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Abstract. Nowadays graphics processing units (GPUs) have become
popular parallel computing platforms known as General-Purpose GPU
(GPGPU) computing. GPUs thereby are chosen by some security
researchers as cryptographic accelerators to secure massive volumes of
transactions. However, their security issues are ignored in spite of their
popularity and performance. There are some possible information leak-
ages faced with malicious attacks or even in the normal GPU comput-
ing. Our objective is to secure the confidentiality of cryptographic keys
in GPU computing environments and provide easy-to-use programming
with few constraints. In this paper, we propose a prototype in Linux, a
system of GPGPU computing solution empowered by GPU virtualiza-
tion technology, which keeps encrypted keys in guest machine to protect
secret keys from leakage even in the event of full system compromise.
With the API interception and redirection of CUDA, applications in
Virtual Machines (VMs) can access the GPU device in a transparent
way. Besides, we use virtio, a dedicated virtual I/O device, to trans-
fer data between virtual and host machines in high performance. In our
current study, we evaluate our prototype with the GPU implementation
of ECC. We show that it can protect private keys of GPU cryptographic
computation and it also incurs low performance penalty compared with
the native environment, therefore demonstrating the prototype is secure
and requires reasonable overhead.
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1 Introduction

Over the last decade, graphics processing units (GPUs) have been increasing
used both as accelerating graphics rendering engines and parallel programmable
processors due to their high computing power and low price.

With hundreds to thousands of streaming processing cores, modern GPUs is
to speed up computations in the single-instruction-multiple-data (SIMD) fash-
ion, providing ample computation cycles and high memory bandwidth to mas-
sively parallel applications. As a result, GPUs have quickly been applied in a
broad spectrum of applications.

Meanwhile, the expanding demand of cryptographic operations for secure
communication and authentication requires high-performance implementations.
In fact, the GPU-based implementations of cryptographic operations (e.g., RSA,
AES, ECDSA, SHA-1) achieve significantly higher throughput and efficiency
than CPU implementations [9,11,12,23]. GPUs are leveraged to offload crypto-
graphic workloads from CPUs. For example, the GPU implementation of AES
achieves up to 28x higher throughput.

Although the GPU-based implementations of cryptographic operation aims
at security, a thorough analysis of the GPU environment has not been well
studied. As regards security and isolation, they are not considered as important
as performance. In fact, GPU and CPU architecture are quite different, therefore
they face different threats.

For discrete GPUs’ architecture, their independent memory and computa-
tional resources are physically partitioned from CPU, which seems to make it
plausible that GPUs could be used as secure co-processors. In CCS ’14, Vasil-
iadis et al. [29] proposes PixelVault, which is a system implementing AES and
RSA for keeping sensitive information (including cryptographic keys) and per-
forming cryptographic operations exclusively on GPU. PixelVault chooses GPU
registers, which are reported to be automatically reset to zero when the kernel
is loaded, as the secret and private keys storage. Intermediate sensitive data is
kept encrypted by master key in GPU global memory. No doubt the master key
is stored in GPU registers. Any computation with the secret keys is exclusively
limited to those registers. As a result, PixelVault prevents even privileged host
code from accessing any sensitive code or data on GPU. By exposing private
keys in plaintext only in GPU registers, and keeping PixelVault’s critical code
exclusively in the GPU instruction cache, PixelVault seems to be a promising
approach to prevent even privileged host code from accessing any sensitive code
or data on GPU.

With a different technology roadmap, in 2016, Kim et al. [13] propose OBMI
which is a SMM-based (System Management Mode) framework for bootstrap-
ping secure cryptographic operations on GPGPUs while preserving robustness,
efficiency and programmability. Unlike PixelVault, they store keys in GPU cache
which also cannot be accessed by CPU processes and cannot be accessed after
termination of GPU kernel. However, data in GPU cache is beyond control of
programmer, it is critical to ensure data remain in the cache and can not be
evicted. To subvert this issue, they store the key in the constant cache using
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SMM before system booting. They also utilize SMM for isolating authenticated
GPU kernel in instruction cache. Thus, only SMI (System Management Inter-
rupt) and trusted kernel can access the key. By handling sensitive data only in
SMM, OBMI can secure cryptographic operations.

