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Abstract. With the emerging techniques of wireless communication
and cloud computing, large volumes of multimedia data are outsourced
from resource constrained users to the cloud with abundant resource for
both delegated storage and computation. Unfortunately, there is a risk
of users’ image privacy leakage in the process of outsourcing to untrusted
cloud. Most of the existing work achieved privacy-preserving image fea-
ture extraction and matching by using public key (fully) homomorphic
encryption (FHE), but the heavy computational overhead and commu-
nication overhead cannot adapt to resource-constrained mobile devices.
Other works disabled to realize image denoising in the encrypted domain
or only focused on the scale-invariant feature transform (SIFT) descrip-
tor that is inappropriate for position-sensitive feature extraction. To
address these issues, in this paper, a privacy-preserving shape context
based image denoising and matching protocol PPOIM with efficient out-
sourcing is proposed. Firstly, to improve the accuracy of image matching,
a privacy-preserving image denoising scheme PPID is proposed without
exploiting public key FHE. Then, based on PPID, a privacy-preserving
image matching protocol PPOIM adopting shape context descriptor is
devised, where two secure and efficient comparison and counting pro-
tocols in the encrypted domain are presented. All the original image
privacy, query image privacy and image matching result privacy are well
protected. Finally, formal security proof and extensive simulations on
real-world data sets demonstrate the efficiency and practicability of our
proposed PPOIM.

Keywords: Image matching · Privacy-preserving
Shape context descriptor · Secure outsourced computation

1 Introduction

With the development of big data and social network like Flickr or Facebook,
huge amounts of personal users’ multimedia data are delegated to the cloud
from the resource-constrained mobile devices for both outsourced storage and
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outsourced computation with expensive complexity. Among types of image pro-
cessing, image matching have played an increasingly important role in our every-
day life. The widely adopted technique of content-based image match means that
the cloud returns the boolean match result between images and the user’s queried
one with similar features such as color, shape and texture that are extracted
by exploiting scale-invariant feature transform (SIFT) descriptor, shape context
(SC) descriptor, etc. Taking medical image for example, the physicians can judge
the aging degree of the elderly persons, by matching their medical image (i.e.
X-ray film) with the pattern images signaling different levels of aging, adopting
the extracted features such as the step length and the angle with which the
elderly’s limbs can be lifted.

Unfortunately, the cloud server either works under the semi-honest model or
malicious model, where the cloud either strictly carries out the protocol speci-
fications but intending to extract the private information from the interactions
with users, or performs arbitrarily to destruct the protocol execution. Therefore,
it would disclose the private health condition of the elderly persons by delegat-
ing the medical images in their plaintext to the cloud for feature extraction and
matching. How to devise an efficient privacy preserving image feature extraction
and matching protocol becomes a critical issue for convincing solutions.

Recently, a series of research has focused on the field of privacy-preserving
image feature extraction and matching [1–3,6–8,12,13,16–19,21,23–25]. Hsu et
al. [4] studied privacy-preserving outsourced feature extraction in the encrypted
domain, by using Paillier’s additive homomorphic encryption. Unfortunately,
their protocol is either computationally-intensive or risks the privacy leakage of
the original image. To address the issues, Hu et al. [5] devised a secure outsourc-
ing computation of feature extraction over encrypted image data, by splitting
the original image and designing privacy-preserving multiplication and compar-
ison protocols executed by two non-colluded servers, by exploiting Brakerski et
al.’s somewhat homomorphic encryption [15]. However, the level of fully homo-
morphism respectively proposed in [14] and [15] is restricted and the cipher-
text expansion would increase every time a ciphertext multiplication is required.
Thus the heavy computational and communication overhead in both [4] and [5]
is intolerable by resource-constrained devices. J. Zhou et al. [12] proposed an
efficient privacy-preserving image feature extraction protocol, however all the
above [4,5,12] adopted SIFT descriptor, which is only appropriate for search-
ing images with a transforming rotation, scaling, and translation, but cannot
be applied to the scenario of image matching adopting the features as rela-
tive positions between pixels, as is suggested in the example for judging the
aging level of the elderly. Belongie et al. [8] presented an approach to measure
similarity between shapes for object recognition based on shape context based
descriptor. However, the issue of image privacy-preserving was not considered.
In [6], Wang et al. studied privacy-preserving shape-based feature extraction by
exploiting the techniques of homomorphic encryption and the garbled circuit
protocol, respectively. The high computational complexity can still not adapt to
resource-constrained users.
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On the other hand, image noise may be introduced under different condi-
tions from intrinsic sensors or extrinsic environments, which are often difficult
to avoid in practice and significantly affect the accuracy of image matching.
Zheng et al. [9] proposed a privacy-preserving image denoising protocol from
external cloud databases by using secure similarity search, Yao’s garbled cir-
cuits and image denoising operations, to ensure that similar patches with high
quality are precisely obtained after encrypted similarity search. Unfortunately,
the denoising operations were completed in the plaintext domain without con-
sidering image privacy protection. To address the issues mentioned above, in this
paper, a privacy-preserving shape context based image denoising and matching
protocol PPOIM with efficient outsourcing is proposed. The main contributions
are summarized as follows.

Firstly, a privacy-preserving image denoising protocol PPID is proposed in
the encrypted domain, by devising a lightweight secure outsourced computation
without public key fully homomorphic encryption (FHE).

