
Random Number Generators
Can Be Fooled to Behave Badly

George Teşeleanu1,2(B)

1 Advanced Technologies Institute, 10 Dinu Vintilă, Bucharest, Romania
ati@dcti.ro

2 Department of Computer Science, Al.I.Cuza University of Iaşi,
700506 Iaşi, Romania

george.teseleanu@info.uaic.ro

Abstract. In this paper, we extend the work on purely mathematical
Trojan horses initially presented in [15]. This kind of mechanism affects
the statistical properties of an infected random number generator (RNG)
by making it very sensitive to input entropy. Thereby, when inputs have
the correct distribution the Trojan has no effect, but when the distribu-
tion becomes biased the Trojan worsens it. Besides its obvious malicious
usage, this mechanism can also be applied to devise lightweight health
tests for RNGs. Currently, RNG designs are required to implement an
early detection mechanism for entropy failure, and this class of Trojan
horses is perfect for this job.

1 Introduction

In [15] the authors propose an interesting mechanism that blurs the line between
what constitutes a Trojan horse and what does not. To detect their mechanism,
a program needs to somehow differentiate between a naturally unstable random
number generator (RNG) and artificially unstable one (obtained by means of cer-
tain mathematical transformations). To our knowledge, [15] is the only previous
work that discuses this topic.

More precisely, in [15] a digital filter is described. Usually, digital filters are
applied to RNGs to correct biases1, but this filter has an opposite purpose. When
applied to a stream of unbiased bits the filter is benign. On the other hand, if
applied to a stream of biased bits the filter amplifies their bias. Thereby, making
the RNG worse.

In this paper we extend the filter from [15]2, provide a new class of filters
and discuss some new possible applications. The main application we propose for
these filters is RNG testing (e.g., boosting health tests implemented in a RNG).
Recent standards [11,13] require a RNG to detect failures and one such method
for early detection can be to apply an amplifier and then do some lightweight
1 They are called randomness extractors [8].
2 The filter presented in [15] corresponds to the greedy amplifier with parameter n = 3

described in Sect. 3.

c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 124–141, 2018.
https://doi.org/10.1007/978-3-030-01950-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_8&domain=pdf

Random Number Generators Can Be Fooled to Behave Badly 125

testing3. Based on the results obtained in our paper, we provide concrete exam-
ples of how to detect such failures in Sect. 5.1 and Appendix A.

Due to recent events [4,6,7,12] RNGs have been under a lot of scrutiny. Thus,
wondering what kind of mechanisms can be implemented by a malicious third
party in order to weaken or destabilize a system becomes natural. Amplifying
filters provide a novel example of how one can achieve this. Based on the fail-
ure detection mechanisms proposed in Sect. 5.1, we show, for example, how a
manufacturer can manipulate the architecture to become malicious.

Structure of the paper. Notations and definitions are presented in Sect. 2. The
core of the paper consists of Sects. 3 and 4 and contains two classes of filters.
Applications are given in Sect. 5. We conclude in Sect. 6. Experimental results
are presented in Appendix A.

2 Preliminaries

Throughout the paper, we consider binary strings of length n composed of inde-
pendent and identically distributed (i.i.d.) bits generated by a RNG. By 0n and
1n we understand the all zero and the all one strings. Also, for figures we use
the standard representation of the x-axis and y-axis.

Let 0 ≤ ε ≤ 1
2 be a real number and b a random bit. Then, without loss

of generality, we denote the probability of b = 0 by P0 = 1
2 − ε and of b = 1

by P1 = 1
2 + ε. We will refer to ε as bias. The complement rule states that

P1 = 1 − P0. Let P (a) be the probability of a random string being a. Then for
any A ⊆ Z

n
2 we denote by P (A) =

∑
a∈A P (a).

Let u be a binary string and A ⊆ Z
n
2 . Then w(u) denotes the hamming weight

of u and w(A) the set {w(a) | a ∈ A}. Note that since we are working with i.i.d.
bits, for any u, v ∈ Z

n
2 such that w(u) = w(v), the equality P (u) = P (v) holds.

Thus, from a probabilistic point of view, it does not matter which element of
the set {u ∈ A | w(u) = k} we choose to work with.

The element min(A) (max(A)) is the smallest (biggest) integer of the set A,
while minw(A) (maxw(A)) is an element from A that has the smallest (biggest)
hamming weight. We say that a pair of sets (S0, S1) is an equal partition of the
set S if the following hold: S = S1 ∪ S2, S1 ∩ S2 = ∅ and |S1| = |S2|.

To ease description, we use the notation Cn
k to denote binomial coefficients.

Pascal’s identity states that Cn
k = Cn−1

k + Cn−1
k−1 , where 1 ≤ k ≤ n. Note that

|{u ∈ Z
n
2 | w(u) = k}| = Cn

k .
In this paper, we consider a digital filter to be a mapping from Z

n
2 to Z2. If

we continuously apply a filter to data generated by a RNG4, then three types of
filters arise:

– bias amplifier - the output data has a bigger bias than the input data;

3 For example the tests described in [10].
4 Note that except for n = 1 the bit rate of the RNG will drop.

126 G. Teşeleanu

– neutral filter - the output data has the the same bias as the input data;
– bias corrector5 - the output data has a smaller bias than the input data.