Unfortunately, while some characteristics of GPU architecture and execution
model are officially confirmed, some are poorly documented and not validated
experimentally. Indeed, Zhu et at. [32] demonstrate how unpublished or recently
introduced features of GPUs may bypass the protection mechanisms of Pix-
elVault and compromise the whole system. They refute the following security
assumptions of PixelVault in details. Exploiting memory mapped input out-
put (MMIO) registers, they can invalidate the GPU instruction caches and
replace them with their own malicious code from running kernels. Using recent
changes in debugging support, privileged users are able to attach any running
kernel and read the GPU registers, effectively extracting the secret keys. What’s
worse, it is unclear how to disable this capability. And for OBMI, becasuse How-
ever as mentioned before [32], unpublished MMIO registers are able to flush the
instruction cache, allowing to inject malicious code. Consequently, it breaks the
security assumption of both PixelVault and OBMI.

As a summary, any kind of information leakage from security-sensitive appli-
cations (e.g., those runs security protocols or cryptographic algorithms) would
severely undermine the trustworthiness of GPU computing. Thus in order to
protect the secret keys under a range of memory leakages and threats to the
underlying system, we propose a key-protection isolation mechanism on GPG-
PUs with system-level virtualization technology. The contributions of this paper
are threefold:

1. We propose a secure GPU computing model for the GPU-based cryptographic
service. We sugguest a GPU virtualization approach for cryptographic com-
putations by API remoting method, which isolates master key and keeps
accelerating operations safe. To the best of our knowledge, we are the first to
utilize GPU virtualization technology to solve the security issues of GPU.

2. Based on the proposed model, we implement a prototype on the commod-
ity GPU with QEMU-KVM with various kinds of optimization. The extra
virtualization layer also allows us to introduce mechanisms for checking the
integrity of the accelerated GPU code, which is previously very complex to
implement in GPUs.

3. By comparing the native throughput of ECC with GPU virtualization
through various experiments, we evaluate the performance overhead of our
solutions. The evaluations show that our approach incurred only a negligible
performance degradation with preventing private keys from leakage of GPU
cryptographic computation.

The rest of the paper is organized as follows: we begin by providing necessary
background for the current work. Then we describe our design in Sect. 3. In
Sect. 4, the detailed implementation is revealed and we evaluate the performance.
We discuss security analysis in Sect. 5. Finally, we conclude the paper in Sect. 6.
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2 Preliminaries and Related Work

This section gives some basic introduction to GPU, GPU virtualization and some
attacks and defenses on cryptographic keys in modern processors.

2.1 GPU Basis

The computational capabilities of GPUs for executing parallel applications are
based on hundreds or thousands of processing cores and a high bandwidth mem-
ory architecture. A GPU has several Streaming Multiprocessors (SM) which are
in turn composed of Streaming Processor cores (SP, or CUDA cores), registers,
caches.

A GPU application consists the host code running on the CPU and kernels
which runs on the GPU. GPU kernels are special functions executing n times in
parallel by n different threads. The number of threads can be specified at kernel
launch time.

Running a task on GPU follows three steps:

– The DMA controller transfers the input data from host memory to GPU
memory.

– The host application launches the kernel which runs on GPUs.
– The DMA controller transfers the output data from GPU memory to host

memory.

As CUDA is becoming a prevalent programming model of GPGPU, we focus
on CUDA runtime API while virtualizating GPUs.

2.2 GPU Virtualization

Although virtualization provides a wide range of benefits, such as system secu-
rity, ease of management, isolation, and live migration, virtualizing GPUs is a
relatively new area of study and remains a challenging endeavor which is due to
undisclosed details of GPU implementation and unstandardized GPU architec-
tures.

API remoting approach is a kind of protocol redirection, which virtualizes
GPUs in a simple way and without singnificant performance penalty by providing
a GPU wrapper library to a guest OS to intercept GPU runtime calls. This
approach does not adopt custom GPU driver in the guest [10]. vCUDA [25] and
rCUDA [3] are recent projects using API remoting in GPU virtualization.

vCUDA provides a CUDA wrapper library and virtual GPUs (vGPUs) in
the guest and the vCUDA stub in the host. vGPUs are created per application
by the wrapper library and give a complete view of the underlying GPUs to
applications. Instead of emulation, rCUDA creates virtual CUDA-compatible
devices on machines without GPU by adopting remote GPU-based acceleration.