Secondly, based on the proposed PPID, we present an efficient privacy-
preserving image matching scheme PPOIM based on shape context descriptor.
Especially, two efficient comparison and counting protocols in the encrypted
domain are carefully designed. Both the original image privacy and the matching
result privacy are well protected, and only the authorized user can successfully
decipher the final matching result.

Finally, formal security proof and extensive evaluations demonstrate the effi-
ciency and practicability of our PPOIM. Both the computational cost and com-
munication cost are dramatically reduced, compared to the state-of-the-art using
public key FHE.

The remainder of this paper is organized as follows. We present the net-
work architecture and the security model in Sect. 2. Then the privacy-preserving
image denoising protocol PPID and the privacy-preserving shape context based
image matching protocol are proposed in Sect. 3. Formal security proof and per-
formance evaluations are respectively presented in Sects. 4 and 5. Finally, we
conclude our paper in Sect. 6.

2 Network Architecture and Security Model

2.1 Network Architecture

The network model of privacy-preserving shape context based image denois-
ing and matching mainly comprises three entities: the data owner, the user
and the cloud, which are demonstrated in Fig. 1. The main procedure of our
proposed PPOIM are described as follows, (1) The data owner outsources an
encrypted database of image patches to the cloud for generating high quality
similar patches; (2) The user sponsors an image search token request to the
data owner; (3) The data owner performs the search token authorization to the
user if her/his image query is permitted; (4) The user uploads the encrypted
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query image together with the search token to the cloud; (5) The cloud per-
forms privacy-preserving image denoising and matching by adopting shape con-
text based descriptor and calculating the matching cost in the encrypted domain;
(6) The cloud returns all encrypted matching results to the user for decrypting,
if the matching cost is smaller than the cost threshold set by the user, two images
are considered to be matched each other.

Fig. 1. Network architecture of privacy-preserving image denoising and matching

2.2 Security Model

We formally define the image privacy and the matching result privacy for our
proposed PPOIM. The cloud is assumed to be honest-but-curious, which strictly
executes the protocol specification but tries its best to extract the private infor-
mation from the interactions among data owner, user and itself. Image privacy
refers to that the data owner’s database images cannot be accessed by the col-
lusion between the cloud and malicious users and the user’s query image cannot
be disclosed to the collusion of the cloud and malicious owners. The matching
result privacy means that whether the query image matches the database image
can only be accessed by the authorized users. The formal security models of
these three types of privacy are detailed in the full paper.

3 The Proposed PPOIM

In this section, a privacy-preserving shape context based image denoising and
matching protocol PPOIM with efficient outsourcing is proposed, which is com-
posed of three phases, namely the setup phase generating the required param-
eters, the privacy-preserving image denoising phase PPID, and the privacy-
preserving image matching phase PPOIM where the final matching result can
be decrypted by the authorized user.
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3.1 Setup Phase

On input 1λ where λ is the security parameter, the system runs a trapdoor
permutation generator denoted as a probabilistically polynomial time (PPT)
algorithm G(1λ) and outputs a tuple of permutations (f, f−1) on {0, 1}2λ with
a pair of corresponding keys (PKf , SKf ). It also outputs two hash functions
H0, H1 : {0, 1}∗ → {0, 1}2λ and a cluster of locality-sensitive hash (LSH)
functions hi : {0, 1}∗ → {0, 1}λ(i = 1, 2, · · · , l). The public parameters are
PPR = (PKf ,H0,H1, hi(i = 1, 2, · · · , l)) and the secret key is SKf assigned
to the user. Besides, suppose there is a secure symmetric encryption scheme
SE = (SE.Setup, SE.KGen, SE.E, SE.D) with a secret key K = (Kg,Kp)
shared between the data owner and the user, and F : {0, 1}λ ×{0, 1}∗ → {0, 1}λ

is a pseudorandom function (PRF).

3.2 The Proposed Privacy-Preserving Image Denoising Protocol
PPID

In this subsection, an efficient privacy-preserving image denoising protocol PPID
is presented, which is composed of four algorithms: IndexGen performed on
the data owner side, encrypting patch databases with their corresponding secure
indexes by exploiting locality-sensitive hashing (LSH) and symmetric encrytpion
(SE), and uploading the encrypted database images to the cloud; Request exe-
cuted on the user side, generating a secure query search token, and transmitting
the search token and encrypted query patch to the cloud; Search run on the
cloud side, ranking all candidate patches and filtering the false positive candi-
dates for denoising operation; and Denoising carried out on the cloud side,
recovering the clean encrypted patch.

(1) {[P],D} ← IndexGen(K, PKf ,P). It takes as input the secret key K =
(Kg,Kp), the public key PKf for patch encryption and the patch set
P = {p1,p2, · · · ,pN}, where N is the total number of database patches,
and returns {[P],D}, where [P] = {[p1], [p2], · · · , [pN ]} and D refer to the
ciphertexts of database images and a generic dictionary.