Let (S0, S1) be an equal partition of a set S. Let D be a digital filter such
that it maps S0 and S1 to 0 and 1, respectively (see Table 1). Also, let εD be the
output bias of D. We say that a bias amplifier is maximal if εD is maximal
over all the equal partitions of Zn

2 . To compare bias amplifiers we measure
the distance between P (S1) and P (S0).

Table 1. Conversion table.

Bit 0 Bit 1

S0 S1

Before stating our results, some restrictions are needed. If the input bits are
unbiased (i.e. P0 = 1

2) or have a maximum bias (i.e. P0 = 0 or P1 = 0) we
require the filter to maintain the original bias. If one replaces a bias corrector
with a bias amplifier, the amplifier must behave as the corrector when the
RNG has bias 0 or 1

2 . The last requirement is that the filter amplifies the bias in
the direction that it already is. Without loss of generality, we assume that the
bias is towards 1.

3 Greedy Bias Amplifiers

In this section we generalize and improve the bias amplifier described in
[15]. We first present a neutral filter and based on it we develop a maximal
bias amplifier. We can easily transform one into the other by changing the
conversion table.

Lemma 1. Let S0 = {u ∈ Z
n
2 | u = 0‖v, v ∈ Z

n−1
2 } and S1 = {u ∈ Z

n
2 | u =

1‖v, v ∈ Z
n−1
2 }. Then P (S0) = P0 and P (S1) = P1.

Proof. Since we are working with i.i.d. random bits the following holds

P (S0) =
∑

v∈Z
n−1
2

P (0‖v) =
∑

v∈Z
n−1
2

P0P (v) = P0

∑

v∈Z
n−1
2

P (v) = P0.

Similarly, we obtain P (S1) = P1. 	

Using Lemma 1 we can devise a neutral filter N by mapping all the

elements of S0 and S1 to 0 and 1, respectively. Starting from the equal partition

5 We prefer to use this notion instead of randomness extractor, because it simplifies
our framework.

Random Number Generators Can Be Fooled to Behave Badly 127

(S0, S1) (Lemma 1), using a greedy algorithm (Algorithm 1), we devise a new
equal partition that serves as the core of a maximal bias amplifier.

Algorithm 1.
Input: An integer n
Output: An equal partition of Zn

2

1 Set S0 = {u ∈ Z
n
2 | u = 0‖v, v ∈ Z

n−1
2 } and

S1 = {u ∈ Z
n
2 | u = 1‖v, v ∈ Z

n−1
2 }

2 Set α = maxw(S0) and β = minw(S1)
3 while w(α) < w(β) do
4 Set S0 = (S0 \ {α}) ∪ {β} and S1 = (S1 \ {β}) ∪ {α}
5 Update α = maxw(S0) and β = minw(S1)
6 end
7 return (S0, S1)

Lemma 2. Let k be a positive integer and let (S0, S1) be the output of Algorithm
1. Then the following properties hold

1. If n = 2k+1 then S0 = {u | 0 ≤ w(u) ≤ k} and S1 = {u | k+1 ≤ w(u) ≤ n}.
Also, P (S0) =

∑k
i=0 Cn

i (P0)n−i(P1)i and P (S1) =
∑k

i=0 Cn
i (P0)i(P1)n−i.

2. If n = 2k then S0 = {u | 0 ≤ w(u) ≤ k − 1} ∪ T0 and S1 = {u | k +
1 ≤ w(u) ≤ n} ∪ T1, where (T0, T1) is an equal partition of {u ∈ Z

n
2 |

w(u) = k}. Also, P (S0) =
∑k−1

i=0 Cn
i (P0)n−i(P1)i + Cn

k

2 (P0P1)k and P (S1) =
∑k−1

i=0 Cn
i (P0)i(P1)n−i + Cn

k

2 (P0P1)k.
3. If ε = 0 then P (S0) = P (S1) = 1

2 and if ε = 1
2 then P (S0) = 0 and P (S1) = 1.

Proof. During the while loop Algorithm 1 swaps the elements whose weight is
written in Column 2, Table 2 with the elements that have their weight written
in Column 3, Table 2.

Table 2. Operations performed during the while loop.

Number of switches Weight of S0 elements Weight of S1 elements

Cn−1
0 n − 1 1

Cn−1
1 n − 2 2

. . .

Cn−1
i−1 n − i i

. . .

The while loop ends when w(α) ≥ w(β). According to Table 2, this is equiv-
alent with n− i ≥ i. When n = 2k +1 we obtain that the while loop stops when
i ≤ k + 1. When n = 2k the loop stops when i ≤ k. Thus, we obtain the sets
S0 and S1. The probabilities P (S0) and P (S1) are a direct consequence of the

128 G. Teşeleanu

structure of the sets and the fact that Cn
k = Cn

n−i. The last item is simply a
matter of computation. 	

Lemma 3. Let (S0, S1) be the output of Algorithm 1. If we map all the ele-
ments of S0 and S1 to 0 and 1, respectively, then we obtain a maximal bias
amplifier G.

