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Abstract. The problem of preserving privacy while mining data has
been studied extensively in recent years because of its importance for
enabling sharing data sets. Differential Identifiability, parameterized by
the probability of individual identification ρ, was proposed to provide a
solution to this problem. Our study of the proposed Differential Identi-
fiability model shows that: First, its usability is based on a very strong
requirement. That is, the prior probability of an individual being present
in a database is the same for all individuals. Second, there is no formal
link between the proposed model and well known privacy models such as
Differential Privacy. This paper presents a new differential identifiability
model for preventing the disclosure of the presence of an individual in a
database while considering an adversary with arbitrary prior knowledge
about each individual. We show that the general Laplace noise addition
mechanism can be used to satisfy our new differential identifiability def-
inition and that there is a direct link between differential privacy and
our proposed model. The evaluation of our model shows that it provides
a good privacy/utility trade-off for most aggregate queries.

1 Introduction

Many privacy models have been proposed for protecting individuals’ privacy
in published data, e.g., k -anonymity [14], l -diversity [13], t-closeness [10], etc.
These models suffer from a key limitation: They cannot guarantee that the rela-
tionship between individuals’ identities and their sensitive information are pro-
tected in case in which the adversary has additional knowledge. A privacy notion
that is progressively gaining acceptance for overcoming the previously mentioned
privacy problem is differential privacy (DP). Informally, DP requires that the
impact of the presence of any individual entity in a dataset on the output of
the queries to be limited. More specifically, DP ensures that any two databases
that differ only in one record will induce output distributions that are close in
the manner that the probabilities of each possible query’s outputs differ by a
bounded multiplicative factor ε.
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Several research have investigated whether DP can provide sufficient protec-
tion and how to choose the right value for the parameter ε. Lee and Clifton
showed in [9] that the DP’s parameter ε can only limit how much one individual
can change the output of a query. It does not limit the amount of information that
are revealed about an individual. This limitation makes DP not fully matching
the legal definition of privacy that requires the protection of individually identi-
fiable data. Attempting to meet the previous privacy definition, Lee and Clifton
proposed in [9] a new privacy model called differential identifiability (DI). They
assume that a database record can be linked to the identity of an individual, and
they provide a model to quantify the leakage of the information on whether an
individual participates in the database or not. Informally, if we denote by pos-
sible worlds the set of all possible databases resulting from removing an (any)
individual from the initial database, DI ensures that the identifiability risk of any
individual in the universe is less than or equal to a parameter ρ. This param-
eter can be interpreted as the degree of indistinguishability between possible
worlds, where the possible worlds differ by (any) one individual. Unfortunately,
the proposed model is based on the assumption that the prior probability of an
individual being in the database is the same for all individuals. We believe that
this is a very strong requirement since it requires an adversary to know exactly
the same amount of information about each individual in the database. Clearly,
this assumption is seldom satisfied in the real environments. Moreover, There is
no direct translation from the DI parameter ρ to the DP parameter ε, and thus,
the data utility may become unable to estimate.

In this paper, we try to remedy the previously mentioned drawbacks by
proposing a new model called (α, β)-DI. The model aims to limit the leakage
of information on whether an individual participates in a database or not when
considering an adversary with arbitrary prior knowledge about each individual
in the database (the same strong guarantees as DP). We show that the gen-
eral Laplacian noise addition mechanism for differential privacy can be adapted
to provide (α, β)-differentially identifiable outputs and that there is a direct
translation between DP and our (α, β)-DI model. In a thorough experimental
evaluation on real datasets, we studied the utility that can be provided by our
model for several kinds of statistical queries.

The rest of the paper is organized as follows. Section 2 introduces the nota-
tions and preliminaries that we are going to use. Section 3 presents the problem
we address and the adversary model we consider in our work. In Sect. 4, we first
show how to model the belief of an adversary about the individuals present in the
database, and second, how the belief of the adversary will change when he/she
interacts with the database. Section 5 defines our new Differential Identifiability
model. In Sect. 6, we studied whether is it possible to provide privacy and utility
without making assumptions about the prior knowledge of the adversary. Then
we propose a general Laplacian noise addition mechanism to satisfy (α, β)-DI.
Section 7 presents a translation from the two parameters α and β we are using in
our model to the DP parameter ε. Section 8 evaluates the utility/privacy trade-
off provided by our model for different kinds of aggregate queries. We discuss
related work in Sect. 9 and conclude the paper in Sect. 10.
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Table 1. List of symbols

D Database to be queried

Ds Database containing records having the sensitive property s

M A privacy preserving mechanism

U The universe of individuals

ι An entity in the universe U

2 Notations and Preliminaries

In our model, we used the set of notations given in Table 1. A dataset D is
generated from the data associated with a subset of entities in U . For all D′,Ds ∈
U , the prior belief that some database D′ is equal to Ds is given by B∅(D′ = Ds).
The posterior belief that some database D′ is equal to Ds after observing the
response τ of a query q is given by Bq,τ (D′ = Ds).

