 ; (3) the monotonic representative of the symbol gα(θ). Observe

now that, by GLT4, the matrix {hαR(α)x1 + hβR(β)x2 }n is such that

{hαR(α)x1
+ hβR(β)x2

}n ∼GLT gα(θ1)+ gβ(θ2) ≡ gα,β(θ1, θ2),

and again, by the fact that it is symmetric, we get also that gα,β(θ1, θ2) is also a
spectral distribution; see Fig. 3c. At last we conclude our spectral analysis observing
that {M}, {A′(y)} ∼GLT gα,β(θ1, θ2) and that this relation holds also spectrally by
using property GLT2, i.e., {M}, {A′(y)} ∼λ gα,β(θ1, θ2).

Finally, to propose our spectral preconditioner, we observe that

lim
α→2
β→2

gα,β(θ1, θ2) = (2 − 2 cos(θ1))+ (2 − 2 cos(θ2)),

that is the symbol of the classic five-point discretization of the Laplace operator; see,
e.g., [19]. The first preconditioner we want to consider for the sequence of matrices
JF is the one given by:

P (1) =

⎡
⎢⎢⎣
L −I 0 0
Y 0 L 0
0 λI I I

0 I − χ1 0 −χ2

⎤
⎥⎥⎦ . (23)

It is obtained from JF by simply substituting the matrices M and A′(y) with: L =
Kx1(T

(α) ⊗ I) + Kx2(I ⊗ T (β)) where T (α) = h−αTn(2 − 2 cos(θ)) and similarly
for T (β).

Another preconditioner obtained with a further degree of approximation it the
one given by

P (2) =

⎡
⎢⎢⎣
L −I 0 0
−I 0 L 0
0 λI I I

0 I − χ1 0 −χ2

⎤
⎥⎥⎦ , (24)

in which we have also approximated the Y matrix by −I . This is interesting since,
in this way, we can consider a permutation of P (2) into a saddle matrix with a
symmetric (1, 1)-block. This is achieved by firstly substituting the adjoint state p
with p̃ = −p in all the derivations of Sects. 2, 3.2.2 and 3.1. The permuted version
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of the preconditioner is then:

P̂ (2) =

⎡
⎢⎢⎣
I 0 L 0
0 λI −I I

L −I 0 0
0 I − χ1 0 −χ2

⎤
⎥⎥⎦ =
[
A BT1
B2 −C

]
∈ R

4n2×4n2

This is indeed the discretization of the Jacobian for the problem⎧⎪⎪⎨
⎪⎪⎩

min Ĵ (y, u) = 1

2
‖y − zd‖2

2 +
λ

2
‖u‖2

2 + η‖u‖1,

subject to −∇2y = u,
y ≡ 0, (x1, x2) ∈ ∂Ω,

for λ, η > 0,

that can be further approximated by means of the preconditioner proposed in [31].
The application of the preconditioner P̂ (2) can be done either in a direct way or in the
form of a multi-iterative scheme in which the application of P (2) is approximated
iteratively with a Krylov preconditioned method as in [31].

Remark 1 Observe that we could have used the spectral approximations from
Proposition 2 also for building preconditioners for the Box-constrained case, i.e., to
solve the sequences of linear systems generated by the state and adjoint equations.
This would have implied going toward a multi-iterative scheme in which we need to
use another iterative method to apply these spectrally approximated preconditioners
which are not anymore explicit preconditioners; see [17, 25] for some solutions in
this direction. In here we preferred a more straightforward approach. We computed
directly, from the matrices of the problems, sparse preconditioners in explicit form
such that their application is performed via low-cost matrix-vector product; see
again [10, 14] for these issues.

4 Numerical Examples

This section is divided in two parts:

• in Sect. 4.1 we cover an example of a box-constrained problem (5) using algo-
rithms from Sect. 3.2.1 in conjunction with the preconditioners from Sect. 3.3;

• in Sect. 4.2 we discuss the solution of a sparsity constrained problem (6) with
the semismooth Newton algorithm and preconditioners for the Jacobians from
Sect. 3.3.1.

The results presented here have been obtained on a laptop running Linux with
8 Gb memory and CPU Intel® Core™ i7-4710HQ CPU with clock 2.50 GHz, while
the GPU is a NVIDIA GeForce GTX 860M. The scalar code is written and executed
in MATLAB R2016b, while for the GPU we use C++ with Cuda compilation tools,
release 7.5, V7.5.17 and the CUSP library v0.5.1 [3].
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4.1 Box-Constrained Problem

We consider the following choice of coefficients for Eq. (7) within the optimal
control Problem (5):

Kx1 = 0.5, Kx2 = 1.5, c(x1, x2) = 1+ exp(−x2
1 − x2

2),

b = (Γ (β + 1)xβ+αyα+1, Γ (α + 1)yβ+αxβ+1),
(25)

on the domainΩ = [0, 1]2. The results are obtained for the desired state

zd(x1, x2) =c1 exp

(
− (x − 1/4)2

2σ 2
1

− (y − 3/4)2

2σ 2
1

)

− c2 exp

(
− (x − 3/4)2

2σ 2
2

− (y − 1/4)2

2σ 2
2

)
.

(26)

In this case we will focus only on the effects of the projected optimization algorithms
from Sect. 3.2.1 and give the results in Tables 1 and 2. The solution of the linear

Table 1 Box constrained problem (5) with coefficient (25) and desired state (26); σ1 = σ2 = 0.1,
c1 = 0.25, c2 = 1, ua = −13, and ub = 5

Projected gradient L-BFGS-B M = 1 L-BFGS-B M = 10 L-BFGS-B M = 100

λ α β nfg it ‖∇f ‖∞ nfg it ‖∇f ‖∞ nfg it ‖∇f ‖∞ nfg it ‖∇f ‖∞
1e−3 1.1 1.8 3002 2001 3.62e−03 17 7 1.00e−03 20 9 1.14e−03 20 9 1.14e−03

1.2 1.5 3002 2001 2.18e−03 33 14 1.47e−03 27 12 1.44e−03 27 12 1.44e−03

1.5 1.2 3002 2001 1.51e−03 48 22 3.78e−04 28 13 3.94e−04 28 13 4.51e−04

1.7 1.3 3002 2001 2.60e−03 36 17 2.64e−03 22 10 2.60e−03 22 10 2.60e−03

1.5 1.5 3002 2001 2.95e−03 27 12 2.93e−03 22 10 2.91e−03 22 10 2.91e−03

1e−6 1.1 1.8 3002 2001 8.69e−03 72 35 1.10e−02 64 31 1.10e−02 64 31 1.10e−02

1.2 1.5 3002 2001 5.47e−03 68 52 8.57e−03 65 31 8.74e−03 53 25 8.78e−03

1.5 1.2 3002 2001 4.19e−03 99 46 4.46e−03 52 25 4.54e−03 48 23 4.44e−03

1.7 1.3 3002 2001 6.02e−03 70 33 8.49e−03 42 20 8.66e−03 38 18 8.58e−03

1.5 1.5 3002 2001 6.26e−03 56 27 9.45e−03 38 18 9.56e−03 36 17 9.50e−03

1e−9 1.1 1.8 3002 2001 8.70e−03 74 36 1.10e−02 60 29 1.10e−02 62 30 1.10e−02

1.2 1.5 3002 2001 5.47e−03 94 44 8.52e−03 59 28 8.81e−03 57 27 8.90e−03

1.5 1.2 3002 2001 4.19e−03 109 49 4.51e−03 54 26 4.51e−03 50 24 4.44e−03

1.7 1.3 3002 2001 5.77e−03 88 43 8.50e−03 38 18 8.66e−03 38 18 8.62e−03

1.5 1.5 3002 2001 6.27e−03 51 24 9.52e−03 36 17 9.54e−03 36 17 9.48e−03

In the table the number of function and gradient evaluations is reported (nfg) together with the number of
iterations of the optimization procedure (it). Observe that the Projected gradient algorithms reaches the
maximum number of iterations every time
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Table 2 Timings in second achieved with the preconditioner from Sect. 3.3 for the examples given
in Table 1

L-BFGS-B M = 1 L-BFGS-B M = 10 L-BFGS-B M = 100
AINV AINV AINV

λ α β Direct 1e−1 1e−2 I Direct 1e−1 1e−2 I Direct 1e−1 1e−2 I

1e−3 1.1 1.8 3.7 1.4 1.8 2.0 4.1 1.5 1.9 2.2 4.2 1.6 2.1 2.3

1.2 1.5 7.4 2.2 3.3 3.5 5.8 1.7 2.5 2.8 6.0 1.9 2.7 2.9

1.5 1.2 11.5 3.7 6.3 6.4 8.8 2.0 3.6 3.5 7.9 2.2 3.6 3.7

1.7 1.3 7.6 2.3 3.9 4.1 4.5 1.4 2.4 2.5 4.6 1.4 2.7 2.6

1.5 1.5 6.2 1.8 2.8 2.9 4.6 1.4 2.6 2.5 5.0 1.6 2.2 2.3

1e−6 1.1 1.8 16.4 5.7 7.2 9.1 14.2 5.1 6.9 11.0 13.7 5.1 8.7 7.9

1.2 1.5 20.7 7.3 11.0 9.0 15.0 4.1 6.1 6.5 13.5 3.5 5.0 5.3

1.5 1.2 29.5 7.7 18.3 14.9 14.3 3.9 6.6 9.0 12.9 3.6 6.7 6.4

1.7 1.3 17.8 4.9 7.3 9.3 9.8 2.6 4.6 4.7 10.0 2.4 4.5 4.5

1.5 1.5 13.1 3.5 7.8 6.0 8.3 2.4 3.8 3.9 9.0 2.3 3.8 4.5

1e−9 1.1 1.8 16.2 5.7 7.3 8.8 17.3 4.9 6.4 7.3 17.6 5.4 7.8 7.5

1.2 1.5 23.1 6.1 11.0 10.2 14.5 3.8 6.2 6.8 12.4 4.0 5.5 5.5

1.5 1.2 26.5 9.4 14.2 13.1 15.0 4.0 9.4 7.1 14.4 3.7 6.6 6.8

1.7 1.3 21.9 6.0 11.2 7.9 9.7 2.4 4.1 4.2 8.4 2.4 4.2 4.6

1.5 1.5 12.3 3.5 7.5 5.5 8.0 2.4 3.7 4.2 7.3 2.3 3.6 4.2

The results are obtained with the left-preconditioned BiCGstab with AINV preconditioners with
drop-tolerances 1e−1 and 1e−2; timings needed by the direct method (Direct) and by the
unpreconditioned method (I) are given as term of comparison

systems, in both the Newton method for the state equation and the adjoint equation
is achieved with the BiCGstab algorithm [34]. The type of linear problem solved
is exactly the same encountered in [14], thus we register the same performances,
see again Table 2. Particularly, we observe that AINV preconditioner with coarser
dropping outperforms both the direct method and the method preconditioned with
a preconditioner with a finer drop-tolerance. Clearly, this is due to the fact that the
increase in density of the AINV(1e−2) factors is not worth the gain in number
of iterations since denser factors implies higher timings for the matrix-vector
operations; see again Fig. 1.

The results collected in Table 1 confirm that, as the theoretical framework
predicts, approximated second order methods outperforms gradient type methods.
This validates the use of quasi-Newton method also in the FPDE-constrained frame-
work. Moreover, we observe that allowing for larger memory consumption, i.e.,
M = 100, does neither result in a drastic improvement of the optimization’s routine
performances nor in the achieved timings; see an example of the convergence history
in Fig. 4 and again the timings in Table 2. A depiction of the desired state (26), the
control and the resulting solution with that control is given in Fig. 5.
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Projected Gradient
L-BFGS-B M = 1
L-BFGS-B M = 10
L-BFGS-B M = 100

10 0 10 1 10 2 10 3
10 -3

10 -2

10 -1

Fig. 4 Convergence behavior for problem (5) with λ = 1e − 3 and coefficients (25). Where
σ1 = σ2 = 0.1, c1 = 0.25, c2 = 1, α = 1.5, β = 1.3, ua = −13, and ub = 5

4.2 Sparse Constrained Problem

We consider Problem (6) with the same coefficients in (25), except for c(x1, x2) = 1
and the desired state

zd(x, y) = sin(2πx1) sin(2πx2)
exp(2x1)

6
. (27)

We face the solution of the linear systems with both a direct solver (Matlab’s
“\”), to have a reference time, and the BiCGstab preconditioned on the left with
preconditioner P (1) and P (2) from (23) and (24); the BiCGstab is set to achieve a
tolerance of 1e-6. In Table 3 we report also the number of the semismooth Newton
iterations (ITNewton), the mean number of iterations needed for the solutions of the
linear systems with the Jacobians and the overall time of solution of the problem
measured in seconds. A “‡” is reported when the reference direct solver goes out
of memory. Attempts of solution with the BiCGstab method without preconditioner
are not reported since in that case convergence is never reached. We observe that
P (1) and P (2) behave practically in the same way, with P (2) showing timings that
are slightly greater than P (1). Moreover, we observe also that the approximated
spectral preconditioners P (1) and P (2) are quite independent from the choice of
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Fig. 5 Desired state zd from (26), computed solution y with the control u for problem (5) with
λ = 1e − 9 and coefficients (25). Where σ1 = σ2 = 0.1, c1 = 0.25, c2 = 1, α = 1.5, β = 1.3,
ua = −13, and ub = 5

the λ parameter, while the number of iterations needed by the semismooth Newton
method increase for smaller values of λ, indeed this has to be expected since the
function we are minimizing tends to become less convex.

In Fig. 6 we plot the desired state (26), the sparse control, in which it is easy to
see the zone where it takes value zero, and the obtained solution.
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Table 3 Sparse constrained problem (6): mean number of iterations of the relative solver for the
various preconditioners for the semismooth Newton method

Direct P (1) P (2)

n ITNewton T(s) ITNewton ITAvg. T(s) ITNewton ITAvg. T(s)

(a) α = β = 1.5, λ = 1e − 3, η = 5e − 3

20 6 1.39e−01 6 3.0 3.67e−01 6 3.0 3.47e−01

40 6 2.32e+00 7 3.5 2.34e+00 7 3.5 2.33e+00

60 6 1.89e+01 6 4.0 5.45e+00 6 4.0 5.53e+00

80 6 9.55e+01 7 4.5 1.43e+01 6 4.5 1.48e+01

100 ‡ ‡ 7 5.0 2.85e+01 7 5.0 2.81e+01

120 ‡ ‡ 7 5.0 4.55e+01 7 5.0 4.54e+01

140 ‡ ‡ 7 5.0 7.02e+01 7 5.0 6.99e+01

160 ‡ ‡ 7 5.5 1.08e+02 7 5.5 1.03e+02

(b) α = β = 1.5, λ = 1e − 6, η = 5e − 3

20 10 6.45e−01 10 3.0 7.78e−01 10 3.0 5.93e−01

40 13 5.82e+00 14 4.0 5.04e+00 14 4.0 5.00e+00

60 16 5.74e+01 16 4.0 1.73e+01 16 4.0 1.67e+01

80 16 2.82e+02 16 4.5 3.44e+01 16 4.5 3.42e+01

100 ‡ ‡ 17 4.5 7.92e+01 17 4.5 7.76e+01

120 ‡ ‡ 20 4.5 1.43e+02 20 4.5 1.44e+02

140 ‡ ‡ 20 5.0 2.18e+02 20 5.0 2.14e+02

160 ‡ ‡ 20 5.0 3.03e+02 20 5.0 3.12e+02

(c) α = β = 1.5, λ = 1e − 9, η = 5e − 3

20 10 2.06e−01 10 2.5 5.08e−01 10 2.0 4.53e−01

40 15 6.59e+00 15 3.0 4.13e+00 15 3.0 4.12e+00

60 19 6.85e+01 19 3.5 1.62e+01 19 3.5 1.57e+01

80 24 4.07e+02 24 4.0 4.66e+01 24 4.0 4.67e+01

100 ‡ ‡ 29 4.0 1.17e+02 29 4.0 1.17e+02

120 ‡ ‡ 33 4.0 2.10e+02 34 4.0 2.19e+02

140 ‡ ‡ 37 4.5 3.48e+02 37 4.5 3.60e+02

160 ‡ ‡ 41 4.5 5.94e+02 41 4.5 6.04e+02

(d) α = 1.2, β = 1.8, λ = 1e-3, η = 5e − 3

20 5 1.14e−01 5 4.5 4.69e−01 5 4.5 4.35e−01

40 5 1.81e+00 5 6.0 2.59e+00 5 6.0 2.70e+00

60 6 1.84e+01 6 6.5 9.13e+00 6 6.5 8.94e+00

80 6 9.28e+01 6 7.0 1.99e+01 6 7.0 1.90e+01

100 ‡ ‡ 6 8.5 3.68e+01 6 8.0 3.80e+01

120 ‡ ‡ 6 8.5 6.76e+01 6 8.5 6.77e+01

140 ‡ ‡ 6 9.0 1.07e+02 6 9.0 1.08e+02

160 ‡ ‡ 6 9.5 1.50e+02 6 9.5 1.70e+02

(continued)
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Table 3 (continued)

Direct P (1) P (2)

n ITNewton T(s) ITNewton ITAvg. T(s) ITNewton ITAvg. T(s)

(e) α = 1.2, β = 1.8, λ = 1e − 6, η = 5e − 3

20 8 1.75e−01 9 3.0 5.72e−01 9 3.0 5.29e−01

40 11 4.28e+00 11 4.0 3.72e+00 11 4.0 3.94e+00

60 11 3.41e+01 11 5.0 1.26e+01 12 5.0 1.40e+01

80 11 1.53e+02 11 5.0 2.56e+01 11 5.5 2.57e+01

100 ‡ ‡ 12 6.5 5.81e+01 12 6.0 6.30e+01

120 ‡ ‡ 11 6.5 9.63e+01 11 6.5 9.90e+01

140 ‡ ‡ 12 7.0 1.73e+02 12 7.0 1.72e+02

160 ‡ ‡ 11 7.5 2.31e+02 11 7.5 2.44e+02

(f) α = 1.2, β = 1.8, λ = 1e − 8, η = 5e − 3

20 8 1.84e−01 8 2.5 4.42e−01 8 2.5 4.26e−01

40 13 5.06e+00 13 3.5 3.87e+00 13 3.5 3.98e+00

60 17 5.77e+01 17 4.0 1.57e+01 17 4.0 1.55e+01

80 ‡ ‡ 21 4.0 4.17e+01 21 4.0 4.22e+01

100 ‡ ‡ 25 4.0 9.52e+01 25 4.0 9.15e+01

120 ‡ ‡ 29 4.5 1.75e+02 29 4.5 1.78e+02

140 ‡ ‡ 33 5.0 3.32e+02 33 4.5 3.39e+02

160 ‡ ‡ 28 5.5 4.50e+02 28 5.5 4.44e+02

(g) α = 1.7, β = 1.3, λ = 1e − 3, η = 5e − 3

20 6 1.48e−01 6 4.0 4.78e−01 6 4.0 4.68e−01

40 7 2.59e+00 7 4.5 2.98e+00 7 4.5 2.99e+00

60 7 2.20e+01 7 5.0 7.89e+00 7 5.0 7.98e+00

80 7 1.11e+02 7 5.0 1.89e+01 7 5.5 1.85e+01

100 ‡ ‡ 7 5.5 3.25e+01 7 5.5 3.56e+01

120 ‡ ‡ 7 6.0 5.51e+01 7 6.0 5.51e+01

140 ‡ ‡ 7 6.0 7.96e+01 7 6.0 8.29e+01

160 ‡ ‡ 7 6.0 1.16e+02 7 6.0 1.21e+02

(h) α = 1.7, β = 1.3, λ = 1e − 6, η = 5e − 3

20 11 2.64e−01 12 4.0 8.84e−01 12 4.0 8.29e−01

40 16 6.82e+00 16 4.5 6.81e+00 17 4.5 7.28e+00

60 20 6.86e+01 20 5.0 2.65e+01 20 5.0 2.50e+01

80 ‡ ‡ 24 5.5 6.84e+01 24 5.5 6.60e+01

100 ‡ ‡ 21 6.0 1.18e+02 21 6.0 1.10e+02

120 ‡ ‡ 22 6.5 2.05e+02 22 6.5 2.02e+02

140 ‡ ‡ 25 6.5 3.71e+02 25 7.0 3.59e+02

160 ‡ ‡ 24 7.0 4.98e+02 24 7.0 5.10e+02

(continued)
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Table 3 (continued)

Direct P (1) P (2)

n ITNewton T(s) ITNewton ITAvg. T(s) ITNewton ITAvg. T(s)

(i) α = 1.7, β = 1.3, λ = 1e − 8, η = 5e − 3

20 11 2.56e−01 11 5.5 7.49e−01 11 5.5 7.31e−01

40 17 7.92e+00 17 5.0 1.00e+01 17 5.0 7.20e+00

60 24 8.84e+01 24 4.0 2.43e+01 24 4.0 2.69e+01

80 ‡ ‡ 30 4.5 6.93e+01 30 4.5 7.13e+01

100 ‡ ‡ 37 5.0 1.59e+02 37 5.0 1.62e+02

120 ‡ ‡ 43 5.0 3.29e+02 43 5.0 3.57e+02

160 ‡ ‡ 56 5.5 9.19e+02 56 5.5 9.53e+02

For BiCGstab (with left preconditioning) iteration are given in the Matlab convention, in
which there is half iteration for each matrix-vector product inside the algorithm, and rounded
consequently. A “‡” is reported when the reference direct solver goes out of memory
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Fig. 6 Solution of problem (6) with sparsity constraint and desired state (26)
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Control, Shape, and Topological
Derivatives via Minimax Differentiability
of Lagrangians

Michel C. Delfour

Abstract In Control Theory, the semidifferential of a state constrained objective
function can be obtained by introducing a Lagrangian and an adjoint state. Then
the initial problem is equivalent to the one-sided derivative of the minimax of the
Lagrangian with respect to a positive parameter t as it goes to 0. In this paper, we
revisit the results of Sturm (On shape optimization with non-linear partial differ-
ential equations. Doctoral thesis, Technische Universität of Berlin, 2014; SIAM J
Control Optim 53(4):2017–2039, 2015) recently extended by Delfour and Sturm (J
Convex Anal 24(4):1117–1142, 2017; Delfour and Sturm, Minimax differentiability
via the averaged adjoint for control/shape sensitivity. In: Proc. of the 2nd IFAC
Workshop on Control of Systems Governed by Partial Differential Equations, IFAC-
PaperOnLine, vol 49-8, pp 142–149, 2016) from the single valued case to the case
where the solutions of the state/averaged adjoint state equations are not unique.
New simpler conditions are given in term of the standard adjoint and extended
to the multivalued case. They are applied to the computation of semidifferentials
with respect to the control and the shape and the topology of the domain. The
shape derivative is a differential while the topological derivative usually obtained
by expansion methods is not. It is a semidifferential, that is, a one-sided directional
derivative in the directions contained in the adjacent tangent cone obtained from
dilatations of points, curves, surfaces and, potentially, microstructures (Delfour,
Differentials and semidifferentials for metric spaces of shapes and geometries. In:
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27th IFIP TC7 Conference, CSMO 2015, Sophia-Antipolis, France. AICT Series,
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by using the notion of d-dimensional Minkowski content. Examples of such sets are
the rectifiable sets (Federer, Geometric measure theory. Springer, Berlin, 1969) and
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1 Introduction

This paper is motivated by the generic notions of shape and topological derivatives
that have proven to be both pertinent and useful from the theoretical and numerical
points of view (for instance, see the recent book of Novotny and Sokołowski [17]
and its bibliography). The shape derivative is a differential (see [4, 12, 16]) while
the topological derivative rigorously introduced by Sokolowski and Zochowski [18]
is only a semidifferential (one sided directional derivative) which is usually obtained
by the method of matched and compound expansions. The lack of linearity of the
one-sided directional derivative with respect to the direction arises from the fact
that the tangent space to the underlying metric spaces of “geometries” is only a
cone. For instance, the set of measurable subsets of an hold-all can be identified
with the metric Abelian group of its characteristic functions. By using the notion of
d-dimensional Minkowski content for d-rectifiable sets [14] or sets of positive reach
of Federer [13], we can characterize as bounded measures elements of the tangent
cone that are only half tangents but not full tangents. In that spirit, the definition of a
topological derivative as a semidifferential was extended in [5, 6] from the dilatation
of a point to dilatations of curves, surfaces, and, potentially, microstructures.

An important advantage of the use of semidifferentials over expansion methods
is that theorems on the one-sided differentiation of the minimax of a Lagrangian
can be used to get the semidifferential of state constrained objective functions (see
[3, 9, 10, 12]). By using the notion of averaged adjoint introduced by Sturm [19, 20],
the minimax problem need not be related to a saddle point: non-convex objective
functions and non-linear state equations can be directly handled. Recently, a simpler
and more general version of the original condition of Sturm [19, 20] was given by
Delfour and Sturm [7, 8] and extended from the single valued case to the case where
the solutions of the state/averaged adjoint state equations are not unique.

In this paper we revisit the one-sided derivative of the minimax of a Lagrangian
with respect to a positive parameter t and provide new conditions that only require
the existence of the standard adjoint state at t = 0 instead of the averaged adjoint
state at t ≥ 0 near 0. A simple example is given to illustrate the application of the
new conditions to the computation of semidifferentials with respect to perturbations
in the control and in the shape or topology of the underlying geometric domain.
Finally, the paper is completed by extending the results from the single valued case
to the case where the solutions of the state/adjoint state equations are not unique.
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2 Examples of Derivatives with Respect to a Control, Shape,
or Topological Variable

In order to better motivate and appreciate the main results of this paper, we consider
a very simple example to illustrate how the computation of the one-sided directional
derivative (semidifferential) of a state constrained objective function with respect to
a control, shape, or topological variable is amenable to the one-sided derivative of
the minimax of a Lagrangian with respect to a parameter t ≥ 0.

It was not possible to make detailed comparisons with the many results and
techniques available in the literature or to explore new or more complex applications
within the limits of a conference paper. For instance, one of the referees pointed
out the potential for problems involving cavities in elastic solids (see Lewiński-
Sokołowski [15]) where the capacity rather than the volumewould be more relevant.
This is clearly beyond the scope of this paper,

Given a bounded open domain Ω in R
3 with Lipschitz boundary Γ , a control

function a ∈ L2(R3), the state u = u(a,Ω) ∈ H 1
0 (Ω) is the solution of the

variational state equation

∃u ∈ H 1
0 (Ω),

∫
Ω

∇u · ∇ψ − a ψ dx = 0, ∀ψ ∈ H 1
0 (Ω), (1)

where x · y denotes the inner product of x and y in R
3. Given a target function

z ∈ L2(R3), associate with u(a,Ω) the objective function

f (a, z,Ω)
def=
∫
Ω

1

2
|u(a,Ω)− z|2 dx, (2)

which depends on a, z, and Ω . Our purpose is to find the expressions of the one-
sided directional derivatives with respect to a, z, and Ω . In the first two cases, the
functions a and z live in Banach or Fréchet vector spaces. In contrast, the variable
domains Ω live in spaces that are, at best, groups with a metric [4, 12]. In such
spaces, the tangent space is a cone in 0 which is not necessarily linear as in the case
of infinite dimensional Riemann or Finsler manifolds. When only half-tangents are
available, only one-sided directional derivatives of a function can be expected. Two
types of perturbations of a domainΩ will be considered:

1. perturbation of Ω by a group of diffeomorphisms of the Euclidean space R
N

[11, 12, 16] that lead to the notion of shape derivative [9, 10, 21–23];
2. topological perturbations of Ω by removing dilations of d-dimensional closed

subsets E ofΩ that lead to the notion of topological derivative [5, 6, 17, 18].
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2.1 Directional Derivative with Respect to a Control Variable

First consider the directional derivative of f with respect to the control function a.
We get an unconstrained minimax formulation by introducing the Lagrangian

G(a, ϕ,ψ)
def=
∫
Ω

1

2
|ϕ − z|2 dx +

∫
Ω

∇ϕ · ∇ψ − a ψ dx

f (a) = inf
ϕ∈H 1(Ω)

sup
ψ∈H 1(Ω)

G(a, ϕ,ψ).

Associate with the perturbed control function a + tb, t ≥ 0, the state ut ∈ H 1
0 (Ω)

which is the solution of the state equation

∫
Ω

∇ut · ∇ψ − (a + tb) ψ dx = 0, ∀ψ ∈ H 1
0 (Ω). (3)

The semidifferential of f (a) in the direction b ∈ L2(Ω),

df (a; b) def= lim
t↘0

f (a + tb)− f (a)
t

, f (a + tb) =
∫
Ω

1

2
|ut − z|2 dx,

is obtained by a similar minimax formulation. Given the t-dependent Lagrangian

L(t, ϕ,ψ)
def=
∫
Ω

1

2
|ϕ − z|2 dx +

∫
Ω

∇ϕ · ∇ψ − (a + tb) ψ dx,

it is readily seen that

g(t)
def= inf

ϕ∈H 1
0 (Ω)

sup
ψ∈H 1

0 (Ω)

L(t, ϕ,ψ) = f (a + tb),

dg(0)
def= lim

t↘0

g(t)− g(0)
t

= df (a; b).

2.2 Shape Derivative via the Velocity Method as a Differential

It is now well-established that the Velocity Method1 developed by Zolésio [23] in
1979 is naturally associated with the construction of the Courant metrics on special
groups of Ck-diffeomorphisms by Micheletti [16] in 1972. It turns out that the
tangent space to those groups is linear and is made up of the velocities that generate

1See also Zolésio [21, 22] for the introduction of velocities in 1976.
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the diffeomorphisms [4, 12]. In that case, a differential with respect to the velocity
can be expected when the various functions involved are themselves differentiable.

In the Velocity Method, the domain Ω ⊂ R
N is perturbed by a family of

diffeomorphisms Tt of RN , t ≥ 0, generated by sufficiently smooth velocity fields
V (t):

dx

dt
(t;X) = V (t, x(t;X)), x(0;X) = X, Tt (X)

def= x(t;X), t ≥ 0, X ∈ R
N .

Denote by Ωt
def= Tt (Ω) the perturbed domain. The state equation and objective

function at t ≥ 0 become: to find ut ∈ H 1
0 (Ωt) such that

∫
Ωt

∇ut · ∇ψ − a ψ dx = 0, ∀ψ ∈ H 1
0 (Ωt), f (Ωt)

def=
∫
Ωt

1

2
|ut − z|2 dx.

(4)

Introducing the composition ut = ut ◦ Tt to work in the fixed space H 1
0 (Ω):∫

Ω

[
A(t)∇ut · ∇ψ − a ◦ Tt ψ Jt

]
dx = 0, ∀ψ ∈ H 1

0 (Ω), (5)

A(t) = Jt DTt−1 (DTt
−1)∗, Jt = detDTt , DTt is the Jacobian matrix,

g(t)
def= f (Ωt) =

∫
Ωt

1

2
|ut − z|2 dx =

∫
Ω

1

2
|ut − z ◦ Tt |2 Jt dx. (6)

This technique is known as Function Space Parametrization [12, Chap. 10, sec. 6.3,
p. 565] as opposed to Function Space Embedding that necessitates working with
multivalued solutions (u0, p0) of the state/adjoint state equations and Theorem 4.1
or its Corollary in Sect. 4. Here, the t-dependent Lagrangian is

L(t, ϕ,ψ)
def=
∫
Ω

[
1

2
|ϕ − z ◦ Tt |2 Jt +A(t)∇ϕ · ∇ψ − a ◦ Tt Jt ψ

]
dx (7)

g(t) = inf
ϕ∈H 1

0 (Ω)

sup
ψ∈H 1

0 (Ω)

L(t, ϕ,ψ), dg(0)
def= lim

t↘0
(g(t) − g(0))/t = df (Ω;V (0)).

2.3 Topological Derivative via Dilatations as a Semidifferential

The rigorous introduction of the topological derivative in 1999 by Sokołowski
and Zȯchowski [18])2 provided a broader spectrum of notions of derivative with

2See also the book by Novotny-Sokołowski [17] and its bibliography for a review of past
contributions to the field.
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respect to a set. Initially, topological perturbations were induced by creating a hole
corresponding to removing a small closed ball of radius r and center e ∈ Ω from a
domain Ω . The ball can be seen as an r-dilatation Er = {x ∈ R

N : dE(x) ≤ r} of
the set E = {e}. It turns out that to make sense of a one-sided directional derivative,
we have to use the auxiliary variable t equal to the volume mN(Er) in R

N of
the ball of radius r and not the dilatation parameter r itself (mN , the Lebesgue
measure). This point of view differs from the widespread techniques of considering
the topological derivative as a term in an expansion of the objective function with
respect to r .

In that perspective, it is natural to seek to extend that construction to removing
an r-dilatation of a curve, a surface, a submanifold, or a microstructureE ⊂ Ω . As
shown in [6], this idea readily extends to families of d-rectifiable closed subsets E
of Ω of dimension d , 1 ≤ d ≤ N − 1, whose Hausdorff measure Hd(E) is finite
and to sets of positive reach. For the convenience of the reader, we recall definitions
and theorems about of the d-dimensional Minkowski content and the d-rectifiability
below. Sets of positive reach will not be used in this paper.

Notation | · |denotes the Euclidean norm in R
N . Given a closed subset E of RN and

r ≥ 0, the distance function dE and the r-dilatation Er of E are defined as follows

dE(x)
def= inf

e∈E |x − e|, Er
def=
{
x ∈ R

N : dE(x) ≤ r
}
. (8)

Given an open subset Ω of RN , D(Ω) denotes the set of infinitely differentiable
functions with compact support inΩ .

2.3.1 Tangent Space to the Group of Characteristic Functions

To be specific let mN be the Lebesgue measure in R
N . Identify the set of Lebesgue

measurable subsetsΩ of RN with the set of their characteristic functions χΩ :

X(RN)
def=
{
χΩ : Ω ⊂ R

N Lebesgue measurable
}
⊂ L∞(RN).

The symmetric difference operationΩ2ΔΩ1 induces an Abelian group structure:

Ω2ΔΩ1
def= (Ω2\Ω1) ∪ (Ω1\Ω2) ⇒ χΩ2ΔΩ1(x) = |χΩ2(x)− χΩ1(x)|,

where χ∅ = 0 is the neutral element and χΩ is its own inverse. The group X(RN)
is a closed subset without interior of the Banach space L∞(RN) and of the Fréchet
spaces Lploc(R

N), 1 ≤ p <∞. For L∞(RN) the metric is

ρ([Ω2], [Ω1]) def= ‖χΩ2 − χΩ1‖L∞(RN ) = ‖χΩ2ΔΩ1‖L∞(RN );
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for the Fréchet space Lploc(R
N), use the seminorms on bounded open subsets D ⊂

RN

‖χΩ2ΔΩ1‖Lp(D) = ‖χΩ2 − χΩ1‖Lp(D).

The adjacent tangent cone3 to X(RN) always exists but is not a linear space.

Definition 2.1 (Aubin and Frankowska [2, pp. 126–128]) The adjacent tangent
cone to A at a ∈ A is the set

T &a A
def=
{
v ∈ R

N : ∀{tn ↘ 0}, ∃{xn} ⊂ A such that lim
n→∞

xn − a
tn

= v
}

(T &a A is a closed cone and T &a A = T &a A). � 
As a result, for a function defined on X(RN), we can only expect a semidifferential,
that is, a one-sided directional derivative which is not necessarily linear with respect
to the directions that are half or semi-tangents in the cone. In fact, we shall see below
that the adjacent tangent cone to X(RN) contains semi-tangents which are bounded
measures associated with some d-dimensional closed subsets E of RN .

Example 2.1 Let N ≥ 1, e ∈ R
N , E = {e}, dimE = 0, Er = Br(e). The function

φ %→ φ(e) : D(RN) → R is a measure. The auxiliary variable t is chosen as the
volume of Br(e). Given an open subsetΩ in R

N and e ∈ Ω , the perturbed sets are

t %→Ωt def= Ω\Br(e) = Ω\B N
√
t/αN

(e), αN= volume of the ball of radius 1 in R
N .

The trajectory t %→ χΩt is continuous in X(RN). Given φ ∈ D(RN), the weak limit
of the differential quotient (χΩt − χΩ)/t is

1

t

[∫
Ωt

φ dx −
∫
Ω

φ dx

]
= − 1

mN(B N
√
t/αN)

(e))

∫
B N√t/αN (e)

χΩ φ dx

= − 1

mN(Br(e))

∫
Br (e)

χΩ φ dx → −φ(e).

The limit is a distribution (measure), that is, −δ(e), the negative of the Dirac delta
function at e. It generates a half tangent since for all ρ > 0

1

t

[∫
Ωρt

φ dx −
∫
Ω

φ dx

]
→ −ρφ(e),

3We use the terminology adjacent tangent cone of Aubin and Frankowska [2, pp. 126–128] for the
Dubovitski-Milyutin tangent cone.
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but not a full tangent. Note that we can also create points by introducing the
perturbed sets Ωt = Ω ∪ B(t/αN)1/N (b) to get +φ(b), b ∈ R

N \Ω . � 
Example 2.2 Let E be a compact C2-submanifold of R

N of dimension d , 1 ≤
d ≤ N − 1, such that the Hd(E) < ∞. In that case ∂E = E and mN(E) =
0. For instance, E could be a closed non-intersecting C2-curve in R

3 without
boundary. Assuming that there exists ε > 0 such that d2

E ∈ C2(Uε(E)),
Uε(E) =

{
x ∈ R

N : dE(x) < ε
}
, the projection onto E is pE(x) = x − 1

2∇d2
E(x),

DpE(x) = I − 1
2D

2d2
E(x), ImDpE(x) is the tangent space at x ∈ E to E, and

d = dimE(x) = dim (ImDpE(x)).
Let r > 0, Er be the r-dilatation, and t = αN−d rN−d be the auxiliary variable,

where αN−d is the volume of the (N−d)-dimensional ball of radius 1. Given ε > 0
such that Uε(E) = {x ∈ R

N : dE(x) < ε} ⊂ Ω , the perturbed sets will be

t %→ Ωt
def= Ω\Er = Ω\E(t/αN−d)N−d .

Given φ ∈ D(RN), the weak limit of the differential quotient (χΩt − χΩ)/t is

1

t

[∫
Ωt

φ dmN −
∫
Ω

φ dmN

]
= −1

t

∫
E
(t/αN−d )N−d

χΩ φ dmN

= − 1

αN−d rN−d

∫
Er

χΩ φ dmN → −
∫
E

φ dHd .

This distribution (measure) is again a half or semi-tangent since for ρ > 0

1

t

[∫
Ωρt

φ dmN −
∫
Ω

φ dmN

]
→−ρ

∫
E

φ dHd .