Proof. According to Lemma 2 all the lowest and highest probability elements
are in S0 and S1, respectively. Thus, the statement is true. 	

Lemma 4. Let (Sn

0 , Sn
1) be the output of Algorithm 1 for n = 2k + 1. Then the

following hold

1. P (Sn
0) = P (Sn+1

0) and P (Sn
1) = P (Sn+1

1).
2. P (Sn

0) − P (Sn+2
0) = P (Sn+2

1) − P (Sn
1) = 2εCn

k (P0P1)k+1.
3. P (Sn

0) > P (Sn+2
0) and P (Sn

1) < P (Sn+2
1).

4. P (Sn
1) − P (Sn

0) < P (Sn+2
1) − P (Sn+2

0).

Proof. We prove the first statement using induction. When k = 1 we have S1
0 =

{0}, S1
1 = {1}, S2

0 = {00, 01} and S2
1 = {10, 11}. Using Lemma 1, we obtain

P (S1
0) = P0 = P (S2

0) and P (S1
1) = P1 = P (S2

1). Thus, proving the statement
for the case k = 1.

We now assume that the statement is true for k (i.e. P (Sn
0) = P (Sn+1

0)
and P (Sn

1) = P (Sn+1
1)) and we it for k + 1. Applying Pascal’s identity twice to

P (Sn+2
0) we obtain

P (Sn+2
0) =

k+1∑

i=0

Cn+2
i (P0)n+2−i(P1)i = (P0)n+2 + (n + 2)(P0)n+1P1

+
k+1∑

i=2

(Cn
i + 2Cn

i−1 + Cn
i−2)(P0)n+2−i(P1)i. (1)

We rewrite Eqs. (1) as a sum of S1, S2, S3 (described next):

S1 = (P0)n+2 + n(P0)n+1P1 +
k+1∑

i=2

Cn
i (P0)n+2−i(P1)i (2)

= (P0)2P (Sn
0) + Cn

k+1(P0)n+1−k(P1)k+1,

S2 = 2(P0)n+1P1 + 2
k+1∑

i=2

Cn
i−1(P0)n+2−i(P1)i (3)

= 2
k∑

i=0

Cn
i (P0)n+1−i(P1)i+1 = 2P0P1P (Sn

0),

S3 =
k+1∑

i=2

Cn
i−2(P0)n+2−i(P1)i =

k−1∑

i=0

Cn
i (P0)n−i(P1)i+2 (4)

= (P1)2P (Sn
0) − Cn

k (P0)n−k(P1)k+2.

Random Number Generators Can Be Fooled to Behave Badly 129

Reassembling Eqs. (2) to (4) we obtain

P (Sn+2
0) = P (Sn

0) + Cn
k+1(P0)n+1−k(P1)k+1 − Cn

k (P0)n−k(P1)k+2 (5)

= P (Sn
0) − 2εCn

k (P0P1)k+1.

Applying Pascal’s identity twice to P (Sn+3
0) we obtain

P (Sn+3
0) =

k+1∑

i=0

Cn+3
i (P0)n+3−i(P1)i +

Cn+3
k+2

2
(P0P1)k+2 (6)

= (P0)n+3 + (n + 3)(P0)n+2P1

+
k+1∑

i=2

(Cn+1
i + 2Cn+1

i−1 + Cn+1
i−2)(P0)n+3−i(P1)i +

Cn+3
k+2

2
(P0P1)k+2.

Let α =
∑k

i=0 Cn+1
i (P0)n+1−i(P1)i. We rewrite Eq. (6) as a sum of S4, S5, S6

(described next):

S4 = (P0)n+3 + (n + 1)(P0)n+2P1 +
k+1∑

i=2

Cn+1
i (P0)n+3−i(P1)i (7)

= (P0)2α + Cn+1
k+1 (P0)n+2−k(P1)k+1,

S5 = 2(P0)n+2P1 + 2
k+1∑

i=2

Cn+1
i−1 (P0)n+3−i(P1)i (8)

= 2
k∑

i=0

Cn+1
i (P0)n+2−i(P1)i+1 = 2P0P1α,

S6 =
k+1∑

i=2

Cn+1
i−2 (P0)n+3−i(P1)i =

k−1∑

i=0

Cn+1
i (P0)n+1−i(P1)i+2 (9)

= (P1)2α − Cn+1
k (P0)n+1−k(P1)k+2.

Reassembling Eqs. (7) and (9) we obtain

P (Sn+3
0) = P (Sn+1

0) + Cn+1
k+1 (P0)n+2−k(P1)k+1 − Cn+1

k (P0)n+1−k(P1)k+2 (10)

− Cn+1
k+1

2
(P0P1)k+1 +

Cn+3
k+2

2
(P0P1)k+2

= P (Sn+1
0) − Cn

k (P0P1)k+1

{
n + 1
k + 1

[

(P0)2 − 1
2

]

+ P0P1

[

−n + 1
k + 2

+
(n + 1)(n + 2)(n + 3)
2(k + 1)(k + 2)(k + 2)

]}

= P (Sn+1
0) − Cn

k (P0P1)k+1

{

2
[

(P0)2 − 1
2

]

+ 2P0P1

}

= P (Sn+1
0) − 2εCn

k (P0P1)k+1.