Definition 1 (Adjacent Databases). Two databases D1 and D2 are adjacent
(D1

ι∼ D2) if they differ on the data of a single individual ι.

For sake of simplicity, we will suppose that each individual has only one
record in the database. That is, two adjacent databases differ only in one record.

Definition 2 (Global Sensitivity). Given a query function q : U → R. The
global sensitivity of q is defined as following:

Δq = max
∀D,D′∈U

|q(D) − q(D′)|

where D and D′ are adjacent database and q(D) denotes the result of the execu-
tion of the q over the database D.

3 Problem Statement and Adversary Model

We consider a database D containing a set of information about a set of indi-
viduals in U , and Ds the database containing the set of individuals in D having
a sensitive property s (e.g., the set of individuals having VIH). As in the DP
model, we consider a very strong adversary who knows every single information
in D. That is, we suppose that the adversary knows every attribute value in
D. In addition, we suppose that the adversary knows that Ds is composed of
individuals who have s and that he/she don’t know which individuals in D are in
Ds. Considering that a privacy-preserving data analysis aims to release analysis
results without revealing the identities of the individuals, a privacy breach is
then to allow an adversary to figure out individual’s presence/absence in Ds.

In our model, we suppose that the adversary has an infinite computational
power which will be used to identify the set of individuals in Ds by combining
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the knowledge of D and the results of the queries to be executed over Ds. This
is identical to finding out the set of missing individuals in Ds from D. In our
work, we will consider the worst case in which D and Ds are adjacent databases.
That is, the adversary has to find out only the missing individual in Ds to know
all individuals in Ds. In the remaining of this paper, we will use Ds to represent
a D’s adjacent database where all individual in Ds have a sensitive property s.

4 Adversary Knowledge Modeling

The key to a good privacy model is to correctly quantify how much information
an adversary can deduce about the presence of an individual in the published
data. This heavily depends on the knowledge the adversary possesses about the
individuals in the database. Adversary belief changes each time a result of a query
performed over Ds is observed by the adversary. We use the Bayesian inference
to model an adversary belief change as defined in the following definition.

Definition 3 (Query observation impact on adversary belief). For all
two pairs of adjacent databases D∼D′ and D∼Ds where D,D′,Ds ∈ U , given
a query function q : U → R, a mechanism M , and τ = M(q(Ds)) the result of
the execution of q using M . The adversary belief on D′ = Ds after observing
τ = M(q(Ds)) is defined as:

Bq,τ (D′ = Ds) = Pr
[
D′ = Ds|M(q(Ds)) = τ

]

=
Pr

[
M(q(D′)) = τ

]

Pr
[
(q, τ)

] × Pr
[
D′ = Ds

] (1)

where Pr
[
D′ = Ds

]
denotes the prior belief (B∅(D′ = Ds)) of the adversary on

D = Ds (before observing τ = M(q(Ds))) and Pr
[
(q, τ)

]
denotes the probability

of observing the result τ when the query q is performed.

5 Differential Identifiability: The New Model

Definition 4 ((α, β)-DI).Given a query function q : U → R, a randomized
mechanism M is said to be (α, β)-differentially identifiable if for all two pairs of
adjacent databases D∼D′ and D∼Ds where D,D′,Ds ∈ U :

(1 − α) × B∅(D′ = Ds) ≤ Bq,τ (D′ = Ds) ≤ (1 + β) × B∅(D′ = Ds) (2)

where 0 < α < 1, 0 < β, and τ denotes the result observed by the adversary for
M(q(Ds)).

Informally, the randomized mechanism M is (α, β)-differentially identifiable
means that the ratio of the adversary belief on D′ = Ds before and after observ-
ing M(q(Ds)) = τ is lower and upper bounded respectively by 1 − α and 1 + β.
The identification risks represented by the lower bound 1 − α and the upper
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bound 1 + β are not the same. In the left side of Inequality (2), the value of
α bounds the maximum attacker belief change on identifying the presence of
the individual ι in the database Ds, where D′ ι∼ D. More α is bigger, more
the adversary belief in D′ = Ds will be smaller, and more the adversary belief
in D

ι∼ Ds will be also smaller. In the right side of Inequality (2), the value
of β bounds the maximum belief of an attacker on identifying all the individ-
uals present in the database Ds. More β is bigger more the adversary belief in
D