Let pi,t = (ρi,t, θi,t)(i = 1, 2, · · · , N ; t = 1, 2, · · · , n) be the polar coordinate
of the t-th pixel in database patch pi, and pi = {pi,t}n

t=1 = {(ρi,t, θi,t)}n
t=1. The

ciphertexts of database images [P] = {[pi]}(i = 1, 2, · · · , N) are encrypted as
follows. For brief description, we only detailed the process for encrypting ρi,t, and
θi,t can be encrypted in the same way. The image data owner randomly chooses
three big primes p, q, h of |p| = |q| = |h| = λ which are kept secret, and computes
the publicized N” = pq, N

′
= pqh. The message space of ρi,t is on ZN” as a

hidden subgroup of ZN ′ . Then, the owner computes ρi,t,p ≡ ρi,t mod p, ρi,t,q ≡
ρi,t mod q. She/he also randomly selects Ki,t ∈R Zh, and computes the additive
blinding factor Uadd

i,t = Ki,tN
” ∈R ZN ′ and the multiplicative blinding factor

Umul
i,t = Ki,tN

” + 1 ∈R ZN ′ (i = 1, 2, · · · , N ; t = 1, 2, · · · , n) such that the final
image matching results in our proposed PPOIM can be correctly obtained in the



220 M. Zheng et al.

decryption phase ImgDec by calling the algorithm PPOIM.Dec(·) where all
the additive and multiplicative blinding factors Uadd

i,t , Umul
i,t can be cancelled out

after modular N”. Since we have 1 ≡ q−1q mod p, 1 ≡ p−1p mod q, the data
owner calculates the ciphertexts as follows,

C1,1 = fPKf
(p ‖h),

C2,ρi,t
= q−1qρp

i,t,p + p−1pρq
i,t,q + Uadd

i,t mod N ′,
C3,ρi,t

= (q−1qρp
i,t,p + p−1pρq

i,t,q)U
mul
i,t mod N ′.

(1)

where ‖ means the concatenation operation, and q−1, p−1 respectively denote
the inverses of q and p in Z

∗
p and Z

∗
q . Finally, the data owner computes Cadd

ram,ρ =
H0(p ‖h ‖ ⋃N,n

i=1,t=1 C2,ρi,t
), Cmul

ram,ρ = H0(p ‖h ‖ ⋃N,n
i=1,t=1 C3,ρi,t

), and denotes
[ρi,t] = (C2,ρi,t

, C3,ρi,t
). Note that [θi,t] = (C2,θi,t

, C3,θi,t
) can be computed in the

same way. We have [pi,t] = ([ρi,t], [θi,t]) and the ciphertexts of database images
[P] = ({[pi,t](i = 1, 2, · · · , N ; t = 1, 2, · · · , n)}, Cadd

ram,ρ, Cmul
ram,ρ, C

add
ram,θ, C

mul
ram,θ).

We denote the encryption algorithm to generate ciphertexts of database images
[P] as PPOIM.Enc(·) which would also be exploited in the following phases
of our proposed PPID. Then, the data owner initializes a dictionary D and the
LSH value set G as two empty sets. For each patch pi in patch set P, the data
owner computes LSH values with l LSH functions h1(·), h2(·), · · · , hl(·),

gi = (h1(pi) ‖ 1, · · · , hl(pi) ‖ l), (2)

where vector gi is the i-th element in G, gi,j = hj(pi) ‖ j(j = 1, 2, · · · , l) is the
j-th element in vector gi. Then, for each gi,j in gi ∈ G, the owner generates

K1,i,j = F (Kg, 1 ‖ gi,j),K2,i,j = F (Kg, 2 ‖ gi,j). (3)

The data owner initializes a counter ctr = 0. For each gi,j , if there exists any
gk,j = gi,j(k ∈ {1, 2, · · · , N}), then it considers pk is associated with gi,j and
ctr ← ctr + 1. The data owner computes tag ui,j by applying pseudorandom
function F and encrypts the corresponding patch sub-identifier idk,j using the
symmetric encryption scheme SE as follows,

ui,j = F (K1,i,j , ctr), vi,j = SE.E(K2,i,j , idk,j), (4)

where idk = idk,1 ‖ idk,2 ‖ · · · ‖ idk,l is the unique identifier of a database patch
pk and idk,j(j = 1, 2, · · · , l) is the sub-identifier of hj(pk) ‖ j in gk. Then, the
tag-ciphertext pair (ui,j , vi,j) is inserted to a generic dictionary D. Finally, the
data owner sends ([P],D) to the cloud server.

(2) {Q, [q], [t”], [T ]} ← Request(K, PKf ,q, t”, T ). When a user wants to
request the database, she/he firstly need to obtain the token authorization
from the data owner by receiving C1,1 = fPKf

(p ‖h). Then, she/he decrypts
p ‖h = f−1

SKf
(C1,1) by using secret key SKf and computes q = N

′
(ph)−1.

After that, the user generates the ciphertext [q] and a secure search token
Q for the query patch q as follows. The user firstly hashes q into a vector
of l LSH values

g = {h1(q) ‖ 1, · · · , hl(q) ‖ l}, (5)
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where gj = hj(q) ‖ j (j = 1, 2, · · · , l) is the j-th element of the g. For each LSH
value gj , a sub-token Qj = (K1,j ,K2,j) is generated via

K1,j ← F (Kg, 1 ‖ gj),K2,j ← F (Kg, 2 ‖ gj). (6)

The resulting secure search token Q = {Q1,Q2, · · · ,Ql}. On the other
hand, the user randomly selects Kt ∈R Zh, and computes Uadd

t = KtN
”,

Umul
t = KtN

” + 1 ∈RZN ′(t = 1, 2, · · · , n − 1) such that the final match-
ing result would be successfully decrypted after modulo N”. Then the user
encrypts patches qt ∈ q(t = 1, 2, · · · , n) with PPOIM.Enc(·) to generate the
ciphertexts [qt] = ([ρt], [θt]). Thus, [ρt] = (C2,ρt

, C3,ρt
), [θt] = (C2,θt

, C3,θt
),

[q] = {[ρt], [θt], C
′,add
ram,ρ, C

′,mul
ram,ρ, C

′,add
ram,θ, C

′,mul
ram,θ}. In addition, the user chooses

two thresholds t”, T respectively for obtaining the candidate patches for denois-
ing and for matching cost comparison to derive the final image matching result,
encrypts them into [t”], [T ] by exploiting algorithm PPOIM.Enc(·). Finally, the
user sends (Q, [q], [t”], [T ]) to the cloud.

