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Preface

Welcome to the proceedings of ICICS 2018, the 20th edition of the International
Conference on Information and Communications Security! The ICICS conference was
created in 1997 in Beijing, with the aim of bringing together researchers and practi-
tioners from academia and industry to discuss and exchange their experiences, lessons
learned, and ideas related to computer and communications security. ICICS has been
held in different countries and cities. In particular, Beijing takes the lead and has hosted
the event seven times (2017, 2015, 2013, 2011, 2009, 2005, and 1997), followed by
another three venues in China (Zhengzhou 2007, Hohhot 2003, Xi’an 2001). ICICS
took place twice, respectively, in Singapore (2016, 2002), Hong Kong (2014, 2012),
and Spain (Barcelona 2010, and Malaga 2004). UK (Birmingham 2008), USA (Raleigh
2006), and Australia (Sydney 1999) hosted ICICS once.

ICICS 2018 was organized by IMT Lille Douai, which is the largest engineering
graduate school in northern France and was held during October 29–31, 2018. The
conference received 202 submissions from 38 countries and regions (the number of
submissions was among the top in ICICS history). The Program Committee carefully
selected 39 full papers and 11 short papers for presentation, resulting in an acceptance
rate of 19.3% for full papers and 24.75 overall. This year, the Program Committee was
composed of 69 security experts, including both experienced academics and rising stars
in the security community, who are from 14 different countries and regions. Each
Program Committee member reviewed about ten papers and each paper was assigned to
three to four reviewers and evaluated in a double-blind manner. We believe that the
conference program encompasses many papers advancing the current state of the art in
information and communications security, including several cryptography-related
topics (e.g., signature schemes, encrypted computing, searchable encryption, applica-
tions) as well as non-crypto topics such as attack detection and analysis, malware and
network security, botnet security, and privacy. It is worth noting that, for the first time,
a whole session was dedicated to blockchain technology. The program also featured
three keynote speeches delivered by Prof. Adrian Perrig, Dr. Eric Freyssinet, and Prof.
Kui Ren, representing three different security perspectives and research domains.

The success of ICICS 2018 relied on the tremendous efforts of many contributors.
First of all, we would like to thank the authors for submitting their quality work to
ICICS 2018, the members of the Program Committee, as well as the 97 external
reviewers, for their hard work and contributions in selecting papers, which was no
doubt a time- and energy-consuming process. In particular, we are grateful to the
honorary general chair, Alain Schmitt, president of IMT Lille Douai, who gave strong
encouragement and full support to organize this event on campus. Thanks also go to the
general chair, Zonghua Zhang, the co-chair Ahmed Meddahi, and their local organizing
team members, Qipeng Song, Montida Pattaranantakul, Fatima Semmoudi, Christine
Conreur, and Isabelle Fabresse, who made significant contributions to ensure that
ICICS 2018 ran smoothly. Especially Qipeng and Montida who were heavily involved



in the entire management lifecycle of the conference, from setting up the website to
handling registrations to arranging logistics. We are also indebted to Martine Ducornet,
the industry liaison chair, who extensively solicited sponsorship from the industrial
partners. We had five sponsors from both industry and academia, including Axians,
Ernst & Young, the I-Site Université Lille Nord Europe (ULNE), the
CNRS SAMOVAR laboratory, and the Centre d’Innovation des Technologies sans
Contact (CITC). We would like to express our gratitude not only for their generous
financial support, but also for their encouragement of the research community in
security.

We hope that all the participants enjoyed ICICS 2018 and its program!

October 2018 David Naccache
Shouhuai Xu
Sihan Qing

Pierangela Samarati
Gregory Blanc
Rongxing Lu
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Blockchain-Based Secure Data
Provenance for Cloud Storage

Yuan Zhang1(B), Xiaodong Lin2, and Chunxiang Xu1

1 University of Electronic Science and Technology of China, Chengdu, China
zy loye@126.com

2 Wilfrid Laurier University, Waterloo, Canada

Abstract. Data provenance, which records the history of the ownership
and process of a document during its lifecycle, is essential for the success
of cloud storage systems. However, it also inevitably incurs some chal-
lenging security and privacy issues. In this paper, to address these chal-
lenging issues, we present an efficient and secure data provenance scheme
and realize it in a system called ESP. ESP is characterized by employing a
blockchain-based provenance record chain and can provide a secure and
efficient system for data outsourcing, where the correctness, integrity,
and timeliness of provenance records can be ensured. Furthermore, we
introduce a concept of window of latching (WoL) to assess the practical-
ity of secure provenance schemes. We analyze the security of ESP and
evaluate the performance of ESP via implementation, which shows WoL
of ESP is short and demonstrates ESP is secure and practical.

Keywords: Secure provenance · Blockchain · Cloud storage
Digital investigation

1 Introduction

In today’s big data era, digital data are explosively generated and people are
increasingly outsourcing their data to cloud servers so as to enjoy efficient data
management services without bearing heavy local storage costs [1]. While cloud
storage is very helpful in many aspects, public cloud service could put user
information in danger [2]. Meanwhile, it is also very important to keep track of
what happens to these data throughout its lifecycle (from creation to ownership
transfer to destruction or deletion), such as its ownership and custodial history
as well as how it has been accessed by its users, which is also known as data
provenance [3,4]. For example, in a digital investigation, digital evidences must
be strictly secured and clearly documented about its ownership transfer as well as
how it was handled during its lifecycle. It is usual that the defendant challenges
the authenticity of a digital evidence during the trial. The most common types of

Yuan Zhang—This work is supported by National Key R&D Program of China
(No. 2017YFB0802000) and China Scholarship Council.

c© Springer Nature Switzerland AG 2018
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digital evidence are hard disk images, and the defendant may question the hard
disk image that investigators are working on and presented in the courtroom is
not the same one acquired from the hard disk found at the crime scene.

In the past decades, many security mechanisms have been developed to ensure
security and privacy of sensitive information, as well as achieve accountability
and auditability through data access logging or audit trails [5], such as logging
activities on data creation, modification, and access. Much of the focus has been
on protecting digitally stored information from unauthorized access or modifi-
cation. However, despite extensive research on information security and privacy,
little attention has been paid to securing provenance information and providing
assurance that a data document is trustworthy. It is worth mentioning that as
the current best of practice, log files are also protected from tampering. In the
banking industry, any activities, such as bank transfers, can only be recorded
by creating a new log, and past logs cannot be modified or deleted for security
reasons. Nevertheless, another important question still needs to be answered
about whether the provenance information can be trusted to make sure that the
corresponding data document is a trusted one after a series of user activities on
the document which have been detailed in the provenance information.

Unlike the traditional file access auditing where file access activities are
logged, provenance information contains the ownership history of data docu-
ments as well as activities occurred on them by their owners or users. Further-
more, such information is organized in chronological order during the lifecycles
of the data documents, and allows accesses and activities of data documents to
be tracked. As a result, it not only improves accountability and reliability [6],
but also meets the requirements of emerging applications, such as maintaining
the digital chain of custody in a digital forensics investigation [7–9], as well as
regulatory compliance requirements and industry standards, such as HIPAA [10].

Actually, provenance information is not useful if it cannot be trusted, it
is inadvisable to trust provenance information without proper protection. For
example, whenever a Microsoft office document is created, Microsoft office auto-
matically embeds an author name into the document. It has been proved very
useful to solve crime. A good example of it is the BTK killer case [11]. Neverthe-
less, the assigned name for the document can be easily changed. This problem
is further exacerbated by the fact that data documents and the corresponding
provenance records are outsourced to the cloud storage which cannot be fully
trusted, since the data documents and the provenance information would not
be physically owned by data owners and they are transmitted over an insecure
network [12]. Hence, it is crucial to ensure provenance information security.

Provenance information can be modeled as a sequence of records (each known
as provenance record) which present details about how a data document was
processed at every stage of its lifecycle. To guarantee the security of provenance
information, similar to protection of data document itself, we can protect indi-
vidual records of provenance information from unauthorized use or modification.
However, the integration of security mechanisms in current clouds to ensure the
security of the individual records would incur additional costs on both the cloud
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provider and users. As such, it is vital to point out what affects the practicality
of secure provenance schemes and define how to evaluate the practicality.

In existing schemes [3,13], an identity manager is introduced to efficiently
secure the outsourced data provence information, where any operation on the
data performed by a user is required to be authorized by the identity manager.
By doing so, the provenance records actually reflect the state information on
the data during its lifecycle. Nevertheless, such mechanism suffers from a strong
assumption that the identity manager is honest and reliable. Once the identity
manager is compromised, the security of these schemes are broken: if the cloud
server colludes with the identity manager, the outsourced provenance records can
be modified without detection. In reality, compromising the identity manager
is feasible for adversaries, since an adversary (e.g., a malicious cloud server)
can perpetually incentivize the identity manager to deviate from the prescribed
scheme over a long period of time. Furthermore, existing schemes do not consider
the timeliness of provenance records.

In this paper, we propose an efficient and secure data provenance scheme
for cloud storage systems called ESP. ESP is secure against provenance record
forgery, removal, modification attacks. The security of ESP is guaranteed in
the case that the identity manager is compromised, even if the malicious cloud
server colludes with it. The key technique behind ESP is the blockchain-based
currencies which provide a secure way to conduct transactions without a central
authority. In ESP, each provenance record is integrated into a transaction on
the blockchain, and all provenance records corresponding to one data form a
record chain such that any one of them is corrupted, the chain is broken. With
the integration of a provenance record in a transaction on the blockchain, the
provenance record is time-stamped, and the time when the provenance record
was generated can be extracted. As such, the provenance records in ESP not only
keep track of what happened to the data, but also reflect when the data was
processed. Detailed security analysis proves that ESP is secure against various
attacks, even if the malicious cloud server/user colludes with the identity man-
ager. Moreover, we introduce a concept of window of latching (WoL) which is one
of the most important factors that affects the practicality of secure provenance
schemes. We implement ESP and evaluate its performance. Experiment results
show that WoL of ESP is short and is acceptable in reality, which demonstrates
ESP is efficient and practical. Specifically, the contributions of this work are as
follows:

• We formalize a model of data provenance, where the lifecycle of data doc-
uments is formally formulated. We also introduce the concept of WoL to
measure the practicality of secure provenance schemes.

• We propose an efficient and secure data provenance scheme (ESP) for cloud
storage systems. ESP employs a provenance record chain which is built on
blockchain-based currencies, e.g., Ethereum, this ensures the secure auditabil-
ity of provenance records in terms of correctness, integrity, and timeliness,
even if the identity manager is compromised.
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• We present security analysis to demonstrate that ESP can be secure and
robust from various attacks. We implement ESP and conduct a comprehen-
sive performance evaluation, which shows that ESP is highly efficient and
practical.

2 Related Work

Data provenance provides sufficient information about target data that what
happened to the data from creation to destruction. As we are moving into the
age of big data where digital data are explosively generated nowadays and most
of data are managed via the Internet with the aid of cloud systems, data prove-
nance is pretty important to digital investigations [14,15]. Once a dispute arises
in outsourced data, provenances serve as the most vital evidences for post inves-
tigation.

Lynch [16] first pointed out the need for trust and provenance in informa-
tion retrieval. Hasan et al. [2] first defined the problem of secure provenance
and argued that it is of vital importance in practice. Prior work on secure data
provenance in cloud storage systems was proposed by Lu et al. [3], where the
basic security requirements were first enumerated, i.e., unforgeability and condi-
tional privacy preservation. The unforgeability ensures that a provenance record
reflects the corresponding state of data, even if the data and the provenance
record are outsourced to an untrusted environment; The conditional privacy
preservation guarantees that only an authenticated entity can reveal the real
identity recorded in the provenance, while anyone else cannot.

Following the Lu et al.’s work, several secure data provenance schemes have
been proposed [13,17]. These schemes mainly focus on enhancing the functional-
ity of secure provenance for cloud storage systems. However, in existing schemes,
a trusted identity manager is introduced to secure the provenance records. If the
identity manager is compromised, the security would be broken. Moreover, in
existing schemes, lifecycles of data documents in cloud storage are not consid-
ered, the timeliness of provenance records has not been explored, and how to
measure the practicality of secure provenance schemes is also not well investi-
gated. In this paper, we propose ESP, an efficient and secure data provenance
scheme that ensures the correctness, integrity, and timeliness of provenance
records against the malicious identity manager.

3 Preliminaries

3.1 Basic Cryptographic Primitives

Secure Hash Function. A secure hash function h has the following three
properties: h can take a message of arbitrary length as input, and output a short
fixed-size message digest; Given x, it is easy to compute h(x) = y. However, given
y, it is hard to calculate h−1(y) = x; Given x, it is computationally infeasible to
find x′ �= x such that h(x′) = h(x).
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Bilinear Maps. Let G be an additive group and GT be a multiplicative group,
they have the same prime order p. A bilinear map e: G × G → GT has the
following properties. Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G, a, b ∈
Z∗
p ; Non-degeneracy: for P,Q ∈ G and P �= Q, e(P,Q) �= 1; e can be computed

efficiently.

Fig. 1. A simplified Ethereum blockchain

3.2 Blockchain

We defer a brief introduction to the blockchain technique to Appendix A.
Blockchain. We construct ESP on the Ethereum blockchain, since Ethereum
is more expressive than other blockchain-based currencies. We show a simplified
Ethereum blockchain in Fig. 1, where Tx denotes the transaction, BlockHash
denotes the hash value of current block, PrevBlockHash denotes the hash value of
the last block, Time denotes the time when the block is chained to the blockchain,
and MerkleRoot denotes the root value of a Merkle hash tree formed by all
transactions recorded in the block. The value token of the Ethereum blockchain
is called Ethers.

In Ethereum, the state is made up of objects called “account”. Gener-
ally, there are two types of accounts: externally owned accounts and contract
accounts. Externally owned accounts are controlled by private keys and can con-
duct a transaction. Contract accounts are controlled by their contract code. For
a transaction between two external owned accounts, if it is recorded into the
blockchain, the balances of these two accounts are updated, where the user who
conducts the transaction can set the “data” field to be any binary data she/he
chooses. Therefore, Ethereum blockchain ensures the timeliness of the data state:
when a payer transfers Ethers to a payee, a string Δ can be set to be the Data
value of the transaction; After the block containing this transaction is added
into the blockchain, Δ is recorded, which means that Δ is generated no later
than the time when the block is chained to the block.
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4 Models and Design Goals

4.1 A Model of Data Provenance

Lifecycle of a Data Document and Its Users. In this work, a data docu-
ment lifecycle is viewed as a sequence of stages from creation to modification,
destruction, and ownership transfer, which is shown in Fig. 2. After a data doc-
ument has been created, it may go through many stages due to the document
modification or ownership transfer. Finally, a document may be destructed or
deleted, becoming unavailable to the users. Hence, an individual state of a data
document can be uniquely identified by its content and owner, and can be rep-
resented as Sti = H(Fi, Oi), where Sti stands for a state where a document has
been at, Fi means the content of the document at state of Sti, Oi is the owner
of the document at state of Sti, and H stands for a secure hash function.

During the lifetime of a data document, users can play different roles in it,
and can be classified into four types in general: creator, owner, editor, and viewer.

Creator : showing a user is the creator of a data document.
Owner : showing a user is the owner of the data document. By taking own-

ership of a data document, the user can assign other users permissions to the
data document, including editing and viewing a data document, and transferring
ownership of a data document. By default, the creator of a data document is
also the owner, but document ownership can be transferred to another user by
its current owner.

Editor : identifying a user is able to edit the data document.
Viewer : identifying a user can only view the data document.
Documents can have many editors and viewers, but only one creator during

its lifetime and one owner at a time. In addition to the four aforementioned
types of users, we assume there exists an auditor who can verify the validity
and trustworthiness of any provenance information but without any knowledge
of the user’s identity who generates each individual provenance record [2,3].

Fig. 2. Document lifecycle Fig. 3. Provenance model

Provenance Model. As shown in Fig. 3, in data provenance, provenance infor-
mation is organized into a chain in chronological order, where each chain item
represents a provenance record which details how a data document was processed
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at every stage of its lifecycle. Each provenance record is also associated with a
specific document stage, and a legitimate user (e.g., editors) may perform many
actions on data documents. A typical provenance record consists of a specially
formatted data block that contains information related to how a data document
is processed at a time as well as its ownership information, which usually can be
classified into two types: Essential provenance data (EPD): information related
to activities performed on the data document; Nonessential provenance data
(NPD): security overhead which has been generated by security mechanisms
that are used to protect provenance information.

Measure the Practicality of Secure Provenance. With the provenance
model, we introduce a concept of window of latching (WoL) to evaluate the
practicality of secure provenance schemes.

Definition 1. Window of latching (WoL) means the time-interval between two
successive provenance records that are accepted and published. The shorter WoL,
the more practical the secure provenance scheme is.

4.2 Threat Model

In our threat model, we mainly consider the following security and privacy
threats against data provenance.

Provenance Record Forgery Attack. A malicious user may collude with others to
forge a valid provenance record in terms of the record’s content and its timeliness.

Provenance Record Removal Attack. A malicious user colludes with others to
remove one or several existing provenance records that have been generated due
to the operations performed on data documents.

Modification Attack. Similar to the two above threats, a malicious user who may
collude with others may attempt to tamper with provenance information by
modifying the provenance records.

Repudiation Attack. A malicious user may deny that he performed an action on
a data document.

Privacy Violation. Privacy violation refers to the attack that the identity of
user who generates a provenance record is leaked out. Recall that in secure
provenance schemes [3,13], only conditional privacy preservation can be ensured,
where the identity manager has the ability to reveal the real identity recorded
in the provenance record, while anyone else cannot.

4.3 System Model and Design Goals

As shown in Fig. 4, there are four different entities in ESP: users, an authen-
ticated server, a cloud server, and an independent auditor. The authenticated
server is used to authorize the users and control who can access the data. It also
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assists users in preserving their identity against adversaries. Data and the corre-
sponding provenance information are generated by the users, and are stored in
the cloud server. The auditor can check the provenance records’ validity includ-
ing their correctness, integrity, and timeliness.

Different from existing schemes [3,13], the authenticated server is not fully
trusted by others, and thereby should be responsible for all its authorizations. As
long as the authenticated server remains inaccessible to adversaries, we ensure
both the security and privacy preservation. If both the authenticated server and
cloud storage server are compromised, we retain the security guarantees on the
provenance records in existing schemes.

Fig. 4. The system model of ESP Fig. 5. Blockchain-based provenance
record chain

Aiming at the above security challenges, our design goal is to develop an
efficient and secure data provenance scheme in the cloud storage system. Specif-
ically, the following goals should be achieved.

Security and Privacy Preservation. The validity of provenance records can be
audited by authorized auditors with resistance against various attacks. The con-
ditional privacy can be ensured.

Efficiency. It should efficiently work without introducing too much extra storage
space caused by introducing security mechanisms, for example, digital signatures
and cryptographic hashes. Its WoL should be as short as possible such that it
can be applied in reality.

5 The Proposed Scheme

5.1 Overview

ESP consists of three parts: system setup, secure provenance generation, and
secure provenance verification.

In the first part, the authenticated server assigns a human-memorisable pass-
word to each user, and maintains a list that records the assigned passwords and
the corresponding identities. With the list, the authenticated server can authen-
ticate each user securely and efficiently.
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When a user wants to process a document, she/he needs to be authorized
by the authenticated server. Then the authenticated server assists the user in
generating a provenance record, this enables the user to prove herself/himself to
the cloud server that she/he is qualified to process the document. Each prove-
nance record is integrated into a transaction on the blockchain, where the user
transfers a service charge to the authenticated server. This also time-stamps the
provenance record.

To achieve the security, all provenance records are chained together with
the aid of the Ethereum blockchain. This is shown in Fig. 5, where the prove-
nance record chain is indicated by dashed gray lines. Assume that there cur-
rently are n provenance records, P1, P2, · · · , Pn, each of them stands for a state
of the underlying document at the corresponding stage during its liftcycle as
modeled in Sect. 4.1. They are chained together as follows: from the second
provenance record P2, each record contains a data field that points to a block
on the Ethereum blockchain, this block relates to the last provenance record.
Each record is appended to the last one until it reaches the last one of the cur-
rent provenance information, Pn. Finally, the last record will be signed by the
authenticated server and the signature becomes the tail of the provenance record
chain. In this case, if any existing record is modified or removed, the provenance
record chain is broken. The computational costs to verify provenance records
mainly depend on the hashing operation along with one signature verification
for the last element or the tail of the provenance record chain. As a result, the
verification is very fast.

5.2 Description of ESP

A set of user U = {U1,U2, ...}, an authenticated server AS, a cloud storage server
C, and a third-party auditor A are involved in ESP.

System Setup:

– With the security parameter �, the system parameters {p, G, GT , P , e, E(·),
h, H} are determined, where G is an additive group whose generator is
P , e : G × G → GT , G and GT have the same prime order p, E(·) is a secure
symmetric encryption algorithm, h : {0, 1}∗ → Z∗

p , and H : {0, 1}∗ → G.
– AS randomly chooses s ∈ Z∗

p , and computes Ppub = sP , and k = h(s).
– AS’s secret keys are (s, k), the corresponding public key is Ppub.
– For each Ui ∈ U with identifier IDi, AS assigns a human-memorisable pass-

word pwdi to her/him, and stores (IDi, pwdi) locally.

Secure Provenance Generation:
Once a user Ui processes a document at C and generates a provenance record Pj ,
she/he will request AS to generate secure provenance on the document process.

Phase 1 : With the identifier IDi and password pwdi, Ui makes mutual
authentication with AS to establish a secure channel as follows.
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– Ui randomly chooses r1, a ∈ Z∗
p , and fetches the current timestamp ct.

– Ui computes C1, C2, where C1 = r1P , C2 = Ek(IDi||pwdi||aP ||ct), and
k = r1Ppub.

– Ui sends (C1, C2) to AS.
– After receiving (C1, C2), AS computes k = sC1 = sr1P = r1Ppub, and

extracts IDi||pwdi||aP ||ct from C2 with k.
– AS checks the validity of the timestamp ct to resist the replay attack.
– AS authenticates Ui by checking whether (IDi, pwdi) is stored locally.
– AS randomly chooses b ∈ Z∗

p and computes sk = b(aP ) as the session key.
– AS calculates Ui’s pseudonym PIDj = Ek(IDi||ct||b), C3, and C4, where

C3 = bP , C4 = Esk(IDi||aP ||bP ||ct||PIDj).
– AS sends (C3, C4) to Ui.
– With (C3, C4), Ui computes the session key sk = aC3 = abP .
– Ui extracts IDi||aP ||bP ||ct||PIDj from C4 with sk.
– Ui authenticates AS and confirms the correctness of sk by verifying the cor-

rectness of IDi||ct||aP ||bP .
– Since the session key sk is shared between Ui and AS, a secure channel

between them is established for secure provenance.

Different roles of Ui require different execution between Ui and AS.

Creator: Ui creates a new document
If Ui creates a new document F , i.e., the provenance record Pj is P1, where
P1 = h(F1||IDi) and F1 denotes the content of the document at the first stage,
she/he requests a secure provenance from AS as follows.

– Ui sends P1 to AS via the secure channel.
– AS extracts PID1 from local storage (i.e., j = 1).
– AS generates a signature on P1 and PID1 as σT1 = sH(P1||PID1), and

sends σT1 to Ui.
– Ui verifies e(σT1 , P ) ?= e(H(P1||PID1), Ppub). If the verification fails, reject.
– Ui creates a transaction Tx1 shown in Fig. 6, where Ui transfers service

charge to the AS’s account, and the data field of the transaction is set to
h(h(P1||PID1)||σT1).

– After Tx1 is recorded into the Ethereum blockchain, (P1||PID1||Bl1, σT1) is
sent to C, and is published as the provenance record.

Fig. 6. The transaction conducted by
the creator

Fig. 7. The transaction conducted by
the editor/viewer
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Editor/Viewer: Ui edits/views an existing document
If Ui edits/views an existing document, without loss of generality, we assume
the underlying document is F and the provenance record Pj = h(Fj ||IDi) with
j ≥ 2, where Fj denotes the content of the document at the j-th stage. Ui

interacts with AS as follows.

– Ui sends (Pj , Blj−1, σTj−1) to AS via the secure channel, where Blj−1 denotes
the hash value of the block that contains the transaction whose data field is
h(h(Pj−1||PIDj−1)||σTj−1).

– AS checks the validity of Blj−1, if the checking fails, reject.
– AS extracts PIDj from local storage.
– AS computes Θ(Pj) = H(Pj ||PIDj ||Blj−1), generates a signature σTj

=
s · Θ(Pj), and AS sends σTj

to Ui.

– Ui verifies σTj
by checking whether e(σTj

, P ) ?= e(Θ(Pj), Ppub).
– Ui creates a transaction Txj shown in Fig. 7, where Ui transfers service

charge to the AS’s account, and the data field of the transaction is set to
h(h(Pj ||PIDj)||σTj

||Blj−1).
– After Txj is recorded into the blockchain, (Pj ||PIDj ||Blj , σTj

, Blj−1) is sent
to C, and is published as the provenance record.

Finally, the secure provenance becomes

(P1||PID1||Bl1, P2||PID2||Bl2, · · · , Pj ||PIDj ||Blj , σTj
).

Secure Provenance Verification: Given the provenance

(P1||PID1||Bl1, P2||PID2||Bl2, · · · , Pj ||PIDj ||Blj , σTj
),

the auditor A checks its correctness as follows:

– Locate the last block Blj on the Ethereum blockchain, and verifies the validity
of the last recorded provenance record Pj ||PIDj ||Blj .

– Compute Θ(Pj) = H(Pj ||Blj−1).

– Check whether e(σTj
, P ) ?= e(Θ(Pj), Ppub).

– Extract the data information from blockchain according to Bl1, ..., Blj .
– Verify the integrity and timeliness of provenance by checking whether the

hash value of provenance matches the extracted data. Here, the physical
time when the provenance record was generated is derived from the height of
the corresponding block. Specifically, assuming the time when Pj ||PIDj ||Blj
was generated is denoted by τj and the height of the corresponding block is
denoted by ρj . τj = τ0 + γ · ρj (seconds), where τ0 is the physical time when
the genesis block of Ethereum was generated (i.e., 2015-07-30, 03:26:13 PM
+UTC) and γ is the average time that a block is mined in Ethereum.

If all the provenance records pass all the above checking, it can be accepted.
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5.3 Remark

In ESP, A can check the time when a provenance record was generated by
extracting the timestamp of the corresponding block from the blockchain. How-
ever, in Ethereum, the timestamp of a block cannot accurately reflect when
transactions included in the block were generated, since the timestamp of the
block might be confronted with up to 900 seconds errors. To overcome the time
errors, in ESP, the auditor derives the transaction time from the height of the
block including the transaction. The key observation is that the average time
that a block is mined is deterministic and can be counted, and the blockchain
height can be trusted to increase with respect of either short or long term, which
is formalized as the chain-growth of blockchain [18]. By doing so, the time when
a provenance record was generated suffers from around 15 seconds errors in ESP,
which has improved the accuracy of timestamp significantly.

6 Security Analysis

ESP is secure against provenance record forgery, removal, modification, and repu-
diation attacks, even if the authenticated server is compromised. ESP also guar-
antees conditional privacy preserving. We defer the detailed security analysis to
Appendix B. Security Analysis of ESP.

7 Implementation and Evaluation

We implement ESP by using JAVA, and the experiments are conducted on a
laptop with Window 7 system, an Intel Core 2 i5 CPU and 8GB DDR3 of RAM.
The security level is chosen to 80 bits and the hash function h is selected to
SHA3-256. The implementation of ESP is illustrated in Fig. 8 and is described
below. For clarity, we prefix calls with AS when they are made by AS and with
U when they are made by U .

Fig. 8. Implementation of ESP

Com SessionKey is an interactive algorithm to compute the session key
between U and Com Pseudonym is an algorithm to compute a pseudonym for U .
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The signature on the provenance record Pj and the pseudonym PIDj is imple-
mented by Sig(Pj||PIDj). The verification of provenance record Tj−1 is imple-
mented by Verify σTj−1 . Generating/editing the target file on U is implemented
by Generate.File.

Fig. 9. Communication
overhead of creator and
editor/viewer

Fig. 10. Communication
overhead of authenticated
server and cloud server

Fig. 11. Computational
overhead

We show the communication overhead of the creator and editor/viewer in
Fig. 9, where the size of human-memorisable password is set to 120 bits. We also
show the communication overhead of the authenticated server and the cloud
server in Fig. 10.

In ESP, generating the system parameters is a one-time computation, here
we would not show the computation costs in initializing ESP. Instead, we show
the computation delay on the users and authenticated server in Fig. 11. In ESP,
generating a provenance record takes within 50 ms. ESP is constructed on the
Ethereum blockchain. In Ethereum, a block as well as its transactions is con-
sidered confirmed if at least 12 consecutive blocks are mined following it. The
average time that a block is mined is 15 seconds and hence a transaction takes
averagely 15 seconds to be chained to the Ethereum blockchain. As such, publish-
ing a new provenance record takes average 3.25 min in ESP, and the time inter-
val between two successive provenance records only requires around 3.25 min.
Another user may have to wait at least 3.25 min to work on the same docu-
ment. It is the most important factor that affects the practicality of a secure
provenance scheme, which is called window of latching (WoL) and is defined in
Definition 1.

Another factor that affects the practicality of ESP is the costs to publish
provenance record. The transaction fee in Ethereum can be set to be values
from 0.000021 Ether to 0.000756 Ether, and the averagely fee is 0.000378 Ether.
As of May, 2018, publishing a provenance record requires a user to pay average
25 US cents, which is acceptable to users with respect to the value of the data
that ESP protects.

The above experiment results demonstrate that ESP is efficient in terms of
communication and computation overhead. We have evaluated WoL of ESP, the
evaluation results show that WoL is short and is acceptable in reality. The above
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analysis also indicates that WoL of ESP is mainly subject to the transaction
confirmation time in the blockchain system, and the costs to publish provenance
records are at the mercy of transaction fees in the blockchain system.

8 Conclusion

In this paper, we have proposed an efficient and secure data provenance scheme
(ESP) for cloud storage systems. ESP employs the blockchain-based provenance
record chain to ensure the correctness, integrity, and timeliness of provenance
records. ESP protects users’ real identities against the cloud storage server, which
preserves users’ privacy. Detailed security analyses have shown that ESP is secure
and robust from various attacks with privacy preservation. Compared with exist-
ing schemes, ESP can resist the malicious identity manager. We have introduced
the concept of window of latching (WoL) to evaluate the practicality of secure
provenance schemes. We also have implemented ESP and show that WoL of
ESP is short and can be acceptable in reality, which has demonstrated ESP is
practical and efficient.

Appendix A. Blockchain

A blockchain is a shared immutable ledger for recording the history of transac-
tions, it provides a tamper-proofing and distributed way to conduct transactions
without a central authority. Technically, the blockchain is a linear collection of
data elements, where each data element is called a block. All blocks are linked in
chronological order to form a chain and secured using cryptography. Typically,
each block contains a hash pointer, a timestamp, and transaction data, where the
hash pointer points to the previous block as a link, and the timestamp indicates
when the current block is chained to the blockchain [19]. Only valid transactions
would be recorded into the blockchain.

The most prominent manifestation of blockchain is blockchain-based curren-
cies, such as Bitcoin [19] and Ethereum [20], wherein the blockchain is used to
serve as an open and distributed ledger that records transactions between two
entities. The ledger here is verifiable and inherently resistant to modification of
chained blocks. Participants who perform the transaction verification and main-
tain the blockchain are called miner.

The ledger of Ethereum blockchain can be considered as a state transition
system. When a payer conducts a new transaction, she/he broadcasts the trans-
action to all miners. Each miner first verifies the validity of received transaction,
and collects multiple new transactions into a block. Then each miner computes
a valid nonce such that the hash value of the block is less than or equal to a
value provided by the Ethereum system. The first miner who finds the nonce
broadcasts the block including the nonce and a timestamp. Other miners accept
the block only if the nonce and all transactions in it are valid. More details can
be found in [20].
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Appendix B. Security Analysis of ESP

ESP is secure against provenance record forgery attacks. In ESP, when a user
Ui processes a document and requests AS to generate secure provenance on the
document process, AS needs to authenticate Ui. Without knowing the password
pwdi, an attacker cannot generate C1 = r1P , C2 = Ek(IDi||pwdi||aP ||ct) with
k = r1Ppub. Note that this authorization is integrated into the corresponding
provenance record and would be recorded into the blockchain, AS cannot deny
the authorization and should responsible for it. In addition, since the timestamp
ct has also been included, it can resist the replay attack. Due to this time-
sensitive credential, an attacker cannot forge a secure provenance.

ESP is secure against provenance record removal/modification attacks. In the
provenance record chain (shown in Fig. 5), if Pj−1 is removed or modified, all
successive hash values along the chain will be affected, and thereby the hash value
of the last record Pn||PIDn||Bln will be changed. In ESP, the provenance record
is built on the BLS signature [21] which is existentially unforgeable. Even if the
attacker colludes with AS to forge a signature, the transaction recorded into the
blockchain cannot be removed/modified, collusion between any two entities in
ESP can not remove/modify the published provenance records.

ESP also provides the non-repudiation. In ESP, the generation of a prove-
nance record Pj for a user Ui requires the AS’s assistance, where the pseudonym
of Ui, i.e., PIDi, is integrated into the provenance record. PIDi is derived
from Ui’s identity IDi, and AS can “open” PIDi to prove the relationship
between IDi and PIDi. Furthermore, before publishing the secure provenance
(Pj ||PIDj ||Blj , σTj

, Blj−1), Ui conducts a transaction Txj that transfers service
charge to AS, where the hash value of (Pj ||PIDj ||σTj

||Blj−1) is integrated into
the transaction. By the security of Ethereum, anyone cannot impersonate others
to conduct a transaction. Therefore, the auditor is able to confirm that Pj is
generated by PIDi by checking the creator of the transaction related to Pj with
the aid of AS.

ESP also provides the conditional privacy preservation. To resist the privacy
violation, the pseudonym PIDj = Ek(IDi||ct||b) in place of the real identity
IDi is included in the signature. Due to the security of E(·), the real identity
IDi cannot be disclosed from PIDj , the user privacy is preserved. The privacy
preservation is also conditional, since PIDj = Ek(IDi||ct||b) is derived from IDi

with the master key k, once a provenance record Pj is in dispute, AS can use k
to recover the real identity.

ESP enables auditors to securely check the timeliness of provenance records.
In ESP, before a provenance record Pj is published by a user Ui, a transaction
Txj should be created and recorded into the Ethereum blockchain. The data
value of Txj is set to the EPD and NPD related to Pj , if the block containing
Txj is added to the blockchain, the EPD and NPD related to Pj is stored
in the transaction. As such, integrating Pj into Txj essentially time-stamps
Pj , and the time when the block containing Txj is chained to the blockchain
represents the time when Pj is generated. This enables the auditor to check the
timeliness of provenance records without introducing any trusted entity. Due to
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the security (chain-growth [18]) of Ethereum, anyone cannot modify the height-
derived timestamp of Pj .
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Abstract. Blockchain technology like Bitcoin is a rapidly growing field
of research which has found a wide array of applications. However, the
power consumption of the mining process in the Bitcoin blockchain alone
is estimated to be at least as high as the electricity consumption of Ire-
land which constitutes a serious liability to the widespread adoption of
blockchain technology. We propose a novel instantiation of a proof of
human-work which is a cryptographic proof that an amount of human
work has been exercised, and show its use in the mining process of a
blockchain. Next to our instantiation there is only one other instanti-
ation known which relies on indistinguishability obfuscation, a crypto-
graphic primitive whose existence is only conjectured. In contrast, our
construction is based on the cryptographic principle of multiparty com-
putation (which we use in a black box manner) and thus is the first known
feasible proof of human-work scheme. Our blockchain mining algorithm
called uMine, can be regarded as an alternative energy-efficient approach
to mining.

Keywords: Blockchain · Applied cryptography · Peer-to-Peer
Proof of work

1 Introduction

The last few years have seen a rising interest in the use of blockchain technol-
ogy. Originally, blockchain architectures emerged from the design of the cryp-
tographic cash system Bitcoin [27] to construct alternative cryptocurrencies.
Nowadays, there are applications besides cryptocurrencies, like secure and fair
multiparty computations [2,7,19] or smart contracts [23,24,33], though decen-
tralized cryptocurrencies are still the main driving force behind the blockchain
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trend. In a nutshell, blockchains provide an immutable distributed ledger and
thus can potentially be used to record various forms of asset ownership in dif-
ferent domains.

One of the major drawbacks of blockchain technology is its huge energy
consumption. According to de Vries [32] Bitcoin alone consumes at least
2.55 gigawatts of energy making it comparable to countries such as Ireland’s
electricity consumption (3.1 gigawatts). We identify this problem to be one of
the main challenges of scaling blockchains and allowing for their widespread
adoption.

In this article we tackle the issue of the huge energy consumption of
blockchains by introducing uMine, a mining algorithm based on a novel proof of
human-work construction. Proofs of human-work are cryptographic mechanisms
where a prover can convince a verifier that it has spent some amount of human
work. In particular, proof of human-work puzzles can only be solved by humans
and not by computers under the hardness assumption of some underlying AI
problem. This allows us to lower the energy consumption of the blockchain by
exchanging the costly proof of work mining algorithm by a proof of human-work
which can only be provided by humans.

Proofs of human-work were originally developed by Blocki and Zhou [8] but
their construction relies on indistinguishability obfuscation, a theoretical cryp-
tographic primitive where no realization is known. Our new construction in con-
trast is based on multiparty computation where multiple feasible instantiations
exist [5,9,10,17,28].

Our contributions can be summarized as follows:

– We provide a novel instantiation of a proof of human-work which does not rely
on indistinguishability obfuscation but instead uses multiparty computation
as a black box.

– We prove the security of our proof of human-work given a secure captcha.
– We use our proof of human-work to construct uMine, a novel energy efficient

mining algorithm where the mining is performed by human miners creating
proofs of human-work.

2 Building Blocks

Notation: We write a ← A(x) to assign to a the output of running the random-
ized algorithm A on the input x. We denote with a ← A(x; r) the deterministic
result of running A on input x with the fixed randomness r. We say that an
algorithm A is ppt if it runs in probabilistic polynomial time.

2.1 Blockchain

A blockchain is a distributed append-only database together with a consensus
algorithm where nodes decide which data is persisted. Usually blockchains are
frequently used in the design of cryptographic currencies, to agree on the order
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of transactions and provide a single immutable log where all transactions are
recorded. The most prominent example is Bitcoin [27], which was the first to
introduce the idea of a blockchain. The participants in the consensus protocol
bundle transactions into blocks and try to append them to the blockchain by
partially inverting a hash function, a process which is called proof of work [11,12].
Since each node is granted a financial reward in the underlying cryptocurrency
for finding a new correct block, the so called mining reward, proof of work
achieves alignment of incentives. If these nodes, called miners, solve a proof
of work to include wrong transactions in the chain, their financial reward is
annihilated, since the other nodes reject wrong blocks. Thus it is rational for
miners to only persist valid information in the blockchain.

The proof of work mining algorithm includes a difficulty parameter which in
Bitcoin is adjusted every 2016 blocks (approximately two weeks) such that one
block is expected to be found every ten minutes assuming no changes in the hash
rate. This mechanism allows the global hash rate to change while preserving the
block creation rate. While the optimal adjustment of the difficulty parameter is
not well understood it is clear that a difficulty parameter needs to be supported
when designing alternative mining algorithms.

For further reading regarding blockchains we refer the reader to the survey
by Tschorsch et al. [31] or the book by Antonopoulos [3].

While the original vision of blockchains [27] was that each processor has the
same chance to mine a block, nowadays the mining industry is dominated by few
corporations with specialized mining hardware. Due to this commercialized min-
ing arms race the power consumption of the whole Bitcoin network has increased
significantly. For the scalability and the further development of blockchain tech-
nology this clearly constitutes a problem.

2.2 Slow Hash Functions

Slow hash functions are a special kind of hash function. While usual hash func-
tions H are designed to be easy to compute, the evaluation of a slow hash func-
tion H in contrast is computationally costly. Normally the evaluation of a slow
hash function like bcrypt [30] or scrypt [29] is on the order of several hundred
milliseconds, thus slowing down brute-force attacks significantly. The intuition
behind slow hash functions is that an authorized user needs to evaluate them
only once, and thus the overhead is negligible.

2.3 Captchas

Captcha is an acronym for a Completely Automated Public Turing test to tell
Computers and Humans Apart. They are challenge response tests to determine
if the user is a human or a program. One major application is to prevent auto-
mated registrations of accounts in web services. The most common form of a
captcha puzzle consists of a set of warped letters, where the user is requested to
recognize the letters, a task which is supposedly hard for computers and easy
for humans. There are also other forms like audio-based captchas where the user
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is challenged to recognize speech data. To enable automatic verification of a
given solution without human assistance the service provider has usually stored
a secret set of puzzle-solutions pairs. These pairs are generated by computing
a puzzle from a known solution. For verification, access to these puzzle-solution
pairs is needed and hence captchas are in general not publicly verifiable.

Since captchas are based on the assumption that some fundamental AI prob-
lem is hard to solve, the need to model the human solver as an entity distinct
from an algorithm arises. Sometimes this is done in the form of a (yet) unknown
algorithm. Since we prefer giving a clearer exposition to giving a philosophi-
cally correct one we simply model the human as an oracle that can provide the
solutions to a captcha puzzle along the lines of Blocki and Zhou [8].

Definition 1. Captcha [8]: A Captcha C is a quintuple of algorithms (Setup,W,
G, Σhuman ,Verify) with the following properties:

– PP ← C.Setup(1λ) is the generation of the public parameters PP given a
security parameter λ.

– σ ← C.W(PP) is a randomized algorithm sampling a solution σ given the
public parameters.

– Z ← C.G(PP , σ) generates a captcha-puzzle Z with solution σ. We write
C.G(PP , σ; r) if we fix the randomness r, i.e., if we consider C.G as a deter-
ministic function.

– σ ← C.Σhuman(PP ,Z ) is a solution finding algorithm that takes as input the
public parameters and a puzzle Z and outputs a solution σ. It has internal
access to a human oracle.

– b := C.Verify(PP ,Z , σ) outputs a single bit which is 1 whenever there is a
random r, such that C.G(PP , σ; r) = Z .

The original definition of a captcha by Blocki and Zhou [8] additionally uses a
tag which is generated together with the puzzle and needed for the verification of
a solution σ. We stress that our construction later also works with the definition
of Blocki and Zhou, where the tag is set as undefined. However, the tags are not
necessary in our construction and thus we decided to present our work using a
simpler definition to aid in the understanding.

If the randomness r which was used to generate the captcha in the algorithm
C.G is known it may be possible to invert C.G. In the case of image based captchas
r determines the chosen transformations, e.g., rotation, addition of noise, and
their parameters applied on the solution to yield a puzzle [1]. Knowledge of these
may allow an attacker to invert the used transformations and thus recover the
solution σ from a puzzle Z without the use of human work. Consequently the
security of a captcha puzzle Z = C.G(PP , σ; r) is usually based on the secrecy
of the random value r, which was used to generate the puzzle [1, Section Who
knows What?].

Additional Requirements for Our Construction: In contrast to the orig-
inal definition by Blocki and Zhou [8] we require the generation of the puzzles
C.G(PP , σ; r) to be collision-free, i.e., injective, in its randomness r and in its
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solutions σ. Regarding the solutions σ it is natural to assume that there can be
no two different solutions to the same puzzle. Regular image based captchas do
have this property. Regarding injectivity in the randomness r we can assume
that it serves as an enumeration of the puzzle space for a given captcha solution.
Consider the case of image based captchas where the randomness determines
the type of transformations. Different transformations with different parameters
yield different puzzles and thus collision freeness can be assumed.

Use in Our Instantiation: In our construction of a proof of human-work the
randomness r used in the puzzle generation C.G is set to a deterministic value
containing a slow hash of the solution H(σ). This way it is easy to verify a
solution publicly, given a puzzle, since one only needs to regenerate the puzzle
from the solution σ using the same randomness and check if the given puzzle
equals the computed one. The use of a slow hash function is necessary to prevent
bruteforcing of the solution using the verification algorithm.

Security Properties: We require that any captcha should be solvable by a
human. We use the term human-work unit to denote the effort needed to solve
a single instance of a captcha. Although the time needed to solve a captcha may
depend on the human and his abilities, we expect these differences to be small
and similar to the differences in performance of different computer hardware.

Definition 2. Honest Human Solvability [8]: We say that a human-machine
solver C.Σhuman controls m human-work units if it can query its human oracle
at least m times. We say that a captcha system C = (Setup,W,G, Σhuman ,Verify)
is honest human solvable if for every polynomial m = m(λ) and for any human
C.Σhuman controlling m human-work units, it holds that

P

⎡
⎢⎢⎣

∀PP ← C.Setup(1λ);
∀i ∈ [m]

(
σ∗

i ← C.W(PP)
)
;

∀i ∈ [m]
(
Z ∗

i ← C.G(PP , σ∗
i )

)
:

(σ∗
1 , . . . , σ

∗
m) ← C.Σhuman(PP ,Z ∗

1 , . . . ,Z ∗
m)

⎤
⎥⎥⎦ ≥ 1 − negl(λ)

Finally we require that captchas are hard for computers to solve without
access to a human oracle.

Definition 3. Captcha Break [8]: We say that a ppt adversary A who has at
most m human-work units breaks security of a captcha system C = (Setup,W,G,
Σhuman ,Verify) if there exist polynomials m = m(λ), n = poly(λ) and μ(λ) such
that if A controls at most m human-work units it holds that

P

⎡
⎢⎢⎢⎢⎢⎢⎣

∀PP ← C.Setup(1λ);
∀i ∈ [n]

(
σ∗

i ← C.W(PP)
)
;

∀i ∈ [n]
(
Z ∗

i ← C.G(PP , σ∗
i )

)
;

S ← A(PP ,Z ∗
1 , . . . ,Z ∗

n);
∀i ∈ [n]

(
bi ← maxσ∈S C.Verify(PP ,Z ∗

i , σ)
)

:∑
i∈[n] bi ≥ m + 1

⎤
⎥⎥⎥⎥⎥⎥⎦

≥ 1
μ(λ)
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It is debatable, whether in AI research the concept of a security parameter
applies [1]. AI research does not deal with asymptotics and thus it can be argued
that problem classes are either solvable or unsolvable, independent of the con-
crete problem in the problem class. This is in contrast to classical cryptography
where it may be feasible to solve certain “small” instances of problems without
solving all, e.g., factorization of small integers may be possible, without being
able to factorize all integers. Thus, if captchas are either solvable or unsolv-
able in the real world our definitions can be made even stronger by setting the
negligible term in the definition of honest human solvability to zero. Without
a tunable security parameter, a captcha is called broken if the attacker has a
success probability of 1 of finding solutions without access to a human oracle.

2.4 Proof of Human-Work Puzzles

Proof of human-work puzzles (PoH) were first introduced by Blocki and Zhou [8].
Their goal was to construct a publicly verifiable proof that some amount of
human work has been exercised. Their construction relies on indistinguishability
obfuscation [14] and thus is currently infeasible.

A PoH in contrast to a captcha has a tunable difficulty parameter and is
publicly verifiable. That means that no secret knowledge is needed neither to
generate nor to verify a PoH. Especially, the solution does not need to be known
to generate the puzzle as is the case with captchas. The difficulty parameter
enables its use as a mining algorithm in a blockchain as explained above.

Definition 4. Proof of Human-work Puzzle [8]: A proof of human-work puzzle
system POH consists of four algorithms (Setup,G, Σhuman ,V) where:

– PP ← POH.Setup(1λ, 1ω) is a randomized system setup algorithm that takes
as input a security parameter λ and a difficulty parameter ω and outputs
public parameters of the system PP.

– x ← POH.G(PP) is a randomized algorithm that takes as input the public
parameters PP and outputs a puzzle x.

– a ← POH.Σhuman(PP , x) is a solution finding algorithm that has access to
a human oracle. It takes as input the public parameters and a puzzle x and
outputs a solution σ to the puzzle.

– b := POH.V(PP , x, a) is a deterministic verification algorithm that takes as
input the public parameters PP, together with a puzzle x and a solution a and
outputs a bit b where b = 1 if and only if a is a valid solution to the puzzle x.

Similar to a captcha we require from PoHs that they are solvable by a human,
with a success probability depending on the difficulty parameter. Following the
notation of Blocki and Zhou [8] and Miller et al. [26] we define ζ(m,ω) :=
1 − (1 − 2−ω)m. This describes the probability of finding a valid solution using
m queries to the human oracle.

Definition 5. Honest Human Solvability [8]: We say that a PoH system
POH = (Setup,G, Σhuman ,V) is honest human solvable if for every polynomial
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m = m(λ), and for any honest human-machine solver POH.Σhuman who controls
m human-work units, it holds that

P

⎡
⎢⎢⎣

∀PP ← POH.Setup(1λ, 1ω);
x∗ ← POH.G(PP);
a∗ ← POH.Σhuman(PP , x∗) :

POH.V(PP , x∗, a∗) = 1

⎤
⎥⎥⎦ ≥ ζ(m,ω) − negl(λ)

Further, we require that any adversary that controls too few human-work
units succeeds in solving a PoH only with negligible probability.

Definition 6. Adversarial Human Unsolvability [8]: We say that a ppt algo-
rithm A breaks security of the PoH system POH = (Setup,G, Σhuman ,V) if for
some polynomials m = m(λ) and μ(λ) when A controls at most m human-work
units, it holds that

P

⎡
⎢⎢⎣

∀PP ← POH.Setup(1λ, 1ω);
x∗ ← POH.G(PP);
a∗ ← A(PP , x∗) :
POH.V(PP , x∗, a∗) = 1

⎤
⎥⎥⎦ ≥ ζ(m + 1, ω) +

1
μ(λ)

2.5 Multiparty Computation Protocol

Multiparty computation protocols (MPC) are cryptographic protocols that allow
a set of mutually distrusting parties to collaboratively compute a function with
private input values. For example, the parties evaluate some f(y1, . . . , yn), where
the input yi is only known to party i. The participants in the protocol do not
learn anything beyond their own inputs and the solution f(y1, . . . , yn).

While traditional schemes suffered from severe performance issues, over the
last few years, multiple practical solutions that can deal with arbitrary com-
putable functions f have emerged [5,9,10,17,28]. In our case we require a secure
multiparty protocol with k different parties, where k − 1 participants can be
controlled by an active attacker. An active (malicious) attacker can arbitrarily
deviate from any protocol execution in an attempt to cheat. This is in contrast to
passive (semi-honest) attackers who try to gather as much information about the
underlying inputs and (intermediate) outputs but honestly follow the prescribed
steps in the given protocol.

We use MPC as a black box in this article, having secret sharing based MPC
protocols in mind (such as SPDZ [9]). For this we define an MPC protocol MPC
as a triple of ppt algorithms (Setup,Share,Reveal) where:

– PP ← MPC.Setup(1λ) is a randomized algorithm that takes a security param-
eter λ as input and sets up the protocol by distributing the keys and param-
eters. It outputs the public parameters for the system.

– 〈y〉 ← MPC.Share(PP , y) shares the value y among the k participants using a
secret sharing scheme such that each of the k participants receives one share.
We use 〈y〉 to denote the vector of secret shares of y. Note that the Share
algorithm can be executed by one of the participants or any other external
party with access to the parameters PP .
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– y ← MPC.Reveal(PP , 〈y〉) reconstructs the value y from its secret shares 〈y〉.
The MPC participants send their secret shares 〈y〉 to an external party who
can then execute MPC.Reveal and learn the value y; consequently being the
only party knowing y in the clear.

By abuse of notation, we apply computable functions on secret shares to denote
the computation of the secret shares of the result of the function applied to the
clear values, i.e., we denote 〈f(y1, . . . , yn)〉 by f(〈y1〉, . . . , 〈yn〉). The clear values
are not revealed by this operation. Note that knowledge of the public parameters
may be needed for this computation, but is left out to simplify our notation.

One possible MPC framework for our use is SPDZ [9], which consists of a
preprocessing and an online phase. The preprocessing phase is independent of
the function to be computed as well as of the inputs. In the online phase the
actual function is evaluated. The online phase has a total computational and
communication complexity linear in the number of participants k. The work done
by each participant in SPDZ is only a small constant factor larger than what
would be required to compute the function in the clear. Thus, SPDZ provides
an efficient framework which satisfies our requirements.

3 Our Construction

3.1 Overview

On a high level we are interested in exchanging the proof of work by a PoH.
The parties involved in our system are human miners, i.e., miners who control
some human-work units, who try to solve the PoH puzzles in order to gain the
block rewards, as well as a consortium of k puzzle generators. To mine a new
block, each human miner requests a puzzle for a proof of human-work from the
puzzle generators. The puzzle is linked to the transactions the human miner
wants to persist, as well as to the current block in the blockchain. Throughout
the generation of the puzzle, the solution is unknown to any single party, in
contrast to regular captchas. If the human miner does not succeed in solving the
puzzle it can request a new puzzle from the captcha generators. If the human
miner succeeds however, it can publish the new block containing the captcha
puzzle, its solution, and the transactions. A node which receives a new block can
check the transactions and the proof of human-work for validity. It accepts the
block if all of these are correct and mining continues on top of the new block.

3.2 Our Proof of Human-Work

We give a new instantiation of a PoH puzzle which does not rely on indistin-
guishability obfuscation [14] like the work of Blocki and Zhou [8], but instead on
MPC. Our construction is the first PoH which is feasible and does not involve a
trusted third party. In contrast to the work of Blocki and Zhou [8], computing
the algorithm POH.G in our construction needs interaction with a set of captcha
generators {C1, . . . , Ck}. This set can be a fixed consortium of k parties as will
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be explained in Subsect. 3.4. The assumption of interaction poses no problem
for our use case since for mining on a blockchain the miners are required to be
online anyway to receive the latest blocks and transactions.

The intuition behind our construction is that the captcha generators collab-
oratively compute a captcha puzzle using multiparty computation. This com-
putation is done in such a way that each captcha generator has access to only
a secret share of the solution, but not to the solution itself. Consequently, the
solution is unknown to any single party.

Nevertheless, since it is a captcha the solution can be found by querying
the human oracle. If the hash of the solution σ of the captcha puzzle is above a
difficulty parameter the solution is deemed invalid for the PoH. Thus, for creating
a valid PoH one may need to solve multiple captchas depending on the difficulty,
until a captcha solution with a small hash is found. This captcha solution then
constitutes a PoH a.

In order to achieve public verifiability, remember that the generation of a
captcha puzzle is a probabilistic algorithm using the solution. If the randomness
used in the captcha generation is known it is possible to regenerate the captcha
puzzle from the solution. This allows public verification of the solution since the
recomputed puzzle can be compared to the given puzzle. In our construction the
randomness in the captcha generation is derived from the captcha solution itself.

Fig. 1. Simplified Overview of our Proof of Human-work Construction

A standard workflow is shown in Fig. 1. As a first step the captcha generators
{C1, . . . , Ck} are initialized by executing MPC.Setup with an appropriate security
parameter. Now, suppose a human M wants to compute a proof of human-work.

First, the human sets up the public parameters PP for the proof of human-
work by executing POH.Setup. The public parameters consist of the public keys
of the captcha generators, a difficulty parameter ω, and a security parameter λ.

Next, the human queries the captcha generators to obtain a captcha by
executing POH.G. To this end, he computes public parameters C.PP for the
captcha by running the setup algorithm of the captcha with security parame-
ter λ. The public parameters C.PP are distributed to the captcha generators
{C1, . . . , Ck} (Step 1 in Fig. 1). Each captcha generator Cj chooses a random
value yj and shares it among the other captcha generators, according to the
multiparty computation protocol (Step 2 in Fig. 1). Together, the captcha gen-
erators sample a solution σ of the captcha by using the sum of their chosen
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randomness y1 ⊕· · ·⊕ yk in the sampling algorithm C.W together with the pub-
lic parameters of the captcha C.PP . This solution σ is not revealed, but rather
stays secret shared between the captcha generators. Thus, no captcha generator
knows the solution. From the shared solution 〈σ〉 the shares of the captcha puzzle
〈Z 〉 are computed by the captcha generators using multiparty computation as
〈Z 〉 ← C.G

(
C.PP , 〈σ〉;H(〈σ〉)) (Step 3 in Fig. 1). Here, H denotes a slow hash

function. Each captcha generator signs its share of the puzzle and sends it to
the human M (Step 4 in Fig. 1). We call these signed shares τ . The human then
reveals the puzzle Z by executing the MPC.Reveal algorithm of the multiparty
computation protocol. M is now the only person knowing the captcha puzzle
Z , and the solution σ is unknown to any single party. The puzzle to the PoH is
x = (C.PP ,Z , τ).

In order to create the PoH the human solves the captcha puzzle Z by exe-
cuting its captcha solving algorithm. This yields a solution σ to the captcha.
If H(σ) < Tω then this constitutes a valid proof of human-work. Here, H is a
hash function and Tω = 2n−ω analogous to Blocki and Zhou [8], where ω is the
difficulty parameter and n is the bit size of the output of H. If this is not the
case, i.e., if the hash of the solution is not small enough, the human has to start
again by querying the captcha generators for a new puzzle until he succeeds in
solving a captcha with a small solution. The PoH consists of the solution to the
captcha puzzle a = σ.

To verify the PoH, i.e., to execute POH.V, the public parameters PP , the
puzzle x, and its solution a are needed. The verifier first needs to check if the
puzzle has been computed in a correct way, i.e., by the captcha generators.
This can be done by checking τ , the signatures on the shares of the solution
which are included in the puzzle x. Next, the verifier checks that the hash of the
solution is small enough, i.e., if H(σ) < Tω. As a final step, the verifier checks
that the solution is a correct solution to the captcha. This can be done by
simply regenerating a puzzle from the solution and checking equality between
the recomputed puzzle and the original puzzle. I.e., it needs to be checked if
C.G

(
C.PP , σ;H(σ)

)
= Z . If any of these three steps fails, the PoH is rejected.

Otherwise it is considered valid.

Construction 1. Let C be a secure human solvable captcha and MPC be a secure
MPC scheme initialized with public parameters MPC.PP ← MPC.Setup(1λ). Let
H : {0, 1}• → {0, 1}n be a hash function. We define Tω = 2n−ω analogous
to Blocki and Zhou [8]. We use Tω to scale our difficulty parameter ω, since
P (H(r) < Tω) = 2−ω for a random r. We now construct a PoH by defining the
following operations.

– PP ← POH.Setup(1λ, 1ω) outputs the parameters PP containing λ, ω, and
the public keys of the captcha generators C1, . . . , Ck.

– x ← POH.G(PP) is computed by interacting with the set of captcha gen-
erators {C1, . . . , Ck}. First we parse λ and ω from PP locally and compute
the public parameters for the captcha as C.PP ← C.Setup(1λ). These are
then given to the captcha generators. Each captcha generator Cj chooses
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a secret random value yj and uses MPC.Share(MPC.PP , yj) to distribute
shares of its value yj among the k captcha generators. In a next step the
captcha generators compute 〈σ〉 = C.W(C.PP , 〈y1〉 ⊕ · · · ⊕ 〈yk〉) using MPC
such that each of the captcha generators now possesses a secret share of
the solution σ to the captcha. The solution σ is not revealed but stays in
the secret shared domain. Next, the captcha generators compute the puzzle
〈Z 〉 ← C.G

(
C.PP , 〈σ〉;H(〈σ〉)). The captcha generators each sign their shares

〈Z 〉 of the puzzle as τ which later guarantees that each of the captcha gener-
ators Cj has participated in the protocol.
Finally the captcha puzzle Z is revealed by executing Z =
MPC.Reveal(MPC.PP , 〈Z 〉) and the PoH puzzle x = (C.PP ,Z , τ) is output.

– a ← POH.Σhuman(PP , x) computes a solution a to a PoH as follows.
First, the parameters λ, ω, are parsed from PP. The puzzle is parsed as
(C.PP ,Z , τ) = x. Then the captcha solving algorithm is queried σ ←
C.Σhuman(C.PP ,Z ). If H(σ) < Tω we return the solution a = σ. Otherwise
a = ⊥ is returned.

– b := POH.V(PP , x, a) first parses σ = a and checks if H(σ) < Tω. If that
is not the case b = 0 is returned. Otherwise we parse (C.PP ,Z , τ) = x and
check the signatures and the final shares of the puzzle τ to ensure that the
puzzle has been generated in a correct way, i.e., by the captcha generators Cj,
and not by anyone else. This is possible, since the public keys of the captcha
generators needed for the verification of the signatures are contained in PP.
If τ is invalid, we return b = 0. As a third step we need to ensure that the
solution σ is a valid solution to the captcha. This can be done by checking if
C.G

(
C.PP , σ;H(σ)

)
= Z . If that is the case, return b = 1, otherwise return

b = 0.

Theorem 1. If our construction is instantiated with a secure and honest human
solvable captcha, then the resulting PoH is honestly human solvable and adver-
sarial human unsolvable under the assumption that at least one of the k captcha
generators C1, . . . , Ck is honest.

Proof. The proof can be found in the full version of the paper [22].

3.3 Block Generation

In this section we describe a design of a blockchain which is based on proofs
of human-work. We call the resulting mining process uMine. In order to mine
a new block Bi, a human miner M needs access to the previous block Bi−1.
Further it needs to have a set of transactions Tx i, which it wants to persist in
the new block Bi.

To mine a new block, first, the algorithm POH.Setup(1λ, 1ω) is run in order
to generate the public parameters for the PoH. The security parameter λ is
globally fixed but the difficulty parameter ω needs to be adjusted dynamically
to ensure a stable block creation rate. In Bitcoin the difficulty parameter is
adjusted every 2016 blocks such that the expected block generation interval is
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10 min, assuming no changes in the global mining power. Although it is unknown
if these parameters are optimal, there is insufficient research covering the choice
of parameters and thus we see no reason to deviate from them.

The captcha generators C1, . . . , Ck are initialized by computing the algorithm
MPC.PP ← MPC.Setup(1λ). After generating the public parameters for the PoH
the human miner M contacts the set of captcha generators to receive a PoH
puzzle xi for the new block Bi as we will explain in the following.

The human miner splits the hash of the transactions H(Tx i), as well as
the hash of the current block hi−1 into secret shares 〈H(Tx i)〉, 〈hi−1〉 which
are distributed to the captcha generators.1 Each captcha generator computes
the captcha parameters as PP ← C.Setup(1λ). Together they compute a
random captcha solution in the secret shared domain as follows. First, each
captcha generator Cj chooses a secret input yj uniformly at random. This
secret randomness is shared among the captcha generators by computing 〈yj〉 =
MPC.Share(MPC.PP , yj). The shared randomness is used to compute the secret
shared random captcha solution as 〈σi〉 = C.W(PP , 〈y1〉 ⊕ · · · ⊕ 〈yk〉). This way,
none of the captcha generators knows the solution σi.

To be able to use our PoH construction from above in a blockchain we need
to include a reference to the previous block hi−1 = H(Bi−1) and the new trans-
actions Tx i in the puzzle. Otherwise, if an already persisted transaction in the
blockchain is modified the PoH is still valid, and thus integrity of persisted
transactions cannot be guaranteed. In order to connect the hash of the previous
block and the transactions with the puzzle the captcha generators compute their
secret shares of the captcha puzzle Zi given their shares of the solution 〈σi〉 as
〈Zi〉 = C.G

(
PP , 〈σi〉;H (hi−1,H(Tx i), 〈σi〉)

)
. I.e., the hash of the previous block

hi−1 and the current transactions H(Tx i) are included in the randomness of the
puzzle generation At this stage, each captcha generator has a share of a captcha
puzzle 〈Zi〉 where the solution is effectively unknown to any single party.

Next, the captcha generators send their signed final shares of the captcha
puzzle to the human miner M who assembles them as a PoH xi = (C.PP ,Zi, τi),
where Zi = MPC.Reveal(MPC.PP , 〈Zi〉) is the revealed captcha puzzle. Here, τi

is the set of the final signed shares of the puzzle from the multiparty protocol
run. It is used to prove that each captcha generator participated in the protocol
and thus guarantees that the puzzle has been generated in a correct way.

The human can now try to solve its PoH xi. If the hash of the solution
to the encapsulated captcha is too big, that is, when H(σ) ≥ Tω, the human
requests another PoH puzzle from the captcha generators. If the human eventu-
ally succeeds to find a solution σ′

i to the PoH, it can locally verify its solution,
by checking if Zi = C.G

(
C.PP , σ′

i;H(hi−1,H(Tx i), σ′
i)

)
. If that is the case, it can

publish the new block Bi containing the captcha puzzle xi, its solution ai = σ′
i,

1 We explain our protocol using classical secret sharing based MPC, where a dealer
distributes shares of the input and a set of nodes computes on these shares. We hope
this makes our explanations more clear. In a practical implementation we suggest
the use of SPDZ [9] which is a highly optimized variant thereof.
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as well as the transactions Tx i and a reference to the previous block in form of
a hash hi−1.

Each receiving node verifies the solution to the captcha, by running
POH.V(PP , xi, ai). More specifically, the captcha puzzle Zi is recomputed from
its solution and it is examined if this leads to the same Zi, i.e., if Zi = C.G

(
C.PP ,

σi;H(hi−1,H(Tx i), σi)
)
. Additionally the signed shares of the puzzle τi are

checked for correctness of the signature to guarantee that the puzzle was created
by the correct parties. Further it is examined if H(σ) < Tω holds.

Beyond these steps of verification of the PoH for usage in a blockchain, the
difficulty parameter ω and the validity of the transactions in the new block is
checked, as in Bitcoin.

If any of these checks fails, the new block is discarded and mining continues
on top of the old block Bi−1. Otherwise the human miners can continue to
generate blocks on top of Bi.

If one of the captcha generators is malicious it may abort the generation
of the puzzle to the PoH, thus preventing that new blocks can be mined by
a PoH. To remedy this situation we additionally allow blocks to be mined by
proof of work as in Bitcoin. However, in order to keep the advantages of the
mining with human work, we use a distinct difficulty parameter from the proof
of human-work. The difficulty parameter of the proof of work is chosen in such a
way that mining a block using proof of work is significantly harder than mining
with proofs of human-work. This ensures that the mining process is dominated
by PoH and proof of work is only used as a fallback mechanism.

3.4 Choosing the Captcha Generators

One important design consideration is the choice of the captcha generators.
In this paper we discuss only a static consortium. However, it is possible to
choose captcha generators dynamically based on the randomness contained in
the blockchain. This is explained in the full version of the paper [22].

Static Consortium: In the most simple case we can assume a consortium of
k fixed entities. If some of them are not online, no proof of work puzzles will
be generated. In this case proof of work can be used as a fallback mechanism
as explained above. Thus, if the captcha generators are not online, our system
collapses to proof of work mining. Due to our use of SPDZ [9] we can tolerate up
to k − 1 cheaters. However, if all k parties collude, they may be able to generate
captchas where they already know the solution and thus mine faster than any
human miner, achieving a significant financial gain. We can remedy this situ-
ation by providing incentives for captcha generators to expose collusions and
then punish the colluding parties and reward the traitor (see next paragraph).
Intuitively this provides incentives for the traitor to reveal collusion, thus pre-
venting the formation of collusions in the first place. For this to work the captcha
generators additionally publish a signed commit on their shares of the solution
σ. These can be included in the information used to verify that the puzzle was



uMine: A Blockchain Based on Human Miners 33

generated by the correct parties τ which consists of the signed shares of the
puzzle.

The Traitor Reward Protocol: The traitor reward protocol has two rounds.
In a first round any captcha generator can claim that the captcha generators
colluded by publishing the particular shares of the puzzle solution of each captcha
generator. If collusion influenced the creation of the current block, at least the
miner of the block knows this information.2

Other parties are allowed to chime in with their claims of collusion by also
publishing commits to the respective shares of the captcha generators. After a
fixed timespan the first round ends and the second round starts.

In the second round the captcha generators have to reveal their commitments
on their shares of the solution. If any of them does not comply within a fixed time
period, collusion can be assumed. The claims of the supposed traitors are handled
in the order of their arrival. Note that since we are in a distributed setting
there is no global time. However, since we want to reward only some traitor to
deter collusion and not necessarily the first traitor, this poses no problem. The
claimed shares of the solutions are compared with the real shares of the captcha
generators and if they coincide, collusion has occurred. In this case, the witness
of collusion can be persisted in the blockchain as a regular transaction and the
block reward of the fraudulent block is granted to the traitor. Note that there
is no need to invalidate the block which has been mined fraudulently, since it
contains only valid transactions and thus, is a valid block.

The time periods for the traitor reward protocol need to be chosen appro-
priately and the block reward needs to be locked for a fixed amount of time to
prevent that it is already spent before collusion claims can be handled.

Consequently each captcha generator can choose to either collude or not
collude and orthogonally to betray the other nodes or refrain from doing so,
leading to the four strategies (collude, betray), (not collude, claim betrayal),
(collude, not betray), and (not collude, not claim betrayal). The incentives need
to be designed such that not colluding and not claiming betrayal has to be the
strictly dominant strategy in a game-theoretic sense, because this is the behavior
we want to support in the captcha generators. Colluding and not betraying the
others needs to be a strictly dominated strategy, such that colluding nodes gain
a profit from betraying the other conspirators. However, the profit needs to be
smaller than if there would have been no collusion at all. Otherwise it may be
rational to stage betrayal and share the reward with the other nodes. For the
other two strategies there are no restrictions.

2 It may be the case that the k colluding parties decide to reveal the solution to the
PoH by MPC, such that no one knows the partial solutions of the other captcha
generators. Even then k − 1 nodes can collude to reveal their particular shares,
recompute the missing share of the last captcha generator, and claim betrayal. This
increases their reward in contrast to not betraying the last captcha generator. For
our cases it is irrelevant if a subset of captcha generators or only a single one claims
betrayal. Though for the sake of simplicity we assume a single traitor.
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It is interesting to note that under the assumption of rational actors the
traitor reward protocol will never be executed. Thus, collusions are prevented
by the existence of the traitor reward protocol and not by its execution.

4 Security

Additionally to the trust assumptions in usual blockchain systems, we require
that at least one of the k captcha generators is honest due to our use of SPDZ [9].
For the security of our PoH scheme we require that it is instantiated with a secure
captcha system. If this is not the case and the captcha can be solved without
human work, our uMine construction will not lose its functionality but instead
degrade to a form of proof of work. Other than the use of a secure captcha we
do not impose any additional trust assumptions.

Since our main focus is to substitute the proof of work by an environmentally
friendly alternative, some of the attacks in Bitcoin also affect our scheme. In
particular, since we treat forks as in Bitcoin, our construction is vulnerable to
51% attacks and eclipse attacks [16]. Although, to successfully pull off a 51%
attack an attacker needs to be in charge of more than 50% of the human work
units in the system instead of more than 50% of the computational resources, as
in Bitcoin. However, we do not introduce any new security vulnerabilities under
our assumptions.

In the following we discuss the infeasibility of selected attacks.

History Rewriting: If old transactions are changed in the blockchain, the solu-
tion to the captcha is invalidated, since the transactions are also used in the gen-
eration of the puzzle Zi from the solution σi as follows: Zi = C.G

(
PP , σi;H(Bi−1,

H(Tx i), σi)
)
.

Finding two sets of transactions Tx i �= Tx ′
i which yield the same puzzle

Zi for the solution σi, implies that H(Bi−1,H(Tx i), σi) = H(Bi−1,H(Tx ′
i), σi),

since C.G is collision-free in its randomness by assumption. So, an attacker would
have to find a collision in the slow hash function H to successfully change the old
transactions which is assumed to be infeasible. Note that changing the solutions
σi also does not yield an attack, since they are referenced in the next block.

Thus, the only way left to change transactions already persisted in the
blockchain would be to split the chain after this block and redo the human
work. This is only possible if an attacker controls more than 50% of the human
resources in the network.

Transaction Denial Attack: In a transaction denial attack, the attacker tries
to prevent a transaction from being confirmed. If the attacker is a human miner,
it can only succeed if his chain grows faster than the chain containing the trans-
action it wants to censor. This is exactly the case if it has more than 50% of
the human power in the system. As soon as that is not the case anymore, the
transaction will be included in the blockchain.

If the attacker is one of the captcha generators instead, it cannot prevent
inclusion of the transaction in the chain, by not serving a captcha to the miners
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which want to include that specific transactions. That is due to the fact that the
captcha generators do not see the transactions but only their hash. Identifying
if a transaction is included in a set of transactions, given only the hash of the
set is infeasible.

Thus, an attacker is unable to target specific transactions for denial.

Bruteforcing of Solutions: Since captchas usually do not have much
entropy—image based captchas consists of up to 12 characters—an attacker
A may have the idea to simply brute-force the solution σi to a puzzle Zi. This
would possibly allow A to mine a block without spending human labor on it.

While we can almost never fully prevent brute-forcing, our use of a slow
hash function impedes the attempts of the attacker. To brute-force a solution,
an attacker needs to guess a σ′

i, compute Z ′
i = C.G

(
PP , σ′

i;H(Bi−1,H(Tx i), σ′
i)

)
and then check if Z ′

i = Zi. I.e., A needs to evaluate a slow hash function for each
guess, which is expensive.

5 Related Work

There is a series of related work which suggests an alternative to Bitcoin’s waste-
ful proof of work.

The most famous among these approaches is probably proof of stake [6,20],
where the scarcity used to power the blockchain is the underlying currency itself.
In proof of stake the miner of the next block is chosen pseudorandomly among the
set of all miners. The probability of a miner being chosen to create a new block
is dependent on its wealth which can lead to an undesirable “rich get richer”
scenario. A common problem in proposals for proof of stake is that in the case of
a blockchain fork miners have nothing to lose by trying to mine on both chains,
thus preventing the fork from resolving. Peercoin [20] solves this problem by
including centralized checkpoints in the code, thus introducing a trusted third
party. Other protocols such as Algorand [15] do not provide incentives for the
participants. The first construction to provably solve the proof of stake problem
is due to Kiayias et al. [18].

Other approaches to substitute proof of work are proofs of storage [21,25]
i.e., proving possession of a specific file, or proofs of space [4,13], where a miner
only constructs a proof about the size of its memory resources. However, these
approaches will also invariably degrade into a hardware arms race and thus do
not solve the problem of the vast energy consumption of blockchain technology.

A spiritual predecessor of our work is HumanCoin [8]. However HumanCoin
is based on a PoH based on indistinguishability obfuscation [14], a cryptographic
principle where no construction is known yet and thus is currently infeasible.

Their construction of a PoH, and consequently HumanCoin requires a trusted
setup phase for the generation of the obfuscated programs which are used to
generate the captchas without revealing the solutions.

If the unobfuscated programs are known, miners can generate puzzle-solution
pairs to the PoH without spending any human work by running the puzzle-
generation in the clear. In contrast, in our work we are able to verify that the
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puzzles have been created in such a way that no-one knows the solution by
publishing and verifying the signed final shares of the captcha generators τ .

In HumanCoin, collision-freeness of the captcha puzzle generation algorithm
is not stated, but if this is not assumed their scheme is trivially insecure. Their
PoHs are generated by xi = C.G

(
PP ;H(Tx i, hi−1)

)
, where hi−1 is the hash

of the previous block. If there is no collision resistance in the randomness, old
transactions can be changed without changing the puzzle, thus invalidating the
integrity of the transactions stored in blockchain.

HumanCoin does not implement any countermeasures against brute-forcing
the solution to the PoH from its verification function in contrast to our use of a
slow hash function.

In contrast to HumanCoin our PoH puzzle generation phase is online and
requires k captcha generators. However, this poses no problem, since to mine new
blocks a miner has to receive new transactions and blocks and thus is required
to be online anyway.

6 Conclusion

We have introduced uMine, an energy-efficient alternative to proof of work min-
ing which utilizes human workers. Our construction is based on a novel instan-
tiation of proofs of human-work which relies on MPC, thereby answering an
open question of Blocki and Zhou [8] whether proofs of human work without
indistinguishability obfuscation are possible. Our proof of human-work scheme
is introduced as a separate building block and thus may find applications beyond
cryptocurrencies.

Our uMine system may share similarities with early manual accounting sys-
tems, whose bookkeepers were financially compensated. Additionally, our sys-
tem decentralizes the ledger and provides anyone with the opportunity to be
an accountant, provided it accepts the remuneration. We leave the social and
economical implications of our work as an open question.
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Abstract. Domain Generation Algorithm (DGA) has been outfitted by
various malware families to extend the resistance to the blacklist-based
techniques. A lot of previous approaches have been developed to detect
the DGA-based malware based on the lexical property of the random
generated domains. Unfortunately, attackers can adjust their DGAs to
produce domains by simulating the character distribution of popular
domains or words and thus can evade the detection of these approaches.

In this work, we develop an approach from a novel perspective, i.e.,
the query time lags of non-existent domains (NXDomain), to mitigate
DGA-based malware without the lexical property. The key insight is that,
unlike the benign hosts, the hosts infected by the same malware families
will query a lot of NXDomains in inherent time lags. We design a system,
LagProber, to detect infected hosts by analyzing the distribution of time
lags. Our experiment with a week of real world DNS traffic reveals that
LagProber is able to detect the infected hosts with low false positive
rate.

Keywords: Domain Generation Algorithm · DGA-based malware
Time lag · NXDomain queries

1 Introduction

Domain Generation Algorithm (DGA) has been outfitted by various malware
families to extend the resistance to the blacklist-based techniques. Cybercrim-
inals utilize DGAs to produce random domains and select a small subset for
actual command and control (C&C) use. The randomly generated and short
lived C&C domains render detection approaches that rely on static domain lists
ineffective.

As the domains generated by the DGA-based malware consist of random
and unreadable character concatenations, a lot of researchers have developed
detection techniques, e.g., [8,22,25,28,30–32,34], based on the lexical property.
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However, these random domains can also be generated by simulating the read-
able strings. For example, in [11], the authors present a method to generate
domains based on the character distribution of the words in English dictionary
and their experiment proves that their method can significantly degrade the lexi-
cal property-based detection techniques such as [8,34]. In this case, more intrinsic
features should be extracted without the lexical property to detect DGA-based
malware.

In this work, we develop an approach from a novel perspective, i.e., the query
time lags of NXDomains, to mitigate DGA-based malware without the lexical
property. The key insight is that, unlike the benign hosts, the hosts infected by
the same malware families will query a lot of non-existent domains (NXDomains)
in inherent time lags to find the rendezvous points for C&C connection. Moti-
vated by this peculiarity, we design a system, LagProber, to detect the infected
hosts by analyzing the query time lags of NXDomains. LagProber extracts fea-
tures from the distribution of query time lags, and implements a clustering
method to identify the infected hosts. In contrast with the other DGA-based
malware detection approaches using the time-based features, e.g., periodicity of
C&C connections and change points of NXDomain traffic, our features can be
extracted in a shorter period and do not rely on specific time patterns. More-
over, the features extracted from time lags can be used compatibly with the
periodicity-, change point- or lexical-based detection.

In summary, our research makes following contributions.

(1) We develop an approach from a novel perspective, i.e., the query time lags
of NXDomains, to detect DGA-based malware. Our approach is able to
identify the infected hosts without the lexical property which is easy to be
obscured by attackers.

(2) We design a system, LagProber, to identify the DGA-based malware by
analyzing the query time lags of NXDomains. LagProber implements an
unsupervised algorithm and thus can run without prior knowledge; and the
key advantage is that it can detect the DGA-based malware without the
lexical property.

(3) We evaluate LagProber using a week of real world DNS traffic collected
from a large ISP network to show the efficacy. The result illustrates that
LagProber can accurately detect the DGA-based malware and has scalable
performance.

Organization. The rest of the paper is organized as follows. In Sect. 2, we illus-
trate the background and motivation. The system design is introduced in Sect. 3
and evaluated in Sect. 4. We discuss the limitations in Sect. 5, and summarize
the previous works in Sect. 6. At last, in Sect. 7, we conclude this work.

2 Background and Motivation

In this section, we first introduce the background knowledge of the domain gen-
eration algorithm and then illustrate the motivation of our approach.



LagProber: Detecting DGA-Based Malware 43

2.1 Domain Generation Algorithm

DGA is an advanced DNS technique used by sophisticated malware families.
The attackers periodically generate thousands of domains, which can be used
as rendezvous points for C&C communication. Among these domains, only a
small number of them are used as actual C&C domains at a certain moment.
The real C&C domains only live for short periods before they are replaced with
other domains; thus, if the C&C domains are retained by the responders, the
C&C communication will persist. The large number of potential C&C domains
complicates taking down the C&C servers.

The generated domains are computed based on a given seed, which can con-
sist of numeric constants, the current date/time, or even Twitter trends. In most
cases, the character distribution of random generated domains is distinct with
that of the benign domains. One can detect DGA-based malware by identify-
ing the random domains. However, as aforementioned in Sect. 1, the domains
can be generated by simulating the English dictionary words [11], which can
significantly degrade the detection approaches based on the lexical property.

Table 1. The time lags of different malware families.

# Family Time lag

1 PadCrypt 0 s between domains

2 Kraken 0 s between domains

3 Proslikefan 0 s between domains

4 Corebot 0 s between domains

5 Pykspa 0 s between domains

6 DirCrypt 0 s between domains

7 Necurs 0 s between domains

8 Symmi 0 s between domains

9 Ramnit 0 s between domains

10 Ranbyus 500 ms between domains

11 newGOZ 1 s between domains

12 Sisron 3 s interval between domains

13 Shiotob 5 s between domains

14 Qadars v3 20 s after 200 domains

15 Banjori as long as DNS query for www.google.de succeeds

2.2 Query Time Lag of NXDomains

In this work, we develop our approach from a novel perspective, i.e., the query
time lags of NXDomains, to detect DGA-based malware without the lexical
property. This is motivated by the fact that the infected hosts don’t know the

www.google.de
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exact C&C domain and have to query a large amount of generated domains until
an available response. Therefore, a sequence of query time lags of the NXDomains
can be collected to extract the features for detection.

In Table 1, according to the analysis report in Johannes’ blog [5], we sum-
marize the time lags of 15 DGA-based malware families. Nine of them query
their domains without waiting, five of them implement invariable intervals and
one of them alternatively queries the generated domains and www.google.de. No
matter what kind of the time lag the attackers implemented, the hosts infected
by the same DGA-based malware will have the same distribution. Particularly,
when an infected host query a lot of generated domains, the distribution of time
lags is consistent. Motivated by this finding, we design a system, LagProber, to
detect DGA-based malware by clustering the hosts with similar distribution of
the query time lags of NXDomains. The detail of LagProber will be introduced
in the following.

3 System Design

In this section, we present our system, LagProber, to show how it works based
solely on the query time lags of NXDomains. It is noticeable that LagProber
only analyzes the second level domains (SLDs) and domains served by dynamic
DNS such as ddns.net. A SLD is a domain directly below a top-level domain
(TLD) like .com and .net, or a ccSLD like .ac.uk and .co.uk. The dynamic DNS
domains analyzed in our work are the same as the ones listed in [18]. The reason
for analyzing these two types of domains is that the DGA-based malware families
usually map their servers to them. Thus, unless otherwise noted, when we talk
about domains or NXDomains we refer to the two types of domains.

3.1 Architecture

The architecture of LagProber is shown in Fig. 1. LagProber takes DNS traffic
as input and the Collector records the NXDomain queries for analysis. For each
host, the Feature Generator extracts the features from the distribution of query
time lags of NXDomains to generate the vectors. The Group Analyzer performs
a clustering process on the vectors to gather similar ones and outputs a set
of candidate clusters. The Significance Analyzer implements a significance
detection process to identify if any infected hosts there. In the following, we will
introduce the details of the four components, i.e., Collector, Feature Generator,
Group Analyzer, Significance Analyzer.

We maintain a finite-state machine to manage the whole workflow of our
system. The state machine is shown in Fig. 2. LagProber starts from the Idle
state. If there is no host querying more than 10 NXDomains (nnx < 10), Lag-
Prober keeps waiting. When a host queries more than 10 NXDomain (nnx > 10),
LagProber comes to the Preparing state. The Feature Generator extracts
the vector from the distribution of the time lags. If the waiting time t exceeds
1 h (the time window), LagProber comes to the Detecting state, or else it comes

www.google.de
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Fig. 1. System Architecture.

back to the Waiting State. In the Detecting state, the Group Analyzer clus-
ters the vectors and Significance Analyzer reports the infected hosts. Then,
LagProber resets the system (e.g., t = 0 and) and goes back to the Waiting
state.

Fig. 2. System Workflow.

3.2 Collector

The Collector collects the NXDomain traffic produced in the monitored network
and filters out the non-malicious NXDomains to improve the system efficacy. In
this work, we consider an NXDomain as non-malicious when it satisfies one of
the following conditions.

– Invalid Top Level Domain (TLD): A domain is considered as non-malicious
if its TLD is not in the list of registered TLDs presented by IANA [4].

– Irregular characters: A domain contains the characters that should not
be included in regular domain (consisting of only letters, numbers and
dashes/hyphens). This domain is probably caused by the typing error or mis-
configuration.

– Popular domains: We consider the top 100,000 domains in Alexa [1] and web-
sites of world’s biggest 500 companies from Forbes [3] as popular legitimate
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domains. These NXDomains are mostly utilized by benign services to transfer
disposable signals [10].

3.3 Feature Generator

When host hi queries more than m NXDomains d1, d2, ..., dm (in this work we
set m = 10 to achieve a fast detection) with timestamps t1, t2, ..., tm, LagProber
extracts the time lags of the queries, i.e., St = {lk : tk+1 − tk}, k ∈ [1,m − 1].
We only focus on the distinct domains in a single day due to that repeatedly
queried domains have no help to find the rendezvous point for C&C connection.

Although most DGA-based malware families in Table 1 prefer to query the
domains with constant time lags, some sophisticated ones can still implement the
time lags based on some probability distribution, e.g., Gaussian distribution, to
obscure the similarity. Anyway, they have the similar statistic values, e.g., mean
and standard deviation, of St. Therefore, six statistic values, i.e., the mean,
variance, median, maximum, minimum and mode (the most frequent value), of
St are extracted by this component to construct vector vi.

3.4 Group Analyzer

The Group Analyzer performs a clustering process to gather the similar vectors.
Since the number of DGA-based malware families in the monitored network is
unsure, LagProber implements a hierarchical merging algorithm, which does not
require the number of clusters as input. This algorithm is a clustering approach

Algorithm 1. Clustering Process
Require: Sv = {vi}, i = 0, 1, ..., p containing vectors generated by the Feature Gener-

ator Component;
Ensure: Sc = {ck}, k = 0, 1, ..., q containing the outputted clusters.
1: C ← Sv

2: while |C| > 0 do
3: ci, cj , dij ← getCloestPairOfClusters(Sv)
4: ai = mean(ci) + 2 ∗ std(ci)
5: aj = mean(cj) + 2 ∗ std(cj)
6: if dij < max{√|v|,min{ai, aj}} then
7: C ∪ merge(ci, cj)
8: end if
9: if dij > ai then

10: Sc ∪ ci
11: remove(C, ci)
12: end if
13: if dij > aj then
14: Sc ∪ cj
15: remove(C, cj)
16: end if
17: end while
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that merges the most similar pairs of clusters as one moves up the hierarchical
until the terminated conditions are satisfied. In our work, the Euclidean distance
is selected as the similarity measures.

In Algorithm 1, we present the workflow of the clustering process. First, con-
sidering each vector generated by the Feature Generator component as a sin-
gle cluster, the function getCloestPairOfClusters extracts the closest pair of
clusters (ci and cj) and returns their distance dij . Second, LagProber deter-
mines whether dij is too large for ci and cj by comparing dij with the value of
ai = mean(ci) + 2 ∗ std(ci), where mean(ci) and std(ci) represent the mean and
standard deviation of the internal distances of the vectors in ci, respectively. As
shown in Table 1, the time lags of most DGA-based malware families are less
than 1 second. The distances of the vectors generated by them are very likely

less than
√|v| =

√∑|v|
i=1(12 − 02), where |v| is the size of vector. Therefore, if

dij < max{√|v|,min{ai, aj}}, LagProber merges ci and cj . Third, if dij > ai

or dij > aj , which indicates that there is no cluster similar to ci, LagProber out-
puts cluster ci or cj . At last, if no cluster can be merged, the clustering process
is terminated.

3.5 Significance Analyzer

When the infected hosts try to connect the C&C servers, they will query much
more NXDomains than the benign ones and the feature vectors will be more
similar. As a result, one or more clusters will contain much more items than
the other ones. Hence, LagProber implements a outliers testing algorithm, i.e.,
one-side Grubbs’ test [12], also known as the maximum normalized residual test
or extreme studentized deviate test, to search for the significantly larger clusters
in the result of Group Analyzer.

According to Grubbs’ test, we define two hypothesis H1 and H0 denoting
if there is a significantly large cluster or not, respectively. Assuming q clusters
c1, c2, ..., cq have been outputted by the Group Analyzer, the statistic test is:

G =
max

i=1,...,q
{|ci| − |c|}
s

, (1)

where |ci| is the size of cluster ci, |c| is the mean size and s is the standard
deviation of the sizes. The hypothesis H0 is rejected at a significance level α (set
as 0.001 in our work) if

G >
q − 1√

q

√√
√√

t2α
2q ,q−2

q − 2 + t2α
2q ,q−2

, (2)

where t α
2q ,q−2 denotes the upper critical value of the t-distribution [33] with

q − 2 degrees of freedom and a significance level of α
2q . In Fig. 3, we present the

workflow of the significance test in this component. As the Grubbs’ test only
examines the maximum, when the hypothesis H0 has been rejected, LagProber
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identifies the corresponding cluster as malicious and removes it for the next
round of test. If hypothesis H0 is accepted, the test process is terminated.

Fig. 3. Workflow of the significance test.

Besides the significantly large clusters, we also consider the clusters con-
taining significantly similar vectors as malicious. Since most of the DGA-based
malware families implements 0 s time lag to query the domains, we determine a
cluster as malicious when the max distance of the internal vectors is less than√|v|. At last, LagProber reports all the hosts generating the vectors in the
significantly large or similar clusters as malicious.

4 Evaluation

In this section, LagProber is evaluated on a week of real world DNS traffic.
We first introduce the dataset used in our evaluation and analyze the detection
result. Then, we present the system performance of LagProber.

4.1 Dataset

Our dataset is collected from an ISP network which offers Internet services to the
Chinese education, research, scientific and technical communities, relevant gov-
ernment departments, and hi-tech enterprises. We obtained DNS traffic collected
on the edge of this network from May 1st, 2018 to May 7th, 2018. The summary
of our dataset is presented in Table 2. Qtotal and Qnx represent the number of
total and NXDomain queries, respectively. Since LagProber only processes the
NXDomain traffic (with about 5% of the volume of the total traffic), the exact
volume of dataset is significantly reduced. It is noticeable that we rule out the
traffic of DNS servers (hosts opening the 53 port for service) in this dataset.
This is because LagProber is designed to work under the recursive servers and
the behaviors of DNS server are not feasible to represent the human activities.

Labeling. To label the infected hosts in our dataset, we first extracts the
response IP addresses mapping to more than 50 distinct SLDs. This is because
the C&C IP addresses used by DGA-based malware families are very likely to
map with multiple domains. Then, we manually examine the domains with the
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Table 2. Summary of our dataset.

Date Qtotal Qnx

2018-05-01 154,548,745 8,352,698

2018-05-02 250,951,430 10,874,362

2018-05-03 226,918,325 10,823,140

2018-05-04 138,368,609 6,085,376

2018-05-05 159,469,521 8,260,969

2018-05-06 154,055,202 8,450,981

2018-05-07 134,670,589 6,940,916

Total 1,218,982,421 59,788,442

help of V irustotal [7] and ThreatCrowd [6] to ensure the malicious. As a results,
we identify 17 infected hosts.

We classify the 17 infected hosts into 3 categories, i.e., dga-1, dga-2 and
dga-3, based on the character distribution. The domain samples are presented
in Fig. 4. The dga-1 domains are constructed by numerics, the dga-2 domains
are similar with the traditional DGA-based malware families that random select
characters, and the dga-3 domains are very likely generated by the HASH-based
DGA [23]. The dga-1 and dga-3 infected hosts query domains with no waiting
while the dga-2 infected hosts consecutively query a few domains per 7 s.

Although the number of hosts is small, the large amount of DNS traffic gives
us a good chance to measure the false positive rate, which is very important for
real world usage. In the following, these infected hosts are used as ground truth
to analyze the result.

Fig. 4. Domain samples queried by the infected hosts.
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4.2 Result Analysis

In Table 3, we present the detection result of LagProber. TPr and FPr denote
the true and false positive rates, respectively. Dh denotes the ratio between the
number of detected infected hosts and the total number Ninf of active infected
hosts. As one host can generate multiple vectors, the metrics, i.e., TPr and FPr,
are calculated based on whether LagProber correctly or falsely classifies a host in
a certain time window (1 h). For example, if the vectors generated by an infected
host are clustered in a significantly large cluster, we identify a true positive. The
true negative, false positive and false negative can be identified similarly. Besides,
we also manually examine the classified vectors to ensure the malicious. This is
because that the infected hosts can also generate benign queries, and if they fail
to connect the C&C servers the positive vectors can not be labeled solely based
on the ground truth.

Table 3. Summary of the detection result.

2018-05-01 2018-05-02 2018-05-03 2018-05-04 2018-05-05 2018-05-06 2018-05-07

TPr 90% 82% 87.5% 90% 100% 100% 88.5%

FPr 3.4% 6.8% 2.9% 0.9% 0.9% 0.6% 0.8%

Dh 100% 100% 100% 100% 100% 100% 100%

Ninf 8 9 11 8 5 12 11

As shown in Table 3, the TPr of LagProber is about 90% in average. The false
negatives mainly emerges in the case that the number of vectors generated by
the infected hosts is too small to construct a significantly large cluster. Anyway,
LagProber can detect all the infected hosts (with Dh = 100%).
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Fig. 5. The relationship between the size and maliciousness of clusters.

The FPr of LagProber is about 2% in average. The false positives are mainly
caused by the small clusters being identified as significantly large by Grubbs’
test. These small clusters are accidentally by the Network Address Translation



LagProber: Detecting DGA-Based Malware 51

(NAT) routers in the monitored network when they query a sequence of distinct
NXDomains in a short period. In Fig. 5, we present the relationship between
the size and maliciousness of clusters. The abscissa axis represents the size of
clusters and the vertical axis denotes the ratio of malicious ones. When the size
of clusters is 5, the ratio of malicious ones is 90% and when the size exceeds
6, all of the clusters are malicious. Hence, to reduce the false positives, one can
simply set the threshold as 6 to identify the significantly large clusters.

In conclusion, LagProber can detect all the infected hosts with less false pos-
itive rate. This illustrates that the features extracted from the time lags can be
utilized to effectively detect the DGA-based malware. Besides, since most hosts
in our dataset are the NAT routers, LagProber can achieve a better performance
when processing the traffic generated from local or enterprise networks which
contain more personal computers.
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Fig. 6. System performance.

4.3 System Performance

In our experiment, we run LagProber on Ubuntu 12.04 with CPU Intel(R)
Xeon(R) CPU E5-2620 0 @ 2.00 GHz and 32 GB memory. As shown in Fig. 6,
our system spends about 25 min to analyze the traffics (about 24 GB in bro
DNS log format [2]) collected in May 1st, 2018. Since we rule out the repeatedly
queried domains in a single day, usage percentage of CPU raises up to 90% at
the beginning and then gradually decreases to about 9%. LagProber only stores
the vectors generated in an hour so that the memory usage is less and stable
(about 0.3%). In summary, when running on the traffic collected from a large
scale network, the CPU usage rate is 22.5% in average and the memory usage is
about 1 GB. All the results prove that LagProber has scalable performance.

5 Discussion

Limitation. The limitations of this work are as follows. First, the dataset only
contains few kinds of DGA-based malware families due to that it is not easy
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to find the real world traffic of DGA-based malware families with distinct time
lags. However, as we can see in Table 1, the time lag (0 s), of most malware
families is the same as dga-1 (Sect. 4.1), which indicates LagProber can detect
most of them. Second, the attacker can implement long time lags, which is more
similar with benign hosts, to evade our detection. In this case, a longer time
window can be used for accurate detection. Moreover, they have to spend much
more time to connect the C&C servers, and the utility of the infected hosts to
attacker is reduced or limited because the attacker can no longer command his
bots promptly and reliably.

Comparison. The most generally time-based features to detect DGA-based
malware are the periodicity of C&C connection and the change point of the
NXDomain traffic. First, for the periodicity-based detection approaches, multi-
ple C&C connections are needed to extract the features while time lags of the
NXDomains can be extracted in a single C&C connection. If the infected hosts
do not periodically connect the C&C servers, the periodicity-based approaches
are ineffective. Second, for change point detection approaches, it is difficult for
them to accurately detect DGA-based malware because of that the benign hosts
are also very likely to generate the suddenly increased traffics. Hence, the previ-
ous works [9,34] should utilize other evidences, like lexical or whois features for
accurate detection, while LagProber can achieve a low false positive rate merely
based on the features extracted from time lags. Last but not least, the features
extracted from time lags can be used compatibly with the periodicity, change
point or lexical-based detection. For example, when the periodicity or change
point is detected, one can also analyze the time lags to improve the accuracy.

6 Related Work

A wealth of researches have been conducted on detecting DGA-based malware.
They mainly utilize the lexical property of the generated domains. Antonakakis
et al. [8] introduce a system, Pleiades, to detect DGA bots in large scale network
by clustering the NXDomains with the similar character distribution generated
by the same DGA-based malware families. Sharifnya et al. [26] present a rep-
utation system to detect DGA botnets by periodically clustering DNS queries
with similar characteristics. Schiavoni et al. [25] present a system, Phoenix, to
track and fingerprint DGA botnets by clustering domains with similar character
distributions. Wang et al. [29] present a system, DBod, to detect DGA botnet by
searching for the similar set of NXDomains queried by the bots. Thomas et al.
[27] present a method to detect DGA domains by clustering the NXDomains with
similar character distributions queried by distinct recursive DNS servers. Yadav
et al. [32] introduce three metrics, i.e., K-L divergence, Jaccard Index and Edit
distance, to detect DGA domains sharing the same postfix or C&C IP addresses.
Yadav et al. improve their work [32] using NXDomains and temporal correlation
in [31]. Zhang et al. [34] present a system, BotDigger, to detect a single bot
by searching for the suddenly increasing and decreasing random generated SLD
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queries before and after C&C connection. Mowbrey et al. [22] present an app-
roach to detect a DGA bot by examining the anomaly domain length distribution
in a time slot. Luo et al. [20] and Truong et al. [28] present a set of lexical fea-
tures to separate a DGA domain from a popular one. Woddbridge et al. [30] and
Lison et al. [19] present deep learning methods to predict a DGA domain. While
existing solutions demonstrate their effectiveness in detecting malicious servers
or server infrastructures, they still can be significantly degraded by generating
readable domains [11].

Krishnan et al. [15] implement Threshold Random Walk algorithm [13] to
identify an infected host in a fast way without analyzing the lexical property.
Their approach relies on the assumption that an infected host is more likely to
query a previously unseen NXDomain than a benign host. They have to train
the parameters based on at least 24 hours traffic every time when they deploy
their approach. Besides, since the malicious samples are not easy to achieve,
the probability that an infected host queries a previously unseen NXDomain
is pretty difficult to be estimate. Conversely, LagProber detects infected hosts
needs no malicious samples.

Except the above DGA-based malware techniques, some botnet or malware
domain detection approaches without the lexical can also be utilized to detect
DGA domains. Manadhata et al. [21] utilize belief propagation algorithm on
graphical models to detect malicious domains. Lee et al. [17] develop a malicious
domain detection technique using the sequential correlation property of malicious
domains. Khalil et al. [14] and Rahbarinia et al. [24] present methods to infer
the suspicious domains which have strong relationship with the known malicious
ones. Bilge et al. [9] introduce EXPOSURE to detect malicious domains. They
extract 15 features and divide the features into Time-based, DNS answer-based,
TTL value-based and Domain name-based. Then, a detection model is trained
by using decision tree algorithm. Kwon et al. [16] present PsyBoG to detect
botnet by analyzing similar periodicity of the bots. The graph-based approaches
[17,21], which need plenty of samples and time to build and process a graph
structure, are resource consuming. The time-based approaches [9,16] rely on
longer term time patterns, e.g., active time in a month [9] or periodicity of C&C
connection. In contrast, LagProber detects DGA-based malware families in a
short term mode, i.e., the time lag between two NXDomain queries, and does
not rely on the periodicity.

The aforementioned systems are mostly limited by the lexical property, and
thus work only on random generated domains. LagProber is a novel general
detection system that does not have such limitations and can greatly complement
existing detection approaches.

7 Conclusion

In this work, we develop a system, LagProber, to detect DGA-based malware
that is independent of the lexical property of the generated domains. Our system
exploits a new essential property of DGA-based malware, i.e., hosts infected
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by the same malware family will exhibit similar patterns of the query time
lags of NXDomains. In our experimental evaluation real-world network traces,
LagProber shows excellent detection accuracy with a very low false positive rate
on normal traffic.
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Abstract. In recent years, botnets continue to be an ever-increasing threat on
the Internet. To be well prepared for future attacks and ensure the cyberspace
security, defenders take more attention on advanced botnet designs that could be
used by botmasters. In this paper, we design an advanced botnet based on
publicly available resources, and implement its prototype system, which is
named as PR-Bot. First of all, in terms of system design, PR-Bot is completely
constructed based on the third-party publicly available resources and supports
the bidirectional communication between the control end and the controlled end.
At the same time, the system’s command and control (C&C) channel consists of
three sub-channels: command control channel (CC channel), command
addressing (CA channel) and result feedback (RF channel), making it extremely
robust and concealed. Secondly, in terms of defense technology, this paper
proposes the targeted defense strategies from the perspective of detection,
measurement and tracking, so as to achieve the goal of combating against such
botnets. In short, the ultimate purpose of this paper is not to design a highly
harmful botnet, but to accurately predict the techniques that the botnet may
adopt in the future and assess its new threats from the point of attack and
defense.

Keywords: Publicly available resource � Command and control
Bidirectional communication � Defense technology

1 Introduction

1.1 Background

A botnet refers to a group of compromised computers that are remotely controlled by a
botmaster via C&C channels [1]. Based on botnets, multiple types of Internet attacks
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can be initiated, such as: DDoS (Distributed Denial of Service), Email Spam, Bitcoin or
Monero Mining, etc. At present, the studies on botnets can be summarized into two
aspects: attack technology and defense technology. The purpose of studying attack
technology is predicting the attack trends and techniques of future botnets, so as to
prevent the possible emerging botnet activities; and the purpose of studying on defense
technology is improving the detection efficiency of botnets and discovering the botnets
that are already in the cyberspace but not yet exposed in a timely manner, so as to
reduce the actual harm caused by them.

In the early days, attackers usually controlled the bot based on the IRC [2, 3] or
HTTP [4, 5] protocol. This centralized architecture is simple, efficient and highly
interactive, but is vulnerable to single point of failure. Although a modified architecture
based on the Domain-Flux [6] or Fast-Flux [7] protocol that appeared later can elim-
inate this problem certainly, it may be attacked by Sinkhole [8]. In order to make up for
the deficiency of centralized botnets, botnets using P2P protocols as C&C channels
have also evolved. In a P2P botnet, the botmaster can issue commands at any node, so
it can hide the real address of the C&C server and effectively solve the single point of
failure. However, P2P botnets are not perfect, which still have inherent weakness. For
example, the structured P2P botnets, such as Storm [9, 10], are vulnerable to Index
Pollution attack and Sybil attack, and its scale is easy to be measured by Crawler and
Sybil nodes; the unstructured P2P botnets usually communicate by the way of random
scanning or peer-list, the former has the inherent weaknesses of flow anomaly, and the
latter is vulnerable to Peer-list Pollution attack.

In recent years, the new generation of botnets based on social network have been
proposed, such as: Koobface [11], Stegobot [12], etc. Among the social botnet, each
social account is a control node, which is equivalent to a C&C server in the traditional
botnet, and is used to transfer the commands between the botmaster and individual
bots. Although the social botnet can hide the malicious traffic within the normal
legitimate traffic, the social platforms are generally only applicable for the botmaster
issuing commands and cannot be used by bots to send back harvested information,
especially file information. Moreover, for the botnet based solely on the social plat-
form, its C&C channel is relatively simple, and it can be easily detected and destroyed
by the defender. Therefore, in order to make up for the inadequacies of social botnets,
this paper proposes an advanced botnet based on multiple publicly available resources.

1.2 Contribution

The goal of this paper is to study the development trends of future botnets, increase the
defenders’ understanding of the advanced botnet, and promote more effective cyber
defense to deal with the possible similar cases.

The contributions of this paper mainly include three aspects:

(1) Based on the idea of “severless botnet”, an advanced botnet based on publicly
available resources is designed. The system adopts a three-channel scheme, and
each sub-channel can be supported by multiple publicly available resources and
extended in the form of plug-in.

58 J. Yin et al.



(2) We have tested five categories and 37 websites, and the application scenarios of
each website when constructing C&C channel are discussed. Meanwhile, the
operation flow between the botmaster and individual bots is analyzed and described
in detail to verify the feasibility of the proposed model.

(3) We have analyzed the attributes and weaknesses of the PR-Bot, and propose a
practical targeted defense scheme that covers detection, measurement, and tracing.

2 The Design of PR-Bot

2.1 System Overview

Definition 1 (Publicly Available Resource Botnet). In this paper, we believe that all
botnets that construct C&C channels based on the publicly available resources (in-
cluding but not limited to: social network, URL shortener, image hosting, online
clipboard or cloud disk, etc.) could be called the Publicly Available Resource Botnet
(Fig. 1).

The basic characteristics of this type of botnets are: the botmaster no longer relies on
the self-built C&C server to control the bots, but uses the open and free website on the
Internet to act as the C&C server. All communication flows are transferred through the
Internet publicly available resources.

2.2 System Design

In botnets, no matter how complex the control model of botnet is or how powerful the
bot program is, the interaction between the control end and the controlled end usually
involves only the transfer of text information (that is: string content) or file information
(that is: binary content), as shown in Table 1.

Although there are many kinds of publicly available resources on the Internet, due
to the limitations of the nature of the publicly available resources, not all publicly

Fig. 1. Basic characteristics of publicly available resource Botnet
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available resources are suitable for issuing both text information and file information.
For example, the social platforms used by social botnets are generally only applicable
to store the commands issued by the botmaster, but not applicable to store the harvested
information sent back by individual bots, making it a one-way communication channel.

The PR-Bot, an advanced botnet designed in this paper, takes into account the
limitations of a purely social platform as C&C channels, so it combines multiple
publicly available resources and uses their respective advantages to construct C&C
channels. The PR-Bot is suitable for transmitting both text information and file
information, as well as supporting two-way communication between the botmaster and
bots. All in all, the PR-Bot adopts the three-channel scheme, and the interaction
information in each channel is distributed in different locations of cyberspace, as shown
in Fig. 2.

2.3 System Architecture

The architecture of PR-Bot is shown in Fig. 3, whose communication between the
botmaster and bots includes the following six stages:

(1) Botmaster issues the content of command: The botmaster issues the content of
command to the publicly available resources, such as an online clipboard or image
hosting website, and records the URL of the website (abbreviated as PR_Ad-
dress_A) where the command is located. For the online clipboard, the command is
issued in the form of string; for the image hosting, the command is first converted
into a picture and then issued in the form of picture.

Table 1. Interactive information between the control end and the controlled end

Text information File information

Control end Command or others Malicious program
Controlled end Callhome or others Stolen files

Fig. 2. The control model of PR-Bot
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(2) Botmaster issues the address of command: First, the botmaster selects a URL
shortener or social network that supports customized URL, designs and runs the
Username Generation Algorithm (UGA) [13], followed by selecting several can-
didate addresses (abbreviated as PR_Address_B) from the URL address pool. And
then, the botmaster issues the address PR_Address_A as content to the website
corresponding to the address PR_Address_B.
(3) Bot obtains the address of command: After the bot infects the controlled end,
to establish the communication with the control end, it will first run the UGA
algorithm consistent with the botmaster, and then traverse the URL address pool
one by one. When an address (take PR_Address_B as an example here) is found to
be accessible, it is considered that address of command is stored at this place, and
then the address PR_Address_A will be extracted.
(4) Bot obtains the content of command: After obtaining the content of command
from PR_Address_A in Stage 3, the bot first verifies its validity and availability, and
only the command that passes verification can be executed. Otherwise, the control
logic of the bot program will jump to Stage 3 and run again. Among them, “va-
lidity” refers to whether the command is within the validity period specified by the
botmaster; “availability” refers to whether the command is signed by the private key
of the botmaster.
(5) Bot feeds back the result information: For the command that needs to feed
back the result information, the botmaster is required to specify the receiving
address as a parameter in the issued command. The bot will feed back the relevant
information based on this parameter in the command and the customized protocol
with the control end.
(6) Botmaster downloads the result information: After a certain period of time,
for the command that will feed back the result information, the corresponding result
acquisition module will be run. During the operation of the module, it will
download the text information (such as callhome information) or file information

Fig. 3. The system architecture of PR-Bot

Study on Advanced Botnet Based on Publicly Available Resources 61



(such as stolen files) returned by the bot for further analysis, which is based on the
address parameter in the issued command and the customized protocol with the
controlled end.

2.4 The Standard for Selecting Publicly Available Resources

As shown in Table 2, this paper tests five major types of publicly available resources
and analyzes the specific application scenarios of each when constructing C&C
channel. Among them, PR-Bot stores the content of command based on online clip-
board or image hosting website; stores the address of command based on a URL
shortener or social network that can customized URL address; stores the stolen files
based on public cloud disk website; stores the callhome information based on online
clipboard that can customized URL address.

(1) Publicly available resource for storing the content of command

In the CC channel, when selecting an online clipboard, as shown in Table 3, PR-Bot
only considers two factors: one is the size of the space for storing information, and the
other is the length of time for storing information. And at this stage, it does not consider
whether the website supports customized URL. As long as the storage space can reach
200 KB and the storage time can reach 1 month, it means that the requirements is met.
In addition, for the image hosting website, as shown in Table 4, PR-Bot only selects
the websites that have no registration required and do not compress the pictures. And
the size of signal picture allowed to upload should meet the requirements of 1 MB.
Moreover, because the storage time supported by the image hosting website is usually
unlimited, so this factor was not taken into account here.

Table 2. Application scenarios of publicly available resources

Type Is it suitable for
issuing text?

Is it suitable for
issuing file?

Is it suitable for
issuing picture?

Application
scenarios

Online
clipboard

Y N N Store the content
of command
Store the
callhome
information

Image
hosting

N N Y Store the content
of command

URL
shortener

Y N N Store the address
of command

Social
network

Y N Y Store the address
of command

Cloud
disk

N Y Y Store the stolen
files from bot
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(2) Publicly available resource for storing the address of command

In the CA channel, we test some services and show selection standard in Tables 5 and
6. For the URL shortener website, because it itself stores the mapping relationship
between the long URL and the short URL, and the storage time is usually unlimited,
PR-Bot does not have too many restrictions when selecting such publicly available
resources, as long as it supports customized URL for dynamic addressing. Similarly,
for social network website, in order to achieve the dynamic addressing, PR-Bot only
selects the social platform that can customized homepage URL based on the user name.
In addition, priority is given to websites that support temporary mailbox registration in
order to avoid exposing too much real information about the botmaster.

Table 3. Online clipboard and its selection standard

Name Site Customized URL Storage space Storage time

dpaste http://dpaste.com/ N Unknown 1 year
pasted http://pasted.co/ N Unknown Unknown
pastebin http://pastebin.com/ N 512 KB Unlimited
wepaste http://www.wepaste.com Y Unknown Unlimited
cl1p https://www.cl1p.net/ Y Unknown 1 time
textsnip http://www.textsnip.com Y 70000 characters Unknown
showtxt http://showtxt.cn/ Y Unknown Unknown

Table 4. Image hosting and its selection standard

Name Site Registration File size limit Is it compressed?

baidu-pic http://image.baidu.com N 5 MB N
360-pic https://st.so.com/ N 2 MB Y
Imgbb https://imgbb.com/ N 16 M N
sm.ms https://sm.ms/ N 5 MB N
upload.cc https://upload.cc/ N 5 MB N
Imgur https://imgur.com/ N 1 MB N
sina http://photo.weibo.com/ Y 20 MB Y
qiniu https://www.qiniu.com/ Y Unlimited N

Table 5. URL shortener and its selection standard

Name Site Customized URL Storage time

tinyurl https://tinyurl.com/ Y Unlimited
is.gd https://is.gd/ Y Unlimited
yep.it http://yep.it/ Y Unlimited
shorturl https://shorturl.com/ N Unlimited
shorl http://shorl.com/ N Unlimited
bit.ly https://bitly.com/ N Unlimited
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(3) Publicly available resource for storing the feedback result information

In the RF channel, for the online clipboard website, except for the storage space of up
to 200 KB and the storage time up to 1 month, the website that supports customized
URL is required, for making that the botmaster can find the result information fed back
from bot by a certain rule (URL + numeric string). For the public cloud disk, as shown
in Table 7, PR-Bot mainly considers two factors: one is the file size limit, and the other
is the storage time, which is similar to the image hosting. If the website allows 10 M-
sized files to be uploaded and storage time can be up to 1 month, it is enough. In
addition, the public cloud disk is available without registration.

3 The Implementation of PR-Bot

3.1 CC Channel

PR-Bot mainly supports two types of commands, the “callhome” and “file stealing”,
which parameters are shown in Table 8.

In order to prevent C&C hijacking and replay attacks, before issuing the command,
the botmaster will specify the validity period of the command and sign the command
based on the private key. The format of the command to be issued is as follows:

Base64 (Base64 (private key signature (original command ^ validity period))
#original command ^ validity period)

Table 6. Social network and its selection standard

Name Site Customized URL Temporary mailbox

Tumblr https://www.tumblr.com Y (revisable) Y
Pinterest https://www.pinterest.com Y (revisable) Y
Ask.fm https://ask.fm Y Y
Twitter https://twitter.com Y (revisable) N
Facebook https://www.facebook.com N N
Weibo https://weibo.com N N
Qzone https://qzone.qq.com/ N N
Renren http://sns.renren.com/ N N

Table 7. Public cloud disk and its selection standard

Name Site File size limit Storage time

Sendspace https://www.sendspace.com 300 M 30
Fileden http://fileden.net/ 100 M 60
Senduit http://www.senduit.com/ 100 M 7
Zippyshare https://www.zippyshare.com/ 500 M 30
Rapidshare http://www.rapidshare.com.cn/ 100 M 30
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Take the “callhome” as an example, its original content is a string in JSON format,
which is as follows:

{
"cmd_type":"callhome",
"paste_name":"wepaste",
"address":"http://www.wepaste.com/abcde"

}

First, after specify validity period, private key signature, base64 encoding and
string splicing, the corresponding content is as follows:

bqi+YmecF62Li+INvT4xRdO8d6Z7GXY74E8qVKYwHNrCYUY7wGEuLHrm5bdfyeuQ4S7BH5fx
zIQmsQn9xY/+iPjzXv9ap/mZefCY5JCpzQ6X/uLsQPYulvihTJZ52deiQZvPRwWZtPwSCBu3si1Pga
N/mxs8eWSg17PGuWD1L37/TT7BvG+IrdozFqBQF5kILlX3hahEIqsh7DRJpDpwyfCH5Nz2K5zm7
X3apA34Sz1OL1vNxfHML2TZtNBR2LTCgtaXWa9JNiszHulPEF7pgHdTxWLuqQ/lG5Tc9/5LN04y
7evFnJETMPK+WLV4mRaFwkjlx3c6kHkZJ64eyI5qiQ==#{"cmd_type":"callhome","paste_name":"w
epaste","address":"http://www.wepaste.com/abcde"}^2018_05_12-2018_06_12

Next, if selecting the online clipboard website to store the command, it only needs to
issue the above content in the form of text to the online clipboard website, which cor-
responding address looks like http://dpaste.com/0SV8NS5. But if selecting the image
hosting website to store the command, the above content shall be converted into picture
firstly and then issued, which corresponding address looks like http://h.hiphotos.baidu.
com/image/pic/item/c8177f3e6709c93db7a0d055933df8dcd00054c6.jpg. In the pro-
cess of storing data based on picture, PR-Bot does not embed the command into an
existing picture, but directly converts it into pixels, and stores the original content in the
form of pixels. The converted image style is shown in Fig. 4.

Normally, each pixel in a colored image is composed of three color information of
RGB. Each color information occupies 8 bits, and the three colors are 24 bits, which
means that each pixel can store 3 bytes of data. For a 500*500 RGB picture, it can store
75000 bytes of data, about 730 KB, which is enough to meet the space required for
storing the command. Take the string “callhome” as an example: its hexadecimal

Table 8. The parameters of commands

Command Key Value Remark

Callhome cmd_type callhome Command type
paste_name wepaste Website name
address http://www.wepaste.com/abcde Url address

File stealing cmd_type upload_file Command type
cloud_name sendspace Website name
paste_name wepaste Website name
file_type doc File type
address http://www.wepaste.com/abcde Url address
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representation is “0x63, 0x61, 0x6c, 0x6c, 0x68, 0x6f, 0x6d, 0x65”. First, it is divided
into groups and each group consists of three units, if there are less than three, add 0 at
the end. In this way, the original hexadecimal string is divided into three groups of
{0x63, 0x61, 0x6c}, {0x6c, 0x68, 0x6f} and {0x6d, 0x65, 0x00}, and the corre-
sponding RGB can produce three pixels. That is, the string “callhome” is converted
into three pixel values. In addition, in the process of generating a picture, in addition to
recording the content of the original data, the size of the original data also needs to be
recorded to restore it normally. For PR-Bot, it uses two pixel units at the beginning of
the picture, which is the six-byte space, for recording the data size. Finally, the pixel
information in the picture consists of “data size (2 fixed pixels) + data content + 0
(may exist)”.

3.2 CA Channel

When issuing the address of command, the botmaster designs a UGA algorithm, which
seed is based on the current date and hottest topics. This method is to prevent the
address list generated by the bot from being predicted prematurely by the defender. The
generated address list is as follows:

URL Shortener:
https://tinyurl.com/shehuim
https://tinyurl.com/ixniimli
https://tinyurl.com/vyowinfc
…
Social Network:
https://www.tumblr.com/yfvqwvvi
https://www.tumblr.com/nshynnuu
https://www.tumblr.com/ldtctknm
…

For the URL Shortener, when storing the address of command, only the URL
address to be converted and the suffix of the alternative URL is needed, as shown in
Fig. 5. And for the social network website, the user’s personal homepage address needs
to be configured based on the alternative URL suffix, and then the address of command
can be issued as a new message. Of course, all operations are automated by the
program.

Fig. 4. Image style generated from text
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As shown in Fig. 6, for the bot, it undergoes two steps when obtaining the content
of command, that is the “Secondary Addressing Mechanism” described above. First,
the bot will traverse the generated address list based on the hard-coded UGA algorithm.
When finding the address PS_Address_B, it will obtain the address PS_Address_A and
further extract the content of command. The reason for adopting the “Secondary
Addressing Mechanism” is to improve the flexibility and scalability of the PR-Bot. For
some publicly available resources that are suitable for storing commands but not
support customized URL, the jump relationship provided by the “Secondary
Addressing Mechanism” can make it become “a publicly available resource that sup-
ports customized URL”. In addition, this mechanism can also improve the robustness
and concealment of the C&C channel to some extent.

3.3 RF Channel

Callhome Module. If all bots upload the information of controlled end to the unique
URL specified in the command, there is a problem of information loss due to the
limited storage space of the online clipboard website. In order to avoid this problem,
this paper adopts the strategy of “URL + numeric string”.

As shown in Fig. 7, after the bot extracts the address parameter from the command,
the bot will add a numeric string of the specified digits (according to the law from small
to large) behind the address, and then it sends the device information to the new

Fig. 5. How to use the URL shortener

Fig. 6. Secondary addressing mechanism
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address. Take the address http://www.wepaste.com/abcde as an example: After the bot
obtains the address parameter, it will add a numeric string from 000000 to 999999
behind it and then traverse the URLs from http://www.wepaste.com/abcde000000 to
http://www.wepaste.com/abcde999999. The device information is not fed back until an
address with empty content is found.

However, if only the above brief solution is adopted, although the problem of the
limited storage space can be solved, there is a problem of information coverage due to
concurrent operation of bots. That is, if an address with blank content is found by two
bots at the same time, they will upload device information to the address, no matter
who comes first, there must be a case where one bot overwrites information uploaded
by another bot. It is because the content on the online clipboard website is readable and
writable.

In order to solve this new problem, this paper uses an enhanced solution, as is
shown in Fig. 8. Specifically, after several minutes of uploading device information,
the bot reads the uploaded information again and compares it with the locally stored
information to verify whether the information is uploaded by itself. If the MD5 of the
two are the same, it is considered that the device information is successfully uploaded.
Otherwise, the new address is traversed sequentially and the device information is re-
uploaded. In this way, even if multiple bots find an address with empty content at the
same time, there will be no problem of information coverage.

File Stealing Module. Cloud disk website, also known as cloud storage website, is
mainly classified into two categories: the public cloud disk and the private cloud disk.
The public cloud disk can be used without registering, and the information on it is
public. In the process of feeding back files, PR-Bot selects a public cloud disk to store
the stolen files, which is shown in Fig. 9. First, the bot traverses the specific types of

Start

Extract the address of online 
clipboard from the command

Add the numeric string 
000000

Determine whether the content
at the new address is empty

Y

Issue the device information 
encrypted by public key

End

Y

Increase the value of the 
previous numeric stringN

Fig. 7. The brief solution for result feedback
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files in the controlled end and uploads them to public cloud disks one by one, and
records the corresponding URL address at the same time. Then, all URL addresses are
issued to the online clipboard website in the form of string. When issuing the address, it
is basically the same as the flow of issuing callhome information, including the strategy
of “URL + numeric string” and the mechanism of secondary verification.

Here, we will discuss the reason why PR-Bot does not choose private cloud storage
to store stolen files. If PR-Bot selects the private cloud disk to store stolen files, it is
necessary to specify the parameters required by the private cloud disk API interface in
the command, which is used for authentication. It will cause two problems:

Start

Extract the address of online 
clipboard from the command

Add the numeric string 000000

Whether the content at 
the new address is empty Y

Issue the device information 
encrypted by public key and record 

the corresponding address
N

Increase the value of the 
previous numeric string

Read the issued information and 
compare it with the local  information

Whether the MD5 is 
equal

Y

N

Wait for a few miniutes(random)

Delete the local information

End

Fig. 8. The enhancement solution for result feedback

Fig. 9. File feedback process based on public cloud disk
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(1) Once the defender has mastered the identification information, it is equivalent to
obtaining the control authority of the account corresponding to the private cloud
disk, so the files in the cloud disk can be viewed and deleted.

(2) With the increase in the number of bots, the behavior of sharing the same account
can easily cause abnormalities on the website, and may expose the entire botnet’s
activities.

For the public cloud disk, the above two problems are inexistent. First, even if the
defender obtains the command and masters the law of “URL address + numeric string”
adopted by bots, it cannot locate the network location where the stolen file is located. It
is because the uploaded address list is encrypted by the public key, and it can only be
decrypted by the private key of the botmaster. Second, when a file is uploaded through
a public cloud disk, each bot is equivalent to an independent user and has no necessary
correlation, so there is no problem that multiple bots share the same account. Therefore,
PR-Bot selects the public cloud disk to store stolen files, whose purpose is to ensure the
security of the C&C channel.

4 The Defense Measures

Accurately finding botnets similar to PR-Bot and taking targeted measures to contain
them is the ultimate goal of this paper. For the PR-Bot botnet proposed in this paper,
this section describes the contents of PR-Bot defense from the aspects of detection,
measurement and tracking, in order to take over the control of the botnet or reduce its
availability.

4.1 Detection

In the CA channel, PR-Bot uses the UGA algorithm to generate an address pool, and
the bot obtains commands by connecting the pseudo-random addresses. This process is
similar to DGA. Therefore, some methods for detecting DGA also apply to UGA
detection: (1) Character feature detection based on domain name [14]. There are still
differences between the addresses generated by UGA and the normal addresses, such
as: the use of a large number of URL Shortening services, the use of unusual user
names, the use of fixed social network and etc. Therefore, the rules of distribution of
domain name strings can be found by constructing the semantic rules and feature
vectors, and they can be identified by the methods such as data mining and machine
learning. (2) Detection based on domain name activity. In order to obtain commands,
the bot will constantly address, and the addressing time will show some regularity, such
as addressing at a fixed point of time even early in the morning. These features all show
the non-human characteristics, so the domain name activity and spatio-temporal fea-
tures can be used to detect the malicious addresses [15].

In the CC channel, PR-Bot mainly uses the online clipboard website and image
hosting website. Therefore, the detection method based on communication content and
network layer anomalies can be used. (1) For the commands issued on an online
clipboard website, the bot will obtain the commands in the form of text, which are
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encoded and have the specificity, as well as identifiability. Among them, for the
transmission content of the HTTP protocol, a feature matching rule may be configured
in advance, such as Snort and other intrusion detection systems, to quickly and
accurately discover such botnet. (2) For the commands issued on the map bed website,
the bots will obtain commands from the downloaded pictures. It can also be detected
through the abnormality of the transmitted information. However, the detection method
based on the communication content is only applicable to botnets with specific char-
acteristics. The disadvantage is that the unknown botnets cannot be detected, and the
signature of the bot program needs to be continuously maintained and updated. The
network layer anomaly detection method assumes that the communication mode
between the botmaster and bots is quite different from the normal user communication,
so that the trail of the botnet can be found through the flow analysis [16]. In the RF
channel, PR-Bot uploads the text information according to the address specified by the
botmaster, which is similar to the CC channel, so the detection method based on the
communication content and the network layer anomaly may also be used.

In addition, public resource service providers should actively improve the security
protection of the website to prevent normal services from being abused by attackers.
PR-Bot needs to automatically register a large number of accounts and automatically
issue control commands. Therefore, service providers can use the verification code-
based or speed-limiting method to prevent the account from being registered in batches.
Although this method will degrade legitimate users’ experience, it increases the cost of
the attacker and can effectively avoid creating a potential target for attackers. Besides,
the content of the account on the platform can be monitored in real time, and the release
of the suspicious character string shall be further traced or handled by the security
personnel.

4.2 Measurement

By measuring the PR-Bot botnet, it can portray its topological structure and corre-
sponding scale, so that the defender can understand more about the outline and char-
acteristics of the PR-Bot. However, due to the mechanism characteristics of PR-Bot
itself, it is difficult to measure the PR-Bot, and the traditional measurement methods
based on Crawler and Sybil cannot be applied. However, in the RF channel, the bot
adopts the strategy of “URL + numeric string” to upload the callhome information or
the address list of stolen files. The defender can find out the pattern adopted by PR-Bot
through reverse analysis or flow monitoring, so that the entire scale of the botnet can be
measured through the method of address traversal. Although the PR-Bot measurements
are affected by various factors, such as time zone, startup/shutdown, it is difficult to
accurately estimate the scale of the entire botnet, but it can estimate the number of bots
as much as possible.

4.3 Tracking

If the defenders have mastered the botnet C&C channel, they can run the bot in a
controlled environment or join the botnet in an infiltrated form to understand the
internal activity of the botnet. In this section, we focus on how to track botnets by
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means of infiltration, and the infiltrating agent is called “Infiltrator”. Infiltrator can
disguise as an infected controlled device to join the botnet and simulate the real
communication protocol of PR-Bot to communicate with the botmaster to observe the
internal activities of PR-Bot. Among them, in the RF channel, the infiltrator can
intentionally submit a decoy file with tracking watermark or other payloads, so as to
track the botmaster. For example: the infiltrator embeds a hidden remote picture URL
in a Word document, so if the botmaster downloads and opens the file, it will actively
request the URL and load the remote picture, and then the defender can trace the
position of the botmaster based on the source of the request.

5 Related Work

To be well prepared for future botnet attacks, security researchers have done many
works on studying advanced botnet models and defense technologies.

Sanatinia et al. [17] presented a robust, stealthy botnet that named OnionBots. The
botnet use Tor privacy infrastructures for cyber-attacks by completely decoupling their
operation from the infected host IP address and by carrying traffic that does not leak
information about its source, destination, and nature. Ali et al. [18] presented Zom-
bieCoin which used Bitcoin network for botnet C&C. ZombieCoin is robustness,
because common takedown techniques of confiscating suspect web domains, seizing
C&C servers or poisoning P2P networks, would not be effective. Yan et al. [19]
proposed an anti-pollution P2P botnet called AntBot, which used a tree-like structure to
propagate commands in P2P networks. The tree-like structure with the randomness and
redundancy in its design, renders it possible that individual bots, when captured, reveal
only limited information.

Besides, there are a number of botnet designs are based on publicly available
resources. Artturi et al. [20] explores the multitude of ways in which modern malware
abuses third-party web services as C&C channels, including Google Docs, Tumblr,
Twitter and so on. Lee et al. [21] explore botnets based on USS, and propose alias flux
methods that frequently change shortened URLs of C&C servers to hide their exis-
tence, which is similar to the domain flux method. Nagaraja et al. [12] exploit image
steganography techniques to set up a communication channel within the social net-
work, and use it as the botnet’s C&C channel. However, none of these research works
have studied how to design a resilient and efficient bidirectional communication
channel. Our study focuses on constructing a three-channel botnet based on multiple
publicly available resources and is complementary to the existing research works to
some degree.

On the defensive side, there have been many types of approaches to detect botnets,
including signature-based, anomaly-based, DNS-based and data mining, machine
learning techniques. For public service-based botnets, Chen et al. [22] design an
unsupervised system to detect Twitter spam campaigns that use botnets to send
duplicate content with embedded URLs. The unsupervised detection approach allows
to build a blacklist of malicious email addresses, URLs and Twitter accounts, and to
share threat intelligence with the research community in real-time. Guo et al. [23]
explore the currently typical C&C server finding schemes as three types: dedicated IP
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address, Internet infrastructure and third-party service from a new perspective. Their
work indicates that third-party service based C&C presents a better approach in terms
of complexity, flexibility, traffic covertness and scale. In this paper, for PR-Bot, we
propose the targeted defense strategies from the perspective of detection, measurement
and tracking, so as to achieve the goal of combating against such botnets.

6 Conclusions

This paper introduces an advanced botnet based on publicly available resources, which
is named PR-Bot. The PR-Bot is constructed by a three-channel scheme, which
includes three sub-channels: CC channel, CA channel and RF channel. Each sub-
channel can be supported by multiple publicly available resources and can be extended
in the form of plug-in. Meanwhile, PR-Bot also uses the technologies, such as infor-
mation hiding, content encryption and digital signature, to improve the robustness and
concealment of C&C channels. In addition, in the face of new challenges, this paper
proposes the defense strategies against PR-Bot in terms of detection, measurement and
tracking to deal with possible similar cyber threats. We believe that it is of great
practical significance to study how to construct a highly antagonistic botnet from the
perspective of the attackers and propose the effective defense strategies before the
attackers deploy them in practice. In the next step, we will conduct an in-depth study on
this type of botnets, and design a rapid and effective detection system.
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Abstract. Deep Packet Inspection (DPI) is widely used in network sys-
tems and the processing speed of DPI is very critical. The core part
of existing DPI is signature matching, and many researchers focus on
improving the signature matching algorithms. In this paper, we work
from a different angle: the scheduling of signature matching. We pro-
pose a method called Delayed Signature Matching (DSM), which could
greatly reduce the number of matching attempts. In the method we do
not always immediately match received packets to the signatures, but
instead we predefine some protocol specific rules, and evaluate the pack-
ets against these rules first to decide when to start signature matching
and which signatures to match, thus eliminate lots of useless matching
attempts. The proposed DSM method is very suitable for the network
auditing scenario since recognizing a flow at the earliest possible time is
not required, and the potential seconds of delay brought in by DSM is
acceptable. We also find that in the DSM method the number of match-
ing attempts for a flow is unrelated to the number of supported protocols,
which is a good property since the number of supported protocols keeps
growing. Finally, we implement a prototype of the DSM method in the
open source DPI library nDPI, and find that it can reduce the signature
matching time 27%−40%.

Keywords: DPI · Deep packet inspection
Delayed Signature Matching · DSM · Fast path

1 Introduction

Deep Packet Inspection (DPI) is integrated into many network system today
[1,6–8,11,22]. For example, DPI is used in Firewalls [22], network security mon-
itors [13], and intrusion detection systems (IDS) to recognize the protocols of
packets for checking further threats in the application layer. Network auditing
systems, which may be required by government regulations (e.g., for monitor-
ing public Wi-Fi services), or by the companies (e.g., for monitoring employees’
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Internet accessing), also use DPI to recognize which websites users are visiting
and which applications users are using.

The processing speed of DPI is quite critical, since one DPI instance usually
needs to process traffics from many different terminals, and the volume of the
data usually is very big. Thus, the performance is an important consideration
for DPI products. For example, commercial products like Qosmos1 and PACE2

claim to handle up to 9−10 Gbps per core, and open source solution like nDPI
could handle up to 8.85 Gbps per core as well [1]. Improving the DPI performance
could enable the same cores to support more traffics3, or reduce the number of
needed CPU cores. Since the core work of existing DPI is to match received
packets against known signatures (or called patterns), many researchers tried to
improve the signature matching algorithms, e.g., by modifying the construction
of deterministic finite automaton (DFA) [7,11].

In this paper, we propose a new method focusing on the scheduling of sig-
nature matching. By looking closely at existing signature matching process, we
find some signature matching attempts are wasted since the needed packets have
not been received yet. So we propose a method called Delayed Signature Match-
ing (DSM). In the method, we predefine some rules for targeted protocols, and
evaluate the received packets against these rules. If the packets pass the rules,
we could start signature matching with the signatures defined by the rules. If
the packets do not pass the rules eventually, we will use the original process-
ing method as usual. Intuitively, these rules produce fast paths in the signature
matching (quickly find and match against the proper signatures). We analyze
the correctness and performance of the DSM method. We also find an interest-
ing property of DSM: the number of signature matching attempts needed for a
flow is constant, and does not grow with the number of supported protocols as
the original method does. The delay with DSM is only several seconds at most,
which is certainly acceptable in the network auditing scenario. We implement a
DSM prototype supporting HTTPS, HTTP, FTP, and POP3 protocols in the
open source DPI library nDPI [1,2], and evaluate it with different datasets. We
find that with DSM support for only 4 protocols, the prototype has 27%−40%
performance boost in the signature matching.

2 Related Work

There are many existing DPI systems [1,3,4,13,17]. The performance compar-
isons among some of them can be found in [6]. The DPI systems can be roughly
classified [17] into regex-only [3,4,15] and hybrid [1,13,17] (i.e., combining regex
and code) types. L7 filter [3] is a typical regex-only DPI system, which contains
many regexes defined for different protocols, and a protocol’s detection mainly
relies on its regex (unfortunately, the regexes have not been updated since 2009).
1 https://qosmos.com/.
2 https://ipoque.com/products/dpi-engine-rsrpace-2.
3 For example, the mobile subscribers of China Mobile Inc. consumed 23% more traffics

in 2018 Q1, comparing with 2017 Q1.
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nDPI [1,2] is a hybrid DPI system, and is forked from OpenDPI, which is an
open source classifier derived from early versions of PACE (PACE is a commer-
cial DPI product mentioned before) according to [6]. nDPI mainly uses code to
match different protocols; however, it also supports automaton and Hyperscan
[4] in some steps like host name match. nDPI is open source in Github and under
active development by the ntop company. It can detect 240+ protocols now, and
is used in another ntop product nProbe as well. nDPI’s guess protocol id also
acts as a fast path to find the correct protocol parser; however, it is based on the
ports and the protocol field of IP header of one packet only, and can not fully
eliminate useless matching attempts as well (we will show that in Sect. 3).

Many researchers focus on developing new algorithm to speed up the match-
ing of patterns. Kumar et al. proposed Delayed Input DFA [11] which substan-
tially reduces space requirements as compared to a DFA. Dharmapurikar et al.
proposed to store signatures in bloom filters to implement matching in hardware
[12]. Bremler-Barr et al. proposed to use repetitions in flows to skip repeated
data by modifying the Aho-Corasick Algorithm [7]. On the other hand, recently,
the privacy of deep packet inspection is gaining more attentions [8–10,16], since
detecting patterns in encrypted traffics like HTTPS is demanded [14], and at the
same time DPI is increasingly running as a service in the public cloud platforms.
These performance or privacy improvement researches usually are orthogonal to
the DSM method proposed in the paper, since they focus on the exact matching
algorithms, and the DSM method focuses on the scheduling of matching.

3 A Motivating Example

We here use an FTP example to describe how the DPI process works and why
there are rooms to improve. We use the process of nDPI [1,2] for example, and
other DPI engines like [3] are similar in general.

We show the first 9 packets of a typical FTP connection in Fig. 1. It contains
a 3-way TCP handshake, and later USER and PASS commands to authenticate
the client “demo”.

We then show how the packets of the FTP connection in Fig. 2 are processed
by the nDPI engine. Packets are processed in flows in nDPI and all the packets
of the FTP connection belong to the same flow. The first 3 packets are processed
by 10−12 protocol parsers for signature matching, since only a few parsers are
interested in and register for the TCP and no payload type packets, and some
parsers later find the flow does not match them at all so they exclude themselves
for the flow early. For packet #4, the engine first tries the guessed FTP protocol
parser based on port 21; however, the FTP parser still cannot confirm that it is an
FTP flow at that time (it needs more packets to confirm). The following packets
are still no match for detection, and only more parsers exclude themselves for the
flow. Finally, the packet #7 with reply code 331 makes the FTP parser believe it
is an FTP flow and complete the detection. We can calculate that these protocol
parsers are called 175 times in total to complete the FTP detection.

We can see that there are some matching attempts wasted in the processing.
For example, matching the packet #4 to the 103 protocol parsers is doomed to



78 Y. Zeng and S. Guo

Fig. 1. The initial packets transferred during a typical FTP connection.

Fig. 2. The exact steps of how the packets in previous FTP connection example are
processed. It shows that the protocol parsers are called 175 times (12 + 10 + 10 + 1 +
103 + 6 + 1 + 31 + 1) in total for signature matching to finish the detection. We could
reduce the number to only 7 with DSM.
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be useless. Though nDPI uses code-based match for FTP protocol, the situation
is similar for regex-based DPI engines like L7 Filter and Hyperscan. In L7 Filter
the engine keeps appending new packet’s content to its flow’s received content
buffer (2048 bytes at most) and matching the buffer against all protocols’ pat-
terns [3]. L7 Filter may use the pattern 2̂20[\x09-\x0d -∼]*ftp|331[\x09-\x0d
-∼]*password [5] for accurate FTP detection, then it also needs to keep match-
ing the buffer to all patterns until it gets the packet #7 that contains the 331
reply code. Even for more efficient regex matching library like Hyperscan [4]
which only needs to feed newly received packet into the library, the whole signa-
ture database of all protocols needs to be matched to the newly received packets
again and again. Hyperscan also officially advises to avoid big union database if
possible for performance4, which makes sense in the regex matching theory [15].
In this paper, we would like to reduce the match searching between the contents
and patterns in essence. With the DSM method proposed in the paper, the DPI
engine only needs to match each packet against one protocol pattern 7 times (in
contrast to the original 175 times) in total for the FTP connection example.

4 Delayed Signature Matching

The basic idea of Delayed Signature Matching (DSM) is that instead of imme-
diately matching received packets to the signatures, we wait for enough packets
first. Then the problem is how to determine that currently received packets of
a flow are enough. Our solution is to predefine sequences of rules for different
protocols, and then evaluate the received packets against the rules first. When
the packets pass the sequence of rules of a protocol, we could start signature
matching with the protocol’s signature. Any failures during the process (e.g.,
failed to pass the rules) lead to using the original processing method as fallback.
Note the rules should be fast to evaluate, and the passing of a sequence of rules
should indicate the flow has high probability to match corresponding protocol
(otherwise the matching will be wasted). The sequences of rules in effect cre-
ate fast paths in the signature matching, since the packets could directly match
against proper signatures so fewer matching attempts are needed.

We show the framework of the delayed signature matching (DSM) method in
Algorithm 1. The first flow maintaining step includes finding or creating a flow
for the input packet, and updating the variable values used in the primitives
(introduce later) for the flow. Then for a flow that is not detection completed,
the engine checks whether the flow is marked to use the original processing
method, or marked to call selected protocol parsers (introduce later) only. In the
two cases the engine processes the packet accordingly. For other cases it checks
whether the packet could match any DSM rule. If so it will use the instruction of
the rule to determine what to do next, like calling the protocol parsers selected
by the rule, and waiting for the next packet, etc. At last, if the packet could not
match any rule, the engine uses the original processing method as fallback.
4 http://intel.github.io/hyperscan/dev-reference/performance.html#unnecessary-

databases.

http://intel.github.io/hyperscan/dev-reference/performance.html#unnecessary-databases
http://intel.github.io/hyperscan/dev-reference/performance.html#unnecessary-databases
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We can see the rules are the core part of DSM and in the left part of the
section we will focus on introducing them, and use the rules of several protocols
as examples.

Algorithm 1. Packet processing with delayed signature matching (DSM).

Input: a packet, DSM rules of protocols.
1: Do flow maintaining: find or create the flow for the packet
2: if The flow is not detection completed then
3: if The flow is marked to use the original processing method then
4: Use the original processing method
5: else if The flow is marked to call the selected protocol parsers only then
6: Call the selected protocol parsers
7: else if Match any DSM rule then
8: Follow the rule’s instruction, which could be:
9: - evaluate next rule and follow its instruction

10: - call the rule’s selected protocol parsers
11: - mark the flow to use the original processing method, and process the buffered

packets and current packet
12: - buffer the packet and wait for next packet
13: - mark the flow to use currently selected protocol parsers only
14: else
15: Use the original processing method
16: end if
17: end if

First, we introduce a few types of primitives that we use in the DSM rules.
These primitives are all simple and can be implemented efficiently, which make
sure the rules can be checked very quickly.

– protocol type comparisons. For example, protocol ==TCP.
– server port arithmetic comparisons, including ==, ≥, etc. For example,

server port == 21.
– pkt num arithmetic comparisons, including ==, ≥ etc. pkt num stands for

the number of total packets have been received in the flow.
– payload pkt num arithmetic comparisons. payload pkt num represents the

number of packets that have payload have been received in the flow.
– tls pkt num arithmetic comparisons. tls pkt num means the number of total

packets that are of Transport Layer Security (TLS) record layer type [19] have
been received in the flow. We implement the primitive by simply checking
the first byte for 20 (change cipher spec), 21 (alert), 22 (handshake), and 23
(application data) values.

– payload[i] ==A equation check. It means to check whether the byte at index
i of the packet payload is equal to char A.

– payload(i, len) ==ABC equation check. It means to check whether the len
bytes start from index i of the packet payload are equal to string ABC.
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Then, we show the processing of FTP and POP3 protocols with DSM rules
in Fig. 3. In the flowchart, the DSM rules are represented by diamonds, and the
instructions of rules are represented by rectangular boxes following the rules.
For FTP, after the common flow maintaining process, and assuming the engine
needs to check the packet with DSM rules (e.g., the flow is not detection com-
pleted etc., as mentioned in the DSM framework previously), the engine checks
the rule protocol ==TCP first. If the packet passes the rule, it checks another
rule on whether the port is the common FTP port 21. If not it will further
check other port rules if any. If port matches 21 and it will check whether the
payload pkt num ≥ 4, which means the packet #7 in Fig. 1 should have been
received for the flow. If the rule is not satisfied, another rule pkt num ≥ 10 will
be checked, which means whether a threshold number of packets (here we set to
10, same as nDPI) have been received. If pkt num exceeds the threshold, DSM
will fall back to the original method, otherwise it will wait for the next packet.
If the rule payload pkt num ≥ 4 satisfies, it will check the payload[0] against ,
i.e., the first character of the PASS command. If the rule satisfies again, then
there are enough evidences that it is an FTP flow, so the rule selects the FTP
protocol parser to parse all packets received so far. If the result of the parser
is matched then we mark the flow as detection completed; the flow successfully
goes through the fast path created with DSM rules. Otherwise, it is not an FTP
flow and we exclude FTP from the possible protocol list and use the original
packet processing method.

The DSM rules of the POP3 protocol are quite similar to the rules of FTP,
except that we now match the USER command of POP3 [21] in the rule, i.e.,
payload[0] ==U, and only 2 packets with payload would be enough for the POP3
parser to recognize the flow, i.e., payload pkt num ≥ 2.

At last, we show the DSM rules we created for HTTPS in Fig. 4. HTTPS is
becoming prevalent and more than 30% top 1,000,000 websites use HTTPS by
default now (i.e., redirecting HTTP pages to URLs with HTTPS)5. Similarly,
the protocol rule and server port rule are checked first. We then check whether
there is at least one TLS packet received before (e.g., the Client Hello mes-
sage), and payload pkt num is greater than or equal to 3 (e.g., the Client Hello,
Server Hello, and Certificate messages) [19]. If both rules are satisfied then the
flow is highly likely to be an SSL connection now, so the HTTPS (TLS) protocol
parser is selected. Similarly, if the parser does confirm the application protocol
is matched, we mark the flow as detection completed. Otherwise, however, we
cannot simply exclude SSL protocol from the flow, because the flow may be of
TLS type, but the TLS protocol parser needs more packets to further detect
its application protocol. So we add a rule to check whether it is a TLS flow
by checking whether the server name has been gotten (either from the Server
Name Indication (SNI) extension [20] of TLS, or from the server’s certificate),
or whether the TLS process has passed some stages (represented by ssl stage).
If we confirm that it is a TLS flow, we will mark the flow to always use the

5 https://statoperator.com/research/https-usage-statistics-on-top-websites/.

https://statoperator.com/research/https-usage-statistics-on-top-websites/
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Fig. 3. The DSM rules for FTP and POP3. The rules are represented by diamonds, and
the instructions of rules are represented by rectangular boxes following the rules. Flows
that could pass through the DSM rules to the downright green box of the flowchart are
favored, since they pass through the fast path and have very few matching attempts
(Color figure online).

selected TLS protocol parser only. Otherwise, we exclude the TLS protocol from
consideration and use the original processing method as well.

Note that we need to periodically check for flows that applied DSM (i.e.,
having buffered packets) but got stuck for some time, and use the original pro-
cessing method to process them. This is because the flows may satisfy some
rules of a protocol but cannot pass through them. For example, the server port
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Fig. 4. The DSM rules for HTTPS. Similarly, flows that could pass DSM rules to the
two downright green boxes of the flowchart are favored (Color figure online).

rule is matched but the payload pkt num is not enough. On the other side the
flows may not have enough packets to eventually satisfy the threshold rule, i.e.,
the pkt num ≥ 10 rule. If we do not use the original processing method to
process them, they will not be processed by any parsers even if some parsers
can recognize them. We set the stuck time threshold to 2 seconds, which should
be sufficient for existing protocols. Also, for efficiency such periodical check for
stuck flows could be done together with existing idle flow cleaning process.

Another thing needs to be noted is how we define DSM rules. First, we
prefer to wait for a bit more-than-enough number of packets before we begin
the signature matching (e.g., for FTP we require that payload pkt num ≥ 4
but not 3). This is because more packets usually imply more evidences on the
type of the flow, and thus ensure higher successful probability of the selected
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protocol parsers. This may not be suitable for the scenarios that require the
earliest possible flow recognization like Firewall or IDS [22], but is suitable for
network auditing. Second, on the other side, we may intentionally make the rules
a bit relaxed (e.g., tls pkt num >= 1 for the TLS protocol) to suit different
auditing scenarios and packet transmission strategies, because we want to make
the rules more portable (written once and suitable for all). For example, in one
of our network auditing scenarios, we mainly capture packets of one direction
(upstream), and we also find TLS may transmit different record layer packets
in one TCP packet. Both the first and second considerations make us prefer
to define DSM rules waiting for more packets than the corresponding parser
actually needs.

5 Analysis

We give analysis on the correctness and performance of the DSM method below.

5.1 The Correctness of the DSM Method

The delayed signature matching method essentially is to use the delayed packets
to determine which protocol parsers to try for a flow, and there are four cases
after trying the selected protocol parsers. The first case is that the selected pro-
tocol parsers fully detect the flow’s protocol and we mark the flow as detection
completed. In this case, the correctness of our method relies on the self-containing
property of the protocol parsers, which means they should not need other pro-
tocol parsers to process the packets first before they can correctly recognize a
flow. The self-containing property should be a reasonable assumption in reality,
otherwise the codebase would be very fragile since users may change the protocol
set to match for their environment. We also confirm that all the protocol parsers
we checked in nDPI do have the property.

The second case is that the selected protocol parsers do not recognize the
flow’s protocol at all, and then we exclude the corresponding protocol and use
the original processing method. The correctness of the DSM method in this case
relies on the correctness of the decision that the selected protocol parsers cannot
recognize the flow now and in the future. When the protocols are simple it is
easy to make the decision based the rules.

The third case is that the selected protocol parsers recognize the flow as their
types for sure, but they need more packet to act as detection completed, and we
now simply mark the flow to always use the selected protocol parsers in future.
The correctness of the DSM method in this case relies on correctly determining
that the protocol parsers have recognized the flow and just need more packets
for changing states. Like in HTTPS, we use the server name and ssl stage as the
indicators of TLS detection.

The fourth case is the selected protocol parsers are still unsure on the pro-
tocol of the flow. We didn’t show any example on the case previously, since we
intentionally avoid the case when creating the rules. However, there may have
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complicated protocols that it is hard to bypass this situation when creating their
rules. If so, we could not apply DSM to these protocols in the first place, or if
we do use DSM, we could simply switch to use the original processing method
then (but do not exclude the selected protocol parsers), and the correctness is
also guaranteed.

We note that the DSM rules could be misled by protocol masquerading mech-
anisms like FTE [17], since they intentionally change the signatures of protocols
to mimic other protocols. Defeating them is out of the scope of DSM and should
be the responsibility of the protocol parsers. For example, if the mimicked pro-
tocol’s parser is augmented to use new detection mechanisms like entropy-based
detection [18], DSM could still successfully detect the original protocol.

5.2 Performance Analysis

We analyze the computation cost first. In order to simplify the analysis, we
assume a protocol has only one payload packet type (UDP or TCP payload).
We assume there are n protocol parsers interested in the payload type, and the
corresponding protocol parser needs m packets to mark a flow of the protocol
as detection completed. Then, for the original processing method, the number
of calls to signature matching So can be defined as below, where ai represents
the ratio of the number of remaining parsers to the number of original parsers
after processing the ith packet (i starts from 1):

So = n + a1n + a1a2n + ... + a1a2...am−1n, when m > 1. (1)

Now we use p to represent the possibility that the DSM method successfully
matches a flow of the protocol, i.e., in either case #1 or case #3 as described in
Sect. 5.1, and we assume the rules select k protocol parsers. Then we only need
at most km calls to signature matching in the two cases (since protocol parsers
may even exclude themselves from the detection of the flow later). For other two
cases, we at most call signature matching km+So times (i.e., DSM fails and the
engine uses the original method as fallback). So we could represent the number
of calls to signature matching of DSM method as below:

Sd = pkm + (1 − p)(km + So). (2)

Usually we create rules that have high probability to successfully match the flows
of the protocol, so p is approximate to 1 (we will later confirm that in Sect. 6)
and then Sd is approximate to km:

Sd ≈ km, when p ≈ 1. (3)

The value of km usually is much smaller than n (k usually is 1−2, m < 10). Also
we can see a very promising property from the equation: Sd is constant and not
related to n now, which means adding new protocol parsers will not increase the
computation cost, in contrast to the original processing method.

On the other hand, the evaluation of DSM rules does add some costs to the
whole processing. However, we intentionally make the rules simple, and usually
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only several increment operations and several comparisons are needed. So the
added cost is very small, which is also confirmed in our experiments.

We also analyze the extra delay when using DSM. Note that if we create
rules that strictly fit to the requirements of the protocol parser (i.e., do not
waiting for more packets), and a flow’s packets match the rules as expected,
then there is no extra delay for the flow comparing with the original processing
method. This is because, even using the original processing method, the same
set of packets needs to be received before the flow becomes detection completed.
However, there are some cases that DSM has extra delay. First, if we create
rules that need more packets than the parser actually needs (for the reasons we
described before), we will have delay by waiting for extra packets. Depending on
the number of extra packets, DSM may have several RTT (Round Trip Time)
delay. One RTT usually is at most several hundred milliseconds in the Internet,
so such delay is in the order of second at most. Second, for the flows that enter
DSM process but get stuck there because of no matching rules and not enough
packets, the extra delay is related to the stuck threshold time we set (at most 2
times of the threshold). Thus for the 2-second threshold we set, corresponding
delay is 4 seconds at most.

6 Evaluation

We implement our DSM method prototype in the popular open source DPI
library nDPI [1,2], with about 600 lines of code. The prototype contains the
DSM rules of 4 protocols: HTTPS, FTP, POP3, and HTTP. It is open source
for research usage at https://github.com/zyingp/nDPI/tree/fastpath6. We do
all experiments on a PC installing Ubuntu 16.04 LTS, with Intel(R) Core(TM)
i5-4590 CPU @ 3.30GHz×4 and 16 GB memory.

We prepare 6 different datasets for the experiments, as shown in Table 1.
The datasets come from two testbeds and a web crawler. We have two testbeds
(named testbed A and B) for our network auditing tests, and in both testbeds
we mainly capture one side of the traffics (i.e., upstream only, except for several
special TCP ports) for auditing. One testbed contains 2 China Mobile enter-
prise WiFi gateways (i.e., hotspots), with 9 computers and phones connected.
Another testbed contains 1 WiFi gateway with 2 computers and 1 phone con-
nected (mainly computer traffics). TB A36, TB A79, and TB A304 datasets are
from the same testbed A but captured at different times and have different sizes.
TB B326 is from the testbed B. In order to test DSM with other traffic patterns,
we also used a crawler running on an iPad to browse Alexa Top 100 and Top 500
websites7 and got two full traffic traces (i.e., both upstream and downstream
traffics) named Top100 and Top500.

We first ensure that the DSM method (i.e., the engine only processes the
aforementioned four protocols with DSM rules, and processes other protocols
with the original method) detects exact the same protocols as the original
6 We also put our raw experiment results there.
7 https://www.alexa.com/topsites.

https://github.com/zyingp/nDPI/tree/fastpath
https://www.alexa.com/topsites
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Table 1. The properties of the datasets.

Name Size (MB) Time (hour) Num. of flows Num. of pkts Traffic description

TB A36 36.2 30.7 12895 133610 upstream, computer & phone

TB A79 79.6 23.9 30735 422966 upstream, computer & phone

TB A304 304.6 103.4 110174 1599281 upstream, computer & phone

TB B326 326.4 93.2 24970 1383572 upstream, mainly computer

Top100 135.2 0.6 3701 222924 both directions, tablet

Top500 685.3 3.1 37473 1035565 both directions, tablet

method alone for different datasets (e.g., the same 240+ protocols nDPI cur-
rently supports). During that we fix several implementation bugs. We also dis-
cover a bug of nDPI at that time (in the ndpi detection giveup function, the
protos union in ndpi flow struct is always used as ssl type while it sometimes is
of http type).

We then check the numbers that protocol parsers are called for these datasets,
and show the result in Fig. 5. The result is very promising; the DSM method
reduces about 42% (for TB B326 dataset) to 76% (for Top100 dataset) of the
calls needed in the original method, with DSM rules only for the four protocols. It
is reasonable considering the great reduction of parser called times for protocols
like FTP.

Fig. 5. Comparison on the numbers of the protocol parsers are called. The DSM method
omits about 42%−76% of the calls needed in the original method.

Next we test the processing throughput of the whole DPI process. We run
the built-in ndpiReader program 15 times for each dataset, discard the first
5 runs whose results may not be stable yet (since the program has large file
I/O), and calculate the average of the left 10 runs (we use the same strategy
for later experiments as well). We show the result in Fig. 6. When DSM is used,
the throughputs all are higher than the original method without DSM: speed
up about 20% for the TB A* datasets, 11% for TB B326, and about 7% for
Top100 and Top500 datasets. The improvement is not as much as the previous
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experiment. This is because here the program needs to do more work. The whole
process includes loading packets from dataset files, packet unpacking, flow main-
taining, and signature matching. We only improve the signature matching part.
The other parts amortize the improvement on signature matching, especially for
datasets like Top100 and Top500 which have more packets/traffics in a flow so
signature matching consumes relatively less time in the whole process.

Fig. 6. Processing throughputs of the DSM method and the original method (loading
packets from files needs to be done at the same time). DSM improves over the original
method about 20% for the TB A* datasets, 11% for TB B326, and about 7% for the
Top100 and Top500 datasets.

In order to get more accurate results on how the DSM method improves
the DPI process, we evaluate it in refined scopes. First, we compare only the
time spent on signature matching, which includes basic packet analysis (e.g.,
processing tcp flags), calling protocol parsers, and also rule evaluation for DSM.
The result is shown in Fig. 7. We can see DSM could improve over the original

Fig. 7. The ratio of the DSM method to the original method on the time spent only
on signature matching (and including rule evaluation for DSM). DSM improves over
the original method about 27%−40%.
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Fig. 8. The ratio of the DSM method to the original method on the time spent on
whole packet processing (excluding the time spent on loading packet from files, but
including the time on all other work like packet unpacking, flow maintaining, and
signature matching). DSM improves over the original method about 10%−22%.

method about 27%−40%. Then, we check the DSM’s improvement on the whole
packet processing (including all the work the program does in Fig. 6 except
loading packets from files). This is more interesting since it contains actually all
the work after we get a packet, either from pcap file or live capture (via libpcap,
DPDK, or PF RING). We show the result in Fig. 8. We can see that the DSM
method consumes only 78%−90% of the time of the original method (improving
10%−22%).

Finally, we would like to check the effectiveness of current DSM rules. We
calculate the number of flows that try the DSM selected protocol parsers (i.e., for
the coverage ratio), and we also calculate the number of flows that try the DSM
selected protocol parsers but fail to complete detection and turn to the original
method as fallback (i.e., for the fail ratio/successful ratio). We show the result
in Fig. 9. We can see that the coverage of our DSM rules is 30%−60% for these

Fig. 9. The flow coverage and successful ratio of the DSM rules in our prototype. The
flow coverage of current DSM rules is 30%−60%. The ratio of flows tried DSM but
failed (still fell back to the original method) to all flows tried DSM is only 0.2% to 2%.
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datasets, which is promising since we only implement rules for four protocols.
Most of the coverage is due to the DSM rules of two protocols: HTTPS and
HTTP. Also, the flows tried DSM but failed have a very small proportion, only
0.2%−2%. We also look into the fail cases and find the majority is due to the
wrong protocol exclusion implementation of the nDPI HTTP protocol parser
(e.g., a retransmission of a partial HTTP request may not have a line structure
and the HTTP protocol parser will wrongly conclude that it is not HTTP).

7 Conclusions

In this paper we propose delayed signature matching (DSM) for reducing use-
less signature matching attempts. We achieve that by defining rules to tell when
the signature matching could start for a flow and which protocol parsers to use.
If a flow does not match any rules then the original method is used. We ana-
lyze the DSM method to show its correctness and efficiency. We also show the
delay caused by DSM is at most several seconds which is affordable in network
auditing, and may also be affordable in other scenarios that do not need real-
time actions to packets. We implement DSM rules for four protocols including
HTTPS in the open source DPI library nDPI, and evaluate them with different
datasets. The result shows that the DSM method accelerates signature matching
about 27%−40%, and accelerates the whole process 7%−20% (the more the sig-
nature matching time accounts for the total time, the more that whole process
is accelerated).
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Abstract. The low-rate denial of service (LDoS) attacks reduce the
throughput of TCP traffic by sending high rate and short duration bursts
periodically to the victim. Although many LDoS attack detection meth-
ods have been proposed, LDoS attacks are still difficult to accurately
detect due to their low rate and good concealment. In this paper, we
propose a novel method to detect LDoS attacks based on the fact that
TCP traffic under LDoS attacks is more discrete than normal traffic
and traffic under DDoS attacks. Two-step cluster analysis is adopted to
cluster the network traffic based on the discrete characteristics of TCP
traffic, and then the suspected cluster is detected by abnormal pieces
analysis. The two-step cluster analysis method is proved to be effective
for detecting LDoS attacks based on NS2 simulation. Experiments on
public dataset LBNL and dataset WIDE also show that the method has
a low rate of false positive.

Keywords: LDoS attack · Attack detection
Two-step cluster analysis · Abnormal pieces analysis

1 Introduction

Denial of service (DoS) attacks [5] are one of the most threatening attacks of
Internet. Traditional DoS attacks consume the limited network resources by
pouring a mass of attack flows into network continually that will make servers
can’t deal with requests of legitimate users in time. Launching a DoS attack
requires the attacker to send attack flows keeping high rate and high frequency
to the victim server, and we can distinguish DoS attack traffic from normal net-
work traffic by the abnormal statistic characteristic [14]. The LDoS attacks [11]
take advantage of adaptive mechanism of network protocol like TCP congestion
control mechanism to slow down or limit TCP flows. The attacker sends high
rate and short duration bursts periodically to the victim, that will trigger the
congestion control mechanism repeatedly and cut down the TCP flows, then
throughput of the whole network will decline.
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In this paper, two-step cluster analysis method is proposed to detect LDoS
attacks. In the part of data acquisition, the network topology is designed on net-
work simulator NS2 and network traffic is collected from the key router. Public
dataset LBNL [13] is downloaded from Lawrence Berkeley National Laboratory
and public dataset WIDE [7] is downloaded from WIDE Project. They are both
analyzed by Wireshark. In the part of data preprocess, the discrete character-
istics of TCP traffic are calculated as the input records of the two-step cluster
analysis method. In the part of LDoS attack detection, two-step cluster analy-
sis is adopted to cluster the network traffic, and then the suspected cluster is
detected by analyzing pieces of TCP data. The detection results show that the
method we proposed can accurately detect LDoS attacks.

2 Related Work

Currently, a lot of methods have been proposed to detect LDoS attacks, most
of the detection methods can be divided into two types, the first detection type
is based on the features of LDoS attack flows and the other is based on the
abnormal characteristics of network traffic. As for the first detection type, Sun
[19,20] proposed the DTW detection method based on the feature of periodic
time of attack flows. The DTW method allocated bandwidth on routers by deficit
round robin algorithm for protecting the transmission resources of TCP flows,
and the DTW method can obtain the cycle time and the bursts length of the
LDoS attack flows. Kuzmanovic et al. [11] and Sarat et al. [18] proposed defense
methods by taking advantage of AQM mechanism, they are based on the feature
of high rate and short duration bursts of attack flows. The methods based on
the AQM mechanism can filter out attack flows effectively. Guo [8] proposed the
classification model CRF to detect BGP-LDoS attacks, and the classification
features are chosen based on the three features of attack flows. However, it is
generally recognized that these methods have a high false positive rate, because
the features are not obviously enough when the network has lots of links of back-
ground traffic. The second detection type, for example, Luo [15] proposed the
PLDoS attack detection method based on the wavelet analysis, Chen et al. [23]
suggested to detect LDoS attacks by spectrum analysis, Tang [21] came up with
the AEWMA detection method to analyze the ACK traffic, Wu [22] proposed
the detection method by exploiting and estimating the changes in multifractal
characteristics of network traffic, and Yue [24] adopted the neural network to
identify the LDoS attack traffic based on the wavelet energy spectrum. These
methods have a high detection rate, but we still have to make efforts to reduce
the false positive rate of detection.

3 The Abnormal Characteristics of TCP Traffic Caused
by LDoS Attacks

The LDoS attacks are aimed at cutting down TCP flows [12]. From the large
time scale perspective, the TCP traffic is in the cycle of “steady decline and
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then steady increase” based on the periodicity of LDoS attack flows. However,
the TCP traffic without any attacks is centred around the high frequency, and
the TCP traffic under other attacks like DDoS attacks is concentrated in the
low frequency because there is not enough time for the TCP congestion control
mechanism to recover TCP traffic. Figure 1 describes the TCP traffic with dif-
ferent network environments in large time scale(0s–600s). The samples in the
figure include all TCP flows in the network. As is shown in the figure, the TCP
traffic under LDoS attacks is more discrete than the TCP traffic in normal net-
work environment and other attacks like DDoS attacks. The variance, the mean
deviation and the coefficient of variation are adopted to measure the dispersion
of TCP traffic. The variance indicates the discreteness of the total samples, the
formula is shown as (1). The mean deviation inflects the deviation and disper-
sion of the sample distribution to its central value, the value of mean deviation
is calculated as (2), and the coefficient of variation is a standardized measure of
dispersion of a probability or frequency distribution, it is defined as the ratio of
the standard deviation to the mean of the samples, like (3) shows. Where N is
the total number of samples, xi is the ith sample value, m is the mean of total
samples.

V =
1
N

N∑

i=1

(xi − m)2 (1)

MD =
1
N

N∑

i=1

|xi − m| (2)

CV =
√

V

m
(3)
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Fig. 1. TCP traffic with different network environments in large time scale.

From the small time scale perspective, in a LDoS attack period, the TCP
congestion control mechanism would be triggered when the attacker sends high
rate bursts to the victim, then the network would set limits on TCP traffic, and
the TCP traffic starts to recover when the attack stops. The TCP traffic would
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undergo the process of “steady decline and then steady increase”, and the range
of TCP traffic is much larger than the normal network and DDoS attacks in a
short duration of time. Figure 2 shows the TCP traffic with different network
environments in small time scale (100s–110s). The samples in the figure include
all TCP flows in the network. As is shown in the figure, the range of TCP traffic
under a LDoS attack is much larger than the range of TCP traffic without any
attack or under a DDoS attack.

100 101 102 103 104 105 106 107 108 109 110
Time(s)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

TC
P 

tra
ffi

c(
pa

ck
et

s/
s)

100 101 102 103 104 105 106 107 108 109 110
Time(s)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

TC
P 

tra
ffi

c(
pa

ck
et

s/
s)

100 101 102 103 104 105 106 107 108 109 110
Time(s)

0

5

10

15

20

25

30

35

40

45

50

55

60

65

TC
P 

tra
ffi

c(
pa

ck
et

s/
s)

TCP traffic under LDoS attacks TCP traffic without any attacks TCP traffic under DDoS attacks

Fig. 2. TCP traffic with different network environments in small time scale.

4 The Proposed Detection Methods

The two-step cluster analysis method is proposed to cluster the network traffic
based on the discrete characteristics of TCP traffic from the large time scale. For
reducing the false positives, the abnormal pieces analysis is adopted to identify
the suspected cluster which may suffer LDoS attacks from the small time scale.

4.1 The Two-Step Cluster Analysis

Clustering [9] is the unsupervised classification of input records into clusters
based on the similarity, it is widely used in the data mining [1,6], search engines
[2], image segmentation [4,16] and intrusion detection [10,17] in network. The
two-step cluster analysis [3] method is a scalable cluster analysis algorithm
designed to handle very large data sets, so it is entirely applicable for analyzing
complicated network traffic.

According to the discrete characteristics of TCP traffic, the two-step cluster
analysis method is proposed to identify the network traffic. Two-step cluster
analysis can gather the similar records into one cluster and divide the differ-
ent records into other clusters. The variance, the mean deviation and the coef-
ficient of variation of TCP traffic are calculated as the input records of the
two-step cluster analysis method. The TCP traffic that is suffered LDoS attacks
could assembled into a cluster because their values of discrete characteristics are
similar.

Two-step cluster analysis method for detection of LDoS attacks has four
steps: (1) Divide the TCP traffic into a number of fixed length detection units
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(DU), and calculate three discrete characteristics of each DU as input records.
(2) Pre-cluster the input records into many small sub-clusters. (3) Cluster the
sub-clusters resulting from pre-cluster step. (4) Assign the cluster membership to
identify which one is the suspected cluster. The process of two-step cluster anal-
ysis is given as Fig. 3, and more details for two-step cluster analysis algorithm,
please visit the IBM Knowledge Center [3].

Fig. 3. The process of two-step cluster analysis method.

4.2 The Abnormal Pieces Analysis

The two-step cluster analysis method would cluster input records into several
clusters, the cluster with the largest value of the input records would be suspected
to be suffered LDoS attacks. The two-step cluster analysis method analyzes TCP
traffic on the large time scale, which may lead to high false positive rate. So
another method based on analyzing pieces of TCP traffic is proposed for the
sake of reducing false positives. From the perspective of small time scale, TCP
traffic dropped rapidly and then recovered under LDoS attacks, the range of
TCP traffic is much larger than the normal network in a short duration of time
attack, so we divide every DU in the suspected cluster into many test pieces
(TP), each TP has k samples. The TP must be larger than the attack period
T so that we can get a complete changing process of TCP traffic. The steps of
LDoS attack detection in a DU are shown as follows:

– Find the maximum sample Smax and the minimum sample Smin in TPi

(i = 1, 2, ..., k), let the range(i) = Smax − Smin;
– If range(i) > Ω1, the TPi is defined as the abnormal TP(ATP);
– Let TPR = count(ATP )

k , if TPR > Ω2, the DU might suffer from LDoS
attacks.

The threshold value Ω1 is gained from the training data, which is composed
of many TPs from normal network traffic. Calculating the range in each TP, and
the Ω1 is calculated as (4), the Mean(range) is the average value of ranges and
the Std(range) is the standard deviation of ranges, z is the constant associated
with detection accuracy. The train data is divided into many DUs, calculating the
TPR in each DU, and the threshold value Ω2 is calculated as (5), Mean(TPR)
is based on the average value of TPRs, Std(TPR) is based on the standard
deviation of TPRs, the value of z is the same as (4).

Ω1 = Mean(range) + z × Std(range) (4)

Ω2 = Mean(TPR) + z × Std(TPR) (5)

The flow-process diagram of LDoS attack detection is shown as Fig. 4.
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5 Experiments and Results Analysis

To prove the effectiveness and performance of the detection method we have
put forward, the experiments are constructed in the network simulator NS2, the
public dataset LBNL [13] and the public dataset WIDE [7] respectively.

Fig. 4. The flow-process diagram of LDoS attack detection.

5.1 Experiments on NS2

The network topology is designed in NS2, which is shown as Fig. 5. There are
three routers in network topology, and the link between router2 and router3
is the bottleneck link, whose bandwidth is 10 Mbps and network time-delay is
30 ms, apart from this, all links’ bandwidths are 100 Mbps and network time-
delay is 15 ms. Meanwhile, there are 25 legal TCP links in topology and 10 of
them are set to generate background traffic. The attack flows are periodically
launched by the link that connected router1, which target the bottleneck link.

We set three experiments in NS2 platform, and the parameters of attacks are
set as Table 1. It is proved by Kuzmanovic [12] that the attack period T ≈ 1s
can achieve the perfect attack performance, the attack bursts length L ≈ 0.1s
and the attack bursts rate R = 20 Mbps based on the RTTs and the bottleneck
bandwidth of network respectively. Meanwhile, we fix two attack parameters and
vary one attack parameter to evaluate the precision of the detection method.

The simulation starts from 0 to 320s, and the attack is launched from 100s
to 220s. We set sampling time st = 0.05s and detection unit DU = 20s, so we
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Fig. 5. Network topology in NS2.

Table 1. Attack parameters in NS2.

Experiments Attack period (T) Attack burst length (L) Attack burst rate (R)

1 0.1s–2s 0.1s 20Mbps

2 1s 0s–0.3s 20Mbps

3 1s 0.1s 5Mbps–30Mbps

got 16 DUs after a simulation, among which 6 DUs (6th to 11th) were suffered
LDoS attacks. Calculating the variance, the mean deviation and the coefficient
of variation of TCP traffic for every DU, by which the method we proposed could
cluster network traffic. The programming language AWK is used to extract the
data of TCP traffic from the bottleneck link.

Table 2 shows the cluster results corresponding to the attack parameters we
set in Table 1. In experiment 1, it’s almost DDoS attack when the attack period T
is as short as the attack burst length L, the TCP traffic approaches to zero when
suffered from DDoS attacks and it is as steady as the normal network. In experi-
ment 2, it’s a normal network when L equals to zero. As can be seen from Table 2,
input records are clustered into two groups, the TCP traffic under LDoS attacks
can be clustered from normal network traffic easily by two-step cluster analysis
method. However, the normal DUs like DU1 and DU12 are wrongly attributed
to the attacked DUs. In the DU1, the source-end of TCP tries to establish con-
nections to the destination-end, TCP traffic is in a process of growth, it’s more
unstable for DU1 than other DUs, so does the DU12, which is in the process of
recovering TCP traffic from attack.

It’s a common occurrence that many TCP connections start to link up with
the destination-end in every second. For reducing false positives, it’s neces-
sary to detect the DUs again which are suspected to be suffered LDoS attacks.
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Table 2. The cluster results.

Experiments T L R Cluster 1 Cluster 2

1 0.1s–0.2s 0.1s 20Mbps DU1–DU11,DU13–DU16 DU12

0.3s–0.5s DU2–DU5,DU13–DU16 DU1,DU6–DU12

0.6s–2s DU1–DU5,DU12–DU16 DU6–DU11

2 1s 0s 20Mbps DU2–DU16 DU1

0.1s DU1–DU5,DU12–DU16 DU6–DU11

0.2s–0.3s DU2–DU5,DU12–DU16 DU1,DU6–DU11

3 1s 0.1s 5Mbps–10Mbps DU2–DU5,DU12–DU16 DU1,DU6–DU11

15Mbps–30Mbps DU1–DU5,DU12–DU16 DU6–DU11

The pieces of TCP traffic analysis method is proposed to detect LDoS attacks
in small time scale. The train data is gained from the normal network environ-
ment based on NS2 platform, and it is lasted for 600s. The test piece (TP) is
set as 2s, and we get the threshold Ω1 = 15.40, Ω2 = 0.46, the constant value
z = 2.58 by the train data. We test the DUs of the suspected cluster (cluster
2) by the abnormal pieces analysis method, the Table 3 shows the results based
on the pieces of TCP traffic analysis method. We can see from Table 3, the DU1

is removed from the suspected cluster and other DUs that suffered from LDoS
attacks are remained.

Table 3. The results based on the pieces of TCP traffic analysis method.

Experiments T L R APR < Ω2 APR > Ω2

1 0.1s 0.1s 20 Mbps — DU12

0.2s — DU12

0.3s DU1,DU7 DU6,DU8–DU12

0.4s–0.5s DU1,DU12 DU6–DU11

0.6s–2s — DU6–DU11

2 1s 0s 20 Mbps DU1 —

0.1s — DU6–DU11

0.2s DU1 DU6–DU11

0.3s DU1 DU6–DU11

3 1s 0.1s 5 Mbps–10Mbps DU1 DU6–DU11

15 Mbps–30Mbps — DU6–DU11

5.2 Experiments on Public Dataset LBNL

The dataset LBNL [13] comes from the Lawrence Berkeley National Labora-
tory, we conduct experiment on the public dataset LBNL to prove the method
has a low false positive rate. The test data from LBNL is lasted more than 18
hours, in which no LDoS attacks occurred. We set the sampling time st = 0.1s,
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the detection unit DU = 100s, and the test piece TP = 2s, so we got 649 DUs
in total, each DU has 50 TPs. The Fig. 6 shows the results of experiment based
on the two-step cluster analysis method. There are 94 DUs (cluster 1) which are
suspected to be suffered LDoS attacks. Then we analyze the TCP traffic pieces
of the 94 DUs. The train data is extracted from another LBNL dataset that is
in a normal network environment, and the train data is lasted for 600s. We get
the parameters by the train data as: z = 2.58, Ω1 = 105.95, Ω2 = 0.88. The
results based on the analyzing pieces of TCP traffic method is shown as Fig. 7.
Finally we get 16 false positives after the two-step cluster analysis method and
the abnormal pieces analysis method, the false positive rate is 2.46%.

0 50 100 150 200 250 300 350 400 450 500 550 600 650
Detection Units

0

1

2

3

C
lu

st
er

 c
at

eg
or

y

cluster1
cluster2

Fig. 6. Cluster results of LBNL dataset.

Fig. 7. The results based on the abnormal pieces analysis method.

The TCP traffic of the DUs that are identified to be attacked is shown as
Fig. 8, we take following two DUs as examples. In a small time scale, the TCP
traffic changes rapidly, the amount of fluctuation of TCP traffic is similar to the
traffic that is attacked by LDoS attacks.
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The TCP traffic of the 347th DU The TCP traffic of the 348th DU

Fig. 8. The TCP traffic of the false positives detection units.

As for the LBNL dataset, the two-step cluster analysis for detecting LDoS
attacks has a lower false positive rate than the AEWMA [21] method, the results
are shown as Table 4.

Table 4. The comparison results.

Detection
method

Number of DUs The false positives False positive rate

Two-step cluster
analysis

649 16 2.46%

AEWMA 649 22 3.38%

5.3 Experiments on Public Dataset WIDE

The dataset WIDE [7] is a traffic data repository maintained by the MAWI
Working Group of the WIDE Project, we conduct experiment on the latest
dataset which collected 10 weeks of network traffic in 2018. Monday’s network
traffic was used as test data and test data was lasted for 150 min. We set the
sampling time st = 0.1s, the detection unit DU = 100s, and the test piece
TP = 2s, so we got 90 DUs in total, each DU has 50 TPs. The Fig. 9 shows
the results of experiment based on the two-step cluster analysis method. There
are 14 DUs (cluster 1) which are suspected to be suffered LDoS attacks. Then
we analyze the TCP traffic pieces of the 14 DUs. Tuesday’s network traffic was
used as train data, in which no LDoS attacks occurred. We get the parameters
by the train data as: z = 2.58, Ω1 = 4540.29, Ω2 = 0.38234. The results based
on the analyzing pieces of TCP traffic method is shown as Fig. 10. Finally we
get 5 false positives and the false positive rate is 5.56%.