� 

2.3.2 The d-Dimensional Minkowski Content and d-Rectifiable Sets

The semi-tangents that we have constructed are directly related to the notion of d-
dimensional Minkowski content [14]

Md(E)
def= lim

r↘0

mN(Er)

αN−d rN−d
, αN−d = volume of the unit ball in R

N−d , (9)

for general topological perturbations obtained by dilation of smooth submanifolds
E of dimension d in R

N . The case of E = {e} corresponds to d = 0, while d = 1
corresponds to a curve and d = 2 to a surface. We shall see below that Md(E)

is equal to Hd(E), the d-dimensional Hausdorff measure in R
N , for compact d-

rectifiable subsets E of RN . We recall some basic notions. For details and other
motivating examples the reader is referred to the recent papers of Delfour [5, 6].
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Definition 2.2 Given d , 0 ≤ d ≤ N , the d-dimensional upper and lower
Minkowski contents of a set E are defined through an r-dilatation of the set E as
follows

M∗d(E) def= lim sup
r↘0

mN(Er)

αN−d rN−d
, Md∗ (E)

def= lim inf
r↘0

mN(Er)

αN−d rN−d
, (10)

where mN is the Lebesgue measure in R
N and αN−d is the volume of the ball of

radius one in R
N−d . Since the dilatation Er does not distinguish between E and its

closure, it can be assumed that E is closed in R
N . When the two limits exist and are

equal, we say that E admits a d-dimensional Minkowski content and their common
value will be denotedMd(E). � 
Intuitively,Md(E) is some measure of the d-dimensional “area” or “volume” of an
object E in R

N . It plays a role similar to the d-dimensional Hausdorff or Radon
measure in R

N , but it is generally not a measure.
Thanks to the pioneering and seminal work of Federer [14], the previous

constructions can be readily extended to the dilation of d-rectifiable sets. Further
extensions of the notion of d-rectifiability can be found in Ambrosio et al. [1].

Definition 2.3 (Federer [14, pp. 251–252]) LetE be a subset of a metric spaceX.
E ⊂ X is d-rectifiable if it is the image of a compact subsetK of Rd by a Lipschitz
continuous function f : Rd → X.

Theorem 2.1 ([14, p. 275]) If E ⊂ R
N is compact and d-rectifiable, then

Md(E) = Hd(E).
In this paper, we are interested in closed subsets E of R

N such that the d-
dimensional Minkowski content (9) exists and for which Md would be a measure
such that the following limit

φ %→
∫
E

φ dMd = lim
r↘0

1

αN−d rN−d

∫
R
N
χEr φ dmN : D(RN)→ R (11)

makes sense. Therefore, in applications to d-dimensional objects, 0 ≤ d ≤ N , the
appropriate choice of auxiliary variable is the volume t = αN−d rN−d of the ball of
radius r in R

N−d , that is, r = (t/αN−d )1/(N−d), and

φ %→
∫
E

φ dMd = lim
t↘0

1

t

∫
E
(t/αN−d )1/(N−d)

φ dmN : D(RN)→ R . (12)

Given a Lebesgue measurable setΩ ⊂ R
N and a d-rectifiable closed subset E such

that mN(E) = 0, several perturbations can be introduced:

Ωt = Ω\Er, Ωt = Ω ∪Er, andΩt = Ω � Er, t = αN−d rN−d , (13)
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depending on whether Er is removed, added, or both removed and added. In each
case a continuous trajectory t %→ χΩt is obtained in X(RN) such that

χΩt → χΩ in Lploc(R
N), 1 ≤ p <∞.

2.3.3 Back to the Example

Going back to the example for the state equation (1) and the objective function (2),
we consider the topological derivative with respect to the dilatation of a point e from
Novotny and Sokolowski [17] and extend it to dilatations of curves and surfaces.

Given a bounded open subsetΩ of R3 with Lipschitz boundaryΓ and a compact
d-rectifiable (see Definition 2.3 and Theorem 2.1) subsetE ⊂ Ω , 0 ≤ d ≤ 2 (d = 0
for E = {e}, d = 1 for a curve and d = 2 for a surface), consider the family of
perturbed state equations: to find ut = ut (E) ∈ H 1

0 (Ω) such that4

∀ψ ∈ H 1
0 (Ω),

∫
Ω

∇ut · ∇ψ dx =
∫
Ω

[
a − (1 − γ ) χEr

]
ψ dx (14)

parametrized by the auxiliary variable t = α3−dr3−d, where α3−d is the volume
of the unit ball in R

3−d and χA denotes the characteristic function of a set A. The
objective function for t ≥ 0 becomes

J (t)
def=
∫
Ω

1

2
|ut (E)− z|2 dx, z ∈ L2(Ω). (15)

The t-dependent Lagrangian is now

L(t, ϕ,ψ)
def=
∫
Ω

1

2
|ϕ − z|2 +∇ϕ · ∇ψ dx − [a − (1 − γ ) χEr ] ψ dx

for (ϕ,ψ) ∈ H 1
0 (Ω)×H 1

0 (Ω). Finally, the computation of the topological derivative
takes the same form as in the previous examples:

g(t)
def= inf

ϕ∈H 1
0 (Ω)

sup
ψ∈H 1

0 (Ω)

L(t, ϕ,ψ), dg(0)
def= lim

t↘0

g(t) − g(0)
t

= lim
t↘0

J (t)− J (0)
t

.

It is readily seen that for E = {e}, e ∈ Ω , and ψ ∈ H 2(Ω) ∩H 1
0 (Ω),

L(t, ϕ,ψ) − L(0, ϕ,ψ)
t

= (1 − γ ) 1

|Br(e)|
∫
Br(e)

χΩ ψ dx → (1 − γ )ψ(e)

4In [17], a = χΩ , the characteristic function ofΩ .
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and dtL(0, ϕ,ψ) = (1 − γ )ψ(e) by the Lebesgue differentiation theorem. For a
compact d-rectifiable set E ⊂ Ω (d = 1 for a curve and d = 2 for a surface) and
ψ ∈ H 2(Ω) ∩H 1

0 (Ω)

dtL(0, ϕ,ψ) = (1− γ )
∫
E

ψ dHd. (16)

3 Minimax for State Constrained Objective Functions

3.1 Abstract Framework

In this section we recall the framework used in [19, 20] and extended in [7, 8] for
the mutivalued case. A Lagrangian is a function of the form

(t, x, y) %→ G(t, x, y) : [0, τ ] ×X × Y → R, τ > 0,

where Y is a vector space, X is a non empty subset of a vector space, and y %→
G(t, x, y) is affine. Associate with the parameter t the parametrized minimax

t %→ g(t)
def= inf

x∈X sup
y∈Y

G(t, x, y) : [0, τ ] → R and dg(0)
def= lim

t↘0

g(t)− g(0)
t

.

(17)

When the limits exist we shall use the following compact notation:

dtG(0, x, y)
def= lim

t↘0

G(t, x, y)−G(0, x, y)
t

ϕ ∈ X, dxG(t, x, y; ϕ) def= lim
θ↘0

G(t, x + θϕ, y)−G(t, x, y)
θ

ψ ∈ Y, dyG(t, x, y;ψ) def= lim
θ↘0

G(t, x, y + θψ)−G(t, x, y)
θ

.

The notation t ↘ 0 and θ ↘ 0 means that t and θ go to 0 by strictly positive values.
Since G(t, x, y) is affine in y, for all (t, x) ∈ [0, τ ] ×X,

∀y,ψ ∈ Y, dyG(t, x, y;ψ) = G(t, x,ψ)−G(t, x, 0) = dyG(t, x, 0;ψ).

The state equation at t ≥ 0 :

to find xt ∈ X such that for all ψ ∈ Y, dyG(t, xt , 0;ψ) = 0. (18)
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The set of solutions (states) xt at t ≥ 0 is denoted

E(t)
def= {xt ∈ X : ∀ϕ ∈ Y, dyG(t, xt , 0; ϕ) = 0

}
.

The (standard) adjoint state equation at t ≥ 0 is

to find pt ∈ Y such that ∀ϕ ∈ X, dxG(t, x
t , pt ; ϕ) = 0 (19)

and the set of solutions will be denoted Y (t, xt ). Finally, the set of minimizers for
the minimax is given by

X(t)
def=
{
xt ∈ X : g(t) = inf

x∈X sup
y∈Y

G(t, x, y) = sup
y∈Y

G(t, xt , y)

}
. (20)

Lemma 3.1 (Constrained Infimum and Minimax)

(i) infx∈X supy∈Y G(t, x, y) = infx∈E(t) G(t, x, 0).
(ii) The minimax g(t) = +∞ if and only if E(t) = ∅. Hence X(t) = X.

(iii) If E(t) �= ∅, then g(t) < +∞ and

X(t) = {xt ∈ E(t) : G(t, xt , 0) = inf
x∈E(t)

G(t, x, 0)} ⊂ E(t). (21)

Proof Cf., for instance, [8]. � 
Hypothesis (H0) Let X be a vector space.

(i) For all t ∈ [0, τ ], x0 ∈ X(0), xt ∈ X(t), and y ∈ Y , the function

s %→ G(t, x0 + s(xt − x0), y) : [0, 1] → R (22)

is absolutely continuous. This implies that, for almost all s, the derivative exists
and is equal to dxG(t, x0 + s(xt − x0), y; xt − x0) and that it is the integral of
its derivative. In particular,

G(t, xt , y) = G(t, x0, y)+
∫ 1

0
dxG(t, x

0 + s(xt − x0), y; xt − x0) ds.

(23)

(ii) For all t ∈ [0, τ ], x0 ∈ X(0), xt ∈ X(t), y ∈ Y , ϕ ∈ X, and almost all
s ∈ (0, 1), dxG(t, x0 + s(xt − x0), y; ϕ) exists
and the function s %→ dxG(t, x

0 + s(xt − x0), y; ϕ) belongs to L1(0, 1).
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Definition 3.1 (Sturm [19, 20]) Given x0 ∈ X(0) and xt ∈ X(t), the averaged
adjoint state equation is

to find yt ∈ Y, ∀ϕ ∈ X,
∫ 1

0
dxG(t, x

0 + s(xt − x0), yt ; ϕ) ds = 0 (24)

and the set of solutions is denoted Y (t, x0, xt ). � 
Y (0, x0, x0) clearly reduces to the set of standard adjoint states Y (0, x0) at t = 0.

3.2 Original Condition of Sturm and Its First Extension

Theorem 3.1 ([19], [20, Thm. 3.1]) Consider the Lagrangian functional

(t, x, y) %→ G(t, x, y) : [0, τ ] ×X × Y → R, τ > 0,

where X and Y are vector spaces and the function y %→ G(t, x, y) is affine. Let
(H0) and the following hypotheses be satisfied:

(H1) for all t ∈ [0, τ ], g(t) is finite, X(t) = {xt} and Y (t, x0, xt ) = {yt} are
singletons;

(H2) dtG(t, x0, y) exists for all t ∈ [0, τ ] and all y ∈ Y ;
(H3) the following limit exists5

lim
s↘0, t↘0

dtG(s, x
0, yt ) = dtG(0, x0, y0). (25)

Then, dg(0) exists and dg(0) = dtG(0, x0, y0).

This theorem was extended in [7, 8] with a weakening of (H2) and (H3) that resulted
in the appearance of an extra term in the expression of dg(0). An example of a
topological derivative where that extra term is not zero was given in [7].

Theorem 3.2 (Singleton Case [7, 8]) Consider the Lagrangian functional

(t, x, y) %→ G(t, x, y) : [0, τ ] ×X × Y → R, τ > 0,

where X and Y are vector spaces and the function y %→ G(t, x, y) is affine. Let
(H0) and the following hypotheses be satisfied:

(H1) for all t ∈ [0, τ ], g(t) is finite, X(t) = {xt } and Y (t, x0, xt ) = {yt } are
singletons;

(H2’) dtG(0, x0, y0) exists;

5Condition (H3) is typical of what can be found in the literature (see, for instance, [3]).
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(H3’) the following limit exists

R(x0, y0)
def= lim
t↘0

dyG

(
t, x0, 0; y

t − y0)

t

)
. (26)

Then, dg(0) exists and dg(0) = dtG(0, x0, y0)+ R(x0, y0).

Notice that, under condition (H2’), condition (H3’) is optimal since

dg(0) exists ⇐⇒ lim
t↘0

dyG

(
t, x0, 0; y

t − y0

t

)
exists.

Hypotheses (H2’) and (H3’) are weaker and more general than (H2) and (H3).
Indeed, it is readily seen that if (H2)–(H3) are verified, then (H2’)–(H3’) are verified
with R(x0, y0) = 0:

(H2’) it is only assumed that dtG(0, x0, y0) exists. Hypothesis (H2) assumes that
dtG(t, x

0, y) exists for all t ∈ [0, τ ] and y ∈ Y .
(H3’) Hypothesis (H3) assumes that

lim
s↘0, t↘0

dtG(s, x
0, yt ) = dtG(0, x0, y0)

which implies that R(x0, y0) = 0 (see the proof of Theorem 3.1 and Remark
3.2 in [8] for details). Thus, condition (H3’) with R(x0, y0) = 0 is definitely
weaker and more general than (H3) since it extends to cases whereR(x0, y0)

is not zero.

Since dxG and dxdyG both exist, Hypothesis (H3’) can be rewritten as follows

dyG

(
t, x0, 0; y

t − y0

t

)

= dyG
(
t, x0, 0; y

t − y0

t

)
− dyG

(
t, xt , 0; y

t − y0

t

)

=
∫ 1

0
dxdyG

(
t, θx0 + (1 − θ)xt , 0; y

t − y0

tα
; x

0 − xt
t1−α

)
dθ,

for some α ∈ [0, 1]. For instance, with α = 1/2, it would be sufficient to find
bounds on the differential quotients

(yt − y0)/t1/2 and (xt − x0)/t1/2
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which is less demanding than finding a bound on (xt − x0)/t or (yt − y0)/t . When
the integral with respect to θ can be taken inside, the expressions simplify

dyG

(
t, x0, 0; y

t − y0

t

)
= dxdyG

(
t,
x0 + xt

2
, 0; y

t − y0

tα
; x

0 − xt
t1−α

)

lim
t↘0

dyG

(
t, x0, 0; y

t − y0

t

)
= lim
t↘0

dxdyG

(
t,
x0 + xt

2
, 0; y

t − y0

tα
; x

0 − xt
t1−α

)
.

It is a second order condition without assuming second order derivatives in x.

3.3 A New Condition with the Standard Adjoint at t = 0

The use of the averaged adjoint revealed the possible occurrence of an extra term
and provided a simpler expression of the former hypothesis (H3). It turns out that the
extra term can also be obtained by using the standard adjoint at t = 0 significantly
simplifying the checking of that condition.

Theorem 3.3 (Singleton Case) Consider the Lagrangian functional

(t, x, y) %→ G(t, x, y) : [0, τ ] ×X × Y → R, τ > 0,

where X and Y are vector spaces and the function y %→ G(t, x, y) is affine. Let
(H0) and the following hypotheses be satisfied:

(H1) for all t ∈ [0, τ ], g(t) is finite, X(t) = {xt} and Y (0, x0) = {p0} are
singletons;

(H2”) dtG(0, x0, y0) exists;
(H3”) the following limit exists

R(x0, p0)
def= lim
t↘0

∫ 1

0
dxG

(
t, x0 + θ(xt − x0), p0; x

t − x0

t

)
dθ. (27)

Then, dg(0) exists and dg(0) = dtG(0, x0, p0)+ R(x0, p0).

Proof Recalling that g(t) = G(t, xt , y) and g(0) = G(0, x0, y) for any y ∈ Y ,
then for the standard adjoint state p0 at t = 0

g(t) − g(0) = G(t, xt , p0)−G(t, x0, p0)+
(
G(t, x0, p0)−G(0, x0, p0)

)
.
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Dividing by t > 0

g(t)− g(0)
t

= G(t, xt , p0)−G(t, x0, p0)

t
+ G(t, x0, p0)−G(0, x0, p0)

t

=
∫ 1

0
dxG

(
t, x0 + θ(xt−x0), p0; x

t − x0

t

)
dθ + G(t, x0, p0)−G(0, x0, p0)

t
.

Therefore, in view of Hypothesis (H2”), the limit dg(0) exists if and only if the limit
of the first term exists. Therefore

dg(0) = lim
t↘0

∫ 1

0
dxG

(
t, x0 + θ(xt − x0), p0; x

t − x0

t

)
dθ + dtG(0, x0, p0)

and the existence of the limit of the first term replaces hypothesis (H3’). � 
Remark 3.1

(i) Hypothesis (H3”) seems less demanding than (H3’) since it only requires the
existence of the standard adjoint p0 at t = 0 while Hypotheses (H3) and
(H3’) necessitate the existence of the averaged adjoint yt and the study of the
differential quotient (yt − y0)/t for small t ≥ 0 going to 0.

(ii) (Separation Principle) Theorem 3.3 also separates the study of the state/adjoint
state system (x0, p0) at t = 0 from the study of the differential quotient (xt −
x0)/t of the state. In the examples, the pair (x0, p0) is independent of the fact
that we compute a semidifferential with respect to the control, the shape or the
topology. � 

3.4 Application of Theorem 3.3 to the Examples

3.4.1 Directional Derivative with Respect to the Control

Recall that, given the direction b ∈ L2(Ω) and the perturbation a+ tb of the control
a, we want to compute df (a; b) = limt↘0(f (a + tb) − f (a))/t . The state ut ∈
H 1

0 (Ω) at t ≥ 0 is solution of the state equation

∫
Ω

∇ut · ∇ψ − (a + tb) ψ dx = 0, ∀ψ ∈ H 1
0 (Ω), (28)

and the t-Lagrangian is

L(t, ϕ,ψ)
def=
∫
Ω

1

2
|ϕ − z|2 dx +

∫
Ω

∇ϕ · ∇ψ − (a + tb) ψ dx.
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It is readily seen that

dyL(t, ϕ,ψ;ψ ′) =
∫
Ω

∇ϕ · ∇ψ ′ − (a + tb) ψ ′ dx

dxL(t, ϕ,ψ; ϕ′) =
∫
Ω

(ϕ − z) ϕ′ + ∇ϕ′ · ∇ψ dx, dtL(t, ϕ,ψ) = −
∫
Ω

bψ dx.

Observe that the derivative of the state u̇ ∈ H 1
0 (Ω) exists since

∫
Ω

∇
(
ut − u0

t

)
· ∇ψ − b ψ dx = 0, ∀ψ ∈ H 1

0 (Ω), (29)

implies that (ut − u0)/t = u̇ ∈ H 1
0 (Ω) ∩H 2(Ω) is solution of

∫
Ω

∇u̇ · ∇ψ − b ψ dx = 0, ψ ∈ H 1
0 (Ω). (30)

The adjoint p0 ∈ H 1
0 (Ω) ∩H 2(Ω) is solution of

∫
Ω

(u0 − z) ϕ +∇p0 · ∇ϕ dx = 0, ∀ϕ ∈ H 1
0 (Ω). (31)

It remains to check that the limit as t goes to 0 exists in (27):

R(t)
def=
∫ 1

0
dxG

(
t, u0 + θ(ut − u0), p0; u

t − u0

t

)
dθ

=
∫
Ω

(
ut + u0

2
− z
) (

ut − u0

t

)
+∇p0 · ∇

(
ut − u0

t

)
dx

=
∫
Ω

(
ut + u0

2
− z
) (

ut − u0

t

)
− (u0 − g)

(
ut − u0

t

)
dx

=
∫
Ω

(
ut − u0

2

) (
ut − u0

t

)
dx = t

2

∫
Ω

|u̇|2 dx → 0

by using Eq. (31) for p0. Therefore, by Theorem 3.3,

df (a; b) = −
∫
Ω

b p0 dx, p0 ∈ H 1
0 (Ω) ∩H 2(Ω) (32)

Δu0 = a inΩ, u0 = 0 on Γ, Δp0 = u0 − z in Ω, p0 = 0 on Γ. (33)
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3.4.2 Shape Derivative

Recall that the t-dependent Lagrangian is given by expression (7)

L(t, ϕ,ψ) =
∫
Ω

[
1

2
|ϕ − z ◦ Tt |2 Jt +A(t)∇ϕ · ∇ψ − a ◦ Tt Jt ψ

]
dx (34)

A(t) = Jt DTt−1 (DTt
−1)∗, Jt = det DTt , DTt is the Jacobian matrix.

The state equation at t ≥ 0 and the adjoint state equation at t = 0 are

ut ∈ H 1
0 (Ω), ∀ψ ∈ H 1

0 (Ω),

∫
Ω

{
A(t)∇ut · ∇ψ − Jt (a ◦ Tt ) ψ

}
dx = 0,

(35)

p0 ∈ H 1
0 (Ω), ∀ϕ ∈ H 1

0 (Ω),

∫
Ω

{
∇p0 · ∇ϕ + (u0 − z) ϕ

}
dx = 0. (36)

The pair (u0, p0) ∈ H 1
0 (Ω)∩H 2(Ω)×H 1

0 (Ω)∩H 2(Ω) is the solution of the same
system (33) as in the previous example.

For V ∈ C0([0, τ ];C1
0(R

N,RN)) and the diffeomorphism Tt (V ) = Tt
d

dt
Tt (X) = V (t, Tt (X)), T0(X) = X, dTt

dt
= V (t) ◦ Tt , T0 = I, (37)

where V (t)(X) = V (t,X) and I is the identity matrix on R
N. Moreover,

d

dt
DTt = DV (t) ◦ Tt DTt , DT0 = I, d

dt
Jt = divV (t) ◦ Tt Jt , J0 = 1,

(38)

where DV (t) and DTt are the Jacobian matrices of V (t) and Tt . For k ≥ 1,
Ck0 (R

N,RN) is the space of k times continuously differentiable functions from R
N

to R
N going to zero at infinity; for k = 0, C0

0 (R
N,RN) is the space of continuous

functions from R
N to R

N going to zero at infinity. We shall also use the notation

Vt
def= V (t) ◦ Tt , Vt (X) = V (t, Tt (X)), f (t) def= Tt − I, f (t)(X) = Tt (X)−X.

We regroup the main properties from [12, Thm. 4.4, Chap. 4, p. 189].

Lemma 3.2 Assume that V ∈ C0([0, τ ];C1
0(R

N,RN)), then

f ∈ C1
(
[0, τ ];C1

0(R
N,RN)

)
. (39)

For τ > 0 sufficiently small Jt = detDTt = | detDTt | = |Jt |, 0 ≤ t ≤ τ , and there
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exist constants 0 < α < β such that

∀ξ ∈ R
N, α|ξ |2 ≤ A(t) ξ · ξ ≤ β|ξ |2 and α ≤ Jt ≤ β. (40)

(i) As t goes to zero, Vt → V (0) in C1
0 (R

N,RN), DTt → I in C0
0 (R

N,RN),
Jt → 1 in C0

0 (R
N,R),

DTt − I
t

is bounded in C0
0 (R

N,RN),
Jt − 1

t
is bounded in C0

0 (R
N).

(ii) As t goes to zero,

A(t)→ I in C0
0 (R

N,RN),
A(t)− I

t
is bounded in C0

0(R
N,RN),

A′(t)= divVt I −DVt −DV ∗t → A′(0)= divV (0)−DV (0)−DV (0)∗ in C0
0 (R

N,RN).

where DVt is the Jacobian matrix of Vt , andDV ∗
t is the transpose of DVt .

(iii) Given h ∈ H 1(RN), as t goes to zero,

h ◦ Tt → h in L2(Ω),
h ◦ Tt − h

t
is bounded in L2(Ω)

∇h · Vt → ∇h · V (0) in L2(Ω).

Since the bilinear forms associated with (35) and (36) are coercive, there exists a
unique ut and a unique pair (u0, p0) solution of the system (35)–(36). Hence

∀t ∈ [0, τ ], X(t) = {ut }, Y (0, u0) = {p0} (41)

are singletons. So assumption (H1) is verified.
To check (H2”) we use expression (34) with ϕ = u0 and ψ = p0:

dtG(t, u
0, p0) =

∫
Ω

{
1

2
(u0 − z ◦ Tt )2 divVt − (u0 − z ◦ Tt )∇z · Vt Jt

}
dx

+
∫
Ω

{
A′(t)∇u0 · ∇p0 − (a ◦ TtdivVt −∇a · VtJt )ψ

}
dx.

Using Lemma 3.2, we can let t go to zero in the above expression and

dtG(0, u
0, p0) =

∫
Ω

{
1

2
(u0 − z)2 divV (0)− (u0 − z)∇z · V (0)

}
dx

+
∫
Ω

{
A′(0)∇u0 · ∇p0 − (divV (0) a +∇a · V (0)) p0

}
dx.

(42)

So, condition (H2”) is satisfied.
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To check condition (H3”), we need the x-derivative of L(t, ϕ,ψ)

L(t, ϕ,ψ) =
∫
Ω

[
1

2
|ϕ − z ◦ Tt |2 Jt + A(t)∇ϕ · ∇ψ − a ◦ Tt ψ Jt

]
dx (43)

dxL(t, ϕ,ψ; ϕ′) =
∫
Ω

[
(ϕ − z ◦ Tt ) Jt ϕ′ + A(t)∇ψ · ∇ϕ′] dx (44)

R(t)
def=
∫ 1

0
dxL

(
t, u0 + θ (ut − u0), p0; u

t − u0

t

)
dθ

=
∫
Ω

[(
u0 + ut

2
− z ◦ Tt

)
Jt
ut − u0

t
+ A(t)∇p0 · ∇

(
ut − u0

t

)]
dx.

(45)

By substituting ϕ = (ut − u0)/t in the adjoint equation for p0,∫
Ω

(u0 − z) u
t − u0

t
+∇p0 · ∇

(
ut − u0

t

)
dx = 0, (46)

we can rewrite the expression of R(t) as follows

R(t) =
∫
Ω

A(t)− I
t

∇p0 · ∇
(
ut − u0

)

+ Jt − 1

t

(
u0 + ut

2
− z ◦ Tt

) (
ut − u0

)
dx + t

2

∫
Ω

∣∣∣∣ut − u0

t

∣∣∣∣
2

dx.

From this, we get the following estimate

|R(t)| ≤
∥∥∥∥A(t)− It

∥∥∥∥
C[0,τ ]

‖∇p0‖ ‖∇(ut − u0)‖

+
∥∥∥∥Jt − 1

t

∥∥∥∥
C[0,τ ]

∥∥∥∥u0 + ut
2

− z
∥∥∥∥ ‖ut − u0‖ + t

2

∥∥∥∥ut − u0

t

∥∥∥∥
2

.

By Lemma 3.2 the terms (A(t) − I)/t and (Jt − 1)/t are uniformly bounded. To
conclude that the limit of R(t) exists and is zero, it remains to show that ut → u0

in H 1
0 (Ω)-strong and that the L2(Ω) norm of (ut − u0)/t is bounded.

From the state equations (35) of ut and u0, for all ψ ∈ H 1
0 (Ω)∫

Ω

∇(ut − u0) · ∇ψ dx

=
∫
Ω

[Jt a ◦ Tt − a] ψ dx −
∫
Ω

[A(t)− I ] ∇ut · ∇ψ dx

=
∫
Ω

(Jt − 1) a ◦ Ttψdx +
∫
Ω

[a ◦ Tt − a]ψdx −
∫
Ω

[A(t)− I ] ∇ut · ∇ψ dx.
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Substitute ψ = ut − u0 to obtain the following estimate

∥∥∥∇(ut − u0)

∥∥∥2 ≤‖Jt − 1‖C ‖a ◦ Tt‖ ‖ut − u0‖ + ‖a ◦ Tt − a‖ ‖ut − u0‖
+ ‖A(t)− I‖C ‖∇ut‖ ‖∇(ut − u0)‖.

Since Ω is a bounded open Lipschitzian domain, there exists a constant such that
‖ut − u0‖ ≤ c(Ω) ‖∇(ut − u0)‖ and

∥∥∥∇(ut − u0)

∥∥∥ ≤ ‖Jt − 1‖C‖a ◦ Tt‖c(Ω)+ ‖a ◦ Tt − a‖c(Ω)
+ ‖A(t)− I‖C‖∇ut‖.

But the right-hand side of this inequality goes to zero as t goes to zero. Therefore,
ut → u0 in H 1

0 (Ω). Finally, going back to the last inequality and dividing by t > 0

∥∥∥∥∇
(
ut − u0

t

)∥∥∥∥
≤
∥∥∥∥Jt − 1

t

∥∥∥∥
C

‖a ◦ Tt‖ c(Ω)+
∥∥∥∥a ◦ Tt − at

∥∥∥∥ c(Ω)+
∥∥∥∥A(t)− It

∥∥∥∥
C

‖∇ut‖.

Since the right-hand side of the above inequality is bounded, ∇(ut − u0)/t is
bounded. This means that (ut−u0)/t is bounded inH 1

0 (Ω), and, hence, (ut−u0)/t

is bounded in L2(Ω).
As a result the R(x0, y0) term is zero and the expression of the shape derivative

is given by (42).

3.4.3 Topological Derivative

The pair (u0, p0) ∈ H 1
0 (Ω) ∩ H 2(Ω) × H 1

0 (Ω) ∩ H 2(Ω) is the solution of the
same system (33) as in the previous examples. For t ≥ 0, the state equation (14) has
a unique solution in H 1

0 (Ω) ∩ H 2(Ω). The expression of dtL(0, u0, p0) was given
in (16). Therefore, (H1) and (H2”) are verified. As for (H3”) we need the expression

dxL(t, ϕ̂, ψ̂; ϕ) =
∫
Ω

(
ϕ̂ − z) ϕ +∇ψ̂ · ∇ϕ dx (47)
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to check the limit of the term in Hypothesis (H3”) as t goes to zero

R(t)
def=
∫ 1

0
dxL

(
t, u0 + θ(ut − u0), p0; u

t − u0

t

)
dθ

=
∫ 1

0

∫
Ω

(
u0 + θ(ut − u0)− z

) ut − u0

t
+∇p0 · ∇

(
ut − u0

t

)
dx dθ

=
∫
Ω

(
u0 + ut

2
− z
)
ut − u0

t
+∇p0 · ∇

(
ut − u0

t

)
dx

=
∫
Ω

(
u0 − z+ ut − z

2

)
ut − u0

t
+∇p0 · ∇

(
ut − u0

t

)
dx.

(48)

By substituting ϕ = (ut − u0)/t in the adjoint equation for p0

∫
Ω

(u0 − z) u
t − u0

t
+∇p0 · ∇

(
ut − u0

t

)
dx = 0, (49)

we can simplify the expression for R(t) as follows

R(t) =
∫
Ω

(
u0 − z+ ut − z

2

)
ut − u0

t
− (u0 − z) u

t − u0

t
dx

=
∫
Ω

(
ut − u0

2

)
ut − u0

t
dx = 1

2

∥∥∥∥ut − u0

t1/2

∥∥∥∥
2

.

(50)

To complete the proof, we have to show that (ut − u0)/t1/2 → 0 in L2(Ω)-strong.
By subtracting the state equation (14) at t from the one at 0

∫
Ω

∇
(
ut − u0

t

)
· ∇ψ dx = −(1 − γ ) 1

t

∫
Ω

χEr ψ dx. (51)

Substitute ψ = ut − u0 in the last equation and use the fact that, for a Lipschitzian
domainΩ , there exists a constant c(Ω) such that ‖v‖ ≤ c(Ω) ‖∇v‖

∥∥∥∥∇
(
ut − u0

t1/2

)∥∥∥∥
2

= −(1 − γ ) 1

t

∫
Er

χΩ (u
t − u0) dx

≤ |1 − γ |
[

1

t

∫
Er

dx

]1/2 ∥∥∥∥ut − u0

t1/2

∥∥∥∥
≤ |1 − γ |Hd(E)1/2 c(Ω)

∥∥∥∥∇
(
ut − u0

t1/2

)∥∥∥∥ .
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Finally, we get a bound on the norm of the gradient

‖∇((ut − u0)/t1/2)‖ ≤ |1 − γ |Hd(E)1/2 c(Ω). (52)

Hence, there exists w ∈ H 1
0 (Ω) and a sequence {tn} going to 0 such that

utn − u0

tn1/2
⇀ w in H 1

0 (Ω)-weak ⇒ utn − u0

tn1/2
→ w in L2(Ω)-strong.

Furthermore, we can show thatw = 0. ForE = {e} ⊂ Ω , andψ ∈ D(Ω), from (51)

∫
Ω

∇
(
utn − u0

tn1/2

)
· ∇ψ dx︸ ︷︷ ︸

→∫Ω ∇w·∇ψ dx

= −tn1/2︸︷︷︸
→0

(1 − γ ) 1

|Brn(e)|
∫
Brn (e)

χΩ ψ dx︸ ︷︷ ︸
→χΩ(e) ψ(e)=ψ(e)

⇒ ∀ψ ∈ H 1
0 (Ω),

∫
Ω

∇w · ∇ψ dx = 0 ⇒ w = 0. (53)

Since the limit is independent of the choice of the sequence, the limit exists as t → 0

R(t) = 1

2

‖ut − u0‖2

t
→ 1

2
‖w‖2 = 0.

All the hypotheses of Theorem 3.3 are now verified. Coming back to the t-derivative,
since p0 ∈ H 2(Ω) ∩H 1

0 (Ω), for e ∈ Ω

dJ(Ω; δ{e}) = dtL(0, u0, p0) = (1 − γ ) χΩ(a) p0(e) = (1 − γ ) p0(e). (54)

When E is a curve or a surface, we also have w = 0: from (51) with ψ ∈ D(Ω)∫
Ω

∇
(
ut − u0

t1/2

)
· ∇ψ dx︸ ︷︷ ︸

→∫Ω ∇w·∇ψ dx

= − t1/2︸︷︷︸
→0

(1 − γ ) 1

t

∫
Er

χΩ ψ dx︸ ︷︷ ︸
→∫E χΩ ψ dHd

⇒ ∀ψ ∈ H 1
0 (Ω),

∫
Ω

∇w · ∇ψ dx = 0 ⇒ w = 0. (55)

Therefore, the limit exists as t → 0

R(t) = 1

2

‖ut − u0‖2

t
→ 1

2
‖w‖2 = 0
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and all the hypotheses of Theorem 3.3 are verified. Coming back to the t-derivative,
since p0 ∈ H 2(Ω) ∩H 1

0 (Ω),

dJ (Ω; δE) = dtL(0, u0, p0) = (1 − γ )
∫
E

χΩ p
0 dHd = (1 − γ )

∫
E

p0 dHd,

(56)

where (u0, p0) is solution of the coupled system (33).

4 Minimax Theorems in the Mutivalued Case

We give a general theorem for the existence and expressions of dg(0) in the
multivalued case where only a right-hand side derivative of g is expected. The Corol-
lary can be applied to PDE problems with non-homogeneous Dirichlet boundary
conditions. The trick introduced in 1991 [10] to get around the requirement that the
spaces X and Y be fixed, was to use extensions of (xt , pt ) from Ωt to R

N to work
in H 2(RN)×H 2(RN). Such extensions to R

N are not unique, but their restrictions
toΩt are (see also [12, sec. 6.3, Chap. 10. pp. 564–570]).

Theorem 4.1 Consider the Lagrangian

(t, x, y) %→ G(t, x, y) : [0, τ ] ×X × Y → R, τ > 0,

where X and Y are vector spaces, the function y %→ G(t, x, y) is affine. Let (H0)
and the following hypotheses be satisfied:

(H1) for all t ∈ [0, τ ],X(t) �= ∅, g(t) is finite, and for all x ∈ X(0), Y (0, x) �= ∅;
(H2) for each x in X(0) and y ∈ Y (0, x), dtG(0, x, y) exists;
(H3) for each x ∈ X(0), there exists a function p %→ R(x, p) : Y (0, x)→ R such

that for each sequence tn → 0, 0 < tn ≤ τ ,
(i) there exists x0 ∈ X(0) such that for each p ∈ Y (0, x0), there exist a

subsequence {tnk } of {tn}, xtnk ∈ X(tnk ) such that

lim inf
k→∞

∫ 1

0
dxG

(
tnk , x

0 + θ(xtnk − x0), p0; x
tnk − x0

tnk

)
dθ ≥R(x0, p0),

(57)

(ii) for each x0 ∈ X(0), there exist p0 ∈ Y (0, x0), a subsequence {tnk } of
{tn}, xtnk ∈ X(tnk ) such that

lim sup
k→∞

∫ 1

0
dxG

(
tnk , x

0 + θ(xtnk − x0), p0; x
tnk−x0

tnk

)
dθ ≤R(x0, p0).

(58)
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Then, dg(0) exists and there exist x0 ∈ X(0) and y0 ∈ Y (0, x0) such that

dg(0) = dtG(0, x0, y0)+ R(x0, y0) = sup
y∈Y (0,x0)

dtG(0, x0, y)+ R(x0, y)

= inf
x∈X(0) sup

y∈Y (0,x)
dtG(0, x, y)+ R(x, y).

(59)

Proof

(i) Since g(t) is finite, E(t) �= ∅. Moreover, since X(t) �= ∅, X(t) is the set of
minimizers of G(t, x, 0) over E(t). The differential quotient can be written as
follows: for all x ∈ X(0), p ∈ Y (0, x),

g(t) − g(0)
t

= G(t, xt , p)−G(0, x, p)
t

= G(t, xt , p)−G(t, x, p)
t

+ G(t, x, p)−G(0, x, p)
t

=
∫ 1

0
dxG

(
t, x + θ(xt − x), p; x

t − x
t

)
dθ

+ G(t, x, p)−G(0, x, p)
t

.

At this juncture, introduce the liminf and limsup of the differential quotient

dg(0)
def= lim inf

t↘0

g(t) − g(0)
t

, dg(0)
def= lim sup

t↘0

g(t) − g(0)
t

.

We show that they exist and are equal.
(ii) There exists a sequence tn → 0, 0 < tn ≤ τ , such that (g(tn) − g(0))/tn →

dg(0). By Hypothesis (H3) (i), there exists x0 ∈ X(0) such that for all p0 ∈
Y (0, x0), there exists a subsequence {tnk } of {tn}, there exists xtnk ∈ X(tnk )
such that

dg(0) ≥lim inf
k→∞

∫ 1

0
dxG

(
tnk , x

0 + θ(xtnk − x0), p0; x
tnk − x0

tnk

)
dθ

+ lim
k→∞

G(tnk , x
0, p0)−G(0, x0, p0)

tnk

≥ lim inf
k→∞

∫ 1

0
dxG

(
tnk , x

0 + θ(xtnk − x0), p0; x
tnk − x0

tnk

)
dθ

+ dtG(0, x0, p0)

≥ R(x0, p0)+ dtG(0, x0, p0).
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Therefore, there exists x0 ∈ X(0) such that for all p0 ∈ Y (0, x0)

dg(0) ≥ dtG(0, x0, p0)+ R(x0, p0).

So, we can take the sup with respect to p0 ∈ Y (0, x0)

∃x0 ∈ X(0) such that dg(0) ≥ sup
y∈Y (0,x0)

dtG(0, x
0, y)+ R(x0, y)

and we obtain our first estimate

dg(0)≥ sup
y∈Y (0,x0)

dtG(0, x
0, y)+R(x0, y)≥ inf

x∈X(0) sup
y∈Y (0,x)

dtG(0, x, y)+R(x, y).
(60)

(iii) There exists a sequence tn → 0, 0 < tn ≤ τ , such that limn→∞(g(tn) −
g(0))/tn = dg(0). By Hypothesis (H3) (ii), for all x0 ∈ X(0) there exist
p0 ∈ Y (0, x0), a subsequence {tnk } of {tn}, xtnk ∈ X(tnk ) such that

dg(0) ≤ lim sup
k→∞

∫ 1

0
dxG

(
tnk , x

0 + θ(xtnk − x0), p0; x
tnk − x0

tnk

)
dθ

+ lim
k→∞

G(tnk , x
0, p0)−G(0, x0, p0)

tnk
≤R(x0, p0)+dtG(0, x0, y0).