130 G. Teşeleanu

Applying the induction step to Eqs. (5) and (10) we obtain that P (Sn+2
0) =

P (Sn+3
0). The following equality is a consequence of the complement rule

P (Sn+2
1) = 1 − P (Sn+2

0) = 1 − P (Sn+3
0) = P (Sn+3

1).

This completes the proof the first statement. The remaining statements are a
direct consequence of Eq. (5) and the complement rule. 	

Corollary 1. Let (Sn

0 , Sn
1) be the output of Algorithm 1 for n = 2k + 1. Then

P (Sn
0) − P (Sn+2

0) > P (Sn+2
0) − P (Sn+4

0) and P (Sn+2
1) − P (Sn

1) > P (Sn+4
1) −

P (Sn+2
1).

Proof. Using Lemma 4 we obtain that P (Sn
0) − P (Sn+2

0) > P (Sn+2
0) − P (Sn+4

0)
is equivalent with 2εCn

k (P0P1)k+1 > 2εCn+2
k+1 (P0P1)k+2. Rewriting the inequality

we obtain

1 >
(2k + 2)(2k + 3)
(k + 1)(k + 2)

P0P1.

The proof is concluded by observing that

(2k + 2)(2k + 3)
(k + 1)(k + 2)

P0P1 < 4
(

1
4

− ε2
)

= 1 − 4ε2 ≤ 1. 	

Figure 1(a) and (b) are a graphical representation of Lemma 4 (n ≤ 17) and
Corollary 1 (n ≤ 15), respectively. The x-axis represents the original bias ε, while
the y-axis represents P (Sn

1) (Fig. 1(a)) and P (Sn+2
1) − P (Sn

1) (Fig. 1(b)).

Fig. 1. Greedy amplifier.

Random Number Generators Can Be Fooled to Behave Badly 131

Using the properties stated in Lemmas 2 and 4, we will next describe an
equivalent and simplified version of Algorithm 1. Note that devising a greedy
bias amplifier only makes sense when n is odd.

Algorithm 2.
Input: An odd integer n
Output: An equal partition of Zn

2

1 Set S0 = S1 = ∅
2 for i = 0, . . . , 2n − 1 do
3 if w(i) ≤ k then
4 S0 = S0 ∪ {i}
5 end
6 else
7 S1 = S1 ∪ {i}
8 end
9 end

10 return (S0, S1)

4 Von Neumann Bias Amplifier

Von Neumann introduced in [14] a simple, yet effective method for correcting
the bias of a RNG. Each time the RNG generates two random bits b1 and b2,
the filter outputs b1 if and only if b1 �= b2. It is easy to see that P (b1b2 =
01) = P (b1b2 = 10) = P0P1. Thus, the bias of the output data is 0. We further
generalize Von Neumann’s method and explain how to replace it’s conversion
table in order to obtain a maximal bias amplifier. Through this section we
will restrict n to be of the form 2k, where k is a positive integer.

Lemma 5. Let V = {u ∈ Z
n
2 | w(u) = k} and let (V0, V1) be an equal partition

of V . Then P (V0) = P (V1) = Cn
k

2 (P0P1)k.

Proof. Since (V0, V1) is an equal partition of V , we obtain that |V0| = |V1| =
|V |
2 = Cn

k

2 . Note that P (u) = (P0P1)k, for any u ∈ V . Combining these two facts
we obtain the statement of the lemma. 	

Using Lemma 5 we can devise a corrector filter6 Vc by mapping all the
elements of V0 and V1 to 0 and 1, respectively. In Algorithm 3 we provide an
example of how to generate a pair (V0, V1).

6 with the bias of the output data 0.

132 G. Teşeleanu

Algorithm 3.
Input: An integer n
Output: An equal partition of V

1 Set V0 = V1 = ∅ and V = {u ∈ Z
n
2 | w(u) = k}

2 Set α = max(V) and β = min(V)
3 for i = 1, . . . , Cn

k /2 do
4 Set V0 = V0 ∪ {β} and V1 = V1 ∪ {α}
5 Update V = V \ {α, β}
6 Set α = max(V) and β = min(V)
7 end
8 return (V0, V1)

We further show that the probabilities V0 and V1 get smaller if we increase
n. This translates in a lower bit rate if we apply Vc. Note that increasing n does
not change the bias of the output data, thus making Vc

7 useless in practice if
used only for correcting biases.

Lemma 6. Let (V n
0 , V n

1) be the output of Algorithm 3 for n = 2k. Then
P (V n

0) > P (V n+2
0).

Proof. We remark that P (V n
0) > P (V n+2

0) is equivalent with

1 >
(2k + 1)(2k + 2)
(k + 1)(k + 1)

P0P1.

The proof is now similar to Corollary 1 and thus is omitted. 	

Figure 2 is a graphical representation of Lemma 6 (n ≤ 18). The x-axis

represents the original bias ε, while the y-axis represents P (V n
0).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.05

0.1

0.15

0.2

0.25
n=2
n=4
n=6
n=8
n=10
n=12
n=14
n=16
n=18

Fig. 2. Probability of V n
0 and V n

1 .