The TCP traffic of the false positive unit 21 and the false positive unit 22
is shown as Fig. 11. 21th DU contains TCP traffic of 2000s to 2100s, and 22th
DU contains TCP traffic of 2100s to 2200s. Since the TCP traffic in 21th DU
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Fig. 9. Cluster results of WIDE dataset.
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Fig. 10. The results based on the abnormal pieces analysis method.
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Fig. 11. The TCP traffic of the false positives detection units.

keeps fluctuating and the TCP traffic is discrete, it was divided into suspicious
clusters (cluster 1). The TCP traffic in 21th DU changes rapidly, the amount
of fluctuation of TCP traffic is similar to the traffic that is attacked by LDoS
attacks. 22th DU is similar to 21th DU, they are both detected as suffered LDoS
attacks.
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6 Conclusions

We have proposed the two-step cluster analysis method to detect LDoS attacks.
According to the discrete distribution of TCP traffic caused by LDoS attacks,
three values for measuring dispersion of TCP traffic are calculated to be the
input records for the detection method. Then the cluster which is suspected
to be suffered LDoS attacks would be detected again by the abnormal pieces
analysis method for reducing false positives. The results of experiment on NS2
are proved the effectiveness of the method we proposed, and experiments on
public dataset LBNL and dataset WIDE show that the method has a low rate
of false positive.

It’s hard to find the public dataset that contains LDoS attacks. In the future
work, we’re going to build the test-bed including LDoS attacks in real network
environment for further verification of the methods we proposed.

References

1. Berkhin, P.: A survey of clustering data mining techniques. Group. Multidimension.
Data 43(1), 25–71 (2006)

2. Bijuraj, L.V.: Clustering and its applications. In: Proceedings of National Confer-
ence on New Horizons in IT-NCNHIT, pp. 169–172 (2013)

3. Center, I.K.: Two-step cluster analysis. https://www.ibm.com/support/
knowledgecenter/SSLVMB 25.0.0/statistics mainhelp ddita/spss/base/idh
twostep main.html. Accessed 10 Aug 2018

4. Chuang, K.S., Tzeng, H.L., Chen, S., Wu, J., Chen, T.J.: Fuzzy c-means clustering
with spatial information for image segmentation. Comput. Med. Imaging Graph.
30(1), 9–15 (2006)

5. Gligor, V.D.: A note on the denial-of-service problem. In: IEEE Symposium on
Security and Privacy, p. 139 (1983)

6. Grabmeier, J., Rudolph, A.: Techniques of cluster algorithms in data mining. Data
Min. Knowl. Disc. 6(4), 303–360 (2002)

7. Group, M.W.: Packet traces from wide backbone. http://mawi.wide.ad.jp/mawi/.
Accessed 10 Aug 2018

8. Guo, Y., Yan, J., Qiu, H., Zhang, L.: A CRF-theory-based method for BGP-LDOS
attack detection. In: IEEE International Conference on Computer and Communi-
cations, pp. 1071–1075 (2017)

9. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31(3), 264–323 (1999)

10. Khan, L., Awad, M., Thuraisingham, B.: A new intrusion detection system using
support vector machines and hierarchical clustering. VLDB J. 16(4), 507–521
(2007)

11. Kuzmanovic, A., Knightly, E.W.: Low-rate TCP-targeted denial of service attacks:
the shrew vs. the mice and elephants. In: Proceedings of the 2003 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communi-
cations (SIGCOMM 2003), pp. 75–86 (2003)

12. Kuzmanovic, A., Knightly, E.W.: Low-rate TCP-targeted denial of service attacks
and counter strategies. IEEE/ACM Trans. Netw. 14(4), 683–696 (2006)

https://www.ibm.com/support/knowledgecenter/SSLVMB_25.0.0/statistics_mainhelp_ddita/spss/base/idh_twostep_main.html
https://www.ibm.com/support/knowledgecenter/SSLVMB_25.0.0/statistics_mainhelp_ddita/spss/base/idh_twostep_main.html
https://www.ibm.com/support/knowledgecenter/SSLVMB_25.0.0/statistics_mainhelp_ddita/spss/base/idh_twostep_main.html
http://mawi.wide.ad.jp/mawi/


104 D. Tang et al.

13. LBNL: ICSI enterprise tracing project. http://www.icir.org/enterprise-tracing.
Accessed 10 Aug 2018

14. Loukas, G.: ke, G.: Protection against denial of service attacks: a survey. Comput.
J. 53(7), 1020–1037 (2010)

15. Luo, X., Chang, R.K.C.: On a new class of pulsing denial-of-service attacks and
the defense. In: Network and Distributed System Security Symposium, NDSS 2005,
San Diego, pp. 61–79 (2005)

16. Ray, S., Turi, R.H.: Determination of number of clusters in k-means clustering
and application in colour image segmentation. In: Proceeding 4th ICAPRDT,
pp. 137–143 (1999)

17. Ray, S., Turi, R.H.: Intrusion detection with unlabeled data using clustering. In:
Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA),
pp. 1–14 (2001)

18. Sarat, S., Terzis, A.: On the effect of router buffer sizes on low-rate denial of service
attacks. In: Proceedings International Conference on Computer Communications
and Networks, 2005 ICCCN 2005, pp. 281–286 (2005)

19. Sun, H., Lui, J., Yau, D.: Distributed mechanism in detecting and defending against
the low-rate TCP attack. Comput. Netw. 50(13), 2312–2330 (2006)

20. Sun, H., Lui, J.C.S., Yau, D.K.Y.: Defending against low-rate TCP attacks:
Dynamic detection and protection. In: IEEE International Conference on Network
Protocols, pp. 196–205 (2004)

21. Tang, D., Chen, K., Chen, X.S., Liu, H.Y., Li, X.: Adaptive EWMA method based
on abnormal network traffic for ldos attacks. Math. Probl. Eng. 2014(3), 166–183
(2014)

22. Wu, Z., Zhang, L., Yue, M.: Low-rate Dos attacks detection based on network
multifractal. IEEE Trans. Dependable Secure Comput. 13(5), 559–567 (2016)

23. Yu, C., Kai, H.: Collaborative detection and filtering of shrew DDoS attacks using
spectral analysis . J. Parallel Distrib. Comput. 66(9), 1137–1151 (2006)

24. Yue, M., Liu, L., Wu, Z., Wang, M.: Identifying LDoS attack traffic based on
wavelet energy spectrum and combined neural network. Int. J. Commun. Syst.
31(2), e3449 (2018)

http://www.icir.org/enterprise-tracing


Full Paper Session III: Real-World
Cryptography



On the Weakness of Constant Blinding
PRNG in Flash Player

Chenyu Wang, Tao Huang(B), and Hongjun Wu

Division of Mathematical Sciences, School of Physical and Mathematical Sciences,
Nanyang Technological University, Singapore, Singapore
cwang014@e.ntu.edu.sg, {huangtao,wuhj}@ntu.edu.sg

Abstract. Constant blinding is considered an effective mitigation
against JIT spray attacks. In this paper, we study the design and imple-
mentation of constant blinding mechanism in Flash Player and anal-
yse the weakness in its pseudo random number generator (PRNG). We
demonstrate how such weakness can be exploited to recover the seed
value in PRNG, thus bypass the constant blinding in Flash Player.

We propose two methods to circumvent constant blinding in Flash
Player. The first method aims at recovering the seed value using crypt-
analysis on the PRNG algorithm, which turns out to provide only 21-bit
entropy. The second method focuses on ill-considered implementation of
PRNG, which puts obvious signature value next to the seed value and
makes it easy for attacker to search. To demonstrate the two methods
are both practical, we present proof-of-concept attacks based on existing
vulnerability. We have reported the issue to Adobe Flash security team
and CVE-2017–3000 is assigned to us. To the best of our knowledge, we
are the first to analyse the randomness in constant blinding and inte-
grate cryptanalysis in constant blinding bypass. Furthermore, we imple-
ment a prototype tool Constant Blinding Enhancement (ConBE) based
on dynamic instrumentation framework to defend against our proposed
attacks. In ConBE, we provide a stronger defence than the official patch
of Flash Player.

1 Introduction

JIT-spray attack was first proposed by Blazakis [8] in 2010. Through JIT compi-
lation, large constant in client-side script, e.g. JavaScript and ActionScript, will
be dynamically emitted into code heap. More specifically, JIT compiler loads
the script during runtime and compiles the script code into executable code.
Constant number in the script will be emitted as immediate value in generated
assembly code. It means that a sequence of multiple bytes, which is under the
control of malicious attacker, is embedded into code heap. If the attacker hijacks
the control flow to the address where the sequence of multiple bytes is located,
these misaligned bytes could be served as short gadgets for attackers to build a
complete exploit. In the case of Return Oriented Programming (ROP) attack,
those constant numbers can be used as ROP gadgets to construct ROP chain.
c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 107–123, 2018.
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Constant blinding mechanism is adopted in JIT compilers to defend against
JIT spray attacks. It aims at preventing the constant controlled by attacker
appearing in code heap. For this purpose, constant blinding relies on a PRNG
to generate a random number. The number serves as a secret cookie to scramble
the value of the constant that will be emitted in memory. Therefore, the PRNG
plays a significant role in constant blinding. If an attacker can recover the seed
value of the PRNG under reasonable time cost, the scrambled value will be
predictable and the attacker will gain the ability to put ROP gadgets into code
heap via JIT-spray attacks at his own will.

Since the critical role of PRNG in modern security systems, it has been anal-
ysed in several previous works. A commonly used method in attacking a PRNG
is to lower to entropy used in the PRNG. This can be done by exploiting the
weakness in the external entropy source. Kim et al. [14] analysed the OpenSSL
PRNG on the Android system. They demonstrated that the lack of entropy at
the time of seed initialization will make it vulneranle for attackers to predicate
the state of PRNG and recover the secret key of SSL session. Similar work [13]
was also done on Linux PRNG. It demonstrated that the low entropy provided
by the PRNG will make the device vulnerable to IPv6 fragmentation attack and
stack canary bypass. Constant blinding PRNG in Flash Player tries to design
an efficient PRNG algorithm itself for providing secret cookie while reducing
the performance overhead. Our research shows that the flawed design and ill-
considered implementation still make attacker completely recover the seed status
and launch JIT-spray attacks.

In this paper, we analyse the design and implementation of the PRNG for
constant blinding in Flash Player. We propose a novel attack to lower the entropy
of the PRNG. Instead of analysing the external entropy source like the previ-
ous work [13,14], we make cryptanalysis on the PRNG algorithm itself. Due to
insufficient confusion and diffusion of the PRNG, we can reduce the entropy in
the secret generated cookie to only 21-bit. We can recover the seed value in less
than one second. Moreover, we propose another method to recover the seed value
in the PRNG in Flash Player. We find that the seed value is stored in heap in
the implementation of the PRNG and it is always located next to some constant
values. We can use those constant values as signatures to locate the seed value in
memory. The search for the seed value only requires O(1) time, which is fast and
stable. Compared with previous work [16,17] that only searches for some corner
cases in constant blinding, we are the first to analyse the PRNG in constant
blinding and predict the secret cookie by recovering seed value.

We further propose and implement a dynamic binary instrumentation frame-
work ConBE (Constant Blinding Enhancement) based on PIN to mitigate our
attacks on PRNG. We introduce extra entropy in the generation of pseudo num-
ber, making cryptanalysis on PRNG impractical. We also move the seed value to
an isolated heap, making it hard for attackers to search in memory. Compared
with the latest patch of Flash Player, we provide a stronger protection that an
attacker cannot recover the seed value even if the attacker gains the ability to
arbitrarily read or write in memory. We evaluate our mitigation for Flash Player
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on Windows 7 platform and compare the performance overhead with the patched
version of Flash Player.

In summary, we make the following three contributions:

– Analyse the design and implementation of PRNG for constant blinding in
Flash Player. Propose two feasible methods to circumvent constant blinding
based on cryptanalysis and information disclosure respectively.

– Present the proof-of-concept exploit based on existing vulnerability and eval-
uate its performance overhead.

– Propose a prototype mitigation against our attack based on dynamic binary
instrumentation framework.

2 Technical Background

In this section, we first introduce the attacking model including the attacker
abilities and the mitigation employed in our target. Then we explain the basic
concepts of Return-Oriented-Programming and how attackers chain gadgets
together for a successful exploit. Finally we give a general idea of the JIT-spray
attack and how constant blinding is supposed to mitigate JIT-spray attack.

2.1 Attacking Model

In our attacking model, we assume that the attacker gains the following abilities.

– The target is under the protection of DEP [3] and ASLR [5], which is enabled
at the hardware level and OS level.

– The target is assumed to be protected by code diversification technique, such
as G-free, that there exists no available gadget in static code or dynamically
generated code.

– The target is vulnerable to memory corruption. Hence, the attacker can read
arbitrary value in memory and modify value at given address.

We take Flash Player as our target with DEP and ASLR in place. DEP is a
defence against shellcode injection attack. DEP prevents attacker from directly
writing shellcode into executable code heap and hijacking the control flow to the
shellcode. ASLR is another defence that raises the bar of successful exploitation.
Through randomizing the base address of loaded module and mapped memory,
attacker has to exploit information exposure vulnerability to disclose critical
information before hijacking control flow. We will discuss more academic work
on protection for JIT code in Sect. 6.2.

The second one is a common practice for developing stable exploits today.
Attackers usually exploit various kinds of vulnerabilities in target [21], including
use-after-free, type confusion, etc. Recent exploits [1,2] on Flash Player show that
ActionScript provides attacker chances to trigger vulnerability, leak critical infor-
mation in memory. Therefore, ASLR is not a big concern in our attacking model.
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s c r i p t code :
fun ( ) {

a = 0xc3585a59 ;
a = 0xdeadbeef ;

}

JIT code without constant b l i nd ing :
mov ecx , 0xc3585a59

mov dword ptr [ edx+0x14 ] , ecx
mov ecx , 0xdeadbeef

mov dword ptr [ edx+0x14 ] , ecx

JIT code with constant b l i nd ing :
mov ecx , 0xccf1d312

xor ecx , 0xfa9894b

mov dword ptr [ edx+0x14 ] , ecx
mov ecx , 0xd10437a4

xor ecx , 0xfa9894b

mov dword ptr [ edx+0x14 ] , ecx

Listing 1.1. Constant Blinding in JIT Code of Flash Player

2.2 Return Oriented Programming

Since executing shellcode in non-executable memory is forbidden due to the
existence of DEP, attackers turned their attention to code reuse attacks, i.e.
using the existing code in static libraries or dynamically generated code to launch
attacks. ROP attack is a typical kind of code reuse attacks.

ROP gadget refers to a short sequence of assembly instructions that end with
ret. In ROP attack [20,24], attacker usually has to prepare addresses of gadgets
in stack and chains those ROP gadgets via ret instruction. The ROP gadgets
are supposed to achieve various kinds of operations, e.g. (1) load value from
stack into register, (2) arithmetic operation, (3) store value into memory, (4)
load value from memory into register, etc. Attackers can combine different types
of the gadgets to launch the attack.

2.3 JIT Spray Attacks and Constant Blinding

In 2005, Abadi et.al. proposed Control Flow Integrity (CFI) [6] enforce-
ment to defend against ROP attack. Now there are various implementations of
CFI introduced in academia and industry. For example, G-Free [19] is designed
to eliminate available gadgets in binary. All those mitigations try to reduce the
available gadgets for code reuse attacks in static code. However, JIT spray attack
uses the dynamically generated code to provide ROP gadgets. In another word,
JIT spray attack is out of the protection scope of those mitigations. In the work
of Blazakis [8] and Sintsov [22], constant numbers in JIT-generated code provides
a 4-byte long gadget for attacker in executable code heap.
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In JIT Spray attacks, the constant in script can be used as a short gad-
get for further exploitation. Constant number 0xc3585a59 in Listing 1.1 will
be emitted into code heap by JIT compiler as an immediate value in instruc-
tion mov ecx, 0xc3585a59. The byte sequence of this instruction will be
0xb9 0x59 0x5a 0x58 0xc3 in memory on a little-endian system. Suppose the
sequence of bytes is located at 0x602010. If attacker hijacks the control flow to
0x602011. The misaligned byte sequence will be interpreted as pop ecx (0x59),
pop edx (0x5a), pop eax (0x58) and ret (0xc3) from the view of assembly code
and used as an ROP gadget.

Constant blinding was proposed to mitigate JIT-spray attack in JITSafe [9]
and has already been deployed in the script engine that supports JIT compila-
tion. To be more specific, it prevents the value of a constant number appearing in
memory. The most common solution is to generate a secret cookie and XOR the
constant number with the secret cookie to get a new number. At the moment of
emitting JIT code, the new number will be moved into a register first. The reg-
ister will be then XORed with the secret cookie to restore the original number.
We give an example in Listing 1.1 to demonstrate how constant blinding works.
The constant number, 0xc3585a59 is blinded by a secret cookie 0xfa9894b. In
the following of the paper, we call the generated random number as secret cookie
and call the value, which results from XOR operation on original value and secret
cookie, as blinded constant.

For a user-defined function, the JIT code of the function is generated at the
first time the function is being called [4]. The JIT compiler will check if JIT code
of this function exists. If code has not been generated yet, the JIT compiler will
generate the code first and execute the generated code. Otherwise, the JIT code
will be executed directly. Before JIT compilation, constant values in script are
stored in a symbol table located in memory region with readable and writeable
permission. We will discuss how to exploit the JIT compilation process to launch
our attack later in Sect. 3.4.

3 Attacks on Constant Blinding in Flash Player

As described above, security of constant blinding heavily relies on the
secret cookie generated. If the secret cookie is predictable for attacker, the
defence against JIT spray attack will be weakened. In Sect. 3.1, we will discuss
the implementation details of constant blinding PRNG in Flash Player. Next,
we will demonstrate how we recover the seed value with two different methods
in less than 1 s. The first method is to apply cryptanalysis on the hash func-
tion. We will show that the seed value of PRNG algorithm can be recovered at
O(221) time complexity in Sect. 3.2. The second method is to search the seed
value directly. Different from searching the whole memory space to locate the
seed value, we find the seed value in memory at O(1) time cost based on pointer
redirection in Sect. 3.3.
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3.1 Constant Blinding in Flash Player

The PRNG contains three components as shown in Listing 1.2: a seed initializa-
tion function (RandomFastInit), a hash function (RandomPureHasher) and a
generator function (GenerateRandomNumber) to generate the final secret
cookie for constant blinding. Another function (TandomFastNext) generates
a number based on the seed value and updates its value, but it does not change
the entropy in the seed value.

void RandomFastInit (pTRandomFast pRandomFast ) {
pRandomFast−>uValue = ( i n t ) ( getPerformanceCounter ( ) ) ;
pRandomFast−>uSequenceLength = 0x7fffffff ;
pRandomFast−>uXorMask = 0x14000000 ;

}

i n t RandomPureHasher ( i n t iSeed ) {
i n t iRe su l t ;
iSeed = ( ( iSeed�13)⊕ iSeed )−( iSeed�21) ;
iRe su l t = ( iSeed ∗( iSeed ∗ iSeed ∗c3 +c2 ) + c1 ) ;
iRe su l t = iRe su l t & kRandomPureMax ;
iRe su l t = iRe su l t+iSeed ;
iRe su l t = ( ( iRe su l t�13)⊕ iRe su l t )−( iRe su l t�21) ;
r e turn iRe su l t ;

}

i n t GenerateRandomNumber (pTRandomFast pRandomFast ) {
i f ( pRandomFast−>uValue == 0) {

RandomFastInit ( pRandomFast ) ;
}
long aNum = RandomFastNext (pRandomFast ) ;
aNum = RandomPureHasher (aNum ∗ 71L) ;
r e turn aNum & kRandomPureMax ;

}
Listing 1.2. Constant Number Generation Process

In initialization function, the seed value (uV alue) is initialized by QueryPer-
formanceCounter (Windows API). The hash function takes the seed value as
input and generates a hash value. The new value will be ANDed with kRandom-
PureMax (0x7fffffff) in the generator function to produce the final cookie.

In hash function, the variables c1, c2, c3 are three constant numbers.
This hash function adds no extra entropy into the generated number but aims
to make it hard for attacker to reverse the seed value. Attacker’s goal is to
to retrieve the seed value, predicate the secret cookie generated in next round
and embed the desired value in the executable code heap. Though reversing the
seed value via brute force seems feasible, it is impossible in practice because the
default running timeout in Flash Player is 15 s. Attacker must recover the seed
value in less than 15 s while brute forcing requires a few minutes on average
according to our test.
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Algorithm 1. Reverse Polynomial Function
1: Function name: Reverse
2: Input: V: the value to reverse
3: Output: S: the set of candidate value
4: S = ∅
5: target bit = 0
6: curSolution = 0
7: reverseBit(V, target bit, curSolution, S)
8: return S

Fig. 1. Reorganized hash function bit by bit

3.2 Attack Based On Cryptanalysis

Hash function is supposed to make attacker unable to reverse the seed
value under reasonable time cost. However, we find that the hash function used
for constant blinding in Flash Player is insufficient in confusion and diffusion,
such that the attacker still can get the seed value in short time. The hash func-
tion in Listing 1.2 can be simplified into two functions. The first one is a bit
manipulation function f(n), and the other is a third-degree polynomial function
g(n). These two functions can be generalised as following equations:

f(n) = ((n � 13) ⊕ n) − (n � 21) (1)

g(n) = (c3 ∗ n3 + c2 ∗ n + c1)&0x7fffffff + n (2)

For the polynomial function, we can easily reverse the input value. The sim-
plified algorithm is given in Algorithm 1. The reverse algorithm starts to scan
the target value from the least significant bit (Line 7). Then, we apply a back-
tracking Algorithm 2 to reverse the input value bit by bit. We guess one bit and
use the polynomial function to verify (Line 7 and 14) if the result matches the
first i bits of target value.

For the bit manipulation function, we design Algorithm 3 to reduce the time
complexity to O(221), which is more efficient compared with O(232) of brute-
force method. To recover the seed value of bit manipulation function, we express
the seed value in a 32-digit string as a1a2a3...a31a32 and express target value
as t1t2t3...t31t32. We reorganize the bit manipulation function f(n) and present
the process of bit manipulation function in Fig. 1. According to the generalized
equation, the seed value is divided into three parts. The higher part is a01...a11,
the middle part is a12...a21 and the lower part is a22...a32. Since target value is
known to us, attack on PRNG can be divided into two steps. We can recover
the value of higher part and lower part first and then reverse the possible value
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Algorithm 2. Backtrack Algorithm to Reverse Polynomial Function bit by bit
1: Function name: reverseBit
2: Input: V: the value to reverse, i: the i th bit to check, sol: current solution, S: the

set to store candidate value
3: if i == 32 then
4: S.add(sol);
5: return
6: end if
7: if verify ith bit(V, i, 0) then
8: sol = sol + 0�i
9: i = i + 1

10: reverseBit(V, i, S, sol)
11: i = i - 1
12: sol = sol - 0�i
13: end if
14: if verify ith bit(V, i, 1) then
15: sol = sol + 1�i
16: i = i + 1
17: reverseBit(V, i, S, sol)
18: i = i - 1
19: sol = sol - 1�i
20: end if
21: return

of middle part. For higher part and lower part, we iterate over possible values
of the lower part (Line 5) and reverse the value of higher part through value
in t22...t32 (Line 6–11). For middle part, we iterate over possible values of the
middle part (Line 12) and use the known value of t1..t21 to verify if the value is
valid (Line 14–17). Therefore, the time complexity of the whole process will be
O(211) ∗ O(210) = O(221).

3.3 Attack Based on Memory Disclosure

Besides the attack based on cryptanalysis, the implementation of the PRNG
ignores the possibility that the attacker can locate the seed value in memory
through searching memory space via info disclosure vulnerability.

To find the seed value quickly and stably, we have to solve two challenges dur-
ing our search in memory. The first challenge is how to assure that the accessed
value is the seed value we are searching for. The second challenge is to get the
memory address of the seed value in the heap.

For the first challenge, the solution is straightforward. In initialization func-
tion of the PRNG, the seed value is initialized together with sequenceLength and
XorMask. However, the values of those two variables are constant numbers and
these two values are located in memory adjacent to the seed value. These two
variables can be used as signature values for attacker to locate the seed value.

For the second challenge, the difficulty comes from the fact that the seed
value and the victim V ector object are located in two different heaps. Usually,
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Algorithm 3. Reverse algorithm for the polynomial function
1: Function name: reverseHash
2: Input: V: the value to reverse
3: Output: S: the set of candidate value
4: S = ∅
5: for lowPart ∈ [0, 0x7ff] do
6: tmpPart = V & 0x7ff

7: if tmpPart>lowPart then
8: highPart = (1�11) + lowPart - tmpPart
9: else if tmpPart<=lowPart then

10: highPart = lowPart - tmpPart
11: end if
12: for midPart ∈ [0, 0x3ff] do
13: value = highPart�21 + midPart�11 + lowPart
14: t = (value�13)⊕value - (value�21)
15: if t == V then
16: S.add(value);
17: end if
18: end for
19: end for

f unc t i on fun1 ( ) { a = 0x41414141 ; }
f unc t i on fun2 ( ) { c = 0x43434343 ; }
fun1 ( ) ;
fun2 ( ) ;

Listing 1.3. Benign code for demonstrate how blinded constant are generated

a successful exploit on Flash Player relies on corrupting the metadata length
in a V ector objectt, which enables attacker to arbitrarily read memory out of
the bound of original buffer. Attempt to read value at given address, which is
not readable or unmapped, will cause access violation. To avoid unnecessary
crash in our exploit, we have to figure out a reliable and quick way to locate the
heap where the seed value is located. Our solution is to create an anchor object
and save the reference to anchor object in the same heap as victim vector. The
anchor object contains a reference to another object which is located in the same
heap as the seed value. Through chains of pointer indirection, we can locate the
heap storing the seed value. Since size of the heap is a constant number, time
complexity to search for the seed value is O(1).

3.4 Full Exploit Generation

In our exploit, we call a function as constant releasing function if its generated
code contains a blinded constant. In Listing 1.3, we list two simple constant
releasing functions and invoke them one after another in script. From the view
of constant blinding, the steps to emit code can be separated into a few steps.
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f unc t i on fun1 ( ) { a = 0x41414141 ; }
f unc t i on fun2 ( ) { c = 0x42424242 ; }
f unc t i on fun3 ( ) { c = 0x43434343 ; }
fun1 ( ) ;
fun2 ( ) ;
ev i lCode ( ) ;
fun3 ( ) ;

Listing 1.4. Malicious code to retrieve seed value and embed desired value in code
heap

1. Generate JIT code for fun1
– Call GenerateRandomNumber and get Key1
– Retrieve 0x41414141 from symbol table
– Generate JIT code: mov ecx, 0x41414141⊕Key1
– Generate JIT code: xor ecx, Key1

2. Generate JIT code for fun2
– Call GenerateRandomNumber and get Key2
– Retrieve 0x43434343 from symbol table
– Generate JIT code: mov ecx, 0x43434343⊕Key2
– Generate JIT code: xor ecx, Key2

As discussed in Sect. 2.3, constants used in the script are stored in a symbol
table. Since the constant values in this table are not blinded. We can locate the
address of the table by inserting some magic constant in script. If we can predi-
cate the secret cookie in next round, we can modify the value in the table and
embed desired 4-byte long value in code heap in the end.

In our final exploit, we insert malicious code before generating JIT code
of fun3. In malicious code, we trigger the vulnerability, search in memory and
recover the seed value via given methods. To embed blinded constants in memory,
we need to call multiple constant releasing functions before running our malicious
code in Listing 1.4. Since the hash function is a many-to-one function, we may
get multiple possible seed values if we are given only one secret cookie in the
process of reversing the hash function. Leaking multiple secret cookies can help
us find the real seed value. The necessary steps can be generalized:

1. Generate JIT code for fun1
– Call GenerateRandomNumber and get Key1
– Retrieve 0x41414141 from symbol table
– Emit binary code: mov ecx, 0x41414141 ⊕ Key1
– Emit binary code: xor ecx, Key1

2. Generate JIT code for fun2
– Call GenerateRandomNumber and get Key2
– Retrieve 0x42424242 from symbol table
– Emit binary code: mov ecx, 0x42424242 ⊕ Key2
– Emit binary code: xor ecx, Key2
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3. evilCode: search and modify memory under attacker’s control
– Search memory to find Key1 and Key2
– Recover seed value, and predict the value of Key3
– Locate 0x43434343 in symbol table
– Modify 0x43434343 to be (TargetValue ⊕ Key3)

4. Generate JIT code for fun3
– Call GenerateRandomNumber and get Key3
– Retrieve (TargetValue ⊕ Key3) from symbol table
– Emit binary code: mov ecx, TargetValue (TargetValue ⊕ Key3 ⊕ Key3)
– Emit binary code: xor ecx, Key3

4 Design and Implementation of ConBE

To mitigate our attacks, we propose Constant Blinding Enhancement (ConBE)
based on dynamic binary instrumentation as a prototype to demonstrate our
mitigation strategy. Adobe has patched this vulnerabilities in the latest version
of Flash Player (25.0.0.127). We build this tool to provide stronger protection
for all versions of Flash Player. In this section, we will discuss our mitigation
strategy and implementation in detail.

4.1 Mitigation Principles

To mitigate the attack based on cryptanalysis, we make it harder for attacker to
reverse the hash function. At present, we rely on well-documented hash function
to achieve this. To protect seed value from information disclosure, our solution is
to separate the seed value from those signature values and store the seed value in
an isolated heap. Similar to partitioned heap, we invoke V irtualAlloc function
to create a new data heap to store the seed value. It means that except for
one global pointer referencing the seed value in the heap there will be no other
data pointer in memory referencing any values in the data heap. At present, our
solution relies on ASLR provided by OS to randomize the heap location.

4.2 Implementation Details

We build ConBE based on PIN tool [15], a dynamic binary instrumentation
framework. As a prototype, we use ConBE to test the effectiveness of our miti-
gation strategy and provide protection for older versions of Flash Player.

To mitigate cryptanalysis, we insert an MD5 hash function at the end of
identified hash function. In particular, we take the value in eax as input value
and calculate its MD5 hash value. The output of the MD5 hash function is a
128-bit value. We pick the least significant 32 bits as its return value.

To thwart information disclosure attack, we have to achieve two goals. The
first one is to separate the seed value from those signature values. The second one
is to hide the seed value in memory. Different from X64 platform, X86 system
does not have a free segment register to save the value in an isolated memory
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segment. To implement both goals, our solution is to newly allocate a heap
and save the seed value in the heap. We rely on ASLR provided by system to
randomize address of the memory. Under our protection, attacker has to search
through the whole memory. It takes too much time and exceeds the default
timeout of ActionScript.

4.3 Advantages of ConBE

The latest PRNG in Flash Player relies on Windows API CryptGenRandom to
generate the random number. To be more specific, the PRNG maintains a secret
buffer of 256 bytes long and invokes the API once to fill the secret buffer with
random values. As a result, 256/4=64 secret cookies will be available and stored
in the secret buffer for future use. For each user-defined function, JIT compiler
traverses the secret buffer and pick an unused 4-byte value as secret cookie.

Once all the 64 secret cookies have been used once, CryptGenRandom will
be called again to generate a new secret buffer. Partitioned heap in Flash Player
is responsible for assuring that the secret buffer will not be located in the same
heap as victim object is located. Allocating a 256-byte long buffer for storing
secret cookie is a trade-off between performance and security. In Sect. 5.2, we
demonstrate the performance overhead of putting the seed value in a separate
heap is pretty high. Generating 64 secret cookies in a row rather than invoke
CryptGenRandom for each user-defined function can improve performance over-
head. Since the seed values are still stored in data segment, dedicated attackers
may still locate the seed value with generic information disclosure technique.
On the contrast, ConBE could be customized on X64 system to store the only
pointer that references the seed value in extra segment rather than data segment
to make it harder for attacker to search in memory space.

5 Evaluation

In Sect. 5.1, we will give a full exploit to recover the seed value of PRNG based
on one existing CVE in Flash Player. Then we evaluate the execution time of our
attack. Then we evaluate the performance overhead of our proposed prototype
mitigation. In Sect. 5.2, we evaluate the performance overhead of ConBE and
compared that with the patched Flash Player. The performance evaluation is
tested in a Windows 7 running on Intel Xeon E5-2630 processor with 4GB RAM.

5.1 Evaluation on Full Exploit

To show the effectiveness of our attack, we present a proof-of-concept
exploit based on CVE-2015–5119 [1], a use-after-free vulnerability in Flash Player
18.0.0.2061.

In the exploit of CVE-2015–5119, an attacker can corrupt the metadata
length of a V ector object and utilizes the extended vector to gain arbitrary
1 The weak PRNG exists from version 2 to version 24.0.0.221 of Flash Player.
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read/write ability in memory. As discussed in Sect. 3.3, we use a ByteArray
object as an anchor to leak the address of the heap where the seed value is
stored. More specifically, there exists a reference to our target heap at the offset
0× 30 in ByteArray object. We first discover the address of a ByteArray object,
read the reference to locate the target heap and then search through memory
for the signature value to locate the seed value.

Table 1 demonstrates the time needed to retrieve the secret value com-
pared to a normal execution. We use internal function of ActionScript
Date.getMiliseconds and Date.getSeconds to get the execution time. In both
normal execution and poc exploit, we pick the time when we corrupt the meta-
data of victim vector as starting time. For normal execution, we take the time
when all blinded constants are released as ending time. For poc exploit, we take
the time when the exploit finds all necessary ROP gadgets as ending time. From
the table, we can see that the Information Disclosure method and Cryptanalysis
method induce 0.033s and 0.266s overhead respectively comparing to the normal
execution. From the view of an exploit, such performance overhead is tolerable
and will not influence much on the exploit performance.

5.2 Evaluation on ConBE

We have successfully applied our tool in Flash Player 18.0.0.203. To evaluate
the effectiveness of ConBE, we have to answer two questions: (Q1) What is
the performance overhead induced by ConBE? (Q2) What is the difference on
performance between ConBE and the officially patched version of Flash Player?

To answer Q1, we have to compare the performance overhead between ConBE
patched one and the original unpatched one. To answer Q2, we need to compare
the performance overhead between ConBE patched one and the latest officially
patched one. For the ConBE patched one and the original unpatched one, we
calculate the time between fetching seed value from memory and generating final
secret cookie. Because the patched version of Flash Player uses the Windows API
CryptGenRandom to generate secret value, we calculate the execution time of
the API call.

Since internal function Date.getMiliseconds of ActionScript only provides
millisecond resolution, we can tell no difference in the time latency using those
internal functions. Instead, we use PIN to insert instructions to log the CPU
cycles used to generate the secret value. To be more specific, we instrument
rdtsc instruction to log the CPU cycles.

Table 1. Time required to retrieve the secret value

Tested mode Required time

Normal 1.732

Information disclosure 1.765

Cryptanalysis 1.998
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Table 2. CPU cycles required to generate secret number

Flash player version CPU cycles

18.0.0.203 1113660

18.0.0.203 (ConBE) 4151108

25.0.0.127 3155080

Table 2 demonstrates the CPU cycles to generate secret number. Time to
generate the secret cookie in officially patched one is about 2.8 times that in
the original one. On the contrary, ConBE is about 3.7 times that of the original
one. We think the time delay is resulted from the following two reasons. First,
we use an MD5 hash function and allocate a separate heap to save seed value in
our implementation. But for the patched version, it relies on existing partitioned
heap to store the generated secret cookie. The secret cookie is stored in a heap
together with some security-unrelated data. This process in ConBE is more com-
plicated than the patched one. Second, our security enforcement is built on PIN,
a dynamic instrumentation framework. Similar works [10,11,25] built on PIN
have shown that this framework usually induced a high performance overhead.

6 Related Work

6.1 Other Techniques Bypassing Constant Blinding

Athanasakis et al. [7] focuses on the fact that constant blinding does not blind
constant whose length is less than 2 bytes. Therefore the attacker is still able
to construct enough useful ROP gadgets for a successful exploit under 64-bit
system. However, our work demonstrates that the attacker is able to allocate
4-byte long ROP gadget in memory, which provides more flexibility and avail-
ability of ROP gadgets. Moreover, our attack works on both 32-bit and 64-bit
system.

In the work of Maisuradze et al. [16], the author proposed that the relative
jump offset can also be used to allocate desired 2-byte or 3-byte ROP gadget
in memory. However, due to existence of NOP sledding adopted by most JIT
rendering engine, this attack needs to validate the emitted gadget before chaining
them as ROP gadgets. On the contrary, our attack on constant blinding does
not require the process of validation and ensure that the desired ROP gadgets
will always be emitted in memory.

Dachshund [17] finds some corner cases, which was not covered by constant
blinding, to emit desired target value in JIT code. In Chakra, the script engine of
Mocrosoft Edge, it is discovered that the constant number in function argument
is not blinded by secret value. In Chrome, There also exist a few corner cases
where constant blinding does not take place. To the best of our knowledge, we
are the first to analyse the PRNG in constant blinding and predict the secret
cookie for bypassing constant blinding. Moreover, flash player is still supported
on all main stream browsers nowadays, our work provides a more general and
stable attacking vector to emit executable gadget in memory.
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6.2 Protection on JIT Code

INSert [26], RIM [27] and JITSafe [9] all propose techniques to defend against
JIT-Spray attack. To prevent immediate value from being emitted in code heap,
they all rely on a secret value to obfuscate the immediate value. The secu-
rity of these mitigation is based on the assumption that the secret value is not
predictable to attacker. However, our work shows that the assumption is not
guaranteed in its implemenation of Flash Player. Rock-JIT [18] implements a
CFI enforcement on JIT compilation. For JIT compiler, Rock-JIT builds the
Control Flow Graph (CFG) based on existing code and enforces a fine-grained
CFI. For JITted code, Rock-JIT adopts a coarse-grained CFI. Rock-JIT main-
tains a set to remember all starting instruction of all JITted code and insert
check to verify the validity of target before indirect jump. Rock-JIT is built on
source code of Chrome V8 script engine and is hard to evaluate its effectiveness
in Flash Player, which does not make its source code public. DSCG [23] aims at
preventing possible attacks that exploits the code cache in Chrome V8 engine is
readable, writeable and executable. However, Flash Player has taken such attack
into consideration. The permission of code heap is writeable and readable at the
time of emitting JIT code, while the permission of code heap is executable and
readable at the time of executing JIT code. The short attacking window makes
it less likely for attacker to launch such exploit. However, our work shows that
even if the code heap is enforced with W⊕E, attacker is still able to emit some
desired gadgets in code heap.

7 Conclusion

In this paper, we demonstrate that the secret cookie for constant blinding in
Flash Player is predictable due to its weak design and implementation of PRNG.
We proposed two different methods to recover the seed value used in the PRNG.
One is cryptanalysis based on the insufficient confusion and diffusion in hash
function. Another one is the ill-considered implementation to store the seed
value in memory. It enables attacker to find the seed value without much effort.
Different from previous works that concentrate on some corner cases in constant
blinding mechanism, we are the first to analyse the constant blinding PRNG
and recover the seed value for defeating it. We further propose ConBE and
demonstrate its effectiveness against our attack.
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Abstract. In this paper, we extend the work on purely mathematical
Trojan horses initially presented in [15]. This kind of mechanism affects
the statistical properties of an infected random number generator (RNG)
by making it very sensitive to input entropy. Thereby, when inputs have
the correct distribution the Trojan has no effect, but when the distribu-
tion becomes biased the Trojan worsens it. Besides its obvious malicious
usage, this mechanism can also be applied to devise lightweight health
tests for RNGs. Currently, RNG designs are required to implement an
early detection mechanism for entropy failure, and this class of Trojan
horses is perfect for this job.

1 Introduction

In [15] the authors propose an interesting mechanism that blurs the line between
what constitutes a Trojan horse and what does not. To detect their mechanism,
a program needs to somehow differentiate between a naturally unstable random
number generator (RNG) and artificially unstable one (obtained by means of cer-
tain mathematical transformations). To our knowledge, [15] is the only previous
work that discuses this topic.

More precisely, in [15] a digital filter is described. Usually, digital filters are
applied to RNGs to correct biases1, but this filter has an opposite purpose. When
applied to a stream of unbiased bits the filter is benign. On the other hand, if
applied to a stream of biased bits the filter amplifies their bias. Thereby, making
the RNG worse.

In this paper we extend the filter from [15]2, provide a new class of filters
and discuss some new possible applications. The main application we propose for
these filters is RNG testing (e.g., boosting health tests implemented in a RNG).
Recent standards [11,13] require a RNG to detect failures and one such method
for early detection can be to apply an amplifier and then do some lightweight
1 They are called randomness extractors [8].
2 The filter presented in [15] corresponds to the greedy amplifier with parameter n = 3

described in Sect. 3.
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testing3. Based on the results obtained in our paper, we provide concrete exam-
ples of how to detect such failures in Sect. 5.1 and Appendix A.

Due to recent events [4,6,7,12] RNGs have been under a lot of scrutiny. Thus,
wondering what kind of mechanisms can be implemented by a malicious third
party in order to weaken or destabilize a system becomes natural. Amplifying
filters provide a novel example of how one can achieve this. Based on the fail-
ure detection mechanisms proposed in Sect. 5.1, we show, for example, how a
manufacturer can manipulate the architecture to become malicious.

Structure of the paper. Notations and definitions are presented in Sect. 2. The
core of the paper consists of Sects. 3 and 4 and contains two classes of filters.
Applications are given in Sect. 5. We conclude in Sect. 6. Experimental results
are presented in Appendix A.

2 Preliminaries

Throughout the paper, we consider binary strings of length n composed of inde-
pendent and identically distributed (i.i.d.) bits generated by a RNG. By 0n and
1n we understand the all zero and the all one strings. Also, for figures we use
the standard representation of the x-axis and y-axis.

Let 0 ≤ ε ≤ 1
2 be a real number and b a random bit. Then, without loss

of generality, we denote the probability of b = 0 by P0 = 1
2 − ε and of b = 1

by P1 = 1
2 + ε. We will refer to ε as bias. The complement rule states that

P1 = 1 − P0. Let P (a) be the probability of a random string being a. Then for
any A ⊆ Z

n
2 we denote by P (A) =

∑
a∈A P (a).

Let u be a binary string and A ⊆ Z
n
2 . Then w(u) denotes the hamming weight

of u and w(A) the set {w(a) | a ∈ A}. Note that since we are working with i.i.d.
bits, for any u, v ∈ Z

n
2 such that w(u) = w(v), the equality P (u) = P (v) holds.

Thus, from a probabilistic point of view, it does not matter which element of
the set {u ∈ A | w(u) = k} we choose to work with.

The element min(A) (max(A)) is the smallest (biggest) integer of the set A,
while minw(A) (maxw(A)) is an element from A that has the smallest (biggest)
hamming weight. We say that a pair of sets (S0, S1) is an equal partition of the
set S if the following hold: S = S1 ∪ S2, S1 ∩ S2 = ∅ and |S1| = |S2|.

To ease description, we use the notation Cn
k to denote binomial coefficients.

Pascal’s identity states that Cn
k = Cn−1

k + Cn−1
k−1 , where 1 ≤ k ≤ n. Note that

|{u ∈ Z
n
2 | w(u) = k}| = Cn

k .
In this paper, we consider a digital filter to be a mapping from Z

n
2 to Z2. If

we continuously apply a filter to data generated by a RNG4, then three types of
filters arise:

– bias amplifier - the output data has a bigger bias than the input data;

3 For example the tests described in [10].
4 Note that except for n = 1 the bit rate of the RNG will drop.
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– neutral filter - the output data has the the same bias as the input data;
– bias corrector5 - the output data has a smaller bias than the input data.

Let (S0, S1) be an equal partition of a set S. Let D be a digital filter such
that it maps S0 and S1 to 0 and 1, respectively (see Table 1). Also, let εD be the
output bias of D. We say that a bias amplifier is maximal if εD is maximal
over all the equal partitions of Zn

2 . To compare bias amplifiers we measure
the distance between P (S1) and P (S0).

Table 1. Conversion table.

Bit 0 Bit 1

S0 S1

Before stating our results, some restrictions are needed. If the input bits are
unbiased (i.e. P0 = 1

2 ) or have a maximum bias (i.e. P0 = 0 or P1 = 0) we
require the filter to maintain the original bias. If one replaces a bias corrector
with a bias amplifier, the amplifier must behave as the corrector when the
RNG has bias 0 or 1

2 . The last requirement is that the filter amplifies the bias in
the direction that it already is. Without loss of generality, we assume that the
bias is towards 1.

3 Greedy Bias Amplifiers

In this section we generalize and improve the bias amplifier described in
[15]. We first present a neutral filter and based on it we develop a maximal
bias amplifier. We can easily transform one into the other by changing the
conversion table.

Lemma 1. Let S0 = {u ∈ Z
n
2 | u = 0‖v, v ∈ Z

n−1
2 } and S1 = {u ∈ Z

n
2 | u =

1‖v, v ∈ Z
n−1
2 }. Then P (S0) = P0 and P (S1) = P1.

Proof. Since we are working with i.i.d. random bits the following holds

P (S0) =
∑

v∈Z
n−1
2

P (0‖v) =
∑

v∈Z
n−1
2

P0P (v) = P0

∑

v∈Z
n−1
2

P (v) = P0.

Similarly, we obtain P (S1) = P1. 	

Using Lemma 1 we can devise a neutral filter N by mapping all the

elements of S0 and S1 to 0 and 1, respectively. Starting from the equal partition

5 We prefer to use this notion instead of randomness extractor, because it simplifies
our framework.
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(S0, S1) (Lemma 1), using a greedy algorithm (Algorithm 1), we devise a new
equal partition that serves as the core of a maximal bias amplifier.

Algorithm 1.
Input: An integer n
Output: An equal partition of Zn

2

1 Set S0 = {u ∈ Z
n
2 | u = 0‖v, v ∈ Z

n−1
2 } and

S1 = {u ∈ Z
n
2 | u = 1‖v, v ∈ Z

n−1
2 }

2 Set α = maxw(S0) and β = minw(S1)
3 while w(α) < w(β) do
4 Set S0 = (S0 \ {α}) ∪ {β} and S1 = (S1 \ {β}) ∪ {α}
5 Update α = maxw(S0) and β = minw(S1)
6 end
7 return (S0, S1)

Lemma 2. Let k be a positive integer and let (S0, S1) be the output of Algorithm
1. Then the following properties hold

1. If n = 2k+1 then S0 = {u | 0 ≤ w(u) ≤ k} and S1 = {u | k+1 ≤ w(u) ≤ n}.
Also, P (S0) =

∑k
i=0 Cn

i (P0)n−i(P1)i and P (S1) =
∑k

i=0 Cn
i (P0)i(P1)n−i.

2. If n = 2k then S0 = {u | 0 ≤ w(u) ≤ k − 1} ∪ T0 and S1 = {u | k +
1 ≤ w(u) ≤ n} ∪ T1, where (T0, T1) is an equal partition of {u ∈ Z

n
2 |

w(u) = k}. Also, P (S0) =
∑k−1

i=0 Cn
i (P0)n−i(P1)i + Cn

k

2 (P0P1)k and P (S1) =
∑k−1

i=0 Cn
i (P0)i(P1)n−i + Cn

k

2 (P0P1)k.
3. If ε = 0 then P (S0) = P (S1) = 1

2 and if ε = 1
2 then P (S0) = 0 and P (S1) = 1.

Proof. During the while loop Algorithm 1 swaps the elements whose weight is
written in Column 2, Table 2 with the elements that have their weight written
in Column 3, Table 2.

Table 2. Operations performed during the while loop.

Number of switches Weight of S0 elements Weight of S1 elements

Cn−1
0 n − 1 1

Cn−1
1 n − 2 2

. . .

Cn−1
i−1 n − i i

. . .

The while loop ends when w(α) ≥ w(β). According to Table 2, this is equiv-
alent with n− i ≥ i. When n = 2k +1 we obtain that the while loop stops when
i ≤ k + 1. When n = 2k the loop stops when i ≤ k. Thus, we obtain the sets
S0 and S1. The probabilities P (S0) and P (S1) are a direct consequence of the
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structure of the sets and the fact that Cn
k = Cn

n−i. The last item is simply a
matter of computation. 	

Lemma 3. Let (S0, S1) be the output of Algorithm 1. If we map all the ele-
ments of S0 and S1 to 0 and 1, respectively, then we obtain a maximal bias
amplifier G.

Proof. According to Lemma 2 all the lowest and highest probability elements
are in S0 and S1, respectively. Thus, the statement is true. 	

Lemma 4. Let (Sn

0 , Sn
1 ) be the output of Algorithm 1 for n = 2k + 1. Then the

following hold

1. P (Sn
0 ) = P (Sn+1

0 ) and P (Sn
1 ) = P (Sn+1

1 ).
2. P (Sn

0 ) − P (Sn+2
0 ) = P (Sn+2

1 ) − P (Sn
1 ) = 2εCn

k (P0P1)k+1.
3. P (Sn

0 ) > P (Sn+2
0 ) and P (Sn

1 ) < P (Sn+2
1 ).

4. P (Sn
1 ) − P (Sn

0 ) < P (Sn+2
1 ) − P (Sn+2

0 ).

Proof. We prove the first statement using induction. When k = 1 we have S1
0 =

{0}, S1
1 = {1}, S2

0 = {00, 01} and S2
1 = {10, 11}. Using Lemma 1, we obtain

P (S1
0) = P0 = P (S2

0) and P (S1
1) = P1 = P (S2

1). Thus, proving the statement
for the case k = 1.

We now assume that the statement is true for k (i.e. P (Sn
0 ) = P (Sn+1

0 )
and P (Sn

1 ) = P (Sn+1
1 )) and we it for k + 1. Applying Pascal’s identity twice to

P (Sn+2
0 ) we obtain

P (Sn+2
0 ) =

k+1∑

i=0

Cn+2
i (P0)n+2−i(P1)i = (P0)n+2 + (n + 2)(P0)n+1P1

+
k+1∑

i=2

(Cn
i + 2Cn

i−1 + Cn
i−2)(P0)n+2−i(P1)i. (1)

We rewrite Eqs. (1) as a sum of S1, S2, S3 (described next):

S1 = (P0)n+2 + n(P0)n+1P1 +
k+1∑

i=2

Cn
i (P0)n+2−i(P1)i (2)

= (P0)2P (Sn
0 ) + Cn

k+1(P0)n+1−k(P1)k+1,

S2 = 2(P0)n+1P1 + 2
k+1∑

i=2

Cn
i−1(P0)n+2−i(P1)i (3)

= 2
k∑

i=0

Cn
i (P0)n+1−i(P1)i+1 = 2P0P1P (Sn

0 ),

S3 =
k+1∑

i=2

Cn
i−2(P0)n+2−i(P1)i =

k−1∑

i=0

Cn
i (P0)n−i(P1)i+2 (4)

= (P1)2P (Sn
0 ) − Cn

k (P0)n−k(P1)k+2.
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Reassembling Eqs. (2) to (4) we obtain

P (Sn+2
0 ) = P (Sn

0 ) + Cn
k+1(P0)n+1−k(P1)k+1 − Cn

k (P0)n−k(P1)k+2 (5)

= P (Sn
0 ) − 2εCn

k (P0P1)k+1.

Applying Pascal’s identity twice to P (Sn+3
0 ) we obtain

P (Sn+3
0 ) =

k+1∑

i=0

Cn+3
i (P0)n+3−i(P1)i +

Cn+3
k+2

2
(P0P1)k+2 (6)

= (P0)n+3 + (n + 3)(P0)n+2P1

+
k+1∑

i=2

(Cn+1
i + 2Cn+1

i−1 + Cn+1
i−2 )(P0)n+3−i(P1)i +

Cn+3
k+2

2
(P0P1)k+2.

Let α =
∑k

i=0 Cn+1
i (P0)n+1−i(P1)i. We rewrite Eq. (6) as a sum of S4, S5, S6

(described next):

S4 = (P0)n+3 + (n + 1)(P0)n+2P1 +
k+1∑

i=2

Cn+1
i (P0)n+3−i(P1)i (7)

= (P0)2α + Cn+1
k+1 (P0)n+2−k(P1)k+1,

S5 = 2(P0)n+2P1 + 2
k+1∑

i=2

Cn+1
i−1 (P0)n+3−i(P1)i (8)

= 2
k∑

i=0

Cn+1
i (P0)n+2−i(P1)i+1 = 2P0P1α,

S6 =
k+1∑

i=2

Cn+1
i−2 (P0)n+3−i(P1)i =

k−1∑

i=0

Cn+1
i (P0)n+1−i(P1)i+2 (9)

= (P1)2α − Cn+1
k (P0)n+1−k(P1)k+2.

Reassembling Eqs. (7) and (9) we obtain

P (Sn+3
0 ) = P (Sn+1

0 ) + Cn+1
k+1 (P0)n+2−k(P1)k+1 − Cn+1

k (P0)n+1−k(P1)k+2 (10)

− Cn+1
k+1

2
(P0P1)k+1 +

Cn+3
k+2

2
(P0P1)k+2

= P (Sn+1
0 ) − Cn

k (P0P1)k+1

{
n + 1
k + 1

[

(P0)2 − 1
2

]

+ P0P1

[

−n + 1
k + 2

+
(n + 1)(n + 2)(n + 3)
2(k + 1)(k + 2)(k + 2)

]}

= P (Sn+1
0 ) − Cn

k (P0P1)k+1

{

2
[

(P0)2 − 1
2

]

+ 2P0P1

}

= P (Sn+1
0 ) − 2εCn

k (P0P1)k+1.
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Applying the induction step to Eqs. (5) and (10) we obtain that P (Sn+2
0 ) =

P (Sn+3
0 ). The following equality is a consequence of the complement rule

P (Sn+2
1 ) = 1 − P (Sn+2

0 ) = 1 − P (Sn+3
0 ) = P (Sn+3

1 ).

This completes the proof the first statement. The remaining statements are a
direct consequence of Eq. (5) and the complement rule. 	

Corollary 1. Let (Sn

0 , Sn
1 ) be the output of Algorithm 1 for n = 2k + 1. Then

P (Sn
0 ) − P (Sn+2

0 ) > P (Sn+2
0 ) − P (Sn+4

0 ) and P (Sn+2
1 ) − P (Sn

1 ) > P (Sn+4
1 ) −

P (Sn+2
1 ).

Proof. Using Lemma 4 we obtain that P (Sn
0 ) − P (Sn+2

0 ) > P (Sn+2
0 ) − P (Sn+4

0 )
is equivalent with 2εCn

k (P0P1)k+1 > 2εCn+2
k+1 (P0P1)k+2. Rewriting the inequality

we obtain

1 >
(2k + 2)(2k + 3)
(k + 1)(k + 2)

P0P1.

The proof is concluded by observing that

(2k + 2)(2k + 3)
(k + 1)(k + 2)

P0P1 < 4
(

1
4

− ε2
)

= 1 − 4ε2 ≤ 1. 	


Figure 1(a) and (b) are a graphical representation of Lemma 4 (n ≤ 17) and
Corollary 1 (n ≤ 15), respectively. The x-axis represents the original bias ε, while
the y-axis represents P (Sn

1 ) (Fig. 1(a)) and P (Sn+2
1 ) − P (Sn

1 ) (Fig. 1(b)).

Fig. 1. Greedy amplifier.
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Using the properties stated in Lemmas 2 and 4, we will next describe an
equivalent and simplified version of Algorithm 1. Note that devising a greedy
bias amplifier only makes sense when n is odd.

Algorithm 2.
Input: An odd integer n
Output: An equal partition of Zn

2

1 Set S0 = S1 = ∅
2 for i = 0, . . . , 2n − 1 do
3 if w(i) ≤ k then
4 S0 = S0 ∪ {i}
5 end
6 else
7 S1 = S1 ∪ {i}
8 end
9 end

10 return (S0, S1)

4 Von Neumann Bias Amplifier

Von Neumann introduced in [14] a simple, yet effective method for correcting
the bias of a RNG. Each time the RNG generates two random bits b1 and b2,
the filter outputs b1 if and only if b1 �= b2. It is easy to see that P (b1b2 =
01) = P (b1b2 = 10) = P0P1. Thus, the bias of the output data is 0. We further
generalize Von Neumann’s method and explain how to replace it’s conversion
table in order to obtain a maximal bias amplifier. Through this section we
will restrict n to be of the form 2k, where k is a positive integer.

Lemma 5. Let V = {u ∈ Z
n
2 | w(u) = k} and let (V0, V1) be an equal partition

of V . Then P (V0) = P (V1) = Cn
k

2 (P0P1)k.

Proof. Since (V0, V1) is an equal partition of V , we obtain that |V0| = |V1| =
|V |
2 = Cn

k

2 . Note that P (u) = (P0P1)k, for any u ∈ V . Combining these two facts
we obtain the statement of the lemma. 	


Using Lemma 5 we can devise a corrector filter6 Vc by mapping all the
elements of V0 and V1 to 0 and 1, respectively. In Algorithm 3 we provide an
example of how to generate a pair (V0, V1).

6 with the bias of the output data 0.
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Algorithm 3.
Input: An integer n
Output: An equal partition of V

1 Set V0 = V1 = ∅ and V = {u ∈ Z
n
2 | w(u) = k}

2 Set α = max(V ) and β = min(V )
3 for i = 1, . . . , Cn

k /2 do
4 Set V0 = V0 ∪ {β} and V1 = V1 ∪ {α}
5 Update V = V \ {α, β}
6 Set α = max(V ) and β = min(V )
7 end
8 return (V0, V1)

We further show that the probabilities V0 and V1 get smaller if we increase
n. This translates in a lower bit rate if we apply Vc. Note that increasing n does
not change the bias of the output data, thus making Vc

7 useless in practice if
used only for correcting biases.

Lemma 6. Let (V n
0 , V n

1 ) be the output of Algorithm 3 for n = 2k. Then
P (V n

0 ) > P (V n+2
0 ).

Proof. We remark that P (V n
0 ) > P (V n+2

0 ) is equivalent with

1 >
(2k + 1)(2k + 2)
(k + 1)(k + 1)

P0P1.

The proof is now similar to Corollary 1 and thus is omitted. 	

Figure 2 is a graphical representation of Lemma 6 (n ≤ 18). The x-axis

represents the original bias ε, while the y-axis represents P (V n
0 ).
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0
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n=12
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n=16
n=18

Fig. 2. Probability of V n
0 and V n

1 .

Note that when P0 = 0 or P1 = 0 we obtain P (V0) = P (V1) = 0. When
constructing a bias amplifier Va we must have the same behavior. Thus, the
7 for n ≥ 4.
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strings we use to construct Va need to contain at least a 0 and an 1. When
n = 2 the only strings that contain 0 and 1 are 01 and 10, but these are the
basis for the Von Neumann bias corrector. Hence, when n = 2 there are no
bias amplifiers. This leads to the restriction n ≥ 4. We again use a greedy
approach (Algorithm 4) and devise a core for Va.

Algorithm 4.
Input: An integer n
Output: Two sets V0 and V1

1 Set V0 = V1 = ∅ and W = Z
n
2 \ {0n, 1n}

2 Set α = minw(W ) and β = maxw(W )
3 for i = 1, . . . , Cn

k /2 do
4 Set V0 = V0 ∪ {α} and V1 = V1 ∪ {β}
5 Update W = W \ {α, β}
6 Set α = minw(W ) and β = maxw(W )

7 end
8 return (V0, V1)

Lemma 7. Let x be an integer such that
∑x

i=1 Cn
i < Cn

k /2 <
∑x+1

i=1 Cn
i . Define

y = Cn
k /2 − ∑x

i Cn
i , W0 ⊂ {u ∈ Z

n
2 | w(u) = x + 1}, W1 ⊂ {u ∈ Z

n
2 | w(u) =

n−x−1}, such that |W0| = |W1| = y. Also, let (V0, V1) be the output of Algorithm
4 . Then the following properties hold

1. V0 = {u | 1 ≤ w(u) ≤ x} ∪ W0 and V1 = {u | n − x ≤ w(u) ≤ n − 1} ∪ W1.
2. P (V0) =

∑x
i=1 Cn

i (P0)n−i(P1)i + y(P0)n−x−1(P1)x+1 and P (V1) =∑x
i=1 Cn

i (P0)i(P1)n−i + y(P0)x+1(P1)n−x−1.
3. If ε = 0 then P (S0) = P (S1) = 1

2 and if ε = 1
2 then P0 = 0 and P1 = 1.

Proof. The proof is a direct consequence of Algorithm 4 and thus is omitted. 	

Lemma 8. Let (V0, V1) be the output of Algorithm 4. If we map all the elements
of V0 and V1 to 0 and 1, respectively, then we obtain a maximal bias amplifier
Va.

Proof. According to Lemma 7 all the lowest and highest probability elements
are in V0 and V1, respectively. Thus, the statement is true. 	


Figure 3 is a graphical representation of Lemma 7 (n ≤ 18). The x-axis
represents the original bias ε, while the y-axis in Fig. 3(a) and (b) represents
P (V n

0 ) and P (V n
1 ), respectively.

Unfortunately, due to the nature of x and y, the best we could do is to
heuristically provide a graphical representation of Conjecture 1 (Fig. 4). We could
not theoretically prove it in general.
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Fig. 3. Von Neumann amplifier.

Conjecture 1. Let n be even, (Sn−1
0 , Sn−1

1 ) be the output of Algorithm 1 for
n−1 and (V n

0 , V n
1 ) be the output of Algorithm 4 for n. Denote by Mn = [P (V n

1 )−
P (V n

0 )]·[P (V n
1 )+P (V n

0 )]−1. Then Mn < Mn+2 and P (Sn−1
1 )−P (Sn−1

0 ) < Mn.

Note that in the case of greedy amplifiers the metric [P (Sn−1
1 ) − P (Sn−1

0 )] ·
[P (Sn−1

1 ) + P (Sn−1
0 )]−1 is equal to P (Sn−1

1 ) − P (Sn−1
0 ). Thus, Conjecture 1

states that the Von Neumann amplifier for a given n is better at amplifying
ε than its greedy counterpart. We chose to state the conjecture such that it
is true for all n ≥ 4, but, from Fig. 4, we can observe that as n grows the
Von Neumann amplifier becomes better at amplifying ε8. Note that in Fig. 4
the x-axis represents the original bias ε, while the y-axis represents the values
P (Sn−1

1 ) − P (Sn−1
0 ) (interrupted line) and Mn (continuous line).
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Fig. 4. Comparing greedy amplifiers (interrupted line) with Von Neumann amplifiers
(continuous line).

8 e.g the Von Neumann amplifier for n = 8 is better than the greedy amplifiers for
n = 3, . . . , 17.
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5 Applications

5.1 The Good

RNG standards [11,13] require manufactures to implement some early detec-
tion mechanism for entropy failure. Health tests represent one such method for
detecting major failures. There are two categories of health tests: startup tests
and continuous tests. The former are one time tests conducted before the RNG
starts producing outputs, while the latter are tests performed in the background
during normal operation.

We propose a generic architecture for implementing health tests (Fig. 5). We
first store data D (obtained from the noise source) in a buffer, then we apply a
bias amplifier to it and obtain data Da. Next, we apply some lightweight tests
on Da. If the tests are passed, the RNG outputs D, otherwise D is discarded.
Note that the bias amplifier can be implemented as a lookup table, thus
obtaining no processing overhead at the expense of O(2n) memory.

Fig. 5. Generic architecture for implementing health tests.

In our instantiations we used the health tests implemented in Intel’s pro-
cessors [10]. Intel’s health tests Hi use a sliding window and count how many
times each of the six different bit patterns (Column 1, Table 3) appear in a
256 bit sample. An example of allowable margins for the six patterns can be
found in Column 2, Table 3. The thresholds mentioned in Tables 3 and 4 were
computed using 106 256 bit samples generated using the default RNG from the
GMP library [3].

We first propose a continuous test using the greedy amplifiers described in
Sect. 3. Depending on the available memory we can use one of the greedy ampli-
fiers and then apply Hi. Note that n should be odd due to Lemma 4. If the health
test are implemented in a processor it is much easier to use n = 4, 8, 16. From the
health bounds presented in Table 3, we can observe that the differences between
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data without amplification and data with amplification are not significant. Thus,
one can easily update an existing good RNG9 by adding an extra buffer and an
amplification module, while leaving the health bounds intact. Note that due to
the unpredictable number of output bits produced by a Von Neumann amplifier,
greedy amplifiers are better suited for continuous testing.

Table 3. Health bounds for greedy amplifiers (amp.).

Bit pattern Allowable number of occurrences per sample

without amp. n= 3 amp. n =5 amp. n = 7 amp.

1 90 < m < 165 88 < m < 165 89 < m < 167 90 < m < 165

01 45 < m < 83 45 < m < 82 46 < m < 83 45 < m < 83

010 8 < m < 59 9 < m < 62 10 < m < 58 7 < m < 60

0110 1 < m < 38 2 < m < 34 2 < m < 35 2 < m < 34

101 10 < m < 59 10 < m < 61 10 < m < 60 9 < m < 63

1001 1 < m < 35 2 < m < 36 0 < m < 35 1 < m < 35

If the design of the RNG has a Von Neumann module, then Von Neu-
mann amplifiers can be used to devise a startup test. Before entering nor-
mal operation, the Von Neumann module can be instantiated using the con-
version table of the corresponding amplifier. For example, when n = 4 one
would use V0 = {0001, 0010, 0100} and V1 = {0111, 1011, 1101}10 instead of
V0 = {0011, 0101, 0110} and V1 = {1001, 1010, 1100}11. The resulting data can
then be tested using Hi and if the test pass the RNG will discard the data and
enter normal operation. Note that the first buffer from Fig. 5 is not necessary
in this case. Note that Von Neumann amplifiers require n > 2, thus the speed
of the RNG will drop. This can be acceptable if the data speed needed for raw
data permits it, the RNG generates data much faster than the connecting cables
are able to transmit or the raw data is further used by a pseudo-random number
generator (PRNG).

5.2 The Bad

One can easily turn the benign architecture presented in Fig. 5 into a malicious
architecture (Fig. 6). In the new proposed configuration, health tests always out-
put pass and instead of outputting D the system outputs Da.

The malicious configuration can be justified as a bug and can be obtained
from the original architecture either by commenting some code lines (similarly to
[6]) or by manipulating data buffers (similarly to [7]). Note that code inspection

9 that already has Hi implemented.
10 the sets used to define the maximal Von Neumann amplifier.
11 the sets used to define the Von Neumann corrector.
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Table 4. Health bounds for Von Neumann correctors (corr.) and amplifiers (amp.).

Bit pattern Allowable number of occurrences per sample

n= 4 corr. n=4 amp. n = 6 corr. n = 6 amp.

1 88 < m < 166 91 < m < 167 89 < m < 167 90 < m < 168

01 43 < m < 83 44 < m < 83 44 < m < 85 45 < m < 82

010 9 < m < 59 10 < m < 60 7 < m < 58 9 < m < 60

0110 1 < m < 33 1 < m < 36 2 < m < 35 2 < m < 33

101 10 < m < 58 11 < m < 61 10 < m < 57 8 < m < 60

1001 0 < m < 34 2 < m < 35 1 < m < 34 1 < m < 34

or reverse engineering will reveal these so called bugs. A partial solution to
detection can be implementing the architecture in a tamper proof device and
deleting the code if someone tinkers with the device. Another partial solution
is embedding the architecture as a submodule in a more complex architecture
(similarly to [6]). This solution is plausible due to the sheer complexity of open-
source software and the small number of experts who review them [5].

Fig. 6. Generic architecture for infecting RNGs.

Another problem is that the RNG will output Das instead of Ds and this
translates to lower data rates. A possible solution to this problem is to use Da

as a seed for a PRNG and then output the data produced by the PRNG. Thus,
raw data is never exposed. A problem with this approach is that in most cases
the PRNG will also mask the bias. The only case that is compatible with this
approach is when the bias is large. Therefore one can simply use an intelligent
brute force to find the seed. Hence, breaking the system.

A more suitable approach to the aforementioned problem is to use a pace
regulator [9]. This method uses an intermediary buffer to store data and
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supplies the data consumer with a constant stream of bits. Unfortunately, if
data requirements are high, then the regulator will require a lot of memory and
in some cases the intermediary buffer will be depleted. Thus, failing to provide
data.

A solution specific to greedy amplifiers is to implement in all devices a
neutral filter after D and output the resulting data Dn. Thus, when a mali-
cious version of the RNG is required, one can simply replace the conversion
table of the neutral filter with the conversion table of the corresponding bias
amplifier. For example, when n = 3 one would change S0 = {000, 001, 010, 100}
and S1 = {111, 110, 101, 100}12 with S0 = {000, 001, 010, 100} and S1 =
{111, 110, 101, 011}13. It is easy to see that in this case both Dn and Da have
the same frequency.

Since we are modifying the statistical properties of the raw data, a simple
method for detecting changes is black box statistical testing (for example using
[2]). Thus, if a user is getting suspicious he can detect the “bugs”. Again, a partial
solution is to implement the malicious architecture as a submodule inside a more
complex architecture either in tamper proof devices, either in complex software.
Thus, eliminating the user’s access to raw data.

6 Conclusions and Future Work

In our paper we studied and extended bias amplifiers, compared their per-
formance and provided some possible applications for them. Even thou in its
infancy, this area of research provides insight into what can go wrong with a
RNG.

A possible future direction would be to extended our results to other ran-
domness extractors. Of particular interest, is finding a method to turn a block
cipher or a hash function14 into an amplifier.

Acknowledgments. The author would like to thank Diana Maimuţ and the anony-
mous reviewers for their helpful comments.

A Experimental Results

To test the configuration proposed in Sect. 5.1, Fig. 5 and obtain some metrics
(Table 5) we conducted a series of experiments. More precisely, we generated
105000 256 bit samples using the Bernoulli distribution instantiated with the
Mersenne Twister engine (mt19937) found in the C++ random library [1]. Then,
we applied the bias amplifying filters from Table 3 and counted how many sam-
ples are marked pass. In the case of raw data, a sample is marked pass15 if it
12 the sets used to define the neutral filter.
13 the sets used to define the maximal greedy amplifier.
14 For a formal treatment of how one can use a block cipher or a hash function to

extract randomness we refer the reader to [8].
15 The terminology used by Intel is that the sample is ”healthy”.
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passes the Hi test from Column 1, Table 3. In the case of bias amplification, if
a 256 bit buffer ba from Da passes Hi, all the input buffers that where used to
produce ba are marked pass. Note that to implement our filters we used lookup
tables and thus we had no performance overhead.

From Table 5 we can easily see that when the bias is increased, the number of
samples that are marked pass is lower than Hi in the case of greedy amplifiers.
Also, note that the rejection rate is higher as n increases. Thus, enabling us to
have an early detection mechanism for RNG failure.

Table 5. Greedy amplifiers (amp.) metrics.

ε Number of samples marked pass

without amp. n=3 amp. n=5 amp. n=7 amp.

0.00 104999 104997 105000 105000

0.01 104999 104991 104990 105000

0.02 104996 104979 104945 104965

0.03 104988 104925 104685 104384

0.04 104949 104631 103545 101661

0.05 104856 103620 99370 91413

0.06 104598 100668 88845 69832

0.07 104002 93840 69810 41286

0.08 102763 81660 46110 17724

0.09 100411 64332 23460 5404

0.10 96381 44262 9005 1043

0.11 89967 26142 2625 105

0.12 80849 12882 570 0

0.13 69164 5253 65 0

0.14 55856 1704 0 0

0.15 41777 420 0 0

0.16 29039 87 0 0

0.17 18410 21 0 0

0.18 10470 6 0 0

0.19 5331 0 0 0

0.20 2393 0 0 0

We also conducted a series of experiments to test the performance of the
startup test proposed in Sect. 5.1. This time, we generated data until we obtained
1000 256-bit samples, applied the bias correcting/amplifying filters from Table 4
and counted how many of these samples pass the Hi test from Column 1, Table 3.
Another metric that we computed is the number of input bits required to gen-
erate one output bit.
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Table 6. Von Neumann correctors (corr.) and amplifiers (amp.) metrics.

ε Number of samples that pass Hi

n= 2 corr. n=4 amp. n=6 amp.

0.00 1000 1000 1000

0.01 1000 1000 1000

0.02 1000 1000 995

0.03 1000 998 940

0.04 1000 981 721

0.05 1000 919 322

0.06 1000 806 79

0.07 1000 567 7

0.08 1000 310 0

0.09 1000 134 0

0.10 1000 53 0

Note that in Table 6 we only wrote the n = 2 corrector, since for n = 4, 6 the
results are almost identical. From Table 6 we can easily observe that when the
bias is increased the number of samples that pass Hi is lower than the corrector
in the case of Von Neumann amplifiers. As in the case of greedy amplifiers, we
can observe that the rejection rate is higher as n increases. The experimental
data also shows that Von Neumann amplifiers perform better than the greedy
amplifiers when rejecting bad samples.

In Table 7 we can see that more data is required to generate one bit as n
grows. When the bias increases, we can observe that compared to Von Neumann

Table 7. Von Neumann correctors (corr.) and amplifiers (amp.) throughput.

ε Number of input bits per number of output bits

n = 2 corr. n= 4 corr. n=4 amp. n= 6 corr. n = 6 amp.

0.00 3.9958 10.6646 10.6751 19.1374 19.2776

0.01 3.9978 10.6690 10.6817 19.1873 19.2548

0.02 4.0044 10.6852 10.6885 19.2513 19.2017

0.03 4.0106 10.7272 10.6873 19.3623 19.0892

0.04 4.0202 10.7956 10.6900 19.5129 18.9534

0.05 4.0352 10.8755 10.6952 19.7228 18.7933

0.06 4.0531 10.9713 10.6980 20.0087 18.5889

0.07 4.0755 11.1025 10.6876 20.3259 18.3405

0.08 4.1013 11.2489 10.6709 20.7180 18.0855

0.09 4.1264 11.3916 10.6841 21.1418 17.8104

0.10 4.1594 11.5733 10.6823 21.6591 17.5187
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correctors the throughput of the corresponding amplifiers is better. Thus, besides
having an early detection mechanism, it also takes less time to detect if an RNG
is broken if we use a Von Neumann amplifier.
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Abstract. Nowadays graphics processing units (GPUs) have become
popular parallel computing platforms known as General-Purpose GPU
(GPGPU) computing. GPUs thereby are chosen by some security
researchers as cryptographic accelerators to secure massive volumes of
transactions. However, their security issues are ignored in spite of their
popularity and performance. There are some possible information leak-
ages faced with malicious attacks or even in the normal GPU comput-
ing. Our objective is to secure the confidentiality of cryptographic keys
in GPU computing environments and provide easy-to-use programming
with few constraints. In this paper, we propose a prototype in Linux, a
system of GPGPU computing solution empowered by GPU virtualiza-
tion technology, which keeps encrypted keys in guest machine to protect
secret keys from leakage even in the event of full system compromise.
With the API interception and redirection of CUDA, applications in
Virtual Machines (VMs) can access the GPU device in a transparent
way. Besides, we use virtio, a dedicated virtual I/O device, to trans-
fer data between virtual and host machines in high performance. In our
current study, we evaluate our prototype with the GPU implementation
of ECC. We show that it can protect private keys of GPU cryptographic
computation and it also incurs low performance penalty compared with
the native environment, therefore demonstrating the prototype is secure
and requires reasonable overhead.
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1 Introduction

Over the last decade, graphics processing units (GPUs) have been increasing
used both as accelerating graphics rendering engines and parallel programmable
processors due to their high computing power and low price.

With hundreds to thousands of streaming processing cores, modern GPUs is
to speed up computations in the single-instruction-multiple-data (SIMD) fash-
ion, providing ample computation cycles and high memory bandwidth to mas-
sively parallel applications. As a result, GPUs have quickly been applied in a
broad spectrum of applications.

Meanwhile, the expanding demand of cryptographic operations for secure
communication and authentication requires high-performance implementations.
In fact, the GPU-based implementations of cryptographic operations (e.g., RSA,
AES, ECDSA, SHA-1) achieve significantly higher throughput and efficiency
than CPU implementations [9,11,12,23]. GPUs are leveraged to offload crypto-
graphic workloads from CPUs. For example, the GPU implementation of AES
achieves up to 28x higher throughput.

Although the GPU-based implementations of cryptographic operation aims
at security, a thorough analysis of the GPU environment has not been well
studied. As regards security and isolation, they are not considered as important
as performance. In fact, GPU and CPU architecture are quite different, therefore
they face different threats.

For discrete GPUs’ architecture, their independent memory and computa-
tional resources are physically partitioned from CPU, which seems to make it
plausible that GPUs could be used as secure co-processors. In CCS ’14, Vasil-
iadis et al. [29] proposes PixelVault, which is a system implementing AES and
RSA for keeping sensitive information (including cryptographic keys) and per-
forming cryptographic operations exclusively on GPU. PixelVault chooses GPU
registers, which are reported to be automatically reset to zero when the kernel
is loaded, as the secret and private keys storage. Intermediate sensitive data is
kept encrypted by master key in GPU global memory. No doubt the master key
is stored in GPU registers. Any computation with the secret keys is exclusively
limited to those registers. As a result, PixelVault prevents even privileged host
code from accessing any sensitive code or data on GPU. By exposing private
keys in plaintext only in GPU registers, and keeping PixelVault’s critical code
exclusively in the GPU instruction cache, PixelVault seems to be a promising
approach to prevent even privileged host code from accessing any sensitive code
or data on GPU.

With a different technology roadmap, in 2016, Kim et al. [13] propose OBMI
which is a SMM-based (System Management Mode) framework for bootstrap-
ping secure cryptographic operations on GPGPUs while preserving robustness,
efficiency and programmability. Unlike PixelVault, they store keys in GPU cache
which also cannot be accessed by CPU processes and cannot be accessed after
termination of GPU kernel. However, data in GPU cache is beyond control of
programmer, it is critical to ensure data remain in the cache and can not be
evicted. To subvert this issue, they store the key in the constant cache using
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SMM before system booting. They also utilize SMM for isolating authenticated
GPU kernel in instruction cache. Thus, only SMI (System Management Inter-
rupt) and trusted kernel can access the key. By handling sensitive data only in
SMM, OBMI can secure cryptographic operations.

Unfortunately, while some characteristics of GPU architecture and execution
model are officially confirmed, some are poorly documented and not validated
experimentally. Indeed, Zhu et at. [32] demonstrate how unpublished or recently
introduced features of GPUs may bypass the protection mechanisms of Pix-
elVault and compromise the whole system. They refute the following security
assumptions of PixelVault in details. Exploiting memory mapped input out-
put (MMIO) registers, they can invalidate the GPU instruction caches and
replace them with their own malicious code from running kernels. Using recent
changes in debugging support, privileged users are able to attach any running
kernel and read the GPU registers, effectively extracting the secret keys. What’s
worse, it is unclear how to disable this capability. And for OBMI, becasuse How-
ever as mentioned before [32], unpublished MMIO registers are able to flush the
instruction cache, allowing to inject malicious code. Consequently, it breaks the
security assumption of both PixelVault and OBMI.

As a summary, any kind of information leakage from security-sensitive appli-
cations (e.g., those runs security protocols or cryptographic algorithms) would
severely undermine the trustworthiness of GPU computing. Thus in order to
protect the secret keys under a range of memory leakages and threats to the
underlying system, we propose a key-protection isolation mechanism on GPG-
PUs with system-level virtualization technology. The contributions of this paper
are threefold:

1. We propose a secure GPU computing model for the GPU-based cryptographic
service. We sugguest a GPU virtualization approach for cryptographic com-
putations by API remoting method, which isolates master key and keeps
accelerating operations safe. To the best of our knowledge, we are the first to
utilize GPU virtualization technology to solve the security issues of GPU.

2. Based on the proposed model, we implement a prototype on the commod-
ity GPU with QEMU-KVM with various kinds of optimization. The extra
virtualization layer also allows us to introduce mechanisms for checking the
integrity of the accelerated GPU code, which is previously very complex to
implement in GPUs.

3. By comparing the native throughput of ECC with GPU virtualization
through various experiments, we evaluate the performance overhead of our
solutions. The evaluations show that our approach incurred only a negligible
performance degradation with preventing private keys from leakage of GPU
cryptographic computation.

The rest of the paper is organized as follows: we begin by providing necessary
background for the current work. Then we describe our design in Sect. 3. In
Sect. 4, the detailed implementation is revealed and we evaluate the performance.
We discuss security analysis in Sect. 5. Finally, we conclude the paper in Sect. 6.
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2 Preliminaries and Related Work

This section gives some basic introduction to GPU, GPU virtualization and some
attacks and defenses on cryptographic keys in modern processors.

2.1 GPU Basis

The computational capabilities of GPUs for executing parallel applications are
based on hundreds or thousands of processing cores and a high bandwidth mem-
ory architecture. A GPU has several Streaming Multiprocessors (SM) which are
in turn composed of Streaming Processor cores (SP, or CUDA cores), registers,
caches.

A GPU application consists the host code running on the CPU and kernels
which runs on the GPU. GPU kernels are special functions executing n times in
parallel by n different threads. The number of threads can be specified at kernel
launch time.

Running a task on GPU follows three steps:

– The DMA controller transfers the input data from host memory to GPU
memory.

– The host application launches the kernel which runs on GPUs.
– The DMA controller transfers the output data from GPU memory to host

memory.

As CUDA is becoming a prevalent programming model of GPGPU, we focus
on CUDA runtime API while virtualizating GPUs.

2.2 GPU Virtualization

Although virtualization provides a wide range of benefits, such as system secu-
rity, ease of management, isolation, and live migration, virtualizing GPUs is a
relatively new area of study and remains a challenging endeavor which is due to
undisclosed details of GPU implementation and unstandardized GPU architec-
tures.

API remoting approach is a kind of protocol redirection, which virtualizes
GPUs in a simple way and without singnificant performance penalty by providing
a GPU wrapper library to a guest OS to intercept GPU runtime calls. This
approach does not adopt custom GPU driver in the guest [10]. vCUDA [25] and
rCUDA [3] are recent projects using API remoting in GPU virtualization.

vCUDA provides a CUDA wrapper library and virtual GPUs (vGPUs) in
the guest and the vCUDA stub in the host. vGPUs are created per application
by the wrapper library and give a complete view of the underlying GPUs to
applications. Instead of emulation, rCUDA creates virtual CUDA-compatible
devices on machines without GPU by adopting remote GPU-based acceleration.

However, these frameworks either rely on the scheduling mechanisms pro-
vided by the CUDA runtime, or allow applications to execute on GPU in
sequence, possibly leading to low resource utilization and consequent suboptimal
performance.
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2.3 Attack and Defense on Cryptographic Keys in CPU

As long as the secrecy of cryptographic keys involved in cryptographic operations
is guaranteed, the cryptosystem is trustworthy even if it has been compromised.
Nevertheless keeping cryptographic keys safe is still a great challenge in any cryp-
tosystem [16]. During cryptographic operations, private keys are always loaded
into main memory as plaintext, therefore private keys are prone to memory
disclosure attacks.

A malicious program can exploit Meltdown [17] and Spectre [14] in modern
processors to steal data from the main memory, dumping passwords, personal
photo, emails, instant messages and so on.

Although various mechanisms have been proposed in memory protec-
tion [28,30], the main memory is still vulnerable to physical attacks, such as
cold-boot [8], DMA attack [1,27], which could bypass the protections of OS. To
prevent cold-boot attack, AESSE [21], TRESOR [22], and Amnesia [26] store
AES keys exclusively in CPU registers. PRIME [5] and Copker [6] implements
the RSA algorithm in AVX registers and cache respectively. While Mimosa [7]
utilizes hardware transactional memory to protect the RSA cryptographic oper-
ations from cold-boot and memory disclosure attacks.

However the CPU-bound encryption approach requires the integrity of the
OS kernel. Any compromised OS kernel can easily leak the register or the cache
within the CPU. TRESOR-HUNT [1] exploits DMA to inject malicious code
into the OS kernel memory and then access the keys in registers.

2.4 Attack and Defense on Cryptographic Keys in GPU

Not only for CPUs, recent works have started investigating the security vulner-
abilities of GPUs. Some works notice the GPU driver does not erase memory
after kernel termination, indicating that they can leak sensitive data [24,31].

Memory isolation policies enforced by a CPU cannot be applied to GPU
memory automatically, so any discrepancy between CPUs and GPUs can lead
to unexpected information leakages. By exploiting such vulnerabilities, Pietro
et al. [24] recover both plaintext and encryption key of AES from GPU global
memory. For thwarting information leakage in GPUs, it is believed that the best
solution is memory isolation enhancements performed at the driver/hardware
level. Nevertheless, it would be better that CUDA should allow OS to monitor
usage and control access to GPU resources.

As modern GPUs share virtual and even physical memory with CPUs, buffer
overflows becomes possible in GPU and can lead to remote code execution,
corruption on sensitive data and security problems as CPU-based overflows [2,
20]. Erb et al. [4] present a tool that utilizes canaries to detect buffer overflows
caused by GPGPUs kernel in OpenCL GPU applications.

A recent study shows that remanent data in GPU memory can be retrieved
since GPU does not automatically zero its memory after termination. [15,24,31]
Even implementing an appropriate erasing operations for the GPU memory,
attackers with GPU driver privileges can also access GPU memory with MMIO
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registers [19]. Some researchers treat discrete GPUs as secure co-processors
storing private keys in GPU registers [29] or GPU cache [13] while offloading
cryptographic operations onto GPUs. Unfortunately, due to the widespread com-
mercial strategy to hide implementation details from competitors, manufacturers
of GPUs are reluctant on publishing the internals of their solutions [18], which
implies the discrete GPUs cannot be trusted as secure co-processors, rather, they
may host stealthy malware [32].

3 System Design

3.1 Threat Model and Design Goals

Threat Model. We intend to provide a isolated cryptographic computation
environment using GPU in virtual machine from the OS in commodity platform.
In this situation, the objective of the adversary is to leak the sensitive information
of cryptographic operations from victim’s system. We assume that the adversary
has the ability to fully control over the VM and obtain root privilege through
intrusion attacks. We consider the malicious user has no physical access to the
computer. Otherwise the victim machine is venerable to hardware-based attacks
such as cold-boot attack or DMA attack.

The underlying VMM is mostly safe so that even if the OS of VM is com-
promised, the hacker cannot escape the guest virtual machine and execute code
on hypervisor or host operating system. Moreover, we ignore denial-of-service
attacks.

Design Goals. Our most primary goal is to design a safe environment for
GPU accelerating cryptographic computation without leaking secret keys. This
implies that no keys or sensitive information should get into memory. Considering
this policy, we can isolate the GPU and OS with a master key from a virtual
machine. To restrain cryptographic operations from dealing with secret keys,
they are transferred from VM to host using secure channel. The actual secret
keys and related sensitive information should never be exposed to the memory
of VM. In that case even if the VM is compromised, no sensitive information in
VM memory can be leaked.

Meanwhile, we need to guarantee the throughput of cryptographic compu-
tations. The performance of cryptographic operations should be not effected
obviously.

3.2 System Architecture

The framework we propose is organized in three main architectural features.
By using CUDA API Remoting, we implement GPU virtualization in guest OS.
CUDA cryptographic applications can utilize GPU with original API functions
in the same manner as a typical GPGPU program. However, secret keys must
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not be transferred into memory of guest OS in case they are disclosed via mali-
cious attacks. All we suggest to manage keys securely is to isolate the master
key in VMM, while secret keys from any application need to encrypt/decrypt via
the master key. Moreover, to prevent leakage of sensitive information from GPU
memory, we also verify the validity of the CUDA fat binary before application
launches a request. If there is no information of CUDA fat binary in our white
list, the system denies the request and records this abnormal behavior. In this
way, users can launch secure cryptographic operations on virtualized environ-
ment. The architecture will be discussed in depth in the following sections.

Isolation Using GPU Virtualization. The first step of our isolation mecha-
nism for securing accelerating cryptographic computation is the ability to utilize
GPU in virtual machine. As we all know, GPU vendors somehow are not will-
ing to provide general purpose GPU virtualization solution. They tend not to
publish the source code and implementation details of their GPU drivers, which
are essential for virtualizing GPUs at the driver level, for commercial reasons.
Even when driver implementations are unveiled, for example, by reverse engi-
neering methods, significant changes are introduced with every new generation
of GPUs to improve performance. As a result, specifications revealed by reverse
engineering become useless.

In a word, there are no standrad interfaces for virtualizing GPU devices in
driver level.

Fortunately the API remoting approach overcomes aforementioned limita-
tions, because it can emulate a GPU execution environment without exposing
physical GPU devices in the guest OS. The premise of API remoting is to pro-
vide guest OS with a custom library which contains the same API as the original
library. However the library intercepts GPU calls from the application and redi-
rects the request with proper parameters to the host OS for execution as normal
calls through shared memory or sockets. Only results are delivered to the appli-
cation through wrapper library in reverse.

It is flexible that the wrapper library can be dynamically linked to existing
applications at runtime. What is more important is that API remoting approach
incurs negligible performance overhead. In addition, this approach can be mon-
itored by underlying hypervisors as the virtualization layer is implemented in
user space.

Key-Protection Mechanism. The main focus of our work is the key-
protection mechanism during the GPU accelerating cryptographic operations.
Instead of storing the master key in registers or cache of GPU like PixelVault
and OBMI do, we decide to keep master key in VMM. All keys residing in VMs
are encrypted by the master key. Thus only during cryptographic operations,
VMM manages to decrypt cryptographic keys with the master key and uploads
the actual keys into GPU global memory where kernel can retrieve. Therefore,
even if adversaries manage to acquire the secret keys from the memory space of
VMs, they would get encrypted content which is unuseful.
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GPU Binary Verification. Although our key-protection mechanism can
securely upload the secret key into the GPU global memory, it is useless if
the GPU kernel is compromised. Thus adversary can launch a malicious GPU
code-injection attack and patiently leak the key from the GPU global memory.
In order to prevent such attack, verifying the integrity of GPU kernel is a prereq-
uisite for protecting secret keys. Before launching the accelerating cryptographic
operation in VM, VMM checks the integrity of the GPU kernel. After validating
authenticated GPU code, VMM allows the GPU binary to execute then. Other-
wise, the cryptographic operations are rejected and recorded in abnormal logs.
With the proposed method, we can securely execute arbitrary, authenticated
GPU code without any tampering.

4 Implementation and Performance Evaluation

Based on the design principles, we describe various aspects of our prototype in
detail, and propose a general system architecture and some more details in the
implementation of our prototype.

4.1 Architecture Overview

The overall design and process details of the proposed solution are shown in
Fig. 1. In this architecture, we choose virtio, a standard for para-virtualization
I/O devices, as the transfer channel, which we discuss in following sections. By
using API remoting approach, CUDA driver is not essential for guest OS.

First, when a CUDA application demands a GPU service, it can dynamically
link to wrapper library and invoke CUDA runtime API as the typical GPGPU
program. Wrapper library intercepts calls before the calls reach the GPU driver
in the guest OS and redirects them to virtio front-end driver through ioctl. Then
guest driver forwards API requests with proper parameters via virio buffer to
back-end driver in VMM. If it is the first time running for application, VMM
verifies the fat binary file using HMAC and then checks it whether in our white
list. Only passing the validation, API requests can be executed as the same

Host OS

VMM

GPU

Guest OS

ioctl

CUDA Application

Virtio Front-End Driver

Virtio Back-End Driver Master 
keyCUDA Cryptographic Application

request

Wrapper Runtime Library

CUDA API

Runtime Library

Device Driver

HMAC 
List

virtio 
buffer

response

Fig. 1. The architecture of the proposed prototype.
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real runtime APIs do. Otherwise, VMM denies of execution. Finally, the results
should be sent back to the application in reverse path.

4.2 Implementation Details

API Remoting GPU Virtualization. In general, the typical phase for exe-
cution of a kernel requires several steps, which we illustrate using the vector
addition as an example:

1. Initialization. The process obtains the GPU module from the CUDA binary,
which comprises the CUDA fat binary code and other related data such as
statically allocated variables.

2. Memory Allocation. The process requests memory allocation on the GPU
for the data used by kernel execution.

3. Input Data Transfer. All the data used by kernel execution must be copied
from RAM to GPU global memory allocated in second step.

4. Kernel Execution. The GPU code is executed with the parameters and
configurations, such as block size and thread size.

5. Output Data Transfer. Once the kernel execution is completed, the results
in GPU should be transferred to RAM.

6. Memory Release. GPU memory which is allocated before is released.
7. Finalization. The process releases all the associated resources and quits.

According to our experiments, all the cardinal running APIs we need to
complete a typical cuda application is shown in Table 1.

Table 1. The functionality of primary runtime API

Operation Functionality Stage

cudaRegisterFunction Get the handle to kernel called with
binary code and function name

Initialization

cudaUnregisterFatBinary Release the fat binary Finalization

cudaRegisterFatBinary Get the handle to the fat binary Initialization

cudaMalloc Allocate memory on the device Memory allocation

cudaConfigureCall Configure a device launch Kernel execution

cudaSetupArgument Configure setup augments Kernel execution

cudaLaunch Launch a kernel Kernel execution

cudaFree Free memory on the device Memory release

cudaMemcpy Copy data between host and device Input&Output
data transfer

The first three functions with “ ” prefix are not meant to be called directly
by user code but they are so important that nvcc compiler injects them into the
source code. Their declaration in /usr/local/cuda/include/crt/host runtime.h
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shows us the interface. While the other functions without underline
prefix are directly called by user code and they are declared in
/usr/local/cuda/include/cuda runtime api.h.

Each wrapper runtime API invokes ioctl() system call for sending requests
and getting responses from virtual GPU. In this case, ioctl() takes the file
descriptor of virtual character device as first argument. The second argument
is a dedicated device-dependent request code for each runtiem API. The third
argument is an untyped pointer to the request meta structure which we fill with
proper parameters.

Data Transfer Between VMs and VMM. Virtio is a de-facto standard for
para-virtualization I/O devices and aims to improve performance of accessing
devices on guest OSes over the traditional emulated devices. Virtio abstracts a
common set of emulated devices which the VMM exports to the VM via normal
PCI devices. To boost the I/O performance, a custom device driver in guest OS
communicates with the associated back-end service in VMM. Guest OS writes
“guest-physical” addresses to the configure space to inform the VMM of buffer
addresses. By simply adding an offset the actual “host-virtual” addresses can be
calculated in VMM.

Our proposed implementation, virtio-vgpu, consists of a virtual PCI device
(virtio-vgpu-pci) and a token (virtio-vgpu-token) that is logically attached to it.
To support virtio-vgpu, “virtio-vgpu-pci” and “virtio-vgpu-token” options
should be appended to the QEMU command line when the VM launches. Virtio-
vgpu-pci is interpreted into virtual device for guest OS, while virtio-vgpu-token
also requires a PEM formatted private key file which stores master key as back-
end with the “keypath” argument.

Virtio-vgpu provides a front-end driver in guest OS for forwarding requests
and returning the response of CUDA runtime APIs. In more detail, the driver
specifies ioctl commands for wrapper runtime API calling. All the parameters
should be rearranged in buffer with the meta structure and auxiliary data. As
the driver is complemented in kernel space, transferred data from user space
should be copied to the kernel space. New kernel memory is allocated, filled
with content from the user space and then concatenated to the end of buffer.
The final buffer is sent to VMM via virtio buffers. The returned buffer is also
arranged like this, which contains of meta structure and complementary data.
Finally, all essential results are copied to user space.

Besides the front-end driver, the other back-end driver in VMM is responsible
for receiving requests, keeping states of objects, executing operations and sending
back the responses. The transferred data is analyzed via the information of meta
structure located in the front of buffer. As we mention before, VMM responses
differently according to dedicated request code from the meta structure. By
different request code, VMM calls actual runtime API and forwards back the
buffer with the returned value and essential parameters. In addition, VMM also
initializes the virtual objects list after validating the authentication of GPU code
when dealing with cudaRegisterFatBinary requests. The virtual objects list
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manages all pointers to allocated memory, kernel configuration and parameters,
events, streams. Still, the device information is collected as well in order to
response quickly for the device management, such as cudaGetDevice request.

GPU Kernel Authentication. In order to prevent the maliciously modified
GPU code compromising the device, our system only allows authenticated GPU
code to execute on device. To validate the integrity of GPU kernel, the mecha-
nism is divided into two parts. Firstly, the administrator should obtain the sig-
nature of fat binary file from CUDA binary using HMAC-SHA256 signatures in
advance. Now the secret key of HMAC is generated from master key. Then those
signatures are needed to be converted to base64 for displaying. The fat binary
file can be generated from the source code by nvcc compiler with the option
“--fatbin”. Meanwhile VMM maintains a white list to dynamically manage
base64 strings of HMAC signatures of GPU code. The white list is implemented
as a file appended to virtio-vgpu-token.

typedef struct {
int magic;
int version;
const unsigned long long* data;
void *filename_or_fatbins;  /* version 1: offline filename,

* version 2: array of prelinked fatbins */
} __fatBinC_Wrapper_t;

Fig. 2. Fatbin control structure.

Secondly, what confronts us is how to extract the fatbin file from the CUDA
binary file using runtime APIs. Luckily, we can utilize some control structure
information from CUDA include directory. cudaRegisterFatBinary takes the
pointer to fatbin control structure as input, the structure defined in fatBina-
ryCtl.h is shown in Fig. 2. The address of fat binary can be followed by field
data. Furthermore, the size of fat binary file is controlled by fat binary header
structure defined in fatbinary.h. Finally, with the address and size, the fat binary
file surely is able to be extracted and be transferred to VMM via virtio.

VMM checks the integrity of fat binary file once receiving it from guest OS.
By checking whether base64 string converted from HMAC-SHA256 signature of
fat binary file exists in while list or not, VMM determines that the fat binary
file is authenticated. If the fat binary file is valid, VMM initializes the virtual
GPU environment and deal with following requests. Otherwise, VMM rejects
the request and reports this abnormal behavior to administrators.

4.3 Performance Evaluation

We assess the performance of the GPU virtualization prototype in comparison to
the native machine running on commodity CPU and GPU. Our host OS consists
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Fig. 3. Performance comparison for Curve25519 with different numbers of requests.

Ubuntu 16.04 x86-64 (kernel v4.4.0), QEMU v1.7.1 and NVIDIA Geforce GTX
TITAN BLACK, and the guest OS is CentOS 6.6 (kernel v3.13.7). We implement
the wrapper library of CUDA v8.0. To adopt our mechanism for common GPU
cryptographic operations, we develop auxiliary runtime API in wrapper library.

The throughput is evaluated via Curve25519 and AES-128 algorithms.
Curve25519 is an elliptic curve which is intended to operate at the 128-bit secu-
rity level. We implement scalar multiplication on Curve25519 by using Mont-
gomery ladder in a constant time. By making full use of the PTX ISA instruc-
tion supported by NVIDIA GPUs and making optimization from two aspects, the
finite field arithmetic and the curve algorithm, the performance of Curve25519
scalar multiplication has been promoted. For AES, we modify the OpenSSL AES
with a 128-bit symmetric key to GPU implementation.

We conduct the experiment to measure the latency incurred by the API
remoting approach. In order to measure the impact of our GPU virtualization
mechanism on real scene of cryptographic computing, the time imposed by data
copying is included from the total time. Figure 3 shows the throughput changes
of Curve25519 with and without our proposed mechanism via various request
sizes.

As the figure shows, the overhead incurred by GPU virtualization is insignifi-
cant for Curve25519. For Curve25519, the average degraded throughput is up to
92% of the original throughput. This implies that our mechanism brings negli-
gible performance degradation for asymmetrical cryptographic operations.

However, there is much lower performance for AES-128, which is up to
70% throughput degradation with 3 MB input data. We tested the performance
penalty of kernel execution excluding the time of data copying. The degraded
throughput is nearly 98% of native throughput. From our point of view, the
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time of data copying takes up most of the time of virtual cryptographic comput-
ing. This implies that our solution might be ineffective to frequently request for
symmetrical cryptographic operations with large input data.

Note that we have not optimize implementation of our prototype yet. The
efficiency of data copying via virtio needs to be optimized in our future work.

5 Security Analysis

In this section, our experiment shows our mechanism is able to protect sensitive
information from memory disclosure attacks. To this end, we need to make sure
there is no occurrence of keys of Curve25519 in memory space of VM. By using
dump-guest-memory and info registers command in QEMU console, the
whole memory image and states of registers of VM can be obtained respectively.
Since we have already know the plaintext of secret keys in cryptographic com-
putation, we search the secret key strings and the master key string inside the
dump file. Fortunately, it turns out that no binary sequence of any key exists.
Hence, our GPU virtualization prototype can effectively prevent private keys
from leakage of GPU cryptographic computation.

In order to maintain all loaded secrets on GPU and make sure exclusive
control of the GPU, PixelVault forces a CUDA kernel to run indefinitely and
consumes all available device resources. As a result, PixelVault is dedicated to a
single cryptographic operation. Not to say consuming considerable power, this
not only degrades performance but also significantly reduces flexibility of com-
putations. Since GPU registers can not be shared between different threads,
PixelVault also increases complexity of GPGPU programming.

Compared with the prior works, our solution has the following advantages:

1. We isolate the master key in host. The secret keys used by GPU-accelerated
cryptographic operations are not exposed to attackers in plaintext, but
encrypted by master key beforehand. However the encrypted secret keys are
only decrypted in host OS. Any accelerating cryptographic operation in VM
can not reveal the sensitive information.

2. Any authenticated cryptographic computation application can be executed in
the VM with a insignificant degradation of throughput. Experiment results
show that performance penalty of API-remoting-based GPU computation for
ECC is within 8% of native GPU computation.

3. We provide wrappered CUDA runtime library which keeps the same interface
as the original library so that developers do not need to modify applications
greatly.

4. Our solution does not depend on the characteristics of GPU hardware. Ignor-
ing the architecture of underlying hardware, it is compatible for multiple
products.
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6 Conclusion

In this paper, we have proposed the design and implementation of a framework
for preventing private keys from leakage in accelerating cryptographic compu-
tations utilizing GPU virtualization. By isolating the master key in VMM and
establishing authenticated GPU binaries, the real keys are never exposed to the
guest OS, so that the compromise of the guest OS will not threaten the secrecy
of keys. Moreover, The API-remoting-based GPU virtualization with virtio is
proved as a high performance computing solutions which allows cryptographic
applications within VM to leverage GPU acceleration. Our evaluations show that
GPU virtualization incurrs a insignificant performance degradation for asymmet-
ric cryptographic algorithm ECC. We also prove that secret keys are never leaked
into memory space of VMs. However the major reason of performance degrada-
tion incurred by GPU virtualization is data transmission which is a unavoidable
problem. Our work currently may not be proper for symmetrical cryptographic
operations like AES with large input data.

In the future work, we continue to optimize our prototype with data trans-
mission, lazy calling and implement more runtime APIs. Now our prototype
does not support multiplexing and live migration that we intend to extend the
prototype with.
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Abstract. In this paper, the hardware implementation of Integer based Fully
Homomorphic Encryption (FHE) is investigated. A new methodology is pro-
posed to speed up the encryption process by optimizing the very large asym-
metric multiplications required. A frequency domain approach is adopted for the
multiplication using the Number Theoretic Transforms (NTTs) where the strict
relationship between the NTT parameters is relaxed to allow for more optimized
hardware implementations on FPGA. This is achieved specifically by relaxing
the traditional requirement for a simple transform kernel in favour of optimal
transform lengths and moduli in terms of the number of overall iterations,
suitable data path, and FPGA architecture. It is shown both analytically and via
implementation results that the proposed approach yields faster FHE over the
integers implementations. Based on the methodology, a proposed hardware
architecture with optimized NTT parameters synthesized on Xilinx Kintex-7
FPGA shows 55% and 76% speed improvement for Medium and Large key
sizes respectively.

Keywords: Fully Homomorphic Encryption � Number Theoretic Transform
Hardware implementation

1 Introduction

Fully Homomorphic Encryption (FHE) allows a computation to be done on encrypted
data (ciphertext) and no decryption is needed prior to any computation, offering thus
better privacy [1]. FHE has emerged as a powerful cryptographic tool in recent years as
it has been shown to possess both additive and multiplicative homomorphic properties.
However, it is still far from practical deployment due to their complexity, mainly due to
the huge key size involved. Three variants of FHE: Lattice-Based, Ring Learning with
Error (RLWE) and Integer-Based have been an area of active research in recent years to
investigate the potentials and limitations of FHE by investigating software [2–5] and
hardware [6–9] implementations.

Implementing Lattice-Based FHE in software was initially proposed in [2]; it
requires huge key sizes between 17 Megabytes (MB) to 2.3 Gigabytes (GB) with key
generation taking from 2.5 s to 2.2 h. Van Dijk et al. revised the original FHE scheme
and proposed Integer Based FHE [10] where both homomorphic properties are

© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 161–176, 2018.
https://doi.org/10.1007/978-3-030-01950-1_10

http://orcid.org/0000-0002-5941-8968
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_10&amp;domain=pdf


computed over the integers with the objective of promoting simplicity in its scheme.
Later, Coron et al. improved this scheme with smaller key sizes of 0.95 Mb to 802 Mb
and key generation time between 4.38 s to 43 min [4].

A modulus switching technique was introduced in [5] which allows leveled mul-
tiplication on smaller moduli, hence results in smaller public key sizes. In [5], the
authors worked on RLWE based FHE, managed to reduce noise growth from quadratic
to linear complexity even without modulus switching. Cousins et al. introduced the
Chinese Remainder Transform (CRT) on Lattice-Based FHE which splits a larger
modulus into multiple moduli so that parallelization can be employed on Field-
Programmable Gate Array (FPGA) Virtex 6, however extra time is needed for re-
conversion from the Montgomery domain to regular integers [11, 12]. Later, Gentry in
[13] presented an encryption of 150-bit Advanced Encryption Standard (AES) homo-
morphically which takes 73.03 s for key generation and 3 Gb memory usage without
bootstrapping.

Apart from FHE, recent research also focused on Somewhat Homomorphic
Encryption (SHE) [14, 15]. Smart et al. in [3] suggested multiple stages of encryption
(known as re-crypt) on larger message sizes rather than single bit proposed originally in
[1]; however, key generation still requires more than an hour even for small key size.
An improvised version of [3] is done by introducing a Single Instruction Multiple Data
(SIMD) implementation in [16], which performs 4.13 times faster re-cryption and 12
times smaller ciphertext than one without SIMD. Also working on SHE, Poppelmann
et al. [17] showed that Lattice-Based SHE is possible to be deployed on FPGA
Spartan-6 with 9063 Number Theoretic Transform (NTT) coefficients multiplication
per second, provided NTT parameters are selected appropriately. The recent SHE work
is based on Ring-LWE variants and aimed at accelerating the encryption for cloud
computing at the FPGA level and also enlarge the NTT coefficients by introducing a
1228-bit modulus [18]. However, the resulting multiplication process was relatively
slower than the software implementation with the same NTT size; 26.67 s and 2.98 s
respectively. The bottleneck being the memory access.

To accelerate the FHE performance, the authors in [6] exploited the speed of
Graphical Processing Units (GPUs) and encrypted 7.68 times faster than standard
Central Processing Unit (CPUs). Then, the authors in [19] introduced Integer-Based
FHE by batch to reduce the bottleneck on AES encryption. Later, Doroz et al. proposed
pre-computation of Schönhage Strassen multiplier parameters which allowed FHE
encryption to perform better with only 18.1 ms (ms) [20]. Recently, the concept of a re-
cryption box was proposed by Roy et al. [21] at the hardware level to reduce the effects
of growing noise on the ciphertexts. The re-cryption box is also exploited to accelerate
the search operation on the encrypted data.

The first hardware implementation for Integer Based FHE was proposed by Cao
et al. in [8] with two building blocks of a large NTT multiplier and Barrett reduction to
speed up FHE on high-end FPGA technology Virtex 7. Their encryption time is 44.72
times faster than software implementation for ‘Large’ key size. Comba scheduling is
proposed in [22], by utilizing Digital Signal Processing (DSP) slices for uneven
operands to shorten the delays during multiplications while reducing ‘Write to Mem-
ory’ operation. Meanwhile, recent research by Cao et al. [9] proposed Low Hamming
Weight (LHW) design on Virtex 7 to allow simpler multiplications while reducing
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hardware usage at the same time. The encryption time of this work outperforming
benchmark software implementations by 131 times for ‘Large’ key size, while the
encryption time showed by this scheme is between 0.0006 s to 3.317 s, resulting in the
best FHE achievement by far with a reasonable speed and small footprint.

Inspired by the significant performance reported with strong potential for
improvements, we focused our work on the Integer-Based FHE scheme by Van Dijk
et al. [10]. The central theme of this scheme is about simplicity. It is easier in terms of
parameter selection compared to Lattice-Based while its hardness is based on Greatest
Common Divisor (GCD) approximate problem. Furthermore, the sizes of the param-
eters in Integer-Based FHE are defined clearly in [9], unlike the other variants where
only the matrix size is defined rather than bit size.

We propose to accelerate FHE over the integers by adopting frequency domain
multiplication using the NTT specifically targeted for FPGAs. The FPGA platform is
chosen over custom hardware Application-Specific Integrated Circuits (ASICs) due to
the high availability of resources such as DSPs which have dedicated mathematical
functions on modern FPGAs.

We followed the seminal work in [2, 5], pronouncing the operands size in four
different groups: Toy, Small, Medium and Large as shown in Table 1. At least 150 k to
19 m bits operands are required for the encryption steps which is a large number, hence
normal Schoolbook multiplication is no longer efficient. In recent years, there have
been many reported ideas by researchers to optimize large number multiplications
especially in cryptography; such as Comba [22, 23], Karatsuba [24, 25] and frequency
domain conversion methods [14, 26]. The idea of adopting a frequency domain
approach on hardware such as in [8, 14, 15, 27, 28] has increasingly gained acceptance
as an efficient method to accelerate the multiplication process given its computational
complexity being in the order O nlog nð Þð Þ for n-bits operand. Researchers in [9, 29,
30] have also shown that NTT hardware implementations outperformed software
implementations at certain magnitudes.

In this paper, we further advance research in this area by relaxing the strict rela-
tionship between the NTT parameters to allow for more optimized hardware imple-
mentations on FPGA. To speed up the large integer multiplications required in FHE
schemes such as the one proposed in [5], previous research has sought to optimize the
multiplication steps within the NTT transform computations by fixing the kernel a to be
simply a two or a power of two value [9]. However, such approach tends to impose

Table 1. Test instances for encryption process

Test instances Bit-length, Xi Bit-length, Bi s

Toy 150 k 936 158
Small 830 k 1476 572
Medium 4.2 m 2016 2110
Large 19.0 m 2556 7659
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restrictions on the possible transform lengths to be deployed, thereby affecting potential
optimizations in the overall multiplication process.

In this paper, we propose a different methodology whereby we relax the require-
ment for a simple kernel in favour of optimal transform lengths and moduli in terms of
the number of overall iterations, suitable data path, and FPGA architecture. The kernel
multiplications by a’s required for the optimal word lengths and moduli can be easily
implemented in the form of Look-Up Tables (LUTs) integral to any FPGA fabrics.

The specific contributions of this paper are summarised as follows:

• A set of NTT parameters that supports large operands for NTT multiplication is
proposed.

• Analysis of important hardware design trade-offs; such as the butterfly costs of the
NTT building blocks against multiplication iteration for each key group in FHE
(Toy, Small, Medium and Large).

• An iterative multiplication method is incorporated to support a small footprint
design on hardware while at the same time maximizing the multiplier size to speed-
up the overall multiplication process.

• Hardware implementation is validated with results showing improved performance.

The rest of the paper is organised as follow. Section 2 recaps the introduction and
mathematical background of FHE over the integers. Our proposed methodology is
illustrated in Sect. 3. Section 4 covers the implementation aspects with results given in
Sect. 5. The paper concludes with a Conclusion section.

2 Integer Based Fully Homomorphic Encryption

Integer Based FHE needs to perform key generation, encryption and decryption with the
additional step of evaluation. Our work in this paper, in line with previously reported
implementations [9], is focused solely on the encryption step defined in (1). The work in
[9] is workable for binary messages only with message space Q ¼ 2 0; 1f g; [31] pro-
posed a larger space Q[ 2, which means the message can be non-binary with an
extended circuit. Their key size is also reduced, although no specific size is reported.

c mþ 2rþ 2
Xs

i¼1 Xi � Bi mod X0 ð1Þ

Noted, c is ciphertext; m is a single bit of plaintext binary message with only bit 0
or 1; r is a random signed integer; X0 is a part of the public key; Bi is a random integer
sequence, and Xi is a s-bits public key sequence with 1� i� h. We direct the interested
reader to refer to the original work in [5, 10] for details on the parameter selection in (1)
and Table 1.

As seen from (1), the FHE encryption step needs two core operational building
blocks: (1) Multiplication; and (2) Reduction. These can be designed as individual
building block and combined later as a complete process of FHE encryption. Mean-
while, as can be seen from Table 1, both multiplicands Xi and Bi are not symmetrical in
size. Multiplicands are also known as operands after this point. Thus, we exploit this
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unsymmetrical property to propose a hybrid multiplication approach of Schoolbook
and NTT based multiplication. Schoolbook multiplier is employed for the outer iter-
ations whereas the NTT multipliers will be used for the inner multiplications. In fact,
employing symmetric multiplication methods for non-symmetric operands leads to
significant waste of computational time as well as hardware resources.

2.1 Number Theoretic Transform (NTT) Multiplication

The NTT has been used widely in signal processing for implementing convolution and
correlation operations because of its error-free advantages (no rounding or truncation
errors) and efficient implementation. Recently there has been a revival of interest in
NTTs to be deployed in frequency domain approaches to implementing large operand
multiplications required in new offerings in Cryptography. Dai et al. in [32] proposed
large NTTs of 215 coefficient integrated with CRT in order to accelerate NTRU-based
FHE. Meanwhile, diminished-1 NTTs is used for performing SWIFFT hash function in
[33] to simplify modular NTTs but is limited to certain modular form such as Fermat
primes only. Promising more parallelization, NTT is also widely used in hardware
implementation with good performances [8, 34]. The Mathematical representation of an
NTT is given in (2). Where k ¼ 0; :::;N � 1 and a is twiddle-factor with the condition
of aN � 1 mod m.

X tð Þ ¼
XN�1

n¼0 x nð Þank mod m ð2Þ

From (2), parameters a;m and N are interdependent. The desirable choice of NTT
parameters traditionally involved [35]:

• a to be selected as two or a power of two so that the exponentiation operations
required can be implemented as shift operation;

• N to be highly composite, a power of two if possible so that efficient NTT type
algorithms can be employed

• m has a special form so that reduction can be a simple operation.

In this paper, we use Classical Modular NTT, with each operation is bounded by ring
Zm where m is moduli. Algorithm 1 describes NTT multiplication steps with 4
underlying steps; Forward Transform, Pointwise Multiplication, Inverse Transform and
Carry Accumulation.
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Algorithm 1 Number Theoretic Transform (NTT) 
1: Let be a primitive n-th root of unity in m and b is word size
2: Let x = (x0, . . . , x(n/2)-1, 0. . .  0), y = (y0, . . . , y(n/2)-1, 0 . . . 0) and z = (z0, . . . , zn-1) 
3: Input: x, y, 
4: Output: z = x * y
5: Precompute: i where i = 0, 1, . . . , n-1 
6:       for i from 0 to n-1;
7: //Forward Transform
8: //Forward Transform
9: end for
10:  //Pointwise Multiplication
11:  for i from 0 to n-1;
12:   //Inverse Transform
13: end for
14:  for i from 0 to n-1;
15:      //Carry Accumulation
16:           end for
17: Return z

3 Proposed Methodology

The efficiency of NTT designs as explained before is related closely to the trade-off of
its three key inter-related parameters, namely the kernel a, the transform length N and
the modulus m. In this paper we stipulate that in the context of FHE where very large
multiplications of asymmetrical operands are required, a methodology that allows more
flexibility in terms of transform length, offers better scope for improving overall FHE
performance on modern FPGA platforms. The proposed methodology is more efficient
than traditional methodologies driven by overcoming the complexity of the multipli-
cations by the kernel of the transform at the detriment of the transform length. In this
case, the impact of the transform length on overall performance is far more significant
than that of the kernel multiplication within the NTT. This is because, the long mul-
tiplier unit will be able to cater for larger operand size, thus minimize the number of
partial product iterations. As a result, multiplication complexity can be reduced
specifically for asymmetric operands. A study of NTT parameters and its optimization
is discussed in the next section.

3.1 NTT Parameters Optimization

The central parameter to be optimized is the NTT length as large NTT length can
facilitate larger operands, by relaxing the kernel a restriction. The choice of modulus
needs a specific consideration, as explained later so that every operation during the
NTT over the defined ring is optimized for the targeted hardware. Importantly, the NTT

166 S. Hashim and M. Benaissa



coefficient must be within the dynamic range b, as expressed in (3) to ensure no
overflow error. More details of dynamic range is in [36].

N
2

b� 1ð Þ2\m ð3Þ

To illustrate the improvements in operand sizes achieved by the proposed approach
we report in Table 2 the comparison between two types of moduli, Solinas and Fermat
(F6); they are 64 bits and 65 bits moduli respectively. Solinas 1 and F6 1 show the NTT
parameter set without optimization, whereas Solinas 2 and F6 2 show these parameters
with our proposed optimization. The optimization is done by enlarging the NTT length
as well as relaxing the kernel restriction. As a result, both Solinas 2 and F6 2 result in
much larger multiplier sizes of 1792 bits and 3072 bits which correspond to almost
double the length.

Let y mod p where y ¼ 296aþ 264bþ 232cþ d, a 128 bits integer. The Solinas
reduction can be simplified as (4).

232 bþ cð Þ � a� bþ d ð4Þ

Algorithm 2 is used for Special form modulus, of 2n�1 � 1 as proposed in [39]. We
used this Algorithm for Fermat F6 1 and Fermat F6 2 reduction.

Table 2. Comparison between Solinas and Fermat moduli NTT parameters

Solinas Fermat
Solinas 1 [37] Solinas 2 Fermat F6 1 [38] Fermat F6 2

N-point 64 128 128 256
Twiddle-factor a 8 249 � 21 2 233 � 21

Dynamic range b 28 28 24 24
Multiplier size 896 bits 1792 bits 1536 bits 3072 bits
Modulus m 264 � 232þ 1 264þ 1
Reduction cost 1 shift, 2 addition, 2

subtraction
2 addition, 1 subtraction

Algorithm 2 Special form modulus reduction [39]
1: Let 
2: Input: x, p 
3: Output: 

5:     if
6:             
7:     else
8:             
9:      end if
10: Return
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In terms of reduction’s complexity cost, Solinas just needs shift, addition and
subtraction. Also, the Solinas form lends itself to efficient FPGA implementation. As
the goal of this work is to design a large multiplier on a targeted FPGA, then, Solinas 2
was chosen as the optimal modulus as it covers an acceptable number of operands;
1792 bits and the 64 bits modulus is an optimal fit in terms of a single word. Although
F6 2 can cover larger operands of 3072 bits, its 65 bits modulus needs more than a
single word operand, which is not optimal for hardware implementation. Even if the
diminished-1 number system can be adopted to handle 65 bits modular operation as
suggested in [40], the conversion to and from this number system is costly and can
become a performance bottleneck in particular for the special case of the zero detection.

Cost Analysis
We first analyzed the operational cost of the NTT block for Solinas 1 and Solinas 2
individually and later we analyzed the cost for overall multiplication during the
encryption. For a fair comparison, we presume a for Solinas 1 and Solinas 2 are pre-
computed over the Solinas modulus beforehand and stored in LUTs as 64-bits Read-
only Memories (ROMs). This was also done before in [27, 41] with the same purpose
of speeding-up the kernel multiplication process.

In our work, 64� N
2, pre-computed operands are needed to be stored in the LUTs

which is relatively small compared to the available LUTs of the targeted hardware,
Kintex 7. Exponentiation by a during the Butterfly operation in (5) can be replaced
with a ‘Read’ operation which is obviously faster than computing exponential a by
using an algorithm.

Meanwhile, as NTTs over the ring has a symmetrical root of unity, then it benefits
the NTT implementation because the same table also can be used for retrieving a�1 for
Inverse NTT (INTT) [36]. This way, only N multiplications are required for each
transform. As the overall NTT multiplication building block has 2 forward and 1
inverse transforms, then 3N multiplications are required. The same goes for the ‘Read’
operations during the NTT multiplication which is 3 N

2 log2N
� �

.

Xi ¼ Aiþ aiBi ; Xiþ n
2
¼ Ai � aiBi ð5Þ

The NTT multiplier size nc can be determined from (6). Division by two is because
we use Zero-padded convolution, means only N

2 coefficients are employable, and the
other N

2 appended as zeros.

nc ¼ N � b
2

ð6Þ

Table 3 shows the comparison between Solinas 1 and Solinas 2, specifically in
terms of operations during the NTT and the space required to store the precomputed
operands. As illustrated in Table 3, the Butterfly, ‘Read’ operation and
Addition/Subtraction dominate the cost in Solinas 2, which as expected are higher than
Solinas 1, as Solinas 2 caters for larger NTT points. Solinas 2 also requires more LUTs
space to store pre-computed a. Crucially though Solinas 2 has the largest NTT points
among the similar work done previously in [28, 42].
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Next, we analyze the entire multiplication, but first we explain how the multipli-
cation building block works during the FHE encryption. As discussed earlier, the NTT
multiplier blocks are used for computing the partial products whereas accumulation is
completed using a Schoolbook method. In symmetric operands (n-bits) of the
Schoolbook method, n2 multiplication and 2n� 1 accumulations are needed. However,
as in our case asymmetric multiplication is required and the partial products are
completed by the NTT multiplier block; then assumption is made that a partial product
iteration Pi represents the number of multiplications as determined in (7). Meanwhile,
accumulation Ai in (8) represents the number of additions required for accumulating the
partial products. Given two operands of asymmetrical size a (na bits) and b (nb bits)
with the multiplier size of nc-bit.

Pi ¼ na
nc

� �
� nb

nc

� �
ð7Þ

Ai ¼ na
nc

� �
þ nb

nc

� �
ð8Þ

Figure 1 explains graphically the impact of multiplier size towards partial product
iteration and accumulation. Let a and b, the asymmetric operands of 32-bits and 16-bits
respectively. Two different multipliers 8-bit and 16-bit are used to show the relation-
ship between the multiplier size and the complexity of multiplication. 32 bits operand is
chunked into the multiple blocks depending on multiplier size. The accumulation chain
relies on the partial product iteration. For example, an 8-bit multiplier requires 8 partial
product iterations and 5 accumulation chains whereas a 16-bit multiplier only con-
sumes 2 partial product iterations and 2 accumulation chains. Essentially, fewer iter-
ations are needed for larger multipliers while long carry accumulation chains also can
be minimized.

We analyze the complexity of the multiplication building block, during the FHE
encryption with different key sizes Toy, Small, Medium and Large as illustrated in
Table 4. Pi and Ai are obtained from Eqs. 7, and 8 respectively. We also include the
Butterfly cost Bi in Table 4 which corresponds to the number of butterflies involved
during the NTT multiplication to perform FHE encryption as shown in (9). The values
of Pi, Ai and Bi in Table 4 represent the overall costs and complexity of the multi-
plication during the FHE encryption.

Table 3. Solinas 1 vs Solinas 2

Solinas 1 [38] Solinas 2

Butterfly Bu 576 1344
‘Read’ operation 576 1344
Point multiplication 64 128
Addition/Subtraction 1152 2688
Precomputed operands in LUTs 32 of 64 bits 64 of 64 bits
NTT multiplier size nc 896 bits 1792 bits
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Bi ¼ Bu � Pi ð9Þ

As can be seen from Table 4, if the multiplier is large enough to cover the operands
bi in a minimum NTT block, then the partial product iterations and accumulation are
reduced significantly. For example, Toy operand bi can fit in a single NTT block of
Solinas 2. However, for Solinas 1, operand bi does not fit a single NTT block, instead 2
NTT block iterations are needed, thus, complicates the multiplication process
quadratically.

Overall, the number of partial product iterations (Pi) and accumulations (Ai) in
Solinas 2 is reduced drastically compared with Solinas 1. In fact, the butterfly cost in
Solinas 2 is also much lower than Solinas 1 despite Solinas 2 incurring a larger
butterfly cost than Solinas 1 in a single multiplier block.

Based on this analysis, we confirm that choosing appropriate multiplier size can
significantly reduce the multiplication building block complexity and therefore by
relaxing the kernel restriction to enable longer length NTT, the overall complexity cost
of the multiplication building blocks is reduced significantly.

Also, from the complexity analysis in Table 4, our parameter optimization using
Solinas 2 shows a significant improvement compared to Solinas 1. For that reason, we
conclude that Solinas 2 is more efficient for large asymmetric operands. This is due to
the large size of the multiplier which leads to small partial product iterations and short
carry chain. In fact, Solinas 2 also costs fewer butterflies, hence reduce entire multi-
plication complexity.

Fig. 1. 8-bit multiplier vs 16-bit multiplier
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4 The Architecture of NTT Multiplier

Labview FPGA 15 is being used for this hardware implementation, targeted to Xilinx
Kintex-7 XC7K160T FPGA device and Xilinx Vivado 2014.4 compiler. Given the size
of the operands needed, it is assumed that Block Random Access Memory (BRAMs) is
used and sufficient to store Xi and Bi as multiple data chunks where each chunk is b bits
size.

The architecture of the NTT Multiplier is depicted in Fig. 2. Initially, both NTT1
and NTT2 are used to transform the Bi operands. After the Bi operands are completely
transformed into frequency domain, they are stored in a BRAM Bi: Next, Xi are
transformed into frequency domain using NTT1 and NTT2. This also means for each
iteration; the NTT block can cover 2nc bits. Then, pointwise (PW) multiplication takes
place in parallel by 2 PW units; PW1 and PW2 have 128 points each. During pointwise
multiplication, Xi is fed on the fly from both NTT1 and NTT2 outputs, whereas Bi is
read from BRAM Y . The output of PW1 and PW2 then are loaded into INTT1 and

Table 4. Complexity costs of Solinas 1 and Solinas 2

Key size Pi Ai Bi

Solinas 1 Solinas 2 Solinas 1 Solinas 2 Solinas 1 Solinas 2

Toy 336 84 170 85 193536 112896
Small 1854 464 929 465 1067904 623616
Medium 14064 4688 4691 2346 8100864 6300672
Large 63618 21206 21209 10605 36643968 28500864

Fig. 2. The proposed NTT multiplier architecture
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INTT2 respectively. The proposed design is pipelined, so after the INTT takes place,
then the following output of INTT is generated at the following clock cycle. The
product is then loaded into the accumulation unit for addition and carry management.
This unit merely involves shifting and addition.

In the case where Bi does not fit into a single NTT unit, then pointwise multipli-
cation should be done iteratively. For example, operands Bi for Medium and Large
exceed the multiplier size as they need two NTT blocks; so pointwise multiplication
must undergo 2 iterations to complete the multiplication for both blocks, hence more
clock cycles required for this case.

5 Results and Discussion

The synthesis result for our proposed NTT Multiplier is within the available resources
of the targeted hardware Kintex-7 as seen in Table 5. As can be seen, registers and
LUTs are same for all key sizes Toy, Small, Medium and Large. This has happened
because the same NTTs unit is being used for each group. The latency is different due
to the number of iteration for each group is different. Meanwhile, BRAMs represent an
amount to store the operands Xi and Bi as well as the final results after the reduction.

The latency in Table 6 is calculated using the clock cycles count and the synthesis
design frequencies which is generated by the tools. As the timing for both the multi-
plication and reduction building block are obtained, then the encryption time Enct can
be computed as (10).

Enct ¼ Group 1 timing� sð Þþ 2� Group 2 timingð Þ ð10Þ

From (10), the first bracket refers to multiplication timing whereas the second
bracket refers to reduction timing. Note that we used Barrett reduction which also

Table 5. Synthesis results for proposed NTT multiplier

Toy Small Medium Large

Registers 18462 18462 18462 18462
LUTs 26328 26328 26328 26328
BRAMs 41 209 526 702
Freq (MHz) 165.21 164.69 161.00 154.44

Table 6. Latency and timing for proposed NTT multiplier of each group

Key size Latency Timing (ms) Group2 Latency Timing (ms)

Toys 4542 0.027 Toys2 4542 0.027
Small 4922 0.030 Small2 4922 0.030
Medium 6802 0.042 Medium2 12246 0.076
Large 15256 0.100 Large2 29154 0.0189
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utilized the same NTT building blocks with different operands [9]. Multiplication by
two for the reduction building block is because the Barrett reduction needs two large
multiplications [43]. The Encryption time of each group is presented in Table 6.

We also compared our result with previous research [9] in Table 7. As can be seen,
our design outperforms [9] for the Medium and Large groups. This proves that our
design manages to reduce multiplication complexity specifically for large operands
such as Medium and Large. Although [9] performs better in Toy and Small, but the
encryption time of our design shows that it does not increase gradually from Toy to
Large. We notice that our design is not efficient for Toy and Small because the operand
Bi just utilized 20% and 41% out of full NTT blocks respectively. This can be improved
in the future by designing a scalable design which can be flexible depending on size of
operands.

6 Conclusion

In this paper, we proposed a new methodology to speed up the large modular multi-
plications required in FHE schemes in frequency domain using NTTs. The method-
ology is based on relaxing the strict relationship between the NTT parameters imposed
by having a simple transform kernel. In our approach, more emphasis is put on the
transform length as it was shown that this parameter has more effect on overall
hardware performance. Both Analytical and implementation presented in this paper
show that the proposed methodology leads to improved large NTT multiplication. In
fact, our Optimized NTT Multiplier is 55% and 76% faster than [9] for Medium and
Large group respectively. The results attained illustrate that FHE encryption time is
improved. Further enhancements can be carried out by deploying several NTT blocks
in parallel.
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Abstract. Homomorphic Encryption provides one of the most promis-
ing means to delegate computation to the cloud while retaining data con-
fidentiality. We present a plaintext recovery attack against fully homo-
morphic schemes which have a polynomial time distinguisher for a given
fixed plaintext, and rely on the capability of homomorphically compare
a pair of encrypted integer values. We improve by a constant factor
the computational complexity of an exhaustive search strategy, which is
linear in the recovered plaintext value, and show that it significantly
increases the number of recoverable plaintexts. We successfully vali-
date our attack against two noise-free fully homomorphic encryption
schemes, which fulfill the mentioned requisite and were claimed to be
secure against plaintext recovery attacks.

Keywords: FHE · Noise-free schemes · Plaintext recovery attack

1 Introduction

Fully Homomorphic Encryption (FHE) is a powerful cryptographic primitive,
which allows to perform computation on encrypted data, retaining the correct-
ness of the computation once the result is decrypted. The idea of FHE was first
proposed by Rivest in 1978 with the name of Privacy Homomorphisms [20].
Designing a FHE scheme remained an open problem for three decades, during
which only partially homomorphic encryption (PHE) schemes, which allow to
perform only a set of operations (e.g., additions), or SomeWhat Homomorphic
Encryption (SWHE) schemes, which allow to perform only a limited number
of additions and multiplications, were proposed. In 2009 Gentry [10] proposed
the first FHE scheme, allowing to perform an unbounded number of additions
and multiplications on encrypted data. Despite the low computational efficiency,
FHE has gained attention as it provides a way to outsource computation on pri-
vate data to a third party such as a cloud-hosted service without revealing any
information neither about the data involved in the computation nor about its
result, since it is decrypted by the client alone, differently from other primitives
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such as Secure Multi-Party Computation [24] or Functional Encryption [1]. Since
Gentry’s seminal work, several schemes achieving better performances were pro-
posed [6,7,9,12], as well as new techniques to speed up homomorphic computa-
tions, such as batching [11,21]. Nevertheless, FHE schemes still have two practical
concerns to be solved before wide adoption is possible: (i) ciphertext expansion
and (ii) the computational overhead imposed on homomorphic operations to
preserve the correctness of the decrypted result. Indeed, the ciphertext space
of SWHE/FHE schemes is consistently larger than the plaintext one, therefore
even a single operation on ciphertexts is quite time consuming. The preservation
of the correctness of the decrypted result needs to cope with a certain amount
of randomness, typically called noise, that is added to the ciphertext when pro-
cessing it. The amount of noise cannot be too high, lest a decryption failure
occurs. Unfortunately, each homomorphic operation, especially multiplication,
increases the amount of noise in the ciphertexts. Therefore, after a while, the
computation must be halted (as in SWHE schemes), or a procedure to refresh
the ciphertext, i.e., decrease the noise without decrypting, must be run. Such a
procedure, introduced by Gentry in his original scheme [10], is called bootstrap-
ping and it allows to transform a SWHE scheme, satisfying certain constraints,
in a FHE one. However, this procedure is quite cumbersome, and needs to be
periodically performed, slowing down the overall computation. To overcome this
burden, alternative noise management techniques have been proposed, such as
modulus switching [5] and scale-invariant schemes [2,3]. Acknowledging the dif-
ficulties in noise handling, some noise-free schemes have also been proposed:
their ciphertexts have no noise, thus an unbounded number of operations can be
performed without any costly noise management technique being involved. Nev-
ertheless, while common noisy SWHE/FHE schemes are based on well-known
and scrutinized mathematical problems, such as the Learning With Errors prob-
lem [16], noise-free schemes usually rely on less common algebraic trapdoors,
which typically do not have widely scrutinized reductions to hard problems.
Indeed, Liu in [15] proposed a noise-free FHE scheme, based on the approximate
greatest common divisor problem, that was subsequently broken in [23]. Kipnis
in [14] proposed a FHE scheme based on commutative rings, provably secure
against ciphertext-only attacks; however knowing two plaintext-ciphertext pairs
is sufficient to break the scheme [22]. Li in [13] proposed to employ non com-
mutative rings to build FHE schemes, while Nuida [18] introduced a frame-
work to construct FHE schemes based on group presentations obfuscated by
Tietze transformations. The open challenge with schemes in [13,18] resides in
the definition of a mapping between integer plaintext values and the elements of
the mentioned algebraic structures, without losing neither security guarantees
nor homomorphic capabilities. Lastly, Wang in [23] introduced two noise-free
octonion-based FHE schemes (called OctoM and JordanM) with trapdoors based
on solving quadratic modular equations (with a composite modulus) and proved
their security in a ciphertext-only scenario. Due to this property, they are, to
the best of our knowledge, the only noise-free FHE schemes suitable for practical
usage.
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While in general the homomorphic capabilities of a cryptosystem do not
weaken the security guarantees per se, they may increase the adversarial power,
if combined with other vulnerabilities. The advantages provided by homomor-
phic capabilities to the attacker were discussed in [4], focusing on the so-called
linearly decryptable schemes, i.e., cryptosystems whose decryption function can
be expressed as a dot product between key and ciphertext values represented in
a multi-dimensional vector space. Linearly decryptable schemes usually employ
a significant amount of noise to hinder Known Plaintext Attacks (KPAs). Never-
theless, in [4] the authors shown that if the scheme can homomorphically evaluate
the majority function, then a KPA becomes practically viable. Moreover, in [23]
the authors introduced, for linearly decryptable schemes, an algorithm to deter-
mine if the plaintext corresponding to a given ciphertext is equal to the integer
value 1. We remark that noise free OctoM and JordanM FHE schemes are linearly
decryptable, and thus affected by the aforementioned issues.

Contributions. We present a plaintext recovery attack, against FHE schemes
having plaintexts in Zn, with n > 2, and where it is possible to devise an efficient
algorithm able to determine if a generic ciphertext under a given key k is the
encryption of a fixed plaintext m, which we denote as m-distinguisher. Although,
to the best of our knowledge, such a distinguisher has been proposed for linearly
decryptable schemes only, our attack will be applicable to any FHE scheme for
which such a distinguisher can be found. Our attack, which is performed in a
ciphertext-only scenario, leverages the capability to homomorphically compare
two encrypted integer values, obtaining a computational complexity which is lin-
ear in the plaintext integer value being recovered and improving over an exhaus-
tive search strategy by a significant constant factor. We successfully validate the
proposed attack against two linearly decryptable noise free octonion-based cryp-
tosystems [23] (OctoM and JordanM), which were claimed to be computationally
secure in a ciphertext-only attack scenario. Furthermore, we apply our attack
to retrieve enough plaintexts from the said schemes so that mounting a KPA to
recover the key becomes viable.

2 Preliminaries

Definition 1 (Negligible Function). A function ε : N → R is negligible if,
for every univariate positive polynomial, poly(x) ∈ R[x], there exists an integer
c > 0 such that ∀x > c, |ε(x)| ≤ 1

poly(x) .

Definition 2 (Indicator Function). Given a set S and a subset A ⊆ S, the
indicator function of the elements of A over the ones included in S is defined
as: 1A : S → {0, 1}, where 1A(x) = 1 if x ∈ A, 0 otherwise.

2.1 Homomorphic Encryption Algorithms

Our definition of Fully Homomorphic Encryption follows [7], without constrain-
ing the encryption function to deal with a single bit at time.
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An homomorphic encryption (HE) scheme specifies three sets: M, C and F .
The set of plaintexts M usually coincides with the set of integer values ranging
from 0 to n − 1, with n > 2, assumed to be the representatives of the residue
classes modulo n, i.e., Zn ≡ Z/nZ. The ciphertext space C includes elements with
an algebraic representation that depends on the specific HE scheme at hand. The
set of polynomials F ⊆ Zn[x1, x2, . . . , xa], with a ≥ 1 and degree greater or equal
to zero, defines the functions that the HE scheme at hand allows to be evaluated.
That is, each of these polynomials computes a function f : Ma → M, a ≥ 1 over
the plaintexts, and is also referred to as an arithmetic circuit composed by gates
performing multiplications and additions in Zn. We provide the definition of an
HE scheme starting from an asymmetric HE scheme, and describe a symmetric
one by difference.

Definition 3 (Public-key Homomorphic Encryption Scheme). A public-
key Homomorphic Encryption scheme is defined as a tuple of four polynomial
time algorithms 〈KeyGen, Enc, Dec, Eval〉:
– Key Generation. 〈sk, pk, evk〉 ← KeyGen(1λ) is a probabilistic algorithm

that, given the security parameter λ, generates the secret key sk, the public
key pk and the public evaluation key evk.

– Encryption. c ← Enc(pk,m) is a probabilistic algorithm that, given a mes-
sage m ∈ M and the public key pk, computes a ciphertext c ∈ C

– Decryption. m ← Dec(sk, c) is a deterministic algorithm that, given a
ciphertext c ∈ C and the secret key sk, outputs a message m ∈ M

– Evaluation. c ← Eval(evk, f, c1, c2, . . . , ca) is a probabilistic algorithm com-
puting a ciphertext c ∈ C, using an arithmetic circuit f ∈ F with a ≥ 1
inputs, the ciphertexts c1, c2, . . . , ca, and the evaluation key.

The following properties must hold:

– Decryption Correctness. ∀m ∈ M : Dec (sk, Enc(pk,m)) = m.
– Evaluation Correctness. ∀f ∈ F ,m1, . . . ,ma ∈ M:

Pr ( Dec(sk, Eval(evk, f, c1, . . . , ca)) = f(m1, . . . ,ma) ) = 1 − ε(λ),
where c1 = Enc(pk,m1) ∧ · · · ∧ ca = Enc(pk,ma) and ε(λ) is a negligible
function of the security parameter of the scheme.

– Compactness. ∀ f ∈ F , c1, . . . , ck ∈ C:
|Eval(evk, f, c1, . . . , ck)| ≤ poly(λ), where | · | denotes the bit length of a
ciphertext, while poly(·) denotes a positive univariate polynomial.

The requirement on the evaluation correctness trivially states that by decrypting
the output of the Eval algorithm we obtain the correct result of the computa-
tion homomorphically performed by Eval on the ciphertexts. In particular, the
Eval algorithm evaluates a polynomial, defined over the plaintext space, in the
sequence of input ciphertexts by replacing the modular additions and multipli-
cations with the homomorphic operations Add and Mul, respectively, that are, in
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turn, two probabilistic polynomial time algorithms defined over the ciphertext
space C:

– Homomorphic Addition. c ← Add(evk, c1, c2) computes a ciphertext c ∈ C
such that Dec(sk, c) = Dec(sk, c1) + Dec(sk, c2)

– Homomorphic Multiplication. c ← Mul(evk, c1, c2) computes a ciphertext
c ∈ C such that Dec(sk, c) = Dec(sk, c1) · Dec(sk, c2).

When defining a symmetric-key homomorphic encryption scheme, the only dif-
ference is the key generation algorithm KeyGen(1λ) outputting a tuple k =
〈sk, pk, evk〉 with sk = pk. Lastly, We recall the categorization of HE schemes
depending on the specific choice of the set of functions F which can be evaluated.
Specifically, a PHE scheme exhibits a function f ∈ F defined via an arithmetic
circuit including a single type of gate (an additive one or a multiplicative one).
A SWHE scheme exhibits a function f ∈ F defined via an arithmetic circuit
with a depth no higher than a fixed (scheme-dependent) threshold. Finally, a
FHE scheme exhibits a function f ∈ F defined via an unconstrained arithmetic
circuit.

2.2 Homomorphic Comparisons

One of the requirement to apply our attack is the existence of an algorithm
able to determine if a generic ciphertext is an encryption of a fixed plaintext m.
Therefore, we now provide a formal definition for this algorithm, which we refer
to as m-distinguisher.

Definition 4 (m-distinguisher). Let 〈KeyGen, Enc, Dec, Eval〉 be a homomor-
phic encryption scheme with security margin λ, and let M, C be the plaintext
and ciphertext spaces, related by the generated key k = 〈sk, pk, evk〉. Let Am

k ⊂ C,
be the set of ciphertexts corresponding to the encryption of a plaintext m ∈ M,
i.e.: Am

k = {c ∈ C s.t. Dec(sk, c) = m}.
Given a plaintext m ∈ M, an m-distinguisher is a deterministic polynomial

time algorithm Am taking as input a ciphertext c ∈ C and the public portion of
k (i.e., kpub = 〈pk, evk〉 for public-key systems and kpub = 〈evk〉 for symmetric
ones), and computes the indicator function of the elements of Am

k over the set
of ciphertexts, 1Am

k
: C → {0, 1}, in such a way that

|{c ∈ C s.t. Am(c, kpub) = 1Am
k

(c)}|
|C| ≥ 1 − ε(λ),

where ε(λ) is a negligible function of the security margin of the system.

Given the existence of this m-distinguisher, our attack leverages the capability to
homomorphically compare two encrypted integers. Therefore, we now present the
main methods proposed in the literature to compute this functionality, including
the one used in our attack. First of all, performing comparisons requires to
homomorphically evaluate the greater-than function on a chosen integer interval.
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Definition 5 (Greater-than Function). Given a positive integer b and an
interval of integers Dt = {0, 1, . . . , t − 1}, with t ≥ 2, the greater-than function
GTt,b : Dt × Dt → {b − 1, b} is defined as:

GTt,b(x, y) =

{
b if x ≥ y,

b − 1 otherwise

To the extent of evaluating this function with an HE scheme, we need to find a
polynomial fgt ∈ F ⊆ Zn[x, y], such that fgt(x, y) = GTt,b(x, y), with 2 ≤ t ≤ n,
1 ≤ b < n, and x, y being the representatives of residue classes modulo n, (i.e.,
x, y ∈ Zn) considered as integers less than t. Such a polynomial can be easily
found if the plaintext space is Z2: indeed, additions and multiplications become
xor and and gates, while the input variables are the single-bit values in the
binary encodings of x and y, and thus there are many logical circuits computing
GTt,b(·, ·) function.

Considering a plaintext ring M = Zn, with n > 2, which is the case tar-
geted in our work, finding an efficiently computable polynomial for the GTt,b(·, ·)
function is a challenging task. Çetin in [8] reports two methods to compute the
GTt,b(·, ·) function which do not require interaction between the secret key owner
and the party who performs homomorphic evaluation. However, both of these
methods are not suitable for our attack: indeed, the first one is not applicable
to a composite module n; the second method computes an approximation of the
GTt,b(·, ·), while our attack needs an exact computation of this function.

A more effective solution is proposed in [17]: the greater-than function is
computed as GTt,b(x, y) = SIGNt,b(x − y), where SIGNt,b(z) is a function
defined over Dt ⊆ Z = {−t + 1, . . . , 0, . . . , t − 1} such that SIGNt,b(z) = b if
z ≥ 0, b − 1 otherwise. The homomorphic evaluation of the function SIGNt,b(·)
requires a polynomial fsign ∈ F ⊆ Zn[z] fulfilling fsign(z mod n) = SIGNt,b(z),
with 2 ≤ t ≤ n

2 , 1 ≤ b < n and z ∈ Dt. In [17], the polynomial fsign is computed
applying the Lagrange interpolation formula to 2t− 1 points having coordinates
( z, SIGNt,b(z) ), with z ∈ Dt, and considering a prime modulus, i.e., n = p.

As we are considering as a plaintext space the ring Zn with a generic modulus
n > 2, we introduce an additional constraint on the integer t, formalized in
Lemma 1, to extend the applicability of the aforementioned method to a generic
ring Zn:

Lemma 1. Given an integer t ≥ 2, and a set Dt = {−t + 1, . . . , 0, . . . , t − 1},
the polynomial f(z) ∈ Zn[z], with n > 2, interpolating 2t − 1 points having the
x-coordinate ranging over all values in z ∈ Dt exists if t ≤ q

2 , where q is the
smallest prime factor of n.

Proof. Considering 2t − 1 points {(x1, y1), . . . , (x2t−1, y2t−1)} in Zn × Zn, the
interpolating polynomial f ∈ Zn[x], with degree at most 2t−2, can be computed
by the Lagrange interpolation formula:

f(x) =
2t−1∑
i=1

yi

2t−1∏
j=1,j �=i

(x − xj)(xi − xj)−1
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The existence of the multiplicative inverses (in Zn) required in this formula is
ensured if all the values xi −xj are co-prime with n. Assuming the x-coordinates
to be mutually distinct and in Dt, the constraint t ≤ q

2 implies that −q <
−2t + 2 ≤ xi − xj ≤ 2t − 2 < q. Since q is the smallest prime factor of n, then
all the elements in Zn \ {0} ∩ {−q + 1, . . . , q − 1} are co-prime with n, therefore
all the values xi − xj are co-prime with n, and thus invertible, allowing f(x) to
be interpolated by the Lagrange formula. ��

In conclusion, by Lagrange interpolation we can obtain a polynomial fsign ∈
F ⊆ Zn[z] which computes the function SIGNt,b(z),∀z ∈ Dt, and then a poly-
nomial fgt ∈ F ⊆ Zn[x, y], computing the function GTt,b(x, y),∀x, y ∈ Dt,
as fgt(x, y) = fsign(x − y). Since fgt ∈ F , it can be homomorphically eval-
uated by the Eval algorithm of the HE scheme, by replacing addition and
multiplications of the polynomial with corresponding homomorphic operations
(Add and Mul) whose inputs are ciphertexts in C. In the following, we denote
the algorithm Eval(evk, c1, c2, fgt) by HGTt,b(c1, c2), which takes as input two
ciphertexts with corresponding plaintexts m1,m2 ∈ Dt, and outputs an encryp-
tion of GTt,b(m1,m2). In particular, since GTt,b is defined on the interval
Dt = {0, . . . , t − 1}, t ≤ q

2 , with q being the smallest prime factor of n,
then c1, c2 ∈ Ct = {c ∈ C s.t. Dec(sk, c) < t} is a sufficient condition
for Dec(sk,HGTt,b(c1, c2)) = GTt,b(m1,m2). The computational complexity
required to interpolate 2t − 1 points by applying the Lagrange formula is O(t2)
operations in Zn; while the evaluation of the polynomial fsign ∈ Zn[z], whose
degree is at most 2t − 2, has a computational complexity O(t). From this, it is
easy to note that the computational cost of the HGTt,b(·, ·) algorithm is O(t).
We note that, while there are no current algorithms to compute HGTt,b(·, ·) in
less than O(t), research efforts driven by the usefulness of a homomorphic com-
parison may lead to an improvement in this sense. Since our methodology relies
on the computation of HGTt,b(·, ·) as an atomic component, such improvements
will positively affect the efficiency of our attack.

3 Attack Strategy

In the following we detail a plaintext recovery attack which takes as input a
ciphertext and the publicly available evaluation key evk of the HE scheme at
hand (which can be either a FHE, or a SWHE capable of computing HGTt,b).
Since a FHE scheme must allow the evaluation of arbitrary polynomials, then it
must provide to the evaluator a method to obtain encryptions of known values,
preferably avoiding interaction with the key owner. In case the HE scheme is an
asymmetric one, such ciphertexts can be directly obtained employing the public
key encryption algorithm, while for a symmetric scheme, the encryption of any
value can be obtained from a single encryption of m̂ = 1 leveraging homomorphic
operations (we can obtain encryptions of all powers of 2 by iteratively summing
m̂ by itself, and then compute the encryption of any integer value leveraging its
binary representation). Thus, we assume, in case of a symmetric FHE scheme,
that an encryption of m̂ = 1 is embodied in the evaluation key evk to allow the
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computation of encryptions of known values by the evaluator. Such encryption of
m̂ can be used also by the attacker to obtain the ciphertexts required to perform
the attack.

Comparison-Based Attack. The core idea is to perform a homomorphic
binary search over the possible candidates for the value of the plaintext cor-
responding to the ciphertext at hand. To this end, a comparison function CMP ,
taking two ciphertexts as inputs and yielding an outcome in cleartext, is com-
puted leveraging the homomorphic greater-than function HGTt,b (see Sect. 2).
Since the result of the HGTt,b function is still encrypted, the m-distinguisher
is employed to determine its actual (plaintext) value. The attacker can com-
pute the comparison function CMP employing the aforementioned strategy as
follows:

Definition 6 (Comparison Function). Given the ciphertexts c1, c2 ∈ Ct and
Am the algorithm computing the m-distinguisher, where m is a fixed plaintext
value, the function CMP : Ct × Ct → {1, 0,−1} is computed as:

CMP (c1, c2) =

⎧⎪⎨
⎪⎩

1 if v1 = 1 ∧ v2 �= 1,

0 if v1 = 1 ∧ v2 = 1,

−1 otherwise

with v1 = Am(HGTt,m(c1, c2), kpub), v2 = Am(c1 − c2 + cm, kpub) and cm being an
encryption of m computed by the attacker.

Denoting with Td the computational complexity of the m-distinguisher, we
have that the time complexity of CMP is TCMP = O(t + 2Td) as its execution
involves at most two computations of the m-distinguisher plus one computation
of the HGTt,m function, which has complexity O(t). Leveraging the function
CMP , the binary search strategy locates the value of the actual plaintext in
the range Dt, which is t elements wide, with a computational cost of O(TCMP ·
log(t)) = O((t + 2Td) log(t)).

Starting from the strategy which has just been described, we improve its
effectiveness extending the range of the recoverable plaintexts. To this end, we
split the set of recoverable plaintexts into |Dt| = t sized chunks, find into which
chunk the plaintext is likely to be contained, and proceed to retrieve it employing
the binary search approach. We denote with Ds the set of recoverable plaintexts
(Ds = {0, 1, . . . , s − 1}, s ≤ n), and with Cs the set of ciphertexts obtained
encrypting plaintexts in Ds, i.e.: Cs = {c ∈ C s.t. Dec(sk, c) < s}. The recover-
able message space Ds is split into σ chunks containing numerically consecutive
plaintexts, with σ = � s

t �: for instance, the i-th chunk contains plaintexts values
{(i − 1)t, . . . , it − 1}.

Algorithm 1 shows how our improved attack is performed. It iterates over
all the σ chunks, testing, for each one of it, if the plaintext mc, corresponding
to the input ciphertext c, may be contained in the chunk being scanned (lines
2–9). To this end, the algorithm starts by testing if mc may be in a chunk
{(i − 1)t, . . . , it − 1} by verifying if GTt,m(mc, (i − 1)t) = m (lines 3–4). In case
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Algorithm 1. Plaintext Recovery Attack
Input: ciphertext c ∈ Cs, Cs = {c ∈ C s.t. Dec(sk, c) < s}
Output: plaintext mc = Dec(sk, c), mc ∈ Zn

1 begin
2 for i ← 1 to σ do
3 cgt ← HGTt,m(c,Enc(pk, (i − 1)t))
4 if A(m)(cgt,kpub) = 1 then
5 cgt ← HGTt,m(c,Enc(pk, it − 1)) + Enc(pk, 1)
6 if A(m)(cgt,kpub) = 1 then
7 mc ← BinarySearch(c − Enc(pk, (i − 1)t))
8 if mc �= ⊥ then
9 return mc + (i − 1)t

this test succeeds (line 4, case of the if being taken), Algorithm 1 proceeds to test
also if mc is smaller than the upper bound it−1 of the chunk at hand, by verifying
that GTt,m(mc, it − 1) = m − 1 with an analogous approach (lines 5–6). If the
tests at lines 3 – 6 succeed, then the current chunk may contain the plaintext
mc, and so Algorithm 1 attempts a plaintext recovery employing the binary
search approach described in precedence over the current chunk (line 7). We note
that the answer of these tests are subject to potential false positives. Indeed, if
mc /∈ {(i − 1)t, . . . , it − 1}, then mc − (i − 1)t /∈ Dt or mc − (it − 1) /∈ Dt: thus,
it means that the polynomial fsign(z) ∈ Zn[z], obtained by interpolating points
whose x-coordinates range over Dt, is evaluated on a point z /∈ Dt, hence yielding
an outcome which is either outside the set {m− 1,m} or (by coincidence) inside
it. Therefore, it may happen that fgt(mc, (i−1)t) = fsign(mc−(i−1)t) = m and
fgt(mc, it − 1) = fsign(mc − (it − 1)) = m − 1 even if mc /∈ {(i − 1)t, . . . , it − 1}.
In this case, the interval {(i − 1)t, . . . , it − 1} is identified as a false positive.
However, these false positive are filtered out later in the algorithm. Indeed, since
the binary search is effective only under the assumption that the sought plaintext
is in Dt, Algorithm 1 (line 7) exploits the homomorphic operations to subtract
the value of the lower bound of the current chunk from mc, working on its
corresponding ciphertext c, to retrieve the value of mc mod t, provided that the
chunk detection was not reporting a false positive. If a result is returned (line
8), the actual value of mc is reconstructed adding back the lower bound of the
current chunk to the value retrieved by the binary search (line 9), otherwise the
current chunk is a false positive.

We now consider the time complexity of Algorithm 1 as a function of the
value of the plaintext to be retrieved mc. Algorithm 1 is expected to perform
�mc

t � iterations of the outer loop. Each one of the iterations, save for the last
one, will fail the membership tests with very high probability (false positives are
unlikely), thus resulting in a computational effort which is O(t + Td) at each
iteration. However, we now consider the overall worst-case complexity Ta(mc) of
the improved plaintext recovery attack:

O
(
�mc

t
�(t + Td + TBinarySearch)

)
= O

(
log(t)(mc + �mc

t
�Td)

)
(1)
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Therefore, our attack has a linear time complexity, which is the main rea-
son why it is able to practically recover only ciphertexts whose correspond-
ing plaintext is not too big. However, by setting t = 220 (an upper bound
imposed by the O(t2) computational cost of Lagrange interpolation), we see that,
unless Td > 223, recovering plaintexts as big as 232 still retains a computational
complexity Ta(mc) < 240. Since many typical FHE scenarios involve computa-
tions on relatively small values (e.g. power consumption statistics from smart
meters), we deem this plaintext recover capability effective enough to be worth
considering.

To conclude the description of our attack, we now show the speed-up
obtained by Algorithm1 over an exhaustive search strategy leveraging only
the m-distinguisher. This latter attack tries all plaintext values x ∈ Zn in
increasing order, with the recovered plaintext being the first x such that
Am(Enc(pk, x) − c + Enc(pk,m)) = 1. Denoting the value of the recovered plain-
text as mc, with this strategy we employ the m-distinguisher mc times, therefore
the complexity of this approach is O(mcTd). The speed-up of our attack over
this simple strategy can be computed as follows:

mcTd

Ta(mc)
=

mcTd

log(t)(mc + �mc

t �Td)
=

mctTd

log(t)(mct + mcTd)
=

tTd

log(t)(t + Td)

This calculation shows that our attack improves the exhaustive search strat-
egy by a constant factor, thus without changing its asymptotic complexity. In
particular, the speed-up depends on the values of t, chosen by the attacker, and
Td, given by the target scheme. Although this improvement may seem negligible,
we will show, for the FHE schemes targeted by our attack, that the magnitude
of the speed-up may be significant in practice, as it largely increases the number
of recoverable plaintexts.

4 Two Case Studies

In this section, we evaluate our attack against two symmetric noise free FHE
schemes [23], OctoM and JordanM. Although there is an efficient 1-distinguisher
for these schemes, they were claimed to be secure against ciphertext-only adver-
saries aiming to recover either the plaintext or the secret key [23], making them
a proper target for our attack.

4.1 Target Fully Homomorphic Encryption Schemes

We report a description of the two target symmetric FHE schemes, OctoM1 and
JordanM, focusing only on the details which are relevant for our attack: the
characterization of the ciphertext space and the description of homomorphic
operations. We refer the reader to [23] for further details. The plaintext space

1 We find out that, to make OctoM multiplicatively homomorphic, some additional
constraints are needed: they will be shown in the full version of the paper.
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is the ring of integers Zn, with a composite n > 2, for both schemes. The
ciphertext space of OctoM is the set of 8 × 8 matrices with entries in Zn, i.e.,
Z
8×8
n , while the one of JordanM is the set of 3×3 matrices with entries in O(Zn),

where O(Zn) is the non commutative, non associative algebra of octonions whose
support is the vector space Z8

n. Both schemes perform a single matrix addition to
homomorphically add two ciphertexts, while to homomorphically multiply two
ciphertexts C1, C2 the two schemes employ different procedures:

– OctoM Homomorphic Multiplication. Cmul = C2·C1·C−1, where · denotes
the matrix dot product and C−1 ∈ Z

8×8
n is an encryption of the plaintext value

n − 1, embodied in the evaluation key, evk.
– JordanM Homomorphic Multiplication. Cmul = C1 �C2, where � denotes

the Jordan product.

4.2 Security Analysis

As already acknowledged in [23], the target FHE schemes are linearly decrypt-
able, that is their decryption function can be expressed as a dot product between
the key and the ciphertext represented in a d-dimensional vector space defined
over the ring Zn. For the two target FHE schemes, the ciphertext space dimen-
sion d is 64 for OctoM, since a ciphertext is an 8 × 8 matrix, while d = 9 · 8 = 72
for JordanM, since the ciphertext matrix is a 3 × 3 matrix whose entries are
elements of O(Zn). Linearly decryptable schemes are vulnerable to KPAs: if
the attacker has approximately d plaintexts/ciphertexts pairs, then a linear sys-
tem of equations can be built to recover the key and decrypt any ciphertext.
In addition, an efficient 1-distinguisher for any linearly decryptable scheme is
proposed in [23]. We now describe the construction of this distinguisher, since
we leverage it to perform our attack. Given a ciphertext C, represented as a d
dimensional vector, consider the first d + 1 powers of C. Since the ciphertext
space dimension is d, then these d+1 ciphertexts are linearly dependent. There-
fore, by definition, there are non trivial solutions to the system of d equations
with d+1 unknowns ai defined as

∑d+1
i=1 aiC

i = 0. Since the decryption function
is linear and the encryption scheme is multiplicatively homomorphic, the follow-
ing equality also holds:

∑d+1
i=1 aim

i = 0, where m = Dec(sk, C). If m = 1, this
equation becomes

∑d+1
i=1 ai1i = 0 ⇒ ∑d+1

i=1 ai = 0. Therefore, if the additional
constraint

∑d+1
i=1 ai �= 0 is added to the system of equations

∑d+1
i=1 aiC

i = 0, a
solution is found if and only if m �= 1. In conclusion, by looking at the solution
of this system, we can determine if m = 1 or not. The computational complexity
of this 1-distinguisher is O(d3), since solving a system of equations has cubic
complexity. We remark that the system can be solved directly on ciphertexts,
no knowledge about the plaintexts or the key is required. Therefore, this dis-
tinguisher is a particular case of Definition 4, since it does not employ kpub, the
publicly available portion of the cipher key. While the existence of these vulner-
abilities (1-distinguisher and KPA) is acknowledged by designers of OctoM and
JordanM too, their security analysis claims [23, Theorem 7] that the hardness of
solving quadratic equation systems in Zn (with a composite n) guarantees that
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no information about plaintexts can be inferred from ciphertexts. The proof of
this claim is based on two reductions: first, the problem of finding the secret key
is reduced to the problem of solving a system of multivariate quadratic equations
in Zn, then the problem of recovering a plaintext is reduced to the problem of
solving a univariate quadratic equation in Zn. These reductions state that solv-
ing quadratic equations in Zn is sufficient to break the cryptosystems, but they
do not state that recovering the secret key or a plaintext is as hard as solving
quadratic equations in Zn. Thus, there is no contradiction between the existence
of our attack and the hardness of solving quadratic equations in Zn (which is as
hard as factoring n).

4.3 Breaking Target FHE Schemes with Our Attack

As already discussed in Sect. 3, since a FHE scheme must allow the evaluation
of arbitrary polynomials, then it must provide to the evaluator a method to
obtain encryptions of known values, preferably avoiding interaction with the
key owner. Since no method to provide this capability was proposed for the
considered FHE schemes, we assume that an encryption of 1 is embodied in the
evaluation key to provide this capability to users of the FHE scheme. It is worth
noting that an encryption of 1 is not necessary for the OctoM scheme, since it can
be computed by squaring the encryption of −1 already provided in the evaluation
key. In the instantiation of our attack against JordanM, there is a relevant issue
related to the fact that, as outlined in Definition 4, the m-distinguisher may
have a wrong outcome on a negligible portion of the ciphertexts. However, this
portion is not negligible for several ciphertexts being used in our attack. The
problem arises because of two random values which are employed to randomize
the encryption. We denote these two values for a ciphertext C by rC , sC . In
particular, we find out two relevant facts about these values2: first, if sC =
1∨rC = 1, then the 1-distinguisher will classify the ciphertext as an encryption of
1 independently from the plaintext value m; secondly, the evaluation correctness
property (see Definition 3) holds not only for the message m, but for rC , sC too.
The latter fact basically means that, given two ciphertexts C1, C2, encrypted
with random values respectively rC1 , sC1 and rC2 , sC2 , these two properties,
related to homomorphic operations Add and Mul of JordanM scheme, hold:

C = Add(C1, C2) → rC = rC1 + rC2 ∧ sC = sC1 + sC2

C = Mul(C1, C2) → rC = rC1 · rC2 ∧ sC = sC1 · sC2

As a consequence, a ciphertext Cgt obtained through homomorphic evaluation of
GTt,1 function has only four possible assignments to its random values rCgt

, sCgt
,

which are {(0, 0), (0, 1), (1, 0), (1, 1)}, since the image of GTt,1 is {0, 1}. Therefore,
while for a generic ciphertext C, Pr(rC = 1 ∨ sC = 1) is negligible, and thus
this issue is not relevant for the reliability of the 1-distinguisher in general, for

2 Proofs are omitted for the sake of brevity. They will be included in the full version of
the paper as long as a fully detailed description of JordanM and OctoM cryptosystems.
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a generic ciphertext Cgt obtained through homomorphic evaluation of GTt,1 the
same probability is 0.75, hence the outcome of the 1-distinguisher, when its input
is a ciphertext Cgt as in our attack, is likely to be erroneous.

To overcome this issue, we devise a ciphertext refreshing procedure, which
employs the available encryption of 1 to compute a new ciphertext C ′ as C+C−
Enc(pk, 1) ∗ C, having the same plaintext m, but random values rC′ , sC′ which
are highly likely to be different from 1, since they depend on the random values
chosen for the encryption of 1. Therefore, in our attack we employ a slightly
tailored version of the distinguisher, whose output is equal to A1(C) · A1(C ′).
By using this distinguisher, we can perform our attack on both the target FHE
schemes to recover plaintexts. Then, after d plaintexts have been recovered, we
can perform the KPA and recover the key, breaking the schemes.

We can now estimate the computational complexity of our attack for the
target FHE schemes. For linearly decryptable schemes, Td, the computational
complexity of the 1-distinguisher is O(d3), with d = 64 for OctoM and d = 72
for JordanM, which means that Td = O(219) for both schemes. However, the
distinguisher is always invoked twice in our attack to increase its reliability,
therefore the computational complexity we are going to use in place of Td, in the
formulae derived in Sect. 3 to estimate the computational effort of our attack,
is T ′

d = 2Td = O(220). Given this estimation, we can see that it is practical
to recover plaintext values as big as 232, which is expected to be enough for a
significant number of ciphertexts in FHE applications. The computational effort
required to recover a plaintext value mc = 232, can be computed as follows (see
Eq. 1 in Sect. 3), replacing Td with T ′

d = 220 and setting t = 220:

Ta(232) ≤ 232 log(220) +
⌈

232

220

⌉
220 log(220) = 232 · 20 + 232 · 20 ≤ 238

Conversely, recovering a plaintext as big as mc = 232 via an exhaustive search
strategy has a computational cost of O(mcTd) = 232 · 219 = 251 (note that
with this strategy we do not need to invoke twice the 1-distinguisher, thus we
can use Td instead of T ′

d). Indeed, the speed-up of our attack is: tTd

log(t)(t+T ′
d)

≥
239

25·221 = 213. This result shows that the improvement of our attack is not negli-
gible: considering a computational effort fixed a-priori, the number of plaintexts
recoverable by our attack is 213 times bigger than the number of plaintexts
recoverable by the exhaustive search strategy (when t = 220). For instance, with
a computational cost bounded by 238, our attack can recover plaintexts up to
232, while the exhaustive search can recover plaintexts up to 219. We success-
fully implemented the OctoM and JordanM cryptosystems as well as the described
plaintext recovery attack in Python 2.7, with the intent to verify the effectiveness
of the proposed attack. In practice, the security level of the target schemes affects
the computational effort to perform the homomorphic operations as well as the
modular arithmetic operations needed to evaluate a m-distinguisher. Therefore,
such a dependency from the security level and/or the parameter sizes of the
cryptoscheme is included in the computational complexity formulae of both our
attack and the exhaustive search as the same multiplicative factor (which has
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been omitted in the previous treatment). Hence, independently from the security
margin, when the plaintext values are bounded (e.g. less than 232) our method
largely improves the practicality of their derivation employing only ciphertext
material.

5 Conclusions

We present a new type of plaintext recovery attack based on the capability of
homomorphically evaluating the comparison between two encrypted integers and
assuming the existence of an efficient algorithm to determine if a generic cipher-
text is an encryption of a fixed value m. Although the computational cost of
our attack is linear in the value of the plaintext being recovered, it significantly
improves the number of recoverable plaintexts w.r.t. an exhaustive search strat-
egy, which, in turn, might mean recovering a vast portion of ciphertexts in a
FHE application scenario.
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8. Çetin, G.S., Doröz, Y., Sunar, B., Martin, W.J.: An investigation of complex
operations with word-size homomorphic encryption. ePrint Archive (1195) (2015).
https://eprint.iacr.org/2015/1195.pdf

https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-45239-0_4
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-32009-5_50
https://doi.org/10.1007/978-3-642-36594-2_9
https://doi.org/10.1007/978-3-642-36594-2_9
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1137/120868669
https://doi.org/10.1137/120868669
https://eprint.iacr.org/2015/1195.pdf


Comparison-Based Attacks Against Noise-Free FHE Schemes 191

9. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic
encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53887-6 1

10. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp.
169–178. ACM (2009). https://doi.org/10.1145/1536414.1536440

11. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog
overhead. In: Pointcheval and Johansson [19], pp. 465–482. https://doi.org/10.
1007/978-3-642-29011-4 28

12. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with
errors: conceptually-simpler, asymptotically-faster, attribute-based. In: Canetti,
R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 75–92. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40041-4 5

13. Li, J., Wang, L.: Noise-free symmetric fully homomorphic encryption based on
non-commutative rings. IACR ePrint Archive, Report 2015/641 (2015). https://
eprint.iacr.org/2015/641

14. Kipnis, A., Hibshoosh, E.: Efficient methods for practical fully homomorphic
symmetric-key encryption, randomization and verification. IACR ePrint Archive
2012, 637 (2012). http://eprint.iacr.org/2012/637

15. Liu, D.: Practical fully homomorphic encryption without noise reduction. IACR
ePrint Archive 2015, 468 (2015). http://eprint.iacr.org/2015/468

16. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller.
In: Pointcheval and Johansson [19], pp. 700–718. https://doi.org/10.1007/978-3-
642-29011-4 41

17. Narumanchi, H., Goyal, D., Emmadi, N., Gauravaram, P.: Performance analysis
of sorting of FHE data: integer-wise comparison vs bit-wise comparison. In: AINA
2017, pp. 902–908. IEEE CS (2017). https://doi.org/10.1109/AINA.2017.85

18. Nuida, K.: A simple framework for noise-free construction of fully homomorphic
encryption from a special class of non-commutative groups. IACR ePrint Archive
2014, 97 (2014). http://eprint.iacr.org/2014/097

19. Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol. 7237.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4

20. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On Data Banks and Privacy Homo-
morphisms. Foundations of Secure Computation. Academia Press, Ghent (1978)

21. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes
Cryptogr. 71(1), 57–81 (2014). https://doi.org/10.1007/s10623-012-9720-4

22. Tsaban, B., Lifshitz, N.: Cryptanalysis of the MORE symmetric key fully homo-
morphic encryption scheme. J. Math. Cryptol. 9(2), 75–78 (2015). https://doi.org/
10.1515/jmc-2014-0013

23. Wang, Y., Malluhi, Q.M.: Privacy preserving computation in cloud using noise-free
fully homomorphic encryption (FHE) schemes. In: Askoxylakis, I., Ioannidis, S.,
Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 301–323.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45744-4 15

24. Yao, A.C.: Protocols for secure computations (extended abstract). In: FOCS 1982,
pp. 160–164. IEEE CS (1982). https://doi.org/10.1109/SFCS.1982.38

https://doi.org/10.1007/978-3-662-53887-6_1
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-29011-4_28
https://doi.org/10.1007/978-3-642-40041-4_5
https://eprint.iacr.org/2015/641
https://eprint.iacr.org/2015/641
http://eprint.iacr.org/2012/637
http://eprint.iacr.org/2015/468
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1109/AINA.2017.85
http://eprint.iacr.org/2014/097
https://doi.org/10.1007/978-3-642-29011-4
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1515/jmc-2014-0013
https://doi.org/10.1515/jmc-2014-0013
https://doi.org/10.1007/978-3-319-45744-4_15
https://doi.org/10.1109/SFCS.1982.38


On Security in Encrypted Computing

Peter T. Breuer1, Jonathan P. Bowen2,4, Esther Palomar3,
and Zhiming Liu4(B)

1 Hecusys LLC, Atlanta, GA, USA
ptb@hecusys.com

2 London South Bank University, London, UK
jonathan.bowen@lsbu.ac.uk

3 Birmingham City University, Birmingham, UK
esther.palomar@bcu.ac.uk

4 RISE, Southwest University, Chongqing, China
zhimingliu88@swu.edu.cn

Abstract. Encrypted computing is an emerging approach to security
and privacy of user data on a computing system with respect to the oper-
ating system and other powerful insiders as adversaries. It is based on a
processor that ‘works encrypted’, taking encrypted inputs to encrypted
outputs while data remains in encrypted form throughout processing.
An appropriate machine code instruction set is required, plus an ‘obfus-
cating’ compiler, and then the three part system provably provides cryp-
tographic semantic security for user data, given that the encryption is
independently secure. In other words, encrypted computing does not
compromise the encryption. This paper presents the developing theory.

Keywords: Encrypted computing · Computer security · Data security

1 Introduction

This paper describes an emerging approach to provable security for user data
against the operator, operating system and other powerful insiders in a com-
puting system: encrypted computing. By that is meant that the processor takes
inputs and produces outputs in encrypted form and observations via the pro-
gramming interface of its internal states show only encrypted data. Our aim in
this document is to project the developing theory. Engineered boundaries have
fallen short as security barriers in the past, as recent attacks [14] on Intel’s
flagship SGXTM [1] architecture for secure computing attest. The mathemat-
ics of encrypted computing shows that, to any adversary who does not know
the encryption, the feasible interpretations of a program code and its execu-
tion trace are arbitrarily many and any method of attack, whether known or
unknown, deterministic or stochastic, must fail to uncover what a given bit of
data is with better than the probability from guesswork (see Sect. 8). That is
the definition of cryptographic semantic security [13], and access rights are not
a consideration.
c© Springer Nature Switzerland AG 2018
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The adversary in this setting is technically the operator mode of working
of a suitable processor, and attacks are programs composed of the processor’s
machine code instructions. The operator mode ‘works unencrypted’ in the con-
ventional way in the supporting processor, while the user mode ‘works encrypted’
as described in the opening to this section. Operator (also called ‘supervisor’)
mode is synonymous with no access restrictions, whereas user mode is restricted
to certain registers and areas of memory. Operator mode is the mode in which
the operating system runs and a processor starts in operator mode when it is
switched on, in order to load the operating system code from disk. Conventional
software relies on the processor to change from user mode to operator mode and
back to supply system support (e.g., disk I/O) as required, so the operator mode
of working of the processor intrinsically presents difficulties as an adversary for
the user mode. This document will use ‘the operator’ for operator mode. A
malicious operating system is ‘the operator’, as is a human with administrative
privileges, perhaps obtained by physically interfering with the boot process.

How the user gets an encryption key into the supporting processor is not the
subject of this document. Diffie-Hellman hardware [7] may do key-exchange in
public view to a write-only internal store, for example, without revealing the key
to any observer, the operator included. A simple argument says there is not even
a penalty to getting key management wrong: if (a) user B’s key is still loaded
internally when user A runs, then A’s programs do not run correctly because
the running encryption is wrong for them and A is as badly off as a spy as the
operator but with less privilege, and if (b) B’s key is in the machine together
with B’s program when A runs, then user A cannot supply appropriate encrypted
inputs nor interpret the encrypted output, and is in no better position than the
operator, against whom encrypted computing should already protect.

A possible scenario for an attack by the operator is where user data consists
of scenes from animation cinematography being rendered in a server farm. The
computer operators at the server farm have an opportunity to pirate for profit
portions of the movie before release and they may be tempted. Another possible
scenario is the processing in a specialised facility of satellite photos of a foreign
power’s military installations to reveal changes since a previous pass. If an oper-
ator (or a hacked operating system) can modify the data to show no change
where there has been some, then that is an option for espionage. A successful
attack by the operator is one that discovers the plaintext of user data or alters it
to order. That is familiar in everyday situations too – for example, malware can
gain operator system access and intercept the plaintext of encrypted user mail.

Note that it is not claimed here that the operator will not be able to interfere
with user data at all; they can, say by writing zeros to memory or turning the
machine off. What is claimed is that the operator cannot interfere so as to write in
user data an intended independently defined value such as log π or the encryption
key, or bias the likelihood of that outcome. That theory is explained here.

A medium term practical goal is a server for remote batch (‘offline’) computa-
tions. In that paradigm, the user compiles the program anew for each new set of
(encrypted) inputs, submits the input and object code to the remote platform,
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and receives back (encrypted) outputs. Theory says there will be no relation
between the plaintext values beneath the encryption in the trace of one run
versus that in another, so the arrangement is awkward to attack. The encryp-
tion key may be changed from run to run. However, there may be no need to
change it frequently as the user’s program will also offset inputs and outputs
(and intermediate values) by different random amounts known only to the user
beneath the encryption for each new run. The offset by different numbers each
time everywhere among the plaintext values is a generator of maximal entropy
for what is effectively an extra one-time coding pad beneath the encryption.

This article is organised as follows. Section 2 gives the historical context and
state of the art. Section 3 sets out the components of an encrypted computing
system. Section 4 shows by example what encrypted computing looks like. Secu-
rity problems that generically arise from naive encrypted computing are consid-
ered in Sect. 5. Section 6 introduces theory to overcome it, first introduced in [5].
An appropriate machine code instruction set is required, and that is described
in Sect. 7. An ‘obfuscating’ compiler is also required and that is described in
Sect. 8. Section 8 shows the combination of processor, instruction set and com-
piler guarantees semantic security ‘relative to the security of the encryption’ (the
hypothesis that the encryption is independently secure). The meaning of that is
‘encrypted computing does not compromise encryption’.

Notation

Encryption of plaintext x is denoted by E [x] or x′, where E is a one-to-many
‘nondeterministic function’, a function of x and extra hidden variables such
as padding. Decryption of ciphertext ζ is denoted by D[ζ], a function, with
D[x′] = x. The key k for encryption/decryption will be implicit when only one
is involved, otherwise E [x, k] and D[ζ, k]. Equality (not identity) of ciphertexts
χ = ζ is defined as D[χ] = D[ζ], so x′ = y′ iff x = y, with x′ �= y′ iff x �= y.

Operations on ciphertext will borrow the same names as on plaintext but in
square brackets. Thus E [x1] [+] E [x2] = E [x1 + x2], meaning that E [x1] [+] E [x2]
may be calculated by decrypting the ciphertexts back to plaintexts x1, x2,
adding, then encrypting again. Whether the calculation is like that or not (the
encryption may already possess that property), the abstraction is applicable.

2 Background

In 2009 Gentry produced a fully homomorphic encryption (FHE) [10], fulfilling
a prediction of Rivest et al. [26] 30 years earlier. That is an encryption in which
ciphertexts can be added to add the (1-bit) plaintexts beneath, and multiplied
to multiply them. In 2010 one of the present authors realised that homomor-
phism is a joint function of arithmetic and encryption together, and hardware
can be redesigned to provide the arithmetic that makes any given encryption
homomorphic with respect to it. Moreover, conditionals (not part of Gentry’s
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scheme) can also be handled, giving rise to computationally complete hardware-
assisted encrypted computing. The proof of that was published in 2013 [4]. It
followed experiments that built a model of a pipelined superscalar processor
in Java (http://sf.net/p/jmips) and replaced its arithmetic logic unit (ALU),
generating encrypted working (http://sf.net/p/kpu) as predicted.