(3) {S∗,H} ← Search(Q, [q], [t”], [P],D). For each sub-token Qj in Q, the
cloud re-computes the pseudorandom tag uj = F (K1,j , ctr), where ctr
is a self-incremental counter and initialized as 0. Let fidi

be an occur-
rence counter initialized as 0. The cloud searches the generic dictionary
D according to the pseudorandom tag uj to locate the associated vi,j(j ∈
{1, 2, · · · , l}). If uj = ui,j(j ∈ {1, 2, · · · , l}), it decrypts the correspond-
ing patch identifier idk,j = SE.D(K2,j , vi,j) via K2,j , and increases fidi

←
fidi

+ 1. Then, the cloud ranks the candidates pi based on the occurrence
counter fidi

, and derives an initial set S∗ of candidate patches.

However, LSH is an approximation algorithm that trades accuracy for effi-
ciency, which usually locates a large number of candidates with false pos-
itives introduced. Thus, to filter the false positive candidates, the cloud
computes distance between candidate pi in S∗ and query image q. For
each encrypted candidates patch [pi] = {[pi,t]} = {([ρi,t], [θi,t])} =
{((C2,ρi,t

, C3,ρi,t
), (C2,θi,t

, C3,θi,t
))}(t = 1, 2, · · · , n) and the encrypted query

patch [q] = {[qt]} = {([ρt], [θt])} = {((C2,ρt
, C3,ρt

), (C2,θt
, C3,θt

))}(t =
1, 2, · · · , n), the cloud computes the squared distance between [pi] and [q] in
the encrypted domain to securely refine the ranking for each candidate in S∗.

d2([pi], [q]) =
∑n

t=1(C
2
3,ρi,t

+ C2
3,ρt

) − 2
∑n

t=1[C3,ρi,t
C3,ρt

cos(C2,θi,t
− C2,θt

)],
(7)

where the cosine function is approximated by aggregating the first t′ items in its
power series expansion as cos x = 1− x2

2! +
x4

4! +· · · (−1)t′ x2t′

(2t′)! (i.e. In performance
evaluation, we would study the impact of different t′ on the accuracy of image
matching result and the efficiency of our proposed PPOIM.)

Then the cloud compares the squared distance d2([pi], [q]) with threshold
[t”] in the encrypted domain. Let the binary representations of t” and d2(pi,q)



222 M. Zheng et al.

be t” = mn−1mn−2 · · · m0 and d2(pi,q) = m′
n−1m

′
n−2 · · · m′

0. Owing to the fully
homomorphic property of algorithm PPOIM.Enc(·), we denote

[t”] = PPOIM.Enc(mn−1)PPOIM.Enc(2n−1) + PPOIM.Enc(mn−2)
PPOIM.Enc(2n−2) + · · · + PPOIM.Enc(m0)PPOIM.Enc(1),
d2([pi], [q]) = PPOIM.Enc(m′

n−1)PPOIM.Enc(2n−1) + PPOIM.Enc
(m′

n−2)PPOIM.Enc(2n−2) + · · · + PPOIM.Enc(m0
′)PPOIM.Enc(1).

(8)

Then by exploiting the method of successive division with PPOIM.Enc(2)
that can also be executed and uploaded by the user in the previ-
ous Request algorithm, the cloud can derive the binary encryption of
[t”] = PPOIM.Enc(mn−1)PPOIM.Enc(mn−2) · · ·PPOIM.Enc(m0) =
me

n−1m
e
n−2 · · · me

0 and d2([pi], [q]) = PPOIM.Enc(m′
n−1)PPOIM.Enc

(m′
n−2) · · ·PPOIM. Enc(m′

0) = m′e
n−1m

′e
n−2 · · · m′e

0 . For binary representations,
we have the following observation for i = 0, 1, · · · , n − 1,

mi > m′
i if and only if mim

′
i + mi = 1,

mi = m′
i if and only if mi + m′

i + 1 = 1,
mi < m′

i if and only if mim
′
i + mi + 1 = 1. (9)

Therefore, according to the property of full homomorphism of PPOIM.Enc(·),
the cloud can evaluate Eq. (9) in the encrypted domain. To compare t” and
d2(pi,q), the binary chop method is adopted. Specifically for l =

⌈
n
2

⌉
,we have

mn−1 · · · ml
︸ ︷︷ ︸

hbs(t”)

ml−1 · · · m0
︸ ︷︷ ︸

lbs(t”)

> m′
n−1 · · · m′

l
︸ ︷︷ ︸
hbs(d2(pi,q))

m′
l−1 · · · m′

0
︸ ︷︷ ︸
lbs(d2(pi,q))