Therefore, for all x0 ∈ X(0) there exists p0 ∈ Y (0, x0) such that dg(0) ≤
R(x0, p0)+dtG(0, x0, p0). Since for all x0 ∈ X(0) there exists p0 ∈ Y (0, x0)

such that

dg(0) ≤ dtG(0, x0, p0)+ R(x0, p0)

⇒ dg(0) ≤ dtG(0, x0, p0)+ R(x0, p0)≤ sup
y∈Y (0,x0)

dtG(0, x0, y)+ R(x0, y)

⇒ ∀x0 ∈ X(0), dg(0) ≤ sup
y∈Y (0,x0)

dtG(0, x0, y)+ R(x0, y)

and we can take the infimum of the right-hand side over all x0 ∈ X(0),

dg(0) ≤ inf
x0∈X(0)

sup
y∈Y (0,x0)

dtG(0, x0, y)+ R(x0, y). (61)

(iv) Combining (61) and (60), there exists x̂0 ∈ X(0) such that

dg(0) ≥ sup
y∈Y (0,x̂0)

dtG(0, x̂
0, y)+ R(0, x̂0, y)

≥ inf
x∈X(0) sup

y∈Y (0,x)
dtG(0, x, y)+ R(x, y) ≥ dg(0) ≥ dg(0).



Control, Shape, and Topological Derivatives via Minimax Differentiability 163

Therefore, dg(0) exists and there exists x̂0 ∈ X(0) such that

dg(0) = sup
y∈Y (0,x̂0)

dtG(0, x̂0, y)+ R(x̂0, y) = inf
x∈X(0) sup

y∈Y (0,x)
dtG(0, x, y)

+ R(x, y). (62)

But we can get more. From part (iii), we have shown that

∃x̂0 ∈ X(0), ∀y ∈ Y (0, x̂0), dg(0) ≥ dtG(0, x̂0, y)+ R(x̂0, y). (63)

From part (iii), we have shown that

∀x0 ∈ X(0), ∃y0 ∈ Y (0, x0), dg(0) ≤ dtG(0, x0, y0)+ R(x0, y0).

In particular, for x̂0, there exists ŷ0 ∈ Y (0, x̂0) such that

dg(0) ≤ dtG(0, x̂0, ŷ0)+ R(x̂0, ŷ0).

Taking y = ŷ0 in (63), dg(0) ≥ dtG(0, x̂0, ŷ0)+ R(x̂0, ŷ0) and

dg(0) ≥ dtG(0, x̂0, ŷ0)+ R(x̂0, ŷ0) ≥ dg(0) ⇒ dg(0)

= dtG(0, x̂0, ŷ0)+ R(x̂0, ŷ0)

and the conclusion of the theorem.
� 

This specialization of the theorem was used to compute the shape derivative
of an objective function constrained by a partial differential equation with non-
homogeneous Dirichlet boundary conditions in [12, sec. 6, pp. 562–570].

Corollary 4.1 Consider the Lagrangian

(t, x, y) %→ G(t, x, y) : [0, τ ] ×X × Y → R, τ > 0,

where X and Y are vector spaces, the function y %→ G(t, x, y) is affine. Let (H0)
and the following hypotheses be satisfied:

(H1) for all t in [0, τ ], X(t) �= ∅ and g(t) is finite, and for each x ∈ X(0),
Y (0, x) �= ∅;

(H2) for all x in X(0) and p ∈ Y (0, x), dtG(0, x, p) exists;
(H3”) there exist x0 ∈ X(0) and p0 ∈ Y (0, x0) such that the following limit exists

R(x0, p0)
def= lim

t↘0

∫ 1

0
dxG

(
t, x0 + θ(xt − x0), p0; x

t − x0

t

)
dθ. (64)

Then, dg(0) exists and there exist x0 ∈ X(0) and p0 ∈ Y (0, x0) such that dg(0) =
dtG(0, x0, p0)+ R(x0, p0).
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Minimum Energy Estimation Applied
to the Lorenz Attractor

Arthur J. Krener

Abstract Minimum Energy Estimation is a way of filtering the state of a nonlinear
system from partial and inexact measurements. It is a generalization of Gauss’
method of least squares. Its application to filtering of control systems goes back
at least to Mortensen who called it Maximum Likelyhood Estimation. For linear,
Gaussian systems it reduces to maximum likelihood estimation (aka Kalman Filter-
ing) but this is not true for nonlinear systems. We prefer the name Minimum Energy
Estimation (MEE) that was introduced by Hijab. Both Mortensen and Hijab dealt
with systems in continuous time, we extend their methods to discrete time systems
and show how Taylor polynomial techniques can lessen the computational burden.
The degree one version is equivalent to the Extended Kalman Filter in Information
form. We apply this and the degree three version to problem of estimating the state
of the three dimensional Lorenz Attractor from a one dimensional measurement.

Keywords Infinite horizon stochastic optimal control · Finite horizon stochastic
optimal control · Stochastic Hamilton–Jacobi–Bellman equations · Stochastic
algebraic Riccati equations · Stochastic differential Riccati equations · Stochastic
linear quadratic regulator

1 Introduction

We consider the problem of estimating the state of a discrete time nonlinear control
system from noisy knowledge of the dynamics, noisy and partial past measurements
of the state, noisy knowledge of the initial condition, and exact knowledge of the
control input.

An algorithm that does the state estimation is called a filter if one assumes that
the noises are stochastic and the stochastic reasoning is used to derive the algorithm.
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The foremost example of this is the discrete time Kalman filter for systems where
the dynamics and observations are linear and the noises are Gaussian, see [3]. The
Extended Kalman Filter [3] and its variant the Unscented Kalman Filter [5] are
widely used for nonlinear systems. They assume that the nonlinear system can be
locally approximated by a linear system and the noises and errors can be locally
approximated by Gaussian random variables.

If deterministic reasoning is used to derive the estimation algorithm then the
result is usually called an observer. An observer for an autonomous linear discrete
time system can be constructed by using output injection to place the poles of
the linear error dynamics inside the unit disk [2]. If the system is nonlinear then
under certain conditions a nonlinear output injection and a nonlinear change of state
coordinates can linearize the error dynamics and place its poles inside the unit disk
[6, 10].

Most filters and observers consist of a copy of the plant dynamics, including
the known control terms, modified by a gain times the so-called innovation. The
innovation is the difference between the current measurement and what the filter or
observer thinks the measurement should be based on its current state estimate.

Another approach is to use high gain to construct an observer that is approx-
imately a multiple differentiator [7]. The drawback of this approach is that the
size of the gains grows exponentially with the number of differentiations necessary
to determine the full state and so a high gain observer can be very sensitive to
measurement noise. High gain can be very useful when the current state estimate
is far from the true state because then the innovation has a high signal to noise ratio.
But high gain can be very detrimental when the current state estimate is close to the
true state for then the innovation has a low signal to noise ratio and the high gain
accentuates the noise.

Interestingly one of the first examples of an observer was developed by Gauss to
predict the orbit of the dwarf planet Ceres in 1801. Gauss used the method of least
squares to make his prediction. In 1968 Mortensen used a similar method of least
squares to develop his Maximum Likelyhood estimator [11] and this method was
extended by Hijab [4] who called it Minimum Energy Estimation.

Both Mortensen and Hijab worked with continuous time systems. In [9] we
extended their method to discrete time systems and used a Taylor polynomial
approach to simplify the necessary calculations. We shall show if the Taylor
polynomials are stopped at degree one then our method reduces to an Extended
Kalman Filter but in the form of an Information Filter [1]. The purpose of this
paper is to show by example that going to higher degree terms we can improve
the accuracy of the estimates. The example that we choose is the Lorenz Attractor.
Because this a chaotic system the estimation problem is challenging. The degree
one minimum energy estimator (EKF) does a reasonable job but the degree three
estimator does substantially better.
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2 Minimum Energy Estimation in Discrete Time

Consider a discrete time nonlinear system

x+ = f (t, x, u)
y = h(t, x, u)

x(0) = x0
(1)

where the state x(t) ∈ Rn×1, the control u(t) ∈ Rm×1, the measurement y(t) ∈
Rp×1 and x+(t) = x(t + 1). We assume that f and h are sufficiently smooth to
have Taylor polynomials of the desired degree. The problem is to estimate x(t) from
u(s), 0 ≤ s ≤ t − 1, from y(s), 1 ≤ s ≤ t − 1 and from some inexact knowledge
about x0. We denote this estimate by x̂(t|t − 1). We also consider estimating x(t)
using the additional measurement y(t), we denote this estimate x̂(t|t).

The standard approach is add noises to the model, a driving noise v(t) ∈ Rk×1,
an observation noise w(t) ∈ Rp×1 and an initial condition noise x̄0 ∈ Rn×1 to
obtain

x+ = f (t, x, u)+ g(t, x, u)v
y = h(t, x, u)+ w

x(0) = x̂0 + x̄0
(2)

where x̂0 is our estimate of x(0) based on prior information.
The stochastic version of this approach is to assume that v(t) and w(t) are

independent, white Gaussian noise processes and x̄0 is an independent Gaussian
random vector of mean zero and known covariance. Then the conditional density
of the state given the past controls u(s), 0 ≤ s ≤ t − 1 and past measurements
y(s), 1 ≤ s ≤ t − 1 satisfies an integral-difference equation that is very difficult to
solve. About the only time it can be solved is when the system is linear for then the
conditional density is Gaussian and its mean and covariance can be computed by a
Kalman filter.

The minimum energy approach is to assume the noises are deterministic but
unknown. One finds the noise triple z̄0, v(·),w(·) that minimizes

min
z̄0,v,w

1

2

{
αt‖z̄0‖2

P 0 +
t−1∑
s=0

αt−s‖v(s)‖2
Q(s) +

τ∑
s=1

αt−s‖w(s)‖2
R(s)

}
(3)

subject to

z+ = f (s, z(s), u(s)) + g(s, z(s), u(s))v(s)
w(s) = y(s)− h(s, z(s), u(s))
z(0) = x̂0 + z̄0
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where τ = t − 1 or τ = t , P 0 ≥ 0, Q(s) > 0, R(s) > 0 and

‖z̄0‖2
P 0 = (z̄0)′P 0z̄0

‖v(s)‖2
Q(s) = v′(s)Q(s)v(s)

‖w(s)‖2
R(s) = w′(s)R(s)w(s)

The control u(s), 0 ≤ s ≤ t − 1 and the observation y(s), 1 ≤ s ≤ τ are
the actual control and measurement sequences and 0 < α ≤ 1 is a forgetting
factor. The smaller the forgetting factor α the more weight is placed on the most
recent observations. Assuming that z(s) is the minimizing state trajectory then the
Minimum Energy Estimation (MEE) is x̂(t|τ ) = z(t).

The heuristic behind MEE is that (3) (or some variant) is the energy in the noise
triple. Nature in her attempt to confuse us chooses the three noises in a parsimonious
fashion consistent with the past controls and past measurements. If the system is
linear and α = 1 then MEE filtering is identical to Kalman filtering provided that
the weights of the norms in (3) are the inverses of covariances of the noises in the
stochastic version. Then the MEE is a Kalman Filter in Innovation form [1].

It has been shown that under suitable conditions the continuous time MEE is
globally convergent [8]. that is, the MEE estimate converges to the state of the
model (1) regardless of the initial conditions of the model and the filter assuming
the driving and observation noises are zero. We conjecture that a similar result holds
in discrete time MEE.

Since we know u(t) we can simplify notation by redefining

f (t, x) = f (t, x, u(t))
g(t, x) = g(t, x, u(t))
h(t, x) = h(t, x, u(t))

The discrete time version π(x, t|τ ) of the Mortensen function is defined by a
family of optimization problems

π(x, t|τ ) = min
z̄0,v,w

1

2

{
αt‖z̄0‖2

P 0 +
t−1∑
s=0

αt−1−s‖v(s)‖2
Q(s) +

τ∑
s=1

αt−s‖w(s)‖2
R(s)

}

subject to

z+ = f (s, z)+ g(s, z)v
w = y − h(s, z)

z(0) = x̂0 + z̄0

z(t) = x
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If x %→ f (t, x) is invertible for every t ≥ 0 then there is at least one noise triple
z̄0, v(·),w(·) that satisfies the constraints. That triple is found by setting v(t) = 0
and mapping the dynamics backward from z(t) = x to find w(·) and z̄0. If the
terminal constraint z(t) = x is not achievable by any noise triple then we set
π(x, t|τ ) =∞.

One can take a dynamic programming approach to computing the Mortensen
function. The prediction step from (t|t) to (t + 1|t) is accomplished by solving a
family of optimization problems indexed by x,

π(x, t + 1|τ ) = min
z,v

(
απ(z, t|τ ) + 1

2
‖v‖2

Q(t)

)
(4)

where the minimum is over all z, v that satisfy the constraint

x = f (s, z)+ g(s, z)v (5)

The (t + 1|t) minimum energy estimate is then

x̂(t + 1|t) = argminxπ(x, t + 1|t) (6)

The assimilation step from (t + 1|t) to (t + 1|t + 1) is

π(x, t + 1|t + 1) = π(x, t + 1|t)+ 1

2
‖y(t + 1)− h(t + 1, x)‖2

R(t+1) (7)

The (t + 1|t + 1) minimum energy estimate is then

x̂(t + 1|t + 1) = argminxπ(x, t + 1|t + 1) (8)

The estimation algorithm proceeds as follows

1. Assume π(x, 0|0) and x̂(0|0) = argminxπ(x, 0|0) are known.
2. Given π(x, t|t) compute π(x, t + 1|t) by solving (4) subject to (5).
3. Solve (6) to find x̂(t + 1|t).
4. Solve (7) to find π(x, t + 1|t + 1).
5. Solve (8) to get x̂(t + 1|t + 1).
6. Increment t by one and go to Step 2.

Steps 3–5 are relatively straightforward but Step 2 is difficult so in the next
section we take a Taylor polynomial approach to it.
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3 Taylor Polynomial Approach

The Taylor polynomial approach to approximating π(x, t + 1|t) starts by assuming
that the Taylor polynomial of π(x, t|t) around x̂(t|t) of degree d + 1 is approxi-
mately known,

π [0:d+1](x, t|t) = π [0](t|t) + 1

2
(x̄(t|t))′P(t|t)x̄(t|t)+ π [3](x̄(t|t), t|t)

+π [4](x̄(t|t), t|t) + · · · + π [d+1](x̄(t|t), t|t)

where x̄(t|t) = x−x̂(t|t) and [k] denotes a homogeneous polynomial term of degree
k. We assume that π [0:d+1](x, t|t) ≥ 0 and define

x̂(t|t) = argminxπ
[0:d+1](x, t|t) (9)

We are assuming that a unique minimum exists, but an interesting question for future
research is what happens otherwise.

From (4) and (9) it is not hard to see that minimum of π [0:d+1](x, t + 1|t) occurs
at z = x̂(t|t), v = 0 and

x̂(t + 1|t) = f (t, x̂(t|t)) (10)

so we have completed Step 3 before Step 2.
To complete Step 2 we compute an approximation of the Taylor polynomial of

π(x, t + 1|t) around the point x̂(t + 1|t),

π [0:d+1](x, t + 1|t) = π [0](t + 1|t)1

2
(x̄(t + 1|t))′P(t |t)x̄(t + 1|t)+ π [3](x̄(t + 1|t), t |t)

+π [4](x̄(t + 1|t), t |t)+ · · · + π [d+1](x̄(t + 1|t), t |t)

where x̄(t + 1|t) = x − x̂(t + 1|t).
Step 2 is a family of constrained minimization problems indexed by x, so we add

the constraint (5) to the criterion (4) using a Lagrange multiplier λ to get a family
of unconstrained problems,

min
z,v,λ

{
απ(z, t|t)+ 1

2
‖v‖2

Q(t) + λ′(x) (x − f (t, z)− g(t, z)v)
}

(11)

The three minimization variables are functions of x and t , to simplify notation we
only show their dependence on x, z = z(x), v = v(x), λ = λ(x).

To get the first order necessary conditions we set to zero the partials of (11) with
respect to z, v, λ. Setting to zero the partial of (11) with respect to λ yields the
constraint (5).
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Setting to zero the partial of (11) with respect to v yields

0 = v′(x)Q(t)− λ′(x)g(t, z)

Because Q(t) is assumed to be invertible this can be solved for v(x) as a function
of z(x), λ(x)

v(x) = Q−1(t)g′(t, z(x))λ(x) (12)

Then the constraint (5) becomes

x = f (t, z(x))+ g(t, z(x))Q−1(t)g′(t, z(x))λ(x) (13)

Setting to zero the partial of (11) with respect to z yields

0 = α∂π
∂z
(z(x), t|t)− λ′(x)

(
∂f

∂z
(t, z(x))+ ∂

∂z
(g(t, z(x))v(x))

)

Because of (12) this becomes

0 = α∂π
∂z
(z(x), t|t)− λ′(x)∂f

∂z
(t, z(x)) (14)

− ∂

∂z

(
λ′(x)g(t, z(x))Q−1(t)g′(t, z(x))λ(x)

)

At time t for each state x we must solve the two nonlinear equations (13), (14) in
the two unknowns z(x), λ(x). Then (12) yields v(x) and we can compute π(x, t +
1|t) and x̂(t + 1|t) from

π(x, t + 1|t) = απ(z(x), t|t) + 1

2
‖v(x)‖2

Q(t) (15)

x̂(t + 1|t) = argminxπ(x, t + 1|t) (16)

Solving these equations is a daunting task so we turn to a Taylor polynomial
approach. For simplicity of exposition we assume g(t, z) = G(t). The general case
is notationally more complicated but it follows in a similar fashion. To simplify
notation let

Q̄(t) = G(t)Q−1(t)G′(t)

We know that

z(x̂(t + 1|t)) = x̂(t|t), v(x̂(t + 1|t)) = 0, λ(x̂(t + 1|t)) = 0
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Define z̄ = z − x̂(t|t). We expand z̄(x), v(x), λ(x) in Taylor polynomials of
degree d in x̄(t + 1|t) = x − x̂(t + 1|t).

z̄ = Zx̄(t + 1|t)+ z[2](x̄(t + 1|t))+ z[3](x̄(t + 1|t))+ · · · + z[d](x̄(t + 1|t))
v = V x̄(t + 1|t)+ v[2](x̄(t + 1|t))+ v[3](x̄(t + 1|t))+ · · · + v[d](x̄(t + 1|t))
λ = Λx̄(t + 1|t)+ λ[2](x̄(t + 1|t))+ λ[3](x̄(t + 1|t))+ · · · + λ[d](x̄(t + 1|t))

We also expand f (t, z) and π(z, t|t) in Taylor polynomials in z̄ = z− x̂(t|t),

f [0:d](t, z) = f [0](t)+ F(t)z̄ + f [2](t, z̄)+ · · · + f [d](t, z̄)
π [0:d+1](z, t|t) = π [0](t|t) + 1

2
z̄′P(t|t)z̄ + π [3](z̄, t|t)+ · · · + π [d+1](z̄, t|t)

Then the constraint (13) becomes

x̄ = f [0:d](t, z)− f [0](t)+ Q̄(t)λ(x) (17)

and (14) becomes

0 = α∂π
[0:d+1]

∂z
(z, t|t) − λ′(x)∂f

[0:d]

∂z
(t, z) (18)

We collect from these equations the terms linear in x̄ to obtain

x̄ = F(t)Z(t)x̄ + Q̄(t)Λ(t)x̄
0 = αP(t|t)Z(t)x̄ − F ′(t)Λ(t)x̄

These equations must hold for any x̄ so Z(t), Λ(t) satisfy

[
I

0

]
= H(t)

[
Z(t)

Λ(t)

]
(19)

where

H (t) =
[
F(t) Q̄(t)

αP (t|t) −F ′(t)
]

(20)

The solvability of these equations was discussed in [9] where this theorem is proven.

Theorem Suppose that P(0|0) is positive definite and at each t ≥ 0, the pair
F(t),G(t) is stabilizable in the continuous time sense then H (t) given by (20)
is invertible for each t ≥ 0.
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Assuming H (t) is invertible, we collect the second order terms in x̄ from (17)
and (18),

H (t)

[
z[2](t, x̄)
λ[2](t, x̄)

]
= −
[
k[2](t, x̄))
l[2](t, x̄)

]

where

k[2](t, x̄) = f [2](t, Z(t)x̄)

l[2](t, x̄) = α
(
∂π [3]

∂z
(t, Z(t)x̄)

)′
−
(
∂f [2]

∂z
(t, Z(t)x̄)

)′
Λ(t)x̄

Again the solvability of these equations depends on the invertibility of H (t).
The degree three terms in (17) and (18) are

H (t)

[
z[3](t, x̄)
λ[3](t, x̄)

]
= −
[
k[3](t, x̄)
l[3](t, x̄)

]

where

k[3](t, x̄) = f [3](t, Z(t)x̄)+
(
f [2](t, Z(t)x̄ + z[2](t, x̄))

)[3]

l[3](t, x̄) = α
((
∂π [3]

∂z
(t, Z(t)x̄ + z[2](t, x̄)

)[3])′
+ α
(
∂π [4]

∂z
(t, Z(t)x̄)

)′

−
(
∂f [2]

∂z
(t, Z(t)x̄)

)′
λ[2](t, x̄)−

(
∂f [2]

∂z
(t, z[2](t, x̄)

)′
Λ(t)x̄

−
(
∂f [3]

∂z
(t, Z(t)x̄)

)′
Λ(t)x̄

and (·)[d] indicates the degree d terms of the enclosed expression. The higher degree
terms are found in a similar fashion.

Suppose we have found z̄ and λ as polynomials in x̄ to degree d then (12) yields
an expansion of v(x) to degree d in x̄.

We plug this into (15) and assuming π(x, t|t) is of degree d + 1 we obtain an
approximation of the Taylor polynomial of π(x, t + 1|t) to degree d + 1 in x̄ =
x − x̂(t + 1|t)

π [0:d+1](x, t + 1|t) = απ [0:d+1](z[0:d](x), t|t)+ 1

2
‖v[1:d](x)‖2

Q(t)

This completes the Prediction Steps 2 and 3.
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Step 4, the first Assimilation Step, requires the Taylor polynomial of the
measurement function h(t, x) in x̄(t + 1|t) = x − x̂(t + 1|t)

h[0:d](t + 1, x) = h[0](t + 1)+H(t + 1)x̄(t + 1|t)+ h[2](t + 1, x̄(t + 1|t))
+ · · · + h[d](t + 1, x̄(t + 1|t))

The expected value of y(t + 1) is

ŷ(t + 1|t) = h(x̂(t + 1|t)) = h[0](t + 1)

If y(t + 1) is the actual measurement at time t + 1 then the innovation is

ȳ(t + 1|t) = y(t + 1)− h[0](t + 1)

The formula (7) suggests that the Taylor polynomial of π(x, t + 1|t + 1) at
x̂(t + 1|t) to degree d + 1 can be approximated by

π [0:d+1](x, t + 1|t + 1) = π [0:d+1](x, t + 1|t) (21)

+1

2

(
‖y(t + 1)− h[0:d](t + 1, x)‖2

R(t+1)

)[0:d+1]

and then

x̂(t + 1|t + 1) = argminxπ
[0:d+1](x, t + 1|t + 1) (22)

Assuming x̂(t + 1|t + 1) is close to x̂(t + 1|t) it can readily be found by several
iterations of Newton’s method starting at x̂(t + 1|t).

The final assimilation step is to convertπ [0:d+1](x, t+1|t+1) given by (21) from
a polynomial in x̄(t + 1|t) = x − x̂(t + 1|t) to a polynomial in x − x̂(t + 1|t + 1).

4 The Relation Between the MEE and the EKF

In this section we show that the polynomial Minimum Energy estimator described
above reduces to an Extended Kalman Filter when d = 1 and α = 1. In fact this
MEE is the extended version of the so called Information Filter, see [1, Section 6.3].
Recall the EKF for (2) where we assume that v and w are zero mean independent
white Gaussian sequences of covariances Q(t) and R(t) and x̄0 is an independent
zero mean Gaussian vector of covariance P0. As before for simplicity of notation
we assume that g(t, x) = G(t).
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Let ξ̂ (t|τ ) be the EKF estimate of x(t) and P(t|τ ) be its approximate error
covariance where τ = t − 1 or τ = t . Given ξ̂ (t|t) and P(t|t) the Prediction Step
of the EKF is

ξ̂ (t + 1|t) = f (t, ξ̂ (t|t)) (23)

P(t + 1|t) = F(t)P(t|t)F ′(t)+G(t)Q(t)G′(t) (24)

where F(t) = ∂f
∂x
(t, ξ̂ (t|t)). We immediately recognize that (10) and (23) are the

same state prediction formula.
Recall that Z and Λ are the solution of (19) or equivalently

I = F(t)Z + Q̄(t)Λ
0 = P(t|t)Z − F ′(t)Λ

Applying these to (15) yields

P(t + 1|t) = Z′P(t|t)Z +Λ′Q̄(t)Λ

= Z′F ′(t)Λ+Λ′Q̄(t)Λ

= (I −Λ′Q̄(t))Λ+Λ′Q̄Λ

= Λ
By direct calculation (19) also implies

Z = P−1(t|t)F ′(t)Λ
I =
(
F(t)P−1(t|t)F ′(t)+ Q̄(t)

)
Λ

so

P−1(t + 1|t) = Λ−1 = F(t)P−1(t|t)F ′(t)+ Q̄(t)
By comparing this with (24) we conclude that P(t + 1|t) = P−1(t + 1|t) so the
Prediction Steps of the EKF and the MEE are identical.

The Assimilation Step of the EKF is

x̂(t|t) = x̂(t|t − 1)+K(t)(y(t)− h[0](t))
P(t|t) = (I −K(t)H(t))P(t|t − t)

where

h[0](t) = h(t, x̂(t|t − 1))

H(t) = ∂h

∂x
(t, x̂(t|t − 1))
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and the Kalman gain is

K(t) = P(t|t − 1)H ′(t)
(
R(t)+H(t)P(t|t − 1)H ′(t)

)−1

The Assimilation Step of the MEE is given by (21) and (22). When d = 1 (21)
reduces to

π [0:2](x, t|t) = π [0](t|t − 1)+ 1

2
(x − x̂(t|t − 1))′P(t|t − 1)(x − x̂(t|t − 1))

+1

2
‖y(t)− h[0](t)−H(t) (x − x̂(t|t − 1)

) ‖2
R(t)

= π [0](t|t − 1)+ 1

2
‖y(t)− h[0](t)‖2

R(t)

−(y(t)− h[0](t))′R(t)H(t) (x − x̂(t|t − 1)
)

1

2
(x − x̂(t|t − 1))′

(
P(t|t − 1)+H ′(t)R(t)H(t)

)
(x − x̂(t|t − 1))

Since π [0:2](x, t|t) is quadratic its minimum is found by setting to zero its first
derivative with respect to x,

x̂(t|t) = x̂(t|t − 1)

+ (P(t|t − 1)+H ′(t)R(t)H(t)
)−1

H ′(t)R(t)(y(t) − h[0](t))

so the MEE gain is

K(t) = (P(t|t − 1)+H ′(t)R(t)H(t)
)−1

H ′(t)R(t)

Recall the matrix inversion lemma

(A+ BDC)−1 = A−1 − A−1B
(
D−1 + CA−1B

)−1
CA−1

This implies that

(
P(t|t − 1)+H(t)R(t)H ′(t)

)−1 = P−1(t|t − 1)− P−1(t|t − 1)H(t)

×
(
H ′(t)P−1(t|t − 1)H(t)+ R−1(t)

)−1
H ′(t)P−1(t|t − 1)

We multiply by H(t)R(t) on the right to get

(
P(t|t − 1)+H(t)R(t)H ′(t)

)−1
H(t)R(t) = P−1(t|t − 1)− P−1(t|t − 1)H(t)

×
(
H ′(t)P−1(t|t − 1)H(t)+ R−1(t)

)−1
H ′(t)P−1(t|t − 1)H(t)R(t)
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Now

H ′(t)P−1(t|t − 1)H(t)R(t) =
(
H ′(t)P−1(t|t − 1)H(t)

)
R−1(t)− I

so

K(t) = (P(t|t − 1)+H(t)R(t)H ′(t)
)−1

H ′(t)R(t)

= P−1(t|t − 1)H(t)
(
H ′(t)P−1(t|t − 1)H(t)+ R−1(t)

)−1

= P(t|t − 1)H ′(t)
(
R(t)+H(t)P(t|t − 1)H ′(t)

)−1

= K(t)

5 Example: Lorenz Attractor

We apply the degree one (EKF) and degree three MEE filters to a difficult problem,
estimating the state of the chaotic three dimensional Lorenz Attractor from a one
dimensional measurement.

The dynamics of the Lorenz Attractor is given by the differential equation

ẋ1 = σ(x2 − x1)

ẋ2 = x1(ρ − x3 − x2)

ẋ3 = x1x2 − βx3

with the standard parameter values

σ = 10, ρ = 28, β = 8

3

It is known that system exhibits chaotic behaviour as seen Fig. 1 which was
generated by Matlab’s ode45.m using its default settings.

We approximate this continuous time dynamics by an Euler discretization with a
time step of dt = 0.01. The discrete time dynamics also exhibits chaotic behaviour
as seen Fig. 2.

But the Euler time step of dt = 0.01 is too large for the discrete time dynamics
to accurately approximate the continuous time dynamics. Figure 3 shows the
difference between the continuous time and discrete time trajectories started at the
same initial condition x0 = (0.1, 0.1, 0.1)′. Notice the scale of the differences, they
are of the same order of magnitude as size of the attractors themselves.



178 A. J. Krener

Fig. 1 Typical trajectory of continuous time Lorenz Attractor

Fig. 2 Typical trajectory of discrete time Lorenz Attractor
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Fig. 3 Difference between continuous and discrete time Lorenz Attractors

We define the observation by

y(t) = x1(t)+ x2(t)+ 0.1w(t)

where t = 0 : dt : T and T = 50. The coefficient of the measurement noise was
chosen to be 0.1 = dt1/2 so that total variance of the noise in one unit of time is
one.

We shall use the discrete time dynamics to design the degree one and three MEEs
but we shall simulate these estimators using the actual measurements from the
continuous time system. This mismatch between continuous and discrete in effect
introduces a considerable amount of driving noise to the estimation problems.

The parameters of the filters are

G = I 3×3

Q = dtI 3×3 = 0.01I 3×3

R = dt = 0.01

α = 0.999

The discount factor α was chosen because 0.999100 ≈ 0.9. This means that the filter
gently forgets the past observations.
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Fig. 4 x1(t) (blue) and x̃1(t |t) (red)

Figures 4, 5, and 6 shows the trajectories xi(t) of the continuous time dynamics
and the corresponding errors x̃i(t) = xi(t)− x̂i(t|t) of the degree three MEE which
was designed based on the discrete time dynamics.

As one can see the degree three MEE does quite well. The immediate question
is whether the degree one MEE (EKF) performs similarly. Figure 7 shows the norm
of the error of the degree three MEE minus the norm of the error of the degree
one MEE. Occasionally the degree three error norm is larger but most of the time
the degree three error norm is smaller. The average error norm of the degree one
MEE is 0.4828 while the average error norm of the degree three MEE is 0.2946, a
difference of 0.1882. This is about a 40% error reduction. So the degree three MEE
substantially outperforms the degree one MEE.

6 Conclusion

We have presented the Minimum Energy Estimator for discrete time systems and
its Taylor polynomial approximation. The degree one and degree three MEEs were
applied to estimating the state of the three dimensional Lorenz Attractor from a one
dimensional measurement. Both performed reasonably well but the degree three
MEE substantially outperformed the degree one MEE.



Minimum Energy Estimation Applied to the Lorenz Attractor 181

Fig. 5 x2(t) (blue) and x̃3(t |t) (red)

Fig. 6 x3(t) (blue) and x̃3(t |t) (red)



182 A. J. Krener

Fig. 7 Degree three error minus degree one error
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Abstract We consider fully nonlinear Hamilton-Jacobi-Bellman equations associ-
ated to diffusion control problems involving a finite set-valued (or switching) control
and possibly a continuum-valued control. In previous works (Akian and Fodjo, A
probabilistic max-plus numerical method for solving stochastic control problems.
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Keywords Stochastic control · Hamilton-Jacobi-Bellman equations · Max-plus
numerical methods · Tropical methods · Probabilistic schemes

1 Introduction

We consider a finite horizon diffusion control problem on R
d involving at the same

time a “discrete” control taking its values in a finite set M, and a “continuum”
control taking its values in some subset U of a finite dimensional space R

p (for
instance a convex set with nonempty interior), which we next describe.

Let T be the horizon. The state ξs ∈ R
d at time s ∈ [0, T ] satisfies the stochastic

differential equation

dξs = f μs (ξs, us)ds + σμs (ξs, us)dWs , (1)

where (Ws)s≥0 is a d-dimensional Brownian motion on a filtered probability
space (Ω,F, (Fs )0≤s≤T , P ). The control processes μ := (μs)0≤s≤T and u :=
(us)0≤s≤T take their values in the sets M and U respectively and they are admissible
if they are progressively measurable with respect to the filtration (Fs )0≤s≤T . We
assume that, for all m ∈ M, the maps f m : Rd × U → R

d and σm : Rd × U →
R
d×d are continuous and satisfy properties implying the existence of the process
(ξs)0≤s≤T for any admissible control processes μ and u.

Given an initial time t ∈ [0, T ], the control problem consists in maximizing the
following payoff:

J (t, x, μ, u) :=E
[∫ T

t

e−
∫ s
t δ

μτ (ξτ ,uτ )dτ �μs (ξs , us)ds

+e−
∫ T
t δ

μτ (ξτ ,uτ )dτψ(ξT ) | ξt = x
]
,

where, for all m ∈ M, �m : Rd × U → R, δm : Rd ×U → R, and ψ : Rd → R

are given continuous maps. We then define the value function of the problem as the
optimal payoff:

v(t, x) = sup
μ,u
J (t, x, μ, u) ,

where the maximization holds over all admissible control processes μ and u.
Let Sd denotes the set of symmetric d × d matrices and let us denote by ≤ the

Loewner order on Sd (A ≤ B if B − A is nonnegative). The Hamiltonian H :
R
d ×R×R

d × Sd → R of the above control problem is defined as:

H (x, r, p, Γ ) := max
m∈M

H m(x, r, p, Γ ) , (2a)
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with

H m(x, r, p, Γ ) :=max
u∈U

H m,u(x, r, p, Γ ) , (2b)

H m,u(x, r, p, Γ ) :=1

2
tr
(
σm(x, u)σm(x, u)T Γ

)
+ fm(x, u) · p

− δm(x, u)r + �m(x, u) . (2c)

Under suitable assumptions the value function v : [0, T ] × R
d → R is the

unique (continuous) viscosity solution of the following Hamilton-Jacobi-Bellman
equation

− ∂v

∂t
−H (x, v(t, x),Dv(t, x),D2v(t, x)) = 0, x ∈ R

d, t ∈ [0, T ), (3a)

v(T , x) = ψ(x), x ∈ R
d , (3b)

satisfying also some growth condition at infinity (in space). On may for instance
assume the boundedness and Lipschitz continuity of the maps σm, f m, δm, �m,ψ ,
and the compactness of U, and look for a bounded solution, see for instance [8].
Other possible assumptions, which are satisfied in the case of Hamiltonians H m

associated to linear quadratic problems, are the linear or quadratic growth of the
above maps, with their local Lipschitz continuity with a linearly growing Lipschitz
constant, together with some additional condition like small horizon T or strong
stability, see for instance [6, 13].

In [7], Fahim, Touzi and Warin proposed a probabilistic numerical method
to solve such fully nonlinear partial differential equations (3), inspired by their
backward stochastic differential equation interpretation given by Cheridito, Soner,
Touzi and Victoir in [5]. This method consists in two steps, the first one being a
time discretization of the partial differential equation using the Euler discretization
of the stochastic differential equation of an uncontrolled diffusion (thus different
from the controlled one). The second step of the method is based on the simulation
of the discretized diffusion and linear regression estimations which can be seen as
an alternative to a space discretization.

In [10, 11, 14], McEneaney, Kaise and Han proposed an idempotent numerical
method which works at least when the Hamiltonians with fixed discrete control,
H m, correspond to linear quadratic control problems. This method is based on
the distributivity of the (usual) addition operation over the supremum (or infimum)
operation, and on a property of invariance of the set of quadratic forms. It computes
in a backward manner the value function v(t, ·) at time t as a supremum of quadratic
forms. However, as t decreases, that is as the algorithm advances, the number of
quadratic forms generated by the method increases exponentially (and even become
infinite if the Brownian is not discretized in space) and some pruning is necessary
to reduce the complexity of the algorithm.
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In [1], we introduced an algorithm combining the two above methods at least
in their spirit. The algorithm applies the first step (the time discretization) of
the method of [7] to the HJB equations obtained when the discrete control is
fixed. Then using the simulation of as many uncontrolled stochastic processes as
discrete controls, it applies a max-plus type space discretization in the spirit of the
method of [10, 11, 14]. Then, without any pruning, the number of quadratic forms
representing the value function is bounded by the sampling size [1]. Hence, the
complexity of the algorithm is bounded polynomially in the number of discretization
time steps and the sampling size, see [1].

The convergence of the probabilistic max-plus algorithm proposed in [1] is
based, as for the one of [7], on the monotonicity of the time discretization scheme.
In particular, see [7], this monotonicity allows one to apply the theorem of Barles
and Souganidis [4]. However, for this monotonicity to hold, critical constraints are
imposed on the Hamiltonians: the diffusion matrices σm(x, u)σm(x, u)T need at
the same time to be bounded from below (with respect to the Loewner order) by
a symmetric positive definite matrix a and bounded from above by (1 + 2/d)a.
Such a constraint is restrictive, in particular it may not hold even when the matrices
σm(x, u) do not depend on x and u but take different values for m ∈ M. In [9],
Guo, Zhang and Zhuo proposed a monotone scheme exploiting the diagonal part of
the diffusion matrices and combining a usual finite difference scheme to the scheme
of [7]. This scheme can be applied in more general situations than the one of [7], but
still does not work for general control problems. In [2], we proposed a new proba-
bilistic discretization scheme of the second order derivatives which allowed us to ob-
tain the monotonicity of the time discretization of HJB equations (3) with bounded
coefficients and an ellipticity condition. Indeed, the monotonicity holds when the
first order terms of the HJB equation are dominated by the second order ones.

Here, we propose a new probabilistic scheme for the first order derivatives which
is in the spirit of the upwind discretization used by Kushner for optimal control
problems, see for instance [12]. This allows one to solve also degenerate equations
or to use time discretizations based on the simulation of a diffusion with same
variance as the controlled process.

As soon as the convergence of the algorithm holds, one may expect to obtain
estimates on the error leading to bounds on the complexity as a function of the error.
Both depend on the error of the time discretization on the one hand, and the error
of the “space discretization” on the other hand. We shall only study here the error
of the time discretization, for which we obtain error estimates similar to the ones
in [7], using the results of Barles and Jakobsen [3]. We shall also show how to adapt
the method of [1, 2] with the new time discretization scheme.