Note that when P0 = 0 or P1 = 0 we obtain P (V0) = P (V1) = 0. When
constructing a bias amplifier Va we must have the same behavior. Thus, the
7 for n ≥ 4.

Random Number Generators Can Be Fooled to Behave Badly 133

strings we use to construct Va need to contain at least a 0 and an 1. When
n = 2 the only strings that contain 0 and 1 are 01 and 10, but these are the
basis for the Von Neumann bias corrector. Hence, when n = 2 there are no
bias amplifiers. This leads to the restriction n ≥ 4. We again use a greedy
approach (Algorithm 4) and devise a core for Va.

Algorithm 4.
Input: An integer n
Output: Two sets V0 and V1

1 Set V0 = V1 = ∅ and W = Z
n
2 \ {0n, 1n}

2 Set α = minw(W) and β = maxw(W)
3 for i = 1, . . . , Cn

k /2 do
4 Set V0 = V0 ∪ {α} and V1 = V1 ∪ {β}
5 Update W = W \ {α, β}
6 Set α = minw(W) and β = maxw(W)

7 end
8 return (V0, V1)

Lemma 7. Let x be an integer such that
∑x

i=1 Cn
i < Cn

k /2 <
∑x+1

i=1 Cn
i . Define

y = Cn
k /2 − ∑x

i Cn
i , W0 ⊂ {u ∈ Z

n
2 | w(u) = x + 1}, W1 ⊂ {u ∈ Z

n
2 | w(u) =

n−x−1}, such that |W0| = |W1| = y. Also, let (V0, V1) be the output of Algorithm
4 . Then the following properties hold

1. V0 = {u | 1 ≤ w(u) ≤ x} ∪ W0 and V1 = {u | n − x ≤ w(u) ≤ n − 1} ∪ W1.
2. P (V0) =

∑x
i=1 Cn

i (P0)n−i(P1)i + y(P0)n−x−1(P1)x+1 and P (V1) =∑x
i=1 Cn

i (P0)i(P1)n−i + y(P0)x+1(P1)n−x−1.
3. If ε = 0 then P (S0) = P (S1) = 1

2 and if ε = 1
2 then P0 = 0 and P1 = 1.

Proof. The proof is a direct consequence of Algorithm 4 and thus is omitted. 	

Lemma 8. Let (V0, V1) be the output of Algorithm 4. If we map all the elements
of V0 and V1 to 0 and 1, respectively, then we obtain a maximal bias amplifier
Va.

Proof. According to Lemma 7 all the lowest and highest probability elements
are in V0 and V1, respectively. Thus, the statement is true. 	

Figure 3 is a graphical representation of Lemma 7 (n ≤ 18). The x-axis
represents the original bias ε, while the y-axis in Fig. 3(a) and (b) represents
P (V n

0) and P (V n
1), respectively.

Unfortunately, due to the nature of x and y, the best we could do is to
heuristically provide a graphical representation of Conjecture 1 (Fig. 4). We could
not theoretically prove it in general.

134 G. Teşeleanu

Fig. 3. Von Neumann amplifier.

Conjecture 1. Let n be even, (Sn−1
0 , Sn−1

1) be the output of Algorithm 1 for
n−1 and (V n

0 , V n
1) be the output of Algorithm 4 for n. Denote by Mn = [P (V n

1)−
P (V n

0)]·[P (V n
1)+P (V n

0)]−1. Then Mn < Mn+2 and P (Sn−1
1)−P (Sn−1

0) < Mn.

Note that in the case of greedy amplifiers the metric [P (Sn−1
1) − P (Sn−1

0)] ·
[P (Sn−1

1) + P (Sn−1
0)]−1 is equal to P (Sn−1

1) − P (Sn−1
0). Thus, Conjecture 1

states that the Von Neumann amplifier for a given n is better at amplifying
ε than its greedy counterpart. We chose to state the conjecture such that it
is true for all n ≥ 4, but, from Fig. 4, we can observe that as n grows the
Von Neumann amplifier becomes better at amplifying ε8. Note that in Fig. 4
the x-axis represents the original bias ε, while the y-axis represents the values
P (Sn−1

1) − P (Sn−1
0) (interrupted line) and Mn (continuous line).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n=3
n=5
n=7
n=9
n=11
n=13
n=15
n=17
n=4
n=6
n=8
n=10
n=12
n=14
n=16
n=18

Fig. 4. Comparing greedy amplifiers (interrupted line) with Von Neumann amplifiers
(continuous line).

8 e.g the Von Neumann amplifier for n = 8 is better than the greedy amplifiers for
n = 3, . . . , 17.

Random Number Generators Can Be Fooled to Behave Badly 135

5 Applications

5.1 The Good

RNG standards [11,13] require manufactures to implement some early detec-
tion mechanism for entropy failure. Health tests represent one such method for
detecting major failures. There are two categories of health tests: startup tests
and continuous tests. The former are one time tests conducted before the RNG
starts producing outputs, while the latter are tests performed in the background
during normal operation.