ι∼ Ds will be bigger.
Most existing privacy frameworks bound only the adversary’s belief on the

presence of one individual in the database. We believe that bounding the adver-
sary’s belief on identifying all individuals in the database is very useful. To
illustrate, let us suppose that the database D contains information about 10
individuals and that the prior adversary’s belief that each individual in D ∩ Ds

is 10−1. Now if we suppose that the data publisher wants to bound the probabil-
ity of identifying the presence of an individual in Ds to 1/5, the adversary can
end up with the following belief: for 9 individual, the probability that each one of
them is in Ds is equal to (10−1−10−6)/9. For the last individual, the probability
that he/she is in Ds is equal to 10−6. Since D and Ds are neighboring database,
the adversary might know all individual in Ds with a probability of 1 − 10−6.

We studied how our definition of DI composes. Given a data consumer (adver-
sary) who access a database multiple times via differentially identifiable mech-
anisms each of which having its own DI guarantees, what level of DI is still
guaranteed on the union of those outputs? In order to formally define compo-
sition, we consider a similar composition scenario as the one proposed in [6]. A
composition experiment considers an adversary A who is trying to break pri-
vacy and figure out whether or not a particular individual is in the database by
analyzing the hypotheses on the output of a sequential and adaptively chosen
queries executed via differentially identifiable mechanisms. That is, we permit
the adversary to have full control over which query to ask, and which differen-
tially identifiable mechanism to be used for each query. In addition, the adversary
is free to make these choices adaptively based on previous queries outcomes.

Theorem 1. Given a set of queries functions Q = {q1, · · · , qn} (∀i ∈ [1, n], qi :
U → R) and a set of n mechanisms M1, · · · ,Mn. Each Mi, i ∈ [1, n], is
(αi, βi)-differentially identifiable. Then for all databases D,Ds, where D∼Ds,
the combination M = (M1(q1(Ds)),M2(q2(Ds)), · · · ,Mn(qn(Ds))) is (αc, βc)-
differentially identifiable where:

αc =
n∑

k=1

(−1)k+1σk(α1, · · · , αn) and βc =
n∑

k=0

(
σk(β1, · · · , βn)

) − 1

with σk denotes the elementary symmetric polynomials.

Proof. Let us suppose that ∀i ∈ [1, n] : Mi(qi(Ds)) = τi and that R = {τi|i ∈
[1, n]}. First, Let us prove by induction that, for all two pairs of adjacent
databases D∼D′ and D∼Ds where D,D′,Ds ∈ U , the belief of the adversary
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on D′ equals to Ds (BQ,K(D′ = Ds)) after the observation of the results of the
set of n arbitrary and adaptively chosen queries Q is bounded as following:

n∏

i=1

(1 − αi) × B∅(D′ = Ds) ≤ BQ,R(D′ = Ds) ≤
n∏

i=1

(1 + βi) × B∅(D′ = Ds)

(3)

By definition (Definition 4), Inequality (3) holds for n = 1. That is, when using
an (α1, β1)-differentially identifiable mechanism M1 to perform q1, based on
Definition 4 we get:

(1 − α1) × B∅(D′ = Ds) ≤ Bq1,r1(D
′ = Ds) ≤ (1 + β1) × B∅(D′ = Ds) (4)

Suppose now that Inequality (3) holds for n = k. Then, by denoting Qk =
{q1, q2, · · · , qk} and Rk = {r1, r2, · · · , rk}, the following inequality holds:

k∏

i=1

(1 − αi) × B∅(D′ = Ds) ≤ BQk,Rk(D′ = Ds) ≤
k∏

i=1

(1 + βi) × B∅(D′ = Ds)

(5)

Let us now prove that the Inequality (3) holds for n = k+1. Since the adversary
will observe the result of the query qk+1 after observing the results of the previous
k queries q1, · · · , qk. The adversary belief on D′ equals to Ds before observing
the output of qk+1 is BQk,Rk(D′ = Ds). By considering the fact that qk+1

is performed using the (αk+1, βk+1)-differential identifiable mechanism Mk+1,
based on Definition 4, we get:

(1 − αk+1) × BQk,Rk(D′ = Ds) ≤ BQk+1,Rk+1(D′ = Ds) ≤ (1 + βk+1)
×BQk,Rk(D′ = Ds)

(6)

Since, 0 < α < 1 and that we supposed that Inequality (5) holds, we can use its
left side to show that:

k+1∏

i=1

(1 − αi) × B∅(D′ = Ds) ≤ (1 − αk+1) × BQk,Rk(D′ = Ds) (7)