(10)

if and only if (hbs(t”) > hbs(d2(pi,q))) ∨ (hbs(t”) = hbs(d2(pi,q))) ∧ (lbs(t”) >
lbs(d2(pi,q))), where hbs(x), lbs(x) respectively refer to the higher binary
sequence and the lower binary sequence of x. To recursively performing the
comparison until deriving the final output, it is also required to define the fol-
lowing three variations hi,j ,ei,j and li,j , respectively referring to the boolean
logic values for the conditions mi+j−1 · · · mi > m′

i+j−1 · · · m′
i, mi+j−1 · · · mi =

m′
i+j−1 · · · m′

i, mi+j−1 · · · mi ≥ m′
i+j−1 · · · m′

i. It is obviously observed that
h0,n, e0,n, l0,n will be the final result. For each time, by selecting l =

⌈
j
2

⌉
and

combining Eqs. (9) and (10), we have

(1)If j = 1, hi,j = mim
′
i + mi , Else hi,j = hi+l,j−1 + ei+l,j−lti,l;

(2)If j = 1, ei,j = mi + m′
i , Else ei,j = ei+l,j−1ei,j ;

(3)If j = 1, li,j = mim
′
i + mi + 1 , Else li,j = ti+l,j−1 + ei+l,j−lli,l.

(11)

By comparing the threshold for denoising [t”] with each d2([pi], [q]) corre-
sponding to each candidate pi in S∗, all the encrypted comparing results
H = {[h0,n]i}(i = 1, 2, · · · , N) can be computed according to Eq. (11).
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(4) ˆ[q] ← Denoising([q], S∗,H) Collecting the encrypted database patch can-
didates in S∗, the cloud performs privacy-preserving image deniosing by
exploiting the classical technique of non-local means (NLM) [10], [11],
in which a weighted average computation in the encrypted domain is
adopted. Given a noisy patch [q] and a set of ranked patches S∗ =
{[p1], [p2], · · · , [pN ]}, the clean patch ˆ[q] is estimated as the weighted aver-
age of all ranked patches, the detailed process is described as follows.

To compute the normalizing factor [Z], we define h as a filtering parameter
depending on the standard deviation σ of the zero-mean Gaussian noise. Next,
the cloud calculates [Z] =

∑N
i=1 e′, where

e′ = e−d2([pi],[q])h
−2

=
∑t′

i′=0 (−1)i′ (d2([pi],[q])h
−2)i′

i′!
(12)

The index function ex is approximated by aggregation the first t
′

items in its
power series expansion as ex = 1 + x + x2

2! + x3

3! + · · · + xt′

t′! (i.e. In performance
evaluation, we would study the impact of different t′ on the accuracy of image
matching result and the efficiency of our proposed PPOIM) and the h−1 is the
inverse of h. Next, the cloud calculates the weight ω([q], [pi]) = [Z]−1e′, where
[Z]−1 is the inverse of [Z]. Finally, the clean patch ˆ[q] is estimated as the weighted
average of all encrypted ranked patches,

ˆ[q] =
∑N

i=1 ω([q], [pi])[pi][h0,n]i =
∑N

i=1[Z]−1e′[pi][h0,n]i. (13)

If the full query image Iq is composed of several patches, then for each patch,
the cloud adopts the same denoising method as is explained above to process
patch [q].

3.3 The Proposed Privacy-Preserving Image Matching Protocol
PPOIM

After denoising query image in the cloud, an estimate of the original query image
ˆ[Iq] composed of all ˆ[q] can be produced. In this section, we firstly clarify the def-

inition of Shape Context (SC) descriptor. Then, based on our proposed PPID in
Sect. 3.2, a privacy-preserving SC-based image matching protocol PPOIM with
efficient outsourcing is proposed, which consists of three algorithms SCGen,
ImgMatch and ImgDec. We assume that as long as at least one shape in
the database image matches the query image ˆ[Iq], these two images matches
successfully, regardless of the position and rotation angle of the shape in the
database image. We also assume that database images and the query image
are in the same polar coordinate system, which means that the query image
shares the center point with database images. The cloud computes matching
cost between the encrypted denoised query image ˆ[Iq] and all database images
[Ii](i = 1, 2, · · · , N), then compares all matching cost with a threshold [T ].
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Shape Context in Plaintext Domain. Belongie et al. [8] introduced the
idea of shape context. In their work, a shape is represented by a set of points
sampled from the contours, and shape context describes location information
about all other boundary points relative to a specific boundary point in the
shape. Here, we prefer to sample the shape with roughly uniform spacing. Each
shape context is a coarse log-polar histogram of the coordinates of the remaining
points measured using the reference point as the origin and the line joining the
reference point and the center as the pole axis. Additionally, the center of mass
of any shape is invariant to scaling, rotation or translation. Figure 2 shows the
definition of Shape Context.

The shape ‘A’ in Fig. 2 is composed of a set of discrete points A = {ai}(i =
1, 2, · · · , n) sampled from the contour. To compute a shape context of ai in A,
we create a new polar coordinate. Let the referenced point ai be the new pole
and the line joining ai and the center o of the shape be the new pole axis aio.
The set of vectors originating from ai to the remained n− 1 points is generated.
To compute the shape context, we firstly divide the full image space into 12
sectors by angle, then draw 5 concentric circles with ai as center point and the
power of 2 as radius. Thus, the full image can be divided into 60 bins. Next, we
count the number of boundary points within each bin to form the shape context.
All points falling in different bins forms different relative vectors, which becomes
the shape context of the point ai. Then we compute Ti,k to indicate the set of
points, namely vector −−→aiaj in bin(k), selecting ai as the referenced point,

Ti,k = {aj |aj 
= ai, (−→oaj − −→oai) ∈ bin(k)}. (14)

Let hi(k) = |Ti,k| represent the number of points in Ti,k, thus the shape context
hi = {hi(k)}(k = 1, 2, · · · , 60).