From 2014 to 2016, the open source or1ksim simulator (http://opencores.
org/or1k/Or1ksim) for the OpenRISC (http://openrisc.io) processor architec-
ture was modified first to 64-bit and then 128-bit encrypted computing and
cycle-accurate simulation of a complete OpenRISC compliant reduced instruc-
tion set computer (RISC) [23] ‘running encrypted’. That (a) demonstrated the
principle of working in a superscalar model for engineers who may not have
accepted mathematical proofs and formally-oriented computer science, and also
(b) explored the limits. With respect to (b), it was unknown if conventional
instruction sets and processor architectures and organisation would be compat-
ible with the idea, or how interactions with the operating system and processor
interrupts would work. It became clearer, for example, that not every kind of code
could run encrypted in the context – compilers and programs that arithmetically
transform the addresses of program instructions (as distinct from addresses of
program data) must run unencrypted because instruction addresses remained
unencrypted by design, in order to prevent known plaintext attacks (KPAs) [2]
on encrypted but predictable address sequences in a trace.

The existing GNU gcc v4.9.1 compiler (http://github.com/openrisc/or1k-
gcc) and gas v2.24.51 assembler (http://github.com/openrisc/or1k-src/gas)
ports for OpenRISC v1.1 were adapted for an encrypted instruction set (exe-
cutables are the standard ELF format). Those now twice-ported compiler and
utilities are at http://sf.net/p/or1k64kpu-gcc and http://sf.net/p/or1k64kpu-
binutils respectively. It turns out that only the assembler, not the compiler, needs
to know the encryption key. The largest application suite1 ported to encrypted
running so far for that project is 22,000 lines of C, and it and every applica-
tion ported (now about fifty) has worked well. Though the target platform is
32-bit beneath the encryption, 64-bit integer and 32- and 64-bit floating point
programs work well, because of code-level translations that gcc performs for
platforms without 64-bit and floating point hardware support.

In 2015 details of the HEROIC processor for encrypted computing with
Paillier-2048 encryption (of 16-bit data) were published [30]. The basic oper-
ation is a 16-bit plaintext/2048-bit ciphertext addition in 20μs, equivalent in
speed to a 25 KHz classic Pentium. The machine has a stack-based architecture.
Those are different from conventional von Neumann architectures but there have
been hardware prototypes [15,28] aimed at Java. A difficulty in using Paillier
is that, though it is homomorphic with respect to plaintext addition, that is
not mod 216 addition, so each addition result has to be renormalised mod 216

beneath the encryption every time, which accounts for half the cycles taken. It is
done by subtracting 216 and looking up a ‘table of signs’ for encrypted numbers
to see if the result is negative or positive. To facilitate that, HEROIC encryp-

1 IEEE floating point test suite at http://jhauser.us/arithmetic/TestFloat.html.
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tion is one-to-one, not one-to-many. Significantly, its ISA is a one instruction
set computing (OISC) design that has the property that the same program code
and runtime trace can be interpreted with respect to the plaintext data beneath
the encryption at any point in memory and in the control graph in arbitrarily
many ways by any observer and experimenter who does not have the key to the
encryption. That means the kind of compilation discussed in Sect. 8 would work
to provably secure it, but it is not clear if HEROIC’s authors have a compiler.

In 2018 the 10× faster CryptoBlaze architecture for encrypted computing,
also using Paillier but with a nondeterministic component, was published [18].

At the other end of the scale a pathfinding earlier machine for encrypted
computing, Ascend [9] (2012), did all its computation in unencrypted form, but
with no access for the operator or operating machine while a program is run-
ning. Only the inputs and outputs were encrypted (including memory I/O) but
the processor ran in ‘Fort-Knox’-like isolation, matching pre-defined statistics on
observables such as cache and power drain. Ascend ran RISC MIPS [24] instruc-
tions and slowed down by 12–13.5× in encrypted mode with AES-128 (rightly,
only relative figures are quoted in [9]), as compared to 10–50% slowdown for
the authors own recent processor models for encrypted computing, which have
been measured at 104 MIPS (equivalent to a 433 MHz classic Pentium) [6] when
clocked at 1 GHz, on the standard Dhrystones benchmark [32].

Physical isolation of processes plus encrypted memory has emerged several
times as an idea for secure computing (e.g., [17] for secure entertainment media
platforms) and success means doing it as well as Ascend. Otherwise side-channels
such as cache-hit statistics [31] and power drain [19] leak information.

In that line, Intel’s SGXTM (‘Software Guard eXtensions’) processor tech-
nology [1] is often cited, because it enforces separations between users. The
mechanism is key management to restrict users to memory ‘enclaves’. While
the enclaves may be encrypted (encryption/decryption units lie on the memory
path), that is encrypted storage, a venerable idea [16], not encrypted computing.

SGX machines are used [29] by cloud service providers where assurance of
safety is a marketing point. That is founded in customers’ belief in electronics
designers ‘getting it right’ rather than mathematical analysis and proof. Engi-
neering may leak secrets via timing variations and power use and SGX has
recently fallen victim [14]. Use of SGX secure enclaves has to be written-in
by the software author so it is a voluntary security device, whereas encrypted
computing is an obligate security device. However, running code entirely inside
an SGX enclave is running it in Ascend-style ‘splendid isolation’, but without
Ascend’s protection against statistically-based deductions from the observables.
SGX does hide explicit timing information, for example, but a code can count
its own instructions to retrieve an estimate.

IBM’s efforts at making practical encrypted computation using very long inte-
ger lattice-based fully homomorphic encryptions (FHEs) based on Gentry’s 2009
cipher deserve mention. The 1-bit logic operations take of the order of 1 s [11]
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on customised vector mainframes with a million-bit word, about equivalent to a
0.003 Hz Pentium, but it may be that newer FHEs based on matrix addition and
multiplication [12] will be faster. The obstacle to computational completeness is
that which HEROIC overcomes with its ‘table of signs’: encrypted comparison
with plain 1/0 output is needed, as well as the encrypted addition (and multi-
plication), but HEROIC’s solution is not feasible for a million-bit encryption.

In principle, applications that require a fixed small number of multiplications
can be carried out without overflowing using an FHE without the renormalisa-
tions that are their hallmark. Such schemes are called somewhat homomorphic
encryption (SHE). Hardware assistance for a SHE based on the YASHE scheme
[3] with ciphertext blocks 215 × 1228 bits long is reported in [27]. Their 2048-
core parallel hardware does ciphertext addition in 83 ns and multiplication in
59.413 ms, but that is for one bit in plaintext. That would be 32-bit plaintext
addition at the speed of a 0.166 Hz classic Pentium (counting 3 exclusive or gates
and 3 and gates per 1-bit full adder, taking 6 s for one 32 bit addition).

The slow speeds of even hardware-assisted SHE schemes emphasise how rel-
atively fast the recent general purpose processors for encrypted computing are.
The price is a secret embedded in the hardware, as with a Smartcard.

3 Encrypted Computing Systems: Overview

This section briefly recapitulates encrypted computing systems. They consist of:

(i) A processor that ‘works encrypted’ in user mode, with encrypted
inputs, encrypted outputs, and encrypted intermediate states, but which
‘works unencrypted’ in operator mode.

If user data were not in encrypted form throughout, then the operator, having
full access, could read it and write it to order, so this kind of processor is needed.

(ii) A machine code instruction set that prevents ‘algebraic’ attacks via
certain ‘chosen instructions’ that conventional instruction sets contain.

For example, the conventional instruction that performs x′ [ / ] x′, produces an
encrypted 1 from any encrypted user datum x′ the operator cares to copy.

(iii) An ‘obfuscating’ compiler that smooths out statistical biases that may
be present in machine code.

Else a program would contain human biases such as low numbers like 0,1,. . . in
loop counts, which could be used in a statistically-based dictionary attack.

The following axioms from [5] refine the hardware requirements (i), (ii):
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Axioms

(1) Each instruction’s action is a black box. (i)
(2) Each instruction is observed to read and write data in encrypted form. (i)
(3) Arithmetic instructions embed encrypted constants, adjustments to which

may be made to accommodate any planned offsets in inputs to and output
from the instruction (see Sect. 7). (ii)

(4) There are no collisions possible between the encrypted constants embedded
in some instructions and the ciphertext that the processor writes to and reads
from registers and memory. (ii)

How (1) and (2) are achieved is a question of the hardware. It is failure of (1) that
the Intel (and likely other manufacturers’) vulnerability exploits in the recent
Meltdown [21] and Spectre [20] attacks. There, speculative execution brings data
into cache that remains visible even though the instructions are aborted, so
‘nothing’ leaves a trace. One of the conceptually simplest ways of achieving (2)
is to use an encryption that permits arithmetic to be done without decrypting
and re-encrypting: a homomorphic encryption. Some processors for encrypted
computing have used homomorphic encryptions, as described in Sect. 2.

Certain classical processor features contradict (2) when ‘observe’ is under-
stood to mean testing the processor state by any programmatic means, not only
reading a register, and are to be avoided in designs. A machine code ‘set if equal’
instruction that compares two ciphertext inputs and sets a status flag if the plain-
texts are equal would be mistaken instruction set design. The instruction output
(the status flag) in that case would not be in encrypted form, as required by (2).
It is also not in any register, but it could be tested with a following ‘branch if
set’ instruction, because the branch is seen to be taken or not taken as the (inac-
cessible) status flag is set or not set. That makes a classical ‘set/test-flag’ style
of processor instruction set design inappropriate. Yet the OpenRISC standard
specifies that style of instruction set and so our own prototype processors step
back to an earlier MIPS style of RISC design for branch instructions. Our own
design’s branch instructions do not test a status flag but compare (less than,
equal to, etc.) register contents and branch or do not branch on the result as
determined in conjunction with extra encrypted instruction bits (see Sect. 7).
That cannot be used for binary search to determine a value by virtue of (3,4).

The axiom (3) is a feature of an appropriate instruction architecture (Sect. 7),
while (4) may be achieved via disjoint paddings beneath the encryption.

A fifth axiom is sometimes needed. It extends (2) to allow testing by means
of externally known facts, not only the processor’s programming interface:

(5) There are no sources of ciphertext whose plaintext is known independently.

That avoids known plaintext attacks. It would contradict (5) to design-in a
read-only register that holds the known processor stepping number (encrypted).
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The axiom carries over to statistics too: all registers should feasibly contain
anything at start-up, with equal probability. A classical RISC read-only zer
register that contains zero (encrypted) for user mode would contradict that, so
cannot be.

4 What Does Encrypted Computing Look Like?

Encrypted running is illustrated in Table 1, where the same program has been
compiled twice, and the resulting machine codes have been run (the two instances
are top, vs. bottom in the table). Each time, the compiler has embedded different
(encrypted) constants in the machine code (disassembly at left). As a result
different encrypted values appear throughout the execution traces (right), but
the decrypted result (boxed) is nevertheless the same.

Table 1. Program codes and execution traces of exactly the same form may have
encrypted datawhose plaintext is arbitrarily different at any point yet get the same result.

1st code fragment 1st fragment’s trace

addr. instruction disassembly
96C sub sp sp zer E[ -471185111]

980 jal A

984 add t0 v0 zer E[ -236230946]

998 sub sp sp zer E[-1219116768]
9AC lw a0 E[1219116768](sp)

addr. update
96C sp ← E[-3412890104]
980 ra ← 984

...

984 t0 ← E[ -236230942]

998 sp ← E[-1219116896]
9AC a0 ← E[ 1 ]

ecarts’tnemgarfdn2tnemgarfedocdn2

addr. instruction disassembly
96C sub sp sp zer E[ 1528657211]

980 jal A

984 add t0 v0 zer E[-1112987554]
998 sub sp sp zer E[ -275939886]

9AC lw a0 E[275939886](sp)

addr. update
96C sp ← E[ -178928721]

980 ra ← 984

...

984 t0 ← E[-1112987550]
A98 sp ← E[ -275940014]

9AC a0 ← E[ 1 ]

Legend
Encrypted: E[x], x′ (Same) programpoint and storage place
Registers: pc,ra,sp,zer,t0,v0,a0 Content: pc, ra, sp, zer, t0, v0, a0

Instruction semantics
sub x y z k′ : x ← y [−] z [+] k′ jal a : ra ← pc + 4; pc ← a E[x] [◦] E[y] = E[x ◦ y]
add x y z k′ : x ← y [+] z [+] k′ lw x k′(y) : x ← memory y [+] k′

The ‘trick’ is that the compiler creates code that at runtime produces
encrypted values whose plaintext values are offset from the nominal value all the
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way through the calculation. The offsets are different (and randomly generated)
for each point in the program control graph per each location in memory. For
illustration here, the final offset in register a0 has been set at 0, but ordinarily
the final offset is also randomly generated, albeit known to the user.

5 Vulnerabilities of Naive Encrypted Computation

Being able to run arbitrary computable functions is dangerous in principle because
an adversary might use the encrypted computations to subvert the encryption.
For example, 32-bit 2 s complement arithmetic is used in all modern computing.
In that, repeated doubling of anything gives encrypted zero. I.e.:

E [x][+] . . . [+]E [x] = E [x + . . . + x] = E [232x mod 232] = E [0].

That opens the encryption to a known plaintext attack. The adversary can obtain
encryptions of 0 by forcing the processor to add any initial datum E [x] in register
r to itself 32 times, using its own machine code addition instruction:

add r r r
︸ ︷︷ ︸

r←r [+] r

; . . . ;add r r r
︸ ︷︷ ︸

r←r [+] r

;

Using multiplication, choosing a random ciphertext has a 50% chance of pick-
ing an odd number plaintext and then repeated self-multiplication gives an
encrypted 1, by Fermat’s Little Theorem2:

E [x][∗] . . . [∗]E [x] = E [x ∗ . . . ∗ x] = E [x231 mod 232] = E [1]

Self-multiplying an even number gives encrypted zero, but half the time an
encrypted 1 is obtained, and a 50% success rate beats 1/232 odds from guessing.

Using division, an adversary can get an encrypted 1 from any datum that is
not an encrypted zero, which is a near certainty among all the encrypted data
passing through the machine, via

E [x][ / ]E [x] = E [x/x] = E [1]

A subroutine for 64-bit division on a 32-bit platform is a place where one would
find an encrypted 1 as a program constant or an extra parameter to the sub-
routine at each application. In any case, a dictionary attack on all the constants
in the code should encounter an encrypted 1 among them. Guess which and, by

2 Fermat’s Little Theorem is aφ=1 mod n, where a is coprime to n and φ is the size
of the multiplicative group of integer residues mod n, being the number of residues
that are coprime to n. It is needed here in the form aφ = 1 mod 2n, where a is odd,
i.e., coprime to 2n. Exactly half the numbers less than 2n are odd, i.e., coprime to
2n, and they form the multiplicative group mod n. So φ is 2n−1 and the theorem

says a2n−1
=1 mod 2n. The better-known special form is ap = a mod p, p prime.
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Table 2. Code and trace may be interpreted in different ways with respect to the
plaintext data by an observer who cannot read the encryption.

1st code fragment 1st trace

addr. instruction addr. update

0 A:if x[<]E[1] goto B
1 x←x[-]E[1]
2 goto A

3 B:x←x[+]E[1]
4 if x[<]E[1] goto B

(x= E[0])
0 A:

�
3 B: x←E[1]
4

(x= E[1])

2nd code fragment 2nd trace

addr. instruction addr. update

0 A:if x[<]E[8] goto B
1 x←x[-]E[1]
2 goto A

3 B:x←x[+]E[1]
4 if x[<]E[8] goto B

(x= E[7])
0 A:

�
3 B: x←E[8]
4

(x= E[8])
Legend
Encrypted: E[x] E[x] [◦] E[y] = E[x ◦ y] E[x] [R] E[y] = xRy

repeated addition of encrypted 1s, an adversary may first build all powers of 2
and then build the encryption of any desired number K from its binary code via

E [2k1 ] [+] . . . [+] E [2kj ] = E [2k1 + . . . + 2kj ] = E [K].

Then, if an arithmetic order comparator instruction is available on the plat-
form, any encrypted number could be decrypted by comparing it with an encryp-
tion of each 32-bit integer K in turn3. Decryption goes even faster deducing
the binary digits one by one, comparing and subtracting (encrypted) 2k when
E [2k][≤]E [x][<]E [2k+1] is detected by a conditional branch instruction in the
machine (a machine code conditional branch on E [x][≤]E [y] detects if x≤y then
jumps to a designated instruction, just like a goto in a higher level language).

The vulnerabilities above apply to any naive system for arbitrary computa-
tion. It must have comparator instructions in order to trigger branch jumps. In
contrast, finite calculation systems can produce the 1/0 result b of a comparison
in encrypted form, and the final ciphertext values E [x1] and E [x0] of variable x
from both branches after the comparison are combined in E [x1 ∗ b + x0 ∗ (1− b)].
That is not an option in a system for unbounded computation, which must report
the comparison in 1/0 format so the electronics can execute only one branch.

In summary, to write an encrypted number to order on a naively constructed
platform, ‘just addition and multiplication’ will do, with 50% certainty. Reading
requires a comparator too. If the encryption itself is even partially homomorphic
(i.e., some encrypted operations can be done without access to the encryption
key), the processor is not even needed. So there is a case to answer as to security.

6 Secure Encrypted Computing

There are ways of running arbitrary encrypted computations securely. Consider
for the moment that the machine code has only instructions addition of a con-
stant y←E [D[x]+k] and branches based on comparison with a constant D[x]<K,
3 Rass in [25] has recently independently called this a ‘chosen instruction’ attack.
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for registers x, y4. Those suffice for any computation, encrypted5. Consider pro-
gram C using only those two instructions. By a ‘method of observation’ under-
stand a deterministic process, based on observing what a running user program
does from step to step and making deductions from what is observed – its trace
T . The trace details the sequence of instructions executed, with their addresses,
and what register and memory locations each instruction reads and writes and
with what values. Assume the operator cannot already read the encryption. Then:

Theorem 1 No method of observation exists by which the operator (who
does not possess the key) may decrypt output from C.

The argument is illustrated by the program in this language that sets x=E [1],
rendered at left in Table 2. There is no single statement of the language that will
suffice. The code first loops until x is ‘not too large,’ then loops until it is ‘not
too small.’ Exit at B is with x = E [1] exactly, no matter the value at entry at A.
The trace with x = E [0] on entry and x = E [1] on exit is shown alongside. The
right half of Table 2 shows the same code in which branch comparison constants
(red) have been changed by +7 beneath the encryption. That admits a trace of
exactly the same form but with plaintext numbers beneath the encryption that
are +7 more than before. Since it is feasible, it is what happens, as computation is
deterministic. So there are two possible interpretations of the codes and traces in
Table 2 to an observer who does not already know the encryption. The evidence
presented to the observer’s method is the same both times in the observer’s
own terms: the codes and the traces ‘look the same’, the only differences lying
in encrypted constants that by hypothesis the observer cannot read. One may
suppose that the codes and traces are short enough that no ciphertext is repeated
twice, so those encrypted values that do appear serve as no more than different
labels for the same unknowns and have no more significance than that. If the
observer has a method for getting at the plaintext value beneath the encryption
then it must give the same answer in both cases. Yet the observer’s method must
be wrong in one case, because the numbers beneath the encryption all differ by
7. So the method does not exist. The formal argument is simply that:

Proof (Theorem 1). Change C to D by changing all the constants E [K] in com-
parison instructions to E [K + 7]. That permits a trace in which all data takes
values not E [x] but E [x + 7] at every point. The addition instructions, which are
unaltered in D, instead of taking E [x] to E [x+k] now take E [x+7] to E [x+7+k].
The observer’s hypothetical method is not sensitive to the change as the observer
cannot read the encryption, so the method must give the wrong answer either
in the trace of C or in that of D about a value beneath the encryption. ��
4 To help the reader over a ‘notation gap’, y←E [D[x]+k] is written here for y←x [+] k′.
5 A practitioner’s proof of the computational completeness of the instructions y←x+k

and if x<K . . . is the mathematician J.H. Conway’s well-known Fractran program-
ming language [8], in which those are the only instructions. Attention in the computer
hardware community may have been first drawn to the fact by [24].
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Remark 1. The argument shows that the same code and trace may differ inde-
pendently at every point beneath the encryption to the maximum extent pos-
sible. An assignment instruction x←E [D[y] + k] may be changed to account for
an arbitrarily chosen offset c (instead of +7) in the incoming value y beneath
the encryption and generate an arbitrarily chosen offset d (instead of +7) in the
outgoing value x by rewriting the instruction to x←E [D[y] + k − c+ d]. ��

7 Instruction Architecture for Encrypted Computing

What makes Theorem 1’s proof work is the following:

Lemma 1. Every atomic instruction’s inputs E [x1] and outputs E [x0] may
be shifted by constants to E [x1 + k1] and E [x0 + k0] respectively, by means of
constants embedded (encrypted) in the instruction, for arbitrary k0, k1.

That is merely a formal expression of axiom (3) of Sect. 1.
Designing a complete instruction set to comply with (3) requires careful

choices to allow the processor to function with full coverage and to work quickly
while compilation remains uncomplicated, also consideration of physical restric-
tions (instruction length, field sizes, opcode map, etc.). HEROIC’s minimalis-
tic instruction set complies, but is not suited to efficient compilation. We call
any compliant instruction set a fused anything and add (FxA) instruction set6

because the natural form of a compliant arithmetic instruction semantics is

x ← E [(D[y] − k1)Θ(D[z] − k2) + k0]
= (y [−] k′

1) [Θ](z [−] k′
2) [+] k′

0

with binary operator Θ (for example, Θ may be multiplication), registers x, y, z.
Our own processor’s instruction set for encrypted working is shown in Table 3.

It bears a likeness to OpenRISC’s instruction set and RISC in general, in that
there is one memory load/store instruction and the rest of the instructions use
registers, but ‘RISCiness’ stops at the increased instruction lengths. The com-
parison operations also contain an extra bit beneath the encrypted field that
says if branch happens on success or on failure, as per axiom (3). Then:

Theorem 2 There is no method by which the privileged operator can read
runtime data from a program C constructed using instructions in Table 3.

That is by using Lemma 1 in the proof of Theorem 1 for all arithmetic instruc-
tions of Table 37. It also follows that interfering and experimenting with the
program to substitute a different value for the returned result does not work:
6 ‘Addition of a constant’ is not the only option. Bitwise XOR (exclusive OR) with

a constant can be used, or ‘multiplication by a prime and addition of a constant’.
The most general possibility is to replace a conventional instruction x ← f(y) by
x ← f(y · k−1

1 ) · k2, where · is the operation of a mathematical group and −1 is
the group inverse operation. For simplicity, addition is used throughout this paper.
.

7 Proofs of results stated but not proved in the text are supplied in the Appendix.
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Table 3. Machine code instruction set for encrypted working.

op. fields mnem. semantics

add r0 r1 r2 k′ add r0←r1 [+] r2 [+] k′

sub r0 r1 r2 k′ subtract r0←r1 [−] r2 [+] k′

mul r0 r1 r2 k′
0 k′

1 k′
2 multiply r0←(r1 [−] k′

1) [∗](r2 [−] k′
2) [+] k′

0
div r0 r1 r2 k′

0 k′
1 k′

2 divide r0←(r1 [−] k′
1) [/](r2 [−] k′

2) [+] k′
0

. . .
mov r0 r1 move r0←r1
ble j r1 r2 k′ branch if r1[≤]r2 [+] k′ then pc←pc+j
bge j r1 r2 k′ branch if r1[≥]r2 [+] k′ then pc←pc+j
. . .
b j branch pc ← pc + j unconditionally
sw k′(r1) r2 store mem r1 [+] k′ ← r2
lw r1 k′(r2) load r1 ← mem r2 [+] k′

jr r jump pc ← r
jal j jump ra ← pc + 4; pc ← j
j j jump pc ← j
nop no-op

Legend
r – register indices k – 32-bit integers pc – prog. count reg.
j – program count or incr. ‘←’ – assignment ra – return addr. reg.
E[x],x′ – encrypted val. E[x] [◦] E[y] = E[x ◦ y] E[x] [R] E[y] = xRy

Corollary 1. There is no method by which the operator can alter program C
using other or the same instructions to get an intended output (encrypted).

The reason is that the program built by the operator to give the intended output
cannot be built, by Theorem 2, because the output is readable, as it is known
what it decrypts to (this lawyering stands in for a near repeat of the same proof).

Example (Theorem 2, Corollary 1). Take the encryption in the machine to
be AES with key k, so encryption is x′ = AES(x, k) for plaintext x and ciphertext
x′. Then there is a program C that decrypts (encrypted) input data, though the
whole program runs in the encrypted computing environment. It is the AES
decryption routine, compiled encrypted. Suppose x′ decrypts to x, and x′′ is
the encryption of x′, k′ the encryption of k. Then C(x′′, k′) = x′ by definition,
because the unencrypted program takes x′ and k to x. That is C(y′, k′) = y, as
claimed, on choosing y = x′. ��

Fortunately, the theorem prohibits the adversary building a program that
outputs the encrypted encryption key k′, because with it and program C of
the example the adversary would obtain the encryption key in the clear, via
C(k′, k′)= k.

Remark 2. The program C of the example that does decryption cannot be inten-
tionally built by an adversary (this is proved in the Appendix).

Example (Corollary 1). The program that sets x=E [1] at left in Table 2 cannot
be intentionally built by the operator. Trying for ‘1’ the operator may instead
get the program at right in the table, which produces ‘8’ (encrypted). ��

There is need and potential (see Remark 1) for obfuscation here. Human
beings only write certain programs, and an adversary may bet on an encrypted
1 being among the data, enabling the ‘chosen instruction’ attack of Sect. 5.
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8 Obfuscating Compilation

For effective and useful ‘obfuscation’ in this context, plaintext data beneath the
encryption should be varied from the nominal value at each of the up to m + 32
storage locations accessed by the program (m memory locations and 32 registers)
at each of the N instructions of the program. A compiler can do that by varying
the encrypted constants embedded in the instructions, by axiom (3). The idea
is for the compiler variations to hide any human biases. Maximal noise applied
by the compiler across different compilations swamps any other signal.

Let MC be the type of machine code, consisting of a sequential list of ‘FxA-
compliant’ instructions, as for example in Table 3, and let Expr be the type of
expressions, and let Off be the type of integer ‘offsets’. The approach our own
compiler takes is to invent and aim for a particular runtime offset from nominal:

�−�r:: Expr → (MC,Off)

where r is the processor register that the value of the expression is to appear in.
That is, the result of compiling an expression e is

�e�r = (mc,Δe) .

The value e+Δe beneath the encryption will be produced in register r at runtime
by running the code mc, where Δe has been freely chosen at compile time. That
is, let s(r) be the content of register r in state s of the processor at runtime. The
machine code mc emitted is designed to have operational semantics (Table 3):

s0
mc� s1 where s1(r) = E [e + Δe] (�)

An offset Δe = 0 means the result will be the nominal value. Compilation for (�)
is described in detail in [5]. The upshot is that independently chosen, arbitrary
offsets Δe generated by the compiler are induced at runtime in the plaintext
values written to every register and memory location, differing per point in the
program control flow graph. The following lemma is proved in [5]:

Lemma 2. The obfuscating compiler creates object codes from the same
source code that are identical apart from embedded (encrypted) constants.
The runtime traces are also identical apart from the ciphertext data values
read and written, such that, for any particular plaintext 32-bit value x, the
probability across different compilations that E [x] is in register or memory
location l at any given point in the trace is uniformly 1/232, independently
to the maximum extent permitted by copy instructions and loops in the code.

The proviso is because a plain copy (‘mov’) instruction always has precisely
the same input and output, and a loop means the variations introduced by the
compiler must be the same at the beginning as at the end of the loop.

Source code for the compiler, assembler, linker, virtual machine, etc., may be
downloaded from http://sf.net/projects/obfusc. The compiler currently covers
all of ANSI C, and most GNU extensions except computed gotos.

In order to support arrays, pointers p must be declared together with a fixed
‘memory zone’ into which they point, thus:

http://sf.net/projects/obfusc
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int A[100];

restrict A int *p;

The restrict A means that the pointer never points outside the memory zone A.
The compiler does not know where an unrestricted pointer will point at runtime
and this declaration tells it to use an offset ΔA pertaining to zone A at that
point in the program for the pointer. Each write through p should change ΔA,
so the compiler accompanies it with writes to the rest of A to reset the other
entries too. That is computationally inefficient, but cryptographically necessary.
Oblivious RAM (ORAM) [22] does the same, but in hardware. In practice the
processor will do the writes to memory asynchronously via the ubiquitous ‘write-
back’ cache of contemporary processor technology, so the performance penalty
is bandwidth, not latency (but a vector write instruction would be helpful).

Recalling Goldwasser & Micali’s definition [13] that ‘semantic security’ is in-
ability to guess a designated bit with any success above chance, Lemma 2 implies:

Theorem 3 Runtime user data beneath the encryption is semantically
secure against the operator for FxA code compiled by the obfuscating compiler.

The threat alone that the code has been compiled by an obfuscating compiler
might be sufficient for the theorem, as that establishes the domain of possible
variations that must be considered. But despite the look of it, the theorem is not
a strong statement. It should be understood as saying that computation in an
encrypted computing system does not reduce the security from the encryption.

9 Conclusion

This paper intends to bring encrypted computing to the attention of the secu-
rity community as a technology that potentially safeguards user data against a
classically all-powerful operator, operating system and other insiders as adver-
saries. This paper has dealt with theoretical aspects. With the appropriate
instruction set and an ‘obfuscating’ compiler, it is shown here that user data can-
not be determined by an adversary via any deterministic or stochastic method
with any success above chance, provided the encryption used is independently
secure. In other words, encrypted computing does not compromise encryption.

Acknowledgments. Zhiming Liu thanks the Chinese NSF for support from research
grant 61672435, and Southwest University for grant SWU116007. Peter Breuer thanks
Hecusys LLC for continued support in KPU research and development.

Appendix: Proofs of results

Proof (Corollary 1). Suppose for contradiction that the operator builds a new
program D=f(C) that returns E [y]. Then its constants E [k] are found in C and its
constants E [K] likewise, because f has no way of arithmetically combining them
(the disjoint subspaces condition (4) on runtime encrypted data and encrypted
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program constants means they cannot be combined arithmetically in the processor
and the operator does not have the encryption key). Theorem 1 says the operator
cannot read output E [y] of D, yet knows what it is. Done by contradiction. ��
Proof (Theorem 2). Program C is constructed using arbitrary instructions from
Table 3 compliant with (3). One may construct a modified code D (see below)
that looks the same as C to the adversary who cannot read the encryption, as
well as possessing a runtime trace U that looks the same as the original trace T
to the adversary, differing only in the cipherspace values read and written. The
argument is the same as for Theorem 1 (and Corollary 1): In the given program
C, every binary arithmetic instruction necessarily has semantics of the form (the
ri are registers)

r0 ← E [(D[r1]−k1)Θ(D[r2]−k2)+k0]

in order to comply with (3), and it can be adjusted for D via its embedded
constants E [ki] to accommodate every data value passing through registers and
memory to be +7 more beneath the encryption than it used to be in C, as
argued in the proof of Theorem 1 and Corollary 1. The change is from ki to
k′
i=ki + 7. Similarly, every branch instruction in C necessarily has a test of the

form (D[r1]−k1)R(D[r2]−k2) in order to comply with (3). It is changed in D to
(D[r1]−k′

1)R(D[r2]−k′
2) with k′

i = ki + 7. Then the branch goes the same way
at runtime in trace U for D as it did originally in trace T for C. Unconditional
jump instructions are not altered.

The outcome is a trace U that is the same as T modulo the cipherspace values
read and written, which by hypothesis cannot be read by the adversary. Those
differ by 7 under the encryption in U from the originals in T . Code D looks the
same too, modulo the embedded encrypted constants, which also cannot be read
by the adversary. Therefore, as in the proof of Theorem 1, a method f(C, T ) for
decryption must give the same result as f(D,U), yet the answers are different
by 7 in the two cases, so the method f cannot exist. ��
Proof (Lemma 2). Consider the arithmetic instruction I in the program. Suppose
that by fiddling with the embedded constants in the other instructions in the
program it is already possible for all other locations m other than that written
by I and at all other points in the program to vary the value xm = x +Δx,
where E [xm] is stored in m, randomly and uniformly across compilations, taking
advantage of the instruction set as the compiler described in the text does. Let I
write value E [y] in location l. By the axiom (3) I has a parameter E [k] that may
be tweaked to offset y from the nominal result f(x + Δx) on its input x + Δx
by an amount Δy. The compiler chooses k with a distribution such that Δy is
uniformly distributed across the possible range. The instructions in the program
that receive y from I may be adjusted to compensate for the Δy change by
changes in their controlling parameters. Then p(y = Y ) = p(f(x+Δx)+Δy = Y )
and the latter probability is p(y = Y ) =

∑

Y ′
p(f(x + Δx) = Y ′ ∧ Δy = Y − Y ′).

The probabilities are independent (because Δy is newly introduced just now),
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so that sum is p(y = Y ) =
∑

Y ′
p(f(x + Δx) = Y ′)p(Δy = Y − Y ′). That is

p(y=Y )=
1

232
∑

Y ′
p(f(x+Δx)=Y ′).

Since the sum is over all possible Y ′, the total of the summed probabilities is
1, and p(y=Y )=1/232. The distribution of data E [xm] in other locations m is
unchanged. Done by a structural induction on the machine code program. ��
Proof (Theorem 3). Consider a probabilistic method f that guesses for a par-
ticular runtime value beneath the encryption ‘the top bit b is 1, not 0’, with
probability pC,T for program C with trace T . The probability that f is right is

p((bC,T=1 and f(C, T )=1) or (bC,T=0andf(C, T )=0))

Splitting the conjunctions, that is

p(bC,T=1) p(f(C, T )=1 | bC,T=1)
+ p(bC,T=0) p(f(C, T )=0 | bC,T=0)

But the method f cannot distinguish the compilations it is looking at as the
codes and traces are the same, modulo the (encrypted) values in them, which
the adversary cannot read. The method f applied to C and T has nothing to
cause it to give different answers but incidental features of encrypted numbers
and its internal spins of a coin. Those are independent of if the bit b is 1 or 0
beneath the encryption, supposing the encryption is effective. So

p(f(C, T ) = 1 | bC,T = 1) = p(f(C, T ) = 1) = pC,T

p(f(C, T ) = 0 | bC,T = 0) = p(f(C, T ) = 0) = 1 − pC,T

By Lemma 2, 1 and 0 are equally likely across all possible compilations C, so
the probability f is right reduces to

1
2 pC,T + 1

2 (1 − pC,T ) = 1
2

since p(bC,T=1) = p(bC,T=0) = 1
2 . ��

Corollary 2. There is no method by which the operator can build a program C
that gives an output E [y] where y is confined to an independently defined proper set
Y of possibilities, not even stochastically with a probability higher than |Y |/232.

Proof. The proof of Theorem 2 and Corollary 1 may be repeated, confining
y to Y , or use Theorem 3, since its ‘probabilistic method f ’ includes con-
structing a program. ��
Proof. (Remark 2). The structure of the code of the AES decryption routine
is known to the operator. By Corollary 1 the operator cannot construct the
(encrypted) constants used in the AES decryption routine, but there may be
others that will work (does anybody know?). Corollary 2 prevents the operator
constructing a program to emit any one of the tuples of encrypted constants that
will do, with any probability above chance. Theorem 3 prevents the operator
doing it without programmed help. ��
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Abstract. With the emerging techniques of wireless communication
and cloud computing, large volumes of multimedia data are outsourced
from resource constrained users to the cloud with abundant resource for
both delegated storage and computation. Unfortunately, there is a risk
of users’ image privacy leakage in the process of outsourcing to untrusted
cloud. Most of the existing work achieved privacy-preserving image fea-
ture extraction and matching by using public key (fully) homomorphic
encryption (FHE), but the heavy computational overhead and commu-
nication overhead cannot adapt to resource-constrained mobile devices.
Other works disabled to realize image denoising in the encrypted domain
or only focused on the scale-invariant feature transform (SIFT) descrip-
tor that is inappropriate for position-sensitive feature extraction. To
address these issues, in this paper, a privacy-preserving shape context
based image denoising and matching protocol PPOIM with efficient out-
sourcing is proposed. Firstly, to improve the accuracy of image matching,
a privacy-preserving image denoising scheme PPID is proposed without
exploiting public key FHE. Then, based on PPID, a privacy-preserving
image matching protocol PPOIM adopting shape context descriptor is
devised, where two secure and efficient comparison and counting pro-
tocols in the encrypted domain are presented. All the original image
privacy, query image privacy and image matching result privacy are well
protected. Finally, formal security proof and extensive simulations on
real-world data sets demonstrate the efficiency and practicability of our
proposed PPOIM.

Keywords: Image matching · Privacy-preserving
Shape context descriptor · Secure outsourced computation

1 Introduction

With the development of big data and social network like Flickr or Facebook,
huge amounts of personal users’ multimedia data are delegated to the cloud
from the resource-constrained mobile devices for both outsourced storage and
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outsourced computation with expensive complexity. Among types of image pro-
cessing, image matching have played an increasingly important role in our every-
day life. The widely adopted technique of content-based image match means that
the cloud returns the boolean match result between images and the user’s queried
one with similar features such as color, shape and texture that are extracted
by exploiting scale-invariant feature transform (SIFT) descriptor, shape context
(SC) descriptor, etc. Taking medical image for example, the physicians can judge
the aging degree of the elderly persons, by matching their medical image (i.e.
X-ray film) with the pattern images signaling different levels of aging, adopting
the extracted features such as the step length and the angle with which the
elderly’s limbs can be lifted.

Unfortunately, the cloud server either works under the semi-honest model or
malicious model, where the cloud either strictly carries out the protocol speci-
fications but intending to extract the private information from the interactions
with users, or performs arbitrarily to destruct the protocol execution. Therefore,
it would disclose the private health condition of the elderly persons by delegat-
ing the medical images in their plaintext to the cloud for feature extraction and
matching. How to devise an efficient privacy preserving image feature extraction
and matching protocol becomes a critical issue for convincing solutions.

Recently, a series of research has focused on the field of privacy-preserving
image feature extraction and matching [1–3,6–8,12,13,16–19,21,23–25]. Hsu et
al. [4] studied privacy-preserving outsourced feature extraction in the encrypted
domain, by using Paillier’s additive homomorphic encryption. Unfortunately,
their protocol is either computationally-intensive or risks the privacy leakage of
the original image. To address the issues, Hu et al. [5] devised a secure outsourc-
ing computation of feature extraction over encrypted image data, by splitting
the original image and designing privacy-preserving multiplication and compar-
ison protocols executed by two non-colluded servers, by exploiting Brakerski et
al.’s somewhat homomorphic encryption [15]. However, the level of fully homo-
morphism respectively proposed in [14] and [15] is restricted and the cipher-
text expansion would increase every time a ciphertext multiplication is required.
Thus the heavy computational and communication overhead in both [4] and [5]
is intolerable by resource-constrained devices. J. Zhou et al. [12] proposed an
efficient privacy-preserving image feature extraction protocol, however all the
above [4,5,12] adopted SIFT descriptor, which is only appropriate for search-
ing images with a transforming rotation, scaling, and translation, but cannot
be applied to the scenario of image matching adopting the features as rela-
tive positions between pixels, as is suggested in the example for judging the
aging level of the elderly. Belongie et al. [8] presented an approach to measure
similarity between shapes for object recognition based on shape context based
descriptor. However, the issue of image privacy-preserving was not considered.
In [6], Wang et al. studied privacy-preserving shape-based feature extraction by
exploiting the techniques of homomorphic encryption and the garbled circuit
protocol, respectively. The high computational complexity can still not adapt to
resource-constrained users.
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On the other hand, image noise may be introduced under different condi-
tions from intrinsic sensors or extrinsic environments, which are often difficult
to avoid in practice and significantly affect the accuracy of image matching.
Zheng et al. [9] proposed a privacy-preserving image denoising protocol from
external cloud databases by using secure similarity search, Yao’s garbled cir-
cuits and image denoising operations, to ensure that similar patches with high
quality are precisely obtained after encrypted similarity search. Unfortunately,
the denoising operations were completed in the plaintext domain without con-
sidering image privacy protection. To address the issues mentioned above, in this
paper, a privacy-preserving shape context based image denoising and matching
protocol PPOIM with efficient outsourcing is proposed. The main contributions
are summarized as follows.

Firstly, a privacy-preserving image denoising protocol PPID is proposed in
the encrypted domain, by devising a lightweight secure outsourced computation
without public key fully homomorphic encryption (FHE).

Secondly, based on the proposed PPID, we present an efficient privacy-
preserving image matching scheme PPOIM based on shape context descriptor.
Especially, two efficient comparison and counting protocols in the encrypted
domain are carefully designed. Both the original image privacy and the matching
result privacy are well protected, and only the authorized user can successfully
decipher the final matching result.

Finally, formal security proof and extensive evaluations demonstrate the effi-
ciency and practicability of our PPOIM. Both the computational cost and com-
munication cost are dramatically reduced, compared to the state-of-the-art using
public key FHE.

The remainder of this paper is organized as follows. We present the net-
work architecture and the security model in Sect. 2. Then the privacy-preserving
image denoising protocol PPID and the privacy-preserving shape context based
image matching protocol are proposed in Sect. 3. Formal security proof and per-
formance evaluations are respectively presented in Sects. 4 and 5. Finally, we
conclude our paper in Sect. 6.

2 Network Architecture and Security Model

2.1 Network Architecture

The network model of privacy-preserving shape context based image denois-
ing and matching mainly comprises three entities: the data owner, the user
and the cloud, which are demonstrated in Fig. 1. The main procedure of our
proposed PPOIM are described as follows, (1) The data owner outsources an
encrypted database of image patches to the cloud for generating high quality
similar patches; (2) The user sponsors an image search token request to the
data owner; (3) The data owner performs the search token authorization to the
user if her/his image query is permitted; (4) The user uploads the encrypted
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query image together with the search token to the cloud; (5) The cloud per-
forms privacy-preserving image denoising and matching by adopting shape con-
text based descriptor and calculating the matching cost in the encrypted domain;
(6) The cloud returns all encrypted matching results to the user for decrypting,
if the matching cost is smaller than the cost threshold set by the user, two images
are considered to be matched each other.

Fig. 1. Network architecture of privacy-preserving image denoising and matching

2.2 Security Model

We formally define the image privacy and the matching result privacy for our
proposed PPOIM. The cloud is assumed to be honest-but-curious, which strictly
executes the protocol specification but tries its best to extract the private infor-
mation from the interactions among data owner, user and itself. Image privacy
refers to that the data owner’s database images cannot be accessed by the col-
lusion between the cloud and malicious users and the user’s query image cannot
be disclosed to the collusion of the cloud and malicious owners. The matching
result privacy means that whether the query image matches the database image
can only be accessed by the authorized users. The formal security models of
these three types of privacy are detailed in the full paper.

3 The Proposed PPOIM

In this section, a privacy-preserving shape context based image denoising and
matching protocol PPOIM with efficient outsourcing is proposed, which is com-
posed of three phases, namely the setup phase generating the required param-
eters, the privacy-preserving image denoising phase PPID, and the privacy-
preserving image matching phase PPOIM where the final matching result can
be decrypted by the authorized user.
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3.1 Setup Phase

On input 1λ where λ is the security parameter, the system runs a trapdoor
permutation generator denoted as a probabilistically polynomial time (PPT)
algorithm G(1λ) and outputs a tuple of permutations (f, f−1) on {0, 1}2λ with
a pair of corresponding keys (PKf , SKf ). It also outputs two hash functions
H0, H1 : {0, 1}∗ → {0, 1}2λ and a cluster of locality-sensitive hash (LSH)
functions hi : {0, 1}∗ → {0, 1}λ(i = 1, 2, · · · , l). The public parameters are
PPR = (PKf ,H0,H1, hi(i = 1, 2, · · · , l)) and the secret key is SKf assigned
to the user. Besides, suppose there is a secure symmetric encryption scheme
SE = (SE.Setup, SE.KGen, SE.E, SE.D) with a secret key K = (Kg,Kp)
shared between the data owner and the user, and F : {0, 1}λ ×{0, 1}∗ → {0, 1}λ

is a pseudorandom function (PRF).

3.2 The Proposed Privacy-Preserving Image Denoising Protocol
PPID

In this subsection, an efficient privacy-preserving image denoising protocol PPID
is presented, which is composed of four algorithms: IndexGen performed on
the data owner side, encrypting patch databases with their corresponding secure
indexes by exploiting locality-sensitive hashing (LSH) and symmetric encrytpion
(SE), and uploading the encrypted database images to the cloud; Request exe-
cuted on the user side, generating a secure query search token, and transmitting
the search token and encrypted query patch to the cloud; Search run on the
cloud side, ranking all candidate patches and filtering the false positive candi-
dates for denoising operation; and Denoising carried out on the cloud side,
recovering the clean encrypted patch.

(1) {[P],D} ← IndexGen(K, PKf ,P). It takes as input the secret key K =
(Kg,Kp), the public key PKf for patch encryption and the patch set
P = {p1,p2, · · · ,pN}, where N is the total number of database patches,
and returns {[P],D}, where [P] = {[p1], [p2], · · · , [pN ]} and D refer to the
ciphertexts of database images and a generic dictionary.

Let pi,t = (ρi,t, θi,t)(i = 1, 2, · · · , N ; t = 1, 2, · · · , n) be the polar coordinate
of the t-th pixel in database patch pi, and pi = {pi,t}n

t=1 = {(ρi,t, θi,t)}n
t=1. The

ciphertexts of database images [P] = {[pi]}(i = 1, 2, · · · , N) are encrypted as
follows. For brief description, we only detailed the process for encrypting ρi,t, and
θi,t can be encrypted in the same way. The image data owner randomly chooses
three big primes p, q, h of |p| = |q| = |h| = λ which are kept secret, and computes
the publicized N” = pq, N

′
= pqh. The message space of ρi,t is on ZN” as a

hidden subgroup of ZN ′ . Then, the owner computes ρi,t,p ≡ ρi,t mod p, ρi,t,q ≡
ρi,t mod q. She/he also randomly selects Ki,t ∈R Zh, and computes the additive
blinding factor Uadd

i,t = Ki,tN
” ∈R ZN ′ and the multiplicative blinding factor

Umul
i,t = Ki,tN

” + 1 ∈R ZN ′ (i = 1, 2, · · · , N ; t = 1, 2, · · · , n) such that the final
image matching results in our proposed PPOIM can be correctly obtained in the
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decryption phase ImgDec by calling the algorithm PPOIM.Dec(·) where all
the additive and multiplicative blinding factors Uadd

i,t , Umul
i,t can be cancelled out

after modular N”. Since we have 1 ≡ q−1q mod p, 1 ≡ p−1p mod q, the data
owner calculates the ciphertexts as follows,

C1,1 = fPKf
(p ‖h),

C2,ρi,t
= q−1qρp

i,t,p + p−1pρq
i,t,q + Uadd

i,t mod N ′,
C3,ρi,t

= (q−1qρp
i,t,p + p−1pρq

i,t,q)U
mul
i,t mod N ′.

(1)

where ‖ means the concatenation operation, and q−1, p−1 respectively denote
the inverses of q and p in Z

∗
p and Z

∗
q . Finally, the data owner computes Cadd

ram,ρ =
H0(p ‖h ‖ ⋃N,n

i=1,t=1 C2,ρi,t
), Cmul

ram,ρ = H0(p ‖h ‖ ⋃N,n
i=1,t=1 C3,ρi,t

), and denotes
[ρi,t] = (C2,ρi,t

, C3,ρi,t
). Note that [θi,t] = (C2,θi,t

, C3,θi,t
) can be computed in the

same way. We have [pi,t] = ([ρi,t], [θi,t]) and the ciphertexts of database images
[P] = ({[pi,t](i = 1, 2, · · · , N ; t = 1, 2, · · · , n)}, Cadd

ram,ρ, Cmul
ram,ρ, C

add
ram,θ, C

mul
ram,θ).

We denote the encryption algorithm to generate ciphertexts of database images
[P] as PPOIM.Enc(·) which would also be exploited in the following phases
of our proposed PPID. Then, the data owner initializes a dictionary D and the
LSH value set G as two empty sets. For each patch pi in patch set P, the data
owner computes LSH values with l LSH functions h1(·), h2(·), · · · , hl(·),

gi = (h1(pi) ‖ 1, · · · , hl(pi) ‖ l), (2)

where vector gi is the i-th element in G, gi,j = hj(pi) ‖ j(j = 1, 2, · · · , l) is the
j-th element in vector gi. Then, for each gi,j in gi ∈ G, the owner generates

K1,i,j = F (Kg, 1 ‖ gi,j),K2,i,j = F (Kg, 2 ‖ gi,j). (3)

The data owner initializes a counter ctr = 0. For each gi,j , if there exists any
gk,j = gi,j(k ∈ {1, 2, · · · , N}), then it considers pk is associated with gi,j and
ctr ← ctr + 1. The data owner computes tag ui,j by applying pseudorandom
function F and encrypts the corresponding patch sub-identifier idk,j using the
symmetric encryption scheme SE as follows,

ui,j = F (K1,i,j , ctr), vi,j = SE.E(K2,i,j , idk,j), (4)

where idk = idk,1 ‖ idk,2 ‖ · · · ‖ idk,l is the unique identifier of a database patch
pk and idk,j(j = 1, 2, · · · , l) is the sub-identifier of hj(pk) ‖ j in gk. Then, the
tag-ciphertext pair (ui,j , vi,j) is inserted to a generic dictionary D. Finally, the
data owner sends ([P],D) to the cloud server.

(2) {Q, [q], [t”], [T ]} ← Request(K, PKf ,q, t”, T ). When a user wants to
request the database, she/he firstly need to obtain the token authorization
from the data owner by receiving C1,1 = fPKf

(p ‖h). Then, she/he decrypts
p ‖h = f−1

SKf
(C1,1) by using secret key SKf and computes q = N

′
(ph)−1.

After that, the user generates the ciphertext [q] and a secure search token
Q for the query patch q as follows. The user firstly hashes q into a vector
of l LSH values

g = {h1(q) ‖ 1, · · · , hl(q) ‖ l}, (5)



PPOIM: Privacy-Preserving Image Denoising and Matching 221

where gj = hj(q) ‖ j (j = 1, 2, · · · , l) is the j-th element of the g. For each LSH
value gj , a sub-token Qj = (K1,j ,K2,j) is generated via

K1,j ← F (Kg, 1 ‖ gj),K2,j ← F (Kg, 2 ‖ gj). (6)

The resulting secure search token Q = {Q1,Q2, · · · ,Ql}. On the other
hand, the user randomly selects Kt ∈R Zh, and computes Uadd

t = KtN
”,

Umul
t = KtN

” + 1 ∈RZN ′(t = 1, 2, · · · , n − 1) such that the final match-
ing result would be successfully decrypted after modulo N”. Then the user
encrypts patches qt ∈ q(t = 1, 2, · · · , n) with PPOIM.Enc(·) to generate the
ciphertexts [qt] = ([ρt], [θt]). Thus, [ρt] = (C2,ρt

, C3,ρt
), [θt] = (C2,θt

, C3,θt
),

[q] = {[ρt], [θt], C
′,add
ram,ρ, C

′,mul
ram,ρ, C

′,add
ram,θ, C

′,mul
ram,θ}. In addition, the user chooses

two thresholds t”, T respectively for obtaining the candidate patches for denois-
ing and for matching cost comparison to derive the final image matching result,
encrypts them into [t”], [T ] by exploiting algorithm PPOIM.Enc(·). Finally, the
user sends (Q, [q], [t”], [T ]) to the cloud.

(3) {S∗,H} ← Search(Q, [q], [t”], [P],D). For each sub-token Qj in Q, the
cloud re-computes the pseudorandom tag uj = F (K1,j , ctr), where ctr
is a self-incremental counter and initialized as 0. Let fidi

be an occur-
rence counter initialized as 0. The cloud searches the generic dictionary
D according to the pseudorandom tag uj to locate the associated vi,j(j ∈
{1, 2, · · · , l}). If uj = ui,j(j ∈ {1, 2, · · · , l}), it decrypts the correspond-
ing patch identifier idk,j = SE.D(K2,j , vi,j) via K2,j , and increases fidi

←
fidi

+ 1. Then, the cloud ranks the candidates pi based on the occurrence
counter fidi

, and derives an initial set S∗ of candidate patches.

However, LSH is an approximation algorithm that trades accuracy for effi-
ciency, which usually locates a large number of candidates with false pos-
itives introduced. Thus, to filter the false positive candidates, the cloud
computes distance between candidate pi in S∗ and query image q. For
each encrypted candidates patch [pi] = {[pi,t]} = {([ρi,t], [θi,t])} =
{((C2,ρi,t

, C3,ρi,t
), (C2,θi,t

, C3,θi,t
))}(t = 1, 2, · · · , n) and the encrypted query

patch [q] = {[qt]} = {([ρt], [θt])} = {((C2,ρt
, C3,ρt

), (C2,θt
, C3,θt

))}(t =
1, 2, · · · , n), the cloud computes the squared distance between [pi] and [q] in
the encrypted domain to securely refine the ranking for each candidate in S∗.

d2([pi], [q]) =
∑n

t=1(C
2
3,ρi,t

+ C2
3,ρt

) − 2
∑n

t=1[C3,ρi,t
C3,ρt

cos(C2,θi,t
− C2,θt

)],
(7)

where the cosine function is approximated by aggregating the first t′ items in its
power series expansion as cos x = 1− x2

2! +
x4

4! +· · · (−1)t′ x2t′

(2t′)! (i.e. In performance
evaluation, we would study the impact of different t′ on the accuracy of image
matching result and the efficiency of our proposed PPOIM.)

Then the cloud compares the squared distance d2([pi], [q]) with threshold
[t”] in the encrypted domain. Let the binary representations of t” and d2(pi,q)
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be t” = mn−1mn−2 · · · m0 and d2(pi,q) = m′
n−1m

′
n−2 · · · m′

0. Owing to the fully
homomorphic property of algorithm PPOIM.Enc(·), we denote

[t”] = PPOIM.Enc(mn−1)PPOIM.Enc(2n−1) + PPOIM.Enc(mn−2)
PPOIM.Enc(2n−2) + · · · + PPOIM.Enc(m0)PPOIM.Enc(1),
d2([pi], [q]) = PPOIM.Enc(m′

n−1)PPOIM.Enc(2n−1) + PPOIM.Enc
(m′

n−2)PPOIM.Enc(2n−2) + · · · + PPOIM.Enc(m0
′)PPOIM.Enc(1).

(8)

Then by exploiting the method of successive division with PPOIM.Enc(2)
that can also be executed and uploaded by the user in the previ-
ous Request algorithm, the cloud can derive the binary encryption of
[t”] = PPOIM.Enc(mn−1)PPOIM.Enc(mn−2) · · ·PPOIM.Enc(m0) =
me

n−1m
e
n−2 · · · me

0 and d2([pi], [q]) = PPOIM.Enc(m′
n−1)PPOIM.Enc

(m′
n−2) · · ·PPOIM. Enc(m′

0) = m′e
n−1m

′e
n−2 · · · m′e

0 . For binary representations,
we have the following observation for i = 0, 1, · · · , n − 1,

mi > m′
i if and only if mim

′
i + mi = 1,

mi = m′
i if and only if mi + m′

i + 1 = 1,
mi < m′

i if and only if mim
′
i + mi + 1 = 1. (9)

Therefore, according to the property of full homomorphism of PPOIM.Enc(·),
the cloud can evaluate Eq. (9) in the encrypted domain. To compare t” and
d2(pi,q), the binary chop method is adopted. Specifically for l =

⌈
n
2

⌉
,we have

mn−1 · · · ml
︸ ︷︷ ︸

hbs(t”)

ml−1 · · · m0
︸ ︷︷ ︸

lbs(t”)

> m′
n−1 · · · m′

l
︸ ︷︷ ︸
hbs(d2(pi,q))

m′
l−1 · · · m′

0
︸ ︷︷ ︸
lbs(d2(pi,q))

(10)

if and only if (hbs(t”) > hbs(d2(pi,q))) ∨ (hbs(t”) = hbs(d2(pi,q))) ∧ (lbs(t”) >
lbs(d2(pi,q))), where hbs(x), lbs(x) respectively refer to the higher binary
sequence and the lower binary sequence of x. To recursively performing the
comparison until deriving the final output, it is also required to define the fol-
lowing three variations hi,j ,ei,j and li,j , respectively referring to the boolean
logic values for the conditions mi+j−1 · · · mi > m′

i+j−1 · · · m′
i, mi+j−1 · · · mi =

m′
i+j−1 · · · m′

i, mi+j−1 · · · mi ≥ m′
i+j−1 · · · m′

i. It is obviously observed that
h0,n, e0,n, l0,n will be the final result. For each time, by selecting l =

⌈
j
2

⌉
and

combining Eqs. (9) and (10), we have

(1)If j = 1, hi,j = mim
′
i + mi , Else hi,j = hi+l,j−1 + ei+l,j−lti,l;

(2)If j = 1, ei,j = mi + m′
i , Else ei,j = ei+l,j−1ei,j ;

(3)If j = 1, li,j = mim
′
i + mi + 1 , Else li,j = ti+l,j−1 + ei+l,j−lli,l.

(11)

By comparing the threshold for denoising [t”] with each d2([pi], [q]) corre-
sponding to each candidate pi in S∗, all the encrypted comparing results
H = {[h0,n]i}(i = 1, 2, · · · , N) can be computed according to Eq. (11).
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(4) ˆ[q] ← Denoising([q], S∗,H) Collecting the encrypted database patch can-
didates in S∗, the cloud performs privacy-preserving image deniosing by
exploiting the classical technique of non-local means (NLM) [10], [11],
in which a weighted average computation in the encrypted domain is
adopted. Given a noisy patch [q] and a set of ranked patches S∗ =
{[p1], [p2], · · · , [pN ]}, the clean patch ˆ[q] is estimated as the weighted aver-
age of all ranked patches, the detailed process is described as follows.

To compute the normalizing factor [Z], we define h as a filtering parameter
depending on the standard deviation σ of the zero-mean Gaussian noise. Next,
the cloud calculates [Z] =

∑N
i=1 e′, where

e′ = e−d2([pi],[q])h
−2

=
∑t′

i′=0 (−1)i′ (d2([pi],[q])h
−2)i′

i′!
(12)

The index function ex is approximated by aggregation the first t
′

items in its
power series expansion as ex = 1 + x + x2

2! + x3

3! + · · · + xt′

t′! (i.e. In performance
evaluation, we would study the impact of different t′ on the accuracy of image
matching result and the efficiency of our proposed PPOIM) and the h−1 is the
inverse of h. Next, the cloud calculates the weight ω([q], [pi]) = [Z]−1e′, where
[Z]−1 is the inverse of [Z]. Finally, the clean patch ˆ[q] is estimated as the weighted
average of all encrypted ranked patches,

ˆ[q] =
∑N

i=1 ω([q], [pi])[pi][h0,n]i =
∑N

i=1[Z]−1e′[pi][h0,n]i. (13)

If the full query image Iq is composed of several patches, then for each patch,
the cloud adopts the same denoising method as is explained above to process
patch [q].

3.3 The Proposed Privacy-Preserving Image Matching Protocol
PPOIM

After denoising query image in the cloud, an estimate of the original query image
ˆ[Iq] composed of all ˆ[q] can be produced. In this section, we firstly clarify the def-

inition of Shape Context (SC) descriptor. Then, based on our proposed PPID in
Sect. 3.2, a privacy-preserving SC-based image matching protocol PPOIM with
efficient outsourcing is proposed, which consists of three algorithms SCGen,
ImgMatch and ImgDec. We assume that as long as at least one shape in
the database image matches the query image ˆ[Iq], these two images matches
successfully, regardless of the position and rotation angle of the shape in the
database image. We also assume that database images and the query image
are in the same polar coordinate system, which means that the query image
shares the center point with database images. The cloud computes matching
cost between the encrypted denoised query image ˆ[Iq] and all database images
[Ii](i = 1, 2, · · · , N), then compares all matching cost with a threshold [T ].
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Shape Context in Plaintext Domain. Belongie et al. [8] introduced the
idea of shape context. In their work, a shape is represented by a set of points
sampled from the contours, and shape context describes location information
about all other boundary points relative to a specific boundary point in the
shape. Here, we prefer to sample the shape with roughly uniform spacing. Each
shape context is a coarse log-polar histogram of the coordinates of the remaining
points measured using the reference point as the origin and the line joining the
reference point and the center as the pole axis. Additionally, the center of mass
of any shape is invariant to scaling, rotation or translation. Figure 2 shows the
definition of Shape Context.

The shape ‘A’ in Fig. 2 is composed of a set of discrete points A = {ai}(i =
1, 2, · · · , n) sampled from the contour. To compute a shape context of ai in A,
we create a new polar coordinate. Let the referenced point ai be the new pole
and the line joining ai and the center o of the shape be the new pole axis aio.
The set of vectors originating from ai to the remained n− 1 points is generated.
To compute the shape context, we firstly divide the full image space into 12
sectors by angle, then draw 5 concentric circles with ai as center point and the
power of 2 as radius. Thus, the full image can be divided into 60 bins. Next, we
count the number of boundary points within each bin to form the shape context.
All points falling in different bins forms different relative vectors, which becomes
the shape context of the point ai. Then we compute Ti,k to indicate the set of
points, namely vector −−→aiaj in bin(k), selecting ai as the referenced point,

Ti,k = {aj |aj 
= ai, (−→oaj − −→oai) ∈ bin(k)}. (14)

Let hi(k) = |Ti,k| represent the number of points in Ti,k, thus the shape context
hi = {hi(k)}(k = 1, 2, · · · , 60).

Fig. 2. The description of shape context
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Privacy-Preserving Image Matching. In this subsection, a privacy-
preserving image matching protocol based on shape context descriptor is pro-
posed, which comprises the following three algorithms SCGen, ImgMatch and
ImgDec. The details are presented as follows.

(1) {{[hx(k)]}, {[ht(k)]}} ← SCGen([Ii], ˆ[Iq]) To generate the encrypted shape
context for each sample point in [Ii] and ˆ[Iq]. Without loss of generality, we
assume that the point sq,t is the pole in shape of image ˆ[Iq] and the point
si,x is the pole in shape of image [Ii], and all sq,t, si,x(t, x = 1, 2, · · · , n) are
in the edge of shapes in each image, then we connect the pole sq,t with the
center point oq of shape in image ˆ[Iq] , the pole si,x with the same point
oq respectively and divide the full image space into 60 bins, by adopting
the method referred in ShapeContext inPlaintextDomain part. Then
the cloud counts how many points are located in bin(k) (k = 1, 2, · · · , 60)
in each shape respectively. Here, we mainly focus on generating the shape
context of point si,x in image [Ii]. Each bin(k) is fixed by two angles (θk, θk1)
and two polar radius (ρk, ρk1), where θk1 > θk and ρk1 > ρk. To determine
whether an encrypted point [si,x′ ] = ([ρx′ ], [θx′ ]) is located in bin(k), the
cloud adopts the following modified privacy-preserving comparison opera-
tions presented in our proposed privacy-preserving image denoising protocol
PPID. If the point [si,x′ ] = ([ρx′ ], [θx′ ]) is in bin(k), it simultaneously satis-
fies the following four conditions:
(a)ρx′ > ρk, returning a final result [hx′,k,1

0,n ]; (b)ρx′ � ρk1 , returning

[1 − hx′,k,2
0,n ];

(c)θx′ > θk, returning a final result [hx′,k,3
0,n ]; (d)θx′ � θk1 , returning

[1 − hx′,k,4
0,n ].

Thus, the computation result [hx′
] = [hx′,k,1

0,n ]·[1−hx′,k,2
0,n ]·[hx′,k,3

0,n ]·[1−hx′,k,4
0,n ]

means whether a point si,x′ is in bin(k), and [hx(k)] =
∑n

x′=1[h
x′

] repre-
sents the encrypted number of points in bin(k). Thus, all {[hx(k)]}(k =
1, 2, · · · , 60) constitutes the shape context of point si,x. Similarly, the shape
context of point sq,t in image ˆ[Iq] can be calculated as {[ht(k)]}(k =
1, 2, · · · , 60).

(2) {{[hi
0,n]}, C3} ← ImgMatch({[hx(k)]}, {[ht(k)]}, [T ]) After obtaining the

shape context for each point, the cloud firstly finds the most matching point
among all points si,x(x = 1, 2, · · · , n) in image [Ii] for each point sq,t(t =
1, 2, · · · , n) in ˆ[Iq]. The cloud computes [costt,x] denoted as the encrypted
matching cost between point sq,t and si,x,

[costt,x] = 1
2

∑60
k=1

([ht(k)]−[hx(k)])
2

[ht(k)]+[hx(k)]
, (15)

where [ht(k)] and [hx(k)] are shape contexts at points sq,t and si,x, respectively.
Given the set of cost [costt,x] between point sq,t on the query image and

all points si,x on the database images, the cloud need find the minimum
matching cost for sq,t in ˆ[Iq] in encrypted domain. Thus, the cloud adopts a
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modified privacy-preserving comparison operation presented in our proposed
privacy-preserving image denoising protocol PPID as follows: A variant fx,x′ =
[1−hx,x′

0,n ](x, x′ = 1, 2 · · · , n) is defined as the comparing result between [costt,x]

and [costt,x′ ], where hx,x′
0,n is the tag showing the whether costt,x is larger than

costt,x′ . To find the minimum matching cost with point sq,t, the cloud computes
[costt,x]min =

∑n
x=1(

∏n
x′=1 fx,x′)[cost(t,x)]. Then the cloud can minimize the

total encrypted minimum matching cost for each encrypted database image [Ii],

[costi] =
∑n

t=1[costt,x]min. (16)

The cloud obtains N such encrypted matching cost {[costi]}(i = 1, 2, · · · , N)
and compares them with the threshold [T ] by executing the same compar-
ison algorithm mentioned in denoising part, generating the encrypted com-
paring results {[hi

0,n]}(i = 1, 2, · · · , N). Finally, the cloud computes C3 =

H1(
⋃N

i=1[h
i
0,n] ‖Cadd

ram,ρ ‖Cmul
ram,ρ ‖Cadd

ram,θ ‖Cmul
ram,θ ‖C

′,add
ram,ρ ‖C

′,mul
ram,ρ ‖C

′,add
ram,θ ‖

C
′,mul
ram,θ) and returns it with {[hi

0,n]}(i = 1, 2, · · · , N) to the user.

(3) {hi
T } ← ImgDec({[hi

0,n]}, C3, [P], [q], SKf ) After receiving the final
encrypted comparison results {[hi

0,n]}(i = 1, 2, · · · , N), the authorized user
performs algorithm PPOIM.Dec(·) as follows. The user firstly decrypts
p ‖h = f−1

SKf
(C1,1) by using the secret key SKf , and checks whether

all of Cadd
ram,ρ = H0(p ‖h ‖ ⋃n

t=1 C2,ρi,t
), Cmul

ram,ρ = H0(p ‖h ‖ ⋃n
t=1 C3,ρi,t

),
Cadd

ram,θ = H0(p ‖h ‖ ⋃n
t=1 C2,θi,t

), Cmul
ram,θ = H0(p ‖h ‖ ⋃n

t=1 C3,θi,t
),

C
′,add
ram,ρ = H0(p ‖h ‖ ⋃n

t=1 C2,ρt
), C

′,mul
ram,ρ = H0(p ‖h ‖ ⋃n

t=1 C3,ρt
),

C
′,add
ram,θ = H0(p ‖h ‖ ⋃n

t=1C2,θt
), C

′,mul
ram,θ = H0(p ‖h ‖ ⋃n

t=1 C3,θt
),

C3 = H1(
⋃N

i=1[h
i
0,n] ‖Cadd

ram,ρ ‖Cmul
ram,ρ ‖Cadd

ram,θ ‖Cmul
ram,θ ‖C

′,add
ram,ρ ‖C

′,mul
ram,ρ ‖

C
′,add
ram,θ ‖C

′,mul
ram,θ) hold. If not, this algorithm outputs ⊥; otherwise, the user

continues to compute q = N
′
(ph)−1, N” = pq and

Ci
T,p = ([hi

0,n]modN”)mod p = Hi
T,p mod p,

Ci
T,q = ([hi

0,n]modN”)mod q = Hi
T,q mod q. (17)

Then the user can decipher the matching results hi
0,n(i = 1, 2, · · · , N) by exploit-

ing the Chinese Remainder Theorem (CRM) as follows,

hi
0,n = h′

pqH
i
T,p + h′

qpHi
T,q modN” (18)

where h′
p, h′

q respectively satisfies h′
pq ≡ 1mod p, h′

qp ≡ 1mod q which can
be efficiently computed since the greatest common divisor of p and q namely
gcd(p, q) = 1. If the final result hi

0,n = 1(i = 1, 2, · · · , N), the image Ii corre-
sponding to this result matches Iq; Otherwise, it means that the matching cost
is larger than T , and Ii mismatches Îq.
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It is noted that the algorithms PPOIM.Enc(·) and PPOIM.Dec(·) pre-
serve the fully homomorphic property, by supporting the mixed operations (i.e.
the addition and multiplication operations) on ciphertexts of polar coordinates
of both the database images and the query image, namely [ρi,t], [θi,t], [ρt], [θt](i =
1, 2, · · · , N ; t = 1, 2, · · · , n), that are required in our PPOIM. All the additive
and multiplicative blinding factors Uadd

i,t , Umul
i,t , Uadd

t , Umul
t can be cancelled out

after modular N” in PPOIM.Dec(·) and the original image matching result
would be successfully recovered. The correctness of our proposed PPOIM can
be straightforwardly derived from the protocol descriptions presented above.

4 Security Proof

In this section, we give the formal security proof of our proposed PPOIM in the
aspects of image privacy and matching result privacy.

Theorem 1: (Image Privacy) The database image privacy is unconditionally-
secure (information theoretic secure) against the collusion between the cloud and
malicious users, namely H(ρi,t|[ρi,t]) = H(ρi,t) and H(θi,t|[θi,t]) = H(θi,t) where
H(·), H(·|·) respectively refer to the entropy function and the conditional entropy
function. The unconditional security of query image privacy can be achieved in
the same way.

In our PPOIM, the cloud and malicious users not holding secret key SKf

cannot invert the one-way trapdoor permutation f from C1,1 generated by PPO
IM.Enc(·) in Eq. (1) to derive p, q, which are adopted to encrypt each database
image pi = (ρi,t, θi,t). Moreover, the uniformly distributed randomnesses
Uadd

i,t , Umul
i,t are adopted to further blind pi to guarantee the unconditional secu-

rity of database image privacy. The proof details are referred to the full paper.

Theorem 2: (Matching Result Privacy) Let A be a malicious adversary
defeating the matching result privacy of our proposed PPOIM with a non-
negligible advantage defined as ε

′,n(λ), where n(λ) refers to the total number
of queries made to the oracles and λ is the security parameter. There exists a
simulator B who can use A to invert the one-way trapdoor permutation with the
non-negligible probability ε ≥ ε

′,n(λ)− n(λ)
2λ−1 . In our proposed PPOIM, the match-

ing result privacy is achieved since only the authorized user possessing the secret
key SKf can decrypt p ‖h = f−1

SKf
(C1,1), compute q = N

′
(ph)−1, and recover

the image matching result hi
0,n by Eqs. (17) and (18). in PPOIM.Dec(·). The

proof details are referred to the full paper.

5 Performance Evaluation

In this section, we evaluate the performance of our proposed PPOIM in the
aspects of computational overhead, communication overhead and image match-
ing accuracy. We conduct the extensive evaluation to demonstrate the perfor-
mance of our proposed PPOIM on the MPEG-7 shape silhouette database [22]
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in the aspects of computational cost, communication cost on the data owner,
the cloud and the user’s ends, and the image matching accuracy. All our exper-
iments are implemented by exploiting MIRACLE library [20] on a Windows
10 with Intel Core i5-7400 CPU 3.00GHz. The performance is analyzed by an
efficiency comparison between our proposed PPOIM and the privacy-preserving
shape context based image matching protocol exploiting public key FHE [8], [15].
Let the security parameter be λ = 512. In our proposed PPOIM, we respectively
set |p| = |q| = |h| = 512, and the one-way trapdoor permutation implemented
by RSA on ZN” where |N”| = 1024-bit long. Figures 3, 4 and 5 studied the com-
putational cost under the parameters: the number of database images N , the
sampled points in each image n and the threshold t

′
for power series expansion.

Figure 3 demonstrates that the computational cost on the data owner’s end of our
proposed PPOIM is dramatically lower than [8]. The reason is that [8] requires
to execute public key FHE on each sampled point of all database images, namely
O(Nn) times in total; while in our PPOIM, the one-way trapdoor permutation,
implemented by RSA and the computational cost of which is much less than pub-
lic key FHE, is required to perform only once to encrypt batch of sampled points.
Figure 4 demonstrates the computational cost on the cloud’s end of our PPOIM
is considerably less than [8], owing to the fact that Brakerski’s public key FHE
adopted in [8] requires to perform O(N2

m) multiplications for a ciphertext multi-
plication where Nm denotes the number of ciphertext components. Additionally,
Nm would increase by one every time a ciphertext multiplication is needed for
image denoising and matching in the encrypted domain. On the contrary, multi-
plication is required to perform only once every time a ciphertext multiplication
is needed in our PPOIM. Figure 5 illustrates that the computational cost on the
user’s end is significantly lower than [8], since the decryption of Brakerski’s pub-
lic key FHE [15] requires the inner product composed of O(Nm) multiplications;
while in our PPOIM the multiplication complexity for decryption is O(1).
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Figures 6, 7 and 8 show that the communication cost of our PPOIM are dra-
matically reduced no matter at the data owner, the cloud and the user’s ends
under the parameters N,n, t

′
, and the number of LSH functions l, owing to
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the same fact that each ciphertext multiplication in [15] would incur an addi-
tional ciphertext component, leading to a high communication cost. Figure 9
demonstrates that the image matching accuracy of our PPOIM in the encrypted
domain is only slightly lower than the corresponding protocol in plaintext with-
out affecting its availability. It is observed that the matching probability increases
as the threshold t

′
of power series expansion and the threshold of matching cost

T increase, since the approximate integers adopted to evaluate the encrypted
squared distance d2([pi], [q]) in Eq. (7) and the encrypted normalizing factor [Z]
in Eq. (12) would be more accurate, and more database images would match
the queried one. The matching probability also increases as the threshold t”

for obtaining the candidate patches for denoising decreases, since more precise
patches are found to recover the original clean image more accurately in the
encrypted domain.

6 Conclusion

In this paper, a privacy-preserving shape context based image denoising and
matching protocol PPOIM with efficient outsourcing is proposed. Firstly, to
improve the accuracy of image matching, a privacy-preserving image denoising
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scheme PPID is proposed without exploiting public key FHE. Then, based on
PPID, a privacy-preserving image matching adopting shape context descriptor
is devised. Formal security proof and extensive simulations demonstrate the effi-
ciency and practicability of our proposed PPOIM.
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Abstract. The problem of preserving privacy while mining data has
been studied extensively in recent years because of its importance for
enabling sharing data sets. Differential Identifiability, parameterized by
the probability of individual identification ρ, was proposed to provide a
solution to this problem. Our study of the proposed Differential Identi-
fiability model shows that: First, its usability is based on a very strong
requirement. That is, the prior probability of an individual being present
in a database is the same for all individuals. Second, there is no formal
link between the proposed model and well known privacy models such as
Differential Privacy. This paper presents a new differential identifiability
model for preventing the disclosure of the presence of an individual in a
database while considering an adversary with arbitrary prior knowledge
about each individual. We show that the general Laplace noise addition
mechanism can be used to satisfy our new differential identifiability def-
inition and that there is a direct link between differential privacy and
our proposed model. The evaluation of our model shows that it provides
a good privacy/utility trade-off for most aggregate queries.

1 Introduction

Many privacy models have been proposed for protecting individuals’ privacy
in published data, e.g., k -anonymity [14], l -diversity [13], t-closeness [10], etc.
These models suffer from a key limitation: They cannot guarantee that the rela-
tionship between individuals’ identities and their sensitive information are pro-
tected in case in which the adversary has additional knowledge. A privacy notion
that is progressively gaining acceptance for overcoming the previously mentioned
privacy problem is differential privacy (DP). Informally, DP requires that the
impact of the presence of any individual entity in a dataset on the output of
the queries to be limited. More specifically, DP ensures that any two databases
that differ only in one record will induce output distributions that are close in
the manner that the probabilities of each possible query’s outputs differ by a
bounded multiplicative factor ε.
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Several research have investigated whether DP can provide sufficient protec-
tion and how to choose the right value for the parameter ε. Lee and Clifton
showed in [9] that the DP’s parameter ε can only limit how much one individual
can change the output of a query. It does not limit the amount of information that
are revealed about an individual. This limitation makes DP not fully matching
the legal definition of privacy that requires the protection of individually identi-
fiable data. Attempting to meet the previous privacy definition, Lee and Clifton
proposed in [9] a new privacy model called differential identifiability (DI). They
assume that a database record can be linked to the identity of an individual, and
they provide a model to quantify the leakage of the information on whether an
individual participates in the database or not. Informally, if we denote by pos-
sible worlds the set of all possible databases resulting from removing an (any)
individual from the initial database, DI ensures that the identifiability risk of any
individual in the universe is less than or equal to a parameter ρ. This param-
eter can be interpreted as the degree of indistinguishability between possible
worlds, where the possible worlds differ by (any) one individual. Unfortunately,
the proposed model is based on the assumption that the prior probability of an
individual being in the database is the same for all individuals. We believe that
this is a very strong requirement since it requires an adversary to know exactly
the same amount of information about each individual in the database. Clearly,
this assumption is seldom satisfied in the real environments. Moreover, There is
no direct translation from the DI parameter ρ to the DP parameter ε, and thus,
the data utility may become unable to estimate.

In this paper, we try to remedy the previously mentioned drawbacks by
proposing a new model called (α, β)-DI. The model aims to limit the leakage
of information on whether an individual participates in a database or not when
considering an adversary with arbitrary prior knowledge about each individual
in the database (the same strong guarantees as DP). We show that the gen-
eral Laplacian noise addition mechanism for differential privacy can be adapted
to provide (α, β)-differentially identifiable outputs and that there is a direct
translation between DP and our (α, β)-DI model. In a thorough experimental
evaluation on real datasets, we studied the utility that can be provided by our
model for several kinds of statistical queries.

The rest of the paper is organized as follows. Section 2 introduces the nota-
tions and preliminaries that we are going to use. Section 3 presents the problem
we address and the adversary model we consider in our work. In Sect. 4, we first
show how to model the belief of an adversary about the individuals present in the
database, and second, how the belief of the adversary will change when he/she
interacts with the database. Section 5 defines our new Differential Identifiability
model. In Sect. 6, we studied whether is it possible to provide privacy and utility
without making assumptions about the prior knowledge of the adversary. Then
we propose a general Laplacian noise addition mechanism to satisfy (α, β)-DI.
Section 7 presents a translation from the two parameters α and β we are using in
our model to the DP parameter ε. Section 8 evaluates the utility/privacy trade-
off provided by our model for different kinds of aggregate queries. We discuss
related work in Sect. 9 and conclude the paper in Sect. 10.
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Table 1. List of symbols

D Database to be queried

Ds Database containing records having the sensitive property s

M A privacy preserving mechanism

U The universe of individuals

ι An entity in the universe U

2 Notations and Preliminaries

In our model, we used the set of notations given in Table 1. A dataset D is
generated from the data associated with a subset of entities in U . For all D′,Ds ∈
U , the prior belief that some database D′ is equal to Ds is given by B∅(D′ = Ds).
The posterior belief that some database D′ is equal to Ds after observing the
response τ of a query q is given by Bq,τ (D′ = Ds).

Definition 1 (Adjacent Databases). Two databases D1 and D2 are adjacent
(D1

ι∼ D2) if they differ on the data of a single individual ι.

For sake of simplicity, we will suppose that each individual has only one
record in the database. That is, two adjacent databases differ only in one record.

Definition 2 (Global Sensitivity). Given a query function q : U → R. The
global sensitivity of q is defined as following:

Δq = max
∀D,D′∈U

|q(D) − q(D′)|

where D and D′ are adjacent database and q(D) denotes the result of the execu-
tion of the q over the database D.

3 Problem Statement and Adversary Model

We consider a database D containing a set of information about a set of indi-
viduals in U , and Ds the database containing the set of individuals in D having
a sensitive property s (e.g., the set of individuals having VIH). As in the DP
model, we consider a very strong adversary who knows every single information
in D. That is, we suppose that the adversary knows every attribute value in
D. In addition, we suppose that the adversary knows that Ds is composed of
individuals who have s and that he/she don’t know which individuals in D are in
Ds. Considering that a privacy-preserving data analysis aims to release analysis
results without revealing the identities of the individuals, a privacy breach is
then to allow an adversary to figure out individual’s presence/absence in Ds.

In our model, we suppose that the adversary has an infinite computational
power which will be used to identify the set of individuals in Ds by combining
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the knowledge of D and the results of the queries to be executed over Ds. This
is identical to finding out the set of missing individuals in Ds from D. In our
work, we will consider the worst case in which D and Ds are adjacent databases.
That is, the adversary has to find out only the missing individual in Ds to know
all individuals in Ds. In the remaining of this paper, we will use Ds to represent
a D’s adjacent database where all individual in Ds have a sensitive property s.

4 Adversary Knowledge Modeling

The key to a good privacy model is to correctly quantify how much information
an adversary can deduce about the presence of an individual in the published
data. This heavily depends on the knowledge the adversary possesses about the
individuals in the database. Adversary belief changes each time a result of a query
performed over Ds is observed by the adversary. We use the Bayesian inference
to model an adversary belief change as defined in the following definition.

Definition 3 (Query observation impact on adversary belief). For all
two pairs of adjacent databases D∼D′ and D∼Ds where D,D′,Ds ∈ U , given
a query function q : U → R, a mechanism M , and τ = M(q(Ds)) the result of
the execution of q using M . The adversary belief on D′ = Ds after observing
τ = M(q(Ds)) is defined as:

Bq,τ (D′ = Ds) = Pr
[
D′ = Ds|M(q(Ds)) = τ

]

=
Pr

[
M(q(D′)) = τ

]

Pr
[
(q, τ)

] × Pr
[
D′ = Ds

] (1)

where Pr
[
D′ = Ds

]
denotes the prior belief (B∅(D′ = Ds)) of the adversary on

D = Ds (before observing τ = M(q(Ds))) and Pr
[
(q, τ)

]
denotes the probability

of observing the result τ when the query q is performed.

5 Differential Identifiability: The New Model

Definition 4 ((α, β)-DI).Given a query function q : U → R, a randomized
mechanism M is said to be (α, β)-differentially identifiable if for all two pairs of
adjacent databases D∼D′ and D∼Ds where D,D′,Ds ∈ U :

(1 − α) × B∅(D′ = Ds) ≤ Bq,τ (D′ = Ds) ≤ (1 + β) × B∅(D′ = Ds) (2)

where 0 < α < 1, 0 < β, and τ denotes the result observed by the adversary for
M(q(Ds)).

Informally, the randomized mechanism M is (α, β)-differentially identifiable
means that the ratio of the adversary belief on D′ = Ds before and after observ-
ing M(q(Ds)) = τ is lower and upper bounded respectively by 1 − α and 1 + β.
The identification risks represented by the lower bound 1 − α and the upper
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bound 1 + β are not the same. In the left side of Inequality (2), the value of
α bounds the maximum attacker belief change on identifying the presence of
the individual ι in the database Ds, where D′ ι∼ D. More α is bigger, more
the adversary belief in D′ = Ds will be smaller, and more the adversary belief
in D

ι∼ Ds will be also smaller. In the right side of Inequality (2), the value
of β bounds the maximum belief of an attacker on identifying all the individ-
uals present in the database Ds. More β is bigger more the adversary belief in
D

ι∼ Ds will be bigger.
Most existing privacy frameworks bound only the adversary’s belief on the

presence of one individual in the database. We believe that bounding the adver-
sary’s belief on identifying all individuals in the database is very useful. To
illustrate, let us suppose that the database D contains information about 10
individuals and that the prior adversary’s belief that each individual in D ∩ Ds

is 10−1. Now if we suppose that the data publisher wants to bound the probabil-
ity of identifying the presence of an individual in Ds to 1/5, the adversary can
end up with the following belief: for 9 individual, the probability that each one of
them is in Ds is equal to (10−1−10−6)/9. For the last individual, the probability
that he/she is in Ds is equal to 10−6. Since D and Ds are neighboring database,
the adversary might know all individual in Ds with a probability of 1 − 10−6.

We studied how our definition of DI composes. Given a data consumer (adver-
sary) who access a database multiple times via differentially identifiable mech-
anisms each of which having its own DI guarantees, what level of DI is still
guaranteed on the union of those outputs? In order to formally define compo-
sition, we consider a similar composition scenario as the one proposed in [6]. A
composition experiment considers an adversary A who is trying to break pri-
vacy and figure out whether or not a particular individual is in the database by
analyzing the hypotheses on the output of a sequential and adaptively chosen
queries executed via differentially identifiable mechanisms. That is, we permit
the adversary to have full control over which query to ask, and which differen-
tially identifiable mechanism to be used for each query. In addition, the adversary
is free to make these choices adaptively based on previous queries outcomes.

Theorem 1. Given a set of queries functions Q = {q1, · · · , qn} (∀i ∈ [1, n], qi :
U → R) and a set of n mechanisms M1, · · · ,Mn. Each Mi, i ∈ [1, n], is
(αi, βi)-differentially identifiable. Then for all databases D,Ds, where D∼Ds,
the combination M = (M1(q1(Ds)),M2(q2(Ds)), · · · ,Mn(qn(Ds))) is (αc, βc)-
differentially identifiable where:

αc =
n∑

k=1

(−1)k+1σk(α1, · · · , αn) and βc =
n∑

k=0

(
σk(β1, · · · , βn)

) − 1

with σk denotes the elementary symmetric polynomials.

Proof. Let us suppose that ∀i ∈ [1, n] : Mi(qi(Ds)) = τi and that R = {τi|i ∈
[1, n]}. First, Let us prove by induction that, for all two pairs of adjacent
databases D∼D′ and D∼Ds where D,D′,Ds ∈ U , the belief of the adversary
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on D′ equals to Ds (BQ,K(D′ = Ds)) after the observation of the results of the
set of n arbitrary and adaptively chosen queries Q is bounded as following:

n∏

i=1

(1 − αi) × B∅(D′ = Ds) ≤ BQ,R(D′ = Ds) ≤
n∏

i=1

(1 + βi) × B∅(D′ = Ds)

(3)

By definition (Definition 4), Inequality (3) holds for n = 1. That is, when using
an (α1, β1)-differentially identifiable mechanism M1 to perform q1, based on
Definition 4 we get:

(1 − α1) × B∅(D′ = Ds) ≤ Bq1,r1(D
′ = Ds) ≤ (1 + β1) × B∅(D′ = Ds) (4)

Suppose now that Inequality (3) holds for n = k. Then, by denoting Qk =
{q1, q2, · · · , qk} and Rk = {r1, r2, · · · , rk}, the following inequality holds:

k∏

i=1

(1 − αi) × B∅(D′ = Ds) ≤ BQk,Rk(D′ = Ds) ≤
k∏

i=1

(1 + βi) × B∅(D′ = Ds)

(5)

Let us now prove that the Inequality (3) holds for n = k+1. Since the adversary
will observe the result of the query qk+1 after observing the results of the previous
k queries q1, · · · , qk. The adversary belief on D′ equals to Ds before observing
the output of qk+1 is BQk,Rk(D′ = Ds). By considering the fact that qk+1

is performed using the (αk+1, βk+1)-differential identifiable mechanism Mk+1,
based on Definition 4, we get:

(1 − αk+1) × BQk,Rk(D′ = Ds) ≤ BQk+1,Rk+1(D′ = Ds) ≤ (1 + βk+1)
×BQk,Rk(D′ = Ds)

(6)

Since, 0 < α < 1 and that we supposed that Inequality (5) holds, we can use its
left side to show that:

k+1∏

i=1

(1 − αi) × B∅(D′ = Ds) ≤ (1 − αk+1) × BQk,Rk(D′ = Ds) (7)

Then using the fact that β > 0 together with the right side of Inequality (5), we
get:

(1 + βk+1) × BQk,Rk(D′ = Ds) ≤
k+1∏

i=1

(1 + βi) × B∅(D′ = Ds) (8)

Then based on Inequalities (6), (7), and (8) we get:

k+1∏

i=1

(1 − αi) × B∅(D′ = Ds) ≤ BQk+1,Rk+1(D′ = Ds) ≤
k+1∏

i=1

(1 + βi)

×B∅(D′ = Ds)

(9)
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which prove that Inequality (3) holds for n = k+1, and by induction it holds for
all n ∈ N

∗. Now, based on the fundamental theorem of symmetric polynomials
we have:

n∏

i=1

(1 − αi) = 1 +
n∑

k=1

(−1)kσk(α1, · · · , αn)

= 1 −
n∑

k=1

(−1)k+1σk(α1, · · · , αn)

︸ ︷︷ ︸

αc

and
n∏

i=1

(1 + βi) =
n∑

k=0

σk(β1, · · · , βn)

= 1 +
n∑

k=1

(
σk(β1, · · · , βn)

) − 1

︸ ︷︷ ︸

βc

6 Satisfying Differential Identifiability

Given the above, in this section, we show how to achieve (α, β)-DI. For this, we
first define the identifiability sensitivity of a query as following.

Definition 5 (Query Identifiability Sensitivity). For a given query func-
tion q : U → R, the query identifiability sensitivity of q is

Θq = max
D,D1,D2∈U

∣
∣q(D1) − q(D2)

∣
∣

where D1 and D2 are adjacent to D.

Note that the Identifiability Sensitivity of a query is different than its Global
Sensitivity (Definition 2) used in DP. The Identifiability Sensitivity of a query q
represents, for all two pairs of adjacent databases (D∼D1) and (D∼D2) in U ,
the maximum difference between the outputs that q return when executed over
D1 and D2.

Motivated by the difficulty for a data publisher to know the prior knowledge
of an adversary about each individual in the database, we firstly investigate the
achievement of the (α, β)-DI model without taking into consideration the prior
knowledge of the adversary. The following theorem defines a prior-free Laplace
distribution-based mechanism that achieves (α, β)-DI.

Theorem 2 (Prior-free mechanism). Let Lap(λ) be the Laplace distribution
having a density function h(x) = 1

2λ exp(− |X−μ|
λ ) where λ(> 0) is a scale factor

and μ is a mean. For a given query function q, a randomized mechanism ML
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that returns q(X)+Y as an answer where Y is drawn i.i.d from Lap(λ) satisfies
(α, β)-DI for any λ such that:

λ ≥ max
(

Θq

log(1 + β)
,

−Θq

log(1 − α)

)

Proof. Since ML = q(X) + Y where Y is drawn i.i.d from Lap(λ), then, for all
two pairs of adjacent databases (D∼D1) and (D∼D2) in U , we have:

Pr
[
ML(q(D′

1)) = τ
]

Pr
[
ML(q(D′

2)) = τ
] =

exp(− |τ−q(D′
1)|

λ )

exp(− |τ−q(D′
2)|

λ )

= exp(
|r − q(D′

2)| − |r − q(D′
1)|

λ
)

we deduce then the following inequality:

exp
(

−|q(D′
1) − q(D′

2)|
λ

)
≤ Pr

[
ML(q(D′

1)) = τ
]

Pr
[
ML(q(D′

2)) = τ
] ≤ exp

( |q(D′
1) − q(D′

2)|
λ

)

(10)
Then using Definition 5, we get:

exp
(

−Θq

λ

)
≤ Pr

[
ML(q(D′

1)) = τ
]

Pr
[
ML(q(D′

2)) = τ
] ≤ exp

(
Θq

λ

)
(11)

In other hand, using Definition 3, and for all two pairs of adjacent databases
(D∼D′

i) and (D∼Ds) in U , we have

Bq,τ (D′
i = Ds) =

Pr
[
ML(q(D′

i)) = τ
] × Pr

[
D′

i = Ds
]

∑

D′
j∈D′

Pr[D′
j = Ds] × Pr[ML(q(D′

j)) = τ ]

=
Pr

[
D′

i = Ds
]

Pr
[
D′

i = Ds
]
+

∑

D′
j∈D′,D′

j �=D′
i

Pr[D′
j = Ds] × Pr[ML(q(D′

j))=τ ]

Pr[ML(q(D′
i))=τ ]

Then using Inequality 11 we deduce

Pr
[
D′

i = Ds
]

Pr
[
D′

i = Ds
]
+ exp

(
Θq

λ

) ∑

D′
j∈D′,D′

j �=D′
i

Pr[D′
j = Ds]

≤ Bq,τ (D′
i = Ds)

(12)

And

Bq,τ (D′
i = Ds) ≤ Pr

[
D′

i = Ds
]

Pr
[
D′

i = Ds
]
+ exp

(
−Θq

λ

) ∑

D′
j∈D′,D′

j �=D′
i

Pr[D′
j = Ds] (13)
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Now, based on the fact that
∑

D′
j∈D′,D′

j �=D′
i

Pr[D′
j = Ds] = 1 − Pr[D′

i = Ds],

Inequality (12) can be transformed as

Pr
[
D′

i = Ds
]

Pr
[
D′

i = Ds
]
(

1 − exp
(

Θq

λ

)
+

exp
(

Θq
λ

)

Pr
[
D′

i=Ds
]
) ≤ Bq,τ (D′

i = Ds)

1

1 − exp
(

Θq

λ

)
+

exp
(

Θq
λ

)

Pr
[
D′

i=Ds
]

≤
(14)

Since 1 − exp
(

Θq

λ

)
≤ 0 and by considering Pr[D′

i = Ds] = B∅(D′
i = Ds)

(Definition 3), we obtain

exp
(

−Θq

λ

)
≤ Bq,τ (D′

i = Ds)
B∅(D′

i = Ds)
(15)

We apply the same transformations to Inequality (13) to get

Bq,τ (D′
i = Ds)

B∅(D′
i = Ds)

≤ exp
(

Θq

λ

)
(16)

Using Inequalities (15) and (16) together with Definition 4, ML = q(X) + Y
where Y is drawn i.i.d from Lap(λ) satisfies (α, β)-DI if:

1 − α ≤ exp
(

−Θq

λ

)
and exp

(
Θq

λ

)
≤ 1 + β

Rearranging yields

λ ≥ Θq

log(1 + β)
and λ ≥ −Θq

log(1 − α)

Finally, we obtain the following

λ ≥ max
(

Θq

log(1 + β)
,

−Θq

log(1 − α)

)

The previous theorem uses Laplace distribution to satisfy (α, β)-DI without
taking into consideration the prior knowledge of the adversary about the presence
of each individual in the database Ds. The proposed construction seems to be
useful to satisfy (α, β)-DI in case in which the prior knowledge of the adversary
could not be known in advance. Unfortunately, in practice, it is not possible to
properly instantiate our previous construction, i.e., to find the right values of α
and β that make the model useful for an adversary having arbitrary prior belief.
That is, in one hand, the values of α and β should be non-negligible so that the
model provides an acceptable utility level for the queries that will be performed
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by the adversary over the database. In the other hand, the value of α and β should
not be bigger enough to allow the adversary to be sure about the presence of any
individual in the database. Let us suppose that the adversary is not fully sure
that an individual ι is in the database Ds (i.e., Pr[ι ∈ Ds] < 1). If we consider
only the left-hand side of Inequality (2), for any value of α ∈]0, 1[, our model will
still ensure that the adversary cannot be 100% sure that ι is in Ds. Nevertheless,
the previous construction may allow the adversary to be pretty much sure that
ι is in the database Ds (i.e., for D′ ι∼ D : Bq,τ (D′ = Ds) is very close to zero).
Things are much more difficult for choosing the right value of β. According to
the definition of our model (Definition 4), to prevent the adversary from knowing
with certainty all individuals in the database Ds, the data publisher should
choose a β value such that: B∅(D′ = Ds)× (1+β) < 1. Unfortunately, satisfying
the previous condition becomes not possible if the adversary prior on D′ = Ds

is not taken into consideration.
Seeking to overcome the previous limitation, we define a prior-dependent

Laplace distribution based mechanism for achieving (α, β)-DI. The following
theorem gives a lower bound for the quantity of Laplace noise to be added
to the response of a query q to achieve (α, β)-DI for a given adversary’s prior
distribution P.

Theorem 3 (Prior-dependent mechanism). For all database D ∈ U of size
n(> 1), let D′ be the set of D’s adjacent databases. For a given prior distribution
P, For a given query function q : U → R, a randomized mechanism ML that
returns q(X) + Y as an answer where Y is drawn i.i.d from Lap(λ) satisfies
(α, β)-DI for any λ such that:

λ ≥ Θq × max

(

log
(

1 + Pmin(α − 1)
(1 − α)(1 − Pmin)

)−1

, log
(

(1 + β)(1 − Pmin)
1 − Pmin(1 + β)

)−1
)

were 0 < α < 1, 0 < β < (1/Pmax) − 1, Pmin = min
Dj ,Ds∈D′

Pr[Dj = Ds], and

Pmax = max
Dj ,Ds∈D′

Pr[Dj = Ds].

We note that in the previous theorem, condition β < (1/Pmax)−1 is used to
be sure that for any possible values of α and β, the usage of ML will effectively
prevent the adversary from knowing with certainty the content of the database
Ds ∈ D′. Obviously, Pmax’s value should be lesser than 1. Otherwise, there are
no possible values for α and β that can prevent the adversary from knowing with
certainty the content of the database Ds, since he/she already does.

Proof. To prove the previous theorem, we start by following the same steps as
in the proof of Theorem 2 to get Inequalities (12) and (13). By considering the
fact that

∑

D′
j∈D′,D′

j �=D′
i

Pr[D′
j = Ds] = 1−Pr[D′

i = Ds], we transform Inequality

(13) to get Inequality (14) which will be transformed as following:

1

Pr
[
D′

i = Ds
]
+ exp

(
Θq

λ

)
(1 − Pr

[
D′

i = Ds
]
)

≤ Bq,τ (D′
i = Ds)

B∅(D′
i = Ds) (17)
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Since Pmin ≤ Pr
[
D′

i = Ds
] ≤ Pmax, we have:

1

Pmin

(
1 − exp

(
Θq

λ

))
+ exp

(
Θq

λ

) ≤ 1

Pr
[
D′

i = Ds
]
+ exp

(
Θq

λ

)
(1 − Pr

[
D′

i = Ds
]
)

(18)
Using Inequalities (17) and (18) together with Definition 4, ML satisfies (α, β)-DI
if:

1 − α ≤ 1

Pmin

(
1 − exp

(
Θq

λ

))
+ exp

(
Θq

λ

)

Since Pmin ≤ 1/n, we have: 1 + Pmin(α − 1) > 0 . Then, rearranging yields

λ ≥ Θq log
(

1 + Pmin(α − 1)
(1 − α)(1 − Pmin)

)−1

(19)

On the other hand, by considering the fact that
∑

D′
j∈D′,D′

j �=D′
i

Pr[D′
j = Ds] =

1 − Pr[D′
i = Ds], we transform Inequality (13) to get

Bq,τ (D′
i = Ds)

B∅(D′
i = Ds)

≤ 1

Pr
[
D′

i = Ds
]
+ exp

(−Θq

λ

)
(1 − Pr

[
D′

i = Ds
]
)

(20)

Then, considering the fact that Pmin ≤ Pr
[
D′

i = Ds
] ≤ Pmin, we have:

1

Pr
[
di = ds

]
+ exp

(−Θq

λ

)
(1 − Pr

[
di = ds

]
)

≤ 1

Pmin

(
1 − exp

(−Θq

λ

))
+ exp

(−Θq

λ

)

(21)
Using Inequalities (20) and (21) together with Definition 4, ML satisfies (α, β)-DI
if:

1

Pmin

(
1 − exp

(−Θq

λ

))
+ exp

(−Θq

λ

) ≤ 1 + β (22)

Since Pmin ≤ 1/n, for all n > 1, we have: 1−Pmin(1+β) > 0 . Then, rearranging
yields

λ ≥ Θq log
(

(1 + β)(1 − Pmin)
1 − Pmin(1 + β)

)−1

(23)

Finally, based on Inequalities (19) and (23), we have:

λ ≥ Θq × max

(

log
(

1 + Pmin(α − 1)
(1 − α)(1 − Pmin)

)−1

, log
(

(1 + β)(1 − Pmin)
1 − Pmin(1 + β)

)−1
)

In contrast to the original Differential Identifiability model propose in [9]
which assumes that the prior probability of an individual being in Ds is the
same for all individuals, our previous construction defines a Laplace distribution-
based mechanism that provides an (α, β)-differentially identifiable outputs for
any arbitrary prior distribution.
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7 Linking Differential Identifiability and Differential
Privacy

In this section, we establish a fundamental connection between DP model and
our DI model by showing that the parameter ε used in the DP model can be
directly translated to the parameters α and β used in our DI model.

Theorem 4. Let ML be a mechanisms that satisfies (α, β)-DI for a given query
q : U → R by returning q(X) + Y where Y is drawn i.i.d from Lap(λ). ML

satisfies ε-DP where

ε =
Δq

Θq
× max

(

log
(

1 + Pmin(α − 1)
(1 − α)(1 − Pmin)

)−1

, log
(

(1 + β)(1 − Pmin)
1 − Pmin(1 + β)

)−1
)−1

(24)

Proof. Since ML satisfies (α, β)-DI, then using Theorem 3 we have:

λ = Θq × max

(

log
(

1 + Pmin(α − 1)
(1 − α)(1 − Pmin)

)−1

, log
(

(1 + β)(1 − Pmin)
1 − Pmin(1 + β)

)−1
)

(25)

In other hand, based on Differential Privacy’s Laplace mechanism definition [5],
we know that ML satisfies ε-DP when

λ =
Δq

ε
(26)

Finally using Eqs. (25) and (26), we get (24).

Choosing the appropriate value of ε is continuing to be an open problem in
DP. The connection we created between ε-DP and (α, β)-DI models in Theorem 4
will allow to choose the appropriate ε value given the risk of identifying the
presence of an individual in the database specified by α and β.

8 Evaluation

We now evaluate the applicability of our model. For this, we use the Adult
Database from the UCI Machine Learning Repository [1] as U (the universe of
individuals). The database contains information about 32562 individuals col-
lected from the 1994 U.S. Census. The information about each individual is
provided through 9 categorical and 5 numerical attributes. In this evaluation,
we consider only numerical attributes. In order to evaluate the applicability of
our model, we quantify, for several aggregate queries (e.g., sum, average, max,
min, etc.), the error ratio caused by the usage our prior-dependent mechanism
(Theorem 3) when the values of α and β are varied. Since, it is not possible to
graphically illustrate the variation of the error ratio in function of more than two
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variables (i.e., α, β, and P), for the prior distribution P, we will consider two main
cases. First, we will consider a very weak adversary Aw. That is, he/she does not
have any information about the individuals in the database Ds ∈ U (uniform
prior distribution: Pmin = Pmax = 1/32562). Second, we will consider a strong
adversary As which have significant prior information about the presence of a
subset of individuals in Ds. More precisely, we will suppose that As knows with
certainty that some individuals are in Ds. This means that Pmin = 0 since for
certain database D′ ∈ U we have BAs

∅ [D′ = Ds] = 0. Moreover, we suppose that,
before interacting with the database, As’s best confidence on the set of identities
present in the database cannot be larger than 1/10. Formally, this means that
Pmax = 1/10 since there exists D′ ∈ U such that BAs

∅ [D′ = Ds] = 1/10.

Table 2. Used aggregate queries and their identifiability sensitivity

Attribute Query Identifiability sensitivity (Θ)

Age Average 27 × 10−4

Capital-gain Min 114

Capital-loss Max 445

Hours-per-week Sum 99

Table 2 shows the set of aggregate queries that we used in the evaluation of
our model. For each query, we give the attribute over which it is executed and its
corresponding identifiability sensitivity value. We note that counting queries are
not considered in this evaluation since by definition, they have an identifiability
sensitivity equal to zero which means that revealing the exact result of a counting
query performed over the database Ds will not disclose any information to the
adversary about the content of the database Ds.

Figure 1 illustrates the error ratio included in the differentially identifiable
result of each query when the parameters α and β are varied and when the weak
adversary Aw is considered. The different plots show, first, that the smaller the
values of α and β (i.e., the higher the desired privacy), more noise are included
in the response. Second, according to Figs. 1(a) and (d), our model provides a
very good compromise between privacy and query response precision. For exam-
ple, for the Sum(hours per week) query (Fig. 1(d)), our (α, β)-DI construction
reduces the error rate to 9 × 10−3 for α = β = 8 × 10−3. Third, although
the high identifiability sensitivity of the queries Min(capital-gain) (Fig. 1(b))
and Max(capital-loss) (Fig. 1(c)), our (α, β)-DI construction provides an accept-
able compromise between privacy and query response precision. As an example,
our model provides an (0.5, 1)-differentially identifiable answer for the query
Max(capital loss) (Fig. 1(c)) with an error rate of 0.1.

When considering the strong adversary As (Fig. 2), our construction still
provides a very close privacy/utility trade-off compared to the one pro-
vided when the weak adversary Aw is considered, except for the query
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(a) AVG(age) (b) Min(capital gain) (c) Max(capital loss)

(d) Sum(hours per week)

Fig. 1. Noise ratio for the adversary Aw

(a) AVG(age) (b) Min(capital gain) (c) Max(capital loss)

(d) Sum(hours per week)

Fig. 2. Noise ratio for the adversary As

Min(capital gain) (Fig. 2(b)). For this query, our construction provides answers
with little bit more noise compared to answers provided when the weak adver-
sary Aw is considered (Fig. 1(b)). This mainly caused by the reduced range of
β’s values (i.e., α should be less that 9 according to Theorem 3) that can be used
without letting As be 100% sure about the content of the database Ds.

9 Related Work

Several privacy definitions have been proposed in last two decades. The most
sticking out ones are k-anonymity [14], l-diversity [13], and t-closeness [10].
Dwork pointed out their weaknesses in [4] and argues that privacy problems
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should be considered in a more formal way. Following this reflexion, the notion
of DP was proposed in [3] and several approaches for satisfying it were developed
to support low sensitive queries such as counting, mean, and median queries.
Several relaxations of the original DP model have been proposed in order to
make DP more efficient for high sensitive queries. (ε, δ)-DP was proposed in [5]
by introducing new parameter δ that will be used to upper bound the probability
that ε-DP is not satisfied. Generic DP is a generalization of the DP model
proposed in [7]. It allows more flexible definitions for neighboring databases and
conditions that the model should satisfy.

In [8], authors showed that for DP, it is not possible to ensure an acceptable
privacy/utility compromise without making assumptions about the manner with
which the data are generated. In this paper, we provide similar result by showing
no possible acceptable privacy/utility compromise can be provided for our DI
model without making assumptions about the adversary prior knowledge.

Cormode showed in [2] that DP is not useful for preventing inferential dis-
closure by demonstrating that one can use differentially private outputs to infer
sensitive information with non-trivial accuracy. Lee and Clifton [9] argued that
the parameter ε used in DP limits only how much one individual can affect the
resulting model. It cannot be used to limit how much information is revealed
about an individual. They then propose ρ-DI which captures membership dis-
closure under very specific adversarial background knowledge that we believe
seldom satisfied in the real environments. Machanavajjhala et al. [12] proposed
a model called ε-privacy aiming to limit the impact that one entity can have on
the belief of the adversary. Unfortunately ε-privacy does not support interactive
and adaptive data querying. Membership Privacy [11] proposed a model that
uses Bayesian inference to bound the probability of identifying an individual in
the database. However, the proposed model fails to bound the probability that
an adversary figure out the set of individuals in a database.

10 Conclusion

This paper presents the new differential identifiability model allowing to bound
the quantity of disclosed information about the presence of an individual in a
database while considering an adversary with arbitrary prior knowledge. We
showed that our proposed model can be satisfied using the general Laplace noise
addition mechanism used traditionally in differential privacy. We proved that
there is a direct connection between our (α, β)-differential identifiability and ε-
differential privacy, and we showed through a set of experimentations that our
model provides a good privacy/utility trade-off for most aggregate queries.
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Abstract. Auction is widely regarded as an effective way in dynamic
spectrum redistribution. Recently, considerable research efforts have
been devoted to designing privacy-preserving spectrum auctions in a vari-
ety of auction settings. However, none of existing work has addressed
the privacy issue in the most generic scenario, double spectrum auc-
tions where each seller sells multiple channels and each buyer buys mul-
tiple channels. To fill this gap, in this paper we propose PP-MCSA,
a Privacy Preserving mechanism for Multi-Channel double Spectrum
Auctions. Technically, by leveraging garbled circuits, we manage to pro-
tect the privacy of both sellers’ requests and buyers’ bids in multi-
channel double spectrum auctions. As far as we know, PP-MCSA is
the first privacy-preserving solution for multi-channel double spectrum
auctions. We further theoretically demonstrate the privacy guarantee of
PP-MCSA, and extensively evaluate its performance via experiments.
Experimental results show that PP-MCSA incurs only moderate com-
munication and computation overhead.

1 Introduction

Today, more and more emerging wireless technologies, such as Wifi, 4G, are pen-
etrating into our daily work and life. At the same time, the traditional static
and rigid spectrum allocation scheme renders the utilization of radio spectrum
severely inefficient and unbalanced. According to the survey [1], many statically
allocated spectrum channels are left idle by their current owners, exaggerat-
ing the gap between the ever-increasing spectrum demand of wireless services
and the spectrum scarcity. Therefore, to improve and balance spectrum utiliza-
tion, dynamic spectrum redistribution has been advocated to reallocate spectrum
among primary and secondary users.

Spectrum auction is widely regarded as an effective way in dynamic spectrum
redistribution. A large body of existing studies are focused on designing truthful
spectrum auctions, where the auctioneer is assumed to be trusted, and bidders
are stimulated to reveal their true valuations of spectrum channels. However,
in many practical scenarios, the auctioneer is by nature self-interested and not
c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 248–267, 2018.
https://doi.org/10.1007/978-3-030-01950-1_15
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trusted. It may disclose the true valuations of bidders, which may cause serious
privacy vulnerabilities [2]. For example, a dishonest auctioneer may take advan-
tage of learning the bidders’ bids, and then tamper with the auction results so
as to increase its own profit. Or the auctioneer may sell bidders’ historical bids
for profit. Therefore, privacy preservation is critical in spectrum auctions.

There has been significant research attention on privacy preserving auctions,
such as [3–5]. These schemes do not consider spectrum reusability, and thus
cannot be applied in spectrum auctions. Recently, a handful of propositions
addressed privacy issues in spectrum auctions, such as [2,6,7], but most of them
focus on protecting privacy for single-sided spectrum auctions. Only a few solu-
tions such as [8] and [9], provide secure designs for double spectrum auctions.
However, they assume that in the auction each seller sells only one spectrum
channel and each buyer buys only one spectrum channel. Such one-channel
assumption makes the problem much more tractable, but leaves open the most
generic and practical version, the double spectrum auctions, involving multiple
spectrum sellers selling multiple channels to multiple buyers [10].

To fill this gap, in this paper, we propose PP-MCSA, a Privacy-Preserving
mechanism for Multi-Channel double Spectrum Auctions. Specifically, we man-
age to protect both sellers’ request privacy and buyers’ bid privacy for the double
spectrum auction mechanism True-MCSA [10] that supports multi-channel auc-
tions. To preserve privacy, we introduce in the auction framework of PP-MCSA
a third party, namely an agent, who cooperates with the auctioneer to perform
secure auction computations, as shown in Fig. 1. In such a framework, each seller
m submits its request value sm (i.e., the lowest per-channel selling price) and
request number cm (i.e., the number of selling channels) to the auctioneer. Sim-
ilarly, each buyer n does the same thing with its bid value bn (i.e., the highest
per-channel buying price) and bid number (i.e., the number of buying channels).
All submissions are appropriately encrypted such that all sensitive information
(i.e. request values, bid values and bid numbers) are protected from either the
auctioneer or the agent, but can be securely retrieved and computed with the
cooperation between the two parties. Therefore, as long as the auctioneer and
the agent do not collude with each other (Note that this assumption is essentially
necessary, otherwise the privacy cannot be achieved.), PP-MCSA leaks nothing
about the sensitive information to anyone except what can be revealed from the
published auction outcome.

We list our main contributions as follows:

– We propose the first privacy-preserving and practical multi-channel double
spectrum auction mechanism by combing public-key encryptions and garbled
circuits, filling the research gap that there is no privacy consideration in
multi-channel double spectrum auctions before.

– We design and optimize data-oblivious algorithms for multi-channel double
spectrum auction mechanism True-MCSA, which is rather complex in auction
logic, and address both the privacy and efficiency challenges.

– We fully implement PP-MCSA, and conduct extensive experiments to evalu-
ate its computation and communication overhead.
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The reminder of this paper is structured as follows. Section 2 briefly reviews
related work. In Sect. 3, the underlying mechanism is introduced and the pri-
vacy goal is given. We describe the design challenges and rationale in Sect. 4,
and present the detailed design of PP-MCSA and prove its privacy in Sect. 5.
In Sect. 6, we implement PP-MCSA, and evaluate its performance in terms of
computation and communication overheads. Finally, the paper is concluded in
Sect. 7.

( , , , , )b
n n n n nid b d x y ( , , )s

m m mid s c

Fig. 1. Privacy-preserving auction framework for PP-MCSA

2 Related Work

In this section, we briefly review the existing works on privacy-preserving auction
design, and distinguish our work from the existing ones.

2.1 Spectrum Auction

Spectrum auctions are widely used to redistribute spectrum. In the past few
years, many researches have focused on designing truthful spectrum auctions.
For example, Zhou et al. put forward TRUST [11], the first truthful double spec-
trum auction framework exploiting spectrum reusability. Chen et al. proposed
the first truthful single-sided auction mechanism TAMES [12] for heterogeneous
spectrum auctions, which allows buyers to freely bid their different preferences
to heterogenous spectrum channels. Later, Feng et al. presented the first double
auction mechanism for heterogeneous spectrum transaction [13]. Chen et al. pro-
posed the first double multi-channel spectrum auction scheme, True-MCSA [10].
However, all the above studies did not address the privacy preservation issues.

2.2 Privacy-Preserving Spectrum Auction

In the past decade, there have been a great number of schemes for privacy-
preserving auctions [3–5]. These schemes were originally designed for tradi-
tional goods (e.g., painting, stamps), where each commodity can only be
allocated to one bidder. Unfortunately, when directly applied to spectrum
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auctions, they suffer severe under-utilization due to the lack of spectrum reusabil-
ity consideration.

In recent years, quite a few research efforts have been made for the studies
on privacy-preserving spectrum auctions [2,7–9,14,15]. Most, if not all, of them
have focused on privacy preservation for single-sided spectrum auctions [2,7,14,
15]. Different from these works, our work addresses the generic case of double
spectrum auctions. There have been a few schemes for privacy-preserving double
spectrum auctions [8,9]. But these schemes only addressed privacy issues for one-
channel double spectrum auctions. As far as we know, we are the first to consider
privacy preservation for multi-channel double spectrum auctions.

3 Underlying Mechanism and Privacy Goal

In this section, we introduce the underlying mechanism of the double multi-
channel spectrum auction, and define the cryptographical protocol privacy.

3.1 TRUE-MCSA Auction Mechanism

Consider a single-round double multi-channel spectrum auction where there is
a coordinator as the auctioneer, M primary spectrum users as the sellers, and
N secondary spectrum users as the buyers. Consider the general case where
each seller sells multiple channels, and each buyer requests multiple channels.
The auction is sealed-bid and private, and each bidder (seller or buyer) submits
its request or bid to the auctioneer by itself, without knowing any information
about other bidders’ submissions.

More specifically, in the spectrum auction, a seller m’s request is denoted by
(sm, cm) (sm > 0, cm � 1), meaning that the seller m requires the minimum per-
channel payment sm to sell cm channels; a buyer n’s bid is denoted by (bn, dn)
(bn > 0, dn � 1), representing that the buyer n is willing to pay the maximum
price bn for each channel, and wants to buy at most dn channels. We call sm

and cm the seller m’s request value and request number; and call bn and dn the
buyer n’s bid value and bid number.

An existing solution to the above-mentioned double multi-channel spectrum
auction problem is True-MCSA auction mechanism [10]. We will use True-MCSA
as our underlying double multi-channel spectrum auction mechanism. A brief
review of True-MCSA auction can be found in Appendix A.

3.2 Cryptographical Protocol Privacy

Implicitly, True-MCSA assumes that the auctioneer is trusted. However, if this
is not the case, True-MCSA simply leaks all requests and bids to the untrusted
auctioneer, and thus no privacy is guaranteed.

To protect the privacy of bidders in the case of an untrusted auctioneer, we
introduce an agent to cooperatively perform the auction with the auctioneer.
Intuitively, our privacy goal is that as long as the auctioneer and the agent do
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not collude with each other (one of them may be semi-honest), nothing about
the sensitive inputs (i.e., bid values, bid numbers, and request values) of bidders
is leaked to them through the auction, except what is revealed from the auction
outcome. We formally present this privacy definition as follows.

Definition 1 (Privacy against semi-honest adversaries). Let f(x, y) be a
two-party deterministic auction functionality with inputs x and y from the auc-
tioneer and the agent, respectively, and a common auction outcome f(x, y) for
both parties. Suppose that protocol Π computes functionality f(x, y) between the
auctioneer and the agent. Let V Π

A (x, y) (resp. V Π
B (x, y)) represent the auction-

eer’s (resp. the agent’s) view during an execution of Π on (x, y). In other words,
if (x, rΠ

A ) (resp. (y, rΠ
B )) denotes the auctioneer’s (resp. the agent’s) input and

randomness, then

V Π
A (x, y) = (x, rΠ

A ,m1,m2, ...,mt), and
V Π

B (x, y) = (y, rΠ
B ,m1,m2, ...,mt)

where {mi}t
i=1 denote the messages passed between the two parties. Let OΠ(x, y)

denote the auction outcome after an execution of Π on (x, y). Then we have
OΠ(x, y) = f(x, y) for correctness, and say that protocol Π protects pri-
vacy against semi-honest adversaries if there exist probabilistic polynomial time
(PPT) simulators S1 and S2 such that

S1(x, f(x, y))
c≡ V Π

A (x, y) (1)

S2(y, f(x, y))
c≡ V Π

B (x, y) (2)

where
c≡ denotes computational indistinguishability.

4 PP-MCSA: Design Challenges and Rationale

In this section, we summarize the main challenges in our design, followed by our
design rationale to tackle them.

4.1 Design Challenges

Recently, some secure mechanisms for double spectrum auctions, such as PS-
TRUST or SDSA [8,9], have been proposed. However, they all assumed that in
the spectrum auction a seller sells one channel, and a buyer buys one channel, and
none of them addressed the privacy preservation issue in double multi-channel
spectrum auctions. To protect privacy in double multi-channel spectrum auctions
like TRUE-MCSA, we face two challenges indicated as follows.

The first one is the privacy challenge. As described in Appendix A, TRUE-
MCSA involves complex operations in both “VBG splitting and bidding” and
“winner determination” steps. How to perform such operations securely by pro-
tecting the sensitive inputs is our first challenge.

The second one is the efficiency challenge. Straightforwardly securing the
auction in our context may result in heavy overhead and thus may degrade
the overall performance. Thus, how to achieve practical efficiency in terms of
performance with privacy guarantee consists of our second challenge.
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4.2 Design Rationale

In order to tackle these two challenges above, we leverage garbled circuits [16,17]
to carefully design the boolean circuits corresponding to the auction mechanism.
Specifically, to achieve privacy, we designate binary flags to indicate various
conditions, and implement the auction functionality based on these flags in a
data-oblivious way; to achieve efficiency, we carefully cache some intermediate
values, so that unnecessary repeated circuits are avoided.

5 PP-MCSA: Design Details and Proofs

In this section, we elaborate our privacy preserving spectrum auction protocol,
namely PP-MCSA, and prove that it is secure against semi-honest adversaries.

5.1 Protocol Framework

In this subsection, we present the protocol framework of PP-MCSA. Generally
speaking, PP-MCSA is a secure protocol for double multi-channel spectrum auc-
tions executed between the auctioneer and the agent. We distinguish two types
of inputs, insensitive and sensitive ones, among which the sensitive input needs
to be protected in the spectrum auction. We combine public-key encryption
with garbled circuits to protect the sensitive input throughout the auction. As
shown in Fig. 2, our protocol consists of three phases, namely, submission, group
formation, and garbled auction computation, as specified as follows.

Phase I: Submission
In this phase, sellers and buyers encrypt their respective sensitive inputs, and
then send all the necessary inputs to auctioneer. Sensitive inputs include all
sellers’ request values, all buyers’ bid values and bid numbers, while the insensi-
tive inputs include all sellers’ IDs and request numbers, and all buyers’ IDs and
geographic locations. For sensitive inputs, we split all of them into two parts,
and then encrypt them respectively with the auctioneer’s public key pkA and
the agent’s public key pkB . For insensitive inputs, we directly send them to the
auctioneer. The tuples that are submitted by sellers and buyers are presented as
follows.

Seller m: (ids
m, 〈[s(1)m ]pkA

, [s(2)m ]pkB
〉, cm) for m = 1, 2, ...,M

Buyer n: (idb
n, (xn, yn), 〈[b(1)n ]pkA

, [b(2)n ]pkB
〉, 〈[d(1)n ]pkA

, [d(2)n ]pkB
〉) for n =

1, 2, ..., N

where [·]pkA
and [·]pkB

denote encryptions with pkA and pkB , respectively, and
x(1) + x(2) = x (mod 2B) for any value x, where B is the bit length used.

Additionally, we assume that all communication channels are authenticated
and secure, and no one can eavesdrop the data transmitted on the channels.

Phase II: Group Formation
Upon receiving the inputs from sellers and buyers, the auctioneer firstly con-
structs a conflict graph using all buyers’ geographic locations. Then, according
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Fig. 2. Protocol framework: First, each buyer or seller submits its input with sensitive
parts properly split and encrypted; Next, the auctioneer constructs a conflict graph
of buyers, executes buyer grouping algorithm and forwards encrypted input shares to
the agent; Then, the agent obtains its corresponding input shares by decrypting the
encrypted ones, constructs a garbled circuit based on the auction circuit, garbles its
input shares, and sends the garbled circuit and garbled input shares to the auctioneer;
Finally, the auctioneer obtains its garbled input shares through running an oblivious
transfer with the agent, and executes the garbled circuit and outputs the clear result.

to the conflict graph, the auctioneer executes a bid-independent grouping algo-
rithm to divide buyers into different groups, such that any two members of the
same group do not conflict with each other. After group formation, the auction-
eer gets group set G = {G1, G2, . . . , GT }, where the size of group Gt is denoted
by Nt. An example of group formation is illustrated in step 2.1 in Fig. 2, where
nodes represent buyers, edges represent conflict relations between buyers, nodes
with the same shape represent members in the same group, and thus three groups
are formed. At the end of this phase, the auctioneer sends the agent’s encrypted
shares of sensitive inputs, and the grouping information to the agent. Then,
both the auctioneer and the agent can obtain their respective shares of sensi-
tive inputs by decrypting the corresponding encrypted shares with their public
keys.

Phase III: Garbled Auction Computation
In this phase, the agent constructs a garbled circuit based on the auction circuit
which we will design in the next subsection, garbles its shares of sensitive inputs,
and generates the output decoder which can decode the garbled output. The
garbled circuit, the agent’s garbled input shares, and the output decoder are
then sent to the auctioneer. Upon receiving these data, the auctioneer executes
oblivious transfers (OTs) with the agent to get its garbled shares of sensitive
inputs. Finally, with both garbled shares of sensitive inputs and the insensitive
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inputs in hand, the auctioneer computes the garbled circuit to get a garbled
auction result, and obtains the clear auction result by decoding the garbled one
with the output decoder.

The crux of this phase is to design a boolean circuit for our underlying
spectrum auction, True-MCSA. A boolean circuit is in essence the binary repre-
sentation of a data-oblivious algorithm, whose execution path does not depend
on its input. In our case, we only need to design auction algorithms which are
data-oblivious for sensitive inputs. In the next subsection, we detail our design
of such data-oblivious algorithms.

5.2 Data-Oblivious Auction Algorithms

In our context, we only need to protect the sensitive inputs from both sellers
and buyers. Thus, we only need to perform sensitive input related operations in
the garbled circuits. From here on, we represent a garbled x by [[x]], meaning
that x needs to be protected and should remain in the garbled form throughout
the computations. Our data-oblivious spectrum auction is further composed of
four steps as follows.

(1) Initialization. In our algorithms, we use arrays of tuples to represent both
sellers’ and buyers’ information. Specifically, we use an array of seller tuples
S to represent all sellers, an array of buyer group tuples G to represent all
buyer groups, an array of buyer tuples Gt to represent all buyers in the
group t (t = 1, · · · , T ), and an array of virtual buyer group (VBG) tuples
G

v
t to represent all VBGs derived from the group t. The four types of tuples

are designed as follows.

Seller tuple: (ids
j , sj , cj , w

s
j ), j ∈ [1..M ]

Group tuple: (idg
t , b

g
t , Nt), t ∈ [1..T ]

Buyer tuple: (idb
t,q, bt,q, dt,q, w

b
t,q), q ∈ [1..Nt], t ∈ [1..T ]

VBG tuple: (idg
t , πt,k, nt,k, wv

t,k), k ∈ [1..D], t ∈ [1..T ]

In a seller tuple, ids
j , sj and cj are the ID, the request value, and the request

number of seller j, respectively, while ws
j is a binary flag indicating whether the

seller is a winner (1) or not (0). In a group tuple, idg
t , bg

t and Nt are the ID,
the minimum buyer bid, and the size of group t. In a buyer tuple, idb

t,q, bt,q, dt,q

are the ID, the bid value, and the bid number of buyer q in the group t; wb
t,q

describes whether a buyer is a winner. In a VBG tuple, πt,k and nt,k are the
bid, and the size of VBG k derived from group t. wv

t,k is a binary flag indicating
whether the VBG k is a winning VBG (1) or not (0). Additionally, D is the
maximum bid number of all buyers, which is set as a parameter at the beginning
of the auction.
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We initialize the arrays S, G, Gt and G
v
t as follows, where the “null” symbol

⊥ is a placeholder.

S =

⎛
⎜⎜⎜⎜⎝

j : 1 · · · M
ids

j : ids
1 · · · ids

M

sj : [[s1]] · · · [[sM ]]
cj : c1 · · · cM

ws
j : 0 · · · 0

⎞
⎟⎟⎟⎟⎠

, G =

⎛
⎜⎜⎝

t : 1 · · · T
idg

t : idg
1 · · · idg

T

bg
t : ⊥ · · · ⊥

Nt : N1 · · · NT

⎞
⎟⎟⎠

Gt =

⎛
⎜⎜⎜⎜⎝

q : 1 · · · Nt

idb
t,q : idb

t,1 · · · idb
t,Nt

bt,q : [[bt,1]] · · · [[bt,Nt
]]

dt,q : [[dt,1]] · · · [[dt,Nt
]]

wb
t,q : 0 · · · 0

⎞
⎟⎟⎟⎟⎠

, G
v
t =

⎛
⎜⎜⎜⎜⎝

k : 1 · · · D
idg

t : idg
t · · · idg

t

πt,k : ⊥ · · · ⊥
nt,k : ⊥ · · · ⊥
wv

t,k : 0 · · · 0

⎞
⎟⎟⎟⎟⎠

(2) VBG splitting and bidding. In this step, a data-oblivious algorithm
should be designed for VBG splitting and bidding. The challenge is that
this process depends on both buyers’ bid values and their bid numbers,
which are sensitive inputs and should be protected.

To design the data-oblivious algorithm, one difficulty is that we do not know
the buyers’ bid numbers since they are protected in garbled form, and thus
we do not know how many VBGs should be derived from each buyer group. To
overcome this difficulty, we assume that the maximum bid number D = maxt Dt

is known, and hence derive exactly D VBGs from each buyer group. To protect
both bid values and bid numbers, we keep them and their related computation
results in garbled form, while use appropriate logic circuit to implement all
required operations. The resulted algorithm is shown in Algorithm1. Note that
we only implement MMIN as the VBG bidding method, while GMAX can be
similarly implemented.

Some explanations about Algorithm1 are as follows.
First, for each group t, the algorithm compares every pair of neighboring

buyer tuples (i.e., tuples j and j + 1 in Gt for j = 1 to Nt − 1) in terms of their
bid values, and swaps the two tuples if the former is smaller than the later, such
that finally the tuple with the minimum bid value is placed at the last position
of Gt (Line 2 to 5). Note that in Line 4, function swap(Gt, [[λ]], j, j + 1) swaps
the two tuples j and j + 1 of Gt if λ = 1. For each field x of the tuples, the
swapping function can be implemented using the following circuit [18]:

x′
j ← ((xj ⊕ xj+1) · λ) ⊕ xj

x′
j+1 ← x′

j ⊕ (xj ⊕ xj+1)

where x′
j and x′

j+1 represent the resulted field values. This circuit is very efficient
for garbled circuits, since it needs only one non-XOR gate for swapping each pair
of bits. Using the free XOR technique, garbled circuits can execute all XOR gates
nearly for free, and thus their performances are determined by the number of
non-XOR gates executed.
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Algorithm 1. Data-oblivious VBG spplitting and bidding

Require: Tuple arrays G and {Gt}T
t=1

Ensure: The tuple array G
v
t

1: for t = 1 → T do
2: for j = 1 → Nt − 1 do
3: [[λ]] ← ([[bt,j ]] < [[bt,j+1]]);
4: swap(Gt, [[λ]], j, j + 1);
5: end for
6: for k = 1 → D do
7: [[nt,k]] ← 0;
8: for j = 1 → Nt − 1 do
9: [[γ]] ← ([[dt,j ]] ≥ k);

10: [[nt,k]] ← [[nt,k]] + [[γ]];
11: end for
12: [[πt,k]] ← [[bt,Nt ]] · [[nt,k]];
13: end for
14: end for

return G
v
t

Second, Lines 6 to 13 compute the D VBGs for each group t. To compute
the kth VBG, the bid number of each group member except the last one (who
has the minimum bid value) is compared with k (Line 9), and if it is not smaller
than k, the group member is added to the VBG (Line 10). Finally, the bid value
of the kth VBG is computed (Line 12).

Note that in the computations, the sensitive inputs, i.e. bt,j ’s and dt,j ’s, and
their related computation results, i.e., λ’s, γ’s, nt,k’s and πt,k’s, are all kept in
garbled form, such that the sensitive inputs can be well protected.

(3) Winner determination. This step applies a variant of McAfee framework
to determine winners as shown in Sect. 3. Since this process contains numer-
ous operations, such as comparisons and selections, depending on requests or
bids, designing its data-oblivious version is challenging. In order to address
this challenge, our main idea is to introduce some appropriate binary flags
to indicate different conditions, and construct suitable circuits based on
them to data-obliviously achieve the required functions. We describe the
data-oblivious winner determination in Algorithm2.

The details of Algorithm 2 are described as follows.
First, both seller tuples and VBG tuples are appropriately sorted as required

in McAfee framework (Lines 1 to 4). In Line 1, the total number of selling
channels L is computed in the clear, since initially all request numbers cj ’s are
not protected. In Line 3, all VBG tuples from different groups are merged into a
uniform VBG tuple array G

v = {idv
k, πk, nk, wv

k}T
k=1, where idv

k ∈ {idg
t }T

t=1, and
then in Line 4 G

v is sorted in term of πk’s. Note that once sorted (Lines 2 & 4),
all fields of S and G

v become garbled, otherwise the ranking information of si’s
and πk’s would be leaked.
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Algorithm 2. Data-oblivious winner determination

Require: Tuple arrays S and {Gv
t }T

t=1

Ensure: The winning seller tuple array W
s, the winning VBG tuple array W

v, and
the critical request value ϕ

1: Compute L ← ∑M
i=1 ci;

2: Sort S in no-descending order of si’s, s.t.

[[s1]] ≤ [[s2]] ≤ ... ≤ [[sM ]]

3: Merge G
v ← ⋃T

t=1 G
v
t ;

4: Sort G
v in no-increasing order of πk’s, s.t.

[[π1]] ≥ [[π2]] ≥ ... ≥ [[πK ]]

5: Q ← min{L, K}; [[ϕ]] ← 0; [[W ]] ← 0;
6: for i = 1 → Q do
7: [[λM ]] ← 0; [[δM ]] ← 0;
8: [[ji]] ← 0; [[ϕi]] ← 0;
9: [[Wi]] ← 0;

10: for j = M − 1 → 1 do
11: [[λj ]] ← [

∑j
l=1[[cl]] < i];

12: [[δj ]] ← [[λj ]] ⊕ [[λj+1]];
13: [[ji]] ← [[ji]] + [[δj ]] · j;
14: [[ϕi]] ← [[ϕi]] + [[δj ]] · [[sj+1]];
15: [[Wi]] ← [[Wi]] + [[δj ]] · ∑j

l=1[[cl]];
16: end for
17: [[ωi]] ← [(

∑i
l=1[[πl]]) ≥ i · [[ϕi]]];

18: if i > 1 then
19: [[ϕ]] ← [[ϕ]] + [[ϕi−1]] · ([[ωi−1]] ⊕ [[ωi]]);
20: [[W ]] ← [[W ]] + [[Wi−1]] · ([[ωi−1]] ⊕ [[ωi]]);
21: end if
22: end for
23: [[ϕ]] ← [[ϕ]] + [[ϕQ]] · [[ωQ]];[[W ]] ← [[W ]] + [[WQ]] · [[ωQ]];
24: Reveal [[W ]], and W

v ← the first W tuples of Gv;
25: Reveal [[jW+1]], and W

s ← the first jW+1 tuples of S;
26: Reveal [[ϕ]] as the critical request value;
27: Resort W

v in increasing order of idg
t ’s, and then in no-increasing order of πk’s;

28: Resort W
s increasing order of ids

j ’s;
return W

s,Wv, ϕ;

Second, winners are determined with two nested for loops (Lines 5 to 22).
Specifically, the outer loop iterates over each possible trade i, and computes [[ωi]]
indicating whether trade i is profitable (Line 17), the critical request value [[ϕ]]
(Line 19), and the number of winning VBGs [[W ]] (Line 20). While the inner
loop computes the index ji of the last winning seller (Lines 8 & 13), the critical
request value ϕi (Lines 8 & 14), the number of winning VBGs Wi (Lines 9 &
15), given trade i is the last profitable trade. Note all these computations are
performed in the garbled form.
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More specifically, to find the index ji of the last profitable seller provided the
last profitable trade i, we introduce two vectors of flags, i.e., λj ’s and δj ’s, where

λj : indicates whether j ≤ ji, i.e.,
∑j

l=1 cl < i (λj = 1) or not (λj = 0)
(Lines 7 & 11).

δj : indicates whether j = ji (δj = 1) or not (δj = 0) (Lines 7 & 12).
According to the auction logic, the two flag vectors should take values as the

following pattern:
⎛
⎝

j : 1 · · · ji − 1 ji ji + 1 · · · M
λj : 1 · · · 1 1 0 · · · 0
δj : 0 · · · 0 1 0 · · · 0

⎞
⎠

Thus, δj = λj ⊕ λj+1 holds (Line 12).
With similar idea, we compute the profitable flags [[ωi]]’s, and the critical

request value [[ϕ]] (which is the request value of the critical seller) and the number
of winning VBGs [[W ]] (Lines 17 to 20, and Line 23).

It is worth noting that in Line 14, we use sj+1 instead of sj , since the critical
seller is next to the last winning seller. Additionally, in Lines 11, 15 & 17, for
simplicity, we repeatedly use the sum equations of cl’s or πl’s. However, in real
implementation, it is not necessary to repeatedly compute the sums. Optimally,
we can compute each sum just once, and cache them for later use.

Finally, some garbled results are appropriately revealed. Specifically, the
number of winning VBGs [[W ]] is revealed, and the first W tuples of Gv form
the winning VBG tuple array W

v (Line 24). Then, [[jW+1]] is revealed as the
number of winning sellers, and the first jW+1 seller tuples of S form the win-
ning seller tuple array W

s (Line 25). Next, [[ϕ]] is revealed as the critical request
value(Line 26). At the same time, Wv and W

s are appropriately resorted, such
that the bid order of winning VBGs from different groups and the request order
of winning sellers will not be revealed when decoded in the later (Lines 27 &
28). At last, Wv, Ws, and ϕ are returned.

(4) Pricing. In this step, we compute the selling prices for winning sellers and
the buying prices for winning buyers, as described in Algorithm3. Specifi-
cally, each winning seller m sells all its cm channels, and is paid by its selling
price ps

m = cm ·ϕ (Lines 1 to 14). Each winning VBG k is charged by its bid
πk, which is evenly shared by the winning buyers in the VBG. Thus, each
winning buyer n ∈ Gt is charged by its buying price pb

n = min(dn,Dt) · bg
t ,

where Dt =
∑

V ∈Wv [V.idv
k = idg

t ] is the total number of winning channels
for group Gt, and bg

t = πt,k/(nt,k − 1) is the minimum bid value of group
Gt. Note that Lines 5 to 9 compute the set of winning buyer groups Gw,
and Lines 10 to 18 compute the winning buyers in all winning groups and
their prices.
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Algorithm 3. Pricing

Require: The winning seller tuple array W
s, the winning VBG tuple array W

v, and
the critical request value ϕ;

Ensure: Winners and their clearing prices;
1: for E ∈ W

s do
2: Reveal E.ids

m;
3: Seller m sells cm channels, and is paid with ps

m ← cm · ϕ;
4: end for
5: Gw ← φ;
6: for V ∈ W

v do
7: Reveal V.idv

k as idg
t ;

8: Gw ← Gw ∪ {t};
9: end for

10: for t ∈ Gw do
11: Dt =

∑
V ∈Wv [V.idv

k = idg
t ];

12: for q = 1 → Nt − 1 do
13: Reveal idb

t,q as idb
n;

14: [[ht]] ← min([[dn]], Dt);
15: Reveal [[ht]] and [[bg

t ]];
16: Buyer n buys ht channels, and pays pb

n ← ht · bg
t ;

17: end for
18: end for

return All winners and their prices;

5.3 Security Analysis

In this section, we prove that our protocol preserves privacy in the sense of
cryptography.

Theorem 1. As long as the auctioneer and the agent do not collude with each
other, PP-MCSA preserves privacy against semi-honest adversaries.

Proof: The proof of privacy for both Phases I and II is trivial. The reasons
are as follows. In Phase I no secure computations are involved, sensitive inputs
are secretly shared between the auctioneer and the agent, and hence the view
of adversary can be easily simulated. While in Phase II, group formation is
completely dependent on sensitive inputs, and no privacy issues need to be con-
sidered. Therefore, we mainly prove the privacy of Phase III.

To prove the privacy of garbled auction computation phase, we actually need
to prove the privacy of Algorithms 1, 2 and 3 separately, and then by applying the
sequential composition theory [19] we can conclude that the phase III preserve
privacy, and thus the whole protocol also preserve privacy.

We now examine the design of Algorithms 1, 2 and 3. We can see that for
every sensitive input related operation, the algorithms compute it in a garbled
circuit, and they also store every sensitive input related value by garbled values.
At the same time, all garbled values that are revealed in the algorithms carry no
more information than what can be inferred from the auction outcome. That is,
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these algorithms do not revealed any information about the sensitive information
except what can be revealed from the auction outcome. By the privacy definition
in Sect. 3.2, when one party (the auctioneer or the agent) is corrupted, the view
of the adversary can be easily simulated (e.g., an encrypted or garbled value
can be simulated by a random number of the same bit length). As a result, we
can conclude that our algorithms achieve the privacy of garbled circuits, whose
privacy is formally proved in [16].

Therefore, as long as the auctioneer and the agent do not collude with each
other, PP-MCSA preserves privacy. 
�

6 Performance Evaluation

6.1 Experimental Setting

We implement our protocol in two cases: original implementation and improved
implementation. In the original implementation, we implement our algorithms
literally, while in the improved implementation, we implement them with cache
optimization, where we compute the repeatedly used sums (i.e., Lines 11, 15 &
17 in Algorithm 2) just once and cache them for later use. Our experiments are
carried out on top of FastGC [20], a java-based framework for the garbled circuit
computations. We simulate the auctioneer and the agent with two processes on
the same computer. Experimental settings are as follows: buyers are randomly
distributed in a 2000m × 2000m area, and the interference radius is 400m. The
request values of sellers and the bid values of buyers are generated randomly
in the intervals [1..150] and [1..50], respectively. The both request numbers and
bid numbers are generated randomly in the interval [1..10], and thus D is set to
10 which is the maximum bid number. Throughout our experiments, we use bit
length 16, unless otherwise stated, and each point represents the average of 10
times simulation runs.

In the simulation, we run our protocol on a 64-bit Windows 7 Desktop with
Intel(R) Core(TM) i5 CPU @3.3 GHz and 8 GB of memory. We focus on the
following two performance metrics:

– Computation overhead: total running time for executing our protocol by the
auctioneer and the agent.

– Communication overhead: total communication cost (data size of all messages
that are sent between the auctioneer and the agent).

6.2 Result Analysis

We conduct experiments to compare the performance of the original and
improved implementations in two cases: (1) when the number of sellers varies;
(2) when the number of buyers varies. We further trace the performance of the
improved implementation (3) when the bit length of request values and bid val-
ues varies; and (4) when bigger numbers of sellers and buyers vary.



262 Z. Chen et al.

(1) Number of sellers varies. Figure. 3 illustrates the comparisons of both
computation and communication overheads between the original and improved
implementations, when the number of sellers M increases from 50 to 100, and
the number of buyers is fixed at N = 500, and N = 600. We can see that both
running time and communication cost of the original implementation increase
much faster than those of the improved implementation. The reason is that
the cache optimization in the improved implementation (Lines 11, 15 and 17 in
Algorithm 2) avoids repeating the addition computations in the nested loops,
and thus greatly reduces the computation and communication overheads.
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Fig. 3. Comparisons of computation and communication overheads between the origi-
nal and improved implementations as the number of sellers M varies.

(2) Number of buyers varies. Figure 4 shows the performance comparisons
between the original and improved implementations, when the number of sellers
is fixed to M = 100 and M = 110, and the number of buyers N increases from
200 to 600. Similar to Figs. 3 and 4 demonstrates that the improved implemen-
tation is much more efficient than the original one in term of computation and
communication overheads. In the same way, the cache optimization is the source
of this performance improvement.
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Fig. 4. Comparisons of computation and communication overheads between the origi-
nal and improved implementations as the number of buyers N varies.

(3) Bit length varies. Figure 5 traces the impact on performance when chang-
ing the bit length of bid values and request values in the improved implemen-
tation. We vary the bit length from 10 to 20, while fix the number of sellers at
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M = 80, and the number of buyers at N = 500. We can observe that both com-
putation and communication overheads grow linearly as the bit length increases.
This is natural, since most of the elemental boolean circuits (e.g., addition, com-
parison) grow linearly in size when the bit length of its input values increases.
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Fig. 5. Comparisons of computation and communication overheads between the origi-
nal and improved implementations as the bit length varies.

(4) Then bigger numbers of sellers and buyers vary. Figure 6 traces the
performance of the improved implementation when the number of buyers varies
from 1500 to 3500, for the number of sellers M = 300, 400 and 500, respec-
tively. This figure shows that our improved implementation is rather efficient
in both computation and communication performance for bigger numbers. For
example, all running times are within 23 min, and all communication costs are
within 1600 MB. Meanwhile, both computation and communication overheads
scale gracefully as the numbers of sellers and buyers increase.
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Fig. 6. Computation and communication overheads of the improved implementation
as the big numbers of sellers and buyers vary.

7 Conclusion

In this paper, we have proposed PP-MCSA, the first privacy-preserving mecha-
nism for multi-channel double spectrum auctions to our knowledge. To address
the challenges imposed by the multi-channel double spectrum auction scenario,
we have leveraged garbled circuits in our protocol design. Specifically, we design
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data-oblivious algorithms whose execution path does not depend on their sensi-
tive inputs and then turn these algorithms into garbled circuits to address the
privacy challenge. Then, we use cache optimization, which caches some interme-
diate values to avoid repeated circuits, to improve the garbled circuits and hence
address the efficiency challenge. Finally, we have theoretically proved the privacy
of PP-MCSA, and experimentally shown that it incurs limited computation and
communication overheads.

Acknowledgment. The work is supported by the Natural Science Foundation of
China under Grant No. 61572031 & 61502443. We thank the anonymous reviewers for
their valuable comments that helped improve the final version of this paper.

A True-MCSA Auction

True-MCSA is a truthful double spectrum auction mechanism that allows multi-
channel requests from both buyers and sellers, while ensures spectrum reusabil-
ity. The symbols of the auction can be described in Table 1. Specifically, TRUE-
MCSA is composed of the following four steps:

(1) Bid-independent Buyer Group Formation: In this step, the conflict
graph of buyers is constructed in term of their geographic locations, and
buyers that do not interfere with each other are grouped into the same
group. In this way, buyers in the same group can use the same channels
without interference. Note that the group formation algorithm should be
bid-independent, otherwise bid manipulation is allowed, and hence the auc-
tion becomes untruthful.

Table 1. Key symbols for TRUE-MCSA

M , N Numbers of sellers and buyers

T Numbers of buyer groups

sm, cm Seller m’s request value and request number

bn,dn Buyer n’s bid value and bid number

(xn, yn) Location of buyer n

Dt Maximal number of channel of group t

π Bid vector of virtual buyer group

S Request vector of sellers

j(i) The seller in the ith trade

kl The last profitable trade

L Sum of sellers channel number

G G = {Gt}T
t=1, Global bid set of groups

Gt The tuple of group t

Gv
t The tuple of virtual buyer group t
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(2) Virtual Buyer Group (VBG) Splitting and Bidding: To address
the multi-channel requests from buyers, this step splits a buyer group Gt

into Dt = maxi∈Gt
di virtual buyer groups (VBGs), where each VBG only

requests for one channel.
After splitting a buyer group into VBGs, we come up with the VBG bid-
ding. Paper [10] proposed two VBG bidding algorithms, member-minimized
(MMIN) and group-maximized (GMAX). We only review MMIN as follows.
To bid for each VBG derived from a buyer group, the group member with
the minimum bid is chosen as the critical buyer, which is removed from all
the derived VBGs. Then, each VBG bids with the minimum bid (i.e., the
critical buyer’s bid) multiplying its size after removing.

(3) Winner Determination: At this point, suppose after VBG splitting and
bidding we get totally K VBGs with bid values {πk}K

k=1. Recall that we have
M sellers with request values {sm}M

m=1. Then, this step applies McAfee’s
framework to winner determination as follows.

First of all, the sellers’ request values sm’s are sorted in non-decreasing order,
and the VBGs’ bid values πk’s are sorted in non-increasing order:

O′ : s1 ≤ s2 ≤ . . . ≤ sM

O′′ : π1 ≥ π2 ≥ . . . ≥ πK

Then, each seller’s request value sm is rewritten as many times as the number
cm of channels he bid, resulting in the bid mapping between sellers and VBGs
as follows:

O′ :

c1︷ ︸︸ ︷
s1 ≤ ... ≤ s1 ≤

c2︷ ︸︸ ︷
s2 ≤ ... ≤ s2 ≤ ... ≤

cM︷ ︸︸ ︷
sM ≤ ... ≤ sM

O′′ :π1≥ ...≥πc1 ≥πc1+1≥ ...≥πc1+c2 ≥ ... ≥π1+
∑M−1

t=1 ct
≥ ...≥πK

Finally, find the last profitable trade kl as:
kl = arg maxi≤min{L,K}{

∑i
t=1 πt ≥ i · sj(i)}

Here, L represents the total number of channels provided by sellers, namely,
L =

∑M
j=1 cj , and j(i) computes the seller index j when the trade index is i,

namely,

j(i) = 1 + arg max
0≤h≤M−1

{
h∑

t=1

ct < i}.

As a result, the last profitable seller is j(kl). In order to achieve truthfulness,
the last profitable seller, as well as all trades involving the seller, should be
sacrificed to price the winners. Then the auction winners are the first j(kl) − 1
sellers in O′ and the first k =

∑j(kl)−1
t=1 ct ≤ kl − 1 VBGs in O′′.
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(4) Pricing: Each buyer in the same winning VBG pays an even share of the
VBG bid, and each winning channel is paid by the price sj(kl). As a result,
each winning buyer pays the sum of what it pays in all the winning VBGs it
belongs to, and each winning seller is paid with the product of multiplying
its request number and the price sj(kl).
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Abstract. Group signatures are important when it comes to authenti-
cation with privacy. Hierarchical group signatures, as a proper general-
ization of group signatures, have splendid applications in e-commerce.
One key issue for such schemes is to support membership revocation
in an efficient as well as secure way. To this end, the notion of group
signatures with verifier-local revocation was proposed and well-studied,
where the revocation messages are sent only to verifiers. However, such
issue has not been formally studied in the context of hierarchical group
signatures. In this paper, we raise and formalize the new notion of hierar-
chical group signatures with verifier-local revocation, and propose a semi-
generic construction from group signatures with verifier-local revocation.
When instantiating it with a variant of the group signature scheme pro-
posed by Gordon, Katz and Vaikuntanathan, a lattice-based construction
is implicitly given.

Keywords: Group signatures · Authentication with privacy
Lattice-based cryptography

1 Introduction

Digital signatures are ubiquitous as a main approach for authentication. How-
ever, ordinary digital signatures (via PKI) inherently expose signers’ identities,
and such privacy is much desired in many real-world scenarios, e.g., e-commerce,
e-cash, anonymous online communications and more. To solve this issue, several
privacy-oriented signatures were proposed, such as ring signatures [25], trace-
able signatures [13], domain-specific pseudonymous signatures [6], and especially,
group signatures (GS) [9]. Loosely speaking, a group signature scheme has both
anonymity and traceability. The former means that group members can sign
on behalf of the group, without leaking out their identities; on the other hand,
given some valid message-signature pair, traceability enables some designated
c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 271–286, 2018.
https://doi.org/10.1007/978-3-030-01950-1_16
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manager to run a open algorithm using some secret tracing key and figure out
the actual signer.

Up to now, many generalized notions of group signatures were proposed, such
as sub-group signatures [4], multi-group signatures [4], group blind signatures
[22] and hierarchical group signatures (HGS) [26]. Hierarchical group signatures
was brought up by Wikström et al. in the context of anonymous credit card
systems. Imagine a balanced tree of depth two. The root stands for some payment
network, and nodes at depth one are distinct card-issuing banks, while leaves
are their users (card-holders). In a transaction, a user signs on the transaction
information to generate a signature, of which the validity with respect to some
single public verification key can be easily checked by the merchant; the merchant
sends the message-signature pair to the payment network, and the latter will
figure out then route it to the user’s bank; eventually, the bank traces to the
user, and debits its account. One admirable feature of such system is that by such
hierarchical tracing, nothing except those absolutely necessary will be revealed
to each party: the merchant is convinced that the transaction information has
been signed by some valid user, but cannot know its issuing bank (let alone its
identity); the payment network can route the transaction to the user’s bank,
but infeasible to figure out its identity; in contrast, the bank must be able to
determine the exact identity to debit the correct account.

Related Work. In their foundational work [5], Bellare et al. formalized
two properties for static group signatures, namely full-anonymity and full-
traceability. Plenty of subsequent work has been done within this framework.
They also proposed a generic GS construction from trapdoor permutations,
which essentially reflects a sign-encrypt-proof designing paradigm.

On the other hand, lattice-based cryptography [1] has seen a flourish of
research works in recent years. In our interest, Gordon, Katz and Vaikuntanathan
gave the first group signature scheme from lattice assumptions [12] (abbreviated
as the GKV scheme), and we refer to the full version or the original paper for
a detailed description of their scheme; besides, there are several lattice-based
schemes [8,14–21,23] with different security models, different levels of efficiency
and functionality.

Wikström et al. introduced the notion of hierarchical group signatures [26].
Without loss of generality, they considered a balanced tree depicting the hier-
archy, where inner nodes are managers and leaves are signers. Given a valid
message-signature pair, a path-following tracing, namely an iterative process
where some father node (initialized as the root manager) traces then routes
the pair to some child node, will always locate some signer who is (amongst)
the actual generator(s); on the other hand, nobody can non-trivially figure out
the actual signer without such hierarchical tracing. These are formalized into
the traceability and anonymity properties for HGS in the framework of Bellare
et al. [5]. Moreover, Wikström et al. gave a generic construction assuming the
existence of a family of trapdoor permutations.
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Motivations. Wikström et al. did foundational works for HGS in the static
setting, where no dynamic joining or revocation will be allowed once the system
is set up. However in practice, there are scenarios where revocation is desired or
even necessary, for example, when some signer misbehaves or accidently exposes
its secret signing key and thus has to be removed from the original hierarchy.
Verifier-local revocation is a highly efficient approach early brought up in the
setting of group signatures, with which revocation messages are only sent to
signature verifiers. Naturally, we wonder how to make an HGS scheme efficiently
revocable.

Our Contributions and Main Techniques. We formalize the new notion
of hierarchical group signatures with verifier-local revocation (HGS-VLR) and
propose a semi-generic construction from the existing notion of group signa-
tures with verifier-local revocation (GS-VLR). Moreover, we implicitly provide
an instantiation from lattice assumptions, using a variant of the GKV group
signature scheme.

An HGS-VLR scheme consists of three algorithms: a key generation algo-
rithm, a signing algorithm and a verification algorithm. Unlike regular HGS,
HGS-VLR has no explicit tracing algorithm. A father node possessing all chil-
dren’s revocation tokens can trace implicitly using the verification algorithm.
Correctness says that for any honestly generated message-signature pair, it will
pass the verification if and only if no ancestor of the signer (including itself)
has been revoked. As for anonymity, we propose the full-version of anonymity
for HGS-VLR where the adversary is given all signers’ secret keys. In contrast,
an insider-version of anonymity is usually considered in the context of GS-VLR,
namely the adversary cannot obtain the secret keys of challenge identities.

The main difficulties lie in how to properly define the traceability property
for HGS-VLR. If we stick to the original path-following tracing as in defining
traceability for HGS, inconsistencies will occur. Instead, we introduce a whole-
depth tracing in the model, which involves all managers at the penultimate depth
in a joint and independent tracing of some valid message-signature pair. In our
model, the adversary is claimed a success if it comes up with some valid message-
signature pair, and it holds either all managers at the penultimate depth cannot
open this pair, or there exists some manager at the penultimate depth traces
it to some honest signer. The implications and rationalities of the traceability
property as such defined will be detailed in Sect. 4.

With our new notions and models, a semi-generic HGS-VLR construction
from GS-VLR naturally arises. We regard all parties at the same depth as a
group respectively, and generate keys and revocation tokens for them. A signer
is given all signing keys of its ancestors (including itself), and for tracing pur-
poses, a manager is given all revocation tokens of its direct children. To generate
a signature, the signer produces compositional group signatures for all its ances-
tors. The correctness, anonymity and traceability can be easily reduced to those
of the underlying GS-VLR respectively.
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Outline of This Paper. We first recall some lattice knowledge. In Sect. 3,
we recall the notion of GS-VLR, and show that a variant of the GKV scheme
is a fully-anonymous GS-VLR scheme. In Sect. 4, we introduce and formalize
our new notion, and give a semi-generic construction. Its GKV instantiation is
straightforward, when combining work done in Sect. 3. We conclude this paper
in Sect. 5. Due to lack of spaces, we refer interested readers to the full version
for all proofs.

2 Preliminaries

In this section, we briefly introduce some background on lattice.

2.1 Notations

Let x‖y denote the concatenation of two binary strings x and y. Vectors are
assumed to be in column form and are written using bold lower-case letters, e.g.
x, and let ‖x‖ denote the Euclidean norm of a vector x. Matrices are written
as bold capital letters. For a matrix X, let ‖X‖ denote the maximum of the
Euclidean norms of the columns of X and ˜X is the Gram-Schmidt orthogonal-
ization of X.

We denote the set {1, · · · , N} by [N ], where N ∈ N. If S is some finite set, we
denote its cardinality by |S|, and denote choosing a uniformly random element

from S by s
$←− S; the uniform distribution on S is denoted U(S). If A is a

randomized algorithm, then [A(x, y, . . . )] denotes the set of all outputs having
positive probability on inputs x, y, . . . . We use the standard big−O notation to
classify the growth of functions. Oracles are written bold to be distinguished
from algorithms.

2.2 Lattices

Definition 1 (Lattice). Let B = {b1, . . . ,bn} be n (� m) linearly indepen-
dent vectors in R

m. The lattice generated by B, denoted by L(B), is the set of
all the integer linear combination of the vectors in B, and B ∈ R

m×n is called

a basis of L(B). Namely, L(B) = {
n
∑

i=1

xibi | xi ∈ Z} = {Bx | x ∈ Z
n}.

Definition 2 (Shortest Vector Problem, SVP). Given a basis B ∈ R
m×n

of L(B), find the shortest nonzero vector in L(B), denoted by λ1(L(B)).

It has been proved that the SVP problem is NP-hard under randomized
reduction [2]. We use its promise variant, namely the GapSVPγ problem.

Definition 3 (GapSVPγ). An instance of the problem is given by a pair (B, r)
where B ∈ Z

m×n is a lattice basis and r ∈ Q. In YES instance, λ1(L(B)) � r.
In NO instance, λ1(L(B)) > γ · r. The goal is to determine which case the input
instance is.



Hierarchical Group Signatures with Verifier-Local Revocation 275

Two classes of random lattices are widely used in cryptography:

Definition 4 (L⊥(B)). Fixing q,m, n ∈ N and given a matrix B ∈ Z
n×m
q , the

m-dimensional lattice L⊥(B) is defined as:

L⊥(B) = {ω ∈ Z
m | Bω ≡ 0 (mod q)}.

Definition 5 (L(BT )). Fixing q,m, n ∈ N and given a matrix B ∈ Z
n×m
q , the

m-dimensional lattice L(BT ) is defined as:

L(BT ) = {y ∈ Z
m | ∃s ∈ Z

n, s.t. y ≡ BT s (mod q)}.

Alwen et al. have given an efficient algorithm to generate a random lattice
along with its trapdoor basis:

Theorem 1 [3]. There is a P.P.T algorithm TrapSamp that, on input 1n, 1m, q,
with q � 2 and m � 8n log q, outputs (A,T) ∈ Z

n×m
q × Z

m×m such that the
distribution on A is statistically close to U(Zn×m

q ), and with probability all but
negligible in n:

1. the columns of T form a basis of the lattice L⊥(A);
2. ‖T‖= O(n log q) and ‖˜T‖= O(

√
n log q).

Gentry, Peikert and Vaikuntanathan [10] focused on the applications of such
short bases. Specifically, taking q = poly(n),m � 8n log q, s = ω(

√
n log q log n),

a family of one-way preimage-sampleable functions is defined in the following:

1. GPVGen(1n):
(1) run (A,T) ← TrapSamp(1n, 1m, q);
(2) define the function: fA(e) = Ae (mod q), with domain {e ∈ Z

m | ‖e‖�
s
√

m} and range Z
n
q .

2. SampleISIS(A,T, s,u):
(1) compute some t ∈ Z

m such that At ≡ u (mod q) using standard linear
algebra;

(2) sample e ← DL⊥(A)+t,s using the trapdoor basis T.

The above function is one-way if GapSVPγ is hard in the worst case for
polynomial approximation factor γ [3].

Theorem 2 [12]. There is a P.P.T algorithm SuperSamp that, on input
1n, 1m, q, with q � 2 and m � n + 8n log q, and B ∈ Z

n×m
q whose columns

span Z
n
q , outputs (A,T) ∈ Z

n×m
q × Z

m×m such that ABT = 0 (mod q) and
the distribution on A is statistically close to uniform over Z

n×m
q subject to this

condition. Moreover, with probability all but negligible in n:

1. the columns of T form a basis of the lattice L⊥(A);
2. ‖˜T‖= O(log n ·

√
mn log q).
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We now describe the LWE problem. Fix a positive integer n, integers m � n
and q � 2, a vector s ∈ Z

n
q , and a probability distribution χ on R

m. Define the
following two distributions over Z

n×m
q × [0, q)m :

1. LWEm,q,χ is the distribution obtained by choosing uniform A ∈ Z
n×m
q , sam-

pling e ← χ, and outputting (A,AT s + e (mod q)).
2. Um,q is the distribution obtained by choosing uniform A ∈ Z

n×m
q and uniform

y ∈ [0, q)m, and outputting (A,y).

Formally, for m, q and χ that may depend on n, we say the LWEm,q,χ problem
is hard, if the following is negligible for any P.P.T algorithm D:

|Pr[s ← Z
n
q ; (A,y) ← LWEm,q,χ(s) : D(A,y) = 1] − Pr[(A,y) ← Um,q : D(A,y) = 1]|

The error distribution χ we will use in this paper is the discrete Gaussian dis-
tribution DZm,αq. We write LWEm,q,α(s) as an abbreviation for LWEm,q,Dαq

(s),
and ̂LWEm,q,α(s) for LWEm,q,DZm,αq

(s), where Dαq is the continuous Gaussian
distribution.

Lemma 1 [12]. For any m = m(n), q = q(n), α = α(n) satisfying αq =
ω(

√
log n), hardness of the LWEm,q,α problem implies hardness of the ̂LWEm,q,α

√
2

problem.

3 A Fully Anonymous Group Signature
with Verifier-Local Revocation

In this section, we present a lattice-based group signature scheme with verifier-
local revocation (GS-VLR) holding full-anonymity and traceability as defined
by a variant of the GKV scheme. Note that a lattice-based GS-VLR scheme
has already been proposed by Langlois et al. [15] at PKC 2014. However, that
scheme only holds some weaker insider-anonymity, and cannot be used in initial-
izing our semi-generic construction. Now, we begin with recalling the notion of
GS-VLR [7].

3.1 Group Signatures with Verifier-Local Revocation

Formally, a GS-VLR scheme GS = (GKg,GSig,GVf) is a tuple of three poly-time
algorithms:

1. GKg(1n, 1N ). The randomized key generation algorithm takes as input the
security parameter n ∈ N, and the group size N ∈ N. It outputs a group
public key gpk, all members’ secret keys gsk := (gsk1, · · · , gskN ), and all
members’ revocation tokens grt := (grt1, · · · , grtN ).

2. GSig(gpk, gski,m). The randomized signing algorithm takes as input the
group public key gpk, the signing key gski of member i ∈ [N ], and a message
m ∈ {0, 1}∗. It outputs a signature σ.
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3. GVf(gpk,RL,m, σ). The deterministic verification algorithm takes as input
the group public key gpk, a set of revocation tokens RL, a message m, and
a candidate signature σ. It returns either 1 or 0. The latter indicates that
either σ is not a valid signature, or the member who generated it has been
revoked.

Correctness. For all n,N ∈ N, all (gpk, grt, gsk) ← [GKg(1n, 1N )], all i ∈ [N ],
and all m ∈ {0, 1}∗, the following holds with overwhelming probability:

GVf(gpk,RL,m,GSig(gpk, gski,m)) = 1 ⇐⇒ grti /∈ RL.

Implicit Tracing Algorithm. Given a valid message-signature pair (m,σ)
with respect to some revocation list RL, the one possessing all revocation tokens
grt traces by the following algorithm: for i ∈ [N ], run the verification algorithm
GVf(gpk,RLi := {grti},m, σ), and output the first index for which the verifica-
tion algorithm outputs 0; otherwise output a symbol ⊥. Apparently, if a GS-VLR
scheme is correct, so is the above implicit tracing algorithm (the honestly gen-
erated signature will always trace to its originator).

Oracles. To formalize the security properties, the following oracles are used:

1. GSig(·, ·): for queries (m, i) ∈ {0, 1}∗×[N ], it returns σ ← GSig(gpk, gski,m).
2. Corrupt(·): a corrupt set C is initialized as empty; for queries i ∈ [N ], it

responds with gski, and add i into C.
3. Revoke(·): for queries i ∈ [N ], it answers with grti.

Anonymity. In the insider-anonymity experiment as shown in Fig. 1, the adver-
sary’s goal is to determine which of two keys generated a signature. He is not
given access to either key or revocation token. The deprivation of the challenge
revocation tokens is necessary, if the GS-VLR scheme is correct. In contrast, the
deprivation of the challenge signing keys may not be a must.

Actually, in the constructions proposed by Boneh et al. [7], the revocation
token grti of some member i can be derived from its secret signing key gski.
This is an admirable feature on aspect of efficiency, however leaving room for
improving security. Specifically, a stronger version of anonymity for GS-VLR,
called full-anonymity can be considered.

Definition 6 (Full-Anonymity). A GS-VLR scheme GS holds full-
anonymity if for all P.P.T adversaries A, the following advantage function is
negligible in n:

AdvGS−V LR−full−anonymity
A,GS (n) = |Pr[1 ← ExptGS−V LR−full−anonymity

A,GS (1n, N)] − 1

2
|.

The full-anonymity differs from the insider-version in that the adversary as
shown in Fig. 2 is equipped with all members’ secret signing keys.
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ExptGS−V LR−insider−anonymity
A,GS (1n, N)

: (gpk, grt, gsk) GKg(1n, 1N )

: (i0, i1, m, st) (·,·), (·), (·)(gpk)

: b
$ {0, 1};σ GSig(gpk, gskib , m)

: b′ (·,·)(st, σ)

: return 1 if :

: b == b′

: i0, i1 /∈ C (·)
: else return 0

A

A

Fig. 1. Insider-anonymity for GS-VLR.

ExptGS−V LR−full−anonymity
A,GS (1n, N)

: (gpk, grt, gsk) GKg(1n, 1N )

: (i0, i1, m, st) (·)(gpk, gsk)

: b
$ {0, 1};σ GSig(gpk, gskib , m)

: b′

A

A(st, σ)

: return 1 if :

: b == b′

: i0, i1 (·)
: else return 0

Fig. 2. Full-anonymity for GS-VLR.

Traceability. In the traceability experiment as shown in Fig. 3, the adversary’s
goal is to forge a signature that cannot be traced to one of unrevoked malicious
members in his coalition using the implicit tracing algorithm.

ExptGS−V LR−traceability
A,GS (1n, N)

: (gpk, grt, gsk) GKg(1n, 1N )

: (m, σ, RL) A (·), (·,·)(gpk, grt)

: return 1 if :

: GVf(gpk, RL, m, σ) = 1

: σ C\RL,

: (m, i) i /∈ C
: else return 0

Fig. 3. Traceability for GS-VLR.

Definition 7 (Traceability). A GS-VLR scheme GS holds traceability if for
all P.P.T adversaries A, the following advantage function is negligible in n:

AdvGS−V LR−traceability
A,GS (n) = Pr[1 ← ExptGS−V LR−traceability

A,GS (1n, N)].

Note that if the verification algorithm satisfies that GVf(gpk,RL,m, σ) =
1 ⇐⇒ GVf(gpk, {grti},m, σ) = 1 for all grti ∈ RL, the success condition that
σ traces to someone out of C\RL can be equivalently modified as that σ traces
to someone out of C. This is because σ will never be traced to some i∗ ∈
(C

⋂

RL), otherwise by the definition of the implicit tracing algorithm, we have
GVf(gpk, {grti∗},m, σ) = 0 which contradicts with GVf(gpk, {grti∗},m, σ) = 1.
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3.2 A Fully Anonymous GS-VLR Scheme from Lattice Assumptions

Let n be the security parameter, q = poly(n),m � 8n log q and s � C
√

n log q ·
ω(

√
log m) be parameters of the system. Let H : {0, 1}∗ → Z

n
q be a hash function,

to be modeled as a random oracle. The GS-VLR scheme is demonstrated as
follow:

1. GKg(1n, 1N ): for i ∈ [N ], compute (Bi,Si) ← TrapSamp(1n, 1m, q), (Ai,
Ti) ← SuperSamp(1n, 1m, q,Bi). Output gpk := ((Ai,Bi))N

i=1 as the group
public key, gsk := (Ti)N

i=1 as members’ signing keys, grt := (Si)N
i=1 as mem-

bers’ revocation tokens.
2. GSig(gpk, gski,m): it works exactly the same as the signing algorithm of the

GKV scheme.
3. GVf(gpk,RL,m, σ): parse the signature σ as (r, c1, · · · , cN , π). If π is not

valid, output 0; for i ∈ [N ], calculate hi ← H(m‖r‖i), if the equation
Aici ≡ hi (mod q) does not hold, output 0; for Si�

∈ RL (	 = 1, · · · , |RL|),
calculate e′

i�
← ST

i�
ci�

(mod q), ei�
← ST

i�

−1e′
i�

, and if ‖ei�
‖� s

√
m, output

0. Otherwise output 1.

The only difference between the GKV scheme and ours lies in the verification
procedure. Namely, we incorporate the original GKV verification algorithm and
open algorithm into our new verification algorithm.

For the correctness and security of our scheme, we have the following
theorems.

Theorem 3. Our GS-VLR scheme is correct.

Theorem 4. Let m, q, s be described as above. If LWEm,q,α is hard for α =
s/(q

√
2), and GapSVPγ is hard for γ = O(n log4 n), and the proof system used is

witness-indistinguishable, our GS-VLR scheme is fully anonymous and traceable.

4 Hierarchical Group Signatures with Verifier-Local
Revocation

In this section, we formalize the new notion of hierarchical group signatures with
verifier-local revocation (HGS-VLR), and propose a semi-generic construction
from GS-VLR.

4.1 Syntax and Correctness

We follow the notations from [26]. There are two types of parties: signers
denoted as Sα for α in some index set I and managers denoted as Mα for
indices α described below. If a manager directly manages a set of signers
{α | α ∈ β ⊂ I}, we denote it by Mβ ; if a manager directly manages a set
of managers {Mβ1 , · · · ,Mβ�

}, we denote it by Mγ where γ = {β1, · · · , β�}.
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All parties are organized in a balanced tree T of depth δ ∈ N, where signers
are leaves and managers are inner nodes. For i ∈ {0, · · · , δ}, let T i denote all
nodes at depth i; we denote all leaves by L(T ) and the root by ρ. When there
is no risk of confusion, we write α instead of Mα or Sα.

An HGS-VLR scheme HGS = (HKg,HSig,HVf) consists of three poly-time
algorithms:

1. HKg(1n, T ). The randomized key generation algorithm takes as input the
security parameter n ∈ N, and a balanced tree T of size polynomially bounded
in n. It outputs a tuple of maps (hpk, hrt, hsk), where hpk and hrt associates
each node α ∈ T with a public value hpk(α) and a revocation token hrt(α),
and hsk associates each leaf α ∈ L(T ) with a secret signing key hsk(α).

2. HSig(hpk(T ), hsk(α),m). The randomized signing algorithm takes as input
the public map hpk(T ), a message m ∈ {0, 1}∗, and the secret signing key
hsk(α) of some signer α ∈ L(T ), and returns a signature σ.

3. HVf(hpk(T ), RL,m, σ). The deterministic verification algorithm takes as
input the public map hpk(T ), a revocation list RL ⊂ hrt(T ) composed of the
tokens associating with already revoked parties, a message m, and a candi-
date signature σ. It returns either 1 or 0, and the latter means either that σ
is not a valid signature, or (at least) one on the path from the signer to the
root (both are included) has been revoked.

The key generation algorithm HKg is run by some trusted key generator
T KG, akin to the circumstance in HGS. The map hpk(T ) is made public, and
each signer α ∈ L(T ) is given its secret signing key hsk(α). We initialize the
public revocation list RL as empty, and any party α ∈ T can be revoked by
simply adding its revocation token hrt(α) into RL.

Correctness. An HGS-VLR scheme is correct, if for all n ∈ N, all balanced
trees T of depth δ ∈ N and size polynomially bounded in n, all (hpk, hrt, hsk) ∈
[HKg(1n, T )], all m ∈ {0, 1}∗, and all α ∈ L(T ), the following holds with over-
whelming probability:

HVf(hpk(T ), RL, m,HSig(hpk(T ), hsk(α), m)) = 1 ⇐⇒ {hrt(γ)}γ∈Ancestor(α)

⋂
RL = φ,

where Ancestor(α) denotes all nodes on the path from α to ρ with both included.
We highlight that, if some manager β ∈ (T − L(T )) is ever revoked by adding
hrt(β) into RL, all signers whom β (maybe indirectly) manages are no longer
valid, even without adding their tokens into RL explicitly.

Implicit Tracing Algorithm. Each manager β ∈ (T − L(T )) is given all
revocation tokens {hrt(γ)}γ∈β of its direct children, to run an implicit tracing
algorithm inherent to HGS-VLR. Specifically, given a valid message-signature
pair (m,σ), a manager β does the following:

1. For γ ∈ β, run HVf(hpk(T ), RLγ := {hrt(γ)},m, σ);
2. Output the first index for which the verification algorithm says 0 and termi-

nate; if the pair (m,σ) passes all verifications, output a symbol ⊥.
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This algorithm is correct, if the HGS-VLR scheme is correct as defined.
Namely, given a valid message-signature pair (m,σ) honestly generated by some
signer α ∈ L(T ), a path-following tracing, where some father node (initialized as
the root) traces then passes the pair to some child, will always locate the signer
α eventually.

To explain, let β0 := ρ  β1  · · ·  βδ := α be the path. If the HGS-
VLR scheme is correct, then by definition HVf(hpk(T ), RL,m, σ) = 1 ⇐⇒
{hrt(βi)}δ

i=0

⋂

RL = φ holds with overwhelming probability; it follows that
with overwhelming probability, HVf(hpk(T ), {hrt(β)},m, σ) = 0 ⇐⇒ β = βi

for some i ∈ {0, 1, · · · , δ}. Then for i from 0 to δ − 1, the manager βi will always
trace (m,σ) to βi+1 independently with probability (1−negl(n)), where negl(n)
is a negligible function with respect to n. Then the probability of locating α is
(1 − negl(n))δ, which is still overwhelming since δ is polynomial in n. 1

4.2 Security Model

We formalize two security requirements for HGS-VLR, namely full-anonymity
and traceability using the experiments as shown in Fig. 4 and Fig. 5 respectively.
Overall, we use the framework of Bellare et al., and thus these two properties are
strong enough to capture all related security requirements, e.g., unforgeability,
exculpability, collision resistance, framing, unlinkability and so on as argued by
Bellare et al. [5]. To begin with, we specify the following oracles:

1. HCorrupt(·): a corrupt set C is initialized as empty; for queries α ∈ L(T ),
it responds with hsk(α), and adds α into the set C.

2. HRevoke(·): for queries α ∈ T , it returns hrt(α).
3. HSig(·, ·): for queries (m,α) ∈ {0, 1}∗ × L(T ), it returns σ ←

HSig(hpk(T ), hsk(α),m).

Full-Anonymity. Assume that a message m has been signed by either α(0) or
α(1) ∈ L(T ). Let B denote all nodes on paths from α(0) and α(1) up to their first
common ancestor αt, including α(0) and α(1) but excluding αt. One having access
to arbitrary element of {hrt(β)}β∈B can trivially determine who the signer is, if
the HGS-VLR scheme is correct. Full-anonymity says that nobody can determine
whether α(0) or α(1) signed the message without access to {hrt(β)}β∈B , even if it
is given all secret signing keys hsk(L(T )), and is allowed to select the challenge
identities α(0) and α(1) as well as the challenge message m by itself.

Note that no generality is lost by having access to the oracle HRevoke only
before σ is computed, since A has decided on α(0) and α(1) and can obtain
any hrt(α) with α /∈ B before it receives σ. When T is a depth one tree, the
experiment in Fig. 4 reduces to the experiment in Fig. 2 for GS-VLR.

1 The negligible functions might be different for different βi, however, we express them
uniformly by nelg(n) for simplicity, since both lead to a overwhelming probability.
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ExptA, (1n, )

: (hpk, hrt, hsk) HKg(1n, )

: (α(0), α(1), m, st) (·)(hpk( ), hsk(L( )))

: b
$ 0, 1};σ HSig(hpk( ), hsk(α(b)), m)

: b
′

A
{
A(st, σ)

: return 1 if :

: b == b′

: (β) β ∈ B

: else return 0

Fig. 4. Full-anonymity for HGS-VLR.

Definition 8 (Full-Anonymity). An HGS-VLR scheme holds full-anonymity
if for all P.P.T adversaries A, the following advantage function is negligible
in n:

AdvHGS−V LR−full−anonymity
A,HGS (n) = |Pr[1 ← ExptHGS−V LR−full−anonymity

A,HGS (1n, T )] − 1

2
|.

Traceability. In the experiment as shown in Fig. 5, the adversary A is provided
with all revocation tokens hrt(T ) and allowed to adaptively corrupt a coalition of
signers (denoted by C). To win, A must come up with a valid message-signature
pair (m,σ) with respect to some revocation list RL, and one of the following must
hold: (a) all managers at the penultimate depth cannot figure out an identity by
the implicit tracing algorithm; or (b) there exists one manager at the penultimate
depth tracing to someone not in the coalition C\RL. For simplicity, let O denote
the open results of all managers at the penultimate depth, and we formalize (a)
and (b) into two expressions, namely O = {⊥} and O

⋂

(L(T ) − C\RL) �= φ
respectively.

Now we demonstrate the implications. Given some valid message-signature
pair with respect to some revocation list, it is always feasible to figure out the
actual (and unrevoked) generator while nobody will be framed. Specifically, if
the path-following tracing does not fail, it will always locate the actual (and
unrevoked) generator; if the path-following tracing fails somewhere, all managers
at the penultimate depth can do a whole-depth tracing, and figure out some
unrevoked malicious signer, while no honest signer will be traced.

Overall, when the path-following tracing fails, attacks against traceability are
detected, or contradicting with the correctness; on the other hand, the whole-
depth tracing stands for the capability to find out the attackers. Honestly, the
latter is less efficient than the former, but it will merely be used if the punish-
ment of misbehaving is heavily enough (this seems rather sound in the context
of anonymous credit card systems). Note that such detect-and-punish paradigm
is widely used in the e-cash setting, e.g., in solving the double-spending prob-
lem [24].
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ExptA, (1n, )

: (hpk, hrt, hsk) HKg(1n, )

: (m, σ, RL) A (·), (·,·)(hpk( ), hrt( ))

: return 1 if :

: HVf(hpk( ), RL, m, σ) = 1

: O
⋂

(L( ) − C\RL) �= φ, O = {⊥}
: (m, α) α /∈ C
: else return 0

Fig. 5. Traceability for HGS-VLR.