Then using the fact that β > 0 together with the right side of Inequality (5), we
get:

(1 + βk+1) × BQk,Rk(D′ = Ds) ≤
k+1∏

i=1

(1 + βi) × B∅(D′ = Ds) (8)

Then based on Inequalities (6), (7), and (8) we get:

k+1∏

i=1

(1 − αi) × B∅(D′ = Ds) ≤ BQk+1,Rk+1(D′ = Ds) ≤
k+1∏

i=1

(1 + βi)

×B∅(D′ = Ds)

(9)
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which prove that Inequality (3) holds for n = k+1, and by induction it holds for
all n ∈ N

∗. Now, based on the fundamental theorem of symmetric polynomials
we have:

n∏

i=1

(1 − αi) = 1 +
n∑

k=1

(−1)kσk(α1, · · · , αn)

= 1 −
n∑

k=1

(−1)k+1σk(α1, · · · , αn)

︸ ︷︷ ︸

αc

and
n∏

i=1

(1 + βi) =
n∑

k=0

σk(β1, · · · , βn)

= 1 +
n∑

k=1

(
σk(β1, · · · , βn)

) − 1

︸ ︷︷ ︸

βc

6 Satisfying Differential Identifiability

Given the above, in this section, we show how to achieve (α, β)-DI. For this, we
first define the identifiability sensitivity of a query as following.

Definition 5 (Query Identifiability Sensitivity). For a given query func-
tion q : U → R, the query identifiability sensitivity of q is

Θq = max
D,D1,D2∈U

∣
∣q(D1) − q(D2)

∣
∣

where D1 and D2 are adjacent to D.

Note that the Identifiability Sensitivity of a query is different than its Global
Sensitivity (Definition 2) used in DP. The Identifiability Sensitivity of a query q
represents, for all two pairs of adjacent databases (D∼D1) and (D∼D2) in U ,
the maximum difference between the outputs that q return when executed over
D1 and D2.

Motivated by the difficulty for a data publisher to know the prior knowledge
of an adversary about each individual in the database, we firstly investigate the
achievement of the (α, β)-DI model without taking into consideration the prior
knowledge of the adversary. The following theorem defines a prior-free Laplace
distribution-based mechanism that achieves (α, β)-DI.

Theorem 2 (Prior-free mechanism). Let Lap(λ) be the Laplace distribution
having a density function h(x) = 1

2λ exp(− |X−μ|
λ ) where λ(> 0) is a scale factor

and μ is a mean. For a given query function q, a randomized mechanism ML
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that returns q(X)+Y as an answer where Y is drawn i.i.d from Lap(λ) satisfies
(α, β)-DI for any λ such that:

λ ≥ max
(

Θq

log(1 + β)
,

−Θq

log(1 − α)

)

Proof. Since ML = q(X) + Y where Y is drawn i.i.d from Lap(λ), then, for all
two pairs of adjacent databases (D∼D1) and (D∼D2) in U , we have:

Pr
[
ML(q(D′

1)) = τ
]

Pr
[
ML(q(D′

2)) = τ
] =

exp(− |τ−q(D′
1)|

λ )

exp(− |τ−q(D′
2)|

λ )

= exp(
|r − q(D′

2)| − |r − q(D′
1)|

λ
)

we deduce then the following inequality:

exp
(

−|q(D′
1) − q(D′

2)|
λ

)
≤ Pr

[
ML(q(D′

1)) = τ
]

Pr
[
ML(q(D′

2)) = τ
] ≤ exp

( |q(D′
1) − q(D′

2)|
λ

)

(10)
Then using Definition 5, we get:

exp
(

−Θq

λ

)
≤ Pr

[
ML(q(D′

1)) = τ
]

Pr
[
ML(q(D′

2)) = τ
] ≤ exp

(
Θq

λ

)
(11)

In other hand, using Definition 3, and for all two pairs of adjacent databases
(D∼D′

i) and (D∼Ds) in U , we have

Bq,τ (D′
i = Ds) =

Pr
[
ML(q(D′

i)) = τ
] × Pr

[
D′

i = Ds
]

∑

D′
j∈D′

Pr[D′
j = Ds] × Pr[ML(q(D′

j)) = τ ]

=
Pr

[
D′

i = Ds
]

Pr
[
D′

i = Ds
]
+

∑

D′
j∈D′,D′

j �=D′
i

Pr[D′
j = Ds] × Pr[ML(q(D′

j))=τ ]

Pr[ML(q(D′
i))=τ ]

Then using Inequality 11 we deduce

Pr
[
D′

i = Ds
]