We propose a generic architecture for implementing health tests (Fig. 5). We
first store data D (obtained from the noise source) in a buffer, then we apply a
bias amplifier to it and obtain data Da. Next, we apply some lightweight tests
on Da. If the tests are passed, the RNG outputs D, otherwise D is discarded.
Note that the bias amplifier can be implemented as a lookup table, thus
obtaining no processing overhead at the expense of O(2n) memory.

Fig. 5. Generic architecture for implementing health tests.

In our instantiations we used the health tests implemented in Intel’s pro-
cessors [10]. Intel’s health tests Hi use a sliding window and count how many
times each of the six different bit patterns (Column 1, Table 3) appear in a
256 bit sample. An example of allowable margins for the six patterns can be
found in Column 2, Table 3. The thresholds mentioned in Tables 3 and 4 were
computed using 106 256 bit samples generated using the default RNG from the
GMP library [3].

We first propose a continuous test using the greedy amplifiers described in
Sect. 3. Depending on the available memory we can use one of the greedy ampli-
fiers and then apply Hi. Note that n should be odd due to Lemma 4. If the health
test are implemented in a processor it is much easier to use n = 4, 8, 16. From the
health bounds presented in Table 3, we can observe that the differences between

136 G. Teşeleanu

data without amplification and data with amplification are not significant. Thus,
one can easily update an existing good RNG9 by adding an extra buffer and an
amplification module, while leaving the health bounds intact. Note that due to
the unpredictable number of output bits produced by a Von Neumann amplifier,
greedy amplifiers are better suited for continuous testing.

Table 3. Health bounds for greedy amplifiers (amp.).

Bit pattern Allowable number of occurrences per sample

without amp. n= 3 amp. n =5 amp. n = 7 amp.

1 90 < m < 165 88 < m < 165 89 < m < 167 90 < m < 165

01 45 < m < 83 45 < m < 82 46 < m < 83 45 < m < 83

010 8 < m < 59 9 < m < 62 10 < m < 58 7 < m < 60

0110 1 < m < 38 2 < m < 34 2 < m < 35 2 < m < 34

101 10 < m < 59 10 < m < 61 10 < m < 60 9 < m < 63

1001 1 < m < 35 2 < m < 36 0 < m < 35 1 < m < 35

If the design of the RNG has a Von Neumann module, then Von Neu-
mann amplifiers can be used to devise a startup test. Before entering nor-
mal operation, the Von Neumann module can be instantiated using the con-
version table of the corresponding amplifier. For example, when n = 4 one
would use V0 = {0001, 0010, 0100} and V1 = {0111, 1011, 1101}10 instead of
V0 = {0011, 0101, 0110} and V1 = {1001, 1010, 1100}11. The resulting data can
then be tested using Hi and if the test pass the RNG will discard the data and
enter normal operation. Note that the first buffer from Fig. 5 is not necessary
in this case. Note that Von Neumann amplifiers require n > 2, thus the speed
of the RNG will drop. This can be acceptable if the data speed needed for raw
data permits it, the RNG generates data much faster than the connecting cables
are able to transmit or the raw data is further used by a pseudo-random number
generator (PRNG).

5.2 The Bad

One can easily turn the benign architecture presented in Fig. 5 into a malicious
architecture (Fig. 6). In the new proposed configuration, health tests always out-
put pass and instead of outputting D the system outputs Da.

The malicious configuration can be justified as a bug and can be obtained
from the original architecture either by commenting some code lines (similarly to
[6]) or by manipulating data buffers (similarly to [7]). Note that code inspection

9 that already has Hi implemented.
10 the sets used to define the maximal Von Neumann amplifier.
11 the sets used to define the Von Neumann corrector.

Random Number Generators Can Be Fooled to Behave Badly 137

Table 4. Health bounds for Von Neumann correctors (corr.) and amplifiers (amp.).

Bit pattern Allowable number of occurrences per sample

n= 4 corr. n=4 amp. n = 6 corr. n = 6 amp.

1 88 < m < 166 91 < m < 167 89 < m < 167 90 < m < 168

01 43 < m < 83 44 < m < 83 44 < m < 85 45 < m < 82

010 9 < m < 59 10 < m < 60 7 < m < 58 9 < m < 60

0110 1 < m < 33 1 < m < 36 2 < m < 35 2 < m < 33

101 10 < m < 58 11 < m < 61 10 < m < 57 8 < m < 60

1001 0 < m < 34 2 < m < 35 1 < m < 34 1 < m < 34

or reverse engineering will reveal these so called bugs. A partial solution to
detection can be implementing the architecture in a tamper proof device and
deleting the code if someone tinkers with the device. Another partial solution
is embedding the architecture as a submodule in a more complex architecture
(similarly to [6]). This solution is plausible due to the sheer complexity of open-
source software and the small number of experts who review them [5].

Fig. 6. Generic architecture for infecting RNGs.

Another problem is that the RNG will output Das instead of Ds and this
translates to lower data rates. A possible solution to this problem is to use Da

as a seed for a PRNG and then output the data produced by the PRNG. Thus,
raw data is never exposed. A problem with this approach is that in most cases
the PRNG will also mask the bias. The only case that is compatible with this
approach is when the bias is large. Therefore one can simply use an intelligent
brute force to find the seed. Hence, breaking the system.