However, these frameworks either rely on the scheduling mechanisms pro-
vided by the CUDA runtime, or allow applications to execute on GPU in
sequence, possibly leading to low resource utilization and consequent suboptimal
performance.



146 Z. Wang et al.

2.3 Attack and Defense on Cryptographic Keys in CPU

As long as the secrecy of cryptographic keys involved in cryptographic operations
is guaranteed, the cryptosystem is trustworthy even if it has been compromised.
Nevertheless keeping cryptographic keys safe is still a great challenge in any cryp-
tosystem [16]. During cryptographic operations, private keys are always loaded
into main memory as plaintext, therefore private keys are prone to memory
disclosure attacks.

A malicious program can exploit Meltdown [17] and Spectre [14] in modern
processors to steal data from the main memory, dumping passwords, personal
photo, emails, instant messages and so on.

Although various mechanisms have been proposed in memory protec-
tion [28,30], the main memory is still vulnerable to physical attacks, such as
cold-boot [8], DMA attack [1,27], which could bypass the protections of OS. To
prevent cold-boot attack, AESSE [21], TRESOR [22], and Amnesia [26] store
AES keys exclusively in CPU registers. PRIME [5] and Copker [6] implements
the RSA algorithm in AVX registers and cache respectively. While Mimosa [7]
utilizes hardware transactional memory to protect the RSA cryptographic oper-
ations from cold-boot and memory disclosure attacks.

However the CPU-bound encryption approach requires the integrity of the
OS kernel. Any compromised OS kernel can easily leak the register or the cache
within the CPU. TRESOR-HUNT [1] exploits DMA to inject malicious code
into the OS kernel memory and then access the keys in registers.

2.4 Attack and Defense on Cryptographic Keys in GPU

Not only for CPUs, recent works have started investigating the security vulner-
abilities of GPUs. Some works notice the GPU driver does not erase memory
after kernel termination, indicating that they can leak sensitive data [24,31].

Memory isolation policies enforced by a CPU cannot be applied to GPU
memory automatically, so any discrepancy between CPUs and GPUs can lead
to unexpected information leakages. By exploiting such vulnerabilities, Pietro
et al. [24] recover both plaintext and encryption key of AES from GPU global
memory. For thwarting information leakage in GPUs, it is believed that the best
solution is memory isolation enhancements performed at the driver/hardware
level. Nevertheless, it would be better that CUDA should allow OS to monitor
usage and control access to GPU resources.

As modern GPUs share virtual and even physical memory with CPUs, buffer
overflows becomes possible in GPU and can lead to remote code execution,
corruption on sensitive data and security problems as CPU-based overflows [2,
20]. Erb et al. [4] present a tool that utilizes canaries to detect buffer overflows
caused by GPGPUs kernel in OpenCL GPU applications.

A recent study shows that remanent data in GPU memory can be retrieved
since GPU does not automatically zero its memory after termination. [15,24,31]
Even implementing an appropriate erasing operations for the GPU memory,
attackers with GPU driver privileges can also access GPU memory with MMIO
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registers [19]. Some researchers treat discrete GPUs as secure co-processors
storing private keys in GPU registers [29] or GPU cache [13] while offloading
cryptographic operations onto GPUs. Unfortunately, due to the widespread com-
mercial strategy to hide implementation details from competitors, manufacturers
of GPUs are reluctant on publishing the internals of their solutions [18], which
implies the discrete GPUs cannot be trusted as secure co-processors, rather, they
may host stealthy malware [32].

3 System Design

3.1 Threat Model and Design Goals

Threat Model. We intend to provide a isolated cryptographic computation
environment using GPU in virtual machine from the OS in commodity platform.
In this situation, the objective of the adversary is to leak the sensitive information
of cryptographic operations from victim’s system. We assume that the adversary
has the ability to fully control over the VM and obtain root privilege through
intrusion attacks. We consider the malicious user has no physical access to the
computer. Otherwise the victim machine is venerable to hardware-based attacks
such as cold-boot attack or DMA attack.

The underlying VMM is mostly safe so that even if the OS of VM is com-
promised, the hacker cannot escape the guest virtual machine and execute code
on hypervisor or host operating system. Moreover, we ignore denial-of-service
attacks.