The experiment above reduces to the experiment in Fig. 3 for GS-VLR, when
T is a depth one tree. Moreover, when nobody is corrupted, namely C = φ, the
requirement of unforgeability is reflected.

Definition 9 (Traceability). An HGS-VLR scheme holds traceability if for
all P.P.T adversaries A, the following advantage function is negligible in n:

AdvHGS−V LR−traceability
A,HGS (n) = Pr[1 ← ExptHGS−V LR−traceability

A,HGS (1n, T )].

4.3 A Semi-generic HGS-VLR Construction

As we will see, the construction is quite natural under our model, but defi-
nitely nontrivial. First, we reduce the full-anonymity of HGS-VLR to that of the
underlying GS-VLR; however, similar reduction is not right when it comes to
the insider-anonymity counterpart (we can similarly define insider-anonymity for
HGS-VLR). Second, it essentially reflects a different designing paradigm from
Wikström et al.’s, which adds the capability of revocation to the original notion.
Now we show the semi-generic construction of HGS-VLR from GS-VLR.

Specifically, let T be some balanced tree of depth δ, and let GS =
(GKg,GSig,GVf) be the underlying GS-VLR. We construct the HGS-VLR
scheme as following:

1. HKg(1n, T ): for i ∈ {0, · · · , δ}, run (gpki, grti, gski) ← GKg(1n, 1|T i|), where
grti := {grtβ}β∈T i and gski := {gskβ}β∈T i . The public map hpk is defined
as: hpk(ρ) = {gpki}δ

i=0, hpk(α) = φ for α ∈ (T − ρ); the secret map hsk is
defined as: hsk(α) = {gskγ}γ∈Ancestor(α) for α ∈ L(T ), where Ancestor(α)
denotes all nodes on the path from α to ρ with both included; hrt(β) = grtβ
for β ∈ T .

2. HSig(hpk(T ), hsk(α),m): for i ∈ {0, · · · , δ}, run σi ← GSig(gpki, gskγ ,m),
where {γ} = Ancestor(α)

⋂

T i, and output the signature σ := (σ0, · · · , σδ).
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3. HVf(hpk(T ), RL,m, σ): parse the candidate signature σ as (σ0, · · · , σδ). For
i ∈ {0, · · · , δ}, run GVf(gpki, RLi,m, σi), where RLi := {grtβ ∈ RL | β ∈
T i} denotes all revocation tokens in RL associating with parties at depth i,
and if GVf(gpki, RLi,m, σi) = 0, terminate and output 0; if (m,σ) passes all
verifications, output 1.

For the integrity of the revocation functionality, we generate both token and
signing key for the root ρ. In other words, hrt(ρ) exists only for revocation, while
other tokens are used either in the implicit tracing (thus a manager β is given
all children’s tokens {hrt(γ)}γ∈β), or removing someone out of the hierarchy by
adding its token into RL. If there is no need for revoking the root, the scheme
can be modified by simply dropping the group composed of the root.

For the correctness and security of our construction, we have the following
theorems.

Theorem 5. If the underlying GS-VLR is correct, the HGS-VLR scheme
resulted from our semi-generic construction is also correct.

Theorem 6. The HGS-VLR scheme described above holds full-anonymity
and traceability, if the underlying GS-VLR scheme holds full-anonymity and
traceability.

When we instantiate the semi-generic construction by the variant of the GKV
scheme as shown in Sect. 3.2, a concrete construction from lattice assumptions
is given. Overall, we regard all parties at the same depth as a group respectively.
As for the HGS-VLR scheme, its anonymity is reduced to the anonymity of
all groups; however, its traceability is reduced to the traceability of the group
composed of all leaves. This leaves rooms for improving efficiency, in the meaning
that for the first (δ−1) groups, the underlying scheme may only holds anonymity
and correctness.

5 Summary

The significance of this paper is embodied on two aspects: first, from HGS to
HGS-VLR, we provide the former with efficient revocation approach by introduc-
ing and formalizing the latter new notion; second, in contrast with the generic
HGS construction, we do not employ extra building blocks (e.g., an anonymous
encryption scheme [11]) in our semi-generic HGS-VLR construction, and this
somehow unifies the studies of HGS-VLR and GS-VLR. The expansion of signa-
ture’s size is in proportion to the tree’s depth. However, this won’t bother much
since the depth is usually small in applications. For future works, on one hand,
it is desirable to depict a fully dynamic case by further adding the capability of
dynamic joining; on the other hand, constructing efficient schemes in the lattice
setting seems to be some long-term open problem, as reflected in the studies
of GS.
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Abstract. Even though Verifier-local revocation mechanism seems to
be the most flexible revocation method that suits for any size of groups
it could not reach strong security yet. Verifier-local revocation technique
needs to update only the verifiers with revocation messages when a mem-
ber is revoked while most of the revocation mechanisms require to re-
initialize the group or track changes of the group. The first lattice-based
group signature scheme with verifier-local revocability was suggested by
Langlois, Ling, Nguyen, and Wang (PKC 2014). However, their scheme
relies on a weaker security notion. On the other hand, Bellare, Mic-
ciancio, and Warinschi (EUROCRYPT 2003) proposed formal security
definitions called full-anonymity and full-traceability for static groups.
Achieving full-anonymity for schemes with verifier-local revocation is
technically challenging because those schemes use a token system. This
paper provides a scheme with verifier-local revocation that achieves the
full-anonymity and full-traceability.

Keywords: Lattice-based group signatures · Verifier-local revocation
Full-anonymity · Full-Traceability

1 Introduction

In the setting of group signatures introduced by Chaum and van Heyst [9],
group members can generate signatures for the group anonymously (anonymity).
On the other hand, the group manager can extract the identity of the group
member who created the signature (traceability). Thus, the original group sig-
nature scheme has two core requirements, anonymity and traceability. Later
more requirements such as unlinkability, unforgeability, and framing resistance
have been proposed. However, the precise meaning of those requirements not
always clear and sometimes their meaning overlap each other. Bellare et al. [2]
(BMW03 model) proposed strong and formal definitions for the core require-
ments of the group signatures with two security notions called, full-anonymity
c© Springer Nature Switzerland AG 2018
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and full-traceability. The full-anonymity and the full-traceability, which imply all
the existing security notions provide a conceptual simplification since it requires
to check only two security properties in a group signature scheme. However, the
BMW03 model is for static groups, not for dynamic groups. In real-life almost
all the group settings are stateless. Thus, member registration and member revo-
cation requirements are essential when applying the group signature schemes in
practice.

When a member is misbehaved, he should be punished. For instance, if a
member issued a signature for an unnecessary document, he should be removed
from the group. Member revocation in group signature schemes requires restrict-
ing members signing in future after revoking them. There are several member
revocation methods. For instance, one revocation method is generating and dis-
tributing new keys for each member and verifiers or requesting each member to
update their keys and generating the group public key newly. Since this requires
to update all the unrevoked members and the verifiers, it is inconvenient to
implement practically. Bresson et al. [5] suggested another revocation technique
by extending the signing procedure of the scheme given in [8]. Their revocation
method requires signers to proof at the zero-knowledge that his identity is not
in the public list of revoked identities. However, this method causes the linear
growth of the size of the group signatures with the number of revoked members.
Thus it is a burden for the signers. Brickell [6] proposed a revocation method
called Verifier-local revocation (VLR), which was subsequently formalized by
Boneh et al. [4] in their scheme. VLR requires to pass revocation messages only
to the verifiers when a member is revoked. In real-life scenarios, since the number
of verifiers is much less than the number of members, passing messages only to
the verifiers are efficient than any other revocation technique. Most of the group
signature schemes (e.g., [3,16]) operate in the bilinear map setting which will be
insecure once quantum computers become a reality.

Lattice-based cryptography is the most prominent solution for the post-
quantum cryptography. It provides provable security under worst-case hardness
assumptions. Gorden et al. [11] suggested the first lattice-based group signature
scheme. However, the sizes of both the group public key and the signature in
their scheme increase with the number of members (N) (linear-barrier prob-
lem). Thus, it cannot apply to large groups. Then Camenisch et al. [7] presented
a lattice-based group signature scheme with anonymous attribute token system,
which still experiences the linear-barrier problem. Later, Languillaumie et al.
[13] presented a scheme with a solution to the linear-barrier problem. However,
the first three lattice-based group signature schemes follow LWE-based PKE
(public-key encryption) scheme, and they are only for static groups.

Langlois et al. [14] proposed the first lattice-based group signature scheme
which facilitates member revocation and free of LWE-based PKE. They have
used VLR as the member revocation technique, and their scheme is more effi-
cient while based on weaker security assumptions. In terms of security, their
scheme satisfies a weaker security notion called selfless-anonymity. The VLR
group signature schemes cannot employ the full-anonymity described in the
BMW03 model directly because VLR group signature schemes use a token
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system to manage member revocation. Thus, each member has a token other
than their secret signing key. In the full anonymity game between a challenger
and an adversary as described in the BMW03 model, all the member secret sign-
ing keys are given to the adversary at the beginning. In VLR group signature
schemes, revocation tokens cannot be given to the adversary because he can
identify the signer of a signature using tokens. Other than that, secret signing
keys cannot be given to him because he can derive the revocation token from
the secret signing keys.

The present lattice-based VLR group signature schemes raise a problem, that
is whether it is possible to design a VLR lattice-based group signature scheme
in the BMW03 model that achieves the full-anonymity.

1.1 Our Contribution

The lattice-based VLR group signature scheme in [14] relies on the selfless-
anonymity. Stronger security for VLR schemes can be achieved in two ways. One
approach is by using a restricted-version of full anonymity. The other process is
changing the methods in the scheme. We provide a new group signature scheme
that can achieve the full-anonymity using the second method.

The previous lattice-based group signatures failed to obtain the full-
anonymity because anyone possessing revocation tokens can execute signature
verification algorithm and confirm whether the relevant member created the
signature or not. For instance, in the anonymity game between a challenger
and an adversary, if the adversary knows the revocation tokens of the challeng-
ing indices, then he can execute Verify with revocation tokens he has. If Verify
returns Invalid, then he knows that the owner of the revocation token generated
the signature. Thus, this leads to an assumption that the verifiers should not
see the revocation tokens, especially the challenging indices’ revocation tokens.
Based on this assumption, new security notions were proposed [18,19]. However,
none of them are as strong as full-anonymity because they do not provide all the
revocation tokens to the adversary. Thus those security notions are restricted
version of full-anonymity.

This paper suggests a scheme that can provide all the revocation tokens to
the adversary even the challenged indices’ revocation tokens. In original VLR
schemes, when revoking a member, the group manager adds the revoking mem-
ber’s token into a list called revocation list (RL) and passes RL to the verifiers.
Thus, Verify has an additional input RL, and the verifiers have to check whether
the singer’s revocation token is not in the list other than verifying the signa-
ture. We suggest a new revocation method for VLR schemes that the group
manager has to sign each revocation token before adding to RL. On the other
hand, at the signature verification, the verifier has to check whether the revo-
cation tokens in the list are signed by the group manager other than checking
the signer’s revocation token is not in the list and signature is valid. Thus, even
the adversary obtains any revocation token he cannot execute Verify because the
adversary does not know the group manager’s secret key. Now, we can apply the
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full-anonymity for our VLR group signature scheme and provide all the mem-
ber secret signing keys and revocation tokens including the challenging indices’
details to the adversary at the full-anonymity game.

As a result, we deliver a new lattice-based group signature scheme using VLR
with new revocation and verification methods, that satisfies the full-anonymity.

2 Preliminaries

2.1 Notations

For any integer k ≥ 1, we denote the set of integers {1, . . . , k} by [k]. We denote
matrices by bold upper-case letters such as A, and vectors by bold lower-case
letters, such as x. We assume that all vectors are in column form. While the
concatenation of matrices A ∈ R

n×m and B ∈ R
n×k, is denoted by [A|B] ∈

R
n×(m+k) the concatenation of vectors x ∈ R

m and y ∈ R
k is denoted by

(x‖y) ∈ R
m+k. If S is a finite set, b

$← S means that b is chosen uniformly at
random from S.

Throughout this paper, we present the security parameter as n and the max-
imum number of members in a group as N = 2� ∈ poly(n). We choose other
parameters as in scheme [14] as given in Table 1.

Table 1. Parameters of the scheme

Parameter Value or asymptotic bound

Modulus q ω(n2 log n)

Dimension m ≥2n log q

Gaussian parameter σ ω(
√

n log q log n)

Integer norm bound β �σ · logm� s.t. (4β + 1)2 ≤ q

Number of decomposition p �log β� + 1

Sequence of integers: β1, β2, β3, . . . , βp
β1 = �β/2�; β2 = �(β − β1)/2�;

β3 = �(β − β1 − β2)/2�; . . . ; βp = 1

Number of protocol repetitions t ω(log n)

Let H: {0, 1}∗ → {1, 2, 3}t, and G: {0, 1}∗ → Z
n×m
q be hash functions, mod-

eled as random oracles. We use one-time signature scheme OT S = (OGen, OSign,
OVer), where OGen is the key generation algorithm of OT S key pair (ovk, osk),
OSign is signature generation and OVer is signature verification functions.

2.2 Lattices

Let q be a prime and B = [b1| · · · |bm] ∈ Z
r×m
q be linearly independent vectors

in Z
r
q. The r-dimensional lattice Λ(B) for B is defined as

Λ(B) = {y ∈ Z
r | y ≡ Bx mod q for some x ∈ Z

m
q },
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which is the set of all linear combinations of columns of B and m is the rank
of B.

We consider a discrete Gaussian distribution for a lattice. The Gaussian
function centered in a vector c with parameter s > 0 is defined as ρs,c(x) =
e−π‖(x−c)/s‖2

and the corresponding probability density function proportional to
ρs,c is defined as Ds,c(x) = ρs,c(x)/sn for all x ∈ R

n. The discrete Gaussian dis-
tribution with respect to a lattice Λ is defined as DΛ,s,c(x) = Ds,c(x)/Ds,c(Λ) =
ρs,c(x)/ρs,c(Λ) for all x ∈ Λ. Since Z

m is also a lattice, we can define a discrete
Gaussian distribution for Z

m. By DZm,σ, we denote the discrete Gaussian dis-
tribution for Z

m around the origin with the standard deviation σ.

2.3 Lattice-Related Properties

The security of our scheme depends on the hardness of Learning With Errors
(LWE) and two homogeneous and Inhomogeneous Short Integer Solution
Problems (SIS and ISIS).

Definition 1 (LWE [17]). LWE is parametrized by n,m ≥ 1, q ≥ 2, and χ.
For s ∈ Z

n
q , the distribution As,χ is obtained by sampling a ∈ Z

n
q uniformly at

random and e ← χ, and outputting the pair (a,aT · s + e).

There are two versions of LWE problem, Search-LWE and Decision-LWE. While
Search-LWE requires to find the secret s, Decision-LWE requires to distinguish
LWE samples and samples chosen according to the uniform distribution. We use
the hardness of Decision-LWE problem.

For a prime power q, b ≥ √
nω(log n), and distribution χ, solving LWEn,q,χ

problem is at least as hard as solving SIV Pγ (Shortest Independent Vector Prob-
lem), where γ = Õ(nq/b) [21].

Definition 2 (SIS [17,21]). Given m uniformly random vectors ai ∈ Z
n
q , form-

ing the columns of a matrix A ∈ Z
n×m
q , find a nonzero vector x ∈ Λ⊥(A) such

that ||x|| ≤ β and Ax = 0 mod q.

Definition 3 (ISIS [14]). Given m uniformly random vectors ai ∈ Z
n
q , forming

the columns of a matrix A ∈ Z
n×m
q , find a vector x ∈ Λ⊥

u (A) such that ||x|| ≤ β.

For any m, β = poly(n), and for any q ≥ β · ω(
√

n log n), solving SISn,m,q,β

problem or ISISn,m,q,β problem with non-negligible probability is at least as
hard as solving SIV Pγ problem, for some γ = Õ(β

√
n) [10].

2.4 Lattice-Related Algorithms

We use a randomized nearest-plane algorithm, called, SampleD [10,15] and
preimage sampleable trapdoor functions (PSTFs) GenTrap [1,10,15].

– SampleD(R, A, u, σ) outputs x ∈ Z
m sampled from the distribution DZm,σ

for any vector u in the image of A, a trapdoor R and σ = ω(
√

n log q log n).
The output x should satisfy the condition A · x = u mod q.
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– GenTrap(n, m, q) is an efficient randomized algorithm that outputs a matrix
A ∈ Z

n×m
q and a trapdoor matrix R for given any integers n ≥ 1, q ≥ 2, and

sufficiently large m = 2n log q. The distribution of the output A is negl(n)-far
from the uniform distribution.

2.5 VLR Group Signature

The VLR group signature scheme consists of three PPT algorithms [4] since the
implicit tracing algorithm is used to trace the misbehaved users.

– KeyGen(n, N ): This randomized PPT algorithm takes as inputs the secu-
rity parameter n and the maximum number of group members N, and
outputs a group public key gpk, a vector of user secret keys gsk =
(gsk[0],gsk[1], . . . ,gsk[N − 1]), and a vector of user revocation tokens grt
= (grt[0],grt[1], . . . ,grt[N − 1]).

– Sign(gpk, gsk[d ], M ): This randomized algorithm takes a secret signing key
gsk[d ] and a message M ∈ {0, 1}∗ as inputs and returns a signature Σ.

– Verify(gpk, RL, Σ, M ): This deterministic algorithm verifies whether the
given Σ is a valid signature using the given group public key gpk and the
message M. Then validates that the signer not being revoked using RL.

Implicit Tracing Algorithm: Any VLR group signature scheme has an implicit
tracing algorithm that uses grt as the tracing key and traces a signature to
at least one group user who generated it. For an input valid signature Σ on a
message M run Verify(gpk, RL, Σ, M ) for each i = 0, . . . ,N − 1. It outputs
the index of the first user for the verification algorithm returns invalid. The
tracing algorithm fails if this algorithm verifies properly for all users on the
given signature.

3 Definitions of the Security Notations

In this section first, we describe the core requirements presented in the original
group signatures. Then we define the full-anonymity and the full-traceability
delivered in the BMW03 model. Later, we describe the selfless-anonymity notion
provided in the group signatures with VLR. Finally, we discuss the reasons for the
difficulties of achieving the full-anonymity for the existing VLR group signature
schemes.

Simply saying,

– Anonymity requires that no adversary without group manager’s key recovers
the identity of the user from its signature, which is generated by one of the
indices from two indistinguishable indices.

– Traceability requires that no adversary forges a signature that cannot be
traced.
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3.1 Full Anonymity and Full Traceability

Bellare et al. [2] delivered a standard security model (BMW03 model) for group
signatures with two strong security properties, full anonymity and full traceabil-
ity. Definitions of the full anonymity and full traceability are provided below.

Full Anonymity

The full-anonymity game between a challenger and an adversary is as follows.
The adversary is strong as he has given all the member secret keys. At the
beginning of the game, all the user secret keys gsk and the public key gpk are
given to the adversary, and he can see the outcome of the tracing algorithm.

– Initial Phase: The challenger C runs KeyGen to obtain (gpk, gmsk, gsk).
Then gives (gpk, gsk) to the adversary A.

– Query Phase: The adversary A can access the opening oracle, which results
with Open(gmsk, M, Σ) when queried with a message M and a signature Σ.

– Challenge Phase: The adversary A outputs a message M and two distinct
identities i0, i1. The challenger C selects a bit b $← {0,1}, generates a signature
Σ∗, and sends to the adversary A. The adversary still can query the opening
oracle except the signature challenged.

– Guessing Phase: Finally, A outputs a bit b′, the guess of b. If b′ = b, then
the adversary A wins.

Definition 4. Let A be an adversary against the anonymity of a group signature
scheme GS. The advantage of A in the above full-anonymity game is

Advanon
GS,A(n,N) = |Pr[Expanon

GS,A(n,N) = 1] − 1/2|.

A group signature scheme is full-anonymous if Advanon
GS,A is negligible.

Full Traceability

As explained in [2] the group public key gpk and the group manager’s secret
key gmsk are given to the adversary A at the beginning of the game, and the
adversary A makes queries as the following game.

– Initial Phase: The challenger C runs KeyGen to obtain (gpk, gmsk, gsk).
Then gives gpk and gmsk to the adversary A and sets U ← ∅.

– Query Phase: The adversary A can do the following queries.
1. Signing: The adversary A requests a signature for any message M and

user index i, and the challenger C returns Σ = Sign(gpk, gsk[i ], M ).
2. Corruption: The adversary A queries for the secret key of any user i. The

challenger C adds i to U and returns gsk[i ].
– Challenge Phase: A outputs a message M∗ and a signature Σ∗.
– The forgery adversary A wins if the followings are true.

1. Σ∗ is accepted as a valid signature on the message M∗.
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2. Σ∗ traces to some user outside the coalition U or tracing algorithm fails.
3. Σ∗ not obtained by signing on M∗.

Definition 5. Let A be an adversary against the traceability of a group signature
scheme GS. The advantage of A in the above full-traceability game is

Advtrace
GS,A(n,N) = Pr[Exptrace

GS,A(n,N) = 1].

A group signature scheme is full-traceable if Advtrace
GS,A is negligible.

3.2 Selfless-Anonymity

Selfless-anonymity is a relaxed anonymity, and it differs from the full-anonymity
by the limitations it has. The selfless-anonymity provides none of the member
secret keys to the adversary, but only the group public key is given. However,
even with these weaknesses, the selfless-anonymity facilitates any member to
determine whether his secret signing key is used to generate a particular signa-
ture if he forgets whether he signed the message.

The selfless-anonymity game between a challenger and an adversary is as
follows.

The adversary in the selfless-anonymity game is weaker than the adversary
in the full anonymity game since the adversary has not given any secret key in
the selfless-anonymity game. The adversary has to determine which of the two
adaptively chosen keys generated the challenging signature.

– Initial Phase: The challenger C runs KeyGen to obtain (gpk, gsk, grt).
Then gives gpk to the adversary A.

– Query Phase: The adversary A can make the following queries.
1. Signing: The adversary A requests a signature for any message M ∈

{0, 1}∗ with any user index i, and C returns Σ = Sign(gpk, gsk[i ], M ).
2. Corruption: The adversary A queries for the secret key of any user i, and

the challenger C returns gsk[i ].
3. Revocation: The adversary A queries for the revocation token of any user

i, and the challenger C returns grt[i ].
– Challenge Phase: The adversary A outputs a message M∗ and two distinct

identities i0, i1, such that A did not make the corruption or revocation queries
for i0, i1. The challenger C selects a bit b $← {0, 1}, computes signature
Σ∗=Sign(gpk,gsk[ib],M∗) for ib, and sends the challenging signature Σ∗ to
the adversary A.

– Restricted Queries: Even after the challenge phase the adversary A can
make queries but with following restrictions.

• Signing: The adversary A can query as before.
• Corruption: The adversary A cannot query for i0 or i1.
• Revocation: The adversary A cannot query for i0 or i1.

– Guessing Phase: Finally, the adversary A outputs a bit b′, the guess of b.
If b′ = b, then A wins.
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Definition 6. Let A be an adversary against the anonymity of a VLR group sig-
nature scheme DGS. The advantage of A in the above selfless-anonymity game is

Advanon
DGS,A(n,N) = |Pr[Expanon

DGS,A(n,N) = 1] − 1/2|.

A VLR group signature scheme is selfless-anonymous if Advanon
DGS,A is

negligible.

3.3 Difficulties of Achieving the Full-Anonymity for VLR Schemes

The full-anonymity is suggested for static groups. Thus, members have only
secret signing keys. Even the secret signing key is used to generate signatures,
by using the secret signing keys nobody can guess the signer. But the members
in VLR schemes have another secret attribute called revocation token. Revealing
revocation tokens to the outsiders makes the scheme insecure. For instance, if an
adversary knows the user i0’s revocation token grt[i0], then the adversary can
confirm whether the user i0 generated the given signature or not by executing
Verify by replacing RL with grt[i0] as depicted in Fig. 1. According to the full-
anonymity game in Fig. 1 if Σb is generated by user i0, then Verify return Res as
Invalid for i0. Thus it confirms that user i0 generated the signature. Moreover,
since VLR group signatures derive the revocation tokens from the secret signing
keys, the selfless-anonymity also restricts revealing the secret signing keys.

Fig. 1. Full anonymity for VLR schemes

Because of these reasons, to obtain stronger security for VLR group signature
schemes, we need a restricted version of full anonymity or new scheme with
different methods.

4 New Lattice-Based VLR Scheme

The new scheme requests the group manager to sign revoking member’s token
before adding to the revocation list RL. Thus the group manager signs the revok-
ing member’s revocation token grt using the group manager secret key gmsk.
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Accordingly, at the signature verification, the verifier has to check whether the
revocation tokens in RL are signed by the group manager. For this, the verifier
executes Verify with the group manager’s public key. Because of this reason an
adversary who knows the revocation token of any member i cannot replace RL
in Verify(gpk, M, Σ, RL) with the i ’s revocation token grt[i ] and check whether
the user i generated the signature or not. The signature verification algorithm
rejects verifying the given signature because the adversary is providing a revo-
cation token which is not signed by the group manager.

In the full-anonymity game depicted in Fig. 1 when the adversary tries to
execute Verify with the revocation token of i0 and i1 he gets Invalid as the
response in both cases because he fails to provide tokens with the group man-
ager’s signature. Thus, the adversary cannot understand the signer of the given
signature. Therefore, the new scheme can employ the full-anonymity by giving
all the members’ secret signing keys and tokens to the adversary.

4.1 Description of the Scheme

We use the scheme in [14] as the base and construct our new scheme as follows.
Key Generation: This randomized algorithm KeyGen(n, N ) works as below.

1. Run PPT algorithm GenTrap(n, m, q) to get A0 ∈ Z
n×m
q and a trapdoor TA.

2. Sample u $← Z
n
q and Ab

i
$← Z

n×m
q for each b ∈ {0, 1} and i ∈ [
].

3. Set the matrix A = [A0|A0
1|A1

1| . . . |A0
� |A1

� ] ∈ Z
n×(2�+1)m
q .

4. Run GenTrap(n,m,q) to obtain B ∈ Z
n×m
q and a trapdoor TB.

5. For each group member select a 
-bit string as the index d and generate secret
signing keys and revocation tokens as below.
(a) Let d = d[1] . . . d[
] ∈ {0, 1}� be the binary representation of index d.
(b) Sample vectors xd[1]

1 , . . . ,xd[�]
� ←↩ DZm,σ.

(c) Compute z =
∑�

i=1 Ad[i]
i · xd[i]

i mod q.
(d) Get x0 ∈ Z

m ← SampleD(TA,A0,u − z, σ).
(e) Let x1−d[1]

1 , . . . ,x1−d[�]
� be zero vectors 0m.

(f) Define x = (x0||x0
1||x1

1|| . . . ||x0
� ||x1

�) ∈ Z
(2�+1)m.

If ||x||∞ ≤ β then proceed else repeat from (b).
(g) Let the user secret signing key be gsk[d ] = x(d) and revocation token be

grt[d ] = A0 · x0 ∈ Z
n
q .

Finally we obtain, the group public key gpk = (A,B,u), the group manager’s
secret key gmsk = TB, the group manager’s public key gmpk = B, group
members’ secret signing keys gsk = (gsk[0], gsk[1],. . . , gsk[N − 1]), and their
revocation tokens grt = (grt[0], grt[1],. . . , grt[N − 1]).

Signing: The randomized algorithm Sign(gpk,gsk,M) generates Σ on a
message M as follows.

1. Generate a one-time-signature OT S key pair (ovk, osk) using OGen.

2. Sample ρ
$← {0, 1}n, let V = G(A,u,M, ρ) ∈ Z

m×n
q .
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3. Sample e ← χm.
4. Compute v = V · (A0 · x0) + e mod q (||e||∞ ≤ β with overwhelming prob-

ability and (A0 · x0) is the revocation token grt of user i).
5. Repeat the zero knowledge interactive protocol of the commitment described

in Sect. 4.2 t = ω(log n) times with the public parameter (A, u, V, v) and
prover’s witness (x, e) to make the soundness error negligible and proof
that user is certified. Then make it non-interactive using the Fiat-Shamir
heuristic as a triple, Π = ({CMT (k)}t

k=1, CH, {RSP (k)}t
k=1), where CH =

({Ch(k)}t
k=1) = H(M,A,u,V,v, {CMT (k)}t

k=1) ∈ {1, 2, 3}t.
6. Compute OT S; sig = OSig(osk,Π).
7. Output signature Σ = (ovk,M, ρ,v,Π, sig).

Verification: Verify(gpk, M, Σ, RL = {{ui}i}) verifies the given signature
Σ is valid on the given message M and signer is a valid member as follows.

1. Parse the signature Σ as (ovk,M, ρ,v,Π, sig).
2. If OVer(ovk,Π, sig) = 0 then return 0.
3. Get V = G(A,u,M, ρ) ∈ Z

m×n
q .

4. Parse Π as ({CMT (k)}t
k=1, {Ch(k)}t

k=1, {RSP (k)}t
k=1).

5. If (Ch(1), . . . , Ch(t)) �= H(M,A,u,V,v, {CMT (k)}t
k=1) return 0 else proceed.

6. For k = 1 to t run the verification steps of the commitment scheme to validate
RSP (k) with respect to CMT (k) and Ch(k). If any of the conditions fails then
output invalid and hold.

7. For each ui ∈ RL,
(a) Parse ui as (grti, Σrti).
(b) Check whether grti is signed by the group manager by executing Ver-

ify(gmpk,grti, Σrti), where gmpk is the group manager’s public key. If
Verify(gmpk,grti, Σrti), returns Invalid then return Invalid.

(c) Compute e′
i = v−V ·grti mod q to check whether there exists an index

i such that ||e′
i||∞ ≤ β. If so return invalid.

8. Return valid.

Revoke: The algorithm Revoke(gpk, gmsk, grt[i ], RL) takes the group man-
ager’s secret key gmsk, revoking member’s revocation token grt[i ], and latest
revocation list RL and proceeds as follows.

1. Generate a signature for the revoking token as Σrti = Sign(gmsk, grt[i ]).
2. Add revoking token and generated signature to RL, RL ← RL ∪ (grti, Σrti).
3. Return RL.

4.2 The Underlying ZKAoK for the Group Signature Scheme

Zero-Knowledge Interactive Protocol is the main building block of the scheme as
it allows a signer to argue that he is a certified group member who has a valid
secret key and who has not been revoked.

Let COM be the statistically hiding and computationally binding commit-
ment scheme described in [12].
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Our scheme can be seen as an adaptation of [14]. Thus we can use the protocol
described in [14]. We use matrix A = [A0|A0

1|A1
1| . . . |A0

� |A1
� ] ∈ Z

n×(2�+1)m
q ,

V ∈ Z
m×n
q , u ∈ Z

n
q , and v ∈ Z

m
q as the public parameters. The witness of

the prover is the vector x(d) = (x0||x0
1||x1

1||...||x0
� ||x1

�) ∈ Σ(2�+1)m for some
d ∈ {0, 1}� and vector e ∈ Z

m. While keeping prover’s identity d in secret he
has to convince the verifier that,

1. A · x = u mod q and d is hidden in x(d).
2. ||e||∞ ≤ β and V · (A0 · x0) + e = v mod q.

5 Analysis of the Scheme

This paper provides a new scheme that satisfies the full-anonymity. However,
the restricted versions of full-anonymity called almost-full anonymity [19] and
dynamical-almost-full anonymity [18] are efficient than the proposed scheme
because those schemes do not require the group manager to sign member revok-
ing tokens. Moreover, in the selfless-anonymity, any user can check whether he
created a particular signature or not. But in the proposed scheme this is not
possible since the users do not know the group manager’s secret key. However,
in terms of security, the new scheme is much stronger than any other security
applied for VLR schemes.

5.1 Correctness

For all gpk, gmsk, gmpk, gsk, and grt,
Verify(gpk,M,Sign(gpk,gsk[i],M), RL) = Valid ⇐⇒ grt[i] /∈ RL and
For all (grti, Σrti) in RL, Verify(gmpk,grti, Σrti) = Valid.

Verify in the proposed scheme only accepts signatures generated on given
messages and which are only generated by active members. If the revocation
token of the signer is in RL, then his signature is not accepted by Verify. Sim-
ilarly Sign also checks whether the signer can satisfy those requirements. The
underlying interactive protocol confirms that only active members can generate
signatures and signers have to possess valid secret signing key.

5.2 Anonymity

Theorem 1. In the random oracle model, the proposed scheme is full anony-
mous based on the hardness of Decision-LWEn,q,χ problem.

Proof. We define a sequence of games conducted between a challenger C and an
adversary A, where the advantage of the adversary is negligible in the last game.
Game 0 is the original full-anonymity game which provides all the members’
secret signing keys and revocation tokens to the adversary at the beginning. The
adversary can request the index of the signer by giving a signature. We prove that
the games are indistinguishable, based on OT S, the zero-knowledge property of
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the underlying argument system, and the hardness of the Decision-LWEn,q,χ

problem. Game 4 is the last game which is independent of the bit b ∈ {0, 1}.

Game 0: The challenger C runs KeyGen(1n, 1N ) to obtain the group public key
gpk = (A,B,u), the group manager’s secret key gmsk =TB, the group man-
ager’s public key gmpk = B, group members’ secret signing keys gsk = (gsk[0],
gsk[1],. . . , gsk[N − 1]), and their revocation tokens grt = (grt[0], grt[1],. . . ,
grt[N − 1]). The challenger C gives the group public key gpk and all the group
members’ secret keys gsk and revocation tokens grt to the adversary A. In the
query phase, A can request to reveal index of the signer for any signature. In
the challenge phase, the adversary A sends two indices (i0, i1) together with a
message M∗ and the challenger C generates and sends back the challenging sig-
nature Σ∗ = (ovk,M∗, ρ,v,Π, sig) for a random bit b ← {0, 1}. The adversary’s
goal is to identify which index is used to generate the challenging signature. A
returns b′. If b′ = b then the experiment returns 1 or 0 otherwise.

Game 1: In this game, the challenger C makes a slight modification with respect
to Game 0. In the real experiment (Game 0) the one-time key pair (ovk, osk)
is generated at the signature generation. In this game, C generates the one-time
key pair (ovk∗,osk∗) at the beginning of the game. If the adversary A accesses
the opening oracle with a valid signature Σ = (ovk,M, ρ,v,Π, sig), where ovk =
ovk∗, C returns a random bit and aborts. However, A comes up with a signature
Σ, where ovk = ovk∗ contradicts the strong unforgeability of OT S, and since
ovk∗ is independent of the adversary’s view, the probability of ovk = ovk∗ is
negligible. Even after seeing the challenging signature if A comes up with a valid
signature Σ where ovk = ovk∗, then sig is a forged one-time signature, which
defeats the strong unforgeability of OT S. Thus, we assume that A does not
request for opening of a valid signature with ovk∗ and the challenger aborting
the game is negligible.

Game 2: In this game, without honestly generating the legitimate non-
interactive proof Π, the challenger C simulates the proof Π∗ without using the
witness. C invokes the simulator for each k ∈ [t] and then programs the random
oracle H accordingly. The challenging signature Σ∗ = (ovk∗,M∗, ρ,v,Π∗, sig) is
statistically close to the challenging signature in the previous game because the
argument system is statistically zero-knowledge. Thus Game 2 is indistinguish-
able from Game 1.

Game 3: In this game, the challenger C replaces the original revocation token by
a vector sampled uniformly random. The original game has v = V · grt[ib] + e
mod q, where V is uniformly random over Z

m×n
q and e is sampled from the

error distribution χ. In this game C samples a vector t $← Z
n
q uniformly and

computes v = V · t + e mod q. The challenger C replaces only the revocation
token grt[ib] with t. The rest of the game is same as Game 2. Thus, the two
games are statistically indistinguishable.

Game 4: Game 3 has v = V · t + e1 mod q. In this game the challenger
C makes v truly uniform by sampling y $← Z

m
q and setting v = y. Thus,
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C makes revocation token totally independent of the bit b. In Game 3, (V, v)
pair is a proper LWEn,q,χ instance. Thus, the distribution of the pair (V, v)
is computationally close to the uniform distribution over Z

m×n
q × Z

m
q . Game

3 and Game 4 are indistinguishable, under the assumption of the hardness of
LWEn,q,χ problem. If the adversary can distinguish v from y, then he can solve
Decision-LWE problem.

Hence, these games prove that the new scheme is secure with full anonymity.

5.3 Traceability

Theorem 2. Based on the hardness of SIS∞
n,(�+1)·m,q,2β problem, the proposed

scheme is traceable, in the random oracle model.

We construct a PPT algorithm F that solves SIS problem with non-negligible
probability. The forgery F is given the verification key (A, u) and then he
generates the key pair (B, TB). The forgery F passes gpk = (A, u, B) and
gmsk = TB and responds to the A’s queries as follow.

– Signatures queries: If A queries signature of user d on a random message
M, then F returns simulated Σ = Sign(gpk,gsk[d],M).

– Corruption queries: The corruption set CU is initially set to be empty.
If A queries the secret key of any user d, then F adds d to the set CU and
returns gsk[d].

– Queries to the random oracles H,G are handled by consistently returning
uniformly random values in {1, 2, 3}t. For each k ≤ qH, we let rk denote the
answer to the k -th query.

Finally, A outputs a message M∗, revocation data RL∗ and a non-trivial
forged signature Σ∗, which satisfies the requirements of the traceability game,
where Σ∗ such that Verify(gpk,M∗, Σ∗,RL∗) = Valid and implicit tracing algo-
rithm fails, or returns a user index j∗ outside of the coalition CU\RL∗.
F exploits the forgery as below.

We require that the adversary A always queries H on input
(M∗,A,u,V∗,v∗, {CMT (k)}t

k=1). As a result, with probability at least ε − 3−t,
there exists certain κ∗ ≤ qH such that the κ∗-th oracle queries involve the
tuple (M∗,A,u,V∗,v∗, {CMT (k)}t

k=1). For any fixed κ∗ run A many times and
input as in the original run. For each repeated run, A returns same output
r′
κ∗ , . . . , r′

κ∗−1 for the first κ∗ − 1 queries as in initial run and from the κ∗-th

query onwards return fresh random values r′
κ∗ , . . . , r′

qH
$← {1, 2, 3}t. The forking

lemma [[20], Lemma 7] implies that, with probability larger than 1/2, algorithm
F can obtain a 3-fork involving tuple (M∗,A,u,V∗,v∗, {CMT (k)}t

k=1) after less
than 32 · qH/(ε − 3−t) executions of A. Let the responses of F with respect to
the 3-fork branches be

r
(1)
κ∗ = (Ch

(1)
1 , . . . , Ch

(1)
t ); r(2)κ∗ = (Ch

(2)
1 , . . . , Ch

(2)
t ); r(3)κ∗ = (Ch

(3)
1 , . . . , Ch

(3)
t ).
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A simple calculation shows that Pr[∃j ∈ {1, . . . , t} : {Ch
(1)
i , Ch

(2)
i , Ch

(3)
i }] =

{1, 2, 3}1 − (7/9)t.
Under the condition of the existence of such index i, one parses the 3 forgeries

corresponding to the fork branches to obtain (RSP
(1)
i , RSP

(2)
i , RSP

(3)
i ).

Then by using the knowledge extractor ζ of the underlying argument system,
we can extract vectors (y, e). These vectors satisfy the followings.

1. y = (y0||y0
1||y1

1|| . . . ||y0
� ||y1

�) for some d ∈ {0, 1}�, and A · y = u mod q.
2. ||e∗||∞ ≤ β and V∗ · (A0 · y0) + e∗ = v∗ mod q.

Remaining proof is same as the proof given in [14]. Thus finally, we can obtain
a vector, which is a valid solution to the SIS problem. This concludes the proof
of traceability.

6 Conclusion

This paper provides a new scheme with new methods for member revocation
and signature verifications. As a result, the proposed scheme was able to achieve
the full-anonymity becoming the first lattice-based group signature scheme with
VLR that achieves the full-anonymity in comparison with known lattice-based
group signature schemes. However, the group manager has to sign every revoking
members’ s token. This leads to an open problem because the security of the
scheme depends on the trust of the group manager. If the group manager’s
information is revealed, then the scheme is not secure.

Acknowledgments. This work is supported in part by JSPS Grant-in-Aids for Sci-
entific Research (A) JP16H01705 and for Scientific Research (B) JP17H01695.

References

1. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional
encryption for threshold functions (or fuzzy IBE) from lattices. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8 17

2. Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: formal
definitions, simplified requirements, and a construction based on general assump-
tions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 38

3. Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via
group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN
2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15317-4 24

4. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: ACM-
CCS 2004, pp. 168–177. ACM (2004)

5. Bresson, E., Stern, J.: Efficient revocation in group signatures. In: Kim, K. (ed.)
PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44586-2 15

https://doi.org/10.1007/978-3-642-30057-8_17
https://doi.org/10.1007/3-540-39200-9_38
https://doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1007/978-3-642-15317-4_24
https://doi.org/10.1007/3-540-44586-2_15
https://doi.org/10.1007/3-540-44586-2_15


302 M. N. S. Perera and T. Koshiba

6. Brickell, E.: An efficient protocol for anonymously providing assurance of the con-
tainer of the private key. Trusted Comp. Group, April 2003 (2003, submitted)

7. Camenisch, J., Neven, G., Rückert, M.: Fully anonymous attribute tokens from
lattices. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp.
57–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32928-9 4

8. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

9. Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT
1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991). https://doi.org/
10.1007/3-540-46416-6 22

10. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: ACM 2008, pp. 197–206. ACM (2008)

11. Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice
assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 23

12. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes
based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.)
ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-89255-7 23

13. Laguillaumie, F., Langlois, A., Libert, B., Stehlé, D.: Lattice-based group signa-
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Abstract. Ring signatures, as introduced by Rivest, Shamir, and Tau-
man (Asiacrypt ’01), allow to generate a signature for a message on behalf
of an ad-hoc set of parties. To sign a message, only the public keys must
be known and these can be generated independently. It is furthermore
not possible to identify the actual signer based on the signature. Ring
signatures have recently gained attention due to their applicability in
the construction of practical anonymous cryptocurrencies, where they
are used to secure transactions while hiding the identity of the actual
spender. To be applicable in that setting, ring signatures must allow to
determine when a party signed multiple transactions, which is done using
a property called linkability.

This work presents a linkable ring signature scheme constructed from
a lattice-based collision-resistant hash function. We follow the idea of
existing schemes which are secure based on the hardness of the discrete
logarithm problem, but adapt and optimize ours to the lattice setting.
In comparison to other designs for (lattice-based) linkable ring signa-
tures, our approach avoids the standard solution for achieving linkabil-
ity, which involves proofs about correct evaluation of a pseudorandom
function using heavy zero-knowledge machinery.

1 Introduction

Digital signatures are one of the most important concepts in the area of cryp-
tography. They permit a party to generate a key pair (SK,PK), give PK to
the public and add certain information Ω - called the signature - to a message
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m. Ω is derived using the private (or signing) key SK and later allows a verifier,
equipped with the public verification key PK, to attest that the signer indeed
generated Ω for this specific message m. Verification is done in a way such that
only a party who possesses certain secret information that only the signer has,
namely the secret signing key SK, can generate a valid signature for PK.

Ring signatures, which were first suggested by Rivest, Shamir, and Tauman
[40], relax the condition of having exactly one pair (SK,PK) for signing and
verification to a certain extent. They allow a party among a set of N participants
to sign a message on behalf of all of them. Here it is crucial that the verifier
cannot identify the party that signed the message, while nobody outside of the
N participants should be able to sign a message as if he was a participant
himself. In comparison to group signatures, the set of parties does not need to
be known ahead of time, but only when the signature is generated. Therefore,
no key-generation algorithm which generates correlated randomness for all N
parties needs to be involved and the rings can be set up ad-hoc1.

For such a ring signature, each signer could issue an arbitrary number of
signatures. Fujisaki and Suzuki introduced the notion of traceable ring signatures
[17], where the signer signs a message with respect to a list of ring members and
a public issue such as an election. There is a public procedure to determine
whether two signatures come from one signer, i.e., the signer is linked if a signer
signs the same message with respect to the same list of ring member and same
issue twice [16]. A related idea is so-called linkable ring signatures, in which
case the true signer will be linked when he signs two messages (different or
identical) with respect to the same ring. In a more restricted version of linkable
ring signatures, one-time linkable ring signatures, a signer is linked as soon as he
reveals two signatures. This property has proven to be vital in the construction
of cryptocurrencies, such as to prevent double spending attacks and to preserve
the anonymity of a spender since the address or the respective secret key in the
design of the anonymous cryptocurrency is supposed to be one-time [37].

1.1 Related Work

Lattice-Based Signature Schemes. The line of work on lattice-based signature
schemes was, to the best of our knowledge, initiated by Goldreich et al. [19],
while the first practical construction was based on NTRU [22]. A scheme that
fits into this line of work is the provably secure construction due to Gentry et al.,
also called hash-and-sign [18]. This approach, where the signing key is a secret
trapdoor which is used to sample a short lattice vector, was further developed in
[9,15]. A different direction, called Fiat Shamir with Aborts, was first explored
by Lyubashevsky [28,29]. Very efficient signature schemes such as Tesla [21] and
Dilithium [14] have been designed within this framework.

1 We relax this a bit and assume that there exists a CRS which is known to all parties
and which allows them to derive their respective key pairs (SK, PK).
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(Linkable) Ring Signature Schemes. There exists a wealth of literature on ring
signature and linkable ring signature schemes such as [6,16,17,27,40] and we
only list some of the relevant works here. However, the above mentioned sig-
nature schemes have a signature size that is linearly dependent on the number
of users N in the ring. The Groth-Kohlweiss framework [20] is based on homo-
morphic commitments and provides a ring signature scheme with a logarithmic
signature size. Franklin and Zhang [16] propose a general framework for link-
able ring signatures. They extend the “PRF made public” paradigm by Bellare
and Goldwasser [5] in order to provide linkability by combining a PRF evalu-
ation of the secret key with a NIZK proof of correct evaluation. The smallest
ring signatures to date have constant signature size and are based on accumu-
lators. The construction by Dodis et al. [13] uses accumulators based on the
strong RSA assumption, while Nguyen’s [36] relies on pairing-based cryptog-
raphy. There exists also a linkable version of [13] by Tsang and Wei [42] that
retains the constant-sized signatures. There exist candidates for post-quantum
ring signature schemes such as hash-based [12,23] or multi-variate-quadratic-
equation based constructions [35]. Neither of them provide linkability in their
current form, but they can potentially be extended to do so.

Lattice-Based Ring Signature Schemes. Lattice-based ring signatures were first
introduced explicitly through the work of Brakerski and Tauman-Kalai [10] who
proposed a general framework for ring signatures in the standard model and
showed how to instantiate it based on the SIS assumption. The resulting sig-
natures have size O(mN) for message length m and ring size N . Subsequently,
Wang and Sun [43] proposed two ring signatures schemes from the SIS assump-
tion in the random oracle and standard model, respectively, both of linear sig-
nature size. The first ring signature scheme based on the LWE assumption was
proposed by Melchor et al. [33] and is an extension of [28] to the ring signature
setting. Like the previous schemes, it yields signatures of linear size. Recently,
Libert et al. [25] proposed the first lattice-based ring signature scheme with only
logarithmic signature size using a Merkle-tree based construction.

Concurrent Work. In concurrent work, Torres et al. [41] present a construction
that is very similar to ours. When comparing the actual parameters of both,
we have a larger size of the public keys, but compare favorably in the signature
size.

1.2 Our Contribution

We present a lattice-based linkable ring signature scheme based on the Module-
SIS and Module-LWE problem. Our scheme has a signature size which is linear
in N . It is therefore asymptotically less efficient than e.g. [12,23,25]. However,
we show that in terms of signature size our construction outperforms or performs
as good as [12,25] for comparable security levels for ring sizes N � 128 and beats
[23] for rings of small size. A comparison can be found in Table 1 below.
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Table 1. Comparison with existing work

[25] [12] Sponge/Davies-Meyer [23] Our work

Size of PK 0.5 KB 32 B 32 B 8 KB

Size (N = 8) 1.44 MB 766/477 KB 148 KB 82.5 KB

Size (N = 32) 2.29 MB 1200/719KB 216 KB 305.7 KB

Size (N = 128) 3.14 MB 1.59/0.94 MB 285 KB 1.17 MB

The authors of [12] present two different, highly optimized constructions of
ring signatures in their work. We mention numbers for both to allow for fair
comparison (outperforming one of the two for N = 128). We want to stress that
using known techniques [14] and by choosing parameters more aggressively it is
possible to reduce the public key and signature size in our setting further, but
such optimizations are beyond the scope of this work. Furthermore, [12,23,25]
are not linkable in their current form, so one can expect a further increase in their
proof size to compute a linkability tag. Though our work only outperforms [23]
for small (N ≤ 20) ring sizes, this is exactly the range that cryptocurrencies need:
the recommended ring size of the most popular cryptocurrency using linkable
ring signatures, Monero, at the time of writing was N = 5. As mentioned before,
using [14], would make it possible to reduce the ring signature size further to
also outperform [23] for N � 64.

1.3 Technical Overview

As mentioned before, the standard approach for transforming a ring signature
scheme into a linkable ring signature scheme, following Franklin and Zhang [16],
is to add a PRF evaluation of the signer’s secret key to the signature, as well
as a zero-knowledge proof of correct evaluation of the PRF under one of the
secret keys corresponding to the public keys. This generic approach applies to
any ring signature scheme and was explored for lattice-based PRFs in [25,26,44].
However, such proofs come with quite a substantial overhead. Our construction
instead follows the approach of Liu et al. [27] that avoids this technique. The
main observation is that the signer in their scheme has two “public” keys: One
that is published before signature generation as part of the ring of signers, and
the other one that is appended to each signature. Hence, another“public key”
under different public parameters that corresponds to the signer’s secret signing
key can be used as linkability tag. Since both kinds of public keys share the same
algebraic structure, the two “public keys” of the signer, i.e. the actual public
key and the linkability tag, can be tied together without appending another
non-interactive zero-knowledge proof to the signature.

Since our construction will be based on the (Module-)SIS and (Module-)LWE
problem, the public keys of the parties are of the form PK = Ar for secret
key r and public matrix A. Linkability will be ensured by providing linkability
tags I = Br for another public matrix B. Interestingly, the reason why our
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construction achieves only one-time linkability is inherent in this approach: any
evaluation Br leaks information about r. If a fresh matrix B is generated for
each ring, then a malicious party can receive more leakage on r than intended
and hence may be able to recover the signer’s secret key.

In order to obtain more efficient lattice-based (linkable) ring signatures, it
may be tempting to try to instantiate current sublinear-size ring signatures in
the lattice setting. Note, however, that this is far from trivial, as these solutions
are specifically tailored to a certain assumption like Dodis et al.’s accumulator-
based ring signatures [13], or suffer from the well-known problem that hard
lattice assumptions do not provide enough algebraic structure to support existing
sublinear approaches based on homomorphic operations like that of Groth and
Kohlweiss [20].

Paper Organization
In Sect. 2 we will introduce some definitions and lemmas concerning lattice-based
constructions which we will need throughout this work. Moreover, we will give
definitions for linkable ring signatures (following previous work). Section 3 con-
tains the construction and security statements. The main parts of the proofs are
deferred to AppendixA, whereas we discuss the practicality of our scheme in
Sect. 4. In this Section, we also provide a sample parameter set for our construc-
tion together with estimates for the size of signatures.

2 Preliminaries

We will use [N ] as shorthand for the set {1, . . . , N}. Let R be the cyclotomic
ring R = Z [X]/〈Xν + 1〉, where ν = 2p and p ∈ N

+. Let q be an odd prime and
define Rq = Zq [X]/〈Xν + 1〉. Here Zq denotes the integers modulo q, which will
be represented as elements from the interval

[− q−1
2 , q−1

2

]
. For f =

∑
i fiX

i ∈ R,
the norms of f are defined as

l1 : ‖f‖1 =
∑

i
|fi|, l2 : ‖f‖2 =

(∑

i
|fi|2

)1/2

, l∞ : ‖f‖∞ = max
i

|fi| .

If f ∈ Rq, then we will represent each coset from Zq with its unique represen-
tative from the aforementioned interval and consider the norm of the obtained
Z-vector. Let Sβ denote the set of elements x ∈ R with l∞-norm at most β. Let
0v ∈ Z

v×v and Iv ∈ Z
v×v denote the zero and identity matrix over Z.

Remark 1. We use the following standard relations among different l-norms of
a vector in R as defined above:

1. If f, g ∈ R such that ‖f‖∞ ≤ β, ‖g‖1 ≤ γ, then ‖fg‖∞ ≤ βγ.
2. If f ∈ R, g ∈ Rv satisfy that ‖f‖2 ≤ β, ‖g‖∞ ≤ γ, then ‖fg‖2 ≤ √

vνβγ.

We require a subset D of Rq which consists of short invertible elements such
that the difference of any two distinct elements from this set is also invertible. It
was shown in [32] that as long as q is a prime that satisfies q = 17 mod 32 and
q > 220, then the set D = {d ∈ Rq|‖d‖∞ ≤ 1, ‖d‖1 ≤ κ} satisfies this require-
ment. We use D̄ to denote the set of values D + D excluding 0.
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2.1 Normal Distribution and Rejection Sampling

The continuous normal distribution over R
ν centered at u ∈ R

ν with standard
deviation σ has probability density function

ρν
u ,σ(x) =

1√
2πσ

· exp
(−||x − u||22

2σ2

)

The discrete normal distribution over Rv centered at u ∈ Rv with standard
deviation σ is given by the distribution function (for all x ∈ Rv)

Nu ,σ(x) = ρv·ν
u ,σ(x)/ρv·ν

σ (Rv),

where we omit the subscript u when it is zero. We use the following standard
tail-bound due to Banaszczyk:

Lemma 1. Let Nu ,σ be defined as above. Then

Pr
[‖z‖2 > 2σ

√
vν|z ← N v

σ

]
< 2−vν

For our ring signature scheme, we use rejection sampling to hide the secret
signing key. The basic idea of rejection sampling is to abort the protocol with a
certain probability such that the distribution of the response is independent of
the secret input. We adopt the rejection sampling lemma from [29]:

Lemma 2. Let V be a subset of Rv in such that all elements have ‖·‖2-norms
less than T , σ ∈ R such that σ = ω(T

√
log(vν)), and h : V → R be a probability

distribution. Then there exists an M = O(1) such that the output distribution of
the following two algorithms A, S is within statistical distance 2−ω(log(vν))/M :

A:
1. u ← h
2. z ← N v

u ,σ

3. output (u,z) with probability min
(

1
M

N v
σ (z)

N v
u ,σ(z)

, 1
)

S:
1. u ← h
2. z ← N v

σ

3. output (u,z) with probability 1/M

Moreover, the probability that A outputs a value is at least 1−2−ω(log(vν))

M .

In [29], the author remarks that if σ = αT, α > 0 and M =
exp

(
12/α + 1/(2α2)

)
then the output of both algorithms will be within sta-

tistical distance 2−100/M and A will output a value with probability at least
1 − 2−100

M
. As an example, assume that we want the signing algorithm to suc-

ceed in each iteration with probability 1/3, i.e. we want to set M = 3. Then
following the reasoning in [29], we can set σ = 11 · T . This means that the out-
put of the signing algorithm is indistinguishable from the simulator except with
probability ≈ 2−98, which we deem sufficient for our application.
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2.2 Module-SIS and Module-LWE

The security of our linkable ring signature scheme will be based on the hardness
of two problems, Module-SIS and Module-LWE [24]. These problems are variants
of the well-known SIS [1] and LWE [39] problems, but over modules that are
defined over polynomial rings. This is a generalized version of the Ring-SIS and
Ring-LWE problems [30,31,38]. Using Module-lattice assumptions comes with
two advantages: (i) while they are a generalization of ideal-lattice assumptions,
they still retain some structure which is necessary to construct a large space of
short, invertible elements which is necessary for our construction; and (ii) there
is evidence that module lattices of larger rank are less prone to certain attacks
than ideal-lattices [3,8].

The homogeneous Module-SIS problem consists of finding a vector r of small
norm such that Ar = 0 for a given, structured matrix A.

Definition 1 (MSISh,v,t). Given A ← Rh×v
q , find r ∈ Rv such that

Ar = 0 and 0 < ‖r‖2 ≤ t.

Our scheme also uses the Decisional Module-LWE problem. In D-MLWE,
the problem consists of distinguishing noisy linear equations from random.

Definition 2 (D-MLWEh,v,β). Let A ← Rh×v
q . Then distinguish the

distributions
(A,Ar) and (A,u)

where r ← Sv
β and u ← Rh

q .

Here, we use a special instance of the Module-LWE problem where the secret
has the same distribution as the noise2.

If two samples (with different matrices, but same secret vector r) are issued
by the challenger, then this can still be related to a D-MLWE instance but with
different parameters, as the following proposition shows.

Proposition 1. Let A,B ← Rh×v
q , r ← Sv

β and c,d ← Rh
q . Then

(A,Ar,B,Br) ≈c (A, c,B,d)

given the D-MLWE2h,v,β-problem is hard.

Proof. Consider the matrices E =
[
A
B

]
, and Er =

[
Ar
Br

]
. Then distinguishing

the above distributions is equivalent to distinguishing

(E,Er) ≈c

(
E,

[
c
d

])

This is the definition of the D-MLWE2h,v,β problem. ��
2 This equivalent formulation is possible in our setting, as only one LWE sample will be

issued per secret. The definition might seem unusual at first, as one regularly defines
the LWE distribution as As1+s2. We can use the following transformation, which is
well-known: note that the given equation is equivalent to writing As1+Ihs2 instead.
By aligning this into a single matrix product of A′ with (s1|s2) and multiplying the
resulting challenge with a uniformly random r ∈ Rq, we obtain Definition 2.
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Our construction will moreover rely on a third problem, namely the Search
Module-LWE problem. It can be seen as an inhomogeneous MSIS instance where
the target is known to have a short preimage under A.

Definition 3 (S-MLWEh,v,β). Sample a uniformly random r ← Sv
β. Given(

A ← Rh×v
q , s = Ar) find r′ ∈ Rv such that Ar′ = s and 0 < ‖r′‖∞ ≤ β.

Fixing h, v, β of an S-MLWE-instance, it is easy to see that any algorithm
A that solves S-MLWE-instances can also solve D-MLWE-instances with the
same parameters in comparable time and with similar probability. For the con-
verse direction, Langlois and Stehlé [24] showed that, for certain parameter sets,
S-MLWE can be reduced to D-MLWE.

2.3 Linkable Ring Signatures

The formal syntax and security model of linkable ring signatures, sometimes also
called linkable spontaneous anonymous group signatures, can be found in [17,27].
Definitions of linkable ring signatures with adaptation to the cryptocurrency
scenario can be found in [37]. Our definitions are in the spirit of [17,20,27].

Definition 4 (Linkable Ring Signature). A linkable ring signature scheme
consists of five algorithms:

Setup(1λ): Generates and outputs public parameters PP available to all users.
KGen(PP ): Generates a public key PK and a private signing key SK.
SignPP,SK�

(m,L): Outputs a signature Ω on the message m ∈ {0, 1}� with
respect to the ring L = (PK1, . . . , PKN ). Here, (PK�, SK�) is a valid key
pair output by KGen(PP ), and PK� ∈ L.

Vfy(m,L,Ω): Verifies a purported ring signature Ω on a message m with respect
to the ring of public keys L. It outputs a bit b ∈ {0, 1}.

Link(m1,m2, Ω1, Ω2)3: Takes as inputs two messages m1,m2 as well as two
signatures Ω1 and Ω2 and outputs b ∈ {0, 1}.
The above algorithms form a linkable ring signature scheme if the following

three definitions of correctness, signer anonymity, linkability and exculpability
are fulfilled.

Definition 5 (Correctness). Let N ≥ 1. Then ∀t ∈ [N ], ∀{i1, . . . , it} ⊂
[N ], k ∈ {i1, . . . , it} and ∀m ∈ {0, 1}∗ it holds that

Pr

⎡

⎢
⎢
⎣Vfy(m,L,Ω) = 0

PP ← Setup(),
{PKi ← KGen(PP )}i∈[N ],
L = (PKi1 , . . . , PKit

),
Ω = SignPP,SKk

(m,L)

⎤

⎥
⎥
⎦ ≤ negl(λ)

3 Different from the definition of Link algorithm in the existing linkable ring signature
schemes [17,27], our definition does not take L as inputs since we are talking about
one-time linkable ring signature.
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Signer anonymity captures the intuition that if the targeted signer is not
corrupted, then the probability that the adversary can identify him as the true
signer among all uncorrupted parties is negligible.

Definition 6 (Signer Anonymity). Let L = (PK1, . . . , PKN ) be a list of
public keys and Dt be any set of 0 ≤ t < N signing keys such that ∀SKi ∈
Dt ∃PKi ∈ L : (PKi, SKi) is generated by KGen. A ring signature scheme is
signer anonymous if for any PPT algorithm E, on inputs of any message m,
sets L,Dt as defined above and any valid signature Ω on L and m generated
using SK� �∈ Dt, then

∣
∣
∣
∣Pr [E (m,L,Dt, Ω) = ] − 1

N − t

∣
∣
∣
∣ ≤ negl(λ).

Let PP ← Setup(1λ). For the following two definitions we assume the exis-
tence of two oracles OK ,OS :

Key generation oracle OK : On input of a bit b generate a random keypair
(PK,SK) ← KGen(PP ). If b = 0 then output PK, otherwise (PK,SK).

Signing oracle OS: On input (L,m, i) where L = (PK1, . . . , PKN ) are public
keys generated by OK , i ∈ [N ] and OK did not output SKi and m ∈ {0, 1}∗,
return Ω ← SignPP,SKi

(m,L). If a key in L was not queried before, then
output ⊥.

The idea behind the Linkability definition is as follows: if the same signer
generates two signatures, then the algorithm Link will identify this with over-
whelming probability. It is important that this not only holds against honest use
of the algorithm Sign, but arbitrary adversaries.

Definition 7 (Linkability). Let A be a PPT algorithm with oracle access to
OK ,OS. A is given 1λ and PP as input and outputs a list L ⊆ L (where L
is the set of all keys queried from OK) of length N together with N + 1 values
{(mi, Ωi)}i∈[N+1]. Then the scheme is linkable if, for every such A,

Pr
[∀i ∈ [N + 1] : Vfy(mi, L,Ωi) = 1,

∀i, j ∈ [N + 1], i �= j : Link(mi,mj , Ωi, Ωj) = 0

]
≤ negl(λ).

The above only talks about the setting of generating signatures without being
traceable. Equally important is the setting where signatures are signed by two
different parties, where we require that their tags must be distinct. This then,
of course, in particular includes the case of the Sign algorithm. This property is
important in the setting of cryptocurrencies where one might otherwise be able
to issue fake transactions on behalf of another party.
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Definition 8 (Exculpability). Let A be a PPT algorithm with oracle access
to OK ,OS. A is given 1λ and PP as input and outputs a list L ⊆ L (where
L is the set of all keys queried from OK) of length N together with two pairs
(m1, Ω1), (m2, Ω2) with Vfy(m1, L,Ω1) = Vfy(m2, L,Ω2) = 1, not both queried
to OS. Let M ⊂ L be set of PKi for which A did not obtain SKi from OK .
Then

Pr

⎡

⎢
⎢
⎣Link(L,m1,m2, Ω1, Ω2) = 1

∃PKi ∈ M,∃m ∈ {0, 1}∗,
∃j ∈ {1, 2} :[
Ω ← SignPP,SKi

(m,L),
Link(m,mj , Ω,Ωj) = 1

]

⎤

⎥
⎥
⎦ ≤ negl(λ).

Remark 2. In our scheme, we do not give a definition and proof for existential
unforgeability. As was observed in [17] the above definitions imply this property,
as any algorithm breaking existential unforgeability can be used in a black-box
setting to break exculpability (see [17, Theorem 2.6]).

3 Constructing Linkable Ring Signatures

In this section, we will describe our linkable ring signature scheme and prove its
security. Our proposed scheme can be considered as an adaption of the linkable
ring signature scheme proposed in [27] to the lattice setting. However, while most
linkable signature schemes such as the one proposed in [16] require the use of a
pseudorandom function to achieve linkability, our scheme demonstrates that the
linkability for one-time ring signature schemes can be obtained without using a
pseudorandom function to generate the tag.

If a scheme is not one-time, then this PRF is evaluated on the secret (or
public) key of the signing party and a description of the actual ring L. In our
case, it is not necessary to include the ring L into the tag computation (as
the scheme is one-time) and we attach a tag derived from the secret key only.
Concretely, each party will have a private key ri together with a public key
PKi = Ari, where A is a random length-compressing matrix and ri is a vector
of small norm. Thus, PKi is an evaluation of the public collision-resistant hash
function fA (·) : x �→ Ax on the private input ri.

During the signing process, the signer will generate two rings of signatures
(similar to [27,40] but twice): the first is a ring consisting of signatures for all the
N public keys and generated using fA whereas the second ring uses a different
CRHF fB . This function fB (·) : x �→ Bx uses a different public matrix B
having the same dimensions as A. The crucial point to interleave these rings
is that they are built simultaneously, using the same challenges and blinding
value in each step. For this to be verifiable, the signer must now include his Ii in
the signature, which serves the same purpose as the public key PKi in the first
ring. We will show that the signer is bound to use his own value Ii if he wants
to generate a valid signature and will therefore produce a collision if a second
signature is revealed.
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Let H : {0, 1}∗ → D be a cryptographic hash function where D is the
challenge space defined in Sect. 2. The algorithms of our scheme are defined as
follows:

Setup(1λ): Sample two random matrices A,B ← Rh×v
q and set PP = (A,B).

KGen(PP ): Sample r ← Sv
β and then generate the public key PK = Ar as

well as the signing key SK = r.
SignPP,SK�

(m,L):
1. Compute the tag I� = Br�.
2. Sample u ← N v

σ and set d�+1 ← H(L, I�,m,Au,Bu).
3. For each i =  + 1, . . . , N, 1, . . . ,  − 1:

(a) Sample rz,i ← N v
σ .

(b) Set ti,1 = Arz,i − diPKi and ti,2 = Brz,i − diI� as well as
d(i mod N)+1 ← H(L, I�,m, ti,1, ti,2).

4. Compute rz,� = u + d�r�.

5. Abort with probability 1−min
(

1,
N v

σ (rz,�)
M ·N v

d�r �,σ(rz,�)

)
, otherwise output the

signature Ω =
(
d1, (rz,i)i∈[N ] , I�

)
.

Vfy(m,L,Ω):
1. For i ∈ [N ], check whether ‖rz,i‖2 ≤ 2σ

√
νv, else output 0.

2. For i ∈ [N ], compute t′i,1 = Arz,i − diPKi, t′i,2 = Brz,i − diI� as well as
di+1 =H

(
L, I�,m, t′i,1, t

′
i,2

)
.

3. If d1 =H
(
L, I�,m, t′N,1, t

′
N,2

)
= dN+1 then output 1, else output 0.

Link(Ω1, Ω2): Given

Ω1 =
(

d
(1)
1 ,

(
r
(1)
z,i

)

i∈[N ]
, I

(1)
�

)
and Ω2 =

(
d
(2)
1 ,

(
r
(2)
z,i

)

i∈[N ]
, I

(2)
�

)
,

return 1 if I
(1)
� = I

(2)
� and 0 otherwise.

Correctness can easily be verified using Lemmas 1 and 2.

3.1 Security

We now give the security statements of our construction. Due to length con-
straints, the proofs for these can be found in AppendixA.

Theorem 1 (Signer Anonymity). The proposed ring signature scheme pro-
vides signer anonymity in the (programmable) random oracle model assuming
hardness of the D-MLWE2h,v,β-problem.

Theorem 2 (Linkability). Assume that there exists an algorithm A that
breaks linkability with probability ε, in time at most s, with at most qH queries
to OK and qS queries to OS. Then there exists an algorithm M that breaks

a MSISh,v,t-instance with probability
(
ε − 1

|D|−qH−NqS

)2

/
(
(N2 + N)qH

)2 in

time O(N2 · qH · s) where t = 4σ
√

v · ν + 2 · κ · v · ν1.5 · β.
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Theorem 3 (Exculpability). Assume that there exists an algorithm A that
breaks exculpability with probability ε, in time at most s, with at most qH queries
to OK and qS queries to OS. Then there exists an algorithm M that either breaks
an S-MLWE2h,v,β instance or an MSISh,v,t-instance with probability

(
(N − 1)ε

N
− 1

|D| − qH − NqS

)2

/
(
(N2 + N)(qH + N · qS)

)2

in time O(N · qH · s) where t = 4σ
√

v · ν + 2 · κ · v · ν1.5 · β.

4 Discussion

We now discuss questions surrounding the practicality of our scheme and hint
at future research directions.

Practical Considerations. The runtime of Vfy is essentially the N -fold runtime
of the verification of a regular lattice-based signature scheme. For signing, the
computation and sampling of I�,u as well as rr,j ,Arz,j ,Brz,j for j �=  can
be done offline. The size of the total signature is approximately the size of N
individual lattice-based signatures, as can be seen in Table 2.

As the basis of our construction, we chose a simple signature scheme without
optimizations. Following the outline of our algorithms, one can instantiate it
with e.g. [14] and then use their key-compression technique: this optimization is
important when it comes to signature size.

Parameter Selection. In our construction, the D-MLWE-instance from Theo-
rem 1 and the S-MLWE-instance in Theorem 3 have the same dimensions and
bounds. Moreover, it was already mentioned in Sect. 2.2 that any algorithm
which solves the S-MLWE problem in time h with success probability ε can be
turned into a distinguisher for D-MLWE for the same dimension with essen-
tially the same runtime and success probability. It thus suffices in the parameter
selection to look at the D-MLWE-instance only.

Unfortunately, it seems like the security reduction cannot be used for the
choice of parameters, as it is inherently non-tight: from the proofs in Sect. 3, we
see that the reductions have a huge loss in terms of success probability (both
due to the use of the Forking Lemma and because the runtime is proportional
to the number of queries of A to H). If one attempts to obtain a good success
probability of the reduction, the estimated runtime gets rather large. We leave a
proof with a tighter reduction that can be used to instantiate our construction
as an open problem.

Instead, we chose the parameters of our scheme such that the
MSIS,D-MLWE-problems are hard given that the reduction succeeds (see
Table 2). As baseline, we assume hardness of at least 128 bits using all currently
known lattice reduction attacks. This is reflected by requiring that lattice reduc-
tion will have to achieve a Root Hermite factor of less than 1.003 to break our
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Table 2. Parameter settings for our scheme

Parameter Recommended choice

q ≈232

ν 1024

h 1

v 4

κ 45/90

β (in Sβ) 1

σ 31680/63360

t (�2 MSIS-bound) ≈224/225

Root Hermite factor <1.0030

Public key size (per party) ≈8 KB/8 KB

Signing key size (per party) ≈8.8 KB/8.8 KB

Signature (N = 1) ≈17.4 KB/17.9 KB

Signature (N = 8) ≈82.5 KB/86.5 KB

Signature (N = 32) ≈305.7 KB/321.7 KB

Signature (N = 128) ≈1.17 MB/1.23 MB

scheme. For the given parameters, the security relies only on Module-SIS/LWE
with h = 1 i.e. Ring-SIS/LWE, but increasing h, v, κ and thus decreasing ν would
allow to base the hardness on Module-SIS/LWE with a larger rank with only a
minor increase in the size of the signature.

To choose actual parameters, we use the LWE simulator with sparse secrets
from [2,4] for D-MLWE. Moreover, we use [34] to assess the hardness of our
obtained SIS instance4. The size estimates in Table 2 are in Kilobytes/Megabytes
(as in related work), we bound the size of each coefficient of rz,i assuming it is
within a 6σ-interval.

Post-Quantum Security. It is widely believed that hardness assumptions used
in our scheme may offer security in a post-quantum era. On the other hand, it
is unlikely that our security proofs carry over to the Quantum Random Oracle
Model (QROM, see e.g. [7]): we use adaptive programming of the RO H in
Theorem 1, and adaptive rewinding in Theorems 2 and 3. Both of these proof
techniques are somewhat inherent to the construction.

4 While there might be newer methods to assess the hardness of SIS more precisely,
[34] suffices for an estimation of parameters. Moreover, it turned out that using
different methods yields hardness estimates (in terms of the Root Hermite factor)
that are very close to [34]. Our parameter choices were considered secure at the time
of writing, but the reader should refer to the full version of this work for updated
parameters.
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We note that other candidate constructions in the QROM such as [11,14]
also use a form of RO programming (even though not adaptively). Moreover,
though it seems unlikely that the Forking Lemma can be proven in the QROM,
there exist no attacks on protocols using these proof techniques which stem from
this use of the RO, to the best of our knowledge.

A Proof of Security

A.1 Simulation

The simulation strategy follows a similar pattern as in [27,40]. In an honestly
generated ring signature (where the secret key SK� is known) the Sign algorithm
simulates N − 1 individual signatures consecutively for all public keys but the
one to which its secret key SK� belongs. For this last public key, it uses the
challenge d� that is obtained for the last signature to close the ring using the
secret key SK�. A simulator has no secret key and will instead generate all
N individual signatures consecutively this way. To close the ring, it needs to
reprogram the random oracle H on the last query to exactly yield the challenge
d1 that is necessary to make all tests in Vfy go through. Even though this
reprogramming takes place, the challenge d1 that the RO returns will be fixed
in the simulation ahead of time but be chosen uniformly at random. This means
that the reprogramming is not detectable. Furthermore, Lemma2 ensures that
the simulation of the ring is indistinguishable.

Concerning the simulation and consistency of the second ring which involves
I we note that here I is not obtained from the same secret input r that is used
to derive PK from A since the simulator does not know SK. Instead, it will
choose this value I uniformly at random from the appropriate set. An adversary
cannot distinguish between I and the correctly generated counterpart due to
Proposition 1.

In fact, the D-MLWE2h,v,β assumption of Proposition 1 attests to the indis-
tinguishability of a pair of quadruples: (A,B,A · r,B · r) ∼ (A,B, u, v), where
u, v are random. One can further reduce the indistinguishability of another
pair of quadruples: (A,B, u, v) ∼ (A,B,A · r, v) to D-MLWEh,v,β problem,
the hardness of which can be deduced from that of D-MLWE2h,v,β . Based
on hybrid argument, the indistinguishability of the following two quadru-
ples (A,B,A · r, v) ∼ (A,B,A · r,B · r) is reduced to the D-MLWE2h,v,β

assumption.

A.2 Linkability

Assume that a PPT algorithm A is run with some certain input and that it
generates an output as in the linkability definition. A makes queries to both the
random oracle H and to the two oracles OK ,OS in order to generate these signa-
tures. We construct an algorithm R which will run A with multiple inputs and
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will attempt to rewind it on one of these inputs with different outputs from the
random oracle. During a run, A will be allowed to make qH queries to the random
oracle directly, but also OS indirectly5 makes N · qS queries to H to generate
all the queried signatures. R will simulate H,OS ,OK honestly and will rewind
A with the goal of finding two signatures Ω, Ω̂ that for some index π ∈ [N ]
used in signature verification have the same RO query (L, I,m, tπ, t′π), but dif-
fering d, d̂, r, r̂ which go into generating this query for each individual signature.
Furthermore, we require that the used I has a public key PKπ that was not gen-
erated by the simulated oracle6. In the full version, we show how to construct

such R that succeeds with probability
(
ε − 1

|D|−qH−NqS

)2

/
(
(N2 + N)qH

)2 in

time O(N2 · qH · s).
Using this algorithm R, we construct another PPT TM M. This algorithm

will obtain a MSIS-challenge A, use it as the matrix that generates public keys
and uses R to compute the aforementioned signatures. We obtain d, d̂, r, r̂, π
such that (d − d̂)PKπ = A(r − r̂) and (d − d̂)I = B(r − r̂).

PKπ was generated honestly by OK and we have rπ such that PKπ = Arπ.
Rewrite the above asA(d−d̂)rπ = A(r−r̂). Assume that (d−d̂)rπ = (r−r̂) then
by the invertibility of (d−d̂) it holds that Iπ = Brπ = B

(
(r − r̂) · (d − d̂)−1

)
= I

which contradicts the assumption that I is different from all honestly generated
tags. Hence (d − d̂)rπ �= (r̂ − r) and thus s = (d − d̂)rπ − (r̂ − r) �= 0, while
0 = As which yields a solution s to the MSIS-instance as in Definition 1.

A.3 Exculpability

The algorithm M which we will construct in the course of this proof will either
use the matrix A in Setup to implant an MSIS-challenge or alternatively choose
A,B from an S-MLWE instance. Whereas in the former case the proof works
as above, in the latter one we use a randomly chosen public key and its corre-
sponding tag to embed an S-MLWE challenge. This then means that we cannot
correctly simulate the OS-oracle as we would need the secret key for it - which is
the secret we want to extract! Instead, the proof uses a version of the simulator
from signer anonymity.

With respect to the Link algorithm from our construction, the definition
translates into the requirement that the tags I(1), I(2) from Ω1, Ω2 are equal.
Moreover, each I(i) must be identical to an honestly generated identification tag
for one of the public keys in L, and A did not obtain both signatures from OS

and does not possess the secret key for this public key. Let I = I(1) = I(2).

5 These indirect queries are not important when we discuss a signature that does not
correspond to any public key.

6 We will describe the explicit construction of R in the full version of this work, but
it follows a standard approach using a version of the Forking Lemma.
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The algorithm M will first fairly flip a bit b ← B1/2. Then it does the following,
based on the value of b:

b = 0: M will take a S-MLWE instance (D, t) where D =
(
A
B

)
∈ R2h×v

q

and t =
(
t0
t1

)
∈ R2h

q such that A,B ∈ Rh×v
q and t0, t1 ∈ Rh

q . Assign

PP = (A,B) and choose an index k ∈ [N ]. For j ∈ [N ] set

(PKj , SKj) =

{
(Arj , (rj ,Brj)) if k �= j and for rj ← Sv

β

(t0, (⊥, t1)) if k = j

We then set the counter j = 1. Whenever A requests a public key from OK ,
then output PKj and increase j by 1. If j = k and A requests the secret key
then abort. Whenever OS is queried, then sign the signature for the queried
key s correctly if s �= k, otherwise use the back-patching simulator from the
Signer Anonymity proof7, but with Ij = t1.

b = 1: M will take a MSIS instance A ∈ Rh×v
q as input, sample B ← Rh×v

q

uniformly at random and set PP = (A,B). It will additionally choose k ∈ [N ]
uniformly at random. OK will generate all keys honestly, but abort if A
queries SKk. OS will run Sign honestly.

Assume that A does not query for SKk, then the output of A will be independent
of the choice of b due to Theorem 1. If b = 0 then A will be stopped if SKk is
queried, but observe that this abort probability is the same in case b = 1 as
the key PKk is perfectly indistinguishable from honestly generated public key
PKj . Moreover, the abort probability in the presence of OS is identical due to
the construction of the oracle, so the probability that A outputs something is
independent of b. This output probability is ε′ = ε · (N − 1)/N by the random
choice of k.

In the next step, M now runs A using the algorithm R′ (similar to R from
the previous proof it implements a Forking Lemma-type algorithm) which suc-

ceeds with probability
(
ε − 1

|D|−qH−NqS

)2

/
(
(N2 + N)(qH + N · qS)

)2 in time
O(N ·qH ·s) to obtain signatures that have identical inputs to the random oracle.
From R′ obtain values d, d̂, r, r̂, π such that (d−d̂)Arπ = (d−d̂)PKπ = A(r−r̂)
and (d− d̂)I = B(r− r̂) where rπ is the secret key belonging to PKπ. We might
either have that (d − d̂)rπ = r − r̂ or that inequality holds. Now if the values
are not equal, then we can use the same argument as in linkability to extract
a MSIS solution (this covers the case when b = 1). But in case of equality the
approach does not work - unless we are in the setting where the algorithm M
chose b = 0. Now we know that equality holds and rπ is known to exist as PKπ

is a S-MLWE challenge, which we can therefore extract.

7 The anonymity simulation does only provide computational indistinguishability as
it uses Proposition 1. Here the correctly generated Ij is known and the simulation is
statistically indistinguishable, not just computationally.
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More formally, if b = 0 and k = π then M will output rπ = (r−r̂)·(d−d̂)−1 as
d− d̂ ∈ D′. If b = 1 then it will instead output (d− d̂)rπ +r̂−r. We now calculate
the probability that the algorithm M will output a correct answer to either of the
two challenges. Therefore, denote with X= the event that (d− d̂)rπ = r− r̂, and
with X�= the opposite event. Let M denote the event that M outputs something.
As our goal is to lower-bound the probability that the output of M is correct,
we need to determine

Pr [M gives correct output] = Pr [X=, b = 0|M] + Pr [X�=, b = 1|M]

If b = 0, then by the choice of k, the probability that π = k is at least 1/|L|
and therefore Pr [M|X=, b = 0] ≥ 1/N . Using Bayes’ Theorem, we obtain that

Pr [X=, b = 0|M] =
Pr [M|X=, b = 0] · Pr [X=, b = 0]

Pr [M]
≥ Pr [M|X=, b = 0] · Pr [X=, b = 0]
≥ 1/N · Pr [X=] · Pr [b = 0] = 1/2N · Pr [X=]

where we use in the last step that the occurrence of X= is independent of b.
In case of b = 1 we always give output, so we have that Pr [M|X�=, b = 1] = 1.

Using the same reasoning as above, we obtain that Pr [X�=, b = 1|M] ≥ 1/2 ·
Pr [X�=] which yields an overall bound of Pr [M gives correct output] ≥ 1/2N .
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Abstract. System logs record useful information such as execution
paths and states of running programs. Log analysis is an important part
of anomaly detection which is critical for system security. A primary step
for log anomaly detection is to extract structured log templates (message
types) from a mass of unstructured raw logs. However, conventional log
parsers are designed to work offline, which needs to collect logs for a
time period and then load all logs into memory for training. This greatly
limits its applications to large-scale log analysis. With the continuous
increase of log scales, online streaming methods are greatly desired now.
Most of existing online methods are designed for specific log systems and
there still lacks a universal log parser. In this paper, we present Slop,
which is an efficient and universal streaming log parser. To improve the
efficiency of Slop, we first group coming log messages into different parti-
tions according to their lengths. Then, we extract the message types from
different partitions. This avoids many unnecessary comparisons between
logs and existing message types. To improve the universality and accu-
racy, we investigate the relationships between lengths of message types
and the lengths of their raw logs. Based on the uncovered results, we
design a nonlinear threshold criterion for message type extraction which
is adaptive to several log systems. Finally, we implement a prototype
of Slop and conduct extensive experiments to validate its effectiveness
and efficiency based on diverse real-world datasets. It is shown that Slop
obtains 55%–82% improvements in accuracy and achieves higher effi-
ciency than state-of-the-art methods.

Keywords: Log parsers · Log partitioning · Nonlinear thresholds

1 Introduction

Log systems record the behavior and running states of systems and programs.
Logs contain useful information such as execution paths which help operators
to detect execution anomalies [1–3]. Log analytics plays important roles in the
building of secure and trustworthy systems. In general, log files are composed of
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independent lines of unstructured text data, which is called a log message. A pri-
mary step for log analysis is to convert unstructured raw logs into structured log
templates which are called message types. Implementations of such techniques
are generally called as log parsers.

Existing log parsers can be roughly classified into two categories, namely
offline methods and online methods. Offline methods such as LKE [4] and
LogSig [5] generate message types based on clustering methods which divide
log messages into different clusters. Heuristic methods such as SLCT [6] and
IPLoM [7] generate candidates of messages types by counting the occurrences
of words at different positions. However, offline methods are often limited by
system resources as they need load a mass of log data into memory. In addition,
log messages used for training are collected in a specific time period. If new
message types are added after training, we have to train the parser again. With
the development of computer science, the scale of logs is becoming much larger
than before, especially with the emergence of distributed systems. For example, a
large service system like HDFS can generate around 50 GB logs (120–200 million
lines) per hour [8]. Therefore, online streaming methods are greatly demanded.

Drain [9] and Spell [10] are two recent online log parsers. These methods
process log messages in a streaming manner, which works incrementally as log
messages are being generated. However, there are two weaknesses of current
online log parsers. First, there is an improvement space for existing online meth-
ods in both accuracy and efficiency. Second, these methods are designed for
specific log systems and the parameter settings are not universal. Drain needs to
specify the depth of a prefix tree before parsing log messages [9]. Spell generates
message types based on a linear threshold criterion which is not capable for most
log systems [10].

In this paper, we present Slop, an efficient and universal streaming log parser.
Based on the intuition that in most cases log messages have the same length
if they belong to the same message type, we perform a partition step to group
incoming log messages according to their lengths. Then we extract message types
for each partition independently. This greatly improves the efficiency by avoiding
many unnecessary searches and comparisons. In order to guarantee the accuracy
of Slop, we also combine the message types in different partitions since a small
number of message types may generate logs with varying lengths (e.g., logs have
different numbers of parameters). In order to improve the universality of our
method, we investigate the relationships between the lengths of message types
and the lengths of raw log messages for several log systems. We find that these
two metrics are not linearly correlated. We then propose a nonlinear thresh-
old criterion to extract message types from the raw log messages. This greatly
improves the universality and accuracy of our approach. Compared with other
methods, Slop is more adaptive and requires less domain knowledge of log sys-
tems. Finally, we implement a prototype of our method and conduct extensive
experiments to validate its effectiveness and efficiency based on diverse datasets.
The results clearly demonstrate that Slop outperforms state-of-the-art methods
in both accuracy and efficiency.
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In summary, we make the following contributions:

– We improve the efficiency of Slop by grouping incoming log messages into
different partitions. This avoids many unnecessary comparisons in the step of
message type extraction.

– We guarantee the accuracy of Slop by aggregating message types in different
partitions and merging the message types belonging to the same types.

– We improve the universality and accuracy of Slop by proposing a nonlinear
threshold criterion in the step of message type extraction.

– We conduct experiments based on the data collected from five real log systems
to evaluate the performance and the result clearly shows the superiority of
Slop.

The rest of this paper is organized as follows: In Sect. 2, we present the
terminologies. Section 3 describes the methodology of Slop. Section 4 shows the
selection of a proper threshold criterion for message type extraction. In Sect. 5,
we conduct extensive experiments to evaluate the performance of Slop. After a
review of related work in Sect. 6, we conclude the work in Sect. 7.

2 Terminologies

In this section, we describe the terminologies used in this paper. Figure 1 presents
an example of the log parsing problem. The upper box shows the raw log mes-
sages and the lower contains the extracted message types. Log messages 1 and 2
are from BlueGene/L [11], and Log messages 3 to 5 are from HDFS [12]. Message
types 1 to 4 are their templates, respectively.

Log messages are independent text lines in a log file. It is a complete log
that describes the behavior of the system or an application. A log message is
constituted by constant tokens and variable tokens. The upper box in Fig. 1
contains a number of log messages, where constant and variable tokens are dis-
tinguished with black and blue colors, respectively. In the rest of this paper, we
use mi to denote a log message.

Message types are generative templates of log messages. A message type
consists of constant tokens, which is the common part of a large number of log
messages. The variable tokens are replaced by asterisks, as shown in the bottom
box in Fig. 1. Message types have the same constant tokens but different numbers
of variable tokens belong to the same type. In the rest of this paper, we use tk
to denote a message type.

Tokens are words delimited by whitespace, commas or colons in a log mes-
sage. For example, RAS, KERNEL, FATAL, r20 = 0x0044397c presented in
Fig. 1 are tokens. The length of a log is defined as the number of tokens.

Constant tokens are the common parts in many different log messages. For
example, RAS, KERNEL, FATAL are constant tokens of log messages 1 and 2.

Variable tokens are the parts which vary in different log messages. Variable
tokens are replaced by asterisks in Fig. 1. For example, the last four tokens in
log messages 1 and 2 are variable tokens.
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Log message 1:
  RAS KERNEL FATAL r20=0x00443940 r21=0x0044397c 
         r22=0x0034f650 r23=0x00000010
Log message 2:
  RAS KERNEL FATAL r24=0x083e0e68 r25=0x0 e891c
         r26=0x0 e4230 r27=0x0 e8914
Log message 3:

         blk_4980916519894289629
Log message 4:
  INFO dfs.DataNode$DataXceiver: Receiving block
         blk_7503483334202473044 src: /10.251.215.16:52002 dest: 
         /10.251.215.16:50010
Log message 5:
  INFO dfs.DataNode$DataXceiver: Received block
         blk_1608999687919862906 src: /10.251.215.18:52002 dest: 
         /10.251.215.18:50010 of size 91178

Message type 1:
  RAS KERNEL FATAL * * * *
Message type 2:

*
Message type 3:
  INFO dfs.DataNode$DataXceiver: Received block * src: * dest: *
Message type 4:
  INFO dfs.DataNode$DataXceiver: Received block * src: * dest: * 
         of size *

Log Parse

Fig. 1. An example of the log parsing problem (Color figure online)

3 Methodology of Slop

Figure 2 presents the basic workflow of Slop, which consists of five main steps,
namely raw log preprocessing, log partitioning, message type prematching, mes-
sage type extraction, and message type combination.

Processed Logs

Partition 1

Partition 2

Partition 3

B. Partition Matching
Matched?

No

Yes

Message type 1
Message type 2
Message type 3

Matched Partition

Matched? Create New 
Message Type

Log 
Message

C. Fast  Match

No

Calculate
LCS

Yes
D. Message Type

Extraction

Partition 4

Message Types E. Message Types Combination

Streaming Logs
A. Pre-Process

Create New 
Partition

Fig. 2. Structure of slop
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3.1 Raw Log Preprocessing

In this step, Slop deletes tokens that are ensured to be variable tokens, e.g.,
timestamps. Timestamps always increase in a single log file. However, times-
tamps have fixed positions in log messages and thus the efficiency can be greatly
improved if we remove these tokens before log parsing. It is worth noting that
this is not a necessary step. If users have no knowledge of where the timestamp
is, they can choose to do nothing in this step. The accuracy of the results will
not be affected without any preprocessing of the raw logs.

3.2 Log Partitioning

In this step, Slop groups an incoming log message into specific partitions accord-
ing to the length. As shown in Fig. 2, for an incoming message, if it does not
match any partitions according to its length, Slop will create a new partition.
Message types are extracted in each partition independently. Each partition con-
tains several message types. In the rest of this paper, we denote a partition as
a set Pj , and Pj = {t1j , t2j , . . . , tkj}, where tkj is the k-th message type in Pj .
Clearly, partitioning the messages into small groups reduce many unnecessary
comparisons. This is because the number of message types in each partition is
much smaller than the total number of message types. In most cases, log mes-
sages have the same length if they belong to the same message type. Some log
messages belonging to the same message type may have different lengths and
thus are grouped into different partitions. We handle this problem by combining
all message types and merge message types belonging to the same type. The
details are described as in Sect. 3.5.

3.3 Message Type Prematching

When an incoming message mi is grouped into a partition Pj , Slop first calculates
the intersections between mi and tkj ∈ Pj . If the intersection length satisfies the
threshold criterion (see Sect. 4), then mi is a possible realization of tkj . In the
next step Slop extracts the message type and parameters of mi, and update
the message type tkj . If the intersection length does not satisfy the threshold
criterion for any message types, then a new message type is created and added
to the partition.

3.4 Message Type Extraction

If an incoming message mi is prematched with a message type tkj , Slop extract
the message type and parameters of mi, and update tkj using the LCS (Longest
Common Subsequence) method. The LCS problem is to find the longest subse-
quence common to all sequences in a set of sequences (often just two sequences).
For example, given two sequences S1 = ABCDEFG and S2 = ABKDEFH, the
longest common subsequence of S1 and S2 is ABDEF. There are two key points
to note here. The first key point is that LCS needs to appear in both sequences
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simultaneously. The other is that the order of tokens in LCS needs to be the
same order it appears in both sequences.

When we obtain the LCS between mi and tkj , then the remaining tokens
(variable tokens) are parameters. We then replace the variable tokens with aster-
isks to obtain the message type of mi. If the obtained message type is different
from tkj , we use it substitute tkj .

3.5 Message Types Combination

As mentioned previously, the partitioning step may divide the log messages
belonging to the same type into different groups. In this step, Slop combines
all message types in different partitions to obtain the final set of message types
and merges message types belonging to the same type. Figure 3 presents an
example of two log messages from HDFS [12]. At the end of m1, there is just one
IP address as its parameter while there are two IP addresses in m2. Although
m1 and m2 have different lengths, they belong to the same message type.

Log message 1:
  INFO bfs.FSNamesystem: BLOCK* ask 10.251.31.5:50010 to 
         replicate blk_1608999687919862906 to datanodes(s) 

10.251.90.64:50010
Log message 2:
  INFO bfs.FSNamesystem: BLOCK* ask 10.250.14.224:50010 to 
         replicate blk_1608999687919862687 to datanodes(s) 

10.251.215.16:50010, 10.251.71.193:50010

Message type 1:
  INFO bfs.FSNamesystem: BLOCK* ask * to replicate * to 
         datanodes(s) *
Message type 2:
  INFO bfs.FSNamesystem: BLOCK* ask * to replicate * to 
         datanodes(s) * *

Log Parse

Fig. 3. An example from HDFS logs

To tackle this problem, we propose an algorithm to combine the obtained
message types. Assume the there are n partitions and each partition contains
a number of message types. Denote the set of final message types as P . Slop
compares the message types from each partition with that in P . If a message
type is a subsequence of the other, then the two message types will be com-
bined as a single message type. The pseudo-code of the algorithm is presented in
Algorithm 1. The function intersection(tkj , ti) calculates the length of common
constant tokens between tkj and ti. |ti| is the length of the message type ti,
which is the number of constant tokens.
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Algorithm 1. Message types combination algorithm
Input: Partitions
Output: P : The final message type set
Initialization: P = ∅

1 for j ← 1 : n do
2 foreach tkj ∈ Pj do
3 flag = True;
4 foreach ti ∈ P do
5 if intersection(tkj , ti) == min(|tkj |, |ti|) then
6 flag = False;
7 break;

8 if flag then
9 Add tkj to P ;

It is worth noting that the algorithm is efficient since the total number of
message type are usually small. For example, an HDFS [12] log file which contains
more than 11 million log messages just has 39 message types. Additionally, the
combination can be performed periodically with a much longer time interval.
This further improves the efficiency.

4 A Nonlinear Threshold Criterion

In this section, we first present why a proper threshold criterion is necessary
for message type extraction and the weaknesses of the linear threshold criterion.
We then introduce a nonlinear threshold criterion which is universal for several
common log systems.

4.1 The Necessity of a Proper Threshold

Although log messages m3 and m4 in Fig. 1 share a common token “INFO”,
they do not belong to the same message type. That is, we need a threshold to
determine when an LCS can be regarded as a message type. In the rest of this
paper, we use lij to denote the length of LCS between log messages mi and mj ,
and ω to denote the threshold. That is, if and only if the length of the LCS is
greater than the threshold ω, these two log messages can be regarded to belong
to the same message type.

However, how to decide a proper threshold criterion is a core and difficult
problem. Spell introduces a linear threshold criterion which is defined as ω =
|mi|/2 [10], where |mi| is the length of mi. For example, the length l34 of the
LCS of m3 and m4 is 1, and ω = 3 (i.e., 6/2). Since l34 is not greater than ω,
the LCS “INFO” of m3 and m4 cannot be regarded as a message type.

Such a threshold criterion works well for specific log systems. However, it
encounters serious problems when applied to other log systems. For example,
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Table 1. Statistical results for different log systems

Log systems Logs Logs (lij � ω) MT MT (lij � ω)

BlueGene/L 2000 1297 (65%) 112 29 (26%)

HDFS 2000 1061 (53%) 14 5 (36%)

HPC 2000 1331 (67%) 44 27 (61%)

Proxifier 2000 1958 (98%) 7 3 (43%)

Zookeeper 2000 324 (16%) 46 12 (26%)

the lengths of log messages m1 and m2 in Fig. 1 are both 7, and their LCS
l12 is of length 3. Thus, the log parser will determine that the two messages
belong to different message types. We investigate such a problem in five log
systems, namely BlueGene/L, HDFS, HPC, Proxifier, and Zookeeper. He et al.
provide the datasets for the five system logs with ground-truth message types in
their work [13]. They randomly select 2000 log messages from every dataset and
extract their message types. We then examine how many logs and message types
that violate the linear threshold criterion. The results are presented in Table 1.
It is found that a large fraction of logs (the 3rd column) and message types (the
5th column) disobey the criterion. For instance, nearly 65% log messages have
an LCS whose length is not greater than half the length of the message. These
messages are generated from about 26% message types. The statistical results
clearly show such a linear threshold criterion will result in high message type
extraction errors. It is necessary to find a proper threshold criterion which is
adaptive to different system logs.

4.2 Nonlinear Threshold

In order to find a proper threshold criterion, we look insight into the relationship
between the length of log messages and the length of its corresponding message
types based on the above five log systems. The results are shown in Fig. 4. The
x-axis represents the length of log messages and the y-axis is the length of mes-
sage types. We also plot the linear threshold criterion in the figures. It is shown
that when the length of log messages is small, the length of most message types
is below the line of the linear threshold. This indicates that short message types
have a big chance to violate the criterion. Therefore, we should find a proper
threshold criterion that satisfies: (i) The threshold curve should approximate to
the message type curve and (ii) it should not surpass above the message type
curve.

Take the above analysis into consideration, we find a proper nonlinear thresh-
old criterion:

ω(mi) =
1

2
|mi| tanh(

|mi|
max(|m|)T ), (1)
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(a) BlueGene/L (b) HDFS

(c) HPC (d) Proxifier (e) Zookeeper

Fig. 4. Effectiveness of tanh.

where |mi| is the length of log messages, max(|m|) is the maximum length of log
messages for a specific log system, T is an adjustable constant, and

tanh(x) =
sinh(x)

cosh(x)
=

ex − e−x

ex + e−x
. (2)

The motivation of the above nonlinear threshold criterion is to reconcile the
linear one with a tanh(x) function. However, we have to determine a proper value
of the parameter T in order to satisfy the previously mentioned two constraints.
The curve of the tanh(x) function is plotted in Fig. 5. We focus on the first
quadrant of the tanh(x) function since the length of log messages are always
positive. It is shown that the value of tanh(x) increases with the increase of x
with a decreasing rate. The values of tanh(x) approximate to 1.0 when x is large
enough. In fact, we want to apply the nonlinearity of tanh(x) when the length
of a log message |mi| is small. Therefore, we have to scale the value of |mi|

max(|m|)
in order to satisfy the constraints. We find that when x � 2.64, it is enough to
guarantee the value of tanh(x) approximate to 1.0. Hence, in this paper we set
T = 2.64.

We also plot the nonlinear threshold criterion in Fig. 4. We can see that
in all datasets, our nonlinear threshold criterion works very well with only one
exception in the HPC log system [14]. The exceptional message type has a length
of 44, and the logs corresponding to this message type just appear only once in
the 2000 log messages.
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Fig. 5. The Tanh function

5 Experiments

In this section, we first introduce the datasets to conduct the experiments. Then
we evaluate the effectiveness and efficiency of our approach by comparing with
the state-of-the-art methods.

5.1 Datasets Description

We employ datasets collected from 5 real log systems for the experiments. Table 2
shows the statistical information of the datasets. BlueGene/L is collected by
LLNL (Lawrence Livermore National Labs). It contains logs collected from a
supercomputer called BlueGene/L [11]. HDFS is collected from a 203 nodes
cluster which is deployed on the Amazon EC2 platform [12]. HPC is collected
from a cluster, too, which has 49 nodes [14]. Proxifier is collected from a software
called Proxifier. Zookeeper is a dataset used in [9] and it is collected from a
32-node cluster. These datasets can be obtained from [15].

Table 2. Datasets information

System Log messages Message types

BlueGene/L 4,747,963 183

HDFS 11,175,629 39

HPC 433,490 50

Proxifier 10,108 9

Zookeeper 74,380 64

5.2 Parameter Settings

We compare Slop with four log parsers namely IPLoM [7], LogSig [5], Spell [10],
and Drain [9], which are proposed in 2009, 2011, 2016, and 2017, respectively. We
left those methods that are very old like SLCT [6] which is proposed in 2003. We
have tuned the parameters of these methods to achieve their best performance.
Table 3 shows the parameters for different datasets. For IPLoM, ct is used to
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avoid further partitioning. Its value ranges in (0, 1]. LB is the lower bound
to control how to find a bijective [7]. For LogSig, k is the number of message
types [5,9,13]. Drain [9] has two parameters named depth (depth of fixed tree)
and st. Depth is the depth of the fixed tree and st is the similarity threshold [9]
which is used to select the most suitable log group for a log message. Spell and
Slop need no parameters.

Table 3. Parameters of IPLoM, LogSig and Drain

Methods Parameters BlueGene/L HDFS HPC Proxifier Zookeeper

IPLoM ct 0.4 0.35 0.18 0.55 0.4

LB 0.01 0.25 0.25 0.25 0.65

LogSig k 183 39 50 9 64

Drain Depth 3 4 3 3 4

st 0.3 0.4 0.5 0.3 0.3

5.3 Effectiveness Evaluation

In this experiment, we evaluate the effectiveness of Slop. The ground-truth of
message types for each dataset is obtained as follows: First, we obtain four sets of
message types by applying IPLoM [7], Drain [9], Spell [10] and Slop, respectively.
We do not use LogSig because it needs the number of message types as its
input [5]. If a message type is obtained by more than two methods, we regard
it as a ground-truth. For each of the types extracted only by one method, we
calculate its similarity with each of the previously obtained ground-truth. The
similarity between two message types is defined as follows:

s =
|{t1} ∩ {t2}|
|{t1} ∪ {t2}| (3)

where {t1} is the set of constant tokens contained in t1. A message type is added
as a ground-truth if its similarity with any ground-truth message types is smaller
than 0.5.

We first examine the performance of the methods for different log systems. We
use nMT to denote the number of message types generated by each method and
nG to denote the number of message types in the ground-truth. We then calculate
|nMT −nG| to see which method performs the best for different log systems. The
result is shown in Fig. 6. The red line represents the baseline, which is always
zero. It is shown that Slop performs better than other methods in almost every
dataset. Spell [10] generate much more message types for HDFS [12] because
the threshold criterion is not a suitable choice. Log messages whose constant
tokens are less than half the length of the log messages will be regarded as a new
message type. Thus, Spell extracts many redundant message types which belong
to the same message type. Drain [9] also generates too many message types for
Proxifier.
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Fig. 6. Number of message types generated by each method (Color figure online)

We then employ the F1-score to evaluate the accuracy of these methods.
F1-score is defined as follows:

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
. (4)

where Precision and Recall are defined as:

Precision =
TP

TP + FP
. (5)

Recall =
TP

TP + FN
. (6)

where TP, FP, and FN in the equations are True Positive, False Positive and False
Negative, respectively. True Positive means that log messages generated by the
same message type are correctly grouped together. False Positive is the case that
log messages not belonging to the same message type are misclassified together.
False Negative represents that message types belonging to the same message type
are parsed as different message types. Table 4 shows the performance of each
method on different datasets. It is shown that Slop achieves the highest scores
on Precision, Recall and F1-score on all log systems except for the Zookeeper.
Although Slop is not as good as IPLoM [7] and Drain [9] on Zookeeper [9], it
still has good performance which is close to the highest score. Spell has very low
recalls on most datasets because its FNs are too high. Slop reduces the FNs by
the employment of the nonlinear threshold criterion.

5.4 Efficiency of Slop

To evaluate the efficiency of Slop, we randomly sample 20%, 40%, 60%, 80%, and
100% log messages from each dataset, respectively. The numbers of log messages
in the sampled datasets are shown in Table 5. Figure 7 shows the running time
of each log parser. We observe that, compared with other methods, the running
time of LogSig [5] increases faster as the log size increases. This is because it uses
a matrix to generate message types, whose time complexity is O(n2). IPLoM [7]
shows the best performance on BlueGene/L [11]. This is because log messages
from BlueGene/L are more structured than other datasets. So it is faster to count
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Table 4. Precision, Recall, F1-score of each methods

Dataset Metrics LogSig IPLoM Spell Drain Slop

BlueGene/L Precision 0.83 0.97 0.91 0.97 0.99

Recall 0.25 0.8 0.87 0.72 0.9

F1-score 0.39 0.87 0.89 0.83 0.94

HDFS Precision 0.82 0.92 0.92 0.92 0.93

Recall 0.75 0.86 0.06 0.86 0.93

F1-score 0.78 0.88 0.11 0.89 0.93

HPC Precision 0.81 0.33 0.82 0.85 0.97

Recall 0.56 0.25 0.73 0.69 0.83

F1-score 0.66 0.29 0.77 0.76 0.9

Proxifier Precision 0.73 0.89 0.86 0.88 0.89

Recall 0.73 0.33 0.38 0.1 0.78

F1-score 0.73 0.48 0.52 0.19 0.82

Zookeeper Precision 0.82 0.95 0.97 0.95 0.94

Recall 0.7 0.95 0.68 0.95 0.86

F1-score 0.76 0.95 0.8 0.95 0.9

the token frequency at each position and search for bijections [7]. However, this
method requires more memory than others. Spell [10] is more time-consuming
than Drain [9]. Since when there is no matched message type in the prefix tree for
a coming log message mi, it has to calculate the LCS between mi and each of the
extracted message types tij . The time complexity of calculating LCS between mi

and tij is O(|mi||tij |). On the other hand, the depth of the prefix tree increases
as the parsing process goes on. Drain [9] consumes slightly more time than Slop.
Drain divides all log messages that contain digits to a same group. Although it
restricts the maximum width and depth of the tree, there may be too many logs
in a group [9]. So it costs more time for systems whose log messages contain too
many digits. As shown in Fig. 7, except for the BlueGene/L dataset, Slop has
the best performance among all the methods. This is because Slop partitions log
messages by length, which reduces many unnecessary comparisons between log
messages and message types.

Table 5. Different sizes of sample datasets

Dataset 20% 40% 60% 80% 100%

BlueGene/L 0.9m 1.8m 2.7m 3.6m 4.5m

HDFS 2.1m 4.3m 6.4m 8.5m 10.7m

HPC 84.7k 169k 254k 338.7k 423k

Proxifier 2k 3.9k 5.9k 7.9k 9.9k

Zookeeper 14.5k 29k 43.6k 58k 72.6k
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(a) BlueGene/L (b) HDFS (c) HPC

(d) Proxifier (e) Zookeeper

Fig. 7. Efficiency of each method on different log size.

The time complexity of Slop is O(|Pj ||mi| + |tij ||mi|)n, where |Pj | is the
number of message types in one partition, |mi| is the length of the log message,
|tij | is the length of the message type, and n is the number of log messages. For
every log message, |Pj ||mi| is the time complexity of prematching, and |tij ||mi|
is the time complexity of calculating LCS. These are only one calculation of
LCS for a log message. Obviously, |mi| and |tij | can be regarded as constants
since they are far less than the number of log messages. The number of message
types |Pj | in each partition can also be regarded as a constant. Figure 8 plots
the number of message types in each partition. Take the BlueGene/L dataset
which has the most message types among the five datasets as an example, Slop
produces 173 message types totally. With partitioning, it only needs to compare
at most 35 times instead of 173 times in the stage of prematching. In the other
four datasets, the number of message types in almost all partitions are less than
20. The number of message types |Pj | in each partition is much smaller than
non-partition, which greatly reduces the time complexity.

We also evaluate the average time for each online method to find the message
type of a newly incoming log message. Table 6 shows the results. It is shown
that Slop has the best performance to find or generate the message type of
a log message. Such results clearly demonstrate that Slop satisfies the online
processing requirement.
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(a) BlueGene/L (b) HDFS (c) HPC

(d) Proxifier (e) Zookeeper

Fig. 8. Number of message types in different partitions.

Table 6. Average lookup time of online methods

Method BlueGene/L HDFS HPC Proxifier Zookeeper

Spell (ms) 0.246 0.067 0.201 0.149 0.083

Drain (ms) 0.083 0.031 0.033 0.035 0.03

Slop (ms) 0.074 0.031 0.032 0.032 0.029

6 Related Work

There have been many researches on log parsing, which is critical for log anomaly
detections such as DDoS attack detections [3] and performance failure detec-
tions [16–20]. To the best of our knowledge, the first log parser is called SLCT [6].
SLCT first calculates the distance between log messages and then employs a clus-
tering technique to divide log messages into different groups, and finally extract
the message types. Xu et al. [17,21] proposed a method to automatically generate
message types through source code. However, in practice source codes are often
not available in most cases. Through pre-defined regular expressions, message
types could also be extracted from raw logs [4]. However, the definition of reg-
ular expressions needs domain knowledge, which is a high requirement for most
log parser users. IPLoM [7] consists of three steps to group raw logs iteratively
and search for bijective relationships between logs. LogSig [5] uses a metric to
determine which message type the raw log belongs to. It requires the number of
message types as input. However, in practice, it is hard to determine how many
message types a specified system has.
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To the best of our knowledge, Drain is the latest log parser proposed by He
et al. in 2017 [9]. It is an online streaming log parser which parses raw logs using
a fixed depth tree. It also needs the user to write regular expressions to pre-
process the raw logs, which need domain knowledge like LKE [4]. Moreover, the
parameter configurations of Drain [9] varies from system to system. It is usually
hard to specify the parameters for different log systems. Spell [10] is another
online streaming log parser. It parses log messages through computing longest
common subsequence between log messages and message types. Every incoming
log message needs to be compared with all message types until the message type
of the log message is found. As the number of message types increases, this
process becomes time-consuming and there are many unnecessary comparisons
between log messages and message types.

In summary, all these methods face a common problem: different log systems
need different parameters. However, we often do not know how to specify these
parameters for different log systems. Although Spell does not need to tune the
parameters by users, it is not adaptive to other systems. In our method, we
design a nonlinear threshold criterion which is adaptive to most systems. We also
partition the log messages according to their lengths to improve the efficiency.

7 Conclusion

With the continuous increase of log scale, online log parser is greatly desired
now. In this paper, we propose Slop, an efficient and universal online stream-
ing log parser. We improve the efficiency of Slop by grouping log messages into
partitions. The message types extracted from different partitions are then com-
bined and merged to guarantee its accuracy. We improve the universality of
Slop by employing a nonlinear threshold criterion for message type extraction.
We implement a prototype of Slop and conduct extensive experiments to eval-
uate its effectiveness and efficiency. The experimental results show that Slop
outperforms the state-of-the-art log parsers in terms of accuracy and efficiency.
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Abstract. In order to prevent potential network crime and halt attack-
ers’ operation further, collecting information to profile attackers is help-
ful. Because this exposes the identity of attackers, as well as provides
IOC (Indicator of Compromise) to confirm whether devices have been
compromised. In this information searching procedure, finding unknown
information based on the existing ones is of crucial importance, because
it leads to a more comprehensive profile about the attackers. Usually,
these information pieces about a particular attacker form a tight con-
nected community. Thus, finding the correct community label for the
new incoming information piece based on these existing ones is pivotal
for iteratively discovering more unknown information about the attacker.
To facilitate this process, we propose to adopt the promising deep learn-
ing method to community classification on attribution traces. First, we
propose to employ deep learning on extracting attribution trace pattern
and then use the fine-tuned DBN (Deep Belief Network) to model the
existing communities. At last, we experimentally illustrate the effective-
ness of the DBN model in finding the correct community labels by feed-
ing it with test information pieces. The results demonstrate that deep
learning is a powerful means for identifying the community label.

Keywords: Deep learning · Attribution trace · Network analysis
Community discovery

1 Introduction

With the highly developed global internet, a variety of network attacks are
appearing daily, and this number is increasing [23,25]. To counter these threats,
Network traceback is a sound method, because it directly leads to the expo-
sure of attackers. For the real application, supposing to continuously monitor
the APT1 organization [22], we collect information pieces about the attackers,
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D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 342–357, 2018.
https://doi.org/10.1007/978-3-030-01950-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_20&domain=pdf


Community Discovery of Attribution Trace 343

such as malware MD5, IP address, email addresses used by them from public
reports, Google, malware reverse engineering, and compromised device forensic.
These information pieces are combined as traceback network to profile the APT1
organization and its attackers. We could exploit this traceback network to verify
if machines are compromised by APT1 organization and its attackers through
comparing the malware MD5 information pieces that are testified belonging to
APT1 traceback network with the file MD5 found in end machine. If there exists
a match, it indicates this machine has been compromised by this organization.
The malware MD5 here we used are called the IOC (Indicator of Compromise).
There are variety forms of IOCs, such as MD5, file existence, cookies, etc.

In general, tight connected information pieces are connected as relevant cir-
cles [24] and stay as a compact community. There exist more connections within
the community rather than between communities. The more compact the com-
munity is, the more related these information pieces are to another. In the attri-
bution trace network, these pieces within the community are strong relevant
to the person or the organization we are investigating, while others may not
much relevant. So as to continuously add new information pieces into this trace-
back network for comprehensive organization profiling, We iteratively research
these information pieces within the community to discover other relevant but
unknown pieces which possibly have been ignored hitherto by analyzers. We
also have to determine whether the new incoming information piece belongs to
this traceback network or not. Therefore, finding the correct community label
for the information piece is of crucial importance as they may help to uncover
previously unknown information about the attackers.

Deep learning, as the cutting-edge machine learning method, is very effective
in extracting pattern. The pretraining selects better pattern layer by layer auto-
matically. And these patterns extracted by deep learning are usually superior
to hand-picked features [12]. Additionally, patterns extracted by pretraining is
resistant to breakings launched by attackers. For example, in the past, once the
features hand-picked by investigators were analyzed and understood, the attack-
ers usually will modify their implemented features to escape the detection, which
renders the previous research works ineffective and finally avoids the traceback
mechanism. Based on these grounds, we employ pretraining to extract the com-
munity patterns from attribution trace network and model these communities
through fine-tuning this model, powering the deep learning model to assign the
new piece to the right community.

Our paper proposes a deep learning approach to find the correct community
label for information pieces to fulfill the purpose of network attack traceback.
To demonstrate the effectiveness of this approach, we use the Enron emails
communication dataset to test the model trained by deep learning.

In summary, we make the following contributions to attack traceback in this
paper:

– We utilize pretraining to extract connection patterns from both the connec-
tion weight and the connection structure of the trace network and demon-
strate that the extraction of network trace pattern implemented by deep
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learning, which learns optimized deep hierarchical representation. This over-
comes the shortcomings accompanied with previous researches, which merely
focus on individual features, such as vertex centrality, closeness centrality,
eigenvector centrality and clustering coefficients.

– We validate the effectiveness of the deep learning model against the real email
communication dataset. And hyper-parameters (i.e. L2weight and sparsity),
which greatly influence the model, are also discussed and optimized.

The rest of the paper is organized as follows. In Sect. 2, related literatures are
reviewed, including the methods based on mesoscopic features, block-modeling
and NMF (Nonnegative Matrix Factorization). Our deep learning approach are
presented in Sect. 3. We outline our experiments in Sect. 4, and present experi-
mental results. We close with a discussion about the work in Sect. 5.

2 Related Work

Community discovering has been extensively investigated in social network
research area [1,3,5]. However, adopting community discovery to attribution
trace network is a relatively emerging research area.

The traditional methods are usually based on the mesoscopic features, e.g.
modularity, network vertex degree and connection weights. Seldom concerns have
been given to applying deep learning for trace community discovery. Blondel et
al. introduced an efficient modularity-based algorithm which finds communities
in large networks [2].

Ferrara analyzed the community structure of the Facebook social network
using the mesoscopic feature. It included the statistical features of the meta-
network, such as density, average degree, connection weight, and it unveiled
the communities representing the aggregation units where users stay together
and interact [7]. Emilio Ferrara also presented LogAnalysis, which is a semi-
supervised detection of criminal communities in networks reconstructed from
phone call records. It analyzed degree centrality, vertex between centrality,
closeness centrality, eigenvector centrality and clustering coefficient to profile
the criminal communities. The system unveiled a few primary characteristics of
criminal communities in real world phone call networks [8]. Most of their works
focused on employing local features of vertex to detect community structures.
Our work mainly utilizes the connection structure and connection weights of
vertices.

De Meo et al. worked on methods to determine whether two vertices belong
to the same community according to their similarity, which is based on the
knowledge of common connected vertices or vertex group, as well as the anal-
ysis of social events in which users are involved [6]. They also proposed CON-
CLUDE (Complex Network Cluster Detection). It couples the accuracy of global
approaches with the scalability of local methods by figuring out the edge impor-
tance which keeps the network connected. This edge centrality enables vertices
mapping to Euclidean space. And the distance among the points in this space
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is employed to discover communities [15]. Their work is somewhat similar to
ours, we both exploits the vertex similarity to determining whether two vertices
belongs to the same community. However, they used features of the edge central-
ity, while we employ deep learning to extract representations from connection
structure.

Chen et al. tried to uncover crime community by using hierarchical cluster-
ing, and they exploited block-modeling to confirm the inter-connection among
communities [4]. Their method is mainly a community cluster, while ours devotes
to train deep network to recognize vertices belonging to the same community.

He et al. [9] and Jin et al. [10] employed stochastic model to detect com-
munities through nonnegative matrix factorization. It aimed to find a nonneg-
ative membership matrix to reconstruct the adjacency matrix of the network.
Their objective functions are usually based on square loss function and Kullback-
Leibleer divergence. Their work used matrix factorization to discover community
structures, while our approach can adapt the community model to new training
vertices and continuously improve the community abstraction.

We are aware of Ishai Rosenberg’ work, they proposed DeepAPT [20] to
attribute malwares to its national developers using Deep Neural Networks
(DNN). They recorded the running behaviors of malware in sandbox as raw
input to the neural network, from which the DNN extracted features about the
malwares. They tested set of 1,000 Chinese and Russian developed malwares,
and achieved accuracy rate of 94.6%. Our work is different from theirs because
we focus on profiling the attackers and their organization through continuously
information mining. While their work concentrated on discovering the author-
ship for binary malware code.

3 Method

In this section, we propose the deep learning method, including the embedding
preprocessing in Sect. 3.2, the deep learning in Sect. 3.3.

3.1 Definition

Attribution trace is defined as the abstract of attributable information piece.
It is defined as a tuple, (vi, vj , eij), which contains two vertices vi, vj and their
connection eij . By combining traces with the common vertex, we define the trace
network as a network G = (V,E), where V is the set of all vertices, and E is
the set of all connections. The network is a collection of all vertices and their
connections.

3.2 Vertex Embedding

The input dimension of the deep learning is constant in both training and testing
stages. Thus, the vertices in the attribution trace network should map into a
space where each vertex’s feature dimension is the same. And this mapping
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function is requested to reserve the community characters of each vertex. To
achieve this purpose, we utilize Deepwalk to embed vertices in the attribution
trace network. The dimension of the embeddings is constant, which serves as the
input of our deep learning model.

Deepwalk learns embedding of trace vertices by encoding their connection
relations into a continuous vector space [18]. For each vertex in the trace net-
work, the walk begins from itself, then adds a new vertex randomly chosen from
the neighbors of the last visited vertex until the maximum walk length is met.
Deepwalk then uses Word2vec to model and update the embedding of the ver-
tices. Word2vec first represents each vi ∈ V as one-hot vector. Given a vertex
walk Wn = (v0, v1, . . . , vn) in the random walks, where vi ∈ V , and V is the
set of trace vertices, Word2vec will maximize the Pr(vn|v0, v1, . . . , vn−1) over
all the walks in the random walk set by exploiting neural network to predict
the following vertex in each random walk [16]. After this process, the weights of
hidden layer are used to present each vertex as a vector.

Deepwalk is a particularly computationally-efficient predictive model for
learning vertex embeddings from the random walks, because if two vertices have
the same connection context in the network, they tend to generate the simi-
lar random walks. It then embeds vertices in a continuous vector space where
connection context similar vertices are mapped to nearby points. This captures
the neighborhood similarity and community membership of each vertex in the
attribution trace network.

The original implementation of Deepwalk does not exploit the connection
weights among vertices. In our paper, we choose a new vertex in the random
walk process with the probability proportional to their connection weights, which
means if an adjacent vertex has greater weight than other adjacent vertices, it
has a bigger chance that the chain walks to this vertex.

Algorithm 1. Deepwalk algorithm with connection weight
Input: G(V,E), dimension, walk.length,
Output: embeddings
1: walks ← ∅
2: for all vi ∈ V do
3: walk ← ∅
4: walk.add(vi)
5: vcur ← vi
6: for i in range(walk.length) do
7: vnext = rand(vcur.adj, weights)
8: walk.add(vnext)
9: vcur ← vnext

10: end for
11: end for
12: embeddings = word2vec(walks, dimension)
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The Deepwalk algorithm with connection weight is illustrated in Algorithm1.
It first implements random walks starting from each vertex in the network with
the possibility proportional to the connection weight. And all the random walks
generated in the first step constitute the walk set which the Word2vec model
works on. Then Word2vec model consumes these random walks to update the
vertex embeddings. In our research, we set the walk length to 15 vertices, and
200 walks are generated for each vertex. The final embedding dimension is 160.

3.3 Deep Learning

Deep learning is particularly helpful for extracting pattern from complex data
[11]. This character especially suits the goal that we classify trace network com-
munity. Because the community character of attribution trace is a complex data
format that is encoded as the connection structure and connection weight among
different traces. The deep learning model extracts the pattern optimized for the
community character through layer by layer pretraining. The training procedure
of deep learning extracts the patterns which are perfect representations of ver-
tex’s community character. The training procedure contains two steps, pretrain-
ing and fine-tuning. The core unit of the pretraining stage is the autoencoder.

1x
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dx

1h

2h
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2̂x
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Fig. 1. Autoencoder unit

An autoencoder is comprised of an encoder and a decoder. The structure
of autoencoder is depicted in Fig. 1. The encoder transfers the input to hidden
pattern represented by the hidden layer output, while the decoder attempts to
reverse this process by mapping the hidden pattern to its original input. We
consider the vertex embeddings extracted by Deepwalk as x ∈ R

Dx , then the
autoencoder tries to replicate the input as x̂ according to Eq. 1.

x̂ = hd{wd(he(wex + be)) + bd)} (1)

where h is the transfer function, w is the weight matrix and the b is the bias
vector. The superscript e stands for the encoder layer, while the superscript d
stands for the decoder layer.
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The autoencoder learns its weights and biases by reconstructing the input
through optimizing the cost function. Equation 2 is the cost function. The deep
learning model updates the weights and biases through minimizing this cost
function. The weights of the hidden layer learnt in this way are close to the
global optimal weights, which are later used to transfer the input to the latent
representations.

E =
1
N

N∑

n=1

D∑

d=1

(xdn − x̂dn)2 + λΩweights + βΩsparsity (2)

where N is the number of vertices in every training batch, D is the vertex dimen-
sion that is determined by Deepwalk’s parameter, Ωweights is the L2 weight regu-
larization and Ωsparsity is the sparsity regularization. λ and β stand respectively
for the coefficients of the L2 weight regularization and the sparsity regularization.

The L2 weight regularization is helpful in keeping the weights small. This is
accomplished by summing the square of the weights. The overall term will be
punished if this summation is large. This will prevent the model from overfitting
the training traces [17].

Ωweights =
1
2

L∑

l

N∑

j

D∑

i

(wl
ji)

2 (3)

where D is the vertex dimension, N is the number of vertices in each training
batch and L is the number of neurons in the hidden layer.

The sparsity regularization penalizes the activation of each hidden neuron,
ρ̂i, deviating significantly from the hyper-parameter, ρ, by imposing penalty
term to the cost function. It will punish the cost function when the average
activation value, ρ̂i, of the reconstruct layer neuron is swayed much from the
desired value, ρ.

Ωsparsity =
D∑

i=1

ρlog(
ρ

ρ̂i
) + (1 − ρ)log(

1 − ρ

1 − ρ̂i
) (4)

where ρ is a hyper-parameter to which we would like the average activation of
each hidden neuron to be close, ρ̂ is the activation of each hidden neuron. Here
we use the Kullback-Leibler divergence function [13] as a difference measurement
of ρ̂i and ρ. The output of this function equals 0 when ρ̂i and ρ are the same. D
is the number of hidden neurons.

DBN is composed of a stack of encoders with a softmax layer as the final
layer. These encoders are the front part of the pretrained autoencoders. The
structure of DBN is demonstrated in Fig. 2. In DBN, each layer’s input serves as
the visible layer, output serves as the hidden layer. Each hidden layer serves as
the visible layer of the next layer [21]. DBN fulfills the training process through
three steps. The first step is pretraining, which goes layer by layer. It employs
unsupervised training to update the weights of the hidden units in each layer,
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Fig. 2. DBN network

outputs the hidden patterns. During this step, each hidden layer in the DBN is
considered as an autoencoder. Then it combines all the encoders trained in the
first step and adds a softmax layer. The softmax layer squashes the output of the
last hidden layer into vector σ(z) of real values, where each entry is in the range
(0, 1), and all the entries add up to one. Equation 5 is the softmax function.

σ(z)j =
ezj

∑K
k=1 ezk

for j = 1, . . . , K (5)

After the pretraining stage, a fine-tuning process is launched using the train-
ing traces and their community labels in a supervised training manner to re-train
the whole neural network. This process treats all layers of the stacked autoen-
coders as a single model and precisely adjust the model weights to fit the training
traces. This fine-tuning process utilizes the cross-entropy as the cost function,
which is displayed in Eq. 6.

E(W, b) = − 1
N

N∑

i=1

[yi ln ŷi + (1 − yi) ln(1 − ŷi)] (6)

where N is the number of items in each training batch, the sum is over all
training traces, and y is the corresponding target community class label. ŷ is the
predicted community label of the deep learning model.

In this work, we use the backpropagation algorithm to compute the gradients
for all layers displayed through Eqs. 7 to 10.

δnl = −(∇anl E) • f
′
(z(nl)) (7)

δl = [(W l)T δ(l+1)] • f
′
(z(l)) (8)

∇W (l)E(W, b;x, y) = δ(l+1)(a(l))T (9)

∇b(l)E(W, b;x, y) = δ(l+1) (10)
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Where • denotes the element-wise product operator, a(l) is the output pattern
vector in layer l, δ measures how much the node accounts for any errors in the
final community output. f(z) denotes the activation function of each layer. The
algorithm first performs a feedforward pass. Outputs, a(l), of the hidden layer as
well as the final are computed using each layer’s forward propagation equation.
Then ∇WE(W, b;x, y) and ∇bE(W, b;x, y) are the partial derivatives and they
are calculated from the last layer back to the first layer. Finally, the W and b
are updated according to Eqs. 11 and 12.

Wij = Wij − α
∂

∂Wij
E(W, b) (11)

bi = bi − α
∂

∂bi
E(W, b) (12)

After this training process, the network predict the labels for the test vertices.

4 Experiment

In this section, we first introduce the dataset we are going to investigate, and
then we prune the dataset to extract the trace network. Deepwalk will be uti-
lized to embed these vertices in the trace network. And the ground truth is
obtained by applying modularity algorithm. We also discuss the optimization
of the hyper-parameters of the deep learning model. And the model is trained
from the test traces by applying these parameters. We finally present the deep
learning’s prediction result.

In this work, we use the Enron email dataset to prove the effectiveness of
the proposed method [14]. This dataset contains 517,431 emails from 150 users
distributed in 3,500 folders. Each email holds the sender and the receiver’s email
address, sent date and time, subject, email content and technical details about
the email. The 150 users are mostly the Enron senior management members.
We extract the email addresses and their connections from the raw email con-
tents, and the extracted dataset contains 79,562 distinctive email addresses and
310,976 communications among them. After this, we further purge this dataset
by dropping these emails that are not ended with @enron.com, limiting this
investigation to the Enron company. By this time, the dataset is left with 32,190
addresses and 200,534 connections. Each of the connection bears a weight stand-
ing for the number of emails communicated by the two email addresses. And we
consider the communication undirected, which means the connection weight is
the summation number of two direction sent mails. The summary of the dataset
is illustrated in Table 1.

We combine these traces in this pruned dataset to compose the trace network
we are going to investigate. To evaluate the deep learning model’s effectiveness,
we employ the modularity algorithm to partition the traces in order to act as
the ground truth of our deep learning approach. Modularity separates vertices
to communities according to the density of connection within communities. It
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Table 1. Dataset summary

Dataset Vertices Connections

Original dataset 79,562 310,976

Restrain to @enron.com 32,190 200,534

assumes that a community contains dense connections between vertices within
the community, while there are sparse connections among different communities.
The community modularity is defined in Eq. 13

Q =
1

2m

∑

vw

[
Avw − kvkw

2m

]
δ(cv, cw) (13)

In the equation, kv is the degree of v and kw is the degree of w. m is the
total number of connections in the trace network; Avw is the actual number of
connections between vertex kv and kw. Q is the modularity index. δ(cv, cw) is a
function that equals 0, when vertices v and w are in different communities, and
equals 1, when they reside in the same community. cv and cw are the community
label for v and w, respectively.

The modularity algorithm tries to assign traces to different communities by
maximizing the modularity index according to Eq. 13. We employ this modular-
ity algorithm to partition the Enron dataset into communities. The communities
found by this algorithm is depicted in Fig. 3.

Fig. 3. Modularity based communities

From Fig. 3, we could figure out that most communities rarely contain email
addresses. Most traces are included in a few large communities. More precisely,
it is shown that the 10 biggest communities each contain over 250 vertices.
Additionally, the 149 senior members (There exists a duplicated address in the
original 150 email addresses) are scattered in these 10 communities. Based on this
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Fig. 4. Email communities

observation, we further limit the dataset to the 10 largest communities. These
vertices pertaining to the 10 communities are reserved. It leaves us a dataset with
19,995 vertices and 196,197 connections. We apply this dataset as the ground
truth to evaluate the effectiveness of community discovering based on the deep
learning approach. Figure 4 is an illustration of the communities separated by
modularity algorithm. Table 2 is a breakdown of the statistics about the 10
communities.

The DBN we employed is made up of two encoders as the hidden layers and
a softmax layer as the output layer. The number of neurons for the first and
second hidden layers are 100 and 80 respectively. The summary of the network
parameters is displayed in Table 3.

Table 2. 10 large communities

Community ID Email
addresses

Senior manager
emails

1 3,029 55

20 1,133 41

93 3,779 9

102 3,263 2

510 696 1

513 2,322 16

514 1,514 4

2191 1,689 7

2198 2,390 13

2618 180 1

Table 3. DBN parameter

Parameter Value

Hidden layer Train function trainscg

Cost function msesparse

L2weight 1.5583e−5

Sparsity 0.0485

Softmax layer Train function trainscg

Cost function crossentropy

Fine tune Train function trainscg

Cost function crossentropy
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Fig. 5. Hyperparameters

We use scaled conjugate gradient backpropagation (SCG) as the training
function for all layers. It updates weights along the conjugate directions which
produces a faster convergence. The msesparse is a mean squared error function
adjusted by L2 weight and sparsity regularization according to Eq. 2 we have
discussed in Sect. 3.3. The softmax layer and the final fine-tune stage are both
supervised learning process, thus we adopt cross-entropy function to measure
the difference between the prediction and the target.

The hyper-parameters, L2weight Regularization and Sparsity Regularization,
influence the prediction greatly, which is significant for the DBN to work prop-
erly. Thus, we conduct experiment to find the optimal values by trying different
configurations. The search range for L2weight Regularization is [1e−5, 1e−4]
and Sparsity Regularization is [1e−5, 1e−1]. This optimization process iterates
30 times. The results are depicted in Table 4. Figure 5 is the plot of the objective
value we are trying to minimize.

Table 4. Hyper-parameter optimization

Iter L2weight Sparsity Objective Iter L2weight Sparsity Objective Iter L2weight Sparsity Objective

1 9.43E−05 0.000104 0.0794 11 1.05E−05 0.00893 0.0643 21 1.02E−05 0.00679 0.0764

2 5.73E−05 0.0272 0.0643 12 1.71E−05 0.0317 0.0814 22 1.01E−05 0.00514 0.0663

3 1.26E−05 0.000397 0.0683 13 1.01E−05 0.00677 0.0583 23 1.01E−05 0.00835 0.0734

4 1.59E−05 0.0309 0.0613 14 1.54E−05 0.0273 0.0633 24 1.01E−05 0.00513 0.0583

5 4.61E−05 0.0394 0.0653 15 1.02E−05 0.00458 0.0643 25 4.59E−05 0.0393 0.0653

6 1.00E−05 0.00846 0.0603 16 1.56E−05 0.0486 0.0653 26 1.56E−05 0.0485 0.0573

7 1.01E−05 0.0173 0.0804 17 4.38E−05 0.0134 0.0754 27 4.31E−05 0.00709 0.0623

8 4.27E−05 0.00707 0.0633 18 1.00E−05 0.00622 0.0663 28 4.37E−05 0.00715 0.0663

9 3.36E−05 0.00964 0.0754 19 1.02E−05 0.00772 0.0744 29 1.61E−05 0.0309 0.0754

10 1.04E−05 0.00833 0.0633 20 1.02E−05 0.00657 0.0683 30 5.78E−05 0.0271 0.0693
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(a) 95% training vertices (b) 5% training vertices

Fig. 6. Recognition result

From Fig. 5 and Table 4, we could conclude the proper values of L2weight and
Sparsity are 1.5583e−05 and 0.0485, the corresponding minimized error objective
is 0.0573.

To evaluate the model, we randomly choose 95% of 19,995 vertices from each
of the 10 communities to train the DBN network, and then we use the remaining
5% vertices to test the prediction of the learnt deep learning model. The result
is quiet promising, and it is demonstrated in Fig. 6(a). The model predicts the
community label correctly for 94.3% of test vertices.

And then we further delve into evaluating the effectiveness of this deep learn-
ing network when it is fed with small percent of training vertices. We randomly
choose only 5% of 19,995 vertices from each of the 10 communities as the train-
ing samples in this configuration. And the result is promising, the deep learning
network performs very well even under this harsh condition. The result is demon-
strated in Fig. 6(b). It assigns the community label correctly for 82.3% of 18,996
test vertices.

To demonstrate the effectiveness of deep learning approach, we compare our
approach with the kNN (k nearest neighbor) classification [19]. We set the param-
eter of kNN to 4 neighbors. The same training and testing dataset setting is used
to test kNN. The results are presented in Fig. 7(a) and (b). The overall accuracy
is 54.8% when kNN is trained with 95% of vertices, and it drops to 43.2% when
trained with 5% of vertices.

The accuracy of kNN depends on the parameter choice of k nearest neighbors.
Usually, larger value reduces effect of the noise, but make boundaries between
classes less distinct. To mitigate the effects of this parameter, we alternate the
nearest neighbors from 1 to 10 in order to test the capability of kNN. The result
is in Table 5. It shows the accuracy fluctuates around 55%, and the kNN can at
best achieve accuracy of 55.68% when the nearest neighbors are set to 7.
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(a) 95% training vertices, k=4 (b) 5% training vertices, k=4

Fig. 7. kNN recognition result

Table 5. kNN optimization (95% training vertices)

Neighbors 1 2 3 4 5

Accuracy 54.47% 51.46% 55.08% 54.77% 55.58%

Neighbors 6 7 8 9 10

Accuracy 55.58% 55.68% 54.87% 54.57% 54.47%

Seen from results of both deep learning and kNN, deep learning is stronger in
extracting community patterns and finding the right community for new traces
with great higher accuracy.

5 Conclusion

In conclusion, we proposed a deep learning based approach to discover the com-
munity label of attribution traces. The experimental results show that although
trained with a small training set, this approach still could produce the promis-
ing result. It demonstrates that the deep learning method is applicable in the
network-based trace analysis, and it would become a prominent method for trace
analysis because of the following reasons. First, deep learning methods use pre-
training to automatically extract the patterns, which are hand-picked by experts
in the past. The extracted patterns usually perform better than the hand-picked
patterns, because the pretraining considers all features that could be utilized
to generate patterns. Second, this pretraining and classifying process are not
easy to break. Thus, it is hard for attackers to modify features to avoid being
detected, so attacker will not come out with countermeasures to avoid this trace-
back mechanism. It is worth noting that we used relatively small deep learning
structure with 2 hidden layers of 100 and 80 respectively. The result would
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become much more promising if we deeper the layers and enlarge the neurons
with more training iterations. In our future works, we would further rank vertex
importance within the community. Rather than limited to the email communi-
cation connections, we also would consider to construct the trace network from
variety of connections, such as sharing the same IP address, co-authoring the
malware, attending the conference, working for the same organization, etc.
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Abstract. Learning and mining technologies have been broadly applied
to reveal the value of tremendous data and impact decision-making. Usu-
ally, the correctness of decisions roots in the truth of data for these tech-
nologies. Data fraud presents everywhere, and even if data were true,
could data be maliciously manipulated by cyber-attackers. Methods have
been long exploited to examine data authenticity, but are less effective
when only values are manipulated without violating scopes and defini-
tions. Then the decisions made from fraud and manipulated data are
wrong or hijacked. It has been concluded that data manipulation is the
latest technique in “the art of war in cyberspace.” Examining each data
instance from its source is exhaustive and impossible, for example recol-
lecting data for national consensus. In this paper, through a case study
on the data of banknotes, we exploit Topological Data Analysis (TDA)
for examining manipulated data. A fraction of data records are examined
integrally other than individually. The possibility of using TDA to verify
data efficiently is then evaluated. We first test the possibility of using
TDA for the above detection, and then discuss the limitations of the
state of the art. Although TDA is not so matured, it has been reported
to be effective in many applications, and now our work evidences its
usage for data anomalies.

Keywords: Data manipulation · Topological features · TDA · Mapper

1 Introduction

Data manipulation refers to selecting, inserting, deleting and updating data in
databases, but the term in cyber space refers to that hackers can infiltrate net-
works, find their way into databases and change information contained in them.
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In normal cases, data qualification technologies can be used to examine the values
of qualitative or quantitative records, and the violence of logic, numeric scopes,
and semantics. In some advanced cases, anomaly detection via learning and min-
ing techniques is effective for outliers, novelties, noise, deviations and exceptions.
However, all of these methods are less effective if manipulated data are still with
reasonable attributes, such as range, definition, and semantics. For such new
records, directly detecting on single record is difficult. Thus we heuristically use
mutual relationship between data records to detect on the whole dataset: check
whether this dataset contains manipulated records or not.

To utilize the mutual relationships, we resort to topology, which resulted
in Topological Data Analysis (TDA). The idea underlying TDA is employing
the mutual relationship between data records to find the overall “shape” of a
multi-dimensional dataset. The shape found by TDA represents some important
topological features of the dataset, such as connectivity, holes, and voids(holes
in high dimensions). These shape features are usually insensitive to “small”
deformations, and include intrinsic insights of the dataset. TDA thus is able to
get conclusions without being disturbing by data manipulations. With the help
of TDA, we turn detecting on a single data record into task that finds an essential
shape of the whole dataset, and use differences of the shapes to determine if a
given dataset contains manipulated data records.

We carried out a case study on a realistic banknote dataset consisted of
numerical records of genuine and forged banknotes. We manipulated the forged
banknote data records by four types of operations, and used the manipulated
datasets to confirm that manipulations of data values cannot change the overall
shapes of the datasets. Our experiments were performed using an open source
tool, Python Mapper1, which is an approximation of the classical TDA. Out-
comes of our experiments show that using topological shapes to reveal the exis-
tence of forged data records is possible. We find that the shapes of different
types of datasets present distinct features. For the banknote dataset, the shape
of the datasets consisted of totally genuine data records is topologically tree-like,
while the shape of the datasets containing forged records has loops. In addition
to detecting by topological shapes, we employed statistical learning algorithms
to detect on all datasets introduced before. A discovery is that they can detect
on the original dataset accurately, too. But for the detection of manipulated
datasets, learning algorithms have a rather low accuracy.

2 Related Work

Data Fraud and Detection. Data fraud occurs in a wide range of fields, such
as business, politics, science, and health care [13]. To prevent and detect data
fraud, various attempts had been made. Most detection methods adopt data
mining, knowledge discovery in databases, and machine learning methods. These
solutions have been successfully applied in different areas of crimes. Fuzzy rules
and neural networks are used in the detection of subscription fraud [9]; the hidden
1 http://danifold.net/mapper/index.html.

http://danifold.net/mapper/index.html
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Markov model [10] and neural networks [11] are used for card fraud detection;
naive Bayesian methods are applied in detection of fraud claim diagnoses [25]. To
detect web information fraud, such as fraud search rank and online advertising,
multiple data mining methods were used in [18,21]. Furthermore, [3] examined
money laundering, computer intrusion, e-commerce fraud, credit cards fraud
and telecommunications fraud, along with detection methods to address these
problems.

TDA and Mapper. The initial motivation of TDA is to study the ‘shape’ of
dataset. The most widely used tool of TDA is persistent homology (PH), which
finds shapes of a dataset at a set of resolutions. The concept of PH was first
introduced by Edelsbrunner et al. together with an efficient algorithm and its
visualization in 2002 [8]. Carlsson et al. reformulated the initial definition and
proposed an equivalent visualization method named ‘barcodes’ [5]. There are
some software applications of PH, such as Perseus, Dionysus, DIPHA, javaPlex
and Gudhi [15] and several benchmarks for the computation of PH, [8] introduced
the standard algorithm for the computation of PH in field of F2 and [28] extended
it to the general field. Based on PH, TDA provides new insights in the study
of data and has been successfully applied in numerous fields, including coverage
in sensor networks [23], protein structure [27], stability of fullerene molecules
[26], robotics [2,20], breast-cancer classification [6,16], and pattern recognition
for point cloud data [4] as well as machine learning [1].

Mapper is a special tool of TDA. It can transform a high dimensional dataset
into a simplicial complex with far fewer points, while still capturing topological
features of the original dataset [24]. It was first introduced by Carlsson et al. for
visualization of high-dimensional data in [24]. Mapper has been successfully used
for finding subgroups of different data types, such as gene expression of breast
tumors, voting data from the US House of Representatives, and player perfor-
mance data of the NBA [14], breast cancers [17]. Gurjeet Singh, Facundo Mémoli
and Gunnar Carlsson applied Mapper for 3D object recognition [24], Aleksandar
Savic, Gergely Toth and Ludovic Duponchel applied Mapper for revealing pedo-
genetic principles of European topsoil systems [22]. Moreover, Tamal K. Dey
and Yusu Wang proposed multiscale Mapper [7]. The company, Ayasdi, applied
Mapper into its main product, the Ayasdi Iris software. Daniel Mllner realized
an open version of Mapper, Python Mapper.

3 Background

TDA uses simplicial complex to study the shape features of a data space. The
simplicial complex is a basic concept of combinatorial topology, and an approxi-
mation of the original space but has the same topological features as the original
space. The simplicial complex of a given dataset is constructed basing on the
mutual relationship between data records. Intuitively, the simplicial complex
consists of simplexes of basic geometry components, such as nodes, edges, trian-
gles and tetrahedrons in R3. The node is the most basic component of a simplex.
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A k-dimensional simplex is composed of k + 1 affinely independent nodes and is
called a k-simplex. Formal definitions are given in AppendixA.

Fig. 1. An example of simplex and simplicial complex. 0-simplexes are nodes:{a, b, c, d},
1-simplexes are edges:{{a, b}, {b, c}, {c, d}, {d, a}}, then the simplicial complex is the
union of them as {{a}, {b}, {c}, {d}, {a, b}, {b, c}, {c, d}, {d, a}}.

Given a dataset S, there are various ways to construct the complex of S,
such as the Vietoris-Rips(VR) complex and the ˇCech complex. We use the V R
complex as an example to show how to construct a complex by these classical
methods and show a resulting complex in Fig. 1. The V R complex is defined as

V Rε(S) = {σ ⊆ S|d(x, y) ≤ 2ε for all x, y ∈ σ},

where the subset σ = {x0, . . . , xk} of S is a k-simplex if and only if the distance
of every pair of vertices in {x0, . . . , xk} is smaller than 2ε. According to the
definition of the V R complex with ε = r, the edges {a, b}, {b, c}, {c, d}, {d, a}
in Fig. 1 are 1-simplex since the distance between their endpoints are equal to
2r, while {a, c} is not a 1-simplex since the distance of {a, c} is 2

√
2r. For the

same reason, datasets {a, b, c} and {a, d, c} in Fig. 1 do not compose a 2-simplex.
Thus, there is one hole in this complex and this shape feature exists as long as
the range of ε is [r,

√
2r).

In practice, the above methods have not been widely used for large-scale
problems due to the huge complexity of computation. To construct the V R
complex one has to check for pairwise distances, and this leads to tremendous
computation if there are too many simplexes. [19] has pointed out that the V R
complex can have simplex with dimension |S| − 1 and thus has up to 2|S| − 1
simplexes in the worst case. Hence, approximation is usually considered. In this
paper, we employ Mapper [24] to compute the complex. For an input X that
possibly is a high dimensional dataset, Mapper first maps the original data into
a rather lower dimensional space via a k-dimensional filter function f defined
on X, and then constructs the complex basing on the codomain of the filter
function [24], thus reduces the computation. The detailed procedure of Mapper
are introduced in the AppendixB.

4 Applying Mapper Complex in Detection

4.1 Problem Statement

We intend to solve the problem that original forged records are deliberately
manipulated again. In this case, the forged records are manipulated basing on
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some information about the genuine records, which makes a single manipulated
forged record much closer to the genuine records than the original one, thus
directly detecting on the single record becomes difficult. To address this prob-
lem, we employ mutual relationship between data records to detect on the whole
dataset. We introduce Mapper into our detection tasks and use it to construct
complex shape of a dataset. The procedure of detection using Mapper can be
divided into two stages: (1) finding the valid parameters by means of some his-
torical datasets. (2) constructing the topological shapes of new datasets and
comparing the resulting shapes with that of the historical datasets. In the rest
of this paper, we denote the historical datasets as training datasets and the new
datasets as testing datasets. The valid parameters make the topological shapes
of different-type historical datasets distinguishable, and let same features appear
in same-type complex shape. Thus, we can use the complex shape of a testing
dataset to determine its type: contains forged records (forged), or does not con-
tain (genuine). In our case study, a testing dataset is determined to be genuine
if and only if its complex shape only contains features appeared in the historical
genuine datasets.

4.2 An Example for Detection

We evaluate our method on a banknote dataset. Our source dataset consists of
762 genuine banknotes records and 610 forged banknotes records. Data record
in this dataset has four attributes, which were obtained by applying the wavelet
transformation on the original banknote images2. We use a part of the original
records as training data to find the valid parameters, and test our method on
the datasets generated by the remaining records. Detailed experimental settings
can be seen in Sect. 5.1. In this part, we illustrate the meaning of the complex
shapes, and give an example for detection.

Figure 2 shows the complex shape of three datasets. The complex shape is
composed of nodes and edges that connect the nodes. Nodes stands for a cluster
of data records that have same range of filter values. The nodes are colored
by the average filter value of records in it, red implies high, blue implies low.
Number in a node represents the amount of records in this node, and nodes with
bigger number have bigger size. Two nodes are connected if there are overlaps
in their records. All of them are constructed under parameters KNN distance
filter with k = 18. I = 45, O = 30, gapsize = 0.2.

Figure 2(a) is the complex shape of a dataset with 200 geuine records,
Fig. 2(b) is the complex shape of a dataset with 200 forged records. The main
part of Fig. 2(a) (marked out by the red line) has the following features: (1) The
shape of the complex is tree-like, (2) Records of this genuine dataset mainly
scatter on the nodes in the tree-like part, (3) The node color in the tree-like part
is non-unique. While the totally different notable features of the main parts of
Fig. 2(b)(marked out by the blue line) are: (1) Loops, (2) Records of this forged
dataset mainly concentrate on the nodes in the loops, (3) Almost all nodes in

2 http://archive.ics.uci.edu/ml/datasets/banknote+authentication.

http://archive.ics.uci.edu/ml/datasets/banknote+authentication
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the loops are purple. Thus, the complex shape of the genuine dataset and forged
dataset can be distinguished by these features. Figure 2(c) is the complex shape
of one testing dataset with 200 forged records. The main part (marked out by
blue line) of it has the following features: (1) Loops, (2) Most data concentrate
on these loops, (3) Almost all nodes in the loops are purple. All of these features
appeared in the forged training dataset’s complex shape. Thus, we can infer that
forged data exist in this dataset.

(a) Complex shape of
a genuine dataset

(b) Complex shape of
a forged dataset

(c) Complex shape of
a new forged dataset

Fig. 2. Example of complex shapes of banknote data.

4.3 The Determination of Parameters

The determination of parameters remains an open issue, we introduce some
empirical rules to tune the parameters for the detection tasks. In this paper,
all parameters of Mapper are divided into two parts. The filter function and
its parameter, denoted as P1; the cover parameters and clustering parameters,
denoted as P2. The determination of parameters is roughly aggregated into two
phases.

In the first phase, preliminary results of P1 are computed. Requirement for
P1 at this stage is to make the distributions of the filter values of different-
type datasets different. For the banknote data, we make most of the forged
data to have relatively smaller filter values, while the genuine data to have
randomly distributed filter values. Accordingly, eccentricity with P = 1.0 and
kNN distance with k = 18 are selected. However, the valid P1 we found here
may be invalid for other datasets, that is, they cannot make the notable shape
features to be contained in a set of same-type datasets.

In the second phase, all parameters of P2 are determined as a whole, and
the preliminary P1 are further checked. P2 are required to enable the complex
shape of the forged datasets to differ from that of the genuine datasets. Our
discovery is that parameters with relatively larger I, larger gap size and smaller
O could be effective. At such combination, the complex shape of a dataset with
centralized filter values contains loops, while that of a dataset with randomly
distributed filter values contains no loops. For the verification of a given P1, P2
are adjusted until same notable shape features presenting in all of the same-type
datasets. Figure 3 shows that the tree-like feature is hold in different genuine
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datasets and the loops are hold in different forged datasets at KNN distance
with k = 18. Thus, KNN distance with k = 18 is valid at last.

5 Experiment and Discussion

5.1 Datasets and Experimental Setup

We denote the source dataset (Sect. 4.2) as BIData. For evaluating our method,
we generate 49 datasets based on it, the resulting datasets are as follows.

Training Datasets (Table 1). Our training datasets contain two types: train0
for training ML models and the others for finding the valid parameters of Map-
per. Data records of train0 were randomly selected from BIData. Data records
of train0i and train1i were sampled from train0’s genuine part and forged part,
respectively.

Original Testing Datasets (Table 2). The rest part of BIData is applied to
generate the original testing datasets test00 and test10, whose records differ
from records of train0. We use them to show that original testing datasets have
the same topological features as that of the training datasets.

Manipulated Testing Datasets (Table 2). They are generated by conducting
manipulations on the records of test10. Their function is to prove our assump-
tions that manipulations on the whole dataset cannot change its topological
shape. The manipulations are shown as follows:

(1) −0.96 ∗ x[1 : 4] + 0.6, x3 = −x3, x4 = −x4,
(2) −0.96 ∗ x[1 : 4], x2 = −x3, x3 = x2, x4 = −x4,
(3) −0.74 ∗ x[1 : 4], x2 = −x3 − 0.15, x3 = x2, x4 = −x4,
(4) x[1 : 4] + mean(test00 − test10).

Where x is one data record, xi is one attribute of x, i ∈ {1, 2, 3, 4, 5}, and x5

records the category (genuine or forged) of one data record.

Mixed Testing Datasets (Table 3). They are generated by mixing the records
of test00 with that of test1i, proportions of each types of the records are detailed
in (Table 3). This case is the truest simulation of the fraud, since the datasets
that we encounter with in reality usually consisted of both genuine records and
forged records. We can thus use their results to show the ability of our method
in the realistic situation.

Table 1. Training datasets

Name train0 train01 train02 train03 train11 train12 train13

Usage ML TDA TDA TDA TDA TDA TDA

Number 982 200 200 200 200 200 200
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Table 2. Original and manipulated testing datasets

Name test00 test10 test11 test12 test13 test14

Manipulated 0 0 1 1 1 1

Number 200 200 200 200 200 200

Table 3. Mixed testing dataset.

Name t1i1 t1i2 t1i3 t1i4 t1i5 t1i6 t1i7 t1i8 t1i9

Percentage of test00 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Percentage of test1i 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Total number 200 200 200 200 200 200 200 200 200

We use Python Mapper to construct a complex and visualize it. Parameters
of Python Mapper are set as follows, KNN distance filter function with k = 18
and cover parameters I = 45, O = 30 and clustering parameter gap size = 0.2.
The details about determination of the parameters are introduced in Sect. 4.3.
We exploit train01, train02, train03, train11, train12 and train13 to find these
parameters. After obtaining the valid parameters, we construct the complex
shapes of all testing datasets and compare them with that of all of the training
datasets.

5.2 Results of Mapper

Complex Shapes of Training Datasets. This experiment shows that the
genuine datasets and forged datasets can be distinguished via the different shape
features in their complex shapes. The genuine features in the main parts (denoted
by the red line) of the complex shapes in Fig. 3(a), (b) and (c) are:

(1) The shape of the complex is tree-like, denoted as δ1;
(2) Records mainly scatter on the nodes in the tree-like part, denoted as δ2;
(3) The nodes color in the tree-like part is non-unique, denoted as δ3.

The different forged shape features in the main parts (denoted by the blue line)
of the complex shapes in Fig. 3(d), (e) and (f) are:

(1) Loops, denoted as γ1;
(2) Records mainly concentrate on the nodes in the loops, denoted as γ2;
(3) Almost all nodes in the loops are purple, denoted as γ3.

We empirically adopted these notable features as the standard for judging the
type of testing datasets in the subsequent experiments.

Detection on Original Testing Datasets. The insight that uses the complex
shape features to determine the type of the testing dataset was proved to be
feasible in this experiment. Because the genuine features and forged features
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(a) train01 (b) train02 (c) train03

(d) train11 (e) train12 (f) train13

Fig. 3. The complex shapes of training datasets.

introduced before also appeared in the genuine testing dataset and forged testing
dataset, respectively. As shown in Fig. 4, the genuine features δ1, δ2, δ3 appeared
in the main parts (denoted by the red line) of test00’s complex shape and the
forged features γ1, γ2, γ3 appeared in the main parts (denoted by the blue line)
of test10’s complex shape.

(a) test00 (b) test10 (c) test1i

Fig. 4. The complex shape of original testing datasets and modified testing datasets

Detection on Modified Testing Datasets. This experiment shows that Map-
per is valid for the detection on test11, test12, test13 and test14. Figure 4(c)
shows that the main parts (denoted by the blue line) of the complex shapes of
test11, test12, test13 and test14 contain the forged features γ1, γ2, γ3. More-
over, the complex shapes of test11 . . . test14 are identical to each other as well
as the complex shape of test10, indicating that the manipulations on a whole
dataset were unable to change its topological structure.

Detection on Mixed Testing Datasets. In this case, Mapper was valid for 28
of 36 datasets. There are 4 invalid cases in t13i, 3 invalid cases in t11i, 1 invalid
case in t12i and no invalid cases in t14i. The manipulations put on t11, t12, t13
and t14 have different degrees of influences on the forged records, indicating
that the degrees of manipulations would influence the effectiveness of Mapper.
We guess this is because the pairwise-distance was changed considerably for the
different degrees of manipulations. For example, the values of the original forged
data in t13i were multiplied by 0.7, and that of the t12i were multiplied by 0.96.
The values of the forged data were manipulated with a larger degree in the former
case, which resulted in smaller pairwise-distance of the manipulated dataset. In
summary, our method is effective for most of the mixed datasets, and thus could
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be effective for the real manipulations, since this case is the truest simulation of
the realistic fraud. The following details the results. Figure 5 shows that Mapper
was valid for the datasets t111, t112, t113, t116, t118 and t119 but was invalid
for t114, t115 and t117. Figure 6 shows that Mapper was valid for t121, t122,
t123, t124, t125, t127, t128 and t129 but was invalid for t126. Figure 7 shows
that Mapper was valid for t131, t132, t133, t136 and t138 but was invalid for
t134, t135, t137 and t139. Figure 8 shows that Mapper was valid for all datasets
of t14i, i ∈ {1, . . . , 9}.

(a) t111 (b) t112 (c) t113 (d) t114 (e) t115

(f) t116 (g) t117 (h) t118 (i) t119

Fig. 5. The complex shapes of t11i, i ∈ {1, . . . , 9}.

5.3 Results of ML

Machine learning methods SVM with RBF kernel and the multilayer neural
network (NN) were applied for our experiment. The penalty parameter C and
Kernel coefficient gamma of SVM were 1.0 and 0.0001. Our NN is a fully con-
nected neural network with two hidden layers with ReLU (rectifier linear units)
activation function and a SoftMax layer. Learning rate we used for training NN
is 0.0001. We trained the ML models by using training dataset train0 and made
the training accuracy of SVM to be 0.999 and that of NN to be 0.970. To evalu-
ate the ML models, we computed the accuracy and false positive rate(FPR) of
them on all testing datasets. In our case study, FPR can reveal how many forged
records that have been manipulated were predicted as genuine by ML models.

Table 4 shows that the ML models trained before can work well on the original
testing datasets. The accuracy values given by SVM and NN are larger than
0.965 on test00 and test10. The value of FPR given by SVM is 0.010 and that
given by NN is 0.015, all of which are small enough. This result indicates that
our models do not overfit on the training datasets, since the original testing
datasets are composed of records differed from records in the training datasets.
Table 5 shows that both ML models have a rather poor performance on the
manipulated testing datasets for the large FPR values of them. The FPR values
of the SVM model are close to 0.5 on test11, test12, test13, which means the
SVM model misclassified half of the manipulated forged data records in these
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(a) t121 (b) t122 (c) t123 (d) t124 (e) t125

(f) t126 (g) t127 (h) t128 (i) t129

Fig. 6. The complex shapes of t12i, i ∈ {1, . . . , 9}.

(a) t131 (b) t132 (c) t133 (d) t134 (e) t135

(f) t136 (g) t137 (h) t138 (i) t139

Fig. 7. The complex shapes of t13i, i ∈ {1, . . . , 9}.

(a) t141 (b) t142 (c) t143 (d) t144 (e) t145

(f) t146 (g) t147 (h) t148 (i) t149

Fig. 8. The complex shapes of t14i, i ∈ {1, . . . , 9}.

datasets. The FPR values of NN model are close to 0.7 on test11, test12, test13,
which makes the NN model to be more unavailable for these datasets than the
SVM model. The FPR values of both models on test14 are larger than 0.95.
Thus, both models are totally unavailable for these datasets. Outcomes of the
ML models on the manipulated datasets verified our assumption: if records were
deliberately manipulated again basing on the information of genuine records,
ML models trained on the historical data would be less effective.
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Overall, the ML models can work well for 2 datasets that contain no manipu-
lations; However, they are all less effective for datasets that contain manipulated
data. Even if ML can detect some outliers in the datasets, it is risky to determine
the overall data quality by the individual outliers: Manipulations do not repeat
sufficient times in the real world for ML to effectively train models; Manipula-
tions may change the original data in different way to achieve different purposes;
Outliers are less effective to indicate data anomalies because values are changed
within correct ranges. Unlike the statistical methods, Mapper can be valid in
most cases because it does not need to enumerate the alter forms. Since most of
the manipulations can not change the internal structure of the datasets.

5.4 Discussion

Our experiments on applying Mapper for detection of manipulated forged ban-
knotes have shown that Mapper is effective at the dataset level. We found six
notable shape features for classification between the genuine dataset and the
forged dataset. And we carried out a set of experiments to test the effectiveness
of Mapper on the testing datasets basing on the difference between the forged
features and genuine features. These experiments showed that the detections on
the original testing datasets and the manipulated testing datasets are accurate
in all cases. We also found that the capacities of Mapper for the detections on the
mixed datasets are different in the four cases. Mapper would be more effective
when the values of the forged data were manipulated with more slightly manip-
ulations. Overall, Mapper was valid for 33 of 41 testing datasets. We finally got
an accuracy of 80.48% for Mapper at the dataset level. Note that Mapper can be
applied to any datasets whose different-class subsets contain different topologi-
cal structures. We just tested the ability of Mapper on the detection of forged
banknotes.

Finally, we discuss three of the current limitations of applying Mapper for
detection. (1) 100% correct results can not be given for the detection of mixed
datasets. (2) Finding the effective parameters of Mapper is difficult. (3) Mapper
is unable to give an outcome for each record, making one need to further check
to determine which record was forged. These problems will be the focuses of our
future work.

Table 4. Results of ML models.

test00 test10

SVM acc 0.965 0.990

FPR - 0.010

NN acc 0.965 0.985

FPR - 0.015

Table 5. Results of ML models.

test11 test12 test13 test14

SVM acc 0.385 0.420 0.440 0.010

FPR 0.615 0.580 0.560 0.990

NN acc 0.160 0.205 0.160 0.025

FPR 0.820 0.795 0.840 0.975
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6 Conclusion

This paper investigated the possibility of applying TDA for examining the
manipulated data. Our case study showed that the complex shape is a valid
measurement for the detection. We found six notable shape features for classifi-
cation between the genuine datasets and forged datasets. Through applying the
complex shape constructed by Mapper for the detection of manipulated data,
we found that most of the manipulated datasets can be detected. To be precise,
Mapper detected the existence of forged data in 33 of 41 manipulated datasets.
The 8 invalid cases will be one of our future focal points. On the whole, our case
study revealed the ability of manipulated datasets.

Acknowledgements. This work is supported by the Key Program of National Nat-
ural Science Foundation of China with grant No. 61732013, and the Key R&D Project
of Zhejiang Province with No. 2017C02036.

A Mathematical foundations of TDA

Definition 1 (Simplex). p0 . . . pk ∈ Rd are affinely independent data points,
and p1−p0, p2−p0, . . . pk −p0 are linearly independent. Then, the simplex deter-
mined by them is the set of points.

C =

{
α0p0 + · · · + αkpk

∣∣∣∣
k∑

i=0

αi = 1 and αi ≥ 0,∀i

}
,

where k is the dimension of the simplex. A k-simplex is a simplex that consists
of k + 1 points.

Definition 2 (Face of the Simplex). The convex hull of any nonempty subset
of the n+1 points that define an n-simplex, is called a face of the simplex. Faces
are simplexes themselves. In particular, the convex hull of a subset of size m + 1
is an m-simplex, called an m-face of the n-simplex.

Definition 3 (Simplicial Complex). A simplicial complex K is a set of sim-
plexes that satisfies the following conditions: 1. Any face of a simplex from K is
also in K. 2. The intersection of any two simplexes σ1, σ2 ∈ K is either ∅ or a
face of both σ1 and σ2.

Definition 4 (Nerve [24]). Given a covering U = {uα|uα ⊂ X}α∈A
of space

X, where A is an indexing set whose item is integer. Intuitively, a covering
of X is a collection of sets whose union contains X. The nerve of covering
U is the simplicial complex N(U) whose vertex set is the indexing set A, and
where a family {α0, α1, . . . , αk} spans a k-simplex in all N(u) if and only if
uα0 ∩ uα1 ∩ · · · ∩ uαk

�= ∅.
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B Procedure of Mapper

Computing the Distance Matrix This step takes the original dataset X as
input and finds the similarity between data. We adopt Euclidean distance to
measure the similarity, and compute the distance matrix D.

Computing the Filter Value. This step takes the distance matrix D and one
possibly high dimensional filter function f as input. It outputs the filter value
of every record. We denote the codomain of f as Z. Python Mapper provides
realization for density, eccentricity, graph Laplacians [24], kNN distance and
dm eigenvector filter functions. We detail eccentricity and kNN distance. The
eccentricity filter is defined as:

Ep(Xi) = (

∑
Xj∈X Dp

ij

N
)

1
p ,

where p is a parameter, N is the size of X, Dij is the distance between Xi and
Xj . The eccentricity filter measures how far a data record deviates from the
center of this dataset. The records that are far away from most of the records
have relatively larger filter values.3 The filter value of one record given by the
kNN distance is equal to the distance between this record and its kth near-
est neighbor, where k is a parameter. The kNN distance filter measures the
aggregation of the dataset at given k.

Computing the Cover. This step takes the filter values as input and then
outputs a cover S of the filter values as well as a cover S̄ = {sβ}β∈A of the original
dataset. Mapper employs two methods to find the cover of the filter values, the
cube cover for Z in multi-dimensional space [24], and the 1-d uniform cover
for Z ∈ R. The 1-d cover uniformly divides Z into I intervals with adjacencies
having an overlap ratio of O%, where I and O are two parameters of covering.
After covering on Z, a cover S̄ of the original dataset can be constructed through
putting data records with the same range of filter values into the same interval.

Computing the Cluster. This step takes the cover S̄ as input, and further
clusters each subset sβ to obtain the final cover U = {uα}α∈A

of the original
dataset, where cluster uα is the subset of sβ . After further dividing S̄ into the
ultimate cover U = {uα}α∈A

, the complex can be constructed with the basic
nodes in indexing set A. According to the nerve theory (see AppendixA), the
indexing set {α0, α1 . . . αk} constructs a k-simplex if and only if uα0 ∩ uα1 ∩
· · · ∩uαk

�= ∅. Then, the Mapper complex can be visualized by Python Mapper.
Any domain-specific clustering methods can be used for Mapper4. We employ
hierarchical clustering [12] with complete-linkage to divide S̄. One parameter
gap size of Python Mapper is required for the hierarchical clustering. A subset
can be divided into more clusters with a smaller gapsize.

3 http://danifold.net/mapper/index.html.
4 Referring to [24] for detail about clustering methods applied for Mapper and its state

of arts.

http://danifold.net/mapper/index.html
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Abstract. With highly development of cloud computing, data owners
wish to outsource their data to clouds for computational and storage
resource at a lower price. In order to protect the privacy of sensitive
information, they should be encrypted before being uploaded to the
cloud server. However, in this way, it is hard to find data in encrypted
form according to search criticisms. To solve this problem, searchable
encryption has merged. In this paper, we propose a secure and efficient
searchable encryption scheme supporting multi-keyword search in 1-to-n
setting. The scheme is mainly applicable to the scenes that the number
of keywords is limited but the number of files is huge such as sharing a
comprehensive knowledge base of a certain field. By tactfully leveraging
multi-input inner-product functional encryption, the cloud server is able
to complete search processes with search tokens which consist of only
two items. It reduces communication and transportation overhead sig-
nificantly. By using an inverted index structure and super-incremental
sequence, our scheme achieves efficient multi-keyword search. In addi-
tion, our scheme avoids per-query interaction between the data owner
and data users. That is to say, the data owner does not need to stay
online waiting for data users to search in his archives. On the other
hand, the scheme also achieves partial token privacy, index privacy and
token privacy at the same time.

Keywords: Searchable encryption · Multi-keyword · Multi-user
Index privacy · Token privacy

1 Introduction

1.1 Background

As we all know, big data has three outstanding features: large volume, high
velocity and high variety. Cloud storage is well designed for big data because of
its excellent capability to store large volumes of data, to prepare for high velocity
of data generation and to process high variety of data. Cloud computing provides
great convenience to users and is one of the most popular technologies at present.
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Meanwhile, cloud computing (data outsourcing) raises confidentiality and
privacy concerns. Simple encryption can protect data confidentiality easily. How-
ever, when data users want to search using some specific keyword to get doc-
uments of their interest among massive volumes of data, this becomes a new
challenge. In order to search by a particular keyword, the data owner has to
decrypt the data first before starting the searching process. It is obviously not
practical especially when the volume of data is large. Searchable encryption (SE)
[5–7,10,11,15,20] is a cryptographic primitive to address search over ciphertexts.
SE allows data users retrieve documents from the cloud server according to some
keywords. Searchable encryption has been studied intensively and a mass of key-
word search schemes over encrypted cloud data have been proposed.

In the cloud environment, a data owner usually shares his documents with
data users. In this paper, we focus on the single-owner/multi-user setting. In
this setting, when a data user wants to search over the data owner’s documents,
he usually needs to ask data owner to produce necessary trapdoor information
to help him complete the search. This is to say, the data owner must be online
all the time to perform the per-query interaction with data users. However, the
primary goal of data owner is to outsource his search services to the cloud server,
so we remove the per-query interaction between the data owner and data users
in our scheme.

In some practical setting, search with only one keyword may obtain a great
quantity of documents and obviously it lacks search precision. Especially when
the queried keyword does not accurately describe the documents that data user
wants to get. Thus, multi-keyword searchable encryption merged. That is to
say, data users can do the research with multi keywords, namely, conjunctive
keyword search. Thus, data users can get the documents including all the queried
keywords.

Most existing SE schemes assume that the cloud server is honest-but-curious.
That is to say, the cloud server may try to find out which keyword the ciphertext
is about. Besides, it may also be curious about which keywords data user wants
to search. So it is necessary to ensure index privacy and token privacy.

In most literatures, when data users want to search with specific keywords
to get their target documents, they have to compute a search token including
quite a few items and send it to the cloud server to complete the search process.
It may consume a lot of bandwidth and the computing overhead is huge for data
users. However, the search token in our scheme consists of only two items by
using multi-input inner-product functional encryption. Furthermore, our scheme
guarantees index privacy and token privacy simultaneously.

1.2 Design Goal

In this paper, we propose a secure and efficient single-owner/multi-user search-
able encryption scheme supporting multi-keyword search. Our design goal is
summarized as follows:
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1. Our scheme avoids the per-query interaction between the data owner and
data users. Namely, the data owner does not need to stay online waiting for
data users to search in his archives.

2. By tactfully leveraging multi-input inner-product functional encryption, our
scheme allows the cloud server to complete search processes with search tokens
which consist of only two items.

3. By using an inverted index structure and super-incremental sequence, our
scheme achieves efficient multi-keyword search.

4. Our scheme ensures the correctness of search phase.
5. Our scheme achieves partial token privacy, index privacy and token privacy

at the same time.

1.3 Organization

The structure of this paper is as follows:
In Sect. 2, we introduce some related work. Section 3 gives some preliminaries.

Then we propose our system model and describe our scheme in detail in Sect. 4
and Sect. 5 respectively. In Sect. 6, we show the correctness and security of our
scheme and analyze function and efficiency of our scheme by comparing with
other schemes in Sect. 7. In the last section, we summarize this paper.

2 Related Work

2.1 Index

The index structures have an effect on assisting to perfect the scheme. Different
index structures have different advantages and disadvantages. Curtmola et al.
proposed a searchable encryption scheme in literature [6] based on the inverted
index because of its efficiency. Although inverted index structure is efficient on
searching, it is not convenient on updating the files. Goh et al. [11] proposed
an index structure based on bloom filter. While Chang et al. proposed a vector
index in [5].

2.2 Searchable Encryption

The first searchable encryption is proposed by Song et al. [20] in the symmet-
ric key setting. The security notion of searchable encryption was first intro-
duced by Goh [11]. And then, Curtmola et al. [6] presented a stronger secu-
rity notion, indistinguishability against adaptive chosen-keyword attacks (IND-
CKA2). Boneh et al. [7] designed the first searchable encryption with keyword
search in the public key setting, but its search efficiency is not fast comparing
to the symmetric searchable encryption. All the scheme mentioned above only
support single-keyword search.

However, in some settings, a single-keyword may not describe the search
precision correctly. Therefore, multi-keyword searchable encryption [2,4,8,12–
14,16–19,21,22] has received increasing attention.
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Golle et al. [12] first proposed the construction of conjunctive keyword
searchable encryption in the single-owner/single-user setting and presented two
schemes. In the first scheme, the size of search token is linear with the number
of encrypted documents. In the second scheme, the size of search token is con-
stant by using bilinear parings while the computational cost is still not low. In
the literatures [14,16,19], conjunctive and disjunctive keyword search are pro-
posed, which make the multi-keyword search semantics get a further extension.
Cash et al. [4] proposed the first sublinear symmetric searchable encryption sup-
port boolean queries in single-owner/single-user setting and implemented it in a
large database [3]. Jarecki et al. [13] extends it to single-owner/multi-user set-
ting, which data owner needs to be online all the time. Besides, the search time
mainly depends on the number of files including the least frequency keywords
among keywords data user wants to search. That is to say, search efficiency is
not high when the keywords data user queries are all high frequency ones.

3 Preliminary

3.1 Notation

We use s
R←− S to denote the operation of uniformly sampling a random element

s from a set S. We use PPT to denote a probabilistic polynomial-time algorithm.
λ represents the security parameter in this paper. We use lower case boldface
italics to denote (column) vectors and upper case boldface italics to denote
matrices. For a matrix M over Zq, we have [M ]1 := gM

1 and [M ]2 := gM
2 , where

exponentiation is carried out component-wise. Besides, we use [n] to denote
integers no more than n and we use <x,y> to denote inner product of x and y
where x and y are column vectors with same dimension.

3.2 Asymmetric Bilinear Groups

Let PG denote a group generator – an algorithm which takes a security parameter
λ as input and outputs a description of prime order groups G1,G2,GT with a
bilinear map e : G1×G2 → GT . We define PG’s output as (q, g1, g2,G1,G2,GT , e)
where q is a prime of Θ(λ) bits, G1,G2,GT are cyclic groups of order q. g1, g2, gT

are the generator of G1,G2 and GT respectively. e : G1 × G2 → GT is a map
with the following properties:

(1) Bilinearity: ∀a, b ∈ Zq, e(ga
1 , gb

1) = e(g1, g2)ab

(2) Non-degeneracy: e(g1, g2) �= 1
(3) Computability: ∀u ∈ G1, v ∈ G2, e(u, v) can be efficiently computed.

3.3 Multi-input Inner-Product Encryption

In inner-product encryption scheme, upon receiving the ciphertext of a vec-
tor x, only the recipients who have the secret key ky can obtain the inner
product <x,y> of x and y. While in multi-input inner-product encryption,



Efficient Multi-keyword Searchable Encryption Based on MIFE 381

only the recipients who have the secret key ky1,y2,...yn
and ciphertexts of

vector x1,x2,...,xn can obtain the sum of inner product <xi,yi>, namely,∑n
i=1 <xi,yi>.
We will use the definition of Matrix Decision Diffie-Hellman (MDDH)

Assumption in [9].

3.4 Matrix Distribution

Let k, l ∈ N , with l > k, we call Dl,k a matrix distribution if it outputs matrices
in Zl×k

q of full rank k in polynomial time. We write Dk := Dk+1,k. Without loss

of generality, we assume the first k rows of A R←− Dl,k form an invertible matrix.
Particularly, we use Ul,k to denote the uniform distribution. Uk stands for Uk+1,k.
In this work, we are mostly interested in the uniform matrix distribution Ul,k.

3.5 Dl,k-Matrix Diffie-Hellman Assumption Dl,k-MDDH

Let Dl,k be a matrix distribution. We say that the Dl,k-Matrix Diffie-Hellman
(Dl,k-MDDH) Assumption relative to PG in Gs holds if for all PPT adver-
saries A, there is no non-negligible function Adv. Namely Adv

Dl,k−MDDH
Gs,A =

|Pr[A(PG, [A]s, [Aw]s) = 1] − Pr[A(PG, [A]s, [u]s) = 1]| = negl(λ), where the
probability is taken over A

R←− Dl,k, w
R←− Z

k
q , u

R←− Z
k+1
q and s ∈ {1, 2}.

Lemma 1. Among all possible matrix distribution Dl,k, the uniform matrix
distribution Ul,k is the hardest possible instance. We have Dl,k − MDDH ⇒
Ul,k − MDDH. For all PPT adversaries A, there exists an adversary B such
that Adv

Ul,k−MDDH
Gs,A ≤ AdvUk−MDDH

Gs,B .

Lemma 2. For A
R←− Ul,k, W

R←− Z
k×Q
q , U

R←− Z
(k+1)×Q
q , s ∈ {1, 2}.

Adv
Q−Ul,k−MDDH
Gs,A = |Pr[A(PG, [A]s, [AW]s) = 1] − Pr[A(PG, [A]s, [U ]s) =

1]|. Then, we have for all PPT adversaries A, there exists an adversary B such
that Adv

Q−Ul,k−MDDH
Gs,A ≤ Adv

Ul,k−MDDH
Gs,B + 1

q−1 .

4 System Model

In our single-owner/multi-user setting, there are three different kinds of entities:
data owner, data user and cloud server. As shown in Fig. 1, the data owner has
a collection of files and wants to outsource his search service to the cloud server.
The data owner first extracts keywords from the files and constructs inverted
indices. It is important to note that our scheme is mainly applicable to the scenes
that the number of keywords is limited but the number of files is huge, so the
data owner only extracts the most relevant keywords.

And then, the data owner outsources encrypted indices and encrypted files
to the cloud server. Besides, the data owner sends partial token and search-
authorized secret key to each legitimate data user, with which data user is able
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Fig. 1. System model

to generate search token about the keywords he wants to search. When a data
user performs a search query, he sends the search token to the cloud server. With
the search token and encrypted indices, the cloud server finally returns target
documents to the data user.

Formally, our multi-keyword searchable encryption is a tuple of six
polynomial-time algorithms π = (Setup,Enc, PartialTokenGen,ClientKGen,
TokenGen, Search)

• Setup(1λ) → (pp,msk): is a probabilistic algorithm that the data owner
takes security parameter 1λ as input and generates system master key msk
and public parameter pp.

• Enc(pp, F,W,DU) → (CW , CF , CIndices, CList): is a probabilistic algo-
rithm that the data owner takes public parameter pp, a document collection
F = {f1, f2, ..., fn}, keyword dictionary W = {w1, w2, ..., wm} which is pub-
lic and a set of legitimate data users DU as input and generate encrypted
keywords CW , encrypted files CF and encrypted indices CIndices. The file
encryption is executed by using some simple symmetric encryption due to
efficiency concerns. Besides, the data owner generates an encrypted list CList

about data users and their corresponding information.
• PartialTokenGen(pp,msk, ξ) → pt: is a probabilistic algorithm that the data

owner takes pp,msk to generate partial token pt for each legitimate data user
ξ ∈ DU , with which and his search-authorized private key, a data user can
generate search tokens for the keywords he wants to search.

• ClientKGen(pp,msk, ξ) → sk: is a probabilistic algorithm that the data
owner takes pp and msk as input and generates different search-authorized
private key sk for each legitimate data user ξ ∈ DU .
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• TokenGen(sk, pt,Q) → token: is a deterministic algorithm that the data
users use their private key sk and partial-token pt to produce search tokens
token for the keyword set Q they want to query.