A more suitable approach to the aforementioned problem is to use a pace
regulator [9]. This method uses an intermediary buffer to store data and

138 G. Teşeleanu

supplies the data consumer with a constant stream of bits. Unfortunately, if
data requirements are high, then the regulator will require a lot of memory and
in some cases the intermediary buffer will be depleted. Thus, failing to provide
data.

A solution specific to greedy amplifiers is to implement in all devices a
neutral filter after D and output the resulting data Dn. Thus, when a mali-
cious version of the RNG is required, one can simply replace the conversion
table of the neutral filter with the conversion table of the corresponding bias
amplifier. For example, when n = 3 one would change S0 = {000, 001, 010, 100}
and S1 = {111, 110, 101, 100}12 with S0 = {000, 001, 010, 100} and S1 =
{111, 110, 101, 011}13. It is easy to see that in this case both Dn and Da have
the same frequency.

Since we are modifying the statistical properties of the raw data, a simple
method for detecting changes is black box statistical testing (for example using
[2]). Thus, if a user is getting suspicious he can detect the “bugs”. Again, a partial
solution is to implement the malicious architecture as a submodule inside a more
complex architecture either in tamper proof devices, either in complex software.
Thus, eliminating the user’s access to raw data.

6 Conclusions and Future Work

In our paper we studied and extended bias amplifiers, compared their per-
formance and provided some possible applications for them. Even thou in its
infancy, this area of research provides insight into what can go wrong with a
RNG.

A possible future direction would be to extended our results to other ran-
domness extractors. Of particular interest, is finding a method to turn a block
cipher or a hash function14 into an amplifier.

Acknowledgments. The author would like to thank Diana Maimuţ and the anony-
mous reviewers for their helpful comments.

A Experimental Results

To test the configuration proposed in Sect. 5.1, Fig. 5 and obtain some metrics
(Table 5) we conducted a series of experiments. More precisely, we generated
105000 256 bit samples using the Bernoulli distribution instantiated with the
Mersenne Twister engine (mt19937) found in the C++ random library [1]. Then,
we applied the bias amplifying filters from Table 3 and counted how many sam-
ples are marked pass. In the case of raw data, a sample is marked pass15 if it
12 the sets used to define the neutral filter.
13 the sets used to define the maximal greedy amplifier.
14 For a formal treatment of how one can use a block cipher or a hash function to

extract randomness we refer the reader to [8].
15 The terminology used by Intel is that the sample is ”healthy”.

Random Number Generators Can Be Fooled to Behave Badly 139

passes the Hi test from Column 1, Table 3. In the case of bias amplification, if
a 256 bit buffer ba from Da passes Hi, all the input buffers that where used to
produce ba are marked pass. Note that to implement our filters we used lookup
tables and thus we had no performance overhead.

From Table 5 we can easily see that when the bias is increased, the number of
samples that are marked pass is lower than Hi in the case of greedy amplifiers.
Also, note that the rejection rate is higher as n increases. Thus, enabling us to
have an early detection mechanism for RNG failure.

Table 5. Greedy amplifiers (amp.) metrics.

ε Number of samples marked pass

without amp. n=3 amp. n=5 amp. n=7 amp.

0.00 104999 104997 105000 105000

0.01 104999 104991 104990 105000

0.02 104996 104979 104945 104965

0.03 104988 104925 104685 104384

0.04 104949 104631 103545 101661

0.05 104856 103620 99370 91413

0.06 104598 100668 88845 69832

0.07 104002 93840 69810 41286

0.08 102763 81660 46110 17724

0.09 100411 64332 23460 5404

0.10 96381 44262 9005 1043

0.11 89967 26142 2625 105

0.12 80849 12882 570 0

0.13 69164 5253 65 0

0.14 55856 1704 0 0

0.15 41777 420 0 0

0.16 29039 87 0 0

0.17 18410 21 0 0

0.18 10470 6 0 0

0.19 5331 0 0 0

0.20 2393 0 0 0

We also conducted a series of experiments to test the performance of the
startup test proposed in Sect. 5.1. This time, we generated data until we obtained
1000 256-bit samples, applied the bias correcting/amplifying filters from Table 4
and counted how many of these samples pass the Hi test from Column 1, Table 3.
Another metric that we computed is the number of input bits required to gen-
erate one output bit.

140 G. Teşeleanu

Table 6. Von Neumann correctors (corr.) and amplifiers (amp.) metrics.

ε Number of samples that pass Hi

n= 2 corr. n=4 amp. n=6 amp.

0.00 1000 1000 1000

0.01 1000 1000 1000

0.02 1000 1000 995

0.03 1000 998 940

0.04 1000 981 721

0.05 1000 919 322

0.06 1000 806 79

0.07 1000 567 7

0.08 1000 310 0

0.09 1000 134 0

0.10 1000 53 0

Note that in Table 6 we only wrote the n = 2 corrector, since for n = 4, 6 the
results are almost identical. From Table 6 we can easily observe that when the
bias is increased the number of samples that pass Hi is lower than the corrector
in the case of Von Neumann amplifiers. As in the case of greedy amplifiers, we
can observe that the rejection rate is higher as n increases. The experimental
data also shows that Von Neumann amplifiers perform better than the greedy
amplifiers when rejecting bad samples.