Design Goals. Our most primary goal is to design a safe environment for
GPU accelerating cryptographic computation without leaking secret keys. This
implies that no keys or sensitive information should get into memory. Considering
this policy, we can isolate the GPU and OS with a master key from a virtual
machine. To restrain cryptographic operations from dealing with secret keys,
they are transferred from VM to host using secure channel. The actual secret
keys and related sensitive information should never be exposed to the memory
of VM. In that case even if the VM is compromised, no sensitive information in
VM memory can be leaked.

Meanwhile, we need to guarantee the throughput of cryptographic compu-
tations. The performance of cryptographic operations should be not effected
obviously.

3.2 System Architecture

The framework we propose is organized in three main architectural features.
By using CUDA API Remoting, we implement GPU virtualization in guest OS.
CUDA cryptographic applications can utilize GPU with original API functions
in the same manner as a typical GPGPU program. However, secret keys must
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not be transferred into memory of guest OS in case they are disclosed via mali-
cious attacks. All we suggest to manage keys securely is to isolate the master
key in VMM, while secret keys from any application need to encrypt/decrypt via
the master key. Moreover, to prevent leakage of sensitive information from GPU
memory, we also verify the validity of the CUDA fat binary before application
launches a request. If there is no information of CUDA fat binary in our white
list, the system denies the request and records this abnormal behavior. In this
way, users can launch secure cryptographic operations on virtualized environ-
ment. The architecture will be discussed in depth in the following sections.

Isolation Using GPU Virtualization. The first step of our isolation mecha-
nism for securing accelerating cryptographic computation is the ability to utilize
GPU in virtual machine. As we all know, GPU vendors somehow are not will-
ing to provide general purpose GPU virtualization solution. They tend not to
publish the source code and implementation details of their GPU drivers, which
are essential for virtualizing GPUs at the driver level, for commercial reasons.
Even when driver implementations are unveiled, for example, by reverse engi-
neering methods, significant changes are introduced with every new generation
of GPUs to improve performance. As a result, specifications revealed by reverse
engineering become useless.

In a word, there are no standrad interfaces for virtualizing GPU devices in
driver level.

Fortunately the API remoting approach overcomes aforementioned limita-
tions, because it can emulate a GPU execution environment without exposing
physical GPU devices in the guest OS. The premise of API remoting is to pro-
vide guest OS with a custom library which contains the same API as the original
library. However the library intercepts GPU calls from the application and redi-
rects the request with proper parameters to the host OS for execution as normal
calls through shared memory or sockets. Only results are delivered to the appli-
cation through wrapper library in reverse.

It is flexible that the wrapper library can be dynamically linked to existing
applications at runtime. What is more important is that API remoting approach
incurs negligible performance overhead. In addition, this approach can be mon-
itored by underlying hypervisors as the virtualization layer is implemented in
user space.

Key-Protection Mechanism. The main focus of our work is the key-
protection mechanism during the GPU accelerating cryptographic operations.
Instead of storing the master key in registers or cache of GPU like PixelVault
and OBMI do, we decide to keep master key in VMM. All keys residing in VMs
are encrypted by the master key. Thus only during cryptographic operations,
VMM manages to decrypt cryptographic keys with the master key and uploads
the actual keys into GPU global memory where kernel can retrieve. Therefore,
even if adversaries manage to acquire the secret keys from the memory space of
VMs, they would get encrypted content which is unuseful.
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GPU Binary Verification. Although our key-protection mechanism can
securely upload the secret key into the GPU global memory, it is useless if
the GPU kernel is compromised. Thus adversary can launch a malicious GPU
code-injection attack and patiently leak the key from the GPU global memory.
In order to prevent such attack, verifying the integrity of GPU kernel is a prereq-
uisite for protecting secret keys. Before launching the accelerating cryptographic
operation in VM, VMM checks the integrity of the GPU kernel. After validating
authenticated GPU code, VMM allows the GPU binary to execute then. Other-
wise, the cryptographic operations are rejected and recorded in abnormal logs.
With the proposed method, we can securely execute arbitrary, authenticated
GPU code without any tampering.

4 Implementation and Performance Evaluation

Based on the design principles, we describe various aspects of our prototype in
detail, and propose a general system architecture and some more details in the
implementation of our prototype.