Fig. 2. The description of shape context
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Privacy-Preserving Image Matching. In this subsection, a privacy-
preserving image matching protocol based on shape context descriptor is pro-
posed, which comprises the following three algorithms SCGen, ImgMatch and
ImgDec. The details are presented as follows.

(1) {{[hx(k)]}, {[ht(k)]}} ← SCGen([Ii], ˆ[Iq]) To generate the encrypted shape
context for each sample point in [Ii] and ˆ[Iq]. Without loss of generality, we
assume that the point sq,t is the pole in shape of image ˆ[Iq] and the point
si,x is the pole in shape of image [Ii], and all sq,t, si,x(t, x = 1, 2, · · · , n) are
in the edge of shapes in each image, then we connect the pole sq,t with the
center point oq of shape in image ˆ[Iq] , the pole si,x with the same point
oq respectively and divide the full image space into 60 bins, by adopting
the method referred in ShapeContext inPlaintextDomain part. Then
the cloud counts how many points are located in bin(k) (k = 1, 2, · · · , 60)
in each shape respectively. Here, we mainly focus on generating the shape
context of point si,x in image [Ii]. Each bin(k) is fixed by two angles (θk, θk1)
and two polar radius (ρk, ρk1), where θk1 > θk and ρk1 > ρk. To determine
whether an encrypted point [si,x′ ] = ([ρx′ ], [θx′ ]) is located in bin(k), the
cloud adopts the following modified privacy-preserving comparison opera-
tions presented in our proposed privacy-preserving image denoising protocol
PPID. If the point [si,x′ ] = ([ρx′ ], [θx′ ]) is in bin(k), it simultaneously satis-
fies the following four conditions:
(a)ρx′ > ρk, returning a final result [hx′,k,1

0,n ]; (b)ρx′ � ρk1 , returning

[1 − hx′,k,2
0,n ];

(c)θx′ > θk, returning a final result [hx′,k,3
0,n ]; (d)θx′ � θk1 , returning

[1 − hx′,k,4
0,n ].

Thus, the computation result [hx′
] = [hx′,k,1

0,n ]·[1−hx′,k,2
0,n ]·[hx′,k,3

0,n ]·[1−hx′,k,4
0,n ]

means whether a point si,x′ is in bin(k), and [hx(k)] =
∑n

x′=1[h
x′

] repre-
sents the encrypted number of points in bin(k). Thus, all {[hx(k)]}(k =
1, 2, · · · , 60) constitutes the shape context of point si,x. Similarly, the shape
context of point sq,t in image ˆ[Iq] can be calculated as {[ht(k)]}(k =
1, 2, · · · , 60).

(2) {{[hi
0,n]}, C3} ← ImgMatch({[hx(k)]}, {[ht(k)]}, [T ]) After obtaining the

shape context for each point, the cloud firstly finds the most matching point
among all points si,x(x = 1, 2, · · · , n) in image [Ii] for each point sq,t(t =
1, 2, · · · , n) in ˆ[Iq]. The cloud computes [costt,x] denoted as the encrypted
matching cost between point sq,t and si,x,

[costt,x] = 1
2

∑60
k=1

([ht(k)]−[hx(k)])
2

[ht(k)]+[hx(k)]
, (15)

where [ht(k)] and [hx(k)] are shape contexts at points sq,t and si,x, respectively.
Given the set of cost [costt,x] between point sq,t on the query image and

all points si,x on the database images, the cloud need find the minimum
matching cost for sq,t in ˆ[Iq] in encrypted domain. Thus, the cloud adopts a
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modified privacy-preserving comparison operation presented in our proposed
privacy-preserving image denoising protocol PPID as follows: A variant fx,x′ =
[1−hx,x′

0,n ](x, x′ = 1, 2 · · · , n) is defined as the comparing result between [costt,x]

and [costt,x′ ], where hx,x′
0,n is the tag showing the whether costt,x is larger than

costt,x′ . To find the minimum matching cost with point sq,t, the cloud computes
[costt,x]min =

∑n
x=1(

∏n
x′=1 fx,x′)[cost(t,x)]. Then the cloud can minimize the

total encrypted minimum matching cost for each encrypted database image [Ii],

[costi] =
∑n

t=1[costt,x]min. (16)

The cloud obtains N such encrypted matching cost {[costi]}(i = 1, 2, · · · , N)
and compares them with the threshold [T ] by executing the same compar-
ison algorithm mentioned in denoising part, generating the encrypted com-
paring results {[hi

0,n]}(i = 1, 2, · · · , N). Finally, the cloud computes C3 =

H1(
⋃N

i=1[h
i
0,n] ‖Cadd

ram,ρ ‖Cmul
ram,ρ ‖Cadd

ram,θ ‖Cmul
ram,θ ‖C

′,add
ram,ρ ‖C

′,mul
ram,ρ ‖C

′,add
ram,θ ‖

C
′,mul
ram,θ) and returns it with {[hi

0,n]}(i = 1, 2, · · · , N) to the user.