Pr
[
D′

i = Ds
]
+ exp

(
Θq

λ

) ∑

D′
j∈D′,D′

j �=D′
i

Pr[D′
j = Ds]

≤ Bq,τ (D′
i = Ds)

(12)

And

Bq,τ (D′
i = Ds) ≤ Pr

[
D′

i = Ds
]

Pr
[
D′

i = Ds
]
+ exp

(
−Θq

λ

) ∑

D′
j∈D′,D′

j �=D′
i

Pr[D′
j = Ds] (13)
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Now, based on the fact that
∑

D′
j∈D′,D′

j �=D′
i

Pr[D′
j = Ds] = 1 − Pr[D′

i = Ds],

Inequality (12) can be transformed as

Pr
[
D′

i = Ds
]

Pr
[
D′

i = Ds
]
(

1 − exp
(

Θq

λ

)
+

exp
(

Θq
λ

)

Pr
[
D′

i=Ds
]
) ≤ Bq,τ (D′

i = Ds)

1

1 − exp
(

Θq

λ

)
+

exp
(

Θq
λ

)

Pr
[
D′

i=Ds
]

≤
(14)

Since 1 − exp
(

Θq

λ

)
≤ 0 and by considering Pr[D′

i = Ds] = B∅(D′
i = Ds)

(Definition 3), we obtain

exp
(

−Θq

λ

)
≤ Bq,τ (D′

i = Ds)
B∅(D′

i = Ds)
(15)

We apply the same transformations to Inequality (13) to get

Bq,τ (D′
i = Ds)

B∅(D′
i = Ds)

≤ exp
(

Θq

λ

)
(16)

Using Inequalities (15) and (16) together with Definition 4, ML = q(X) + Y
where Y is drawn i.i.d from Lap(λ) satisfies (α, β)-DI if:

1 − α ≤ exp
(

−Θq

λ

)
and exp

(
Θq

λ

)
≤ 1 + β

Rearranging yields

λ ≥ Θq

log(1 + β)
and λ ≥ −Θq

log(1 − α)

Finally, we obtain the following

λ ≥ max
(

Θq

log(1 + β)
,

−Θq

log(1 − α)

)

The previous theorem uses Laplace distribution to satisfy (α, β)-DI without
taking into consideration the prior knowledge of the adversary about the presence
of each individual in the database Ds. The proposed construction seems to be
useful to satisfy (α, β)-DI in case in which the prior knowledge of the adversary
could not be known in advance. Unfortunately, in practice, it is not possible to
properly instantiate our previous construction, i.e., to find the right values of α
and β that make the model useful for an adversary having arbitrary prior belief.
That is, in one hand, the values of α and β should be non-negligible so that the
model provides an acceptable utility level for the queries that will be performed
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by the adversary over the database. In the other hand, the value of α and β should
not be bigger enough to allow the adversary to be sure about the presence of any
individual in the database. Let us suppose that the adversary is not fully sure
that an individual ι is in the database Ds (i.e., Pr[ι ∈ Ds] < 1). If we consider
only the left-hand side of Inequality (2), for any value of α ∈]0, 1[, our model will
still ensure that the adversary cannot be 100% sure that ι is in Ds. Nevertheless,
the previous construction may allow the adversary to be pretty much sure that
ι is in the database Ds (i.e., for D′ ι∼ D : Bq,τ (D′ = Ds) is very close to zero).
Things are much more difficult for choosing the right value of β. According to
the definition of our model (Definition 4), to prevent the adversary from knowing
with certainty all individuals in the database Ds, the data publisher should
choose a β value such that: B∅(D′ = Ds)× (1+β) < 1. Unfortunately, satisfying
the previous condition becomes not possible if the adversary prior on D′ = Ds

is not taken into consideration.
Seeking to overcome the previous limitation, we define a prior-dependent

Laplace distribution based mechanism for achieving (α, β)-DI. The following
theorem gives a lower bound for the quantity of Laplace noise to be added
to the response of a query q to achieve (α, β)-DI for a given adversary’s prior
distribution P.

Theorem 3 (Prior-dependent mechanism). For all database D ∈ U of size
n(> 1), let D′ be the set of D’s adjacent databases. For a given prior distribution
P, For a given query function q : U → R, a randomized mechanism ML that
returns q(X) + Y as an answer where Y is drawn i.i.d from Lap(λ) satisfies
(α, β)-DI for any λ such that:

λ ≥ Θq × max

(

log
(

1 + Pmin(α − 1)
(1 − α)(1 − Pmin)

)−1

, log
(

(1 + β)(1 − Pmin)
1 − Pmin(1 + β)

)−1
)

were 0 < α < 1, 0 < β < (1/Pmax) − 1, Pmin = min
Dj ,Ds∈D′

Pr[Dj = Ds], and

Pmax = max
Dj ,Ds∈D′

Pr[Dj = Ds].