4.1 Architecture Overview

The overall design and process details of the proposed solution are shown in
Fig. 1. In this architecture, we choose virtio, a standard for para-virtualization
I/O devices, as the transfer channel, which we discuss in following sections. By
using API remoting approach, CUDA driver is not essential for guest OS.

First, when a CUDA application demands a GPU service, it can dynamically
link to wrapper library and invoke CUDA runtime API as the typical GPGPU
program. Wrapper library intercepts calls before the calls reach the GPU driver
in the guest OS and redirects them to virtio front-end driver through ioctl. Then
guest driver forwards API requests with proper parameters via virio buffer to
back-end driver in VMM. If it is the first time running for application, VMM
verifies the fat binary file using HMAC and then checks it whether in our white
list. Only passing the validation, API requests can be executed as the same

Host OS

VMM

GPU

Guest OS

ioctl

CUDA Application

Virtio Front-End Driver

Virtio Back-End Driver Master 
keyCUDA Cryptographic Application

request

Wrapper Runtime Library

CUDA API

Runtime Library

Device Driver

HMAC 
List

virtio 
buffer

response

Fig. 1. The architecture of the proposed prototype.
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real runtime APIs do. Otherwise, VMM denies of execution. Finally, the results
should be sent back to the application in reverse path.

4.2 Implementation Details

API Remoting GPU Virtualization. In general, the typical phase for exe-
cution of a kernel requires several steps, which we illustrate using the vector
addition as an example:

1. Initialization. The process obtains the GPU module from the CUDA binary,
which comprises the CUDA fat binary code and other related data such as
statically allocated variables.

2. Memory Allocation. The process requests memory allocation on the GPU
for the data used by kernel execution.

3. Input Data Transfer. All the data used by kernel execution must be copied
from RAM to GPU global memory allocated in second step.

4. Kernel Execution. The GPU code is executed with the parameters and
configurations, such as block size and thread size.

5. Output Data Transfer. Once the kernel execution is completed, the results
in GPU should be transferred to RAM.

6. Memory Release. GPU memory which is allocated before is released.
7. Finalization. The process releases all the associated resources and quits.

According to our experiments, all the cardinal running APIs we need to
complete a typical cuda application is shown in Table 1.

Table 1. The functionality of primary runtime API

Operation Functionality Stage

cudaRegisterFunction Get the handle to kernel called with
binary code and function name

Initialization

cudaUnregisterFatBinary Release the fat binary Finalization

cudaRegisterFatBinary Get the handle to the fat binary Initialization

cudaMalloc Allocate memory on the device Memory allocation

cudaConfigureCall Configure a device launch Kernel execution

cudaSetupArgument Configure setup augments Kernel execution

cudaLaunch Launch a kernel Kernel execution

cudaFree Free memory on the device Memory release

cudaMemcpy Copy data between host and device Input&Output
data transfer

The first three functions with “ ” prefix are not meant to be called directly
by user code but they are so important that nvcc compiler injects them into the
source code. Their declaration in /usr/local/cuda/include/crt/host runtime.h
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shows us the interface. While the other functions without underline
prefix are directly called by user code and they are declared in
/usr/local/cuda/include/cuda runtime api.h.

Each wrapper runtime API invokes ioctl() system call for sending requests
and getting responses from virtual GPU. In this case, ioctl() takes the file
descriptor of virtual character device as first argument. The second argument
is a dedicated device-dependent request code for each runtiem API. The third
argument is an untyped pointer to the request meta structure which we fill with
proper parameters.

Data Transfer Between VMs and VMM. Virtio is a de-facto standard for
para-virtualization I/O devices and aims to improve performance of accessing
devices on guest OSes over the traditional emulated devices. Virtio abstracts a
common set of emulated devices which the VMM exports to the VM via normal
PCI devices. To boost the I/O performance, a custom device driver in guest OS
communicates with the associated back-end service in VMM. Guest OS writes
“guest-physical” addresses to the configure space to inform the VMM of buffer
addresses. By simply adding an offset the actual “host-virtual” addresses can be
calculated in VMM.

Our proposed implementation, virtio-vgpu, consists of a virtual PCI device
(virtio-vgpu-pci) and a token (virtio-vgpu-token) that is logically attached to it.
To support virtio-vgpu, “virtio-vgpu-pci” and “virtio-vgpu-token” options
should be appended to the QEMU command line when the VM launches. Virtio-
vgpu-pci is interpreted into virtual device for guest OS, while virtio-vgpu-token
also requires a PEM formatted private key file which stores master key as back-
end with the “keypath” argument.