The paper is organized as follows. In Sect. 2, we recall the scheme of [7]. Then,
monotone probabilistic discretizations of second order and first order derivatives are
presented in Sect. 3, with error estimates for regular functions. These discretizations
and error estimates are applied to Hamilton-Jacobi-equations in Sect. 4, for which
the error on a bounded Lipschitz solution is obtained by using the results of Barles
and Jakobsen [3]. In Sect. 5, we recall the algorithm of [1, 2] and show how it can
be combined with the scheme of Sect. 4.
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2 The Probabilistic Time Discretization of Fahim, Touzi
and Warin

Let us first recall the first step of the probabilistic numerical scheme proposed by
Fahim, Touzi and Warin in [7], which can be viewed as a time discretization.

Let h be a time discretization step such that T/h is an integer. We denote by
Th = {0, h, 2h, . . . , T − h} and Th = {0, h, 2h, . . . , T } the set of discretization
times of [0, T ) and [0, T ] respectively. Let H be any Hamiltonian of the form (2).
Let us decompose H as the sum of the (linear) generator L of a diffusion (with no
control) and of a nonlinear elliptic Hamiltonian G, that is H = L+ G with

L(x, r, p, Γ ) = L(x, p, Γ ) :=1

2
tr (a(x)Γ )+ f (x) · p ,

a(x) = σ(x)σ (x)T and G such that a(x) is positive definite and ∂Γ G is positive
semidefinite, for all x ∈ R

d , r ∈ R, p ∈ R
d, Γ ∈ Sd . Denote by X̂ the Euler

discretization of the diffusion with generator L:

X̂(t + h) = X̂(t)+ f (X̂(t))h+ σ(X̂(t))(Wt+h −Wt) . (4)

The time discretization of (3) proposed in [7] has the following form:

vh(t, x) = Tt,h(vh(t + h, ·))(x), t ∈ Th , (5)

with

Tt,h(φ)(x) = D 0
t,h(φ)(x)+ hG(x,D 0

t,h(φ)(x),D
1
t,h(φ)(x),D

2
t,h(φ)(x)) , (6)

where, for i = 0, 1, 2, D i
t,h(φ) is the approximation of the ith differential of ehLφ

obtained using the following scheme:

D i
t,h(φ)(x) = E(Diφ(X̂(t + h)) | X̂(t) = x) (7a)

= E(φ(X̂(t + h))P i
t,x,h(Wt+h −Wt) | X̂(t) = x) , (7b)

where, Di denotes the ith differential operator, and for all t, x, h, i, P i
t,x,h is the

polynomial of degree i in the variable w ∈ R
d given by:

P 0
t,x,h(w) = 1 , (8a)

P 1
t,x,h(w) = (σ (x)T )−1h−1w , (8b)

P 2
t,x,h(w) = (σ (x)T )−1h−2(wwT − hI)(σ (x))−1 , (8c)
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where I is the d × d identity matrix. Note that the second equality in (7) holds for
all φ with exponential growth [7, Lemma 2.1].

In [7], the convergence of the time discretization scheme (5) is proved by using
the theorem of Barles and Souganidis of [4], under the above assumptions together
with the critical assumption that ∂Γ G is lower bounded by some positive definite
matrix (for all x ∈ R

d , r ∈ R, p ∈ R
d, Γ ∈ Sd ) and that tr(a(x)−1∂Γ G) ≤ 1.

Indeed, let us say that an operator T between any partially ordered sets F and
F′ of real valued functions (for instance the set of bounded functions from some set
Ω to R, or Rn) is L-almost monotone, for some constant L ≥ 0, if

φ,ψ ∈ F, φ ≤ ψ ,⇒ T (φ) ≤ T (ψ)+ L sup(ψ − φ) , (9)

and that it is monotone, when this holds for L = 0.
The above conditions together with the boundedness of ∂pG are used to show

(in Lemma 3.12 and 3.14 of [7]) that the operator Tt,h is a Ch-almost monotone
operator over the set of Lipschitz continuous functions from R

d to R. Then,
this property, together with other technical assumptions, are used to obtain the
assumptions of the theorem of Barles and Souganidis of [4], and also estimates
in the same spirit as in [3].

In [1], we proposed to bypass the critical constraint, by assuming that the
Hamiltonians H m (but not necessarily H) satisfy the critical constraint, and
applying the above scheme to the Hamiltonians H m.

In [2], we proposed an approximation of E(D2φ(X̂(t + h)) | X̂(t) = x) or
D2φ(x) that we recall in the next section. It is expressed as a conditional expectation
as in (7b) but depend on the derivatives of G with respect to Γ at the given
point, via the matrices σm(x, u) of the control problem. Below, we also propose
an approximation of E(Dφ(X̂(t + h)) | X̂(t) = x) or Dφ(x) which is monotone
in itself and thus allows one to consider the case where the derivatives of G with
respect to Γ are zero or degenerate nonnegative matrices.

3 Monotone Probabilistic Approximation of First
and Second Order Derivatives and Their Estimates

We first describe the approximation of the second order derivatives proposed in [2].
Consider any matrix Σ ∈ R

d×� with � ∈ N and let us denote by Σ.j , j = 1, . . . �,
its columns. We denote by C k([0, T ] ×R

d ) or simply C k the set of functions from
[0, T ] × R

d to R with continuous partial derivatives up to order k in t and x, and
by C kb([0, T ] × R

d ) or C kb the subset of functions with bounded such derivatives.
Then, for any v ∈ C 2, we have

1

2
tr(σ (x)ΣΣT σT (x)D2v(t, x)) = 1

2

�∑
j=1

ΣT·j σ T (x)D2v(t, x)σ (x)Σ·j . (10)



Probabilistic Max-Plus Schemes for Solving Hamilton-Jacobi-Bellman Equations 189

For any integer k, consider the polynomial:

P 2
Σ,k(w) =

�∑
j=1

‖Σ.j‖2
2

⎛
⎝ck
(
[ΣTw]j
‖Σ.j‖2

)4k+2

− dk
⎞
⎠ , (11a)

with

ck := 1

(4k + 2)E
[
N4k+2

] , dk := 1

4k + 2
, (11b)

where N is a standard normal random variable, and where we use the convention
that the j th term of the sum is zero when ‖Σ.j‖2 = 0. This is the sum of the same
expression defined for each columnΣ.j instead of Σ .

Let v ∈ C 4
b, and X̂ as in (4), then, the following expression is an approximation

of (10) with an error in O(h) uniform in t and x [2, Th. 1.3.1]:

h−1
E

[
v(t + h, X̂(t + h))P 2

Σ,k(h
−1/2(Wt+h −Wt)) | X̂(t) = x

]
. (12)

In order to obtain error estimates, we need the more precise following result. For
p and q two integers and φ a function from [0, T ]×R

d to R with partial derivatives
up to order p in t and q in x, we introduce the following notation:

|∂pt Dqφ| = sup
(t,x)∈[0,T ]×Rd
(βi)i∈Nd ,∑i βi=q

∣∣∣∣∣ ∂i+qφ
∂tp∂x

β1
1 . . . ∂x

βd
d

(t, x)

∣∣∣∣∣
In the sequel, ‖ · ‖ will denote any norm on R

d or on R
d×d . Also [x]i will denote

the ith coordinate of any vector x ∈ R
d , and [A]ij will denote the (i, j) entry of any

matrix A ∈ R
d×�.

Theorem 1 Let X̂ be as in (4), and denoteWt
h = Wt+h −Wt . Consider any matrix

Σ ∈ R
d×� with � ≤ d . Assume that f and σ are bounded by some constant C

uniformly in (t and) x, and letM be an upper bound of ‖ΣΣT ‖. Then, there exists
K = K(C,M) > 0 such that, for all v ∈ C 4

b([0, T ] × R
d), we have, for all

(t, x) ∈ Th × R
d ,∣∣∣∣h−1

E

[
v(t + h, X̂(t + h))P 2

Σ,k(h
−1/2Wt

h) | X̂(t) = x
]

− 1

2
tr(σ (x)ΣΣT σT (x)D2v(t, x))

∣∣∣∣
≤ K(1 +√

h)4
[
h(|∂1

t D
2v| + |∂0

t D
3v| + |∂0

t D
4v|)+

h
√
h|∂1

t D
3v| + h2|∂2

t D
2v| + h2

√
h|∂3

t D
1v| + h3|∂4

t D
0v|
]
.
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Sketch of Proof The proof follows from the following lemma and the property that
[h−1/2Wt

h]i are independent standard normal variables and that normal random
variables have all their moments finite. � 
Lemma 1 Let v,Wt

h andΣ be as in Theorem 1. For all (t, x) ∈ Th ×R
d , we have

h−1
E

[
v(t + h, X̂(t + h))P 2

Σ,k(h
−1/2Wt

h) | X̂(t) = x
]

= 1

2
tr(σ (x)ΣΣT σT (x)D2v(t, x))+ h

2
tr(σ (x)ΣΣT σT (x)

∂D2v(t, x)

∂t
)

+ h

2

∑
i,j,p

(
∂3v

∂xi∂xj∂xp
(t, x)[σ(x)ΣΣT σT (x)]ij [f (x)]p

)

+ E

[
M4(v, h, t, x,Wt

h)P
2
Σ,k(h

−1/2Wt
h)
]
, (13)

where, for each h, t, x,M4 is a continuous function ofWt
h such that:

M4(v, h, t, x,W t
h) ≤

h3

24
|∂

4v

∂t4
|

+ h2

6

d∑
i=1

| ∂
4v

∂t3∂xi
| |[f (x)h+ σ(x)Wt

h]i |

+ h

4

∑
i,j

| ∂4v

∂t2∂xi∂xj
| |[f (x)h+ σ(x)Wt

h]i[f (x)h+ σ(x)Wt
h]j |

+ 1

6

∑
i,j,p

| ∂4v

∂t∂xi∂xj ∂xp
| |[f (x)h+ σ (x)Wt

h]i[f (x)h+ σ(x)Wt
h]j

[f (x)h+ σ(x)Wt
h]p|

+ 1

24h

∑
i,j,p,q

| ∂4v

∂xi∂xj ∂xp∂xq
| |[f (x)h+ σ(x)Wt

h]i

[f (x)h+ σ(x)Wt
h]j [f (x)h+ σ(x)Wt

h]p[f (x)h+ σ(x)Wt
h]q | .

where | ∂p+qv
∂tp∂xi1 ··· ∂xiq | is any bound of the corresponding derivative in the segment

between (t, x) and (t + h, x + f (x)h+ σ(x)Wt
h) and is thus bounded by |∂pt Dqv|.

Sketch of Proof Applying at the point (t + h, X̂(t + h)) a Taylor expansion of v
around (t, x) to order 3, and denoting by M4 the rest of this expansion, we get
that M4 is continuous with respect to (t + h, X̂(t + h)), as the difference of two
continuous functions, and thus can be seen as a function of (h, t, x,Wt

h) that is
continuous with respect toWt

h. Moreover, it satisfies the bound stated in the lemma.
For any fixed (t, x), the above Taylor expansion is a polynomial of degree 3 in the
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variables h and [f (x)h+σ (x)Wt
h]i . One then need to compute the expectation of the

product of any monomial in these variables with h−1P 2
Σ,k(h

−1/2Wt
h). Following

the arguments used in the sketch of proof of [2, Theorem 1.3.1], it is sufficient
to consider the case when � = 1 (by using the sum expression of P 2

Σ,k) and

Σ is the unit vector (1, 0, . . . , 0)T (by considering a scaling and a change of
variable by a unitary matrix the first column of which is proportional to Σ , since
the property that a vector has independent standard normal random coordinates is
invariant by any unitary change of variable). Since h−1/2Wt

h is a d-dimensional
vector with independent standard normal random coordinates, P 2

Σ,k(h
−1/2Wt

h) =
ck(([h−1/2Wt

h]1)4k+2−E([h−1/2Wt
h]4k+2

1 )) has zero expectation and after multipli-
cation with any monomial in Wt

h with odd total degree, or with odd degree in one
of the variables [Wt

h]i , its expectation is again zero. This eliminates all the terms
of the Taylor expansion except the ones which involve monomials with degree 2
in the [σ(x)Wt

h]i . These terms come from monomials with degree 2 or 3 in the
[f (x)h+ σ (x)Wt

h]i and lead to the three first terms of the sum in (13). � 
Let us also introduce the following approximation of the first order derivatives.

For any vector g ∈ R
d , consider the piecewise linear function P 1

g on R
d :

P 1
g(w) =2(g+ ·w+ + g− · w−) , (14)

where for any vector μ ∈ R
d , μ+, μ− ∈ R

d are defined such that [μ+]i =
max([μ]i, 0), [μ−]i = −min([μ]i , 0). Note that P 1

g is nonnegative. We shall
show that

E

[
(v(t + h, X̂(t + h))− v(t, x))P 1

g(h
−1Wt

h)
]

(15)

is a monotone approximation of

(σ (x)g) ·Dv(x) .

Before this, let us note that if σ(x) is the identity matrix, f (x) = 0 and [h−1/2Wt
h]i

are discretized by independent random variables taking the values 1 and −1 with
probability 1/2, then the discretization D 1

t,h(v(t + h, ·))(x) defined in (7b) is

equivalent to a centered discretization of Dv(x) with space step Δx = h1/2,
whereas (15) corresponds to the Kushner (upwind) discretization [12]

d∑
i=1

[
[gi ]+ v(t + h, x + h

1/2ei )− v(t, x)
h1/2

+ [gi ]− v(t + h, x − h
1/2ei)− v(t, x)
h1/2

]
.

As for Theorem 1, the following result is deduced from Lemma 2 using the
boundedness of the moments of normal random variables.
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Theorem 2 Let X̂ as in (4), and denote Wt
h = Wt+h − Wt . Consider any vector

g ∈ R
d . Assume that f and σ are bounded by some constantC uniformly in (t and)

x, and letM be an upper bound of ‖g‖. Then, there exists K = K(C,M) > 0 such
that, for all v ∈ C 2

b([0, T ] ×R
d ), we have, for all (t, x) ∈ Th × R

d ,

∣∣∣(σ (x)g) ·Dv − E

[
(v(t + h, X̂(t + h))− v(t, x))P 1

g(h
−1Wt

h)
]∣∣∣

≤ K(1 +√
h)2
[√
h(|∂1

t D
0v| + |∂0

t D
1v| + |∂0

t D
2v|)

+h(|∂1
t D

1v|)+ h√h|∂2
t D

0v|
]
.

Lemma 2 Let v,Wt
h and g be as in Theorem 2. For all (t, x) ∈ Th ×R

d , we have

(σ (x)g) ·Dv =E

[
(v(t + h, X̂(t + h))− v(t, x))P 1

g(h
−1Wt

h)
]

− h(∂v
∂t
(t, x)+ f (x) ·Dv(t, x))E[P 1

g(h
−1Wt

h)]

− E[M2(v, h, t, x,Wt
h)P

1
g(h

−1Wt
h)] ,

where, for each h, t, x,M2 is a continuous function ofWt
h such that:

|M2(v, h, t, x,W t
h)| ≤

h2

2
|∂

2v

∂t2
|

+ h
d∑
i=1

| ∂
2v

∂t∂xi
| |[f (x)h+ σ (x)Wt

h]i |

+ 1

2

d∑
i,j=1

| ∂
2v

∂xi∂xj
| |[f (x)h + σ(x)Wt

h]i[f (x)h + σ(x)Wt
h]j | ,

where | ∂p+qv
∂tp∂xi1 ··· ∂xiq | is as in Lemma 1.

Sketch of Proof Similarly to the proof of Lemma 1, applying at the point (t +
h, X̂(t + h)) a Taylor expansion of v around (t, x) to order 1, and denoting by
M2 the rest of this expansion, we get that M2 satisfies the conditions of the

lemma. Then the result follows from E

[
((σ (x)Wt

h) ·Dv)P 1
g(h

−1Wt
h)
]
= E

[
(Wt

h ·
(σ (x)TDv))P 1

g(h
−1Wt

h)
]
= g · (σ (x)TDv) = (σ (x)g) ·Dv. � 

We shall also need the following bound, that can be proved along the same lines as
the previous theorems. We do not give the proof since it can be bypassed by using
alternatively the proof of Lemma 3.22 in [7].



Probabilistic Max-Plus Schemes for Solving Hamilton-Jacobi-Bellman Equations 193

Lemma 3 Let L, X̂ and D 0
t,h be as in Sect. 2. Denote Wt

h = Wt+h −Wt . Assume
that f and σ are bounded by some constant C uniformly in (t and) x. Then, there

exists K = K(C) > 0 such that, for all v ∈ C 4
b([0, T ] × R

d ), we have, for all
(t, x) ∈ Th × R

d ,∣∣∣h−1(D 0
t,h(v(t + h, ·))− v(t, x))− (∂1

t v +L(x, Dv(t, x),D2v(t, x)))
∣∣∣ =∣∣∣h−1(E(v(t + h, X̂(t + h)) | X̂(t) = x) − v(t, x))− (∂1

t v +L(x, Dv(t, x), D2v(t, x)))
∣∣∣

≤ K(1 +√
h)4
[
h(|∂0

t D
2v| + |∂1

t D
1v| + |∂2

t D
0v| + |∂0

t D
3v| + |∂1

t D
2v| + |∂0

t D
4v|)

+ h√h|∂1
t D

3v| + h2(|∂2
t D

2v| + |∂2
t D

1v| + |∂3
t D

0v|)

+ h2√h|∂3
t D

1v| + h3|∂4
t D

0v|
]
.

4 Monotone Probabilistic Schemes for HJB Equations

We shall apply the above approximations of the first and second order derivatives
in (3) in the same way as in [2]. Let us decompose the Hamiltonian H m,u of (2c)
as H m,u = Lm + Gm,u with

Lm(x, p, Γ ) :=1

2
tr
(
am(x)Γ

)+ fm(x) · p ,
and am(x) = σm(x)σm(x)T , and denote by X̂m the Euler discretization of the
diffusion with generator Lm. We may choose the same linear operator Lm for
different values ofm, which is the case in Algorithm 1 below. Assume that am(x) is
positive definite and that am(x) ≤ σm(x, u)σm(x, u)T for all x ∈ R

d, u ∈ U, and
denote by Σm(x, u) any d × � matrix such that

σm(x, u)σm(x, u)T − am(x) = σm(x)Σm(x, u)Σm(x, u)T σm(x)T . (16)

One may use for instance a Cholesky factorization of the matrix
σm(x)−1(σm(x, u)σm(x, u)T − am(x))(σm(x))T )−1 in which zero columns
are eliminated to obtain a rectangular matrixΣm(x, u) of size d × � when the rank
of the initial matrix is equal to � < d .

Denote also by gm(x, u) the d-dimensional vector such that

f m(x, u)− f m(x) = σm(x)gm(x, u) . (17)

Define

Gm1 (x, p, g) := (σm(x)g) · p (18a)

Gm2 (x, Γ,Σ) :=
1

2
tr
(
σm(x)ΣΣT σm(x)T Γ

)
(18b)
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so that

Gm,u(x, r, p, Γ ) = �m(x, u)−δm(x, u)r+Gm1 (x, p, g
m(x, u))+Gm2 (x, Γ,Σ

m(x, u)) .

Applying Theorems 1 and 2 and Lemma 3, we deduce the following result which
shows the consistency of the scheme (19), together with estimates that are necessary
to apply the results of Barles and Jakobsen in [3].

Theorem 3 Let σm, f m, X̂m and Lm be as above. Let us consider the following

“discretization” operators from the set of functions from Th ×R
d to R to the set of

functions from Th ×R
d to R:

D 0
t,h,m(φ)(t, x) := E

[
φ(t + h, X̂m(t + h)) | X̂(t) = x

]
D 1
t,h,m,g(r, φ)(t, x) := E

[
(φ(t + h, X̂m(t + h))− r)P 1

g(h
−1(Wt+h −Wt)) | X̂(t) = x

]
D 2
t,h,m,Σ,k(φ)(t, x) := h−1

E

[
φ(t + h, X̂m(t + h))P 2

Σ,k(h
− 1

2 (Wt+h −Wt)) |X̂m(t) = x
]

with P 1
g andP

2
Σ,k as in (14) and (11) respectively.

Then, consider the following discretization of (3):

K(h, t, x, vh(t, x), vh) = 0, (t, x) ∈ Th ×R
d , (19)

where vh is a map from Th ×R
d to R, andK is defined by:

K(h, t, x, r, φ) = − max
m∈ M, u∈U

{
h−1(D 0

t,h,m(φ)(t, x) − r)

+ �m(x, u) − δm(x, u)r + D 1
t,h,m,gm(x,u)(r, φ)(t, x)+ D 2

t,h,m,Σm(x,u),k(φ)(t, x)
}
.

Assume that σm, fm, gm and Σm are bounded maps (in x and u). Then, there

exists K depending on these bounds, such that, for any 0 < ε ≤ 1, K̃ and v ∈ C∞
b

satisfying

|∂pt Dqv| ≤ K̃ε1−2p−q for all p, q ∈ N , (20)

we have,

|K(h, t, x, v(t, x), v)+ ∂v
∂t
(t, x)+H (x, v(t, x),Dv(t, x),D2v(t, x))| ≤ E(K̃, h, ε) ,

for all t ∈ Th and x ∈ R
d , with

E(K̃, h, ε)

= KK̃
(
hε−3(1 +√

h)4(1 +√
hε−1)4 +√

hε−1(1 +√
h)2(1 +√

hε−1)2
)
.
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Sketch of Proof Whenm and u are frozen, the expression of K(h, t, x, v(t, x), v)+
∂v
∂t
(t, x) + H (x, v(t, x),Dv(t, x),D2v(t, x)) is the sum of three terms, which

are precisely the ones that are bounded in Theorems 1 and 2 and Lemma 3,
respectively. Using that the difference of maxima of two functions is less or equal
to the maximum of the difference of these functions, and that the bounds involved
in Theorems 1 and 2 and Lemma 3 can be taken uniform in m and u, since σm,
fm, gm and Σm are bounded maps (in x and u), we get a similar bound for the true

expression of K(h, t, x, v(t, x), v)+ ∂v
∂t
(t, x)+H (x, v(t, x),Dv(t, x),D2v(t, x)).

Then using the assumption (20) on v, we deduce the result of the theorem. � 
Lemma 4 Denote

T Nt,h,m,u(φ)(x) =D 0
t,h,m(φ)(t, x)+ h

{
�m(x, u)

+D 1
t,h,m,gm(x,u)(0, φ)(t, x)+D 2

t,h,m,Σm(x,u),k(φ)(t, x)
}

T Dt,h,m,u(x) =1 + hδm(x, u)+ hE
[
P 1

gm(x,u)(h
−1(Wt+h −Wt))

]
.

If δm ≥ 0, or if δm is lower bounded and h is small enough, then T Dt,h,m,u(x) ≥ 1/2

for all x ∈ R
d and we can define Tt,h as:

Tt,h(φ)(x) = sup
m∈ M, u∈U

T Nt,h,m,u(φ)(x)

T Dt,h,m,u(x)
. (21)

Moreover, any solution vh of the discretized equation (19), if it exists, also satisfies
the iterative equation (5) and is thus unique.

Conversely, if for all t, x, there exists a constant Ct,x > 0, such that the
supremum in (21) is the same as the supremum restricted to the actions m,u such
that T Dt,h,m,u(x) ≤ Ct,x , then the solution of the iterative equation (5) is the unique
solution of the discretized equation (19).

The latter assumption holds in particular if δm is upper bounded and gm is bounded
with respect to u, in which case Ct,x = 1 + O(√h). It also holds when �m is
quadratic and strictly concave in u and all other functions gm, σm and δm are linearly
growing in u.

Proof Since P 1
gm(x,u) is nonnegative, we have T Dt,h,m,u(x) ≥ 1−Chwhere−C is a

lower bound of δm. Then, for h small enough this is ≥ 1/2, and Tt,h is well defined.
Using the definitions of the lemma, the operatorK of Theorem 3 can be rewritten as

K(h, t, x, r, φ) = −h−1 max
m∈ M, u∈U

(
T Nt,h,m,u(φ(t + h, ·))(x)− T Dt,h,m,u(x)r

)
.

(22)
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Assume first that K(h, t, x, r, φ) = 0 for some h, t, x, r, φ, and denote φ+h = φ(t+
h, ·). This implies that T Nt,h,m,u(φ+h)(x) − rT Dt,h,m,u(x) ≤ 0 for all m ∈ M, u ∈
U, hence r ≥ T Nt,h,m,u(φ+h)(x)/T Dt,h,m,u(x) for all m ∈ M, u ∈ U. Taking the
maximum, we deduce that r ≥ Tt,h(φ+h)(x). Moreover, for all ε > 0, there existsm
and u such that T Nt,h,m,u(φ+h)(x)− rT Dt,h,m,u(x) ≥ −ε and since T Dt,h,m,u(x) ≥ 1/2,

we deduce that T Nt,h,m,u(φ+h)(x)/T Dt,h,m,u(x) ≥ r−2ε, hence Tt,h(φ+h)(x) ≥ r−2ε.
Since the latter inequality holds for all ε > 0, this shows that r = Tt,h(φ+h)(x) and
so we proved that K(h, t, x, r, φ) = 0 implies r = Tt,h(φ+h)(x). Applying this
implication to a solution vh of (19), we obtain the first assertion of the lemma.

Using the same arguments as above, and using that one can restrict the set of
actionsm,u so that T Dt,h,m,u(x) is bounded above, we obtain the reverse implication:
r = Tt,h(φ+h)(x) implies K(h, t, x, r, φ) = 0. Applying this implication to the
solution vh to the iterative equation (5), we obtain the second assertion of the lemma.

� 
Remark 1 Recall that in [2], we proposed the following similar but different
operator

T̃t,h(φ)(x) = max
m∈ M, u∈U T̃t,h,m,u(φ)(x) (23a)

T̃t,h,m,u(φ)(x) =D 0
t,h,m(φ)(t, x)(1 − δm(x, u)h)+ h

{
�m(x, u) (23b)

+ D̃
1
t,h,m,gm(x,u)(φ)(t, x) +D 2

t,h,m,Σm(x,u),k(φ)(t, x)
}}
, (23c)

with

D̃
1
t,h,m,g(φ)(t, x) := E

[
φ(t + h, X̂m(t + h))g · (h−1(Wt+h −Wt)) | X̂(t) = x

]
.

This operator coincides with the one of Lemma 4 when δm(x, u) and gm(x, u) are
zero. It coincides with the operator (6) proposed in [7], when k = 0, and Lm = L
does not depend on m, see [2]. Note that when δm(x, u) �= 0, and gm(x, u) is zero,
one need to replace −δm(x, u)r by −δm(x, u)D 0

t,h,m(φ)(t, x) in the expression of
K in order to recover the operators of [7] and [2]. When the sign of δm is not fixed
or δm is not lower bounded, one can replace −δm(x, u)r by

−δm(x, u)+r + δm(x, u)−D 0
t,h,m(φ)(t, x)

in the expression of K so that in all cases, any solution of the discretized
equation (19) satisfies the iterative equation (5) with Tt,h defined by (21) and

T Nt,h,m,u(φ)(x) =D 0
t,h,m(φ)(t, x)+ h

{
�m(x, u)+ δm(x, u)−D 0

t,h,m(φ)(t, x)

+D 1
t,h,m,gm(x,u)(0, φ)(t, x)+D 2

t,h,m,Σm(x,u),k(φ)(t, x)
}}

T Dt,h,m,u(x) =1 + hδm(x, u)+ + hE
[
P 1

gm(x,u)(h
−1(Wt+h −Wt))

]
.
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In [2, Theorem 1.3.3], we proved that the operator Tt,h is monotone for h
small enough over the set of bounded continuous functions R

d → R, under the
assumption that ā < 4k + 2 with ā an upper bound of tr(Σm(x, u)Σm(x, u)T )
(for all x and u) and that δm is upper bounded, and that there exists a bounded
map g̃m such that gm(x, u) = Σm(x, u)g̃m(x, u). This was already a generalization
of [7, Lemma 3.12], since the latter corresponds to the case where k = 0. Here, the
boundedness of g̃m will not be needed, so that one can apply the result to degenerate
matrices Σm(x, u)Σm(x, u)T . Also δm need not be upper bounded at this point
because the expression of K uses−δm(x, u)r instead of−δm(x, u)D 0

t,h,m(φ)(t, x).

Theorem 4 Let K be as in Theorem 3. Assume that the map
tr(Σm(x, u)Σm(x, u)T ) is upper bounded in x and u and let ā be an upper
bound. Assume also that δm is lower bounded. Then, for k such that ā ≤ 4k + 2,
K is monotone in the sense of [3]. Also, there exists h0 such that the operator Tt,h
of Lemma 4 is monotone for h ≤ h0 over the set of bounded continuous functions
R
d → R.

Proof Adapting the definition of monotonicity of [3, (S1)] to our setting (backward
equations and a time discretization only), we need to prove that there exists λ,μ ≥
0, h0 > 0 such that if h ≤ h0, v, v′ are bounded continuous functions from Th×R

d

to R such that v ≤ v′ and ψ(t) = eμ(T−t )(a+ b(T − t))+ c with a, b, c ≥ 0, then:

K(h, t, x, r + ψ(t), v + ψ) ≥ K(h, t, x, r, v′)+ b/2− λc in Th ×R
d . (24)

Let us first show the inequality forψ = 0. Using the notations of Lemma 4, we have

T Nt,h,m,u(φ)(x) =h�m(x, u)
+ E

[
φ(X̂m(t + h))P h,m,u,x (h−1/2(Wt+h −Wt)) | X̂m(t) = x

]
,

where

P h,m,u,x(w) =1 + hP 1
gm(x,u)(h

−1/2w)+P 2
Σm(x,u),k(w) .

Since P 1
g ≥ 0 for all g and P 2

Σ ≥ − tr(ΣΣT )
4k+2 for allΣ , we get that P h,m,u,x(w) ≥

1 − ā
4k+2 . Assume now that ā ≤ 4k + 2. Then, P h,m,u,x(w) ≥ 0, so if v ≤ v′,

then T Nt,h,m,u(v(t + h, ·)) ≤ T Nt,h,m,u(v
′(t + h, ·)) and by (22), K(h, t, x, r, v) ≥

K(h, t, x, r, v′).
To show (24), it is now sufficient to show the same inequality for v = v′. We have

K(h, t, x, r + ψ(t), v + ψ)−K(h, t, x, r, v) ≥ − max
m∈ M, u∈U

{
h−1(ψ(t + h)− ψ(t))

− δm(x, u)ψ(t) + (ψ(t + h)− ψ(t))E[P 1
gm(x,u)(h

−1(Wt+h −Wt))]
}
.
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Let us take for λ an upper bound of −δm. From ψ(t + h)−ψ(t) ≤ 0, and P 1
g ≥ 0

for all g, we deduce

K(h, t, x, r + ψ(t), v + ψ)−K(h, t, x, r, v)

≥ −h−1(ψ(t + h)− ψ(t)) − λψ(t)

= beμ(T−t−h) + eμ(T−t )(1 − e
−μh

h
− λ)(a + b(T − t))− λc

≥ b − λc ,

if 1 − e−μh ≥ λh. Taking μ > λ, there exists h0 such that 1 − e−μh ≥ λh for all
h ≤ h0, leading to the previous inequality and so to (24) for v = v′. This shows that
K is monotone in the sense of [3].

Since P 1
g ≥ 0 for all g, and λ ≥ −δm, we get also that T Dt,h,m,u(x) ≥ 1−λh and

so T Dt,h,m,u(x) > 0 for h ≤ h0 if h0 < 1/λ. Since we already proved that T Nt,h,m,u is
monotone, for all m,u, we obtain that the operator Tt,h of Lemma 4 is well defined
and monotone for h ≤ h0 over the set of bounded continuous functions Rd → R.

� 
We shall say that an operator T between any sets F and F′ of partially ordered

sets of real valued functions, which are stable by the addition of a constant function
(identified to a real number), is additively α-subhomogeneous if

λ ∈ R, λ ≥ 0, φ ∈ F ,⇒ T (φ + λ) ≤ T (φ)+ αλ . (25)

Lemma 5 Assume that δm is lower bounded in x and u and let Tt,h be as in
Lemma 4. Then, there exists h0 > 0 such that for h ≤ h0, Tt,h is additively αh-
subhomogeneous over the set of bounded continuous functions Rd → R, for some
constant αh = 1+ Ch with C ≥ 0.

Proof If λ is an upper bound of −δm, take C = 2λ and h0 such that 1−λh0 ≥ 1/2.
� 

With the monotonicity, the αh-subhomogeneity implies the αh-Lipschitz continuity
of the operator, which allows one to show easily the stability as follows, see [2,
Corollary 1.3.5] for the proof.

Corollary 1 Let the assumptions and conclusions of Theorems 3 and 4 hold and
assume also that ψ and �m are bounded. Then, there exists a unique function vh on
Th×R

d satisfying (19) or equivalently (5) with Tt,h as in Lemma 4 and vh(T , x) =
ψ(x) for all x ∈ R

d . Moreover vh is bounded (independently of h).

Note that the assumptions can be summarized in “all the maps ψ , δm, �m, σm, fm,

gm and Σm are bounded”. This implies that f m and σm(σm)T are bounded, and, if
σm is symmetric then σm is also bounded, but we do not need this directly.
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Corollary 2 Let the assumptions and conclusions of Corollary 1 hold. Assume also
that all the maps ψ , δm, �m, σm, f m, gm and Σm are continuous with respect to

x ∈ R
d , uniformly in x and u ∈ U. Then the unique solution vh of (19), with

the initial condition vh(T , x) = ψ(x) for all x ∈ R
d , is uniformly continuous on

Th ×R
d .

Proof Since Th is finite, we just need to show that vh(t, ·) is uniformly continuous
on R

d for all t ∈ Th. Since vh(T , ·) = ψ which is already bounded and uniformly
continuous on R

d , we only need to show that the operator Tt,h of Lemma 4 sends
the set of bounded and uniformly continuous functions on R

d to itself. From the
proof of Corollary 1, it sends bounded functions to bounded functions. So, it is
sufficient to show that T Dt,h,m,u is uniformly continuous, uniformly in u ∈ U and

that T Nt,h,m,u sends bounded uniformly continuous functions on R
d to functions that

are uniformly continuous in x uniformly in u ∈ U. The first property is due to the
uniform continuity of δm and gm uniformly in u ∈ U. For the second one, one uses
that if X̂m(t) = x, then X̂m(t + h) = x + fm(x)h+ σm(x)(Wt+h −Wt) which is
uniformly continuous in x, for all given values ofWt+h −Wt , since σm and f m are
uniformly continuous in x. Hence, when φ is bounded and uniformly continuous
with respect to x, then φ(X̂m(t + h)) is bounded and uniformly continuous with
respect to x, for all given values of Wt+h −Wt . Since all moments of Wt+h −Wt
are finite and the maps �m, gm and Σm are uniformly continuous with respect to
x ∈ R

d , uniformly in u ∈ U, we deduce that T Nt,h,m,u(φ) is uniformly continuous in
x, uniformly in u ∈ U. � 
The previous result shows that the map vh can be extended in a continuous function
over [0, T ] ×R

d . Then, the convergence of the scheme can be obtained as in [2] by
applying the theorem of Barles and Souganidis [4]:

Corollary 3 Let the assumptions of Corollary 2 hold. Assume also that (3) has a
strong uniqueness property for viscosity solutions and let v be its unique viscosity
solution. Let vh be the unique solution of (19), with the initial condition vh(T , x) =
ψ(x) for all x ∈ R

d . Let us extend vh on [0, T ]×R
d as a continuous and piecewise

linear function with respect to t . Then, when h → 0+, vh converges to v locally
uniformly in t ∈ [0, T ] and x ∈ R

d .

To apply the theorem of Barles and Jakobsen [3], we also need the following
regularity result (corresponding to (S2) in [3]) which is comparable to the previous
one.

Lemma 6 Let the assumptions of Corollary 2 hold. Assume also that δm is
bounded. Then, for all continuous and bounded function v onTh×R

d , the function
(t, x) %→ K(h, t, x, v(t, x), v) is bounded and continuous in Th × R

d . Moreover,
the function r %→ K(h, t, x, r, v) is uniformly continuous for bounded r , uniformly
in (t, x) ∈ Th ×R

d .

Proof Using the arguments of the proof of Corollary 2 and the rewriting of K
in (22), one gets that x %→ K(h, t, x, r, v) is continuous in x, uniformly in r
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bounded. Also since δm and gm are bounded, then T Dt,h,m,u is bounded, so r %→
K(h, t, x, r, v) is uniformly continuous in r bounded, uniformly in x ∈ R

d . Also,
since v is bounded and continuous, this implies that x %→ K(h, t, x, v(t, x), v) is
bounded and continuous in R

d . Since Th is a finite set, the assertions of the lemma
follow. � 

We also need the following assumptions which correspond to the assumptions
with same names in [3].

For a function v defined on R
d , |v|0 and |v|1 will denote respectively the norm

on the space of bounded functions (that is the sup-norm) and the norm on the space
of bounded Lipschitz continuous functions on R

d (that is the sup-norm plus the
minimal Lipschitz constant). More generally, for a function defined onQ = [0, T ]×
R
d , |v|0 will denote the sup-norm, while |v|1 will denote a norm on the space of

bounded functions that are Lipschitz continuous with respect to x and 1/2-Hölder
continuous with respect to t:

|v|0 = sup
(t,x)∈Q

|v(t, x)| , |v|1 = |v|0 + sup
(t,x)∈Q
(t ′,x ′)∈Q′
(t,x) �=(t ′,x ′)

|v(t ′, x ′)− v(t, x)|
(t ′ − t)1/2 + |x ′ − x| .

(A1) There exists a constantK > 0, such that

|φ|1 ≤ K

for φ = ψ and for all the maps φ = h(·, u) with h being any coordinate of
the maps f m, σm, δm, �m, and any m ∈M and u ∈ U.

(A2) For every δ > 0, there is a finite subset UF of U such that for any u ∈ U,
there exists uF ∈ UF such that

|h(·, u)− h(·, uF )|0 ≤ δ

for all the maps h being any coordinate of the maps f m, σm, δm, �m, and any
m ∈M.

Applying [3, Theorem 3.1], we obtain the following estimations which are of the
same order as the ones obtained for usual explicit finite difference schemes withΔx
in the order of

√
h [3] or for the scheme of [7].

Corollary 4 Let the assumptions of Lemma 6 hold. Assume also (A1) and (A2).
Let v be the unique viscosity solution of (3) and vh be the unique solution of (19),
with the initial condition vh(T , x) = ψ(x) for all x ∈ R

d . Then, there exists C1, C2
depending on |v|1 such that, for all (t, x) ∈ Th ×R

d , we have

−C1h
1/10 ≤ (vh − v)(t, x) ≤ C2h

1/4 .



Probabilistic Max-Plus Schemes for Solving Hamilton-Jacobi-Bellman Equations 201

5 The Probabilistic Max-Plus Method

In [7], the solution vh of the time discretization (5) of the partial differential
equation (3) is obtained by using the following method which can be compared
to a space discretization. The conditional expectations in (7) are approximated by
any probabilistic method such as a regression estimator: after a simulation of the
processes Wt and X̂(t), one applies at each time t ∈ Th a regression estimation
to find the value of D i

t,h(v
h(t + h, ·)) at the points X̂(t) by using the values of

vh(t + h, X̂(t + h)) and Wt+h − Wt . The regression can be done over a finite
dimensional linear space approximating the space of bounded Lipschitz continuous
functions, for instance the linear space of functions that are polynomial with a
certain degree on some “finite elements”. Hence, the value function vh(t, ·) is
obtained by an estimation of it at the simulated points X̂(t). This method can also
be used for the scheme (5) obtained in the previous section, since the new one also
involves conditional expectations.