• Search(token,CW , CF , CIndices, CList) → RST : is a deterministic algorithm
that the cloud server uses search token token to search over encrypted indices
CIndices. Then it downloads the matched encrypted files RST and returns
them to the data user.

5 Construction

In this section, we will introduce our multi-keyword searchable encryption
scheme in detail.

– Setup(1λ): Given a bilinear group e : G1 × G2 → GT , where q is a prime
of Θ(λ) bits, G1,G2,GT are cyclic groups of order q. g1, g2, gT are gen-
erators of G1,G2 and GT respectively. Randomly select a matrix A from
Z
3×2
q of full rank, namely randomly select a matrix A from U2, randomly

choose a matrix M from Z
3×3
q , V from Z

2×3
q , and randomly select m vec-

tors z1,z2, ...,zm from Z
2
q. Let ε = (Setup,Enc,KGen,Dec) be a public-key

encryption scheme, where Setup is a public key generation algorithm, Enc
is an encryption algorithm, KGen is a secret key generation algorithm and
Dec is a decryption algorithm. pkserver ← ε.Setup(1λ) is public key of the
cloud server. Then, output public parameter pp=(g1, g2, gT , q, [A]1, pkserver)
and master secret key msk = (M ,V , {zi}i∈[m])

– Enc(pp, F,W,DU): Choose a super-incremental sequence α1, α2, ..., αm ∈
(0,

loggT
q

2 ), that is, for i ∈ [m],

αi > α1 + α2 + ... + αi−1

For each keyword wi ∈ W , use a pseudo random substitution to map i to
j, let xi = (wi, 1, r) ∈ Z

3
q, where r are randomly chosen from Zq, choose

yi = (yi1 , yi2 , 1) ∈ Z
3
q such that αj = <xi,yi>. Besides, choose differ-

ent rξ for each data user ξ ∈ DU , where rξ is randomly chosen from Zq.
Record {xi}i∈[m], {yi}i∈[m] and List = {ξ, rξ}ξ∈DU . Then, we compute
CW = {gT

α1 , gT
α2 , ..., gT

αm} as the ciphertext of keywords W , compute CF

as the ciphertext of files F with some symmetric encryption algorithm and
generate encrypted indices CIndices = {gT

αj , Idwi
}j∈[m]. Idwi

means a set
of file identifiers of files which include keywords wi. Besides, we use pkserver

to compute CList = ε.Enc(List). Finally, the data owner sends (CW , CF ,
CIndices, CList) to cloud server.

– PartialTokenGen(pp,msk, {xi}i∈[m] , ξ): For each legitimate data user
ξ ∈ DU , the data owner randomly chooses different sξ,i ∈ Z

2
q and rpt ∈ Zq.

Let rξpt
= (0, 0, rpt), and compute partial-token as follows.

[ci]1 = [Asξ,i]1 (1)
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[ci
′
]1 = [MAsξ,i + xi + rξpt

]1 (2)

[ci
′′
]1 = [V Asξ,i + zi]1 (3)

Send the partial-token pt =
(
[ci]1, [ci

′
]1, [ci

′′
]1

)

i∈[m]
to the data user ξ by a

secure channel.
– ClientKGen(pp,msk, {yi}i∈[m] , ξ, rξ): For each legitimate user ξ ∈ DU , the

data owner randomly chooses different rξ1 ∈ Z
2
q, let rξsk

= (0, rξ−rpt, 0) ∈ Z
3
q

and compute secret key as follows.

di = MT (yi + rξsk
) + V T rξ1 (4)

Zi = <zi, rξ1> (5)

Send the secret key sk =
(
{[di]2, [Zi]T , [yi + rξsk

]2}i∈[m] , [rξ1 ]2
)

to the data
user ξ by a secure channel.

– TokenGen(sk, pt,Q): With partial-token pt, secret key sk and the keywords
set Q = {wq1 , wq2 , ..., wqt

} ⊆ W to be searched, data users compute search
tokens as follows. We use e([X]1, [Y ]2) to denote [XT Y ]T .

st =
t∏

i=1

e([c
′
qi

]1, [yqi
+ rξsk

]2) · e([c
′′
qi

]1, [rξ1 ]2)/e([cqi
]1, [dqi

]2)
[Zi]T

(6)

Data users send the search tokens token = (st, ε.Enc(t)) corresponding to
the keywords they want to search to the cloud server.

– Search(token,CW , CF , CIndices, CList): When the cloud server receives a
search token, it first decrypts ε.Enc(t) to get t and retrieves real search token
rst = gT

∑t
i=1 <xqi

,yqi
> by t and [rξ]T corresponding to user identity ξ and

then determines whether gαm less than the real search token rst, if so, return
⊥, which means that the search token is illegal and there is no correspond-
ing keywords. Otherwise, by using binary search, the cloud server determines
whether there is a k satisfying gαk ≤ rst ≤ gαk+1 , if so, it means that the
keyword corresponding to gαk is one of the keyword the data user wants to
search. Then, it calcautes rst = rst/gαk and repeats the above steps until
rst equals to one. Pseudo code is showed in Algorithm1. Finally, cloud server
takes all the file identifiers that contain the keywords to be searched and then
returns the ciphertexts of the corresponding file to the data user.

6 Correctness and Security

6.1 Correctness

We now show the correctness of the search phase.
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Algorithm 1. Search Process
1: if gαm ≤ rst then
2: return ⊥
3: else
4: int low = 1, high = m;
5: while low ≤ high&&rst == 1 do
6: mid = (low + high)/2
7: if gαmid+1 ≤ rst then
8: low = mid + 1
9: else if gαmid > rst then

10: high = mid − 1
11: else gαmid ≤ rst ≤ gαmid+1

12: the keyword corresponding to gαmid is one of the target keyword
13: rst = rst/gαmid

14: high = mid − 1
15: low = 1
16: end if
17: end while
18: end if

The data user first calculates search token as follows:

st =
t∏

i=1

e([c
′
qi

]1, [yqi
+ rξsk

]2) · e([c
′′
qi

]1, [rξ1 ]2)/e([cqi
]1, [dqi

]2)
[Zi]T

=
t∏

i=1

gT
<c

′
qi

,yqi
+rξsk

> · gT
<c

′′
qi

,rξ 1>/gT
<cqi

,dqi
>

[Zi]T

=
t∏

i=1

gT
<M Asξ,qi+xqi+rξpt ,yqi

+rξsk
>+<V Asξ,qi+zqi,rξ1>

gT
<zqi,rξ1>+<Asξ,qi,M T (yqi+rξsk

)+V T rξ1>

=
∏t

i=1
gT

<xqi
+rξpt ,yqi+r ξsk

>

= gT

∑t
i=1 <xqi

,yqi
>+ rξ (7)

When the cloud server receives a search token, it first decrypts ε.Enc(t) to get
t and retrieves real search token rst = gT

∑t
i=1 <xqi

,yqi
> by t and [rξ]T according

to user’s identity ξ. Because α1, α2, ..., αm ∈ (0,
loggT

q

2 ) is a super-incremental
sequence, we have that αi > α1 +α2 + ...+αi−1. Thus, gT

αi > gT
α1+α2+...+αi−1 .

Because of the ciphertext of keywords gT
αj = gT

<xqi,yqi>, it means that the
product of the cipherhext of keywords that data user wants to search equals
to the real search token. When the cloud server retrieves gT

∑t
i=1 <xqi,yqi>, it

determines whether there is a k satisfying gT
αk ≤ rst < gT

αk+1 or not. Obvi-
ously, the keywords corresponding to gT

αk+1 , ..., gT
αm can not be the target

keyword. If keyword corresponding to gT
αk is not the target keyword, the key-

words corresponding to gT
α1 , ..., gT

αk−1 must be the target keywords, namely,
gT

α1+...+αk−1 = rst. However, according to the super-incremental sequence, we
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know that gT
α1+...+αk−1 < rst, that is to say, the keywords corresponding to

gT
α1 , ..., gT

αk−1 cannot be the target keywords. Therefore, we know that the
keyword corresponding to gT

αk is one of the target keywords.

6.2 Security

For the files, ciphertexts CF are semantic security by adopting symmetric encryp-
tion, such as AES. Then a probabilistic polynomial-time adversary cannot get
any useful information from CF with non-negligible probability. For the keyword,
we have:

Partial-Token Privacy. Partial-Token Privacy means that a probabilistic
polynomial-time adversary cannot get any useful information from the partial-
token. That is to say, assuming that an adversary gets one item of the partial-
token from a legitimate data user ξ, he could not know which keywords the item
is about.

• Setup: The challenger plays a role as the system and runs Setup(), then it
keeps master key msk.

• Init: The challenger runs Enc() to get different reasonable {xi}i∈[m],
{yi}i∈[m] and {ξ, rξ}ξ∈DU , with which it can run ClientKGen() and
PartialTokenGen().

• Query Phase1: The adversary adaptively queries sk and pt about dif-
ferent ξ for polynomial times. The challenger runs PartialTokenGen()
and ClientKGen() algorithm and returns pt ←− PartialTokenGen
(pp,msk, {xi}i∈[m] , ξ) and sk ←− ClientKGen(pp,msk, {yi}i∈[m] , ξ, rξ).

• Challenge phase: The adversary randomly selects two keywords wi0 and
wi1 and submits the identity ξ he wants to challenge with the restric-
tion that ξ has not queried before. The challenger flips a coin to select
β ←− {0, 1} and then runs PartialTokenGen() algorithm. The challenger
returns PartialTokenGen(pp,msk,xiβ , ξ, rξ) to the adversary.

• Query Phase 2: The adversary executes queries as Phase1 did.
• Guess: Finally, the adversary gives a guess β

′
of β and wins the game if β

′
= β.

We can define the advantage of adversary winning the game is |Pr[β
′

=
β] − 1

2 |.
Theorem 1. If an adversary wins the game mentioned above with a non-
negligible advantage, there is an adversary B can break MDDH assumption.

Proof. Specific proofs are detailed in the AppendixA. ��

Index Privacy. Index privacy means that a probabilistic polynomial-time
adversary cannot get any useful information from encrypted keyword Cw. In
other words, the cloud server cannot determine which keyword the ciphertext
is for.
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• Setup: The challenger plays a role as the system and runs Setup(), then it
keeps master key msk.

• Query Phase1: The adversary adaptively queries the ciphertext of keyword w
for polynomial times, and get Cw ←− Enc(pp,w).

• Challenge phase: The adversary randomly selects two keywords wi0 and wi1

which have not queried before, and sends them to the challenger. The chal-
lenger flips a coin to select β ←− {0, 1} and then returns Cw ←− Enc(pp,wiβ)
to the adversary.

• Query Phase 2: The adversary continues to query the ciphertext of keyword
w as Phase1 did with the restriction that w is neither wi0 nor wi1 .

• Guess: Finally, the adversary gives a guess β
′
of β and wins the game if β

′
= β.

We can define the advantage of adversary winning the game is |Pr[β
′

=
β] − 1

2 |.
Theorem 2. If an adversary wins the game mentioned above with a non-
negligible advantage, our scheme is secure with index privacy.

Proof. If the adversary wants to know whether Cw is about wi0 or wi1 , he will
analyze the Cw = gT

<xiβ ,y iβ> = gT
αj . Because αj is less than

loggT
q

2 , he could
get <xiβ ,yiβ> by logarithmic operation. However, yiβ is kept secret by the
challenger, so that it is impossible for the adversary to get xiβ and has no
chance to get keyword wiβ . Therefore, the adversary can not know whether β
equals to 0 or 1. ��

Token Privacy. Token privacy means that given a search token, a probabilistic
polynomial-time adversary cannot learn which keyword the search token is for.
Namely, the cloud server cannot know which keyword the data user queries.

• Setup: The challenger plays a role as the system and runs Setup(), then it
keeps master key msk.

• Init: The challenger runs Enc() to get reasonable {xi}i∈[m], {yi}i∈[m] and
{ξ, rξ}ξ∈DU , with which it can run ClientKGen() to obtain secret key sk.
Besides, it runs PartialTokenGen() to get partial token pt.

• Query Phase1: The adversary with ξ adaptively queries search token of key-
word w for polynomial times, and get st ←− Token(sk, pt, w).

• Challenge phase: The adversary randomly selects two keywords wi0 and wi1

which have not queried before, and sends them to the challenger. The chal-
lenger flips a coin to select β ←− {0, 1} and then runs TokenGen() algorithm.
The challenger returns st ←− Token(sk, pt, w) to the adversary.

• Query Phase 2: The adversary continues to query search token of keyword w
as Phase1 did with the restriction that w is neither wi0 nor wi1 .

• Guess: Finally, the adversary gives a guess β
′
of β and wins the game if β

′
= β.

We can define the advantage of adversary winning the game is |Pr[β
′

=
β] − 1

2 |.
Theorem 3. If an adversary wins the game mentioned above with a non-
negligible advantage, our scheme is secure with token privacy.
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Proof. If the adversary wants to know whether st is about wi0 or wi1 , he will
analyze the st = gT

<xiβ ,y iβ>+rξ . For the cloud, although he can calculate
gT

<xiβ ,y iβ> and get <xiβ ,yiβ> by logarithmic operation, the cloud has no way
to get yiβ . Therefore, it is incapable of getting xiβ and unable to get keyword
wiβ . ��

7 Functionality and Efficiency

We compare our scheme with the work in [13,22]and the first scheme of work
in [12] in Table 1. From the table, we can see that the size of ciphertext is lin-
ear with the number of keywords m in both literature [13] and our scheme.
While in literature [22], the ciphertext size is linear with the product of the
number of keywords m and the number of files n. And in literature [12], the
ciphertext size is linear with the number of keywords data owner extracts. We
can easily find that the size of the search token is constant only in our scheme.
Obviously, our scheme could significantly reduce the communication and trans-
portation overhead, especially when the number of data users is large and the
query frequency is high. Besides, by using an inverted index structure and super-
incremental sequence, our scheme achieves efficient multi-keyword search, which
is illustrated in Table 1. In addition, our scheme avoids the per-query interaction
between data owner and data users. That is to say, the data owner does not need
to stay online waiting for data users to search in his archives. Furthermore, our
scheme supports multi-keyword search in single-owner/multi-user setting.

Table 1. Calculation overhead

[12] [13] [22] Ours

Ciphertext size o(nα) o(m) o(mn) o(m)

Token size o(n + t) o(ct) o(m) 2

Search time o(m) o(ct) o(wmlog2n) o(tlog2m)

Inverted index × √ × √

Multi-keyword
√ √ √ √

Multi-user × √ × √

Non interaction* N/A × N/A
√

*: the interaction between data owner and data users when-
ever data users perform search queries.
n: the number of files.
m: the number of keywords.
t: the number of keywords data user wants to search.
c: the number of files including the least frequency keywords
among keywords data user wants to search.
w: the number of files including the keywords data user wants
to search.
α: the number of keyword in each file, which its fixed in [13].
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8 Conclusion

In our scheme, search tokens have only two items by tactfully leveraging multi-
input inner-product functional encryption, which reduces communication and
transportation overhead significantly. The use of inverted index structure and
super-incremental sequence makes the multi-keyword search process efficient. In
addition, our scheme avoids the per-query interaction between data owner and
data users. That is to say, data owner does not need to stay online waiting
for data users to search in his archives. What is more, our scheme ensures the
correctness of search process and protects the privacy of keywords and plaintext
files.
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by “the Fundamental Research Funds for the Central Universities”. Zhenfu Cao and
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A Proof of Theorem1

Proof. The proof of theorem1 consists of six games. The transitions between
contiguous games are summarized in Table 2. ([ci]1, [ci

′
]1, [ci

′′
]1) is computed by

PartialTokenGen(). [di]2 and [Zi]T are part of sk computed by ClientKGen().
We use u

R←− Z
3
q\Span(A) and a⊥ R←− Z

3
q so that AT a⊥ = 0 and <u,a⊥> = 1.

To analyze Game3, we consider the selective variant of the game: Game3*. Then
we prove Game3* through using an information-theoretic argument via Game4*.
Both Game3* and Game4* are selective security.

The concrete proof is similar to [1]. Here we just simply outline each game.
Let A be a PPT adversary, and let λ ∈ N be the security parameter. We

define

Advt(A) := Pr[Gamet(1λ,A) = 1] t ∈ {0, 1, 2, 3, 3∗, 4∗}

– Game 0: is the partial-token privacy game.
– Game 1: using Uk-MDDH, we change the distribution of the vectors [ci]1

computed by PartialTokenGen(). This change depends on the fact that:
• The distributions {sξ,i}i∈[m] and {sξ,i + s}i∈[m], where s

R←− Z
2
q, sξ,i

R←−
Z
2
q are identically distributed.

• By Uk-MDDH assumption, we can switch ([A]1, [As]1) to ([A]1, [u]1),
where A

R←− U2, s
R←− Z

2
q, u

R←− Z
3
q.

• The uniform distributions over Z
3
q and Z

3
q \ Span(A) are 1

q -close.
– Game 2: using an information theoretic argument, we change the way

how the vectors [ci
′′
]1 and [di]2 are computed by PartialTokenGen() and



390 Y. Liang et al.

ClientKGen() respectively. This relies on the fact that the distributions V

and V − zi(a⊥)T are identical. Thus, we have

[ci
′′
]1 = [(V − zi(a⊥)T )(Asξ,i + u) + zi]1

= [V (Asξ,i + u) − zi(a⊥)T u + zi]1
= [V (Asξ,i + u)]1 (8)

di = MT (yi + rξsk
) + (V T − a⊥zT

i )rξ1

= MT (yi + rξsk
) + V T rξ1 − a⊥<zi, rξ1> (9)

– Game 3: we switch {[rξ1 ]2, [<zi, rξ1>]2}i∈[m] to {[rξ1 ]2, [z̃i]2}i∈[m] for all calls

to ClientKGen(), where z̃1, z̃2, ..., z̃m
R←− Zq. This is justified by the distri-

butions [rT
ξ1

||<z1, rξ1>||...||<zm, rξ1>]2 ∈ G
1×(2+m)
2 and [rT

ξ1
UT ]2, where

U
R←− U2+m,2 are identical. According to U2+m,2-MDDH, we know that

[rT
ξ1

UT ]2 is indistinguishable from a random vector over G
1×(2+m)
2 of the

form [rT
ξ1

||z̃1||...||z̃m]2.
– Game 3*: is the selective variant of Game3, in other words, any adversary

playing this game has to commit its challenge queries wi0 and wi1 beforehead.
– Game 4*: is similar to Game3*, excep t [ci

′
]1 and [Zi]T computed by

PartialTokenGen() and ClientKGen() respectively. The transform is true
because of the fact

{
z̃i − <xi + rξpt

,yi + rξsk
>

}
i∈[m]

and {z̃i}i∈[m] are iden-

tically distributed. Besides, M and M −xi(a⊥)T are identically distributed.

We build a PPT adversary B1 so that

Adv0(A) − Adv1(A) ≤ AdvUk−MDDH
G1,B1

(λ) +
1
q

Because of information theoretic argument, we know that

Adv1(A) = Adv2(A)

Table 2. Sequence of games for the proof of partial-token privacy
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There exists a PPT adversary B3 so that the

Adv2(A) − Adv3(A) ≤ AdvUk−MDDH
G2,B3

(λ) +
1

q − 1

Using complexity leveraging, we build a PPT adversary B3∗ so that

Adv3(A) ≤ m(m − 1) · Adv3∗(B3∗)

For all adversaries A, Adv3∗(A) = Adv4∗(A).
In Game 4*, from Table II, we can easily find that the partial token of wiβ

of ξ is only associate with vector sξ,iβ . However, sξ,iβ is randomly choosen from
Z

k
q . That is to say, Asξ,i0 and Asξ,i1 are statistically indistinguishable. Thus,

Adv4∗(A) = 0. Therefore, we obtain that

Adv0(A) ≤ AdvUk−MDDH
G1,B1

(λ) + AdvUk−MDDH
G2,B3

(λ) +
2

q − 1

Using Ul,k −MDDH assumption in G1, G2, we know that Adv0(A) is negligible
in λ.
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Abstract. A recent paper showed that most Multi-User Searchable
Encryption protocols do not provide any privacy without the assumption
that all users can be trusted, an assumption too strong to be realistic for
a MUSE system. As to the few MUSE protocols that are not affected,
they all suffer from some scalability issues. We present the first MUSE
protocol that does protect against user-server collusions, and yet scales
very well. The protocol is also very simple. We prove that the leakage of
the protocol is limited to the access pattern of queries and we report on
performance measurements from a proof-of-concept implementation.

Keywords: Multi-user searchable encryption · Diffie-Hellman
Access pattern

1 Introduction

The advent of cloud computing allowed an increasing number of users to delegate
tasks to Cloud Service Providers (CSP). However users are reluctant to trust
CSPs regarding the handling of their data. Simple client-side encryption would
solve the privacy problem, but would prevent any useful operation on the data
server-side. This motivated research on Searchable Encryption (SE) (see [3,10]
and their references) which goal is to allow a CSP to search some outsourced
data on behalf of a user without compromising the privacy of this data and the
privacy of the queries.

While current state-of-the-art SE schemes [4,7,9] can efficiently process very
large databases, these protocols only consider a single user being both the only
one uploading data and the only one searching it. At the same time, research in
SE also studied the situation where the dataset is being written and/or searched
by several users. Multi-User SE (MUSE) denotes the setting with many readers
and writers.

MUSE is a recent but active research topic [1,2,8,11,12,14,15,18–21,25,26];
however it seems very difficult to reconcile security and efficiency in MUSE. Prior
to the paper of Popa and Zeldovich [18], papers on MUSE were only considering
the server as a threat, implicitly assuming that all users were fully trusted.
c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 393–408, 2018.
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Popa and Zeldovich were the first to address user-server collusions in MUSE
and to present a protocol, MKSE, supposed to provide privacy in such a model.
However this protocol was shown in [22] to fail as well to protect privacy against
user-server collusions. New MUSE protocols were presented in [12,20,21] that
seem to reach an acceptable level of privacy against user-server collusions, but
they all suffer from scalability issues.

In this paper, we identify different mechanisms present in recent MUSE pro-
tocols [12,20,21] that trade some privacy for an efficiency increase, and we show
that combining them leads to a simple and efficient MUSE protocol which pri-
vacy level stays acceptable. The protocol we present, resembling an existing PSI
protocol [13], is the first MUSE protocol to have both a very light user workload
and a moderate server workload while being secure against user-server collusions.

We prove the security of the protocol using the “simulation technique” [17]
in the random oracle model, and we report on performance measurements of a
proof-of-concept implementation.

2 Multi-User Searchable Encryption

We give definitions for MUSE that are general enough to apply to all existing
constructions. In Sect. 6 we apply these definitions to the protocol we present
using a more formal syntax.

A MUSE protocol involves a server and a number of users. Users can be of
type either reader or writer. A writer owns some records and uploads them
to the server (in an encrypted form). For each record, the writer owning it can
authorize some readers to search it. The authorization graph denotes the
information of “which reader has access to which record”. A reader can search
the records for which she got authorization by sending a query to the server
in an encrypted form called trapdoor. We will only consider single-keyword
search, meaning that records are defined as sets of keywords, a query consists
of a single keyword and we say that a record matches a query if the query
is present in the record. Keywords are defined as bit strings. At the end of
the search procedure, the server sends a response back to the querying reader
(possibly encrypted) who outputs the ids of records that match the query among
the records this reader was authorized to search.

We note Wd ∈ {0, 1}∗ the record with id d and we represent the authorization
graph by a function Auth such that for any reader r ∈ R we have d ∈ Auth(r)
if and only if r is authorized to search Wd. If q is the keyword queried by reader
r and a is the query result that r outputs at the end of the search protocol, the
protocol is correct if the following holds with overwhelming probability:

a = {d ∈ Auth(r) : q ∈ Wd} (1)

Regarding security, the adversary we consider is a collusion of the server and
some users. We consider the adversary as honest-but-curious (see [17]), as it is
common in the literature on MUSE. Following the seminal paper of Curtmola
et al. [6], we define the history of a MUSE protocol as the records, the queries,
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and the authorizations. We define the leakage as a function of the history, and
we say that a MUSE protocol has some leakage with respect to an adversary if
the view of this adversary can be simulated in an indistinguishable way using
only the information from this leakage.

We define several notions that will be helpful when describing leakage func-
tions: the access pattern denotes the information of which record matched
which query. “Access pattern” is thus a synonym of “query result” (see Eq. (1)).
The term benign leakage will regroup all the information we consider as non-
sensitive. It consists of the size of each record, the number of queries from each
reader, and the authorization graph. All MUSE protocols reveal this benign leak-
age. As a result we will sometimes omit the benign leakage, saying that some
protocol “only leaks the access pattern” while it also leaks the benign leakage.
Finally the revealed content denotes the queries and records which the adver-
sary has a legitimate access to through the users it controls. It includes the
queries of corrupted readers and the records of corrupted writers, but also the
records corrupted readers have access to. For the same reasons, we often omit it
as well when describing the leakage of protocols.

3 Preliminaries

Diffie-Hellman Problems. Given some cyclic group G of order ζ having genera-
tor g, the Computational Diffie-Hellman (CDH) problem consists, given (ga, gb)
in G

2, to compute gab. The Decisional Diffie-Hellman (DDH) problem consists,
given any triplet (ga, gb, gc) in G

3 to outputs “true” if c = ab and “false” oth-
erwise. Groups where the CDH and DDH problems are assumed to be hard are
very widely used in practical cryptography. We will note h a cryptographic hash
function, modeled as a random oracle, that hashes any bit string into G.

4 Related Work

The first MUSE protocol was proposed by Hwang and Lee in [14]. It slightly
differs from our definition of MUSE because their protocol considers records as
tuples of keywords.

A MUSE protocol that is important in our study is the one of Bao, Deng,
Ding and Yang in [2], that uses a bilinear map e : G1 ×G2 → GT where G1, G2

and GT be multiplicative cyclic groups of order ζ. In this protocol, a Trusted
Third Party (TTP) creates a master key msk ∈ Z

∗
ζ . Then for each user u (users

are both readers and writers in this protocol), the TTP creates a secret user
key ku ∈ Z

∗
ζ sent to the user and a value called “complementary key” (later

called “delta value”) g
msk/ku

2 that is sent to the server. For the creation of both
trapdoors and encrypted records, user u encrypts a keyword w as he(w)ku (where
he is a secure hash function to G1) and the server pairs the encrypted keyword
with the complementary key to obtain the following:

e(he(w)ku , g
msk/ku

2 ) = e(he(w), g2)msk (2)
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As a result while each user has her own secret key, the use of the complementary
key makes the protocol equivalent to a single user encrypting her records and
queries using master key msk, while this master key is in fact only known by
the TTP. This kind of MUSE protocols where all records and all trapdoors are
re-encrypted under a common secret key are called single-key.

A paper by Yang et al. [26] adds a few extensions to the protocol of Bao
et al. [2] without changing its basic behaviour. Finally, a paper by Dong et al.
[8] presents a protocol that works in a similar fashion, but is based on RSA
encryption instead of bilinear pairings.

4.1 The MKSE Protocol

In [18], Popa and Zeldovich present a MUSE protocol named “Multi-Key Search-
able Encryption” (MKSE). This protocol introduces radical changes from the
previous MUSE protocols in order to address a much more challenging threat
model where some users may be colluding with the server. MKSE does not fol-
low the “single-key” structure because a single corrupted user in a single-key
structure gives the adversary immediate access to the entire database.

There is no TTP in MKSE; instead, user u creates his own secret key γu ∈ Z
∗
ζ

and can authorize user v to search his record by computing the delta value g
γu/γv

2 .
User u encrypts keyword w as e(he(w), g2)γu , user v encrypts query q as he(q)γv

which is transformed by the server using the delta value. Similarly as in Bao et
al. [2], we have:

e(he(q)γv , g
γu/γv

2 ) = e(he(q), g2)γu (3)

The main difference between MKSE and [2] is that in MKSE the encrypted
keywords are never transformed, but trapdoors are transformed to match the
encrypted keywords. While this requires the server to compute a pairing for each
record the querying user is allowed to search, it also ensures that the trapdoor
of a user can only be applied on the records this user was allowed to search,
mitigating the consequences of user corruptions.

The MKSE protocol had quite some impact. [18] has been cited by a number
of papers [23–25], most of them using it as a base and suggesting improvements
and extensions to it. Also, the MKSE protocol is at the core of the Mylar plat-
form, presented in [19], that aims at facilitating the development of secure web
applications.

4.2 Insecurity of the Iterative Testing Structure and Recent
Protocols

In [22], Van Rompay et al. show that none of the previously mentioned MUSE
protocols can offer privacy against even a very small number of users colluding
with the server, because they all follow a common structure named “iterative
testing” in [22]. Interestingly this affects the MKSE protocol as well, despite the
fact that it was designed to protect against such collusions.
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Intuitively, iterative testing denotes the fact that the server sees encrypted
records as lists of encrypted keywords and that search consists in testing each
encrypted keyword one by one. When a query matches a record, the server can see
which encrypted keyword matched the query. This can reveal when two queries
from different readers are similar because they will match the same encrypted
keyword. As a result, the corruption of one user can lead to the recovery of
queries of other, non colluding users, which in turn can lead to the recovery of
keywords in records the colluding reader did not have access to. Results from
some simulations in [22] show that even a very small number of colluding users
can lead to a major loss of privacy across the whole dataset.

Some recent papers on MUSE [12,20,21] present protocols that do not follow
the iterative testing structure and achieve privacy against user-server collusions.
Nevertheless all these protocols suffer from some form of scalability issues. In the
protocol by Hamlin et al. [12] a reader must download and process every single
record he is allowed to search before re-uploading the processed version to the
server. Similarly in [21], the response received by a reader has a size that is linear
with the number of records being searched. This goes against the main goal of
cloud computing which is to allow end users with small capacities to process large
amounts of data. Finally in the 2018 protocol of Van Rompay et al. [20], while
the user workload is small and independent of the number of records searched,
the server workload is significant and the absence of an implementation makes
it difficult to assert the practicality of the protocol.

4.3 An Unexplored Middle Ground

All MUSE protocols suffer from either insecurity ([2,8,18] and derivatives) or
scalability issues [12,20,21] (See Fig. 1). Among the protocols that are secure
against user-server collusions, we note various techniques which trade some secu-
rity for a gain in efficiency. We suggest to combine these techniques, hoping that
their performance advantages add up together, resulting in a level of scalability
that was not reached before among this kind of MUSE protocols.

Fig. 1. A representation of our notion of “unexplored middle ground” regarding the
security/efficiency dilemma in MUSE.



398 C. Van Rompay et al.

These techniques consist of:

– In Hamlin et al. [12], trading off access pattern leakage for lower complexity in
underlying mechanisms. Leaking the access pattern is very common among
single-user SE schemes, and leaking no more than the access pattern does
not lead to the kind of security issues iterative-testing-based protocols suffer
from Accepting to leak the access pattern avoids using the kind of costly
mechanisms present in the protocols from Van Rompay et al. [20,21].

– In the two protocols of Van Rompay et al., the use of two servers that are
assumed not to collude together. This kind of assumption is present and well-
accepted in various other protocols such as Private Information Retrieval [5].
While relying on such an assumption slightly weakens the privacy guarantees,
it is obviously much better than having to assume the absence of any user-
server collusion. Having two non-colluding servers makes it easier to protect
the privacy of the records and queries. as required by protocols based on
iterative testing. Note that none of the two servers are trusted, both are
modeled as independent honest-but-curious adversaries.

We view the combination of these techniques as a “middle ground” that has
not been studied yet, represented in Fig. 1, where security is only slightly weaker
than in the latest protocols while scalability could be significantly improved.

5 Idea of the Protocol

We show that accepting to leak the access pattern while assuming the presence of
two non-colluding servers leads indeed to a simple, efficient and scalable solution
to the MUSE problem. We claim that the MUSE protocol we present may be
the best practical tradeoff as of today for the MUSE problem with a very large
number of records.

The protocol is similar to a Private Set Intersection (PSI) protocol presented
in [13] (see also [16]), which we will call “DH-PSI”, that is solely based on the
Diffie-Hellman protocol. A (one-sided) PSI protocol involves a sender with set
Y and a receiver with set X, and the receiver must learn X ∩ Y and the size of
Y while the sender must learn nothing beyond the size of X. Remark that set
membership test, which is what our MUSE protocol does, is a special case of set
intersection: q ∈ Wq is equivalent to {q} ∩ Wq �= ∅. In DH-PSI [13], the receiver
picks a random value α ∈ Z

∗
ζ and sends {h(x)α ∀x ∈ X} to the sender. The

sender picks a random value β ∈ Z
∗
ζ and sends both {(h(x)α)β ∀x ∈ X} and

{h(y)β ∀y ∈ Y }. Finally the receiver computes {(h(y)β
)α ∀y ∈ Y } and is able to

see which elements of X are in Y without learning anything about the elements
in Y −X. Interestingly, this protocol was shown in [16] to be the fastest existing
PSI protocol when one set is much larger than the other one, which corresponds
to our case. Our protocol can actually be considered as an “outsourced” version
of the protocol of [13]. The reader of MUSE would be the receiver in PSI and
the writer would be the sender, but instead of interacting together in a direct
manner, the receiver sends her masked set to the (non-trusted) proxy and her
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secret to the server while the sender sends her masked set to the server and
her secret key to the proxy. Both the proxy and the server apply the key they
received on the masked set they received in order to compute a “double-masked”
set. Finally the proxy determines the intersection between the double-masked
set it computed and the one transmitted by the server. The result is returned to
the reader as the response to its query. The proxy or the server could “cheat”
and try to apply other keys or blinding factors, but the result will be of no use
unless the server sends extra prepared records to the proxy, which would violate
the honest-but-curious model and/or the assumption that the two servers do not
collude together.

As to the handling of queries from a same reader, we note that there is no
need to renew the blinding factor at each query. This saves a great amount
of computation because both the preparation step and the sending of prepared
records are skipped. Instead, it suffices that the reader avoids sending two identi-
cal queries for a fixed period of time, say a month. The exact time period should
be chosen depending on how many query results the reader can remember, and
on how fast new keywords are added to records.

6 The Diffie-Hellman AP-MUSE Protocol

– The writer owning record Wd ∈ {0, 1}∗ picks record key γd at random from
Z

∗
ζ . She encrypts this record into W d by computing:

W d ← {h(w)γd ∀w ∈ Wd}

She sends W d to the server and γd to the proxy.
– The writer owning record Wd can authorize a reader r to search Wd simply

by notifying the proxy and the server.
– For each time period l, reader r picks a random blinding factor ξr,l ∈ Z

∗
ζ and

sends it to the server.
– When the server receives blinding factor ξr,l, it computes the prepared

encrypted record W d,r,l for each d ∈ Auth(r):

W d,r,l ← {wξr,l ∀w ∈ W d}

It sends W d,r,l to the proxy.
– qr,l,s denotes the s-th query of reader r during the l-th time period. For each

such query, reader r creates the corresponding trapdoor tr,l,s:

tr,l,s ← h(qr,l,s)ξr,l

tr,l,s is sent to the proxy.
– When receiving trapdoor tr,l,s, the proxy does the following steps for

each record the querying reader is authorized to search, that is for each
d ∈ Auth(r):
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• the proxy computes the transformed trapdoor t′r,l,s,d:

t′r,l,s,d = tγd

r,l,s

• the proxy looks for value t′r,l,s,d in prepared record W d,r,l. If the value is
found, we say that Wd matches.

The proxy sends the ids of the matching records to the querying reader.

We assume that a reader does not send similar queries during the same time
period, that is, qr,l,s �= qr,l,s′ . However queries from different readers during the
same time period can be similar, that is, we can have qr,l,s = qr′,l,s′ .

7 Security Analysis

The security of the protocol derives from the hardness of the DDH problem in an
almost obvious way. Intuitively, both the proxy and the server receive keywords
that are “masked” by some key they do not know, the key being a blinding factor
in the case of the proxy and a record key in the case of the server. However we
still give a rigorous proof based on the simulation technique as it is usual in the
field of Searchable Encryption (see [4]). We prove security against the server and
proxy separately, but because the two proofs are very similar we start by giving
an overview of them.

We first give a formal definition of security in MUSE, adapted from the
definition of “Non-adaptive semantic security” by Curtmola et al. [6].

Definition 1 (Non-adaptive semantic security of a MUSE protocol).
Let MUSE be a MUSE protocol. Let VMUSE,A be an algorithm which takes a
MUSE history, runs protocol MUSE on this history, and outputs the view of
adversary A during this execution. Let S be a simulator and κ be the security
parameter.

We say that MUSE is semantically secure with leakage L with respect to A
(or simply that it has leakage L w.r.t A) if for all polynomial-size D1, there exists
a polynomial-size simulator S such that for all polynomial-size D2, the following
quantity is negligible in κ:

| Pr[D2(stD,V(κ,H)) = 1; (stD,H) ← D1(1κ)]
−Pr[D2(stD,S(κ,L(H))) = 1; (stD,H) ← D1(1κ)] |

In each proof we build a simulator that takes the leakage as input and that
outputs a simulated view. The only parts of the view that are not trivial to build
for the simulator are the encrypted keywords (for privacy against the server) and
the trapdoors and prepared keywords (for privacy against the proxy) that are
not revealed. Most of them are generated by replacing the call to hash function
h, modeled as a programmable Random Oracle (RO), by a uniform random
sampling from G. We say “most of them” because some prepared keywords in
the simulated view of the proxy are instead generated by taking a trapdoor and
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transforming it (using the record key), in order to have the trapdoor matching
the resulting prepared record so that access pattern is preserved.

We show that the output of simulators are indistinguishable from the real
view of the adversary with a sequence of hybrid simulators where each hybrid
simulates one more element of the view that the previous one. The output of
any two successive hybrid simulators are shown to be indistinguishable with a
reduction to the DDH problem in G, using the following embedding of a DDH
instance ga, gb, gc:

h(w∗) ↔ ga, γ∗ ↔ b, w∗ ↔ gc

Where w∗ is the keyword corresponding to the trapdoor (or prepared key-
word or encrypted keyword, depending on the case) that is simulated in one
hybrid simulator but not in the other, called the pivot trapdoor/prepared key-
word/encrypted keyword, and γ∗ (or ξ∗ for privacy against the proxy) is the
record key (resp. blinding factor) corresponding to the pivot element. The embed-
ding is done by programming the RO as follows: On input w∗ it outputs ga, and
on any other input it outputs gO[w] where O[w] is previously picked uniformly
at random if it was not already set, as is usually done with ROs. There is a
subtlety in the programming of the RO because it must be programmed before
the value w∗ is available to the reduction. We give more details on this point
further below.

The embedding of b is made possible by the way we define the RO: encrypting
a keyword using b as the record key or blinding factor is done with the following
function:

w 
→ (gb)O[w]

Finally the embedding of c is done by using gc as the pivot trapdoor/prepared
keyword/encrypted keyword.

The only thing that remains to be done in each of the proof is the argu-
mentation over the correctness of the embedding, essentially making sure that
the value we replace by gc does not appear anywhere else. This is where our
requirements that records do not contain duplicates and that a reader does not
send two identical queries during the same time period are needed.

Due to space limitations, the full proofs are given in appendix.

About Programming the RO. Programming the random oracle requires to know
w∗. The reduction will only know this value when D1 returns (see Definition 1),
while we need to program the oracle before D1 starts. Popa and Zeldovich suggest
in [18] a way to overcome this difficulty: The reduction makes a “bet” on which
query to the oracle will be for the keyword that will end up being w∗. It can also
bet that D1 will never query the oracle for this keyword. When D1 returns, the
reduction can check whether its bet was correct or not. If it was, the reduction
can continue, otherwise it halts and gives a random answer to the DDH problem.
If the bet was that the keyword is not queried and the bet was correct, this
means that the reduction can program the RO using the value of w∗ present in
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the history returned by D1. Because D1 runs in polynomial time, there are only
a polynomial number of possible bets, thus a non-negligible advantage of the
distinguisher still results in a non-negligible advantage of the reduction.

8 Performance Analysis

Intuitively, what makes the protocol scalable is that the workload of a writer
is linear with the number of keywords she uploads, the workload of a reader
is linear with the number of queries it sends, the workload of the server is a
long-term task which does not affect search time, and the workload of the proxy
is no greater than the one of the server in MKSE [18].

To give a more precise performance evaluation, we consider a system with
A writers owning B records each, each record containing N keywords, and C
readers each having access to D records. We assume that all readers have the
same time period.

In our protocol, Each writer must perform B×N exponentiations and hashing
in G. The server must perform C × D × N such exponentiations for each time
period, and the proxy must perform D exponentiations for each trapdoor it
receives. The workload of readers is only a single exponentiation and hashing
per query, and response reception requires essentially no resources (the final
response is received in plain text).

Note that preparation and transformation are tasks that are “embarrassingly
parallel”, meaning that they can be parallelized with no effort. They also have
strong data locality, meaning that each elementary task is applied on a small
portion of the whole dataset, allowing the use of distributed infrastructures like
MapReduce. Also, record preparation, performed by the server, is a predictable
amount of work without any burst and with long-term deadlines. Also note that
the proxy can discard prepared records at the end of each time period, making
its space consumption about the same as the server.

8.1 Comparison with Other MUSE Protocols

RMO15 [21] and the protocol of Hamlin et al. [12] both have a very heavy reader
workload: in RMO15, the reader has to receive and decrypt D responses for each
query, and for HSWW18 it has to download, process and upload D×N keywords
at the beginning of the protocol. HSWW18 has a sublinear search time, though,
while RMO15 has a very heavy server workload.

When comparing DH-AP-MUSE with RMO18 [20], the most major difference
is the server workload. In RMO18 after each trapdoor transformation, the proxy
must perform a complex and costly privacy-preserving sub-protocol with the
server, which purpose is to prevent the proxy from learning the access pattern.
The exact cost of this lookup sub-protocol is difficult to assess, but there are
no doubts it is much more expensive that the simple local lookup done by the
proxy in DH-AP-MUSE.
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8.2 Implementation and Performance Measurements

Another advantage of DH-AP-MUSE is its great simplicity, which makes its
implementation an easy task. We implemented the algorithms of DH-AP-MUSE
in less than 100 lines of C, using the Sodium crypto library1. We encoded pre-
pared records as bloom filters.

Performance measurements on a Amazon EC2 t2.micro instance2 gave the
following running times:

– trapdoor generation and keyword encryption: 0.1 ms per keyword
– record preparation (including insertion of prepared keywords in a bloom fil-

ter): 60µs per keyword
– trapdoor transformation: 60µs per transformation

This means that a server hosted on a single t2.micro instance could handle
(in terms of computation) the preparation of records for 100 readers each having
access to 40,000 records assuming records of 10,000 keywords each and a time
period of one month. The same machine should be able as a proxy to transform
the trapdoor of a reader searching 40,000 records in under 3 s. Note that we do
not measure communication time, only computation. Hence there is no need to
run the algorithms on two different machines for these measurements. Using a
machine with a faster CPU (t2.micro has a frequency of 2.40 GHz) or with more
cores (using multi-threading) should scale capacity accordingly. “scaling out”
using several machines should also increase the capacity in a linear fashion due
to the embarrassingly parallel nature and high data locality of the task.

9 Improving Previous MUSE Protocols with Techniques
from This Protocol

The previous MUSE protocols of Van Rompay et al. [20,21] can benefit from
several techniques used in the presented protocol, namely, the replacement of
bilinear pairings by “normal” DDH-hard groups and the periodic renewal of the
blinding factor. While these techniques would improve the efficiency of these
protocols, the presented protocol would still be much more scalable and the
comparisons we made in Sect. 8.1 would still be valid.

10 Conclusion

We presented the first MUSE protocol that protects query and record privacy
against user-server collusions while scaling well to very large databases. More-
over, techniques used in this protocols can be used to improve the efficiency of
existing protocols. Interesting topics for future work include a more thorough
study of the security implications of a access pattern leakage in a MUSE con-
text, which would give a great amount of insight on the practical security of this
protocol as well as the protocol of [12].
1 https://libsodium.org.
2 https://aws.amazon.com/ec2/instance-types/.

https://libsodium.org
https://aws.amazon.com/ec2/instance-types/
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A Privacy Against the Server

Algorithm 1. Simulator for the server view
Input: The benign leakage and revealed content
Create all record keys and all blinding factors ;
for each record id d do

if Wd is revealed then
Encrypt it using the record key γd previously generated;

else
Set Wd to a set of random bit strings
using the length of Wd from the benign leakage;
Encrypt Wd

Output: All encrypted records, all blinding factors and the record keys of
revealed records

We show that the output of Algorithm1 is indistinguishable from the real
view of the server using a sequence of hybrid simulators, where each hybrid
simulates one more non-revealed encrypted keyword than the previous hybrid.
All hybrids have the entire history as input except the last one that only has the
benign leakage and revealed content.

We then show that the output of two successive hybrids are indistinguish-
able using a reduction to the DDH problem in G. The reduction performs the
following embedding of a DDH problem instance ga, gb, gc as described in the
beginning of Sect. 7:

h(w∗) ↔ ga, γ∗ ↔ b, w∗ ↔ gc

Where w∗ is the “pivot keyword” that is simulated in one hybrid but not in the
other (for instance this could be “the third keyword of the second non-revealed
record”). The embedding is correct if the view corresponds to the output of
one hybrid in the case where c = ab and the other hybrid in the case where
c is random. The only difference between these two outputs is that the pivot
encrypted keyword w∗ is simulated in one hybrid and properly generated in the
other. All other values of the hybrid output must be the same whatever c is.
As a result we must check that the value w∗ does not appear anywhere else in
the output. This is satisfied thanks to the fact that records are represented as
sets in our protocol, that is, they do not have duplicate elements. As a result,
any keyword w of the pivot record must be different from w∗ and its encrypted
keyword will be either generated as (gb)O[w] or with random sampling.

As a result distinguishing the output of two successive hybrid is at least
as hard as solving the DDH problem in G, thus the output of Algorithm1 is
indistinguishable from a real view, and this ends the proof.
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B Privacy Against the Proxy

Algorithm 2. Simulator for the proxy view
Input: The access pattern, the benign leakage and revealed content
Create all record keys and all blinding factors ;
for each r, l, s do

if qr,l,s is revealed then
Create tr,l,s as normal;

else
Create tr,l,s as a random element of G;

for each record id d, each r s.t. d ∈ Auth(r) and each l do
if Wd is revealed then

Encrypt and transform as normal;
else

Initialize W d,r,l as an empty set;
for each s such that d ∈ ar,l,s (known from the access pattern) do

Add (tr,l,s)
γd to W d,r,l;

Add random elements to W d,r,l until it has the proper size (known from
the benign leakage);

Output: All encrypted records, all blinding factors and the record keys of
revealed records

This time we show that the output of Algorithm2 is indistinguishable from
a real view of the proxy using two sequences of hybrids: The first sequence will
correspond to the simulation of prepared records and the second sequence to the
simulation of trapdoors. The first hybrid of the first sequence corresponds to the
real world experiment. Then, each hybrid in the first sequence will simulate one
more non-revealed prepared keyword than the previous hybrid. The first hybrid
of the second sequence is the last hybrid of the first sequence, that is, it simu-
lates all non-revealed prepared records but none of the trapdoors. Finally each
hybrid simulator in the second sequence simulates one more trapdoor than the
previous simulator. As a result the last hybrid simulator of the second sequence
is Algorithm 2.

We start by showing that two successive simulators from the first
sequence have indistinguishable outputs. The pivot keyword is characterized by
d∗, i∗, r∗, l∗ such that the second hybrid simulates prepared keyword W d∗,r∗,l∗ [i∗]
but the first one does not. If W d∗,r∗,l∗ [i∗] is matched by a trapdoor, the out-
put distributions of the two simulators are more than indistinguishable, they
are identical. Indeed in this case the second simulator will not generate this
prepared keyword at random but by transforming the corresponding trapdoor,
and the resulting value will be the same as what the first simulator would have
obtained, as a consequence of the correctness of the protocol. If W d∗,r∗,l∗ [i∗]
is not matched by any trapdoor though, the second simulator will simulate it
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through random sampling, and again we show the two outputs are indistinguish-
able with a reduction to the DDH problem. This time the embedding of the DDH
instance ga, gb, gc is as follows:

h(Wd∗ [i∗]) ↔ ga, ξr∗,l∗ ↔ b, W d∗,r∗,l∗ [i∗] ↔ gc

Again, the correctness of the embedding requires that the reduction does
not have to use the value gc for anything else than the pivot prepared keyword.
The argument for this is the same as for privacy against the server: a keyword
does not appear twice in a record, and other (prepared) records will use different
record keys (or different blinding factors).

For the second sequence, there are r∗, l∗, s∗ such that the second hybrid
simulates tr∗,l∗,s∗ but the first one does not. The embedding used is then:

h(qr∗,l∗,s∗) ↔ ga, ξr∗,l∗ ↔ b, tr∗,l∗,s∗ ↔ gc

And correctness of the embedding comes from that a reader will not send
two identical queries in a same time period.
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Abstract. We present a functional encryption scheme for quadratic
functions from lattices under identity-based access control. This repre-
sents a practical relevant class of functions beyond multivariate quadratic
polynomials and may adapt to many scenarios. Recently, Baltico et al.
[10] in Crypto 2017 presented two constructions from pairings which
enable efficient decryption only when x�Fy is contained in a sufficiently
small interval to finally compute a discrete logarithm, and one construc-
tion is proved selectively secure under standard assumptions and the
other adaptively secure in the generic group model (GGM). Our con-
struction is no pairings and no small interval restriction. We formalize
the definition of identity-based functional encryption and its indistin-
guishability security and achieve adaptive security against unbounded
collusions under standard assumptions in the random oracle model.
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1 Introduction

Functional Encryption (FE) is an ambitious generalization of public-key encryp-
tion which overcomes the all-or-nothing, user-based access to encrypted data and
enables fine grained, role-based access to the data. Namely, functional encryption
comes equipped with a key generation algorithm that utilizes a master secret key
to generate decryption keys skF corresponding to functions F , the key holders
only learn F (x) from a ciphertext Enc(x) and no more information about x is
revealed. This is well suited for cloud computing platforms and remote untrust-
worthy severs to store sensitive private data and allow users to request the result
of the function F computing on the underlying data.
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The definition of functional encryption was first formalized by [17,39] which
gave indistinguishability (IND-based) and simulation (SIM-based) security
model, and identity-based encryption (IBE) [2,14,15,20,21,28,44], attribute-
based encryption (ABE) [11,16,31,33,42], predicate encryption (PE) [3,32,35,
36,38] and other concrete functionalities [18,45] in a general framework could
all be regarded as specific function classes of functional encryption.

Though Garg et al. [9,24,26,46] constructed functional encryption for general
function, their work used brilliant but ill-understood indistinguishability obfus-
cation(iO) or multi-linear maps machinery that existing constructions [23,27]
were found to be insecure [22,34], so there is no provably secure instantiation by
now. Some work [4,5,29,30] considered general function under bounded collu-
sions from simple primitives or well-understood assumptions. Conversely, there
is also some fascinating work that constructs iO from FE schemes [8,12,13,25].

Recently Abdalla et al. [1] built FE for linear functions surprisingly and effi-
ciently from standard assumptions like the Decision Diffie-Hellman (DDH) and
Learning-with-Errors (LWE) assumptions. Later, Agrawal et al. [4] promoted
their schemes from selective security to adaptive security and gave an additional
construction from Decision Composite Residuosity (DCR) assumption. Beyond
linear functions, Baltico et al. [10] constructed two FE schemes for quadratic
functions from pairings which enable efficient decryption only when x�Fy is
contained in a sufficiently small interval to finally compute a discrete logarithm,
and one construction is proved selectively secure under standard assumptions
and the other adaptively secure in the generic group model (GGM). This moti-
vates the following question:

Can we build adaptively secure FE scheme for quadratic functions without
pairings and the small interval restriction?

1.1 Our Results

We answer the above question affirmatively. We propose the first adaptively
secure FE scheme for quadratic functions from lattices against unbounded collu-
sions, but under identity-based access control. On the one hand, identity-based
functional encryption can be regarded as functional encryption under identity-
based control. On the other hand, we can think it as an extension of identity-
based encryption what only allow certain identity owner to decrypt partial infor-
mation or function values. We notice that Sans and Pointcheval [43] consider
the identity-based access control as an additional property to expand the possi-
ble applications of their unbounded length inner product FE schemes. Here we
formalize the identity-based functional encryption definition and indistinguisha-
bility security (IND-IBFE-CPA) based on [17,39]. Namely, we additionally add
identity id to the input to KeyGen and Encrypt algorithms, and we need the
identity-based access control property to prove adaptive security of our scheme
under random oracle model. So constructing adaptively secure FE scheme for
quadratic functions under standard model is still an open problem.
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In recent years, lattice-based cryptography has been shown to be extremely
versatile, leading to a large number of attractive theoretical applications. Lattice
problems provide some significant advantages not found in other types of cryp-
tography, based on worst-case assumption, resistant to cryptanalysis by quantum
algorithms and lattice cryptography operations are very simple (almost matrix
operations), especially to our scheme, without the small interval restriction to
finally compute a discrete logarithm. We employ preimage sampling techniques
with trapdoor [2,20,28] to generate secret keys unlike linear functions schemes
from LWE assumption [4] which do not use preimage sampling algorithms with
trapdoor.

Overview of Techniques. We utilize x�Fy form to represent general
quadratic functions the same as [10]. Without loss of generality, messages are
expressed as pairs of vectors (x,y) ∈ Z

l ×Z
l of the same length l, and it is easy

to see that the case in which one is longer than the other can be captured by
padding the shorter one with zero entries, and secret keys are associated with
(l × l) matrices F, and decryption allows to compute x�Fy =

∑
i,j fi,jxiyj .

We use dual Regev’s cryptosystem for multi-bit messages [4,28], which enjoys
ciphertexts have size O(l). Namely, we set Ct(x,y) = (c01, c02, c11, c12):

c01 = A�s1 + r
′
1, c11 = B�s2 + r

′
2

c02 = U�
1 s1 + r1 + x, c12 = U�

2 s2 + r2 + y

where s1, s2 are chosen at random, U1,U2 are Z
n×l
q matrices, and A,B ∈ Z

n×m
q

are contained in the public key and r1, r2, r
′
1, r

′
2 are noises. We have a relation

that AE1 = U1,BE2 = U2 where E1,E2 ∈ Z
m×l are sampled uniformly from

discrete Gaussian probability distributions. We observe that

x�Fy ≈ c�
02Fc12 − c�

01E1Fc12 − c�
02FE

�
2 c11 + c�

01E1FE�
2 c11.

Thus we set skF = (F,E1F,FE�
2 ,E1FE�

2 ). Then, there is a problem that
if one user asks for an F which is invertible (especially unitary matrix), he
will get a pair of E1,E2 from skF and he can compute arbitrary skF′ =
(F′,E1F′,F′E�

2 ,E1F′E�
2 ) corresponding to F′ and decrypt arbitrary x�F′y

owing to the relation that AE1 = U1,BE2 = U2 always holds.
To circumvent this problem, we employ extension preimage sampling tech-

niques with trapdoor [2,20]. We additionally use a public matrix R ∈ Z
n×l
q to

randomize F and make the multiplication into the extension preimage sampling
algorithms. So in the KeyGen algorithm, the relation becomes (A|RF)E1 = U1

and (B|RF)E2 = U2 where E1,E2 ∈ Z
(m+l)×l can be sampled uniformly by

extension sampling algorithms with trapdoors TA, TB.
In order to prove the security, we need to regard U1,U2 as random ora-

cle U1(id),U2(id): {0, 1}∗ → Z
n×l
q to answer secret keys queries for arbitrary

identity id except the challenge id∗ and arbitrary F. For different F, there are
distinct E1,E2 which have enough entropy to resist collusion attacks.
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1.2 Related Work

Agrawal and Rosen [5] considered bounded collusions schemes from LWE
assumption, and they also achieved bounded collusions functional encryption
for quadratic functions.

Sans and Pointcheval [43] consider the identity-based access control as an
additional property to expand the possible applications of their unbounded
length inner product FE schemes. They do not formalize the definition of
identity-based functional encryption and its security model, and they only
achieve selective security from pairings under random oracle model for their
unbounded length inner product FE schemes.

1.3 Organization

In Sect. 2, we introduce some necessary notations and some lemmas, algorithms
and assumptions from lattice-based cryptography. We formalize the definitions
of identity-based functional encryption (IBFE) and its security model in Sect. 3.
Section 4 presents our IBFE scheme for quadratic functions. In Sect. 5, we ana-
lyze the security of our scheme. We conclude and propose some open problems
in Sect. 6.

2 Preliminary

Notations. We denote vectors by lower-case bold letters (e.g. x) and are always
in column form (respectively, x� is a row vector). Matrices are denoted by upper-
case bold letters (e.g. A) and treat them with their ordered column vector sets
[a1,a2, ...]. We let M1|M2 denote the (ordered) concetenation of the column
vector sets of M1 and M2, M1‖M1 denote the (ordered) concetenation of the
row vector sets of M1 and M2, and vectors are similar. For a vector x, we let
‖x‖ denote its l2 norm and ‖x‖∞ denote its infinity norm. Similarly, for matrices
‖ · ‖ and ‖ · ‖∞ denote their l2 and infinity norms respectively.

2.1 Functional Encryption

We recall the syntax of functional encryption, as defined by [17], and their indis-
tinguishability based security definition.

Definition 1 (Functionality). A functionality F defined over (K, M) is a
function F : K × M → Σ ∪ {⊥} where K is a key space, M is a message space
and Σ is an output space which does not contain the special symbol ⊥.

Definition 2 (Functional Encryption). A functional encryption scheme FE
for a functionality F is a tuple of four algorithms FE = (Setup, KeyGen, Encrypt,
Decrypt) that work as follows:

Setup(1λ) takes as input a security parameter 1λ and outputs a master key pair
(mpk, msk).
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KeyGen(msk,K) takes as input the master secret key and a key (i.e. a func-
tion) K ∈ K, and outputs a secret key skK .

Encrypt(mpk,M) takes as input the master public key mpk and a message M
∈ M, and outputs a ciphertext C.

Decrypt(mpk, skK , C) takes as input a secret key skK and a ciphertext C, and
returns an output v ∈ Σ ∪ {⊥}.

For correctness, it is required that for all (mpk, msk) ← Setup(1λ), all keys K
∈ K and all messages M ∈ M, if skK ← KeyGen(msk, K) and C ← Encrypt
(mpk, M), then it holds with overwhelming probability that Decrypt(skK , C) =
F(K, M) whenever F(K, M) 	= ⊥.

Indistinguishability-Based Security. For a functional encryption scheme FE
for a functionality F over (K, M), security against chosen-plaintext attacks
(IND-FE-CPA, for short) if no PPT adversary has non-negligible advantage in
the following game:

1. The challenger runs (mpk, msk) ← Setup(1λ) and gives mpk to A.
2. The adversary A adaptively makes secret key queries. At each query, A

chooses a key K ∈ K and obtains skK ← KeyGen(msk, K).
3. Adversary A chooses a pair of distinct messages M0, M1 ∈ M such that

F(K, M0)=F(K, M1) holds for all Keys K queried in the previous phase. The
chanllenger computes C* ← Encrypt(mpk, Mβ) and return C* to A.

4. Adversary A makes further secret key queries for arbitrary keys K ∈ K, but
under the requirement that F(K, M0)=F(K, M1).

5. Adversary A eventually outputs a bit β′ ∈ {0, 1} and wins if β′ = β.

The adversary’s advantage is defined to be AdvA(λ):= |Pr[β′ = β] − 1/2|.

2.2 Lattices

An m-dimensional lattice L is a discrete additive subgroup of Rm. Given positive
integers n,m, q and a matrix A ∈ Z

n×m
q , we let Λ⊥

q (A) denote the lattice {x ∈
Z

m : A ·x = 0 mod q} and Λq(A) denote the lattice {y ∈ Z
m : y = A� ·s mod q

for some s ∈ Z
n}. For u ∈ Z

n
q , we let Λu

q (A) denote the coset {x ∈ Z
m : A·x = u

mod q}. Note that if t ∈ Λu
q (A) then Λu

q (A) = Λ⊥
q (A) + t and hence Λu

q (A) is
a shift of Λ⊥

q (A).

Discrete Gaussians. Let σ be any positive real number, c ∈ R
m. The Gaussian

distribution Dσ,c centered at c with parameter σ is defined by the probability
distribution function ρσ,c(x) = exp(−π‖x − c‖2/σ2). For any set L ⊂ R

m,
define ρσ,c(L) =

∑
x∈L ρσ,c(x). The discrete Gaussian distribution DL,σ,c over

L centered at c with parameter σ is defined by the probability distribution
function ρL,σ,c(x) = ρσ,c(x)/ρσ,c(L) for all x ∈ L.

The following lemma states that the total Gaussian measure on any translate
of the lattice is essentially the same.
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Lemma 1 [28,37]. For any m-dimensional lattice Λ, σ ≥ ω(
√

log m), c ∈ R
m,

ε ∈ (0, 1), we have

ρσ,c(Λ) ∈
[
1 − ε

1 + ε
, 1

]

· ρσ(Λ)

A sample from a discrete Gaussian with parameter σ is at most
√

mσ away
from its center c with overwhelming probability.

Lemma 2 [28,37]. For any m-dimensional lattice Λ, m > n, center c, σ ≥
ω(

√
log m), we have

Pr[‖x − c‖ >
√

mσ|x ← DΛ,σ,c] ≤ negl(n).

There is an upper bound on the probability of a discrete Gaussian, equiva-
lently, it is a lower bound on the min-entropy of the distribution.

Lemma 3 [28]. For any m-dimensional lattice Λ, σ ≥ ω(
√

log m), center c,
positive ε > 0, and x ∈ Λ, we have

DΛ,σ,c ≤ 1 + ε

1 − ε
· 2−m.

In particular, for ε < 1
3 , the min-entropy of DΛ,σ,c is at least m-1.

Ajtai et al. [6,7] showed how to sample an essentially uniform A, along with
a relatively short basis TA.

Lemma 4. Let n, q, m be positive intergers with q > 2 and m ≥ 5n log q. There
is a probabilistic polynomial-time(PPT) algorithm TrapGen that outputs a pair
(A ∈ Z

n×m
q , TA ∈ Z

m×m) where the distribution of A is statistically close to
uniform over Z

n×m
q and ‖TA‖ ≤ m · ω(

√
log m).

Gentry et al. [28] showed that if ISISq,m,2σ
√

m is hard, fA : Zm
q → Z

n
q with

fA(e) = Ae mod q is one-way function, even collision resistant function where
‖e‖ ≤ √

mσ. Note that for m > 2n log q, σ > ω(
√

log m), fA is surjective for
almost all A, and the distribution of u = Ae mod q is statistically close to
uniform over Z

n
q . Furthermore, fix u ∈ Z

n
q , a short basis for Λ⊥(A) can be used

to efficiently sample short vectors from f−1
A (u) without revealing any information

about the short basis TA.

Lemma 5. Let n, q, m be positive integers with q ≥ 2 and m ≥ 2n log q. There is
a PPT algorithm SamplePre that on input of A ∈ Z

n×m
q , a basis TA for Λ⊥

q (A),
a vector u ∈ Z

n
q and an integer σ ≥ ‖T̃A‖ · ω(

√
log m), the distribution of the

output of e ← SamplePre(A, TA,u, σ) is with negligible statistical distance of
DΛu

q (A),σ.
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2.3 Algorithm SampleR

The preimage sampling algorithm can be easily generalized to generate preim-
ages of matrices instead of vectors by independently running SamplePre algo-
rithm on each column of the matrix, so we overload the notation by directly
giving matrices U ∈ Z

n×l
q as inputs to the SamplePre algorithm. The follow-

ing algorithm is reminiscient of the extension preimage sampling algorithm of
[2,20].

Algorithm SampleR(A, M, TA, U, σ)
Inputs:

a rank n matrix A in Z
n×m
q and a matrix M in Z

n×l
q ,

a short basis TA of Λ⊥
q (A) and a matrix U ∈ Z

n×l
q ,

a gaussian parameter σ > ‖T̃A‖ · ω(
√

log(m + l)).
Running:

1. sample a random matrix E10 ∈ Z
l×l distributed statistically close to

DZl×l,σ,
2. compute Y = U − M · E10 ∈ Z

n×l
q , and run E11 ←

SamplePre(A, TA,Y, σ),
3. output E1 = (E11‖E10) ∈ Z

(m+l)×l

Outputs:
Let A = (A|M). The algorithm outputs a matrix E1 ∈ Z

(m+l)×l sampled
from a distribution statistically close to DΛU

q (A),σ. In particular, E1 ⊂ ΛU
q (A).

Theorem 1. Let n, q, m, l be positive integers with q ≥ 2 and m ≥ 2n log q.
There is a PPT algorithm SampleR that on input of A ∈ Z

n×m
q , a basis TA

for Λ⊥
q (A), matrices M,U ∈ Z

n×l
q , and an integer σ ≥ ‖T̃A‖ · ω(

√
log(m + l))

outputs E1 ← SampleR(A,M, TA,U, σ) which is with negligible statistical dis-
tance of the distribution DΛU

q (A),σ where A = (A|M).

Proof. As the process of the algorithm, we have

Pr[E1] = Pr[E10] · Pr[E11 : E10]

= ρσ(E10) · ρσ(E11)
ρDl×l,σ · ρσ({E11 : AE11 = U − ME10})

.

For a t satisfying At = U − ME10, we have

{E11 : AE11 = U − ME10} = t + Λ⊥
q (A)

Then we have

ρσ(t + Λ⊥
q (A)) ∈

[
1 − ε

1 + ε
, 1

]

· ρσ(Λ⊥
q (A))
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for some negligible function ε. Besides, we have

ρσ(ΛU
q (A)) =

∑
ρσ(E1) =

∑

AE11=U−ME10

ρσ(E11)ρσ(E10)

=
∑

E10←Dl×l

ρσ(E10)
∑

E11←Dm×l,AE11=U−ME10

ρσ(E11)

=

⎛

⎝
∑

E10←Dl×l

ρσ(E10)

⎞

⎠ ρσ(t + Λ⊥
q (A))

∈
⎛

⎝
∑

E10←Dl×l

ρσ(E10)

⎞

⎠ ·
[
1 − ε′

1 + ε′ , 1
]

· ρσ(Λ⊥
q (A))

∈
[
1 − ε′

1 + ε′ , 1
]

· ρDl×l,σ · ρσ(Λ⊥
q (A))

for some negligible function ε′. Thus,

ρσ(ΛU
q (A)) ∈

[
1 − ε′

1 + ε′ , 1
]

· ρDl×l,σ · ρσ(Λ⊥
q (A))

Pr[E1] ∈ ρσ(E10) · ρσ(E11)

ρDl×l,σ ·
[
1−ε
1+ε , 1

]
· ρσ(Λ⊥

q (A))

∈
[
1 − ε′

1 + ε′ ,
1 + ε

1 − ε

]

· ρσ(E10) · ρσ(E11)
ρσ(ΛU

q (A))

The distribution of E1 is with negligible statistical distance of the distribution
DΛU

q (A),σ. This ends the proof. ��

2.4 Learning with Errors

We review the learning with errors (LWE) problem for the most part from [41].
We first introduce the error distribution χα, that is, the normal (Gaussian)

distribution on T with mean 0 and standard deviation α/
√

2π having density
function 1

αexp(−πx2/α2). Its discretized normal distribution on Zq denoted to be
the distribution of �q ·X� mod q, where X is a random variable with distribution
χα and �x� is the closest integer to x ∈ R.

The following lemma about the distribution χα will be needed to show that
decryption works correctly.

Lemma 6 [2]. Let x ∈ Z
m and r ← χm

α , then the quantity ‖x�r‖ treated as an
integer in [0, q − 1] satisfies

‖x�r‖ ≤ ‖x‖qαω(
√

log m) + ‖x‖√m/2

with all but negligible probability in m.
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For an integer q ≥ 2 and some probability distribution χ over q, s ∈ Z
n
q , define

As,χ to be the distribution on Z
n
q × Zq of the variable (a, a�s + x) induced by

choosing a uniformly at random from Z
n
q , x ← χ.

Learning with Errors (Decision Version). For an integer q = q(n) and a
distribution χ on Zq, LWEq,χ is to distinguish between the distribution As,χ for
some uniform secret s ← Z

n
q and the uniform distribution on Z

n
q ×Zq(via oracle

access to the distribution).
Regev [41] demonstrated that for certain moduli q and Gaussian error dis-

tribution χα, LWEq,χα
is as hard as solving several standard worst-case lattice

problems using a quantum algorithm.

Theorem 2. Let α(n) ∈ (0, 1) and q(n) be a prime such that α · q ≥ 2
√

n. If
there exists an efficient(possibly quantum) algorithm that solves LWEq,χα

, then
there exists an efficient quantum algorithm for approximating SIVP and GapSVP
to with O(n/α) factors in the worst case.

Peikert et al. [19,40] showed that there is a classical reduction from GapSVP to
the LWE problem.

3 Definitions of Identity-Based Functional Encryption

Definition 3 (Identity-Based Functional Encryption). An identity-based
functional encryption (IBFE) scheme for a functionality F is a tuple of four
algorithms IBFE = (Setup, KeyGen, Encrypt, Decrypt) that work as follows:

Setup(1λ) takes as input a security parameter 1λ and outputs a master key pair
(mpk, msk).

KeyGen(msk, id,K) takes as input the master secret key, an id ∈ ID and a
key (a.k.a. a function) K ∈ K, and outputs a secret key skK .

Encrypt(mpk, id,M) takes as input the master public key mpk, an id ∈ ID and
a message M ∈ M, and outputs a ciphertext C.

Decrypt(mpk, skK , C) takes as input a secret key skK and a ciphertext C, and
returns an output v ∈ Σ ∪ {⊥}.

For correctness, it is required that for all (mpk, msk) ← Setup(1λ), all id ∈ ID,
all keys K ∈ K and all messages M ∈ M, if skK ← KeyGen(msk, id, K)
and C ← Encrypt(mpk, id, M), then it holds with overwhelming probability that
Decrypt(skK , C) = F(K, M) whenever F(K, M) 	= ⊥.

Definition 4 (IND-IBFE-CPA Security). For an identity-based functional
encryption scheme for a functionality F over (K, M), security against chosen-
plaintext attacks (IND-IBFE-CPA, for short) if no PPT adversary has non-
negligible advantage in the following game:

1. The challenger runs (mpk, msk) ← Setup(1λ) and gives mpk to A.
2. The adversary A adaptively makes secret key queries. At each query, A

chooses an identity id ∈ ID and a key K ∈ K and obtains skK ← Key-
Gen(msk, id, K).
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3. Adversary A chooses an identity id* ∈ ID and a pair of distinct messages
M0, M1 ∈ M such that F(K, M0)=F(K, M1) holds for all Keys K queried in
the previous phase. The chanllenger computes C* ← Encrypt(mpk, id*, Mβ)
and return C* to A.

4. Adversary A makes further secret key queries for arbitrary identities id ∈ ID
and keys K ∈ K, but under the restriction that id 	= id* and F(K, M0)=F(K,
M1).

5. Adversary A eventually outputs a bit β′ ∈ {0, 1} and wins if β′ = β.

The adversary’s advantage is defined to be AdvA(λ):= |Pr[β′ = β] − 1/2|.

4 Construction of Identity-Based Functional Encryption
for Quadratic Functions

Let U1,U2 : {0, 1}∗ → Z
n×l
q be hash functions, which can be simply seen as l

maps to map id to uniform syndromes in Z
n
q at random and independently. For

ease of exposition, we overload them as matrices.

Setup(1n, 1l, P, V ): Utilize TrapGen to generate A ∈ Z
n×m
q and trapdoor

TA ⊂ Λ⊥
q (A), B ∈ Z

n×m
q and trapdoor TB ⊂ Λ⊥

q (B), where A,B are statis-
tically close to uniform, and TA, TB ∈ Z

m×m. Choose R ∈ Z
n×l
q uniformly

at random. Set max(‖x‖∞, ‖y‖∞) = P and ‖F‖∞ = V , K = l2P 2V . Define
mpk:={A,B, R, K, P, V} and msk:={TA, TB}.

Keygen(msk, id,F): Given F, running SampleR(A, RF, TA, U1(id), σ),
SampleR(B, RF, TB, U2(id), σ) to sample E1 and E2 ∈ Z

(m+l)×l such
that (A|RF)E1 = U1(id) and (B|RF)E2 = U2(id). Compute and return the
secret key skF = (F,E1F,FE�

2 ,E1FE�
2 ).

Encrypt(mpk, id, (x,y)): Sample s1, s2 ← Z
n
q uniformly at random, r

′
1, r

′
2 ←

χm
q,α and r

′′
1 , r

′′
2 , r1, r2 ← χl

q,α and compute

c01 = A�s1 + r
′
1, c11 = B�s2 + r

′
2

c02 = U1(id)�s1 + r1 + � q

K
� · x, c12 = U2(id)�s2 + r2 + � q

K
� · y

c03 = R�s1 + r
′′
1 , c13 = R�s2 + r

′′
2 .

Then, return C := (c01, c02, c03, c11, c12, c13).
Decrypt(mpk, skF, C): Compute μ

′
= c�

02Fc12 − (c01‖F�c03)�E1Fc12 −
c�
02FE

�
2 (c11‖F�c13)+ (c01‖F�c03)�E1FE�

2 (c11‖F�c13) mod q2 and output
the value μ ∈ {−K + 1, ...,K − 1} that minimizes | (� q

K
�)2 · μ − μ

′ |.
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4.1 Parameters and Correctness

For ease of exposition, we omit id here. Observe that

c�
02Fc12

= (U�
1 s1 + r1 + � q

K
� · x)�F(U�

2 s2 + r2 + � q

K
� · y)

= (U�
1 s1)

�FU�
2 s2 + (U�

1 s1)
�F� q

K
� · y + (� q

K
� · x)�FU�

2 s2 + (� q

K
� · x)�

F� q

K
� · y + r�

1 F(U�
2 s2 + r2 + � q

K
� · y) + (U�

1 s1 + � q

K
� · x)Fr2

(c01‖F�c03)�E1Fc12

= ((A�s1 + r
′
1)‖(F�(R�s1 + r

′′
1 )))�E1F(U�

2 s2 + r2 + � q

K
� · y)

= ((A�‖(F�R�))s1 + (r
′
1‖(F�r

′′
1 )))�E1F(U�

2 s2 + r2 + � q

K
� · y)

= ((A�‖(F�R�))s1)�E1FU�
2 s2 + ((A�‖(F�R�))s1)�E1F� q

K
� · y

+ (r
′
1‖(F�r

′′
1 ))�E1F(U�

2 s2 + r2 + � q

K
� · y) + ((A�‖(F�R�))s1)�E1Fr2

c�
02FE

�
2 (c11‖F�c13)

= (U�
1 s1 + r1 + � q

K
� · x)�FE�

2 ((B�s2 + r
′
2)‖(F�(R�s2 + r

′′
2 )))

= (U�
1 s1 + r1 + � q

K
� · x)�FE�

2 ((B�‖F�R�)s2 + (r
′
2‖(F�r

′′
2 )))

= (U�
1 s1)

�FE�
2 (B�‖F�R�)s2 + (� q

K
� · x)�FE�

2 (B�‖F�R�)s2

+ (U�
1 s1 + r1 + � q

K
� · x)�FE�

2 (r
′
2‖(F�r

′′
2 )) + r�

1 FE
�
2 (B�‖(F�R�))s2

(c01‖F�c03)
�E1FE

�
2 (c11‖F�c13)

= ((A�s1 + r
′
1)‖(F�(R�s1 + r

′′
1 )))�E1FE

�
2 ((B�s2 + r

′
2)‖(F�(R�s2 + r

′′
2 )))

= ((A�‖(F�R�))s1 + (r
′
1‖(F�r

′′
1 )))�E1FE

�
2 ((B�‖(F�R�))s2 + (r

′
2‖(F�r

′′
2 )))

= ((A�‖(F�R�))s1)
�E1FE

�
2 (B�‖(F�R�))s2 + (r

′
1‖F�r

′′
1 )�E1FE

�
2 ((B�‖(F�

R�))s2 + (r
′
2‖F�r

′′
2 )) + ((A�‖(F�R�))s1)

�E1FE
�
2 (r

′
2‖F�r

′′
2 )

µ
′
= c�

02Fc12 − (c01‖F�c03)
�E1Fc12 − c�

02FE
�
2 (c11‖F�c13) + (c01‖F�c03)

�

E1FE
�
2 (c11‖F�c13)

= (� q

K
� · x)�F� q

K
� · y + r�

1 Fr2 + r�
1 F� q

K
� · y + � q

K
� · x�Fr2 − (r

′
1‖F�r

′′
1 )�

E1F(r2 + � q

K
� · y) − (� q

K
� · x + r1)

�FE�
2 (r

′
2‖F�r

′′
2 ) + (r

′
1‖F�r

′′
1 )�E1F

E�
2 (r

′
2‖F�r

′′
2 )
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error = r�
1 Fr2 + r�

1 F� q

K
� · y + � q

K
� · x�Fr2 − (r

′
1‖F�r

′′
1 )�E1F(r2 + � q

K
� · y)

− (� q

K
� · x + r1)

�FE�
2 (r

′
2‖F�r

′′
2 ) + (r

′
1‖F�r

′′
1 )

′�E1FE
�
2 (r

′
2‖F�r

′′
2 )

We set ‖E1‖ = ‖E2‖ = β ≤ √
(m + l)σ, and note that

| r�
1 Fr2 |≤ l2V α2q2ω(log n),

| r�
1 F� q

K
� · y |=| � q

K
� · x�Fr2 |≤ � q

K
� · l2PV αqω(

√
log n),

| (r
′
1‖F�r

′′
1 )�E1Fr2 |=| r�

1 FE
�
2 (r

′
2‖F�r

′′
2 ) |< (m + l)2V 2βα2q2ω(log n),

| (r
′
1‖F�r

′′
1 )�E1F� q

K
� · y |=| � q

K
� · x�FE�

2 (r
′
2‖F�r

′′
2 ) |

< � q

K
� · (m + l)lPV 2βαqω(

√
log n),

| (r
′
1‖F�r

′′
1 )�E1FE�

2 (r
′
2‖F�r

′′
2 ) |< (m + l)2V 3β2α2q2ω(log n),

Then, error ≤ (m + l)2PV 3β2α2q2ω(log n)
In order to ensure the correctness, we let error ≤ � q

K �2/4. We set

α−1 > K2βω(
√

log n), q > α−1ω(
√

n)

Additionally, ensure that TrapGen and SampleR can work. We set

m = 5n log q, σ > mω(log m)

5 Security Analysis

Theorem 3. If LWEq,χα
is hard with the parameters set as above, then the

IBFE scheme for quadratic functions is IND-IBFE-CPA secure in the random
oracle model.

Proof. Let A be an adversary attacking the CPA security of IBFE, we can
construct an adversary B that breaks the LWE assumption.

B receives 2(m+2l) samples from LWE oracle which be parsed as (p∗
1i, c

∗
1i) ∈

Z
n
q ×Zq, i=1, ... , m+2l, (p∗

2i, c
∗
2i) ∈ Z

n
q ×Zq, i=1, ... , m+2l. B’s goal is to guess

whether c∗
ji = p∗�

ji sj + r or c∗
ji are uniformly random from Zq, j = 1, 2.

Then, B can simulate A’s view:

– mpk: B sets A = [p∗
11, ...,p

∗
1m],B = [p∗

21, ...,p
∗
2m], R = [p∗

j(m+1), ...,p
∗
j(m+l)]

where without loss we assume p∗
1i = p∗

2i, i=m+1, ... ,m+l, and sends
(A,B,R) to A.
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– Queries to hash U1(),U2(): on A’s distinct query id, if id = id∗, return
(U1(id∗) = [p∗

1(m+l+1), ...,p
∗
1(m+2l)], U2(id∗) = [p∗

2(m+l+1), ...,p
∗
2(m+2l)]), or

if id is contained in the list, return (U1(id), U2(id)), otherwise, for an F,
choose E1,E2 ← DZ(m+l)×l,σ so that (A|RF)E1 = U1(id) and (B|RF)E2 =
U2(id), and store (id,F, U1(id), U2(id), E1,E2) into the list and return
(U1(id), U2(id)), where E1, E2 are uniform and have enough entropy. Note
that it does not matter that we have no input F here, because the number of
F is at most V l2 (a polynomial) and maybe we can store all F corresponding
to an id and the same U1(id), U2(id). Besides, we note that for a sample E1

corresponding to an F, it is hard to find a distinct F′ satisfying RF = RF′

without loss of generality assuming full rank R.
– Queries to secret keys: when A asks for a secret key for (id, F), we

assume without loss of generality that A has made all relevant queries
to U1,U2. If (id, F) is contained in the list, B computes and returns
(F,E1F,FE�

2 ,E1FE�
2 ), otherwise returns a random bit and aborts.

– Challenge ciphertext: when A submits a challenge id∗(distinct from all its
queried id) and a pair of distinct message (x0,y0) and (x1,y1) which sat-
isfies x�

0 Fy0 = x�
1 Fy1 for all queried F, B picks β ∈ {0, 1} and generates

ciphertexts as follows:

c01 = [c∗
11, ..., c

∗
1m]�, c02 = [c∗

21, ..., c
∗
2m]�

c03 = [c∗
1(m+1), ..., c

∗
1(m+l)]

�, c13 = [c∗
1(m+1), ..., c

∗
1(m+l)]

�

c02 = [c∗
1(m+l+1), ..., c

∗
1(m+2l)]

� + xβ , c12 = [c∗
2(m+l+1), ..., c

∗
2(m+2l)]

� + yβ

When A terminates with some output, B terminates with the same output.
It remains to analyze the reduction. It is easy to see that the master public key

A,B,R and the random oracle responses U1,U2 are clearly uniformly random.
Thanks to the discrete Gaussian distributions, for different F, there are distinct
E1,E2 which have enough entropy so that the adversary can not forge new
E′

1,E
′
2 corresponding to arbitrary F′ and acquire more information than x�

β Fyβ

through collusion attacks. We claim that the probability that B does not abort
during the simulation is 1

QU1,U2
(this is proved by considering a game in which

B can answer all secret key queries). We showed that if B does not abort during
secret key queries, then the challenge ciphertexts is distributed as encryption
of β = 0 or β = 1 depending on whether the LWE sample is real or random.
Therefore, conditioned on B not aborting, A’s view is statistically close to the
one provided by the real IBFE CPA security experiment. Then, we have

Adv
LWEq,χα

B ≥ AdvIND−IBFE−CPA
A

QU1,U2

− negl(n).

This concludes the proof. ��
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6 Conclusions and Open Problems

We propose an adaptively secure IBFE scheme for quadratic functions from
lattices in the random oracle model. Constructing adaptively secure FE scheme
for quadratic functions under standard model is still an open problem.

We formalize the definitions of identity-based functional encryption (IBFE)
and its indistinguishability security (IND-IBFE-CPA) which may apply to many
scenarios and applications, and it seems easier to construct IBFE schemes than
FE schemes, so we appeal for more constructions for more practical function
classes for IBFE.

Lattice-based cryptography have many fascinating properties not found in
other types of cryptography, but related techniques are still limited to con-
struct and prove some primitives(e.g. FE), so whether we can construct an FE
scheme for polynomial functions from standard assumptions is an appealing open
problem.
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Abstract. In a revocable identity-based encryption (RIBE) system,
the private key and update key are generated separately and combined
together to obtain the decryption key. Since the update key is distributed
in a public channel, for each user, the private key and the decryption
key are essential to his information security. Careless key management,
e.g. full disk encryption may leak the encryption of the private key or
decryption key, which actually needs to consider the key dependent mes-
sage (KDM) security. However, previous research mainly focus on the
KDM security of IBE and revocability separately and the KDM secu-
rity for RIBE scheme is still unclear. In this paper, we consider the
KDM security for RIBE schemes for the first time and investigate two
KDM security models with respect to the private key and decryption
key respectively. First, we present a generic construction of KDM-secure
RIBE with the private key from any KDM-secure IBE and RIBE in the
selective/adaptive chosen-identity model. Second, we construct a con-
crete KDM-secure RIBE scheme with the decryption key in the selective
chosen-identity model from lattices under the polynomial modulus. As
an independent interest, we also present an efficient lattice-based KDM-
secure IBE scheme in the random oracle model. However, it is only secure
in the single key setting in the quantum random oracle model.

Keywords: Lattice-based schemes
Key dependent message security
Revocable identity-based encryption

1 Introduction

Identity-based encryption (IBE) is a special public key encryption (PKE), where
a user’s public key can be an arbitrary string. It was first advocated by Shamir
[19] in 1984, mainly to leverage the difficulty of managing certificates for tradi-
tional public key infrastructure (PKI). Similar to its PKE counterpart, IBE was
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also born without the revocation mechanism. To solve this problem, Boneh and
Franklin [5] mentioned to append the current time t to an id, namely, to encrypt
a message, the sender uses id||t instead of id, and the private key will be refreshed
according to the time. But it is very inefficient, actually linear in the number of
remaining users for both computation and bandwidth, since the private keys of
all remaining users should be reissued and distributed at the beginning of each
time period. Later, in ACM CCS’08, using broadcast encryption for tree-based
structures, Boldyreva, Goyal, and Kumar [4] introduced revocable IBE (RIBE),
which reduced the complexity of key update information from linear to loga-
rithmic in the number of users. Subsequent work [8,11,18,20] based on bilinear
pairings and lattices made further improvements and/or trade-offs.

On the other hand, key management is essential to the security of any prac-
tical system. E.g., in full disk encryption, an adversary may see the encryption
of the secret key, which was known as key dependent message (KDM) security
[3,6]1. There are great efforts on KDM-secure PKE [2,6,7,21], but less attention
on KDM-secure IBE. The first KDM-secure IBE was introduced by Alperin-
Sheriff and Peikert [1]. They considered the scenario of revocation and proved
the KDM security against selective chosen-identity attack (KDM-sID-CPA) with
respect to the users’ private keys in the multi-key setting. However, since the
selective security is a weaker security model and the scheme with large keys is
less efficient. Hereafter, there are some further improvements [9,14] on [1] in the
aspects of efficiency and security. In the selective security model, Chen et al. [9]
optimized the efficiency of the scheme in [1] with indistinguishability obfuscation
(iO) and puncturable PRF, where iO seems impractical by far. As for security
optimization, in [9] and [14], they were both interested in the KDM security
against adaptive chosen-identity attack (KDM-ID-CPA). Chen et al. [9] pro-
posed a generic construction of KDM-ID-CPA secure IBE from identity-based
hash proof system (IB-HPS) with homomorphic property. In the recent work
[14], Kitagawa and Tanaka constructed a generic construction of KDM-ID-CPA
secure IBE from KDM-secure symmetric key encryption using IND-ID-CPA IBE
and garbled circuits.

Similar to its IBE counterpart, RIBE may also share the same practical
problem. In an RIBE system, the private key and update key are generated sep-
arately, and combined together to generate the decryption key. In the real world,
the private key serves as a long-term key, while the update key (an ephemeral
key) is distributed through a public channel. Since for each user, the private
key and decryption key are the main secrecy of the system, it may damage the
user’s data confidentiality when such keys are lost or some information is leaked.

1 If we consider the KDM security in d pairs of public/secret keys, i.e., the multi-key
setting, we denote it as d-KDM security and if d = 1, it refers to the KDM security
in a single key setting, a weaker security notion than d-KDM with d ≥ 2.
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Therefore, it is necessary to consider the KDM security for RIBE. However, the
previous research on revocability and KDM security is discussed separately2.

As a result, the problems whether one can construct a KDM-secure RIBE
system are still open.

1.1 Our Results

In this paper, we pose an affirmative answer to the above problems. Since there
are two kinds of secret keys for each user in the RIBE scheme—private key and
decryption key, we investigate the KDM security with respect to the private key
and decryption key respectively. We view our work as one step ahead towards
bringing IBEs to the real-world usage. Our techniques are summarized as follows.
Due to the space limit, our proofs are given in the full version of this paper.

First, we propose a generic construction of KDM-secure RIBE with the pri-
vate key from a KDM-secure IBE and a RIBE scheme, where the KDM-security
with the private key is gained from the underlying KDM-secure IBE and revoca-
tion mechanism stems from the underlying RIBE. When encrypting a message,
we randomly split the message into two parts and encrypt each part using the
corresponding IBE and RIBE respectively. As long as the two building blocks is
secure in the selective/adaptive chosen-identity model, our generic construction
preserves the security in the selective/adaptive chosen-identity model.

Second, as for the KDM security with the decryption key, instead of combin-
ing two unrelated building blocks to achieve KDM security and key revocation,
we propose a KDM-sID-CPA secure RIBE scheme from lattices by modifying
the RIBE proposed by Chen et al. [8]. Recall such RIBE in the selective chosen-
identity model utilized two IBE schemes, one of which is used to deal with the
identity and the other is corresponding to the time. To achieve the revocation
mechanism, Chen et al. adopted the binary data structure and randomly split
the public parameter into two parts to link the identity and time. The private
key of each user is a set of vectors corresponding to the nodes in the binary
tree. Each non-revoked user can get the update key of one node and generate
the decryption key relating to such node. Inspired by the work of [8] and [1], we
exploit the framework of [8] and replace the IBE building block corresponding
to the identity with a KDM-secure IBE of [1]. If guessing the decryption node
correctly (with non-negligible probability), we can answer the KDM queries of
the decryption key following the strategy of [1]. Therefore, we can obtain a
KDM-sID-CPA secure RIBE but suffering from a super-polynomial modulus as
[1]. Furthermore, we optimize the modulus from super-polynomial to polynomial
by the noise re-randomization technique [12], which leads to a reasonably weak
assumption and much efficiency. By the way, our modulus optimization is also
applicable to [1].

As an independent interest, we also present an efficient KDM-ID-CPA secure
IBE for arbitrary constant identity clique d under the LWE assumption in the
2 In [1], scenarios of revocation has been considered for the IBE scheme, but in the

concrete construction, they proposed the KDM-secure IBE instead of KDM-secure
RIBE.
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random oracle. Unlike [9,14] using the complicated tools, such as iO and garbled
circuits, our IBE scheme is a GPV-style construction [10] and for each identity id,
it is actually an image of the KDM-PKE instance in [1]. In the classical random
oracle model, we can link the KDM-PKE public key Ai and the public parameter
Aid of IBE with the help of a trapdoor, thus successfully transforming a KDM-
challenge ciphertext of PKE scheme to a KDM-challenge response for our IBE
scheme. Therefore, our security of KDM-IBE merely relies on the security of the
underlying KDM-PKE scheme. In the quantum random oracle, our security is
a direct adaption of [22] and only 1-KDM secure. However, when extending the
security to d-KDM security, the existing strategy fails and the detailed discussion
is put in Sect. 6.2.

Related Work. As for RIBE, there is another stronger security notion—
decryption key exposure resistance (DKER), which is introduced by Seo and
Emura [18]. Recently, Katsumata et al. [11] proposed a generic construction of
RIBE with DKER and gave the first construction based on lattices. However,
it is worth mentioning that our concrete RIBE scheme does not support DKER
security, since our decryption key is a simple concatenation of the private key
and update key.

2 Preliminary

Notations. Denote real numbers by R and integers by Z. Denote column vec-
tors over R and Z with lower-case bold letters (e.g. x), and matrices by upper-
case bold letters (e.g. A). Denote the matrix [A1|A2] the concatenating the
matrix A1 and A2. For a positive integer d, let [d] denote the integer set
{1, · · · , d}. If S is a set, s

r← S denotes sampling randomly s from uniform
distribution over S. A function negl(n) : R≥0 → R≥0 is negligible if suffi-
ciently large n > n0 (n0 is a constant), negl(n) < 1/poly(n). The statistical
distance between two random variables X and Y over a countable set D is
Δ(X,Y ) = 1

2

∑
w∈D |Pr[X = w] − Pr[Y = w]|. Let {Xn} and {Yn} be ensembles

of random variables indexed by a security parameter n, we say that {Xn} and
{Yn} are statistically close if Δ(Xn, Yn) is negligible function of n. For a matrix
R ∈ R

l×t, the largest singular value of R is defined as s1(R) = max‖u‖=1 ‖Ru‖.
We fix a universal gadget matrix G = In ⊗ (1, 2, 4, . . . , 2k−1) ∈ Z

n×w
q for

k = �log q� and w = nk = n�log q�. In this paper, we use negl(n) to denote
a class of negligible functions instead of some fixed function.

2.1 Lattices and Gaussian Measures

An n-dimension (full-rank) lattice Λ ⊆ R
n is the set of all integer linear com-

binations of some set of independent basis vectors B = {b1, . . . ,bn} ⊆ R
n×n,

Λ = L(B) = {
∑n

i=1 zibi : zi ∈ Z}. The dual lattice of Λ ⊆ R
n is defined as

Λ∗ = {x ∈ R
n : 〈Λ,x〉 ⊆ Z}. For integers n ≥ 1, modulus q ≥ 2 and A ∈ Z

n×m
q ,

an m-dimensional lattice is defined as Λ⊥(A) = {x ∈ Z
m : Ax = 0 ∈ Z

n
q } ⊆ Z

m.
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For any y in the subgroup of Zn
q , we also define the coset Λ⊥

y (A) = {x ∈ Z
m :

Ax = y mod q} = Λ⊥(A)+x̄, where x̄ ∈ Z
m is an arbitrary solution to Ax̄ = y.

Gaussian Measures. Let Λ be a lattice in Z
n. For any vector c ∈ R

n and
parameter r > 0, the n-dimensional Gaussian function ρr,c : R

n → (0, 1] is
defined as ρr,c(x) := exp(−π‖x − c‖2/r2). The discrete Gaussian distribution
over Λ with parameter r and center c (abbreviated as DΛ,r,c) is defined as
∀y ∈ Λ,DΛ,r,c(y) := ρr,c(y)

ρr,c(Λ) , where ρr,c(Λ) =
∑

y∈Λ ρr,c(y). When c = 0, we
write DΛ,r for short.

Lemma 1. ([10], Theorem 4.1). There is a probabilistic polynomial-time algo-
rithm SampleGaussian that, given a basis BΛ of an n-dimensional lattice Λ, a
parameter r ≥ ‖B̃Λ‖ · ω(

√
log n), and a center c ∈ R

n, outputs a sample from a
distribution that is statistically close to DΛ,r,c.

Lemma 2. ([10,15,16]). Let m ≥ Cn log q for some constant C > 1.

1. For any n-dimensional lattice Λ, any c ∈ Z
n, and any r ≥ ηε(Λ),3 where

ε(n) = negl(n), we have ‖DΛ+c,r‖ ≤ r
√

n with all but negl(n) probability.
In addition, for Λ = Z we have |DZ,r| ≤ r · ω(

√
log n) except with negl(n)

probability.
2. For any r > 0, and for R ← Dn×k

Z,r , we have s1(R) ≤ r · O(
√

n +
√

k) except
with negl(n) probability.

3. With all but negl(n) probability over the uniformly random choice of A ∈
Z

n×m
q , the following holds: For e ← Dm

Z,r, where r = ω(
√

log n), the distribu-
tion of y = Ae mod q is within negl(n) statistical distance of uniform, and
the conditional distribution of e given y is DΛ⊥

y (A),r.

Lemma 3. ([12], Lemma 1). Let q, l,m be positive integers and r a positive
real satisfying r > max{ω(

√
log m), ω(

√
log l)}. Let b ∈ Z

m
q be arbitrary and x

chosen from Dm
Z,r. Then for any V ∈ Z

m×l and positive real σ > s1(V), there
exists a PPT algorithms ReRand(V,b + x, r, σ) that outputs b′ = bV + x′ ∈
Z

l
q where x′ is distributed statistically close to Dl

Z,2rσ.

A new trapdoor notion was introduced in [15]. The strong trapdoor R for
a matrix A ∈ Z

n×m
q refers that for some invertible matrix H ∈ Z

n×n
q , we have

R ∈ Z
(m−w)×w such that A

[
R
I

]

= HG.

Lemma 4. ([15], Theorem 5.1). Let R be a strong trapdoor for A ∈ Z
n×m
q .

There is an efficient randomized algorithm that given R, any u ∈ Z
n
q , and any

r ≥ s1(R) · ω(
√

log n) ≥ ηε(Λ⊥(A)) (for some ε(n) = negl(n)), samples from a
distribution within negl(n) distance of DΛ⊥

u (A),r.

3 For a lattice Λ and a positive real ε > 0, the smoothing parameter ηε(Λ) is defined
as the smallest real r > 0 such that ρ1/r(Λ

∗\{0}) ≤ ε. Especially, for any ω(
√

log n)
function, ηε(Z

n) ≤ ω(
√

log n).
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Learning with Errors Assumption. The learning with errors (LWE) prob-
lem was introduced by Regev [17], which is at least as hard as several lattice
problems in the worst case. For security parameter λ, let n = n(λ) be an inte-
ger dimension, let q = q(λ) ≥ 2 be an integer, and let χ = χ(λ) be a distri-
bution over Z. The LWEn,q,χ problem is to distinguish the two distributions:
{A,Ats + x} and {A,u} where A r← Z

n×m
q , s r← Z

n
q ,u r← Z

m
q , and x ← χm.

When the error distribution χ = DZ,αq, the problem is abbreviated as LWEn,q,α.

2.2 KDM-PKE Scheme in [1]

KDM Security.We mainly consider the KDM security from [1,3]. In their def-
initions, the adversary A plays a game with the challenger C, and is able to
make queries for encryptions of functions of secret keys. The functions which
the adversary queries are restricted in a certain family F ⊂ {f : K → M} (F
contains constant functions on M), where K is the keyspace of secret keys and
M is the message space of the encryption scheme. In the definition of [1], the
adversary assigns two functions (f0, f1) ∈ F with each query, and must dis-
tinguish between the encryptions of f0 and encryptions of f1. Concretely, for
the PKE scheme (Setup,Enc,Dec), the d-KDM-CPA security game between an
adversary and the challenger parameterized by β ∈ {0, 1} proceeds as follows.

– Setup: The challenger runs (PKi,SKi) ← Setup(1n) for i ∈ [d] and the
adversary A is given the challenge public keys I = {PK1, · · · ,PKl} for some
l ≤ d.

– Query: A may adaptively make a polynomial number of queries: A can
make encryption query of the form (i, f0, f1), where f0, f1 ∈ F and 1 ≤ i ≤ l.
The challenger computes μ ← fβ(SK1, · · · ,SKl) and c ← Enc(PKi, μ), and
responses a ciphertext c.

We say the scheme is d-KDM-CPA secure with respect to F if the game for
β = 0, 1 are computationally indistinguishable.

The d-KDM security against selective chosen-identity and chosen-message
attack for IBE scheme (d-KDM-sID-CPA) was defined in [1]. A stronger secu-
rity model for IBE, i.e., adaptive chosen-identity and chosen-message attack
(d-KDM-ID-CPA), is similar to the above definition for d target identities with
the KDM ciphertext of f(SKid∗

1
, · · · ,SKid∗

d
) except that the challenge identities

can be chosen adaptively even after seeing the public key.

KDM-PKE Scheme. Let a modulus be q = p2 for a polynomial prime
p ≥ r2

√
n + m · ω(

√
log n), where n,m are integers, r is a Gaussian parame-

ter satisfying r ≥ 2
√

n and λ be a security parameter. The message space is Zp.
The KDM-secure PKE scheme ΠPKE in [1] consists of three algorithms:

– (PK,SK) ← Gen(1λ): Choose A ∈ Z
n×m
q , z0 ← Dn

Z,r, z1 ← Dm
Z,r, and let

y = z0 −Az1 = [In|−A]z ∈ Z
n
q where z = [z0t|z1t]t ∈ Z

n+m. The public key
PK is (A,y) and the secret key SK is z1.
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– ct ← Enc(A,y, μ): To encrypt a message μ ∈ Zp, choose x0 ← Dn
Z,r, x1 ←

Dm
Z,r and x′ ← DZ,r. Output the ciphertext ct = xt

0[A|y]+ [xt
1|x′]+ [0|p ·μ] ∈

Z
1×(m+1)
q .

– μ← Dec(z1, c): Compute μ′ = ct

[
z1
1

]

∈ Zq. Output the μ ∈ {0, . . . , p − 1} =

Zp such that μ′ is closest to p · μ mod q.

Theorem 1. ([1]). The above cryptosystem is d-KDM-CPA secure with respect
to the set of affine functions over Zp under the LWE assumption.

3 Security Model

In this section, we review the definition of revocable identity-based encryption
(RIBE), and adapt the KDM security to the RIBE scheme. Since there are two
kinds of secret keys for each user—the private key and the decryption key in the
RIBE schemes, we consider our KDM security with respect to the private key
and decryption key respectively.

An RIBE scheme has seven probabilistic polynomial-time (PPT) algorithms
Setup, PriKeyGen, KeyUpd, DecKeyGen, Enc, Dec and KeyRev with
associated message space M, identity space I, and time space T . We assume that
the size of T is a polynomial in the security parameter. There are three parties:
key authority, sender and receiver. Key authority maintains a revocation list
RL and state ST. Hereafter, an algorithm is called stateful if RL or ST needs
updating for revocation.

– (PP,MK,RL,ST) ← Setup(1n, N): Taking as input a security parameter n
and a maximal number of users N , it outputs public parameters PP, a master
secret key MK, a revocation list RL (initially empty) and a state ST.

– (SKid,ST) ← PriKeyGen(PP,MK, id,ST): Taking as input public parame-
ters PP, a master secret key MK, an identity id ∈ I and a state ST, it outputs
a private key SKid and an updated state ST.

– KUt ← KeyUpd(PP,MK, t,RL,ST): Taking as input public parameters PP,
a master secret key MK, a key update time t ∈ T , a revocation list RL and a
state ST, it outputs an update key KUt.

– DKid,t/⊥ ← DecKeyGen(PP,SKid,KUt): Taking as input public parameters
PP, a private key SKid and an update key KUt, it outputs a decryption key
DKid,t or a special symbol ⊥ indicating that id has been revoked.

– CTid,t ← Enc(PP, id, t, μ): Taking as input public parameters PP, an identity
id ∈ I, an encryption time t ∈ T and a message μ ∈ M, it outputs a
ciphertext CTid,t.

– μ ← Dec(PP,DKid,t,CTid,t): Taking as input public parameters PP, a decryp-
tion key DKid,t and a ciphertext CTid,t, it outputs a message μ ∈ M.

– RL ← KeyRev(id, t,RL,ST): Taking as input an identity to be revoked id ∈
I, a revocation time t ∈ T , a revocation list RL and a state ST, it outputs an
updated revocation list RL.
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We require the correctness condition holds that ∀ polynomially-bounded
N , ∀ (PP,MK) ← Setup(1n, N), ∀ μ ∈ M, ∀ id ∈ I, ∀ t ∈ T , all pos-
sible valid states ST and revocation lists RL, if identity id was not revoked
before or at time t, for (SKid,ST) ← PriKeyGen(PP,MK, id,ST), KUt ←
KeyUpd(PP,MK, t,RL,ST) and DKid,t ← DecKeyGen(PP,SKid,KUt), we have
Pr[Dec(PP,DKid,t,Enc(PP, id, t, μ)) �= μ] ≤ negl(n).

Now we define the KDM security games in the RIBE. For simplicity, we only
consider the selective chosen-identity attack model4 in the single identity setting
and take into account the key revocation and KDM security with respect to
function family F . We define the KDM security game with decryption key and
private key respectively.
The KDM security game with the decryption key between an adversary A and
a challenger C is parameterized by some β ∈ {0, 1} and proceeds as follows:

– Initial: The adversary first outputs the challenge identity id∗ and time t∗,
and also some information state it wants to preserve.

– Setup: The challenger runs (PP,MK,RL,ST) ← Setup(1n, N), and the adver-
sary A is given public parameters PP.

– Query: A may adaptively make a polynomial number of queries of the fol-
lowing oracles (the oracles share state):

– Extraction Queries: A can query PriKeyGen(·) for identity id, and gets
a private key SKid.

– Update Queries: A can query KeyUpd(·) for time t, and gets an update
key KUt.

– Revocation Queries: A can query KeyRev(·, ·) for identity id and time
t, and gets an update RL.

– KDM-Encryption Queries: A can make encryption queries of the form
(f0, f1), where f0, f1 ∈ F . If DKid∗,t∗ �= ⊥, the challenger C computes
μ ← fβ(DKid∗,t∗) and c ← Enc(PP, id∗, t∗, μ), and responses a ciphertext
CTid∗,t∗ . If DKid∗,t∗ = ⊥ and fβ = mβ , a constant function in M, C
returns encryption of mβ , i.e.,CTid∗,t∗ ← Enc(PP, id∗, t∗,mβ). Otherwise,
if DKid∗,t∗ = ⊥ and fβ is not a constant function in M, then C returns
the encryption of zero string, i.e., CTid∗,t∗ ← Enc(PP, id∗, t∗,0).

– Guess: The adversary outputs a bit β′. If β′ = β, A succeeds.

The KDM security game with the private key between an adversary A and
a challenger C is the same as above, except the KDM-Encryption queries. Such
KDM-Encryption queries with the private key are as follows.

– KDM-Encryption Queries: A can make encryption queries of the form
(f0, f1), where f0, f1 ∈ F . The challenger C computes μ ← fβ(SKid∗) and
c ← Enc(PP, id∗, t∗, μ), and responses a ciphertext CTid∗,t∗ .

4 The adaptive chosen-identity model is identical to the selective chosen-identity
model, except the target identity and time are adaptively chosen by the adversary
after seeing the public key.
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We insist that KeyUpd(·) and KeyRev(·, ·) can be queried on time in a non-
decreasing order of time. Besides, the following restrictions should always hold:

1. KeyRev(·, ·) cannot be queried at time t if KeyUpd(·) was queried on t.
2. If PriKeyGen(·) was queried on identity id∗, then KeyRev(id∗, ·) must be

queried at time t ≤ t∗. In other words, id∗ must be revoked at time t ≤ t∗.
3. If t ≥ t∗ and ID∗ is not revoked at t∗, then PriKeyGen(ID∗) cannot be queried

at time t.

We say that a scheme has KDM security with the decryption key/private key
against selective chosen-identity and chosen-plaintext attacks (KDM-sID-CPA)
with respect to F , if the advantage of any PPT adversary A is bounded by a
negligible function negl(n), i.e. Adv(A) = |Pr[A succeeds] − 1

2 | ≤ negl(n).

4 KDM Security for RIBE with the Private Key

In this section, we give a generic construction of KDM-secure RIBE
with the private key from a KDM-secure IBE and a RIBE scheme. Let
k.Π = (k.Setup, k.PriKeyGen, k.Enc, k.Dec) be a KDM-secure IBE scheme with
identity space k.I and message space k.M. Let r.Π = (r.Setup, r.PriKeyGen,
r.KeyUpd, r.DecKeyGen, r.Enc, r.Dec,KeyRev) be an RIBE scheme with iden-
tity space r.I, time space r.T and message space r.M. We assume k.I =
r.I, k.M = r.M.

Our KDM-secure RIBE Π = (Setup,PriKeyGen,KeyUpd,DecKeyGen,Enc,
Dec,KeyRev) with identity space I, message space M and time space T . Assum-
ing I = k.I = r.I,M = k.M = r.M, T = r.T , our construction is as follows.

– (PP,MK,RL,ST) ← Setup(1n, N): Taking as input a security param-
eter n and a maximal number of users N , run (k.PP, k.MK) ←
k.Setup(1n) and (r.PP, r.MK) ← r.Setup(1n, N). It outputs public param-
eters PP=(k.PP,r.PP), a master secret key MK=(k.MK,r.MK), a revocation
list RL (initially empty) and a state ST.

– (SKid,ST) ← PriKeyGen(PP,MK, id,ST): Taking as input public parameters
PP, a master secret key MK, an identity id ∈ I and a state ST, run k.SKid ←
k.PriKeyGen(k.PP, k.MK, id) and r.SKid ← r.PriKeyGen(r.PP, r.MK, id,ST).
It outputs a private key SKid = (k.SKid, r.SKid) and an updated state ST.

– KUt ← KeyUpd(PP,MK, t,RL,ST): Taking as input public parameters PP, a
master secret key MK, a key update time t ∈ T , a revocation list RL and a
state ST, run r.KUt ← r.KeyUpd(r.PP, r.MK, t,RL,ST). it outputs an update
key KUt = r.KUt.

– DKid,t/⊥ ← DecKeyGen(PP,SKid,KUt): Taking as input public param-
eters PP, a private key SKid and an update key KUt, run r.DKid,t ←
r.DeyKeyGen(r.PP, r.SKid, r.KUt). It outputs a decryption key DKid,t =
(k.SKid, r.DKid,t) or a special symbol ⊥ if r.DKid,t = ⊥ indicating that id
has been revoked.
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– CTid,t ← Enc(PP, id, t, μ): Taking as input public parameters PP, an identity
id ∈ I, an encryption time t ∈ T and a message μ ∈ M, sample a uniform pair
(k.μ, r.μ) ∈ M2 such that μ = k.μ+ r.μ. Run k.CT ← k.Enc(k.PP, id, k.μ) and
r.CT ← r.Enc(r.PP, id, t, r.μ). It outputs a ciphertext CTid,t = (k.CT, r.CT).

– μ ← Dec(PP,DKid,t,CTid,t): Taking as input public parameters PP, a decryp-
tion key DKid,t and a ciphertext CTid,t, run k.μ ← k.Dec(k.PP, k.SKid, k.CT)
and r.μ ← r.Dec(r.PP, r.DKid,t, r.CT). If k.μ = ⊥ or r.μ = ⊥, it output ⊥.
Otherwise, it outputs a message μ = k.μ + r.μ ∈ M.

– RL ← KeyRev(id, t,RL,ST): Taking as input an identity to be revoked id ∈ I,
a revocation time t ∈ T , a revocation list RL and a state ST, run r.RL ←
r.KeyRev(id, t,RL,ST). It outputs an updated revocation list RL=r.RL.

The correctness of our scheme Π relies on the correctness of each building block,
i.e., k.Π and r.Π. The security of Π is given as follows.

Theorem 2. Assuming the IBE scheme k.Π is KDM-sID-CPA secure (resp.
KDM-ID-CPA) with the private key with respect to the affine functions F and
the RIBE scheme r.Π is IND-sID-CPA secure (resp. IND-ID-CPA), then the
scheme Π is KDM-sID-CPA secure (resp. KDM-ID-CPA) with the private key
with respect to F .

Proof. (Sketch) Since the proofs for the selective chosen-identity model and the
adaptive chosen-identity model are the same, we only consider the proof in the
selective chosen-identity model. Let id∗ and t∗ be the target identity and time.
Denote Q the number of extraction queries issued by the adversary A. For 1 ≤
i ≤ Q, let SKidi denote the queried private key on identity idi. For simplicity, we
divide A into two types:

– Type I : for ∀i ∈ [Q], SKid∗ �= SKidi
. That means, A does not issue the

extraction query on id∗.
– Type II : for some i ∈ [Q], SKid∗ = SKidi

. That means, A learns the private
key SKid∗ by the extraction query, but id∗ is revoked at t∗.

Combining the Lemmas 5 and 6, the advantage of A is negligible. ��

Lemma 5. If A is a successful adversary of Type I, there exists a PPT simulator
B attacking the underlying KDM-IBE scheme with non-negligible probability.

Lemma 6. If A is a successful adversary of Type II, there exists a PPT simulator
B attacking the underlying RIBE scheme with non-negligible probability.

Remark 1. Especially, our RIBE construction Π is even d-KDM-secure if the
underlying IBE scheme k.Π is d-KDM secure, where d is the private key clique
size.

5 KDM Security for RIBE with the Decryption Key

In this section, we present a concrete construction for KDM-secure RIBE with
the decryption key in the selective chosen-identity model.
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5.1 Our KDM-RIBE Scheme

In our construction, we use the instance of [1] to deal with user’s identity and
another IBE instance to handle the time. As in [1], we use an additive group
G = Z

n
q and a ring R = Zq[x]/(F (x)), where F (x) is a monic and irreducible

polynomial with degree n and G is an R-module5. Let p be the smallest prime
divisor of q, and we define U = {u0 = 0, u1, u2, . . . } ⊆ R as the set consisting
of all the polynomials having coefficients in Zp, which makes |U | = pn ≥ 2n and
ui − uj a unit for any i �= j. (See detailed discussion in [1].)

Suppose identity id and time t are encoded into U\{0} respectively and our
RIBE scheme from lattices is described below.

– (PP,MK,RL,ST) ← Setup(1n, N): On input a security parameter n and a
maximal number N of users, perform the following steps:
1. Sample R1,R2 ← Dm×w

Z,ω(
√
log n)

, choose uniformly random A r← Z
n×m
q ,

y r← Z
n
q and let Ã1 = AR1, Ã2 = AR2 ∈ Z

n×w
q .

2. Let RL be an empty set and BT be a binary-tree with at least N leaf
nodes, and set ST:=BT.

3. Output RL, ST, public parameters PP = (A, Ã1, Ã2,y) and a master
secret key MK = {R1,R2}.

– (SKid,ST) ← PriKeyGen(PP,MK, id,ST): On input public parameters PP,
a master secret key MK, an identity id ∈ U\{0} and a state ST, it picks an
unassigned leaf node υ from BT and stores id in that node. It then performs
the following steps:
1. For any θ ∈ Path(υ), if yθ,1,yθ,2 are undefined, pick yθ,1

r← Z
n
q , set

yθ,2 := y−yθ,1 and store them in the node θ. Set Aid := [A|(id)G− Ã1].
Sample z0 ← Dn

Z,r, eθ,1 ← DΛ⊥
z0−yθ,1

(Aid),r so that z0 − Aideθ,1 = yθ,1.

2. Output SKid := {(θ, eθ,1)}θ∈Path(υ).
– KUt ← KeyUpd(PP,MK, t,RL,ST): On input public parameters PP, a mas-

ter secret key MK, a time t ∈ U\{0}, a revocation list RL and a state ST, it
performs the following steps:
1. For any θ ∈ KUNodes(BT,RL, t)6, if yθ,1,yθ,2 are undefined, pick yθ,1

r←
Z

n
q , set yθ,2 := y−yθ,1 and store them in the node θ. Set At := [A|tG−

Ã2]. Sample eθ,2 ← DΛ⊥
−yθ,2

(At),r, so that −Ateθ,2 = yθ,2.

2. Output KUt := {(θ, eθ,2)}θ∈KUNodes(BT,RL,t).
– DKid,t/⊥ ← DecKeyGen(PP,SKid,KUt): On input public parameters PP, a

private key SKid := {(i, ei,1)}i∈I and update key KUt := {(j, ej,2)}j∈J for some
sets of nodes I and J, it runs the following steps:

5 Scalar Multiplication R×G → G is defined by identifying each a = (a0, · · · , an−1)
t ∈

G with the polynomial a(x) = a0 +a1x+ · · ·+an−1x
n−1 ∈ R, multiplying in R, and

then mapping back to G.
6 Due to limit page, we omit the description of KUNodes. Refer to the concrete algo-

rithm in [4]. It takes as input a binary-tree BT, a revocation list RL and time t, and
outputs a set of nodes.
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1. ∀(i, ei,1) ∈ SKid, ∀(j, ej,2) ∈ KUt, if ∃(i, j) s.t. i = j, DKid,t ← (ei,1, ej,2),
else if SKid and KUt do not have any node in common, DKid,t ← ⊥.

2. Output DKid,t := {(ei,1, ei,2)}i∈I∩J.
– CTid,t ← Enc(PP, id, t, μ): On input public parameters PP, an identity id ∈

U\{0}, a time t ∈ U\{0}, and a message μ ∈ Zp:
1. Set Fid,t := [A|(id)G − Ã1|tG − Ã2] ∈ Z

n×(m+2w)
q .

2. Choose x0 ← Dn
Z,r, x(1)

1 ← Dm
Z,r, x(2)

1 ← Dw
Z,γ ,x(2)

2 ← Dw
Z,γ , x2 ← DZ,γ ,

and set xt
1 := [(x(1)

1 )t|(x(2)
1 )t|(x(2)

2 )t] ∈ Z
1×(m+2w)
q .

3. Compute c0 ← xt
0y + x2 + p · μ ∈ Zq, c1 ← xt

0Fid,t + xt
1 ∈ Z

1×(m+2w)
q .

4. Output the ciphertext CTid,t := (c0, c1) ∈ Zq × Z
1×(m+2w)
q .

– m ← Dec(PP,DKid,t,CTid,t): On input public parameters PP, a decryption
key DKid,t := (e1, e2), and a ciphertext CTid,t := (c0, c1), it runs the following
steps:
1. Parse c1 as [c1,0|c1,1|c1,2] ∈ Z

1×m
q × Z

1×w
q × Z

1×w
q .

2. Compute μ′ ← c0 + [c1,0|c1,1]e1 + [c1,0|c1,2]e2.
3. Output μ ∈ Zp s.t. μ′ is closest to p · μ mod q.

– RL ← KeyRev(id, t,RL,ST): On input an identity id, a time t, a revocation
list RL and a state ST, the algorithm adds (id, t) to RL for all nodes associated
with identity id and returns RL.

5.2 Correctness and Security

We can set the parameters as follows: m = Θ(n log q), Gaussian parameter r
needs to be large enough for Gaussian sampling i.e. r ≥ max{s1(R1), s1(R2)} ·
ω(

√
log n) = O(

√
m +

√
w) · ω(

√
log n)2 = O(

√
m) · ω(

√
log n)2. On the other

hand, the hardness of LWE requires r ≥ 2
√

n. For the security proof, we need
γ′ ≥ O(m)·r2 ·ω(

√
log n) and let γ =

√
r2 + 2γ′2, p = γ ·poly(n) for a sufficiently

large poly(n) term to ensure correctness and modulus q = p2. Now we prove the
correctness.

μ′ = c0 + [c1,0|c1,1]e1 + [c1,0|c1,2]e2

= p · μ + xt
0z0 + x2 + [(x(1)

1 )t|(x(2)
1 )t]e1 + [(x(1)

1 )t|(x(2)
2 )t]e2.

Thus, the decryption is correct if the error term |xt
0z0 +x2 +[(x(1)

1 )t|(x(2)
1 )t]e1 +

[(x(1)
1 )t|(x(2)

2 )t]e2| < p
2 . By the Cauchy-Schwartz equality and Lemma 2, it holds

except with negligible probability.

Theorem 3. The above RIBE scheme is KDM-sID-CPA secure with the
decryption key with respect to the affine functions over Zp under the above
parameters under the LWE assumption.

Remark 2. Our scheme is only 1-KDM-sID-CPA secure and it seems hard to
prove the d-KDM using our proof strategy. In our simulation of Type I, we
generate the public parameter y by setting y = yid∗ + yt∗ with yid∗ obtained
from the challenger and yt∗ from our computation. However, when considering
the d-KDM security, it needs yid∗

1
, · · · ,yid∗

d
for the different private keys, which

seems hard for us to generate the y, thus making our proof fail.
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6 KDM Security for IBE

In this section, we present an efficient KDM-ID-CPA secure IBE scheme in the
random oracle model, which can be used as a component of our generic con-
struction of KDM-secure RIBE in Sect. 4.

6.1 KDM-IBE Scheme

The plaintext space is Zp. The secret key clique size of scheme is d, the parameter
w = n�log q�, and the random oracle is H : U\{0} → Z

n
q , where U\{0} is the

identity space defined as before. The concrete construction is as follows:

– (PP,MSK) ← Setup(1n, d): On input the security parameter n and secret
key clique size d, perform the following steps:
1. Sample R ← Dm×w

Z,ω(
√
log n)

. Choose a uniform random matrix A r← Z
n×m
q ,

and let Ã = −AR ∈ Z
n×w
q .

2. The public parameters is PP = {A, Ã}. The master secret key is MSK =
R.

– SKid ← Ext(PP,MSK, id): On input the public parameters PP, identity id ∈
U\{0}, and master secret key MSK, it performs the following steps:
1. Set Aid = [A|(id)G + Ã] ∈ Z

n×(m+w)
q and yid = H(id) ∈ Z

n
q .

2. Sample z0 ← Dn
Z,r, z1 ← Dm+w

Λ⊥
z0−yid

(Aid),σ
such that yid = z0 − Aidz1.

3. Output SKid := z1.
– CT ← Enc(PP, id, μ): On input the public parameters PP, identity id ∈ U\{0}

and message μ ∈ Zp, perform the following steps:
1. Let Aid = [A|(id)G + Ã] and yid = H(id) ∈ Z

n
q .

2. Choose x0 ← Dn
Z,r,x1 ← Dm+w

Z,r and x2 ← DZ,r. Compute ct =

xt
0[Aid|yid] + [xt

1|x2] + [0|p · μ] ∈ Z
1×(m+w+1)
q .

3. Output CT := ct.
– μ ← Dec(PP,SKid,CT): On input the public parameters PP, private key SKid

and ciphertext CT, perform the following steps:

1. Compute μ′ = ct

[
z1
1

]

∈ Zq.

2. Output the μ ∈ {0, . . . , p−1} = Zp such that μ′ is closest to p · μ mod q.

By Lemma 2, we set m = Θ(n log q), and Gaussian parameter r ≥ 2
√

n to
satisfy the reductions from LWE to worst-case lattice problems [17] and σ ≥
s1(R) · ω(

√
log n) ≥ O(

√
m) · ω(

√
log n)2 and set σ = r · O(

√
m + ω) · ω(

√
log n).

For correctness, we let message space size p ≥ σ2(n + m + w) · ω(
√

log n) and
q = p2.
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6.2 Security of KDM-IBE Scheme

We analyze the security in both the classical random oracle and quantum random
oracle model.

Theorem 4. The IBE system described above is d-KDM-ID-CPA secure with
the affine functions over Zp for the arbitrary constant d in the classical random
oracle model under the LWE assumption.

In the quantum random oracle model (QROM), similar to [22], replacing the
random oracle with a semi-constant distribution SCλ

7, we can get the 1-KDM
security in the QROM. However, when extending to the d-KDM security in the
QROM, such technique fails. The main obstacle is how to embed d challenges
simultaneously. When plugging d challenges to the random oracle queries like
[22], the adversary may detect its non-randomness. In details, we can define a d-
leveled semi-constant distribution SCd,λ, which makes d patches with d constant
values with some probability and others are random values. By Corollary 4.3 in
[22], there is at most a distance 8

3dqH
4λ2 between SCd,λ and the true random

oracle. However, in the security proof, compared to the adversary’s advantage
O(λd), this distance seems too large. Thus, it makes the original proof strategy
fail. Besides, Katsumata et al. [13] provided a tighter security reduction for
GPV-IBE in QROM by programming the random oracle the same way for all
identities. However, it seems not easy to apply their techniques to our setting.
We leave the d-KDM security in the quantum world as the further work.

Acknowledgement. The authors would like to thank the anonymous reviewers for
their valuable comments. This work was supported in part by National Natural Science
Foundation of China (Nos. 61632020, 61472416, 61772520), Key Research Project of
Zhejiang Province (No. 2017C01062), Fundamental Theory and Cutting-Edge Technol-
ogy Research Program of Institute of Information Engineering, CAS (No. Y7Z0321102).

References

1. Alperin-Sheriff, J., Peikert, C.: Circular and KDM security for identity-based
encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS,
vol. 7293, pp. 334–352. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-30057-8 20

2. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives
and circular-secure encryption based on hard learning problems. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 35

7 The definition of semi-constant distribution in [22] plays an essential role in the
security proof of GPV IBE in the QROM, which makes a random value inserted
into a small but significant fraction of oracle inputs. When replacing the oracle with
the semi-constant distribution, the adversary can use the challenge with significant
probability, which cannot be detected by the quantum adversary.

https://doi.org/10.1007/978-3-642-30057-8_20
https://doi.org/10.1007/978-3-642-30057-8_20
https://doi.org/10.1007/978-3-642-03356-8_35


440 R. Zhang and Y. Tao

3. Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence
of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 62–75. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
36492-7 6

4. Boldyreva, A., Goyal, V., Kumar, A.: Identity-based encryption with efficient revo-
cation. In: Ning, P., Syverson, P.E., Jha, S. (eds.) CCS 2008. ACM, New York
(2008)

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

6. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-
5 7

7. Brakerski, Z., Goldwasser, S., Kalai, Y.T.: Black-box circular-secure encryption
beyond affine functions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 201–
218. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 13

8. Chen, J., Lim, H.W., Ling, S., Wang, H., Nguyen, K.: Revocable identity-based
encryption from lattices. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012.
LNCS, vol. 7372, pp. 390–403. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31448-3 29

9. Chen, Y., Zhang, J., Deng, Y., Chang, J.: KDM security for identity-based encryp-
tion: Constructions and separations. IACR Cryptology ePrint Archive 2016, 1020
(2016). http://eprint.iacr.org/2016/1020

10. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Dwork, C. (ed.) Proceedings of the 40th Annual
ACM Symposium on Theory of Computing, pp. 197–206. ACM (2008)

11. Katsumata, S., Matsuda, T., Takayasu, A.: Lattice-based revocable (hierarchical)
IBE with decryption key exposure resistance. IACR Cryptology ePrint Archive
2018, 420 (2018). https://eprint.iacr.org/2018/420

12. Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: more
compact IBEs from ideal lattices and bilinear maps. In: Cheon, J.H., Takagi, T.
(eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 682–712. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53890-6 23

13. Katsumata, S., Yamada, S., Yamakawa, T.: Tighter security proofs for GPV-IBE
in the quantum random oracle model. IACR Cryptology ePrint Archive 2018, 451
(2018). https://eprint.iacr.org/2018/451

14. Kitagawa, F., Tanaka, K.: Key dependent message security and receiver selective
opening security for identity-based encryption. In: Abdalla, M., Dahab, R. (eds.)
PKC 2018. LNCS, vol. 10769, pp. 32–61. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-76578-5 2

15. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

16. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian
measures. In: 45th Symposium on Foundations of Computer Science (FOCS 2004),
pp. 372–381. IEEE Computer Society (2004)

17. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-
raphy. In: Gabow, H.N., Fagin, R. (eds.) Proceedings of the 37th Annual ACM
Symposium on Theory of Computing, pp. 84–93. ACM (2005)

https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-36492-7_6
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-540-85174-5_7
https://doi.org/10.1007/978-3-642-19571-6_13
https://doi.org/10.1007/978-3-642-31448-3_29
https://doi.org/10.1007/978-3-642-31448-3_29
http://eprint.iacr.org/2016/1020
https://eprint.iacr.org/2018/420
https://doi.org/10.1007/978-3-662-53890-6_23
https://eprint.iacr.org/2018/451
https://doi.org/10.1007/978-3-319-76578-5_2
https://doi.org/10.1007/978-3-319-76578-5_2
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41


Key Dependent Message Security for (Revocable) Identity-Based Encryption 441

18. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: security model
and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol.
7778, pp. 216–234. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36362-7 14

19. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

20. Takayasu, A., Watanabe, Y.: Lattice-based revocable identity-based encryption
with bounded decryption key exposure resistance. In: Pieprzyk, J., Suriadi, S. (eds.)
ACISP 2017. LNCS, vol. 10342, pp. 184–204. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-60055-0 10

21. Wee, H.: KDM-security via homomorphic smooth projective hashing. In: Cheng,
C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol.
9615, pp. 159–179. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49387-8 7

22. Zhandry, M.: Secure identity-based encryption in the quantum random oracle
model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp.
758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-
5 44

https://doi.org/10.1007/978-3-642-36362-7_14
https://doi.org/10.1007/978-3-642-36362-7_14
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-319-60055-0_10
https://doi.org/10.1007/978-3-319-60055-0_10
https://doi.org/10.1007/978-3-662-49387-8_7
https://doi.org/10.1007/978-3-662-49387-8_7
https://doi.org/10.1007/978-3-642-32009-5_44
https://doi.org/10.1007/978-3-642-32009-5_44


Full Paper Session IX: Verifiable
Storage and Computing



Publicly Verifiable Data Transfer
and Deletion Scheme for Cloud Storage

Changsong Yang1(B), Jianfeng Wang1, Xiaoling Tao2, and Xiaofeng Chen1

1 State Key Laboratory of Integrated Service Networks (ISN), Xidian University,
Xi’an 710071, China

csyang02@163.com, {jfwang,xfchen}@xidian.edu.cn
2 Guangxi Colleges and Universities Key Laboratory of Cloud Computing and

Complex Systems, Guilin University of Electronic Technology, Guilin 541004, China
txl@guet.edu.cn

Abstract. As one of the most important services in the cloud com-
puting, cloud storage service can provide boundless storage resources
for clients. Because of its tremendous advantages, cloud storage service
has attracted widespread attentions and plenty of clients. By employing
cloud storage service, the data owners can migrate the heavy overhead
of maintaining their data to the cloud server. However, upon uploading
their data to the cloud server, the data owners will lose the direct con-
trol over their data, therefore, the computations over the data will be
performed by the cloud server, for example, data transfer and deletion.
However, during the data transfer and deletion processes, the cloud server
may not perform these operations honestly for economic interests. That
will make data transfer and deletion become new security challenges. In
this paper, we propose a novel data transfer and deletion scheme that
supporting public verifiability. In our construction, if the cloud server is
malicious, the data owners can detect the cloud server’s unfaithful data
transfer or dishonest data deletion by verifying the returned proofs effi-
ciently. Moreover, with the utilization of vector commitment, our novel
scheme can realize public verifiability without any trusted third party.

Keywords: Cloud storage · Public verifiability
Data deletion · Data transfer · Vector commitment

1 Introduction

Cloud computing is a newly-developing computing paradigm, which con-
nects large-scale storage resources, computing resources and network resources
together through Internet [10,26]. With its enormous resources, cloud computing
can ubiquitously and conveniently offer on-demand self-service, such as verifiable
databases service [4,6] and outsourcing computing service [5,7,8]. Cloud storage
service can provide unstinted storage resources for resource-constraint clients.
Thanks to the attractive advantages, cloud storage service has been widely
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accepted and applied by the public. For saving overhead of maintaining the
data, an increasing number of clients, including individuals and corporations are
willing to outsource their data to the cloud server.

However, how to transfer and delete data securely have become two problems
in cloud storage. According to the investigation of Nskinc [15], 82% organizations
profit from cloud storage service for saving human resources and IT resources.
The report of Cisco [9] shows that there will be nearly 2 billion tenants embrace
cloud storage service by the end of 2018, and the data traffic is predicted to
grow 19.3 Exabytes per year. Particularly, 9% of the total cloud data traffic
will be the traffic between different cloud servers by the end of 2018, up from
about 7% at the end of 2013. To protect the data during the transfer process,
Cloudsfer [16] utilized encryption technique to design an app. However, the app
can only resist the external attackers during the data transfer, it cannot guar-
antee the integrality of the transferred data. To solve this problem, Ni et al. [17]
proposed a provable data migration protocol with integrity verification. How-
ever, their scheme is not efficient because they utilize proxy-encryption to delete
transferred data.

Besides, how to delete the cloud data permanently is a hot topic in both the
academic community and industrial circle. Unlinking is a traditional data dele-
tion method, which deletes the link of the file, and returns a one-bit outcome.
This method can delete the file’s link quickly, however, the file’s contents still
remain on the physical medium. The attackers can recover the deleted data by
scanning the medium with a forensic tool [12]. Then plenty of researchers suggest
that it should realize deletion by overwriting the physical medium with random
data [1,11,13]. However, overwriting only makes the recovery more difficult, and
the attackers can recover the overwritten data with the help of physical rema-
nence. Moreover, overwriting is not efficient for real-world applications, especially
for distributed storage system. To make the deletion operation more efficient,
Boneh and Lipton [2] firstly proposed a cryptography-based solution. In their
scheme, they destroy the decryption key to reach data deletion, and with plenty
of follow-up works [18,21,22,28]. Although deleting by cryptography is efficient,
lots of the existing schemes do not support public verification.

Although a series of data transfer and deletion schemes have been pro-
posed, most of them have some inherent limitations. Firstly, most of the existing
schemes can not satisfy the property of verifiability, therefore, the data owner
has to trust the returned result. Secondly, although some schemes give the data
owner the ability of verifying the deletion result, most of these schemes introduce
a trusted third party. However, it is particularly difficult to find such a trusted
third party in real-world. To the best of our knowledge, it seems that there is
no research work on efficient data transfer and deletion schemes that support
public verification without any trusted third party in the malicious server model.
Therefore, we put forward a vector commitment-based publicly verifiable data
transfer and deletion scheme, which can reach public verification without any
trusted third party.
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1.1 Our Contribution

In this paper, we propose a vector commitment-based publicly verifiable data
transfer and deletion scheme. The main contributions of our paper are as follows:

– We propose a novel vector commitment-based publicly verifiable data deletion
scheme, which can realize provable data transfer simultaneously. During the
data transfer and deletion processes, if the original cloud server S1 does not
migrate or delete the data honestly, our scheme can enable the data owner O
to detect the malicious behaviors by verifying the returned proofs efficiently.

– We introduce the primitive of vector commitment to solve the problem of
public verification in the secure data transfer and deletion scheme. Taking
the advantages of vector commitment, the proposed scheme can realize pub-
lic verification without any trusted third party, which is different from the
previous schemes. Moreover, our new construction is also very efficient in
computation as well as communication.

1.2 Related Work

The problem of verifiable data deletion has been studied for a long time, and
a series of methods have been proposed, such as unlinking. Although unlinking
is an efficient deletion method, the contents of the file still remain on the stor-
age medium [12]. Therefore, it is significant to design more secure and efficient
schemes for cloud data deletion.

In 2010, Paul and Saxena [19] proposed a verifiable data deletion scheme,
which called “Proof of Erasability” (PoE). Besides, to delete data from the
embedded devices, Perito and Tsudik [20] proposed a similar scheme, which
called “Proofs of Secure Erasure” (PoSE-s). Both of the two schemes overwrite
the disk with random patterns, and return the same patterns as a deletion
proof. In 2016, Hao et al. [14] proposed a Trusted Platform Module (TPM)-
based publicly verifiable data deletion scheme. They combine Chaum-Pedersen
Zero Knowledge Proof with Diffie-Hellman encryption protocol to realize data
confidentiality and data provable deletion. In 2018, Yang et al. [25] proposed a
Blockchain-based publicly verifiable data deletion scheme. In their scheme, they
use Blockchain to reach public verification without any trusted third party.

Besides, to realize verifiable data transfer and deletion simultaneously, Yu et
al. [27] proposed a provable data transfer scheme. In their scheme, they delete the
transferred data by revoking the decryption key, and verify the integrity of the
transferred data on the new cloud through provable data possession scheme. In
2017, Xue et al. [24] proposed a provable data transfer protocol, which can enable
the data owner to migrate the outsourced data between different cloud servers,
and verify the data integrity on the new cloud. Finally, the original cloud server
deletes the transferred data and returns a deletion proof. In 2018, Wang et al. [23]
proposed a similar scheme for secure outsourced data transfer and deletion. They
introduce homomorphic encryption and homomorphic authenticator to realize
verifiable deletion and proof data possession.
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1.3 Organization

The rest of this paper is organized as follows. In Sect. 2, some preliminaries are
presented. We describe the system model, security threats and the design goals of
our scheme in Sect. 3. Then we present the novel publicly verifiable data transfer
and deletion scheme in Sect. 4. The analysis of the proposed scheme and the
comparison with an existing scheme are given in Sect. 5. Finally, we conclude
this paper in Sect. 6.

2 Preliminaries

In this section, we introduce some preliminaries, including bilinear pairings, the
Computational Diffie-Hellman problem, and the vector commitment.

2.1 Bilinear Pairings

Let G1 and G2 be two cyclic multiplicative groups, whose orders both are the
prime p, and g is a generator of G1. A bilinear pairing is a map e : G1×G1 −→ G2

with the following three properties:

– Bilinear: For all P , Q ∈ G1, and a, b ∈ Z
∗
p, e(P a, Qb) = e(P,Q)ab.

– Non − degenerate: e(g, g) �= 1.
– Computable: For all P , Q ∈ G1, there always exists an algorithm which can

compute e(P,Q) efficiently.

2.2 The Computational Diffie-Hellman Problem

The definitions of the Computational Diffie-Hellman (CDH) problem in G1 would
be described as follows: on input a triple (g, gx, gy) and then output gxy, where
x and y are both chosen from Zp randomly. For all of the security parameter k,
if for every probabilistic polynomial time (PPT) algorithm A, there exists such
a negligible function negl(·) that Pr[A(1k, g, gx, gy) = gxy ≤ negl(k)], we say
that the Computational Diffie-Hellman assumption holds.

2.3 Vector Commitments

Commitment is a fundamental primitive in cryptography, and it plays an impor-
tant role in many security protocols, for example, digital voting, verifiable
database, zero-knowledge proof, and so on. A commitment scheme can be seen
as the digital equivalent of a sealed envelope: the sender puts a message m in the
sealed envelope, and then sends it to the receiver. Subsequently, only the sender
can open the sealed envelop to reveal the message m, which is called hiding.
Besides, the sender can not change the committed message m anymore, which
is called binding.

In 2013, Catalano and Fiore [3] presented a novel primitive of Vector Com-
mitment (VC), which is very closely related to zero-knowledge set. Intuitively,
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a vector commitment protocol can allow to commit to an ordered sequence of
message (m1, · · · ,mq) in a special way: upon committing, the committer is
able to open the commitment at specific positions. Furthermore, no one can
open the commitment to two different values at the same position, which is
called position binding. Besides, for a given commitment, although have known
some openings at the related positions, only the committer is able to distin-
guish the commitment is created to the message m = (m1, · · · ,mq) or to
m′ = (m′

1, · · · ,m′
q), which is called hiding. And we describe the formal defi-

nition of vector commitment as follows:

– V C.KeyGen(1k, q). The key generation algorithm takes the security param-
eter k and the size of the committed vector q = poly(k) as inputs, and then
outputs some public parameters pp, which also define the message space M

implicitly.
– V C.Compp(m1, · · · ,mq). On input the public parameters pp and a sequence

of messages (m1, · · · ,mq) ∈ M
q, the committing algorithm outputs a com-

mitment π and an auxiliary information aux.
– V C.Openpp(m, i, aux). The committer runs this algorithm to generate a proof

λi, which can prove that m is the ith committed message.
– V C.V erpp(π,m, i, λi). Only if λi is a valid proof that π is a commitment to

the messages (m1, · · · ,mq) such that m = mi the verification algorithm will
output 1.

– V C.Updatepp(π,m, i,m′). The original committer runs this algorithm to
update π by changing the ith message to m′. On input the old message m
at the position i, the new message m′, the update algorithm outputs a new
commitment π′ and an update information U .

– V C.ProofUpdatepp(π,U,m′, i, λi). Any user who holds a proof λi for the
message at the position j w.r.t π can run this algorithm. It allows the user
to compute an updated proof λ′

i (and the updated commitment π′) such that
λ′

i is valid w.r.t π′ which contains m′ as the new message at the position i.
Basically, the value U contains the update information which is needed to
compute such values.

3 Problem Statement

3.1 System Model

The system model of the verifiable data transfer and deletion involves three
entities: the data owner O, an original cloud server S1, and a new target cloud
server S2, as illustrated in Fig. 1.

– Data owner O. The data owner O is an entity who has limited resources. O
is willing to outsource his data to the cloud server S1. Then, O may transfer
his data from the cloud server S1 to a new cloud server S2. After that, O
wants to delete the transferred data from S1 and verify the results.
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Fig. 1. The system model

– Cloud Server S1. The cloud server S1 is an entity which has a lot of storage
resources. And we define S1 as the original cloud server, which may transfer
the data to another cloud server S2, and then delete the transferred data.
Finally, S1 generates a proof to prove that it has performed honestly.

– Cloud Server S2. The cloud server S2 is another entity which also has a
good deal of storage space, and we define S2 as the target cloud server, which
may receive the transferred data from S1. After that, S2 can generate a proof
to persuade O that it has stored the transferred data honestly.

3.2 Security Threats

In our scheme, we mainly take the following three security threats into account.

– Data privacy exposure. Both the external attackers and the internal attackers
may try to access the outsourced data to dig sensitive information. Besides,
the cloud server may outsource the data to other subcontractors, or share the
data with other corporators.

– Dishonest data transfer. During the data transfer process, S1 may only
migrate part of data for saving the bandwidth, or deliver some unrelated data
to cheat O. Besides, the hacker may modify or delete some of the transferred
data maliciously.

– Malicious data reservation. O wants to delete the transferred data from S1

since they may contain some private information. However, S1 may reserve
the transferred data maliciously to dig the sensitive information.
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3.3 Design Goals

In our scheme, we aim to migrate the data from S1 to S2 securely, and then
delete the transferred data from S1 permanently. Therefore, we should achieve
the following three design goals.

– Data confidentiality. To protect the data confidentiality, both the external
attackers and the internal attackers should be prevented from accessing to
the outsourced data. That means, we should utilize cryptography tools to
encrypt all the data before uploading them to the cloud server.

– Provable data transfer. To ensure the data can be transmitted from S1 to
S2 intactly, O and S2 should have the ability to verify the integrity of the
transferred data. If the data are not intact, S2 will detect and refuse to accept
the transferred data, and then inform the data loss to the data owner.

– Verifiable data deletion. To guarantee all the transferred data have been
deleted from S1, O should be able to verify the deletion result. If S1 reserves
the transferred data maliciously, it cannot forge an effective evidence to per-
suade O that the transferred data have been deleted.

4 Our Construction

4.1 The Concrete Construction

In the following, we describe our publicly verifiable data transfer and deletion
scheme in detail. Firstly, we introduce some notations which are used later in our
protocol. For simplicity, we can assume that O is a legal client of the cloud server
S1 and S2, and O has an identity number ido which is only known by O. Then,
let H1(·) and H2(·) be two secure one-way collision resistant hash functions.
Moreover, we assume that each file’s name is unique, and it is kept secret by O.
In our scheme, we assume that O wants to outsource the file F , whose name is
fname.

– KeyGen. Firstly, to generate the ECDSA key pairs (sko, pko), (sks1 , pks1)
and (sks2 , pks2) for O, S1 and S2 respectively. Secondly, O should run the
algorithm pp ← V C.KeyGen(1k, q) to obtain the public parameters pp,
where V C is a CDH assumption-based vector commitment scheme, and
pp = (g, {hi}i∈[q], {h}i,j∈[q],i �=j).

– Encrypt. To protect the privacy of the outsourced data, O encrypts F before
uploading. Firstly, O divides F into q blocks (m1, · · · ,mq). Then for all
i = 1, · · · , q, O encrypts the block mi with the key ki as cipi = Encki

(mi),
where Enc is a symmetric encryption algorithm, and ki = H1(fname, sko, i).
Subsequently, O computes the file tag tagf = H2(fname, sko) and the
block tags tagfi = H2(cipi, sko, i). Therefore, O obtains the final ciphertext
Cf = (tagf , C1, · · · , Cq), and then sends Cf to S1, where Ci = (cipi, tagfi, i).
Finally, O sets aux = (C1, · · · , Cq), and runs V C.Compp(C1, · · · , Cq) to
obtain a commitment πf for F . Upon receiving the ciphertext Cf , S1 stores
the block Ci at the position i, and stores the file tag tagf as the index of the
ciphertext Cf .
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– StoreCheck. After uploading, O wants to check the correctness of the storage.
To make O verify conveniently, S1 generates some storage proofs for O. For
all i = 1, · · · , q, S1 runs λi ← V C.Openpp(Ci, i, aux) to obtain the proofs
λ = (λ1, · · · , λq), then S1 sends λ to O. Upon receiving the proofs, O runs
xi ← V C.V erpp(πf , Ci, i, λi). If not all of the xi are one, O thinks that S1

does not store the data correctly; otherwise, O could believe that S1 stores
the data honestly. Subsequently, O deletes the local backups.

– Decryption. When O needs the file F , he should download the ciphertext from
S1, and then decrypts it to obtain the plaintext. Therefore, the Decryption
algorithm contains two steps: Download and Decrypt.

• Download. To download the ciphertext blocks from S1, O firstly gen-
erates a set of block indices Φ, which identifies the blocks that are
required to be downloaded. Subsequently, O computes a signature sigd

by sigd = Sigsko
(download, tagf , Td, Φ), where sko is O′s private key, Td

is the current time, and Sig is an ECDSA signature algorithm. Finally,
O generates a download request Rd = (download, sigd, tagf , Td, Φ), and
then O sends Rd to S1. Upon receiving Rd, S1 parses it, if Rd is invalid,
S1 returns failure; otherwise, S1 sends {Ci = (cipi, tagfi, i)}i∈Φ to O.

• Decrypt. Before decrypting, O should check the integrality of the cipher-
text. For all i ∈ Φ, O firstly checks that whether the equation tagfi

?=
H2(cipi, sko, i) holds. If the equation does not hold, it means that the
ciphertext cipi is error, therefore, O requests S1 to send Ci again; oth-
erwise, O decrypts the ciphertext cipi to obtain the plaintext mi by
mi = Decki

(cipi), where Dec is a symmetric decryption algorithm, and
ki = H1(fname, sko, i).

– Transfer. When O wants to change the cloud storage service provider, O will
migrate some data blocks of the outsourced file F , or even the whole file from
S1 to S2.

• Migrate. To transfer the data blocks, O should compute a transfer
request Rt: O firstly generates a set of block indices Ψ , which defines the
blocks that should be transferred. Subsequently, O computes a signature
sigt = Sigsko

(transfer, tagf , Tt, Ψ), where Tt is the timestamp. Finally,
O generates the transfer request Rt = (transfer, sigt, tagf , Tt, Ψ), and
then O sends Rt to S1. Besides, O sends the commitment πf to S2. Upon
receiving Rt, S1 verifies it, if Rt is invalid, S1 returns failure; otherwise,
S1 computes a signature sigts = Sigsks1

(transfer,Rt) as the notarize of
Rt. Then S1 sends the signature sigts to S2, along with the transferred
data blocks {Ci}i∈Ψ and the proofs {λi}i∈Ψ .

• TranCheck. After receiving the sigts and {Ci, λi}i∈Ψ from S1, S2 ver-
ifies the signature sigts firstly. If the signature sigts is invalid, S2

aborts and returns failure; otherwise, for all i ∈ Ψ , S2 runs xi ←
V C.V erpp(πf , Ci, i, λi), if not all of the xi = 1, S2 aborts and returns
failure; otherwise, S2 prepares q storage spaces (b1, · · · , bq). Subsequently,
for all i ∈ Ψ , S2 stores the block Ci at bi, the other spaces {bi}i/∈Ψ are set
NULL. Then S2 runs V C.Compp(b1, · · · , bq) to obtain a new commitment
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πfs2 , and sets the auxiliary information auxs2 = (b1, · · · , bq). Finally, S2

returns πfs2 to O, and informs O that the transfer is successful.
– Deletion. After the data blocks are transferred successfully, O is willing to

delete the transferred data blocks from S1 permanently, and then the trans-
ferred data blocks are stored on S2 merely.

• DelRe. To delete the transferred blocks, O should generate a deletion
request Re. O computes a signature sige = Sigsko

(erasure, tagf , Te, Ψ)
firstly, where Te is the timestamp. Secondly, O generates a deletion request
Re = (erasure, sige, tagf , Te, Ψ), and then O sends Re to S1.

• Delete. Upon receiving Re, S1 verifies it, if Re is invalid, S1 aborts and
returns failure; otherwise, for all i ∈ Ψ , S1 computes the signatures sigei =
Sigsks1

(erasure,Re, tagf , i). After that, S1 overwrites Ci with sigei to
obtain a new auxiliary information aux′. Subsequently, S1 takes aux′ as
input to generate a new commitment π′

f and proofs {λ′
i}i∈Ψ . Finally, S1

sends τ = (Re, π
′
f , {i, λ′

i, sigei}i∈Ψ , Ψ) to S2.
• DelCheck. Upon receipt of the evidence τ from S1, S2 verifies Re

and {sigei, λ
′
i}i∈Ψ . If not all of the verifications pass, S2 aborts and

returns failure; otherwise, S2 checks that whether the equation π′
f

?=
πf

∏

i∈Ψ

hsigei−Ci

i holds. If the equation does not hold, S2 aborts and returns

failure; otherwise, S2 returns τ = (Re, π
′
f , {i, λ′

i, sigei}i∈Ψ , Ψ) to O and
informs O that the deletion is performed successfully. Finally, anyone who
has τ can verify the deletion result.

5 Analysis of Our Scheme

In the following section, we give an analysis of our scheme in detail. Firstly, we
will analyze the security property of our scheme detailedly. Then we compare
our scheme with a very recent work [14]. Finally, we would demonstrate the
performance evaluation comparisons between our scheme and scheme [14].

5.1 Security Analysis

We give the security analysis of the proposed scheme in this subsection. As we
described above, we assume that the original cloud server S1, the target cloud
server S2 and the data owner O all do not trust each other fully.

The Proposed Scheme Satisfies the Property of Correctness. If the
two cloud servers S1 and S2, and the data owner O are assumed to be honest,
then the evidences are τ = (Re, π

′
f , {i, λ′

i, sigei}i∈Ψ , Ψ). Firstly, note that the
deletion request Re contains a signature sige which is computed by O with sko

as sige = Sigsko
(erasure, tagf , Te, Ψ). Similarly, for all i ∈ Ψ , the signatures

sigei are computed by S1 as sigei = Sigsks1
(erasure,Re, tagf , i). Finally, the

new commitment can be described as π′
f = πf

∏

i∈Ψ

hsigei−Ci

i . As S1, S2 and O all

are assumed to be honest, therefore, the signatures sige and sigei, and the new
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commitment π′
f all are valid. That is, in the DelCheck algorithm the evidences

always can pass the verifications.

The Proposed Scheme Satisfies the Property of Data Integrity. In the
Decryption phase, since O deletes all the local backups after uploading the file
to S1. Therefore, O should download the ciphertext Ci = (cipi, tagfi, i) from S1

and decrypt it to obtain the plaintext. Upon receiving the ciphertext, O verifies
that whether the equation tagfi

?= H2(cipi, sko, i) holds. Since sko is the private
key of O, therefore, S1 cannot falsify a cip′

i and a new tag′
fi to make the equation

tag′
fi = H2(cip′

i, sko, i) hold. That is, if Ci is correct and integrated, the correct
plaintext is always the output of the Decryption algorithm; otherwise, O can
always detect the malicious operation of S1.

In the Transfer process, S1 migrates (sigts, {Ci, λi}i∈Ψ ) to S2. On the
one hand, since the vector commitment scheme satisfies the properties of
position binding and hiding, therefore, S1 cannot open the message Ci to
another message C ′

i at the position i. That is, the proofs {λi}i∈Ψ must be valid.
Otherwise, the malicious behavior would be detected by S2. On the other hand,
for all i ∈ Ψ , S2 runs xi ← V C.V erpp(πf , Ci, i, λi), and then checks xi. Only if
{Ci}i∈Ψ are intact and {λi}i∈Ψ are correct can the verifications pass. Otherwise,
S2 can detect the manipulation of the data blocks.

In a word, our verifiable data transfer and deletion scheme can guarantee the
integrity of the outsourced data.

The Proposed Scheme Satisfies the Property of Public Verifiability. The
proposed scheme can realize publicly verifiable cloud data deletion. Note that the
original cloud server will generate the deletion evidences τ after deleting the data
blocks from the physical medium, where τ = (Re, π

′
f , {i, λ′

i, sigei}i∈Ψ , Ψ). Then
anyone who owns the evidences τ (called verifier) can verify the result of the dele-
tion operation conveniently and efficiently. Firstly, the verifier can check the dele-
tion request Re = (erasure, sige, tagf , Te, Ψ). If the deletion request Re is valid,
it means that the data owner has required the original cloud server to delete the
data blocks. Then for all i ∈ Ψ , the verifier can verify the signatures sigei which
are computed by the original cloud server as sigei = Sigsks1

(erasure,Re, tagf , i).
If the signatures {sigei}i∈Ψ are valid, the verifier will further verify the proofs
{λ′

i}i∈Ψ by running the vector commitment verification algorithm as xi ←
V C.V erpp(π′

f , sigei, i, λ
′
i). Then the verifier checks that whether all the xi are

one. Only if all the verifications pass, the verifier trusts that the original cloud
server performs the deletion operation honestly. Besides, as described above, all
the verifications processes do not need any secret information. That is, anyone
who owns τ can verify the deletion result. Therefore, the proposed scheme can
realize publicly verifiable deletion.

The Proposed Scheme Satisfies the Property of Accountable Trace-
ability. We analyze the accountable traceability in deletion phase when O is
dishonest and S1 is malicious respectively.

Dishonest Data Owner O. In the deletion phase, if O is dishonest, he may slander
S1 maliciously. On one hand, O has required S1 to delete the data. However, O
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denies his request and slanders that S1 deletes the data arbitrarily. For this case,
S1 can present the deletion request Re = (erasure, sige, tagf , Te, Ψ), where sige

is a signature which can be generated by O merely. Therefore, Re can be seen
as a proof that O has already asked S1 to erase the data. On the other hand, O
has not asked S1 to delete the data. However, O slanders that he has required
S1 to delete the data and S1 does not delete the data honestly. For this case, S1

can ask O to present the signature siges, which is computed by S1 with sks1 .
This is, O cannot forge siges. Therefore, O cannot slander S1 successfully.

Malicious Cloud Server S1. Similarly, S1 may behave maliciously if it is dis-
honest. Firstly, O has never required to delete the data, while S1 deletes the
data arbitrarily. Then, S1 declares that he executed the deletion as O′s com-
mand. In this scenario, O can ask S1 to show the deletion request Re =
(erasure, sige, tagf , Te, Ψ). However, S1 does not have Re. Besides, Re contains
a signature sige, which is computed by O with private key sko. Therefore, S1

can not forge sige. That is, S1 cannot present Re to prove that O has required to
delete the data. Secondly, S1 may not execute the deletion honestly. Meanwhile,
S1 claims that O has never asked him to delete the data. Here, O can present the
signature sigei, which can prove that not only O has asked S1 to erase the data,
but also S1 has responded to the deletion command. Therefore, the malicious
S1 can not slander O successfully.

Table 1. Comparison between two schemes

Scheme Hao et al. scheme [14] Our scheme

Computational model Amortized model Amortized model

TTP Yes No

Public verifiability Yes Yes

Accountability Yes Yes

Computation (Encrypt) 1M + 2E + 4H 1E + (2q + 1)H + qE

Computation (Decrypt) 1E + 1D + 3H 1S + 1V + 1D + 2mH
Computation (Delete) 1S + 1V (l + 1)(S + V) + (q + l)E

5.2 Comparison

We compare our novel data transfer and deletion scheme with a very recent data
deletion scheme [14] in this subsection.

Firstly, both of our scheme and Hao et al. scheme [14] require some one-time
computational efforts in the KeyGen phase. Secondly, although both of the two
schemes can realize publicly verifiable data deletion, our novel scheme will not
depend on any trusted third party, while Hao et al. scheme [14] needs a Trusted
Platform Module (TPM). Although our scheme costs some more overhead to
delete the data, the extra overhead is acceptable. Besides, our novel deletion
scheme considers data transfer between different cloud servers. Furthermore, in
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both of the two schemes, the most of the computations will be completed by the
cloud server.

Table 1 presents the comparisons of our scheme and Hao et al. scheme [14].
We assume that the file is divided into q blocks in our scheme, and we denote by
E an AES encryption performance, resp., D an AES decryption computation
(particularly, other secure encryption algorithms can also be appropriate for
our novel scheme), H a hash calculation, M a multiplication in G1 (or G2), E
an exponentiation in G1, m the number of the downloaded data blocks in the
Decryption phase, S an ECDSA signature operation (resp., V an operation for
verifying an ECDSA signature). Besides, we define l the number of transferred
blocks.

We can find that our scheme can realize publicly verifiable data transfer and
deletion without any trusted third party. Compared with the scheme [14], our
novel scheme is more efficient in Encryption process and Decryption phase. To
delete l blocks, our scheme needs to generate (l + 1) signatures and then verify
these signatures, and it also needs to execute (q + l) exponentiations. However,
scheme [14] only needs to compute a signature and then verify the signature.
Although our scheme needs a little more computation overhead in Deletion, it
is a one-time operation, and the time cost in Deletion is completely acceptable.
Therefore, our scheme is considerably efficient.

6 Conclusion

In this paper, we present a vector commitment-based publicly verifiable data
deletion protocol, which supports secure data transfer between different cloud
storage service providers simultaneously. In the cloud storage, the data owner O
will not fully believe that the cloud server S1 would transfer the data to the other
cloud server S2 and then delete the transferred data sincerely. In our scheme, we
utilize vector commitment to enable the data owner O to become aware of the
malicious behaviors when S1 does not perform honestly during the transfer and
deletion processes. Besides, the data owner O can verify the transfer result and
the deletion outcome without any trusted third party.
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Institute of Distributed Systems, Ulm University, Ulm, Germany
{henning.kopp,frank.kargl,christoph.boesch}@uni-ulm.de

Abstract. Proofs of storage are cryptographic primitives that enable a
storage provider to prove that it honestly stores files of its users with-
out tampering or deleting parts of them. The performance of publicly
verifiable proofs of storage is not well understood and is mostly mea-
sured asymptotically in the literature. We propose and implement a novel
publicly verifiable static proof of storage based on the RSA assumption,
measure its computational performance, and compare it to other state of
the art schemes. In our performance evaluation, our scheme outperforms
existing schemes with similar security guarantees in the time taken to
encode the file. In the other metrics its runtime is comparable to that
of existing schemes. We consider our scheme together with our practical
evaluations to be an important contribution to the application of cloud
storage security mechanisms.

Keywords: Proof of storage · Remote data integrity check
Data outsourcing security · Applied cryptography

1 Introduction

A persistent trend in information technology is the outsourcing of storage capac-
ities to external cloud providers. This creates the need to remotely check the
integrity of stored files. Approaches which are used in local settings like the use
of checksums fail when applied to a remote setting due to a potentially mali-
cious storage provider. One mechanism to address this need for a remote file
integrity check is a proof of storage. This allows a storage provider to crypto-
graphically prove the possession of a stored file with sublinear complexity, i.e.,
without transferring the whole file. Types that exist are privately and publicly
verifiable proofs of storage. In a privately verifiable proof of storage only the
uploading party can verify the proof, whereas a publicly verifiable proof allows
verification by any third party, e.g., an external auditor. In contrast to privately
verifiable proofs of storage, publicly verifiable schemes have benefits in several
use cases, due to the possibility of publishing the proof. Openly revealing publicly
verifiable proofs of storage could improve the reputation of a storage provider,
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since other parties could verify the proof and thus decide on its trustworthiness.
Publicly verifiable proofs of storage can also be used to decentralize trust in a
distributed file storage system, since each party can check if the others store files
(cf. FileCoin [7] or KopperCoin [12]). Because of these unique applications we
restrict our discussion to publicly verifiable proofs of storage.

Ateniese et al. [2] described how to obtain a publicly verifiable proof of stor-
age protocol in the random oracle model where the communication complexity
is independent of the file size using any homomorphic identification protocol.
An identification protocol allows a prover to prove its identity to a verifier. The
verifier V in turn is unable to convince someone else that V is the prover [6].
A homomorphic identification protocol additionally allows aggregation of mul-
tiple transcripts of different runs of the protocol without sacrificing security.
Despite lots of research in identification protocols [6,9,16,18,21] there has not
been much effort in applying these findings to construct publicly verifiable proofs
of storage. A modification of the Shoup protocol [21] is used by Ateniese et al. [2]
to construct a publicly verifiable proof of storage. There is also a publicly verifi-
able scheme by Shacham and Waters [19] which was proposed independently
of the transformation but can be modified to fit in the framework of Ate-
niese et al., as we describe later. As a by-product, we obtain a novel unforgeable
homomorphic identification protocol which may be of independent interest. In
order to obtain a new publicly verifiable proof of storage we modify the Guillou-
Quisquater protocol [9] to be secure in a stronger attacker model than the orig-
inal one and apply the transformation by Ateniese et al. on it. Modifying the
Guillou-Quisquater protocol is necessary, since the transformation of Ateniese
et al. is only proven secure for identification protocols which are secure in the
stronger attacker model. The result is a novel secure publicly verifiable proof of
storage.

Recent work in proofs of storage mainly deals with privately verifiable proofs
of storage since these use symmetric cryptography and thus are faster than
publicly verifiable proofs of storage. Another line of work is to extend the features
of proofs of storage. Dynamic proofs of storage allow for updating (insertion,
modification, deletion) of chunks [4,20] or even support revision control [25].
Research also covers distributed proofs of storage, where storage of multiple
replicas of a file can be proven [5] or storage providers can prove that they
cooperatively store a file, and each storage provider needs to store only parts of
the file [26]. However, none of these is publicly verifiable.

One major shortcoming of the current state of proofs of storage is that prac-
tical performance is rarely compared. There are complexity discussions of pri-
vately verifiable proofs of storage by Xu and Chang [23] and Ateniese et al. [1],
and of publicly verifiable proofs of storage [24]. But these are only asymptotic
comparisons which do not show the real-world performance. Practical evalua-
tions of proofs of storage [17,22] only benchmark one scheme or variations of
one scheme and thus are often incomparable due to differences in the hardware
and the programming language used. Further, the schemes themselves are often
incomparable, since they support different features like dynamic data or con-
fidentiality of data with respect to the external auditor. Thus, we implement
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and compare only publicly verifiable static proofs of storage. In particular, we
examine our novel proof of storage scheme, together with the proof of storage
based on the Shoup protocol [2], and the scheme by Shacham and Waters [19].

Contribution. Our contributions are as follows:

– We provide a modification of the Guillou-Quisquater (GQ) identification pro-
tocol and prove its unforgeability in a strictly stronger attacker model than
the original GQ protocol.

– Based on our modified GQ identification protocol we propose a novel efficient
publicly verifiable proof of storage scheme.

– We propose a novel homomorphic identification protocol based on the Diffie-
Hellman assumption by reconstruction from a slightly modified version of the
proof of storage by Shacham and Waters [19]. Additionally, a proof of security
of the identification protocol is given. As a lemma we receive a proof of the
modified scheme of Shacham and Waters.

– We implement the Shacham-Waters proof of storage [19], the proof of storage
instantiated from the Shoup identification protocol as mentioned by Ate-
niese [2], and our novel proof of storage scheme. We provide comprehensive
performance measurements for the three schemes we have implemented.

Roadmap. The next section provides the necessary definitions for our discus-
sion. The main part of our article is Sect. 3 where we discuss the original GQ
protocol, our modifications to it, and our novel proof of storage scheme. This
section also contains a new identification scheme and discusses the other pub-
licly verifiable proofs we have implemented and evaluated. Section 4 contains the
benchmarks of our implementations. We conclude with Sect. 5.

Remark. In the literature there are the notions of proof of retrievability, proof
of storage, as well as provable data possession which are used to describe similar
but different concepts.

A proof of retrievability [10] is a challenge-response protocol that enables a
cloud provider to demonstrate to a client that a file is retrievable, i.e., recoverable
without any loss or corruption. Proofs of data possession [1] are related protocols
that only detect a large amount of corruption in outsourced data. In a proof of
data possession the existence of a knowledge extractor is required which can
extract knowledge of the file, whereas a proof of storage additionally requires
the knowledge extractor to be efficiently computable. In particular it needs to
have expected polynomial runtime [2]. In the following we focus only on proofs
of storage.

2 Preliminaries

In this section we introduce the notation used throughout the remainder of the
paper as well as definitions for a homomorphic identification protocol and a proof
of storage.
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2.1 Notation

We write a ← A(x) to assign to a the output of running the randomized algo-
rithm A on input x. With a ← A(x; r) we denote the deterministic result of
running A on input x and the fixed randomness r. We say that an algorithm A
is ppt if it runs in probabilistic polynomial time. With Zp we denote the residue
classes of the integers Z modulo p ∈ N. We write x ∈R S if we choose an element
x from a finite set S uniformly at random. Vectors are written in bold typeface.

We say that a function f is negligible if for all positive polynomials p there is
a natural number N ∈ N such that for all n > N it holds that |f(n)| < 1/p(n).
Throughout the text, f ∈ Z

�
B with B ∈ N denotes a file viewed as a vector

with chunks f1, . . . , f� ∈ ZB . The symbol ϕ denotes Euler’s totient function, i.e.,
ϕ(x) := |Z∗

x|.

2.2 Identification Protocol

The purpose of an identification protocol is that a prover P who is in possession of
a secret key sk can prove its identity to a verifier V who knows the corresponding
public key pk . The security property of an identification protocol is that a verifier
V is not able to prove to someone else that V is the prover P, i.e., that V knows
the private key sk [6].

The prover generates the first message α using his public key pk and a random
value r. The verifier V chooses a random challenge β in the challenge space of the
identification protocol and gives it to P. The prover P computes a response γ
by using the challenge β together with the private key sk and the randomness r
used in generating the first message α. To verify the interaction V needs to know
the transcript α, β, γ, as well as the public key pk . We repeat the definitions
of a homomorphic identification protocol by Ateniese et al. [2] in Definitions 1
and 2.

Definition 1 (Identification Protocol [2]). An identification protocol is a
three-move-protocol between a ppt prover P and a ppt verifier V. The proto-
col consists of four polynomial-time algorithms (Setup,Commit,Response,Verify)
such that:

1. (pk , sk) ← Setup(1k) is a probabilistic algorithm that takes as input the secu-
rity parameter k and outputs a public and private key pair (pk , sk).

2. α ← Commit(pk ; r) is a probabilistic algorithm run by the prover P to generate
the first message. It takes as input the public key and random coins r, and
outputs an initial message α. We stress that there is no need for the secret
key sk.

3. γ ← Response(pk , sk , r, β) is a probabilistic algorithm that is run by the prover
P to generate the third message. It takes as input the public key pk, the secret
key sk, a random string r, and a challenge β from some associated challenge
space, and outputs a response γ.



Publicly Verifiable Static Proofs of Storage 463

4. b := Verify(pk , α, β, γ) is a deterministic algorithm run by the verifier V to
decide whether to accept the interaction. It takes as input the public key pk,
an initial message α, a challenge β, and a response γ. It outputs a single bit
b, where ‘1’ indicates acceptance and ‘0’ indicates rejection.

We call an identification protocol correct if for all k ∈ N, all (pk , sk) output
by Setup(1k), all random coins r, and all β in the appropriate challenge space,
it holds that

Verify

(
pk ,Commit(pk ; r), β,Response(pk , sk , r, β)

)
= 1.

For applying the transformation by Ateniese et al. on a proof of storage [2]
we need homomorphic identification protocols. These are identification protocols
where transcripts of several runs of the protocol can be aggregated. A verifier
can then verify the aggregated transcripts. This amounts to batch verification
of the transcripts of different runs of the protocol without sacrificing security.

Definition 2 (Homomorphic Identification Protocol [2]). An identifica-
tion protocol Σ = (Setup,Commit,Response,Verify) is homomorphic if efficient
functions Combine1, Combine3 exist such that:

Completeness. For all (pk , sk) output by Setup(1k) and all coeffi-
cient vectors s ∈ Z

n
2k , if transcripts {(αi, βi, γi)}1≤i≤n are such that

Verify(pk, αi, βi, γi) = 1 for all i, then:

Verify

(
pk ,Combine1(s,α),

n∑
i=1

siβi,Combine3(s,γ)

)
= 1

Unforgeability. Consider the following experiment involving an adversary
A:
1. The challenger computes (pk , sk) ← Setup(1k) and gives pk to A.
2. The following is repeated a polynomial number of times:

– A outputs β′ in the challenge space. The challenger chooses a random
r, computes γ ← Response(pk , sk , r, β′) and gives (r, γ) to A.

3. The adversary outputs an n-vector of challenges β. Then for each i the
challenger chooses ri at random, sets αi ← Commit(pk ; ri) and γi ←
Response(pk , sk , ri, βi), and gives (r,γ) to A.

4. A outputs a triple (s, μ′, γ′), where s ∈ Z
n
2k . The adversary succeeds if

(1) μ′ �= ∑
i siβi and (2) Verify(pk ,Combine1(s,α), μ′, γ′) = 1.

Remark. The attacker has access to the randomness r underlying the messages
and thus also to the messages since he can reconstruct α = Commit(pk ; r). This is
a strictly stronger attacker model compared to an attacker who has only access to
the messages. As an example, the well-known Schnorr identification protocol [18]
is insecure in this attacker model but secure if the attacker has only access to
the messages. In the Schnorr protocol the commit message consists of gr and
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thus the attacker is unable to know r only from the commit. Knowledge of the
underlying randomness r allows to reconstruct the secret key using subsequent
messages. Thus, the Schnorr identification protocol is insecure in the stronger
attacker model of Ateniese et al. and cannot be used to construct a secure proof
of storage. The same holds true for the Okamoto identification protocol [16]. It
is difficult to find homomorphic identification protocols that satisfy this strictly
stronger notion of unforgeability and consequently can be transformed to proof
of storage schemes.

2.3 Proof of Storage

A proof of storage is a mechanism used by a prover P to convince a verifier V
that P stores a specific file f . Since we consider only publicly verifiable proofs of
storage the verifier V and the user U who is uploading the file f may be distinct.
First, U encodes its file using its private key sk and sends the encoded file f ′

together with a state st which serves as an identifier for the file to the prover P.
As soon as the verifier V wants to know if P stores the file, V generates a random
challenge c and sends it to P. P generates a proof π by using the encoded file
f ′ as well as the challenge c. To verify the proof the public key pk , the identifier
of the file st , the challenge c, and the proof π itself is needed. Since the private
key is not needed for the verification, the proof is called publicly verifiable.

Definition 3 (Proof of Storage [2]). A (publicly-verifiable) proof of storage
is a tuple of four ppt algorithms (Gen,Encode,Prove,Verify) such that:

1. (pk , sk) ← Gen(1k) is a probabilistic algorithm that is run by the user U to
set up the scheme. It takes as input a security parameter k, and outputs a
public and private key pair (pk , sk). We assume that pk implicitly defines a
positive integer B which determines the size of the file chunks.

2. (f ′, st) ← Encodesk (f) is a probabilistic algorithm that is run by the user in
order to encode the file. It takes as input the secret key sk, and a file f ∈ Z

�
B

viewed as a vector of chunks with size B. It outputs an encoded file f ′ and
state information st.

3. π := Prove(pk , f ′, c) is a deterministic algorithm that takes as input the public
key pk, an encoded file f ′, and a challenge c ∈ {0, 1}k. It outputs a proof π.

4. b := Verify(pk , st , c, π) is a deterministic algorithm that takes as input the
public key pk, the state st, a challenge c ∈ {0, 1}k, and a proof π. It outputs
a bit, where ‘1’ indicates acceptance and ‘0’ indicates rejection.

We require that for all k ∈ N, all (pk , sk) output by Gen(1k), all f ∈ Z
�
B, all

(f ′, st) output by Encodesk (f), and all c ∈ {0, 1}k, it holds that

Verify
(
pk , st , c,Prove(pk, f ′, c)

)
= 1.

By using the transformation of Ateniese et al. [2] which transforms any homo-
morphic identification protocol to a proof of storage we can describe the intuition
behind the algorithms more clearly. In Encodesk (f) the user U splits the file into
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� chunks, each signed with a homomorphic signature scheme generated from
the homomorphic identification protocol. We will refer to these signatures as
authenticators. In the algorithm Prove the challenge c is expanded to a vector
of dimension � by setting chal i = Hc(i), where Hc is a pseudorandom function
keyed with the challenge c. Each coefficient in the vector chal corresponds to
a chunk of the file. The proof consists of a linear combination τ of the chunks
and a linear combination μ of the authenticators where the coefficients are from
the expanded challenge chal . In particular, the size of the proof is constant
and independent of the size of the file. The state st guarantees that the linear
combination is computed over the correct file.

Remark. The proof of storage resulting from the transformation requires that
�, the number of chunks in the file is public. Otherwise it is not possible to
expand the challenge c in the verification step to the correct length. In practice
this is often undesired. We can remedy this by including the number of chunks
� in the state st as st ′ = (st , �) and use st ′ instead of st as the key for the
pseudorandom function. This way the verifier knows the number of chunks from
st and is able to verify the proof without further knowledge. By including � in
the state st , the length � cannot be modified since otherwise the authenticators
on the chunks could not be verified.

A different approach to remedy that the number of chunks � of the file needs
to be public is to augment the proof of storage with a signature scheme. The
algorithm Gen(1k) additionally outputs a signing key pair. In the encoding step
the number of chunks is signed by the user and included in the information
needed to verify the proof of storage. In the verification step the signature is
checked, in addition to the verification of the proof. If the signature does not
validate it is rejected since the information of the number of chunks � is not
correct. This technique is used in the publicly verifiable proof of storage by
Shacham and Waters [19].

3 Proofs of Storage

In this section we describe three proofs of storage: (i) our novel Guillou-
Quisquater-based proof of storage, (ii) the Shoup proof of storage, and (iii) the
Shacham-Waters proof of storage.

First, we modify the Guillou-Quisquater identification protocol to be secure
in the stronger attacker model such that it can be used to construct a novel proof
of storage. Next, we describe a proof of storage based on the Shoup protocol.
Its existence was stated by Ateniese et al. [2] but the scheme was not explicitly
described. We present this scheme to which we will refer as Shoup proof of storage
in Sect. 3.2. The third and last scheme we explain is the scheme of Shacham and
Waters [19] along with some modifications. These modifications enable a better
comparison and allow us to reconstruct the underlying identification protocol
which to our knowledge has not been described yet in literature and might be
of independent interest.
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3.1 Proof of Storage from Guillou-Quisquater

In 1988, Guillou and Quisquater (GQ) described an identification protocol based
on the RSA problem. This identification protocol is proven secure under an
attacker that has access to the messages but not to the underlying randomness r.
In our attacker model from Definition 2 the protocol is insecure.

We have modified the original GQ protocol to be secure in our stronger
attacker model as described in Definition 2. In particular we substituted the
random r from the original protocol by rd everywhere. Thus the commit in our
modified scheme is only the randomness r instead of re ∈ Zn as in the original
protocol. The resulting scheme is shown in Fig. 1.

Fig. 1. Our modified Guillou-Quisquater identification protocol

The proof of security of the scheme can be found in Theorem 1 in the
appendix. With the modified GQ identification protocol we are now able to
construct a proof of storage using the transformation of Ateniese et al. [2]. The
resulting scheme is depicted in Fig. 2.

Lemma 1. The GQ proof of storage shown in Fig. 2 is secure under the RSA-
assumption if H is modelled as a random oracle.

Proof. Follows directly from the security of the transformation (Theorems 1 and
2 in [2]) and the security of the modified GQ scheme in Theorem 1 in the
appendix.
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Fig. 2. Our GQ proof of storage

3.2 Shoup Proof of Storage

The Shoup identification protocol [21] is an unforgeable homomorphic identifica-
tion protocol based on the factoring assumption for Blum integers. It is similar
to the GQ protocol with the main difference that the secret key is a 23m-th root
instead of an e-th root, where e is chosen such that it is invertible modulo ϕ(n).

The proof of unforgeability in the homomorphic case is Theorem 3 in the
paper of Ateniese et al. [2]. There, it is shown that this protocol can be used to
obtain a proof of storage based on the factoring assumption. Since the resulting
proof of storage from Shoup’s identification protocol is not stated explicitly in
their paper we present it in Fig. 3.

3.3 Shacham-Waters Proof of Storage

Shacham and Waters (SW) proposed two proof of storage schemes [19] where
the resulting proofs are of constant size. One of the schemes provides private
verifiability, whereas the other scheme is publicly verifiable. We are only inter-
ested in the scheme with public verifiability. Its proof of security can be found
in their paper [19].
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Fig. 3. Shoup’s proof of storage

The SW scheme supports a tuning parameter s which subdivides the chunks
into smaller subchunks. In the terminology of Shacham and Waters these are
called blocks and sectors. Each of the n blocks of the file f is s sectors long. If
� is the number of sectors, then � = n · s. A larger value for s increases the size
of the proofs by a factor of s. On the other hand this decreases the number of
authenticators σi the prover P needs to store by a factor of s.

The SW scheme was presented independently of the transformation from an
identification protocol [2]. However as hinted by Ateniese et al. [2] it can be
slightly modified to be a result of this transformation. We modified the original
scheme in order to increase the comparability with the other schemes described,
and in order to reconstruct the underlying identification protocol based on the
Diffie-Hellman assumption. In particular we made the following changes:

– In the SW scheme, a second key pair is generated and used to sign the number
of chunks in the file such that it cannot be tampered. Instead we include the
number of chunks in the state st as described in the other schemes.

– SW introduce a tuning parameter s which subdivides the chunks into smaller
subchunks. A larger value for s increases the size of the proofs linearly but
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on the other hand decreases the number of authenticators σi, the prover P
needs to store, linearly.
We set s = 1 to not subdivide the chunks, so that the number of authentica-
tors is the same as in the other schemes.

– In the SW scheme, there are public values u1, . . . , us ∈ G chosen at random
from a group G. Since we set s = 1, this is only one value u, which we include
in the public key, rather than choosing it per file.

– The challenge in the SW scheme is a set Q = {(i, νi), where 1 ≤ i ≤ �, 1 ≤
νi ≤ p} of coefficients. We generate the challenge from a pseudorandom func-
tion νi = H′

c(i) for i = 1, . . . , �, mapping to Zp and thus the size of the
challenge is the same as in the other schemes we described.

– Further, we adapted the notation to match our earlier expositions.

A full description of the modified protocol is given in Fig. 4.

Fig. 4. Our modified Shacham-Waters proof of storage

These modifications allow us to extract the underlying identification protocol
which is shown in Fig. 5 and might be of independent interest. It can be shown
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that our modifications to the SW proof of storage scheme are secure by proving
that the underlying identification protocol is indeed an unforgeable homomorphic
identification protocol in our attacker model from Definition 2. This is done in
Theorem 2 in the appendix.

Lemma 2. The modified SW proof of storage shown in Fig. 4 is secure under
the Diffie-Hellman assumption if H is modelled as a random oracle.

Proof. Follows directly from the security of the transformation (Theorems 1 and
2 in [2]) and the security of the SW identification scheme in Theorem 2 in the
appendix.