We note that in the previous theorem, condition β < (1/Pmax)−1 is used to
be sure that for any possible values of α and β, the usage of ML will effectively
prevent the adversary from knowing with certainty the content of the database
Ds ∈ D′. Obviously, Pmax’s value should be lesser than 1. Otherwise, there are
no possible values for α and β that can prevent the adversary from knowing with
certainty the content of the database Ds, since he/she already does.

Proof. To prove the previous theorem, we start by following the same steps as
in the proof of Theorem 2 to get Inequalities (12) and (13). By considering the
fact that

∑

D′
j∈D′,D′

j �=D′
i

Pr[D′
j = Ds] = 1−Pr[D′

i = Ds], we transform Inequality

(13) to get Inequality (14) which will be transformed as following:

1

Pr
[
D′

i = Ds
]
+ exp

(
Θq

λ

)
(1 − Pr

[
D′

i = Ds
]
)

≤ Bq,τ (D′
i = Ds)

B∅(D′
i = Ds) (17)
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Since Pmin ≤ Pr
[
D′

i = Ds
] ≤ Pmax, we have:

1

Pmin

(
1 − exp

(
Θq

λ

))
+ exp

(
Θq

λ

) ≤ 1

Pr
[
D′

i = Ds
]
+ exp

(
Θq

λ

)
(1 − Pr

[
D′

i = Ds
]
)

(18)
Using Inequalities (17) and (18) together with Definition 4, ML satisfies (α, β)-DI
if:

1 − α ≤ 1

Pmin

(
1 − exp

(
Θq

λ

))
+ exp

(
Θq

λ

)

Since Pmin ≤ 1/n, we have: 1 + Pmin(α − 1) > 0 . Then, rearranging yields

λ ≥ Θq log
(

1 + Pmin(α − 1)
(1 − α)(1 − Pmin)

)−1

(19)

On the other hand, by considering the fact that
∑

D′
j∈D′,D′

j �=D′
i

Pr[D′
j = Ds] =

1 − Pr[D′
i = Ds], we transform Inequality (13) to get

Bq,τ (D′
i = Ds)

B∅(D′
i = Ds)

≤ 1

Pr
[
D′

i = Ds
]
+ exp

(−Θq

λ

)
(1 − Pr

[
D′

i = Ds
]
)

(20)

Then, considering the fact that Pmin ≤ Pr
[
D′

i = Ds
] ≤ Pmin, we have:

1

Pr
[
di = ds

]
+ exp

(−Θq

λ

)
(1 − Pr

[
di = ds

]
)

≤ 1

Pmin

(
1 − exp

(−Θq

λ

))
+ exp

(−Θq

λ

)

(21)
Using Inequalities (20) and (21) together with Definition 4, ML satisfies (α, β)-DI
if:

1

Pmin

(
1 − exp

(−Θq

λ

))
+ exp

(−Θq

λ

) ≤ 1 + β (22)

Since Pmin ≤ 1/n, for all n > 1, we have: 1−Pmin(1+β) > 0 . Then, rearranging
yields

λ ≥ Θq log
(

(1 + β)(1 − Pmin)
1 − Pmin(1 + β)

)−1

(23)

Finally, based on Inequalities (19) and (23), we have:

λ ≥ Θq × max

(

log
(

1 + Pmin(α − 1)
(1 − α)(1 − Pmin)

)−1

, log
(

(1 + β)(1 − Pmin)
1 − Pmin(1 + β)

)−1
)

In contrast to the original Differential Identifiability model propose in [9]
which assumes that the prior probability of an individual being in Ds is the
same for all individuals, our previous construction defines a Laplace distribution-
based mechanism that provides an (α, β)-differentially identifiable outputs for
any arbitrary prior distribution.



Linking Differential Identifiability with Differential Privacy 243

7 Linking Differential Identifiability and Differential
Privacy

In this section, we establish a fundamental connection between DP model and
our DI model by showing that the parameter ε used in the DP model can be
directly translated to the parameters α and β used in our DI model.