In the probabilistic max-plus method proposed in [1] and used in [2], the aim
was to replace the (large) finite dimensional linear space of functions used in the
regression estimations by the max-plus linear space of max-plus linear combinations
of functions that belong to a small dimensional linear space (such as the space of
quadratic forms). The idea is that stochastic control problems involve at the same
time an expectation which is a linear operation and a maximization which is a max-
plus linear operation. Note that a direct regression estimation on such a non linear
space is difficult. We rather used the distributivity property of monotone operators
over suprema operations, recalled in Theorem 5 below, a property which generalizes
the one shown in Theorem 3.1 of McEneaney et al. [14], see also [11]. This allowed
us to reduce the regression estimations to the small dimensional linear space of
quadratic forms.

The algorithm of [1] was based on the scheme of [7], that is (5) with Tt,h as
in (6). The one of [2] was based on (5) with T̃t,h of (23) instead of Tt,h and k large
enough in such a way that the scheme is monotone. Here, we shall explain how the
algorithm can be adapted to the case of the discretization of Theorem 3, that is to
Tt,h as in (21).

In the sequel, we denote W = R
d and D the set of measurable functions from

W to R with at most some given growth or growth rate (for instance with at most
exponential growth rate), assuming that it contains the constant functions.

Theorem 5 ([1, Theorem 4]) LetG be a monotone additively α-subhomogeneous
operator from D to R, for some constant α > 0. Let (Z,A) be a measurable space,
and letW be endowed with its Borel σ -algebra. Let φ : W×Z→ R be a measurable
map such that for all z ∈ Z, φ(·, z) is continuous and belongs to D. Let v ∈ D be
such that v(W) = supz∈Z φ(W, z). Assume that v is continuous and bounded. Then,

G(v) = sup
z̄∈Z

G(φ̄z̄)
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where φ̄z̄ : W→ R, W %→ φ(W, z̄(W)), and

Z ={z̄ : W→ Z, measurable and such that φ̄z̄ ∈ D}.

To explain the algorithm, assume that the final reward ψ of the control problem
can be written as the supremum of a finite number of quadratic forms. Denote Qd =
Sd ×R

d × R (recall that Sd is the set of symmetric d × d matrices) and let

q(x, z) := 1

2
xTQx + b · x + c, with z = (Q, b, c) ∈ Qd , (26)

be the quadratic form with parameter z applied to the vector x ∈ R
d . Then for

gT = q , we have

vh(T , x) = ψ(x) = sup
z∈ZT

gT (x, z)

where ZT is a finite subset of Qd .
The application of the operator Tt,h of Lemma 4 to a (continuous) function φ :

R
d → R, x %→ φ(x) can be written, for each x ∈ R

d , as

Tt,h(φ)(x) = max
m∈M

Gmt,h,x(φ̃
m
t,h,x) , (27a)

where

Smt,h : Rd ×W→ R
d , (x,W) %→ Smt,h(x,W) = x + fm(x)h+ σm(x)W ,

(27b)

φ̃mt,h,x = φ(Smt,h(x, ·)) ∈ D if φ ∈ D , (27c)

andGmt,h,x is the operator from D to R given by

Gmt,h,x(φ̃) = max
u∈U

GNt,h,x,m,u(φ̃)

T Dt,h,m,u(x)
, (28)

with

GNt,h,x,m,u(φ̃) = D0
t,h(φ̃)+ h

{
�m(x, u)+D1

t,h,gm(x,u)(φ̃)+D2
t,h,Σm(x,u),k(φ̃)

}
, (29)

D0
t,h(φ̃) = E(φ̃(Wt+h −Wt)) ,

D1
t,h,g(φ̃) = E(φ̃(Wt+h −Wt)P 1

g(h
−1(Wt+h −Wt)) ,

D2
t,h,Σ,k(φ̃)(x) = h−1

E

[
φ̃(Wt+h −Wt)P 2

Σ,k(h
−1/2(Wt+h −Wt))

]
,



Probabilistic Max-Plus Schemes for Solving Hamilton-Jacobi-Bellman Equations 203

gm(x, u) and Σm(x, u), as in Sect. 4, and P 1
g and P 2

Σ,k as in (14) and (11)

respectively. Indeed, the Euler discretization X̂m of the diffusion with generator
Lm satisfies

X̂m(t + h) = Smt,h(X̂m(t),Wt+h −Wt) . (30)

Recall from [2] that we can also write the operator T̃t,h of (23) in a similar way:

T̃t,h(φ)(x) = max
m∈M

G̃mt,h,x(φ̃
m
t,h,x) , (31)

with

G̃mt,h,x(φ̃) = max
u∈U

G̃t,h,x,m,u(φ̃) , (32)

G̃t,h,x,m,u(φ̃) = D0
t,h(φ̃)(1 − δm(x, u)h)

+h{�m(x, u)+ D̃1
t,h,gm(x,u)(φ̃)+D2

t,h,Σm(x,u),k(φ̃)
}
, (33)

D̃1
t,h,g(φ̃) = E(φ̃(Wt+h −Wt)g · (h−1(Wt+h −Wt)) .

Using the same arguments as for Theorem 4 and Lemma 5, one can obtain the
stronger property that for h ≤ h0, all the operators Gmt,h,x belong to the class of
monotone additively αh-subhomogeneous operators from D to R. This allows us to
apply Theorem 5. In [2], we shown the following result, see also [1, Theorem 2]
concerning T̃t,h.

Theorem 6 ([2, Theorem 1.4.2], Compare with [11, 14, Theorem 5.1]) Consider
the control problem of Sect. 1. Assume that U = R

p and that for each m ∈ M, δm

and σm are constant, σm is nonsingular, f m is affine with respect to (x, u), �m is
quadratic with respect to (x, u) and strictly concave with respect to u, and that ψ
is the supremum of a finite number of quadratic forms. Consider the scheme (5),
with T̃t,h of (23) instead of Tt,h, σm constant and nonsingular, Σm constant and
nonsingular and fm affine. Assume that the operators G̃mt,h,x of (32) belong to the
class of monotone additively αh-subhomogeneous operators from D to R, for some
constant αh = 1 + Ch with C ≥ 0. Assume also that the value function vh of (5)
belongs to D and is locally Lipschitz continuous with respect to x. Then, for all
t ∈ Th, there exists a set Zt and a map gt : Rd × Zt → R such that for all z ∈ Zt ,
gt (·, z) is a quadratic form and

vh(t, x) = sup
z∈Zt

gt (x, z) . (34)

Moreover, the sets Zt satisfy Zt =M× {z̄t+h : W→ Zt+h | Borel measurable}.
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Theorem 6 uses Theorem 5 together with the property that, for each m, the
operator T̃ mt,h, such that T̃ mt,h(φ)(x) = G̃mt,h,x(φ̃mt,h,x), sends a random quadratic form
that is upper bounded by a deterministic quadratic form into a quadratic form. This
means that if z̄ is a measurable function from W to Qd and Z ∈ Qd is such that
q(x, z̄(W)) ≤ q(x,Z) for all x ∈ R

d and W ∈ W, and q̃x denotes the measurable
map W → R, W %→ q(Smt,h(x,W), z̄(W)), where q is as in (26), then the function

x %→ G̃mt,h,x(q̃x) is a quadratic form, that is it can be written as q(x, z) for some
z ∈ Qd , see [2, Lemma 1.4.3].

If we replace the operator T̃t,h by Tt,h of Lemma 4, the previous property does
not hold because of the expressions g+ and g− and so one cannot deduce directly a
result like Theorem 6. However, one can still obtain the following result:

Lemma 7 Let us consider the notations and assumptions of Theorem 6, except
that T̃t,h is replaced by the operator Tt,h of Lemma 4. For each m, consider the
operator T mt,h such that T

m
t,h(φ)(x) = Gmt,h,x(φ̃mt,h,x) withGmt,h,x as in (28). Let z̄ be a

measurable function fromW toQd and Z ∈ Qd be such that q(x, z̄(W)) ≤ q(x,Z)
for all x ∈ R

d andW ∈ W, where q is as in (26). Let q̃x be the mapW→ R, W %→
q(Smt,h(x,W), z̄(W)). Then, the function q̄ : x %→ Gmt,x,h(q̃x) is upper bounded by a
quadratic map. The same property holds for lower bounds.

Moreover, there exists C > 0, independent of h such that if the map z̄ is constant,
that is deterministic, and ‖z̄‖ ≤ K for some norm on Qd , then there exists z ∈ Qd

such that ‖z − z̄‖ ≤ C(K + 1)2h and

|q̄(x)− q(x, z)| ≤ C(K + 1)3h3/2(‖x‖2 + 1)3/2, for all x ∈ R
d .

Proof Let z̄, Z ∈ Qd , q̃x and q̄ be as in the first part of the lemma. Consider the
map φ(x) = q(x,Z). It satisfies −CK(1 + ‖x‖2) ≤ φ(x) ≤ CK(1 + ‖x‖2) as
soon as ‖Z‖ ≤ K . Here and below ‖ · ‖ denotes a norm on Qd and C is any positive
constant independent of h ≤ 1. Since Gmt,h,x is monotone, we get that q̄(x) =
Gmt,x,h(q̃x) ≤ Gmt,h,x(φ̃

m
t,h,x) = T mt,h(φ)(x) and a similar result holds for a lower

bound. Due to the assumptions on the parameters of the problem, it is easy to show
that for any (deterministic) quadratic form φ, T̃ mt,h(φ) is a quadratic form, for T̃ mt,h
defined as in (23), see below. Hence, to obtain the two assertions of the lemma, it is
sufficient to show that, for any quadratic form φ with norm K , T mt,h(φ) is bounded

above and below by quadratic forms, the norm of which depend on K , T̃ mt,h(φ) is a

quadratic form such that the norm of its difference with φ is bounded byC(K+1)2h,
and that we have

|T mt,h(φ)(x)− T̃ mt,h(φ)(x)| ≤ C(K + 1)3h3/2(‖x‖2 + 1)3/2, for all x ∈ R
d .
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Using that P 1
g(W) = g ·W + |g| · (|W | − E(|W |)+ |g| · E(|W |), we deduce

GNt,h,x,m,u(φ̃)

T Dt,h,m,u(x)
−D0

t,h(φ̃) =
G̃t,h,x,m,u(φ̃)−D0

t,h(φ̃)+ Rt,h,gm(x,u)(φ̃)
T Dt,h,m,u(x)

, (35)

where

Rt,h,g(φ̃) = E

[
φ̃(Wt

h)|g| · (|Wt
h| − E(|Wt

h|))
]

with Wt
h = Wt+h −Wt .

Due to the assumptions on the coefficients and on the scheme, Smt,h(x,W) is
affine with respect to (x,W),Σm is constant and nonsingular, gm is affine in (x, u),
and δm is constant. Hence the map φ̃mt,h,x(W) is a quadratic function of (x,W).

Applying expectations with appropriate factors, we obtain that D0
t,h(φ̃

m
t,h,x) is a

quadratic form, such that the norm of D0
t,h(φ̃

m
t,h,x) − φ(x) is bounded by CKh,

and that D2
t,h,Σm(x,u),k(φ̃

m
t,h,x) is a constant (in x and u) which can be bounded by

CK .
Since the coordinates of Wt

h are independent and with zero expectation, we also
get that the first order term D̃1

t,h,gm(x,u)(φ̃
m
t,h,x) in (33) is equal to the scalar product

of gm(x, u), which is affine in (x, u), with an affine function of x, the norm of which
is bounded by CK . We deduce that

G̃t,h,x,m,u(φ̃
m
t,h,x)−D0

t,h(φ̃
m
t,h,x) = h(�m(x, u)+ Ψ (x, u)) , (36)

where Ψ is quadratic in x and u with second order derivatives in u equal to 0, that
D0
t,h(φ̃

m
t,h,x) is quadratic in x, and that their norms are bounded by CK . Taking the

supremum with respect to u in the previous expression, we deduce that T̃ mt,h(φ) =
G̃mt,h,x(φ̃

m
t,h,x) is quadratic in x, and that the norm of its difference with φ is bounded

by C(K + 1)2h.
Since gm has linear growth, |Rt,h,gn(x,u)(φ̃mt,h,x)| ≤ C(1 + ‖u‖ +

‖x‖)‖E
[
φ̃mt,h,x(W

t
h)(|Wt

h| − E(|Wt
h|))
]
‖. Again due to the properties of φ̃mt,h,x and

Wt
h, we get that the second factor in the former inequality is constant and is bounded

by CKh3/2.
Altogether, we obtain

GNt,h,x,m,u(φ̃
m
t,h,x)

T Dt,h,m,u(x)
−D0

t,h(φ̃
m
t,h,x) ≤

h(�m(x, u)+ Ψ (x, u))+ CKh3/2(1 + ‖u‖ + ‖x‖)
T Dt,h,m,u(x)

.

Then, using CKh1/2‖u‖ ≤ ‖u‖2ε/2 + C2K2h/(2ε), for ε > 0 small enough,
and similarly for ‖x‖, and using that T Dt,h,m,u(x) ≥ 1 + hδm(x, u) ≥ 1/2 for
h small enough, we deduce that the right hand side of the above inequality is
bounded above by a quadratic form in x, so does the supremum with respect to
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u of the left hand side. Since D0
t,h(φ̃

m
t,h,x) is a quadratic form, we deduce that

Gmt,h,x(φ̃
m
t,h,x) = T mt,h(φ)(x) is bounded above by a quadratic form. Moreover the

norm of this quadratic form is bounded byK+C(K+1)2h. A similar lower bound
is obtained with the same arguments.

To obtain the second assertion of the lemma, we shall use the following equation

GNt,h,x,m,u(φ̃)

T Dt,h,m,u(x)
− G̃mt,h,x(φ̃) =

G̃t,h,x,m,u(φ̃)− G̃mt,h,x(φ̃)+ R̃t,h,gm(x,u)(φ̃)
T Dt,h,m,u(x)

,

(37)

where

R̃t,h,gm(x,u)(φ̃) = (D0
t,h(φ̃)− G̃mt,h,x(φ̃))(T Dt,h,m,u(x)− 1)+ Rt,h,gm(x,u)(φ̃) .

Using (36), we get that for φ̃ = φ̃mt,h,x , G̃t,h,x,m,u(φ̃)−G̃mt,h,x(φ̃) can be written in

the form−h(u−L(x))T Q(u−L(x)) whereL is affine with a norm bounded by CK
andQ is a positive definite matrix, independent ofK . Hence, there exists β > 0 such
that G̃t,h,x,m,u(φ̃) − G̃mt,h,x(φ̃) is bounded above by −βh‖u − L(x)‖2. Using (36)

again, we obtain that D0
t,h(φ̃) − G̃mt,h,x(φ̃) is a quadratic form, the norm of which

is bounded by C(K + 1)2h. Moreover, T Dt,h,m,u(x) − 1 = δmh + C√h‖gm(x, u‖
for some norm (the 1-norm) on R

d and |Rt,h,gm(x,u)(φ̃)| ≤ CKh3/2‖gm(x, u)‖. We
deduce that |R̃t,h,gm(x,u)(φ̃)| ≤ Ch2(K + 1)2(1 + ‖x‖2) + C(K + 1)2h3/2(1 +
‖x‖2)‖gm(x, u)‖. Then, using that T Dt,h,m,u(x) ≥ 1 + hδm(x, u) ≥ 1/2 for h small
enough, and that y %→ y/(a+ y) is increasing with respect to y > 0, for any a > 0,
we obtain

|R̃t,h,gm(x,u)(φ̃)|
T Dt,h,m,u(x)

≤ Ch2(K + 1)2(1 + ‖x‖2)+ C(K + 1)2h3/2(1 + ‖x‖2)‖gm(x, u)‖
1 + C√h‖gm(x, u‖

≤ Ch2(K + 1)2(1 + ‖x‖2)+ C(K + 1)2h(1 + ‖x‖2)A(x, u)

1 + A(x, u) ,

for any bound A(x, u) of h1/2‖gm(x, u)‖. Since ‖gm(x, u‖ ≤ C(K + 1)(1 +
‖x‖) + ‖u − L(x)‖, we can take A(x, u) = C(K + 1)h1/2(1 + ‖x‖2)1/2 +

ε
2C(K+1)2h(1+‖x‖2)

‖u− L(x)‖2 + C(K+1)2h2(1+‖x‖2)
2ε for any ε > 0. Then, bounding

above separately the three terms of the sum in A(x, u)/(1 + A(x, u)) by lower
bounding 1 + A(x, u), and using the same upper bound A(x, u) of h1/2‖gm(x, u)‖
in the expression of the first summand in (37), and that G̃t,h,x,m,u(φ̃)− G̃mt,h,x(φ̃) ≤
−βh‖u− L(x)‖2 ≤ 0, we deduce for ε = 2βh/C:

GNt,h,x,m,u(φ̃)

T Dt,h,m,u(x)
− G̃mt,h,x(φ̃) ≤C(K + 1)3[h(1 + ‖x‖2)]3/2 .
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Then, taking the supremum over u, we obtain

Gmt,h,x(φ̃)− G̃mt,h,x(φ̃) ≤ C(K + 1)3[h(1 + ‖x‖2)]3/2 .

For the reverse inequality, using that G̃t,h,x,m,u(φ̃)−G̃mt,h,x(φ̃) = 0 for u = L(x),
and applying the above bound of R̃t,h,gm(x,u)(φ̃) to u = L(x), we get directly that

Gmt,h,x(φ̃)− G̃mt,h,x(φ̃) ≥ −C(K + 1)3[h(1 + ‖x‖2)]3/2 . � 
If the last inequality of Lemma 7 were true for random maps z̄, then one may

expect to obtain Eq. (34) of Theorem 6 up to an error inO(
√
h(1+‖x‖2)3/2). Note

that, for this bound to be true, one would also need to show the following Lipschitz
property for Tt,h: if φ(x)−φ′(x) ≤ K(1+‖x‖2)3/2 for all x ∈ R

d , and φ and φ′ have
a given quadratic growth, then Tt,h(φ)(x)−Tt,h(φ′)(x) ≤ (1+Ch)K(1+‖x‖2)3/2

for all x ∈ R
d . Such an estimation would justify rigorously the application of the

same algorithm as in [2] for the operator of Lemma 4, that we recall below for
completeness. Recall that in the same spirit as in [7], we proposed in [1] and [2] to
compute the expression of the maps vh(t, ·) by using simulations of the processes
X̂m. These simulations are not only used for regression estimations of conditional
expectations, which are computed there only in the case of random quadratic forms,
by optimizing over the set of quadratic forms, but they are also used to fix the
“discretization points” x at which the optimal quadratic forms in the expression (34)
are computed. Since the last inequality of Lemma 7 is not true in general for
random maps z̄, the regression estimations may not give a good approximation of
the expectation, which may lead to a large final error of the algorithm. However,
we still expect the algorithm to give a good estimate of the value function, with a
relatively small complexity.

Algorithm 1 ([2, Algorithm 1.4.4])
Input:A constant ε giving the precision, a time step h and a horizon time T such that
T/h is an integer, a 3-tuple N = (Nin, Nx,Nw) of integers giving the numbers of
samples, such that Nx ≤ Nin, a subset M ⊂M and a projection map π :M →M.
A finite subset ZT of Qd such that |ψ(x) − maxz∈ZT q(x, z)| ≤ ε, for all x ∈ R

d ,
and #ZT ≤ #M×Nin. The operators Tt,h, Smt,h andGmt,x,h as in (27)–(28) for t ∈ Th
and m ∈ M, with Lm (and thus Smt,h) depending only on π(m).
Output: The subsets Zt of Qd , for t ∈ Th∪{T }, and the approximate value function
vh,N : (Th ∪ {T })× R

d → R.

• Initialization: Let X̂m(0) = X̂(0), for all m ∈ M, where X̂(0) is random and
independent of the Brownian process. Consider a sample of (X̂(0), (Wt+h −
Wt)t∈Th) of size Nin indexed by ω ∈ ΩNin := {1, . . . , Nin}, and denote,
for each t ∈ Th ∪ {T }, ω ∈ ΩNin , and m ∈ M, X̂m(t, ω) the value of
X̂m(t) induced by this sample satisfying (30). Define the function vh,N (T , ·) by
vh,N (T , x) = maxz∈ZT q(x, z), for x ∈ R

d , with q as in (26).
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• For t = T − h, T − 2h, . . . , 0 apply the following three steps:

(1) Choose a random sampling ωi,1, i = 1, . . . , Nx among the elements of
ΩNin and independently a random sampling ω′1,j j = 1, . . . , Nw among
the elements of ΩNin , then take the product of samplings, that is consider
ω(i,j) = ωi,1 and ω′(i,j) = ω′1,j for all i and j , leading to (ω�, ω′�) for � ∈
ΩNrg := {1, . . . , Nx} × {1, . . . , Nw}.

Induce the sample X̂m(t, ω�) (resp. (Wt+h − Wt)(ω′�)) for � ∈ ΩNrg of

X̂m(t) with m ∈ M (resp. Wt+h − Wt ). Denote by WNt ⊂ W the set of
(Wt+h −Wt)(ω′�) for � ∈ ΩNrg .

(2) For each ω ∈ ΩNin and m ∈ M, denote xt = X̂m(t, ω) and construct zt ∈
Qd depending on ω and m as follows:

(a) Choose z̄t+h : WNt → Zt+h ⊂ Qd such that, for all � ∈ ΩNrg , we have

vh,N (t + h, Smt,h(xt , (Wt+h −Wt)(ω′�)))
= q(Smt,h(xt , (Wt+h −Wt)(ω′�)), z̄t+h((Wt+h −Wt)(ω′�))) .

Extend z̄t+h as a measurable map from W to Qd . Let q̃t,h,x be the
element of D given byW ∈ W %→ q(Smt,h(x,W), z̄t+h(W)).

(b) For each m̄ ∈ M such that π(m̄) = m, compute an approximation
of x %→ Gm̄t,h,x(q̃t,h,x) by a linear regression estimation on the set of

quadratic forms using the sample (X̂m(t, ω�), (Wt+h − Wt)(ω′�)), with
� ∈ ΩNrg , and denote by zm̄t ∈ Qd the parameter of the resulting
quadratic form.

(c) Choose zt ∈ Qd optimal among the zm̄t ∈ Qd at the point xt , that is such
that q(xt , zt ) = maxπ(m̄)=m q(xt , zm̄t ).

(3) Denote by Zt the set of all the zt ∈ Qd obtained in this way, and define the
function vh,N (t, ·) by

vh,N (t, x) = max
z∈Zt

q(x, z) ∀x ∈ R
d .

Recall that no computation is done at Step (3), which gives only a formula to be
able to compute the value function at each time step and state x by using the sets Zt .

Contrarily to what happened in [2], the map x %→ Gm̄t,h,x(q̃t,h,x) is not necessarily
a quadratic form. If the last inequality of Lemma 7 were true for that map, then for
x in a bounded set and h small enough, it can be approximated by a quadratic form,
and the regression estimation over the set of quadratic forms gives an approximation
of order O(h

√
h). If all these estimations hold, this would only add an error

in O(
√
h) to the value function at time 0. In [1, Proposition 5], under suitable

assumptions, we shown the convergence limNin,Nrg→∞ vh,N (t, x) = vh(t, x). Here,

we may expect that lim supNin,Nrg→∞ |vh,N (t, x) − vh(t, x)| ≤ C
√
h. However a
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further study is needed to obtain a precise estimation of the error depending on
Nin, Nrg and h.
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An Adaptive Max-Plus Eigenvector
Method for Continuous Time Optimal
Control Problems

Peter M. Dower

Abstract An adaptive max-plus eigenvector method is proposed for approximating
the solution of continuous time nonlinear optimal control problems. At each step of
the method, given a set of quadratic basis functions, a standard max-plus eigenvector
method is applied to yield an approximation of the value function of interest. Using
this approximation, an approximate level set of the back substitution error defined
by the Hamiltonian is tessellated according to where each basis function is active
in approximating the value function. The polytopes obtained, and their vertices,
are sorted according to this back substitution error, allowing “worst-case” basis
functions to be identified. The locations of these basis functions are subsequently
evolved to yield new basis functions that reduce this worst-case. Basis functions that
are inactive in the value function approximation are pruned, and the aforementioned
steps repeated. Underlying algebraic properties associated with max-plus linearity,
dynamic programming, and semiconvex duality are provided as a foundation for the
development, and the utility of the proposed method is illustrated by example.

Keywords Optimal control · Dynamic programming · Semiconvexity ·
Max-plus algebra · Max-plus eigenvector method · Basis adaptation

1 Introduction

Continuous time optimal feedback control of nonlinear dynamical systems remains
largely impractical due to serious computational obstacles associated with nu-
merically solving the attendant Hamilton-Jacobi-Bellman (HJB) partial differential
equation (PDE). Rather than addressing this HJB PDE, max-plus methods [1–3]
exploit algebraic properties of the Lax-Oleinik semigroup of evolution operators,
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defined via dynamic programming [4], in order to yield sparse approximations for
the value function of interest. The investigation of a specific sparse approximation
provides the foundation for the adaptive method presented here.

The Lax-Oleinik semigroup is a one-parameter semigroup of evolution opera-
tors that describes all possible finite horizon value functions for optimal control
problems associated with a specific running payoff and space of terminal payoffs.
Attendant max-plus linearity and semiconvexity properties admit a pair of state con-
volution representations for these evolution operators, and yield a respective pair of
max-plus fundamental solution semigroups that equivalently describe value function
propagation for all time horizons and admissible terminal payoffs. Elements of these
semigroups are max-plus linear max-plus integral operators, defined with respect
to corresponding bivariate kernels [1, 5, 6] that also define semigroups. Reduced
complexity approximate evolution of elements of these kernel semigroups, defined
with respect to a truncated problem specific sparse basis, yields a subclass of max-
plus eigenvector methods for approximating value functions and optimal controls.

Basis selection is an essential step in applying max-plus eigenvector methods.
Typically, basis selection is implemented either manually (via problem specific
insights), using brute-force (via computationally expensive grids of basis functions),
or using randomization, see [1, 3, 7]. In the development reported here, an adaptive
max-plus eigenvector method is proposed, in which a standard max-plus eigenvector
method [1, 8] is encapsulated within a back substitution error calculation and basis
adaptation iteration. In this iteration, basis functions are added and pruned as a
consequence of the value function approximation obtained by the aforementioned
standard max-plus eigenvector method at each step. In identifying where new
basis functions are required, a Voronoi tessellation of a subset of the state space
is identified, with the subset of interest being an approximation of a level set of
the back substitution error defined via the Hamiltonian [9]. Each element of this
tessellation corresponds to a convex polytope of states in which a unique existing
basis function is active in the value function approximation. Using this tessellation,
the “worst-case” basis functions are identified by approximately evaluating the
back substitution error on each polytope. By examining the dependence of this
back substitution error on the location of these worst-case basis functions, new
basis functions are added so as to reduce the expected error. Basis functions that
are inactive in the value function approximation are pruned. The resulting value
function approximation, tessellation and sorting, and basis adaptation iterations are
illustrated by example.

In terms of organization, the specific class of optimal control problems of
interest is provided in Sect. 2. This is followed in Sect. 3 by the introduction and
application of the max-plus algebra and semiconvex duality to the development
of a pair of max-plus fundamental solution semigroups. Section 4 subsequently
describes a standard max-plus eigenvector method, the aforementioned approximate
back substitution error calculation and basis adaptation, and a summary of the
resulting algorithm implemented. Section 5 provides illustrations of its application
by example, followed by some brief concluding remarks. An appendix recording
some useful additional technical details is also included.
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Throughout,R (R≥0) denotes the real (non-negative) numbers,R
.= R∪{−∞}∪

{+∞} denotes the extended reals, and N denotes the natural numbers. Rn denotes
n-dimensional Euclidean space, given n ∈ N, while By(r) ⊂ R

n denotes the open
ball of radius r ∈ R>0, centred at y ∈ R

n. The inner product on R
n is written as

〈 , 〉. The space of n ×m real matrices is denoted by R
n×m, n,m ∈ N. Two subsets

of Rn×n of interest are defined, with the dependence on n ∈ N suppressed, by

Σ
.= {P ∈ R

n×n ∣∣P = P ′} , ΣM
.= {P ∈ Σ ∣∣P −M > 0

}
, M ∈ Σ ,

in which P ′ denotes the transpose of P , andP−M > 0 denotes positive definiteness
of P with respect to M. A function ψ : Rn → R is convex if its epigraph {(x, α) ∈
R
n×R |ψ(x) ≤ α} is convex [10]. It is lower closed if ψ = cl− ψ , in which cl− is

the lower closure defined with respect to the lower semicontinuous envelope lsc by

cl− ψ(x) .=
{

lscψ(x), lscψ(x) > −∞ for all x ∈ R
n,

−∞, otherwise,

for all x ∈ R
n. Similarly, ψ is concave if −ψ is convex, and upper closed if −ψ

is lower closed, see [10, pp. 15–17]. The convex hull of a function f : Rn → R

is defined to be the largest convex function that lower bounds f , see [10]. Given
K ∈ Σ , spaces of (uniformly) semiconvex and semiconcave functions are defined
(respectively) by

SK+
.=
{
ψ : Rn → R

∣∣ ψ + 1
2 〈·,K ·〉 convex, lower closed

}
,

SK−
.=
{
a : Rn → R

∣∣ a − 1
2 〈·,K ·〉 concave, upper closed

}
.

2 Optimal Control Problem

Attention is restricted to infinite horizon continuous time nonlinear optimal control
problems of a form considered in [1]. An element in this class is identified by an
infinite horizon value function W : R

n → R, specified using its finite horizon
counterpartWt : Rn → R, t ∈ R≥0. In particular,

W(x)
.= sup
t≥0
Wt(x) = lim

t→∞Wt(x) , Wt (x)
.= [St ψ0](x) , (1)

for all initial states x ∈ R
n and time horizons t ∈ R≥0, in which St denotes the

corresponding dynamic programming evolution operator, and ψ0 : Rn → R is the
zero terminal payoff defined by ψ0(y)

.= 0 for all y ∈ R
n. St is defined explicitly

by

[St ψ](x) .= sup
w∈W [0,t ]

{It (x,w)+ ψ([χ(x,w)]t )} , ψ : Rn → R , (2)
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for all t ∈ R≥0, x ∈ R
n, in which W [0, t] .= L2([0, t];Rm) is the input space, and

It and χ denote the integrated running payoff and state trajectory maps defined by

It (x,w)
.=
∫ t

0
l([χ(x,w)]s)− γ 2

2
|ws |2 ds , (3)

[χ(x,w)]s .= ξs ,
{
ξ̇r = f (ξr )+ σ(ξr ) wr , r ∈ [0, s] , s ∈ [0, t] ,
ξ0 = x ∈ R

n ,
(4)

for any x ∈ R
n and w ∈ W [0, t]. In (3), (4), γ ∈ R≥0 is a fixed gain parameter,

and ξs ∈ R
n and ws ∈ R

m denote the state and input of the associated nonlinear
dynamics at time s ∈ [0, t]. Note in particular that the map t %→ St ψ0 is monotone,
guaranteeing existence of the limit in (1).

Standard assumptions [1, p. 59] are adopted regarding the problem data f :
R
n × R

m → R
n, σ : R

n → R
n×m, l : R

n → R, and gain γ ∈ R≥0. They
amount to a sector bound and an incremental exponential stability property for
f , boundedness of σ along with invertibility of elements of its range, a quadratic
growth bound on �, and selection of a sufficiently large γ . Under these assumptions,
the value functions Wt , t ∈ R≥0, and W of (1) are semiconvex [1, Theorem 4.9,
p. 67, and Corollary 4.11, p. 69], and may be characterized [1, Lemma 3.14, p. 50,
and Theorem 4.2, p. 60] as unique continuous viscosity solutions of the respective
non-stationary and stationary HJB PDEs

0 = ∂Wt

∂t
+H(x,∇xWt(x)) , W0 = Ψ0 , (5)

0 = H(x,∇xW(x)) , W(0) = 0 , (6)

for all t ∈ R≥0, x ∈ R
n, in which the HamiltonianH : Rn ×R

n → R is defined by

H(x, p)
.= −l(x)− 〈p, f (x)〉 − 1

2γ 2 〈p, σ(x) σ (x)′ p〉 (7)

for all x, p ∈ R
n.

3 Max-Plus Fundamental Solution Semigroups

Max-Plus Algebra and Dynamic Programming The (complete) max-plus alge-
bra [1, 11–14], denoted by the triple (R,⊕,⊗), is a commutative semifield over R
equipped with addition ⊕ and multiplication ⊗ operations defined by

a ⊕ b .= max(a, b) , a ⊗ b .= a + b ,
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for all a, b ∈ R. The additive and multiplicative identities are 0 .= −∞ and 1 .= 0
respectively, with

a⊕0 = max(a,−∞) = a , a ⊗ 0 = a −∞ = 0 , a⊗1 = a+0 = a , a ∈ R.

It is an idempotent algebra as the ⊕ operation is idempotent (i.e. a ⊕ a = a), and
a semifield as no additive inverse exists (i.e. there is no “.” operation such that
a ⊕ b . b = a). The max-plus integral of a function f : Y → R over a set Ω ⊂ Y
is defined by

∫ ⊕

Ω

f (y) dy
.= sup
y∈Ω

f (y) .

Note further that

f (x) =
∫ ⊕

Ω

δ−(x, y)⊗ f (y) dy, δ−(x, y) .= δ−y (x) .=
{

0, x = y,
−∞, x �= y, (8)

for all x, y ∈ Ω , in which δ− : Rn × R
n → R is the max-plus delta function.

With y ∈ R
n and K ∈ Σ fixed arbitrarily, δ−(·, y)− 1

2 〈· ,K ·〉 is concave and upper

closed, so that δ−(·, y) ∈ SK− , and by symmetry, δ−(y, ·) ∈ SK− .
The min-plus algebra is defined analogously over R, with min replacing max.
A max-plus vector space is a vector space over the max-plus algebra, and is often

referred to as a moduloid [11], or an idempotent semimodule [13, 14]. A min-plus
vector space is analogously defined with respect to the min-plus algebra. Both types
of vector space contain the±∞ functions, as their respective algebras are semifields
over R. Spaces of semiconvex (semiconcave) functions are max-plus (min-plus)
vector spaces, see for example [1, Theorem 2.7, p. 14].

The max-plus algebra is particularly useful for optimal control problems of
the form (1). The dynamic programming evolution operator (2) involved naturally
defines a one-parameter semigroup of integral operators that are linear with respect
to the max-plus algebra [1, Theorem 4.5, p. 66]. The crucial properties concerning
the dynamic programming evolution operator (2) for the optimal control problem (1)
may be summarized as follows.

Assumption 1 There exists an invertible M ∈ Σ and τ ∗ ∈ R>0 such that the
dynamic programming evolution operator (2) satisfies Sτ : S−M+ → S−M+ for all
τ ∈ [0, τ ∗].
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Theorem 2 Given M ∈ Σ as per Assumption 1, the dynamic programming
evolution operator St of (2) satisfies

St : S−M+ → S−M+ , [St ψ](x) =
∫ ⊕

W [0,t ]
It (x,w)⊗ ψ([ξ(x,w)]t ) dw ,

Sτ St = Sτ+t , S0 = I , St (ψ ⊕ c ⊗ φ) = Stψ ⊕ c⊗ St φ ,
(9)

for all τ, t ∈ R≥0, ψ,φ ∈ S−M+ , c ∈ R.

Proof Fix M ∈ Σ and τ ∗ ∈ R>0 as per Assumption 1, and anyψ ∈ S−M+ , t ∈ R≥0.
Define κt

.= / t
τ∗ 0 ∈ N ∪ {0} and t̃

.= t − κt τ ∗ ∈ [0, τ ∗]. Again by Assumption 1,

note that St̃ : S−M+ → S−M+ . Hence, by induction, St = St̃ ◦ [Sτ∗ ]◦κt : S−M+ →
S−M+ , in which [·]◦κt denotes the composition of [·] with itself κt − 1 times. That
is, the first assertion in (9) holds. For the remaining assertions in (9), the integral
operator form of the second assertion is immediate by inspection of (2), while the
semigroup property of the third assertion follows by dynamic programming. Finally,
(max-plus) linearity as per the fourth assertion follows by inspection of (2), see [1,
Theorem 4.5, p. 66]. �
Semiconvex Duality Semiconvex duality (sometimes referred to as max-plus dual-
ity) is a duality between the semiconvex and semiconcave function spaces, defined
via the semiconvex transform [15]. The semiconvex transform is a generalization of
the Legendre-Fenchel transform, where convexity is weakened to semiconvexity via
a relaxation of affine to quadratic support. The quadratic support functions involved
are defined via the bivariate basis function ϕ : Rn ×R

n → R given by

ϕ(x, z)
.= 1

2
〈x − z, M (x − z)〉 (10)

for all x, z ∈ R
n, in which M ∈ Σ is as per Assumption 1. With −K ∈ ΣM ∪ {M},

the duality is defined via the semiconvex transform Dϕ and its inverse D−1
ϕ , with

a = Dϕ ψ , ψ = D−1
ϕ a , (11)

for all ψ ∈ SK+ , a ∈ RK−, in which

Dϕ ψ
.= −
∫ ⊕

Rn

ϕ(x, ·)⊗ [−ψ(x)] dx , ψ ∈ dom (Dϕ)
.= SK+ , (12)

D−1
ϕ a

.=
∫ ⊕

Rn

ϕ(·, z)⊗ a(z) dz , a ∈ dom (D−1
ϕ )

.= RK− , (13)
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and

RK−
.= ran (Dϕ) =

{
a : Rn→R

∣∣ ∃ ψ ∈ SK+ such that Dϕ ψ = a
}
. (14)

The required properties of Dϕ and D−1
ϕ are recorded in the following theorem, c.f.

[1, Theorem 2.9, p. 16].

Theorem 3 With −K ∈ ΣM ∪ {M} fixed, Dϕ and D−1
ϕ of (12) and (13) satisfy the

following properties:

1) dom (D−1
ϕ ) = ran (Dϕ) = RK− ⊂ R−M− ≡ S−M− ;

2) ran (D−1
ϕ ) = dom (Dϕ) = SK+ ⊂ S−M+ ;

3) Dϕ D−1
ϕ = I on dom (D−1

ϕ ) = RK−; and
4) D−1

ϕ Dϕ = I on dom (Dϕ) = SK+ .