Fig. 5. Our Shacham-Waters identification protocol

4 Evaluation

In the following we provide benchmarks for the three proof of storage schemes
we described and implemented.

4.1 Method

We implemented the three discussed proof of storage schemes in Python 3.5.2
and evaluated their performance on a quad core Intel Xeon CPU with 3.10 GHz
running Ubuntu 16.04.1. We did not use any parallelization though most of the
algorithms are easily parallelizable. The implementations were written by the
same developer, hence the coding style and quality is similar.

The choice of parameters to achieve equal security level, and consequently
guarantee a fair comparison is summarized in Table 1. We use the symbol |·| to
denote the bit length.
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For the GQ and Shoup scheme we chose the order of the finite group to be
2048 bits. For these schemes, we used gmpy v1.17, which is a Python binding of
the GNU multiple precision library GMPlib [8]. In the Shoup protocol we chose
the parameter k = 5 thus the security depends on the inability to compute 215-th
roots in a 2048 bit group which according to NIST [3, Section 5.6.1] is equivalent
to a security level of 112 bits and is considered secure.

The pairing operations in the SW scheme were implemented with the Python
bindings of the PBC Library v0.5.14 [14]. We decided to use a type F pairing for
the implementation. On the one hand, type F pairing operations are slower than
in other types of pairings, but the algorithm in the SW scheme only needs to
compute one of them. On the other hand, elements in type F pairings are smaller
than in other pairing types of comparable security, so the many exponentiations
in our implementation are faster. The pairing was generated with the script
genfparam bundled with libPBC. For a security level of 112 bits the size of
the curve needs to be around 224–255 bits according to NIST [3, Section 5.6.1].
However, this does not take into account the recent improvements in computing
discrete logarithms in finite fields by Kim and Barbulescu [11] which halve the
security parameter. Thus, we chose to use a curve of size 448–510 bits. Hence,
the security of the three implemented schemes is comparable. An overview of
the choice of all parameters can be found in Table 1.

For Hst , the pseudorandom function keyed with the state, where the state
is a pair, we convert the state into JSON format and use the standard HMAC
with SHA256 algorithm as described by RFC 2104 [13].

We measured the duration needed for encoding the file TEncode, generating
the proof of storage TProve, and verification time TVerify for files up to 4000 kB
in steps of 250 kB. Each measurement is the mean of the duration of 10 runs of
the algorithm. For the time needed to generate the keys TGen we computed the
mean over 160 runs.

Table 1. Overview of the parameters

Algorithm Parameters

Our GQ PoS |n| = 2048, e = 65537

Shoup PoS [2] |n| = 2048, k = 5

SW PoS [19] |r| = 445, |q| = 445

4.2 Results and Discussion

As expected all durations were linearly dependent on the size of the file. The
interpolated processing bandwidth for the different algorithms, as well as the
time used for key generation can be found in Table 2. The interpolation was
done by ordinary least squares regression.
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Table 2. Overview of the results

Algorithm TGen BEncode BProve BVerify

Our GQ PoS 0.111s 56.1 kB/s 414 kB/s 62.7 kB/s

Shoup PoS [2] 0.187s 4.37 kB/s 416 kB/s 64.8 kB/s

SW PoS [19] 0.124s 5.20 kB/s 54.4 kB/s 16.9 kB/s

When encoding the file, the Shoup proof of storage was slower than our GQ
proof of storage. This performance difference can be traced back to a performance
difference in the underlying identification protocols. The main difference between
the Shoup and the GQ identification protocol is that in the Shoup identification
protocol the secret key is a 23m-th root instead of an e-th root, where e is chosen
such that it is invertible modulo ϕ(n). Thus the Shoup protocol has to be slower,
since when computing an e-root in the GQ identification protocol we can simply
exponentiate with the inverse d, where de = 1 mod ϕ(n). For a 23m-th root
in the Shoup protocol this does not work, since 2 | gcd(23m, ϕ(n)) and thus we
cannot compute an inverse d. Instead we have to compute roots modulo the
primes p and q by successively raising to the p−1

2 -th power, respectively the
q−1
2 -th power and recompose the solution modulo n with the chinese remainder

theorem. The performance of the algorithm Encode in the SW protocol was
faster than the same procedure in the Shoup protocol, but slower than in the
GQ protocol.

The Shoup and GQ scheme needed exactly the same time for generation of
the proof, since the algorithm for generating the proof is the same. Generation of
the proof in the SW protocol had the worst performance. We found out that this
is due to expanding the challenge by computing chal i = Hc(i) for i = 1, . . . , �.
This was implemented by using the function element from hash of libPBC since
the element needed to be a point on the elliptic curve. The exact algorithm can
be found on page 19 in Lynn’s thesis [15].

In the verification procedure the Shoup protocol was insignificantly faster
than our GQ protocol. As in generation of the proof the SW proof of storage
performed worst in verifying.

An interesting observation is that generation of the key in the SW scheme
was fastest. This is explained by the fact that we used a type F pairing, so
our underlying group is small and thus exponentiations are fast, as explained
previously.

The full performance measurements of the schemes are given in Fig. 6a to d.
The duration of the algorithms in seconds is shown on the y-axis. The size of
the file of which storage was proven is shown on the x-axis.
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Fig. 6. Comparison of runtimes of the schemes

5 Conclusion

In this paper we modified the GQ identification protocol such that it is secure
in a stronger attacker model. This allowed us to construct a novel proof of
storage based on the RSA assumption. These schemes allow a storage provider
to provide a publicly verifiable proof that it has stored a special file. Additionally
we introduced a novel identification protocol based on bilinear pairings. We
carefully compared the performance of our scheme to other state of the art
publicly verifiable proof of storage schemes. In our evaluation our new scheme
greatly outperformed existing schemes with similar security level in the time
taken to encode the file. However, all schemes were comparatively slow and
additional progress needs to be made to use them in a real world scenario.

Nevertheless, our scheme is a new contribution to the growing ecosystem of
cloud storage security mechanisms to close the gap between theory and practice
regarding publicly verifiable proofs of storage.
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ther we would like to thank Jonathan Katz for his helpful emails and his suggestion
to include the file length in the state. We thank Stephan Kleber for discussions and
proofreading.

A Proofs

Theorem 1. Our modified GQ identification protocol as described in Fig. 1 is
an unforgeable homomorphic identification protocol under the RSA-assumption.

Proof. Completeness is clear. To prove unforgeability we construct an algorithm
B that can solve the RSA problem given access to an attacker A. Let n = pq be
an RSA modulus with unknown primes p and q.

– B is given the composite n, as well as an integer J ∈R Zn and e ∈R Z which is
coprime to n. We construct B to return sk−1 = Jd, where de = 1 mod ϕ(n),
i.e., the e-th root of J . B gives the public key pk = (J, e) as an input to the
algorithm A.

– Whenever A outputs β′ in the challenge space, B chooses a random γ ∈ Zn

and sets r = Jβ′
γe. The algorithm B then invokes A on the input (r, γ).

– When algorithm A outputs an n-vector of challenges β, for each i the algo-
rithm B computes (r, γ) as in the previous step, sets αi ← Commit(pk ; r) = r
and gives the vectors (r,γ) to the algorithm A.

– If A outputs (s, μ′, γ′) where s ∈ Z
n
2k , and

1. μ′ �= ∑
i siβi, and

2. Verify(pk , Combine1(s,α), μ′, γ′) = 1
we compute the e-th root of J , namely sk−1, as follows:
For ease of notation define α∗ := Combine1(s, r), γ∗ := Combine3(s,γ), and
μ∗ :=

∑
i siβi. We know that

Jμ∗
(γ∗)e = α∗ = Jμ′

(γ′)e.

where the first equality follows from the condition on the output of A and
the second equality follows from completeness. Thus

Jμ∗−μ′
(γ∗/γ′)e = 1.

Since gcd(e, μ∗ − μ′) = 1 by the choice of e, using the Euclidean algorithm
we can find coefficients s, t such that s · e + t · (μ∗ − μ′) = 1. The e-th root of
J is now (γ′/γ∗)t · Js, since

(
(γ′/γ∗)t · Js

)e = (γ′/γ∗)te · Jse

= (γ′/γ∗)te · J1−t(μ∗−μ′)

= J
(
(γ′/γ∗)e · J−(μ∗−μ′)

)t

= J .
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Since B solves the RSA problem if A succeeds we conclude that the success
probability of A is negligible.

Theorem 2. Our reconstructed identification protocol shown in Fig. 5 is an
unforgeable homomorphic identification protocol under the assumption that the
computational Diffie-Hellman problem is intractable.

Proof. Completeness is immediate. To prove unforgeability we construct a ppt
algorithm B that can solve the Diffie-Hellman problem, given access to an
attacker algorithm A.

– B is given an element g ∈ G as well as gsk for some sk ∈ {1, . . . , p−1} and an
element h ∈ G. To solve the Diffie-Hellman problem B needs to compute hsk .
It chooses random coefficients s, t �= 0 and sets u = gsht. Thus, the public
key is pk = (gsk , u). Afterwards the algorithm B executes A.

– Whenever A outputs β′ in the challenge space B chooses a random r ∈R

{1, . . . , p−1} and computes γ = pkr. One can easily verify that this is indeed
a valid transcript. B gives (r, γ) to A.

– When A outputs an n-vector of challenges β, then for each i the algorithm
B computes (r, γ) as in the previous step and sets α = gru−β . It gives the
vectors (r,γ) to the algorithm A.

– If A outputs (s, μ′, γ′) where s ∈ Z
n
2k , and

1. μ′ �= ∑
i siβi, and

2. Verify(pk ,Combine1(s,α), μ′, γ′) = 1
we solve the discrete logarithm problem by computing hsk as follows:
Define α∗ := Combine1(s, r), γ∗ := Combine3(s,γ), and μ∗ :=

∑
i siβi.

Because of the second condition on (s, μ′, γ′) we know that

e(γ′, g) = e(α∗uμ′
, gsk ).

Since α∗, μ∗, γ∗ is also a valid transcript we know that

e(γ∗, g) = e(α∗uμ∗, gsk ).

Dividing the two equations yields

e(γ′/γ∗, g) = e(uμ′−μ∗
, gsk ).

Substituting u = gsht results in

e(γ′/γ∗, g) = e(gs(μ′−μ∗)ht(μ′−μ∗), gsk ).

We can now rearrange the terms as

e(γ′/γ∗ · gs(μ∗−μ′), g) = e(h, gsk )t(μ′−μ∗).

and solve the discrete logarithm problem by computing hsk as follows:

hsk =
(
γ′/γ∗ · gs(μ∗−μ′)

) 1
t(µ′−µ∗) .

This fails if and only if the denominator is zero. But this will not happen,
as we have chosen t to be nonzero and μ′ − μ∗ �= 0 holds due to the first
condition on the output of the attacker.
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Since B solves the discrete logarithm problem whenever A succeeds we conclude
that the success probability of the attacker A is negligible.
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Abstract. Single-server Private Information Retrieval (SPIR) allows a
client to privately retrieve some data from a database stored on a server.
While many SPIR schemes exist, these previous SPIR schemes are gen-
erally under the honest-but-curious server model. This model however is
not suitable for many real world scenarios such as involving the untrusted
cloud server. In this paper, we first propose an SPIR scheme that is based
on the learning with (binary) errors assumption under the honest-but-
curious server model. Specifically, compared with some previous SPIR
schemes, our proposal provides a low communication complexity. Then,
according to the above warm-up scheme, we introduce a Verifiable SPIR
(VSPIR) scheme under the malicious server model where the server may
provide some fraudulent answers. To the best of our knowledge, our
scheme is the first practical VSPIR scheme that employs the probabilistic
verification process. Finally, for our proposal, we present the theoretical
analyses of the properties (i.e., correctness, privacy and security), and
give the detailed implementation results.

Keywords: Learning with errors
Single-server private information retrieval
Probabilistic verification process

1 Introduction

1.1 Background

In the age of Internet accessing remote database is common and information
is the most sought after and costliest commodity. In such a situation it is very
important not only to protect information but also to protect the identity of the
information that a user is interested in [11]. Private Information Retrieval (PIR)
schemes are cryptographic schemes that enable users to retrieve records from
public databases while keeping private the identity of the retrieved records [2].
In PIR schemes, a client is allowed to retrieve an entry from a server in possession
of a database without revealing which entry is retrieved. The concept of PIR was
first proposed in 1995 by Chor et al. [4]. There is a trivial solution consisting
c© Springer Nature Switzerland AG 2018
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in sending the entire database regardless of the query. This solution has a high
communication complexity of the database’s size tb(at least log tb bits). Later,
some schemes [3,16,18]that send less data have been proposed. Specifically, the
Fully Homomorphic Encryption (FHE) and even the SomeWhat Homomorphic
Encryption (SWHE) proposed by Gentry is known to imply the PIR scheme [3].

Moreover, in some practical scenarios, the server may provide the incorrect
answers due to malicious behaviors or accidental failures. These scenarios can
be defined as the malicious server model. Under this model, a PIR scheme can
work effectively if the client should be able to identify the incorrect answers with
overwhelming probability. This implies that how to verify the returned answers
is a significant problem for a PIR scheme. Actually, for the honest-but-curious
server model used in the previous work, it is assumed that the server is honest,
which means that he follows the predefined scheme. From this point, this model is
not very practical compared with the malicious server model. Then, constructing
a PIR scheme that is secure in the malicious server model is well motivated and
has been put forth by Beimel [2].

1.2 Related Work

In [18], Zhang and Safavi-Naini gave a verifiable multi-server PIR scheme where
the servers may be malicious and provide some fraudulent answers. This scheme
is an unconditionally t-private and computationally secure k-server verifiable
PIR scheme in the honest-but-curious server setting. The drawback of this
scheme is that it is too complicated to implement practically. Moreover, this
PIR scheme does not work when all colluding servers host the database, which
can be seen as the single malicious server setting..

In Sect. 5 of [3], the SWHE scheme is used to construct an asymptotically
efficient Single-server PIR (SPIR) scheme based on the Learning With Errors
(LWE) assumption. Specifically, this scheme employs some symmetric encryption
scheme in the retrieval procedure. Using the most efficient symmetric scheme
with the respect to the communication, the corresponding complexity of this
scheme is O((log n) + κpoly log(κ)) (n is the database size and κ is the security
parameter).

In [16], Vannet and Kunihiro proposed an SPIR scheme under the honest-
but-curious server model relying on the unrelated Approximate GCD (AGCD)
assumption. Assume the size of database is tb, which can be split into nb blocks
of mw words of bb bits each, such that nb · mw · bb = tb. When nb cannot be
decomposed in this way, pad the database with several bits. The database is
denoted by a 2-dimensional array of words where each word is marked by two
coordinates. Now use the set {bi,j |1 ≤ i ≤ nb, 1 ≤ j ≤ mw} to denote the
database, and write block u as {bu,j |1 ≤ j ≤ mw}. The security of this scheme
is based on the AGCD assumption introduced in [6]. The assumption is said
that given a random distribution of values pq + ε where ε � p, the q has ϕq bits.
Sample a set of this distribution, output p. In the single bit scheme, assume that
the client wants to retrieve the block u consisting of {bu,j}1≤j≤mw. The client
samples a large random odd number p, and saves it as the secret key. He picks nb
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random numbers qi and εi, and computes Qi = pqi + 2εi + δi,u(δi,u is the index
vector where δi,j = 1 if i = j, 0 otherwise). For each Qi that the server received,
compute Rj =

∑nb
i=1 bi,jQi and send it back to the client. On receiving Rj , the

client decodes that (Rj mod p) mod 2 = (
∑nb

i=1 bi,j(pqi + 2εi + δi,u) mod q)
mod 2 =

∑nb
i=1 bi,j(2εi + δi,u) mod 2 = bu,j . In this scheme, p and q should

be two large integers, which can guarantee that the scheme holds the security
property. However, this scheme works under the honest-but-curious server model
but not the malicious server model.

1.3 Open Problem

The previous work [9,16] related to SPIR is generally under the honest-but-
curious server model. This model however is not suitable for many real-world
scenarios such as involving the untrusted cloud server. From Zhang and Safavi-
Naini’s work [18], although a verifiable multi-server PIR scheme has been pre-
sented, constructing a Verifiable SPIR constructing a Verifiable SPIR (VSPIR)
scheme under the malicious server model seems to be a difficult task. This is due
to the fact that the protection of the input index depends on the heavy FHE
scheme, which implies that the computational complexity is very high. To the
best of our knowledge, there has not been a practical VSPIR scheme. Therefore
how to construct a simple and pratical VSPIR is still an open problem.

1.4 Our Contributions

In this work, we present two main contributions. The first warmup one is to
introduce an SPIR scheme based on the decision-LWE with binary error assump-
tion under the honest-but-curious server model. Then, according to this scheme,
we construct a VSPIR scheme under the malicious server model.

– The SPIR scheme based on the decision-LWE assumption. In our pro-
posed SPIR, we use the database defined in [16]. We assume that a client
wants to obtain the block u without revealing any information about u. The
client uses a special variant of the encryption scheme with additive homo-
morphism in [7] to encrypt the query vector where the u-th elements is 1
and others are 0, then compute the query messages {Qi}. A server computes
Rj =

∑n
i bi,jQi where Ri is equivalent to the encrypted bu,j . Then the server

sends Rj to the client. For each Rj , the client runs the homomorphic decryp-
tion scheme to recover the block u. Thus the client can get the real block.
The privacy of our SPIR scheme is based on the hardness of LWE with binary
error problem.

– The VSPIR scheme using the probabilitic verification process (see
Fig. 1). Based on our proposed SPIR scheme, we use a probabilistic veri-
fication process [5] to construct our VSPIR scheme. The main idea of the
probabilistic verification is very simple: a client samples a random input r
and precomputes a specific function F (r). He sends an input pair (x, r) to a
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server in a random order, and wants to receive both F (x) and F (r) from the
server. When receiving the answers from the server, the client checks the cor-
rectness of the response value F (r); if it is the same as the precomputed F (r),
then the client accepts the response F (x), and rejects otherwise. Because both
x and r are independent and distributed identically, no malicious adversary
can distinguish the real input x from the random input r and deceive with
probability greater than 1/2. In our proposed VSPIR scheme, we do the sim-
ilar process: the client generates a random vector r ∈ {0, 1}m to replace the
u-th row in a matrix. Encrypt this matrix, then send the query message to
the server and decode the responses Rj from the server. If the elements of
the random vector corresponding to the index are the same, the elements of
u-th row are the same. Then, the client accepts the received responses.

Fig. 1. Verifiable single-server PIR

For showing the merits of our proposal, we list the differences between our
scheme and some other related scheme in Table 1. Specifically, our construction
is essentially different from the SPIR construction proposed by Brakerski and
Vaikuntanathan [3]. In our proposal, the client uses the encryption scheme with
the additively homomorphic property to encrypt the index directly and the server
responses the answer using the addictive homomorphically evaluate the database
access function. However, in [3], the client encrypts the symmetric key using the
FHE or SWHE scheme, then uses the encrypted symmetric key to encrypt the
index, which can convert the symmetric ciphtertexts into homomorphic cipher-
texts. The server uses the homomorphic ciphertexts homomorphically evaluate
the database access function to retrieve an encryption of the answer. Moreover,
in our SPIR construction, since using the encryption scheme based on the LWE
with binary error assumption, the matrix multiplication operation in encryp-
tion scheme is equivalent to some matrix addition operation. The computational
complexity can be slowed down to be O(

√
tb).

1.5 Outline of Our Paper

The rest of this paper is organized as follows: in Sect. 2, after finishing notations
used in this paper, we introduce the LWE problem and some definitions related
to the VSPIR. In Sect. 3, we detail our proposed constructions for the SPIR
scheme and VSPIR scheme, and then in Sect. 4 we analyze their performances.
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In Sect. 5, we present some computer simulations for our proposals. Finally, in
Sect. 6, we make some concluding remarks.

Table 1. Comparisons between the proposed scheme and some other related schemes.

Zhang and

Safavi-Naini [18]

Brakerski and

Vaikuntanathan [3]

Vannet and

Kunihiro [16]

Our VSPIR

Single-server No Yes Yes Yes

Verifiability Yes No No Yes

Assumption d-SBDH LWE AGCD LWE with binary

error

Communication

complexity

O(κn1/�(2k−1)/t�) O(log n + κpoly log(κ)) O(
√

n log n) O(c
√

n)

Computational

complexity

O(κn2/�(2k−1)/t�) O(κ3) O(n log n) O(c
√

n)

n: database size; k: server number related parameter; κ: security parameter; t: number of

servers

2 Preliminaries

2.1 Notations

Before we present our scheme, we give some notations used in this paper. In this
work, We denote vectors by bold lower-case letters (x,y, · · ·), matrices by bold
upper-case letters (X,Y, · · ·). We denote a security parameter by κ ∈ N+. We
denote the class of polynomial functions in κ by poly(κ), some fixed polynomial
functions q in κ by q = q(κ), and some unspecified negligible function in κ by

negl(κ). We denote the transpose of x by xT . We consider the operation x
$←− Ψ

as choosing x uniformly at random in a set Ψ . We use D to indicate a distribution
over some finite set S. We denote x $←− D that x is generated at random from
the distribution.

2.2 Learning with Errors

The LWE problem was first introduced by Regev [15]. The formal definition can
be as follows:

Definition 1 (LWE Problem [3]). For security parameter κ, n = n(κ), let
q = q(n) be an integer and error distribution χ = χ(n) over Zq. Let As,χ be
the distribution obtained by choosing a vector a from Z

n
q and an error term

e from χ uniformly at random, and outputting (a, 〈a, s〉 + e) ∈ (Zn
q × Zq). The

learning with errors problem LWEn,m,q,χ defined as follows: Given m independent
instances from As,χ, output s with non-negligible probability.

The decision variant of the LWE problem, denoted decision-LWEn,m,q,χ is to
distinguish the following two distributions: One is that sampling m instances
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(ai, bi) uniformly from Z
n+1
q . The other one is that sampling m instances

sampled according to As,χ. The decision-LWEn,m,q,χ assumption is that the
decision-LWEn,κ,q,χ problem is computationally infeasible.

Regev proved in [15] that given certain module q and Gaussian error distri-
bution χ, LWEn,κ,q,χ problem is as long as certain worst-case lattice problems
which are hard to solve using a quantum algorithm. These reductions take χ to
be the discretized versions of the Gaussian distribution which is B-bounded for
an appropriate value B.

Definition 2 (B-Bounded Distributions [3]). A distribution ensemble
{χn}n∈N , supported over the integers, is called B-bounded if

Pr
e←χn

[|e| > B] ≤ negl(n).

The following theorem is the Regev’s worst-case to average-case reduction
for LWE:

Theorem 1 ([15]). For q = q(n) ∈ N be a product of q =
∏

qi such that for
all i, qi = poly(n), and let B ≥ n. There exists an efficiently sampleable B-
bounded distribution χ such that if there is an efficient algorithm that solves
the decision-LWEn,q,χ problem, then there is an efficient quantum algorithm for
solving Õ(qn1.5/B)-apporoximate worst-case SIVP and gapSVP.

We refer the readers to [14,15] for the detailed and formal definitions of these
lattice problems.

Definition 3 (LWE with Binary Error Problem [10]). Let n, q be positive

integers, χ be a uniform distribution on {0, 1} and s
$←− χn be a secret vector

in {0, 1}n. Let A
′
s,χ be the distribution obtained by choosing a vector a ∈ Z

n
q

uniformly at random and a noise term e
$←− χ, and outputting (a, 〈a, s〉 + e) ∈

Z
n
q × Zq.
LWE with binary error problem is to recover s from m samples (ai, 〈ai, si〉 +

ei) ∈ Z
n
q × Zq.

The decision variant of the LWE with binary error problem is to distinguish
with non-negligible advantage m samples chosen according to A

′
s,χ, from m sam-

ples chosen according to the uniform distribution over Z
n
q × Zq.

Theorem 2 ([13]). For any integers n and m = n·(1+Ω(1/ log n)), and all suf-
ficiently large polynomially bounded prime modulus q ≥ nO(1), solving LWEn,m,q

with uniformly random binary errors (i,e, in {0,1}) is at least as hard as approx-
imating lattice in the worst case on Θ(n/ log n)-dimensional lattices within a
factor γ = Õ(

√
n · q).

Theorem 2 shows that for the LWE problem, it remains hard even when
the errors are small (e.g, uniformly random from {0, 1}). Most cryptographic
constructions are based on the LWE problem where secret and error are identi-
cally distributed [10]. Using the search-to-decision reduction of [13], Peikert et
al. proved that decision-LWEn,m,q with binary error has the similar hardness of
LWEn,m,q with binary error.
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2.3 The GHV-Type Encryption Scheme

The basis of the GHV scheme [7] is a trapdoor sampling algorithm [8]. The
trapdoor sampling procedure generates a matrix A ∈ Z

m×n
q (that is within

negligible statistical distance of uniform), together with an invertible matrix
T ∈ Z

m×m with small entries such that T · A = 0(mod q).
The trapdoor can be used to solve the LWE problem relative to A. This

is done as follows: Ty = T(As + x) = Tx(mod q). Multiplying T−1 gives
us x. There is a probabilistic polynomial-time (PPT) algorithm TrapDoor that,
on input 1κ, positive integer q ≥ 2, and a poly(n)-bounded positive integer
m ≥ 5n log q, output matrices A ∈ Z

m×n
q and T ∈ Z

m×m where the Euclidean
norm of each rows is at least 20n log q [1].

The GHV-type encryption scheme [7] is defined by a triple PPT algorithm
GHV = (GHV.KeyGen, GHV.Enc, GHV.Dec):

– GHV.KeyGen(1κ) → (pk, sk): On input the 1κ, let n = κ, run the trapdoor
sampling algorithm to obtain a matrix A∈ Zm×n

q together with a trapdoor
matrix T∈ Zm×m, i.e., (A,T)←TrapDoor(1n, q,m). The public key pk is A
and the secret key sk is T.

– GHV.Encpk(M)→C: To encrypt the binary message M ∈ {0, 1}m×m, choose

a uniformly random matrix S $←− Z
n×m
q and an “error matrix” X $←− χm×m.

Output the ciphertext C ← AS + 2X + M(mod q) where 2X means multi-
plying each entry of the matrix X by 2.

– GHV.Decsk(C) → M: Set E ← TCTT (mod q), and then output B ← T−1

E(TT )−1 mod 2.

2.4 Formal Definitions About VSPIR

Definition 4 (VSPIR). The VSPIR scheme consists of a database owner
server S,and a client C. S has the database db = (db1, · · · , dbtb). C owns an
index i ∈ [tb] and wants to recover the dbi from the clouds, keeping the i secret.
The VSPIR scheme is defined by five PPT algorithms VSPIR = (VSP.Setup,
VSP.Query, VSP.Challenge, VSP.Response, VSP.Verify):

1. VSP.Setup(1κ) → (pk, sk) : On input 1κ, output the public key pk and secret
key sk.

2. VSP.Querysk(i) → (Q, aux) : On input a private key sk and an index i ∈ [tb],
output a query Q along with auxiliary information aux.

3. VSP.Challengesk(i, κ) → L: On input κ, the index i and sk output the challenge
message L.

4. VSP.Responsepk(Q, db, L) → R: On input a public key pk, the query Q,
database db and the challenge L. Output the response message R.

5. VSP.Verifysk(Q,R, aux) → {dbi,⊥} : On input sk, Q, the response message
R, and the auxiliary aux. Output the dbi or ⊥.

The server S who owns the database is responsible to set up the system.
To set up the system, S runs VSP.Setup to obtain (pk, sk) in the off-line stage.
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Then pk is published or sent to server, the database db is given to the cloud, and
the sk is kept private by client. To retrieve dbi, C runs VSP.Query to compute
(Q, aux) and sends the query message Q to the cloud S. Upon receiving Q,
S runs VSP.Response and replies with the responses message R. To verify the
responses, C runs VSP.Challenge to generate a challenge message L and runs
VSP.Verify to verify the responding messages and compute dbi if the algorithm
VSP.Verify does not output the failure message.

Now, we present some formal properties of VSPIR, these definitions are based
on the previous work [3,16,18].

Definition 5 (Correctness). The VSPIR scheme is convinced to be correct if
the verify algorithm always computes the correct value of dbi when the server
gives the correct response. Formally, for κ, database db, let VSP.Setup(1κ) →
(pk, sk), for any query index i ∈ [tb], let VSP.Querysk(i) → (Q, aux) and
VSP.Responsepk(Q, db, L) → Ri, it holds that

Pr[VSP.Verifysk(Q,R, aux) �= dbi] ≤ negl(κ)

if the verify algorithm does not compute the failure message.

Definition 6 (Privacy). The scheme VSPIR is convinced to be private if the
adversary can not learn any information about i. Namely, for two queries i1,i2 ∈
[tb] it can computationally distinguish VSP.Querysk(i1) from VSP.Querysk(i2)
with negligible probability. Formally, let κ be a security parameter for an adver-
sary A running in polynomial time and asking polynomially many queries, it
holds that

Pr[A(VSP.Querysk(i1))] − Pr[A(VSP.Querysk(i2))] ≤ negl(κ).

Definition 7 (Security). The scheme VSPIR is convinced to be secure if PPT
adversary can deceive the client into obtaining an incorrect value of dbi with
negligible probability. We can consider the behavior of A in a number of Game0,
Game1, Game2 as defined below:

1. Game0. The challenger generates VSP.Setup(1κ) → (pk, sk) and then pub-
lishes pk to A. A owns the database db and every time A chooses an index i
the challenger will reply corresponding query message Q.

2. Game1. A picks a specific index i and sends it to the challenger, the challenger
responses VSP.Querysk(i) → (Q, aux). To verify the dbi, challenger runs
VSP.Challengesk(i, κ) → C.Then A runs VSP.Respon- sepk (Q, db, C) → R
to response the challenger.

3. Game2. A wins if VSP.Verifysk(Q,R, aux) /∈ {dbi,⊥}.
In the security Game2, A can deceive the client into reconstructing an incor-

rect value of dbi even if it can choose the index of database freely with negligible
probability. Thus, the security of a VSPIR scheme defined above allows the client
to recover the correct block that he wants to obtain from the database
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Definition 8 (Communication Complexity). The communication complex-
ity of a scheme is defined as the number of bits being exchanged to transfer a single
database element excluding the setup phase.

Definition 9 (Index Mapping Function). We define an index mapping func-
tion which maps the index u to an vector matrix. It takes as input an index u
in some scope and output an index vector: δi,u ← E(u). where the u-th element
of the vector is 1, the others are 0.

3 Our Constructions

In this section, we demonstrate our scheme in a gradual manner. We first present
our variant of the GHV-type encryption scheme and an SPIR using this variant.
After that, based on the proposed SPIR, we give a VSPIR construction under
the malicious server model.

3.1 A Variant of the GHV-Type Encryption Scheme

In GHV scheme [7], it can encrypt a matrix of m2 elements in time Õ(m3). To
reduce the computational complexity, we consider the LWE with binary error
assumption. Luckly, previous work [10,13] has proved the hardness of the LWE
with binary error problem.

For ease of presentation, we focus below on the case of encrypting binary vec-
tors for better use in our SPIR scheme. The extension for encrypting matrices
with lower computational complexity comparable to GHV scheme is straightfor-
ward. Our variant of the GHV-type encryption scheme VGHV = (VG.KeyGen,
VG.Enc, VG.Dec) is a triple of PPT algorithms as follows:

– VG.KeyGen(1κ) → (pk, sk): The algorithm is the same as the algorithm in
GHV scheme. The public key pk = A ∈ Z

m×n
q and the secret key sk =T∈

Z
m×m.

– VG.Encpk(m) →c: To encrypt m ∈ {0, 1}m, choose a uniformly random vector
s ∈ {0, 1}n and a uniformly random error vector x ∈ {0, 1}m. Output the
ciphertext c ← As+ 2x+m(mod q) where 2x means multiplying each entry
of the vector x by 2.

– VG.Decsk(c) → m: Set e ← Tc mod q, and then output m← T−1 e mod 2.

For the decryption algorithm, recall that T · A = 0(mod q) and therefore
Tc =T(2x+m)(mod q). If in addition all the entries of T(2x+m) are smaller
than q then we also have the equality over the integers e = (Tc(mod q)) =
T(2x+m)(mod q), and hence T−1e = m(mod 2). We have the correct decryp-
tion when all the entries of T(2x+m) are smaller than 2/q.

Additional Homomorphic Operation. Given two ciphertexts c1, c2 that
decrypt to m1, m2. Let c = c1 + c2. For addition, we have c = A(s1 + s2) +
2(x1 + x2) + m1 + m2 which can be decrypted as m1 + m2 when all entries in
T(2(x1 + x2) + m1 + m2) are smaller than q/2.
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Theorem 3 Any distinguishing algorithm with advantage ε against the
CPA privacy1 of the scheme can be converted to a distinguisher against
decision-LWEm,n,q with binary error with roughly the same advantage at least
ε/2m.

Proof. See Appendix D for the proof.

We can use the above variant of the GHV scheme to encrypt the binary
matrices by setting uniformly random S ∈ {0, 1}n×m and uniformly random
“error matrix” X ∈ {0, 1}m×m. Specifically, we call this variant of the GHV
scheme as MVGHV. Note that, our MVGHV is more efficient than the original
GHV scheme: MVGHV takes time O(m · n) to encrypt a matrix of m2 elements
comparing with Õ(m3) in GHV scheme. The CPA privacy of MVGHV scheme is
based on the LWE with binary error using the proof algorithm in [7].

Theorem 4. For the parameter n = n(κ) and c = c(n) > 0, let q > 8n3c,
m = 5n log q�, then the encryption scheme from above with parameters n,m,q
supports nc additions.

Proof. See Appendix A for the proof.

Theorem 4 shows that the number of LWE with binary error samples m =
O(n) is linear. For selection about m, it can be satisfied by taking m = 5n log q
for fixed q.

3.2 Our SPIR Scheme

Now we introduce our SPIR scheme. We redefine the database (db1, · · · , dbtb),
dbi ∈ {0, 1}: assume the database can be split into nb blocks of mw words of bb
bits each, such that nb · mw · bb = tb (tb is the size of database). Namely, the
nb is the count of blocks, and mw for words per block and bb for bits per word.
If nb cannot be decomposed in this way, pad the database with several extra
bits to make it that. We denote the database by a 2-dimensional array of words
where each word is marked by two coordinates. Then we obtain the database
b = {bi,j |1 ≤ i ≤ nb, 1 ≤ j ≤ mw}, the total bit size of the database is tb. First
we assume that every word is a single bit, clearly mw = 1.

Assume that the client C wants to recover the block u that is consisted of
bu,j . We present the SPIR with four PPT algorithms SPIR = (SP.Setup, SP.Query,
SP.Response, SP.Dec):

– SP.Setup(1κ) → (pk, sk): This algorithm is to set up the system and generate
the public key pk and the secret key sk. On input κ, Run the VG.KeyGen to
obtain the public key pk = A ∈ Z

m×n
q , and the secret key sk = T ∈ Z

m×m.
The pk is published to S, and the sk is kept secretly in C.

1 The notation of CPA privacy is equivalent to the formal notation of CPA security.
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– SP.Querypk(u) → Q: This algorithm for C is to obtain the query string. On
input the public key pk and index u, compute the function E(u) to obtain
the index vector δi,u ∈ {0, 1}nb, and then spit it to mc = �nb/m� vectors, if δ
cannot be decomposed in this way, pad the last vector with several 0 elements.
Encrypt these vectors in order. Run the algorithm VGHV.Encpk(mc) → cc,
c ∈ [mc]. The query message Q is these ordered vectors cc.

– SP.Response(b,Q) → R: This algorithm for S is to compute the responses.
On input the query message Q and the database b, compute the responses for
every j from 1 to mw: rj =

∑mc

c=1 bm(c−1)+i,jcc for i from 1 to m. According
to the homomorphism, multiply bi,j by c corresponds to the multiplication of
bi,j and δ. Thus rj is the homomorphic sum of bi,jmc. The element of vector
δi,u is 1 where i = u, otherwise 0. The rj is the ciphertext of block bu. The
response message R is these vectors rj .

– SP.Decsk(R) → bu,j : This algorithm for S is to recover the block that C wants.
On input the secret key sk and responses R, run VG.Decsk(rj) to obtain the
block u.

Multi-Words SPIR Scheme. In the above scheme, we assume that the word
is a single bit. We can easily modify it to recover multi-words scheme. Instead
of computing As + 2e, we compute As + 2mwe , bu,jej ← bu,jTj(2xj + δj)
mod q, hence bu,jT−1

j e mod 2mw = bu,jδj . Since q has to be large for security
reasons and the noise only progresses linearly when processing the database, we
can afford to start with a fairly large noise. We can utilize the same trick to
obtain the “multi-words matrix retrieval”.

3.3 Our VSPIR Scheme

Before introducing our VSPIR scheme,we show the probabilistic verification pro-
cess used in the work [5]. C delegates some computation F to an untrusted server
S, and C wants to verify the response from S. Assume that C can precompute
F (x), we can define it as three procedures:

– Setup. Input κ, the delegated computation function F : {0, 1}n → {0, 1}m,
and the value x ∈ {0, 1}n.

– Precomputation. C samples a random input r, computes w = F (r), and stores
(r, w) as secret state.

– Delegation and Verification. C has an input m ∈ {0, 1}n. C sets r0 = r and
r1 = m, then samples a random bit b ∈ {0, 1}, and sends the pair (rb, r1−b)
to S. S computes and sends (z0, z1) = (F (r0), F (r1)) to C. Then C accepts
and recovers the response z1−b if w = zb.

From the work in [5], we can find that since x and r are independent and
identically distributed, no malicious adversary can cheat C successfully with
non-negligible probability. Our VSPIR scheme employs the similar probabilistic
verification procedures as above. The main difference of probabilistic verification
procedure between our VSPIR and the proposal in [5] is that we use a random
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vector to mark the result that we want instead of precomputating. Now we
detail the description of our VSPIR scheme VSPIR = (VSP.Setup,VSP.Challenge,
VSP.Response, VSP.Verify):

– VSP.Setup(1κ) → (sk, pk). On input 1κ, run SP.Setup and output (sk, pk).
– VSP.Challengesk(u) → Q. On input the index u and sk, pick up a random

vector v ∈ {0, 1}m, if the d-th element of vvd is 1, then run index mapping
function vi,u ← E(u) otherwise generate a 0 vector with the same dimension.
Then combine these vectors into a matrix I. Run the encryption algorithm in
MVGHV to encrypt the matrix using the SP.Query way to obtain the query Q.

– VSP.Response(b,Q)→ Rk. On input database b and query messages Q, com-
pute SP.Response(b,Q) to obtain the responses Rj .

– VSP.Verifysk(Q, Rj)→ {bu,⊥}. On input Q and the responses messages Rj ,
run the decryption algorithm in MVGHV and make sure whether the decryp-
tion result is our expectation. Accept and output the recovers if when the
elements of the random vector’s corresponding index are the same,the ele-
ments of u-th row in the matrices bu,jI are the same as bu,j . Otherwise, reject
and output ⊥.

4 Performance Analysis

In this section, we first analyze correctness, privacy and security of the proposed
SPIR and VSPIR scheme. After that, we present communication complexity and
computational complexity of our proposals.

4.1 Correctness, Privacy and Security

Theorem 5 (Correctness). If the proposed MVGHV encryption scheme holds
the homomorphic property for supporting polynomially many additions,then our
VSPIR scheme can computes the correct retrieval information when server gives
the correct response.

Proof. See Appendix B for the proof.

Theorem 6 (Privacy). If any distinguishing algorithm can distinguish two
queries for distinct bits of database with probability at least 1/2 + ε/2, then the
distinguisher can break the privacy of our VSPIR with probability (1 + ε)/2.

Proof. See Appendix C for the proof.

Theorem 7 (Security). Our VSPIR scheme is convinced to be secure if no
PPT adversary can deceive the client into obtaining an incorrect value responded
from the server with non-negligible probability.

Proof. See Appendix D for the proof.

4.2 Complexity

In this section, we analyze the communication complexity and computational
complexity of our protocols. Recall our schemes, the public key is sent only once,
it is independent of the database and the query, and it can be used for many
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queries. Therefore it is customary to analyze such schemes in the public key
model where sending the public key does not count towards the communication
complexity.

For SPIR scheme, to encrypt the query vectors, the size of ciphertext in our
encryption algorithm is composed of �nb/m� vectors whose size is �nb/m�m log q.
Then the response size is m log q. When nb = mw =

√
tb, for fixed security

parameter, the communication complexity is O(c
′√

tb). For VSPIR scheme, the
total size of one round transform messages comes to (m2 + �nb/m�m2) log q and
the communication complexity is O(c

√
tb) (c and c

′
are constant).

The communication complexity is not changed in the process for multiple
bits recovery, but we now can retrieve a block of mw bb bits. Furthermore, when
nb = mw =

√
tb/bb the communication complexity is O(c

√
tb/bb) per an index

recovered.
Now let us look at the computational complexity. To set up the system, the

key generation algorithm is executed once and takes time O(1). If not considering
any optimization algorithm, to encrypt the vector index it takes about �nb/m�m
operations and to encrypt the matrix index it takes about �nb/m�m · n. When
nb = mw =

√
tb, for fixed security parameter, the computational complexity is

O(
√

tb) and O(c
√

tb), respectively.

5 Computer Implementations

In this section, we made a straightforward implementation of our VSPIR scheme
without aiming for high levels of optimization. The timings were performed on a
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Fig. 2. The trends of the client’s costs in our VSPIR scheme

Table 2. The client’s costs in our VSPIR scheme (second).

(ψ, n) RVSP.Query RVSP.Verify

(13, 8) 1.012 1.010

(22, 51) 34.236 45.236

(30, 269) 204.415 282.754

(42, 531) 731.950 801.481

(56, 1563) 2494.514 2864.157

ψ: the number of bit of q
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2013 ASUS (Intel(R) Core(TM) i5-3230M, 2 hyperthreaded cores at 2.60 GHz,
8 GB RAM at 1.600 GHz), on Windows (Windows 10 Home, x64 64). Our imple-
mentations are single-threaded. We used NTL for operations over Zq, matrix
operations, and big number operations. We implement the algorithm VSP.Query
and the decryption part of VSP.Verify. To simplify the operation, we focus on a
matrix. For showing the cost of the proposed VSPIR scheme, we list the time
costs in Table 2 when choosing different parameters and draw the trends of the
proposed VSPIR in the Fig. 2. Note that, second can be denoted by s.

Now we consider some real scenarios. As showed in [17], the maximum band-
width of common Internet access technologies such as the Wireless 802.11 g is
54Mbit/s, Fast Ethernet is 100Mbit/s, OC12 is 622Mbit/s. In these scenarios, the
communication complexity of the server and the client can be asymmetrically neg-
ligible. Let the database be 1G bits, we set the bit of q = 30, n = 269, nb =

√
tb.

Assume that the upload speed and download speed are all 20Mbit/s, now we can
roughly compute the time cost of one round query and the response is about 31 s.
The probabilistic verification process can increase the time costs slightly.

6 Conclusions

In this paper, we have proposed an efficient SPIR scheme based on the LWE with
binary error assumption and a VSPIR scheme using the probabilistic verification
that can work under the malicious server model. Compared with previous works,
our scheme is the first practical VSPIR scheme under the malicious server model
that we know of. Specifically, our VSPIR scheme has communication complexity
O(c

√
tb) that is smaller than the communication complexity of the proposal in

[18].
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A PROOF OF THEOREM 3

Proof (sketch). Let A be a CPA-adversary that distinguishes between encryp-
tions of messages of its choice with advantage ε. First, We construct a distin-
guisher D with advantage at least ε/2 between the two distributions: {(A,As+
x) : A ← Z

m×n
q , s ∈ {0, 1}n,x ∈ {0, 1}m} and {Unif(Zm×n

q × Z
m
q )}. The distin-

guisher D takes as input (A, c), and runs the adversary A with A as the public
key. Upon receiving message m0,m1 from the adversary, D chooses at random
i ∈ {0, 1}, returns the challenge ciphertext 2c+m mod q, then outputs 1 if the
adversary A guesses the right i, and 0 otherwise.

On the one hand, if c is uniformly random matrix then the challenge cipher-
text is also uniformly random, regardless of the choice of i. Hence in this case D
outputs 1 with probability at most 1/2. On the other hand, if c = As+x(mod q),
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then the challenge ciphertext is 2c + m = As
′
+ 2x + m(mod q). By assump-

tion A will guess the right i with probability (1 + ε/2). Finally, a standard
hybrid argument can be used to convert the distinguisher D from above to a
decision-LWEm,n,q with binary error distinguisher with advantage ε/2m.

B PROOF OF THEOREM 4

Proof. Let vector c =
∑�

i=1 (Asi + 2xi + mi) be obtained by adding 
 ≤ nc

ciphertexts. Recall that every row of T has Euclidean norm at most 20n log q.
Then every entry of

∑�
i=1 Txi is at most 20
n log q. All the m

′
is are binary so

each entry of Tm is at most 20
n log q. Hence the each entry in T(2x + m) is
bounded by 40
n log q < 4n3c < q/2 for some q. Now we can decrypt c to recover
the correct value.

C PROOF OF THEOREM 5

Proof. On the one hand, our proposed similar probabilistic verification proce-
dures provide the correctness of the response message from server. On the other
hand, as introduced in the preliminaries section, the GHV scheme is correct
regard to additive homomorphic operation, our MVGHV scheme follows the same
property. Then our VSPIR using the MVGHV scheme has the correctness when
the server provides the correct response.

D PROOF OF THEOREM 6

Proof (sketch). Let A be a CPA-adversary that distinguishes between encryp-
tions of queries of its choice with advantage ε, we first construct a distinguisher
D with advantage at least ε/2 between two queries: the query the client wants
and a query chosen randomly. The distinguisher D takes as input a pair of matri-
ces (A, C), and runs the adversary A with A as the public key. Upon receiving
message B0,B1 from adversary, D chooses at random i∈ {0, 1}, returns the chal-
lenge ciphertext encrypted by MVGHV scheme, then outputs 1 if the adversary
A guesses the right i, and 0 otherwise. On the one hand, if C is the random
query ciphertext, then C is equivalent to be a uniformly distribution. In this case
D outputs 1 with probability at most 1/2. On the other hand, If C encrypts the
query the client wants, by assumption A will guess the right i with probabil-
ity (1+ε)/2. Then the privacy of our VSPIR is based on the decision-LWE with
binary error assumption.

E PROOF OF THEOREM 7

Proof. To verify the correctness of the response, we sample a random vector
replace the index matrix. If an algorithm can break the privacy of our scheme
with probability negl(κ), the algorithm can distinguish queries for block X1 and
block X2. Then the adversary can deceive the client into obtaining an incorrect
value with probability negl(κ)/2m.
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Abstract. We consider cryptographic program obfuscation of point
functions (i.e., functions parameterized by a secret s that, on input a
string x, return 1 if x = s and 0 otherwise). We achieve the following
notable results: (1) the first efficient point function obfuscator for arbi-
trarily large as well as very short secrets, provable without random oracle
assumptions; (2) the first efficient and provably-secure (under the exis-
tence of one-way permutations or block ciphers that have no theoretical
attack faster than exhaustive key search) real-life applications built on
top of these obfuscators, such as: (a) entity authentication via password
verification; (b) entity authentication via passphrase verification; and (c)
password management for multi-site entity authentication.

Keywords: Program obfuscation · Password authentication

1 Introduction

Program obfuscation is the problem of modifying a computer program so to
hide sensitive details of its code without changing its input/output behavior.
While this problem has been known for several years in computer science, only
in the last 15 years, researchers have considered the problem of provable pro-
gram obfuscation; that is, the problem of program obfuscation, where sensitive
code details are proved to remain hidden under a widely accepted intractability
assumption (such as those often used in applied cryptography). Early results in
the area implied the likely impossibility of constructing a single program capa-
ble of obfuscating an arbitrary polynomial-time program into a virtual black
box [3]. Moreover, most recent results show the possibility of constructing differ-
ent obfuscators for restricted families of functions, such as point functions (and
extensions of them), under more or less accepted hardness assumptions (see, e.g.,
[2,5,10,12,16,19]). Point functions can be seen as functions that return 1 if the
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input value is equal to a secret value stored in the program, and 0 otherwise.
Although conceptually simple, point functions come with surprisingly interesting
applicability to real-life problems. As often suggested in the literature (see, e.g.,
[16,19]), point function obfuscation might be applicable to the password verifi-
cation function in very commonly used login/password authentication methods.

In this paper we carry out an exploration of this suggestion. Our main result is
a practical method for cryptographic password obfuscation under standard cryp-
tographic assumptions (and, specifically, without using a random oracle assump-
tion or a heuristic construction for a multilinear map), such as the existence of
a one-way permutation or, of a block cipher for which there are no theoreti-
cal attacks faster than exhaustive key search. Known practical methods include
the well-known password hashing method (i.e., at registration, server stores the
cryptographic hash of the user’s password; at authentication, server checks that
hash of the provided password is equal to the stored hash). This method was
analyzed in a cryptographic program obfuscation context by [16], but is however
only proved secure under the random oracle assumption. (Note that this assump-
tion, although often accepted by practitioners, has been declared as almost cer-
tainly false in its generality [9], and is especially troublesome in light of the less
and more recent attacks to widely considered or used hash functions such as
MD4, MD5 and SHA1). By now, there are several known obfuscators for point
functions that do not make the random oracle assumption, but they all assume
secrets much longer than typical passwords. The only exception and the closer
result in the literature to ours is an elegant construction of a perfectly one-way
function from [10], which could be used to construct a point function obfuscator
under the assumption of claw-free permutations. We note that this construction
is not practical as it is estimated 4–5 orders of magnitude less efficient than the
one we propose.

As all point function obfuscators in the literature use secrets of length about
equal to the factoring-type security parameter (e.g., 2048), to increase capa-
bility to commonly used passwords and passphrases as well as secrets of arbi-
trary lengths, we have designed two new methods: (a) a new hash function that
transforms these point function obfuscators in the literature so that they can
work with arbitrarily longer secrets; (b) a new (multi-bit-output) point function
obfuscator, which can work with secrets as short as the symmetric cryptography
security parameter (e.g., 128). Our obfuscators satisfy a computational notion
of functional correctness (i.e., no efficient adversary can find an input on which
the obfuscated program differs from the original program), and a rather strong
notion of obfuscation security (i.e., the obfuscated program is efficiently simu-
latable). An underlying technical contribution is the construction of an efficient
second-preimage-resistant extractor that is simultaneously a second-preimage-
resistant hash function, a pairwise almost-independent hash function, and has
efficient instantiations from a single efficient cryptographic primitive. Our effi-
ciency claims on this extractor and its resulting obfuscators are substantiated by
implementations and performance results on commodity computing resources.
Finally, we demonstrate that program obfuscators for point functions are usable
in the following real-life applications: password verification (obfuscating a server’s
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algorithm verifying if a client’s input string is equal to the client’s previously reg-
istered password), passphrase verification (as for password verification, but with
the variant that the client has registered a passphrase containing only structured
text); and password manager (obfuscating a server’s verification and retrieval
algorithms that verify the client’s master password or passphrase, and retrieve
a client’s previously registered password for a specific server).

In particular, we have modified code on an open-source password manager
(Pass, based on gpg2) to accommodate our (multi-bit-output) point function
obfuscator instead of their current cryptographic solution (whose obfuscation
properties can at best be proved using a random oracle assumption). The overall
resulting runtime of a specific password retrieval on the modified application
is less than 3% slower than the same operation on unmodified Pass. Solving
these password and passphrase obfuscation problems without using a random
oracle assumption are natural problems that have remained unsolved for decades.
Details of our real-life application results are discussed in AppendixA.

2 Definitions and Preliminaries

In this section we first recall basic definitions and slightly modify the theory-
oriented definition of program obfuscators into a practice-oriented definition that
better fits a large class of obfuscator implementations (including ours for point
functions) and where the correctness property only holds in a computational
sense (i.e., even against a possibly malicious polynomial-time adversary). Finally,
we discuss security notions for point function obfuscators.

Security Parameters. In our constructions and concrete security analysis, will
use two types of security parameters, described below:

1. the ‘factoring-based’ security parameter, a global parameter λf , currently set
to 2048, that is typically used to determine key lengths in asymmetric cryp-
tographic primitives (e.g., public-key encryption) proved secure under the
hardness of number theoretic problems related to factoring and/or discrete
logarithm problem; and

2. the ‘symmetric-cryptography’ security parameter, a global parameter λs, cur-
rently set to 128, that is most typically used to determine key/output lengths
in several symmetric cryptographic primitives (e.g., block ciphers).

Point Functions. We consider families of functions as families of maps from a
domain to a range, where maps are parameterized by some values chosen accord-
ing to some distribution on a parameter set. Let pF be a family of functions
fpar : Dom → {0, 1}, where Dom = {0, 1}n, and each function is parameterized
by value par from a parameter set Par = {0, 1}n, for some length parameter
n. We say that pF is the family of point functions if on input x ∈ Dom, and
secret value y ∈ Par, the point function fy returns 1 if x = y and 0 otherwise.
When we assume an efficiently samplable distribution of secret values y ∈ Par,
we define the (rounded) min entropy parameter of pF as the largest integer t
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such that each y ∈ Par is sampled with probability ≤ 2−t. The family mbpF of
multi-bit-output point functions is defined as follows: on input x ∈ Dom, secret
value y ∈ Par, and output value z, the function fy returns z if x = y and 0
otherwise.

Program Obfuscators: Formal Definitions. To define a cryptographic pro-
gram obfuscator for a class of functions F , we consider a pair of efficient algo-
rithms with the following syntax. On input function parameters fpar, including
a description desc(f) of function f ∈ F , the obfuscation generator genO returns
generator output gpar. On input a description desc(f) of function f ∈ F , gener-
ator output gpar, and evaluator input x, the obfuscation evaluator evalO returns
evaluator output y.

Informally, we would like to define an obfuscator for the class pF of point
functions as any such pair of algorithms satisfying some functionality correct-
ness property (i.e., the obfuscated program computes the same function as the
original program), some efficiency property (i.e., the obfuscated program is not
much slower than the original program), and some obfuscation security property
(i.e., the obfuscated program hides any sensitive information about the original
program which is not computable by program evaluation). Here, we actually con-
sider a slightly relaxed notion of the functionality correctness property, according
to which the obfuscated program can return an output different from the origi-
nal program for some of the inputs; however, these inputs are hard to find, even
to an efficient algorithm that has access to the program’s secret value. Further-
more, we discuss some of the security notions in the literature, and eventually
formally define the strongest known notion (implicit in [3] and saying, informally
speaking, that any efficient adversary’s view of the obfuscated program can be
efficiently simulated and thus the adversary learns nothing more than an upper
bound on the program size), specialized to the class of point functions pF with
secret distributions having high min-entropy. We now proceed more formally.

We say that the pair (genO, evalO) is a cryptographic program obfuscator for
the class pF of point functions if it satisfies the following:

1. (Computational correctness): For any fs in pF , with function parameters
fpar = (s, desc(pF )), and any efficient algorithm A, the event fs(x′) �= y
holds with probability δ, for some negligible (or very small) δ, where x′, y are
generated by the following probabilistic steps:

• gpar ← genO(fpar),
• x′ ← A(gpar, fpar),
• y ← evalO(gpar, x′).

2. (Polynomial Blowup Efficiency): There exists a polynomial p such that for all
fs in pF , the running time of evalO(gpar, ·) is ≤ p(|fs|), where |fs| denotes
the size of the (smallest) boolean circuit computing fs.

3. (Adversary view simulation security): Given any high min-entropy distribu-
tion D returning an n-bit secret, there exists a polynomial-time algorithm Sim
such that for any function fs, |s| = n, in the class pF of point functions, with
black-box access to fs such that for all fs in pF with parameters fpar, the
distributions Dview and Dsim are computationally indistinguishable, where
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• Dview = {s ← D; gout ← genO(s, desc(pF )) : gout},
• Dsim = {s ← D; gout ← Sim(1|s|, desc(pF )) : gout}.

Other security notions considered in the literature include adversary output
black-box simulation (where the simulator has also access to a black-box com-
puting the program [3] and targets simulating the adversary’s output bit), real-
vs-random indistinguishability (where no efficient adversary can distinguish the
obfuscation of the function f from an obfuscation of a random function in the
class F ) [5], and indistinguishability obfuscation (where no efficient adversary
can distinguish the obfuscation of any two circuits computing the same func-
tion f) [3]. We note that an obfuscator satisfying the adversary view black-box
simulation security notion also satisfies these latter 3 security notions.

Known Point Function Obfuscators. The obfuscator in [16] for the family of
point functions satisfies adversary view black-box simulation under the random
oracle assumption. This obfuscator essentially consists of computing a crypto-
graphic hash of the secret, similarly as typically done for passwords in real-life
systems. A previous result of [7], although formulated as a oracle hashing scheme,
can be restated as an obfuscator satisfying a strong variant of real-vs-random
indistinguishability under the Decisional Diffie Hellman assumption. The obfus-
cator in [19] satisfies adversary output black-box simulation under the existence
of a strong type of one-way permutations. Moreover, one of the obfuscators
in [5], based on any deterministic encryption scheme, satisfies real-vs-random
indistinguishability, and has several instantiations. This follows as deterministic
encryption schemes can be built using the hardness of the learning with rounding
problem [20] or the existence of lossy trapdoor functions [6], and the latter have
been built using any one of many group-theoretic assumptions (see, e.g., [13]).
Some of the resulting obfuscators have efficient implementations [12]. Finally,
an obfuscator was given in [2] using the hardness of the learning with error
problem.

All results mentioned so far either make the random oracle assumption or
work for secret distributions not significantly different than uniform. The only
obfuscator working for arbitrary secret distributions of high min-entropy can be
obtained using a result from [10] on perfectly one-way functions, constructed
assuming the existence of claw-free permutations. This result is far from having
an efficient implementation.

Our goal in the rest of this paper is to show an obfuscator for point functions
that works for arbitrary secret distributions of high min-entropy, without making
the random oracle assumption, and resulting in an efficient implementation.

Families of One-Way α -Permutations. The term efficient is used for run-
ning time in both a practical and theoretical sense, as needed. We say that a
family of functions {F} is efficiently samplable if there exists an efficient algo-
rithm randomly choosing a function F from the family, and is efficiently com-
putable if there exists an efficient algorithm that evaluates any function F from
the family. We say that a family of functions {F}, is a family of α -permutations
if the probability that, for a randomly chosen x, F (x) has > 1 preimages, is < α.
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Families of Pairwise-Independent Hash Functions. We say that a fam-
ily of hash functions {Hm,n}, where Hm,n : {0, 1}m → {0, 1}n is pairwise δ
-independent if for any x0 �= x1 ∈ {0, 1}m, and any y0, y1 ∈ {0, 1}n, it holds that
Prob[H(x0) = y0 ∧ H(x1) = y1 ] ≤ δ+2−2n. We say that family {Hm,n} is pair-
wise independent if it is is pairwise δ-independent, for δ = 0. Constructions for
pairwise-independent hash functions include a random one-degree polynomial in
a Galois field or a random one-degree polynomial modulo a prime [11], where by
a random polynomial we denote a polynomial with coefficients randomly cho-
sen in their domain set. All these constructions are efficiently sampleable and
efficiently computable.

Families of Second-Preimage-Resistant Hash Functions. This crypto-
graphic primitive was introduced in [17], under the name of universal one-way
hash functions, and have also been called target-collision-resistant hash func-
tions since [4] or second-preimage-resistant hash functions. We say that a family
of functions {h |h : {0, 1}a → {0, 1}b} is second-preimage-resistant over {0, 1}a

if it satisfies the following three properties: (1) h is efficiently sampleable from
its family; (2) every h in the family is efficiently computable; and (3) no efficient
adversary can win, except with very small probability, in the following game:
first, the adversary picks an input z, then a random function h is sampled from
its family; finally, the adversary, given h(z), wins the game if it finds an input x
such that h(x) = h(z). The first constructions for such families of functions were
proposed in [17], based on families of one-way permutations with varying domain
sizes and any family of pairwise-independent hash functions. Later, more prac-
tical constructions were proposed in [4,18], based on collision-intractable hash
functions. Generally speaking, second-preimage-resistant hash functions may or
may not satisfy pairwise-independence properties.

Randomness Extractors. The statistical distance between two distributions
D1,D2 over the same space S is defined as sd(D1,D2) = 1

2 Σx∈S |Prob[x ←
D1 ] − Prob[x ← D2 ] |. We say that distributions D1,D2 are δ-close if it holds
that sd(D1,D2) ≤ δ. We say that a distribution D is δ -close to uniform, or,
briefly, δ-uniform, if it holds that sd(D,U) ≤ δ, where U denotes the uniform
distribution over the same space S. The min-entropy of a distribution D is
defined as H∞(D) = minx{− log2(Prob[x ← D ])}. A function Ext: {0, 1}a ×
{0, 1}b → {0, 1}c is called a (k, ε)-extractor if for any distribution D on {0, 1}a

with min-entropy at least k, the distribution N(D) is ε-uniform, where N(D) =
{x ← D; e ← {0, 1}b; y = Ext(x, e) : (e, y)}. The leftover hash lemma [14]
says that if {Hm,n} is a family of pairwise-independent hash functions, value
x is drawn according to a distribution D such that H∞(D) ≥ k, and n ≥
k − 2 log(1/ε), then the function Ext(x,Hm,n) defined as y = Ext(x,Hm,n) =
Hm,n(x) is a (k, ε)-extractor. By inspection of the proof in [15], we see that it
can be directly extended to families of pairwise δ-independent hash functions,
as follows.
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Lemma 1. For any δ > 0, if {Hm,n} is a family of pairwise δ-independent hash
functions, value x is drawn according to a distribution D such that H∞(D) ≥
k, and n ≤ k − 2 log(1/ε), for some ε ≤ (1/2) log(1/δ), then the function
Ext(x,Hm,n) defined as y = Ext(x,Hm,n) = Hm,n(x) is a (k, ε)-extractor.

We say that a function Ext: {0, 1}a × {0, 1}b → {0, 1}c is a second-preimage-
resistant (k, ε)-extractor if it is both a second-preimage-resistant hash function
over {0, 1}a and a (k, ε)-extractor.

3 An Efficient Second-Preimage-Resistant Extractor

In this section we construct an efficient second-preimage-resistant extractor, or
actually a family of hash functions which satisfies the following desirable com-
bination of functionality, efficiency and security properties:

1. it achieves arbitrarily large compression, in that it maps an arbitrarily-long
input string to a fixed-length output string;

2. it is an almost pairwise-independent hash function;
3. it is a one-way function with second-preimage resistance;
4. in addition to elementary operations, it only uses, as a black-box, a hash

function satisfying above properties 2 and 3, and achieving small and fixed
compression (specifically: it maps a fixed-length input string to a fixed-length
output string, where the difference between the input string’s length and the
output string’s length can be any small constant ≥ 1).

Properties 1 and 4 (resp., 2 and 3) are used to satisfy functionality correctness
and efficiency (resp., security) requirements. The closest constructions to ours
from the literature only satisfy 3 out of 4 of the listed properties, as follows: two
constructions in [17] missed properties 1 or 4, and a construction from [4,18]
missed property 2.

Formally, we achieve the following

Theorem 1. Let tF,sample (resp., tF,eval) denotes the running time to sample
(resp., evaluate) a function F . Let {aF | aF : {0, 1}b → {0, 1}b} be a family
of one-way α-permutations, and let {piH | piH : {0, 1}a → {0, 1}b} be a family
of pairwise δ-independent hash functions. There exists (constructively) a fam-
ily {sprH | sprH : {0, 1}�(a−b) → {0, 1}b} of second-preimage-resistant (k, ε)-
extractors such that

– b ≤ k − 2 log(1 + ε) and ε ≤ (1/2) log(1/δ′), for δ′ = �(δ + α)
– tsprH,sample = O(�(tpiH,sample) + taF,sample), and
– tsprH,eval = O(�(taF,eval + tpiH,eval + tpiH,sample) + taF,sample).

The function sprH obtained in the proof of Theorem 1 will be applied to obtain
the following two important new results: (1) in Sect. 4, it will be used in combina-
tion with the obfuscators from [5–7,13], and [19], to design efficient obfuscators
for point functions with secret length higher than the factoring-type security
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parameter (e.g., 2048); (2) in Sect. 5 it will be used to design an efficient obfus-
cator for multi-bit-output point functions with secret length greater than or
equal to the symmetric-cryptography security parameter (e.g., 128). The rest of
this section is devoted to proving Theorem 1.

Informal Description of Function sprH: Our goal is to define a family of
functions, denoted as sprH, that satisfies the above properties 1–4. One higher-
level view of our construction looks similar to the linear hash construction in
[4,18], and its lower-level component looks similar to a function from [17]. How-
ever, some technical differences with these papers actually allow us to achieve
all 4 desired properties; most importantly:

1. sprH processes an arbitrarily long input by repeatedly applying an inner
function with the same domain and codomain sizes (instead, in [17] domain
and codomain sizes vary). This approach is important to achieve properties
1 and 4.

2. in sprH the inner function used at each iteration is both a second-preimage-
resistant function and a pairwise almost-independent hash function (as
opposed to only a collision-intractable hash function, as in [4,18]). This app-
roach is important to achieve properties 2 and 3.

Formal Description: Let desc(F ) denote a conventional encoding of function
F , and let a, b denote positive integers such that a > b and a − b ≥ 1 is a
small constant. The construction for sprH uses a pairwise δ-independent hash
functions piH : {0, 1}a → {0, 1}b, and a one-way α-permutations aP : {0, 1}b →
{0, 1}b. We define function sprH : {0, 1}∗ → {0, 1}b, as follows.
Input to sprH: string x = x1| · · · |x�, where xi ∈ {0, 1}a−b, for i = 1, . . . , �.
Instructions for sprH:

1. Set u0 = 0b

2. Randomly sample a one-way α-permutation aP
3. For i = 1, . . . , �,

randomly sample a pairwise δ-independent hash function piHi

compute vi = aP (ui−1|xi) and ui = piHi(vi)
4. Return: (u�, desc(aP ), desc(piH1), . . . ,, desc(piH�)).

The running times tsprH,sample and tsprH,eval claimed in Theorem 1 are veri-
fied by algorithm inspection, observing that sprH can compress arbitrarily long
inputs into b-bit outputs, and that it invokes � times a single function piH(aP (·))
compressing a-bit outputs to b-bit outputs. In what follows, we show that sprH
is a second-preimage-resistant (k, ε, δ′)-extractor with the parameters in Theo-
rem 1, by showing that it is both a second-preimage-resistant hash function over
{0, 1}a and a pairwise δ′-independent hash function.

The proof that sprH is a second-preimage-resistant hash function directly
follows by applying results in [4,17,18], as follows. First, we observe that the
function obtained by cascading a one-way α-permutation aP with a pairwise
δ-independent hash function piH, is a second-preimage-resistant hash function.
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This follows directly by Lemma 2.2 in [17], which proves the exact same result
when α = 0, δ = 0 and a − b = 1. We observe that no technical difficulty is
encountered in extending this proof to values of α, δ that are negligible or very
small and a value of a − b that is a small constant (or even logarithmic in the
security parameter). Because of this observation, we note that sprH can be
considered as the linear hash iterated application of a second-preimage-resistant
hash function, as in the linear hash construction from [4,18]. In particular, we
can apply Theorem 5.3 from [4] which proves our desired statement; i.e., the
linear hash construction transforms a second-preimage-resistant hash function
from a-bit strings to b-bit strings into a second-preimage-resistant hash function
from arbitrary-length strings to b-bit strings.

The proof that sprH is a pairwise δ′-independent hash function is obtained
by induction over �. The base case directly follows by observing that the assump-
tions that function piH1 is pairwise δ-independent and that function aP is an
α-permutation imply that the composed function piH1(aP (·)) is a pairwise δ′-
independent hash function, for δ′ = α + δ. The inductive case follows by com-
bining the induction hypothesis with the fact that at the �-th iteration, function
sprH computes u� using function piH�(aP (·)) for an independently chosen pair-
wise δ-independent hash function piH�.

Implementation: Primitive Setting. Families of pairwise-independent hash
functions piHi can be implemented as in Sect. 2. Function aP can be instantiated
in 3 ways:

1. setting n = 2048, and using exponentiation modulo a prime; that is,
aPg,p(x) = gx mod p, where publicly available parameters p, g are as follows:
p is an (n + 1)-bit prime and g is a generator of Z∗

p;
2. using a length-preserving collision-intractable hash function cihk : {0, 1}n →

{0, 1}n for which no theoretical attacks (faster than birthday attacks) are
known, and assuming such a function is a one-way α-permutation, for a value
α negligible in n or very small; that is, aPcih,k(x) = cihk(x);

3. as a block cipher bc : {0, 1}κ × {0, 1}n → {0, 1}n for which no theoretical
attacks (faster than exhaustive search attacks) are known, to be run on a
fixed, but randomly chosen, input block r, and assuming that the resulting
function bc(·, r) is a one-way α-permutation over the set of block cipher keys,
for α negligible in n or very small; that is, aPbc,r(x) = bc(x, r).

In our implementation, we used the 3rd option for efficiency reasons, and based
on the observation that function aPbc,r(x), mapping the set of keys of the block
cipher to the cipher’s output, is indeed expected to be a one-way α-permutation.
This observation is based on the fact that if function aPbc,r(x) were not close to
a one-way α-permutation, a theoretical attack exhaustively searching for any of
the colliding keys would be possible. Note that such an attack would be faster
than exhaustive key-search, thus giving a theoretical break of the block cipher.
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4 Obfuscators for Point Functions with Larger Secrets

In this section we show how to obtain point function obfuscators where the
obfuscated secret value can have length and min entropy parameters arbitrar-
ily greater than the factoring-type security parameter, starting from a point
function obfuscator where the obfuscated secret value has fixed length and min-
entropy parameter, which we already know how to build. Formally, we obtain
the following

Theorem 2. Let �a, ea, �u, ε be integers such that �u + 2ε ≤ ea ≤ �a and
ε ≥ λs, let sprH be a second-preimage-resistant (�a, ε)-extractor, and let
(genOu,evalOu) be a cryptographic program obfuscator for the family of point
functions with ε-uniformly distributed �u-bit secret values. Then there exists (con-
structively) a cryptographic program obfuscator obfuscator (genOa,evalOa) for
the family of point functions with respect to �a-bit secrets drawn from any dis-
tribution of min-entropy ea.

An important consequence of Theorem 2 is that any one of the point function
obfuscators in [7], [5,6,13], or [19] can be extended to obtain a point function
obfuscator that works for secret values with arbitrarily larger length and drawn
from arbitrary distributions of min entropy larger than the factoring-type secu-
rity parameter.

Informal and Formal Descriptions: The basic idea of the transformation
underlying Theorem 2 follows a ‘hash-and-obfuscate’ paradigm, analogously to
the much studied ‘hash-and-sign’ paradigm used for the design of digital signa-
ture schemes for large messages. This paradigm goes through two steps: first,
the input is hashed using a second-preimage-resistant extractor, which we will
implement using the construction sprH from Sect. 3; then, the extractor’s out-
put is processed through the obfuscator with fixed length parameter, which can
be instantiated using any one of the schemes from the literature (e.g., [5,5–
7,13,20], [10] or [19].) The resulting scheme satisfies computational functionality
correctness, and the same adversary view simulation obfuscation notion as the
used obfuscator for fixed-length secrets. We now proceed more formally. The
construction for (genOa,evalOa) uses the family of efficiently samplable func-
tions sprH : {0, 1}∗ → {0, 1}b from Sect. 3, which are simultaneously second-
preimage-resistant hash functions and pairwise δ′-independent extractors, and an
obfuscator (genOu,evalOu) for the family of point functions with length param-
eter �u and secret values with almost uniform distribution.
Input to genOa: parameters 1eu , 1�u , ε, secret value s ∈ {0, 1}�a

Instructions for genOa:

1. Randomly sample function sprH : {0, 1}�a → {0, 1}�u

2. Compute v = sprH(s)
3. Compute outu = genOu(v)
4. Return: outa = (desc(sprH), outu).
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Input to evalOa: input value x ∈ {0, 1}�a and the output from genOa, containing
the description desc(sprH) of function sprH and the output outu from genOu.

Instructions for evalOa:

1. Compute v′ = sprH(x)
2. Return: evalOu(v′).

Proofs are omitted due to space restrictions.

5 Obfuscators for Multi-bit-output Point Functions
With Shorter Secrets

In this section we describe an obfuscator, denoted as (genOmb, evalOmb), for
the family of multi-bit-output point functions, where secrets can have a shorter
length parameter than in our previous implementations, which implies applica-
bility to the obfuscation of passphrases and even passwords. More specifically,
this obfuscator differs from analogue results in the literature and in previous
sections, in the following properties:

1. it works for a generalized type of point functions: multi-bit-output point func-
tions, whose output can be a long string, instead of a bit;

2. it works for a length parameter that can be arbitrarily chosen as ≥
the symmetric-cryptography security parameter (i.e., 128), instead of the
factoring-type security parameter (i.e., 2048);

3. its obfuscation property can be based on the security of a symmetric cryp-
tography primitive (i.e., a block cipher or a cryptographic hash function),
instead of a number theory problem typically applied to construct an asym-
metric cryptography primitive.

Formally, we achieve the following

Theorem 3. Let �o, �s, k, ε be integers such that k ≤ �s. Also, let sprH be
a second-preimage-resistant (k, ε)-extractor and let (KeyGen, Enc, Dec) be a
secure symmetric encryption scheme. Then there exists (constructively) a cryp-
tographic program obfuscator (genOmb, evalOmb) for the family of multi-bit out-
put point functions mbpF with �o-bit outputs and �s-bit secrets drawn from any
distribution of min-entropy k.

We note that in the above theorem we are trading off some slightly, but not
significantly, reduced confidence in the security assumptions (as indicated in
item 3 of the above list), to achieve increased functionality power (as indicated in
items 1 and especially item 2 of the above list). Indeed the property in item 1 can
be obtained without resorting to symmetric cryptography primitives (see, e.g.,
[8]), but this comes with decreased obfuscator’s efficiency. The (most interesting)
property in item 2 was unknown and is the one that allows applications to
passphrase and password obfuscation, as further detailed in AppendixA.
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Formal Description: Let | denote string concatenation, and let sprH denote
a second-preimage-resistant (k, ε)-extractor (such as the one constructed in
Sect. 3). Also, let (KeyGen, Enc, Dec) be a symmetric encryption scheme with
the following syntax: on input a unary string 1n denoting the symmetric encryp-
tion security parameter, KeyGen returns an n-bit random key; on input key
and message m, encryption algorithm Enc returns ciphertext c; on input key
and ciphertext c, decryption algorithm Dec returns message m. Our construc-
tion of (genOmb, evalOmb) combines the extractor sprH with the encryption
scheme (KeyGen, Enc, Dec), as follows.
Input to genOmb: security parameters 1n, 1n0 , 1ε, entropy parameter k, secret
value s ∈ {0, 1}�s , output value w ∈ {0, 1}�o

Instructions for genOmb:

1. uniformly and independently choose r ∈ {0, 1}n0

2. compute key = sprH(r|s), where key ∈ {0, 1}n

3. compute v = Enc(key, w|0n0)
4. set gpar = (r, v) and return: gpar.

Input to evalOmb: security parameters 1n, 1n0 , 1ε, entropy parameter k, the pair
(r, v) returned by genOmb, and input value x ∈ {0, 1}�

Instructions for evalOmb:

1. compute key′ = sprH(r|x), where key′ ∈ {0, 1}n

2. compute (w′|w′′) = Dec(key′, v)
3. if w′′ = 0n0 return w′ else return 0

Proofs and performance analysis are omitted due to space restrictions.

6 Conclusions

We showed for the first time how to efficiently obfuscate passwords, passphrases
and password managers, without a random oracle assumption. Our obfuscator
can work with passwords and passphrases of practical lengths. Even if we expect
practitioners to continue using the simpler to implement construction based on
cryptographic hashing of a password, our construction gives confidence that the
impact of any future attacks to cryptographic hash functions can be significantly
limited by a simple protocol design change.

A Applications: How to Obfuscate Password Verification,
Passphrase Verification and Password Managers

In this section we show how to use the obfuscators from previous sections to
obfuscate, using standard cryptographic assumptions (and specifically not using
the random oracle assumption), software applications commonly used in real-life,
such as password verification, passphrase verification, and password managers.
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Obfuscation of Password Verification. Entity authentication based on
shared secrets is one important class of system applications that seem to sig-
nificantly rely on obfuscation, as we now explain. Consider the typical scenario
of a client and a server who use a secret to let the server successfully register
and later authenticate a client, as follows:

1. registration: the client gives an obfuscated version of the secret verification
program to the server, thus not revealing the secret to any server intruder;

2. authentication: the client securely sends the secret to the server, which runs
the obfuscated version of the secret verification program to verify that the
received secret is the same as the one in the obfuscated verification program.

One important case is when such secret is the client’s password. Indeed, entity
authentication via password verification, has often been used as an application
motivating the design of program obfuscators for point functions. Note that in
this case, the verification program computes precisely a point function, where
the secret value is the client’s password stored during the registration phase,
and the obfuscated program’s input is the client’s string entered during the
authentication phase. As mentioned before, point function obfuscators in the
literature are either proved secure under the random oracle assumption or for
secret points of length about equal to the factoring-type security parameter (i.e.,
2048 bits, which is much more than the length of real-life passwords). When
using passwords with ASCII characters including lowercase letters, uppercase
letters, numbers and special symbols (for a total of 96 characters), a password
of 20 uniformly and independently chosen characters will contain just below
132 bits of entropy. Note that passwords of 20 or more characters have already
widespread usage, for instance, in WiFi access to residential networks in private
homes. Our solution, which works only when passwords are chosen by the user,
can be defined as the hashing-based scheme from [16], with the only difference
that the cryptographic hash function H, which could be implemented as SHA2
or SHA3, is actually replaced by the hash function sprH from Sect. 3, where the
one-way α-permutation is instantiated using a block cipher like AES, as already
described there. With this instantiation, the provable properties of hash function
sprH only depend on the (arguably reasonable) assumption that a block cipher
like AES (when parameterized by a random input block x and seen as a function
F (·, x) mapping the key k to an output y = F (k, x)) is a one-way α-permutation,
for some small α. Following the discussion at the end of Sect. 3, this assumption
is also supported by the lack of a known theoretical attack faster than exhaustive
key-search for AES.

Obfuscation of Passphrase Verification. Our solution for password verifica-
tion is directly applicable to passphrase verification, where a meaningful English
sentence, with lower entropy per character, is used as a passphrase. Various tech-
niques have been proposed in the literature to estimate the average number of
entropy bits per character in an English passphrase (typically, a number between
0.5 and 3), and may vary depending on the specific assumptions made on the
used character sequences. After estimating the average number v of entropy
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bits per character in a passphrase taken from a desired set of sequences, a sys-
tem designer could augment passphrase choice requirements by requiring that a
passphrase has length at least q, satisfying qv ≥ 128.

Obfuscation of a Password Manager. Our solution for password verifica-
tion is also directly applicable to password managers, another pervasive real-
life authentication application, as today the number of password-based services
used by the average computer user has increased dramatically. We have evalu-
ated some password manager packages for suitability for our experiments with
point function obfuscators, and chosen Pass, a well-known, open-source, pass-
word manager [1]. The cryptography currently used in Pass can be seen as a
natural extension of the obfuscator from [16] for point functions, to an obfuscator
for the password manager’s password derivation program, under the assumption
that the used collision-resistant hash function behaves like a random oracle. We
have augmented this password manager with an option that obfuscates the pass-
word manager’s password derivation program without making a random oracle
assumption. Our option processes the user’s passphrase or password using our
multi-bit-output point function obfuscator from Sect. 5, which is based on the
hash function from Sect. 3, and only makes the previously discussed assumption
on a block cipher with unknown key. Recall that our multi-bit-output obfus-
cator from Sect. 5 could work in two modes: a symmetric or an asymmetric
mode, depending on whether the multi-bit output string was encrypted using
symmetric or asymmetric encryption. Because Pass already encrypts the web-
site passwords using asymmetric encryption, we could use our multi-bit-output
obfuscator in asymmetric mode, and were able to significantly reduce code com-
plexity by focusing our software production on augmenting Pass with the use of
our hash function from Sect. 3.

Performance Analysis. We used (here and in the rest of the paper) a Dell
2950 processor (Intel(R) Xeon(R) 8 cores: CPU E5405 @ 2.00GHz, 16 GB RAM),
without parallelism. We performed two types of performance analysis. In Table 1
we compare the running time of the cryptographic hash function SHA1 imple-
mented under Pass against the running time of our proposed replacement: i.e.,

Table 1. Performance of SHA1 against our hash function sprH.

Input length Output length SHA1 running time sprH running time

64 128 0.0000 s 0.0001 s

128 128 0.0000 s 0.0001 s

192 128 0.0001 s 0.0004 s

256 128 0.0001 s 0.0007 s

320 128 0.0001 s 0.0010 s

384 128 0.0001 s 0.0014 s

448 128 0.0001 s 0.0017 s

512 128 0.0001 s 0.0020 s
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our cryptographic hash function sprH. In Table 2 we compare the running times
of Pass procedures against the running time of our newly proposed option: i.e.,
Pass with our multi-bit-output point function obfuscator.

Our second set of performance results is about a metric, denoted as time
ratio, and defined as the ratio of the running time of Pass while using SHA1
to the running time of Pass while using our hash function. Because Pass is
essentially performing not much computation other than running calls to gpg2,
we performed our measurements directly on gpg2 calls.

Table 2. Performance of Pass with SHA1 against Pass with our hash function sprH

Type of
master secret

Estimated
entropy

Time ratio on
gpg2 -X –gen-key

Time ratio on
pass insert <site>

Time ratio on pass
-X show <site>

Password 132 0.8756 1 0.9783

Passphrase 100 0.9606 1 0.9363

In Table 2, we consider the three main commands that can be run with Pass:
key generation, website password insertion and website password recovery. In
the first row, we used a master password of 20 characters uniformly and inde-
pendently chosen from a set of 96 ASCII characters. In the second row, we used
a master passphrase of 56 characters from a meaningful English sentence, which
was roughly estimated to have about 100 bits of entropy. As clear from the last
3 columns of the table, our modified version of Pass only slows down Pass by
very small percentages, while offering a password manager obfuscation without
a random oracle assumption.
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Abstract. We propose a novel multiple-recipient key-encapsulation
mechanism (mKEM) scheme which takes multiple public keys as input
and outputs a single key shared by corresponding recipients. We con-
struct our scheme in the random oracle model based on low-noise LPN
assumption which is a post-quantum problem. In the game simulation
of security proof, a variant of Extended Knapsack LPN (which can be
proved equivalent to standard LPN) is used to handle the decapsulation
queries. The property of LPN problem provides randomness reuse prop-
erty to shorten the length of the ciphertext compared with traditional
way.

Keywords: Post quantum cryptography · Low-noise LPN
Multi-recipient KEM

1 Introduction

Multi-recipient key-encapsulation mechanism (mKEM) is a popular public key
cryptographic primitive that allows a sender to transfer a session key to multiple
recipients who can get the session key by decrypting the ciphertext with their
own private key. A hybrid public key encryption based on a data encapsulation
mechanism (DEM) keyed by a KEM is a typical senario that allows one to send
a large amount of data [13]. In such case, one could share a session key K with
n parties via sending the underlying session key K n times and then send the
data by using any fast symmetric scheme with that key. However, this may be
quite inefficient in either size of ciphertext or computation cost. In this context,
the mKEM scheme is motivated to encapsulate a single session key to multiple
recipients. Running one mKEM other than multiple KEM instances benefits to
the ciphtext size to be linearly proportional to the number of receivers while
the latter one is many times more than it. For example, Alice now want wants
to encrypt an email to Bob and Charlie, or encrypt a file on her system such
c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 513–529, 2018.
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that Bob or Charlie can decypt, which is a typical senario of one-to-many model.
One way is to simply encrypts the data twice, once for Bob and once for Charlie,
using their respective public key schemes. Another way is to encrypt the data
once with a symmetric encryption key K and then encrypt this key under Bob
and Charlie’s public keys. The former one is clearly wasful especially if the data
to be encrypted is large and the latter one will become very expensive for a
large number of users. It is apparently to see that mKEM is more efficient in
such cases.

Multi-recipient PKE is a close cryptographic primitive to mKEM. Kurosawa
[21] proposed randomness reuse technique across single-recipient PKE schemes,
which could yield a shortened ciphertext multi-recipient PKE schemes. In 2003,
a new notion named reproducibility is introduced by Bellare et al. [6]. Addition-
ally, a reproducibility test is given to determine whether a single-recipient PKE
scheme allows to transform to multi-recipient PKE (mPKE) through such ran-
domness reuse technique. However, a recent concrete mPKE introduced by Wei
et al. [26] showed that passing the reproducibility test is not the determining
factor for obtaining a mPKE. In 2009, Hiwatari et al. [17] proposed two concrete
IND-CCA secure mKEM schemes that do not pass the reproducibility test.

Most of the mKEM schemes are based on the discrete logarithm problem.
Taking the scheme proposed by Boneh, Ma and Waters (BMW scheme) [27]
and its variants [8] as examples, the security of those protocols are based on
decisional bilinear Diffie-Hellman assumption. Since post quantum cryptography
has become a hot topic, to build a post-quantum mKEM is also an exciting
thing to do. A promising candidate could be Learning Parity with Noise (LPN)
problem which is well-known in cryptography and learning theory. The LPN
problem states that the distribution {(A, (As + e))|A $← Z

m×n
2 , e $← Bm

μ , s $←
Z

n
2} is indistinguishable from uniform where Bμ is the Bernoulli distribution with

parameter μ, i.e., Pr[x = 1 : x ← Bμ] = μ. While in standard LPN the Bernoulli
parameter μ is constant (with noise parameter 0 < μ < 1/2), in low-noise LPN
we have μ = O(n−c) (typically constant c = 1/2), where n is the dimension of
the LPN secret.

There are two versions of LPN, the decisional one is given above and the
search one requires that it is computational infeasibile to o find out the random
secret binary vector s ∈ {0, 1}n from those noisy linear samples. Those two ver-
sion have been proved polynomially equivalent [2,19]. The computational LPN
problem is deemed as a well-known NP-complete problem “decoding random
linear codes” [9], which makes LPN be a promising candidate for post-quantum
cryptography. Under low-noise rate, the best solving algorithm needs 2O(n−c)

tiem when given O(n) samples [5,10,24].

1.1 Related Work

The first formalized security notion for mKEM is given by Smart [25], where
the IND-CCA2 security is defined in a similar manner as the Replayable CCA
security introduced in [11]. In this paper, we use IND-CCA to represent the



CCA Secure Multi-recipient KEM from LPN 515

same meaning as IND-CCA2 in that model. Smart’s model imposes a restriction
that the decapsulation oracle queriyes can be only allowed if the resulting key
is different from the key encapsulated by challenge ciphertext and the adversary
can choose arbitrary honest and uncorrupted ciphertext.

Barbosa et al. [4] constructed multi-recipient encryption scheme support-
ing the reuse of randomness based on the work of Bellare et al. [6]. A new
notion called weak reproducibility is proposed to construct a single-message
multi-recipient scheme from single-recipient PKE. An mKEM provably secure
in the standard model is proposed.

In 2006, Bellare et al. [7] proposed a framework that allows for very effi-
cient encryption operations regarding stateful encryption. Some DHIES [1] and
Kurosawa-Desmedt [22] schemes are proposed in their stateful setting. But a
drawback for this is that it requires multiple distinct encryption instances to
share a secret state which may cause other security risks.

In 2009, Hiwatari et al. [17] proposed two concrete mKEM schemes satisfying
IND-CCA security and IND-CCCA security [18], respectively by applying the
proof simulation techniques in [14] and [16]. Matsuda et al. [23] introduced a new
framework to cover the efficient constructions for mKEM in PKC’13. However,
those schemes were proved in a model that the challenged parties are fixed.

As in [3,12], mKEM under the indentity-based setting can be found. We
here concentrate on traditional public key infrastructure but depend on LPN
hardness.

1.2 Our Contribution

We propose a post-quantum IND-CCA secure mKEM scheme under the LPN
assumption. Firstly, based on the Extended Knapsack LPN and its variant, we
get an IND-CPA secure PKE. Then with the random oracle to randomize the
key encapsulation from a random message m, the output can be ensured to be
uniformly distributed. In our scheme we apply the randomness reuse to shorten
the ciphertext. Technically, the LPN problem itself makes it feasible to generate
multiple ciphertexts with a common matrix A (as a part of the public key shared
by all recipients), which is still secure for instantiating with different secret key
as LPN instances. Different from previous mKEM scheme’s proof, we give it by
game simulation in Smart’s model.

2 Preliminaries

2.1 Notation and Definitions

We use capital letters (e.g., X,Y ) for random variables and distributions, stan-
dard letters (e.g., x, y) for values. Vectors are used in the column form and
denoted by bold lower-case letters (e.g., a). We treat matrices as the sets of its
column vectors and denote them by bold capital letters (e.g., A). The support of
a random variable X, denoted by Supp(X), refers to the set of values on which
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X takes with non-zero probability, i.e., {x : Pr[X = x] > 0}. For a binary string
x, |x| refers to the Hamming weight of x. We use Bμ to denote the Bernoulli
distribution with parameter μ, i.e., Pr[Bμ = 1] = μ, Pr[Bμ = 0] = 1 − μ, while
Bn

μ denotes the concatenation of n independent copies of Bμ. For n, � ∈ N, Un

(resp., U�×n) denotes the uniform distribution over {0, 1}n (resp.,{0, 1}�×n) and
independent of any other random variables in consideration. X ∼ D denotes that
random variable X follows distribution D. We use s ← S to denote sampling an
element s according to distribution S.

Indistinguishability. We define the (t, ε)-computational distance between ran-
dom variables X and Y , denoted by X ∼

(t,ε)
Y , if for every probabilistic distin-

guisher D of running time t it holds that

| Pr[D(X) = 1] − Pr[D(Y ) = 1] | ≤ ε

Computational Indistinguishability. Is defined with respect to distribution
ensembles (indexed by a security parameter). For example, X

def= {Xn}n∈N and
Y

def= {Yn}n∈N are computationally indistinguishable, denoted by X
c∼ Y , if for

every t = poly(n) there exists ε = negl(n) such that X ∼
(t,ε)

Y .

Entropy Notions. For a random variable X and any x ∈ Supp(X), the sample-
entropy of x with respect to X is defined as

HX(μ) def= log(1/Pr[X = x])

from which we define the Shannon entropy, Rényi entropy and min-entropy of
X respectively, i.e.,
H1(X) def= Ex←X [HX(x)],H2

def= − log
∑

2−2HX(x)

x∈Supp(X)

,H∞
def= minHX(x)
x∈Supp(X)

.

For 0 < μ < 1/2, let H(μ) def= μ log(1/μ)+(1−μ) log(1/(1−μ)) be the binary
entropy function so that Hμ = H1(Bμ). We know that H1(X) ≥ H2(X) ≥
H∞(X) with equality when X is uniformly distributed. A random variable X of
length n is called an (n, λ)-Rényi entropy (resp., min-entropy) source if H2(X) ≥
λ (resp., H∞(X) ≥ λ). The statistical distance between X and Y , denoted by
SD(X,Y ), is defined by

SD(X,Y ) def=
1
2

∑

x

|Pr[X = x] − Pr[Y = x]|

We use SD(X,Y |Z) as a shorthand for SD((X,Z), (Y,Z)).

Definition 1 (pairwise independent hashing). A function family H = {ha :
{0, 1}n ← {0, 1}m, a ∈ {0, 1}l is pairwise independent if for any x1 �= x2 ∈
{0, 1}n and any v ∈ {0, 1}2m it holds that

Pr
a

$←{0,1}l

[(ha(x1), ha(x2)) = v] = 2−2m.
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2.2 Learning Parity with Noise

Definition 2 (Learning Parity with Noise). The decisional LPNn,�,μ prob-
lem is hard if for every � = poly(n) we have

(A, A · s + e) c∼ (A,b)

where A ∼ U�×n, s ∼ Un, e ∼ B�
μ and b ∼ U� while the secret length is n and

the noise rate is 0 < μ < 1/2. The computational LPNn,�,μ problem is hard if
for every � = poly(n) and every PPT algorithm D we have

Pr[ D(A, A · s + e) = s ] = negl(n)

where A ∼ U�×n, s ∼ Un and e ∼ B�
μ.

Definition 3 (Knapsack LPN). The knapsack LPN problem is hard if for
� > n samples we have

(A, Aᵀs) c∼ (A, b)

where A ∼ U�×n, s ∼ B�
μ, b ∼ Un.

With a standard hybrid argument technique, we have results on the r-fold
LPN and r-fold KLPN that

(A,AS + E) c∼ (A,B1)

where A ∼ U�×n,S ∼ Un×r,E ∼ B�×r
μ and B1 ∼ U�×r.

(A,SᵀA) c∼ (A,B2)

where A ∼ U�×n,S ∼ B�×r
μ and B2 ∼ Ur×n.

Next, we introduce extended knapsack LPN problem which is still hard even
if the information of errors is leaked to the adversary partially.

Definition 4 (Extended Knapsack LPN-EKLPN). The Extended Knap-
sack LPN problem is hard if for � > n samples we have

(A,Aᵀs, e, sᵀe) c∼ (A,b, e, sᵀe)

where A ∼ U�×n,b ∼ Un, s, e ∼ B�
μ.

Lemma 1. Assume that the Extended Knapsack LPN problem is hard then we
have

(A,Aᵀs, e, sᵀe) c∼ (A,Aᵀs′, e, sᵀe)
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Proof. From Definition 4 we have

(A,Aᵀs, e, sᵀe) c∼ (A,b, e, sᵀe) (1)

From Definition 3 we have

(A, Aᵀs′) c∼ (A, b) (2)

where A ∼ U�×n, s, s′, e ∼ B�
μ.

By combining (1) with (2), we immediately obtain

(A,Aᵀs, e, sᵀe) c∼ (A,Aᵀs′, e, sᵀe)

The Extended Knapsack LPN problem to standard LPN problem reduction
has been given in [15].

3 mKEM from LPN

3.1 Multi-recipient Key-Encapsulation Mechanism

Let the variable k ∈ N denote the maximum number of honest recipients in an
mKEM scheme. An mKEM can take m (1 ≤ m ≤ k) receivers’ public keys as
input and output a key K ∈ KmKEM and a ciphertext generated based on all the
m public keys. The mKEM can be formally defined by the following algorithms:

mKEM.KeyGen(1n): This is a probabilistic algorithm that takes as input the
security parameter 1n and outputs a pair of public and secret key (pk, sk).

mKEM.EnCap(P): This is a probabilistic algorithm that takes as input a set of
public keys of m receivers P = (pk1, · · · , pkm) and outputs a key K ∈ KmKEM

and a ciphertext C of K.
mKEM.DeCap(i,P, C, ski): This is a deterministic algorithm that takes as input

an index i (i ∈ [#P]) indicating the secret key ski of pki in the parameter
P = (pk1, · · · , pkm), and a ciphertext C as input, and outputs a key K if C
is valid.

Definition 5 (Correctness). We say that a mKEM scheme is correct if for
an arbitrary secret key ski (i ∈ [m]) corresponding to pki ∈ P = {pk1, · · · , pkm},
(K,C) = mKEM.EnCap(P) and mKEM.DeCap(i,P, C, ski) = K holds with over-
whelming probability.

3.2 Smart’s CCA Model

Definition 6. A multi-recipient key-encapsulation mechanism scheme mKEM is
IND-CCA secure if for any integers m and k with m ≤ k, the advantage of the
adversary AdvmKEM,Aind−cca(n) = |Pr[EXPind−cca

mKEM,A(n, k) = 1] − 1/2| is negligible
in n for all probabilistic polynomial time (PPT) adversaries A = (A1,A2), where
the security experiment EXPind−cca

mKEM,A(n, k) is defined as in Fig. 1:
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Security Experiment EXPind−cca
mKEM,A(n, k): DEC(i,P ′, C):

(a) (pki, ski)
$← mKEM.KeyGen(1n), for 1 ≤ i ≤ k. (a) If P ′

� P or i /∈ [#P ′], then return ⊥.

(b) P = {pki}1≤i≤k. (b) If phase = 2:

(c) (P∗, st) ← ADEC(·,·,·)
1 (P),P∗ ⊆ P. if C = C∗ and pki ∈ P∗, then return ⊥.

(d) If P∗
� P, then return ⊥. if mKEM.DeCap(i,P ′, C, ski) = K∗

b return ⊥.

(e) (K∗
0 , C

∗) $← mKEM.EnCap(P∗). (c) Return K ← mKEM.DeCap(i,P ′, C, ski).

(f) K∗
1

$← KmKEM, b
$← {0, 1}.

(g) b′ ← ADEC(·,·,·)
2 (P,K∗

b , C
∗, st).

(h) If b = b′ then return 1, otherwise return 0.

Fig. 1. Security experiment EXPind−cca
mKEM,A (n, k).

3.3 The Construction

Our mKEM scheme uses the following parameters and building blocks.

– Let n be the security parameter and let � ≥ 2n be an integer, constants
0 < c < 1

6 and α satisfy that 6c < α < 1.
– Let μ =

√
c/�, β = 2

√
c� to check consistency during decapsulation.

– ECC : {0, 1}p → {0, 1}� be an error correction code with an efficient decoding
algorithm ECC−1, which can correct at least an α-fraction of errors with α
mentioned before.

– Two hash functions H1 : {0, 1}p → B�
μ × B�

μ and H2 : {0, 1}� → {0, 1}�′
, the

requirement for p (length of messages m) is disussed below and �′ could be
�′ 
 � (say 128 bit typically).

Note that when H1 is used as a random oracle, the mapping result to two
Bernoulli vectors is reasonable. We give a sketch about Bernoulli randomness
extraction in Fig. 2 below which applys i.i.d pairwise independent hash functions

w

h1 h2 · · · hq−1 hq

h1(w) h2(w) · · · · · · · · · hq−1(w) hq(w)

sample sample · · · sample sample
e1 e2 · · · eq−1 eq

Fig. 2. An illustration of the Bernoulli randomness extractor.
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h1, · · · , hq to a p-bit uniform random string w and then uses sample on the bits
extracted to get a vector distributed to Bq

μ where q can be up to Θ(p/H1(Bμ))
(where H1(Bμ) = Θ(μ log(1/μ))) [28]. Thus, to get a B�

μ vector mapping result,
p should be Θ(� · H1(Bμ)).

The following lemma states that the proposed Bernoulli randomness extrac-
tor extracts almost all entropy from a Rényi entropy (or min-entropy) source.
We use �H to denote a vector in the lemma.

Lemma 2 (Bernoulli randomness extraction [28]). For any m, v ∈ N and
0 < μ ≤ 1/2, let W ∈ W be any (�log |W|�,m)-Rényi entropy source, let H
be a family of pairwise independent hash funcitons mapping from W to {0, 1}v,
let �H = (H1, ...,Hq) be a vector of i.i.d. random variables such that each Hi

is uniformly distributed over H, let sample : {0, 1}v → {0, 1} be any Boolean
function such that sample(Uv) ∼ Bμ. Then, for any constant 0 < Δ ≤ 1 it holds
that

SD(Bq
μ, sample( �H(W ))| �H) ≤ 2((1+Δ)qH(μ)−m)/2 + exp− Δ2μq

3 ,

where sample( �H(W )) def= (sample(H1(W )), . . . , sample(Hq(W ))).

A CCA secure mKEM. We present the construction of our mKEM scheme
mKEM = (mKEM.KyGen,mKEM.EnCap,mKEM.DeCap) as follows.

mKEM.KeyGen(1n): On input a security parameter 1n, it first chooses a common

matrix A $← U�×n, then for each recipient, it samples a square matrix Si
$←

B�×�
μ and computes Bi = SiA ∈ {0, 1}�×n. The output is (pki, ski)1≤i≤m =

((A,Bi),Si)1≤i≤m.
mKEM.EnCap(P = {pki}1≤i≤m): It chooses a uniform m ∈ {0, 1}p, computes

(s, e) := H1(m) and calculates c0 = As + e ∈ {0, 1}� then on each input the

public key pki = (A,Bi), it chooses a matrix S′
i

$← B�×�
μ for 1 ≤ i ≤ m, and

computes

ci = Bis + S′
ie + ECC(m) ∈ {0, 1}�

k = H2(m) ∈ {0, 1}�′
.

It outputs k as the encapsulated session key and C = (c0, {ci}1≤i≤m) as the
ciphertext.

mKEM.DeCap(i,P,C, ski): On input the set of all recipients P, an encapsulation
C and the recipient i’s secret key ski, this algorithm does the following steps:
1. Reject if #P �= m;
2. Compute

c̃ = ci − Sic0 = ECC(m) + (S′
i − Si)e

and then compute m′ = ECC−1(c̃) and (s′, e′) := H1(m′). If c0 = As′+e′

and |ci − Bis′ − ECC(m′)| ≤ β hold, output k := H2(m′); otherwise,
output ⊥.
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3.4 Correctness

Lemma 3 (Chernoff Bound [20,29]). For any 0 < μ < 1 and any δ > 0, we
have

Pr[|B�
μ| > (1 + δ)μ�] < e

−min(δ,δ2)
3 μ�, (3)

in particular, for δ = 1

Pr[|B�
μ| > 2μ�] < e−μ�/3. (4)

Obviously, for the chosen e $← B�
μ, the Chernoff Bound (2) yields:

Pr[|e| > β
︸︷︷︸
=2μ�

] < e−μ�/3 = 2−Θ(
√

�). (5)

Theorem 1 (Correctness). With overwhelming probability over the choice of
the public and secret keys mKEM.DeCap(i,P,C, ski) outputs k correctly over
C ← mKEM.EnCap(P = {pki}1≤i≤m).

Proof. The scheme’s correctness requires the following:

1. |(S′
i − Si)e| ≤ α� (to let ECC−1 reconstruct m′ from c̃ = ci − Sic0).

2. When m′ = ECC−1(c̃) and (s′, e′) := H1(m′), c0 = As′ + e′ should be hold.
3. |ci − Bis′ − ECC(m′)| ≤ β.

For the decapsulation algorithm we require that the Hamming weight for the
inner-product of a matrix S $← B�×�

μ and a vector e $← B�
μ is upper bounded

by 1
3α� with overwhelming probability. We firstly analyze the inner-product of

a vector s $← B�
μ and the vector e $← B�

μ whose Hamming weight is at most
β described as above. Since |e| ≤ β, a necessary condition for sᵀe = 1 is that
s[i] = 1 for at least one of the i’s where e[i] = 1. By a simple XOR-Lemma, it
holds that

μ′ = Pr[sᵀe = 1] ≤ βμ = 2c.

By the Chernoff Bound (1) and with δ = α/(3μ′) − 1 (where μ′ ≤ 2c < α/3)

Pr
[

|Se| >
1
3
α�

]

= Pr [|Se| > (1 + δ)μ′�] < e
−min(δ,δ2)

3 μ′�.

Since δμ′ = α/3 − μ′ ≥ α/3 − 2c > 0 and δ = α/(3μ′) − 1 ≥ α/(6c) − 1 > 0 are
lower bounded by constants and therefore

Pr
[

|Se| >
1
3
α�

]

< e
−min(δ,δ2)

3 μ′� = 2−Θ(�). (6)

Finally, in the ciphertext of our construction we have

|ci − Bis − ECC(m)| = |S′
ie| ≤ β
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holds with overwhelming probability 1 − 2−Θ(
√

m) by (3) and (4).
In the decapsulation operation,

c̃ = ci − Sic0

= ECC(m) + (S′
i − Si)e

it is sufficient to bound the error item |(S′
i − Si)e|. It holds that

|(S′
i − Si)e| ≤ |S′

ie| + |Sie| ≤ 2
3
α� < α�.

In all, the message m can be decrypted with overwhelming probability thus the
encapsulated key k can be correctly outputed.

3.5 Security

Theorem 2. Assume that the LPN problem is hard and both hash functions
H1 and H2 are modeled as random oracles then the above mKEM scheme is
IND-CCA secure.

Proof. Let A be any PPT adversary that can attack our scheme mKEM with
advantage ε. We show that ε must be negligible in n. We continue the proof
by using a sequence of games, where the first game is the real game, while the
last is a random game. Since A’s advantage in a random game is exactly 0, the
security of mKEM can be established by showing that A’s advantage in any two
consecutive games are negligibly close.

Game 1. This is the experiment EXPind−cca
mKEM,A(n, k). The challenger C honestly

runs the adversary A with the security parameter n. Then, it simulates the
security experiment EXPind−cca

mKEM,A(n, k) as follows:

KeyGen. First C uniformly chooses a matrix A $← U�×n. Then for each i ∈ [k],

it chooses a square matrix Si
$← B�×�

μ and computes Bi = SiA. Finally, C
sends pki = (A,Bi) to the adversary A and keeps ski = Si to itself. P is used
to denote the set of all the public keys {pki}1≤i≤k.

Phase 1. While receiving a decapsulation query (i,P ′,C = (c0, {ct}1≤t≤m))
from adversary A, the challenger C does the following thing:
(a) If P ′

� P or i /∈ [#P ′], then return ⊥.
If (a) is passed, it computes

c̃ = ci − Sic0 = ECC(m) + (S′
i − Si)e

and then computes m′ = ECC−1(c̃) and (s′, e′) := H1(m′). If c0 = As′ + e′

and |ci −Bis′ −ECC(m′)| ≤ β hold, it outputs k := H2(m′) and returns k to
A; otherwise, return ⊥ to A. After that, A chooses a set P∗ ⊆ P and sends
it to the challenger C.



CCA Secure Multi-recipient KEM from LPN 523

Challenge. After receiving the challenge public key set P∗ from A, C randomly
chooses a uniform m ∈ {0, 1}p, computes (s, e) := H1(m) and calculates

c∗
0 = As + e ∈ {0, 1}� then it chooses a random bit b

$← {0, 1}, on each

public key pki = (A,Bi) it chooses a matrix S′
i

$← B�×�
μ , computes

c∗
i = Bis + S′

ie + ECC(m) ∈ {0, 1}�

k∗
b = H2(m) ∈ {0, 1}�′

,

and chooses a k∗
1−b

$← {0, 1}�′
. Finally, C sends (C∗,k∗

b ,k
∗
1−b) to A.

Phase 2. While receiving a decapsulation query (i,P ′,C = (C0, {ct}1≤t≤m))
from adversary A, the challenger C does the following thing:
(a) If P ′

� P or i /∈ [#P ′], then return ⊥.
(b) If C = C∗ and pki ∈ P∗, then return ⊥.
(c) If mKEM.DeCap(i,P ′, C, ski) = k∗

b return ⊥.
If (a), (b), (c) are passed, it computes

c̃ = ci − Sic0 = ECC(m) + (S′
i − Si)e

and then compute m′ = ECC−1(c̃) and (s′, e′) := H1(m). If c0 = As′ + e′

and |ci − Bis′ − ECC(m′)| ≤ β hold, it returns k := H2(m′) to A; otherwise,
it returns ⊥ to A.

Guess. Finally, A outputs a guess b′ ∈ {0, 1}. If b′ = b, the challenger C ouputs
1, else outputs 0.

Let Wi be the event C outputs 1 in Game i for i in {1, 2, 3}.

Game 2. This Game is identical to Game 1 except that the challenge phase is
changed as follows:

Challenge. After receiving the challenge public key set P∗ from A, C randomly
chooses a uniform m ∈ {0, 1}p, computes (s, e) := H1(m) and calculates c∗

0 =
As + e ∈ {0, 1}� then on each public key pki = (A,Bi)it chooses a random bit

b
$← {0, 1}, computes

c∗
i = Bis + Sie + ECC(m) ∈ {0, 1}�

k∗
b = H2(m) ∈ {0, 1}�′

,

and chooses a k∗
1−b

$← {0, 1}�′
. Finally, C sends (C∗,k∗

b ,k
∗
1−b) to A.

Lemma 4. If the EKLPN problem is hard, then we have |Pr[W1] − Pr[W2]| ≤
negl(n).

Proof. The only difference between Game 1 and Game 2 is that C replaces each
c∗

i := Bis + S′
ie + ECC(m) in Game 1 with c∗

i := Bis + Sie + ECC(m) in Game
2 for 1 ≤ i ≤ m. Next, we introduce a sequence of games {Game1i,j}1≤i≤m

1≤j≤�
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between Game 1 and Game 2 to replace each S′
i in the c∗

i row by row. Firstly,
we define

Si =

⎛

⎜
⎝

sᵀ
1i

...
sᵀ
�i

⎞

⎟
⎠ ,S′

i =

⎛

⎜
⎝

s′ᵀ
1i

...
s′ᵀ
�i

⎞

⎟
⎠ .

– Game1i,j , i ∈ [m], j ∈ [�]. This game is a hybrid of Game 1 and Game 2:
the challenger C replaces s′ᵀ

ji
with sᵀ

ji
in c∗

i during the challenge phase and
keeps the remaining rows as in Game1i,j−1. Thus there are m × � games. For
example, for i = 1, there are � games: from Game11,1 to Game11,�. Besides i
is from 1 to m. Let Game11,0 be Game 1. Obviously, Game1m,� is identical to
Game 2.

It suffices to show that |Pr[W1i,j ]−Pr[W1i,j−1]| ≤ negl(n) for any i ∈ [m], j ∈
[�].

The hardness of the EKLPN problem ensures that the probability for adver-
sary A to distinguish Game1i,j from Game1i,j−1 is negligible. Otherwise we
can construct an algorithm B to solve EKLPN problem. Precisely, B is con-
structed by simulating Game1i,j or Game 1i,j−1 for A. B is given a quadruple
(A, (s̄ᵀ

ji
A)ᵀ, e, z̄ji

), where z̄ji
is either s̄ᵀ

ji
e or s̄′ᵀ

ji
e. B’s behavior is as follows.

KeyGen. B picks all St
$← B�×�

μ and sets Bt = StA for t ∈ [m] except that the
jth row in secret Si and public key Bi is chosen and set as follows

Si =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

sᵀ
1i

...
rᵀ

ji

...
sᵀ
�i

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

$← B�×�
μ and sets Bi =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sᵀ
1i
A
...

s̄ᵀ
ji
A
...

sᵀ
�i
A

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Finally, B sends P = {pkt = (A,Bt)}1≤t≤m to the adversary A, and keeps
all skt = St to itself. Note that the jth row in Si is chosen randomly and the
jth row in Bi is independent of it.

Phase 1. While receiving a decapsulation query (q,P ′,C = (c0, {ct}1≤t≤m))
from adversary A, the B does the following thing:
(a) If P ′

� P or q /∈ [#P ′], then return ⊥.
• If (a) is passed and q �= i, it computes

c̃ = cq − Sq · c0 = ECC(m) + (S′
q − Sq)e

and then compute m′ = ECC−1(c̃) and (s′, e′) := H1(m). If c0 = As′ +e′

and |cq − Bqs′ − ECC(m′)| ≤ β hold, it outputs k := H2(m′); otherwise,
outputs ⊥.
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• If (a) is passed and q = i, it computes

c̃ = ci − Si · c0

= Bis + Sie − Si(As + e) + ECC(m)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...

(s̄ᵀ
ji

− rᵀ
ji

)As
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

(s′ᵀ
1i

− sᵀ
1i

)e
...

(s′ᵀ
ji

− rᵀ
ji

)e
...

(s′ᵀ
�i

− sᵀ
�i

)e

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
Δi

+ ECC(m)

Let c̃ = ECC(m) + Δi, where |Δi| ≤ 2
3α� + 1 < α�, and m′ = ECC−1(c̃) can

also be computed correctly. Then compute (s′, e′) := H1(m). If c0 = As′ +e′

and |ci − Bis′ − ECC(m′)| ≤ β hold, it outputs k := H2(m′); otherwise,
outputs ⊥.
After that, A chooses a set P∗ ⊆ P and sends it to the challenger C.

Challenge. After receving the challenge public key set P∗ from A, C randomly
chooses a uniform m ∈ {0, 1}p, computes (s, e) := H1(m) and calculates

c∗
0 = As + e ∈ {0, 1}�, it chooses a random bit b

$← {0, 1} then on each
public key pkt = (A,Bt), for 1 ≤ t ≤ i − 1 it computes

c∗
t = Bts + Ste + ECC(m) ∈ {0, 1}�

and the ith ciphertext is computed as:

c∗
i = Bis +

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

sᵀ
1i
e

...
sᵀ
(j−1)i

e
z̄ji

s′ᵀ
(j+1)i

e
...

s′ᵀ
�i
e

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ ECC(m) ∈ {0, 1}�

with the encapsulated key computed as: k∗
b = H2(m) ∈ {0, 1}�′

and chooses

a k∗
1−b

$← {0, 1}�′
. Finally, C sends (C∗,k∗

b ,k
∗
1−b) to A.

Phase 2. While receiving a decapsulation query (q,P ′,C = (c0, {ct}1≤t≤m))
from adversary A, the challenger C does the following thing:
(a) If P ′

� P or q /∈ [#P ′], then return ⊥.
(b) If C = C∗ and pkq ∈ P∗, then return ⊥.
(c) If mKEM.DeCap(q,P ′, C, skq) = k∗

b return ⊥.
If (a), (b), (c) are passed, it responds as in Phase 1.

Guess. Finally, A outputs a guess b ∈ {0, 1}. If b = b∗, B outputs 1, else
outputs 0.
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If z̄ji
= s̄′ᵀ

ji
e, then B simulates the behavior of the challenger in Game1i,j−1

exactly. Hence, Pr[W1i,j−1] = Pr
[B(A, (s̄ᵀ

i A)ᵀ, e, s̄′ᵀ
ji
e) = 1

]
.

If z̄ji
= s̄ᵀ

ji
e, then B simulates the behavior of the challenger in Game1i,j

exactly. Hence, Pr[W1i,j ] = Pr
[B(A, (s̄ᵀ

ji
A)ᵀ, e, s̄ᵀ

ji
e) = 1

]
.

Therefore, for i ∈ [m], j ∈ [�], we have |Pr[W1i,j−1] − Pr[W1i,j ]| ≤ negl(n).

Game 3. This Game is identical to Game 2 except that the challenger C changes
the challenge phase as follows:

Challenge. After receiving the challenge public key set P∗ from A, C randomly
chooses a uniform m ∈ {0, 1}�, chooses u $← U�, it chooses a random bit b

$←
{0, 1} then on each public key pki = (A,Bi), it and defines

c∗
0 := u ∈ {0, 1}�

c∗
i := Sic∗

0 + ECC(m) ∈ {0, 1}�

k∗
b = H2(m) ∈ {0, 1}�′

,

and chooses a k∗
1−b

$← {0, 1}�′
. Finally, C sends (C∗,k∗

b ,k
∗
1−b) to A.

Note that in Game 2, c∗
i = (Bi)s + Sie + ECC(m) = Si(As + e) + ECC(m).

Lemma 5. Pr[W3] − Pr[W2] | ≤ negl(n).

Proof. Since the only difference between Game 2 and Game 3 is that C replaces
c∗
0 = As + e ∈ {0, 1}� in Game 2 with c∗

0 = u ∈ {0, 1}� in Game 3, we can
construct a distinguisher D that distinguishes the distributions (A,A · s+e) and

(A,u) (where u $← U�) with advantage adv(n) (assuming that A distinguishes
2 and Game 3 with non-negligible adv(n)), contradicting the assumption. The
input of D is an instance (A†, c†

0). D simulates the interaction with A in the
same way Game 2 does, except for KeyGen step. It sets A = A† and in the
challenge step it sets c∗

0 = c†
0. At last, D ouputs whatever A outputs. When

(A†, c†
0) is chosen according to (A,A · s + e), then A’s view in D’s simulation

is identically distributed as in Game 2. If (A†, c†
0) is chosen according to (A,u),

then from A’s view the distribution in D’s simulation is identical to that in
Game 3. Thus we have | Pr[D(A,A · s + e)] | − | Pr[D(A,u)] | = | Pr[W2] | −
| Pr[W3] | = adv(n), which contradicts the assumption. This means that we have
| Pr[W2] | − | Pr[W3] | ≤ negl(n).

Lemma 6. Pr[W3] = 1
2 + negl(n).

Proof. This lemma follows from that the challenge ciphertext (c∗
0, c

∗
i ) in Game

3 is uniformly distributed. Since the messmage m is chosen uniformly and
H1(·),H2(·) is modeled as a random oracle from A’s view, all components in
the challenge ciphertext are randomly distributed which ensures that the advan-
tage of the adversary A is negligible.

In all, we have Pr[W1] = 1
2 + negl(n), such that ε = negl(n). Thus we complete

the proof.
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4 Conclusion

In this work we constructed the IND-CCA secure mKEM based on the hardness
of low-noise LPN assumption. We apply randomness reuse technique to shorten
the length of ciphertext. On contrast to previous work, our new scheme is quan-
tum attack resistant in the random oracle model. How to build a mKEM based
on LPN without the random oracle model or transfer different session keys to
multiple recipients are worth further studying.

Acknowledgements. The work was supported by the National Cryptography Devel-
opment Fund (Grant No. MMJJ20180106).
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Abstract. We propose a generic construction of a Σ-protocol of
commit-and-prove type, which is an and-composition of Σ-protocols
on the statements that include a common commitment. Our protocol
enables a prover to convince a verifier that the prover knows a bundle of
witnesses that have a common component which we call a base witness
point. When the component Σ-protocols are of witness-indistinguishable
argument systems, our Σ-protocol is also a witness-indistinguishable
argument system as a whole. As an application, we propose a decentral-
ized multi-authority anonymous authentication scheme. We first define
a syntax and security notions of the scheme. Then we give a generic con-
struction of a decentralized multi-authority anonymous authentication
scheme. There a witness is a bundle of witnesses each of which decom-
poses into a common global identity string and a digital signature on
it. We mention an instantiation of the generic scheme in the setting of
bilinear groups.
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Witness indistinguishability · Decentralized · Collusion resistance

1 Introduction

Global identities such as Passport Numbers (PNs) or Social Security Numbers
(SSNs) in each country are currently common for identification. They are used
not only for governmental identification but also for commercial services; that
is, when we want to use a commercial service, we often ask the service adminis-
tration authority to issue an attribute certificate at the registration stage. In the
stage, the authority confirms our identities by the global identity string such as
PN or SSN. Once the attribute certificate is issued, we become to be accepted at

c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 530–547, 2018.
https://doi.org/10.1007/978-3-030-01950-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_31&domain=pdf


Witness-Indistinguishable Arguments with Σ-Protocols 531

the authentication stage of the service. Hence the global identity strings work for
us to be issued our attribute certificates. It is notable that recently multi-factor
authentication schemes are utilized to prevent misauthentication. In the scheme
a user of a service is granted access only after presenting several separate pieces
of evidence. Actually the multi-factor authentication of using both a laptop PC,
which is connected to the internet by a service provider, and a smartphone,
which is activated by a cellular carrier, is getting usual. Thus, there is a com-
pound model that involves independent administration authorities for us to be
authenticated and receive benefit of a service.

Privacy protection is a function to be pursued in the authentication, espe-
cially recently. The growth of the internet of things and related big data analy-
sis have protecting privacy more critical to involved users. For the purpose, an
authentication framework of identity strings and passwords should be evolved
into a framework where anonymity is guaranteed at the authentication stage.
For example, when a smart household machine generates a report about the sit-
uation of a house via the internet as a query for a useful suggestion (such as air
conditioning or cooking recipes), the identity information is often unnecessary.
A further example is a connected-to-the-internet vehicle which uses a combina-
tion of plural services like local traffic information system and the passenger’s
web-scheduler. The identity information should not be leaked even when the
memberships are needed in the registration stages. In this example a user should
be authenticated by the service providers at the same time in the authentica-
tion stages, anonymously. This is an authentication framework in which plural
attributes of a single user are authenticated. However, there is a threat on anony-
mous authentication frameworks; the collusion attack. A malicious user collects
private attribute keys from honest users who have different identities, and tries
to make a verifier accept anonymously by using the merged attribute keys. Here
the vary anonymity is a critical potential drawback from the view point of the
collusion attacks.

1.1 Related Work and Our Contribution

A decentralized multi-authority attribute-based signature scheme (DMA-
ABS) [11] is an ABS scheme with decentralized key-issuing authorities. In an
ABS scheme, a signer has credentials (i.e. private secret keys) on her attributes,
and a message has a signing policy expressed as a boolean formula on attributes.
The signer is able to sign it if and only if her attributes satisfies the boolean for-
mula. There are assignment patterns and the attribute privacy of an ABS scheme
should assure that the signatures do not leak any information on the satisfying
pattern. We note that this property also requires the anonymity of the signer’s
identity. A non-trivial task in constructing an ABS scheme is to assure both the
collusion resistance and the attribute privacy. On the other hand, allowing decen-
tralized multi-authorities is to have independent issuers each of which generates
each private secret attribute-key to the user.

In this paper, we propose a new notion; a witness-indistinguishable argument
system (WIA) with Σ-protocols for a bundled witness space. It is known that
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WIA is a natural building block to achieve anonymity in cryptographic primi-
tives [9]. However, there is no previous work for the multi-prover setting executed
by a hidden single prover who is able to convince a verifier that she is certainly
a single prover. We construct the kind of WIA by employing a commitment
scheme as one of the building blocks.

As an application, we give a generic construction of a decentralized multi-
authority anonymous authentication scheme, which can be converted into a
DMA-ABS scheme by the Fiat-Shamir transform [8]. Actually, if a prover chooses
a monotone boolean formula instead of an all-and formula (as in this paper), and
if we apply the Fiat-Shamir transform to the Σ-protocol in our authentication
scheme, then we obtain a DMA-ABS scheme.

2 Preliminaries

The security parameter is denoted by λ. The bit length of a string a is denoted
by |a|. The number of elements of a set S is denoted by |S|. A uniform random
sampling of an element a from a set S is denoted as a ∈R S. The expression
a =? b returns a boolean 1 (true) when a = b, and otherwise 0 (false). The
expression a ∈? S returns a boolean 1 when a ∈ A, and otherwise 0. When an
algorithm A with input a returns z, we denote it as z ← A(a), or, A(a) → z.
When a probabilistic polynomial-time (ppt, for short) algorithm A with input
a and a randomness r on a random tape returns z, we denote it as z ← A(a; r)
When an algorithm A with input a and an algorithm B with input b interact
with each other and return z, we denote it as z ← 〈A(a), B(b)〉. The transcript
of all the messages of the interaction is denoted by transc〈A(a), B(b)〉. When
an algorithm A accesses an oracle O, we denote it by AO. When A accesses
n oracles O1, . . . ,On concurrently, i.e. in arbitrarily interleaved order of mes-
sages, we denote it by AOi|ni=1 . The probability of an event E is denoted by
Pr[E]. The conditional probability of an event E given events F1, . . . , Fn in this
order is denoted by Pr[E|F1, . . . , Fn]. The distribution of a random variable X
is denoted by dist

(
X

)
. The distribution of a random variable X whose probabil-

ity is given by a joint probability of random variables X,Y1, . . . , Yn is denoted
by dist

(
X|X,Y1, . . . , Yn

)
. We say that a probability p is negligible in λ if it is

upper-bounded by the inverse of any polynomial poly(λ) of positive coefficients
(i.e. p < 1/poly(λ)). We say that a probability p is overwhelming in λ if it is
lower-bounded by 1− (the inverse of any fixed polynomial poly(λ) of positive
coefficients) (i.e. p > 1 − 1/poly(λ)).

2.1 Interactive Argument System, Σ-Protocol
and Witness-Indistinguishability

Suppose that there exists a predicate Φ that defines the membership of a binary
relation R; i.e., Φ maps (x,w) ∈ ({0, 1}∗)2 to true or false. The relation R

is defined as R
def= {(x,w) ∈ ({0, 1}∗)2|Φ(x,w) = true}. We say that R is

polynomially bounded if there exists a polynomial �(·) such that |w| ≤ �(|x|) for
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any (x,w) ∈ R. We say that R is an NP relation if R is polynomially bounded
and Φ is computable within polynomial-time in |x| as an algorithm. For a pair
(x,w) ∈ R we call x a statement and w a witness of x. We call R the witness
relation, and Φ(·, ·) the predicate of the witness relation R. When a set of public
parameter values PP are needed to define the predicate (for example, to set up
algebraic operations), we denote it as ΦPP. An NP language L for an NP relation
R is defined as the set of all possible statements: L

def= {x ∈ {0, 1}∗;∃w ∈
{0, 1}∗, (x,w) ∈ R}. We denote the set of witnesses of a statement x by W (x):
W (x) def= {w ∈ {0, 1}∗ | (x,w) ∈ R}. We call the union W of all the sets W (x)
for x ∈ L the witness space of L: W

def=
⋃

x∈L W (x). We denote an interactive
proof system on an NP relation R [1,10] by Π = (Π.Setup, P, V), where Π.Setup
is a set up algorithm for a set of public parameter values PP, and P and V are
a pair of interactive algorithms. P, which is called a prover, is probabilistic and
unbounded, and V, which is called a verifier, is probabilistic polynomial-time
(ppt). If P is also limited to ppt, then Π is called an interactive argument
system.

Σ-protocol [4,5]. Let R be an NP relation. A Σ-protocol Σ on the rela-
tion R is a 3-move public-coin protocol of an interactive argument system
Π = (Π.Setup, P, V) [4,5]. We introduce six ppt algorithms for a Σ-protocol:
Σ = (Σcom, Σcha, Σres, Σvrf, Σext, Σsim). The first algorithm Σcom is executed
by P. On input a pair of a statement and a witness (x,w) ∈ R, it generates
a commitment message com and outputs its inner state St. It returns them
as Σcom(x,w) → (com, St). The second algorithm Σcha is executed by V. On
input the statement x, it reads out the size of the security parameter as 1λ

and chooses a challenge message cha ∈R chaSp(1λ) from the challenge space
chaSp(1λ) := {0, 1}ω(λ), where ω(·) is a super-log function [2]. It returns the
message as Σcha(x) → cha. The third algorithm Σres is executed by P. On
input the state St and the challenge message cha, it generates a response mes-
sage res. It returns the message as Σres(St,cha) → res. The fourth algo-
rithm Σvrf is executed by V. On input the statement x and the messages com,
cha and res, it computes a boolean decision d. It returns the decision as
Σvrf(x,com,cha,res) → d. If d = 1, then we say that P is accepted by V on x.
Otherwise, we say that P is rejected by V on x. The vector of all the messages
(com,cha,res) is called a transcript of the interaction on x.

These four algorithms (Σcom, Σcha, Σres, Σvrf) must satisfy the following
property.

Completeness. For any (x,w) ∈ R, a prover P(x,w) has a verifier V(x)
accept with probability 1: Pr[Σvrf(x,com,cha,res) = 1 | Σcom(x,w) →
(com, St), Σcha(x) → cha, Σres(St,cha) → res].

The fifth algorithm Σext concerns with the following property.

Special Soundness. There is a ppt algorithm Σext called a knowledge extractor,
which, on input a statement x and two accepting transcripts with a common
commitment message and different challenge messages, (com,cha,res) and
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(com,cha′,res′), cha 	= cha′, computes a witness ŵ satisfying (x, ŵ) ∈ R with
an overwhelming probability in |x|: ŵ ← Σext(x,com,cha,res,cha′,res′).

The sixth algorithm Σsim concerns with the following property.

Honest-Verifier Zero-Knowledge. There is a ppt algorithm called a simulator
Σsim, which, on input a statement x, computes an accepting transcript on x:
( ˜com, ˜cha, ˜res) ← Σsim(x), where the distribution of the simulated transcripts
dist

(
˜com, ˜cha, ˜res

)
is identical to the distribution of the real accepting tran-

scripts dist
(
com,cha,res

)
.

Note 1: Our Use Case. In a Σ-protocol the challenge message cha is a public
coin. This property enables us in this paper to use the following variant of the
simulator Σsim(x): On input a simulated challenge message ˜cha that is chosen
uniformly at random, the variant generates a commitment ˜com and a response
˜res: ˜cha ∈R chaSp(1λ), ( ˜com, ˜res) ← Σsim(x, ˜cha).

Witness-Indistinguishability [7,9]. Let R be an NP relation. Suppose that
an interactive argument system Π = (Π.Setup, P, V) with a Σ-protocol Σ on the
relation R is given. In this paper we focus on the following property.

Perfect Witness Indistinguishability. For any ppt algorithm V∗, any sequences
of witnesses w = (wx)x∈L and w′ = (w′

x)x∈L s.t. wx, w′
x ∈ W (x),

any string x ∈ L and any string z ∈ {0, 1}∗, the two distributions
dist

(
x, z, transc〈P(x,wx), V∗(x, z)〉) and dist

(
x, z, transc〈P(x,w′

x), V∗(x, z)〉) are
identical.

2.2 Commit-and-Prove Scheme [3,6]

A commit-and-prove scheme CmtPrv consists of five ppt algorithms: CmtPrv =
(CmtPrv.Setup, Cmt = (Cmt.Com, Cmt.Vrf),Π = (P, V)).
CmtPrv.Setup(1λ) → PP. On input the security parameter 1λ, it generates a set
of public parameter values PP. It returns PP.
Cmt.Com(PP,m) → (c, κ). On input the set of public parameter values PP, a
message m in the message space Msg(1λ), this ppt algorithm generates a com-
mitment c. It also generates an opening key κ. It returns (c, κ).
Cmt.Vrf(PP, c,m, κ) → d. On input the set of public parameter values PP, a
commitment c, a message m and an opening key κ, this deterministic algorithm
generates a boolean decision d. It returns d.

The correctness should hold for the commitment part Cmt of the scheme: For
any security parameter 1λ, any set of public parameter values PP and any message
m ∈ Msg(1λ), Pr[d = 1 | (c, κ) ← Cmt.Com(PP,m), d ← Cmt.Vrf(PP, c,m, κ)] = 1.

We denote by ΦPP a predicate that returns the boolean decision:
ΦPP(c, (m,κ)) def= (Cmt.Vrf(PP, c,m, κ)). In the scheme there is an interactive
argument system Π = (P, V) for the following relation R:

R := {(c, (m,κ)) ∈ {0, 1}∗ × ({0, 1}∗)2 | ΦPP(c, (m,κ)) = true}.

In this paper we focus on the following properties for the commitment part Cmt.
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Perfectly Hiding. For any security parameter 1λ, any set of public parame-
ter values PP and any two messages m,m′ ∈ Msg(1λ), the two distributions
dist

(
c | (c, κ) ← Cmt.Com(PP,m)

)
and dist

(
c | (c, κ) ← Cmt.Com(PP,m′)

)
are iden-

tical.

Computationally Binding. The attack of breaking binding property of Cmt by an
algorithm A is defined by the following experiment.

Expbind
Cmt,A(1λ) : PP ← CmtPrv.Setup(1λ), (c,m, κ,m′, κ′) ← A(PP)

If Cmt.Vrf(PP, c,m, κ) = Cmt.Vrf(PP, c,m′, κ′) = 1 ∧ m 	= m′,
then Return Win else Return Lose

The advantage of A over Cmt is defined as Advbind
Cmt,A(λ) := Pr[Expbind

Cmt,A(1λ)
returns Win]. The commitment scheme Cmt is said to be computationally binding
if for any set of public parameter values PP and any ppt algorithm A, the
advantage Advbind

Cmt,A(λ) is negligible in λ.

Note 2: Our Use Case. The commitment generation algorithm Cmt.Com uses
random tapes [9]. In this paper we are in the case that a randomness r ∈ {0, 1}λ

is used to generate a commitment c, and the opening key κ is the randomness:
κ := r. That is, Cmt.Com(PP,m; r) → (c, r).

2.3 Digital Signature Scheme [8]

A digital signature scheme Sig consists of four ppt algorithms: Sig =
(Sig.Setup, Sig.KG, Sig.Sign, Sig.Vrf).
Sig.Setup(1λ) → PP. On input the security parameter 1λ, it generates a set of
public parameter values PP. It returns PP.
Sig.KG(PP) → (PK,SK). On input the set of public parameter values PP, this
ppt algorithm generates a signing key SK and the corresponding public key PK.
It returns (PK,SK).
Sig.Sign(PP,PK,SK,m) → σ. On input the set of public parameter values PP,
the public key PK, the secret key SK and a message m in the message space
Msg(1λ), this ppt algorithm generates a signature σ. It returns σ.
Sig.Vrf(PP,PK,m, σ) → d. On input the public key PK, a message m and a
signature σ, it returns a boolean d.

The correctness should hold for the scheme Sig: For any security parameter
1λ and any message m ∈ Msg(1λ), Pr[d = 1 | PP ← Sig.Setup(1λ), (PK,SK) ←
Sig.KG(PP), σ ← Sig.Sign(PP,PK,SK,m), d ← Sig.Vrf(PP,PK,m, σ)] = 1.

An adaptive chosen-message attack on the scheme Sig by a forger algorithm
F is defined by the following experiment.

Expeuf-cma
Sig,F (1λ) : PP ← Sig.Setup(1λ), (PK,SK) ← Sig.KG(PP)

(m∗, σ∗) ← FSignO(PP,PK,SK,·)(PP,PK)
If m∗ /∈ {mj}1≤j≤qs and Sig.Vrf(PK,m∗, σ∗) = 1,
then Return Win else Return Lose
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In the experiment, F issues a signing query to its signing oracle
SignO(PP,PK,SK, ·) by sending a message mj at most qs times (1 ≤ j ≤ qs).
As a reply, F receives a valid signature σj on mj . After receiving replies, F
returns a message and a signature (m∗, σ∗). A restriction is imposed on the
algorithm F: The set of queried messages {mj}1≤j≤qs should not contain the
message m∗. The advantage of F over Sig is defined as Adveuf-cma

Sig,F (λ) :=
Pr[Expeuf-cma

Sig,F (1λ) returns Win]. The digital signature scheme Sig is said to
be existentially unforgeable against adaptive chosen-message attacks if for any
given ppt algorithm F, the advantage Adveuf-cma

Sig,F (λ) is negligible in λ.

3 Witness-Indistinguishable Arguments with Σ-Protocols
for Bundled Witness Space

In this section, we propose a generic construction of an interactive argument sys-
tem that is a witness-indistinguishable argument system for a newly introduced
bundled witness space. Our protocol of the interactive argument system is an
AND-composition of Σ-protocols together with a commitment scheme, which is
to prove the knowledge of witness pairs each of which consists of two components;
one is a common component (such as a global identity string) and the other is an
individual component (such as a digital signature issued by an individual author-
ity on the global identity). We prove that our protocol is certainly a Σ-protocol.
Finally, we prove that our interactive argument system with the protocol is
perfectly witness-indistinguishable under the condition that the employed com-
mitment scheme is perfectly hiding and the component Σ-protocols are perfectly
witness-indistinguishable.

3.1 Building Blocks

Component Interactive Argument Systems with Σ-Protocols. For a
polynomially bounded integer n, let A be the set of indices: A := {1, . . . , n}. We
start with an efficiently computable predicate Φa

PP for each index a ∈ A, which
determines an NP witness relation Ra:

Ra = {(xa, wa) ∈ {0, 1}∗ × {0, 1}∗ | Φa
PP(x

a, wa) = true}, a ∈ A. (1)

We suppose for each a ∈ A that there is an interactive argument system Πa =
(Π.Setup, Pa, Va) which is executed in accordance with a Σ-protocol for the
relation Ra:

Σa = (Σa
com, Σa

cha, Σ
a
res, Σ

a
vrf, Σ

a
ext, Σ

a
sim). (2)

We suppose further that the witness space W a decomposes into two components
W a = W a

0 × W a
1 for each a ∈ A. In this paper, our interest is in the case that

all the 0th components W a
0 , a ∈ A, are equal, which we denote by W0. We call

the equal set W0 the base witness space of the witness spaces W a, a ∈ A, and
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an element w0 ∈ W0 a base witness point. Then a witness wa ∈ W a consists of
w0 and wa

1 . That is, W a = W0 × W a
1 � (w0, w

a
1) = wa.

Commit-and-Prove Scheme with Σ-Protocol. We employ a commit-
and-prove scheme with a Σ-protocol: CmtPrv = (CmtPrv.Setup, Cmt =
(Cmt.Com, Cmt.Vrf),Π0 = (P0, V0)), where the predicate Φ0,PP and the relation
R0 is defined as follows, and Π0 is executed in accordance with a Σ-protocol Σ0:

Φ0,PP(c0, (w0, r0))
def= (Cmt.Com(PP0, w0; r0) =? (c0, r0)),

R0
def= {(c0, (w0, r0)) ∈ {0, 1}∗ × ({0, 1}∗)2 | Φ0,PP(c0, (w0, r0)) = true}, (3)

Σ0 = (Σ0,com, Σ0,cha, Σ0,res, Σ0,vrf, Σ0,ext, Σ0,sim). (4)

Note that a message m to be committed is a base witness point w0.

3.2 On the Existence of a Σ-Protocol for Simultaneous Satisfiability

We introduce for each index a ∈ A the following composed relation determined
by the two predicates Φa

PP and Φ0,PP. That is, the relation Ra
0 is for simultaneous

satisfiability of Φa
PP and Φ0,PP on the base witness point w0: For each a ∈ A,

Ra
0 :=

{
(xa

0 = (xa, c0), wa
0 = (w0, w

a
1 , r0))|

{
Φa
PP(x

a, (w0, w
a
1)) = true

Φ0,PP(c0, (w0, r0)) = true

}
. (5)

We require here that the Σ-protocols Σa and Σ0 can be merged
into a single Σ-protocol Σa

0 of an interactive argument system Πa
0 =

(Π.Setup, CmtPrv.Setup, Pa
0 , V

a
0) for the above relation Ra

0 :

Σa
0 = (Σa

0,com, Σa
0,cha, Σ

a
0,res, Σ

a
0,vrf, Σ

a
0,ext, Σ

a
0,sim). (6)

• Σa
0,com(xa

0 , w
a
0) → (coma,coma,0, Sta0). This ppt algorithm is executed by

Pa
0 . On input a statement xa

0 = (xa, c0) and a witness wa
0 = (w0, w

a
1 , r0), it

runs the algorithms Σa
com(xa, (w0, w

a
1)) and Σ0,com(c0, (w0, r0)) to obtain the

commitment messages and the inner states, (coma, Sta) and (coma,0, Sta,0),
respectively, with a constraint that the knowledge extractor Σa

0,ext should
return a witness which simultaneously satisfies the two predicates Φa and
Φ0 on the base witness point w0. It sets the state as Sta0 := (Sta, Sta,0). It
returns (coma,coma,0, Sta0). P

a
0 sends (coma,coma,0) to Va

0 as a commitment
message, and keeps the state Sta0 .

• Σa
0,cha(x

a
0) → cha. This ppt algorithm is executed by Va

0 . On input the
statement xa

0 , it reads out the size of the security parameter as 1λ and chooses
a challenge message cha ∈R chaSp(1λ). It returns cha. Va

0 sends cha to Pa
0

as a challenge message.
• Σa

0,res(Sta0 ,cha) → (resa,resa,0). This ppt algorithm is executed by Pa
0 . On

input the state Sta0 and the challenge message cha, it runs the algorithms
Σa

res(Sta,cha) and Σ0,res(Sta,0,cha) to obtain the response messages resa

and resa,0, respectively, with the constraint that the knowledge extractor
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Σa
0,ext should return a witness which simultaneously satisfies Φa and Φ0 on

w0. It returns (resa,resa,0). Pa
0 sends (resa,resa,0) to Va

0 as a response
message.

• Σa
0,vrf(x

a
0 , (com

a,coma,0),cha, (resa,resa,0)) → d. This deterministic algo-
rithm is executed by Va

0 . On input the statement xa
0 = (xa, c0) and all the

messages (coma,coma,0), cha and (resa,resa,0), it runs the algorithms
Σa

vrf(x
a,coma,cha,resa) and Σ0,vrf(c0,coma,0,cha,resa,0) to obtain two

boolean decisions da and da,0. If the both da and da,0 are 1, then it returns
d := 1, and otherwise d := 0. Va

0 returns d as the decision of the interactive
protocol on xa

0 .
• Σa

0,ext(x
a
0 , (com

a,coma,0),cha, (resa,resa,0),cha′, (resa′,resa,0
′)) →

(ŵa
0 , ŵa

1 , r̂a,0). This ppt algorithm is for knowledge extraction. On input the
statement xa

0 = (xa, c0) and two accepting transcripts with a common com-
mitment message and different challenge messages, ((coma,coma,0),cha,
(resa,resa,0)) and ((coma,coma,0),cha′, (resa′,resa,0

′)), cha 	= cha′,
it runs the algorithms Σa

ext(x
a,coma,cha,resa,cha′,resa′) and

Σ0,ext(c0,coma,0,cha,resa,0,cha
′,resa,0

′) to obtain witnesses (ŵa
0 , ŵa

1) and
(ŵa,0, r̂a,0) satisfying (xa, (ŵa

0 , ŵa
1)) ∈ Ra and (c0, (ŵa,0, r̂a,0)) ∈ R0 with an

overwhelming probability in |xa| and |c0|, respectively. Here the simultaneous
satisfiability on w0 should assure the following equality:

ŵa
0 = ŵa,0 with probability one. (7)

It returns (ŵa
0 , ŵa

1 , r̂a
0).

• Σa
0,sim(xa

0 , ˜cha) → (( ˜com
a
, ˜coma,0), ( ˜resa

, ˜resa,0)). This ppt algorithm
is for the simulation of an accepting transcript. On input a state-
ment xa

0 = (xa, c0) and a uniform random string ˜cha ∈R chaSp(1λ),
it runs the algorithms Σa

sim(xa, ˜cha) and Σ0,sim(c0, ˜cha) to obtain the
remaining part of the transcripts ( ˜com

a
, ˜resa) and ( ˜coma,0, ˜resa,0),

respectively. The simulated messages (( ˜com
a
, ˜coma,0), ˜cha, ( ˜resa

, ˜resa,0))
should form dist

(
( ˜com

a
, ˜coma,0), ˜cha, ( ˜resa

, ˜resa,0) | gen. by chaSp(1λ),
Σa

0,sim(xa
0 , ˜cha)

)
which is identical to dist((coma,coma,0),

cha, (resa,resa,0) | real accepting).

Remark. To construct the algorithm Σa
0,com of commitment message and the

algorithm Σa
0,res of response message is a non-trivial task. That is, we have

to construct Σa
0,com and Σa

0,res so that the knowledge extractor Σa
0,ext returns a

witness which simultaneously satisfies Φa and Φ0 on a base witness point w0. The
idea of the construction is to use a common random tape to generate commitment
messages coma and coma,0, but we do not describe the inner treatment of the
random tapes in Σa

0,com and Σa
0,res for generality. Hence our approach is to show

the construction when we instantiate the Σ-protocol Σa
0 .

3.3 Bundled Witness Space

We now introduce an NP witness relation for our bundled witness space. We first
fix the base witness point w0 in the base witness space W0 and consider a subset
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Ra
w0

for each NP witness relation Ra, a ∈ A:

Ra
w0

:= {(xa, wa) ∈ Ra | wa = (w0, w
a
1) for some wa

1} ⊂ Ra, a ∈ A. (8)

Then we run the base witness point w0 to claim the following property.

Claim 1. For a polynomially bounded integer n, let A be the set of indices
{1, . . . , n}. Then we have:

⋃

w0∈W0

(∏

a∈A

Ra
w0

)
⊂

∏

a∈A

( ⋃

w0∈W0

Ra
w0

)
=

∏

a∈A

Ra. (9)

Proof. The equality of the right-hand side is because
⋃

w0∈W0
Ra

w0
= Ra. An

element of the left hand side is of the form (x1, (w0, w
1
1)), . . . , (x

n, (w0, w
n
1 ))

where w0 ∈ W0 and (xa, (w0, w
a
0)) ∈ Ra for a ∈ A. This is an element of∏

a∈A Ra, and hence the inclusion follows. �
Deleting the redundancy, we obtain the following one-to-one correspondence:

Ra∈A
bnd

def
= {(

(xa)a∈A, w0, (w
a
1 )a∈A)|(xa, (w0, w

a
1 )) ∈ Ra, a ∈ A} �

⋃

w0∈W0

(∏

a∈A

Ra
w0

)
.

Claim 2. For a polynomially bounded integer n, let A be the set of indices
{1, . . . , n}. Then the relation Ra∈A

bnd is an NP relation.

Proof. Omitted. (will appear in the full version).

Definition 1 (Relation for Bundled Witness Space). For a polynomially
bounded integer n, an NP witness relation for the bundled witness spaces is
defined as Ra∈A

bnd .

Definition 2 (Bundled Witness Space). For a polynomially bounded integer
n, let A be the set of indices {1, . . . , n}. Let Ra, a ∈ A be NP witness relations
where each witness space decomposes W a = W0 × W a

1 , a ∈ A. Then the bundled
witness space is defined as follows.

W a∈A
bnd

def
= W0 × (W a

1 )a∈A. (10)

3.4 Generic Construction of Σ-Protocol for Bundled Witness Space

By using the above Σ-protocols (Σa
0 )a∈A and a commitment generation algo-

rithm Cmt.Com, we construct an interactive argument system Πa∈A
bnd = (P, V) for

the witness relation Ra∈A
bnd with a protocol Σa∈A

bnd . Σa∈A
bnd is actually a Σ-protocol,

which consists of the six ppt algorithms described below (see also Fig. 1):

Σa∈A
bnd = (Σa∈A

bnd,com, Σa∈A
bnd,cha, Σ

a∈A
bnd,res, Σ

a∈A
bnd,vrf, Σ

a∈A
bnd,ext, Σ

a∈A
bnd,sim). (11)
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• Σa∈A
bnd,com((xa)a∈A, (w0, (wa

1)a∈A)) → (c0, (coma,coma,0)a∈A, St). This ppt

algorithm is executed by P. On input a statement that is a vector (xa)a∈A

and a witness that is a vector (w0, (wa
1)a∈A), it computes a commitment c0

to the base witness point w0 with a randomness r0 ∈R {0, 1}λ by running
the commitment generation algorithm of Cmt: (c0, r0) ← Cmt.Com(w0; r0). It
sets the extended statement as xa

0 := (xa, c0) and the extended witness as
wa

0 := (w0, w
a
1 , r0) for each a ∈ A. it runs the algorithms Σa

0,com(xa
0 , w

a
0) to

obtain (coma,coma,0, Sta0) for each a ∈ A. It sets the state as St := (Sta0)
a∈A.

It returns (c0, (coma,coma,0)a∈A, St). P sends (c0, (coma,coma,0)a∈A) to V
as a commitment message, and keeps the state St.

• Σa∈A
bnd,cha((x

a)a∈A) → cha. This ppt algorithm is executed by V. On input the
statement (xa)a∈A, it reads out the size of the security parameter as 1λ and
chooses a challenge message cha ∈R chaSp(1λ). It returns cha. Va

0 sends
cha to Pa

0 as a challenge message.
• Σa∈A

bnd,res(St,cha) → (resa,resa,0)a∈A. This ppt algorithm is executed by
P. On input the state St and the challenge message cha, it runs the algo-
rithms Σa

0,res(Sta0 ,cha) to obtain (resa,resa,0) for each a ∈ A. It returns
(resa,resa,0). P sends (resa,resa,0)a∈A to V as a response message.

• Σa∈A
bnd,vrf((x

a)a∈A) → d. This deterministic algorithm is executed by V. On
input the statement (xa)a∈A and all the messages (c0, (coma,coma,0)a∈A),
cha and (resa,resa,0)a∈A, it first sets the extended statement as
xa
0 := (xa, c0) for each a ∈ A. Then it runs the algorithms

Σa
0,vrf(x

a
0 ,com

a,coma,0,cha,resa,resa,0) to obtain boolean decisions, for
each a ∈ A. If all the decisions are 1, then V returns 1, and otherwise, 0.

These four algorithms (Σa∈A
bnd,com, Σa∈A

bnd,cha, Σ
a∈A
bnd,res, Σ

a∈A
bnd,vrf) must satisfy the

following property.

Proposition 1 (Completeness). If Cmt is correct, and if Σa
0 is complete for

a ∈ A, then our Σa∈A
bnd is complete.

Proof. The completeness of our Πa∈A
bnd comes from the correctness of Cmt and

the completeness of Πa
0 for each a ∈ A. �

• Σa∈A
bnd,ext((x

a)a∈A, (c0, (coma,coma,0)a∈A),cha, (resa,resa,0)a∈A,cha′,
((resa)′, (resa,0)′)a∈A) → (ŵ0, (ŵa

1)a∈A). This ppt algorithm is for
knowledge extraction. On input the statement (xa)a∈A and two accept-
ing transcripts with a common commitment message and different
challenge messages, ((c0, (coma,coma,0)a∈A),cha, (resa,resa,0)a∈A)) and
((c0, (coma,coma,0)a∈A),cha′, (resa′,resa,0

′)a∈A)), cha 	= cha′, it first
sets the extended statement as xa

0 := (xa, c0) for each a ∈ A. Then
it runs the algorithms Σa

0,ext(x
a
0 , (com

a,coma,0),cha, (resa,resa,0),cha′,
(resa′,resa,0

′)) to obtain (ŵa
0 , ŵa

1 , r̂a
0) for each a ∈ A. If this event does not

occur (i.e. at least at one a Σa
0,ext fails to extract a witness), then it returns

⊥. Otherwise, if ŵa
0 = ŵa′

0 for any a, a′ ∈ A, then it sets the common value
ŵ0 := ŵa

0 and returns (ŵ0, (ŵa
1)a∈A). Otherwise it returns ⊥∗. The binding
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property of the commitment scheme Cmt assures that the former case holds
with an overwhelming probability, as claimed in the following proposition.

Proposition 2. (Special Soundness). If Cmt is correct and computationally
binding, and if Σa

0 has the special soundness for a ∈ A, then our Σa∈A
bnd has the

special soundness.

Proof. Omitted. (will appear in the full version).

Note 3. For simplicity of the later discussion, we hereafter assume that,
for all a ∈ A, Pr[Σa

0,ext returns a witness] = 1. That is, we assume that
Pr[Σa

0,ext returns ⊥] = 0 for each a ∈ A.

• Σa∈A
bnd,sim((xa)a∈A, ˜cha) → ((c̃0, ( ˜com

a
, ˜com

a
0)

a∈A), ( ˜resa
, ˜resa

0)
a∈A). This

ppt algorithm is for the simulation of an accepting transcript. On input
a statement (xa)a∈A and a uniform random string ˜cha ∈R chaSp(1λ),
it first chooses a base witness point w̃0 ∈R W0 uniformly at random,
and runs the commitment generation algorithm with a randomness r̃0,
Cmt.Com(w̃0; r̃0) → (c̃0, r̃0), to obtain a commitment c̃0. Then it sets the
extended statement as xa

0 := (xa, c̃0) for each a ∈ A. Then, it runs the algo-
rithms Σa

0,sim(xa
0 , ˜cha) to obtain (( ˜com

a
, ˜coma,0), ( ˜resa

, ˜resa,0)) for each
a ∈ A. It returns ((c̃0, ( ˜com

a
, ˜coma,0)a∈A), ( ˜resa

, ˜resa,0)a∈A).

Proposition 3. (Honest-Verifyer Zero-Knowledge). If Cmt is perfectly
hiding, and if Σa

0 is honest-verifier zero-knowledge for a ∈ A, then our Σa∈A
bnd is

honest-verifier zero-knowledge.

Proof. Omitted. (will appear in the full version).

Theorem 1. If Cmt is correct, computationally binding and perfectly hiding, and
if Σa

0 is a Σ-protocol for a ∈ A, then our protocol Σa∈A
bnd is a Σ-protocol.

Proof. Propositions 1, 2 and 3 deduces that Σa∈A
bnd is a Σ-protocol. �

Theorem 2. If the component interactive proof system Πa
0 with Σa

0 is per-
fectly witness-indistinguishable for each a ∈ A, and if Cmt is perfectly hiding,
then our interactive argument system Πa∈A

bnd with Σa∈A
bnd is perfectly witness-

indistinguishable.

Proof. Omitted. (will appear in the full version).

4 Decentralized Multi-authority Anonymous
Authentication Scheme

In this section, we give a syntax and security definitions of an interactive anony-
mous authentication scheme a-auth in a decentralized multi-authority setting on
key generation.
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P((xa)a∈A, w0, (wa
1 )

a∈A) V((xa)a∈A)

Σa∈A
bnd,com((xa)a∈A, w0, (wa

1 )
a∈A)

(c0, r0) ← Cmt.Com(w0; r0)
For a ∈ A:

xa
0 := (xa, c0), wa

0 := (w0, wa
1 , r0)

Σa
0,com(xa

0 , wa
0 )

→ (coma, coma,0, Sta
0)

St := (Sta
0)

a∈A

Return (c0, (coma, coma,0)
a∈A, St) c0, (coma, coma,0)

a∈A

→ Σa∈A
bnd,cha((x

a)a∈A)

cha ∈R chaSp(1λ)
cha Return cha

Σa∈A
bnd,res(St, cha) ←
For a ∈ A:

Σa
0,res(Sta, cha) → (resa, resa,0)

Return (resa, resa,0)
a∈A (resa, resa,0)

a∈A

→ Σa∈A
bnd,vrf((x

a)a∈A)
For a ∈ A:

xa
0 := (xa, c0)

Σa
0,vrf(x

a
0 , (coma, coma,0),

cha, (resa, resa,0)) =? 1
If true for all a ∈ A, then

d := 1 else d := 0, Return d
Return d

Fig. 1. The protocol Σa∈A
bnd of our proof system Πa∈A

bnd for the NP witness relation Ra∈A
bnd .

4.1 Syntax and Security Definitions

Our a-auth consists of five ppt algorithms, (Setup, AuthKG, PrivKG, P, V).

• Setup(1λ) → PP. This ppt algorithm is needed to generate a set of public
parameter values PP. On input the security parameter 1λ, it generates the set
of values PP. It returns PP.

• AuthKG(PP, a) → (PKa,MSKa). This ppt algorithm is executed by a key-
issuing authority indexed by a positive integer a. On input the set of public
parameter values PP and the authority index a, it generates the a-th public
key PKa of the authority and the corresponding a-th master secret key MSKa.
It returns (PKa,MSKa).

• PrivKG(PP,PKa,MSKa, gid) → ska
gid. This ppt algorithm is executed by the

a-th key-issuing authority. On input the set of public parameter values PP,
the a-th public and master secret keys (PKa,MSKa) and a string gid of a
prover (a global identity string), it generates a private secret key ska

gid of a
prover. It returns ska

gid.
• 〈P(PP, (PKa, ska

gid)
a∈A′

), V(PP, (PKa)a∈A′
)〉 → d. These two interactive ppt

algorithms are a prover who is to be authenticated, and a verifier who confirms
that the prover certainly knows the secret keys for indices a ∈ A′, respectively,
where A′ denotes a subset of all indices at which the prover is issued her
private secret keys by authorities. On input the set of public parameter values
PP and the public keys (PKa)a∈A to P and V and the corresponding private
secret keys (ska

gid)
a∈A to P, P and V interact with each other. After at most

polynomially many (in λ) moves of messages between P and V, V returns d := 1
(“accept”) or d := 0 (“reject”).
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We discuss two security notions for our authentication scheme a-auth.

Security Against Concurrent and Collusion Attack of Misauthentication. One of
the possible attacks to cause misauthentication is the concurrent and collusion
attack on our a-auth. For a formal treatment we define the following experiment
on a-auth and an adversary algorithm A.

Exprconc-colla-auth,A (1λ) : qA ← A(1λ), A := {1, . . . , qA}, PP ← Setup(1λ)

For a ∈ A : (PKa,MSKa) ← AuthKG(PP, a)

qI ← A(PP, (PKa)a∈A), I := {1, . . . , qI},For i ∈ I : gidi ∈R {0, 1}λ

For a ∈ A : For i ∈ I : ska
gidi

← PrivKG(PP,PKa,MSKa, gidi)

(A∗, St∗) ← AP(PP,(PKa,ska
gidi

)a∈A)|i∈I ,PrivKO(PP,PK·,MSK·,·)(PP, (PKa)a∈A)

〈A(St∗), V(PP, (PKa)a∈A∗
)〉 → d, If d = 1 then Return Win else Return Lose

Intuitively, the above experiment describes the attack as follows. The adver-
sary algorithm A, on input the security parameter 1λ, first outputs the num-
ber qA of key-issuing authorities. Then, on input the set of public parameter
values PP and the issued public keys (PKa)a∈A, A outputs the number qI

of provers with which A interacts concurrently (i.e. in arbitrarily interleaved
order of messages). In addition, A collects at most qsk private secret keys
by issuing queries to the private secret key oracle PrivKO(PP,PK·,MSK·, ·)
with an authority index a ∈ A and a global identity string gidj ∈ {0, 1}λ

for j = qI + 1, . . . , qI + qsk. We denote by Aj the set of authority indices for
which the queries with the global identity string gidj were issued. That is,
Aj := {a ∈ A | A receives ska

gidj
}, j = qI + 1, . . . , qI + qsk. We here require

that the numbers qA, qI and qsk are bounded by a polynomial in λ. At the last
of this “learning phase”, A outputs a target set of authority indices A∗ and its
inner state St∗. Next, in the “attacking phase”, on input the inner state St∗, the
adversary A interacts with the verifier V(PP, (PKa)a∈A∗

). If the decision d of V is
1, then the experiment returns Win and otherwise, returns Lose. A restriction
is imposed on the adversary A: The target set of authority indices A∗ should
not be a subset of any single set Aj : A∗

� Aj , j = qI + 1, . . . , qI + qsk. This
restriction is because, otherwise, A is given private secret keys for A∗ on a single
gidi∗ for some i∗, qI < i∗ ≤ qI + qsk, and then A can trivially be accepted in the
attacking phase.

The advantage of an adversary A over our authentication scheme a-auth in
the experiment is defined as: Advconc-coll

a-auth,A (λ) def= Pr[Exprconc-colla-auth,A (1λ) = Win].
An authentication scheme a-auth is called secure against concurrent and collusion
attacks of misauthentication if, for any given ppt algorithm A, the advantage
Advconc-coll

a-auth,A (λ) is negligible in λ.

Anonymity. A critical feature to be attained is provers’ anonymity on global
identities when the provers are authenticated. For a formal treatment we define
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the following experiment on a-auth and an adversary algorithm A.

Expranoa-auth,A(1λ) : qA ← A(1λ), A := {1, . . . , qA}, PP ← Setup(1λ)

For a ∈ A : (PKa,MSKa) ← AuthKG(PP, a)

gid0, gid1 ← A(PP, (PKa)a∈A)
For a ∈ A : For i ∈ 0, 1 : ska

gidi
← PrivKG(PP,PKa,MSKa, gidi)

b ∈R {0, 1}, b∗ ← AP(PP,(PKa,ska
gidb

)a∈A)(PP, (PKa, ska
gid0

, ska
gid1

)a∈A)

If b = b∗, then Return Win, else Return Lose

Intuitively, the above experiment describes the attack as follows. The adversary
algorithm A, on input the security parameter 1λ, first outputs the number qA of
key-issuing authorities. Then, on input the issued public keys (PKa)a∈A, A des-
ignates two identity strings gid0 and gid1 (as is usual in the indistinguishability
games). Next, A interacts with a prover P on input even the private secret keys
(ska

gidb
)a∈A, where the index b is chosen uniformly at random. If the decision

b∗ of A is equal to b, then the experiment returns Win and otherwise, returns
Lose.

The advantage of an adversary A over our authentication scheme a-auth in
the experiment is defined as: Advano

a-auth,A(λ) def=
∣
∣Pr[Expranoa-auth,A(1λ) = Win] −

(1/2)
∣
∣. An authentication scheme a-auth is called to have anonymity if, for any

ppt algorithm A, the advantage Advano
a-auth,A(λ) is negligible in λ.

4.2 Generic Construction

We give a generic construction of our authentication scheme a-auth. The building
blocks are the interactive proof system Πa∈A

bnd with our Σ-protocol Σa∈A
bnd and a

digital signature scheme Sig. We note that a commit-and-prove scheme CmtPrv
is employed in Σa∈A

bnd .

• Setup(1λ) → PP. On input the security parameter 1λ, this ppt algorithm
generates a set of public parameter values by running the setup algorithms
Sig.Setup(1λ), Π.Setup(1λ) and CmtPrv.Setup(1λ). These algorithms are for
the digital signature scheme Sig, the interactive argument systems (Πa

0 )a∈A,
and the commitment generation algorithm Cmt.Com. They generate PPSig, PPΠ

and PPCmt, respectively. It merges them as PP := (PPSig, PPΠ , PPCmt). It returns
PP.

• AuthKG(PP, a) → (PKa,MSKa). On input the set of public parameter values
PP and an authority index a, this ppt algorithm executes the key generation
algorithm Sig.KG(PPSig) to obtain a signing key SK and the corresponding
public key PK. It sets the master secret key as MSKa := SK and the corre-
sponding public key as PKa := PK. It returns (PKa,MSKa).

• PrivKG(PP,PKa,MSKa, gid) → ska
gid. On input the set of public param-

eter values PP, a public key PKa, the corresponding master secret key
MSKa and a string gid, this ppt algorithm executes the signing algorithm
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Setup(1λ) AuthKG(PP, a) PrivKG(PP,PKa,MSKa, gid)

PPSig ← Sig.Setup(1λ) (SK,PK) ← Sig.KG(PPSig) σa
gid ← Sig.Sign(PPSig,PKa,

PPΠ ← Π.Setup(1λ) PKa := PK,MSKa := SK MSKa, gid)

PPCmtPrv ← CmtPrv.Setup(1λ) Return (PKa,MSKa) ska
gid := σa

gid

PP := (PPΠ , PPCmtPrv, PPSig) Return ska
gid

Return PP

P(PP, (PKa)a∈A, (ska
gid)

a∈A) V(PP, (PKa)a∈A)
For a ∈ A: xa := PKa, wa

1 := ska
gid For a ∈ A: xa := PKa

w0 := gid

(Execute Σa∈A
bnd )

Return (d ← Σa∈A
bnd,vrf)

Fig. 2. Generic construction of our decentralized multi-authority anonymous authen-
tication scheme a-auth.

Sig.Sign(PPSig,PKa,MSKa, gid) to obtain a digital signature σa
gid on the mes-

sage gid. It puts a private secret key ska
gid as ska

gid := σa
gid. It returns ska

gid.
• P(PP, (PKa)a∈A, (ska

gid)
a∈A) and V(PP, (PKa)a∈A). On input the set of public

parameter values PP and the public keys (PKa)a∈A to the prover P and the
verifier V, and the corresponding private secret keys (ska

gid)
a∈A to P, ppt algo-

rithms P and V first set the statements as xa := PKa for a ∈ A and P sets the
witness as w0 := gid and wa

1 := ska
gid for a ∈ A. The witness spaces W a, a ∈ A

are described as follows: W a = W0 × W a
1 ,W0 = {gid | string of length λ} =

{0, 1}λ,W a
1 = {σa

gid | σa
gid ← Sig.Sign(PPSig,PKa,MSKa, gid) for some gid ∈

W0}. P and V execute the Σ protocol Σa∈A
bnd . V returns the returned boolean

d of the verifier algorithm Σa∈A
bnd,vrf.

4.3 Properties

Theorem 3. If the component proof system Πa
0 is perfectly witness-

indistinguishable for each a ∈ A, if the commitment scheme Cmt is perfectly
hiding and computationally binding, and if the digital signature scheme Sig

is existentially unforgeable against adaptive chosen-message attacks, then our
a-auth is secure against concurrent and collusion attacks. More precisely, let qA

denote the maximum number of authorities. For any given ppt algorithm A
that executes a concurrent and collusion attack on our a-auth in accordance with
the experiment Exprconc-colla-auth,A (1λ), there exists a ppt algorithm F that generates
an existential forgery on Sig in accordance with the experiment Expeuf-cma

Sig,F (1λ)
and there exists a ppt algorithm B that breaks the bandaging property of Cmt in
accordance with the experiment Expbind

Cmt,B(1λ) satisfying the following inequality.

Advconc-coll
a-auth,A (λ) ≤ 1

|chaSp(1λ)| +

√
2λ

2λ − 1
· qA · Adveuf-cma

Sig,F (λ) + Advbind
Cmt,B(λ).

Proof. Omitted. (will appear in the full version).
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Theorem 4. If the component proof system Πa
0 is perfectly witness-

indistinguishable for each a ∈ A, and if the commitment scheme Cmt is perfectly
hiding, then our a-auth has anonymity. More precisely, for any given ppt algo-
rithm A that executes the anonymity game on our a-auth in accordance with the
experiment Expranoa-auth,A(1λ), the following equality holds.

Advano
a-auth,A(λ) = 0.

Proof. Omitted. (will appear in the full version).

5 On Instantiation and Implementation

In this section, we briefly discuss instantiation and implementation of our generic
authentication scheme a-auth in Sect. 4.

Basically, we can employ any three building blocks that satisfy the require-
ments stated in Sect. 4. We here briefly mention an instantiation in the set-
ting of bilinear groups. The three building blocks are the pairing version
of the Camenisch-Lysyanskaya digital signature scheme SigCL by Sudarsono-
Nakanishi-Funabiki [14] and Teranishi-Furukawa [15], the pairing version of the
Camenisch-Lysyanskaya perfectly witness-indistinguishable argument of knowl-
edge system ΠCL by [14,15], and the Pedersen-Okamoto commit-and-prove
scheme CmtPrvPO [12,13].

As for implementation, we expect a similar result to the result found in [14]
because the execution of the Pedersen-Okamoto commit-and-prove is fast. When
the number of authorities involved in our authentication is 3, the expected times
for proof-generation and verification are both under 0.5 seconds except the com-
munication time. (See Sect. 5.2 of [14] “the total number of string attribute
types”.)

6 Conclusion

We proposed a generic construction of a Σ-protocol of commit-and-prove
type, which is an and-composition of Σ-protocols on the statements that
include a common commitment. When the component Σ-protocols are of
witness-indistinguishable argument systems, our Σ-protocol is also a witness-
indistinguishable argument system as a whole. As an application, we gave a
generic construction of a decentralized multi-authority anonymous authentica-
tion scheme. There a witness is a bundle of witnesses each of which decomposes
into a fixed global identity string and a digital signature on it. We mentioned
an instantiation of the scheme in the setting of bilinear groups. A post-quantum
instantiation should be our future work.
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Abstract. The knowledge of protocol specification, especially protocol
field boundary, is invaluable for addressing many security problems, such
as intrusion detection. But many industrial control network (ICN) pro-
tocols are closed. Closed protocol reverse engineering has often been a
time-consuming, tedious and error-prone process. Some solutions have
recently been proposed to allow for automatic protocol reverse engineer-
ing. But their prerequisites, e.g. assuming the existence of keywords or
delimiters in protocol messages, limit the scope of their efforts to parse
ICN protocol messages. In this paper, we present AutoBoundary that
aims at automatically identifying field boundaries in an ICN protocol
message. By instrumenting and monitoring program execution, Auto-
Boundary can obtain the execution context information, and build a
memory propagation (MP) tree for each message byte. Based on the
similarity between MP trees, AutoBoundary can identify protocol field
boundaries, automatically. The intuition behind AutoBoundary makes it
suitable for ICN protocols, which have the characteristics of no delimiter,
no keyword, and no complex hierarchical structure in the message. We
have implemented a prototype of AutoBoundary and evaluated it with 62
ICN protocol messages from 4 real-word ICN protocols. Our experimen-
tal results show that, for the ICN protocols whose fields are byte-aligned,
AutoBoundary can identify field boundaries with high accuracy (100%
for Modbus/TCP, 100% for Siemens S7, and 94.7% for ISO 9506).

Keywords: Industrial control network
Protocol field boundary identification · Memory propagation tree

1 Introduction

For industrial control network (ICN), the knowledge of application-level proto-
col specifications is invaluable for addressing many security problems. Protocol
specifications are often required for intrusion detection and firewall systems to
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perform deep packet inspection [3,17]. For ICN management, protocol specifi-
cations can be used to identify protocols and analyze network traffic. They also
allow the automatic generation of protocol fuzzers when performing the black-
box testing [16]. Of course, many ICN protocol specifications can be obtained
from authority documents directly, such as Modbus. But many ICN protocols
are unknown, undocumented or proprietary, such as Siemens S7. For the closed
protocol, protocol reverse engineered manually always means time-consuming
and error-prone. In this case, the specification could only be specified through
automatic protocol reverse engineering.

A key work of protocol reverse engineering is to identify the field boundaries.
Some solutions have recently been proposed to allow for automatic protocol
reverse engineering, including identifying field boundaries. Most of them are
effective and efficient, when the prerequisites are met. The prerequisites include:
(1) the existence of keywords or delimiters in protocol messages; (2) utilizing
loops and comparison operations to parse protocol messages within the soft-
ware binary; (3) getting key information ahead of time, e.g., IP address or host
name, and so on. On the other hand, the syntactic structures of many ICN pro-
tocols have the characteristics of no delimiter, no keyword, and no hierarchical
structure, such as Modbus. In this paper, we present AutoBoundary, a new app-
roach that aims at automatically identifying field boundaries in an ICN protocol
message. AutoBoundary is based on the key observation that bytes belonging
to the same protocol field of a message have the same propagation traces in the
memory, due to they are typically handled together. The intuition behind Auto-
Boundary does not depend on delimiter, keyword, or hierarchical structure. So
it is more suitable for ICN protocols. By dynamically analyzing program exe-
cution, we record the address for a message byte once it propagates from one
place to another. At last, all address records of a message byte compose a mem-
ory propagation tree. A n-byte message results n memory propagation trees.
Through comparing between memory propagation trees, we can decide whether
two message bytes belong to the same protocol field or not. Further, based on the
similarity between memory propagation trees, we can identify the field bound-
aries of a protocol message. We have implemented a proof-of-concept prototype
and evaluated it with 62 ICN protocol message from 4 ICN protocols.

The contributions of this paper are the following: (1) We present a novel
approach to analyze the movement trace of message bytes in the memory. We
use memory propagation (MP) tree as storage structure to record all movement
traces of a message byte, and describe the detail way how to compare between
MP trees. The comparison result embodies the similarity between MP trees.
(2) We present AutoBoundary, an MP-tree-based approach to identify the field
boundaries in an ICS protocol message. (3) We applied our techniques to a set
of real-world applications that implement ICN protocols such as Modbus/TCP,
IEC 60870-5-104, ISO 9506, and Siemens S7. Our results show that AutoBound-
ary can automatically identify field boundaries.
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2 Goal and Assumption

There are three essential components in an application-level protocol specifica-
tion: protocol syntax, protocol FSM and protocol semantics. Inferring protocol
syntax, including identifying field boundary, lays the foundation for automatic
protocol reverse engineering. In this paper, we focus on identifying the field
boundaries. Our goal is to design an algorithm that, given one message of an
ICN protocol and an application that can process this message, recovers the
boundaries of fields.

As mentioned above, we assume that the application, which can parse the
protocol message, could be obtained. Though these appliances that run on very
“special” hardware seem to be hardly obtained, it is not always an unsolvable
problem. We believe that some cutting-edge technologies (e.g., softPLC, virtu-
alization, and digital twins) would make it possible.

3 System Design

The intuition behind AutoBoundary is simple but effective: “Bytes belonging
to the same protocol field of a message have the same propagation traces in
the memory, due to they are typically handled together.” As such, the prop-
agation traces of each message byte can be compared to uncover field bound-
aries. AutoBoundary is interested in how memory propagation information can
be collected and analyzed to identify field boundaries. It has three processing
stages: (1) execution monitor, (2) MP tree generation, and (3) field boundary
identification.

3.1 Stage 1: Execution Monitor

In the execution monitor stage, an ICN protocol message is sent to an applica-
tion that “understands” the protocol that we are interested in, such as a server
program implementing a particular ICN protocol. By monitoring application exe-
cution, we can intercept the network-related system calls (e.g., sys socket), and
mark the message received as tainted data. Moreover, throughout the message
processing life-time, we instrument all instructions that operate on the tainted
data to record propagation traces. More specially, for a data movement instruc-
tion, we check whether the source operand is tainted. If yes, we will mark the
destination operand, which can be a register or a memory location, as tainted
data; If no, we will simply unmark the destination operand. At the same time,
we record the instruction address and the addresses of both the source operand
and destination operand, with the format: “addrins : addrsrc → addrdst”. If an
instruction has two source operands, we will union of their marks, and record
with the format: “addrins : addrsrc1 + addrsrc2 → addrdst”. Similar to previous
systems that use dynamic taint analysis, we establish a relationship between a
particular message byte and a location in memory (or a register). We reference
interested readers to related literature such as [4,10,18].
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As a result of the monitoring process, memory propagation records are pro-
duced for each ICN protocol message. They contain all operations that have one
tainted operands at least.

3.2 Stage 2: Memory Propagation Tree Generation

To organize memory propagation records efficiently and make it possible for
mathematical calculation, we define a new structure and name it as memory
propagation tree, which is described as Definition 1. Each byte from an ICN
protocol message has one, and only one, corresponding MP tree. In the rest of
this section, we discuss the way how to build MP trees from memory propagation
records, calculate branch contribution for an MP tree, and compress an MP tree,
within stage 2.

Definition 1. A Memory Propagation (MP) tree is a data structure made up
of nodes and edges without having any cycle. An MP tree consists of a root
node and potentially many levels of additional nodes that form a hierarchy. The
root node represents the initial memory location of a byte from an ICN protocol
message. The intermediate and leaf nodes represent the locations where this byte
has appeared during its propagation process. An edge means propagating from a
location (i.e., parent node) to another (i.e., child node).

MP Tree Construction. By monitoring the network-related system calls, the
buffer that contains the received protocol message is determined. For each byte
in the buffer, AutoBoundary creates a blank MP tree, adds a root node into
the MP tree, and sets two properties on the root node. One is location prop-
erty that includes the byte address. The other is growth property that indicates
whether a new branch can grow from this node. Then, as shown in Algorithm1,
AutoBoundary repeatedly reads a record from the memory propagation records
generated in Sect. 3.1, and tries to insert a new child node and a new edge that
is from record.addrsrc to record.addrdst into the MP tree mpti, by using the
function MPtree-InsertEdge(). If there is an existing node nodei, whose loca-
tion property value is equal with record.addrsrc and growth property value is
“enable”, the node and edge can be insert into mpti. In this case, AutoBoundary
creates a new node node′, sets its location property value to record.addrdst, and
sets its growth property values to “enable”. A new edge that is from nodei to
node′ is inserted into mpti. On the other hand, if there is no such node, Auto-
Boundary checks whether this memory propagation record would have impact
on mpti. If record.addrdst is the same with any nodes’ location property value,
AutoBoundary modifies the growth property values of these nodes to “disable”.
The value “disable” means that a new branch cannot grow from such nodes,
namely, they cannot be a parent of a new node. It’s important to note that, in
the real-world application, after a tainted memory or register is overwritten by
other non-tainted data, we should no longer keep tracks of its propagation. The
growth property attached to the node helps us to decide whether to keep tracks
of the node’s propagation in the future.
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Algorithm 1. MPtree-Gen
Input. [buf ]: the buffer contains the protocol message

[records]: the memory propagation records generated in Sect. 3.1
Output. [mpt1,mpt2, · · · ,mptn]: MP trees, n means the length of buf
1: for each bytei in buf do
2: create a blank MP tree mpti for bytei
3: create root node rootNodei
4: set rootNodei.locationProperty =getAddress(bytei)
5: set rootNodei.growthProperty = enable
6: insert rootNodei into mpti
7: for read a record from records do
8: MPtree-InsertEdge(record.addrsrc, record.addrdst, mpti)
9: end for

10: end for
11: Return (mpt1,mpt2, · · · ,mptn);

Branch Contribution Calculation. The node that has no child is a leaf node.
A branch consists of a root node, a leaf node, and all of nodes and edges between
them. The branch length is defined in Definition 2.

Definition 2. The length of a branch is the number of nodes, which belong to
the branch. Term “longer” has the same meaning as “with more nodes”.

Definition 3. Branch contribution is used to quantify weigh values of branches
with different length. It embodies the contribution degree of a branch during the
process of identifying field boundaries. It is a decimal number between 0 and
1. 0 means that the branch has no contribution to filed identification procedure.
In contrast, being close to 1 means that the branch has much impact on filed
identification procedure.

For an MP tree, are the weight values of branches with different length the
same? Of course not. The longer a branch is, the wider a byte propagates. A wider
propagation always means that the byte has been processed by more instructions,
while each instruction can partially reflect characteristics of the byte. Therefore,
a longer branch usually provides more help to identify field boundaries. To quan-
tify weight values for branches with different length, we introduce the definition
of branch contribution as Definition 3. For the ith branch, its contribution conti
can be calculated by (1), where n is the total number of branches, and the func-
tion len() gets the length of a branch. The contribution degree is attached to
every branch as an additional property.

conti =
len(branchi)∑n
j=1 len(branchj)

, 1 � i � n (1)

MP Tree Compression. If the length of two branches are equal, and the
nodes residing in the same level have the same properties (i.e., location and
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growth), we say that these two branches are the same. AutoBoundary does
not forbid establishing multiple same branches during the process of MP tree
generation. The redundancy branches reduce the efficiency of compare operation
in the next stage. To mitigate the problem, AutoBoundary compresses the MP
tree by merging the redundancy branches. The compressing approach used by
AutoBoundary is simple and easy, but efficient and effective. For the redundancy
branches, first rip out all but one, and then add the contribution of discarded
branches into the remaining one.

3.3 Stage 3: Field Boundary Identification

Our field boundary identification relies on clustering message bytes. To cluster
bytes, we need to invoke both branch comparison and tree similarity calculation.
In this section, we first explain these procedures before describing how to divide
clusters.

Branch Comparison. To find similar branches across different MP trees, we
need a proper approach to compare branches. As Sect. 3.2 describes, each branch
consists of many nodes. Therefore, to compare two branches, we align their nodes
by using a customized version of sequence alignment algorithm. And the score
gotten by aligned nodes represents the result of branch comparison.