Virtio-vgpu provides a front-end driver in guest OS for forwarding requests
and returning the response of CUDA runtime APIs. In more detail, the driver
specifies ioctl commands for wrapper runtime API calling. All the parameters
should be rearranged in buffer with the meta structure and auxiliary data. As
the driver is complemented in kernel space, transferred data from user space
should be copied to the kernel space. New kernel memory is allocated, filled
with content from the user space and then concatenated to the end of buffer.
The final buffer is sent to VMM via virtio buffers. The returned buffer is also
arranged like this, which contains of meta structure and complementary data.
Finally, all essential results are copied to user space.

Besides the front-end driver, the other back-end driver in VMM is responsible
for receiving requests, keeping states of objects, executing operations and sending
back the responses. The transferred data is analyzed via the information of meta
structure located in the front of buffer. As we mention before, VMM responses
differently according to dedicated request code from the meta structure. By
different request code, VMM calls actual runtime API and forwards back the
buffer with the returned value and essential parameters. In addition, VMM also
initializes the virtual objects list after validating the authentication of GPU code
when dealing with cudaRegisterFatBinary requests. The virtual objects list
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manages all pointers to allocated memory, kernel configuration and parameters,
events, streams. Still, the device information is collected as well in order to
response quickly for the device management, such as cudaGetDevice request.

GPU Kernel Authentication. In order to prevent the maliciously modified
GPU code compromising the device, our system only allows authenticated GPU
code to execute on device. To validate the integrity of GPU kernel, the mecha-
nism is divided into two parts. Firstly, the administrator should obtain the sig-
nature of fat binary file from CUDA binary using HMAC-SHA256 signatures in
advance. Now the secret key of HMAC is generated from master key. Then those
signatures are needed to be converted to base64 for displaying. The fat binary
file can be generated from the source code by nvcc compiler with the option
“--fatbin”. Meanwhile VMM maintains a white list to dynamically manage
base64 strings of HMAC signatures of GPU code. The white list is implemented
as a file appended to virtio-vgpu-token.

typedef struct {
int magic;
int version;
const unsigned long long* data;
void *filename_or_fatbins;  /* version 1: offline filename,

* version 2: array of prelinked fatbins */
} __fatBinC_Wrapper_t;

Fig. 2. Fatbin control structure.

Secondly, what confronts us is how to extract the fatbin file from the CUDA
binary file using runtime APIs. Luckily, we can utilize some control structure
information from CUDA include directory. cudaRegisterFatBinary takes the
pointer to fatbin control structure as input, the structure defined in fatBina-
ryCtl.h is shown in Fig. 2. The address of fat binary can be followed by field
data. Furthermore, the size of fat binary file is controlled by fat binary header
structure defined in fatbinary.h. Finally, with the address and size, the fat binary
file surely is able to be extracted and be transferred to VMM via virtio.

VMM checks the integrity of fat binary file once receiving it from guest OS.
By checking whether base64 string converted from HMAC-SHA256 signature of
fat binary file exists in while list or not, VMM determines that the fat binary
file is authenticated. If the fat binary file is valid, VMM initializes the virtual
GPU environment and deal with following requests. Otherwise, VMM rejects
the request and reports this abnormal behavior to administrators.

4.3 Performance Evaluation

We assess the performance of the GPU virtualization prototype in comparison to
the native machine running on commodity CPU and GPU. Our host OS consists
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Fig. 3. Performance comparison for Curve25519 with different numbers of requests.

Ubuntu 16.04 x86-64 (kernel v4.4.0), QEMU v1.7.1 and NVIDIA Geforce GTX
TITAN BLACK, and the guest OS is CentOS 6.6 (kernel v3.13.7). We implement
the wrapper library of CUDA v8.0. To adopt our mechanism for common GPU
cryptographic operations, we develop auxiliary runtime API in wrapper library.

The throughput is evaluated via Curve25519 and AES-128 algorithms.
Curve25519 is an elliptic curve which is intended to operate at the 128-bit secu-
rity level. We implement scalar multiplication on Curve25519 by using Mont-
gomery ladder in a constant time. By making full use of the PTX ISA instruc-
tion supported by NVIDIA GPUs and making optimization from two aspects, the
finite field arithmetic and the curve algorithm, the performance of Curve25519
scalar multiplication has been promoted. For AES, we modify the OpenSSL AES
with a 128-bit symmetric key to GPU implementation.