Proof See the Appendix. �
Remark 4 Theorems 2 and 3 motivate adoption of K

.= −M throughout for
simplicity, in which M ∈ Σ is as per Assumption 1. �

The max-plus vector space S−M+ has a countable basis, see [1, Theorem 2.13,
p. 20], given by {ψi}i∈N, with elements ψi : Rn → R defined via (10) by

ψi
.= ϕ(·, zi) , (15)

in which {zi}i∈N is a countable dense subset of Rn. The semiconvex transform and
its inverse (12) and (13) subsequently satisfy (see Lemma 18 in the Appendix)

Dϕ ψ = −cl− co

(
−
⊕
i∈N

ψi(0)⊗ δ−zi (·)⊗ [Dϕψ](zi)
)
− ϕ(0, ·) , (16)

D−1
ϕ a =

⊕
i∈N

ψi(·)⊗ a(zi) , (17)

in which δ−zi (·) is a max-plus delta function (8), and cl− and co denote respectively
the lower closure and convex hull (as introduced in Sect. 1). Identity (16) specifies
the semiconvex transform Dϕψ everywhere on R

n in terms of its evaluation on the
dense subset {zi}i∈N ⊂ R

n, i.e. in terms of {[Dϕψ](zi)}i∈N. The lower closure and
convex hull operations indicated ensure that the map defined by

z %→ [Dϕψ](z)+ ϕ(0, z) = [Dϕψ](z)− 1

2
〈z, −M z〉
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is concave and upper closed, as required for Dϕψ ∈ S−M− . By inspection of (16)
and (17), the sequence {a(zi)}i∈N = {[Dϕ ψ](zi)}i∈N completely describes a ∈
S−M− . Hence, it is sufficient to write (11) using the coordinate representation

ei
.= a(zi) = [Dϕ ψ](zi) = −

∫ ⊕

Rn

ψi(x)⊗ [−ψ(x)] dx , ψ ∈ S−M+ , i ∈ N ,

ψ =
⊕
i∈N

ψi(·)⊗ ei , e ∈ R
∞
, (18)

in which R
∞

denotes the product space of R with itself countably infinite times.
A semiconvex function ψ ∈ S−M+ may be approximated by truncating the sums

in (17) and (18) to a finite number ν ∈ N of terms. This yields approximations
â ∈ S−M− and ψ̂ ∈ S−M+ of a = Dϕψ ∈ S−M− and ψ ∈ S−M+ , satisfying

â = Dϕ ψ̂ , ψ̂ = D−1
ϕ â , (19)

â
.= D̂νϕ ψ

.= −cl− co

(
−

ν⊕
i=1

ψi(0)⊗ δ−zi (·)⊗ [Dϕ ψ](zi)
)
− ϕ(0, ·) . (20)

As per (18), as â(zi) = [Dϕ ψ](zi), i ∈ N≤ν , completely describes â via (20),

êi
.= â(zi) = [Dϕ ψ̂](zi) = −

∫ ⊕

Rn

ψi(x)⊗ [−ψ̂(x)] dx , ψ̂ ∈ S−M+ , i ∈ N≤ν ,

ψ̂ =
ν⊕
i=1

ψi(·)⊗ êi , ê ∈ R
ν
. (21)

Max-Plus Fundamental Solution Semigroups A max-plus fundamental solution
semigroup [5, 6, 16–19] is a one-parameter semigroup of max-plus linear max-plus
integral operators that can be used to propagate a finite horizon value function St ψ ,
or its semiconvex dual, to longer time horizons t ∈ R≥0. Given the max-plus or
min-plus vector space V ∈ {S−M+ , S−M− }, an element F⊕t : V → V of a max-plus
fundamental solution semigroup is an operator of the form

F⊕t φ
.=
∫ ⊕

Rn

Ft (·, y)⊗ φ(y) dy , t ∈ R≥0 , φ ∈ V , (22)

in which Ft : Rn×R
n → R denotes its bivariate kernel. The dynamic programming

evolution operator (2) and the semiconvex transform (12) can be combined to yield
primal and dual space max-plus fundamental solution semigroups {G⊕

t }t∈R≥0 and

{B⊕t }t∈R≥0, corresponding respectively to V
.= S−M+ and V

.= S−M− . The associated
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kernels are specified in terms of an auxiliary value function St : Rn × R
n → R,

which is defined with respect to St and ϕ of (2) and (10) by

St (x, z)
.= [St ϕ(·, z)](x) , (23)

for all t ∈ R≥0, x, z ∈ R
n. The following is a consequence of Assumption 1.

Assumption 5 Sτ (x, ·), Sτ (·, z) ∈ S−M+ for all τ ∈ [0, τ ∗], x, z ∈ R
n.

Given any t ∈ R≥0, kernelsGt, Bt : Rn×R
n → R of the aforementioned max-plus

linear max-plus integral operators G⊕
t and B⊕t are defined via Assumption 5 by

Gt(x, y)
.=
{
[Dϕ St (x, ·)](y) , t ∈ [0, τ∗] ,
G
�kt
τt (x, y) , t > τ∗ ,

Bt (y, z)
.=
{
[Dϕ St (·, z)](y) , t ∈ [0, τ∗] ,
B
�kt
τt (y, z) , t > τ∗ ,

kt
.=
⌈
t

τ∗
⌉
, τt

.= t

kt
, (24)

for all x, y, z ∈ R
n, in which F�kt

τt denotes the convolution defined for F ∈ {G,B}
by

[F�kt
τt

](x, y) .=
∫ ⊕

Rn

∫ ⊕

Rn

· · ·
∫ ⊕

Rn

Fτt (x, η1)⊗ Fτt (η1, η2)⊗

· · · ⊗ Fτt (ηkt−1, y) dηkt−1 · · · dη2 dη1 .

(25)

Theorem 6 Given Assumptions 1 and 5, and max-plus linear max-plus integral
operatorsG⊕

t , B
⊕
t defined by (22) with respect to the kernels Gt,Bt of (24),

G⊕
t ψ = St ψ = D−1

ϕ B⊕t Dϕ ψ (26)

for all t ∈ R≥0, ψ ∈ S−M+ , in which St is as per (2). Furthermore,

G⊕
τ+t = G⊕

τ G⊕
t , B⊕τ+t = B⊕τ B⊕t , (27)

for all τ, t ∈ R≥0.

Proof Fix any t ∈ [0, τ ∗], with τ ∗ ∈ R>0 as per Assumptions 1 and 5, ψ ∈ S−M+ ,
and x ∈ R

n. Note by Assumption 5 and definition (24) that

St (x, z) = [D−1
ϕ Gt(x, ·)](z) (28)
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for all z ∈ R
n. Recalling (2) and applying (12), (13), (28), and Theorem 2, and

noting that ϕ of (10) is symmetric (i.e. ϕ(y, z) = ϕ(z, y) for all y, z ∈ R
n),

[St ψ](x) =
[
St D−1

ϕ Dϕ ψ
]
(x) =

[
St

∫ ⊕

Rn

ϕ(·, z)⊗ [Dϕ ψ](z) dz
]
(x)

=
∫ ⊕

Rn

[St ϕ(·, z)](x)⊗ [Dϕ ψ](z) dz =
∫ ⊕

Rn

St (x, z)⊗ [Dϕ ψ](z) dz (29)

=
∫ ⊕

Rn

[D−1
ϕ Gt (x, ·)](z)⊗ [Dϕ ψ](z) dz =

∫ ⊕

Rn

∫ ⊕

Rn

ϕ(z, y)⊗Gt(x, y) dy ⊗ [Dϕ ψ](z) dz

=
∫ ⊕

Rn

Gt(x, y)⊗
∫ ⊕

Rn

ϕ(y, z)⊗ [Dϕ ψ](z) dz dy =
∫ ⊕

Rn

Gt(x, y) ⊗ [D−1
ϕ Dϕ ψ](y) dy

=
∫ ⊕

Rn

Gt(x, y)⊗ ψ(y) dy = [G⊕
t ψ](x) , (30)

which is the left-hand equality in (26). Similarly, applying the definition (24) of
kernel Bt in (29),

[St ψ](x) =
∫ ⊕

Rn

St (x, z)⊗ [Dϕ ψ](z) dz =
∫ ⊕

Rn

[D−1
ϕ Bt (·, z)](x) ⊗ [Dϕ ψ](z) dz

=
∫ ⊕

Rn

∫ ⊕

Rn

ϕ(x, y)⊗ Bt(y, z) dy ⊗ [Dϕ ψ](z) dz

=
∫ ⊕

Rn

ϕ(x, y)⊗
∫ ⊕

Rn

Bt(y, z)⊗ [Dϕ ψ](z) dz dy =
∫ ⊕

Rn

ϕ(x, y)⊗ [B⊕t Dϕ ψ](y) dy

= [D−1
ϕ B⊕t Dϕ ψ](x) , (31)

which is the right-hand equality in (26).
For t > τ ∗, define kt ∈ N and τt ∈ [0, τ ∗] as per (24). Applying Theorem 2,

definition (24) of Gt , and (30),

St ψ = [Sτt ]◦kt ψ = [G⊕
τt
]◦kt ψ =

∫ ⊕

Rn

G�kt
τt
(·, y)⊗ ψ(y) dy

=
∫ ⊕

Rn

Gt(·, y)⊗ ψ(y) dy = Gt ψ . (32)

in which [·]◦kt denotes self-composition kt−1 times, as per the proof of Theorem 2.
Similarly applying Theorem 2, definition (24) of Bt , and (31),

St ψ = [Sτt ]◦kt ψ = [D−1
ϕ Bτt Dϕ]◦kt ψ = D−1

ϕ [B⊕τt ]◦kt Dϕ ψ = D−1
ϕ Bt Dϕ ψ .

The semigroup properties (27) follow analogously by Theorem 2 and (26). �
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Remark 7 The identity operator I : S−M+ → S−M+ , defined by Iψ
.= ψ for all

ψ ∈ S−M+ , is also a max-plus linear max-plus integral operator of the form (22).
Recalling (8), its bivariate kernel is the max-plus delta function δ−, with

Iψ = I⊕ψ .=
∫ ⊕

Rn

δ−(·, y)⊗ ψ(y) dy , (33)

for all ψ ∈ S−M+ . An alternative representation for the kernel Gt of (24) may be

derived for any t ∈ R≥0 using (2) and (33). With t ∈ [0, τ ∗] and ψ ∈ S−M+ ,
applying definitions (24) and (33) ofGt and I⊕, along with max-plus linearity of St
from Theorem 2, yields

[D−1
ϕ Gt (x, ·)](y) = St (x, y) = [St ϕ(·, y)](x) = [St I⊕ ϕ(·, y)](x)

=
[
St

∫ ⊕

Rn

δ−(·, z)⊗ ϕ(z, y) dz
]
(x) =

∫ ⊕

Rn

[St δ−(·, z)](x)⊗ ϕ(z, y) dz

=
∫ ⊕

Rn

ϕ(y, z)⊗ [St δ−(·, z)](x) dz = [D−1
ϕ Tt (x, ·)](y) ,

in which Tt : R
n × R

n → R is defined by Tt (x, y)
.= [St δ−(·, y)](x), for all

x, y ∈ R
n. Hence, applying Theorem 3, i.e. Dϕ D−1

ϕ = I = I⊕,

Gt(x, y) = [Dϕ D−1
ϕ Tt (x, ·)](y) = Tt (x, y) = [St δ−(·, y)](x)

for all x, y ∈ R
n, in which St δ−(·, y) defines the value function for an optimal

two-point boundary value problem with terminal state y ∈ R
n. Recalling (24) and

Assumption 5, this representation may be extended from t ∈ [0, τ ∗] to any t ∈ R≥0.
�

Theorem 6 stipulates that {G⊕
t }t∈R≥0 and {B⊕t }t∈R≥0 define one-parameter

semigroups of max-plus linear max-plus integral operators of the form (22), with
elements of each defined via their respective kernels Gt and Bt as per (24) for
any t ∈ R≥0. These define max-plus primal and max-plus dual space fundamental
solution semigroups respectively [5, 16–19]. For a fixed τ ∈ R>0, Theorem 6 further
states that either semigroup may be used to iteratively represent the finite and infinite
horizon value functionsWkτ

.= Skτ ψ0 and W of (1) corresponding to the terminal
payoff ψ0 ∈ S−M+ for all k ∈ Z≥0. Using the dual space semigroup in this way
underpins the max-plus eigenvector method of [1].

Remark 8 Max-plus primal space fundamental solution semigroups have been
exploited in nonlinear filtering problems [15, p. 692], and for constructing solution
representations for the gravitational N-body problem [16, Section 1.2, p. 2901],
differential Riccati equations [19, Section 3, p. 15], and two-point boundary value
problems involving wave equations [20, Section 3, p. 2159]. Similarly, max-plus
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dual space fundamental solution semigroups have been exploited in developing
standard max-plus eigenvector methods [1, e.g. Sections 4.4 and 4.5, p. 70], and for
constructing solution representations for differential Riccati equations [5, Theorems
4.6 and 4.7, p. 926], [18, Section 3, p. 976], and non-quadratic regulator problems
[17, Section 3, p. 701]. As indicated, it is the max-plus dual space fundamental
solution semigroup underlying the standard max-plus eigenvector method of [1]
that is particular interest here. �

4 Adaptive Max-Plus Eigenvector Method

Max-Plus Eigenvector Method In applying the max-plus dual space fundamental
solution semigroup {B⊕t }t≥0, a sequence of finite horizon value functions {Wkτ }k∈N
defined by (1) for a priori fixed τ ∈ R>0 can be equivalently represented
via Theorem 6 by a sequence of semiconcave functions {ak}k∈N ⊂ S−M− . In
particular [1],

Wkτ = D−1
ϕ ak , ak = B⊕kτ a0 = B⊕τ ak−1 = [B⊕τ ]◦k a0 , a0

.= Dϕ ψ0 , (34)

for all k ∈ N∪{0}, in which it is recalled that [·]◦k denotes composition k−1 times.
Defining an infinitely dimensioned vector ek component-wise by [ek]i .= ak(zi) for
all i, k ∈ N, with respect to the dense set {zi}i∈N ⊂ R

n in (18), it follows that

[ek]i = ak(zi ) = [B⊕τ ak−1](zi ) =
∫ ⊕

Rn

Bτ (zi , z)⊗ ak−1(z) dz (35)

=
⊕
j∈N

Bτ (zi , zj )⊗ ak−1(zj ) =
⊕
j∈N

[Bτ ]ij ⊗ [ek−1]j = [Bτ ⊗ ek−1]i ,

for all k, i ∈ N, in which (abusing notation) Bτ is both the kernel of B⊕τ and
its representation as a compatibly (infinite) dimensioned square matrix, defined
element-wise by [Bτ ]ij .= Bτ (zi, zj ) for i, j ∈ N. Note also that the final ⊗ in (35)
denotes (with a further abuse of notation) a suitably generalized matrix-vector max-
plus multiplication operation. Combining (18), (34) and (35), the infinite horizon
value functionW of (1) is equivalently given by

W = D−1
ϕ a∞ =

⊕
i∈N

ψi(·)⊗ [e∞]i , e∞
.= lim
k→∞ ek , (36)

ek = Bτ ⊗ ek−1 , [e0]i = [Dϕ ψ0](zi) , k, i ∈ N .
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An approximation Ŵ ofW follows by truncating the basis {ψi}i∈N of (15) to a finite
cardinality subset {ψi}i∈N≤ν , ν ∈ N, with (21), (34), and (35) yielding

Ŵ
.=

ν⊕
i=1

ψi(·)⊗ [̂e∞]i , ê∞
.= lim
k→∞ êk , (37)

êk = B̂τ ⊗ êk−1 , [̂e0]i = [D̂ϕ ψ0](zi) , k ∈ N , i ∈ N≤ν ,

in which B̂τ ∈ R
ν×ν

and êk ∈ R
ν
. Iteration (37) is referred to as a max-plus

eigenvector method [1, 8]. It is applicable to the numerical computation of finite and
infinite horizon value functions of the form (1), and is applied here for the latter.

Remark 9 The idempotent property of the ⊕ operation is crucial in establishing
that the limit ê∞ in (37), where it exists and is finite, is achieved in a finite number
of steps. In particular, recalling the proof of [1, Theorem 4.22, p. 81], elements
of the vector [̂ek]i = [(B̂τ )⊗k ⊗ 0]i .= [B̂τ ⊗ · · · ⊗ B̂τ ⊗ 0]i generated by (37)
correspond to the optimal cost over all length k paths traversed from the ith vertex
of a precedence graph, defined by B̂τ . As ν ∈ N, this graph is finite. Furthermore,
paths longer than ν necessarily contains loops, and it may be shown that these loops
contribute negative cost. Consequently, longer paths cannot yield maximum cost,
which implies convergence of (37) in a finite number of steps. (Note also that one
vertex must correspond to a basis function located at 0 ∈ R

n, see [1, Lemma 4.20,
p. 77].)

With ê∞ denoting the limit as per (37), note by inspection that 0 ⊗ ê∞ = 1 ⊗
ê∞ = B̂τ ⊗ ê∞, so that ê∞ is an eigenvector of B̂τ corresponding to eigenvalue
1( .= 0). This eigenvector is unique up to a max-plus multiplicative constant, see [1,
Theorem 4.22, p. 81 and Corollary 4.23, p. 82]. �
Remark 10 Elements [B̂τ ]ij = B̂τ (zi, zj ), i, j ∈ N≤ν , of the matrix B̂τ appearing
in (37) are approximated via numerical integration of a related nonlinear ODE, see
[1, Section 5.3.1, p. 122], [8]. The maximum allowable errors in this approximation,
in the presence of which the convergence and eigenvector properties in Remark 9
are retained, are specified in [1, Theorem 5.9, p. 107]. �
Tessellation and Sorting Given a convex and bounded subset Y ⊂ R

n of the state
space, x ∈ Y, and truncated basis B

.= {ψi}i∈N≤ν , ν ∈ N, evaluation of (37) via
the ⊕ operation indicates that a unique basis function ψi is active at x if ψi(x) +
[̂e∞]i > ψj (x)+ [̂e∞]j for all j ∈ N≤ν , j �= i. Indeed, the (possibly empty) subset
Yi ⊂ Y ⊂ R

n of states for which the ith basis function is active in (37) is given by

Yi
.=
{
x ∈ Y

∣∣∣∣Γij (x, ê∞) > 0 ∀ j ∈ N≤ν, j �= i
}
, i ∈ N≤ν, (38)
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in which Γij is defined for i, j ∈ N≤ν by

Γij (x, ê∞)
.= 〈x, M (zj − zi)〉 −

[
[̂e∞]j + 1

2
〈zj , M zj 〉

]
+ [̂e∞]i + 1

2
〈zi , M zi〉 .

(39)

By inspection of (38) and (39), Yi defines the interior of an intersection of a family
of half spaces for each i ∈ N≤ν . Consequently, Yi is a closed convex polytope,
∪i∈N≤νYi = Y, and the family {Yi}i∈N≤ν defines a Voronoi tessellation of Y.

The utility of specific basis functions in approximating the value function (1)
on a subset X of Y can be assessed using the Hamiltonian (7). In particular, this
Hamiltonian can be used to define a back substitution error [9] associated with the
value function approximation Ŵ of (37). By definition (38), with x ∈ Yi ,

Ŵ (x) = ψi(x)+ [̂e∞]i = 1

2
〈x − zi ,M(x − zi)〉 + [̂e∞]i ,

∇xŴ (x) = ∇xψi(x) = p(x, zi) .= M(x − zi) , (40)

so that the aforementioned back substitution error h(·, zi ) : Yi → R is defined by

h(·, zi ) .= H(·, p(·, zi )) (41)

for any i ∈ N≤ν . Given a target bound δH ∈ R>0 on the magnitude of this back
substitution error, it is convenient to define the subset

Xi
.= Yi ∩ co B̂0(r

∗
H ) , i ∈ N≤ν , (42)

where B̂0(r
∗
H) ⊂ R

n is a star-shaped neighbourhood of radius r∗H ∈ R≥0, centred
at 0 ∈ R

n, that is defined by

B̂0(r)
.= {ρ v̂ ∈ R

n
∣∣ v̂ ∈ V̂q , ρ ∈ [0, r]

}
, V̂q

.= {̂vi ∈ R
n | ‖̂vi‖ = 1 , i ∈ N≤q} ,

r∗H
.= min
i∈N≤ν

r∗i , r∗i
.= sup

{
r ∈ R≥0

∣∣∣ |h(y, zi )| ≤ δH ∀ y ∈ Yi ∩ B̂0(r)

}
, (43)

in which the normalized vertex set V̂q is fixed a priori for some q ∈ N. Note in
particular that r∗H is the maximal radius for which this star-shaped neighbourhood is
within the magnitude back substitution error level set defined by δH . In this respect,
co B̂0(r

∗
H ) is an approximation for the largest ball that fits within this level set.
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As Yi , i ∈ N≤ν and co B̂0(r
∗
H ) are convex polytopes, it follows by (42) that Xi

is a convex polytope for each i ∈ N≤ν . The vertices V(Xi ) of Xi can subsequently
be sorted with respect to h(·, zi ), with the sorted set of vertices defined iteratively by

[V∗i ]j .= [V∗i ]j−1 ∪ {[x∗i ]j } , [x∗i ]j .= arg max
x∈V(Xi )\[V∗i ]j−1

1

2
|h(x, zi)|2 ,

[V∗i ]0 .= ∅ ,
(44)

for all j ∈ N≤Ki , where Ki ∈ N is at most the total number of vertices of Xi . The
set of polytopes {Xi}i∈N≤ν defining the tessellation can subsequently be sorted with
respect to their “worst-case” vertex, i.e. [V ∗

i ]1 for all i ∈ N≤ν .

Remark 11 A refinement of the approximation B̂0(r
∗
H) of (43) for the Hamiltonian

back substitution error level set is provided in [21]. There, an annulus in the state
space is characterized and computed that approximates the boundary of the largest
ball contained within the Hamiltonian back substitution error level set. �

An example of a Voronoi tessellation (42) corresponding to the max-plus dual
space coordinate representation ê∞ of a value function approximation generated by
the standard max-plus eigenvector method (37) is illustrated in Fig. 1. There, the
basis functions (10) employed are located at the x marked locations corresponding
to {zi}i∈N≤ν , ν .= 89. The set V̂ selected in constructing the approximately circular
boundary of the tessellation shown consists of q

.= 36 unit vectors rotated through

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x2

-3

-2

-1

0

1

2

3

x 1

 = 89

Fig. 1 Voronoi tessellation corresponding to a specific dual approximation ê∞ and basis
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multiples of π/18 radians in R
2. Each component polytope shown corresponds to a

specific basis function x, with pairings illustrated via matching colours.

Remark 12 Where σ(x)
.= σ ∈ R

n×m and l(x)
.= 1

2 〈x, C′ C x〉 for all x ∈ Y, (7)
implies that the back substitution error (41) is h(x, zi) = −qzi (x) − rzi (x) for all
x ∈ Xi , i ∈ N≤ν , with qzi , rzi : Xi → R defined with respect to A

.= Df (0) ∈
R
n×n, F(x)

.= f (x)− Ax, and Γ (M) .= A′M+MA+ 1
γ 2 M σ σ

′M+ C′ C, by

qzi (x)
.= 1

2
〈x − zi, Γ (M) (x − zi)〉 + 1

2
〈zi, C′ C zi〉 + 〈x − zi , (MA+ C′ C) zi +MF(zi)〉

rzi (x)
.= 〈x − zi , M (F (x)− F(zi))〉 , (45)

for all x ∈ Xi . If the value function (1) corresponding to the linearized problem
is finite, there exists an invertible M ∈ Σ in (10), (45) such that Γ (M) ∈ Σ>0.
Consequently, qzi is convex. Hence, h(·, zi ) is concave on Xi if rzi is convex on Xi ,
whereupon its infimum is attained at a vertex of Xi , i.e. at an element of V(Xi ). �
Basis Adaptation Using the sorted vertex and polytope sets generated via (44), the
“worst-case” polytopes and corresponding basis functions can be identified. New
basis functions can subsequently be evolved from existing basis function locations
zi ∈ [V∗i ]Ki , i ∈ N≤ν , via an ODE of the form

z+i
.= Z(Πη+i ) ,

{
Π̇η = F(Πη) , η ∈ R≥0 ,

Π0 = G(zi) ,
(46)

in which functions F , G, Z, and parameter η+i ∈ (0, η̄] remain to be determined,
and η̄ ∈ R>0 is fixed a priori.

Stopping Condition for (46) In integrating (46), a stopping condition based on the
desired ripple in the Hamiltonian back substitution error may be used to determine
η+i . Without loss of generality, consider the first vertex y

.= [x∗i ]1 ∈ V(Xi ) in
the sequence (44). Should a new basis function be located at zi(ηi) for some ηi ∈
(0, η̄], and be rendered active at y a subsequent application of the standard max-
plus eigenvector method (37), the magnitude of the Hamiltonian at y is revised to
|h(y, zi(η))|, with the magnitude of the change induced there being |h(y, zi(η)) −
h(y, zi)|. In view of (42), a candidate for η+i in (46) is thus

η+i
.= sup

{
η ∈ (0, η̄]

∣∣∣∣ |h(y, zη)| < (1 − μ) δH ,|h(y, zη)− h(y, zi)| < μδH
}
, (47)

where μ ∈ (0, 1), η̄ ∈ R>0 are fixed. By definition, this choice of η+i establishes
a reduction in the Hamiltonian magnitude, while limiting the ripple induced by the
switch to the new basis function, see Fig. 2. The upper bound η̄ ensures that a new
basis function located at z+i = zi(η

+
i ) is sufficiently close to zi so as to allow
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x

Xi

H(x, p(x, zi))

y

x
Xi

y

H(x, p(x, zi)) H(x, p(x, z+i ))

δH

Fig. 2 Hamiltonian back substitution error improvement via addition of a new basis function,
located at z+i , and its corresponding polytope

information flow between its location and that of the other basis functions in the
subsequent application of the max-plus eigenvector method, see [1, Remark 4.24,
p. 83]. It may be noted that only one new row and one new column of B̂τ need be
computed per basis function added, see also Remark 10.

Gradient Descent Yielding (46) By inspection of (7), (41), h(y, ·) is differentiable,
so that

Dz
1

2
|h(y, z)|2 ζ = 〈ζ, h(y, z)∇zh(y, z)〉

for all ζ ∈ R
n, in which the Riesz representation∇zh(y, z) of the Fréchet derivative

of h(y, ·) at z ∈ R
n is given by

∇zh(y, z) = −M∇pH(y, p(y, z)) = M [f (y)+ 1

γ 2 g(y) g(y)
′ p(y, z)] (48)

for all y, z ∈ R
n. Given some fixed ε ∈ R>0, a normalized gradient descent

direction motivates a candidate for system (46), defined by

F(ζ )
.= − sgn(h(y, ζ ))

∇zh(y, ζ )
‖∇zh(y, ζ )‖ + ε , G(ζ )

.= ζ , Z(ζ )
.= ζ , (49)

for all ζ ∈ R
n. By inspection of (48), F of (49) is related to the flow of the

optimal dynamics, either backward or forward in time depending on the sign of
the Hamiltonian and M. The Hamiltonian squared may be reduced, or at least not
increased, by adding (locally) a new basis function in direction F(zi) from the
existing basis function located at zi ∈ R

n as per (10). Its precise location can be
determined by applying (47) and (49) in (46).



228 P. M. Dower

Characteristics Yielding (46) Given fixed zi ∈ R
n, and H as per (7), let y ∈Xi be

such that 0 = H(y,M (y − zi)). Define ξ , π , ζ via the Cauchy problem

ξ̇η = ∇p H(ξη, πη) , ξ0 = y ,
π̇η = −∇x H(ξη, πη) π0 = M (y − zi) ,
ζη = ξη −M−1 πη , (50)

for all η ∈ [0, η̄], η̄ ∈ R>0, in which ∇p H(x, p), x, p ∈ R
n, denotes the Riesz

representation of the Fréchet derivative ofH(x, ·) at p, and likewise for∇x H(x, p)
at x. By inspection, (50) defines a characteristic curve of (6), so that

0 = H(y,M (y − zi)) = H(ξ0, π0) = H(ξη, πη) = H(ξη,M (ξη − ζη))

for all η ∈ [0, η̄]. Note in particular that y ∈Xi corresponds (by definition) to a state
for which the Hamiltonian back substitution error is zero, while the characteristics
generated by (50) show how this state and the corresponding basis location zi
may be evolved to other locations without increasing this error. This motivates
the introduction of new basis functions defined along these characteristics, via an
alternative candidate for system (46), defined in terms of Π

.= (ξ, π) ∈ X2 and
y ∈ Xi by

F(Π)
.=
( ∇p H(ξ, π)
−∇x H(ξ, π)

)
, G(zi)

.=
(

y

M (y − zi)
)
, Z(Π)

.= ξ −M−1π .

(51)

New basis functions are thus added along trajectories corresponding to the approxi-
mate optimal dynamics, as a consequence of the characteristic curves employed.

Remark 13 An intrinsic difficulty with the standard max-plus eigenvector
method (37) is that there is no guarantee that a specific basis function located
away from the origin will be rendered active in the subsequent value function
approximation. Consequently, in the basis adaptation iteration proposed, there
is likewise no guarantee that an added basis function will be rendered active in
the subsequent value function approximation. This of course applies irrespective of
whether gradient descent (46), (47), (49) or characteristics (46), (47), (51) is applied.
Notwithstanding this difficulty, it is known that the value function approximation
error obtained is non-increasing with increasing density of the set of basis function
locations {zi}i∈N≤ν , and that this error converges to zero in limit of a densely defined
basis, see [1, Theorem 5.14, p. 118]. Consequently, without pruning, the basis adap-
tation iteration must at worst preserve the prior value function approximation error.

Algorithm The aforementioned steps of max-plus eigenvector based value func-
tion approximation, back substitution error level set tessellation and basis sorting,
and basis adaptation can be combined to yield an adaptive max-plus eigenvector
method for approximately solving optimal control problems of the form (1), see
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ê∞

̂Bτ

ê∞

Fig. 3 Algorithmic overview of the adaptive max-plus eigenvector method

Fig. 3. Within the main adaptation loop of the associated algorithm, the basis (10)
available at the current step is used to compute an approximation Ŵ of the value
function W of (1), using the standard max-plus eigenvector method (37). Based
on this approximation, the back substitution error is computed via the attendant
Hamiltonian (7), and a level set corresponding to a target error is approximated
via a convex polytope in the state space. A Voronoi tessellation of this level
set approximation is subsequently computed, in which each component convex
polytope corresponds to a subset of states on which a single basis function is active
in the value function approximation. The polytope vertices, and subsequently the
polytopes themselves, are sorted as per (44) according to their back substitution
error. The “worst-case” polytopes and their associated basis functions are subse-
quently identified, and their respective locations evolved in directions that reduce
the expected back substitution error, yielding locations of new basis functions to be
added. Basis functions that are inactive in the value function approximation on the
level set are pruned. The basis is updated accordingly, and the steps above iterated.

Remark 14 The time complexity of the aforementioned algorithm is dominated by
computation of (i) the matrix B̂τ in the standard max-plus eigenvector method (37),
and (ii) the Voronoi tessellation of the approximate Hamiltonian level set.
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In (i), and as indicated in Remark 10, computation of B̂τ ∈ R
ν×ν

for a basis of
cardinality ν ∈ N requires integration of a separate nth order ODE for every entry of
B̂τ , where n ∈ N is the state dimension. Using a standard Runge-Kutta scheme [1,
p. 122], the time complexity for computation of B̂τ thus exhibits quadratic growth
in ν. This is problematic as the basis adaptation iteration proceeds and ν increases.
However, by storing B̂τ from the previous iteration, and restricting computation to
new rows and columns corresponding to those basis functions added in the most
recent basis adaptation iteration, this quadratic growth can be controlled.

In (ii), computation of the Voronoi tessellation requires vertex enumeration for a
set of at most ν polytopes, defined via (38). A benchmark pivoting algorithm [22,
23] that implements this vertex enumeration suffers from a curse-of-dimensionality,
with worst-case time complexity of

O

(
n ν (ν − 1) (ν + n− 1)

(
ν − 1
n

))
.

State-of-the-art vertex enumeration algorithms provide some improvement, al-
beit with a similarly afflicted worst-case time complexity of O(ν2n/23), see [24,
p. 168] and the references cited therein. In practice however, the worst case is
rarely encountered, as the number of hyperplanes defining facets for individual
polytopes is typically far fewer than the basis cardinality ν, while degenerate
vertices/hyperplanes can in-principle be controlled by basis pruning. Together, these
aspects can significantly reduce the combinatorial term dominating the worst-case
described. �
Remark 15 A secondary issue affecting application of the standard max-plus
eigenvector method (37) within the main loop of adaptive basis algorithm concerns
the choice of the short time horizon τ . In particular, applicability of the error analysis
of [1, Ch.5] requires that τ satisfy a lower bound, see for example [1, (5.91),
p. 121], that scales with the inverse of basis cardinality ν. As a consequence, it may
be required that τ be reduced as the adaptive basis iteration proceeds. Anecdotal
improvements in convergence of the basis adaptation algorithm have been observed
in examples by reducing τ in this way. Further details are omitted. �

5 Examples

Two examples are considered, corresponding to linear and nonlinear dynamics.

Linear Dynamics Suppose the dynamics and running cost are given by

f (x)
.=
(−1 0
−1 −1

)
x , σ (x)

.=
(

0.5
0

)
,

l(x)
.= 1

2
|x|2 , γ .= 2 , M .= 0.2 I2 , (52)
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Fig. 4 Linear dynamics—basis evolution using characteristics (46), (47), (51)

for all x ∈ R
2, in which I2 ∈ R

2×2 denotes the identity. The algorithm of Fig. 3 is
employed to approximate the value function. Within each iteration of this algorithm,
the max-plus eigenvector method (37) is applied with τ

.= 0.5. The characteristics
approach (46), (47), (51) is used to evolve the basis involved, with a target back
substitution error of δH

.= 0.1, and using μ
.= 0.25 and η̄

.= 0.5. Figures 4, 5,
and 6 illustrate evolution of the basis (and Voronoi tessellation), Hamiltonian, and
value function approximation respectively, via (42), (43), (44) with q

.= 36. The
basis functions used are of the form (10), with M fixed as per (52), and centres
{zi}i∈N≤ν located at the x marks shown. The initial basis is as depicted in the top left
panel of Fig. 4. The dashed lines indicate two basis function evolution trajectories,
each originating from the location zi , i ∈ N≤ν , of a corresponding worst-case basis
function. The trajectories are obtained by integrating (46) via (51) up to the stopping
condition η+i specified by (47). Two new basis functions are added per iteration, at
the worst-case locations z+i thus obtained.
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Fig. 5 Linear dynamics—Hamiltonian evolution using characteristics (46), (47), (51)

Fig. 6 Linear dynamics—value function evolution using characteristics (46), (47), (51)
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Nonlinear Dynamics Suppose the dynamics and running cost are given by

f (x)
.=
(−2 x1 [1 + 1

2 tan−1(3x2
2/2)]

1
2 x1 − 3 x2 exp(−x1/3)

)
, σ (x)

.= σ .= I2,

l(x)
.= 1

2
|x|2, γ .= 1, M

.= −0.1 I2, (53)

for all x = (x1, x2) ∈ R
2, see [1, p. 127]. The algorithm of Fig. 3 is again employed

to approximate the value function, with the encapsulated max-plus eigenvector
method (37) applied with τ

.= 0.1. The gradient descent approach (46), (47), (49) is
used to evolve the basis, with target back substitution error δH

.= 0.1. Figures 7, 8,
and 9 and illustrate evolution of the basis, Hamiltonian, and value function
approximation respectively. The settings are otherwise analogous to the preceding
linear example. It is observed that the basis is comparatively uniformly distributed,
a feature that was also observed in applying characteristics (46), (47), (51) to the
same problem data. The details are omitted.

Fig. 7 Nonlinear dynamics—basis evolution using gradient descent (46), (47), (49)
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Fig. 8 Nonlinear dynamics—Hamiltonian evolution using gradient descent (46), (47), (49)

Fig. 9 Nonlinear dynamics—value evolution using gradient descent (46), (47), (49)
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6 Conclusion

An adaptive max-plus eigenvector method is proposed, based on an iteration
involving a standard max-plus eigenvector method, a tessellation and sorting step
(for “worst-case” basis function identification), and a basis adaptation step. The
proposed method is illustrated via two simple examples.

Acknowledgements This research was partially supported by AFOSR/AOARD grant FA2386-
16-1-4066.

Appendix

In the statement of Theorem 3, the semiconvex transform Dϕ is as specified by (12),
and its candidate inverse is as per (13). For convenience, formally define

D+ϕ a
.=
∫ ⊕

Rn

ϕ(·, z)⊗ a(z) dz , a ∈ dom (D+ϕ)
.= RK− , (54)

in which RK− is as per (14).

Lemma 16 With −K ∈ ΣM ∪ {M} fixed, Dϕ and D+ϕ of (12) and (54) satisfy the
following properties:

1) dom (D+ϕ) = ran (Dϕ) = RK− ⊂ S−M− ;

2) ran (D+ϕ) = dom (Dϕ) = SK+ ⊂ S−M+ ;

3) Dϕ D
+
ϕ = I on dom (D+ϕ) = RK−;

4) D+ϕ Dϕ = I on dom (Dϕ) = SK+;
5) R−M− = S−M− ;

6) If −K > M then S−M+ \SK+ �= ∅ andR−M− \RK− �= ∅.
The following observations are useful in establishing Lemma 16.

1. Given invertible M ∈ Σ ,

〈x, z〉 + 1

2
〈x, M x〉 = 1

2
〈x − ζ(z), M (x − ζ(z))〉 − 1

2
〈ζ(z), M ζ(z)〉

(55)

for all x, z ∈ R
n, where ζ(z)

.= −M−1 z ∈ R
n.

2. Given O1,O2 ∈ Σ satisfying O1 < O2,

SO1+ ⊂ SO2+ , SO1− ⊂ SO2− . (56)
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Proof of Lemma 16 Assertion 1) By definitions (14) and (54),

ran (Dϕ) = RK− = dom (D+ϕ).

Fix an arbitrary a ∈ RK−. Applying definition (14), there exists a ψ ∈ SK+ such that
Dϕ ψ = a. Define ψ+, ψ± : Rn→R by

ψ+(x)
.= ψ(x)+ 1

2
〈x, K x〉 , ψ±(x)

.= ψ+(x)+ 1

2
〈x, −(K+M) x〉 ,

(57)

for all x ∈ R
n, and note that

ψ±(x) = ψ(x)− 1

2
〈x, M x〉 (58)

for all x ∈ R
n. By inspection of (57), ψ+ is convex and lower closed on R

n, as
ψ ∈ SK+ . Hence, ψ± is also convex and lower closed on R

n, as −(K+M) ≥ 0 by
definition of −K ∈ ΣM ∪ {M}. Hence, the convex conjugate ψ∗± : Rn→R of ψ± is
also convex and lower closed [25, Theorem 5, p. 16], with

ψ∗±(z)
.=
∫ ⊕

Rn

〈z, x〉 ⊗ (−ψ±(x)) dx (59)

for all z ∈ R
n. Define ã : Rn→R by

ã(ζ )
.= −ψ∗±(−M ζ )− 1

2
〈ζ, M ζ 〉 (60)

for all ζ ∈ R
n. Note that ã is upper closed, as ψ∗± and 1

2 〈·, M ·〉 are lower closed.
Furthermore, ζ %→ ã(ζ ) − 1

2 〈ζ, −M ζ 〉 is concave, as ψ∗± is convex. Hence, ã ∈
S−M− . Recalling that ψ∗± is the convex conjugate of ψ±, (58), (60) imply that

ã(ζ ) = −ψ∗±(−M ζ )− 1

2
〈ζ, M ζ 〉 = −

∫ ⊕

Rn

〈−M ζ, x〉 ⊗ (−ψ±(x)) dx − 1

2
〈ζ, M ζ 〉

= −
∫ ⊕

Rn

1

2
〈x, M x〉 − 〈M ζ, x〉 + 1

2
〈ζ, M ζ 〉 − ψ(x) dx

= (Dϕ ψ)(ζ ) = a(ζ ) (61)

for all ζ ∈ R
n. That is, a = ã ∈ S−M− , and as a ∈ RK− is arbitrary, RK− ⊂ S−M− .