We refer to our approach for aligning nodes as node-based sequence alignment
algorithm. The key observation behind our approach is that, while sequence
alignment algorithm [14] cannot be used for comparing branches directly, it can
be used to align nodes by leveraging the node’s properties (i.e., location and
growth property) generated in the MP tree construction phase. In the node-
based sequence alignment algorithm, we claim two aligned nodes are matched
if they have the same growth property and the distance between their location
is smaller than the size of a variable of type char (i.e., 1 byte). For instance,
knowing a growth-enabled node N of a branch is placed in a particular location
necessitates that its counterpart N ′ of another branch is also growth-enabled and
next to N for these two nodes to be considered a match. We allow gaps in the
node-based sequence alignment algorithm. In addition to using gap penalties to
control gaps, we introduce extra constraints to make it more suitable for branch
comparison. First, a node placed in registers is allowed to align with gaps. This
constrain is for handling the case of coalescing multiple registers (i.e., EAX and
EDX) to perform one computation. Second, a node placed in memory is allowed
to align with gaps, but it must be imposed heavy penalty – the gap penalty is
typically double. This constraint is for handling the case that string functions
are used to parse fields. For example, when using the function “strncmp” to
parse fields, the front part of the field may be handled more times than the rear
part, which results in longer branches for the front part.

After aligning nodes, the node-based sequence alignment algorithm outputs a
score for a pair of branches. This score quantifies the result of branch comparison.
Since AutoBoundary does not focus on the absolute value of the score, it is
insensitive to the scoring system (sub-scores for match, mismatch and gap) used
by sequence alignment algorithm.
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MP Tree Similarity Calculation. Let two target MP tree as mpt1 and mpt2.
To calculate the similarity between them, we need to find the matched branches
and accumulate contribution degrees for each tree, respectively.

Definition 4. For a given branch from an MP tree, comparing it with all
branches from another MP tree (by using branch comparison approach), the cor-
responding branch is defined as which one outscores others.

Definition 5. For a given branch and its corresponding branch, if the score for
branch comparison exceeds a certain threshold, we claim they are matched.

threshold = len × fac × sScorema + len × (1 − fac) × sScoremi,

len =
len(branch) + len(branch′)

2

(2)

Firstly, we deal with mpt1. Travel every branch bri from mpt1, we search its
corresponding branch br′

i in mpt2. We give the definition of corresponding branch
in Definition 4. And then, check whether the branch bri and its corresponding
branch br′

i are matched. The definition of matched branch is given in Definition 5.
As what described in it, a threshold is required to decide whether they are
matched. This threshold can be obtained by (2), where len is the mean value of
the branch length, sScorema and sScoremi are the sub-scores for matched and
mismatched nodes respectively, and fac is an adjustment factor whose range is
from 0.5 to 1 – the value of fac means the least percentage of matched nodes
(for Modbus/TCP, IEC 60870-5-104, ISO 9506 and S7, we suggest setting fac
to 0.75). After that, if bri and br′

i are matched, accumulate the contribution
degree for mpt1. Algorithm 2 describes this process in detail. It traverses all
branches in mpt1, to find the corresponding branch in mpt2. If the comparison
score between branch bri and its corresponding branch br′

i is larger than the
threshold, namely branches are matched, accumulate the contribution degree
of bri into the total contribution degree matchContribution. At the end, the
accumulated contribution degree of mpt1 is obtained.

Secondly, dispose mpt2 with the same procedure as mpt1, but reverse roles
of two MP trees. Travel all branches of mpt2, search the corresponding branch
in mpt1, and accumulate the contribution degree for mpt2.

Algorithm 2. AutoBoundary-AccumulateContribution
Input. [mpt1]: the first MP tree; [mpt2]: the second MP tree
Output. [matchContribution]: accumulated contribution degrees for mpt1
1: for each branch bri in mpt1 do
2: (br′

i, score) = AutoBoundary-FindCorrespondingBranch(bri, mpt2)
3: if score > getThreshold(bri, br

′
i) then

4: matchContribution += getContribution(bri)
5: end if
6: end for
7: Return (matchContribution);
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Algorithm 3. AutoBoundary-CalculateTreeSimilarity
Input. [mpt1]: the first MP tree; [mpt2]: the second MP tree
Output. [similarity]: the similarity between input MP trees
1: matchCont1 = AutoBoundary-AccumulateContribution(mpt1, mpt2)
2: matchCont2 = AutoBoundary-AccumulateContribution(mpt2, mpt1)
3: similarity = (matchCont1×getLength(mpt1)+matchCont2×getLength(mpt2))
4: similarity = similarity/(getLength(mpt1) + getLength(mpt2))
5: Return (similarity);

At last, calculate the similarity between two MP trees, based on their contri-
bution degrees. As Algorithm 3 described, we obtain the result similarity through
merging two accumulated contribution degrees.

Message Byte Clustering. Message byte clustering is an iterative process,
from the first message byte to the last one. As shown in Algorithm 4, each iter-
ation handles two adjacent message bytes. AutoBoundary finds MP trees for
these two bytes, and then calculates the similarity between MP trees through
the approach described above.

Algorithm 4. AutoBoundary-ClusterByte
Input. [message]: the ICN protocol message, including n bytes

[mpt1,mpt2, ...,mptn]: MP trees, one tree mapping one byte
Output. [cluster]: the result clusters
1: for i from 1 to n do
2: mpti = getMPTree(bytei) // bytei means ith byte in message
3: mpti+1 = getMPTree(bytei+1)
4: similarityi = AutoBoundary-CalculateTreeSimilarity(mpti, mpti+1)
5: end for
6: for i from 1 to n− 1 do
7: k =sizeof(short)
8: pre = (1 > i− k/2)?1 : (i− k/2)
9: post = (i + k/2 > n− 1)?(n− 1) : (i + k/2)

10: for j from pre to post do
11: neighbourMean += similarityj
12: end for
13: neighbourMean = neighbourMean/(post− pre + 1)
14: // check whether similarityi is larger than the mean value of k neighbors
15: if similarityi � neighbourMean then
16: divide bytei and bytei+1 into a cluster
17: end if
18: end for
19: Return (clusters);
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After that, n − 1 similarities are obtained. According to these similarities,
AutoBoundary divides message bytes into clusters. To evaluate whether a simi-
larity is high enough, we need a reference value. Therefore, for each one out of
n− 1 similarities, AutoBoundary finds its k neighbors, and calculates the mean
value. If a similarity is larger than its k-neighbor mean value, two message bytes
related to the similarity are divided into a cluster. At last, every message byte
is covered by one and only one cluster. While a cluster is identified as a protocol
field, field boundaries is set between clusters.

4 Evaluation

We have implemented an AutoBoundary prototype in 20,500 lines of source
code on Linux 3.16 (Debian 8.5.0). The execution monitor module extends the
instrumentation tool Pin [12] (version 2.14-71313). However, we note that our
design is not tightly coupled with Pin, and can be implemented using other
instrumentation tools, e.g., Valgrind [15]. The MP tree generation module takes
a memory propagation record file that is the outcome of execution monitor
module as input, and outputs MP trees. Based on MP trees, the field boundary
identification module infers message formats.

We will present two sets of experiments. The first set of experiments involves
20 kinds of prototype messages from 3 known ICN protocols, including Mod-
bus/TCP, IEC 60870-5-104 and ISO 9506. The second set of experiments
involves 10 protocol messages in a closed ICN protocol used by Siemens PLCs,
namely S7. These messages are either for conveying commands from the engineer
station or for retrieving I/O data from the controller.

In the first set of experiments with known ICN protocols, we can quantita-
tively evaluate the effectiveness of AutoBoundary. We compare our results with
the results from a popular network protocol analyzer – Wireshark. We present
the set of message fields as F , and the number of F as |F |. We count |F | in
both Wireshark and AutoBoundary results. We also count the number of fields
in protocol specifications, which will be taken as benchmarking. Because both
Wireshark and AutoBoundary may consolidate multiple protocol fields as one
coarse-grained field, we count the total number of coarse-gained fields as |Ec|. On
the other hand, they may divide a protocol field into multiple overly-fine-grained
fields. We count the number of overly-fine-grained fields as |Eo|. Table 1 reports
the results. In the following, we describe our experiments in greater detail.

4.1 Modbus TCP Request

In this experiment, we monitor the execution of a Modbus/TCP server imple-
mented by libmodbus v3.0.6, and trace 20 Modbus/TCP messages (8 types). The
results in Table 1 show that AutoBoundary identifies all protocol fields, as there
is one overly-fine-grained field discovered by Wireshark. For the error ratio, Auto-
Boundary performs better. As a detailed example, for the “Write Single Coil”
sub-messages, Wireshark reports |Ec| = 0 and |Eo| = 1 while AutoBoundary
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Table 1. Protocol field comparison between Wireshark and AutoBoundary

Protocol Message type Specification Wireshark AutoBoundary

|F | |F | |Ec| |Eo| |F | |Ec| |Eo|
Modbus/TCP Write Single Coil 7 8 0 1 7 0 0

Write Multiple Coils 9 9 0 0 9 0 0

Write Single Register 7 7 0 0 7 0 0

Write Multiple Registers 9 9 0 0 9 0 0

Read Coils 7 7 0 0 7 0 0

Read Discrete Inputs 7 7 0 0 7 0 0

Read Holding Registers 7 7 0 0 7 0 0

Read Input Registers 7 7 0 0 7 0 0

IEC 60870-5-104 U format STARTDT 5 4 1 0 4 1 0

U format STOPDT 5 4 1 0 4 1 0

I format Interrogation 16 15 1 0 11 5 0

I format C SC NA 1 19 17 2 0 12 7 0

I format C DC NA 1 18 17 1 0 11 7 0

I format C SE NB 1 22 17 5 0 12 10 0

I format C RD NA 1 15 14 1 0 10 5 0

I format C CS NA 1 28 23 5 0 13 15 0

ISO 9506 getNameList 16 4 12 0 11 4 0

Read 23 9 14 0 23 0 0

Write 26 11 15 0 28 0 2

defineNamedVariableList 29 12 17 0 31 0 2

shows |Ec| = 0 and |Eo| = 0, comparing with the Modbus/TCP specification.
The reason for having an overly-fine-grained field in Wireshark result is that the
low byte of “output value” field is erroneously identified as a padding of Ether-
net frame. And if a Modbus/TCP server does not use the default port 502 (e.g.,
the example program of libmodbus uses 1502 as the default port), Wireshark
cannot identify any Modbus/TCP fields. AutoBoundary works well no matter
which port number is used by the Modbus/TCP server. Therefore we believe
that AutoBoundary outperforms Wireshark, when confronting Modbus/TCP.

4.2 IEC 60870-5-104 Request

In this experiment, we monitor the execution of an IEC 60870-5-104 server imple-
mented by lib60870 v0.9.4, and trace 20 messages (8 types) in control direction.
Table 1 shows the existence of coarse-grained fields both in the Wireshark and
AutoBoundary results. More specifically, Wireshark identifies 86.7% of protocol
fields, while AutoBoundary only discovers 60.1% of them. To find out the root
cause, we make in-deep analysis against “U format – STARTDT” sub-messages
and “I format – Interrogation” sub-messages.
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For the “U format – STARTDT” sub-messages, Wireshark reports |Ec| = 1
and |Eo| = 0 while AutoBoundary shows |Ec| = 1 and |Eo| = 0. According to
IEC 60870-5-104 specification, a “STARTDT” message has 1 start field, 1 length
field and 4 control fields. The first control field is divided into two parts: bit 1–2
are always 1 (format type), bit 3–8 represents one function (TESTFR, STOPDT
or STARTDT). Therefore, the first control field should be treated as 2 different
fields. Because the last 3 control fields are always 0, they are combined as 1 field.
Wireshark does not identify the last field, i.e. 3-byte 0x00. AutoBoundary treats
the first control field as 1 field. It does not discover the format type field (bit
1–2 of the first control field) and function field (bit 3–8 of the first control field).

For the “I format – Interrogation” sub-messages, Wireshark reports |Ec| = 1
and |Eo| = 0 while AutoBoundary shows |Ec| = 5 and |Eo| = 0. An “Inter-
rogation” message has 16 protocol fields, including start field, length field, two
format type fields (bit 1 of CFO1 1 and bit 1 of CFO 3), send sequence number
field, receive sequence number field, type identification field, SQ field (bit 8 of
VSQ2), number field, test flag field (bit 8 of COT3), P/N field (bit 7 of COT),
cause field, originator address field, common address field, information object
address field and qualifier of interrogation field. Wireshark only discovers one
format type field, while AutoBoundary does not identify SQ, test flag, P/N and
format type fields.

There is a main reason behind the coarse-grained field: for AutoBoundary,
the granularity of dynamic taint analysis is byte but not bit. So it cannot iden-
tify field boundaries which are not byte-aligned, such as function field in the
“STARTDT” message, SQ field in the “Interrogation” message and so on. It is
easy to modify the granularity of dynamic taint analysis from byte to bit, but
the resource consumption will be increasing exponentially. To balance out the
costs and benefits, we keep the byte-granularity.

4.3 ISO 9506 Request

In this experiment, we monitor the execution of an ISO 9506 (MMS) server
implemented by libiec61850 v1.0.1, and trace 12 messages (4 types) in con-
trol direction. Table 1 shows that, there are coarse-grained fields both in the
Wireshark results and AutoBoundary results. Wireshark only identifies 39.3%
of protocol fields. ISO 9506 (MMS) uses Abstract Syntax Notation One (ASN.1)
to encode request PDUs. The Basic Encoding Rules (BER) of ASN.1 has three
parts: identifier, length and content. Wireshark only identifies the content fields.
This is the root cause for the poor result. On the other hand, AutoBoundary
discovers 94.7% of protocol fields. As a detailed example, for “getNameList” sub-
messages, AutoBoundary reports |F | = 11 and |Ec| = 4. Through static analysis
against the source code, we find that the implementation of the protocol ignores
specific messages fields. So these fields cannot be inferred by AutoBoundary.

1 Control Field Octet.
2 Variable Structure Qualifier.
3 Cause Of Transmission.
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For “write” sub-messages, AutoBoundary reports |F | = 28 and |Eo| = 2. The
reason behind overly-fine-grained fields is that the “itemID” field consists of
multiple parts – a logical node name “LLN0”, a functional constraint “ST”, and
a data name “Health”. The implementation of the protocol parses them respec-
tively. Therefore, AutoBoundary regards one “itemID” field as three different
fields. The same thing happens to “defineNamedVariableList” sub-messages.

Table 2. Protocol field comparison between S7 Wireshark dissector and AutoBoundary

Protocol Message function code S7 Wireshark dissector AutoBoundary

|F | |F | |Ec| |Eo|
Siemens S7 Protocol Setup communication 11 11 0 0

Upload 16 16 0 0

PLC Stop 10 10 0 0

Write Variable 20 20 0 0

(Multiple) Read Variable 48 48 0 0

4.4 Siemens S7 Messages

We present our second set of experiments showing that AutoBoundary can
uncover the field boundaries of a closed ICN protocol (S7) message used by
Siemens PLCs. To verify the AutoBoundary results, we use a great project –
S7 Wireshark dissector, and compare results between AutoBoundary and S7
Wireshark dissector.

We monitor the execution of an S7 server implemented by Snap7, and trace
10 messages (5 types) in control direction. As shown in Table 2, for each field
boundary identified by S7 Wireshark dissector, there is an identical field bound-
ary automatically discovered by AutoBoundary.

5 Limitations and Future Work

The first limitation of AutoBoundary is the granularity of dynamic taint anal-
ysis. To balance out the costs and benefits, we choose 1-byte as the minimum
unit when tracing taint data. But some ICN protocol fields are not byte-aligned,
such as IEC 60870-5-104 requests mentioned in Sect. 4.2. In other words, if a
protocol field is not byte-aligned, AutoBoundary cannot infer the filed bound-
ary accurately. Secondly, AutoBoundary is the dynamic trace dependency. If the
implementation of an ICN protocol ignores some message fields, AutoBoundary
cannot discover the boundaries of these fields, just like what happened for ISO
9506 requests mentioned in Sect. 4.3. Fixing the above problems is a part of our
future work. And we plan to extend execution monitoring process to the pro-
tocol client (e.g., HMI application), which is easier to be obtained. In addition,
identifying entire structure of a message is another part of our future work.
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6 Related Works

The methods of automatic protocol reverse engineering can be classified into
network trace analysis and dynamic analysis approaches.

The network trace analysis approaches for protocol reverse engineering take
as input a network capture and use clustering techniques to determine protocol
information. Protocol Informatics project [2] aims to employ Smith Waterman
algorithm to infer protocol formats from a set of protocol network packets. Dis-
coverer [7] leverages recursive clustering and type-based sequence alignment to
infer message formats. RolePalyer [8] can mimic both the server side and the
client side of the session for application protocols. Biprominer [19] and ProDe-
coder [20] are two automatic protocol reverse engineering tools, which use statis-
tical methods to find keywords and probable keyword sequences. AutoReEngine
[13] adopts a similar method but measuring keyword location from the beginning
of a message as well as the end. ReverX [1] uses a speech recognition algorithm
to identify delimiters, and then finds keywords within protocol messages by iden-
tifying the frequency of byte sequences.

The dynamic analysis approaches monitor the execution of a software binary
that implements the communication protocol to identify the protocol message
fields. Polyglot [6] depends on the existence of loops in which tainted data is itera-
tively compared to a constant value. Dispatcher [5] targets transmitted messages.
To extract the message format of sent messages, it leverages the intuition that
the structure of the output buffer represents the inverse of the structure of the
sent message. AutoFormat [11] treats consecutive bytes that are run in the same
execution context as message fields, and then exposes a tree of hierarchal fields.
Tupni [9] can reverse engineer an input format with a rich set of information. Its
key property is that it identifies arbitrary record sequences by analyzing loops
in a program. Wondracek et al. [21] presented a approach to extract informa-
tion about the fields of individual messages, and aggregate this information to
determine a general specification of the message format.

7 Conclusion

We have proposed MP tree to analyze the movement trace of message bytes, and
described the way how to build, compress, and compare MP trees. Based on MP
tree, we have presented AutoBoundary, a system for automatic protocol field
boundary identification. We have implemented a prototype of AutoBoundary
and evaluated it with a variety of ICN protocol messages. Our experimental
results show that AutoBoundary achieves high accuracy in ICN protocol filed
boundary identification.
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Abstract. To intelligently share limited memory across VMs in IaaS
cloud, content-based page sharing (CBPS), like KSM, is utilized to
greatly reduce the memory footprint of VMs. CBPS merges same-content
pages into a single copy. However, it introduces some serious cross-
VM covert channel threats. Besides, it has heavy overhead due to vast
otiose operations, such as page comparisons and checksum calculations,
when detecting page sharing opportunities. In this paper, we propose a
novel memory deduplication approach called page correlation aggrega-
tion (PCA), which can efficiently reduce otiose operations. Meanwhile
defends covert channels. One key idea of PCA is to divide VMs’ pages
into several sets, since pages with similar attributes have the great-
est possibility with the same content. In PCA, the pages of VMs are
firstly divided into different groups according to VMs’ attributes. In each
group pages are further separated into different classifications based on
their access permissions. Thus page comparisons are restricted to the
same classification for sharing. The other is that PCA introduces a ded-
icated cache to mitigate the latency of COW (Copy- On-Write) used for
conducting covert channels. We have conducted a prototype on KSM,
one popular CBPS technique. Our experimental results show that PCA
reduces otiose operations about 40%, and can effectively resist covert
channels.

Keywords: Covert channel · Secure memory deduplication
Page classification · KSM

1 Introduction

In IaaS (Infrastructure as a Service) clouds, the available memory size has
become one of major bottlenecks to run more virtual machines (VMs) on a
single machine. In this scenario, however, there is plenty of redundant data,
resulting in lower utilization and higher hardware costs. To alleviate it, mem-
ory deduplication is proposed to detect and eliminate redundant memory pages.
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A typical representative is content-based page sharing (CBPS) [2–4] that is trans-
parently implemented in hypervisor layer, such as VMware vSphere, Xen and
KVM etc. If multiple memory pages have the same content, CBPS only reserve
a single copy for these so-called deduplicated pages in a copy-on-write (COW)
way. When a deduplicated page is written, a new page is re-created with a copy.
Many work [7,13] has shown virtualized environments have a large amount of
memory can be condensed, especially for VMs running similar applications or
OSes.

However, CBPS introduces a new security threat: covert channels, which
can extract and transmit data from co-located VMs exploiting additional access
delays caused by COW for deduplicated pages. In this way, standard security
measures, such as access control and data audit, are bypassed. Covert channels
indeed pose realistic and serious threats to information security in the cloud [23–
32]. For example, a hundred bytes of credit card can be secretly stolen less than
30 s, even a thousand bytes of a file can be stealthily trafficked within 3 min [31].
However, covert channels cause negligible CPU and memory utilization, so it’s
hard to be detected in a cloud of heavy workloads. Moreover, it is robust against
environmental noises than cache based covert channel [21,22]. Therefore, covert
channels become ideal choices for secret data transmissions.

CBPS also has performance interference [11,12]. Since CBPS manages mem-
ory pages of VMs indiscriminately and globally, for each candidate page it needs
to be compared with a large number of otiose pages repeatedly to detect its shar-
ing opportunities, which induces plenty of otiose page comparisons and check-
sum calculations (so-called otiose operations), which take up the main run-time
consumption of CBPS (over 60%). The induced CPU overhead will degrade the
performance of VMs. As the number of comparisons increases, the CPU overhead
increases correspondingly. And as the increasing capacity of mergeable memory,
the comparisons expand proportionally, which makes the situation worse.

In this paper, we propose an efficient and secure memory deduplication app-
roach called page correlation aggregation (PCA), which highly aggregates VM’s
pages based on correlative page properties. In PCA, VMs are divided into dis-
parate groups based on their attributes (e.g. OS types), because inter-VM shar-
ing is very low with different VM attributes. Further, according to page access
permissions, pages of each group are divided into different classifications, since
these pages have a higher possibility with the same content. PCA depends on
VM introspection (VMI) to obtain VM attributes and access permission. Thus, a
candidate page is only compared with pages in its classification and group, which
reduces otiose operations. In addition, this feature prohibits covert channels if
the receiver and sender are separated into different groups. Memory contents of
one group are securely protected from another group. To prevent covert channels
within the same group, an intuitive approach would be to add noise to obfus-
cate the specific covert-channel information. Based on this idea, PCA provides
a dedicated cache to reserve deduplicated pages, so as to mitigate the write
latency when occurring COW on deduplicated pages. By doing this, the receiver
may consider the received bit as ‘1’ due to low write latency, whereas the actual
transmitted bit is ‘0’.
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We have implemented a prototype in Kernel Samepage Merging (KSM), one
widely used implementation of CBPS. PCA is guest-transparent due to the use of
VMI. We evaluated it through several benchmarks. The results show that PCA
is efficient and practical. Although our current implementation is performed on
KSM, PCA can be applied to any CBPS instances due to its generality. Actually,
PCA also works for deduplicating native processes.

Overall, we have made the following contributions:

– We propose a novel memory deduplication approach for covert channels
defense and otiose operations reduction assisted by VMI.

– We employ the inter-VM grouping and intra-group classification mechanism
to efficiently reduce otiose comparisons. Page sharing is performed just in the
same classification of the same group.

– We provide a dedicated cache for writable deduplicated pages to mitigate the
write latency by adding timing noise when occurring COW.

– We implement PCA based on KSM in a real experimental system. The exper-
imental results show that PCA is able to reach its effectiveness.

The rest of this paper is structured as follows. Section 2 presents the necessary
background. Section 3 details its design and implementation. Section 4 presents
the analysis of PCA in terms of security and efficiency. Section 5 surveys related
work of page sharing and covert channel. Section 6 concludes this paper.

2 Background and Threat Model

In this section, we describe some necessary background including the basic prin-
ciples of KSM, and CBPS-based covert channel, which will help motivate our
solution. And then the threat model and assumptions are discussed.

KSM: KSM, one implementation of CBPS in KVM, exists as a kernel thread
in the host OS (Operating System) and periodically scans advised anonymous
pages to merge identical pages. When a VM starts, Qemu invokes madvise call
to advise its memory as mergeable. KSM manages pages by two red-black trees:
stable tree and unstable tree. The stable tree stores already shared pages
with write-protected, also named KSM pages. The unstable tree records the
candidate pages that don’t change frequently.

The content of pages is the index of the two trees for node search and insert.
As shown in Fig. 1, in each scan round, a candidate page is firstly compared with
pages in the stable tree. If there is a match, the candidate page is merged with
it. Otherwise, its checksum will be recalculated before searching in the unstable
tree, because KSM does not merge frequently changed pages. If the calculated
checksum differs from the previous recorded one, KSM updates the checksum
and continues with the next candidate page. Otherwise, if there is a match in
the unstable tree, the candidate page is merged and added into the stable tree,
while the matched page is purged from the unstable tree. If no match is found,
the candidate page is only inserted into the unstable tree. Wherever a match
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is found, the page table entries of deduplicated pages are replaced by the KSM
page with write-protected. After a full scan, the unstable tree is rebuilt since its
pages content may be changed during the scan.

Covert Channel Attack: CBPS can be used to perform cross-VM covert chan-
nels to observe or transmit data because a COW page fault on deduplicated pages
incurs measurable access latency than no COW. To transmit data, a program is
required to run on the victim as the data sender. However, this requirement does
not reduce their usefulness, since current OS is fragile and vulnerable, attackers
are able to compromise the victim.

A successful covert channel attack needs four steps, as shown in Fig. 2. First,
the sender and receiver load a certain amount of memory pages with identical
content, for example reading a same file with memory alignment. Note, in this
step, self-reflection should be avoided. Next, the sender encodes the information,
e.g., writing certain pages. We make each page represent one bit of data. For
instance, an unmodified page indicates bit 0 and a modified one denotes bit 1.
If we want to transmit 10110010, the sender should modify the 1st, 3rd, 4th and
7th pages. Then, the sender and receiver need to wait for the eight pages being
merged. Finally, the receiver writes all the eight pages and records their write
access latency. At the receiver side, a long access time indicates 0, otherwise 1.
The receiver can easily infer the transmitted data is 10110010.

Threat Model: We assume the attacker and victim are separate VMs co-
resident on the same server. The attacker can compromise the target VM through
multiple attack vectors. Thus she can stealthily place the ‘sender’ in the victim
VM, which may be a spy program for filling pages with data that are expected
to find in the victim’s memory. We also assume an active adversary model, in
which the sender and receiver are cahoots. We assume the hypervisor, VMI tools
and hardware are trusted. The introspected data structures cannot be modified
by attackers, which is common to most existing VMI-based solutions [5,6].
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3 Design and Implementation

In this section, we firstly introduce a highlight overview of PCA. Then we dis-
cuss how PCA classifies the pages of VMs, maintains the deduplicated pages to
counter covert channels, and processes deduplication hints.

3.1 Overview

We have designed PCA with KSM as an example to clarify our approach. PCA
includes two main mechanisms. One is “VM grouping and page classification”,
which places pages that have much higher probability with the same content
together, while pages with different content are divided. This mechanism is used
to reduce the KSM overhead. Incidentally, covert channels of inter-group VMs
are prevented. The other is “KSM cache”, which adds system noise for covert
channels between intra-group VMs.

Figure 3 shows its architecture, which consists of four main components:
(1) Page Permission Collector (PPC), (2) KSM Cache, (3) Grouping Manager
(GM), and (4) Classification Manager (CM). PPC is used to capture the access
permission of each candidate page from the guest OS by VMI-based interfaces,
especially write access permission. Because pages with write access permission
not only affect page sharing opportunities, but also may be used by covert chan-
nels. KSM cache maintains the private information of each deduplicated page:
once a page is merged, it is inserted into the KSM cache. While the reconstructed
KSM includes two parts: the GM and CM. The GM is in charge of dividing VMs
into groups according to the VMs’ attributes. The duty of CM is to aggregate
pages into different classifications based on page access permissions collected by
PPC. Once system startup, the components are enforced and complement each
other, which will be discussed in the following sections.

3.2 VM Grouping and Page Classification

Most of previous work is focus on how to detect more sharing opportunities,
but they have overlooked the KSM own loss properties due to otiose operations
in global trees. To solve this problem, the pages of VMs should be divided into
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different sets to shrink looking up scope. While the division should meet the
following two conditions: (1) pages with high probability to have same content
should be divided into the same set, and vice versa. (2) the distribution of sharing
potentials among sets should be balanced, because unbalanced division may still
include a lot of otiose operations.

Grouping the VMs. The reason for grouping the VMs is the amount of redun-
dant pages of inter-VM can be as low as 5%, but as high as 60% according to
instances of the guest OS type and workloads [7]. For example, if several VMs
run the same guest OS with same workloads their memory pages have a high
possibility with equal content. Based on this fact, VMs can be divided into sev-
eral groups. Accordingly, each global red-black tree is divided into multiple small
trees, called G-trees. Thus, each group has a dedicated stable G-tree and unsta-
ble G-tree. A candidate page is only searched and compared within its G-trees.
As the amount of tree nodes decreases, otiose operations are greatly reduced,
while page sharing opportunities only have a slight variation. Besides, since the
runtime of identification is saved, PCA can detect page sharing efficiently.

To support VM grouping, we mainly provide two ways. First, some options
(user-level interfaces) are provided to customers. When renting VMs, they can
use these interfaces to specify their VM’s workloads or security level. To achieve
this, we extend the Qemu parameters for VM creation. This symbiotic manner
can explicitly assist the provider to group VMs more accurate, and is fit for
confidential scenarios, in which each VM has a security level. Another way is
grouping the VMs based on their potential sharing opportunities. In this way,
VMs are proactively grouped during their startup by analyzing their disk image
or obtaining their guest kernel structures via VMI-based detection module.

To support multiple groups, we modify the KSM algorithm to break the
global trees into multiple G-trees, and extend some additional structures. Dur-
ing startup, each VM is initialized with a group tag (called GID) according to
its attributes. In the current prototype, the GID is attached to the mm struct
structure of each VM process. For each group, we defined a group node



572 M. Zhu et al.

Table 1. The page classifications in each group

Classification Classification ID Description

Unused pages 0x000 The pages is not used by anyone

Kernel read-only pages 0x001 Pages is only readable in kernel space

Kernel read-write pages 0x010 Pages is writable in kernel space

User read-only pages 0x011 Pages mapped only readable in user space

User read-write pages 0x100 Pages is mapped writable in user space

structure, which obtains this group’s private information, such as GID, ksm scan
variable, tree root of G-trees and our introduced KSM cache etc. When func-
tion ksm madvise() is invoked, the GID is retrieved for obtaining which group
the VM belongs to. Thus, each VM’s mm struct structure is registered to the
ksm scan of its group. Thus, each group has its own registered mm struct list.
By doing so, every page to be scanned should reference its GID first to choose
its corresponding G-trees. Since each page has its private rmap item structure,
we can speed up the search in G-trees by bounding page’s GID into the address
field of its rmap item structure.

To save the cost of CPU and memory, we use a single thread as KSM (ksmd)
to manage all groups. Since KSM is a linear scanner, to treat every group fairly
every group has a weight value based on its sharing opportunities. At first, the
weight is initialized by the ratio of the total memory of each group and total
memory of mergeable. During runtime, the weight will be recounted by the
shared pages of each group at the end of each round. The following formula is
used to calculate the number of pages that should be scanned for each group,
where N is the number of pages to be scanned per scan round, which is specified
by the administrator.

PerGroupScannedPages = N× PerGroupSharedPages

TotalSharedPages
(1)

Classifying the Advised Pages. We further discover that the sharing possi-
bility between two pages of the same access permissions is more than those of
not. For example, pages mapped to binary file will not be merged with pages of
stack. Pages with most sharing are heap, shared library and page cache, which
validates page access permission based classification is practicable. Thus, we fur-
ther divide G-trees of each group into multiple classification trees (GC-trees) to
improve KSM more effective.

To classify memory footprints of the VM into several classifications, we uti-
lize VMI to obtain the page access permissions. During the page scan, PPC
dynamically captures the access permissions for each candidate page, and pages
with similar permissions are gathered into the same classification. In the current
implementation, we defined five static page classifications as listed in Table 1.
Therefore, each G-tree will be divided into five local GC-trees. That means
each classification has a stable GC-tree and an unstable GC-tree. Since pages of
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different classifications are cross-distribution, we need to obtain the access per-
missions in real time. For performance optimization, we provide a buffer in PPC
for getting the access permission more rapidly. Each time access permissions of
ten pages are obtained from the guest OS. In doing so, otiose operations are
reduced, which will decrease the runtime to detect the same proportion share-
able pages compared to traditional KSM. Thus, the scanner possesses more time
to detect short-lived page sharing opportunities. In some case, new page sharing
opportunities may be detected, which will be shown in Sect. 4.

Discussion. Except efficiency improvement, security is another advantage for
grouping and classification. If the sender and receiver of a covert channel may
be separated into different groups, thus the covert channels will be completely
prevented without reducing the benefits of memory deduplication.

Since current KSM does not consider page access permission, the attacker’s
writable pages can be merged with pages of victim’s application code to detect
target vulnerable application [23,25]. However, this situation cannot happen
in PCA, since PCA has classified pages into different classification based on
their access permissions. Besides, page classification provides a prerequisite for
defending intra-group covert channels.

3.3 KSM Cache

The extreme countermeasure for covert channels is to forbid the pages of the
sender and receiver to be merged, like our VM grouping. But if the sender and
receiver are arranged in a same group, what should we do? The best way is to
distinguish the pages employed by covert channels from others. However, it is
challenging and may be impossible. We adopt another direction that pages used
by covert channels are allowed to merge, but with some additional efforts to
reduce the difference of write access time between deduplicated and KSM pages.
For this purpose, we introduce KSM cache, which disturbs the receiver to decode
the transmitted data by mitigating the write latency of COW. Thus, PCA can
mitigate or even prevent covert channels between VMs in any cases.

In our design, each group has a dedicated KSM cache that is used for storing
the deduplicated pages. Note, we only cache pages with writable access permis-
sion used to build covert channels. When two identical pages are detected, we
do not free the duplicated page immediately. Instead we move it from the stable
GC-tree to KSM cache, as shown in Fig. 4. Thus we can find a copy of the dedu-
plicated pages as quickly as possible when a COW occurs, without requiring a
new copy of the KSM page.

To implement KSM cache, we have chosen two kinds of data structures to
store the cached pages with low overhead: a red-black tree (kcache tree) and a
LRU (least recently used) linked list (kcache list). Duplicated pages are man-
aged by the kcache tree whose node includes PFN (page frame number), hva
(host virtual address), child nodes, mm struct of deduplicated pages, and a list
containing the VM identity etc. During tree search and insertion, there is no
checksum and byte-for-byte content comparisons. So it is lightweight compared



574 M. Zhu et al.

In Each Group

Memory Buddy 
System of Host OS

KSM cache
kcache tree

COW page fault 
on KSM page

Page Classification Collector

kswapd

kcache LRU list

Page is Writable

kcached thread

Fig. 4. The KSM cache architecture

to the KSM trees. The time complexity of the insert, delete and search opera-
tions is O(log n) in both average and worst-case. Besides, duplicated pages are
maintained in a global kcache list for releasing them in a unified manner.

We have extended KSM to incorporate our KSM cache through a suite of
hooks embedded in KSM. During KSM initialization, the KSM cache interfaces
are mounted to the hooks. Like KSM, KSM cache is carried out as a kernel
module that executes as a kernel thread, named kcached. Thus, since each group
has its own data structures, kcached can manage the KSM cache group by group.

The aim of memory deduplication is to reduce the consumption of physical
memory, so we must timely release the cached pages from the KSM cache. There
is a tradeoff between the residence time of the duplicated page in KSM cache and
the available memory freed by KSM. The longer the deduplicated pages reside
in the KSM cache, the more security is ensured, and the less available memory is
gained. To keep a better balance between available memory capacity and security,
KSM cache is allowed to free its captured pages in three conditions. The first
one is when a COW page fault occurs on a KSM page. In this case, we first find
whether there is a match with the fault host virtual address and its VM identity
in the KSM cache. If so, we directly map the matched page to this fault host
virtual address. Thus, we avoid recreating a new copy. If not, the general COW
process is followed. The second one is that we use the kcache list to periodically
release a certain amount of outdated pages. Due to the natural characteristics
of the LRU list, we will always process the oldest pages first. To better defend
the covert channels, we add a random probability to the kcache list, in which
outdated pages are freed randomly. We can therefore prevent the covert channels
with justifiable overhead. Meanwhile keep the benefit of memory deduplication.
The last one is when the system memory is insufficiency. We extend the memory
deallocation to reclaim the pages of our KSM cache.

3.4 VMI-Based Memory Deduplication Scanner

Combing the above techniques, we implement a VMI-based memory deduplica-
tion scanner, using semantic information of VM’s memory footprints. Figure 5
shows how the pages are organized in PCA. VMs’ pages are first organized into
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Fig. 5. Dividing VMs’ pages into different sets

different groups by G-trees. In each group, pages are classified by GC-trees. Dur-
ing grouping and classification, PCA needs to get the guest OS internal state.
For simplicity, we take advantage of LibVMI [20] to achieve these. To reduce
interaction, the VMI tool is divided into two parts: a LibVMI-based user appli-
cation and a kernel module. They interact with each other through a shared
memory mapped to a character device file (see Fig. 3).

To arrange VMs into proper group, we get their OS type, version and work-
loads during their startup. To classify the pages of each group, the scanner
requires to know the access permission of pages in guest OS. To obtain these,
we firstly translate the candidate page’s host virtual address into guest physical
address (GPA) through the structure kvm memory slot. Then through VMI tool
we can get the page structure array of guest OS, like vmemmap or mem map.
Thus, we can get the page structure in this array indexed by GPA. After that,
we can learn whether this page is used via the mapcount field. If the value is
−1, this page isn’t used. Otherwise, if the mapping field of the page structure is
not empty, we can get the anon vma or address space structure. In this struc-
ture, we can get the access permissions. Otherwise, this page is used by kernel.
According to its virtual field, we can know its access permissions. Note, except
kernel code and module code, other pages are considered to be writable.

Figure 6 shows PCA’s flowchart. In each periodic scan, the KSM thread gets
a candidate page, it firstly gets the GID from the GM. Then obtains the CID
(classification ID) from CM. Thus, it can locate its local trees. Like KSM the
candidate page will be searched in its stable GC-tree and then in its unstable
GC-tree. The difference is that when a match is found, the deduplicated page
is inserted into the kcache tree and kcache list. After finishing each scan round,
all unstable GC-trees need to be rebuilt in the next scan round. KSM cache also
needs to be freed periodically based on its kcache list.
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Fig. 6. The work-flow of PCA.

4 Evaluation

In this section, we firstly run the following benchmarks in VMs to show the
effectiveness of PCA. Then we present its defense against covert channels and its
overhead of preliminary evaluation. Our experiments are performed on a server
with 4 2.6 GHz Intel Xeon E7 processors and 16 GB memory. Each processor has
8 physical cores. The server runs CentOS-6.5 virtualized by KVM with Linux-
3.18.1. While VMs run CentOS-6.5 with Linux-2.6.38.

– Kernel Build: we compile the Linux kernel-3.18.1 in VMs. We begin this after
the stable sharing opportunities are detected.

– Web Service: we run the Apache httpd server in VMs. We test the ab [38]
benchmark with a local webpage.

– Bonnie++: we use bonnie++ [39] tool to do the hard disk benchmarking.
The test file size is 2 times of the VM’s memory.

4.1 Deduplication Effectiveness

We were particularly interested in seeing how does PCA work on merging pages
compared to original KSM. To verify this, we have tested different workloads in
PCA and KSM. In experiments, 4 VMs are booted, two in a group, the other two
in different groups. To be able to measure the count of page comparisons and
checksum calculations accurately, we modified some KSM functions to output
the count per second. For simplicity, we don’t show the inter-group test result,
since the VMs in different groups will not be merged.

Figure 7 shows the page sharing opportunities. For Kernel Build and Apache,
we can see that PCA is able to detect almost all page sharing opportunities,
whic is more than 97% of KSM. The results prove that fine-granularity is a
good hint for page classification, and page access permission is a better guide
for page classification. However, there is still room for improvement, because
pages with same content but with different access permission will be separated
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into different classifications. For bonnie++, PCA detects more page sharing
opportunities than KSM. It might because PCA can find many additional short-
lived sharing opportunities that KSM is not able to detect. This further proves
that fine-granularity classification can achieve higher accuracy, since the close
contacts between page content and access permissions. We can also see that PCA
can merge pages more quickly than KSM. Because PCA costs less comparison
time in its classification trees, so that equal pages are identified earlier, thereby
new sharing opportunities may be detected.
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Figures 8 and 9 respectively show the amount of page comparisons and check-
sum calculations. Figures show that KSM owns the largest number of page com-
parisons and checksum calculations due to its large global trees. While PCA
has almost forty percent optimizations of KSM. Because in PCA multiple small
classification trees contain less page nodes but have a much higher probability to
have same content, which significantly reduces the otiose operations. Combining
with Fig. 7, we can conclude that PCA has a available tradeoff between detecting
page sharing opportunities and reducing otiose operations. The average reduc-
tion is about 40%. This results prove that based on page access permissions of
guest OS PCA can accurately classify the pages.

4.2 Effectiveness of Covert Channel Defense

To evaluate the effectiveness of PCA against covert channels, we perform two
types of experiment: sender and receiver in the same group and in different
groups. We boot two virtual machines to deploy the sender and receiver process
respectively. Each VM is configured with 1 VCPU and 512 MB memory. They
load a 404 KB file (i.e. 101 4 KB pages) into memory. To ensure each page is
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unique, the file is generated randomly by /dev/random. To guarantee that all
pages are merged, we set the sleeping time to 5 s. In each type, we test five times.
In each test, the sender transfer different data to the receiver, and in receiver we
record the write access time of the 101 pages to decode the delivered data.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

0 200 400 600 800 1000

N
um

be
r 

of
 C

he
ck

Su
m

x 
10

00
00

0

Running Time(s)

Page CheckSum Cacula on
KSM-Apache KSM-Bonnie++
KSM-Kernel-Build PCA-Apache
PCA-Bonnie++ PCA-Kernel-Build

Fig. 9. The number of page checksums with
different workloads.

0

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100

W
ri

te
 A

cc
es

s T
im

e(
μs

)

Page (4KB)

Covert Channel 

KSM PCA

Fig. 10. Based on VM grouping and page
classification to against covert channel.

Figure 10 shows the experimental results (VMs in the same group), which
transmits a 101-bit data. To do this, the sender modifies the 3rd, 11th, 22th, 32th,
42th, 57th, 63th, 77th, 86th, 93th, 96th pages to encode a data. From Fig. 10, we
can see that although different tests demonstrate different write access spikes,
the write access time of sender-modified pages is always much less than the write
access time of sender-unmodified pages in traditional KSM. While in PCA, there
is no difference between sender-modified pages and sender-unmodified pages.
This is because in PCA, once a page is merged, it will be added into the kcache
tree immediately, and it will be hit in the kcache tree when the receiver decodes
the data. Hence the write access time to the deduplicated pages has a negligible
effect. Thus, the receiver cannot correctly recover the transmitted data.

4.3 Performance Overhead

The general trade-off of memory scanner is CPU utilization and memory con-
sumption versus the security and efficiency. We have measured the CPU con-
sumption of the scanner with some benchmarks by top measurements taken by
per second. Figure 11 shows the average CPU utilization. We can see that PCA
reduces the CPU overhead compared with original KSM. The highest impact is
kernel build workload about 6%. Since kernel build workload has high memory
usage during runtime, it exists vast otiose operations. However, PCA can effec-
tively reduce these otiose operations. Thus the CPU overhead is reduced. While
apache has low memory usage, so its overhead is reduced relatively less.
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Although the VMI used in our work may lead to a certain of performance loss.
But the overhead is very little. Further, PCA provides a buffer to store access
permissions, which reduces the number of VMI invocation. However, inserting
duplicated pages into kcache tree is very cheap.

The only additional memory space is used by storing the page permission,
the kcache tree, the kcache list, some structures and a few locks to sequential
access shared data structures. From Fig. 12, we can see that PCA only consumes
little memory during VMs execution. This overhead comes from KSM cache,
because some key fields are recorded into the kcache tree nodes.

5 Related Work

Page Sharing. Limited main memory size has become one of the major bot-
tlenecks in virtualization environment, and as an efficient approach to reduce
server memory requirement, memory deduplication thus has attracted a large
body of work on it. Disco [1] was the first system to implement page sharing
on code pages with assistance from guest OS. CBPS requires no assistance from
the guest OS, and was firstly implemented in VMware ESX server [2]. Then,
CBPS was introduced in Xen [3] and KVM [4] to increase the memory density
of VMs. But they can only merge anonymous pages, as the host regards the
guests’ memory as anonymous memory due to the semantic gap.

To acquire more sharing opportunities, Difference Engine [13] and Memory
Buddies [14] proposed sub-page sharing, which not only explores the potential
of same pages but also similar pages. Satori [15] employed sharing-aware virtual
disks to find short-lived sharing opportunities. KSM++ [16] found pages in host
cache are strong sharing candidates and preferential scan them can exploit short-
lived sharing opportunities. Based on this, XLH [17] generates page hints in the
host’s virtual file system for merging them earlier. Singleton [18] combined the
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host and guest double-caching into an exclusive cache. However, they didn’t
consider reducing needless overhead of KSM. While we argue that page sharing
needs to consider classification for reducing otiose operations.

Empirical studies [7,8] show CBPS can achieve memory savings up to 50%
on I/O intensive workloads. But CBPS has higher runtime overhead by otiose
comparison. To solve this, an adaptive policy [9] was proposed to obtain more
sharing opportunities but with little CPU overhead. Sindelar et al. [10] proposed
two hierarchical sharing models through sharing-aware algorithms without heavy
CPU overhead. CMD [11] proposed a classification-based approach with a dedi-
cated hardware. While IBM’s AMD [12] generates a signature for each physical
page to avert page comparison. PageForge [19] firstly proposed a hardware-based
design for same-page merging that effectively reduces the CPU overhead. Except
the performance improvement, PCA also concerns security.

Covert Channels. Recent research efforts [23–26] have mentioned the potential
threat of covert channels based on memory deduplication. However, in their con-
text, the covert channel is used primarily for leaking information. Xiao et al. [27]
firstly constructed a rough covert channel to transmit information between two
VMs. In an ideal situation, the bit rate of such covert channel can be around
1kbps. However, its bit errors make it impractical in reality due to uncertain
merging time. For this, Rong et al. [28] proposed a robust communication proto-
col for high-speed transmission and reliability. Xen’s event channel can be used
to conduct covert channels [29,30], which has bend demonstrated in Amazon
EC2 [31]. Moreover, Gruss et. al [32] proposed the JavaScript based covert chan-
nel to collect private information in sandboxes. Our work aims to implement a
defense scheme to these attacks.

Cloud providers can tackle covert channels through either preventative or
detective approach, since they are much more resourceful. Amazon EC2 provides
a dedicated instances service [33], in which different tenants’ VMs do not share
physical hardware. While the significant service charge reduces its attractiveness.
Also, Wu et al. [31] advised the cloud provider to define a policy, which only
allows two tenants to be shared in each server. But the tenant’s neighbor is
predetermined. These approaches may mitigate covert channels, but the memory
utilization is low. In contrast, PCA has a low cost, but allows all tenants to share
system memory.

Kim et al. [34] proposed a group-based memory deduplication scheme that
aims to provide performance isolation on each single server. Deng et al. [35]
also proposed a similar memory sharing mechanism, in which the global KSM
thread is divided into per-group threads. Also, Ning et al. [36] proposed a covert
channel defense mechanism based on VM grouping. SEMMA [37] provides a
security architecture for performance isolation and security assurance. All of the
above work only provides inter-group protection. Further, they did not consider
otiose operations. Our work not only prevent covert channels in both inter-group
and intra-group, but also reduce otiose operations to improve performance.



PCA: Page Correlation Aggregation for Memory Deduplication 581

6 Conclusion

Memory deduplication is an important feature in modern hypervisors. However,
it has otiose operations, and induces covert channels. In this paper, we put for-
ward a highly efficient and secure memory deduplication approach called page
correlation aggregation (PCA). PCA achieves two important objectives. First, it
significantly reduces otiose operations. Meanwhile it speeds up the identification
of page sharing and boosts the sharing opportunities. Second, it effectively mit-
igates or even prevents covert channels. We have implemented our design and
evaluated it on KVM with different workloads. The experimental results show
that PCA is effective, efficient and practical. In the future, we will plan to inves-
tigate the combination of PCA and balloon technique for efficiently managing
the memory in the cloud. Also, we are interested in research logging mechanism
with machine learning to detect the covert channels.
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Abstract. Online gambling has become a substantial global industry
during the past two decades. However, it is explicitly prohibited or
restricted by most countries in the world due to social problems caused
by it. This results in rapid expansion of the illegal online gambling (IOG)
market where players profits are under little protection. To fight against
IOG, this paper addresses the IOG participant-role recognition (PRR)
problem by learning a supervised classifier with monetary transaction
data. We propose two sets of features, i.e., transaction statistical fea-
tures and network structural features, to effectively represent partici-
pants. Based on the feature representation, we adopt an ensemble learn-
ing strategy in the training phase of a PRR classifier to reduce the impact
of unbalanced data. Results of experiments performed on real-world IOG
case data demonstrate the feasibility and validity of the proposed app-
roach. The proposed approach could help investigators in a law enforce-
ment agency find the key members of an IOG organization quickly and
destroy the ecosystem efficiently.

Keywords: Illegal online gambling · Role recognition · Online crime
Monetary transaction

1 Introduction

Online gambling, which was initiated in the mid-1990s, has exploded from a
minor sideshow on the Internet into a substantial global industry over the
past two decades. Due to factors such as convenience, accessibility, affordability,
anonymity, and interactivity, online gambling could be potentially more tempting
and addictive to consumers than traditional offline gambling. However, several
recent studies suggest that it would exacerbate gambling problems in society,
such as problem gambling, pathological gambling, and underage gambling [6,8].
Consequently, a number of countries, including Mainland China, the United
States, and Russia, explicitly prohibit most or all forms of online gambling. In
the most remaining countries, online gambling is under strict regulations.
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The prohibition and restriction of online gambling result in rapid expansion of
the illegal online gambling (IOG) market where players’ profits are under little
protection. Several studies allege that IOG sites victimize participants rather
than benefit them [1–4]. More seriously, it is reported that the IOG business is
correlated with money laundering and other complex fraudulent and extortionist
activities that, in turn, can fund yet other criminal activities [3]. Although states
have adopted legal measures targeted at both consumers and operators to limit
citizens’ access to IOG sites. Yet the effectiveness of such measures may well be
limited.

To fight against IOG, it is necessary to gain sufficient knowledge regard-
ing how these businesses operate in an environment characterized by extreme
uncertainty and high risk. This would require a systematic analysis of sophis-
ticated organizational structures formed by IOG participants. However, to the
best of our knowledge, fairly few researches have been carried out on automatic
techniques for analyzing IOG ecosystems. This study addresses this absence by
investigating the problem of automatically recognizing the roles that IOG partic-
ipants played in their ecosystem. The proposed approach could help investigators
in a law enforcement agency (LEA) find the key members of an IOG organization
quickly and destroy the ecosystem efficiently. To be specific, this study makes
the following contributions:

– We present a novel participant-role recognition (PRR) approach which learns
a supervised classifier based on monetary transaction data to predict the roles
of IOG participants.

– We propose two sets of features, i.e. transaction statistical features and net-
work structural features, to effectively represent participants.

– We adopt an ensemble learning strategy in the training phase of the PRR
classifier to reduce the impact of unbalanced training data.

– We evaluate the performance of the proposed approach using real-world IOG
monetary transaction data. Experimental results demonstrate the feasibility
and validity of the proposed approach.

The remainder of this paper is organized as follows: Sect. 2 reviews related
work. Section 3 provides preliminaries related to this paper. Section 4 describes
the details of the proposed approach. Section 5 gives the experimental results
and analysis. Section 6 concludes the content of this paper.

2 Related Work

Prosperity on Internet gambling has drawn much attention from academics [11].
A number of studies have investigated possible precipitating factors for the
expansion of online gambling. For example, Gainsbury et al. [6] claimed that
technological innovations, including the availability of cheap, fast broadband
connections in essentially any location, the emergence of mobile technology, and
the use of trustable online payment systems, have played an important role in
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Fig. 1. The pyramid structure of an IOG organization.

the growth of online gambling. They also found that the primary reasons peo-
ple gave for preferring to gambling were: ease of access, convenience, comfort,
greater privacy, and anonymity. Similar motivations for online gambling have
been found in [14]. Several pieces of research studied demographic profiles of
online gamblers and found that Internet gamblers were significantly more likely
to be male gender, younger age, from higher socio-economic strata, employed full
time, more technologically savvy, having more positive attitudes toward gam-
bling, and better educated [6,8,9,12,13]. However, it was reported more women
and young people are engaging in the activity [7].

Many recent studies reported online gambling is more harmful to gamblers
compared to terrestrial gambling [6,8,9]. Wood and William [13] found online
gamblers are under a higher probability of using drugs and alcohol than non-
online gamblers. Due to the fragmented nature of governance, online gambling
also presents a significant opportunity for crime and victimization. McMullan
and Rege [10] investigated the types, techniques, and organizational dynamics
of crime at portals of online gambling sites using document analysis based on
data retrieved with the Google search engine.

In jurisdictions, such as the United States and Mainland China, for example,
the prohibition of gambling has given rise to illegal online gambling business.
Banks [3] summarized three principal forms of the illegal gambling business, i.e.,
accepting bets from a resident in a country where gambling is illegal, operating
without appropriate licenses, and accepting bets from underage gamblers. There
are numerous documented cases in which providers of illegal online gambling
have been found to cheat customers on payouts, have apparently not paid win-
nings, have cheated players with unfair games, or have absconded with player
deposits [1–4]. As claimed by McMullan and Rege [10], these cases identified by
existing studies are likely to represent “the tip of the iceberg”, with many more
crimes going unreported and unrecorded.

Based on our review of the related work, we have found that although
IOG has been studied for years, most existing researches only focused on types
of crime related to IOG. There continues to be a paucity of research on the
systematic analysis of sophisticated organizational structures IOG ecosystems.
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Especially, few automatic techniques have been proposed to analyze IOG ecosys-
tems. In this study, we address this absence by presenting an approach to auto-
matically recognize the roles that IOG participants played in their ecosystem.

3 Preliminaries

3.1 The IOG Ecosystem and Participant Roles

Figure 1 shows the typical structure of an IOG ecosystem, which is like a pyra-
mid. A small number of investors provide funds for building online gam-
bling platforms in countries/regions where online gambling is legal. Then these
investors seek local organizers in a country/region, where online gambling is
forbidden, to run the IOG business in that country/region. Local organizers
employ gambling agents to attract gamblers to participate in IOG games. Gam-
bling agents collect bets from gamblers and distribute IOG proceeds among
participants. Gamblers can only participate in IOG games by transferring their
bets to gambling agents. Participant roles in a higher level of the pyramid struc-
ture will keep interest at a definite ratio from the proceeds they collected from
the direct lower level role. Based on the understanding of the IOG ecosystem,
we aim to identify IOG participants into one of the four roles, i.e., investor, local
organizer, gambling agent, and gambler.

3.2 Problem Statement

The participant-role recognition (PRR) problem can be considered as a super-
vised classification problem. We give a formal definition of PRR as follows.

Definition 1. Given a set of K pre-defined roles R = {r1, r2, · · · , rK} and a set
of IOG participants P = {p1, p2, . . . , pM}, the task of participant-role recognition
is to find a function f(·) to decide if a participant pi’s role is rj, i.e., f : P×R �→
{0, 1} such that for any pair (pi, rj) ∈ P × R, we have

f(pi, rj) =

{
1, if pi’s role is rj

0, otherwise
. (1)

For the i-th participant, we represent them as a n-dimensional feature vector
pi = [pi1, pi2, · · · , pin]T, where pi ∈ R

n. By this definition, solving the PRR prob-
lem involves extracting discriminative features as well as finding an appropriate
classification scheme. We present our solution in the following section.

4 The Proposed Approach

Figure 2 provides an illustration of our PRR approach. We first compute trans-
action statistics and build a money flow network based on monetary transaction
data obtained from an IOG ecosystem. Then we extract transaction statistical
features and network structural features to form a vector representation for each
participant sample. Based on the extracted features, we further learn a classi-
fier to predict the role of new participant samples. This section describes each
component of the approach in detail.
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Fig. 2. Illustration of the proposed participant-role recognition approach.

4.1 Monetary Transaction Data

Monetary transaction data (MTD), which records the monetary transactions
between IOG participants, could be obtained from bank accounts of IOG par-
ticipants or derived from IOG servers. Each transaction record typically consists
of information including the sender, the recipient, the amount of money trans-
ferred, and a time stamp. MTD contains very useful information for understating
an IOG ecosystem. However, it is usually difficult to access MTD due to privacy
reasons. The MTD used in this study was provided by a law enforcement agency.
They obtained the data with warrants during the investigation of an IOG case.

4.2 Feature Extraction

We propose two sets of features to represent IOG participants in the learning
process of a PRR classifier.

Transaction Statistical Features. We assume that participants in different
roles have discriminative money transfer patterns which can be captured by
statistics extracted from MTD. Here, we first introduce some notations used
in the computation of transaction statistical features. Let M be the number of
participants in an IOG ecosystem, and let ND be the number of days covered by
the MTD. We denote A(in), A(out), F(in), F(out), C(in), and C(out) as M × ND

dimensional matrices, where A(in)
ij (A(out)

ij ) is the amount of money participant

pi received (sent out) on the j-th day, F(in)
ij (F(out)

ij ) is the number of transfers pi

received (sent out) on the j-th day, and C(in)
ij (C(out)

ij ) is the number of incoming
(outgoing) counterparties of pi on the j-th day, respectively. To capture money
transfer patterns of IOG participants, we compute the following features.

– Means of Daily Income (μ̂(ain)
i ) and Expenditure (μ̂(aout)

i ) measure the
average amounts of money participant pi receives from and sends to other
participants daily, which are computed by the following equations:

μ̂
(ain)
i =

1
ND

ND∑
j=1

A(in)
ij , (2)
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μ̂
(aout)
i =

1
ND

ND∑
j=1

A(out)
ij . (3)

– Variances of Daily Income (σ̂(ain)
i ) and Expenditure (σ̂(aout)

i ) measure
how far the daily incomes and expenditures of participant pi are spread out
from the mean values, which are computed by the following equations:

σ̂
(ain)
i =

1
ND − 1

ND∑
j=1

[A(in)
ij − μ̂

(ain)
i ]2, (4)

σ̂
(aout)
i =

1
ND − 1

ND∑
j=1

[A(out)
ij − μ̂

(aout)
i ]2. (5)

– Means of Daily Incoming (μ̂(fin)
i ) and Outgoing Transfer Num-

bers (μ̂(fout)
i ) measure the average numbers of daily transfers participant

pi receives and sends out, which are computed by the following equations:

μ̂
(fin)
i =

1
ND

ND∑
j=1

F(in)
ij , (6)

μ̂
(fout)
i =

1
ND

ND∑
j=1

F(out)
ij . (7)

– Variances of Daily Incoming (σ̂(fin)
i ) and Outgoing Transfer Num-

bers (σ̂(fout)
i ) measure how far pi’s daily numbers of incoming and outgoing

transfers are spread out from their mean values, which are computed by the
following equations:

σ̂
(fin)
i =

1
ND − 1

ND∑
j=1

[F(in)
ij − μ̂

(fin)
i ]2, (8)

σ̂
(fout)
i =

1
ND − 1

ND∑
j=1

[F(out)
ij − μ̂

(fout)
i ]2. (9)

– Means of Daily Incoming (μ̂(cin)
i ) and Outgoing Counterparty Num-

bers (μ̂(cout)
i ) measure pi’s average numbers of daily incoming and outgoing

counterparties, which are computed by the following equations:

μ̂
(cin)
i =

1
ND

ND∑
j=1

C(in)
ij , (10)

μ̂
(cout)
i =

1
ND

ND∑
j=1

C(out)
ij . (11)
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– Variances of Daily Incoming (σ̂(cin)
i ) and Outgoing Counterparty

Numbers (σ̂(cout)
i ) measure how far pi’s daily numbers of incoming and

outgoing counterparties are spread out from the mean values, which are com-
puted by the following equations:

σ̂
(cin)
i =

1
ND − 1

ND∑
j=1

[C(in)
ij − μ̂

(cin)
i ]2, (12)

σ̂
(cout)
i =

1
ND − 1

ND∑
j=1

[C(out)
ij − μ̂

(cout)
i ]2. (13)

Network Structural Features. All IOG participants are in pursuit of money.
Gamblers want to win money by playing various kinds of games provided by
an IOG platform. Investors, local organizers, and gambling agents aim to earn
interest from gamblers. Therefore, money flow can be seen as the “blood” of an
IOG ecosystem. We use a money flow network (MFN) to describe the “flow” of
“blood”. Let fij be the total amount of money transferred from participant pi
to participant pj , and let fji be the total amount of money transferred from pj
to pi. We first define the money flow between pi and pj as follows.

Definition 2. The money flow between two participants pi and pj is the absolute
value of the difference between fij and fji, which is computed by:

flow(pi, pj) = |fij − fji|. (14)

The direction of the flow is from pi to pj if fij > fji, and is from pj to pi if
fji > fij.

Based on the definition of money flow, we further give the definition of an
MFN.

Definition 3. A money flow network is a directed graph G = (V, E), where V is
a finite set of vertices representing participants, and E is a set of directed edges
representing money flows between participants.

In G, there will be an edge eij ∈ E between two vertices vi and vj in V if
flow(pi, pj) �= 0, and the weight and direction of the edge are the same with
flow(pi, pj) and the direction of the flow, respectively. An MFN can further be
represented by an M × M dimensional adjacency matrix W, where

Wij =

{
flow(pi, pj), if eij ∈ E
0, otherwise

(15)

We assume that the importance of different roles in an MFN should be differ-
ent. Thus, we compute the following centrality measures as network structural
features to identify the importance of participants in an MFN.
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– In-degree. This measure counts the number of incoming ties of a vertex. As
edges in an MFN are weighted, values of incoming edge weights are summed
up. The in-degree for vertex vi is represented by the equation:

Din(vi) =
M∑
j=1

Wji (16)

– Out-degree. This measure counts the number of out-going ties of a vertex.
The weighted out-degree for vertex vi is represented by the equation:

Dout(vi) =
M∑
j=1

Wij (17)

– All-degree. This measure counts the number of ties connecting a vertex
to the others, regardless of their directionality. In the weighted version, the
all-degree for vertex vi is represented by the equation:

Dall(vi) =
M∑
j=1

(Wij + Wji) (18)

– Betweenness. Degrees are local measures, i.e., they do not take into account
the whole network, but only the local neighborhood of a vertex. As a global
measure, betweenness quantifies how frequently a vertex acts as a bridge along
the shortest paths that connect every other couple of vertices. More formally,
the betweenness centrality of node vk is computed by the following equation:

Cb(vk) =
1

(M − 1)(M − 2)

∑
i,j �=k

Ns
ij(vk)
Ns

ij

, (19)

where Ns
ij is the number of shortest paths linking the couple of vertices vi and

vj , and Ns
ij(vk) is the number of that paths which contain vk. [(M−1)(M−2)]

is the total number of pairs of vertices not including vk.
– Closeness. This feature measures the inverse of the distance of a vertex from

all the others in the network, considering the shortest paths that connect
each couple of vertices. That is, it denotes how close a vertex is to others.
Let dist(vi, vj) be the number of edges in the shortest path linking vertices vi
and vj , the closeness centrality of the vertex vi is computed by the following
equation:

Cc(vi) =
1∑M

j=1 dist(vi, vj)
, (20)

where
∑M

j=1 dist(vi, vj) is the distance of vertex vi from all the other vertices
in the graph.
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4.3 Participant Role Recognition

After we determine the features, we use them to represent IOG participants as
vectors. Based on the vector representation, we train a classifier using labeled
data for role recognition. One thing should be noted is that there may be an
imbalance between the number of samples in each role category. For example, in
an IOG ecosystem, the number of gamblers is much larger than that of investors.
This imbalance could affect the performance of the trained classifier.

To reduce the negative impact of unbalanced training data, we adopt an
ensemble learning strategy based on the AdaBoost algorithm [5]. We use Naive
Bayesian as the base classifier. Each training tuple is assigned with a weight.
A series of t classifiers are iteratively learned. In each learning iteration, the
samples from the original training set are re-sampled to form a new training set.
The samples with higher weights are selected with a higher probability. After
a classifier Hi is learned, the samples misclassified by Hi are assigned higher
weights. In the following learning iteration, the classifier Hi+1 will pay more
attention to the misclassified samples. In each round, we restrict the number of
re-sampled samples in each role category to be the same (i.e., the size of the
smallest category). The final class prediction is based on the weighted votes of
the classifiers learned in each iteration. We named the overall ensemble classifier
as EC4PRR (Ensemble Classifier for Participant Role Recognition).

5 Experiments and Analysis

In this section, we present a set of experiments to evaluate the performance of
our PRR approach using real-world IOG monetary transaction data. We imple-
mented all experiments in Java and MATLAB.

5.1 Data

As aforementioned, the MTD used in experiments were provided by an LEA in
Shandong Province of China. The data contains two years of monetary transac-
tion records between participants of an IOG platform. The LEA obtained this
data during the investigation of the IOG case with warrants, and some of the
key members of the IOG organization have been arrested. However, to protect
the privacy, the MTD has been pre-processed by the LEA. Each participant was
represented by an ID, and only a few fields of each transaction record were kept,
including source ID, target ID, amount of transferred money, and time stamp.
All the other information was removed. There are totally 4690 participants and
3.9 million transactions in the MTD. Each participant has been assigned a role
manually by LEA investigators during the investigation. In Tables 1 and 2, we
summarize some essential characteristics of the MTD. From Table 1, we can see
the imbalance between the number of samples in each role category. In the train-
ing phase, we randomly select 85% of the samples as the training set to build a
classifier and 15% as testing samples to validate the performance of the classifier.
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Table 1. Participants distribution among roles.

Investor Local organizer Gambling agency Gamblers

# of participants 113 376 1930 2271

Table 2. Experimental data statistics.

Statistics Incoming Outgoing

Max amount of money a participant transfer daily 998,083 RMB 999,866 RMB

Min amount of money a participant transfer daily 1,000 RMB 1,000 RMB

Max # of daily transfers for a single participant 1136 1419

Min # of daily transfers for a single participant 1 1

Max # of daily counterparties for a single participant 836 655

Min # of daily counterparties for a single participant 1 1

5.2 Evaluation Measures

We adopt precision, recall, and F1 score as performance measures. Let R̃ =
{R̃1, R̃2, ..., R̃K} refer to the role assignment output by a PRR classifier, and R =
{R1, R2, ..., RK} be the ground-truth. Let TPi be the number of participants
assigned to R̃i correctly according to Ri, FPi refer to the number of participants
assigned to R̃i by mistake, and FNi refer to the number of participants should
be assigned to R̃i but are assigned to other roles, the precision, recall, and F1

for the whole experimental results can be briefed as follows:

precision =

∑
i∈[1,K] TPi∑

i∈[1,K] TPi +
∑

i∈[1,K] FPi
(21)

recall =

∑
i∈[1,K] TPi∑

i∈[1,K] TPi +
∑

i∈[1,K] FNi
(22)

F1 =
2 × recall × precision

recall + precision
(23)

5.3 Effectiveness of Features

To tested the effectiveness of the proposed features, we trained EC4PRR with dif-
ferent feature configurations. Three classifiers, named EC4PRR-TSF, EC4PRR-
NSF, and EC4PRR-All, were learned using only transaction statistical features,
only network structural features, and a combination of all features, respectively.
For each classifier, we ran it using a 10-fold cross-validation.

The prediction results are shown in Fig. 3. From the results, we can see
both EC4PRR-TSF and EC4PRR-NSF achieved relatively satisfactory perfor-
mances. Precision scores of EC4PRR-TSF and EC4PRR-NSF achieved 0.76 and
0.71, respectively. The overall performances of the two classifiers are 0.69 and
0.65 respectively in terms of F1. This indicates that both transaction statistical
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Fig. 3. Prediction results of EC4PRR classifiers learned with different feature config-
urations.

features and network structural features are discriminative for role recognition.
EC4PRR-All, which was trained with all features, obtained the best performance
in terms of all evaluation measures. The precision, recall, and F1 of EC4PRR-All
were 0.8759, 0.7898, and 0.8356, respectively. This reveals that a combination of
the two sets of features can improve the performance of the EC4PRR classifier.

As the efficiency of transaction statistical features can be impacted by the
time coverage of MTD, we also examined the sensitivity of EC4PRR-TSF and
EC4PRR-All to the size of a dataset. We divided the two years of MTD into
eight units with a time coverage of three months for each unit. We then derived
subsets of the MTD by varying the time coverage from one to eight units and
tested F1 performances of the two classifiers using these eight subsets. Figure 4
shows the performance variations of EC4PRR-TSF and EC4PRR-All with data
size enlarging. We can see that F1 scores of both EC4PRR-TSF and EC4PRR-
All become stable when the data size is larger than five units.

Table 3. Performance comparison of different classifiers.

Naive Bayesian SVM Random forest EC4PRR

Precison 0.5893 0.8286 0.8463 0.8759

Recall 0.5514 0.7832 0.7866 0.7898

F1 0.5697 0.8053 0.8154 0.8356

5.4 Role Recognition Results

We compared the proposed EC4PRR with three common-used classifiers, which
include Naive Bayesian, SVM, and Random Forest, to validate its predictive
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Fig. 4. Performance variations of EC4PRR-TSF and EC4PRR-All with the size of data
enlarging.

performance. These classifiers have been implemented in WEKA1 and LIBSVM2.
We also ran each of the classifiers using a 10-fold cross-validation.

Table 3 gives the results of this experiment. From Table 3, we can see that
EC4PRR outperformed all the other three classifiers in terms of precision, recall,
and F1. This demonstrates the effectiveness of EC4PRR for recognizing the
roles of IOG participants. The performance of Naive Bayesian, which we used
as the base classifier in our ensemble learning process, was the worst among all
classifiers. The ensemble learning strategy made the final classifier much better.
Note that the Random Forest is also a kind of classifier based on ensemble
learning. However, our modification of the re-sampling strategy made EC4PRR
more suitable for the unbalanced training data and achieve better performance.

6 Conclusion

In this study, we propose an automatic approach to address the IOG participant-
role recognition problem. The proposed approach extracts two sets of fea-
tures, i.e. transaction statistical features and network structural features, from
monetary transaction data to effectively represent participants. A classifier
named EC4PRR is trained based on the feature representation to predict
the roles of participants. To reduce the impact of unbalanced training data,
EC4PRR adopts an ensemble learning strategy in the training phase. Experi-
ments were carried out on real-world IOG case data. The results indicate that
both transaction statistical features and network structural features are discrim-
inative for role recognition, and a combination of the two sets of features can
improve the performance of EC4PRR. In comparison with other common-used

1 http://www.cs.waikato.ac.nz/ml/weka/.
2 http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

http://www.cs.waikato.ac.nz/ml/weka/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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classifiers, EC4PRR achieved the best performance. The result also reveals that
our modification of the ensemble learning process makes EC4PRR more suitable
for unbalanced training data.

There are primarily two limitations of this study we should pay attention to
in our future work. First, although we used real-world data in our experiments,
the data was only extracted from a specific IOG case, more case data should be
collected in the future. Second, we did not consider the situation that an IOG
participant plays multiple roles. New techniques should be proposed to address
this problem.
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Abstract. Let N be an arbitrary integer with unknown factorization.
In Asiacrypt 2012, Kakvi et al. proposed an algorithm that, given prime

e ≥ N
1
4 + ε, certifies whether the RSA function RSAN,e(x) := xe mod N

defines a permutation over Z
∗
N or not. In this paper, we extend Kakvi

et al.’s work by considering the case with generalized moduli N =∏n
i=1 pzi

i . Surprisingly, when min{z1, . . . , zn} ≥ 2, we show that it can
be efficiently decided whether the RSA function defines a permutation

over Z
∗
N or not even for the prime e < N

1
4 . Our result can be viewed as

an extension of Kakvi et al.’s result.

Keywords: Coppersmith’s method · Lattices · RSA
Public key cryptosystem · LLL algorithm

1 Introduction

RSA function is one of the most well known cryptographic primitives, it is defined
as RSAN,e : Z∗

N → Z
∗
N , x → xe mod N , where N is a public modulus and e

is an exponent integer. Moreover, it is believed that RSA function (with the
appropriate choice of parameters) defines a family of trapdoor permutations,
which has a number of applications in public-key cryptosystems.

In Crypto’92, Bellare and Yung [2,3] introduced a new primitive called cer-
tified trapdoor permutations, compared with standard trapdoor permutation, it
requires an additional efficient permutation checking procedure, roughly speak-
ing, a trapdoor permutation is certified if one can verify from the public key that
it is actually a permutation. Using certified trapdoor permutations as a building
block, we can construct many useful cryptographic protocols: ZAPS and verfi-
able PRF [6]; Sequential aggregate signatures [1,12]. More importantly, NIZK
c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 598–608, 2018.
https://doi.org/10.1007/978-3-030-01950-1_35
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protocols for any NP-statement can be built from certified trapdoor permuta-
tions [8].

Among all the known candidate trapdoor permutations (factoring-based),
RSA trapdoor function is the most efficient certified trapdoor permutation cur-
rently known. It is well known that RSA trapdoor function defines a permutation
over the domain Z

∗
N iff gcd(e, φ(N)) = 1 where φ(·) is Euler’s totient function

i.e. the number of positive integers less than or equal to N that are coprime
to N . So we only need to check whether gcd(e, φ(N)) = 1 to tell whether RSA
trapdoor function defines a permutation or not.

Generally speaking, RSA function is not a certified trapdoor permutation.
In [2,3], Bellare and Yung proposed a generalized approach that can transform
every trapdoor permutation into a certified trapdoor permutation. Using their
method, we can easily make RSA function to be certified, however, since Bellare-
Yung transformation brings an additional computational overhead, which makes
their method relatively inefficient. Besides, in order to keep the same data struc-
ture, we prefer to use directly method rather than artificial method. In [4,12], the
authors showed that if prime e > N , the RSA function is a certified permutation
(since e is a prime and φ(N) < N , thus gcd(e, φ(N)) = 1), but in practice, using
large exponent e (e > N) will bring heavy costs for modular exponentiation.
Therefore, the question naturally arises: Is the RSA function certified for the
case of e < N?

There exist several research results on the above problem. Suppose that N
is a RSA modulus i.e. N = pq where p and q are of the same bit-size. If prime
e ≥ N1/4, we can efficiently decide whether e divides φ(N) or not by using
Coppersmith’s result [5]. On the other hand, if prime e < N1/4, it is hard to
decide whether e divides φ(N) or not, which is called Phi-Hiding Assumption, by
Cachin, Micali and Stadler [4] in the context of efficient single database private
information retrieval, which has found a lot of applications in cryptography.

Later, in Asiacrypt 2008, Schridde and Freisleben [15] showed that the Phi-
Hiding Assumption does not hold for special composite integers of the form
N = pq2k for k > 0. Such integers are often used in cryptography to speed up
certain operations [16].

Suppose that N is an arbitrary integer with unknown factorization. Recently,
in Asiacrypt 2012, Kakvi et al. [10] proposed an algorithm that, given prime e ≥
N1/4+ε, efficiently decides whether e divides φ(N) or not. Kakvi et al. [10] gave
an efficient certification procedure that works for any prime exponent e > N1/4

(rather than e > N). However, until now, if prime e < N1/4, we do not know
that whether Phi-Hiding Assumption holds or not (we know the results for RSA
moduli [4] and moduli of the form pq2k with k > 1 [15], but we know nothing
for arbitrary integer with unknown factorization).

1.1 Our Contributions

In this paper, given an arbitrary modulus N with unknown factorization and
a prime e < N1/4, we can extract more information than previously expected,
which enable us to efficiently decide whether e divides φ(N) or not in some
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circumstances, that means we can further improve [10]’s result in this circum-
stances.

In particular, using our algorithm, if prime e satisfies N1/4r < e <
Nmin{1/4(r−1),1} (r is a positive integer), we can check whether exists secret fac-
tor p s.t. e|p − 1 and N ≡ 0 mod pr. Note that when r = 1, that is exactly [10]’s
result. Thus, our result can be viewed as a generalization of [10]’s result.

Although when e < N1/4, we can not directly decide whether gcd(e, φ(N)) =
1 or not (since we can only check the factor p: N ≡ 0 mod pr, r is related to the
size of exponent e), we can identify the scenarios of gcd(e, φ(N)) �= 1 if moduli
of form N ≡ 0 mod pr are used and p hides e. In addition, let N =

∏n
i=1 pzi

i ,
for the case of min{z1, ..., zn} ≥ 2, we can improve [10]’s result: for example,
for N = p2q3, we can improve [10]’s result to 1/8. Therefore, using moduli of
this form, we can further decrease the size of exponent e while publicly verifying
the permutation. However, on the other hand, this indicates that cryptographic
schemes using moduli of this form and relying on the Phi-Hiding Assumption
must be handled with care.

Our technique is similar to Kakvi et al. [10], we also use Coppersmith’s
method [5] to find prime divisors p of N in a specific range, and the key problem
is to show that the number of invocations of Coppersmith’s algorithm in our
certification algorithm is polynomial-time.

Like [10]’s algorithm, our algorithm also only works for prime e and how to
extend to arbitrary integers e of unknown factorization is still an open problem.

2 Preliminary

2.1 Certified Trapdoor Permutation

Definition 1. A family of trapdoor permutations is a tripe of algorithms
(G,E,D) such that:

– G(·) is a randomized algorithm that takes no input and generates a pair
(pk, sk), where pk is a public key and sk is a secret key;

– E(·) is a deterministic algorithm such that, for every fixed public key pk, the
mapping x → E(pk, x) is a bijection;

– D(·) is a deterministic algorithm such that for every possible pair of keys
(pk, sk) generated by G(·) and for every x we have

D(sk,E(pk, x)) = x

A family of permutations Π is said to be certified if the permutation can be
verified in polynomial-time given pk. We follow the definition in [10,12].

Definition 2. Π = (G,E,D,C) is called a family of certified trapdoor permuta-
tions if (G,E,D) is a family of trapdoor permutations and C(·) is a deterministic
polynomial-time algorithm such that, for an arbitrary pk (potentially not gener-
ated by G(·)), returns 1 iff (E(pk, ·)) defines a permutation over domain Dompk.
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2.2 Coppersmith’s Method

Let us introduce Coppersmith’s algorithm for finding small roots of modular
polynomial equations. Our main algorithm uses Coppersmith’s algorithm as sub-
routine.

Theorem 1 (Coppersmith [5], May [13]). Let N be an integer of unknown
factorization, which has a divisor p ≥ Nβ, 0 < β ≤ 1. Let 0 < μ ≤ 1

7β.
Furthermore, let f(x) be a univariate monic polynomial of degree δ. Then we
can find all solutions x0 for the equation:

f(x0) = 0 mod p with |x0| ≤ 1
2
N

β2

δ −μ

This can be achieved in time O(μ−7δ5 log2 N). The number of solutions x0 is
bounded by O(μ−1δ).

In the rest of our paper, one of our main algorithms is to find small roots of
polynomial equation f(x) = x + a = 0 mod p, where p is unknown that satisfies
N = 0 mod pr. We can model this problem as the univariate polynomial with
degree r:

f(x) = (x + a)r mod pr

A direct application of Theorem1 can get the desired result. However, we notice
that the form of polynomial f(x) = (x + a)r is kind of special, actually we can
use a smarter way to solve this type of equation. In this paper, we exploit Lu et
al’s. [11] algorithm because of its better performance and lower complexity.

Theorem 2 (Lu et al. [11]). For every 0 < μ < β, let N be a sufficiently
large composite integer (of unknown factorization) with a divisor pr (p ≥ Nβ

and r is a positive integer: r ≥ 1). Let f(x) ∈ Z[x] be a univariate monic linear
polynomial. Then we can find all the solutions x0 of the equation f(x) = 0 mod p
with |x0| ≤ Nγ if

γ < rβ2 − μ

The time complexity is O(μ−7 log2 N).

For completeness, we give the whole proof here.

Proof. Consider the following univariate linear polynomial:

f1(x) = a0 + a1x mod p

where N is known to be a multiple of pr for known r and unknown p. Here
we assume that a1 = 1, since otherwise we can multiply f1 by a−1

1 mod N . Let
f(x) = a−1

1 f1(x) mod N .
We define a collection of polynomials as follows:

gk(x) := fk(x)Nmax{� t−k
r �,0}
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for k = 0, . . . , m and integer parameters t and m with t = τm (0 ≤ τ < 1),
which will be optimized later. Note that for all k, gk(y) ≡ 0 mod pt.

Let X := Nrβ2−μ(= Nγ) be the upper bound on the desired root y. We will
show that this bound can be achieved for any chosen value of μ by ensuring that
m ≥ m∗ := �β(2r +1− rβ)

μ 	 − 1.
We build a lattice L of dimension d = m + 1 using the coefficient vectors of

gk(xX) as basis vectors. We sort these polynomials according to the ascending
order of g, i.e., gk < gl if k < l.

From the triangular matrix of the lattice basis, we can compute the determi-
nant as the product of the entries on the diagonal as det(L) = XsNsN where

s =
m∑

k=0

k =
m(m + 1)

2

sN =
t−1∑

k=0

� t − k

r
	 =

t−1∑

k=0

(
t − k

r
+ ck

)

=
τm(τm + 1)

2r
+

t−1∑

k=0

ck.

Here we rewrite � t−k
r 	 as

(
t−k

r + ck

)
where ck ∈ [0, 1). To obtain a polynomial

with short coefficients that contains all small roots over integer, we apply LLL-
basis reduction algorithm to the lattice L. Lemma 1 gives us an upper bound on
the norm of the shortest vector in the LLL-reduced basis.

Lemma 1 (LLL [7]). Let L be a lattice of dimension w. Within polynomial-
time, LLL-algorithm outputs a set of reduced basis vectors vi, 1 � i � w that
satisfies

||v1|| � ||v2|| � · · · � ||vi|| � 2
w(w−1)

4(w+1−i) det(L)
1

w+1−i

If the bound is smaller than the bound given in Lemma 2 (below), we can obtain
the desired polynomial.

Lemma 2 (Howgrave-Graham [9]). Let g(x1, · · · , xk) ∈ Z[x1, · · · , xk] be an
integer polynomial that consists of at most w monomials. Suppose that

1. g(y1, · · · , yk) = 0 mod pm for | y1 |� X1, · · · , | yk |� Xk and
2. ||g(x1X1, · · · , xkXk)|| < pm

√
w

Then g(y1, · · · , yk) = 0 holds over integers.

We require the following condition:

2
d−1
4 det(L)

1
d <

Nβτm

√
d

where d = m + 1. We plug in the values for det(L) and d, and obtain

2
m(m+1)

4 (m + 1)
m+1

2 X
m(m+1)

2 < Nβτm(m+1)− τm(τm+1)
2r −∑t−1

k=0 ck
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To obtain the asymptotic bound, we let m grow to infinity. Note that for suffi-
ciently large N the powers of 2 and m+1 are negligible. Thus, we only consider
the exponent of N . Then we have

X < N2βτ− τ(τm+1)
r(m+1) − 2

∑t−1
k=0 ck

m(m+1)

Setting τ = rβ, and noting that
∑t−1

k=0 ck ≤ t, the exponent of N can be lower
bounded by

rβ2 − β(1 − rβ)
m + 1

− 2rβ

m + 1

We appropriate the negative term ∗
m+1 by ∗

m and obtain

rβ2 − β(2r + 1 − rβ)
m

Enduring that m ≥ m∗ will then gurantee that X satisfies the required bound
for the chosen value of μ.

The running time of our method is dominated by LLL-algorithm, which is
polynomial in the dimension of the lattice and in the maximal bit-size of the
entries. We have a bound for the lattice d

d = m + 1 ≥ �β(2r + 1 − rβ)
μ

	

Since rβ < 1, then we obtain d = O(μ−1). The maximal bit-size of the entries
is bounded by

max{ t

r
log(N), drβ2 log(N)} = max{βd log(N), drβ2 log(N)}

Since rβ < 1 and d = O(μ−1), the bit-size of the entries can be upper bounded
by

max{O(βμ−1) log(N),O(βμ−1) log(N)} = O(μ−1 log(N))

Nguên and Stehlé [14] proposed a modified version of the LLL-algorithm called
L2-algorithm. The L2-algorithm achieves the same approximation quality for a
shortest vectors as the LLL-algorithm, but has an improved worst case running
time analysis. Its running time is O(d5(d + log bd) log bd), where log bd is the
maximal bit-size of an entry in lattice. Thus, we can obtain the running time of
our algorithm

O
((

1
μ

)5 (
1
μ

+
log N

μ

)
log N

μ

)

Therefore, the running time of our algorithm is O(μ−7 log2 N). Eventually, the
vector output by LLL-algorithm gives a univariate polynomial g(x) such that
g(y) = 0, and one can find the root of g(x) over the integers.
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3 Our Main Result

In this section we give our main result.

Theorem 3. Let N be an integer of unknown factorization and e < N (suppose
γ = logN e) be a prime integer and gcd(e,N) = 1. First determine a positive
integer r such that 1

4r < γ < min{ 1
4(r − 1) , 1}. Let ε = γ − 1

4r , then we can
decide whether exists secret factor p s.t. e|p − 1 and N ≡ 0 mod pr in time
O(ε−8 log2 N).

Before we provide a proof for Theorem 3, we would like to interpret its impli-
cations. Notice that Theorem 3 yields in the special case r = 1 the bound
1
4 < γ < 1 that corresponds to [10]’s result. Thus, our result can be viewed as a
generalization of [10]’s result.

On the other hand, we would like to give an example to clarify our result.
If 1

8 < γ < 1
4 , we can check whether exists secret factor p s.t. e|p − 1 and

N ≡ 0 mod p2, which means that if some secret factor p hides e (e|p − 1) and p2

divides modulus N (N ≡ 0 mod p2), our proposed algorithm can recover such
factor p. Although our result does not guarantee that gcd(e, φ(N)) = 1 (since
we can only check the factor p: N ≡ 0 mod p2), we have gcd(e, φ(N)) �= 1 if
our algorithm outputs a factor p. In addition, let N =

∏n
i=1 pzi

i , for the case
of min{z1, ..., zn} ≥ 2, we can identify whether gcd(e, φ(N)) = 1 or not, which
improve [10]’s result to γ > 1

8 .

Proof. At first we get the value of integer r from the exponent e. Then we have

φ(N) =
n∏

i=1

pzi−1
i (pi − 1)

Let us focus on the case e|(pi − 1) and N ≡ 0 mod pr
i for some i. Denote that

p := pi, there exists an x0 ∈ Z s.t.

ex0 + 1 = p

Next our goal is to find x0, which is a small root of the polynomial equation
f(x) = ex + 1 mod p (N ≡ 0 mod pr).

In order to run Coppersmith’s algorithm, we have to know the parameter
β: the bitsize of unknown divisor. However, we do not know the exact value of
β here. To overcome this problem, we give a lemma that can be used to check
whether e|p − 1 for some p (N ≡ mod pr) in a specific range. This following
lemma can be regard as an extension of Lemma 5 of [10].

Lemma 3. Let N be an integer of unknown factorization with divisor pr: p ≥
Nβ (β ∈ (0, 1]) and r ≥ 1. Further, let e = Nγ with e|p − 1. Then there is an
algorithm that, given (N, e, β, μ), outputs p in time O(μ−7 log2 N) provided that

p ≤ Nrβ2+γ−μ

If this algorithm can not find a non-trivial factor of N , it outputs ⊥.
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Proof. We can easily get the result from Theorem 2. We have e|p − 1, then we
get the polynomial f(x) = ex + 1 has the root x0 modulo p. By multiplying e−1

modulo N , we can get a monic polynomial. Since p ≤ Nrβ2+γ−μ, we have

x0 =
p − 1

e
<

Nrβ2+γ−μ

Nγ
= Nrβ2−μ

Therefore, we can recover x0 by Theorem 2 in time O(μ−7 log2 N). For every
candidate of x0, we check whether gcd(ex0 + 1, N) gives us the divisor p. Since
the number of the candidate is bounded by O(μ−1r), this can be done in
O(μ−1r log2 N), which can be negligible compared to the running time of Cop-
persmith’s algorithm.

Using Lemma 3, we can check whether e|p − 1 for some p (N ≡ mod pr)
in the range [Nβ , Nrβ2−μ+γ ]. However, it is not enough, our target range is
p ∈ [e,N

1
r ], much larger than the search range of Lemma 3. Next we apply [10]’s

idea to solve the above problem.

At first, we set rβ2 − μ + γ = 1
r , which implies β =

√
1− r(γ − μ)

r . Then we

can check p in the interval [N
√

1 − r(γ − μ)
r , N

1
r ] using Lemma 3. If we can not find

such p, we turn to the range [e,N
√

1 − r(γ − μ)
r ], then we use Lemma 3 again, and

set rβ2 − μ + γ =
√

1− r(γ − μ)

r , which defines a new lower bound β. We then
repeat this process.

To summary, we cover the target range by a sequence of intervals
[Nβ1 , Nβ0 ], ..., [Nβn , Nβn−1 ] where the βi are defined by the recurrence relation

βi+1 = max{
√

βi − (γ − μ)
r

, γ} with β0 =
1
r
.

Here we suppose that

1
4r

< γ − μ < γ < min{ 1
4(r − 1)

, 1}

We have to prove that the number of invocations of Lemma 3 is polynomial.
At first, we show by induction that the sequence of the βi is monotone decreasing.

It is obvious that β1 < β0 since γ < 1
r = β0 and

√
β0 − (γ − μ)

r <
√

β0
r = β0.

We now show that if βi ≤ βi−1 for all i ≤ m, we have βm+1 ≤ βm.
Since βm ≤ βm−1, we have

βm − (γ − μ)
r

≤ βm−1 − (γ − μ)
r

which implies
√

βm − (γ − μ)
r

≤
√

βm−1 − (γ − μ)
r
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That means

max{
√

βm − (γ − μ)
r

, γ} ≤ max{
√

βm−1 − (γ − μ)
r

, γ}

Thus βm+1 ≤ βm.
Since the sequence of {βi} is monotone decreasing and bounded below by

γ, it converges. Now we investigate the length of interval [βi, βi−1]. Define a
function Δ(βi−1) = βi−1 − βi ≥ 0, which is the length of the ith interval. We
have

Δ(βi−1) = βi−1 − βi = βi−1 −
√

βi−1 − (γ − μ)
r

We calculate the first two derivations of Δ(β) as follows

Δ
′
(β) = 1 − 1

2
√

r
(β − (γ − μ))− 1

2

and

Δ
′′
(β) =

1
4
√

r
(β − (γ − μ))− 3

2 > 0

It is clear that Δ(β) achieves its minimum at the point β(0) = 1
4r + γ − μ (when

Δ
′
(β) = 0). And the length of interval Δ(β) is of size at least

Δ(β(0)) = γ − μ − 1
4r

Let

k := �
1
r − γ

γ − μ − 1
4r

	 + 1

That means after the number of k steps, the sequence βi stabilize at the point
βk = γ.

Therefore, if we run the algorithm of Lemma 3 at most k times, we can test
the entire range [e,N

1
r ].

Before we give the running time of our algorithm, we would like to discuss the
choice of the parameter μ. Since ε := γ − 1

4r , we have the condition 1
4r < γ − μ,

thus μ < γ − 1
4r = ε, we simply choose μ = 1

c ε where c is a positive integer. In
practice, if we choose larger c, which means smaller value of μ, then the value of
k is smaller, and the same time, Lemma 3 may take more running time; if c is
smaller, by contrast, means larger value of k and less running time of Lemma 3.
However, note that the running time of our algorithm is mainly decided by the
running time of Lemma 3, thus we would like to choose c = 2 in practice.

At last we give the total running time of our algorithm, we have to run the
algorithm of Lemma 3 at most k times, which can be bounded as

k := �
1
r − γ

γ − μ − 1
4r

	 + 1 ≤ �
1
r

(c − 1)μ
	 + 1 = O(μ−1) = O(ε−1)
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Table 1. Example: concrete values for r = 2

r = 2 β0 β1 β2 β3 β4 β5 β6 β7

γ = 0.187500 0.500000 0.414578 0.359394 0.314396 0.281199 0.249949 0.216447 0.187500

μ = 0.031250

γ = 0.187500 0.500000 0.405046 0.341446 0.291179 0.244238 0.190214 0.187500

μ = 0.015625

γ = 0.200000 0.500000 0.400000 0.331662 0.275374 0.218374 0.200000

μ = 0.020000

and each iteration takes time O(μ−7 log2 N), finally we obtain the total runnning
time of our algorithm

O(μ−8 log2 N) = O(ε−8 log2 N)

In Table 1, we give three examples to show the concrete values of {βi}. Note
that if μ is smaller, we can take fewer steps to search the whole target range.

4 Conclusion

In this paper, we extend Kakvi et al.’s work by considering the case with gen-
eralized moduli N =

∏n
i=1 pzi

i . Surprisingly, when min{z1, . . . , zn} ≥ 2, we show
that it can be efficiently decided whether the RSA function defines a permuta-
tion over Z

∗
N or not even for the prime e < N

1
4 . Our result can be viewed as an

extension of Kakvi et al.’s result.
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Abstract. In this paper, we present a proof theory for attack trees.
Attack trees are a well established and useful model for the construction
of attacks on systems since they allow a stepwise exploration of high
level attacks in application scenarios. Using the expressiveness of Higher
Order Logic in Isabelle, we succeed in developing a generic theory of
attack trees with a state-based semantics based on Kripke structures
and CTL. The resulting framework allows mechanically supported logic
analysis of the meta-theory of the proof calculus of attack trees and at
the same time the developed proof theory enables application to case
studies. A central correctness and completeness result proved in Isabelle
establishes a connection between the notion of attack tree validity and
CTL. The application is illustrated on the example of a healthcare IoT
system and GDPR compliance verification.

1 Introduction

Attack trees are an intuitive and practical formal method to analyse and quantify
attacks on security and privacy. They are very useful to identify the steps an
attacker takes through a system when approaching the attack goal. In this paper,
we provide a proof calculus to analyse concrete attacks using a notion of attack
validity. We define a state based semantics with Kripke models and the temporal
logic CTL in the proof assistant Isabelle [1] using its Higher Order Logic (HOL)1.
We prove the correctness and completeness (adequacy) of attack trees in Isabelle
with respect to the model. This generic Kripke model enriched with CTL does
not use an action based model contrary to the main stream. Instead, our model
of attack trees leaves the choice of the actor and action model to the application.
Nevertheless, using the genericity of Isabelle, proofs and concepts of attack trees
carry over to the application model.

There are many approaches to provide a mathematical and formal semantics
as well as constructing verification tools for attack trees but we pioneer the use
of a Higher Order Logic (HOL) tool like Isabelle that allows proof of meta-theory
– like adequacy of the semantics – and verification of applications – while being
ensured that the formalism is correct.

Attack trees have been investigated on a theoretical level quite intensively;
various extensions exist, e.g., to attack-defense trees and probabilistic or timed
1 In the following, we refer to Isabelle/HOL simply as Isabelle.

c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 611–628, 2018.
https://doi.org/10.1007/978-3-030-01950-1_36
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attack trees. This paper uses preliminary work towards an Isabelle proof calcu-
lus for attack trees presented at a workshop [2] but accomplishes the theoretical
foundation by defining a formal semantics and providing the proof of correctness
and completeness and thereby establishing a feasible link for application verifi-
cation. The novelty of this proof theoretic approach to attack tree verification
is to take a logical approach from the very beginning by imposing the rigor-
ous expressive Isabelle framework as the technical and semantical spine. This
approach brings about a decisive advantage which is beneficial for a success-
ful application of the attack tree formalism and consequently also characterizes
our contribution: meta-theory and application verification are possible simulta-
neously. Since Higher Order Logic allows expressing concepts like attack trees
within the logic, it enables reasoning about objects like attack trees, Kripke struc-
tures, or the temporal logic CTL in the logic (meta-theory) while at the same
time applying these formalised concepts to applications like infrastructures with
actors and policies (object-logics).

This paper presents the following contributions.

– We provide a proof calculus for attack trees that entails a notion of refinement
of attack trees and a notion of valid attack trees.

– Validity of attack trees can be characterized by a recursive function in Isabelle
which facilitates evaluation and permits code generation.

– The main theorems show the correctness and completeness of attack tree
validity with respect to the state transition semantics based on Kripke struc-
tures and CTL. This meta-theorem not only provides a proof for the concepts
but is part of the proof calculus for applications.

– The Isabelle attack tree formalisation is applied to the case study of formal-
ising GDPR properties over infrastructures.

In this paper, we first introduce the underlying Kripke structures and CTL
logic (Sect. 2). Next, we present attack trees and their notion of refinement
(Sect. 3). The notion of validity is given by the proof calculus in Sect. 4 followed
by the central theorem of correctness and completeness (adequacy) of attacks in
Sect. 5 including a high level description of the proof. Section 6 shows how the
framework is applied to analyse an IoT healthcare system and Sect. 7 extends by
labelled data to enable GDPR compliance verification. We then discuss, consider
related work, and draw conclusions (Sect. 8). All Isabelle sources are available
online [3].

2 Kripke Structures and CTL in Isabelle

Isabelle is a generic Higher Order Logic (HOL) proof assistant. Its generic aspect
allows the embedding of so-called object-logics as new theories on top of HOL.
An Isabelle theory introduces new types, constants, and definitions. Similar to
a programming language, keywords indicate these items: for example, the key-
word datatype marks the beginning of a new type definition or definition
introduces a new constant and its definition. In this paper, we will provide
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more detailed explanation of the concrete syntax when and where it is used.
Object-logics, when added to Isabelle using constant and type definitions, con-
stitute a so-called conservative extension. This means that no inconsistency can
be introduced; conceptually, new types are defined as subsets of existing types
and properties are proved using a one-to-one relationship to the new type from
properties of the existing type. New properties within a theory can be subse-
quently proved in interaction with the user over any model defined in terms
of the new types, constants, and definitions. These properties are introduced
with the keyword lemma or theorem depending on their significance. Following
the statement of such a property, the Isabelle tool expects the user to provide
step-by-step instructions how to prove the property using existing lemmas and
theorems from underlying theories or previously proved properties. In princi-
ple, proof can be a tedious process and requires expert knowledge. However,
there are sophisticated proof tactics available to support reasoning: simplifica-
tion, first-order resolution, and special macros to support arithmetic amongst
others. The use of HOL has the advantage that it enables expressing even the
most complex application scenarios, conditions, and logical requirements and
HOL simultaneously enables the analysis of the meta-theory.

In this work, we make additional use of the class concept of Isabelle that
allows an abstract specification of a set of types and properties to be instantiated
later. We use it to abstract from states and state transition in order to create
a generic framework for Kripke structures, CTL, and attack trees. Using classes
the framework can then be applied to arbitrary object-logics that have a notion
of state and state transition by instantiation. Isabelle attack trees have been
designed as a generic framework meaning that the formalised theories can be
applied to various applications. Figure 1 illustrates how the Isabelle theories in
our framework are embedded into each other.

Fig. 1. Generic framework for attack trees embeds applications.
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2.1 Kripke Structures and CTL

The expressiveness of Higher Order Logic (HOL) allows formalizing the notion
of Kripke structures as sets of states and a generic transition relation over those
in Isabelle. In addition, the branching time temporal logic CTL is embedded
conservatively into HOL using Isabelle’s fixpoint definitions for the CTL oper-
ators. We apply Kripke structures and CTL to model state based systems and
analyse properties under dynamic state changes. Snapshots of systems are the
states on which we define a state transition. Temporal logic is then employed to
express and prove security and privacy properties over these system models.

In Isabelle, the system states and their transition relation are defined as a
class called state containing an abstract constant state transition. It intro-
duces the syntactic infix notation I → I’ to denote that system state I and I’
are in this relation over an arbitrary (polymorphic) type σ.

class state =

fixes state_transition :: [σ :: type, σ] ⇒ bool ("_ → _")

The above class definition introduces a new type class in Isabelle. This class
state lies in the base class type which is encoded by the type judgment :: type
following σ. All types in class state are characterized by having a constant called
state transition, with concrete infix syntax →. The σ is a polymorphic type
variable used here to represent an arbitrary type σ in the class state imposing
that the state transition must be a predicate over two elements of σ, that is, a
relation.

This type class state lifts Kripke structures and CTL to a general level
allowing various instantiations to concrete state transition relations that will be
provided using inductive definitions. The definition of such an inductive relation
is given by a set of specific rules which are, however, part of an application
like infrastructures (Sect. 6). Branching time temporal logic CTL is defined in
general over Kripke structures with arbitrary state transitions and can later be
applied to suitable theories, like infrastructures.

Based on the generic state transition → of the type class state, the CTL-
operators EX and AX express that property f holds in some or all next states,
respectively.

AX f ≡ {s. {f0. s → f0} ⊆ f}
EX f ≡ {s. ∃ f0 ∈ f. s → f0}

The CTL formula AG f means that on all paths branching from a state s the
formula f is always true (G stands for ‘globally’). It can be defined using the
Tarski fixpoint theory by applying the greatest fixpoint operator.

AG f ≡ gfp(λ Z. f ∩ AX Z)

The function input to gfp is from a set of states Z to the set of states f ∩ AX
Z transforms properties to properties – a so-called predicate transformer.

In a similar way, the other CTL operators are defined. The formal Isabelle
definition of what it means that formula f holds in a Kripke structure M can be
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stated as: the initial states of the Kripke structure init M need to be contained
in the set of all states states M that imply f . This is stated in the definition of
the operator check with infix syntax �.

M 	 f ≡ init M ⊆ {s ∈ states M. s ∈ f}

The left side of a definition fixes parameters, here, a Kripke structure M and
a set of states f , which can be used on the right side of the ≡ to define its
meaning. In this definition, we use the set theory operators for subset relation
⊆, set membership ∈, and set collection {x. P x} denoting the set of all x
with property P for any predicate P. These set notations are provided in the
rich Isabelle theory database. In an application, the set of states of the Kripke
structure will be defined as the set of states reachable by the infrastructure state
transition from some initial state, say example scenario.

example states ≡ {I. example scenario →^* I}

The relation →^* is the reflexive transitive closure ( )^* – a generic operator
supplied by the Isabelle theory library – applied to the relation →. Again using
here the generic theory library, automatically provides a realm of theorems about
the reflexive transitive closure and powerful automated proof support for our
application.

The Kripke constructor combines a state set, here the one of our
dummy example, a set of initial states, here just the singleton set containing
example scenario, and a state transition relation, here →, into a Kripke struc-
ture that we name here example Kripke.

example_Kripke ≡ Kripke example_states {example_scenario} →

In Isabelle, the concept of sets and predicates coincide2. Thus a property is a
predicate over states which is equal to a set of states. For example, we can then
try to prove that there is a path (E) to a state in which the property eventually
holds (in the Future) by starting the following proof in Isabelle.

example_Kripke 	 EF property

Since property is a set of states, and the temporal operators are predicate
transformers, that is, transform sets of states to sets of states, the resulting EF
property is also a set of states – and hence again a property.

3 Attack Trees and Refinement

Attack Trees [4] are a graphical language for the analysis and quantification of
attacks. If the root represents an attack, its children represent the sub-attacks.
Leaf nodes are the basic attacks; other nodes of attack trees represent sub-
attacks. Sub-attacks can be alternatives for reaching the goal (disjunctive node)
or they must all be completed to reach the goal (conjunctive node). Figure 2 is
2 In general, this is often referred to as predicate transformer semantics.
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an example of an attack tree taken from a textbook [4] illustrating the attack
of opening a safe. Nodes can be adorned with attributes, for example costs of
attacks or probabilities which allows quantification of attacks (not used in the
example).

Fig. 2. Attack tree example illustrating disjunctive nodes for alternative attacks refin-
ing the attack “open safe”. Near the leaves there is also a conjunctive node “eavesdrop”.

3.1 Attack Tree Datatype in Isabelle

The following datatype definition attree defines attack trees. Isabelle allows
recursive datatype definitions similar to the programming languages Haskell or
ML. A datatype is given by a “|” separated sequence of possible cases each of
which consists of a constructor name, the types of inputs to this constructor, and
optionally a pretty printing syntax definition. The simplest case of an attack tree
is a base attack. The principal idea is that base attacks are defined by a pair of
state sets representing the initial states and the attack property – a set of states
characterized by the fact that this property holds for them. Attacks can also be
combined as the conjunction or disjunction of other attacks. The operator ⊕∨
creates or-trees and ⊕∧ creates and-trees. And-attack trees l⊕s

∧ and or-attack
trees l⊕s

∨ consist of a list of sub-attacks – again attack trees.

datatype (σ :: state)attree =

BaseAttack (σ set) × (σ set) ("N (_)")

| AndAttack (σ attree)list (σ set) × (σ set) ("_ ⊕( )
∧ ")

| OrAttack (σ attree)list (σ set) × (σ set) ("_ ⊕( )
∨ ")

The attack goal is given by the pair of state sets on the right of the operator N,
⊕∨ or ⊕∧, respectively. A corresponding projection operator is defined as the
function attack.
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primrec attack :: (σ::state)attree ⇒ (σ set)×(σ set)

where
attack (BaseAttack b) = b

| attack (AndAttack as s) = s

| attack (OrAttack as s) = s

Functions over datatypes can be given with primrec which enables defining an
operator, here attack, by listing the possible cases and describing the semantics
using simple equations and pattern matching on the left side.

3.2 Attack Tree Refinement

When we develop an attack tree, we proceed from an abstract attack, given by
an attack goal, by breaking it down into a series of sub-attacks. This proceeding
corresponds to a process of refinement. Therefore, as part of the attack tree cal-
culus, we provide a notion of attack tree refinement. This can be done elegantly
by defining an infix operator 	. The intuition of developing an attack tree from
the root to the leaves is illustrated in Fig. 3. The example attack tree on the
left side has a leaf that is expanded by the refinement into an and-attack with
two steps. Formally, we define the semantics of the refinement operator by an
inductive definition for the constant 	, that is, the smallest predicate closed
under the set of specified rules.

inductive refines_to :: [(σ :: state) attree, σ attree] ⇒ bool ("_ � _")

where
refI: � A = (l @ [N(s1,s2)] @ l’’)⊕(s0,s3)

∧ ; A’ = l’ ⊕(s1,s2)
∧ ;

A’’ = l @ l’ @ l’’ ⊕(s0,s3)
∧ � =⇒ A � A’’

| ref_or: � as �= []; ∀ A’ ∈ set(as). A � A’ ∧ attack A = s

� =⇒ A � as ⊕∨s

| ref_trans: � A � A’; A’ � A’’ � =⇒ A � A’’

| ref_refl : A � A

The rule refI captures the intuition expressed in Fig. 3: a sequence of leaves in
an and-subtree can be refined by replacing a single leaf by a new subsequence
(the @ is the list append in Isabelle). Rule ref or describes or-attack refinement.
To refine a node into an or-attack, all sub-trees in the or-attack list need to refine
the parent node. The remaining rules define 	 as a pre-order on sub-trees of an
attack tree: it is reflexive and transitive.

Refinement of attack trees defines the stepwise process of expanding abstract
attacks into more elaborate attacks only syntactically. There is no guarantee that
the refined attack is possible if the abstract one is, nor vice-versa. We need to
provide a semantics for attacks in order to judge whether such syntactic refine-
ments represent possible attacks. To this end, we now formalise the semantics
of attack trees by a proof theory.

4 Proof Calculus

A valid attack, intuitively, is one which is fully refined into fine-grained attacks
that are feasible in a model. The general model we provide is a Kripke structure,
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Fig. 3. Attack tree example illustrating refinement of an and-subtree.

i.e., a set of states and a generic state transition. Thus, feasible steps in the
model are single steps of the state transition. We call them valid base attacks.
The composition of sequences of valid base attacks into and-attacks yields again
valid attacks if the base attacks line up with respect to the states in the state
transition. If there are different valid attacks for the same attack goal starting
from the same initial state set, these can be summarized in an or-attack.

fun is_attack_tree :: [(σ :: state) attree] ⇒ bool ("	_")
where
att_base: 	 Ns = ∀ x ∈ fst s. ∃ y ∈ snd s. x → y

| att_and: 	 (As :: (σ::state attree list)) ⊕s∧ =

case As of

[] ⇒ (fst s ⊆ snd s)

| [a] ⇒ 	 a ∧ attack a = s

| a # l ⇒ 	 a ∧ fst(attack a) = fst s

∧ 	 l ⊕(snd(attack a),snd(s))
∧

| att_or: 	 (As :: (σ::state attree list)) ⊕s∨ =

case As of

[] ⇒ (fst s ⊆ snd s)

| [a] ⇒ 	 a ∧ fst(attack a) ⊇ fst s ∧ snd(attack a) ⊆ snd s

| a # l ⇒ 	 a ∧ fst(attack a) ⊆ fst s ∧ snd(attack a) ⊆ snd s

∧ 	 l ⊕(fst s - fst(attack a),snd s)
∨

More precisely, the different cases of the validity predicate are distinguished by
pattern matching over the attack tree structure.

– A base attack N(s0,s1) is valid if from all states in the pre-state set s0 we
can get with a single step of the state transition relation to a state in the
post-state set s1. Note, that it is sufficient for a post-state to exist for each
pre-state. After all, we are aiming to validate attacks, that is, possible attack
paths to some state that fulfills the attack property.

– An and-attack As ⊕(s0,s1)
∧ is a valid attack if either of the following cases

holds:
• empty attack sequence As: in this case all pre-states in s0 must already

be attack states in s1, i.e., s0 ⊆ s1;
• attack sequence As is singleton: in this case, the singleton element attack
a in [a], must be a valid attack and it must be an attack with pre-state
s0 and post-state s1;
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• otherwise, As must be a list matching a # l for some attack a and tail of
attack list l such that a is a valid attack with pre-state identical to the
overall pre-state s0 and the goal of the tail l is s1 the goal of the overall
attack. The pre-state of the attack represented by l is snd(attack a)
since this is the post-state set of the first step a.

– An or-attack As ⊕(s0,s1)
∨ is a valid attack if either of the following cases holds:

• the empty attack case is identical to the and-attack above: s0 ⊆ s1;
• attack sequence As is singleton: in this case, the singleton element attack
a must be a valid attack and its pre-state must include the overall attack
pre-state set s0 (since a is singleton in the or) while the post-state of a
needs to be included in the global attack goal s1;

• otherwise, As must be a list a # l for an attack a and a list l of alternative
attacks. The pre-states can be just a subset of s0 (since there are other
attacks in l that can cover the rest) and the goal states snd(attack a)
need to lie all in the overall goal state set s1. The other or-attacks in l
need to cover only the pre-states fst s - fst(attack a) (where - is set
difference) and have the same goal snd s.

The proof calculus is thus completely described by one recursive function.
This is a major improvement to the inductive definition provided in the pre-
liminary workshop paper [2] that inspired this paper. Our notion of attack tree
validity is more concise hence less prone to stating inconsistent definitions and
still allows to infer properties important for proofs. The increase of consistency
is because other important or useful algebraic properties can be derived from
the recursive function definition. Note, that preliminary experiments on a proof
calculus for attack trees in Isabelle [2] used an inductive definition that had a
larger number of rules than the three cases we have in our recursive function defi-
nition is attack tree. The earlier inductive definition integrated a fair number
of properties as inductive rules which are now proved from the three cases of
is attack tree.

It might appear that Kripke semantics interprets conjunction as sequential
(ordered) conjunction instead of parallel (unordered) conjunction. However, this
is not the case: the ordering of events or actions is implicit in the states. There-
fore, any kind of interleaving (or true parallelism) of state changing actions is
possible. This is inserted as part of the application – for example in the Infras-
tructures definition of the state transition in Sect. 6. There the order of actions
between states depends on the pre-states and post-states only.

Given the proof calculus, the notion of validity of an attack tree can be used
to identify valid refinements already at a more abstract level. The notion 	V

denotes that the refinement of the attack tree on the left side is to a valid attack
tree on the right side.

A �V A’ ≡ ( A � A’ ∧ 	 A’)

Taking this one step further, we can say that an abstract attack tree is valid if
there is a valid attack tree it refines to.

	V A ≡ (∃ A’. A �V A’)
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Thereby, we have achieved what we initially wanted: to state that an abstract
attack tree A is actually a valid attack tree, we can conjecture �V A. This results
in the proof obligation of finding a valid attack tree �A’ such that A 	A’. For
practical purposes, the following lemma implements this method.

lemma ref_valI: A � A’ =⇒ 	 A’ =⇒ 	V A

We are going to use this method on the case study in Sect. 6.2 for the attack
tree analysis.

5 Correctness and Completeness of Attack Trees

The novel contribution of this paper is to equip attack trees with a Kripke
semantics. Thereby, a valid attack tree corresponds to an attack sequence. The
following correctness theorem provides this: if A is a valid attack on property s
starting from initial states described by I, then from all states in I there is a
path to the set of states fulfilling s in the corresponding Kripke structure.

theorem AT_EF: 	 A :: (σ :: state) attree) =⇒ (I, s) = attack A

=⇒ Kripke {t . ∃ i ∈ I. i →^* t} I 	 EF s

It is not only an academic exercise to prove this theorem. Since we use an
embedding of attack trees into Isabelle, this kind of proof about the embedded
notions of attack tree validity � and CTL formulas like EF is possible. At the
same time, the established relationship between these notions can be applied
to case studies. Consequently, if we apply attack tree refinement to spell out
an abstract attack tree for attack s into a valid attack sequence, we can apply
theorem AT EF and can immediately infer that EF s holds.

Theorem AT EF also extends to validity of abstract attack trees. That is, if
an “abstract” attack tree A can be refined to a valid attack tree, correctness in
CTL given by AT EF applies also to the abstract tree.

theorem ATV_EF: 	V A :: (σ :: state) attree) =⇒ (I, s) = attack A

=⇒ Kripke {t . ∃ i ∈ I. i →^* t} I 	 EF s

The inverse direction of theorem AT EF is a completeness theorem: if states
described by predicate s can be reached from a finite nonempty set of initial
states I in a Kripke structure, then there exists a valid attack tree for the attack
(I, s).

theorem Completeness: I = {} =⇒ finite I =⇒
Kripke {t . ∃ i ∈ I. i →^* t} I 	 EF s

=⇒ ∃ A :: (σ::state)attree. 	 A ∧ (I, s) = attack A

Correctness and Completeness are proved in Isabelle within the theory
AT.thy [3]. The interactive proofs including auxiliary lemmas consist of nearly
1200 lines of proof commands. However, we have proved these theorems once for
all. Owing to the modular organisation of our framework they are meta-theoretic
theorems usable for any object logic that models an application.
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6 Application to Infrastructures, Policies, and Actors

The Isabelle Infrastructure framework supports the representation of infrastruc-
tures as graphs with actors and policies attached to nodes. These infrastructures
are the states of the Kripke structure.

The transition between states is triggered by non-parametrized actions get,
move, eval, and put executed by actors. Actors are given by an abstract type
actor and a function Actor that creates elements of that type from identities
(of type string). Policies are given by pairs of predicates (conditions) and sets
of (enabled) actions.

type_synonym policy = ((actor ⇒ bool) × action set)

Actors are contained in an infrastructure graph.

datatype igraph = Lgraph (location × location)set

location ⇒ identity set

actor ⇒ (string set × string set)

location ⇒ (string × acond)

An igraph has just one constructor function Lgraph. It constructs an igraph
from a set of location pairs representing the topology of the infrastructure as a
graph of nodes and a list of actor identities associated to each node (location) in
the graph. The third component of an igraph associates actors to a pair of string
sets by a pair-valued function whose first range component is a set describing
the credentials in the possession of an actor and the second component is a
set defining the roles the actor can take on. More importantly in this context,
the fourth component of an igraph assigns locations to a pair of a string that
defines the state of the component and an element of type acond. This type
acond is defined as a set of labelled data representing a condition on that data.
Corresponding projection functions for each of these components of an igraph
are provided; they are named gra for the actual set of pairs of locations, agra
for the actor map, cgra for the credentials, and lgra for the state of a location
and the data at that location.

Infrastructures are given by the following datatype that contains an infras-
tructure graph of type igraph and a policy given by a function that assigns local
policies over a graph to all locations of the graph.

datatype infrastructure = Infrastructure igraph

igraph ⇒ location ⇒ policy set

There are projection functions graphI and delta when applied to an infrastruc-
ture return the graph and the policy, respectively. Policies specify the expected
behaviour of actors of an infrastructure. They are defined by the enables predi-
cate: an actor h is enabled to perform an action a in infrastructure I, at location
l if there exists a pair (p,e) in the local policy of l (delta I l projects to
the local policy) such that the action a is a member of the action set e and the
policy predicate p holds for actor h.
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enables I l h a ≡ ∃ (p,e) ∈ delta I l. a ∈ e ∧ p h

We now flesh out the abstract state transition introduced in Sect. 2.1 by defining
an inductive relation →n for state transition between infrastructures. This state
transition relation is dependent on actions but also on enabledness and the cur-
rent state of the infrastructure. For illustration purposes we consider the rule for
get data only (see the complete source code [3] for full details of other rules)3.

get_data : G = graphI I =⇒ a @G l =⇒
enables I l’ (Actor a) get =⇒
I’ = Infrastructure

(Lgraph (gra G)(agra G)(cgra G)

((lgra G)(l := (fst (lgra G l),

snd (lgra G l) ∪ {new}))))

(delta I)

=⇒ I →n I’

The new state I’ of the infrastructure can be reached from I if the actor h is in
location l, action get is enabled for h at location l. Under those preconditions,
data new can be added to the actor’s current location l formalised here using
the function update := for the fourth component lgra G of the infrastructure’s
igraph.

6.1 Application Example from IoT Healthcare

The example of an IoT healthcare systems is from the CHIST-ERA project
SUCCESS [5] on monitoring Alzheimer’s patients. Figure 4 illustrates the system
architecture where data collected by sensors in the home or via a smart phone
helps monitoring bio markers of the patient. The data collection is in a cloud
based server to enable hospitals (or scientific institutions) to access the data
which is controlled via the smart phone. We show the encoding of the igraph
for this system architecture in the Infrastructure model.

ex_graph ≡ Lgraph {(home, cloud), (sphone, cloud), (cloud,hospital)}

(λ x. if x = home then {’’Patient’’}

else (if x = hospital then {’’Doctor’’} else {}))

ex_creds ex_locs

The identities Patient and Doctor represent patients and their doctors; double
quotes ‘‘s’’ indicate strings in Isabelle/HOL. The global policy is ‘only the
patient and the doctor can access the data in the cloud’:

fixes global_policy::[infrastructure, identity] ⇒ bool

defines global_policy I a ≡ a /∈ gdpr actors −→
¬(enables I cloud (Actor a) get)

Local policies are represented as a function over an igraph G that addi-
tionally assigns each location of a scenario to its local policy given as a pair of
3 We deliberately omit here the DLM constraints for illustration purposes (see below).
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Fig. 4. IoT healthcare monitoring system for SUCCESS project

requirements to an actor (first element of the pair) in order to grant him actions
in the location (second element of the pair). The predicate @G checks whether
an actor is at a given location in the graph G.

local_policies G ≡
(λ x. if x = home then {(λ y. True, {put,get,move,eval})}

else (if x = sphone then

{((λ y. has G (y, ’’PIN’’)), {put,get,move,eval})}

else (if x = cloud then {(λ y. True, {put,get,move,eval})}

else (if x = hospital then

{((λ y. (∃ n. (n @G hospital) ∧ Actor n = y ∧
has G (y, ’’skey’’))), {put,get,move,eval})} else {}))))

6.2 Using Attack Tree Calculus

Since we consider a predicate transformer semantics, we use sets of states to
represent properties. For example, the attack property is given by the following
set sgdpr.

sgdpr ≡ {x. ¬ (global_policy x ’’Eve’’)}

The attack we are interested in is to see whether for the scenario

gdpr scenario ≡ Infrastructure ex_graph local_policies

from the initial state Igdpr ≡{gdpr scenario}, the critical state sgdpr can be
reached, i.e., is there a valid attack (Igdpr,sgdpr)?

To set up this question as a proof goal, we can now use the meta-theory for
valid abstract attack trees developed in Sect. 4 which allows setting out from
this abstract attack.
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	V [N(Igdpr,sgdpr)]⊕(Igdpr,sgdpr)
∧

We can then prove that there is a refinement to an and-attack where the set
GDPR is an intermediate state where Eve accesses the cloud.

[N(Igdpr,sgdpr)]⊕(Igdpr,sgdpr)
∧

�
[N(Igdpr,GDPR),N(GDPR,sgdpr)]⊕(Igdpr,sgdpr)

∧

We can then finish the proof by deriving that the second refined attack is a valid
and-attack using the attack tree proof calculus.

	 [N(Igdpr,GDPR),N(GDPR,sgdpr)]⊕(Igdpr,sgdpr)
∧

For the Kripke structure

gdpr_Kripke ≡ Kripke {I. gdpr_scenario →∗ I} Igdpr

we can alternatively apply the Correctness theorem AT EF to immediately derive
from the previous result the following CTL statement.

gdpr_Kripke 	 EF sgdpr

This application of the meta-theorem of Correctness of attack trees saves us
proving the CTL formula tediously by exploring the state space. However, a
more convincing case for using the Correctness and Completeness meta-theorems
is given next when we consider how to improve the access control on data to
guarantee GDPR level security and privacy.

7 Data Protection by Design for GDPR Compliance

7.1 General Data Protection Regulation (GDPR)

On 26th May 2018, the GDPR has become mandatory within the European
Union and hence also for any supplier of IT products. Breaches of the regulation
will be fined with penalties of 20 Million EUR. For this paper, we use the final
proposal [6] as our source. Despite the relatively large size of the document of
209 pages, the technically relevant portion for us is only about 30 pages (pp. 81–
111, Chaps. I to III, Sect. 3). In summary, Chap. III specifies that the controller
must give the data subject read access (1) to any information, communications,
and “meta-data” of the data, e.g., retention time and purpose. In addition, the
system must enable deletion of data (2) and restriction of processing.

An invariant condition for data processing resulting from these Articles is
that the system functions must preserve any of the access rights of personal
data (3).
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7.2 Security and Privacy by Labeling Data

The Decentralised Label Model (DLM) [7] introduced the idea to label data by
owners and readers. We pick up this idea and formalize a new type to encode
the owner and the set of readers.

type synonym dlm = actor × actor set

Labelled data is then just given by the type dlm × data where data can be
any data type. Additional meta-data, like retention time and purpose, can be
encoded as part of this type data. We omit these detail here for conciseness of
the exposition.

Using labeled data, we can now express the essence of Article 4 Paragraph
(1): ‘personal data’ means any information relating to an identified or identifiable
natural person (‘data subject’). Since we have a more constructive system view,
we express this by defining the owner of a data item d of type dlm as the actor
that is the first element in the pair that is the first of the pair d. Then, we use
this function to express the predicate “owns”.

definition owner :: dlm × data ⇒ actor

where owner d ≡ fst(fst d)

definition owns :: [igraph, location, actor, dlm × data] ⇒ bool

where owns G l a d ≡ owner d = a

The introduction of a similar function for readers projecting the second element
of a dlm label

definition readers :: dlm × data ⇒ actor set

where readers d ≡ snd (fst d)

enables specifying whether an actor may access a data item.

definition has_access :: [igraph, location, actor, dlm × data] ⇒ bool

where has_access G l a d ≡ owns G l a d ∨ a ∈ readers d

For our example of an IoT health care monitoring system, the data and its
privacy access control definition is given by the parameter ex locs specifying
that the data 42, for example some bio marker’s value, is located in the cloud,
is owned by the patient, and can be read by the doctor (’’free’’ is the state
of the cloud component).

ex_locs ≡ (λ x. if x = cloud

then (’’free’’, {((Actor ’’Patient’’,{Actor ’’Doctor’’}),42)})

else (’’’’,{}))

7.3 Privacy Preserving Functions

The labels of data must not be changed by processing: we have identified this
finally as an invariant (3) resulting from the GDPR in Sect. 7. This invariant can
be formalized in our Isabelle model by a type definition of functions on labeled
data that preserve their labels.



626 F. Kammüller

typedef label_fun = {f :: dlm×data ⇒ dlm×data. ∀ x. fst x = fst (f x)}

We also define an additional function application operator 
 on this new type.
Then we can use this restricted function type to implicitly specify that only func-
tions preserving labels may be applied in the definition of the system behaviour
in the state transition rule for action eval (see [3]).

7.4 Policy Enforcement

We can now use the labeled data to encode the privacy constraints of the GDPR
in the rules. For example, the get data rule has now labelled data ((Actor
a’, as), n) and used the labeling in the precondition to guarantee that only
entitled users can get data: Actor a has to be in the set of readers as to have
this data item added to his location l.

get_data : G = graphI I =⇒ a @G l =⇒ enables I l’ (Actor a) get =⇒
((Actor a’, as), n) ∈ snd (lgra G l’) =⇒ Actor a ∈ as =⇒
I’ = Infrastructure

(Lgraph (gra G)(agra G)(cgra G)

((lgra G)(l := (fst (lgra G l),

snd (lgra G l) ∪ {((Actor a’, as), new)}))))

(delta I)

=⇒ I →n I’

Using the formal model of infrastructures, we can now prove privacy by design for
GDPR compliance of the specified system. We can show how the properties relat-
ing to data ownership, processing and deletion can be formally captured using
Kripke structures and CTL and the Infrastructure framework. As an example,
consider the preservation of data ownership.

Processing Preserves Privacy. We can prove that processing preserves own-
ership as defined in the initial state for all paths globally (AG) within the Kripke
structure and in all locations of the graph.

theorem GDPR_three: h ∈ gdpr_actors =⇒ l ∈ gdpr_locations =⇒
owns (Igraph gdpr_scenario) l (Actor h) d =⇒
gdpr_Kripke 	

AG {x. ∀ l ∈ gdpr_locations. owns (Igraph x) l (Actor h) d}

Note, that it would not be possible to express this property in Modelcheckers
(let alone prove it) since they only allow propositional logic within states. This
generalisation is only possible since we use Higher Order Logic. The proof of this
property is straightforward evaluation of the CTL rules.

Applying Correctness to Prove Absence of Attacks. The contraposition
of the Correctness theorem grants that if (EF f) does not hold in a Kripke
structure, then there is no attack (I,f) for the initial states of the Kripke
structure I. Since properties are expressed as sets, negation is expressed in the
theorem by using the set complement -P for the negation of property P.
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h ∈ gdpr_actors =⇒ l ∈ gdpr_locations =⇒
owns (Igraph gdpr_scenario) l (Actor h) d =⇒
attack A = (Igdpr, -{x. ∀ l ∈ gdpr_locations.

owns (Igraph x) l (Actor h) d})

=⇒ ¬(	 A::infrastructure attree)

Proving the absence of attacks for attack trees is in general very difficult but
becomes feasible owing to the meta-theorem Correctness and the possibility to
interleave meta-theoretic reasoning with that in the object logic in Isabelle.

8 Conclusions

In this paper, we have presented a proof theory for attack trees in Isabelle’s
Higher Order Logic (HOL). We have shown the incremental and generic struc-
ture of this framework, presented correctness and completeness results equating
valid attacks to EF s formulas. The proof theory has been illustrated on an
IoT healthcare infrastructure where the meta-theorem of completeness could be
directly applied to infer the existence of an attack tree from CTL. The practical
relevance has been demonstrated on GDPR compliance verification.

There are excellent foundations available based on graph theory [8]. They
provide a very good understanding of the formalism, various extensions (like
attack-defense trees [9]) and differentiations of the operators (like sequential
conjunction (SAND) versus parallel conjunction [10]) and are amply documented
in the literature. These theories for attack trees provide a thorough foundation
for the formalism and its semantics. The main problem that adds complexity to
the semantical models is the abstractness of the descriptions in the nodes. This
leads to a variety of approaches to the semantics, e.g. propositional semantics,
multiset semantics, and equational semantics for ADtrees [9]. The theoretical
foundations allow comparison of different semantics, and provide a theoretical
framework to develop evaluation algorithms for the quantification of attacks.

More practically oriented formalisations, e.g. [11], focus on an action based-
approach where the attack goals are represented as labels of attack tree nodes
which are actions that an attacker has to execute to arrive at the goal.

A notable exception that uses, like our approach, a state based semantics
for attack trees is the recent work [12]. However, this work is aiming at assisted
generation of attack trees from system models. The tool ATSyRA supports this
process. The paper [12] focuses on describing a precise semantics of attack tree
in terms of transition systems using “under-match”, “over-match”, and “match”
to arrive at a notion of correctness. In comparison, we use additionally CTL
logic to describe the correctness relation precisely. Also we use a fully formalised
and proved Isabelle model.

Surprisingly, the use of an automated proof assistant, like Isabelle, has not
been considered before despite its potential of providing a theory and analysis
of attacks simultaneously. The essential attack tree mechanism of disjunction
and conjunction in tree refinement is relatively simple. The complexity in the
theories is caused by the attempt to incorporate semantics to the attack nodes
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and relate the trees to actual scenarios. This is why we consider the formalisation
of a foundation of attack trees in the interactive prover Isabelle since it supports
logical modeling and definitions of datatypes very akin to algebraic specification
but directly supported by semi-automated analysis and proof tools.

The workshop paper [2] has inspired the present work but is vastly superseded
by it. The novelties are:

– Attack trees have a state based semantics formalised in the framework.
– Correctness and completeness are proved based on the formal semantics.
– The Isabelle framework is generic using type classes, that is, works for any

state model. Infrastructures with actors and policies are an instantiation.
– The semantics, correctness and completeness theorems facilitate application

verification.
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with sequential conjunction. In: Federrath, H., Gollmann, D. (eds.) SEC 2015.
IAICT, vol. 455, pp. 339–353. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-18467-8 23

11. Aslanyan, Z., Nielson, F., Parker, D.: Quantitative verification and synthesis of
attack-defence scenarios. In: CSF 2016. IEEE (2016)

12. Audinot, M., Pinchinat, S., Kordy, B.: Is my attack tree correct? In: Foley, S.N.,
Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10492, pp. 83–102.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66402-6 7

https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-319-67816-0_1
https://github.com/flokam/IsabelleAT
http://www.chistera.eu/projects/success
http://www.chistera.eu/projects/success
http://www.eugdpr.org
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-18467-8_23
https://doi.org/10.1007/978-3-319-66402-6_7


Automated Verification of Noninterference
Property

Fan Zhang1,2, Cong Zhang1, Mingdi Xu3, Xiaoli Liu4, Fangning Hu2,
and HanChieh Chao1,5,6(&)

1 Mathematics and Computer Science School, Wuhan Polytechnic University,
Wuhan, China

hcchao@gmail.com
2 School of Computer Science and Electrical Engineering, Jacobs University

Bremen, Bremen, Germany
3 Wuhan Digital and Engineering Institute, Wuhan, China

4 College of Information Science and Technology/College of Cyber Security,
Jinan University, Guangzhou 510632, China

5 Department of Electrical Engineering, National Dong Hwa University,
Hualien, Taiwan

6 Department of Computer Science and Information Engineering,
National Ilan University, Ilan, Taiwan

Abstract. Noninterference is an important information flow model that is
widely applied in building secure information systems. Although the noninter-
ference model itself has been thoroughly investigated, verifying the noninter-
ference property in an efficient and automated manner remains an open problem.
In this study, we explore the noninterference verification problem from the
perspective of the state-equivalence relations between two automata running
synchronously. Our results are as follows. (1) To the best of our knowledge, we
are the first to propose a recursive form of the necessary and sufficient condition
of noninterference. We also for the first time disclose the fact that Rushby’s
definition of noninterference model can also be formalized as a bi-simulation
(over two automata) (2) We present an automated noninterference verification
algorithm. The algorithm can finish the verification within OðjSj2 � jDjÞ, where
jDj is the number of security domains and jSj is the number of states. The time-
complexity of our algorithm is the best among other existing studies.

Keywords: Intransitive noninterference � Information flow
Noninterference verification

1 Introduction

An information system is usually composed of trusted and untrusted components.
Therefore, it is crucial to protect information from flowing from trusted components
(with a high security level) to untrusted components (with a low security level) so as to
maintain the confidentiality of the trusted components. Among the different tech-
nologies applied, “noninterference” is one of the most important approaches to
achieving this requirement. Informally, noninterference addresses an information-flow
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attack, in which an adversary obtains secrets that he is not authorized to occupy, by
observing the running of an information system and making subtle deductions.

The first definition of noninterference was given by Goguen and Meseguer [1], who
presented the formalization of an information flow and its causal relationships in the
context of transitive information flow policies. However, it was subsequently noted that
transitive policies are insufficient to characterize system architectures, and intransitive
policies have often been required. For example, consider a security system with three
processes, i.e., P1 receives a plaintext from a keyboard, P2 encrypts the information
coming from P1, and P3 sends the encrypted information to the network. In this case, the
high-level domain (P1) apparently cannot directly interfere with the low-level domain
(P3); otherwise, confidential information would be leaked. To address this issue, an
intermediate downgrader (P2) is needed. Information is permitted to first flow from the
high-level domain to the downgrader domain, and then from the downgrader domain to
the low-level domain (P1 P2 ^ P2 P3), but not directly from the high-level domain
to the low-level domain (( 1 3P P/ ),), thereby motivating the use of intransitive policies.

Although Haigh and Young introduced a formal model for intransitive policies in [2],
their formalization was found questionable [3]. Rushby [3] then presented the first
perfect formalization by refining Haigh and Young’s work. Note that it is essential to
establish verification techniques to guarantee that a designed system indeed satisfies
noninterference, and thus, Rushby introduced the “unwinding theorem” in [3].
“Unwinding technology”was the first effort at building a theoretical base for verification
of the noninterference property, but it requires significant human ingenuity to define the
unwinding relations between security domains. Engineers apparently prefer fully auto-
mated verification techniques, rather than techniques requiring highly specialized
expertise. After Rushby, another breakthrough was the work of Hadj-Alouane et al. [4],
who were the first to propose a necessary and sufficient condition -based noninterference
verification algorithm. Nevertheless, the time complexity of their algorithm is the double

exponential Oð2jSj�2jDj Þ, which is too high for practical use. In 2011, Eggert et al.
investigated the time- and space-complexities of several noninterference definitions,
including P-Security (Transitive-Policy Security), IP-Security (Intransitive-Policy
Security), TA-Security, and TO-Security [5]. However, they merely analyzed the
time- and space-complexities without presenting any detailed algorithms. More impor-
tantly, their definition of IP-Security was actually different from that of Rushby.
Specifically, Eggert et al. focused on the occurrences of high-level actions and their order
of occurrence [5], whereas Rushby focused on the system states and their equivalence
relations on the security domains [3]. Therefore, although Eggert et al. claimed that IP-
Security can be verified in polynomial time [5], it is still unknown of time- and space-
complexity boundaries for Rushby’s definition of intransitive noninterference.

Actually, to date, significantly few studies have been conducted on automated
verification techniques for the intransitive noninterference property [5], and con-
structing a practical and automated algorithm for verifying the intransitive noninter-
ference property remains an open problem. This paper attempts to address the above
issues, and our contributions are as follows:

(1) We propose a necessary and sufficient condition of intransitive noninterference
based on the state-equivalence relation of two automata in a recursive manner.
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To the best of our knowledge, we are the first to propose the recursive form of
necessary and sufficient condition of intransitive noninterference.

(2) We present an automated noninterference verification algorithm.

The time complexity of our algorithm is the best among existing studies. Moreover,
if a verification fails, our algorithm can precisely point out the exact reason why the
system does not satisfy noninterference, which is helpful for security-bug repairs.

2 Problem Statement

For a clearer understanding, herein we use an example to state the problem at hand.
In a noninterference model, there are two key elements: an automaton modeling

an information system M whose security is to be investigated, as well as
interference/noninterference relations (also equivalently called security policies)
indicating how information is allowed to flow between security domains within M [3].

With respect to the automaton, a noninterference model does not specify how an
information system M should be modeled an as an automaton (in fact, there are many
standard methods, and researchers can choose whatever method they want), but simply
assumes the automaton has been obtained. Without loss of generality, suppose Fig. 1 is
the automaton that M is modeled as. In Fig. 1, s0 (oval rectangle) is the initial state,
s1; s2; . . .; s12 (single circles) are the intermediate states, and sf 0; sf 1; . . .; sf 4 (double
circles) are the terminal states. The directed arrows between states indicate how the
system transforms from one state into another, and the letters over the directed arrows,
i.e., a; b; . . .; g, are the actions that trigger the state transformations.

With respect to the interference/noninterference relations (i.e., security policies),
they determine how information can flow between security domains within M. Without
loss of generality, suppose the interference relations are ua ub uc ud w,
ue uc uf w, and ug w. Any other two security domains are of noninterference
with each other except for the above interference relations. The meaning of security
policies is straightforward, for example, ue uc uf w means that information can

Fig. 1. The automaton of information sys-
tem M

Fig. 2. Intransitive security policies
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flow starting from ue, in turn passing through uc and uf , and finally ending at w.
Figure 2 shows the security policies.

In a noninterference model, any action must belong to a security domain. Therefore,
in Fig. 2 we use ukðk¼a;b;...;gÞ to refer to the security domain that action k belongs to. Note
that w in Fig. 2 is a special security domain, because from w Low-lever observers (i.e.,
attackers) can issue actions to observe results of paired-runs of M (specifically, one is the
actual run, the other is the ideal run under the protection of security policies. see
definition 11), try to find differences between the paired-runs, and thereby deduce
something that they are not authorized to know. Hence, in order to prevent Low-level
observers from learning anything confidential from the information flowing to w, we
must ensure that Low-level observers cannot observe any difference between paired-
runs of M, no matter how they observe M (by choosing actions from w). This is the
nature of noninterference, and the formal definition please refer to definition 10.

Now the challenge is, if given the automaton and security policies (for example,
akin to Figs. 1 and 2) of an information system M, how can we determine whether M is
secure (i.e., no confidential information is leaked to Low-lever observers) in an auto-
mated and efficient way? Unfortunately, however, this is still an open problem thus far.

In the following, we will present our approach to address this issue.

3 Basic Definitions of Noninterference

Note that a transitive policy is simply a special case of an intransitive policy [3], and we
hereafter refer to intransitive policy-based noninterference as simply “noninterference.”

Definition 1. A system (or machine) M consists of the following: (1) a set S of states,
where s0 2 S is the sole initial state; (2) a set A of actions, where actions could be
“inputs,” “commands,” or “instructions” to be performed by M; (3) a set B of
behaviors, where behaviors are sequences of actions concatenated by �; (4) a set O of
outputs, where O is composed of all storage locations that can be observed by users;
(5) a set D of domains, where D comprises all security domains in M; (6) a function
dom : A ! D, which returns the domain that an action a 2 A is associated with, where
each action a belongs only to a unique domain domðaÞ; (7) a function
step : S� A ! S, which describes how M transforms from the pre-state si 2 S, after
performing an action a, to the post-state siþ 1 2 S; (8) a function behcon : S� A ! O,
which returns outputs when using an action a to observe M in a state s; (9) a function
exec : S� B ! S, which describes how M transforms from the pre-state si, after per-
forming a behavior a ¼ ai � . . . � aj 2 B, to the post-state sj. If we use K to denote an
empty behavior, exec can be defined in a right recursive manner,

i.e.,
execðs;KÞ ¼ s;

execðs; a � aÞ ¼ execðstepðs; aÞ; aÞ
�

; (10) direct interference relation  and di-

rect noninterference relation .  and / are two complement relations, where p q
denotes information can directly flow from domain p to domain q, whereas p q/
denotes information cannot directly flow from p to q; (11) Indirect interference relation

 � . In practice, we sometimes encounter the situation that information can not directly
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flow from p to q, but indirectly flow from p to q. With respect to this situation, we say

p � q . For example, consider a scenario where a confidential military plan is sent out
over a network. The standard workflow is, firstly, the military plan is input through a
keyboard (domain um), then the plaintext of the plan is encrypted by an encryption
machine (domain ue), and finally the encrypted plan is sent out over a network (domain
un). The military plan must not be sent out over the network without being encrypted.
Therefore, the security policies of the above scenario is m e n m nu u u u u∧ / . In this
scenario, though information cannot directly flow from um to un ( m nu u/ ), it can still
indirectly flow to un via the intermediate downgrader ue (um ue un). Formally, for

 � we have: 1 2 (1 ) 1, ,..., . ...n n nu w v v v u v v w u w∃ ∧ ∧ ∧ /iff .
In general, we use letters . . .s; t; . . . to denote states, letters a; b; c; . . . to denote

actions, and Greek letters a; b; . . . to denote behaviors.
To depict a system state, internal structures are needed. Definition 2 introduces the

notations of structured state.

Definition 2. A machine M has a structured state if the following exist: (1) a set N of
names that comprises all of the object names; (2) a set V of values; (3) a content
function contents : S� N ! V , which returns the value v 2 V of object n 2 N in the
system state s; (4) an observation function observe : D ! PðNÞ and an alteration
function alter : D ! PðNÞ, which return object names that can be observed and
altered, respectively, where P denotes a power set.

Definition 3. Reference Monitor Assumptions (RMAs). An access control policy is
enforced accurately if the following three conditions are satisfied. Note that in this
paper, we follow [3] to use � instead of ! to denote an implication.

• Rule 1: Two states s and t are said to satisfy the state-equivalence relation �u if and
only if their object names are observed to have identical values. Formally,

s �u t iff 8n 2 observeðuÞ: contentsðs; nÞ ¼ contentsðt; nÞ:

• Rule 2: When an action a transforms the system from a pre-state to a post-state, the
new value of every changed object must depend solely on the values that can be
observed by domain domðaÞ. Formally,

s �domðaÞ
t ^ contentsðstepðs; aÞ; nÞ 6¼ contentsðs; nÞ _ contentsðstepðt; aÞ; nÞ 6¼ contentsðt; nÞ½ 	

� contentsðstepðs; aÞ; nÞ ¼ contentsðstepðt; aÞ; nÞ

• Rule 3: domðaÞ must be authorized the alter access before an action a can change
the value of an object n. Formally,

contentsðstepðs; aÞ; nÞ 6¼ contentsðs; nÞ � n 2 alterðdomðaÞÞ:

Definition 4. output consistent and step consistent.

output consistent: s �domðaÞ
t � behconðs; aÞ ¼ behconðt; aÞ,
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step consistent: s �u t � stepðs; aÞ �u stepðt; aÞ.
Definition 5. Interference Source set and function IS : B� D ! PðDÞ, where P is the
power set. IS can be formally defined in a right recursive manner, i.e., ISðK;wÞ ¼ fwg,
where K is the empty sequence, and

ISða � a;wÞ ¼ fdomðaÞg [ ISða;wÞ if 9v: v 2 ISða;wÞ ^ domðaÞ v
ISða;wÞ otherwise

�
:

Intuitively, IS returns all security domains that can directly or indirectly interfere
with domain w, so we call the resulting set ISða;wÞ “Interference Source set”.

Definition 6. Function wexpected : B� D ! B. For any behavior a 2 B, function
wexpected maintains all actions whose domains can directly or indirectly interfere with
domain w, and meanwhile deletes all otherwise actions, thus forming an expected
behavior. Formally, we have wexpectedðK;wÞ ¼ K, and

wexpectedða � a;wÞ ¼ a � wexpectedða;wÞ if domðaÞ 2 ISða � a;wÞ
K � wexpectedða;wÞ otherwise

�

Definition 7. Domain set equivalence relation �C . s�C t iff 8u 2 C: s �u t.

Definition 8. Weakly step consistent. Formally,

domðaÞ u ^ s �domðaÞ
t ^ s �u t � stepðs; aÞ �u stepðt; aÞ:

Intuitively, when an action a interferes with a domain u (domðaÞ u), those names
visible to u change in a way that depends on those same names, plus those names
visible to domðaÞ. Since all of the aforementioned names have the identical values

(s �u t ^ s �domðaÞ
t), those names visible to u will be altered by a to the identical values as

well, i.e., stepðs; aÞ �u stepðt; aÞ (By rule 1 of Definition 3).

Definition 9. Locally respects  . ( ) ~ ( , )
u

dom a u s step s a⊃/ .

Intuitively, if the security domain that an action a belongs to is of noninterference
with a domain u( ( )dom a u/ ), then action a does not alter any of names visible to u, i.e.,

s �u stepðs; aÞ.

4 Automated Verification of Noninterference Property

Definition 10. [3] A system M satisfies noninterference if and only if

8c8a: behconðexecðs0; cÞ; aÞ ¼ behconðexecðs0;wexpectedðc;wÞÞ; aÞ ð1Þ

where c 2 B, a 2 A, w ¼ domðaÞ.
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Rushby regarded the whole Eq. (1) as a automaton, and proposed the “unwinding
theorem” by induction on the length of c. Different from Rushby, we regard the left and
right sides of Eq. (1) as two automata, i.e., “EA” and “WEA” (see Definition 11),
respectively. EA depicts the actual runs of M, and WEA depicts the ideal runs of M
under the protection of security policies. Attackers observe the paired-runs of EA and
WEA, and compare them (function behcon returns what attackers can observe) to find
differences so as to deduce something that they are not allowed to know. If paired-runs
of M are always indistinguishable, then attackers can learn nothing, and thus M is said
to satisfy noninterference [3].

Note that Rushby pointed out that c and a in Eq. (1) are read as universally
quantified (Definition 2 of [3]), i.e., 8c and 8a. Here we need to simply explain the
essence of “universally quantified”. Initially, we believe it is impossible in the real
world to determine all possible attack actions issued by attackers. For example, taking
the “Row Hammer” attack (shorted for “RH” hereafter) as an example, before the “RH”
attack is discovered, what is the action a corresponding to “RH”? Specifically, since no
one knows details of the “RH”, then no one knows how to alter the structured states of
M (i.e., names, values, and so on, see Definition 2) so as to launch “RH”. In other
words, the action a corresponding to “RH” cannot be constructed, which means a is in
fact unknown to humans. More generally, any attack that has not yet been discovered
by humans is not in the action set A, even if these attacks do exist. Therefore, for
8a 2 A, a is limited to attacks that have already been known to humans.

In the following, we present in detail how to automatically verify the noninter-
ference property based on Eq. (1). For ease of understanding, we use Fig. 3, a simple
automaton which has only one single behavior a ¼ a � b � c � b � d, to explain intu-
itions of definitions in this section, before presenting our technology. Note that in
reality, an automaton modeled from an information system M is far more complicated
than the example in Fig. 3. However, Fig. 3 is sufficient to demonstrate the nature of
noninterference and explain intuitions of our definitions. Without loss of generality,
suppose in Fig. 3 the security policy is ua ub uc ud w, and any other two

security domains are of noninterference with each other except for the aforementioned
interference relations.

In the following, we give intuitions of our technology based on Fig. 3.

Fig. 3. Example for the explanation of our technology
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(1) Intuitions for EA and WEA.

In a noninterference model, an information system M is modeled as an automaton.
This automaton corresponds to the left side of Eqs. (1), and describes the actual runs of
M, hence we call it “EA (Equivalent Automaton, see definition 11)”.

For every behavior a in EA, we can correspondingly calculate its theoretically
expected behavior b ¼ wexpectedða;wÞ, thus forming another automaton. This
automaton corresponds to the right side of Eq. (1), and describes the ideal runs of M
under the protection of security policies, hence we call it “WEA(Weakly Equivalent
Automaton, see definition 11)”.

For example, in Fig. 3, EA has a single behavior a ¼ a � b � c � b � d. According
to ua ub uc ud w, we have b ¼ wexpectedða;wÞ ¼ a � b � c � K � d and obtain
WEA.

(2) Intuition for the nature of noninterference property.

Let us return to Eq. (1). Attackers perform an action a from w to observe the
paired-runs of EA and WEA, trying to find differences so as to deduce confidential
information. Consequently, as long as all names visible to w (i.e., visible to attackers)
always have the same values in EA and WEA, then attackers can find nothing different.
Furthermore, as we mentioned before, values of names visible to w change in a way
that depends on those same names, plus names visible to domains that
directly/indirectly interfere with w. Note that EA and WEA start operations from the
same initial state s0 ¼ t0, and thus names visible to w must be identical in the initial
state. Therefore, intuitively, as long as EA and WEA always guarantee values of
names visible to domains that directly/indirectly interfere with w are identical (i.e.,
EA and WEA always maintain state-equivalence on domains that directly/
indirectly interfere with w, see Rule 1 of Definition 3), then values of names visible
to w are sure to be always identical as well. In other words, what observed from
EA and WEA by attackers are always the same, and thus nothing can be learned.
M is secure. This is the intuition of Theorem 1, Detailed proof please refer to Lemmas
2, 3, and Theorem 1.

Let us go back to Fig. 3. We simulate the paired-runs of EA and WEA to illustrate
the above intuition. The simulation consists of six steps.

(6.0) Initially, EA and WEA starts runs from the same initial state s0 ¼ t0.
With respect to EA, calculate domains that in the future interference with w. EA has

a single behavior a0 ¼ a ¼ a � b � c � b � d. According to ua ub uc ud w and the
definition of IS, we have ISða0;wÞ ¼ fua; ub; uc; udg, which contains all the domains

that in the future interfere with w. Since s0 ¼ t0, then s0 �ISða0;wÞ
t0.

(6.1) The EA performs an action a to transform its state from s0 to s1 ¼ stepðs0; aÞ.
Correspondingly, the WEA also performs the action a to transform its state from t0 to
t1 ¼ stepðt0; aÞ.

With respect to EA, the rest sub-behavior to be performed is a1 ¼ b � c � b � d.
Similarly, we can calculate ISða1;wÞ ¼ fub; uc; udg, which contains all the domains
that in the future interfere with w. Therefore, EA and WEA must maintain state

equivalence on these domains, i.e., s1 �ISða1;wÞ
t1, so as to protect the security of M.
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(6.2) The EA performs an action b to transform its state from s1 to s2 ¼ stepðs1; bÞ.
Correspondingly, the WEA also performs the action b to transform its state from t1 to
t2 ¼ stepðt1; bÞ.

With respect to EA, the rest sub-behavior to perform is a2 ¼ c � b � d. Similarly,
we have ISða2;wÞ ¼ fuc; udg . Therefore, EA and WEA must maintain state equiva-

lence on ISða2;wÞ, i.e., s2 �ISða2;wÞ
t2, so as to protect the security of M.

(6.3) The EA performs an action c to transform its state from s2 to s3 ¼ stepðs2; cÞ.
Correspondingly, the WEA also performs the action c to transform its state from t2 to
t3 ¼ stepðt2; cÞ.

With respect to EA, the rest sub-behavior to perform is a3 ¼ b � d. Similarly, we
have ISða3;wÞ ¼ fudg. Therefore, EA and WEA must maintain state equivalence on

ISða3;wÞ, i.e., s3 �ISða3;wÞ
t3, so as to protect the security of M.

(6.4) The EA performs an action b to transform its state from s3 to s4 ¼ stepðs3; bÞ.
Correspondingly, the WEA performs K to transform its state from t3 to
t4 ¼ stepðt3;KÞ ¼ t3.

With respect to EA, the rest sub-behavior to perform is a4 ¼ d . Similarly, we have
ISða4;wÞ ¼ fudg. Therefore, EA and WEA must maintain state equivalence on

ISða4;wÞ, i.e., s4 �ISða4;wÞ
t4, so as to protect the security of M.

(6.5) The EA performs an action d to transform its state from s4 to the final state
s5 ¼ stepðs4; dÞ. Correspondingly, the WEA performs d to transform its state from t4 to
t5 ¼ stepðt4; dÞ.

With respect to EA, the rest sub-behavior to perform is a5 ¼ K. According to
definition of IS, we have ISða5;wÞ ¼ fwg. Therefore, EA and WEA must maintain

state equivalence on ISða5;wÞ, i.e., s5 �ISða5;wÞ
t5, so as to protect the security of M.

The simulation of paired-runs of EA and WEA ends. From the above simulation we
can see that without loss of generality, suppose EA reaches any state si, then WEA
must correspondingly reach to a state ti. We call ðsi; tiÞ the “paired-states”. Then an
information system M is secure, if and only if for any paired-states ðsi; tiÞ, ðsi; tiÞ
maintains state-equivalence on domains that in the future directly/indirectly
interfere with w. This is the essence of Theorem 1.

Definition 11. EA, WEA, and buddy automata. The left side of Eq. (1) can be
abstracted as an automaton, which denotes how an information system M performs
behavior c and correspondingly transforms its states. We call this automaton the
Equivalent Automaton (EA). Similarly, the right side of Eq. (1) can be abstracted as
another automaton, which denotes how M, under the control of intransitive security
policies, performs the expected behavior wexpectedðc; domðaÞÞ and correspondingly
transforms its states. We call this automaton the Weakly Equivalent Automaton (WEA).
EA and WEA are collectively called the buddy automata.

We stress that our approach is not a bi-simulation analysis between EA and WEA,
and give the detailed discussion in Sect. 7.
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Lemma 1. For any information system M, construct its EA and WEA. Then, for any
behavior a in EA, and the corresponding expected behavior b ¼ wexpectedða;wÞ in
WEA, we have ISða;wÞ ¼ ISðb;wÞ.
Proof. We can prove ISða;wÞ
ISðb;wÞ and ISða;wÞ � ISðb;wÞ based on the defini-
tion of IS and wexpected, and thus ISða;wÞ ¼ ISðb;wÞ.

Lemma 1 shows that for any information system M, any behavior a in the EA (and
correspondingly b ¼ wexpectedða;wÞ in the WEA), a and b must have the identical
interference source set ISða;wÞ ¼ ISðb;wÞ. This is an important conclusion, because in
the following we need to consider the state-equivalence relation between EA and WEA
only on these identical set.

Definition 12. Execution Sub-sequence. For 8c ¼ a0 � a1 � . . . � an, EA will in turn
perform actions a0; a1; . . .; an. Each time after EA performs an action aið06i6nÞ, we
call the remaining part an execution sub-sequence. In addition, we use jjcjj to denote
the number of execution sub-sequences.

Taking the behavior 8c ¼ a0 � a1 � . . . � an in Definition 12 as an example, with the
EA’s performing of actions a0; a1; . . .; an, the execution sub-sequences of c are,
respectively, c0 ¼ c ¼ a0 � a1 � . . . � an ¼ a0 � c1, c1 ¼ a1 � a2 � . . . � an ¼ a1 � c2,
…, cn�1 ¼ an�1 � an ¼ an�1 � cn, cn ¼ an ¼ a�nK ¼ a�ncnþ 1, and cnþ 1 ¼ K. Therefore,

jjcjj¼nþ 2.

Lemma 2. Let M be a system with a structured state that satisfies the reference monitor
assumption. For any behavior 8c of M and any observation action 8a ðdomðaÞ ¼ wÞ,
without loss of generality, supposing 8c ¼ a0 � a1 � . . . � an, we construct all of the
execution sub-sequences of c, i.e., c0; c1; . . .; cn; cnþ 1, where c0 ¼ c, cnþ 1 ¼ K and

jjcjj¼nþ 2. Let N¼jjcjj � 2, then we have: 8ið06i6NÞ:si �ISðci;wÞ
ti � siþ 1 �ISðciþ 1;wÞ

tiþ 1 is a
sufficient condition for M to satisfy noninterference.

In 8ið06i6NÞ:si �ISðci;wÞ
ti � siþ 1 �ISðciþ 1;wÞ

tiþ 1, c denotes the behavior sequence to be
performed by EA, and cið06i6Nþ 1Þ are the execution sub-sequences of c. In addition, si
and ti denote the current state of EA and WEA, respectively. Because EA and WEA
start from the same initial state, we have s0 ¼ t0. Without loss of generality, let
ci ¼ ai � ciþ 1ð06i6NÞ, then siþ 1 denotes the post-state siþ 1 ¼ stepðsi; aiÞ that EA will
transform into after it performs ai from the pre-state si; tiþ 1 denotes the post-state that
WEA will transform into after it synchronously performs ai (in this case, domðaiÞ 2
ISðci;wÞ and tiþ 1 ¼ stepðti; aiÞ) or K (in this case, domðaiÞ 62 ISðci;wÞ and tiþ 1 ¼ ti)
from the pre-state ti .

Proof. Recursively invoking the condition of Lemma 2 8ið06i6NÞ:si �ISðci;wÞ

ti � siþ 1 �ISðciþ 1;wÞ
tiþ 1, we can prove that Eq. (1) holds.

(1) Initially, EA and WEA start from the same initial state s0 ¼ t0. Thus, we have

s0 �ISðc0;wÞ
t0.

(2) Next, recursively invoking the condition in Lemma 2, we obtain
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s0 �ISðc0;wÞ
t0 � s1 �ISðc1;wÞ

t1 � s2 �ISðc2;wÞ
t2 � . . .. . . � sNþ 1 �ISðcNþ 1;wÞ

tNþ 1 ð2Þ

Note that N ¼ jjcjj � 2 ¼ n, and cNþ 1 ¼ cnþ 1 ¼ K . From the definition of
function IS, the following is provided:

ISðcNþ 1;wÞ ¼ ISðK;wÞ ¼ fwg ð3Þ

Substituting N ¼ n and ISðcNþ 1;wÞ ¼ fwg (Eq. (3)) into sNþ 1 �ISðcN þ 1;wÞ
tNþ 1

(formula (2)), we have snþ 1 �fwg tnþ 1, which is equivalent to

snþ 1 �w tnþ 1 ð4Þ

Note that system M satisfies the reference monitor assumption, and thus, by
invoking “output consistent” and snþ 1 �w tnþ 1 (formula (4)), we have the following

behconðsnþ 1; aÞ ¼ behconðtnþ 1; aÞ ðdomðaÞ ¼ wÞ ð5Þ

The definitions of EA and WEA give snþ 1 ¼ execðs0; cÞ and tnþ 1 ¼
execðt0;wexpectedðc;wÞÞ, respectively. Substituting s0 ¼ t0, snþ 1 and tnþ 1 into
Eq. (5), and note that the behavior sequence c and the observation action
aðdomðaÞ ¼ wÞ are arbitrary, we can immediately determine that Eq. (1) holds.

Lemma 3. Let M be a system with a structured state that satisfies the reference monitor
assumption. For any behavior 8c of M and any observation action 8a ðdomðaÞ ¼ wÞ,
without loss of generality, supposing 8c ¼ a0 � a1 � . . . � an, we construct all of the
execution sub-sequences of c, i.e., c0; c1; . . .; cn; cnþ 1, where c0 ¼ c, cnþ 1 ¼ K and

jjcjj¼nþ 2 . Let N¼jjcjj � 2, then we have: 8ið06i6NÞ:si �ISðci;wÞ
ti � siþ 1 �ISðciþ 1;wÞ

tiþ 1 is
a necessary condition for M to satisfy noninterference.

The meanings of the notations in Lemma 3 are the same as those in Lemma 2.
Lemma 3 can be proved by a reduction to absurdity. The basic idea is as follows:

Assume 9ið06i6NÞ: si �ISðci;wÞ
ti 6� siþ 1 �ISðciþ 1;wÞ

tiþ 1, which can be equally written as

9ið06i6NÞ: si �ISðci;wÞ
ti � siþ 1 6�

ISðciþ 1;wÞ
tiþ 1 . Based on the definition of �C , we immediately

have
1 1 1( , ). ~

jv

j i i iv IS w s tγ + + +∃ ∈ / . In other words, EA and WEA are non-equivalent on the

security domain vj.
Next, according to the definition of execution sub-sequence, EA will perform

ciþ 1 ¼ aiþ 1 � ciþ 2. Note that we must be able to “design” a new behavior c
0
iþ 1 based

on ciþ 1, such that after EA performs c
0
iþ 1 (and meanwhile WEA synchronously per-

forms wexpectedðc0
iþ 1;wÞ), we have the following:

(a) The non-equivalent relation (suppose on domain vj, see formula (6)) between EA
and WEA can never be corrected.
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(b) Worse, the non-equivalent relation between EA and WEA can be spread from vj
to other domains that can directly or indirectly interfere with w, based on the
intransitive security policies.

(c) Until finally EA and WEA reach terminal states that are non-equivalent on
domain w, which means system M does not satisfy noninterference. This con-
tradicts the premise of Lemma 3. Therefore, our assumption is wrong, and Lemma
3 holds.

Proof. Proof by contradiction.
Assume at some point that EA and WEA respectively transform their states to siþ 1

and tiþ 1, such that 9ið06i6NÞ:si �ISðci;wÞ
ti � siþ 1 6�

ISðciþ 1;wÞ
tiþ 1 . This can be equally written

as

1 1 1)( , . ~
jv

j i i iv IS w s tγ + + +∃ ∈ / ð6Þ

According to the definition of execution sub-sequence, EA will now perform
ciþ 1 ¼ aiþ 1 � ciþ 2 . In the following, we will then prove that we must be able to
“design” a new behavior c

0
iþ 1, such that after system M performs c

0
iþ 1, M does not

satisfy noninterference, thus inducing the contradiction. Generally, the proof comprises
three main steps as follows: note that ciþ 1 ¼ aiþ 1 � ciþ 2, then

STEP 1. Firstly, we can prove that once
1 1~

jv

i is t+ +/ (formula (6)), we can design a new

action a
0
iþ 1 to replace aiþ 1, such that EA and WEA maintain non-equivalent relation

on vj after they both execute a
0
iþ 1.

STEP 2. Furthermore, for every action in ciþ 2, we can also correspondingly design
a new action, forming c

0
iþ 2. When system M performs the newly designed c

0
iþ 2, the

non-equivalent relation between EA and WEA can be passed from vj to other domains
(in c

0
iþ 2) that can directly or indirectly interfere with w, according to the intransitive

security policies.
STEP 3. Finally, when the system finishes executing c

0
iþ 2, EA and WEA will reach

terminal states that are non-equivalent on w, and thus Eq. (1) does not hold. This means
that there must be at least one behavior that makes system M NOT satisfy noninter-
ference, which is contradictory to the precondition of Lemma 3. Therefore, our
assumption (formula (6)) is wrong, and Lemma 3 holds.

Owing to a limited amount of space, the detailed proof is not presented here.

Theorem 1. Let M be a system with a structured state that satisfies the reference
monitor assumption. For any behavior 8c of M and any observation action
8aðdomðaÞ ¼ wÞ, without loss of generality, supposing 8c ¼ a0 � a1 � . . . � an, we
construct all of the execution sub-sequences of c, i.e., c0; c1; . . .; cn; cnþ 1, where
c0 ¼ c,cnþ 1 ¼ K and jjcjj ¼ nþ 2. Let N¼ jjcjj � 2, then we have:

8ið06i6NÞ:si �ISðci;wÞ
ti � siþ 1 �ISðciþ 1;wÞ

tiþ 1 is a necessary and sufficient condition for M to
satisfy noninterference.
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Function Return: TRUE/FALSE (system satisfies/does not satisfy noninterference)
Input Params: e describes the EA of system M; p indicates the intransitive security 
policies; 0s is the initial state of M.
Output Params: if TRUE is returned, cα = = Λ ; otherwise, α is an untrusted behav-
ior, and c is a causal action in α that describes why α fails the verification.
Algorithm Procedure:
(1) Initialization. Let B = ∅ be the behavior set, and then put all of the behaviors in 
EA into B ; let cα = = Λ . 
(2) Body.  
/* There are two WHILE loops in the body of the algorithm, where WHILE1 is used 
to select behavior γ from the behavior set B , and WHILE2 performs the actual non-
interference verification to γ  (as the way illustrated in figure 3) */
/* If there are still behavior(s) in EA to be verified */
WHILE ( B = ∅ ) {  //WHILE1
Select one behavior γ from B , and let { }B B γ= − . Let =iγ γ be the current behavior 
to be performed by EA, and ,i is t be the current state of EA and WEA, respectively. 
Initially, 0i is t s= = , because EA and WEA always start from the same initial state 0s
each time a new behavior is verified. Let iα γ= , c = Λ . 
/* If the recursive verification to is not finished */

WHILE  ( iγ = Λ/ ) {  //WHILE2
Suppose 1=i i iaγ γ +o , calculate = ( , )i iwexpected wβ γ to be performed by WEA; 
EA performs ia , and transforms from its current state is into the next 

state 1 ( , )i i is step s a+ = ; 
IF ( 1i i iaβ β += o ){ /* If WEA also performs ia . This corresponds to the case that

( )idom a (directly/indirectly) interferes with w */
WEA performs ia , and transforms from its current state it into the next 

state 1 ( , )i i it step t a+ = ; 
} //End of IF
ELSE IF ( 1i iβ β += Λ o ){ /*  if WEA does not perform ia . This corresponds to the 

case that ( )idom a does not (directly/indirectly) interfere with w at all*/
WEA performs then empty action , and  keeps its state unchanged as 1i it t+ = ; 
} //End of ELSE
/* Ready to verify whether EA and WEA are state-equivalent on the interference

security domain set of the execution sub-sequence 1iγ + */
Calculate 1( , )iIS wγ + ; 

IF (
1( , )

1 1

iIS w

i is t
γ +

+ +≈ ){ /* If EA and WEA are state-equivalent */
/* Initialization for the next recursive verification (based 

on
1( , ) ( , )

(0 ) 1 1.
iiIS w IS w

i N i i i ii s t s t
γ γ +

+ +∀ ≈ ⊃ ≈ ) */
Let 1i iγ γ += ; 

Algorithm 1  Verification Algorithm for Noninterference Property
Function Name: Boolean NoninterferenceChecking( e , p , 0s , w , α , c ) 

        Let 1i is s += ; 
        Let 1i it t += ; 
        CONTINUE;  /* recursive verification */
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Proof. By invoking Lemmas 2 and 3, Theorem 1 immediately holds.
A running example please refer to the simulation of paired-runs of EA and WEA in

Fig. 3.

5 Time Complexity

Theorem 2. Regardless of whether a deterministic or nondeterministic system, the
time complexity of algorithm 1 is OðjSj2 � jDjÞ.
Proof. Note that the nature of noninterference is as follows: The buddy automata
always maintain state-equivalent on the interference source sets of the execution sub-
sequences. Based on this observation, we provide a review of the time complexity
analysis in the following:

For the time complexity, we first need to calculate the total amount of all possible
state-pairs ðs; tÞ of EA and WEA. Because EA has jSj states, then WEA has jTj6jSj
states according to the definitions of wexpected and WEA. Thus, under the worst
condition, the total amount of state-pairs ðs; tÞ is jSj � jT j6 jSj2. Second, we need to
determine the state-equivalence relation �u of the jSj2 state-pairs ðs; tÞ on all of the jDj
domains, which requires a total of jSj2 � jDj comparisons. Therefore, the time com-
plexity is OðjSj2 � jDjÞ. This result is better than OðjSj3 � jAj2 � jDjÞ (S&P’11, [5]) and

Oð2jSj�2jDj Þ (IEEE TSMC’05, [4]).

6 Related Work

Table 1 shows the comparisons of our approach with related work.
To establish a formal model of noninterference, researchers have conducted in-

depth studies using various security scenarios based on distinct modeling tools, and

} //End of IF
ELSE{ /* If EA and WEA are not state-equivalent */

ic a= ; 
RETURN FALSE; /* Behavior iα γ= of M does not satisfy noninterference and 

the causal action is c */ 
}  //End of ELSE

} // End of  WHILE2
} //End of WHILE1
RETURN TRUE; /* If all behaviors in B satisfy noninterference, return true */
(3) Termination. If a value of TRUE is returned, then system M satisfies noninterfer-
ence. Otherwise, M does not satisfy noninterference, and α is the behavior that makes 
M insure, and c is the causal action. 
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have proposed abundant noninterference models [8–15]. Among these models, the
State Machine-Based Model (SMBM) and the Process Algebra-Based Model (PABM)
are two representatives. Rushby was the first to establish a perfect SMBM of nonin-
terference [3], and Focardi [8] and Ryan [9] were the first to systematically present a
PABM of noninterference based on CCS (Calculus of Communicating System) and
CSP (Communication Sequential Process), respectively. It should be noted that the
semantics of SMBM and PABM are not consistent. In particular, SMBM focuses on
the state transition of a system, as well as the state-equivalence relation after each state
transition, whereas PABM focuses on the bi-simulation relation between the behavior
sequences of a system and target security behavior specifications. Both SMBM and
PABM are widely applied in practice [16–20].

Table 1. Comparisons with related work

Approach Idea Semantic
model

Sound &
complete

Algorithm
or tool

Time complexity Causal
action

Rushby [3] Unwinding
theorem

SMBM � � � �

Hadj-
Alouane [4]

Observability
of discrete
event system

SMBM
p p

Oð2jSj�2jDj Þ �

Eggert [5] Reachability
problem in
directed
graphs

SMBM
p � OðjSj3 � jAj2 � jDjÞ �

Meyden [6] Doubling
constructions
& model
checking

SMBM
p p

OðjSj2 � AjÞ �

Souza [7] Language-
theoretic
operations

SMBM
p � State explosion �

Focardi [8] Behavior bi-
simulation

PABM � p
State explosion �

Ryan [9] Model
checking or
theorem proof

PABM � � State explosion �

Ours Recursive
state-
equivalence
relation
between
buddy
automata

SMBM
p p

OðjSj2 � jDjÞ
p

aIn Table 1, in the “Time-Complexity” column, “�” indicates “does not exist” or “not mentioned
by authors”.

Automated Verification of Noninterference Property 643



Unfortunately, although extensive research has been conducted on the modeling of
noninterference, there has been less work on the verification of noninterference [5]. To
verify the noninterference property, Rushby [3] was the first to propose the “unwinding
theorem”, which laid a solid foundation for the subsequent work of other researchers.
However, unwinding theorem requires significant human ingenuity to define equiva-
lence relations between domains, making it difficult to construct an automated verifi-
cation algorithm. After Rushby, Hadj-Alouane et al. [4] proposed the first necessary
and sufficient verification algorithm based on the observability of DES(Discrete Event
System). The problem of [4] is that the time complexity is too high (double expo-
nential) to be practical. In 2011, Eggert et al. [5] for the first time explored the time-
and space-complexities of different noninterference definitions, including P-, IP-, TA-,
and TO-Security. In [5], the authors reduced the verification of intransitive noninter-
ference (which they call IP-Security) to the reachability problem in directed graphs, and
claimed that the time complexity is OðjSj3 � jAj2 � jDjÞ. However, IP-Security is not
consistent with Rushby’s original definition of noninterference but a variant, so the
time complexity of Rushby’s definition of intransitive noninterference is still unknown.
Moreover, they did not present a concrete verification algorithm. For any given
deterministic system M, Meyden et al. [6] introduced the concept of doubling con-
struction M2, and then reduced the noninterference property to the safety property
based onM2, which finally enables the noninterference property to be checked by using
standard model checking technology. The time complexity of their work seems com-
parable to ours; however, their work can handle no more than three security domains,
H; L;D, whereas our approach can deal with any finite number of security domains.
Souza et al. [7] boiled down the noninterference verification problem to the set con-
taining problem of regular language. In [7], they first defined some language-theoretic
operations on a regular language, and then established the connections between basic
security predicates (BSPs) and language-theoretic operations. Thus, the verification of
the noninterference property can be reduced to check whether L1
L2, where L1 is the
regular language used to describe the system, and L1 is the regular language for a given
BSP. Nevertheless, their approach is trace-set based, rather than the stronger structure-
based notion [3, 7]. Worse, [7] has to face state explosions under the worst conditions.

With respect to process algebra-based models, Focardi et al. implemented a com-
positional security checker called CoSeC [8, 21] on the basis of the Concurrency
Workbench (CW), which can automatically check the observation equivalence rela-
tions between information flow security properties and CCS-based security specifica-
tions. Nonetheless, CoSec cannot avoid state explosions caused by the parallel
composition operator. Ryan [9] proposed verifying the noninterference property by
using model checking and theorem provers, but this requires highly specialized
expertise, and hence it is difficult to build automated verification tools for common
engineers. On the other hand, [9] cannot avoid state explosion problem, either.
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7 Discussion

We stress that our work is completely different from bi-simulation based approaches.
(1) Firstly, all existing bi-simulation based approaches adopt process algebra (i.e., CCS
or CSP) as a tool for mathematical modeling [8, 9]. Note that process algebra studies
behaviors, rather than states. Specifically, process algebra explorers the bi-simulation
relation between behaviors, rather than the equivalence relation between system states.
Due to this observation, process algebra may not be suitable as a mathematical mod-
eling tool for SMBM. In fact, no process algebra (and hence no bi-simulation) is used
for SMBM at all [3–7]. (2) Secondly, the semantics of PABM and SMBM are dif-
ference from each other (As we mentioned before, PABM focuses on behavior bi-
simulation, whereas SMBM focuses on state equivalence), leading that bi-simulation
approach used by PABM cannot tackle the SMBM issue of intransitive noninterference
introduced by Rushby [9]. Furthermore, all verification algorithms and tools developed
for PABM cannot be applied by SMBM, either. (3) Finally, a bi-simulation based
approach only deals with two levels of actions, i.e., High and Low (though there may
be multilevel of actions, these actions are grouped into two clusters [8]). Instead,
however, our work needs to handle any number of security levels (i.e., security
domains). Therefore, traditional bi-simulation approaches cannot be used by our work
at all.

8 Conclusion

In this paper, we for the first time established the recursive necessary and sufficient
condition of noninterference (Theorem 1), and based on which proposed a noninter-
ference property verification algorithm. A theoretical analysis showed that the time-
complexity of our algorithm is the best among existing studies.

Our work can be a step toward bridging the gap between the theoretical analysis
and the practical application of the noninterference model. In the future, we will
demonstrate how to put algorithm 1 into practice, for example, by using algorithm 1 to
formally verify software security, to mine software vulnerability, and to construct a
real-time software trust measurement framework.
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Abstract. Bit-based division property was first proposed to find inte-
gral for SIMON32 by Todo et al. at FSE 2016. Xiang et al. improved
the work with aid of Mixed Integer Linear Programming(MILP) method
and applied the method to block ciphers with wider block size. Later on,
Sun et al. applied division property to ARX block ciphers. Todo et al.
proposed a more precise division property using three subsets method
to describe integral propagation at FSE 2016, which can not be applied
to wide state ARX block ciphers. In this paper, we extend bit-based
division property using three subsets and propose an automatic method
for finding integral distinguishers for ARX block ciphers with SAT/SMT
solvers. Firstly, we study bit-based division property using three sub-
sets through three basic operations (Copy, AND, XOR). Then, we model
division property using three subsets through Addition Modulo function.
Finally, by constructing and solving division property using three sub-
sets propagation system, we find integral distinguishers for round reduced
ARX block cipher. As a result, we propose 15 round integral distinguish-
ers for SIMON32 automatically and verify the secure margins Todo et al.
proposed for SIMON48, 64, 96, 128. Also, we can find one more 6 round
integral distinguishers for SPECK32, which can not be found with con-
ventional division property without using three subsets. It is interesting
that no more integral distinguishers are found for SPECK48,64,96,128.
Moreover, we apply to SIMECK, HIGHT, LEA, TEA and XTEA et al.
Unfortunately, we find no more new results than conventional division
property can do.

Keywords: Conventional division property · Three subsets · SIMON
SPECK · SAT/SMT

1 Introduction

Division property was first proposed by Todo et al. [1] at Eurocrypt 2015 to
find integral distinguishers of block cipher. Todo studied the division property
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https://doi.org/10.1007/978-3-030-01950-1_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_38&domain=pdf


648 Y. Han et al.

rules through basic components and proposed searching algorithm. With the
technique, Todo found a 6-round integral distinguisher for MISTY1 and pro-
vided the first theoretical integral attack for full round MISTY1 at Crypto 2015
[2]. Also 5-round gap exist between the proved and experimental one [3] for
SIMON32. Later on, Todo et al. [4] proposed bit-based division property at
FSE 2016.

Xiang et al. [5] studied the propagation rules of division property through
components and applied MILP method to search integral distinguisher of 6 block
ciphers. Sun et al. [6,7] applied division property to ARX block ciphers. By
modeling the propagation through Addition Modulo, Rotation and XOR of bit-
based division property in bit-level, Sun et al. proposed wonderful results for
ARX block ciphers.

At FSE 2016, Todo et al. proposed a precise method to describe the integral
namely bit-based division property using three subsets. With this method, Todo
et al. found 14-round integral distinguisher for SIMON32, which matched the
experimental one. Unfortunately, it can not be applied to find exact integrals but
“provable security” boundaries for SIMON family block ciphers with block size
larger than 32-bits. Moreover, there is still no automatical method for finding
integrals of ARX block ciphers with division property using three subsets.

Our Contribution. In this paper, we propose a generic method with SAT/SMT
solver to search the integral distinguishers based on division property using three
subsets for ARX block ciphers. Our contributions are summarized as follows.

1. We study the propagation rules of conventional division property through
basic components (Copy, Xor, Rotation) of ARX block cipher carefully and
propose corresponding rules of division property using three subsets in bit-
vector mode.

2. Combining with division property using three subsets through basic compo-
nents, we model the propagation rules of division property using three subsets
through Addition Modulo 2n.

3. With SAT/SMT solver, we apply division property using three subsets to
search integral distinguisher for some ARX block ciphers. For SIMON family
block ciphers, we propose 15,16,18,22,26-round integral distinguishers auto-
matically and verify the results proposed by Todo et al. [4]. For SPECK32,
we find one more 6-round integral distinguisher, which can not be found with
conventional division property.

Moreover, we confirm the integral distinguisher for some other ARX block cipher
like SIMECK [8], HIGHT [9], LEA [10], TEA [11] and XTEA found by conven-
tional division property without using three subsets. Some comparison between
our results and exist results can be found in Table 1.
Organization. The remainder of this paper is organized as follows. In Sect. 2, we
present important notations throughout the paper. Section 3 covers construction
of division property using Three Subsets through basic primitives of ARX block
ciphers and searching algorithm. In Sect. 4, we apply the method to some ARX
block ciphers. Finally, we conclude the paper in Sect. 5.
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Table 1. Results for some ARX block ciphers.