We conduct the experiment to measure the latency incurred by the API
remoting approach. In order to measure the impact of our GPU virtualization
mechanism on real scene of cryptographic computing, the time imposed by data
copying is included from the total time. Figure 3 shows the throughput changes
of Curve25519 with and without our proposed mechanism via various request
sizes.

As the figure shows, the overhead incurred by GPU virtualization is insignifi-
cant for Curve25519. For Curve25519, the average degraded throughput is up to
92% of the original throughput. This implies that our mechanism brings negli-
gible performance degradation for asymmetrical cryptographic operations.

However, there is much lower performance for AES-128, which is up to
70% throughput degradation with 3 MB input data. We tested the performance
penalty of kernel execution excluding the time of data copying. The degraded
throughput is nearly 98% of native throughput. From our point of view, the
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time of data copying takes up most of the time of virtual cryptographic comput-
ing. This implies that our solution might be ineffective to frequently request for
symmetrical cryptographic operations with large input data.

Note that we have not optimize implementation of our prototype yet. The
efficiency of data copying via virtio needs to be optimized in our future work.

5 Security Analysis

In this section, our experiment shows our mechanism is able to protect sensitive
information from memory disclosure attacks. To this end, we need to make sure
there is no occurrence of keys of Curve25519 in memory space of VM. By using
dump-guest-memory and info registers command in QEMU console, the
whole memory image and states of registers of VM can be obtained respectively.
Since we have already know the plaintext of secret keys in cryptographic com-
putation, we search the secret key strings and the master key string inside the
dump file. Fortunately, it turns out that no binary sequence of any key exists.
Hence, our GPU virtualization prototype can effectively prevent private keys
from leakage of GPU cryptographic computation.

In order to maintain all loaded secrets on GPU and make sure exclusive
control of the GPU, PixelVault forces a CUDA kernel to run indefinitely and
consumes all available device resources. As a result, PixelVault is dedicated to a
single cryptographic operation. Not to say consuming considerable power, this
not only degrades performance but also significantly reduces flexibility of com-
putations. Since GPU registers can not be shared between different threads,
PixelVault also increases complexity of GPGPU programming.

Compared with the prior works, our solution has the following advantages:

1. We isolate the master key in host. The secret keys used by GPU-accelerated
cryptographic operations are not exposed to attackers in plaintext, but
encrypted by master key beforehand. However the encrypted secret keys are
only decrypted in host OS. Any accelerating cryptographic operation in VM
can not reveal the sensitive information.

2. Any authenticated cryptographic computation application can be executed in
the VM with a insignificant degradation of throughput. Experiment results
show that performance penalty of API-remoting-based GPU computation for
ECC is within 8% of native GPU computation.

3. We provide wrappered CUDA runtime library which keeps the same interface
as the original library so that developers do not need to modify applications
greatly.

4. Our solution does not depend on the characteristics of GPU hardware. Ignor-
ing the architecture of underlying hardware, it is compatible for multiple
products.
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6 Conclusion

In this paper, we have proposed the design and implementation of a framework
for preventing private keys from leakage in accelerating cryptographic compu-
tations utilizing GPU virtualization. By isolating the master key in VMM and
establishing authenticated GPU binaries, the real keys are never exposed to the
guest OS, so that the compromise of the guest OS will not threaten the secrecy
of keys. Moreover, The API-remoting-based GPU virtualization with virtio is
proved as a high performance computing solutions which allows cryptographic
applications within VM to leverage GPU acceleration. Our evaluations show that
GPU virtualization incurrs a insignificant performance degradation for asymmet-
ric cryptographic algorithm ECC. We also prove that secret keys are never leaked
into memory space of VMs. However the major reason of performance degrada-
tion incurred by GPU virtualization is data transmission which is a unavoidable
problem. Our work currently may not be proper for symmetrical cryptographic
operations like AES with large input data.

In the future work, we continue to optimize our prototype with data trans-
mission, lazy calling and implement more runtime APIs. Now our prototype
does not support multiplexing and live migration that we intend to extend the
prototype with.
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