2) By definitions (12) and (54), dom (Dϕ) = SK+ and dom (D+ϕ) = RK−. Fix an

arbitrary a ∈ dom (D+ϕ) = RK−. Following the proof of Assertion 1), there exists a
ψ ∈ SK+ such that Dϕψ = a, defining a convex and lower closed ψ± : Rn → R as



An Adaptive Max-Plus Eigenvector Method 237

per (57), (58). Note further that a = ã ∈ S−M− , where ã is defined as per (60). As
ψ± = ψ∗∗± , see [25, Theorem 5, p. 16], (54), (58) and (60) imply that

ψ(x) = (ψ∗±)∗(x)+
1

2
〈x, M x〉 =

∫ ⊕

Rn

〈x, z〉 + 1

2
〈x, M x〉 − ψ∗±(z) dz

=
∫ ⊕

Rn

1

2
〈x − ζ, M (x − ζ )〉 +

[
−ψ∗±(−M ζ )− 1

2
〈ζ, M ζ 〉

]
dζ

=
∫ ⊕

Rn

1

2
〈x − ζ, M (x − ζ )〉 ⊗ ã(ζ ) dζ = (D+ϕ ã)(x) = (D+ϕ a)(x) (62)

where the third equality uses (55) and the change of variable ζ
.= −M−1 z ∈ R

n.
Hence, ran (D+ϕ) ⊂ SK+ , as ψ = D+ϕ a ∈ SK+ , and a ∈ dom (D+ϕ) is arbitrary.

Alternatively, fix an arbitrary ψ ∈ SK+ , and construct ψ± directly

using (57), (58). Subsequently define a = ã ∈ S−M− via (60), and note that

ψ = D+ϕ a as per (62). That is, SK+ ⊂ ran (D+ϕ), as ψ ∈ SK+ is arbitrary.

Recalling the earlier conclusion ran (D+ϕ) ⊂ SK+ yields SK+ = ran (D+ϕ). Finally, as

−K ∈ ΣM ∪ {M}, i.e. K ≤ −M, (56) implies that SK+ ⊂ S−M+ as required.

3), 4) Applying Assertions 1) and 2), the compositions Dϕ D
+
ϕ : RK−→RK− and

D+ϕ Dϕ : SK+→SK+ are well-defined. Applying (61) and (62) yields a = Dϕ D
+
ϕ a

and ψ = D+ϕ Dϕ ψ for any a ∈ RK− = dom (D+ϕ), ψ ∈ SK+ = dom (Dϕ), i.e.,

Dϕ D+ϕ = I , dom (Dϕ D+ϕ) = RK− ,

D+ϕ Dϕ = I , dom (D+ϕ Dϕ) = SK+ .

5) Fix any a ∈ S−M− . Define a∓ : Rn→R by

a∓(ζ ) = −
[
a(ζ )− 1

2
〈ζ, −M ζ 〉

]
,

for all ζ ∈ R
n. Observe that a∓ is convex and lower closed by definition of a, so

that a∓ = a∗∗∓ , see [10, Theorem 5, p. 16]. Hence,

a(y) = −(a∗∓)∗(y)−
1

2
〈y, M y〉 = −

∫ ⊕

Rn

〈y, z〉 + 1

2
〈y, M y〉 − a∗∓(z) dz

= −
∫ ⊕

Rn

1

2
〈y − ζ, M (y − ζ )〉 −

[
1

2
〈ζ, M ζ 〉 + a∗∓(M ζ )

]
dζ (63)
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where the final equality follows by application of (55). Define ψ∓ : Rn→R by

ψ∓(ζ )
.= 1

2
〈ζ, M ζ 〉 + a∗∓(M ζ ) (64)

for all ζ ∈ R
n. As a∗∓ is also convex and lower closed [10], ψ∓ ∈ S−M+ .

Substituting (64) in (63), and recalling (12) with −K
.= M ∈ ΣM ∪ {M} selected in

the definition of dom (Dϕ),

a(y) = −
∫ ⊕

Rn

1

2
〈y − ζ, M (y − ζ )〉 ⊗ (−ψ∓(ζ )) dζ = (Dϕ ψ∓)(y)

for all y ∈ R
n. Hence, a ∈ R−M− by inspection of (14). As a ∈ S−M− is arbitrary,

it follows immediately that S−M− ⊂ R−M− . However, applying Assertions 1) and 2)

for K = −M yields that R−M− ⊂ S−M− , so that the claimed property holds.

6) Let DM
ϕ and DM+

ϕ denote the operators Dϕ and D+ϕ of (12) and (54) with

respective domains given by dom (DM
ϕ ) = S−M+ and dom (DM+

ϕ ) = R−M− . Fix

any −K ∈ ΣM, i.e. so that −K > M. Observe that S−M+ \ SK+ �= ∅, as it
contains 1

2 〈·, N ·〉 for any N ∈ Σ satisfying M < N < −K. Fix any ψ ∈
S−M+ \ SK+ . By Assertions 1) through 5) applied to DM

ϕ and DM+
ϕ , there exists an

a ∈ S−M− = R−M− ⊃ RK− such that DM
ϕ ψ = a and DM+

ϕ a = ψ . Suppose that

a ∈ RK− = dom (D+ϕ) ⊂ dom (DM+
ϕ ). By (12) and Assertion 4), applied to Dϕ and

D+ϕ ,

D+ϕ a = D+ϕ D
M
ϕ ψ = D+ϕ Dϕ ψ = ψ .

Hence, ψ ∈ ran (D+ϕ) = SK+ , by assertion 2), which contradicts ψ ∈ S−M+ \SK+ .

That is, a ∈ R−M− and a �∈ RK−, so that a ∈ R−M− \RK− �= ∅. �
Corollary 17 Given−K ∈ ΣM∪{M}, and ϕ as per (10), the semiconvex transform
Dϕ : SK+→RK− of (12) has a well-defined inverse D−1

ϕ : RK−→SK+ given by

D−1
ϕ a = D+ϕ a , a ∈ dom (D−1

ϕ )
.= dom (D+ϕ) = RK− ,

where D+ϕ is as per (54).

Proof of Corollary 17 and Theorem 3 Immediate by inspection of Lemma 16. �
Lemma 18 The asserted forms (16), (17) of the semiconvex transform and its
inverse (12), (13) hold.
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Proof Given any ψ ∈ S−M+ , Theorem 3 implies that Dϕ ψ ∈ S−M− . Define a∓ :
R
n → R by

a∓(z)
.= −[Dϕ ψ](z)− ϕ(0, z), (65)

for all z ∈ R
n, and observe that a∓ is convex and lower closed, i.e. a∓ = cl− co a∓,

see [10]. Motivated by the form of the argument of the convex hull operation in the
right-hand side of (16), define ã∓ : Rn → R by ã∓(z)

.= −⊕i∈Nψi(0)⊗ δ−zi (z)⊗
(Dϕ ψ)(zi ) for all z ∈ R

n. Note by definition (8) of δ−zi that

ã∓(z) =
{−[Dϕ ψ](zi)− ϕ(0, zi), z = zi , i ∈ N ,

+∞ , otherwise,
(66)

for all z ∈ R
n. As {zi}i∈N is dense in R

n, inspection of (65) and (66) yields that
a∓ = cl− co ã∓. Recalling the definition of ã∓ subsequently yields (16).

The remaining assertion (17) is an immediate consequence of (13), as {zi}i∈N is
dense in R

n. �
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Diffusion Process Representations
for a Scalar-Field Schrödinger Equation
Solution in Rotating Coordinates

William M. McEneaney and Ruobing Zhao

Abstract A particular class of Schrödinger initial value problems is considered,
wherein a particle moves in a scalar field centered at the origin, and more
specifically, the distribution associated to the solution of the Schrödinger equation
has negligible mass in the neighborhood of the origin. The Schrödinger equation
is converted to the dequantized form, and a non-inertial frame centered along
the trajectory of a classical particle is employed. A solution approximation as a
series expansion in a small parameter is obtained through the use of complex-
valued diffusion-process representations, where under a smoothness assumption,
the expansion converges to the true solution. In the case of an expansion up through
only the cubic terms in the space variable, there exist approximate solutions that
are periodic with the period of a classical particle, but with an additional secular
perturbation. The computations required for solution up to a finite order are purely
analytical.

Keywords Stochastic control · Schrödinger equation · Hamilton–Jacobi ·
Stationary action · Staticization · Complex-valued diffusion

1 Introduction

Diffusion representations have long been a useful tool in solution of second-order
Hamilton-Jacobi partial differential equations (HJ PDEs), cf. [7, 10] among many
others. The bulk of such results apply to real-valued HJ PDEs, that is, to HJ PDEs
where the coefficients and solutions are real-valued. The Schrödinger equation is
complex-valued, although generally defined over a real-valued space domain, which
presents difficulties for the development of stochastic control representations. In
[17, 18], a representation for the solution of a Schrödinger-equation initial value
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problem over a scalar field was obtained as a stationary value for a complex-valued
diffusion process control problem. Although there is substantial existing work on the
relation of stochastic processes to the Schrödinger equation (cf. [9, 14, 20, 21, 26]),
the approach considered in [17, 18] is along a slightly different path, closer to [2–
5, 13, 16]. However, the representation in [17, 18] employs stationarity of the
payoff [19] rather than optimization of the payoff, where stationarity can be used to
overcome the limited-duration constraints of methods that use optimization of the
payoff.

Here we discuss a particular problem class, and use diffusion representations as
a tool for approximate solution of the Schrödinger equation. We will consider a
specific type of weak field problem. Suppose we have a particle in a scalar field
centered at the origin, but in the special case where the particle is sufficiently far
from the origin that the distribution associated to the corresponding Schrödinger
equation has negligible density near the origin. More specifically, let the particle
mass be denoted by m, and let h̄ denote Planck’s constant. The simplest scalar-field
example, which can be instructive if only purely academic, is the quadratic-field
case, generating the quantum harmonic oscillator. Of somewhat more interest is
the case where one has the potential energy generated by the field interacting with
the particle taking the form V̄ (x) = −c̄/|x|. Let the solution of the Schrödinger
equation at time, t , and position, x, be denoted by ψ(t, x), and consider the
associated distribution given by P̃ (t, x)

.= [ψ∗ψ](t, x). Formally speaking, as
h̄/m ↓ 0, one expects that in some sense P̃ (t, ·) approaches a Dirac-delta function
centered at ξ(t), where mξ̈(t) = −∇xV̄ (ξ(t)). Consequently, we will consider a
non-inertial frame where the origin will be centered at ξ(t) for all t . In particular,
we consider a case where ξ(t) follows a circular orbit with constant angular velocity,
i.e., ξ(t) = δ̂

(
cos(ωt), sin(ωt)

)
where δ̂ ∈ (0,∞). (In the interests of space

and reduction of clutter, where it will not lead to confusion, we will often write
(x1, x2) in place of (x1, x2)

T , etc.) Although such motion can be generated by a two-
dimensional harmonic oscillator, we will focus mainly on the V̄ (x) = −c̄/|x| class,
in which case ω

.= [c̄/(mδ̂3)]1/2. We suppose that δ̂ is sufficiently large such that
P̃ (t, x)7 1 for |x| < δ̂/2, and thus that one may approximate V̄ in the vicinity of
ξ(t) by a finite number of terms in a power series expansion centered at ξ(t). We will
use a set of complex-valued diffusion representations to obtain an approximation to
the resulting Schrödinger equation solution. If the solution is holomorphic in x and
a small parameter, then the approximate solution converges as the number of terms
in the set of diffusion representations approaches infinity.

The analysis will be carried out only in the case of a holomorphic field
approximation. As our motivation is the case where δ̂ is large relative to the
associated position distribution, one expects that the case of a −c̄/|x| potential may
be sufficiently well-modeled by a finite number of terms in a power series expansion.
However, an analysis of the errors induced by such an approximation to a −c̄/|x|
potential is beyond the scope of this already long paper, and may be addressed in a
later effort; the focus here is restricted to the diffusion-representation based method
of solution approximation method given such an approximation to the potential. We
remark that in the case of a quadratic potential, we recover the quantum harmonic
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oscillator solution. Also, in the case of V̄ (x) = −c̄/|x|, as δ̂ → ∞, the solution
approaches that of the free particle case. The computations required for solution up
to any finite polynomial-in-space order may be performed analytically.

In Sect. 2, we review the Schrödinger initial value problem, and the dequantized
form of the problem. The solution to the dequantized form of the problem will be
approximated through the use of diffusion representations; the solution to the orig-
inating Schrödinger initial value problem is recovered by a simple transformation.
As it is used in Sect. 2, we briefly recall the stat operator in Sect. 3.1. In Sect. 3.2,
the dequantized form will be converted into a form over a rotating and translating
reference frame centered at the position of a classical particle following a circular
trajectory generated by the central field. Then, in Sect. 3.3, we discuss equivalent
forms over a complex space domain, and over a double-dimension real-valued
domain. Classical existence, uniqueness and smoothness results will be applied to
the problem in this last form. These will then be transferred to the original form
as a complex-valued solution over a real space domain. In Sect. 4, we indicate the
expansion of the solution in a small parameter related to the inverse of the distance
to the origin of the field. A power series representation will be used, where this
will be over both space and the small parameter. In particular, we will assume that
at each time, the solution will be holomorphic over space and the small parameter.
The functions in the expansion are solutions to corresponding HJ PDEs, where these
are also indicated here. The HJ PDE for the first term, say k = 0, has a closed-form
solution, and this is given in Sect. 5. Then, in Sect. 6, it is shown that for k ≥ 1,
given the solutions to the preceding terms, the HJ PDE for the kth term takes a
linear parabolic form, with a corresponding diffusion representation. It is shown
that diffusion representation may be used to obtain the solution of the k+1 HJ PDE
given the solutions to the k-and-lower HJ PDE solutions. The required computations
may be performed analytically. In Sect. 7, this method is applied to obtain the next
term in the expansion in the case of a cubic approximation of the classic 1/r type
of potential, and additional terms may be obtained similarly.

2 Dequantization

We recall the Schrödinger initial value problem, given as

0 = ih̄ψt (s, x)+ h̄2

2mΔxψ(s, x)− ψ(s, x)V̄ (x), (s, x) ∈ D, (1)

ψ(0, x) = ψ0(x), x ∈ R
n, (2)

where initial condition ψ0 takes values in C, Δx denotes the Laplacian with respect
to the space (second) variable, D

.= (0, t) × R
n, and subscript t will denote

the derivative with respect to the time variable (the first argument of ψ here)
regardless of the symbol being used for time in the argument list. We also let
D

.= [0, t) × R
n. We consider the Maslov dequantization of the solution of the

Schrödinger equation (cf. [15]), which similar to a standard log transform, is
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S : D → C given by ψ(s, x) = exp{ i
h̄
S(s, x)}. Note that ψt = i

h̄
ψSt , ψx = i

h̄
ψSx

and Δxψ = i
h̄
ψΔxS − 1

h̄2ψ|Sx |2c where for y ∈ C
n, |y|2c .=

∑n
j=1 y

2
j . (We remark

that notation | · |2c is not intended to indicate a squared norm; the range is complex.)
We find that (1)–(2) become

0 = −St (s, x)+ ih̄
2mΔxS(s, x)+H 0(x, Sx(s, x)), (s, x) ∈ D, (3)

S(0, x) = φ̄(x), x ∈ R
n, (4)

whereH : Rn ×C
n → C is the Hamiltonian given by

H 0(x, p) = −[ 1
2m |p|2c + V̄ (x)

] = stat
v∈Cn
{
v · p + m

2 |v|2c − V̄ (x)
}
, (5)

and stat is defined in Sect. 3.1. We look for solutions in the space

S
.= {S : D → C | S ∈ C1,2

p (D) ∩ C(D)}, (6)

where C1,2
p denotes the space of functions which are continuously differentiable

once in time and twice in space, and which satisfy a polynomial-growth bound.

3 Preliminaries

In this section, we collect condensed discussions of relevant classical material as
well as some recently obtained results and definitions.

3.1 Stationarity Definitions

Recall that classical conservative systems obey the stationary action principle, where
the path taken by the system is that which is a stationary point of the action
functional. For this and other reasons, as in the definition of the Hamiltonian
given in (5), we find it useful to develop additional notation and nomenclature.
Specifically, we will refer to the search for stationary points more succinctly as
staticization, and we make the following definitions. Suppose (Y, | · |) is a generic
normed vector space over C with G ⊆ Y, and suppose F : G → C. We say
ȳ ∈ argstat{F(y) | y ∈ G} if ȳ ∈ G and either lim supy→ȳ,y∈G\{ȳ} |F(y)−F(ȳ)|/|y−
ȳ| = 0, or there exists δ > 0 such that G ∩ Bδ(ȳ) = {ȳ} (where Bδ(ȳ) denotes the
ball of radius δ around ȳ). If argstat{F(y) | y ∈ G} �= ∅, we define the possibly
set-valued stats operator by

stats
y∈G

F(y)
.= stats{F(y) | y ∈ G} .= {F(ȳ) ∣∣ ȳ ∈ argstat{F(y) | y ∈ G} }.
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If argstat{F(y) | y ∈ G} = ∅, stats
y∈G F(y) is undefined. We will also be interested

in a single-valued stat operation. In particular, if there exists a ∈ C such that
stats

y∈G F(y) = {a}, then staty∈G F(y)
.= a; otherwise, staty∈G F(y) is undefined.

At times, we may abuse notation by writing ȳ = argstat{F(y) | y ∈ G} in the event
that the argstat is the set {ȳ}. For further discussion, we refer the reader to [19]. The
following is immediate from the above definitions.

Lemma 1 SupposeY is a Hilbert space, with open set G ⊆ Y, and that F : G→ C

is Fréchet differentiable at ȳ ∈ G with Riesz representation Fy(ȳ) ∈ Y Then, ȳ ∈
argstat{F(y) | y ∈ G} if and only if Fy(ȳ) = 0.

3.2 The Non-inertial Frame

As noted in the introduction, we suppose a central scalar field such that a particular
solution for the motion of a classical particle in the field takes the form ξ(t) =
δ̂
(

cos(ωt), sin(ωt)
)

where δ̂, ω ∈ (0,∞). In particular, we concentrate on the

potential V̄ (x) = −c̄/|x|, in which case ω
.= [c̄/(mδ̂3)]1/2. We consider a two-

dimensional space model and a non-inertial frame centered at ξ(t) for all t ∈ (0,∞),
with the first basis axis in the positive radial direction and the second basis vector
in the direction of the velocity of the particle. Let positions in the non-inertial frame
be denoted by z ∈ R

2, where the transformation between frames at time t ∈ R is
given by

z =
(
z1

z2

)
= Gωtx −

(
δ̂

0

)
.=
(

cos(ωt) sin(ωt)
− sin(ωt) cos(ωt)

)(
x1

x2

)
−
(
δ̂

0

)
. (7)

We will denote this transformation as z = z∗(x), with its inverse denoted similarly
as x = x∗(z), where x∗(z) = (Gωt )T (z+ (δ̂, 0)T ).

For z ∈ R
2, define V (z)

.= V̄ (x∗(z)) and φ(z)
.= φ̄(x∗(z)). Then, S̃f : D → C

defined by S̃f (s, z)
.= ˆ̂
Sf (s, x∗(z)) is a solution of the forward-time dequantized

HJ PDE problem given by

0 = −St (s, z)+ ih̄
2mΔzS(s, z)− (A0z + b0)

T Sz(s, z)− 1
2m |Sz(s, z)|2c − V (z), (s, z) ∈ D,

(8)

S(0, z) = φ(z), z ∈ R
2, where A0

.= ω
(

0 1

−1 0

)
and b0

.= −ωδ̂
(

0

1

)
, (9)

if and only if ˆ̂
Sf is a solution of (3)–(4). (We remark that one may see [24] for

further discussion of non-inertial frames in the context of the Schrödinger equation.)
In order to apply the diffusion representations as an aid in solution, we will find it
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helpful to reverse the time variable, and hence we look instead, and equivalently, at
the Hamilton-Jacobi partial differential equation (HJ PDE) problem given by

0 = St (s, z)+ ih̄
2mΔzS(s, x) − (A0z+ b0)

T Sz(s, z)− 1
2m |Sz(s, z)|2c − V (z), (s, z) ∈ D,

(10)

S(t, z) = φ(z), z ∈ R
n. (11)

In this last form, we will fix t ∈ (0,∞), and allow s to vary in (0, t].

3.3 Extensions to the Complex Domain

Various details of extensions to the complex domain must be considered prior to the
development of the representation. This material is rather standard, but it is required
for the main development. Models (1)–(2), (3)–(4) and (10)–(11) are typically given
as HJ PDE problems over real space domains. However, as in Doss et al. [1–3], we
will find it convenient to change the domain to one where the space components
lie over the complex field. We also extend the domain of the potential to C

2, i.e.,
V : C2 → C, and we will abuse notation by employing the same symbol for the
extended-domain functions. Throughout, for k ∈ N, and z ∈ C

k or z ∈ R
k , we let

|z| denote the Euclidean norm. Let DC

.= (0, t) × C
2 and DC = (0, t] × C

2, and
define

SC

.={S : DC → C| S is continuous on DC, continuously differentiable in time on

DC, and holomorphic on C
2 for all r ∈ (0, t] }, (12)

S
p

C

.={S ∈ SC | S satisfies a polynomial growth condition in space,

uniformly on (0, t] }. (13)

The extended-domain form of problem (10)–(11) is

0 = St (s, z)+ ih̄
2mΔzS(s, z)− (A0z+ b0)

T Sz(s, z)− 1
2m |Sz(s, z)|2c − V (z), (s, z) ∈ DC,

(14)

S(t, z) = φ(z), z ∈ C
2. (15)

Remark 1 We remark that a holomorphic function on C
2 is uniquely defined by its

values on the real part of its domain. In particular, S̃ : D → C uniquely defines
its extension to a time-indexed holomorphic function over complex space, say S̄ :
DC → C, if the latter exists. Consequently, although (10)–(11) form an HJ PDE
problem for a complex-valued solution over real time and real space, (14)–(15) is
an equivalent formulation, under the assumptions that a holomorphic solution exists
and one has uniqueness for both.
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Throughout the remainder, we will assume the following.

V, φ : C2 → C are holomorphic on C
2. (A.1)

Remark 2 The assumption on V requires a remark. Recall that we are interested
here in a class of problems where δ̂ is large in the sense that the distribution
associated to the solution of the Schrödinger initial value problem has only very
small probability mass outside a ball of radius less than δ̂. If V̄ is of the c̄/|x|
form, one would use only a finite number of terms in the power series expansion
around z = 0. The focus here is on a diffusion-representation based method for
approximate solution of the Schrödinger initial value problem given a holomorphic
potential. The errors introduced by the use of a truncated power series for a c̄/|x|-
type potential for large δ̂ are outside the scope of the discussion.

We will refer to a linear space over the complex [real] field as a complex [real]
space. Although (14)–(15) form an HJ PDE problem for a complex-valued solution
over real time and complex space, there is an equivalent formulation as a real-
valued solution over real time and a double-dimension real space. We will find such
formulations to be helpful in the analysis to follow. Further, although it is natural
to work with complex-valued state processes in this problem domain, in order
to easily apply many of the existing results regarding existence, uniqueness and
moments, we will also find it handy to use a “vectorized” real-valued representation
for the complex-valued state processes. We begin from the standard mapping of
the complex plane into R

2, denoted here by V00 : C → R
2, with V00(z)

.=
(x, y)T , where x = Re(z) and y = Im(z). This immediately yields the mapping
V0 : C

n → R
2n given by V0(x + iy)

.= (xT , yT )T , where component-wise,
(xj , yj )

T = V00(xj+iyj ) for all j ∈]1, n[ , where throughout, for integer a ≤ b, we
let ]a, b[ .= {a, a+ 1, . . . b}. Also, as remarked above, in the interests of a reduction
of cumbersome notation, we will frequently abuse notation by writing (x, y) in place
of (xT , yT )T when the meaning is clear. Lastly, we may decompose any function in
SC, say F ∈ SC, as

(R̄(r,V0(z)), T̄ (r,V0(z)))
T .= V00(F (r, z)), (16)

where R̄, T̄ : D2
.= (0, t] × R

2n → R, and we also let D2
.= (0, t) × R

2n. For
later reference, it will be helpful to recall some standard relations between derivative
components, which are induced by the Cauchy-Riemann equations. For all (r, z) =
(r, x + iy) ∈ (0, t) × C

2 and all j, k, � ∈]1, n[ , and suppressing the arguments for
reasons of space we have

Re[Fzj ,zk ] = R̄xj ,xk = −R̄yj ,yk = T̄yj ,xk = T̄xj ,yk , (17)

Im[Fzj ,zk ] = −R̄xj ,yk = −R̄yj ,xk = −T̄yj ,yk = T̄xj ,xk . (18)
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4 An Expansion

We now reduce our problem class to the two-dimensional space case (i.e., n = 2).
We will expand the desired solutions of our problems, and use these expansions
as a means for approximation of the solution. First, we consider holomorphic V in
the form of a finite or infinite power series. In the simple example case where V̄
generates the quantum harmonic oscillator, one may take V̄ (x) = c̄q

2 [x2
1 + x2

2 ], in
which case

V (z) = c̄q

2
δ̂2 + c̄q δ̂z1 + c̄q

2
[z2

1 + z2
2].

The scalar field of most interest takes the form −V̄ (x) = c̄/|x|, yielding −V (z) =
c̄/|z + (δ̂, 0)|. In this case, recalling that this effort focuses on the case where δ̂
is large relative to the radius of the “non-negligible” portion of the probability
distribution associated to the solution, we consider only a truncated power series,
and let V̆ K(z) denote the partial sum containing only terms up to orderK + 2 <∞
in z. We will be interested in the dependence of the potential and the resulting
solutions in the parameter ε̂

.= 1/δ̂. We also recall from Sect. 3.2 that ω
.=

[c̄/(mδ̂3)]1/2, or c̄ = mω2δ̂3. We explicitly indicate the expansion up to the fourth-
order term in z and the form of higher-order terms. One finds,

− V̆ 2(z) = −
2∑
k=0

ε̂kV̂ k(z), (19)

− V̂ 0(z) = mω2[δ̂2 − δ̂z1 + (z2
1 − z2

2/2)
]
,

− V̂ 1(z) = mω2[− z3
1 + 3z1z

2
2/2
]
, −V̂ 2(z) = mω2[z4

1 − 3z2
1z

2
2 + 3z4

2/8
]
,

and more generally, for k > 1, −V̂ k(z) = mω2
[∑k+2

j=0 c
V
k+2,j z

j

1z
k−j
2

]
, for proper

choice of coefficients cVk,j .

Here, we find it helpful to explicitly consider the dependence of S̃ and S̄
(solutions of (10)–(11) and (14)–(15), respectively) on ε̂, where for convenience
of exposition, we also allow ε̂ to take complex values. Abusing notation, we let
S̃ : D × C → C and S̄ : DC × C → C, and denote the dependence on their

arguments as S̃(s, z, ε̂) and S̄(s, z, ε̂). We let D̆
.= D×C, ¯̆D .= D×C, D̆C

.= DC×C

and ¯̆DC

.= DC × C, where we recall that the physical-space components are now
restricted to the two-dimensional case. We also let

S̆C

.={S : ¯̆DC → C| S is continuous on ¯̆DC, continuously differentiable in time on

D̆C, and S(r, ·, ·) is holomorphic on C
2 ×C for all r ∈ (0, t] },

(20)
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S̆
p

C

.={S ∈ S̆C | S satisfies a polynomial growth condition in space,

uniformly on (0, t] }. (21)

We will make the following assumption throughout the sequel.

There exists a unique solution, S̄ ∈ S̆C, to (14)–(15). (A.2)

We also let the power series expansion for φ be arranged as

φ(z) =
∞∑
k=0

ε̂kφk(z)
.= φ0(z)+

∞∑
k=1

ε̂k
∞∑
l=0

∞∑
j=0

b
φ
k+2,l,j z

j

1z
l−j
2 , (22)

where φ0(z) is quadratic in z. We consider the following terminal value problems.
The zeroth-order problem is

0 = S0
t + ih̄

2mΔzS
0 − (A0z+ b0

)T
S0
z − 1

2m |S0
z |2c − V̂ 0, (s, z) ∈ DC, (23)

S0(t, z) = φ0(z), z ∈ C
2. (24)

For k ≥ 1, the kth terminal value problem is

0 = Skt + ih̄
2mΔzS

k− (A0z+ b0 + 1
m
S0
z

)T
Skz − 1

2m

k−1∑
κ=1

(
Sκz )

T Sk−κz − V̂ k, (s, z) ∈ DC,

(25)

Sk(t, z) = φk(z), z ∈ C
2. (26)

Note that for k ≥ 1, given the Ŝκ for κ < k, (25) is a linear, parabolic, second-order
PDE, while zeroth-order case (23) is a nonlinear, parabolic, second-order PDE. Also
note that (23) is (25) in the case of k = 0, but as its form is different, it is worth
breaking it out separately. It is also worth noting here that if the Sk are all polynomial
in z of order up to k, then the right-hand side of (25) is polynomial in z of order up
to k, as is the right-hand side of (26).

Theorem 1 Assume there exists a unique solution, Ŝ0, in S̆C to (23)–(24), and
that for each k ≥ 1, there exists a unique solution, Ŝk , in S̆C to (25)–(26). Then,
S̄ =∑∞

k=0 ε̂
kŜk .

Remark 3 It is worth noting here that if the Sk are all polynomial in z of order up
to k + 2, then for each k, the right-hand side of (25) is polynomial in z of order
up to k + 2, as is the right-hand side of (26). That is, with the expansion in powers
of ε̂ = δ̂−1, the resulting constituent HJ PDE problems indexed by k are such that
one might hope for polynomial-in-z solutions of order k + 2, and this hope will be
realized further below.
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Proof Let N̄
.= N ∪ {0}. By Assumption (A.2), S̄ has a unique power series

expansion on ¯̆DC, which we denote by

S̄(s, z, ε̂) =
∞∑
k=0

ε̂k c̃k(s, z)
.=

∞∑
k=0

ε̂k
∞∑
l=0

∞∑
j=0

˜̃ck,l,j (s)zj1zl−j2 ,

where the ˜̃ck,l,j (·) : (0, t] → C form a time-indexed set of coefficients, and obvi-

ously, the c̃k(·, ·) : DC → C are given by c̃k(s, z) =∑∞
l=0
∑∞
j=0

˜̃ck,l,j (s)zj1zl−j2 for

all k ∈ N̄. For all k ∈ N̄, define the notation c̃−k(·, ·) .= ∑∞
j=k+1 ε̂

j−(k+1)c̃j (·, ·).
Also define V −k .= ε̂−(k+1)

[
V −∑k

j=0 ε̂
j V̂ j
]

and φ−k .= ∑∞
j=k+1 ε̂

j−(k+1)φj =
ε̂−(k+1)

[
φ −∑k

j=0 ε̂
j φj
]

for all k ∈ N̄. Recall that S̄ is the unique solution in S̆C

of (14)–(15). By (15),

c̃k(t, z) = φk(z) and c̃−k(t, z) = φ−k(z) ∀ z ∈ C
2. (27)

Separating the c̃0 and c̃−0 components of S̄ in (14) yields

0 =c̃0
t + ih̄

2mΔzc̃
0 − (A0z+ b0)

T c̃0
z − 1

2m |c̃0
z |2c − V̂ 0 (28)

+ ε̂
{
c̃−0
t + ih̄

2mΔzc̃
−0 − (A0z+ b0 + 1

m
c̃0
z )
T c̃−0
z − ε̂

2m |c̃−0
z |2c − V −0

}
.

Now, note that as S̄(s, ·, ·) is holomorphic for all s ∈ (0, t], we have S̄z(s, ·, ·)
and ΔzS̄(s, ·, ·) holomorphic for all s ∈ (0, t]. Further, by standard results on the
composition of holomorphic mappings, noting that g : C2 → C given by g(z)

.=
|z|2c = zT z is holomorphic, we see that |S̃z(s, ·, ·)|2c = g

(
S̃z(s, ·, ·)

)
is holomorphic

for all s ∈ (0, t]. Combining these insights, we see that with S = S̄ all terms
on the right-hand side of (14), with the exception of St are holomorphic in (z, ε̂),
which implies that S̄t (s, ·, ·) is holomorphic for all s ∈ (0, t]. Consequently, for
any s ∈ (0, t], the right-hand side of (14) with S = S̄ has a unique power series
expansion. This implies that, as (28) is satisfied for all ε̂ ∈ C, we must have

0 = c̃0
t + ih̄

2mΔzc̃
0 − (A0z+ b0)

T c̃0
z − 1

2m |c̃0
z |2c − V̂ 0, (29)

0 = c̃−0
t + ih̄

2mΔzc̃
−0 − (A0z + b0 + 1

m
c̃0
z)
T c̃−0
z − ε̂

2m |c̃−0
z |2c − V −0. (30)

By (27), (29) and the assumptions, c̃0 = Ŝ0.
Next, separating the c̃1 and c̃−1 components, (30) implies

0 =c̃1
t + ih̄

2mΔzc̃
1 − (A0z+ b0 + 1

m
c̃0
z)
T c̃1
z − V̂ 1 (31)

+ ε̂
{
c̃−1
t + ih̄

2mΔzc̃
−1 − (A0z+ b0 + 1

m
c̃0
z )
T c̃−1
z − V−1 − ε̂

2m |c̃−1
z |2c
}
.
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Similar to the k = 0 case, as (31) is satisfied for all ε̂ ∈ C, we have

0 = c̃1
t + ih̄

2mΔzc̃
1 − (A0z+ b0 + 1

m
c̃0
z)
T c̃1
z − V̂ 1, (32)

0 = c̃−1
t + ih̄

2mΔzc̃
−1− (A0z+ b0 + 1

m
c̃0
z )
T c̃−1
z − V −1 − 1

2m

0∑
κ=1

(
c̃κz )

T c̃k−κz − ε̂
2m |c̃−1

z |2c,

(33)

where the zero-valued penultimate term on the right-hand side of (33) is included
because analogous terms will appear with non-zero value in higher-order expansion
equations. By (27), (32) and the assumptions, c̃1 = Ŝ1. Proceeding inductively, one
finds c̃k = Ŝk for all k ∈ N̄, which yields the assertion. � 

4.1 An Alternate Assumption

It may be worth noting the following reformulation and assumption. Let g̃
δ̂
:

C
2 → C

2 and ĝ
δ̂
: R → R be given by g̃

δ̂
(z)

.= (1/δ̂)z and ĝ
δ̂
(s)

.= s/δ̂2.

Let s̃
.= ĝ

δ̂
(s) = s/δ̂2 and z̃

.= g̃
δ̂
(z) = (1/δ̂)z. Note that under this change

of variables, the angular rate becomes ω̂ = dθ
dŝ

= dθ
ds
ds
ds̃

= δ̂2ω, and where

the units of h̄ are such that the resulting scaling is the identity. Let ˜̄S(s̃, z̃) .=
S̄(ĝ−1

δ̂
(s̃), g̃−1

δ̂
(z̃)) = S̄(ĝ−1

δ̂
(s̃), g̃−1

δ̂
(z̃), ε̂) for all (s, z) ∈ D, where we recall the

abuse of notation regarding explicit inclusion of the third argument in S̄. Note that
˜̄Ss̃(s̃, z̃) = S̄s (ĝ−1

δ̂
(s̃), g̃−1

δ̂
(z̃))

ĝ−1
δ̂
(s̃)

ds̃
= δ̂2S̄s (s, z), with similar expressions for the

space derivatives. The HJ PDE problem for ˜̄S, corresponding to (14)–(15) for S̄, is

0 = Ss̃(s̃, z̃)+ ih̄
2mΔz̃S(s̃, z̃)− ω̂(Ā0z̃+ b̄0)

T Sz̃(s̃, z̃)− 1
2m |Sz̃(s̃, z̃)|2c

− Ṽ (z̃), (s̃, z̃) ∈ (0, t̃)×C
2, (34)

S(t̃ , z̃) = φ̃(z̃), z̃ ∈ C
2, Ā0

.=
(

0 1
−1 0

)
, b̄0

.= −
(

0
1

)
, (35)

t̃ = t/δ̂2, φ̃(z̃)
.= φ(g̃−1

δ̂
(z̃)) and 1

δ̂2 Ṽ (z̃)
.= V (g̃−1

δ̂
(z̃)) = V (z).

Note that in the case of a truncated expansion of a potential of form −V̄ (x) =
c̄/|x|, one obtains −Ṽ (z̃) = −∑K

k=0
ˆ̃
V k(z̃) − ˆ̃

V 0(z̃) = mω̂2
[
1− z̃1 + (z̃2

1 − z̃2
2/2)
]

and

− ˆ̃
V k(z̃) = mω̂2

k+2∑
j=0

cVk+2,j z̃
j

1 z̃
k+2−j
2 for k ≥ 1.
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In particular, one should note that the change of variables leads to a lack of ε̂k in the
expansion of the potential. With this reformulation in hand, consider the following
assumption, where we note that S̆C in (A.2) is replaced by SC in (A.2′).

There exists a unique solution, ˜̄S ∈ SC to (34)–(35). (A.2′)

Corollary 1 Assume (A.2′) in place of (A.2). Assume there exists a unique solution,
Ŝ0, in S̆C to (23)–(24), and that for each k ≥ 1, there exists a unique solution, Ŝk ,
in S̆C to (25)–(26). Then, S̄ =∑∞

k=0 ε̂
kŜk .