(3) {hi
T } ← ImgDec({[hi

0,n]}, C3, [P], [q], SKf ) After receiving the final
encrypted comparison results {[hi

0,n]}(i = 1, 2, · · · , N), the authorized user
performs algorithm PPOIM.Dec(·) as follows. The user firstly decrypts
p ‖h = f−1

SKf
(C1,1) by using the secret key SKf , and checks whether

all of Cadd
ram,ρ = H0(p ‖h ‖ ⋃n

t=1 C2,ρi,t
), Cmul

ram,ρ = H0(p ‖h ‖ ⋃n
t=1 C3,ρi,t

),
Cadd

ram,θ = H0(p ‖h ‖ ⋃n
t=1 C2,θi,t

), Cmul
ram,θ = H0(p ‖h ‖ ⋃n

t=1 C3,θi,t
),

C
′,add
ram,ρ = H0(p ‖h ‖ ⋃n

t=1 C2,ρt
), C

′,mul
ram,ρ = H0(p ‖h ‖ ⋃n

t=1 C3,ρt
),

C
′,add
ram,θ = H0(p ‖h ‖ ⋃n

t=1C2,θt
), C

′,mul
ram,θ = H0(p ‖h ‖ ⋃n

t=1 C3,θt
),

C3 = H1(
⋃N

i=1[h
i
0,n] ‖Cadd

ram,ρ ‖Cmul
ram,ρ ‖Cadd

ram,θ ‖Cmul
ram,θ ‖C

′,add
ram,ρ ‖C

′,mul
ram,ρ ‖

C
′,add
ram,θ ‖C

′,mul
ram,θ) hold. If not, this algorithm outputs ⊥; otherwise, the user

continues to compute q = N
′
(ph)−1, N” = pq and

Ci
T,p = ([hi

0,n]modN”)mod p = Hi
T,p mod p,

Ci
T,q = ([hi

0,n]modN”)mod q = Hi
T,q mod q. (17)

Then the user can decipher the matching results hi
0,n(i = 1, 2, · · · , N) by exploit-

ing the Chinese Remainder Theorem (CRM) as follows,

hi
0,n = h′

pqH
i
T,p + h′

qpHi
T,q modN” (18)

where h′
p, h′

q respectively satisfies h′
pq ≡ 1mod p, h′

qp ≡ 1mod q which can
be efficiently computed since the greatest common divisor of p and q namely
gcd(p, q) = 1. If the final result hi

0,n = 1(i = 1, 2, · · · , N), the image Ii corre-
sponding to this result matches Iq; Otherwise, it means that the matching cost
is larger than T , and Ii mismatches Îq.
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It is noted that the algorithms PPOIM.Enc(·) and PPOIM.Dec(·) pre-
serve the fully homomorphic property, by supporting the mixed operations (i.e.
the addition and multiplication operations) on ciphertexts of polar coordinates
of both the database images and the query image, namely [ρi,t], [θi,t], [ρt], [θt](i =
1, 2, · · · , N ; t = 1, 2, · · · , n), that are required in our PPOIM. All the additive
and multiplicative blinding factors Uadd

i,t , Umul
i,t , Uadd

t , Umul
t can be cancelled out

after modular N” in PPOIM.Dec(·) and the original image matching result
would be successfully recovered. The correctness of our proposed PPOIM can
be straightforwardly derived from the protocol descriptions presented above.

4 Security Proof

In this section, we give the formal security proof of our proposed PPOIM in the
aspects of image privacy and matching result privacy.

Theorem 1: (Image Privacy) The database image privacy is unconditionally-
secure (information theoretic secure) against the collusion between the cloud and
malicious users, namely H(ρi,t|[ρi,t]) = H(ρi,t) and H(θi,t|[θi,t]) = H(θi,t) where
H(·), H(·|·) respectively refer to the entropy function and the conditional entropy
function. The unconditional security of query image privacy can be achieved in
the same way.

In our PPOIM, the cloud and malicious users not holding secret key SKf

cannot invert the one-way trapdoor permutation f from C1,1 generated by PPO
IM.Enc(·) in Eq. (1) to derive p, q, which are adopted to encrypt each database
image pi = (ρi,t, θi,t). Moreover, the uniformly distributed randomnesses
Uadd

i,t , Umul
i,t are adopted to further blind pi to guarantee the unconditional secu-

rity of database image privacy. The proof details are referred to the full paper.

Theorem 2: (Matching Result Privacy) Let A be a malicious adversary
defeating the matching result privacy of our proposed PPOIM with a non-
negligible advantage defined as ε

′,n(λ), where n(λ) refers to the total number
of queries made to the oracles and λ is the security parameter. There exists a
simulator B who can use A to invert the one-way trapdoor permutation with the
non-negligible probability ε ≥ ε

′,n(λ)− n(λ)
2λ−1 . In our proposed PPOIM, the match-

ing result privacy is achieved since only the authorized user possessing the secret
key SKf can decrypt p ‖h = f−1

SKf
(C1,1), compute q = N

′
(ph)−1, and recover

the image matching result hi
0,n by Eqs. (17) and (18). in PPOIM.Dec(·). The

proof details are referred to the full paper.