Theorem 4. Let ML be a mechanisms that satisfies (α, β)-DI for a given query
q : U → R by returning q(X) + Y where Y is drawn i.i.d from Lap(λ). ML

satisfies ε-DP where

ε =
Δq

Θq
× max

(

log
(

1 + Pmin(α − 1)
(1 − α)(1 − Pmin)

)−1

, log
(

(1 + β)(1 − Pmin)
1 − Pmin(1 + β)

)−1
)−1

(24)

Proof. Since ML satisfies (α, β)-DI, then using Theorem 3 we have:

λ = Θq × max

(

log
(

1 + Pmin(α − 1)
(1 − α)(1 − Pmin)

)−1

, log
(

(1 + β)(1 − Pmin)
1 − Pmin(1 + β)

)−1
)

(25)

In other hand, based on Differential Privacy’s Laplace mechanism definition [5],
we know that ML satisfies ε-DP when

λ =
Δq

ε
(26)

Finally using Eqs. (25) and (26), we get (24).

Choosing the appropriate value of ε is continuing to be an open problem in
DP. The connection we created between ε-DP and (α, β)-DI models in Theorem 4
will allow to choose the appropriate ε value given the risk of identifying the
presence of an individual in the database specified by α and β.

8 Evaluation

We now evaluate the applicability of our model. For this, we use the Adult
Database from the UCI Machine Learning Repository [1] as U (the universe of
individuals). The database contains information about 32562 individuals col-
lected from the 1994 U.S. Census. The information about each individual is
provided through 9 categorical and 5 numerical attributes. In this evaluation,
we consider only numerical attributes. In order to evaluate the applicability of
our model, we quantify, for several aggregate queries (e.g., sum, average, max,
min, etc.), the error ratio caused by the usage our prior-dependent mechanism
(Theorem 3) when the values of α and β are varied. Since, it is not possible to
graphically illustrate the variation of the error ratio in function of more than two
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variables (i.e., α, β, and P), for the prior distribution P, we will consider two main
cases. First, we will consider a very weak adversary Aw. That is, he/she does not
have any information about the individuals in the database Ds ∈ U (uniform
prior distribution: Pmin = Pmax = 1/32562). Second, we will consider a strong
adversary As which have significant prior information about the presence of a
subset of individuals in Ds. More precisely, we will suppose that As knows with
certainty that some individuals are in Ds. This means that Pmin = 0 since for
certain database D′ ∈ U we have BAs

∅ [D′ = Ds] = 0. Moreover, we suppose that,
before interacting with the database, As’s best confidence on the set of identities
present in the database cannot be larger than 1/10. Formally, this means that
Pmax = 1/10 since there exists D′ ∈ U such that BAs

∅ [D′ = Ds] = 1/10.

Table 2. Used aggregate queries and their identifiability sensitivity

Attribute Query Identifiability sensitivity (Θ)

Age Average 27 × 10−4

Capital-gain Min 114

Capital-loss Max 445

Hours-per-week Sum 99

Table 2 shows the set of aggregate queries that we used in the evaluation of
our model. For each query, we give the attribute over which it is executed and its
corresponding identifiability sensitivity value. We note that counting queries are
not considered in this evaluation since by definition, they have an identifiability
sensitivity equal to zero which means that revealing the exact result of a counting
query performed over the database Ds will not disclose any information to the
adversary about the content of the database Ds.

Figure 1 illustrates the error ratio included in the differentially identifiable
result of each query when the parameters α and β are varied and when the weak
adversary Aw is considered. The different plots show, first, that the smaller the
values of α and β (i.e., the higher the desired privacy), more noise are included
in the response. Second, according to Figs. 1(a) and (d), our model provides a
very good compromise between privacy and query response precision. For exam-
ple, for the Sum(hours per week) query (Fig. 1(d)), our (α, β)-DI construction
reduces the error rate to 9 × 10−3 for α = β = 8 × 10−3. Third, although
the high identifiability sensitivity of the queries Min(capital-gain) (Fig. 1(b))
and Max(capital-loss) (Fig. 1(c)), our (α, β)-DI construction provides an accept-
able compromise between privacy and query response precision. As an example,
our model provides an (0.5, 1)-differentially identifiable answer for the query
Max(capital loss) (Fig. 1(c)) with an error rate of 0.1.

When considering the strong adversary As (Fig. 2), our construction still
provides a very close privacy/utility trade-off compared to the one pro-
vided when the weak adversary Aw is considered, except for the query
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(a) AVG(age) (b) Min(capital gain) (c) Max(capital loss)

(d) Sum(hours per week)

Fig. 1. Noise ratio for the adversary Aw

(a) AVG(age) (b) Min(capital gain) (c) Max(capital loss)

(d) Sum(hours per week)

Fig. 2. Noise ratio for the adversary As

Min(capital gain) (Fig. 2(b)). For this query, our construction provides answers
with little bit more noise compared to answers provided when the weak adver-
sary Aw is considered (Fig. 1(b)). This mainly caused by the reduced range of
β’s values (i.e., α should be less that 9 according to Theorem 3) that can be used
without letting As be 100% sure about the content of the database Ds.