Proof Let ˜̄S satisfy (A.2′). Fix an arbitrary s̃ ∈ (0, t̃ ), and let D > 0. Let P(D)
denote the polydisc in C

2 of multiradius D̄
.= (D,D). By standard results (cf.[23]),

for all z̃ ∈P(D),

˜̄S(s̃, z̃) =
∞∑
l=0

l∑
j=0

˜̄S
z
j
1z
l−j
2
(s̃, 0)

j !(l − j)! z̃
j

1 z̃
l−j
2 ,

which through application of the Cauchy integral formula,

=
∞∑
l=0

l∑
j=0

1

(2πi)2

∫
∂P(D)

˜̄S(s̃, ζ1, ζ2)

ζ
j+1
1 ζ

l−j+1
2

dζ1 dζ2z̃
j

1 z̃
l−j
2 ∀ (s̃, z̃) ∈ (0,∞)×C

2,

(36)

where ∂P(D)
.= {ζ ∈ C

2 | |ζ1| = D, |ζ2| = D}. For each s̃ ∈ (0, t̃), we may ex-

press the Taylor series representation for ˜̄S as ˜̄S(s̃, z̃) = ∑∞
l=0
∑l
j=0

˜̄cl,j (s̃)z̃j1 z̃l−j2

for all z̃ ∈ C
2. Let 0 ≤ j ≤ l <∞. Then, by (36) and the uniqueness of the Taylor

expansion, we see that

˜̄cl,j (s̃) = 1

(2πi)2

∫
∂P(D)

˜̄S(s̃, ζ1, ζ2)

ζ
j+1
1 ζ

l−j+1
2

dζ1 dζ2,

and the right-hand side is independent of D ∈ (0,∞). Further, letting ζκ = Deiθk

for κ ∈ {1, 2} and ζ ∈ ∂P(D), this becomes

˜̄cl,j (s̃) = 1

(2πi)2

∫ 2π

0

∫ 2π

0

− ˜̄S(s̃,Deiθ1 ,Deiθ2)

Dl exp{i[(j + 1)θ1 + (l − j + 1)θ2]} dθ1 dθ2.
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Let {s̃n} ⊂ (0, t̃) be a sequence such that s̃n → s̃ ∈ (0, t̃). By the Bounded
Converegence Theorem, for any 0 ≤ j ≤ l <∞,

lim
n→∞

˜̄cl,j (s̃n) = 1

(2πi)2
lim
n→∞

∫ 2π

0

∫ 2π

0

− ˜̄S(s̃n,Deiθ1 ,Deiθ2)

Dl exp{i[(j + 1)θ1 + (l − j + 1)θ2]} dθ1 dθ2

= 1

(2πi)2

∫ 2π

0

∫ 2π

0

− ˜̄S(s̃, Deiθ1, Deiθ2)

Dl exp{i[(j + 1)θ1 + (l − j + 1)θ2]} dθ1 dθ2 = ˜̄cl,j (s̃),

and we see that each ˜̄cl,j (·) is continuous.
Similarly, for 0 ≤ j ≤ l <∞,

lim
h→0

˜̄cl,j (s̃ + h)− ˜̄cl,j (s̃)
h

= lim
h→0

1

(2πi)2

∫ 2π

0

∫ 2π

0

−1

Dl exp{i[(j + 1)θ1 + (l − j + 1)θ2]}

·
˜̄S(s̃ + h,Deiθ1 ,Deiθ2 )− ˜̄S(s̃,Deiθ1 ,Deiθ2 )

h
dθ1 dθ2.

Recalling that ˜̄S is continuously differentiable on (0, t̃), we find that the integrand
is bounded, and another application of the Bounded Convergence Theorem yields

lim
h→0

˜̄cl,j (s̃ + h)− ˜̄cl,j (s̃)
h

= 1

(2πi)2

∫ 2π

0

∫ 2π

0

− ˜̄St (s̃,Deiθ1,Deiθ2)

Dlei[(j+1)θ1+(l−j+1)θ2] dθ1 dθ2,

and we see that ˜̄cl,j ∈ C1(0, t̃).

Now, let S̄(s, z)
.= ˜̄S(ĝ

δ̂
(s), g̃

δ̂
(z)) for all (s, z) ∈ (0, t] × C

2, and let ε̂ = 1/δ̂.
By Theorem 1, it is sufficient to show that S̄ satisfies Assumption (A.2). We have
S̄(s, z) =∑∞

l=0
∑l
j=0

˜̄cl,j (s)ε̂lzj1zl−j2 for all (s, z) ∈ (0, t]×C
2. Letting Ŝl(s, z)

.=∑l
j=0

˜̄cl,j (s)zj1zl−j2 for l ∈ N, the smoothness assertions of the corollary then follow
directly from the above and the composition of analytic functions. The existence and
uniqueness are also easily demonstrated, and the steps are omitted. � 

5 Periodic Ŝ0 Solutions

In order to begin computation of the terms in the expansion of Theorem 1, we must
obtain a solution of the complex-valued, second-order, nonlinear HJ PDE problem
given by (23)–(24). We note that we continue to work with the case of dimension
n = 2 here. We will choose the initial condition, φ0, such that the resulting solution
will be periodic with frequency that is an integer multiple of ω, where we include
the case where the multiple is zero (i.e., the steady-state case). We also note that we
are seeking periodic solutions, Ŝ0 that are themselves clearly physically meaningful.
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Recall that the original, forward-time solution, S̃f , of (8)–(9) is a solution of
the dequantized version of the original Schrödinger equation. Let ψ̃f (s, z)

.=
exp
{
i
h̄
S̃f } for all (s, z) ∈ D

f .= [0, t) × R
2. Recall also that for physically

meaningful solutions, at each s ∈ [0, t), P̃ f (s, ·) : R2 → R given by P̃ (s, ·) .=[
ψ∗ψ
]
(s, ·) represents an unnormalized density associated to the particle at time s.

Let R̃f , T̃ f : D
f → R be given by R̃f (s, z)

.= Re[S̃f (s, z)] and T̃ f (s, z)
.=

Im[S̃f (s, z)] for all (s, z) ∈ D
f

. Then, P̃ f (s, z) = exp
{−2
h̄
T̃ f (s, z)

}
for all

(s, z) ∈ D
f

. This suggests that we should seek S̃f such that exp
{−2
h̄
T̃ f (s, ·)}

represents an unnormalized probability density for all s ∈ [0, t).
Although the goal in this section is to generate a set of physically meaningful

periodic solutions to the zeroth-order term, we do not attempt a full catalog of all

possible such solutions. Let Ŝ0,f (s, z)
.= Ŝ0(t − s, z) for all (s, z) ∈ D

f
. As we

seek Ŝ0(t − s, ·) that are quadratic, we let the resulting time-dependent coefficients
be defined by

Ŝ0,f (s, z) = 1
2z
T Q(s)z+ΛT (s)z+ ρ(s). (37)

It should be noted here that the condition that exp
{−h̄

2 T̃
f (s, ·)} represent an

unnormalized density implies that the imaginary part ofQ(s) should be nonnegative
definite for all s ∈ [0, t), which is a significant restriction on the set of allowable
solutions.

As Ŝ0,f (s, ·) is quadratic, its values over C2 are fully defined by its values over
R

2, and hence it is sufficient to solve the problem on the real domain. The forward-

time version of (23)–(24), with domain restricted to D
f

is

0 = −S0,f
t + ih̄

2mΔzS
0,f − (A0z+ b0

)T
S

0,f
z − 1

2m |S0,f
z |2c − V̂ 0, (s, z) ∈ (0, t) ×R

2,

(38)

S0,f (0, z) = φ0(z) ∀ z ∈ R
2. (39)

Remark 4 It is worth noting that any solution of form (37) to (38)–(39) is the
unique solution in S

p

C
, and in particular, where this uniqueness is obtained through

a controlled-diffusion representation [17, 18].

Substituting form (37) into (38), and collecting terms, yields the system of
ordinary differential equations (ODEs) given as

d

ds
Q(s) = −(AT0Q(s)+Q(s)A0

)− 1
m
Q2(s)+mω2T V , (40)

d

ds
Λ(s) = −(AT0 + 1

m
Q(s)
)
Λ+ ωδ̂Q(s)u2 −mω2δ̂u1, (41)
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d

ds
ρ(s) = ih̄

2m tr[Q(s)] + ωδ̂(u2)T Λ(s)− 1
2mΛ

T (s)Λ(s)+mω2δ̂2, (42)

T V =
[

2 0
0 −1

]
, u1 .=

(
1
0

)
, u2 .=

(
0
1

)
, (43)

where Q : [0, t) → C
2×2, Λ : [0, t) → C

2 and ρ : [0, t) → C. Throughout, we
assume that Q(s) is symmetric for all s ∈ [0, t). Note that if Q(s) is nonsingular
for all s ∈ [0, t), then (37) may also be written as

Ŝ0,f (s, z) = 1
2

(
z+Q−1(s)Λ(s)

)T
Q(s)
(
z+Q−1(s)Λ(s)

)+ρ(s)−ΛT (s)Q−1(s)Λ(s),

where we see that−Q−1(s)Λ(s)may be interpreted as a mean of the associated dis-
tribution at each time s. Consequently, we look for solutions with −Q−1(s)Λ(s) ∈
R

2 for all s.
One may use a Bernoulli-type substitution as a means for seeking solutions

of (40). That is, suppose Q(s) = W(s)U−1(s), where U(s) is nonsingular for
all s ∈ [0, t). Then, without loss of generality, we may take W(0) = Q(0),
U(0) = I2×2. The resulting system of ODEs is

d

ds

(
U

W

)
=B

(
U

W

)
, B

.=

⎡
⎢⎢⎣

0 ω 1/m 0
−ω 0 0 1/m

2mω2 0 0 ω

0 −mω2 −ω 0

⎤
⎥⎥⎦ .

Employing the Jordan canonical form, one obtains the solution as

(
U(s)T ,W(s)T

)T = RPeJωsP−1R−1 (I2×2,Q(0))T , (44)

where

P =

⎡
⎢⎢⎣

0 2 −i i

−3 0 2 2
3 0 −1 −1
0 −1 i −i

⎤
⎥⎥⎦ , P−1 =

⎡
⎢⎢⎣

0 1/3 2/3 0
1 0 0 1

−i/2 1/2 1/2 −i
i/2 1/2 1/2 i

⎤
⎥⎥⎦ ,

eJωs =

⎡
⎢⎢⎣

1 ωs 0 0
0 1 0 0
0 0 exp{iωs} 0
0 0 0 exp{−iωs}

⎤
⎥⎥⎦ , R =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 mω 0
0 0 0 mω

⎤
⎥⎥⎦ .

We remark that, as our goal here is the generation of periodic solutions that may be
used as a basis for the expansion to follow, and as this work is already of substantial
length, we will not discuss the question of stability of the above solutions, to
perturbations within the class of physically meaningfulQ = U−1W .
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Note that we seek solutions that generate periodic densities P̃ f (s, ·), and that the
(1, 2) entry of eJωs has secular behavior. Examining (44), we see that a sufficient
condition for avoidance of secular growth/decay of Q, is that entries in the second
row of P−1R−1 (I2×2,Q(0))T be zero. One easily sees that this corresponds to
Q2,1(0) = −mω and Q2,2(0) = 0, and considering here only symmetric Q, we
takeQ1,2(0) = −mω. That is, we have

Q(0) =
[
k̄0imω −mω
−mω 0

]
, (45)

for some k̄0 ∈ C. Propagating the resulting solutions, we find that the imaginary part
of k̄0 being nonnegative is necessary and sufficient for satisfaction of the condition
that Im[Q(s)] be nonnegative-definite for all s. We also note that with such initial
condition, Q1,2,Q2,1,Q2,2 remain constant for all s, while the real and imaginary
parts ofQ1,1 are periodic. That is, Q(s) takes the form

Q(s) =
[
imωp(s) −mω
−mω 0

]
∀ s ∈ [0, t), (46)

where p(s) = [k̄+1 e2iωs + k̄−1 ]/[k̄+1 e2iωs − k̄−1 ] with k̄+1
.= k̄0 + 1 and k̄−1

.= k̄0 − 1.
One may seek steady-state solutions by substitution of form (45) into the right-

hand side of (40), and setting this to be zero. One easily finds that the unique steady
state solution (among those with Im[k̄0] ≥ 0) is

Q(s) = Q̄0 .=
[
imω −mω
−mω 0

]
∀ s ∈ [0, t). (47)

Next we consider the linear term in Ŝ0,f , where this satisfies (41). We focus on
the steady-stateQ case of (47). Substituting (47) into (41) yields

Λ̇ =
[−iω 2ω

0 0

]
Λ− 2mω2δ̂u1.

This has a steady-state solution in the case that −iΛ1(0) + 2Λ(0) = 2mωδ̂, or
equivalently, the one-parameter set of steady-state solutions given byΛ(s) = Λ̄0 .=(
id,mωδ̂−d/2)T for d ∈ C. This includes, in particular, the cases Λ̄0 = (0,mωδ̂)T

(i.e., d = 0) and Λ̄0 = mωδ̂(−2i, 2)T (i.e., d = −2mωδ̂), where this latter case
is obtained if one requires (Q̄0)−1Λ̄0 to be real valued. We also remark that more
generally, the solution is given for all s ∈ [0, t) by

Λ(s) =
[−i exp{−iωs} 2i[exp{−iωs} − 1]

0 0

]
Λ(0)+ 2i[1− exp{−iωs}]mωδ̂u1.
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Lastly, we turn to the zeroth-order term. Note that the one may allow secular
growth in the real part of ρ(·) with no effect on the associated probability distri-
bution, as is standard in solutions of the quantum harmonic oscillator. Continuing
to focus on the steady-state solution, but allowing a real-valued secular zeroth-order
term, we substitute the above steady-state quadratic and linear coefficients into (42).
This yields

ρ̇ = −h̄ω
2

+mω2
[

3δ̂2

2
+ 3d2

4(mω)2

]
.= c̄1(d),

and we see that this is purely real if and only if d ∈ R, and we have

Λ(s) = Λ̄0 .= (id,mωδ̂ − d/2)T , ρ0(s) = ρ0(0)+ c̄1(d)s ∀ s ∈ [0, t).
(48)

We will restrict ourselves to the simple, steady-state case (modulo the real part
of ρ0) given by (47), (48) with k̄0 = 1, d = 0, for our actual computations of
succeeding terms in the expansion. However, the theory will be sufficiently general
to encompass the periodic case as well.

6 Diffusion Representations for Succeeding Terms

As noted above, we will use diffusion representations to obtain the solutions to the
HJ PDEs (25)–(26) that define the succeeding terms in the expansion, i.e., to obtain
the Ŝk for k ∈ N. In order to achieve this goal, we need to define the complex-
valued diffusion dynamics and the expected payoffs that will yield the Ŝk . The
representation result naturally employs the Itô integral rule. As the dynamics are
complex-valued, we need an extension of the Itô rule to that process domain. In a
similar fashion to that of Sect. 3.3, we use the Itô rule for the double-dimension real
case to obtain the rule for the complex case. Once the Itô rule is established, the
proof of the representation is straightforward. However, additional effort is require
to generate the machinery by which the the actual solutions are computed, where
the machinery relies mainly on computation of moments for the diffusion process.

6.1 The Underlying Stochastic Dynamics

We let (Ω,F, P ) be a probability triple, where Ω denotes a sample space, F
denotes a σ -algebra on Ω , and P denotes a probability measure on (Ω,F). Let
{Fs | s ∈ [0, t]} denote a filtration on (Ω,F, P ), and let B· denote an F·-adapted
Brownian motion taking values in R

n. We will be interested in diffusion processes
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given by the linear stochastic differential equation (SDE) in integral form

ζr = ζ (s,z)r = z+
∫ r

s

−(A0ζρ + b0 + 1
m
Ŝ0
z (ρ, ζρ)

)
dρ +

√
h̄
m

1+i√
2

∫ r

s

dBρ

.= z +
∫ r

s

λ(ρ, ζρ) dρ +
√
h̄
m

1+i√
2
BΔr ∀ r ∈ [s, t], (49)

where z ∈ C
2, s ∈ [0, t), BΔr .= Br − Bs for r ∈ [s, t), and

λ(ρ, z)
.= −[A0z+ b0 + 1

m
S0
z (ρ, z)] = −[A0z + b0 + 1

m
Q(ρ)z + 1

m
Λ(ρ)]

.= −A>0(ρ)z− b>0(ρ). (50)

Let f̄ : [0, t]×C
2 → C

2, and suppose there existsKf̄ <∞ such that |f̄ (s, z1)−
f̄ (s, z2)| ≤ Kf̄ |z1 − z2| for all (s, z1), (s, z2) ∈ DC. For (s, z) ∈ DC, consider the
complex-valued diffusion, ζ· ∈Xs , given by

ζr = ζ (s,z)r = z +
∫ r

s

f̄ (ρ, ζρ) dρ +
∫ r

s

1+i√
2
σ dBρ, (51)

where σ ∈ R
n×n, and note that this is a slight generalization of (49). For s ∈ (0, t],

let

Xs
.= {ζ : [s, t] ×Ω → C

2 | ζ is F·-adapted, right-continuous and such that

E sup
r∈[s,t ]

|ζr |m <∞ ∀m ∈ N }. (52)

We supply Xs with the norm ‖ζ‖Xs

.= maxm∈]1,M̄[
[
E supr∈[s,t ] |ζr |m

]1/m
. It

is important to note here that complex-valued diffusions have been discussed
elsewhere in the literature; see for example, [25] and the references therein.

We also define the isometric isomorphism, V : Xs → Xv
s by [V(ζ )]r .= [V(ξ +

iν)]r .= (ξTr , νTr )T for all r ∈ [s, t] and ω ∈ Ω , where

Xv
s
.= {(ξ, ν) : [s, t] ×Ω → R

2n | (ξ, ν) is F·-adapted, right-continuous and

such that E sup
r∈[s,t ]

[|ξr |m + |νr |m] <∞ ∀m ∈ N },
(53)

‖(ξ, ν)‖Xv
s

.= max
m∈]1,M̄[

[
E sup
r∈[s,t ]

(|ξr |m + |νr |m)
]1/m

. (54)

Under transformation by V, (51) becomes

(
ξr

νr

)
=
(
x

y

)
+
∫ r

s

f̂ (ρ, ξρ , νρ) dρ +
∫ r

s

1√
2
σ̂ dBρ ∀ r ∈ [s, t], (55)
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where f̂ (ρ, ξρ, νρ)
.= (

(Re[f̄ (ρ, ξρ + iνρ)])T , (Im[f̄ (ρ, ξρ + iνρ)])T
)T and

σ̂
.= (1, 1)T . Throughout, concerning both real and complex stochastic differential

equations, typically given in integral form such as in (51) and (55), solution refers
to a strong solution, unless specifically cited as a weak solution. The following are
easily obtained from existing results; see [18, 22].

Lemma 2 Let s ∈ [0, t), z ∈ C
2 and (x, y) = V0(z). There exists a unique solution,

(ξ, ν) ∈Xv
s , to (55).

Lemma 3 Let s ∈ [0, t), z ∈ C
2 and (x, y) = V0(z). ζ ∈ Xs is a solution of (51)

if and only if V(ζ ) ∈Xv
s is a solution of (55).

Lemma 4 Let s ∈ [0, t) and z ∈ C
2. There exists a unique solution, ζ ∈ Xs ,

to (51).

We remark that one may apply Lemmas 2–4 to the specific case of (49) in order
to establish existence and uniqueness. In particular, for the dynamics of (49), the
corresponding process (ξ, ν) = V(ζ ) satisfies

(
ξr

νr

)
=
(
x

y

)
+
∫ r

s

−
[(
Ar>0(ρ) −Ai>0(ρ)

Ai>0(ρ) A
r
>0(ρ)

)(
ξr

νr

)
+
(
br>0(ρ)

bi>0(ρ)

)]
dρ

+
√

h̄
2m

(
In×n
In×n

)
BΔr

.=
(
x

y

)
+
∫ r

s

−Ā>0(ρ)

(
ξr

νr

)
− b̄>0(ρ) dρ +

√
h̄

2m ĪBΔr ∀ r ∈ [s, t],
(56)

where Ar>0(ρ)
.= Re(A>0(ρ)), Ai>0(ρ)

.= Im(A>0(ρ)),
(
(br>0(ρ))

T , (bi>0(ρ))
T
)T

.= V0(b>0(ρ)) for all ρ ∈ [0, t).

6.2 Itô’s Rule

The representation results will rely on a minor generalization of Itô’s rule to the
specific complex-diffusion dynamics of interest here. It might be worthwhile to note
that the complex-valued diffusions considered here belong to a very small subclass
of complex-valued diffusions, and this is somehow related to the specific nature of
the complex aspect of the Schrödinger equation. The following complex-case Itô
rule is similar to existing results (cf., [25]).
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Lemma 5 Let ḡ ∈ SC and (s, z) ∈ DC, and suppose diffusion process ζ· is given
by (51). Then, for all r ∈ [s, t],

ḡ(r, ζr ) = ḡ(s, z)+
∫ r

s

ḡt (ρ, ζρ)+ḡTz (ρ, ζρ)f̄ (ρ, ζρ) dρ+
∫ r

s

1+i√
2
ḡTz (ρ, ζρ)σ dBρ

+ 1
2

∫ r

s

tr
[
ḡzz(ρ, ζρ)(σσ

T )
]
dρ. (57)

Proof Let (gr (s, x, y), gi(s, x, y))
.= V00

(
ḡ(s,V−1

0 (x, y))
)
, (f r (s, x, y),

f i(s, x, y))
.= V0

(
f̄ (s,V−1

0 (x, y))
)

for all (s, x, y) ∈ D2, and note that it is
trivial to show that ḡt (r, z) = grt (r, x, y) + igit (r, x, y), for all (x, y) = V0(z),
(r, z) ∈ DC. Also, using the Cauchy-Riemann equations,

ḡTz (r, z)f̄ (r, z) =
[
(grx)

T f r + (gry)T f i
]
(r, x, y)+ i[(gix)T f r + (giy)T f i](r, x, y),

for all (x, y) = V0(z), (r, z) ∈ DC. Defining the derivative notation gr
x2(s, x, y)

.=(
(grx)

T , (gry)
T
)T
(r, x, y) and vector notation f̂ (r, x, z)

.= ((f r )T , (f i)T )T (r, x, y)
for all (r, x, y) ∈ D2, this becomes

ḡTz (r, z)f̄ (r, z) =
(
gr
x2(r, x, y))

T f̂ (r, x, y)+ i(gi
x2(r, x, y))

T f̂ (r, x, y), (58)

for all (x, y) = V0(z), (r, z) ∈ DC. Similarly, letting σ̂
.= (σT , σT )T ,

ḡTz (r, z)
1+i√

2
σ = 1√

2

[(
gr
x2(r, x, y)

)T
σ̂ + i(gi

x2(r, x, y)
)T
σ̂
]
, (59)

for all (x, y) = V0(z), (r, z) ∈ DC.
Next, let ā

.= ( 1+i√
2

)2
σσT and (arj,l , a

i
j,l)

.= V00(āj,l) for all j, l ∈]1, n[ .
Using (17), (18), we find

ḡzj ,zl āj,l = gixj ,yl arj,l + grxj ,yl aij,l + i
[− grxj ,yl arj,l + gixj ,yl aij,l] ∀ j, l ∈]1, n[ .

(60)

Also, by the definition of ā, we see that ar = 0 and ai = σσT . Applying these
in (60) yields

ḡzj ,zl āj,l = grxj ,yl [σσT ]j,l + igixj ,yl [σσT ]j,l ∀ j, l ∈]1, n[ . (61)

Considering (58), (59) and (61), and letting (ξr , νr )
.= V0(ζr) for all r ∈ (0, t],

a.e. ω ∈ Ω we see that (57) is equivalent to a pair of equations for the real and
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imaginary parts, where the real-part equation is

gr (r, ξr , νr ) =gr (s, x, y)+
∫ r
s

grt (ρ, ξρ, νρ)+ (grx2)
T (ρ, ξρ, νρ)f̂ (ρ, ξρ, νρ)

+ 1
2

n∑
j,l=1

grxj ,yl (ρ, ξρ, νρ)[σσT ]j,l dρ + 1√
2

∫ r

s

(gr
x2)

T (ρ, ξρ, νρ)σ̂ dBρ,

(62)

with an analogous equation corresponding to the imaginary part.
On the other hand, applying Itô’s rule to real functions gr and gi separately, and

then applying (17), (18), we find

gr(r, ξr , νr ) =gr(s, x, y) +
∫ r

s

grt (ρ, ξρ, νρ)+ (grx2)
T (ρ, ξρ, νρ)f̂ (ρ, ξρ, νρ)

+ 1
4

n∑
j,l=1

[
grxj ,xl + grxj ,yl + gryj ,xl + gryj ,yl

]
(ρ, ξρ, νρ)[σσT ]j,l dρ

+ 1√
2

∫ r

s

(gr
x2)

T (ρ, ξρ, νρ)σ̂ dBρ,

=gr(s, x, y) +
∫ r

s

grt (ρ, ξρ, νρ)+ (grx2)
T (ρ, ξρ, νρ)f̂ (ρ, ξρ, νρ)

+ 1
2

n∑
j,l=1

grxj ,yl (ρ, ξρ, νρ)[σσT ]j,l dρ + 1√
2

∫ r

s

(gr
x2)

T (ρ, ξρ, νρ)σ̂ dBρ,

(63)

with a similar equation for the imaginary part. Comparing (63) with (62), and
similarly for the imaginary parts, one obtains the result. � 

We apply this result to the particular case of interest here.

Lemma 6 Let Ŝ ∈ SC and (s, z) ∈ DC, and suppose ζ satisfies (49). Then, for all
r ∈ (s, t],

Ŝ(r, ζr) =Ŝ(s, z)+
∫ r
s

Ŝt (ρ, ζρ)− ŜTz (ρ, ζρ)
[
A>0(ρ)ζρ+ b>0(ρ)

]+ ih̄
2mΔzŜ(ρ, ζρ) dρ

+
√
h̄
m

1+i√
2

∫ r
s

ŜTz (ρ, ζρ) dBρ. (64)

Proof Dynamics (49) have form (51) with f (r, z) = A>0(r)z + b>0(r) and σ =√
h̄
m
In×n. In this case, 1

2 tr
[
Ŝzz(r, z)(σσ

T )
] = ih̄

2mΔzŜ(r, z) for all (r, z) ∈ SC,
which yields the result. � 
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Theorem 2 Let k ∈ N. Let Ŝκ ∈ S
p

C
satisfy (25)–(26) for all κ ∈]1, k[ . Let (s, z) ∈

DC, and let ζ ∈Xs satisfy (49). Then,

Ŝk(s, z) = E

{ ∫ t

s

− 1
2m

k−1∑
κ=1

[
Sκz (r, ζr )]T Sk−κz (r, ζr)− V̂ k(ζr ) dr + φk(ζt )

}
.

Proof Taking expectations in (64), and using the martingale property (cf., [6, 8]),
we have

Ŝk(s, z) = E

{
−
∫ t

s

Ŝt (r, ζr)− ŜTz (r, ζr)
[
A>0(r)ζr + b>0(r)

]+ ih̄
2mΔzŜ(r, ζr) dr

+ Ŝk(t, ζt )
}
.

Combining this with (25)–(26) yields the result. � 

6.3 Moments and Iteration

Note that Theorem 2 yields an expression for the kth term in our expansion for S̄,
Ŝk , from the previous terms, Ŝκ for κ < k. We now examine how this generates a
computationally tractable scheme. It is heuristically helpful to examine the first two
iterates. For (s, z) ∈ DC, we have

Ŝ1(s, z) = E

{∫ t

s

−V̂ 1(ζr ) dr + φ1(ζt )

}

= E

{∫ t

s

mω2
(
− [ζr ]31 + (3/2)[ζr ]1[ζr ]22

)
dr +

3∑
l=0

l∑
j=0

b
φ
3,l,j [ζt ]j1[ζt ]l−j2

}
,

(65)

Ŝ2(s, z) = E

{∫ t

s

− 1
2m

∣∣Ŝ1
z (r, ζr )

∣∣2
c
− V̂ 2(ζr ) dr + φ2(ζt )

}

= E

{∫ t

s

− 1
2m

∣∣Ŝ1
z (r, ζr )

∣∣2
c
+mω2

(
[ζr ]41 − 3[ζr ]21[ζr ]22 + (3/8)[ζr ]42

)
dr

+
4∑
l=0

l∑
j=0

b
φ
4,l,j [ζt ]j1[ζt ]l−j2

}
. (66)

Note that the right-hand side of (65) consists of an expectation of a polynomial
in ζt and an integral of a polynomial in ζ·, and further, that the dynamics of ζ
are linear in the state variable. Thus, we may anticipate that Ŝ1(s, ·) may also be
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polynomial. Applying this anticipated form on the right-hand side of (66) suggests
that the polynomial form will be inherited in each Ŝk . This will form the basis of
our computational scheme.

The computation of the expectations that generate the Ŝk for k ≥ 1 will be
obtained through the moments of the underlying diffusion process. Thus, the first
step is solution of (49). We let the state transition matrices for deterministic linear
systems ẏr = −A>0(r)yr and ẏ(2)r = −Ā>0(r)y

(2)
r be denoted by Φ(r, s) and

Φ(2)(r, s), respectively. More specifically, with initial (or terminal) conditions,
ys = ȳ and y(2)s = ȳ(2), the solutions at time r are given by yr = Φ(r, s)ȳ and
y
(2)
r = Φ(2)(r, s)ȳ(2), respectively. The solutions of our SDEs are given by the

following.

Lemma 7 Linear SDE (49) has solution given by ζr = μr +Δr , where

μr = Φ(r, s)z +
∫ r

s

Φ(r, ρ)
(− b>0(ρ)

)
dρ, Δr =

√
h̄
m

1+i√
2

∫ r

s

Φ(r, ρ) dBρ

for all r ∈ [s, t]. Linear SDE (56) has solution given by X(2)r = μ(2)r +Δ(2)r , where

μ(2)r = Φ(2)(r, s)x(2) +
∫ r

s

Φ(2)(r, ρ)
(− b̄>0(ρ)

)
dρ,

Δ(2)r =
√

h̄
2m

∫ r

s

Φ(2)(r, ρ)Ī dBρ

for all r ∈ [s, t], where x(2) .= (xT , yT )T .
Proof The case of (56) is standard, cf., [12]. We sketch the proof in the minor
variant case of (49), where this uses the Itô-rule approach, but for the complex-
valued diffusion case. For 0 ≤ s ≤ r ≤ t , let αr

.= Φ(s, r)ζr = Φ−1(r, s)ζr . By
Lemma 5,

αr =
∫ r
s

Φ−1(ρ, s)[−b>0(ρ)] dρ +
√
h̄
m

1+i√
2

∫ r

s

Φ−1(ρ, s) dBρ,

which implies ζr =
∫ r
s Φ(r, ρ)[−b>0(ρ)] dρ +

√
h̄
m

1+i√
2

∫ r
s Φ(r, ρ) dBρ . � 

Lemma 8 For all r ∈ [s, t], X(2)r and ζr have normal distributions.

Proof The case of X(2)r is standard, cf. [11], and then one notes ζr = V0(X
(2)
r ). � 

Lemma 9 For all r ∈ [s, t], μr is the mean of ζr , and Δr is a zero-mean normal
random variable with covariance given by E

[
ΔrΔ

T
r

] = ih̄
m

∫ r
s
Φ(r, ρ)ΦT (r, ρ) dρ,

where further, E
[
(ζr − μr)(ζr − μr)T

] = E
[
ΔrΔ

T
r

]
.



264 W. M. McEneaney and R. Zhao

Proof That Δr has zero mean is immediate from its definition. Given Lemmas 7
and 8, it is sufficient to obtain the expression for E

[
ΔrΔ

T
r

]
. By Lemma 7,

E
[
ΔrΔ

T
r

] = ih̄
m
E

{[∫ r
s
Φ(r, ρ) dBρ

][∫ r
s
Φ(r, ρ) dBρ

]T }
,

where the term inside the expectation is purely real, and consequently by standard
results (cf., [11]), one obtains the asserted representation. � 

As noted above, we will perform the computations mainly in the simpler, steady-
state case of k̄0 = 1. In this case, we have

− A>0 = ω
(−i 0

2 0

)
, and − b>0 = d

2m

(−2i
1

)
. (67)

In the case d = 0, we have −b>0 = 0, while in the case d = −2mωδ̂, we have
−b>0 = ωδ̂(2i,−1)T .

Theorem 3 In the case k̄0 = 1, for all r ∈ [s, t], ζr is a normal random variable
with mean and covariance given by, with d̂

.= d/(mω),

μr =
(
μ1
r

μ2
r

)
and Σ̃r

.=
(
Σ̃

1,1
r Σ̃

1,2
r

Σ̃
2,1
r Σ̃

2,2
r

)
, where

μ1
r = e−iω(r−s)z1 + d̂(e−iω(r−s) − 1),

μ2
r = 2i[e−iω(r−s) − 1]z1 + z2 + d̂

[
2i((e−iω(r−s) − 1)− 3ω(r − s)/2],

Σ̃1,1
r = h̄

mω
1
2

(
1 − e−2iω(r−s)),

Σ̃1,2
r = Σ̃2,1

r = h̄
mω
i
[
2
(
e−iω(r−s) − 1

)− (e−2iω(r−s) − 1
)]
,

Σ̃2,2
r = h̄

mω

[
2
(
e−2iω(r−s) − 1

)− 8
(
e−iω(r−s) − 1

)− 3iω(r − s)].
Proof The expression for μr is immediate from Lemma 7. To obtain the expression
for the covariance, we evaluate the integral in Lemma 9. Letting Σ̃r

.= E
[
ΔrΔ

T
r

]
,

component-wise, that integral is

Σ̃1,1
r = ih̄

m

∫ r

s

e−2iω(r−ρ) dρ, Σ̃1,2
r = Σ̃2,1

r = ih̄
m

∫ r

s

2i
[
e−2iω(r−ρ) − e−iω(r−ρ)] dρ,

Σ̃2,2
r = ih̄

m

∫ r

s

−4
[
e−2iω(r−ρ) − e−iω(r−ρ)]2 + 1 dρ.

Evaluating these, one obtains the asserted expression for the covariance. � 
Theorem 4 For (s, z) ∈ DC, Ŝ1(s, z) = ∑3

l=0
∑l
j=0 ĉ

1
l,j (s)z

j

1z
l−j
2 , where

the time-indexed coefficients, ĉ1
l,j (·) are obtained by the evaluation of linear
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combinations of moments of up to third-order of the normal random variables
ζr and closed-form time-integrals. For k > 1 and (s, z) ∈ DC, the Ŝk also take the
similar forms, Ŝk(s, z) =∑k+2

l=0
∑l
j=0 ĉ

k
l,j (s)z

j
1z
l−j
2 . Given the coefficient functions

ĉκl,j (s) for κ < k, the time-indexed coefficients ĉ
k
l,j (s) are obtained by the evaluation

of linear combinations of moments of up to (k + 2)th-order of the normal random
variables ζr and closed-form time-integrals.

Proof By Fubini’s Theorem and Theorem 2,

Ŝk(s, z) =
∫ t

s

− 1
2m

k−1∑
κ=1

E

{[
Sκz (r, ζr )]T Sk−κz (r, ζr )

}
(68)

+mω2
k+2∑
j=0

cVk+2,jE
{[ζr ]j1[ζr ]k+2−j

2

}
dr +

k+2∑
l=0

l∑
j=0

b
φ

k+2,l,jE
{[ζt ]j1[ζt ]l−j2

}
.

In particular,

Ŝ1(s, z) =
∫ t

s

mω2
[
E
{− [ζr ]31

}+ 3
2E
{[ζr ]1[ζr ]22}] dr +

3∑
l=0

l∑
j=0

b
φ

3,l,jE
{[ζt ]j1[ζt ]l−j2

}
.

(69)

We see that (69) immediately yields the assertions regarding Ŝ1. If for κ < k, the
Ŝκ (s, z) are polynomials in z of order at most κ+2, then the products-of-derivatives,
[Sκz (r, ζr )]T Sk−κz (r, ζr ), in (68) are of order at most k+2 in ζr , and the asserted form
follows. � 

7 The Ŝ1 Term

In Sect. 5, steady-state and periodic solutions for the zeroth-order term in the
expansion were computed. Here, we proceed an additional step, computing S̆1 .=
Ŝ0 + 1

δ̂
Ŝ1. We perform the actual computations for Ŝ1 only in the steady-state

case of k̄0 = 1. For (s, z) ∈ DC, we may obtain Ŝ1(s, z) from (69), using the
expressions for the mean and variance of normal ζr given in Theorem 3. We see
that we must evaluate integrals of the moments E

{[ζr ]31} and E
{[ζr ]1[ζr ]22} as well

as the general moments E
{[ζt ]j1[ζt ]l−j2

}
for j ∈ ]0, l[ , l ∈ ]0, 3[ . There are well-

known expressions for all moments of normal random variables. In particular,

E
{[ζr ]31} = [μr ]31 + 3[μr ]1Σ̃1,1

r ,

E
{[ζr ]1[ζr ]22} = [μr ]1[μr ]22 + [μr ]1Σ̃2,2

r + 2[μr ]2Σ̃1,2
r .
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This implies that for the integral term in (69), we must evaluate the integrals of
moments given by

∫ t
s
[μr ]31 dr ,

∫ t
s
[μr ]1Σ̃1,1

r dr ,
∫ t
s
[μr ]1[μr ]22 dr ,

∫ t
s
[μr ]1Σ̃2,2

r dr ,

and
∫ t
s
[μr ]2Σ̃1,2

r dr . We note that, as our interest is in the solution of the original
forward-time problem, it is sufficient to take s = 0. Further, as our interest will be
in periodic-plus-drift solutions, we take t = τ .= 2π/ω. With assiduous effort, one
eventually finds

E

{ ∫ τ
0
−V̂ 1(ζr ) dr

}
=
∫ τ

0
mω2
[
E
{− [ζr ]31

}+ 3
2E
{[ζr ]1[ζr ]22}] dr

= mω2
{

3πd̂
ω
[z2

1 + iz1z2 − z2
2] + c1(τ )(1, 2i)z+ c2(τ )

}
, (70)

where

c1(τ ) = (3π/ω)
[
d̂2(1 − 3iπ)/2 − h̄/(mω)],

c2(τ ) = πd̂h̄
mω2 (18iπ − 9/2)+ 3πd̂3

2ω

(
(1/3)− 3iπ − 6π2).

From (70), we see that the expected value, E
∫ τ

0 −V̂ 1(ζr) dr has at most quadratic
terms in z. (In contrast, for typical t �= τ , this integral is cubic in z.) Consequently,
it may be of interest to take terminal cost, φ1 to be quadratic rather than the more
general hypothesized cubic form. Suppose we specifically take

φ1(z)
.= 1

2z
T Q1z, (71)

where Q1 has components Q1
j,k . Noting that we are seeking a solution of form

S̆1 = Ŝ0 + 1
δ̂
Ŝ1, we find it helpful to now allow general d ∈ C with corresponding

Λ̄0 given by (48). Also, note from Theorem 3 that

μτ = z−
(
0, 3πd

mω

)T
, Σ̃1,1

τ = Σ̃1,1
τ = 0, Σ̃2,2

τ = −6iπh̄
mω

. (72)

Combining (69) and (70)–(72), we find

Ŝ1(τ, z) = 1
2z
T (Q1 +QΔ)z+ bT z+ ρ1(τ ), (73)

where

QΔ = 6πd

(
1 i/2
i/2 −1

)
, b =

[
k̃1
(
Q1 +QΔ)+ k̃2Q

Δ
](0

1

)
, (74)

ρ1(τ ) = k̃1
[
k̃1
2 + ih̄

d

]
Q1

2,2 + πdh̄
mω
(18iπ − 9/2)+ 3πd3

2m2ω2

(
(1/3)− 3iπ − 6π2),

(75)

k̃1 = −3πd
mω

, k̃2 = ih̄
d
+ d

2mω (3π − i). (76)
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Recalling that Ŝ0(τ, z) = 1
2z
T Q̄0z+ (Λ̄0)T z + ρ0(τ ), we find

S̆1(τ, z) = Ŝ0(τ, z)+ 1
δ̂
Ŝ1(τ, z)

= 1
2z
T
[
Q̄0 + 1

δ̂

(
Q1 +QΔ)]z+ [Λ̄0 + 1

δ̂
b
]T
z+ ρ0(τ )+ 1

δ̂
ρ1(τ ).

(77)

In the S̆1 solution given by (77), the Q1 complex matrix coefficient, as well as
complex d coefficient are free. Other potentially free parameters include the k̄0
parameter in Ŝ0 and terms that are not purely quadratic in the possibly cubic φ1.
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