5 Performance Evaluation

In this section, we evaluate the performance of our proposed PPOIM in the
aspects of computational overhead, communication overhead and image match-
ing accuracy. We conduct the extensive evaluation to demonstrate the perfor-
mance of our proposed PPOIM on the MPEG-7 shape silhouette database [22]
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in the aspects of computational cost, communication cost on the data owner,
the cloud and the user’s ends, and the image matching accuracy. All our exper-
iments are implemented by exploiting MIRACLE library [20] on a Windows
10 with Intel Core i5-7400 CPU 3.00GHz. The performance is analyzed by an
efficiency comparison between our proposed PPOIM and the privacy-preserving
shape context based image matching protocol exploiting public key FHE [8], [15].
Let the security parameter be λ = 512. In our proposed PPOIM, we respectively
set |p| = |q| = |h| = 512, and the one-way trapdoor permutation implemented
by RSA on ZN” where |N”| = 1024-bit long. Figures 3, 4 and 5 studied the com-
putational cost under the parameters: the number of database images N , the
sampled points in each image n and the threshold t

′
for power series expansion.

Figure 3 demonstrates that the computational cost on the data owner’s end of our
proposed PPOIM is dramatically lower than [8]. The reason is that [8] requires
to execute public key FHE on each sampled point of all database images, namely
O(Nn) times in total; while in our PPOIM, the one-way trapdoor permutation,
implemented by RSA and the computational cost of which is much less than pub-
lic key FHE, is required to perform only once to encrypt batch of sampled points.
Figure 4 demonstrates the computational cost on the cloud’s end of our PPOIM
is considerably less than [8], owing to the fact that Brakerski’s public key FHE
adopted in [8] requires to perform O(N2

m) multiplications for a ciphertext multi-
plication where Nm denotes the number of ciphertext components. Additionally,
Nm would increase by one every time a ciphertext multiplication is needed for
image denoising and matching in the encrypted domain. On the contrary, multi-
plication is required to perform only once every time a ciphertext multiplication
is needed in our PPOIM. Figure 5 illustrates that the computational cost on the
user’s end is significantly lower than [8], since the decryption of Brakerski’s pub-
lic key FHE [15] requires the inner product composed of O(Nm) multiplications;
while in our PPOIM the multiplication complexity for decryption is O(1).
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Figures 6, 7 and 8 show that the communication cost of our PPOIM are dra-
matically reduced no matter at the data owner, the cloud and the user’s ends
under the parameters N,n, t

′
, and the number of LSH functions l, owing to



PPOIM: Privacy-Preserving Image Denoising and Matching 229

0 100 200 300 400 500
0

1

2

3

4

5

6

7

8

9

10
x 1011

C
om

m
un

ic
at

io
n 

C
os

t (
bi

ts
)

Number of Database Image

Owner(Our Scheme n=50,l=5)
Owner(FHE[8] n=50, l=5)
Owner(Our Scheme n=100,l=5)
Owner(FHE[8] n=100,l=5) 
Owner(Our Scheme n=50,l=10)
Owner(FHE[8] n=50,l=10)

Fig. 6. Communication cost comparison
on data owner’s end

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5
x 1012

C
om

m
un

ic
at

io
n 

C
os

t (
bi

ts
)

Number of Database Image

Cloud(Our Scheme n=50,t’=3)
Cloud(FHE[8] n=50,t’=3)
Cloud(Our Scheme n=100,t’=3)
Cloud(FHE[8] n=100,t’=3)
Cloud(Our Scheme n=50,t’=4)
Cloud(FHE[8] n=50,t’=4)

Fig. 7. Communication cost comparison
on cloud’s end

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7
x 109

C
om

m
un

ic
at

io
n 

C
os

t (
bi

ts
)

Number of Pixels of Each Image

User(Our Scheme l=5)
User(FHE[8] l=5)
User(Our Scheme l=10)
User(FHE[8] l=10)

Fig. 8. Communication cost comparison
on user’s end

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Threshold T

M
at

ch
in

g 
Pr

ob
ab

lili
ty

SC on Plaintext(t’’=20)
Our Scheme(t’=4,t’’=20)
Our Scheme(t’=3,t’’=20)
Our Scheme(t’=4,t’’=40)
Our Scheme(t’=3,t’’=40)

Fig. 9. Image matching accuracy
comparison

the same fact that each ciphertext multiplication in [15] would incur an addi-
tional ciphertext component, leading to a high communication cost. Figure 9
demonstrates that the image matching accuracy of our PPOIM in the encrypted
domain is only slightly lower than the corresponding protocol in plaintext with-
out affecting its availability. It is observed that the matching probability increases
as the threshold t

′
of power series expansion and the threshold of matching cost

T increase, since the approximate integers adopted to evaluate the encrypted
squared distance d2([pi], [q]) in Eq. (7) and the encrypted normalizing factor [Z]
in Eq. (12) would be more accurate, and more database images would match
the queried one. The matching probability also increases as the threshold t”

for obtaining the candidate patches for denoising decreases, since more precise
patches are found to recover the original clean image more accurately in the
encrypted domain.

6 Conclusion

In this paper, a privacy-preserving shape context based image denoising and
matching protocol PPOIM with efficient outsourcing is proposed. Firstly, to
improve the accuracy of image matching, a privacy-preserving image denoising
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scheme PPID is proposed without exploiting public key FHE. Then, based on
PPID, a privacy-preserving image matching adopting shape context descriptor
is devised. Formal security proof and extensive simulations demonstrate the effi-
ciency and practicability of our proposed PPOIM.
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