9 Related Work

Several privacy definitions have been proposed in last two decades. The most
sticking out ones are k-anonymity [14], l-diversity [13], and t-closeness [10].
Dwork pointed out their weaknesses in [4] and argues that privacy problems
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should be considered in a more formal way. Following this reflexion, the notion
of DP was proposed in [3] and several approaches for satisfying it were developed
to support low sensitive queries such as counting, mean, and median queries.
Several relaxations of the original DP model have been proposed in order to
make DP more efficient for high sensitive queries. (ε, δ)-DP was proposed in [5]
by introducing new parameter δ that will be used to upper bound the probability
that ε-DP is not satisfied. Generic DP is a generalization of the DP model
proposed in [7]. It allows more flexible definitions for neighboring databases and
conditions that the model should satisfy.

In [8], authors showed that for DP, it is not possible to ensure an acceptable
privacy/utility compromise without making assumptions about the manner with
which the data are generated. In this paper, we provide similar result by showing
no possible acceptable privacy/utility compromise can be provided for our DI
model without making assumptions about the adversary prior knowledge.

Cormode showed in [2] that DP is not useful for preventing inferential dis-
closure by demonstrating that one can use differentially private outputs to infer
sensitive information with non-trivial accuracy. Lee and Clifton [9] argued that
the parameter ε used in DP limits only how much one individual can affect the
resulting model. It cannot be used to limit how much information is revealed
about an individual. They then propose ρ-DI which captures membership dis-
closure under very specific adversarial background knowledge that we believe
seldom satisfied in the real environments. Machanavajjhala et al. [12] proposed
a model called ε-privacy aiming to limit the impact that one entity can have on
the belief of the adversary. Unfortunately ε-privacy does not support interactive
and adaptive data querying. Membership Privacy [11] proposed a model that
uses Bayesian inference to bound the probability of identifying an individual in
the database. However, the proposed model fails to bound the probability that
an adversary figure out the set of individuals in a database.

10 Conclusion

This paper presents the new differential identifiability model allowing to bound
the quantity of disclosed information about the presence of an individual in a
database while considering an adversary with arbitrary prior knowledge. We
showed that our proposed model can be satisfied using the general Laplace noise
addition mechanism used traditionally in differential privacy. We proved that
there is a direct connection between our (α, β)-differential identifiability and ε-
differential privacy, and we showed through a set of experimentations that our
model provides a good privacy/utility trade-off for most aggregate queries.



Linking Differential Identifiability with Differential Privacy 247

References

1. UCI machine learning repository. https://archive.ics.uci.edu/ml/index.php.
Accessed 10 Apr 2018

2. Cormode, G.: Personal privacy vs population privacy: Learning to attack
anonymization. In: Proceedings of the 17th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD 2011, pp. 1253–1261. ACM,
New York (2011). https://doi.org/10.1145/2020408.2020598

3. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

4. Dwork, C.: An ad omnia approach to defining and achieving private data analysis.
In: Bonchi, F., Ferrari, E., Malin, B., Saygin, Y. (eds.) PInKDD 2007. LNCS, vol.
4890, pp. 1–13. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78478-4 1

5. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 14

6. Dwork, C., Rothblum, G.N., Vadhan, S.: Boosting and differential privacy. In: 2010
51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp.
51–60. IEEE (2010)

7. Kifer, D., Lin, B.R.: Towards an axiomatization of statistical privacy and utility. In:
Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, pp. 147–158. ACM (2010)

8. Kifer, D., Machanavajjhala, A.: No free lunch in data privacy. In: Proceedings
of the 2011 ACM SIGMOD International Conference on Management of Data,
SIGMOD 2011, pp. 193–204. ACM, New York (2011). https://doi.org/10.1145/
1989323.1989345

9. Lee, J., Clifton, C.: Differential identifiability. In: Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 2012, pp. 1041–1049. ACM, New York (2012). https://doi.org/10.1145/
2339530.2339695

10. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity
and l-diversity. In: IEEE 23rd International Conference on Data Engineering, ICDE
2007, pp. 106–115. IEEE (2007)

11. Li, N., Qardaji, W., Su, D., Wu, Y., Yang, W.: Membership privacy: a unifying
framework for privacy definitions. In: Proceedings of the 2013 ACM SIGSAC Con-
ference on Computer & #38; Communications Security, CCS 2013, pp. 889–900.
ACM, New York (2013). https://doi.org/10.1145/2508859.2516686
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