In Table 7 we can see that more data is required to generate one bit as n
grows. When the bias increases, we can observe that compared to Von Neumann

Table 7. Von Neumann correctors (corr.) and amplifiers (amp.) throughput.

ε Number of input bits per number of output bits

n = 2 corr. n= 4 corr. n=4 amp. n= 6 corr. n = 6 amp.

0.00 3.9958 10.6646 10.6751 19.1374 19.2776

0.01 3.9978 10.6690 10.6817 19.1873 19.2548

0.02 4.0044 10.6852 10.6885 19.2513 19.2017

0.03 4.0106 10.7272 10.6873 19.3623 19.0892

0.04 4.0202 10.7956 10.6900 19.5129 18.9534

0.05 4.0352 10.8755 10.6952 19.7228 18.7933

0.06 4.0531 10.9713 10.6980 20.0087 18.5889

0.07 4.0755 11.1025 10.6876 20.3259 18.3405

0.08 4.1013 11.2489 10.6709 20.7180 18.0855

0.09 4.1264 11.3916 10.6841 21.1418 17.8104

0.10 4.1594 11.5733 10.6823 21.6591 17.5187

Random Number Generators Can Be Fooled to Behave Badly 141

correctors the throughput of the corresponding amplifiers is better. Thus, besides
having an early detection mechanism, it also takes less time to detect if an RNG
is broken if we use a Von Neumann amplifier.

References

1. C++ Random Library. www.cplusplus.com/reference/random/
2. NIST SP 800–22: download documentation and software. https://csrc.nist.gov/

Projects/Random-Bit-Generation/Documentation-and-Software
3. The GNU multiple precision arithmetic library. https://gmplib.org/
4. Ball, J., Borger, J., Greenwald, G.: Revealed: How US and UK spy agencies

defeat internet privacy and security. The Guardian, vol. 6 (2013). https://www.
theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security

5. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2 1

6. Bello, L.: DSA-1571-1 OpenSSL—Predictable Random Number Generator (2008).
https://www.debian.org/security/2008/dsa-1571

7. Checkoway, S.: A systematic analysis of the juniper dual EC incident. In: ACM-
CCS 2016, pp. 468–479. ACM (2016)

8. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness Extrac-
tion and key derivation using the CBC, cascade and HMAC modes. In: Franklin, M.
(ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-28628-8 30

9. Ferradi, H., Géraud, R., Maimuţ, D., Naccache, D., de Wargny, A.: Regulating the
pace of von neumann correctors. J. Crypt. Eng. 8(1), 1–7 (2017)

10. Hamburg, M., Kocher, P., Marson, M.E.: Analysis of Intel’s Ivy bridge digital
random number generator (2012) http://www.rambus.com/wp-content/uploads/
2015/08/Intel TRNG Report 20120312.pdf

11. Killmann, W., Schindler, W.: A proposal for: functionality classes for random
number generators, version 2.0 (2011). https://www.bsi.bund.de/SharedDocs/
Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS 31 Functionality
classes for random number generators e.pdf? blob=publicationFile

12. Perlroth, N., Larson, J., Shane, S.: NSA able to foil basic safeguards of privacy on
web. New York Times 5 (2013). https://www.nytimes.com/2013/09/06/us/nsa-
foils-much-internet-encryption.html

13. Turan, M.S., Barker, E., Kelsey, J., McKay, K., Baish, M., Boyle, M.:
NIST DRAFT special publication 800–90B: recommendation for the entropy
sources used for random bit generation (2012). https://nvlpubs.nist.gov/nistpubs/
SpecialPublications/NIST.SP.800-90B.pdf

14. Von Neumann, J.: Various techniques used in connection with random digits. Appl.
Math Ser. 12, 36–38 (1951)

15. Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. John
Wiley and Sons, Hoboken (2004)

www.cplusplus.com/reference/random/
https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software
https://csrc.nist.gov/Projects/Random-Bit-Generation/Documentation-and-Software
https://gmplib.org/
https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://www.theguardian.com/world/2013/sep/05/nsa-gchq-encryption-codes-security
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://www.debian.org/security/2008/dsa-1571
https://doi.org/10.1007/978-3-540-28628-8_30
http://www.rambus.com/wp-content/uploads/2015/08/Intel_TRNG_Report_20120312.pdf
http://www.rambus.com/wp-content/uploads/2015/08/Intel_TRNG_Report_20120312.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf?__blob=publicationFile
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Zertifizierung/Interpretationen/AIS_31_Functionality_classes_for_random_number_generators_e.pdf?__blob=publicationFile
https://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
https://www.nytimes.com/2013/09/06/us/nsa-foils-much-internet-encryption.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90B.pdf

	Random Number Generators Can Be Fooled to Behave Badly
	1 Introduction
	2 Preliminaries
	3 Greedy Bias Amplifiers
	4 Von Neumann Bias Amplifier
	5 Applications
	5.1 The Good
	5.2 The Bad

	6 Conclusions and Future Work
	A Experimental Results
	References