Cipher Round Data Number Reference Method

SPECK32 6 31 1 [7] M1

6 31 2 This paper M2

SIMON32 14 31 - [5] M1

15 31 - [3] M3

15 31 - [4] M4

15 31 32 This paper M2

SIMON48 16 47 - [5] M1

<17 47 - [4] M5

16 47 48 This paper M2

SIMON64 18 63 - [5] M1

<20 63 - [4] M5

18 63 64 This paper M2

SIMON96 22 95 - [5] M1

<25 95 - [4] M5

22 95 96 This paper M2

SIMON128 26 127 - [5] M1

<29 95 - [4] M5

26 127 128 this paper M2

M1: Division Property.
M2: SAT/SMT Based Division Property using Three Subsets.
M3: Experimental Search.
M4: Based Division Property using Three Subsets.
M5: Based Division Property using Three Subsets from Lazy
Propagation

2 Preliminaries

2.1 Notations

Let F
n
2 denote n-bit length vector over F2. ⊕,∧ and ¬ denote n-bit bitwise

Xor, And and Negation respectively. Let 0 denote the vector with n consecutive
zero-bits, 1 denote the vector with n consecutive one-bits. For any a ∈ F

n
2 , a[i]

denote the i-th bit of a, a[n−1] is the least significant bit(LSB). Let ei denote
n-bit length unit vector, where the i-th bit equals 1. wt(a) denote the hamming
weight of a, which is calculated as

∑n−1
i=0 a[i]. For any a = (a0, a1, ..., am−1) ∈

F
n0
2 ×F

n1
2 ×· · ·×F

nm−1
2 , the vectorial hamming weight of a is defined as Wt(a) =

(wt(a0), wt(a1), ...wt(am−1)) ∈ Z
m. For any k = (k0, k1, ..., km−1) ∈ Z

m and
k′ = (k′

0, k
′
1, ..., k

′
m−1) ∈ Z

m, we define k � k′ if ki ≥ k′
i for all i ∈ {0, 1, ...,m −

1}. Otherwise, k � k′.
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2.2 Division Property

Division property is a new method to find integral characteristics. In this section,
we define the integral division propagation rules.

Bit Product Function. Let πu : F
n
2 → F2 be a bit product function for any

u ∈ F
n
2 . Let x ∈ F

n
2 be the input, and πu(x) is the AND of x[i] satisfying u[i] = 1,

i.e., it is defined as

πu(x) :=
n−1∏

i=0

x[i]u[i].

Let πu : (Fn0
2 × F

n1
2 × · · · × F

nm−1
2 ) → F2 be a bit product function for any

u ∈ (Fn0
2 × F

n1
2 × · · · × F

nm−1
2 ). Let x ∈ (Fn0

2 × F
n1
2 × · · · × F

nm−1
2 ) be the input,

and πu (x) is defined as

πu (x) :=
m−1∏

i=0

πui
(xi).

Definition 1 (Division Property [1]). Let X be a multiset whose elements in
(Fn0

2 ×F
n1
2 ×· · ·×F

nm−1
2 ). If X has the division property Dn0,n1,...,nm−1

K
, it fulfills

the following conditions:

⊕

x∈X

πu (x) =
{

unknown if there is k ∈ K s.t. Wt(u) � k,
0 otherwise.

Todo proved the propagation rules for division property through basic compo-
nents of block ciphers and these rules were summarized in [2].

2.3 Conventional Bit-Based Division Property

Conventional bit-based division property [4] is a special case of division property,
whose division property propagate in bit level. Xiang et al. [5] proposed the
propagation rules of bit-based division property through Copy, And and Xor
operations by linear conditions. Sun et al. generalized the model of Copy and
Xor in [6].

Theorem 1 (Generalized Copy [6]). Denote (a) → (b0, b1, ..., bm−1) a divi-
sion propagation through Copy operation, the following conditions describe the
propagation rule.

{
a − b0 − b1 − · · · − bm−1 = 0
a, b0, b1, ..., bm−1 are binaries.
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Theorem 2. (Generalized Xor [6]). Denote (a0, a1, ..., am−1) → (b) a divi-
sion propagation through Xor operation, the following conditions describe the
propagation rule.

{
a0 + a1 + · · · + am−1 − b = 0
a0, a1, ..., am−1, b are binaries.

Theorem 3. (And [5]). Denote (a0, a1) → (b) a division propagation through
And operation, the following conditions describe the propagation rule.

⎧
⎪⎪⎨

⎪⎪⎩

b − a0 � 0
b − a1 � 0
b − a0 − a1 � 0
a0, a1, b are binaries.

2.4 Bit-Based Division Property Using Three Subsets

Conventional division property uses K set to represent the subset of u fulfilling⊕
x∈X

πu(x) is unknown. The bit-based division property using three subsets use
another L set to represent the subset of u such that

⊕
x∈X

πu(x) = 1.

Definition 2. (Division Property using Three Subsets [1]). Let X be a
multiset whose elements in (Fn0

2 × F
n1
2 × · · · × F

nm−1
2 ). If X has the division

property using three subsets Dn0,n1,...,nm−1
K,L , it fulfills the following conditions:

⊕

x∈X

πu (x) =

⎧
⎨

⎩

unknown if there is k ∈ K s.t. Wt(u) � k,
1 else if there is l ∈ L s.t. Wt(u) = l,
0 otherwise.

Assuming that X has division property using three subsets D
m
K,L. The propaga-

tion rules for K-set of division property using three subsets is the same as the
conventional K-set do. Moreover, the propagation rule for L-set through Xor
function is the same as the conventional K-set of division property do.

Proposition 1. Denote (a)
Copy−−−→ (b0, b1, ..., bm−1) one division propagation

through Copy operation, the following conditions describe the propagation rule
for L-set of bit-based division property using three subsets through Copy opera-
tion.

{
a − b0 − · · · − bm−1 + ab0 + · · · + abm−1 + āb̄0 · · · ¯bm−1 = 1
a, b0, b1, ..., bm−1 are binaries.

Proposition 2. Denote (a0, a1)
And−−−→ (b) a division propagation through And

operation, the following conditions describe the propagation rule for L-set of bit-
based division property using three subsets through And operation.

{
b + ba0 + ba1 + ā0ā1 = 1
b, a0, a1 are binaries.
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2.5 Bit-Vector Based Division Property Using Three Subsets

We propose an equivalent form of division property using three subsets in bit-
vector level. In this section, we introduce the propagation rules of bit-vector
based division property using three subsets through basic components and pro-
pose the proof for division property using three subsets through Copy function
in Appendix A.

Proposition 3. Denote (x) → (y0, y1, ..., y(m − 1)) a division propagation
through Copy operation using three subsets, K-set and L-set propagation rule
satisfy Theorem 1 and Proposition 1 respectively.

DP3K(x → y0, y1) = ¬x ∧ ¬y0 ∧ ¬y1 ⊕ x ∧ (y0 ⊕ y1) = 1.

DP3K(x → y0, y1, y2) = ¬y1 ∧ ¬y2 ∧ (y0 ⊕ ¬x) ⊕ ¬y0 ∧ x ∧ (y1 ⊕ y2) = 1.

We define L-set through general Copy operation as

DP3L(x → y0, y1, · · · , y(m − 1)) = x ⊕ ¬y0 ∧ ¬y1 ∧ · · · ∧ ¬y(m − 1) = 1.

Proposition 4. Denote (x0, x1, ..., x(m − 1)) → (y) a division propagation
through Xor operation using three subsets, K-set and L-set propagation rule sat-
isfy Theorem 2 and satisfy the same propagation rule.

DP3(x0, x1 → y) = ¬y ∧ ¬x0 ∧ ¬x1 ⊕ y ∧ (x0 ⊕ x1) = 1.

DP3(x0, x1, x2 → y) = ¬x1 ∧ ¬x2 ∧ (x0 ⊕ ¬y) ⊕ ¬x0 ∧ y ∧ (x1 ⊕ x2) = 1.

Proposition 5. Denote (x0, x1) → (y) a division propagation through And
operation using three subsets, K-set and L-set propagation rule satisfy Theorem
3 and Proposition 2 respectively.

DP3K(x0, x1 → y) = y ⊕ ¬x0 ∧ ¬x1 = 1.

DP3L(x0, x1 → y) = y ⊕ x0 ⊕ x1 ⊕ x0 ∧ x1 ⊕ y ∧ x0 ⊕ y ∧ x1 = 0.

In [4], Todo et al. proposed the dependencies between K-set and L-set of divi-
sion property using three subsets when propagating through “Xor Round Key”
function.

Theorem 4 (Dependencies between K-set and L-set). Let X and Y be the
input and output multiset of operation y = x⊕rk, where rk is round key. Let Dn

K,L

and Dn
K′,L′ be the division property using three subsets of X and Y, respectively.

For any vector l = (l0, l1, . . . , ln−1) ∈ L and all li = 0, where i ∈ [0, n − 1]. K
′ is

computed as

K
′ ← (l0, . . . , li ∨ 1, ..., ln−1).
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3 Modeling Division Property Using Three Subsets
Through Addition Modulo 2n

Addition Module 2n is the only nonlinear component of ARX block ciphers.
Assuming that x = (x[0], x[1], ..., x[n−1]), y = (y[0], y[1], ..., y[n−1]), c =
(c[0], c[1], ..., c[n−1]) and z = (z[0], z[1], ..., z[n−1]) are n-bit length vectors in F

n
2 .

For ARX block ciphers like SPECK, LEA etc., the operation has the form
z = x � y, where the input parameters x, y are mid-states of block cipher and z
is the output state associated with x and y. For HIGHT etc., the operation has
the form z = x � rk, where x is the mid-state of block cipher, rk is a constant
(round key) value and z is the output state associated with x and c.

3.1 General Addition Modulo 2n

Assuming that x = (x[0], x[1], ..., x[n−1]), y = (y[0], y[1], ..., y[n−1]), z =
(z[0], z[1], ..., z[n−1]) are n-bit length vectors in F

n
2 and z = x � y. Addition

Modulo 2n can be expressed bit-by-bit as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

z[n−1] = x[n−1] ⊕ y[n−1]

z[n−2] = x[n−2] ⊕ y[n−2] ⊕ c[n−2], c[n−2] = x[n−1]y[n−1]

z[n−3] = x[n−3] ⊕ y[n−3] ⊕ c[n−3],
c[n−3] = x[n−2]y[n−2] ⊕ (x[n−2] ⊕ y[n−2])c[n−2]

...
z[0] = x[0] ⊕ y[0] ⊕ c[0], c[0] = x[0]y[0] ⊕ (x[0] ⊕ y[0])c[0].

c[i] = x[i] + y[i] + c[i+1] and c[n−1] = 0.

K-set Propagation Rule. Some variables are introduced to describe the prop-
agation rule of K-set for bit-vector based division property using three subsets
through general Addition Modulo 2n. The division propagation of K-set through
general Addition Modulo 2n is shown in Appendix B.1. The propagation sys-
tem of K-set for bit-vector based division property using three subsets through
Addition Modulo 2n denoted SDP3K(kx, ky

�−→ kz) can be described as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DP3K(kx1, ky1, kc1 Xor−−−→ kz) = 1

DP3K(kx
Copy−−−→ kx1, kx2, kx3) = 1

DP3K(ky
Copy−−−→ ky1, ky2, ky3) = 1

DP3K(kc2
Copy−−−→ kc1, kc2) = 1

DP3K(kx2, ky2 And−−−→ ku) = 1

DP3K(kx3, ky3 Xor−−−→ kv) = 1

DP3K(kv, kc3 And−−−→ kw) = 1

DP3K(ku 
 1, kw 
 1 Xor−−−→ kc2) = 1
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L-set Propagation Rule. Some variables are introduced to describe the prop-
agation rule of L-set for bit-vector based division property using three subsets
through general Addition Modulo 2n. Similarly, the propagation system of L-
set for bit-vector based division property using three subsets through Addition
Modulo 2n denoted SDP3L(lx, ly

�−→ lz) can be described as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DP3L(lx1, ly1, lc1 Xor−−−→ lz) = 1

DP3L(lx
Copy−−−→ lx1, lx2, lx3) = 1

DP3L(ly
Copy−−−→ ly1, ly2, ly3) = 1

DP3L(lc2
Copy−−−→ lc1, lc2) = 1

DP3L(lx2, ly2 And−−−→ lu) = 0

DP3L(lx3, ly3 Xor−−−→ lv) = 1

DP3L(lv, lc3 And−−−→ lw) = 0

DP3L(lu 
 1, lw 
 1 Xor−−−→ lc2) = 1

3.2 Addition Modulo 2n with Constant

Assuming that x = (x[0], x[1], ..., x[n−1]), rk = (rk[0], rk[1], ..., rk[n−1]), z =
(z[0], z[1], ..., z[n−1]) are n-bit length vectors in F

n
2 and z = x � rk. Addition

Modulo 2n with constant can be expressed bit-by-bit as
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

z[n−1] = x[n−1] ⊕ rk[n−1]

z[n−2] = x[n−2] ⊕ rk[n−2] ⊕ c[n−2], c[n−2] = x[n−1]rk[n−1]

z[n−3] = x[n−3] ⊕ rk[n−3] ⊕ c[n−3],
c[n−3] = x[n−2]rk[n−2] ⊕ (x[n−2] ⊕ rk[n−2])c[n−2]

...
z[0] = x[0] ⊕ rk[0] ⊕ c[0], c[0] = x[0]rk[0] ⊕ (x[0] ⊕ rk[0])c[0].

K-set Propagation Rule. Some variables are introduced to describe the prop-
agation rule of K-set for bit-vector based division property using three subsets
through Addition Modulo 2n with constant. The division propagation of K-set
through Addition Modulo 2n with constant is shown in Appendix B.2. The prop-
agation system of K-set for bit-vector based division property through Addition
Modulo 2n with constant denoted SDP3K(kx, rk

�−→ kz) can be described as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

DP3K(kx1, kc1 Xor−−−→ kz) = 1

DP3K(kx
Copy−−−→ kx1, kx2, kx3) = 1

DP3K(kc2
Copy−−−→ kc1, kc3) = 1

DP3K(kx3, kc3 And−−−→ ku) = 1

DP3K(kx2 
 1, ku 
 1 Xor−−−→ kc2) = 1
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L-set Propagation Rule. Some variables are introduced to describe the prop-
agation rule of L-set for bit-vector based division property using three subsets
through Addition Modulo 2n with constant. Similarly, the propagation system of
L-set for bit-vector based division property using three subsets through Addition
Modulo 2n with constant denoted SDP3L(lx, rk

�−→ lz) can be described as
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

DP3L(lx1, lc1 Xor−−−→ lz) = 1

DP3L(lx
Copy−−−→ lx1, lx2, lx3) = 1

DP3L(lc2
Copy−−−→ lc1, lc3) = 1

DP3L(lx3, lc3 And−−−→ lu) = 0

DP3L(lx2 
 1, lu 
 1 Xor−−−→ lc2) = 1

3.3 Searching Algorithm

We construct r-round reduced propagation system of bit-vector based division
property using three subsets. With the syntax rules of SAT/SMT solver, we
turn r-round propagation system into problem, which the solver can recognize.
Given one constant input division property using three subsets denoted Dn

k,l

where k, l are non-zero bit-vector in F
n
2 . The SAT/SMT solver can calculate

the K-set of division property after r-rounds propagation denoted Kr. If Kr

contains all the n unit vectors ei ∈ Kr, for all i ∈ {0, 1, ..., n − 1}. As for any
bit-vector u ∈ F

n
2 , it always holds that u � ei. There exists no bit-vector u can

fulfill the equation
⊕

x∈X
πu(x) = 0, so no balanced sum bits exist. Otherwise,

if some unit vector ei for some i ∈ {0, 1, ..., n − 1} is not in Kr, it holds that
ei � k for all k ∈ K. Therefore,

⊕
x∈K

πei(x) = 0 and the i-th bit is zero-sum
bit. As for division property using three subsets Dn

Kr,Lr
, we check whether all

the n unit vectors are in Kr. If so, there is no r-round integral distinguisher
with input division property using three subsets Dn

k,l. Otherwise, some r-round
integral distinguishers exist with input division property using three subsets.
By exhausting all possible division property using three subsets, we can judge
whether some r-round integral distinguishers exist.

4 Apply to ARX Block Ciphers

Our experiment platform is established with Python 3.4.3 and STP [12] (a SMT
solver) on a virtual machine with Intel(R) Core(TM) CPU i5-4210M(2.60GHz,
1GB RAM, Ubuntu 14.04.1).

4.1 Apply to SPECK Family Block Ciphers

Brief Description. The SPECK-2n encryption maps make use of bitwise Xor,
Addition Modulo 2n, left and right circular shift (Sj , S−j) by j bits on n-bit
word. As the round key is Xored with internal state, it has no effect on the
propagation of division property. Division propagation through SPECK round
function is shown as Fig. 1. With shift amounts α = 7 and β = 2 if n = 16,
α = 8 and β = 3 otherwise.
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Fig. 1. Division propagation through SPECK round function

Modeling Round Function. (xi−1, yi−1), (xi, yi) are the input and output of
i-th round respectively. (xin, yin) are the input of Addition Modulo 2n and z
is the output of Addition Modulo 2n. (yi−1, zin) propagate through Copy func-
tion to (yin, rin), (zout, xi) respectively. (rout, zout) are Xored to yi. (xi−1, rin)
propagate through cyclic shift function to (xin, rout). z propagate through Xored
round key function to zin and every possible value for lz affect kzin. With the
propagation rules of bit-vector based division property using three subsets, we
model K-set propagation system of bit-vector based division property using three
subsets as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

SDP3K(kxin, kyin
�−→ kz)

(kxi−1 ≫ α) ⊕ kxin = 0
(krin ≪ β) ⊕ krout = 0

DP3K(kzin
Copy−−−→ kzout, kxi) = 1

DP3K(kyi−1
Copy−−−→ kyin, krin) = 1

DP3K(krout, kzout
Xor−−−→ kyi) = 1.

Similarly, we model the L-set propagation system of bit-vector based division
property using three subsets as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

SDP3L(lxin, lyin
�−→ lz)

(lxi−1 ≫ α) ⊕ lxin = 0
(lrin ≪ β) ⊕ lrout = 0

DP3K(lz
Copy−−−→ lzout, lxi) = 1

DP3K(lyi−1
Copy−−−→ lyin, lrin) = 1

DP3K(lrout, lzout
Xor−−−→ lyi) = 1.

Construct the dependencies between variables lz and kzin. As Theorem 4 shown,
for any possible value l = (l0, l1, ..., ln−1) ∈ lz, we set value (l0, ..., li ∨ 1, ln−1) to
kzin for all li = 0, where i ∈ [0, n − 1].
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Table 2. Results for SPECK family block ciphers.

Block cipher Round Data #{Balanced bits} Number

SPECK32 6 31 1 2

SPECK48 6 47 1 4

SPECK64 6 63 1 4

SPECK96 6 95 1 4

SPECK128 6 127 1 4

Results for SPECK. We find one more 6-round integral distinguishers for
SPECK32 than the conventional division property can find. It is interesting
that no more integral distinguishers are found for other variants. The results
are summarized in Table 2. In Appendix C.1, we propose the detailed integral
distinguishers for SPECK family block ciphers.

4.2 Apply to SIMON Family Block Ciphers

Brief Description. SIMON is a family of lightweight block ciphers proposed
by NSA in 2013 [13]. It is a Feistel like cipher with block sizes 32, 48, 64, 96, 128
bits. The variant operating on 2n-bit state, where n is the word size and
n ∈ {16, 24, 32, 48, 64}, is referred to as SIMON2n, which have an efficient
implementation in hardware with rotational constants (1, 8, 2). The subkeys are
derived from a master key by key scheduling. For detailed description and refer
the reader to [13]. Division propagation through SIMON round function is shown
as Fig. 2.

Fig. 2. Division Propagation through SIMON Round Function

Modeling Round Function. (xi−1, yi−1), (xi, yi) are the input and output of
i-th round respectively. xi−1 propagate through Copy function to (u, v, w, yi).
(u ≪ 1, v ≪ 8) are compressed by And operation to z. (yi−1, z), (w ≪ 2, t) are
Xored to t, h respectively. h propagate through Xored round key function to xi
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and every possible value for lh affect kxi. With the propagation rules of bit-vector
based division property using three subsets through ARX round components, we
model the K-set propagation system of bit-vector based division property using
three subsets through SIMON-2n round function as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

DP3K(kxi
Copy−−−→ ku, kv, kg) = 1

DP3K(kg
Copy−−−→ kw, kyi) = 1

DP3K(ku ≪ 1, kv ≪ 8 And−−−→ kz) = 1

DP3K(kyi−1, kz
Xor−−−→ kt) = 1

DP3K(kw ≪ 2, kt
Xor−−−→ kh) = 1.

Similarly, we model the L-set propagation system of bit-vector based division
property using three subsets through SIMON-2n round function as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

DP3L(lxi
Copy−−−→ lu, lv, lg) = 1

DP3L(lg
Copy−−−→ lw, lyi) = 1

DP3L(lu ≪ 1, lv ≪ 8 And−−−→ lz) = 0

DP3L(lyi−1, lz
Xor−−−→ lt) = 1

DP3L(lw ≪ 2, lt
Xor−−−→ lxi) = 1.

Construct the dependencies between variables lh and kxi. As Theorem 4 shown,
for any possible valuel = (l0, l1, ..., ln−1) ∈ lh, we set value (l0, ..., li ∨ 1, ln−1) to
kxi for all li = 0, where i ∈ [0, n − 1].

Results for SIMON. For SIMON-2n family block cipher with block size 32, 48,
64, 96 and 128, we propose 15-, 16-, 18-, 22- and 26-round integral distinguish-
ers respectively. For SIMON32, we propose 15-round integral distinguishers with
division property using three subsets automatically, which erase the one round
gap found by conventional division property without using three subsets. For
SIMON48/64/96/128, we verify the margin Todo proposed in [4] with the strat-
egy of “Lazy propagation”. The results are summarized in Table 3. In Appendix
C.2, we propose some detailed integral distinguishers for SIMON family block
ciphers.

5 Conclusion and Future Work

In this paper, we propose a SAT/SMT based method for searching integral dis-
tinguishers of ARX block ciphers with bit-vector based division property using
three subsets. We apply the method to search some ARX block ciphers including
SPECK, SIMON, SIMECK, HIGHT, LEA, TEA and XTEA et al. For SPECK
family block ciphers, we present 6-, 6-, 6-, 6- and 6-round integral distinguish-
ers. Interestingly that, we find one more integral distinguisher for SPECK32,
which can not be found with conventional division property. Unfortunately, we
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Table 3. Results for SIMON family block ciphers.

Block cipher Round Data #{Balanced bits} Number

SIMON32 15 31 32 3

SIMON48 16 47 48 24

SIMON64 18 63 64 22

SIMON96 22 95 96 5

SIMON128 26 127 128 3

can not find longer integral distinguisher with bit-vector based division property
using three subsets. For SIMON32, we find 15-round integral distinguishers with
bit-vector based division property using three subsets automatically. For other
variants of SIMON family block ciphers, we verify the secure margin Todo pro-
posed. Moreover, we apply our method to SIMECK, HIGHT, LEA, TEA and
XTEA et al. Unfortunately, we find no new results. In the future, we will apply
bit-vector based division property using three subsets technique to S-box based
block ciphers.

Acknowledgements. Thanks to the reviewers for their valuable comments. This work
is supported by the National Science Foundation of China (No. 61772516, 61772517),
Youth Innovation Promotion Association CAS.

A Proof of Propagation Rules of Bit-Vector Based
Division Property Through Copy Function

Proof of Propositions 3. For 2-Copy operation (x) → (y0, y1), there are three
possible conditions (0) → (0, 0), (1) → (0, 1) and (1) → (1, 0) for any division
propagation (x[i]) → (y0[i], y1[i]). It is possible to describe these conditions with
boolean function ¬x[i]∧¬y0[i]∧¬y1[i]⊕x[i]∧(y0[i]⊕y1[i]) = 1. As any two division
propagations are independent with each other, we can describe the propagation
rule of K-set for bit-vector based division property using three subsets through 2-
Copy operation with function ¬x∧¬y0∧¬y1⊕x∧(y0⊕y1) = 1. The propagation
rule of K-set and L-set for division property using three subsets through 3-Copy
operation satisfy the same process of proof.

B Division Propagation of K-set through Addition
Modulo 2n

B.1 General Addition Modulo 2n

We list the division propagation of K-set through general Addition Modulo 2n

in Table 4.
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Table 4. Division propagation of K-set through general addition modulo 2n.

Bit Division propagation Bit Division propagation

kz[n−1] kx[n−1]
︸ ︷︷ ︸

kx1[n−1]

⊕ ky[n−1]
︸ ︷︷ ︸

ky1[n−1]

⊕ 0
︸︷︷︸

kc1[n−1]

kc[n−1]
︸ ︷︷ ︸

kc2[n−1]

ku[0]
︷ ︸︸ ︷

0
︸︷︷︸

k x2[0]

0
︸︷︷︸

k y 2[0]

⊕

kw[0]
︷ ︸︸ ︷

(

kv[0]
︷ ︸︸ ︷

0
︸︷︷︸

k x3[0]

⊕ 0
︸︷︷︸

k y 3[0]

)

k c3[0]
︷︸︸︷

0

kz[n−2] kx[n−2]
︸ ︷︷ ︸

kx1[n−2]

⊕ ky[n−2]
︸ ︷︷ ︸

ky1[n−2]

⊕ kc[n−2]
︸ ︷︷ ︸

kc1[n−2]

kc[n−2]
︸ ︷︷ ︸

kc2[n−2]

ku[n−1]
︷ ︸︸ ︷

kx[n−1]
︸ ︷︷ ︸

kx2[n−1]

ky[n−1]
︸ ︷︷ ︸

ky2[n−1]

⊕

kw[n−1]
︷ ︸︸ ︷

(

kv[n−1]
︷ ︸︸ ︷

0
︸︷︷︸

k x3[n −1]

⊕ 0
︸︷︷︸

k y 3[n −1]

)

k c3[n −1]
︷︸︸︷

0

kz[n−3] kx[n−3]
︸ ︷︷ ︸

kx1[n−3]

⊕ ky[n−3]
︸ ︷︷ ︸

ky1[n−3]

⊕ kc[n−3]
︸ ︷︷ ︸

kc1[n−3]

kc[n−3]
︸ ︷︷ ︸

kc2[n−3]

ku[n−2]
︷ ︸︸ ︷

kx[n−2]
︸ ︷︷ ︸

kx2[n−2]

ky[n−2]
︸ ︷︷ ︸

ky2[n−2]

⊕

kw[n−2]
︷ ︸︸ ︷

(

kv[n−2]
︷ ︸︸ ︷

kx[n−2]
︸ ︷︷ ︸

kx3[n−2]

⊕ ky[n−2]
︸ ︷︷ ︸

ky3[n−2]

)

kc3[n−2]
︷ ︸︸ ︷

kc[n−2]

.

.

.

.

.

.

.

.

.

.

.

.

kz[0] kx[0]
︸ ︷︷ ︸

kx1[0]

⊕ ky[0]
︸ ︷︷ ︸

ky1[0]

⊕ kc[0]
︸ ︷︷ ︸

kc1[0]

kc[0]
︸ ︷︷ ︸

kc2[0]

ku[1]
︷ ︸︸ ︷

kx[1]
︸ ︷︷ ︸

kx2[1]

ky[1]
︸ ︷︷ ︸

ky2[1]

⊕

kw[1]
︷ ︸︸ ︷

(

kv[1]
︷ ︸︸ ︷

kx[1]
︸ ︷︷ ︸

kx3[1]

⊕ ky[1]
︸ ︷︷ ︸

ky3[1]

)

kc3[1]
︷ ︸︸ ︷

kc[1]

B.2 Addition Modulo 2n with Constant

We list the division propagation of K-set through Addition Modulo 2n with
constant in Table 5.

C Integral Distinguishers for ARX Block Ciphers

In this section, we propose the detailed integral distinguishers for ARX block
ciphers. ‘An’ represents n connected active bits, ‘Cn’ represents n connected con-
stant bits. ‘Un’ represents n connected unknown bits, ‘Bn’ represents n connected
balanced bits satisfying zero-sum property.

C.1 Integral Distinguishers for SPECK Family Block Ciphers

For SPECK32, we find 2 integral distinguisher. For SPECK48/64/96/128, we
find 4, 4, 4 and 4 integral distinguishers respectively. In Table 6, we present the
detailed integral distinguishers for SPECK family block ciphers.

C.2 Integral Distinguishers for SIMON Family Block Ciphers

For SIMON32, we find 15-round integral distinguisher, which can not be found
with conventional division property. In Table 7, we present the detailed integral
distinguishers for SIMON family block ciphers.



Automatical Method for Searching Integrals of ARX Block Cipher 661

Table 5. Division propagation of K-set through addition modulo 2n with constant.

Bit Division propagation Bit Division propagation

kz[n−1] kx[n−1]
︸ ︷︷ ︸

kx1[n−1]

⊕ 0
︸︷︷︸

kc1[n−1]

kc[n−1]
︸ ︷︷ ︸

kc2[n−1]

0
︸︷︷︸

kx2[0]

⊕
ku[0]

︷ ︸︸ ︷

0
︸︷︷︸

kx3[0]

0
︸︷︷︸

kc3[0]

kz[n−2] kx[n−2]
︸ ︷︷ ︸

kx1[n−2]

⊕ kc[n−2]
︸ ︷︷ ︸

kc1[n−2]

kc[n−2]
︸ ︷︷ ︸

kc2[n−2]

kx[n−1]
︸ ︷︷ ︸

kx2[n−1]

⊕
ku[n−1]

︷ ︸︸ ︷

0
︸︷︷︸

kx3[n −1]

0
︸︷︷︸

kc3[n −1]

kz[n−3] kx[n−3]
︸ ︷︷ ︸

kx1[n−3]

⊕ kc[n−3]
︸ ︷︷ ︸

kc1[n−3]

kc[n−3]
︸ ︷︷ ︸

kc2[n−3]

kx[n−2]
︸ ︷︷ ︸

kx2[n−2]

⊕
ku[n−2]

︷ ︸︸ ︷

kx[n−2]
︸ ︷︷ ︸

kx3[n−2]

kc[n−2]
︸ ︷︷ ︸

kc3[n−2]

...
...

...
...

kz[0] kx[0]
︸ ︷︷ ︸

kx1[0]

⊕ kc[0]
︸︷︷︸

kc1[0]

kc[0]
︸︷︷︸

kc2[0]

kx[1]
︸ ︷︷ ︸

kx2[1]

⊕
ku[1]

︷ ︸︸ ︷

kx[1]
︸ ︷︷ ︸

kx3[1]

kc[1]
︸︷︷︸

kc3[1]

Table 6. Integral distinguishers for SPECK family block ciphers.

Block cipher Integral distinguisher Balanced

SPECK32 (A4A4A4A4A4A4ACA2A4)
6R−−→ (U4U4U4U3BU4U4U4U4) 1

(A4A4A4A4A4A4A2CAA4)
6R−−→ (U4U4U4U3BU4U4U4U4)

SPECK48 (A6A6A6A6A6A6A3CA2A6)
6R−−→ (U6U6U6U5BU6U6U6U6) 1

(A6A6A6A6A6A6A4CAA6)
6R−−→ (U6U6U6U5BU6U6U6U6)

(A6A6A6A6A6A6A5CA6)
6R−−→ (U6U6U6U5BU6U6U6U6)

(A6A6A6A6A6A6A6CA5)
6R−−→ (U6U6U6U5BU6U6U6U6)

SPECK64 (A8A8A8A8A8A8A7CA8)
6R−−→ (U8U8U8U7BU8U8U8U8) 1

(A8A8A8A8A8A8A8CA7)
6R−−→ (U8U8U8U7BU8U8U8U8)

(A8A8A8A8A8A8A8ACA6)
6R−−→ (U8U8U8U7BU8U8U8U8)

(A8A8A8A8A8A8A8A2CA5)
6R−−→ (U8U8U8U7BU8U8U8U8)

SPECK96 (A12A12A12A12A12A12A12A3CA8)
6R−−→ (U12U12U12U11BU12U12U12U12) 1

(A12A12A12A12A12A12A12A4CA7)
6R−−→ (U12U12U12U11BU12U12U12U12)

(A12A12A12A12A12A12A12A5CA6)
6R−−→ (U12U12U12U11BU12U12U12U12)

(A12A12A12A12A12A12A12A6CA5)
6R−−→ (U12U12U12U11BU12U12U12U12)

SPECK128 (A16A16A16A16A16A16A16A7CA8)
6R−−→ (U16U16U16U15BU16U16U16U16) 1

(A16A16A16A16A16A16A16A8CA7)
6R−−→ (U16U16U16U15BU16U16U16U16)

(A16A16A16A16A16A16A16A9CA6)
6R−−→ (U16U16U16U15BU16U16U16U16)

(A16A16A16A16A16A16A16A10CA5)
6R−−→ (U16U16U16U15BU16U16U16U16)
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Table 7. Integral distinguishers for SIMON family block ciphers.

Block cipher Integral distinguisher Balanced bits

SIMON32 (CA3A4A4A4A4A4A4A4)
14R−−−→ (U4U4U4U4UBU2U4BU3U3B) 3

SIMON48 (CA5A6A6A6A6A6A6A6)
15R−−−→ (U6U6U6U6B6B6B6B6 24

SIMON64 (CA8A8A8A8A8A8A8A8)
17R−−−→ (U8U8U8U8B8B3U5BU5B2B8) 22

SIMON96 (CA11A12A12A12A12A12A12A12)
21R−−−→ (BUBU4BU4U12U12U5BU4BU) 5

SIMON128 (CA15A16A16A16A16A16A16A16)
25R−−−→ (BUBU13U16U16U14BU) 3
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Abstract. In CHES’15, Yang et al. proposed a family of lightweight
block cipher SIMECK which combines the good designs of SIMON and
SPECK. In this paper, we analysis the properties of the round function
of SIMECK, and eliminate the repeated use of rotational independence
judgment condition in Liu’s algorithm that proposed in FSE’17, con-
structing the partial difference distribution table with limited Hamming
weight of input difference to improve the search results. We get new dif-
ferentials of 14/21/27 rounds for SIMECK32/48/64 which can provide
higher probability than previous results, and find a new 28 rounds dif-
ferential for SIMECK64. We also get new 13/21/27 rounds linear hulls
with higher square correlation for SIMECK32/48/64, and we find new
14/22/28 rounds linear hulls for SIMECK32/48/64, which are the best
linear hulls of SIMECK as far as we know. With the application of the
new distinguishers and combination with the dynamic key-guessing tech-
niques, we mount key recovery attacks on SIMECK variants, which can
reduce the computational complexity and/or data complexity.

Keywords: SIMECK · Differential · Linear hull · Cryptanalysis
Block cipher

1 Introduction

With the development of the Internet of Things, the security issues in the IoT
application systems are getting more and more attention. The cryptographic
primitives are the basic components of a security application. The research of
lightweight cryptographic algorithms aims at protecting the application secu-
rity for these terminal devices with limited resources. In recent years, various
lightweight block ciphers have been proposed, such as: PRINCE [10], PRESENT
[9], TWINE [21], SIMON [5], SPECK [5], SIMECK [23], RECTANGLE [25],
GIFT [4], etc.

In 2017, authors of SIMON cited the latest researches of cryptanalysis and
gave the explanations on the security of SIMON, but still did not give their own
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results of SIMON’s security analysis [6]. At SAC’17, AlTawy et al. proposed a set
of permutation algorithm sLiSCP that based on SIMECK for lightweight sponge
cryptographic primitive, used in the sponge framework to construct authenti-
cated encryption, stream cipher, MAC and hash function [2].

At present, there are three mainstream methods to search for the differen-
tial/linear distinguishers of SIMON/SIMECK, which are the mixed integer linear
programming (MILP) based technique adopted by Sun et al. [20], the SAT/SMT
solver method for satisfaction problem solving adopted by Kölbl et al. [12,13],
and the Matsui’s branch and bound automated search algorithm adopted by
Abed et al. [1], Biryukov et al. [8], and Liu et al. [14]. In the MILP method
of Sun et al., the non-independece of the input differences are not considered
yet. At CRYPTO’15, Kölbl et al. derived the differential propagation relation-
ship for SIMON-like round function, but it takes much time for the SAT/SMT
solver to find the optimal differential trails in the large block size variants of
SIMON. At FSE’14, Abed et al. firstly searched for the possible output differ-
ence corresponding to the input difference in the SIMON-like round function,
and took into account the dependence of the input differences on the bitwise
AND operation, but they did not find the optimal differential trails. Biryukov
et al. introduced the concept of pDDT, and applied the Matsui’s approach to
the ARX cipher by using the threshold search method, but by the limitation of
the heuristic search methods they used, the optimal differential trails are may
not obtained. At FSE’17, Liu et al. separately considered the independence and
dependence of the inputs of the bitwise AND operation, and they introduced the
concept of small block size DDT of bitwise AND operation with independenct
inputs, constructing the possible output difference space corresponding to an
fixed input difference with a large block size. But in the search algorithm, they
reused the independence condition, which will lead more computational efforts.
Differential and linear analysis for SIMECK and SIMON are similar. Based on
the explicit formula for the differential and linear propagation probability of
SIMON-like round function, the optimal differential and linear trails to achieve
the security bounds of each variants of SIMON and SIMECK were searched out
in [14,15]. For SIMECK32/48/64, the optimal differential trails cover 13/19/25
rounds, and the optimal linear trails also cover 13/19/25 rounds, respectively. In
the previous works, the differentials and linear hulls obtained are based on the
optimal trails that do not exceed the security boundary, but the differentials and
linear hulls based on lower potential trails are not considered. For SIMECK, the
probability of the 14/21/27 rounds differentials and the linear square correlation
of the 13/21/27 rounds linear hulls are not tight enough.

For the key recovery attacks, 19/26/33 rounds on SIMECK32/48/64 were
attacked by differential cryptanalysis in [13], and 22/28/35 rounds were attacked
by dynamic key-guessing technique in [17]. However, the differentials that used
to attack SIMECK in [13] and [17] are both 13/20/26 rounds, respectively. Intu-
itively, with the application of differentials with longer rounds and higher prob-
ability, the key recovery attack on SIMECK may need less complexity.
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In [18], 13/20/26 rounds linear hulls were used to mount the 23/30/37 rounds
key recovery attack on SIMECK32/48/64. However, the squared correlation of
the linear hulls they used in the attack are derived from the previous differentials,
which are estimated values and not tight enough yet. There are also some other
analysis results on SIMECK worth attention under different cryptanalysis model,
such as the linear cryptanalysis [3], zero correlation linear cryptanalysis [24], and
distinguishing attack [19].

Our Contributions. In this paper, we further investigate the differential and
linear propagation properties of the non-linear bitwise AND operation of the
round function of SIMECK. We propose improved efficient algorithms to find
the possible output differences of nonzero probabilities with a fixed input dif-
ference, eliminating the repeated use of the independence judgment condition
in Liu’s algorithm, and constructing a partial difference distribution table with
Hamming weight less than a set threshold. We get 14/21/27 rounds differentials
for SIMECK with higher probability than the previous works, and find a new
28 rounds differential for SIMECK64. Simultaneously, we get 13/21/27 rounds
linear hulls with higher square correlation for SIMECK32/48/64 respectively.
And the 14/22/28 rounds linear hulls for SIMECK32/48/64 we find are the best
linear hulls so far. We improve the key recovery attack on SIMECK and reduce
the computational complexity and/or data complexity. The 29-round differential
attack on SIMECK48 is the longest so far.

Outline. This paper is organized as follows. In Sect. 2, we give the notations used
in this paper. In Sect. 3, we give improved efficient algorithms to search for the
possible nonzero probability output differences with fixed input difference. And
we construct all the possible valid input mask space by using the base vectors of
input mask introduced in [15]. In Sect. 4, we apply the obtained differentials to
key recovery attacks on all variants of SIMECK for reducing the computational
complexity and/or data complexity, as listed in Table 5. Conclusions are given
in Sect. 5.

2 Preliminaries

2.1 Notations

The main notations used in this paper are shown in Table 1.
Let P (α, β) be the probability of a given input difference α propagate to a

given output difference β, which is defined as

P (α, β) = 2−n · #{x : f(x) ⊕ f(x ⊕ α) = β}.

Let f(x) : Fn
2 → F

n
2 be a vectorial boolean function on n bits with the input

mask α and output mask β, we denote by g(α, β) =
∑

x∈F
n
2
(−1)α·x ⊕

β·f(x), and
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Table 1. The notations used in the following paper.

Notation Description of the notation

⊕ bitwise XOR

∧ bitwise AND

∨ bitwise OR

x ≪ i rotate x to the left by i bits

(xi, xi−1) the 2n-bit input state of round i, for 1 ≤ i ≤ r

xj the jth bit of x, 0 ≤ j ≤ n − 1

Δx the difference of x ⊕ x′

rki−1 the n bits subkey of round i, for 1 ≤ i ≤ r

g(α, β) = ε · 2n for all x ∈ F
n
2 . Hence, the square correlation of α propagate to

β, we denote by

C2(α → β) = ε2 =
(

g(α, β)
2n

)2

.

Under the Markov’s assumption, the probability of a differential (or linear)
trail is the product of the probability of each round. Let α be the input difference,
and β is the given output difference after r rounds, then the probability of the r-
round differential is the sum of all r-round differential trails with the same input
and output difference. Similarly, the square correlation of the r-round linear hull
is the sum of all r-round linear trails with the same input and output mask.

2.2 Description of SIMECK

The SIMECK family has 3 variants: SIMECK32/64 (32 rounds), SIMECK48/96
(36 rounds) and SIMECK64/128 (44 rounds). They share the same rotational
constant set (a, b, c) = (0, 5, 1), with which SIMECK32/48/64 to achieve full
diffusion needs 8/9/11 rounds respectively as investigated in [13]. In this paper,
we denote the input states of round i by (xi+1, xi). The state transformation
function of SIMECK can be presented as xi+1 = (xi ≪ a) ∧ (xi ≪ b) ⊕ (xi ≪
c) ⊕ xi−1 ⊕ rki−1. Let xi+1 = f(xi) ⊕ xi−1 ⊕ rki−1, we generally call f(x) the
round function of SIMECK. The differential and linear propagation in the round
function of SIMECK is shown in Fig. 1.

3 Automatic Search Algorithm for Differentials and
Linear Hulls of SIMECK

3.1 The Properties of SIMECK Round Function

The bitwise AND operation is the only non-linear component in the SIMECK
round function, we first study its differential and linear propagation properties.
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Fig. 1. The differential and linear propagation of the round function of SIMECK.

Table 2. The probability propagation relationship of bitwise AND operation.

α β γ P (γ = 0) P (γ = 1)

0 0 0 1 0

0 1 x 1/2 1/2

1 0 y 1/2 1/2

1 1 x ⊕ y ⊕ 1 1/2 1/2

Property 1. Let x, x′, y, y′, α, β, γ ∈ {0, 1}, f(x, y) = x ∧ y, and x = x′ ⊕ α,
y = y′ ⊕ β, γ = f(x, y) ⊕ f(x′, y′), so α, β, γ have the probability propagation
relationship in Table 2. Hence, when P{(α, β) → γ} �= 0 is satisfied, if and only
if α ∧ β ∧ γ = 0 is satisfied [1].

According to the definition of differential probability, let α, β, γ be the n
bits XOR difference, and x, x′, y, y′ ∈ F

n
2 , f(x, y) = x ∧ y, and x = x′ ⊕ α,

y = y′ ⊕ β, γ = f(x, y) ⊕ f(x′, y′), the probability of two n bits inputs lead to
one n bits output is the product of the n probabilities of bitwise operation. As
P{(α, β) → γ} = 2−2n · #{(x, y)|f(x, y) ⊕ f(x ⊕ α, y ⊕ β) = γ}, which implies
the following lemma.

Lemma 1. Let α, β, γ be the n-bit XOR difference, and x, x′, y, y′ ∈ F
n
2 ,

f(x, y) = x ∧ y, and x = x′ ⊕ α, y = y′ ⊕ β, γ = f(x, y) ⊕ f(x′, y′), then

P{(α, β) → γ} =
{

2−wt(α∧β), if α ∧ β ∧ γ = 0;
0, else.

Where wt(α) denotes the Hamming weight of the vector α ∈ F
n
2 , the 0

represents an all-zero vector of n bits, and correspondingly 1 represents an all-
one vector of n bits. When one of the inputs of the bitwise AND is rotated r
bits to the left(or right), i.e. f(x, y) = x ∧ (y ≪ r), it is easy to get

P{(α, β) → γ} =
{

2−wt(ᾱ∧β≪r), if ᾱ ∧ (β ≪ r) ∧ γ = 0;
0, else.
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If the two input values of bitwise AND are mutual rotational dependent of
each other, i.e. let x, x′, α, β ∈ F

n
2 , x = x′ ⊕ α, f(x) = x ∧ (x ≪ r), and

β = f(x) ⊕ f(x ⊕ α), then the differential probability is

P{α → β} = 2−n · #{x|f(x) ⊕ f(x ⊕ α) = β},

then

P{α → β} = 2−n · #{x|x ∧ (α ≪ r) ⊕ α ∧ (x ≪ r) ⊕ α ∧ (α ≪ r) ⊕ β = 0},

and let

Lα,β(x) = {x ∧ (α ≪ r) ⊕ α ∧ (x ≪ r) ⊕ α ∧ (α ≪ r) ⊕ β = 0}
be a set of equations with variable x, where α, β ∈ F

n
2 as parameters. By solving

the number of solutions of x, considering these 2n equations with the relation-
ship between (α, β), Kölbl et al. derived the explicit formula of the differential
probability propagation relationship between input and output difference [12].
Therefore, there is an equivalent relationship as shown in Theorem1. Similarly,
the linear square correlation can be defined in Theorem2 [12].

Theorem 1. Let α, β be fixed n-bit XOR differences, x ∈ F
n
2 , x′ = x ⊕ α, and

f(x) = x ∧ (x ≪ r), β = f(x) ⊕ f(x′), define variables u = (α ≪ r) ∨ α, and
v = α ∧ (α ≪ r) ∧ (α ≪ 2r), so the differential propagation probability of the
bitwise AND with two inputs mutual rotational dependent is

P{α → β} =

⎧
⎨

⎩

2−n+1, if α = 1, and wt(β) ≡ 0 mod 2;
2−wt(v⊕u), if α �= 1, and β ∧ v = 0, and (β ⊕ (β ≪ r)) ∧ u = 0;
0, else.

Theorem 2. Let α, β be an input and an output mask, f(x) = x ∧ (x ≪ r),
where x ∈ F

n
2 , and the set Uβ is defined by Uβ = {x|(β ∧ (x ≪ r)) ⊕ ((β ∧

x) ≫ r) = 0}, the dimension of Uβ is d = dim Uβ, and U⊥
β is the orthogonal

complement space of Uβ. Hence, the squared correlation calculation of f(x) that
α propagate to β can be denoted by

C2(α, β) =

⎧
⎨

⎩

2−n+2, if β = 1, and α ∈ U⊥
β ;

2−n+d, if β �= 1, and α ∈ U⊥
β ;

0, else.

Corollary 1. Let α, β be fixed n-bit XOR differences, x, x′ ∈ F
n
2 , x′ = x ⊕ α,

f(x) = x ∧ (x ≪ r), and β = f(x) ⊕ f(x′), so the probability P (α → β) is
only related to the value of the input difference α, and the differential probability
corresponding to each valid output difference β is equivalent. And the number of
valid output differences is equal to 1/P{α → β}, where P{α → β} �= 0.

Corollary 2. Let {Δx1,Δx0} be the 2n-bit input XOR difference, {Δxi+1,Δxi}
is the 2n-bit output XOR difference of i round differential of SIMECK2n, and the
probability is P . There exist other n−1 differentials with similar probability, the
input difference and output difference can be constructed as {Δx1 ≪ j,Δx0 ≪
j} and {Δxi+1 ≪ j,Δxi ≪ j} respectively, for j ∈ [1, n − 1].



670 M. Huang et al.

3.2 Improved the Differentials of SIMECK Variants

When the inputs of the bitwise AND are independent of each other, i.e. let
f(x, y) = x ∧ y, the DDT can be constructed directly according to Lemma 1,
as shown in Algorithm 1. If the inputs of the bitwise AND are mutually rota-
tional dependent, i.e. let f(x) = x∧ (x ≪ r), the difference distribution table of
bitwise AND can be deduced by Theorem 1. Algorithm 2 constructs the nonzero
probability difference distribution table of the bitwise AND with inputs rota-
tional dependent. When the block size n is not too large, generally when n ≤ 16,
the difference distribution table (DDT) generated by it can be storaged feasibly.
The storage size of the DDT of the bitwise AND operation with input rotational
dependent can be reduced from 22n to 2n · O, when n=16, O ≈ 28.62.

Algorithm 1. Given two m-bit input difference α, β, constructing the nonzero
probability difference distribution table DDTm(α, β).
1: for each α, β = 0 to 2m − 1 do
2: cnt = 0;
3: for γ = 0 to 2m − 1 do
4: if γ ∧ (α ∧ β) = 0 then
5: beta[α||β][cnt + +] = γ;
6: end if
7: end for
8: p[α||β] = 1/cnt;
9: end for

When the inputs of the bitwise AND are mutually rotational dependent and
the block length is larger than 16 bits, it will be difficult to store the large DDT
produced by Algorithm2 directly. We are inspired by Liu et al., in order to reduce
the storage complexity, consider the independent and dependent conditions of
the inputs separately. Firstly, assuming that the inputs are independent of each
other, referring to Algorithm1, a large block of blocksize n can be splited into
several small blocks with m bits length each, and the possible output differences
corresponding to the fixed input difference are reconstructed by the output of
small blocksize DDT whose inputs are mutually independent. For example, the
blocksize of a cipher is 2n = 64, let m = 8 in Algorithm 1, the input of round
function with n = 32 bits length can be splited into four 8-bit blocks, then for
each block just lookup the DDT produced by Algorithm1, and then recombine
the 4 sets of 8-bit possible output difference which construct the 32 bits length
possible output differences. Secondly, verifing whether the recombined output
differences are valid possible output differences with nonzero probability or not
through the judgment condition in Theorem1, and considering the constraints of
output difference and input inter dependence. Here, for filtering out the possible
output differences of nonzero probability, we eliminate the repeated use of input
independent condition (i.e. β ∧ (α ∨ α ≪ r) = 0) in Liu’s algorithm. Thirdly,
considering the increasement in the Hamming weight of the input difference α,
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Algorithm 2. Computing the difference distribution table DDTn(α) when the
inputs are mutually dependent.
1: p[2n] = {0}, β value[2n][ ] = {0}, β num[2n] = {0};
2: for α = 0 to 2n − 2 do
3: u = α ∨ α ≪ 5;
4: v = α ∧ α ≪ 5 ∧ α ≪ 10;
5: for β = 0 to 2n − 1 do
6: if (ū ∧ β) ∨ (v ∧ (β ⊕ β ≪ 5)) = 0 then
7: β value[α][β num[α]] = β;
8: β num[α] + +;
9: end if

10: end for
11: p[α] = 1/β num[α];
12: end for
13: let α = 2n − 1;
14: for β = 0 to 2n − 1 do
15: if wt(β) ≡ 0 mod 2 then
16: β value[2n − 1][β num[2n − 1]] = β;
17: β num[2n − 1] + +;
18: end if
19: end for
20: p[2n − 1] = 1/β num[2n − 1];
21: return p[ ], β value[ ];

the probability of the corresponding output difference decrease, shown in [7,14].
When the Hamming weight of the input difference increases, the upper bound
of the probability of the round function will also decrease, which lead to the
Matsui’s pruning condition in the search procedure will not be satisfied mostly.
The output differences and probabilities corresponding the low Hamming weight
input difference are used frequently. Inspired by the concept of partial difference
distribution table introduced by Biryukov et al. [8], we can just precompute and
store the difference distribution table corresponding to the input difference with
low Hamming weight, where the Hamming weight is less than a certain threshold.
When the input difference Hamming weight is smaller than the set threshold,
just look up the precomputed table, otherwise, calculating the possible output
difference from PODn(α) in Algorithm 3.

To search for the differentials of SIMECK, we firstly employ the Matsui’s
branch-bound search approach similar to [14] for finding the optimal differential
characteristics(trails). Try to search for longer rounds of differential trails that
exceed security bound with limitting the Hamming weight of the input difference
according to the differential probability upper bound of the input Hamming
weight [7,14]. Afterward, we fix the input difference α and output difference β to
find enough amount of trails, and statistic the probability of all trails. In order to
effectively search for trails as much as possible within a feasible time, we limit the
search range of probability weights(− log2(p)) from wtmin to wtmax. And wtmin is
the probability weight of the differential characteristic, wtmax is the probability
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Algorithm 3. Given a n-bit input difference α, computing the set PODn(α) of
possible output differences β with nonzero probability.
Input: α ∈ F

n
2 , n = mt;

1: p = 0, β value[ ] = {0}, β num = 0;
2: if α �= 2n − 1 then
3: let X=α,Y =α ≪ 5;
4: divide X = {xt−1, ...x0}, Y = {yt−1, ...y0}, xi, yi ∈ F

m
2 ;

5: for i = 0 to t - 1 do
6: lookup DDTm(xi, yi); //Computed by Algorithm 1.
7: βi[cnti] = beta[xi, yi][cnti] ∈ {0, 1}m

8: end for
9: for each β := {βt−1[cntt−1]||...β0[cnt0]} do

10: if (β ⊕ β ≪ 5) ∧ (α ∧ α ≪ 5 ∧ α ≪ 10) = 0 then
11: β value[β num + +] = β;
12: end if
13: end for
14: else
15: for β = 0 to 2n − 1 do
16: if wt(β) ≡ 0 mod 2 then
17: β value[β num + +] = β;
18: end if
19: end for
20: end if
21: p = 1/β num;
22: return p, β value[ ];

weight of the minimal probability that be limited. In the first two rounds of the
search process, using the left and right part of the input difference as the inputs
of round function. During the branch search process of differential trails of 3
to r − 1 rounds, searching the possible output differences corresponding to the
input difference by lookup table generated by Algorithm4, when the Hamming
weight of input difference is less than H. Otherwise utilizing the Algorithm3 to
generate the possible output differences. In the process of the middle rounds, we
use Matsui’s branch pruning condition wt(p1)+wt(p1)+ ...+wt(pi)+wt(pr−i) ≤
wtmax as the stop condition, when the probability of searched truncated path
is larger than the set value, remove it in advance. Even so, there are still some
trails in the front r −1 round maybe satisfying the brach pruning condition, but
when multiplied by the differential probability of the last round, the probability
weight will larger than the limited wtmax, while they are also propagate to the
same output difference of the differential. In our statistical approach, these part
trails with lower probability are also counted. Probability weight marked by
* in Table 3 means there are some trails with lower probability than the set
probability weight wtmax be counted. The differential probability is calculated

by P =
wtmax∑

w=wtmin

#trails[w] × 2−w.
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Algorithm 4. Pre-calculating and store the partial difference distribution table
PDDTn,H(α) with Hamming weight less than H.
1: for wt(α) = 0 to H do
2: PODn(α);
3: β[α][ ] ← β value[ ];
4: p[α] = p;
5: end for

Table 3. The Differentials of SIMECK variants.

Cipher Rd Δin Δout wtmin wtmax Prob #Trails Ref

SIMECK32 13 0,2 2,0 38 52 2−28.91 1846518 [18]

13 8000,4011 4000,0 36 49 2−27.28 / [13]

14 1,800A 4,8002 / / 2−31.64 / [14]

14 2,15 8,5 36 57 2−31.63 8065284 This paper

14 0,2 4,2 40 53 2−30.90 1678405 This paper

SIMCEK48 21 20000,470000 50000,20000 / 100 2−45.65 / [13]

21 1,800002 800002,1 / / 2−45.28 / [14]

21 2,5 5,2 52 73 2−45.18 34899905 This paper

SIMECK64 26 0,4400000 8800000,400000 / 121 2−60.02 / [13]

27 0,10 5,2 / / 2−61.49 / [14]

27 0,11 5,2 70 89* 2−60.75 32649265 This paper

28 0,11 A8,5 74 93* 2−63.91 617703755 This paper

For a differential of i rounds, take the output difference of the ith round
as the input difference of (i + 1)th round, according to Algorithm3, one more
round can be extended by check the number of output difference. For every
valid possible output difference of (i + 1)th round, probability of the new i + 1
round differential can be calculated by Corollary 1. The obtained differentials for
SIMECK is shown in Table 3, in which the number of possible output difference
corresponding to the output difference of the 13-round differential (0x0, 0x2 →
0x2, 0x0) used in [17] of SIMECK32 is 4. Hence, there exists 14 rounds differential
of probability at least 1

4 × 2−28.91, the input difference of it is (0x0, 0x2) and
the output difference is one of {(0x4, 0x2), (0x6, 0x2), (0x44, 0x2), (0x46, 0x2)},
and the searched experimental result of the probability is 2−30.90. In addition,
the result of 27/28 round differential of SIMECK64 that also confirmed the
guesswork of Corollary 1. Additionally, we also searched out some differentials
that follow Corollary 2, such as the 14-round differential (2, 15) → (8, 5), which is
the rotational pair of (1, 800A) → (4, 8002) that rotated 1-bit to the left for each
half state1. More differentials can be constructed from Table 3 by the Corollary 2,
for example, the 14-round differential of SIMECK32 implies ((0, 2) → (4, 2)) ⇒
((0 ≪ j, 2 ≪ j) → (4 ≪ j, 2 ≪ j)), j ∈ [1, 15] with the similar probability
that larger than 2−30.90. And the derivation process for SIMECK48/64 is similar.
The obtained 14/21/27 rounds differential of SIMECK32/48/64 are the best so
far, meanwhile, the 28-round differential of SIMECK64 is the longest so far.

1 The reason why the experimental result of the probability is higher than that of [14]
is because of more trails are counted.
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Algorithm 5. Using the non-zero base vectors of α to construct the space of
all vaild possible α.
Input: Nonzero vectors of y[i] construct the bases of U⊥

β , i ∈ [0, n − 1].
1: αnum = 0, α[ ] = {0}, z[ ] = {0}, j = 0;
2: for i = 0 to n − 1 do
3: if y[i] �= 0 then
4: z[j] = y[i];
5: j + +; //Record the number of non-zero base vectors.
6: end if
7: end for
8: αnum = 2j ;
9: for k = 0 to αnum − 1 do //Construct each valid α.

10: for t = 0 to j − 1 do
11: if (k ∧ (1 
 t)) �= 0 then
12: α[k] = α[k] ⊕ z[t];
13: end if
14: end for
15: end for
16: return αnum, α[ ];

3.3 Improved the Linear Hulls of SIMECK Variants

In [15], an automatic search algorithm to search for the optimal linear trails of
SIMON and SIMECK are proposed. They gave an algorithm to find the base
of all possible input masks α ∈ U⊥

β in Theorem 2. By using the base vectors of
α, we can construct all the possible valid input masks by Algorithm5. Then,
we use the method in [15] and search for longer round linear trails with the
square correlation exceed the security boundary. Take the input and output
mask of the trails as that of the linear hull, and we limit the search scope by the
lower bound of the square correlation (−log2C

2(α, β)). Also, setting the branch
pruning condition wt(p1) + wt(p1) + ... + wt(pi) + wt(pr−i) ≤ wtmax as the stop
condition. By using the longer round linear trails with square correlation exceed
the security boundary, the new longer round linear hulls are found in Table 4.
The 14/22/28 rounds linear hulls of SIMECK32/48/64 are the longest linear
hulls so far2.

4 Key Recovery Attack on Round Reduced SIMECK

In 2014, Wang et al. proposed dynamic key-guessing techniques in differential
attack on SIMON [22], and then these techniques had also been used to achieve
linear hull attack on SIMON at FSE’16 [11]. The differential and linear hull
attack on SIMECK with dynamic key-guessing techniques are the most efficient
method until now [17,18]. Hence, by applying the new differentials obtained, we

2 All experiments code are runned on a PC with Intel� CoreTM i7-2600
CPU@3.40GHz × 8.
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Table 4. The Linear hulls of SIMECK variants.

Cipher Rd Γin Γout wtmin wtmax Potential #Trails Ref

SIMECK32 13 2,0 0,2 40 / 2−30.91 1846518 [18]

13 11,0 2,15 / / 2−29.43 / [15]

13 22,0 4,2A 32 38* 2−28.11 876 This paper

14 800A,1 8008,4004 36 42* 2−31.90 1456 This paper

SIMECK48 20 280000,100000 200000,100000 / / 2−45.66 / [18]

21 800002,1 1,800002 / / 2−46.30 / [15]

21 880002,1 1,800002 52 64* 2−44.48 352999 This paper

22 800000,1 200000,500001 56 68* 2−47.68 1326121 This paper

SIMECK64 26 440000,0 400000,200000 / / 2−62.09 / [18]

27 11,0 8,14 / / 2−61.14 / [15]

27 22,0 10,28 70 86* 2−59.79 27489363 This paper

28 80000001,5 0,40000004 74 88 2−63.67 9103911 This paper

try to get some new results for the key recovery attacks on SIMECK variants.
And for the attack on SIMECK with the new linear hulls obtained, better results
with less complexity may also occur combining with dynamic key-guessing tech-
niques in linear hulls attack. Even so, we leave it as subsequent researchs because
the attack process is too cumbersome, it is recommended to refer to [11] for the
process details of using linear hulls for key recovery.

4.1 Dynamic Key-Guessing in Differential Attack

In [17,22], the dynamic key guessing technique was introduced to the differ-
ential attack on SIMON and SIMECK. By observing the round function of
SIMECK, the bit-transformation relationship of it is denoted by follows. Let
xi = {xn−1

i xn−2
i · · · xj

i · · · x0
i }, xj

i ∈ {0, 1}, there have,

xj
i+1 = xj

i ∧ xj−5
i ⊕ xj−1

i ⊕ xj
i−1 ⊕ rkj

i−1.

The bits relationship of the differential propagation of the SIMECK round
function is expressed as follows:

Δxj
i+1 = Δxj

i ∧ xj−5
i ⊕ xj

i ∧ Δxj−5
i ⊕ Δxj

i ∧ Δxj−5
i ⊕ Δxj−2

i ⊕ Δxj
i−1

and the plaintext bits xj
i and xj−5

i involved secret subkey bits for i ≥ 2.

xj
i = xj

i−1 ∧ xj−5
i−1 ⊕ xj−1

i−1 ⊕ xj
i−2 ⊕ rkj

i−1

xj−5
i = xj−5

i−1 ∧ xj−10
i−1 ⊕ xj−6

i−1 ⊕ xj−5
i−2 ⊕ rkj−5

i−1

As the choosen plaintexts are known, considering Δxj
i and Δxj−5

i as param-
eters under different values, and discussing the number of subkey bits satisfy the
equations. When some subkey bits are determined, which can reduce the number
of the remaining subkey bits that need to be exhaustive searched.



676 M. Huang et al.

If (Δxj
i ,Δxj−5

i ) = (0, 0), Δxj
i+1 = b, b ∈ {0, 1}, when Δxj−2

i ⊕ Δxj
i−1 �= b,

the differential propagation relationship of round function is not satisfied, this
condition can be used to filter out the wrong plaintext pairs in the first and last
round. When Δxj−2

i ⊕ Δxj
i−1 = b, the bit differential propagation relationship

can not be used for determining subkey bits, so (rkj
i−1, rk

j−5
i−1 ) ∈ F

2
2 with 4

solutions. And if (Δxj
i ,Δxj−5

i ) = (0, 1), (1, 0) or (1, 1), then (rkj
i−1, rk

j−5
i−1 ) have

only 2 solutions. After appending r0 rounds forward and r1 rounds backward,
generate the extended path with sufficient bit conditions, from which the related
subkey bits for each sufficient bit condition can be solved by whether to satisfy
the equations.

4.2 Applying the Differentials to Key Recovery Attack on SIMECK
Variants

In [17,22], to extend the differential path according to the rules that the out-
put differences of AND operation is 0, if and only if its input differences are
(0,0), otherwise set the output difference of AND operation to * as uncertain
bit. However, the rotational dependence of the input differences of AND oper-
ation is not considered in these previous works. To extend the differential path
with adding r0 round forward and r1 round backward, we use the nonzero prob-
ability outputs produce by Algorithm3. In the data collection phase, there are
Qr0 possible plaintext differences in the set {ΔP }, which will lead to at least 1
input difference Δin of the r-round truncated differential that be appended r0
round forward. There are Qr1 possible ciphertext output differences in the set
{ΔC}, which can be deduced from 1 output difference Δout of the r-round trun-
cated differential that be appended r1 round backward. The number of possible
plaintext difference Qr0 is less than the plaintext pairs in each data structure
constructed in [22]. Selecting one plaintext X, then the plaintexts set {X ⊕ΔP }
obtained by Qr0 XOR additions which can yield Qr0 plaintext pairs which lead
to at least one input difference Δin. Choosing 2t arbitrary plaintext X, for exam-
ple X ∈ {0, 1}t, then we can get 2t × Qr0 plaintext pairs that lead to 2t paris
with intermediate state in (r1)th round with Δin. Since the set of ciphertext dif-
ferences resulting from the output difference of choosen differential, there exists
conditions that some bit positions of the ciphertext difference are fixed, which
can be used to filter out the invalid plaintext differece in {ΔP }, so does the
invalid plaintexts, and then check the remaining ciphertext belong to {ΔC} or
not, which can reduce the storage complexity.

For SIMECK32/64, similarly to the attack in [17], we use the 14-round differ-
ential Δin : 0x0000 0002 → Δout : 0x0004 0002 with the probability of 2−30.90

in Table 3, and extended 4 rounds forward and 4 rounds backward of it to mount
the key recovery attack against the 22 rounds of SIMECK32/64. The extended
differential path with sufficient bit conditions listed in Table 6.

In the data collection phase, we choose 232 plaintexts, with 232 × Qr0 ≈
232+21.3 = 253.3 times XOR addition, 253.3 plaintext pairs can be get, which will
lead to 232×p = 232−30.90 ≈ 2.14 right pairs occured in average. For the choosen
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Table 5. Comparison of Differential Cryptanalysis on SIMECK.

Cipher Total Rounds Diff. Rounds Diff. Prob Attacked Rounds Time Data Ref

SIMECK32 32 13 2−27.28 19 240 231 [13]

13 2−29.64 22 257.9 232 [17]

14 2−30.90 22 254.3Aa + 256Eb 232 This paper

SIMECK48 36 20 2−43.65 26 262 247 [13]

20 2−43.65 28 268.3 246 [17]

21 2−45.18 29 277.04A + 283.14E 247 This paper

SIMECK64 44 26 2−60.02 33 2115 263 [13]

26 2−60.02 35 2116.3 263 [17]

27 2−60.75 35 290.6A + 2105.5E 262 This paper
a ‘A’ represents a XOR addition operation.
b ‘E’ represents an encryption of attacked rounds

Table 6. Extended Differential Path of 22-round SIMECK32 with sufficient conditions.

Rd Input difference of each round represented in bits Qr0

0 0,0,0,*,*,0,0,*,*,*,0,1,*,*,*,*,0,0,*,*,*,0,*,*,*,*,*,*,*,*,*,* 2589180

1 0,0,0,0,*,0,0,0,*,*,0,0,1,*,*,0,0,0,0,*,*,0,0,*,*,*,0,1,*,*,*,* 5638

2 0,0,0,0,0,0,0,0,0,*,0,0,0,1,*,0,0,0,0,0,*,0,0,0,*,*,0,0,1,*,*,0 68

3 0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,*,0,0,0,1,*,0 4

4 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 1,0 1

4-18 Δin : 0x0000 0002 → Δout : 0x0004 0002 Qr1

18 0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0 1

19 0,0,0,0,0,0,0,0,*,0,0,0,1,*,*,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0 4

20 0,0,0,*,0,0,0,*,*,*,0,1,*,*,*,0,0,0,0,0,0,0,0,0,*,0,0,0,1,*,*,0 176

21 0,0,*,*,*,0,*,*,*,*,1,*,*,*,*,0,0,0,0,*,0,0,0,*,*,*,0,1,*,*,*,0 34336

22 0,*,*,*,*,*,*,*,*,*,*,*,*,*,*,*,0,0,*,*,*,0,*,*,*,*,1,*,*,*,*,0 30906788

plaintext pairs, after 232×(Qr0 +1) ≈ 253.3 times (r0+r+r1) rounds encryption,
using the fixed 6 bits of the ciphertext difference as conditions to filter out the
wrong pairs with 247.3 pairs left in approximately. Then use the {ΔC} as the
filter oracle, 247.3/

Qr1
≈ 247.3−24.85 = 222.45 pairs remained and should be stored

in table T.
Considering the recovery of 4 consecutive rounds of subkeys, by partial

decrypt the last four round, there are totally 35 bits of rk10,15
21 , rk0,5,9−11,14,15

20 ,
rk10,15

19 , rk0,4−5,8−11,13−15
18 involved in the 18 bit conditions in the 18 to 22 rounds.

Create a list of counters for the 35 subkey bits, and solve the 18 bit condition
equations with each pairs remained in T. If the candidate subkey bits matches
the equations then increment the counter. The counter associated with the can-
didate subkey bits has the highest count value.

For the data complexity, there requires 232 plaintexts, and 3 tables of {ΔP },
{ΔC} and T with 221.3 + 224.85 + 222.45 ≈ 226.3 storage size. The computa-
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Table 7. Extended Differential Path of 29-round SIMECK48 with sufficient conditions.

Rd Input difference of each round represented in bits Qr0

0 00000000*0************** 0000000***************** ≈ 229.41

1 00000000000*0*0****1**** 00000000*0************** 950080

2 0000000000000000*0*01*0* 00000000000*0*0****1**** 1156

3 000000000000000000000101 0000000000000000*0*01*0* 16

4 000000000000000000000010 000000000000000000000101 1

4-25 Δin : 0x000002 000005 → Δout : 0x000005 000002 Qr1

25 000000000000000000000101 000000000000000000000010 1

26 0000000000000000*0*01*0* 000000000000000000000101 16

27 00000000000*0*0****1**** 0000000000000000*0*01*0* 1156

28 00000000*0************** 00000000000*0*0****1**** 950080

29 0000000***************** 00000000*0************** ≈ 229.41

tional effort contains the XOR addition, encryptions, filtering phase, subkey bits
guessing, and the brute-force search phase. The computational time complexity
Ct = (232 × 221.3)A + (232 × (221.3 + 1))E + ((253.3)A + (247.3)A) + (2 · 222.45 ·
235 · 4

22 )E +264−35E ≈ 254.3A+256E. Here, ‘A’ represents a XOR addition oper-
ation and ‘E’ represents the encryption operation of attacked rounds. For the
calculation of the success probability, we refer to the theory in [22], the success
probability equals to 1 − Poisscdf(s, λr), where s = λr� is the number of hits
that no more than right pairs λr, and Poisscdf(s, λr) is the probability density
function of Poisson distribution. Hence, we can get the success probability is
73% for the attack on SIMECK32.

For SIMECK48/96, we use a 21-round differential Δin : 0x0002 0005 →
Δout : 0x0005 0002 with the probability of 2−45.18 in Table 3, and add 4 rounds
forward and 4 rounds backward of it to mount the key recovery attack against
the 29 rounds of SIMECK48/96. The extended differential path with sufficient
bit conditions listed in Table 7.

We choose 247 plaintexts, with 247 × Qr0 ≈ 247+29.41 = 276.41 times XOR
addition, 276.41 plaintext pairs can be get, which will lead to 247−45.18 ≈ 3.53
right pairs occured in average. After 247 × (Qr0 + 1) ≈ 276.41 times encryption
for all pairs, we use the fixed 16 difference bits in the last round to filter out
most part of wrong pairs with 260.41 pairs left. Then use the {ΔC} as the filter
oracle, 260.41−29.41 = 231 pairs remained and should be stored in table T. Create
counters for the candidate 54 subkey bits rk9,11−23

27 , rk4,6,8−23
26 , rk1,3−23

25 involved
in the last 4 rounds, and solve the 32 bit condition equations with each pairs
remained in T. For the data complexity, there requires 247 choosen plaintexts,
and 229.41+229.41+231 ≈ 231.5 storage size for {ΔP }, {ΔC} and table T is needed.
And for the computational effort, there needs Ct = (276.41)A + (276.41)E + ((2 ·
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Table 8. Extended Differential Path of 35-round SIMECK64 with sufficient conditions.

Rd Input difference of each round represented in bits

0 0000000000000000**00***0****1*** 000000000000000***0*************

1 00000000000000000*000**00***01** 0000000000000000**00***0****1***

2 0000000000000000000000*000**001* 00000000000000000*000**00***01**

3 00000000000000000000000000010001 0000000000000000000000*000**001*

4 00000000000000000000000000000000 00000000000000000000000000010001

4-31 Δin : 0x00000000 00000011 → Δout : 0x00000005 00000002

31 00000000000000000000000000000101 00000000000000000000000000000010

32 000000000000000000000000*0*01*0* 00000000000000000000000000000101

33 0000000000000000000*0*0****1**** 000000000000000000000000*0*01*0*

34 0000000000000000*0************** 0000000000000000000*0*0****1****

35 000000000000000***************** 0000000000000000*0**************

Qr0 ≈ 228.6,363076,1156,16,1 for Rd.= 0,1,2,3,4,respectively

Qr1 1,16,1156,950080,≈ 229.41 for Rd.= 31,32,33,34,35,respectively

276.41)A + (2 · 260.41)A) + (2 · 231 · 254 · 4
29 )E + 296−54E ≈ 277.04A + 283.14E, and

the success probability is 78%.
For SIMECK64/128, we use the 27-round differential Δin:0x00000000

00000011 → Δout:0x00000005 00000002 with the probability of 2−60.75 in
Table 3, by appending 4 rounds on the top and 4 rounds at the bottom,
and extend it to mount the key recovery attack against the 35 rounds of
SIMECK64/128. The extended dfferential path of the 35 rounds SIMECK64/128
is listed in Table 8. Choosing 262 plaintexts, we can get 290.6 plaintext pairs with
290.6 XOR additions, and 262−60.75 ≈ 2.13 right pairs occured in average. For all
choosen plaintext pairs, there need 290.6 encryptions of 35 rounds which lead to
258.6 pairs left, and then use the {ΔC} as the filter oracle, 229.19 pairs stored in
table T. There are 78 bits of rk9,11−31

34 , rk4,6,8−31
33 , rk1,3−31

32 can be guessed. There
requires 262 choosen plaintexts for data complexity, and storage complexity is
228.6+229.41+229.19 ≈ 230.7 for {ΔP }, {ΔC} and table T. For the computational
complexity, there needs Ct = (290.6)A + (290.6)E + ((258.6)A + (229.19)A) + (2 ·
229.19 · 278 · 4

35 )E + 2128−78E ≈ 290.6A + 2105.5E, and the success probability is
73%.

5 Conclusions

In this paper, we analyzed the differential and linear propagation properties of
the bitwise AND operation with inputs mutually independent or dependent, and
improved efficient algorithms by constructing the partial difference distribution
table for bitwise AND operation. We searched out new differentials and linear
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hulls for SIMECK, which are the best results as far as we know. We applied our
differentials to the key recovery attack on SIMECK and less complexity required
while compared to previous differential attack.
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their valuable comments. This work was supported by the National Key Research and
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Abstract. Domain names have been abused for illicit online activities
for decades. A wealth of effort has been devoted to detect malicious
domains in the past. However, these works primarily identify suspicious
DNS behaviors (e.g., lookup patterns, resolution graphs) to distinguish
legitimate domains from malicious ones. Whereas, these behaviors can
only be observed after malicious activity is already underway, thus are
often too late to prevent miscreants from reaping benefits of the attacks,
delaying detection. In this paper, we propose MalHunter, a timely detec-
tion technique that determines a domain’s reputation via only a single
DNS query. We base it on the insight that miscreants need to host mali-
cious domains on IPs that they control, which makes different malicious
domains are commonly hosted on the same IPs and creates intrinsic
associations. To capture these inherent associations, we employ a deep
neural network architecture based method, thus making it possible for
detecting malicious domains via only a single DNS query. We evaluate
MalHunter using real-world DNS traffic collected from three large ISP
networks in China over two months. Compared to previous approaches,
our method significantly reduces the time delay of detection from days
or weeks to approximate ten microseconds while maintaining as high
detection accuracy.

Keywords: Domain reputation · Timely detection
Single DNS query · Neural network · Malicious domain

1 Introduction

The Domain Name System (DNS) is a hierarchical decentralized naming system
and provides critical services for mapping domain names to IP addresses. Unfor-
tunately, it has been abused by miscreants for various illicit activities constantly.
For instance, botnets exploit algorithmically generated domains to circumvent
the take-down efforts of authorities [10], and scammers set up phishing websites
on domains resembling well known legitimate ones [13].
c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 685–695, 2018.
https://doi.org/10.1007/978-3-030-01950-1_40
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To mitigate these threats, tremendous efforts [3,6,8,9,12] have been devoted
in the last decades to establish domain reputation and blacklisting systems.
These works derive domain reputation based on the DNS behaviors (e.g.,
lookup patterns [3], resolution graphs [6,8,9,12]). However, these information
is obtained after the domain is used for a period time, delaying detection. For
instance, Exposure [3] analyzes the time-based features based on a domain’s 20
times queries. However, our study shows that it on average costs 17.45 days to
accumulate 20 times queries for malicious domains in a ISP network. On the
other hand, we find that many domains only occur once in our two-month-long
dataset. Therefore, most suspicious DNS patterns identified in previous studies
do not work well for these disposable domains. Hao et al. [5] proposed PREDA-
TOR that only uses the time-of-registration features so as to detect malicious
domains before they are actually used. However, it cannot detect the domains
that change malicious afterward.

In this paper, we propose MalHunter, a lightweight and timely technique
to detect malicious domains through only a single DNS query. Our insight is
that, though miscreants frequently change the domain names in different attack
campaigns to avoid detection, the set of infected users and the IPs hosted are
relatively stable. Therefore, over a period of time, the newly malicious domains
will be visited by previously infected users and hosted on the same IPs that
miscreants control. Driven by this insight, we employ a deep neural network
architecture to mine the latent associations. Specifically, we first conduct an
embedding learning to represent every user, domain, IP into a vector. Thus, we
can convert a DNS query, q = (user, domain, IP ), to a tensor as the combination
of the embedded vectors of the three items. Next, we design a multi-layer neural
network to enhance the original features. At last, we use a standard classifier to
decide if the domain is malicious using the enhanced features.

We evaluate MalHunter using real-world DNS traffic collected from three
ISP networks in China over two months. Compared to previous methods [3,12],
the noteworthy advantage is that MalHunter significantly reduces the detection
delay from days or weeks to several microseconds. On average, it costs about
10.41 us to determine its reputation after a domain is appeared in the moni-
toring ISP network on a machine with a NVIDIA GeForce GTX 1080 GPU of
12GB RAM. Therefore, MalHunter can approximately deal with 100,000 DNS
queries per second, making it possible for online detection. On the other hand,
MalHunter achieves as high detection accuracy with a 92.49% F-Measure (i.e.,
98.34% precision and 87.32% recall) as most previous methods.

In summary, our paper makes the following contributions:

– We present MalHunter, a lightweight technique to detect malicious domains
timely. It determines a domain’s reputation via a single DNS query, which
provides early detection (e.g., first usage) of potentially malicious domains.

– We identify two types of inherent associations: (i) malicious domains tend to
hosted on a stable set of IPs that miscreants control; and (ii) infected users
tend to visit newly malicious domains.
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– We employ a deep neural network architecture to capture the latent asso-
ciations, making it possible to detect malicious domains via a single DNS
query.

– We perform a comprehensive evaluation of MalHunter using two months real-
world DNS traffic collected from three large ISP networks in China. The
results demonstrate our technique can subversively reduce the detection delay
from days or weeks to several microseconds, thus, providing a timely defense
against the misuse of DNS domains.

We organize our paper as follows. Section 2 is related work. Section 3 elab-
orates the technical details of the proposed approach. Experiment setup and
results analysis are reported in Sect. 4. We discuss a few issues of our approach
in Sect. 5 and conclude the paper in Sect. 6.

2 Related Work

A wealth of research has been conducted on detecting malicious domains.
Notos [2] is a pioneer work for establishing a dynamic reputation system to
detect malicious domains. Bilge et al. proposed Exposure [3] with original time-
based features, which requires less training time and data. Khalil et al. [6] argue
that many local features used in detecting malicious domains, such as domain
name and temporal patterns tend to be relatively brittle and allow attackers
to take advantages of these features to evade detection. Peng et al. [9] pro-
posed a malicious domain detection method focusing on domains that are not
resolved to IP addresses directly, but only appear in DNS CNAME records. Rah-
barinia et al. proposed Segugio [12] for efficiently tracking the occurrence of new
malware-control domain names in very large ISP networks. Unfortunately, these
works analyze DNS patterns that only can be obtained after the domain is used
for a period of time to identify malicious domains, delaying detection.

Our method determines a domain’s reputation via only a single DNS query
so that it can identify malicious domains at the same time they are used, per-
forming timely detection. On the other hand, our technique utilizes the inherent
associations to detect malicious domains, thus can identify the malicious domains
even if they are registered normally.

3 Proposed Approach

3.1 Overview

MalHunter is designed as a timely detection to identify malicious domains via
a single DNS query. Figure 1 shows a sample DNS query in our dataset. The
user field represents the host who queries the domain. Notice that it has been
anonymized and represented as a unique ID for the privacy concern. The rdata
field is the first resolution in the answer section of the response packet. Note
that, we only preserve the first resolution due to the efficiency consideration.
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Fig. 1. A sample DNS query

Unlike other DNS reputation systems that observe the ways a domain is used
in practice, it is more challengeable to determine a domain’s reputation with
only a single DNS query due to the limited information. Our insight is that,
though miscreants frequently change the domain names in attack campaigns to
avoid detection, these domains must be hosted on the IPs that they control or
have access to. On the other hand, previously infected users tend to visit newly
malicious domains afterward. Therefore, when detecting malicious domains via
a single query, it is more effective to consider who queries the domain and what
IPs the domain is hosted on, instead of the linguistic features of a domain
alone. To capture these intrinsic associations, we employ a deep neural network
architecture.

Fig. 2. Overview of MalHunter

Figure 2 depicts the architecture of MalHunter. It is composed of three
phases: (1) embedding phase; (2) feature enhancing phase; and (3) classification
phase. The embedding phase is responsible for representing every single DNS
query, q, into a vector, v. Then, the feature enhancing phase aims at obtaining a
more essential features v′ from the vector representation v through a multilayer
perceptron. Finally, the classification phase outputs the reputation score based
on the enhanced feature v′. Notice that all of the three phases are optimized
jointly using stochastic gradient descent [7].

3.2 Embedding Phase

Feature learning based on the embedding architecture (e.g., word2vec [4]) have
been proven a big success in natural language processing. The basic idea is to
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embed every word into a vector automatically based on its context. For our
problem, we adapt the embedding operation to transform every input triple
q = (user, domain, IP ) into a vector representation.

Specifically, we treat each user, domain and IP occurring in the DNS traffic
as a word. Then, we use the User Embedding operations to embed the user item
to vector vu, use the Domain Embedding operations to embed the domain item
to vector vd and the IP Embedding operations to embed the IP item to vector vI .
The three different views of embedding provide us a more comprehensive recog-
nition of the query. This phase involves three parameters: (i) Lu, the dimension
of vu; (ii) Ld, the dimension of vd; and (iii) LI , the dimension of vI . Finally,
after obtaining the embedded vectors of the user, domain and IP items, we con-
catenate the three vectors as the representation of the query, v = vu ⊕ vd ⊕ vI ,
where ⊕ is the concatenation operator.

3.3 Feature Enhancing Phase

The multilayer perceptron (MLP) is a class of feed-forward artificial neural net-
work. The representation v learned from the Embedding phase represents the
original representation of the query. Therefore, we employ MLP to mine more
effective features. Denote n = Lu + Ld + LI to be the length of v.

Fig. 3. Feature enhancing

Figure 3(a) shows the network of the MLP employed in our method. It con-
sists of three layers: (i) the input layer, v; (ii) the hidden layer, h and (iii) the
output layer, v′. The three layers are connected by standard full connected oper-
ations. Figure 3(b) shows the detail function on each neural node, where wi is
the weight of node xi, b is the bias and σ(·) is the non-linear activate function.
A neural node receives the input from all the neural nodes of its forward layer.
We choose σ(x) = tanh(x), due to tanh(x) is an effective and widely used non-
linear function.

σ(x) = tanh(x) =
ex − e−x

ex + e−x
(1)

In summary, the transforming processes are: (i) h = tanh(WT
1 ∗ v + b1)

and (ii) v′ = tanh(WT
2 ∗ h + b2). Parameters (W1, b1,W2, b2) are first randomly
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initialized and then adjusted gradually by optimizing the defined loss function,
equation (3). There are two parameters, the number of neurons in hidden layer,
n1, and in output layer, n2, in this phase. We discuss the performances of using
different values of n1 and n2 in experiments.

3.4 Classification Phase

We adopt a standard full connected network with softmax normalization function
on the enhanced feature v′ to calculate the final reputation score as follow:

ỹ = softmax(WT ∗ v′ + b) (2)

where W is the weight and b is the bias. ỹ = [y1, y2] is a two-dimensional vec-
tor. y1 denotes the probability of the domain is malicious and y2 denotes the
probability of the domain is benign. The softmax is a normalization function
to ensure the sum of ỹ to 1.

3.5 Model Optimizing

We use cross entropy loss to measure the training process:

L(y, ỹ) = − 1
N

N∑

i=1

[y(i) log ỹ(i) + (1 − y(i)) log(1 − ỹ(i))] (3)

where N is the number of training samples, y is the vector of true classes (i.e.,
0 for benign, 1 for malicious) and ỹ is the vector of predicted classes. We use
stochastic gradient descent (SGD) [7] algorithm to minimize Eq. (3). In each
step, the SGD algorithm samples a mini-batch of data (We empirically set batch
size equal to 64) and then updates the model parameters. Besides, we train the
model with many epochs (100 epochs in our experiments).

4 Experiment

In this section, we perform a comprehensive evaluation of MalHunter. First, we
introduce the datasets used in the experiments. Then, we evaluate the effective-
ness of MalHunter. At last, we assess the time delay of MalHunter and compare
it with two previous works.

4.1 Dataset

1. Malicious Domains: We collected malicious domains from Malware
Domains List1, Phishtank2 and Openphish3 everyday from Jan. 03, 2017

1 http://www.malwaredomains.com.
2 http://www.phishtank.com.
3 https://openphish.com.

http://www.malwaredomains.com
http://www.phishtank.com
https://openphish.com
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Table 1. Data description. Each row in the table represents the ISP network of data
source, the number of total, the known malicious and benign samples in the ISP

ISP First month (Dec 5, 2016–Jan 5, 2017) Second month (Jan 6, 2017–Feb 5, 2017)

Malicious Benign Malicious Benign

ISP1 157,329 157,329 70,073 70,073

ISP2 108,945 108,945 62,292 62,292

ISP3 121,651 121,651 59,269 59,269

to Oct. 14, 2017. In addition, we use the Zeus Block List4 and the list of
domains that are used by Conficker [11]. These malicious domains represent
a wide variety of malicious activity, including botnet C&C servers, drive-by
download sites, phishing pages and so on.

2. Benign Domains: We collected legitimate domains according to Alexa5.
We chose domains that are consistently ranked among the top 1 million from
Jan. 16, 2015 to Mar. 5, 2017 (513 days). In addition, we manual filter out
domains that allow for the “free registration” of subdomains, such as popular
blog-publishing services or dynamic DNS domains (e.g., wordpress.com and
dyndns.com), as their subdomains are often abused by attackers. Finally, this
produced a list of 270,778 popular domains.

3. Real-world DNS Traffic: CNCERT/CC [1] provided us two-month-long
(Dec 5, 2016 - Feb 5, 2017) passive DNS traffic, about 530 millions DNS
queries, collected from three large ISP networks6 in China. We refer to these
ISP networks simply as ISP1, ISP2 and ISP3. Notice that this paper is part
of an IRB-approved study; appropriate steps have been taken by our data
provider to minimize privacy risks for the network users. Table 1 presents the
number of labeled datasets in the two months using the collected malicious
and benign domains.

4.2 Effectiveness Analysis

We conducted our experiments using the data described in Table 1. We train the
model with the data in the first month and test its performance on the data in
the second month.

Our approach involves five parameters: three (i.e., Lu, Ld and LI) in the
embedding phase and two (i.e., n1 and n2) in feature enhancing phase. We
conducted the experiments using various values for each parameter to demon-
strate the effectiveness. Specifically, we try n1 ∈ {96, 128, 160, 256}, n2 ∈
{32, 48, 64, 80}), Lu ∈ {50, 100, 200}, Ld ∈ {50, 100, 200} and LI ∈ {50, 100, 200}

4 https://zeustracker.abuse.ch/blocklist.php.
5 http://s3.amazonaws.com/alexa-static/top-1m.csv.zip.
6 The three ISP networks are located in the provinces of Anhui, Guangdong and

Shanghai respectively.

https://zeustracker.abuse.ch/blocklist.php
http://s3.amazonaws.com/alexa-static/top-1m.csv.zip
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Table 2. Detail experimental results on the three ISP datasets using different values
of Lu, Ld and LI . Precision (Prec.) = NTP

NTP+NFN
, Recall (Rec.) = NTP

NTP+NFP
and

F-Measure (F-Mea.) = 2 ∗ Prec.∗Rec.
Prec.+Rec.

. We set n1 = 128 and n2 = 64.

Parameter ISP1 ISP2 ISP3

Lu Ld LI Prec. % Rec. % F-Mea. % Prec. % Rec. % F-Mea. % Prec. % Rec. % F-Mea. %

50 50 50 97.47 87.30 92.11 99.07 88.34 93.40 98.70 86.00 91.91

50 50 100 97.69 85.87 91.40 99.14 89.88 94.28 98.44 87.03 92.39

50 50 200 98.81 86.81 92.42 97.31 91.29 94.20 99.06 88.01 93.21

50 100 50 98.64 89.06 93.60 98.64 89.30 93.74 98.75 88.94 93.59

50 100 100 98.34 88.70 93.27 98.70 91.35 94.88 99.44 87.81 93.26

50 100 200 98.10 90.53 94.16 98.73 91.36 94.90 98.76 89.13 93.70

50 200 50 98.45 90.36 94.23 99.39 89.63 94.26 97.70 88.97 93.13

50 200 100 98.80 89.95 94.17 98.90 92.34 95.51 99.30 89.35 94.06

50 200 200 98.47 91.43 94.82 99.30 91.22 95.09 99.16 89.62 94.15

100 50 50 97.16 87.35 92.00 97.95 90.07 93.85 98.01 85.76 91.48

100 50 100 97.16 88.67 92.72 98.16 90.22 94.02 98.31 88.65 93.23

100 50 200 97.84 88.18 92.76 98.30 91.03 94.53 98.60 88.54 93.30

100 100 50 97.51 88.82 92.96 98.64 90.86 94.59 98.90 89.34 93.88

100 100 100 98.30 89.75 93.83 98.77 91.23 94.85 98.56 90.66 94.45

100 100 200 98.59 89.49 93.82 99.08 91.11 94.93 98.44 89.76 93.90

100 200 50 98.39 90.00 94.01 98.70 91.35 94.88 98.85 89.06 93.70

100 200 100 97.96 90.40 94.03 99.13 89.94 94.31 99.02 88.55 93.49

100 200 200 97.98 91.53 94.64 98.51 91.97 95.13 99.12 89.33 93.97

200 50 50 96.70 86.26 91.19 96.67 89.73 93.07 97.60 89.69 93.48

200 50 100 96.98 87.77 92.14 98.25 89.82 93.84 97.55 89.79 93.51

200 50 200 96.95 87.81 92.15 98.33 91.22 94.64 97.65 91.38 94.42

200 100 50 96.71 90.27 93.38 98.09 90.10 93.93 98.46 86.75 92.24

200 100 100 97.30 90.67 93.87 97.07 91.57 94.24 98.34 88.11 92.94

200 100 200 97.08 91.12 94.01 98.74 91.05 94.74 98.55 89.14 93.61

200 200 50 97.50 90.07 93.64 98.57 91.42 94.86 98.57 89.33 93.72

200 200 100 98.14 90.23 94.02 97.43 92.50 94.90 99.21 89.01 93.84

200 200 200 98.40 90.29 94.17 98.73 92.87 95.71 98.35 90.34 94.17

to run the experiments. The results show that different values of these parame-
ters lead to almost the same performance. Due to the space limitation, we only
present the results of using different values of Lu, Ld and LI in Table 2.

We observe that MalHunter can achieve promising accuracy on the three
ISP datasets under all the combinations of the three parameters. On average,
it achieves a 92.49% F-Measure with a 98.34% precision and a 87.32% recall,
suggesting that MalHunter can effective detect malicious domains even using
only a single DNS query.
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4.3 Time Delay Comparison

The time delay of detection is the duration between the domain is seen and the
system finally outputs its detection result (i.e., malicious or benign). It can be
divided into two parts: (i) data delay, the time to collect the features evident
after the domain is appeared; and (ii) calculation delay, the time to calculate
the reputation after obtaining the features.

Fig. 4. The distributions of data delay of Exposure [3] and Segugio [12]

MalHunter only relies on a domain’s single DNS query to determine its rep-
utation. Hence, when a domain is appeared in DNS system, we can determine
its reputation immediately. Thus, the data delay is none of our approach. We
compare the data delay with two existing reputation systems:

(i) Exposure [3]: It identifies malicious domains according to their 20 times
query behaviors. Therefore, it filters all domain names that requested less
than 20 times.

(ii) Segugio [12]: It uses one day’s DNS traffic to construct a machine-domain
graph for extracting machine-based features. Besides, it discards all domain
names that are queried by only one machine.

Figure 4 shows the time of data delay of these two works. On average, Expo-
sure needs 17.45 days to accumulate 20 times requests and Segugio is about 16.43
hours late to detect the appeared malicious domains. For instance, if a domain is
appeared at 9:00 am, Segugio can only detect it at 24:00. Compared to these two
reputation systems, MalHunter saves the data delay time and detect malicious
domains days or weeks earlier.

We further assess the calculation delay of our approach. We implemented
MalHunter in PyTorch and conducted all experiments on a machine that has
an 8-core Inter(R) Core(TM) i7-6700K CPU @ 4.00GHz with 32 GB RAM and
a NVIDIA GeForce GTX 1080 GPU with 12 GB RAM. Table 3 presents the
average elapsed time of MalHunter. Note that it takes about 11.92 s to train
per epoch on nearly 300 K samples, thus we need about 20 min (100 epochs) to



694 C. Peng et al.

Table 3. Summary of elapsed time of MalHunter, “us” denotes microsecond (10−6

second)

ISP Train (second/epoch) Test (us/sample)

ISP1 14.36 10.33

ISP2 11.70 10.46

ISP3 9.69 10.44

train the model well. When predicting new samples, it costs about 10.41 us per
sample. Therefore, MalHunter can approximately deal with 100,000 DNS queries
per second, making it possible for deploying online.

5 Discussion and Future Work

In this section, we discuss some possible limitations and future work of our
method.

First, MalHunter is a data-driven method, it relies on DNS traffic to train
the model parameters. When deploying MalHunter in a new ISP network, the
users served are different. Therefore, it needs to retrain the model with the DNS
traffic collected in that ISP network. Once, MalHunter is well trained, it can
detect malicious domains timely.

Second, MalHunter identify a new domain’s reputation based on its associa-
tions with previous users and IPs. Therefore, if a brand-new DNS query occur
(i.e., the user, domain and IPs are all never seen before), MalHunter cannot
determine its reputation. However, we observe that the set of users and IPs in a
given ISP network will gradually converge. Our study shows after collecting one-
month DNS traffic, 86.82% users, 70.05% domains and 69.63% IPs in the second
month are seen in the first month, therefore, the probability of a brand-new DNS
query occurring is as low as (1−86.82%) * (1−70.05%) * (1−69.63%) = 1.20%. On
the other hand, MalHunter is now a supervised method, for the future, we can
employ an unsupervised machine learning algorithm to pre-train the DNS traffic
to further reduce the probability of a brand-news query.

6 Conclusion

Determining the reputation of DNS domains provides significant benefits in
defending against many Internet attacks. However, existing methods calculate
a domain’s reputation based on the evidences after the domain is used, delay-
ing detection. In this paper, we present MalHunter, a lightweight and timely
detection technique to identify malicious domains via a single DNS query. The
experimental results using real-word DNS traffic show that MalHunter can sig-
nificantly reduce the time delay compared to existing detection systems while
maintaining as high detection accuracy.
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Abstract. Traffic systems and signals are used to improve traffic flow, reduce
congestion, increase travel time consistency and ensure safety of road users.
Malicious interruption or manipulation of traffic signals may cause disastrous
instants including huge delays, financial loss and loss of lives. Intrusion into
traffic signals by hackers can create such interruption whose consequences will
only increase with the introduction of driverless vehicles. Recently, many traffic
signals across the world are reported to have intruded, highlighting the impor-
tance of accurate detection. To reduce the impact of an intrusion, in this paper,
we introduce an intrusion detection technique using the flow rate and phase time
of a traffic signal as evidential information to detect the presence of an intrusion.
The information received from flow rate and phase time are fused with the
Dempster Shaffer (DS) theory. Historical data are used to create the probability
mass functions for both flow rate and phase time. We also developed a simu-
lation model using a traffic simulator, namely SUMO for many types of real
traffic situations including intrusion. The performance of the proposed Intrusion
Detection System (IDS) is appraised with normal traffic condition and induced
intrusions. Simulated results show our proposed system can successfully detect
intruded traffic signals from normal signals with significantly high accuracy
(above 91%).

Keywords: Traffic signal � Intrusion detection � Intelligent Traffic System

1 Introduction

With ever increasing population in urban areas, traffic congestion management became
one of the major issues in the big cities. Intelligent Traffic Systems (ITS) uses adaptive
traffic control system to improve the way of managing traffic on road. ITS aims to
introduce different innovative traffic management services to make road safe for the
commuters, use the existing transport network efficiently and make the Traffic Man-
agement System (TMS) more coordinated by providing real-time and better dissemi-
nation of traffic information. Innovative technologies surrounding ITS are on the rise,
valuing the Global ITS market at US$ 21,481.4 M in 2017, and projected to reach US$
70,798.4 M by 2027, indicating a compound annual growth rate of 12.7% [1]. In ITS,
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D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 696–707, 2018.
https://doi.org/10.1007/978-3-030-01950-1_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_41&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_41&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_41&amp;domain=pdf


different wireless communication methods (e.g., Dedicated Short Range Communica-
tion (DSRC) or cellular network) are being used to make the communication between
vehicles and the road infrastructure. These wireless communication methods are vul-
nerable to different cyber-attacks. There are mainly four components in ITS: (a) On
Board Unit (OBU), (b) Road Side Unit (RSU), (c) Vehicle Detector (VD), and
(d) Signal Controller (SC). These components use wireless technologies in some point
to communicate with each other. In last few years research on cyber-security of
transportation systems was mainly focused on inter-vehicle communications. A number
of security breaches have already been reported. An Argentinian security expert
intruded into New York City’s wireless vehicle detection system and showed that
control of the devices (e.g., RSU, OBU, VD, and SC) can be compromised. It also
showed that attackers can also send malicious or corrupted data [2–6].

Existing and future ITSs have huge risk of cyber-attacks. Attacks on automated
vehicles and ITSs will have huge economic impact and even risk of loss of human life.
These presents a pressing need to develop an IDS for ITS. This has been compounded
by the fact that traffic control systems will be need to interact and manage many robotic
systems (e.g., driverless cars) in the future. Vehicle-to-vehicle and infrastructure
communication is based on wireless communication and ad-hoc in nature. Since
wireless technologies are vulnerable to many attacks, consequently, future ITS will be
very susceptible to various types of attacks including cyber-attacks. For this reason, to
minimise the impact of the attack and study the cybersecurity of traffic infrastructure,
the National Cooperative Highway Research Program (NCHRP) proposed few new
projects to introduce some steps to mitigate the impacts cyber-attacks on TMS [7, 8].

Though reported attacks on ITS currently are limited to attacks on computers in the
traffic controller, safety cameras installed in the RSU, and processing units installed in
the signals of the intersection, undoubtedly such attacks will be on the rise in future [9].
Up to our knowledge, there is no Instruction Detection System (IDS) available in the
current literature to detect attacks on traffic signal units and ITS in general. In this
paper, for first time we have proposed an IDS for ITS. Our proposed system can detect
the attacks in the road sensors, traffic signals and local traffic controller. We have
theoretically modelled our proposed system using the DS decision theory considering
the evidential observations of vehicle flow rate at intersections and the phase time of
traffic signal changes and their historical data recorded by transportation authorities.
For the verification and validation of our IDS, we developed a simulation based on the
traffic simulator called SUMO [10] using many real scenarios and the data collected by
the Victorian Transportation Authority, Australia called VicRoads. Simulated results
show our proposed system can successfully detect overall 91.92% of original (non-
intruded) and 91% of intruded traffic signals. Therefore, our proposed IDS can suc-
cessfully detect most attacks on the traffic signals with a very number of false alarms.

2 Intelligent Traffic Systems

ITS uses different types of detectors to detect number of vehicles, speed of the vehicle,
and type of the vehicle. There are mainly two types of detectors named strategic
detectors and tactical detectors. Strategic detectors are used to gather vehicle data to
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effectively use the signal phase time and tactical detectors gathers vehicle data to assist
ITS make decision to set different state of the phase of any intersection, set the variable
speed limit and cycle time of a traffic signal. Several driver assistance sensor systems
installed in modern smart vehicles can communicate with the RSU to receive and
provide information to increase road safety and smart traffic management. Commu-
nication technologies like the IEEE 802.11p standard is available in ITSs for V2V, V2I,
I2I I2X and V2X communication [11, 12]. Different types of Adaptive traffic control
systems (ATCSs) e.g., Sydney Coordinated Adaptive Traffic System (SCATS), OPAC,
RHODES, ACS Lite and InSync [11, 13] have been developed to reduce travel time
and congestion, In our study we have selected SCATS, as this one of the best ATCSs
and used in approximately 37,000 intersections in 27 countries. A SCATS- compatible
Traffic Signal Controller (TSC) collects vehicle information from many different
methods. These methods are (i) Triangulation method, (ii) Vehicle re-identification,
(iii) GPS based methods and (iv) Smartphone based rich monitoring. SCATS has
different operation modes. They are (i) Master Link, (ii) Flexi Link, (iii) Isolated,
(iv) Hurry Call and (iv) Manual Operation. Depending on the traffic condition and
demand, SCATS can operate on any of these operation modes [13].

2.1 Attacks in ITS

In ITS, different signal controller units are used to communicate between the signals in
adjacent intersections, maintain the phase time, cycle time, and the operational status
provided by the central traffic controller. Road side sensor systems and different driver
assistance sensor systems installed in the modern vehicles can communicate with the
RSU to receive and provide information to increase road safety and smart traffic
management. Communication standards like the IEEE 802.11p is available in ITSs for
V2V, V2I, I2I I2X and V2X communication. Different types of Adaptive traffic control
systems (ATCSs) e.g., Sydney Coordinated Adaptive Traffic System (SCATS), OPAC,
RHODES, ACS Lite and InSync [11] use real time traffic data to optimize the cycle
time of the traffic signals to reduce travel time and congestion [11, 12]. These systems
are at risk of going under different types of cyber-attack based on their communication
methods.

Researchers at the University of Michigan [13] shown that traffic control systems
uses unencrypted wireless signals and default username and password to manage the
traffic signals and traffic controller that controls the lights and walk signs. These can
make the traffic signal and traffic controller system easy target for the hackers. Denial of
Service attack Distributed Denial of Service attack on Vehicular Ad-hoc Network
(VANET), ITS and TMS is possible by jamming communication channel, network
overloading, and packets dropping [14, 15]. Fake data insertion, ransomware attack,
rail network disruption and malware attacks in different ITS units were reported in
different cities in the world [2, 17, 18]. These attacks cause huge traffic jam, financial
loss, disruption to transport ticketing system and cyber threats to transport authority.
Attacker can also use Sybil attack to provide misleading information to nearby vehicles
or the road side traffic infrastructure [16]. GPS hacking can effect navigation of
driverless cars, drones and automated emergency vehicles to send the vehicle to dif-
ferent location or provide false data to traffic controller. Data spoofing attack on even
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single vehicle can increase the total delay by as high as 68.1% which completely
reverses the benefit of using the Intelligent Traffic Signal System (I-SIG) system
(26.6% decrease) by U.S. Department of transportation and cause the mobility to be
even 23.4% worse than that without using the I-SIG system [17, 22].

3 Proposed Intrusion Detection Method

3.1 Overview of the Proposed IDS

Our proposed model mainly monitors the status of current traffic signal, which is
statistically determined considering the flow rate and the density of vehicles, and the
signal phase time of that traffic signal.

To assess the whether the traffic signal is behaving as normal or unusual, the current
status is compared and contrasted with the relevant status of that traffic signal derived
from the corresponding historical data recorded by its TMS. The basic operating
principle of the proposed model is shown in Fig. 1. To reduce the false alarms in
detection, firstly, the proposed model checks whether there is any software or hardware
malfunction. If the deployed mechanism signals no software or hardware malfunction,
the model then further verifies whether the MAC address is registered in the system. If
the MAC address is not registered, it sends a message to the controller system that the
data is coming from an unauthorized sensor. Otherwise, our system checks whether the

Fig. 1. An overview of the proposed intrusion detection system. SW = Software and
HW = Hardware
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current observation data sufficiently deviates from the corresponding historical obser-
vation pattern. If it sufficiently deviates, it confirms that there is an intrusion in that
traffic signal. However, there may be special events (e.g., sports, festival) occurring
seasonally and/or periodically throughout the year, which may affect the signal. To
reduce the impact of those special events, the relevant historical data for the similar
time that were affected by those events are chosen in our proposed model. Our pro-
posed model consists of mainly two parts – (i) monitoring the status of the traffic signal
and (ii) evaluating the traffic signal to detect intrusion. Those components are described
below.

3.2 Monitoring the Status of the Traffic Signal

The traffic signal is monitored in two phases. In the first phase, we use the MAC
address of the sensors. People (e.g., hackers) can use external devices equipped with
sensors to connect with the TMS network through wireless communication infras-
tructure to exploit the system vulnerability and alter traffic data. Therefore, in the first
stage, we can verify whether the MAC address of a particular sensor belongs to the list
of registered MAC addresses. This verification process ensures to detect where any
unregistered sensor is attempting to send signal data raising suspicion. In the second
phase, our proposed approach determines whether a registered sensor have been
compromised. For this, we can exploit historical traffic pattern probability mass
function that has not been manipulated by intruder at a particular time within a par-
ticular time window (e.g., from 08:00 am to 09:00 am on Monday).

In this project, since we aim to use historical data to monitor the status of a current
traffic signal at a particular time, we collected all required and relevant data from Vic
Road’s traffic data [19]. How the probability mass function of these data for a particular
time window can be approximated, is detailed later.

For detecting the intrusion in this phase, we need to calculate continuous observed
values of some signal attributes. For this project, we have chosen the observed value of
the flow rate and phase time of a signal. This is because flow rate and phase time can be
used to obtain additional green time for creating traffic signal disruptions or having
illegal benefits. Other attributes (e.g., vehicle type, velocity, pedestrian count) are not
significant as they are not so effective like flow rate and phase time to make major
change in signal timing. Here, we need to use an inferencing method to assess the status
(e.g., Normal or Abnormal) of a traffic signal. There are many methods available in the
literature for inferencing such as Bayesian theory, rule based inferencing system and
Dempster Shafer (DS) decision theory. We have chosen the DS decision theory
because it is based on generalized Bayesian theory and provides distributing support
for different propositions using temporal data. For our proposed model, the frame of
discernment is defined as,

H = N,Af g ð1Þ

where, N and A represent the proposition of the current observation being Normal and
Abnormal, respectively.
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Since the flow rate and phase time are measured by respective individual sensor
data, the belief function contributing over a particular preposition needs to be statis-
tically measured for each sensor.

Let Rils be the id of a sensor placed in Lane l of intersection i having sensor type s,
where, s ¼ 1 and s ¼ 2 represent flow rate and phase time, respectively. Since we
observe events such as flow rate and phase time of a particular intersection over time
(e.g., the observed event in this case Es tð Þ at time t at a particular day), we observe the
data in a time window (e.g., 08:00 am–09:00 am) of a day considering working and
non-working days, we need to use the probability mass function of the historical data
corresponding to that time window of that day to find out the probability of a particular
observation being normal. Therefore, the belief over proposition N using the DS theory
can be defined as,

BeliefRils Nð Þ ¼
X

Es tð Þ�N
mRils Es tð Þð Þ ð2Þ

where, Rils;N; and Es tð Þ are as defined before and mRils is the probability mass function
of sensor Rils. Note, Eq. (2) represents the lower bound of a confidence interval for
estimating the status of proposition being N.

The upper bound of the confidence interval can be defined as,

PlausibilyRils Nð Þ ¼ 1�
X

Es tð Þ \N¼; mRils Es tð Þð Þ ð3Þ

We have two types of evidences being continuously observed over time such as
EF tð Þ = flow rate and EP tð Þ = phase time at time t. So for proposition N, the obser-
vation of both evidences can be fused based on the DS theory in the following way,

mRilF � mRilPð Þ Nð Þ ¼
P

EF tð Þ \EP tð Þ¼N mRilFðEF tð ÞmRilP EP tð Þð Þ
1�P

EF tð Þ \EP tð Þ¼; mRilFðEF tð ÞmRilP EP tð Þð Þ ð4Þ

Either or both of the sensors can be compromised by the hackers. As mentioned
before, to determine whether they have been attacked, individually or both, we can
compare and contrast their observed values with their corresponding and authentic
(e.g., not attacked or forged) historical values. This accentuates the development of
probability mass function mRils used in the DS theory based fusion approach defined in
(4). The development of mRils using the VicRoads’s historical traffic signal data
uploaded Victoria’s state government website [19] is described in the following
section.

3.3 Development of the Probability Mass Function

Special event usually happens in a particular period of a year. The occurrence of a
special event can increase the likelihood of having unusual historical data than normal
data during that specific timeframe. This implies that we need to use historical traffic
signal data with and without the occurrence of events for both evidences. We calculated
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histograms and their corresponding best fit normal distribution curves of the historical
data for both flow rate and phase time as below.

Without any event occurring, the histogram of the flow rate per hour and phase time
on working Mondays from 08:00 am–09:00 am in 2017 and their corresponding best fit
normal distribution curves of five different intersections are shown in Figs. 2(a)–(e) and
3(a)–(e), respectively. All of the figures for both flow rate and the phase time show that
all probability mass functions are approximately normally distributed. This is vindi-
cated by their corresponding well fitted normal probability mass functions for all curves
as shown in the labels where l and r represent the mean and standard

Fig. 2. Histogram and the corresponding fitting normal curves of different flow rates of five
different intersections (a) Intersection 1, (b) Intersection 2, (c) Intersection 3, (d) Intersection 4,
(e) Intersection 5.

Fig. 3. Histogram and the corresponding fitting normal curves of different phase time of five
different intersections (a) Intersection 1, (b) Intersection 2, (c) Intersection 3, (d) Intersection 4,
(e) Intersection 5.
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deviation of the respective best fit normal curve. Using the probability mass functions
developed from the historical data, we need to calculate the probability of observed
evidences (flow rate and phase time) which is described below.

3.4 Calculating Probabilities of the Observed Evidences

In this section, we need to calculate the probabilities of the observed evidences for both
flow rate and phase time, respectively. Since, as explained before, the probability mass
functions are normally distributed, the probability of an evidence can be calculated as,

mRils xð Þ ¼
1� Rz

0

1ffiffiffiffi
2p

p e�
x2
2 dx z� 0

1� R0
z

1ffiffiffiffi
2p

p e�
x2
2 dx Otherwise

8>><
>>:

ð5Þ

where, z = (x−l)/r, x ¼ Es tð Þ for s ¼ F or P, and l and r are the mean and standard
deviation of the probability mass function, respectively. Once the probability of a
particular evidence is calculated, we use this to evaluate the status of the traffic signal
which is described in the next section.

3.5 Evaluating the Traffic Signal to Detect Intrusion

To detect an intrusion in the traffic signal, we need to evaluate the status of the traffic
signals. This status is used in our model to determine the normal behavior of a traffic
signal based on the historical data. If we know the value of current events (e.g., EF tð Þ
and EP tð Þ; we can calculate their probabilities as mRilFðEF tð ÞÞ and mRilPðEP tð ÞÞ using (5) and
the l and r of their corresponding probability mass functions. Then next, the proba-
bility of mRilF � mRilPð Þ being N. If mRilF � mRilPð Þ�[, the traffic signal is assumed to
be normal, otherwise, it is intruded. The sensitivity and accuracy of our proposed
depend on the value of Ø. However, in average case, Ø can be considered 0.5.

4 Performance Evaluation

4.1 Simulation Environment

We instigated our model on the Simulation of Urban Mobility (SUMO) and simulated
using real roadmap on SUMO toweigh the intrusion detection performance of ourmodel.
The following parameters were considered while setting up the simulation environment.

Map: We used the road map of Melbourne CBD and VicRoads’s real traffic data
available in [19]. We have used five different intersections in Melbourne CBD.

Density and flow rate: We selected the peak-time density and flow rate in our sim-
ulation using the traffic data from 08:00 am to 09:00 am Monday at five busy corners of
Melbourne CBD. The density and flow rate of an intersection at time t were calculated
in the simulation using a popular microscopic traffic model presented in [21].
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Vehicle type and traffic distribution: We considered mixed vehicle types where 65%
vehicles were passenger vehicles, 20% delivery vans, 15% bus (both public and free
shuttle services), 5% tram and some random pedestrians.

Car following model: We used the Krauss car following model in our simulation.
Krauss car following model considers that car follow gradual deceleration while
braking [22].

Normal and intrusion scenarios: For normal condition, the flow rate and phase time
of an intersection for a particular scenario were derived for the simulation model
(SUMO). In the simulation model, traffic distributions were initiated with the respective
and non-compromised historical information of VicRoads online data [19]. For sim-
ulating intrusions to the traffic signals, flow rate of an intersection for a particular
scenario was changed by intuitive induced phase time and vice versa. Either the flow
rate or phase time was induced in such a way so that it remains within 68% to 95%
confidence intervals in some scenarios and outside of 95% confidence intervals of the
relevant historical data for the other scenarios.

4.2 Performance Metrics

We evaluated our intrusion detection results for all scenarios using the standard per-
formance metrics widely used in event detection, such as specificity, sensitivity, F-
score and overall accuracy.

4.3 Simulation Results and Analysis

We have tested 40, 41, 39, 42 and 44 scenarios for Intersection 1 to 5, respectively. As
a representative sample, Table 2 shows the probabilities of signals being normal for 4
scenarios having various flow rates and phase time for each intersection. Since the
initial and instantaneous traffic distributions were induced in the simulation from the
corresponding historical data, our proposed method is able to successfully determine
most of normal cases correctly with the exception of a few cases. Where in the sim-
ulation SUMO created normal traffic condition that deviates largely from historical
value, our model detected those scenarios as false negative. This happened because if
the traffic condition deviates highly from historical data, it can make disruption in
normal traffic management.

If the induced flow rate/phase time is taken within 68% to 95% confidence inter-
vals, for the short time (e.g., 1 or 2 cycles) attacks, our proposed IDS fails to detect
intrusion. This is because since the induced flow rate/phase time is within 68% to 95%
confidence intervals, the probability of a signal being normal becomes high (e.g.,
0.525), which is greater than the threshold Ø = 0.5 used in making decision whether a
signal is normal. This is not a major issue as short time intrusion cannot create con-
siderable disruption in the traffic signals. However, in this case, if the intrusions prevail
over a long time (e.g., longer than 2 cycles), our proposed method can successfully
detect them. The reason is that long time intrusions can create disruption among all
adjacent intersections, which has been clearly reflected in our simulation. This even-
tually reduces the probability value of signal being normal considerably. Our proposed
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method can successful detect all intrusions if the induced flow rate/phase time is taken
outside of 95% confidence interval. Because of the higher value, it can create con-
siderable disruption among all closed by intersections, yielding the low value of the
probability of a signal being normal (e.g., 0.024). Our proposed system produced 18,
18, 17, 19 and 19 true positives (TPs), 19, 20, 19, 20 and 20 true negatives (TNs), 2, 1,
1, 1 and 3 false positives (FPs) and 1, 2, 2, 2 and 2 false negatives (FNs) for Inter-
sections 1 to 5, respectively (Table 1).

For Intersection 5, the number of FPs (3) is slightly higher than that of the other
intersections because for this intersection, the historical data used to generate traffic in
SUMO for the specific time period (08:00 am to 09:00 am, Monday) during which an
event occurred. This created more deviations compared with other intersections for the
flow rate and phase time obtained from SUMO from their corresponding historical data
distributions for the same events occurred in that time period throughout a year. Here,
TN refers to a normal condition is detected as normal, FN represents a normal con-
dition is detected as intrusion, TP means an intrusion is detected as intrusion and FP
indicates an intrusion detected as normal. The specificity, sensitivity, F-score and
accuracy of our proposed IDS for all intersections are shown in Table 3. These TP, TN,
FP and FN are used to calculated sensitivity (true positive rate) and specificity (true
negative rate). Our simulation result shows that we have high accuracy (91.74%) of
detecting hacking even though some of the attacking data were for very small period of
time.

Table 1. Probabilities of signal being normal

I Scenario#

1 (Normal) 2 (Abnormal) 3 (Normal) 4 (Abnormal)
FR PT Prob FR PT Prob FR PT Prob FR PT Prob

1 770 45 0.53 1850 45 .007 784 36.5 0.69 1320 36.5 0.20
2 1107 53 0.85 1850 53 0.31 1180 34.5 0.42 1720 34.5 0.19
3 770 45 0.65 1850 45 0.32 784 36.5 0.88 1320 36.5 0.01
4 944 48.5 0.74 1843 48.5 0.13 930 52 0.68 1786 62 0.23
5 803 45 0.89 1456 67 0.02 870 52 0.65 920 50 0.35

I = Intersection, FR = Flow rate, PT = Phase time, Prob = Probability of signal
being normal, abnormal.

Table 2. Performance metrics

Intersection Specificity Sensitivity F-score Accuracy

1 90.48 94.74 92.30 92.5
2 95.23 90 92.30 92.68
3 95 89.47 91.89 92.30
4 95.23 90.48 92.68 92.85
5 86.96 90.48 88.37 88.63
Overall 92.58 91.03 91.45 91.74
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5 Conclusion

In this paper, we have introduced a model to detect an intrusion in ITSs for the first
time. Our proposed IDS can detect any anomaly of traffic flow or signal phase time that
can make considerable disruption in traffic system. Our model is based on the esti-
mation of probability mass functions of traffic flow and phase time from the historical
data collected from an ITS and fusion of those variable using DS theory. To test the
efficacy of the system, we developed a simulation model considering the real traffic
flow rate, density and signal phase time using the real map of Melbourne CBD and the
historical data provided by VicRoads. The simulation model is built on SUMO, a
known road traffic simulator, and we created various traffic signal scenarios including
induced intrusions by making either flow rate or phase time or both intentionally
shorter or longer than their designed permissible durations. We assessed the perfor-
mance of the IDS using the standard performance metrics such as specificity, sensi-
tivity, F-Score and accuracy. Our proposed system can achieve detection accuracy of
91.03% and 92.58% for intruded and normal traffic conditions, respectively. Currently
our system misses intrusion when the intrusion duration is very short, i.e., 1 or 2 cycles
time. The reason being, such short interruption does not have any noticeable impact on
the traffic system and hence on the collected traffic data to show sufficient deviation
from normal signal. Future ITSs will have driverless vehicles, smart road infrastructure
and various sensors wirelessly connected to TMS, which will attract researchers to
work on detecting the vulnerability of future ITSs.
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Abstract. Modern malware imitates benign http traffic to evade detec-
tion. To detect unseen malicious traffic, a linguistic-based detection
method for proxy logs has been proposed. This method uses Paragraph
Vector to extract features automatically. To generate discriminative fea-
ture representation, a balanced corpus is required. In actual proxy logs,
benign traffic is dominant, and occupies malicious feature representation.
Therefore, the previous method does not perform accuracy in practical
environment.

This paper demonstrates that the previous method is not effective
in actual proxy logs because of the imbalance. To mitigate the imbal-
ance, our method extracts important words from proxy logs based on
the TFIDF (Term Frequency Inverse Document Frequency) scores. The
experimental results show our method can detect unseen malicious traffic
in actual proxy logs. The best F-measure achieves 0.94 in the timeline
analysis.

Keywords: Drive by download · Neural network · Paragraph Vector
Doc2vec · TFIDF

1 Introduction

Modern malware imitates benign http traffic to evade detection. To detect unseen
malicious traffic, a linguistic-based detection method for proxy logs has been pro-
posed [1]. This method uses Paragraph Vector to extract features automatically.
In the previous work, this method performed good accuracy in the balanced
datasets. To generate discriminative feature representation with Paragraph Vec-
tor, a balanced corpus is required. If a corpus contains too much of words and
too little of others, an imbalance occurs. Because, the large corpus occupies most
of the whole corpus. Such a corpus cannot generate discriminative feature repre-
sentation. This method expects that the corpus is extracted from actual benign
proxy logs and malicious pcap files. Actual proxy logs contain a huge amount of
words. To represent a huge amount of words, a corpus requires long-term and
much traffic. In contrast, malicious pcap files contain only limited words. Thus,
benign traffic is dominant, and occupies malicious feature representation. This
is due to the base-rate fallacy phenomenon [2]. Therefore, this method might
not perform accuracy in practical environment.
c© Springer Nature Switzerland AG 2018
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This paper demonstrates the effectiveness of the imbalance with actual proxy
logs. To mitigate the imbalance, this paper proposes how to generate a balanced
corpus from actual proxy logs. Our method extracts important words from proxy
logs based on the TFIDF (Term Frequency Inverse Document Frequency) scores.
TFIDF is a numerical statistic that is intended to reflect word importance. To
the best of our knowledge, the sole example using TFIDF in the field of network
security is extracting features of malware from host logs [3]. Our method can
detect unseen malicious traffic from network devices which monitor a wide range.

The main contributions of this paper are as follows: (1) Demonstrated that
dominant benign traffic occupied malicious feature representation. (2) Proposed
a method to mitigate the imbalance with TFIDF scores. (3) Verified that our
method could detect unseen malicious traffic in practical environment.

The rest of the paper is organized as follows. Next section describes Natural
Language Processing (NLP) techniques. Section 3 introduces the linguistic-based
detection method and indicates the imbalance. Section 4 proposes the method
to mitigate the imbalance. Section 5 demonstrates that dominant benign traffic
occupies malicious feature representation, and shows the effectiveness of our
method. Section 6 evaluates the result and Sect. 7 discusses related work.

2 Natural Language Processing (NLP) Technique

2.1 Paragraph Vector (Doc2vec)

Paragraph Vector (Doc2vec) [4] is an extension of Word2vec, and constructs
embedding from entire documents. Word2vec is a shallow two-layer neural net-
work that is trained to reconstruct linguistic contexts of words. Word2vec has
two models to produce a distributed representation of words. Continuous-Bag-of-
Words (CBoW) model predicts the current word from a window of surrounding
context words. Skip-gram model uses the current word to predict the surrounding
window of context words with the order reversed. These models enable to calcu-
late the semantic similarity between two words and infer similar words semanti-
cally. The same idea has been extended to entire documents. In the same manner,
Doc2vec has two models to produce Paragraph Vector a distributed representa-
tion of entire documents. Distributed-Memory (DM) is the extension of CBoW,
and the only change is adding a document ID as a window of surrounding context
words. Distributed-Bag-of-Words (DBoW) is the extension of skip-gram, and the
current word was replaced by the current document ID. Doc2vec enables to cal-
culate semantic similarity between two documents and infer similar documents
semantically.

2.2 TFIDF (Term Frequency Inverse Document Frequency)

TFIDF is a numerical statistic that is intended to reflect word importance to a
document in a collection or corpus, and one of the most popular term-weighting
schemes. A TFIDF score increases proportionally to the number of times a word
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appears in the document, and is often offset by the frequency of the word in
the corpus. TFIDF is the product of two statistics, term frequency and inverse
document frequency. Term frequency is the number of times that a term occurs in
a document. Inverse document frequency is a measure of how much information
the term provides. This means whether the term is common or rare across all
documents.

TFIDF of term i in document j in a corpus of D documents is calculated as
follows.

TFIDFi,j = frequencyi,j × log2
D

document frequencyi

A high weight in TFIDF is reached by a high term frequency in the given
document and a low document frequency of the term in the whole collection
of documents. Therefore, the weights tend to exclude common terms. The ratio
inside the log function is always greater than or equal to 1. Hence, the TFIDF
score is greater than or equal to 0. As a term appears in more documents, the
ratio inside the logarithm approaches 1, bringing the TFIDF score closer to 0.

Our method utilizes TFIDF scores to extract important unique words from
proxy logs.

3 Linguistic-Based Detection Method

3.1 Extracting Words

Based on a linguistic approach, a malicious traffic detection method for proxy
logs has been proposed [1]. The key idea of this method is treating proxy logs
as a natural language. Proxy logs contain date and time at which transaction
completed, request line from the client (includes the method, the URL and the
user agent), HTTP status code returned to the client and size of the object
returned to the client.

This method divides a single log line into HTTP status code, request line
from the client, size of the object returned to the client and user agent by a
single space. Then, the request line is divided into method, URL and protocol
version by a single space. Furthermore, this method divides the URL into words
by the delimiters which are “dot” (.), “slash” (/), “question mark” (?), “equal”
(=) and “and” (&). This method treats each strings separated by a single space
or the delimiters as a word. A single paragraph consists of the words extracted
from 10 log lines. Thus, this method derives paragraphs from proxy logs.

3.2 Previous Method

The previous method [1] uses two types of machine learning techniques. One
is Doc2vec an unsupervised learning model for feature extraction. This method
constructs a Doc2vec model from the paragraphs and trains the model. The
paragraphs are derived from benign and malicious proxy logs. Note that these
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logs have to be known as benign or malicious. Then, the paragraphs are converted
into feature vectors. In this process, the feature representation is automatically
extracted by the model. That is why this method utilizes the neural network
model. The other is a supervised learning model to classify the feature vectors.
This method trains the classifiers with the feature vectors and labels.

Subsequently, this method derives paragraphs from unknown proxy logs. The
paragraphs are converted into feature vectors with the trained Doc2vec model.
Finally, the trained classifiers predict the label from the feature vectors.

3.3 Imbalance

This method performed good accuracy in the balanced datasets, which were
generated from benign and malicious pcap files at the same ratio [1]. This
method requires affordable benign and malicious corpuses continually. Because
new websites are being created constantly as with malware. The benign cor-
pus is extracted from proxy logs in each organization. The malicious corpus is
extracted from malicious pcap files which are downloaded from the websites such
as Malware-Traffic-Analysis.net1. In reality, proxy logs in a large organization
contain a huge amount of words. In contrast, these malicious pcap files contain
only limited words. If we generate a dataset from both words at the same ratio,
the generated corpus cannot represent benign feature adequately. Because the
corpus contains only benign words as much as words in malicious corpus. If
we merely generate a dataset from both whole words, an imbalance occurs. In
this case, benign words occupy most of the corpus. Such a corpus cannot gener-
ate discriminative feature representation. Thus, benign traffic is dominant, and
occupies malicious feature representation. Therefore, this method might not per-
form accuracy in practical environment. A further section describes the detail.
To perform accuracy in practical environment, this method needs a balanced
corpus.

4 Proposed Method

4.1 Notion

To mitigate the imbalance, this paper pursues how to generate a balanced corpus
from actual traffic. In general, benign proxy logs contain a huge amount of
words. In contrast, malicious pcap files contain only limited words. To generate
a balanced corpus, both numbers of unique words have to be adjusted at the same
ratio. To adjust the number of unique words, our method utilizes TFIDF scores.
TFIDF is one of the most popular term-weighting schemes, and reflects word
importance to a document in a corpus. Our method extracts important words
based on the TFIDF scores, and removes the ephemeral words. This provides
two benefits: generating a balanced corpus and improving classification accuracy.
Our method extracts important words from benign proxy logs, and reduces the
number of unique words. Then, we can obtain a balanced corpus which contains
1 http://www.malware-traffic-analysis.net/.

http://www.malware-traffic-analysis.net/
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both appropriate unique words. Furthermore, our method attempts to extract
important words from malicious pcap files. This might improve classification
accuracy slightly.

4.2 Overview

This paper proposes a practical linguistic-based detection method which includes
how to generate a balanced corpus. Figure 1 shows an overview of the proposed
method.

Fig. 1. An overview of the proposed method.

Updated processes are surrounded by a broken line. First, our method con-
verts malicious and benign proxy logs or pcap files into words (1). Pcap files are
converted into pseudo proxy logs. Both logs are separated by a single space or the
delimiters. A single paragraph consists of the words extracted from 10 log lines.
The number of log lines was determined by an empirical approach. Next, our
method constructs TFIDF models from the malicious and benign words (2ab),
and extracts top-N important words (3ab). Both models have to be constructed
respectively. Hence, the extracted top-N unique words are different. Because
these unique words have to equally represent both traffic. Note that both mod-
els use the same N. To construct a balanced corpus, both numbers of unique
words have to be the same number. That is why our method extracts top-N
important words, does not extract words above a threshold. The default value
for N is the unique word number of the malicious words. N is a parameter value
to adjust the number of unique words. Our method extracts important words
based on the TFIDF score, and removes ephemeral words. Thus, our method
mingles both words, and obtains a balanced corpus. Then, our method trains a
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Doc2vec model with the balanced corpus, and converts both words into feature
vectors with the trained model (4). Finally, our method trains classifiers with
the feature vectors and labels (5). The classifiers are Support Vector Machine
(SVM), Random Forests (RF) and Multi-Layer Perceptron (MLP).

These are supervised learning models with associated learning algorithms
that analyze data used for classification and regression analysis. Given a set of
training data, each labeled as belonging to one or the other of two categories,
these training algorithms build a model that assigns new examples to one cate-
gory or the other.

Subsequently, our method derives paragraphs from unknown proxy logs in
the same way. This method extracts the top-N important words from the para-
graphs, which were extracted in the training process. The modified paragraphs
are converted into feature vectors with the trained Doc2vec model. Then, the
trained classifiers predicts the label from the feature vectors. The predicted label
is either malicious or benign.

4.3 Implementation

We implemented our method with gensim-1.2.1, scikit-learn-0.19.1 and chainer-
2.0.12. Gensim is a Python library to realize unsupervised semantic modelling
from plain text, and provides a Doc2vec model. Scikit-learn is a machine-learning
library for Python that provides tools for data mining with a focus on machine
learning, which contain SVM and RF. Chainer is a flexible Python framework
for neural networks which contain MLP. We use the same models and set the
same parameters for comparison with the previous method [1].

5 Experiment

5.1 Dataset

In this experiment, we use captured pcap files from Exploit Kit (EK) between
2014 and 2017 as malicious traffic. EK is a software kit designed to run on web
servers, with the purpose of identifying vulnerabilities in client computers. EK
seeks and exploits vulnerabilities to upload and execute malicious code on the
client computer. We chose some EKs which communicate via a standard protocol
and attempt to imitate benign http communication, and downloaded the packet
traces from the website MALWARE-TRAFFIC-ANALYSIS.NET. Table 1 shows
the detail.

Table 1. The detail of the MTA dataset.

Period Size Number Description

2014 238M 258 Angler, Fiesta, FlashPack, Magnitude, Neutrino, Nuclear, RIG

2015 186M 161 Angler, Fiesta, Magnitude, Neutrino, Nuclear, RIG

2016 373M 406 Angler, Magnitude, Neutrino, Nuclear, RIG

2017 109M 69 RIG
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This dataset (MTA) contains the pcap files extracted from traffic of the
latest EKs. Our method aims to detect malicious traffic from proxy logs. Thus,
we converted these pcap files into pseudo proxy logs. We extracted http traffic
from these pcap files and concatenated the requests and responses.

This paper uses actual proxy logs between 2016 and 2017 as benign traffic.
These actual proxy logs were collected at a campus network, which belongs to
a class B network. This network consists of more than 5,000 computers. Due to
our computer resource constraints, we extracted 1G bytes of logs in 2016 and
2017 respectively. We assume that these proxy logs represent benign traffic.

We mingle the malicious logs and benign logs into datasets. We split the
datasets into training data and test data for timeline analysis. This paper uses
three metrics: Precision (P), Recall (R) and F-measure (F).

5.2 Demonstrating the Imbalance

To compare the previous method [1] with the proposed method, we conducted
timeline analysis. In the timeline analysis, we used 2014’s MTA and 2016’s proxy
logs as the training data, and 2015’s MTA and 2017’s proxy logs as the test
data. Table 2 shows the numbers of unique words and vectors. The previous
method does not extract important words. The number of original unique words
in benign traffic is 608,805. The previous method constructed a Doc2vec model
from the original words. On the other hand, the proposed method extracted
8,200 important words from benign traffic, and constructed a Doc2vec model
from the reduced words. The numbers of vectors by both methods are the same,
and the numbers of the malicious vectors and benign vectors are quite different.
This means the experimental environment is more fair and practical.

Table 2. The numbers of unique words and vectors.

Method Class Dataset

Train Test

Word (N) Vector

Previous method Malicious 8,200 363 233

Benign 608,805 328,154 331,283

Proposed method Malicious 8,200 363 233

Benign 8,200 328,154 331,283

Next, Table 3 shows performance of the timeline analysis. In spite of reducing
words, the performance of the benign traffic is almost perfect. We focus on the
malicious traffic. The proposed method maintains the performance to a degree
in the timeline analysis. The best F-measure has reached 0.90. With the pre-
vious method, the decline is too large to detect malicious traffic. The previous
method shows quite poor performance. This is because dominant benign traf-
fic occupies malicious feature representation. Recall that the number of unique
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words in benign traffic was too larger than the number in malicious traffic. Thus,
the previous method does not perform accuracy in practical environment. The
proposed method can detect unseen malicious traffic in actual proxy logs.

Table 3. Performance of the timeline analysis.

Method Classifier Benign Malicious

P R F P R F

Previous method SVM 1.00 1.00 1.00 0.02 0.61 0.03

RF 1.00 1.00 1.00 0.00 0.00 0.00

MLP 1.00 0.99 1.00 0.04 0.57 0.08

Proposed method SVM 1.00 1.00 1.00 0.78 0.88 0.83

RF 1.00 1.00 1.00 1.00 0.52 0.69

MLP 1.00 1.00 1.00 0.95 0.86 0.90

5.3 Measuring Long-Term Performance

To measure long-term performance of the proposed method, we conducted time-
line analysis with the all datasets. In this experiment, we used from 2014’s to
2016’s MTA as the training data and 2015’s to 2017’s MTA as the test data
respectively. In the entire experiment, we used 2016’s proxy logs as the training
data and 2017’s proxy logs as the test data. Moreover, we optimized the numbers
of both unique words (N). Table 4 shows performance of the long-term analysis.

For the same reason, we focus on the performance of the malicious traffic.
In the case that we used 2014’s for training data and the others for test data,
the best F-measure has reached 0.94. Overall, performance gradually decreases

Table 4. Performance of the long-term analysis.

Classifier Training
data

Test
data

Malicious Training
data

Test
data

Malicious

P R F P R F

SVM 0.98 0.91 0.94 0.90 0.82 0.86

RF 2014 2015 0.98 0.55 0.71 2015 2016 0.94 0.34 0.50

MLP 0.99 0.88 0.93 0.92 0.77 0.84

SVM 0.88 0.71 0.78 0.69 0.66 0.67

RF 2014 2016 1.00 0.34 0.50 2015 2017 0.65 0.22 0.33

MLP 1.00 0.73 0.84 0.65 0.60 0.63

SVM 0.36 0.67 0.47 0.49 0.74 0.59

RF 2014 2017 1.00 0.31 0.47 2016 2017 0.96 0.38 0.54

MLP 0.84 0.64 0.73 1.00 0.71 0.83
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every year. Three years later, an F-measure maintains 0.73. In the case that we
used 2015’s for training data and the following for test data, the best F-measure
has reached 0.86. Next year, an F-measure maintains 0.67. In the case that we
used 2016’s for training data and 2017’s for test data, the best F-measure has
reached 0.83.

6 Discussion

As a result, our method using proxy logs could detect the latest EKs almost
precisely in practical environment. In the practical environment, the previous
method [1] showed quite poor performance. This is because dominant benign
traffic occupies malicious feature representation. Our method could extract
important words from benign traffic, and construct a balanced corpus. That is
the reason that our method performed good accuracy in practical environment.
Furthermore, our method optimized the numbers of both unique words, extract-
ing important words from both benign traffic and malicious traffic. This adjust-
ment improved classification accuracy slightly. Therefore, extracting important
words with TFIDF scores from proxy logs is efficient, and can mitigate the
imbalance.

Our method requires several tens of minutes to construct a Doc2vec model
and train a classifier in practical environment. In this experiment, our method
took roughly from 30 min to an hour. The greater the pcap files or proxy logs
to construct the models, the longer the required time. However, our method
can construct the models in advance. Therefore, our method performs within
a practical time. Our method can classify unknown logs with these pre-trained
models in a few seconds. Thus, our method can analyze network traffic or proxy
logs in real time.

In this paper, we used malicious pcap files and benign proxy logs. We can
obtain these files from the websites such as MTA, and own network system.
Though these files might contain privacy sensitive information such as personal
information, email addresses or client’s IP addresses. To detect unseen malicious
traffic, our method requires only pre-trained models. These models do not include
any payload and logs. Furthermore, our method does not require client’s IP
addresses and even distinguishing the client’s sources. This means our method
accepts most vantage points to monitor traffic.

7 Related Work

Invernizzi et al. [5] built a network graph with IP addresses, domain names,
FQDNs, URLs, paths and file names. Their method focuses on the correla-
tion among nodes to detect malware distribution. In this method, the whole
parameters are obtained from proxy logs. This method, however, has to cover
many ranges of IP addresses, and performs in large-scale networks such as ISPs.
In addition, this method requires the downloaded file types. Nelms et al. [6]
proposed a trace back system which could go back to the source from the URL
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transfer graph. This method uses hop counts, domain age and common features
of the domain names to detect malicious URLs. Bartos et al. [7] categorized
proxy logs into flows, and extracted various features from the flows. They pro-
posed how to learn the feature vectors to classify malicious URLs. This method
can decide the optimum feature vectors automatically. However, this method
demands devising basic features for learning. Mimura et al. [8] categorized proxy
logs by FQDNs to extract feature vectors, and proposed a RAT (Remote Access
Trojan or Remote Administration Tool) detection method using machine learn-
ing techniques. This method uses the characteristic that RATs continues to
access the same path regularly. This method, however, performs for only C&C
traffic. Shibahara et al. [9] focus on a sequence of URLs which include mali-
cious artifacts of malicious redirections, and built a detection system which uses
Convolutional Neural Networks. This method uses a honey client to collect URL
sequences and their labels, and performs for DbD attacks. Our method uses only
proxy logs and does not require any additional information and does not require
devising feature vectors at all. In addition, our method performs at any scale
and can detect not only DbD attacks but also C&C traffic.

8 Conclusion

In this paper, we focused on the imbalance that benign traffic was dominant and
reduced malicious feature representation. This paper demonstrated that the pre-
vious method [1] was not effective in actual proxy logs because of the imbalance.
To mitigate the imbalance, this paper proposed how to generate a balanced cor-
pus from actual proxy logs. Our method extracts important words from proxy
logs based on the TFIDF scores. We conducted timeline analysis with actual
proxy logs. The experimental results showed our method could detect unseen
malicious traffic in the practical environment. The best F-measure achieved 0.94
in the timeline analysis. Our method does not rely on attack techniques and does
not demand devising feature vectors. Furthermore, our method is adaptable, fast
and has a few constraints in practical use.

In this paper, we used the datasets which were generated by mixing malicious
pcap files and benign logs. Applying our method to other proxy logs is a future
work.
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Abstract. Nowadays, a majority of cyber-attacks are associated with
the insider threats owing to improper privileges management. Though
a number of access control mechanisms have been carried out, the
insider threats are continuously increasing. In cloud, however, the phys-
ical machines of datacenters are still exposed to danger. Without the
trusted hosts as the foundation, any further measurements for virtual
machines are in vain. In this paper, we introduce Simau: a mechanism
that constrains the privileges of root on each host in the cloud. It deploys
a decision engine in user-space to support the variable security poli-
cies. The scope of Simau covers both kernel-space and user-space. Under
Simau, once a system administrator logs into a host, he has only the
least privileges to finish his missions and all his requests for privileged
operations are determined by Simau. The experiments at last show good
performance of our mechanism.

Keywords: Insider threats · Root privileges · Privilege management
Host · Cloud · Security

1 Introduction

With the popularity of cloud computing, the organizations who have transferred
their local services to cloud datacenter are increasing. There is no doubt that
the security of cloud datacenter draws a considerable attention. Cloud Security
Alliance (CSA) published Cloud Computing Top Threats in 2016, pointing out
that the breaches caused by improper access control are ranked the second [14].
Usually, the tragedy is caused by a worker who gains the privileges more than
what he should have. Additionally, the security of hosts is the central premise of
any security-related topic in a cloud datacenter. No protection for the hosts, no
security for virtual machines. In conclusion, it is significant to apply appropriate
privilege management to physical servers in cloud.

There are several circumstances when the cloud datacenters are posed to
danger. Firstly, multifarious work of employees causes privileges abuse inad-
vertently. Moreover, once attracted by interests, the system administrator who
c© Springer Nature Switzerland AG 2018
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grants the total control rights over the system may copy confidential archives
out or remove the database, causing immeasurable damage. Furthermore, the
maintenance workers are often delegated with root privileges when asked to
troubleshoot or upgrade. Finally, there are attacks targeted for the root privi-
leges like social engineering against administrator’s password.

Existing work has separated privileges in hosts through the combination of
Linux Security Module (LSM) [1] and SELinux [11]. LSM is an integrated struc-
ture mediating access to the kernel’s internal objects through hooks. SELinux is
a successful application for LSM that implements a kind of Mandatory Access
Control (MAC) in the kernel. However, to protect hosts from insider threats, we
need a dynamic privilege management mechanism which assigns the privileges
on-demand. The decision logic of SELinux is fully implemented in the kernel.
As the result, though SELinux is equipped with several kinds of strategies, they
should be perceived as immutable without code recompilation. Furthermore, the
hooks of LSM is fixed, which is not enough flexible. Apart from some impor-
tant objects under the protection of LSM, there are some prominent executions
which are independent of any objects, or it is hard to find a clear range of entities
attached to them. To manage this kind of operations, we have to define custom
hooks. For example, “To install or uninstall software”, it seems that the objects
are the files related to the software while, in fact, it is not easy to identify all
files and directories associated with the software so that it is impossible to bind
pertinent data items to the procedure. In that case, we can insert a hook to the
installer to block the unauthorized operation, while LSM is unable to support
the custom hooks.

This paper introduces Simau which actualizes dynamic privileges manage-
ment for the hosts in cloud datacenters. Simau precludes the unauthorized pro-
cess from performing privileged operations by inserting hooks that spread over
the whole system. Certainly, the hooks of Simau in a host are not something of a
novelty. Nevertheless, upon this foundation, Simau provides autonomy—it sup-
ports user-defined hooks. It not only supports the reuse of LSM hooks to protect
kernel objects but also has the ability to implant tailor-made hooks to satisfy
different demands, as well as in user-space. Simau isolates decision-making from
enforcement point by deploying a decision engine in user-space so that the secu-
rity policies can vary as required and lead to the alteration of execution result
in hooks timely. These policies can be operated by remote controller or local
administrators and are carried into effects immediately.

Our contributions in this paper are:

1. We propose a dynamic privilege management mechanism for hosts in cloud
datacenters that takes effect on both kernel-space and user-space.

2. We deploy a decision point in user-space that dominates the decision timely
according to varied policies.

3. We devise a method of inserting user-defined hooks to kernel on-the-fly with-
out such great pains by livepatch.

The rest of the paper is arranged as follows: in the next section, we state
the background, including an overview of Simau and threat model. Then, we
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introduce the design principles of Simau in Sect. 3. In Sect. 4 we depict the tech-
nical details of our prototype system. Experiment in Sect. 5 reveals the perfor-
mance of our mechanism. The related work and conclusion are in Sects. 6 and 7
respectively.

2 Threat Model

In a typical cloud datacenter environment, the physical servers admit remote
users and occasionally local maintenance. Simau that is distributed in each phys-
ical machine receives and enforces commands from controller. The controller is
deployed in a central machine, keeping connection with each server host.

Trust Computing Base (TCB) is used for Simau to boot all components into
a trusted initial state. We assume that Simau runs in a healthy environment
with TCB, including secure hardware and operating system, as well as the built-
in security mechanisms. The components of Simau are well protected by some
process protection measurements [9,10]. For the controller, we assume that the
administrator of the controller is not allowed to operate on hosts locally and he
will not be in collusion with one who may have the local access to hosts.

Given such a premise, our threat model is a single bad behaved employee
who may perform some important operations on the hosts in a cloud datacenter,
such as a service manager who has the right to start or stop a couple of crucial
services, a system administrator who gains the root privileges on a certain host,
or storekeeper and cleaner who has the opportunity to access physical machines.
The employee may wield his power in wrong time, abuse his right or take the
advantages of his job, as a result, cause great loss to an organization.

As a typical instance, a third-party maintenance worker is asked to upgrade
software for an organization. In a traditional way, he may gain the administrator
password and wield root privileges because he has to operate on some important
directories. By this way, the worker obtains the additional rights that far more
than he needs. He may plant a malware into the kernel, or steal the information
asset through portable devices. If Simau, the worker will be assigned the privi-
lege of installer only. He can neither insert kernel modules nor load the devices
because Simau will refuse his requests.

3 Design

In this section, we introduce the design principles of Simau. Figure 1 shows the
main components of Simau and the interactions among them. There are four
main parts as the dash denotes: Policy Administration Point (PAP), Policy,
Policy Decision Point (PDP) and Policy Enforcement Point (PEP). We will give
the anatomy of each of them.
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ComandCarrier
MqClient

librabbitmq.so
FileEditorPAP

RulePolicy

AuthServerPost-Handler RuleLoaderPDP

Subject in User-space

libsimau.so

Transfer-Module

Subject in Kernel-spacePEP

D-BUS
netlink

Controller Security Administartor

Fig. 1. Simau Architecture

3.1 Policy Administration Point and Policy

PAP is the interface for remote controller and local administrator to edit Rule
files. MqClient which is an implementation of Message Queue is responsible for
connection with controller. It receives messages from controller, parses them and
passes the instructions to CommandCarrier to enforce the instructions on Rule
files. The instructions are usually related to add a new rule, modify an existed
one, or delete some rules. FileEditor in PAP refers to the common editor like
vim. Security Administrators can carry local maintenance work out via editing
the Rule files with the editors directly.

Policy is the security strategy we apply to our system. It exists in the form
of rules set regulating how Simau performs.

3.2 Policy Decision Point

PDP is a central component where the decision logic is fully actualized. It
has interactions with both Rule files and PEPs. Post-Handler, AuthServer, and
RuleLoader are the main parts. RuleLoader loads the rules from Rule files when-
ever a modification of files is detected. AuthServer makes a decision on every
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request according to the rules. The form of request is similar to the rule that
can be regarded as the binding of a set of requests plus the effect upon them.
For example, “Reading a file that is created on 2017-9-1” is a typical request
and “Reading the files that are created after 2017-8-26 is not allowed” is a rule.
The primary jobs of decision-making are searching and matching. In this case,
the request is matched to the rule and a negative value will be returned.

Post-handler offers an obligation mechanism for Simau. That is, some extra
processes are supported after modification detected on Rule files to enforce the
new policies. RuleLoader acts as the monitor to stare at the Rule files here.
AuthServer becomes conscious immediately whenever new rules are loaded and
it invokes a proper post-handler to perform some extra duties if any. For example,
a rule reading “Log-in is allowed from 8 am to 5 pm.” has an impact on the users
who try to visit the system, rather than the online users, which is apparently
irrational. The right way is that we kick out the illegal online users when the
time is up so that we put all users under the control of Simau. In this case, when
AuthServer is aware of the appending or alteration of rules related to log-in, it
invokes the corresponding post-handler immediately to check whether the online
users are in their valid time. This obligation mechanism can function as a “ruler”
to make sure that every entity obeys our policies.

3.3 Policy Enforcement Point

PEP acts as the gateway to a privileged operation. It exists in a process in the
form of a Simau-hook. subject is a process under the control of Simau with a
served Simau-hook. Our hook separates the subject into two parts: one is the
meaningful portion that we place control on, another is the unprivileged one.
The meaningful portion often refers to functions or steps that directly have
impacts on the outcome of procedures. If these functions were stepped over, the
original procedure would fail. Simau-hook makes the “meaningful portion” be
ignored if the subject is unauthorized no matter what other privileges it has been
delegated by other mechanisms. Because implementation details of kernel-space
and user-space are different, the subjects are segregated into user-space subjects
and kernel-space subjects.

The Transfer-Module is designed for subjects in kernel-space and it works as
a coordinator between AuthServer and subjects. For the Simau-hook of subjects
in kernel-space, since it has to be inserted into kernel, it is inevitable to modify
the code. The purpose of Transfer-Module is to share part of the responsibility
and decrease the workload of adjustment. As is known to all, the communica-
tion with user-space in kernel is not an easy task. Without Transfer-Module,
the new code will make the original segment long and convoluted. After allevi-
ating the burden, Simau-hooks in kernel are only responsible for two necessary
functions: communication with Transfer-Module which in kernel and collection
some information for request constructing. It is obvious that to communicate
with Transfer-Module which is written as a Loadable Kernel Module(LKM) is
simpler than that with AuthServer.
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3.4 Workflow

A subject will be trapped in the place where the Simau-hook serves. Under the
impact of Simau-hook, the Simau authorization is carried out. If the subject is
authorized, it would be allowed to continue, otherwise, it would go to fail. Note
that Simau can coexist with other mechanisms like ACL or DAC. The combined
policy of them is negative-override which means if any of them gains a negative
value, the subject would go to fail.

The arrows in Fig. 1 indicate the workflow during an authentication. When
the process arrives at a PEP, it generates an access request including the action
identity and other collected elements that help match the right rule. For PEPs
in kernel, the request is passed to Transfer-Module by a direct function call.
Once the Transfer-Module receives the access request, it reconstructs it in a
formal way and sends it to AuthServer through netlink. For PEPs in user-space,
the request is forwarded to AuthServer by D-Bus [16]. AuthServer searches the
matching rules for the request sequentially and the matching rule’s answer will
be returned. If there is no outcome for the request after scanning all the rules,
a failed value is returned. As soon as the final decision is obtained, AuthServer
returns the result to Transfer-Module or to PEPs in user-space directly. Finally,
PEP gets the reply and enforces it.

Another flow that has an association with AuthServer is the interaction with
a post-handler. Once Rule files are modified through PAP, either alteration or
appending, AuthServer will be informed by RuleLoader immediately and post-
handler is activated to perform its duty if provided.

4 Implement

According to our design principle, we realize a prototype of the system. In this
section, we will give the technical details of main components. The last part is
a demonstration of our prototype system.

4.1 Communication

The method we use in communication with a remote controller is message queue.
The message-oriented middleware protocol is Advanced Message Queuing Proto-
col (AMQP) [17]. MqClient realizes both message queue consumer and publisher
based librabbitmq.so. librabbitmq.so is an open-source C-language AMQP client
library.

The interplay between AuthServer and Subjects is of paramount importance
during an authentication. To provide service for subjects in both user-space
and kernel-space, we apply two Inter-Process Communication (IPC) methods—
D-Bus and netlink. D-Bus is for subjects in user-space. AuthServer will expose
its authorization API on D-Bus. The subjects can lunch a call to AuthServer
and get a reply from it through the bus. Netlink, as well as the Netlink socket
family, is a Linux kernel interface used for IPC between user-space and kernel-
space. As depicted above, a Transfer-Module is designed for sharing the load
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of Simau-hooks in subjects of kernel-space. When it is initialized, it registers a
special protocol via which Transfer-Module and AuthServer can communicate
with each other.

4.2 Hooks

PEP is inserted in a process in the form of a Simau-hook. If a program in user-
space is going to use Simau, it has to invoke Simau authentication functions
explicitly in code. One approach is to add the appropriate Simau-related func-
tions in source code and recompile the program. The other effective way relies on
the extensibility of the program. If the program has interfaces for custom binary
in some crucial points, such as the point where Linux-PAM(Pluggable Authen-
tication Modules for Linux) [18] is deployed, we can realize the Simau-related
functions in them too. Otherwise, it is impossible to use Simau. Despite this,
for user-space, to insert PEP is not a tough task because coding in user-space is
free and easy compared with that in kernel-space. Hence the kernel-space is our
main concern.

Fig. 2. Patch function structure in kernel-space

To plant PEP into kernel code escalates complexity of coding. To recompile
or rebuild kernels unsuitable when reconstruction is not allowed. After all, for
some operating systems, the source code is not available and it is also unwise
to take great pains to install a software. As it is known to all, many patch
methods have been actualized in kernel. For example, Livepatch, as the name
indicates, is a small piece of code “sewn” on kernel to cover the original one.
Figure 2 is the principle diagram. To be vivid, combining theory with livepatch,
we call the original kernel code Source Function (SF), and the covering code
Invasive Function (IF). The black arrows show the mechanism for live-patch
itself. The patch plants a jump instruction as a tamp at the very beginning of
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every function, namely SF in our picture, the destination of which is the first
instruction of IF. When the process runs into the SF, the jump instruction is
executed immediately after setting the runtime environments. Then, the next
construction to be executed is redirected to the IF. The runtime environments,
like stack or heap, however, are that of SF, because this jump can be perceived
as the conditional branch in a sequential piece of code of if. When the process
runs into if, there are two paths to jump to and has nothing to do with the
runtime environments. So that, when the process runs into return in the IF, the
address that invoked the SF is returned as if the IF were the invoked function.

The orange arrows are the flow of our mechanism. The code of PEP is written
in IF. When the process is redirected to the IF under the force of patch, the PEP
will perform its duty, to collect some elements etc. The communication method
we used in kernel-space is the calling of the external function and synchronization
primitive. Then, after receiving a message from Transfer-Module, the PEP will
enforce the result commands. If it is authorized, the process will go to the next
instruction of jump in the SF and the SF is processed as the way it is. Note that,
the SF discarding the first instruction is taken as a complete function to be
invoked here. That is, a function call happens and the new runtime environment
for the SF without jump is set. Hence SF will be back to IF under the action of
return in the last. Otherwise, if it not authorized, the SF is skipped completely
and the process goes to the next instruction right after authorization, as the
black arrow from “No”. Finally, the IF is returned with an error code indicating
the failure of this function. The operation will be redirected to error treatment
program. In this way, we deploy the PEP into kernel without such much cost.

5 Experiment

In this section, we measure the load that brings about by the Simau-hook. The
experiments are carried in a test-server (Linux 4.4.0-87-generic, dual-core 64-bit
Intel Core i5-3470 at 3.20 GHz, with 6MB/core cache and 2 GB memory).

We examine the running time of an authorized process with Simau-hook
in both user-space and kernel-space. Log-in is for the test in user-space. Since
Simau-hook has been inserted into PAM authentication management procedure,
the running time of PAM authentication is examined. We test the spending time
of PAM authentication management with Simau-check and record the average
value which is shown in Table 1. As shown in the second column, PAM authen-
tication management with Simau-check spends 6.095e−3 s on average. Likewise,
we record the time spent without Simau-check in the third column.

LKM is for the test in kernel-space. We examine the spending time of com-
mand insmod and rmmod respectively. Similarly, we have calculated the average
time out. Time delta in Table 1 reveals that the cost of Simau-check is negligible
because all of them are no more than 1e−3 s which a human being can hardly
feel about.
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Table 1. Performance results of Simau

Action with Simau-check(s) without Simau-check(s) Time delta(s)

Log in 6.095e−3 5.892e−3 2.03e−4

Insert module 1.924e−4 1.540e−4 3.84e−5

Remove module 1.870e−4 1.553e−4 3.17e−5

6 Related Work

The popular solutions to defend against insider threats are Access Control Mech-
anism [2,7,8,20] and the various variants of them [3]. However, all of them pay
attention to user-space with complicated policies. SELinux [11] are mechanisms
in kernel-space based on LSM [1] but it is not flexible enough because it takes
great pains to change security policies. CAP [4] and LandLock [6] implements
an explicit function to alter policy but it is limited to a single process. AppAr-
mor [21], known as a simple version of SELinux, aims to constrain a process
with limited resources. In contrast, Simau provides global control for each host
instead of a single process.

Container [5], Jails [12] and Zone [13] are intended for providing a isolated
area to confine privlieges. There is no doubt that they are not suitable for admin-
istration because the user has a limited perspective of the whole system.

TOMOYO Linux [22] and other security OS [23] proposed a new kind of OS
or OS module to manage the privileges of user and process. Simau, on the other
hand, does not require to recompile the kernel or replace OS.

7 Conclusion

We propose a dynamic privilege management mechanism for hosts in cloud dat-
acenters. Our mechanism supports user-defined hooks to block processes and
takes effects in both kernel-space and user-space. We deploy decision engine
in user-space to actualize the variable security policies that can be altered on-
demand. We further make a study on some important operations and try to
regulate them under Simau. The experiment proves the ability of our mecha-
nism. Finally, since it offers a programmable access control for hosts and realizes
the separation of the control panel and action, Simau has great compatibility
with the software-defined techniques.

Software-defined infrastructure (SDI), for example, brings many new
approaches for managing, monitoring, etc. within clouds [15]. It breaks the
restrains of the hardware-centric infrastructure, establishing a flexible and scal-
able fundamental structure. Simau can be one of the feasible technique that
provides the enable support for SDI. We expect that Simau could play his sig-
nificant role in the future.
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Abstract. In recent years, USB has become the most popular standard
for connecting hosts and peripherals due to its plug-and-play and fast
speed features. However, with the emergence of attacks such as badUSB,
USB security issues become increasingly prominent. In reaction, different
USB protection mechanisms have been proposed, including USB commu-
nication filtering. Nevertheless, it is worth noting that currently there is
no formalised universal USB filtering strategy, and the vast majority of
those filters are implemented at the OS level, leaving a part of the OS
and the firmware of USB host controllers unprotected. This paper pro-
poses flexible, formalised, universal USB filtering policies and explores
the differences between filtering USB communications at the OS level
and directly at the USB packet transmission level. Moreover, we address
a simulation framework that can be used in the early stages of research
and development to conceive and evaluate USB packet filtering policies.

Keywords: USB · Security · Filtering policy

1 Introduction

The Universal Serial Bus (USB) is an industry standard proposed in the mid-
1990s that provides ubiquitous plug-and-play connectivity for computer periph-
erals. Although it makes the use of computer peripherals more convenient, it
brings many security issues. USB-related attacks have been transformed from
the traditional use of USB storages as carriers for the spread of Trojan viruses
to exploiting the vulnerability of the USB protocol, which lacks authentication
mechanisms. Traditional USB antivirus software is not effective against such
attack type.

Considering that the information declared by the USB device is not reliable
and adding an authentication mechanism requires to modify the USB commu-
nication process, USB communication filtering is an excellent approach to limit
the behaviours of USB devices to access the host. However, there is currently
c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 732–742, 2018.
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no flexible, formalised, and extensible USB filtering policy, which makes current
USB filtering lacks versatility. Additionally, the vast majority of those filters tar-
get USB Request Block (URB) packets and are implemented at the operating
system (OS) level [9], leaving a part of the OS and the firmware of USB host
controllers [2] unprotected.

In this paper, we not only explore the differences between filtering USB
communication at the OS level (URB) and filtering directly at the USB packet
transmission level, but also formalise the universal USB devices filtering policies
and propose a simulation framework to evaluate them for the early research
stage. The remainder of this paper is organized as follows: Sect. 2 presents the
USB security issues and the motivation for proposing universal, formalized USB
filtering policies and simulating the filtering on USB packet; Sect. 3 proposes the
definition and the formalization of USB packet filtering policies; Sect. 4 shows
the architecture of the USB packet filtering simulation framework, explains the
filtering process and analyses the result of experimentation; and finally Sect. 5
concludes the paper and outlines the future work.

2 Background and Motivation

2.1 USB Security Issues

USB has been developed and improved for more than 20 years since its intro-
duction. In the beginning, attackers used USB devices as carriers of attacks.
However, in recent years, more and more attackers have focused their attacks on
the USB protocol itself which lacks an effective authentication mechanism. There
exists no uniform unalterable identifier for a USB device and the host passively
believes the information declared by USB devices. An attacker can exploit this
vulnerability by using some specialised hardware, such as Rubber Ducky, or by
reprogramming the USB firmware [7] to deceive the trust of the host and gain
control over the host. Since the attack occurs on the firmware of the USB device
where we cannot detect, it becomes one of the USB-related attack types which
are the most difficult to defend currently.

Besides, the earlier versions of USB protocol specification, such as USB spec-
ification version 2.0, use the broadcast mode to send USB packet from the host
to USB devices. Under normal circumstances, when there is a broadcast packet
from the host, only the destination USB device will respond, and other USB
devices will discard the packet. However, this communication feature is exploited
by attackers to conduct eavesdropping attacks.

2.2 Motivation of Proposing Universal Formalized Flexible
USB Filtering Policies

Although the kind of USB attacks has continued to increase, fortunately more
defence mechanisms against USB attacks have been proposed in recent years,
such as USB communication filtering [4,5,10].
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USB communication filtering is a USB defence mechanism that implements
USB access control through the verification of the USB device information and
restriction of the functions or behaviours of the USB device. At present, there
is no research proposition for a universal formalised extended USB communica-
tion filtering policy which can promote the development of USB communication
filtering research.

Considering the USB communication filtering policies from the top-view
can involve less implementing technology making the policies more versatile.
Besides, formalising filtering policies not only makes them easier to understand
and express but also more conducive to improve their interactivity and reusabil-
ity. This can save a lot of time and labour costs for practical applications. What’s
more, with the development of USB communication technology, USB has grad-
ually replaced the traditional COM and PS/2 communication methods between
personal computers and peripherals. Different kinds of USB devices have differ-
ent functions and behaviours, which causes the varied of functional limitations
and behaviour filterings. In order to adapt to this diversity, USB communication
filtering policies must be flexible.

2.3 Motivation of Filtering USB Packets

USB communication filtering can be applied to different layers of the USB com-
munication system. Figure 1 illustrates USB architecture. A Universal Serial Bus
(USB) client driver cannot communicate with its device directly. Instead, the
client driver creates requests and submits them to the USB driver stack for pro-
cessing. Within each I/O request, the client driver provides a variable-length
data structure called a USB Request Block (URB) [6], and sends it to the USB
host controller driver via the USB core. Finally, a URB packet will be processed
to USB packets which is the smallest logical transfer units of USB communica-
tion and be sent to the USB device. When a USB device sends information to a
host, the process is the opposite of the above. When packets arrive at the host,
the USB host controller will only extract the payloads of the packets to generate
a URB packet according to the request information type.

Although both USB packet filtering and URB filtering can filter the USB
communication, there are still many differences between them. These differences
are mainly reflected in three aspects: the difficulty of implementation, the univer-
sality and the scope of protection. The implementation of USB packet filtering
can be independent of the host and USB devices. URB filtering requires different
implementations depending on the type and version of the system, which makes
it less universal than USB packet filtering. Although implementing USB packet
filtering requires some specific hardware, it can filter USB packets sent by USB
devices before they reach the host. URB filtering filters URBs generated by the
USB host controller after processing USB packets. It may let the original harm-
ful information entering the OS system and cause a potential threat. That is the
reason for applying our filtering policies on USB packet.



USB Packets Filtering Policies 735

Fig. 1. USB architecture Fig. 2. Filtering module

3 Filtering Policy Definition

3.1 Filtering Requirement

The approach proposed in this paper uses USB packet filtering to achieve a more
flexible lock mechanism for USB communication. Authenticating USB devices
(based on manufacturer ID and product ID) and verifying their declared func-
tionalities is the first step. It cannot ultimately defend against USB attacks, such
as badUSB. Further filtering of the functionalities of the USB device is necessary.

According to the USB protocol [11], USB communication can be divided
into two steps: enumeration process and functional communication. In the enu-
meration process, the host requests the basic information of the USB device
and assigns the address to it. When the enumeration process is completed, the
functions of the USB device can be used, which is also called functional commu-
nication. The context covers both of them as shown in Fig. 2. According to the
actual situations, the following four kinds of USB packet filtering policies are
proposed:

– Type 1: Filtering policies solely based on time. Such policies allow or
disallow USB communications by the current time. If the access condition
disallows USB communications, every USB packets are simply dropped with-
out any processing. For example, such policies can be used to disallow USB
connections outside of office hours.

– Type 2: Filtering policies based on time and device class. Such policies
allow or disallow the use of specific USB device types by the current time and
device class. In addition to the current time, the packets exchanged during
the enumeration phase must be parsed in order to decide if the connection of
this specific device class is allowed or not. Once a decision has been taken for
a device, later USB packets from or to this device can be dropped without
any further processing.

– Type 3: Filtering policies based on device authentication. Such poli-
cies authenticate devices by different information provided during the enu-
meration phase (such as product ID and vendor ID). After the enumera-
tion phase, packets coming from unauthenticated devices are dropped. Now
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more and more enterprises are aware of the importance of USB security.
They require employees to use unified USB devices which are purchased by
the enterprise. This policy can be used to achieve a similar effect. Further-
more, automatic mechanisms enforcing such policies are more reliable than
the employee’s consciousness.

– Type 4: Filtering policies based on device functionalities. Such poli-
cies map USB packets to device functionalities and drop every packet related
to a functionality that is not authorised. As explained earlier, a USB device
can have multiple interfaces, which means it can have multiple functions.
However, sometimes we do not need all of them. In this case, the functions
can be selected by the policy, and reduce potential risks.

3.2 Filtering Policy Formulation

Those policies are formalised below in order to clarify them and make them easier
to understand. Each USB device has many properties, such as vendor ID, product
ID, device class, and so on. The same type of USB device may have different
usage restrictions according to different properties. Whereas Attribute-Based
Access Control (ABAC) [3], based on attributes which can be about anything
and anyone, takes more broad parameters into account. It is the most suitable
model thanks to its flexibility and relatively fine-grained feature.

ABAC can define permissions based on any security-relevant characteristics,
known as attributes [12]. For our filtering policies, we are concerned with three
types of attributes:

– Subject Attribute. A subject is an entity that can apply an action to
an object. Each subject has some attributes that define the identity and
characteristics of the subject. In our case, a subject is a USB device and its
associated attributes can be the information which is stored in the descriptors,
such as Vendor ID, Product ID, USB class code and so on.

– Action Attribute. In this paper, action refers to a function of the USB
device. One of the action attributes should be the endpoint which can iden-
tify one of the functions of the USB device as well as the transfer type and
direction. Because the endpoint information is in the firmware of USB device,
it is hard to get it before the enumeration process. We will use a dynamic table
to express this endpoint attribute and complete the dynamic table during the
enumeration process.

– Context Attribute. Context attributes refer to the operational, technical,
and even situation when access occurs. For USB packet filtering policies, we
only consider time as context. The context attributes can be a date, week
or time.

Filtering policy rules can be formalized by ABAC model as follows:

1. S, A and C are respectively the sets of subjects, actions and contexts.
2. Satti (1 � i � I), Aattj (1 � j � J) and Cattk (1 � k � K) are respec-

tively the pre-defined subjects attributes, actions attributes and contexts
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attributes where I, J and K are respectively the number of pre-defined sub-
jects attributes, actions attributes and contexts attributes.

3. Function notation is used to assign the value for individual attributes. Differ-
ent types of attribute values, atomic elements in USB packet filtering policies
can be divided into two types: categorical element and numerical element.
For categorical element, the operator “=” is used for the string type attribute
value. For numerical element, the operators “=”, “<”, “>”, “�”, “�” are used
for the integer, real, date/time data types attribute values. The combination
operators such as “

∧
”, “

∨
” and “¬”, can be used when an attribute has many

values. For example, vender ID = “Logitech” and (9 : 00 � Time � 12 : 00)∨
(14 : 00 � Time � 18 : 00).

4. ATTR(s), ATTR(a), ATTR(c) are respectively the set of attributes which
belong to the subject (s), action (a), context (c) in one filter policy. If all the
pre-defined attributes of subjects expressed as {Satt1 , Satt2 , . . . , SattI}, then
ATTR(s) ⊆ {Satt1 , Satt2 , . . . , SattI}. ATTR(a) and ATTR(c) have the same
relationship as ATTR(s).

5. In the filtering policy form, a policy that decides on whether permitting a
USB device s can access the host with an action a in a particular context c,
is a function of s, a, and c’s attributes:
Policy: is permitted (s, a, c) ← f (ATTR(s), ATTR(a), ATTR(c))
If the result of the function which evaluates all the attributes of s, a, and c is
true, then the USB device is permitted to access the host with the action a;
otherwise the access will be denied.

4 Simulation Framework

4.1 Architecture

As far as we know, no software can directly capture USB packets without the help
of specific hardware. In addition, the known USB packet capture hardware does
not support modifying the content of USB packets. Therefore, how to simulate
different USB communication cases to test the proposed packet filtering policies
in the early stages of the research is an important issue. For this, a low-cost USB
communication simulation framework is implemented.

Ellisys USB Explorer [1] is a USB protocol analyser hardware which can
monitor and capture real USB communication packets. We use the structure of
its export format in the simulation framework. A simple USB communication
amounts to thousands of USB packets. Using Ellisys USB Explorer can get real
USB packets more efficiently and export them in files. We can build different test
cases easier by modifying the packet contents in the files. According to the user
requirements, filtering policies are created by using the EXtensible Access Con-
trol Markup Language (XACML) [8] standard, which is a standard of declarative
fine-grained, ABAC policy language.

Figure 3 shows the architecture of the simulation framework. The parser is
in charge of analysing the USB packets file and classifying the packets according
to their source (from host or device). The multi-threaded features of the Java
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Fig. 3. Simulation framework architecture

language is used to simulate the communication between the host and USB
devices. The filter module is responsible for parsing and enforcing the filtering
rules. The module can be improved or updated according to the filtering policies.

4.2 Filtering Process

Figure 2 illustrates the most important components of the filtering module. Pol-
icy Administration Point (PAP) is responsible for parsing the file storing the
filtering policies. According to the attributes in the policies, the PAP sends a
request to the Policy Information Point (PIP) to get the real attribute value
which will be used during the filtering process. For instance, the vendor id
attribute value in the policy is “Kingston” which is the brand name known by
the user. However, in the real USB communication, the USB device only sends
the code (0x0951) of the brand instead of the name. We can get this information
from the USB Implementers Forum (USB-IF) website. After getting the values
from the PIP, the policy will be sent to the Policy Enforcement and Decision
Point (PEP&PDP) to be enforced for filtering the USB packets. It is notewor-
thy that in general we do not know the internal structure of the USB device
before the filtering. In other words, when setting up a filtering policy, we only
know which functionality of the USB device should be limited, but we do not
know what kind of value should be filtered. This kind of information can be col-
lected from the enumeration process which occurs before starting the functional
communication stage during the USB communication. This is the most signifi-
cant difference from the traditional packet filtering firewall. This is a dynamic
acquisition process which is shown by the imaginary line from the PEP&PDP
to PAP.

The upstream filtering process is shown in Fig. 4. When an upstream (from
a USB device to a host) USB packet arrives, it will be filtered by the rules of
Type 1 filtering policy. If there are no rules or the result of matching the rules is
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permitted, it goes to the communication stage. In the enumeration process, the
data of a USB packet will be extracted. This process contains many USB protocol
information and technical skills. The specific process will be shown together with
the upstream and downstream filtering algorithms in our low-cost simulation
framework for USB packet filtering the technical report. After matching rules
of Type 2 policy, the filter will forward or drop the packet according to the
matching result. If the packet is in the functional communication, the rules of
Type 3 and Type 4 will be matched in sequence as shown in Fig. 4.

Fig. 4. Upstream filtering process

As we described in USB security issues, host broadcast downstream USB
packets may be at risk of eavesdropping. To reduce this kind of risk, the down-
stream USB packet filtering is involved in the filtering process. In the down-
stream USB packet filtering, the packets from the host are filtered according to
the destination. If the destination is one of the downstream USB devices of the
filter, the packet will be forwarded, otherwise it will be dropped, as illustrated
in Fig. 5. No additional filtering policy is required in this process.

Fig. 5. Downstream filtering process
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4.3 Experimental Result

We implement and deploy the USB communication simulation framework using
Java on Eclipse platform with JDK 1.8 installed on the computer with Windows
10 64-bit OS, Intel Core i5-7200u cup and 8G memory.

In order to compare the efficiency of various filtering policies and the impact
of increased filtering rules on filtering time, we simulate the change in filter pro-
cessing time with linearly increasing filter rules for each type of filtering policies
mentioned in Sect. 3.1. Different from traditional network packet-filter firewalls,
the protected object of USB packet filtering is a personal computer rather than
a private network area. The number of rules required for USB packet filtering
is much less than the number of rules for network packet filtering. Therefore,
for each type of filtering policies, we increment each group of filter rules by 5
until 25. Since the time for filtering a single packet is too short to be measured
accurately, we use the Ellisys hardware to capture the packets in a period of
USB communication with a USB device as the basis of the experiment. In our
experiment, we choose the first 10000 packets of the communication between the
host and the USB device, which contain the enumeration process and functional
communication, as the object to filter. The experimental result is presented in
Table 1.

Table 1. Process time for each type of filtering policy

Policy Type

Process Time (ms) Number of Rules
5 10 15 20 25

Type 1 565 926 1230 1410 1718
Type 2 9 20 33 45 61
Type 3 108 175 233 281 318
Type 4 99 171 237 290 351

The table shows the filtering process time (millisecond) of each type of fil-
tering policies by a different number of rules. For each type of filtering policy,
we can find that as the number of filtering rules increases, the process time of
filtering also increases linearly. When there are fewer filtering rules, the filtering
efficiency will be higher and the USB communication delay will be less.

After longitudinal comparison, the Type 1 filtering policy has the highest
cost of time for filtering processing under the same conditions, because it needs
to filter every packet from a USB device. Although high processing time means
more communication delay, it can completely prevent USB devices from access-
ing hosts during unauthorised periods, thereby maximising host security. Type 2
filtering policy requires the least time because it only happens during the enu-
meration process. In each enumeration process, the attributes in the Type 2
policy only need to be verified once. Type 3 and Type 4 filtering policies occur
during the functional communication of USB communication. Each time a USB
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device sends functional data to a host, they will be executed. This is the reason
why their filtering process time is close.

Through the experimental results, the efficiency of different types of filtering
policy can be observed. It can help technicians to optimise filtering rules better:
use more efficient filtering rules to achieve the same filtering effect.

5 Conclusion and Future Work

In this paper, we introduced the attacks that exploit the vulnerabilities of USB
and presented the advantages of USB packet filtering compared to URB filter-
ing. We then proposed the universal formalised flexible USB packet filtering
policies which leave good scalability for future filtering of contents of USB func-
tional communication packet, and a low-cost USB communication simulation
framework for their early stage of conception and evaluation. The USB packet
filtering approach can make up for the deficiencies of traditional anti-virus soft-
ware, and give the operating system more comprehensive protection. The USB
communication data can be verified before they enter the operating system to
expand the scope of protection and minimise the risk of being attacked. Our sim-
ulation framework offers a handy, easy-operation means to evaluate the concept
of filtering policies.

In the future, we will continue our research work in three areas. First, we will
continue to improve our simulation to adapt to more complex USB communica-
tion. Besides, we will design USB packet filtering policies to filter the contents of
the USB packet in the functional communication stage of different USB devices.
Last but not least, after improving and evaluating the USB packet filtering poli-
cies, implementation in real communication environment will be necessary. We
will try to implement our filtering on special hardware such as the Raspberry Pi.

Acknowledgements. This work was funded by the Research Pole of the “Pôle
d’excellence cyber” with the support of the French Ministry of the Armed Forces and
the Brittany Region.
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Abstract. Lightweight block ciphers are today of paramount impor-
tance to provide security services in constrained environments. Recent
studies have questioned the security properties of Present, which makes
it evident the need to study alternative ciphers. In this work we pro-
vide hardware architectures for Midori and Gift, and compare them
against implementations for Present and Gimli under fair conditions.
The hardware description for our designs is made publicly available.

Keywords: Midori · GIFT · Present · Gimli · FPGA

1 Introduction

For years, the lightweight block cipher Present [6] has been in the spotlight as
the most ideal solution for providing confidentiality under constrained environ-
ments. However, recent findings [5,11] call into question the security properties
of the scheme. It is clear that the study of alternatives which offer resilience
against birthday attacks and linear or differential cryptanalysis is necessary.

In 2015, a possible NIST standard for lightweight cryptography was first
mentioned. Over the course of two years NIST published a report detailing the
scope and state of the art in lightweight cryptography [10] and the standardiza-
tion works seem to be in progress. This hints to the fact that lightweight crypto-
graphic primitives are key components in the development of future technologies
and applications. Generating solid and reproducible implementation results and
benchmarking is undoubtedly primordial for any future standards.

In this work we evaluate hardware realizations of the cryptographic algo-
rithms Midori and Gift, which are believed to be secure. We compare these
implementations against State of the Art architectures for Gimli and Present.
Our main contributions are:

1. Novel architectural designs for the Midori and Gift block ciphers following
area-reduction strategies.

2. The first implementation results for Gift and the first area-oriented results
for Midori in FPGA.

c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 745–755, 2018.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-01950-1_45&domain=pdf
http://orcid.org/0000-0003-0333-2564
http://orcid.org/0000-0003-4432-5686
http://orcid.org/0000-0003-1702-8467


746 C. A. Lara-Nino et al.

3. All the proposed designs (VHDL) are available at https://www.tamps.
cinvestav.mx/∼hardware/.

The rest of the paper is structured as follows. Section 2 describes the different
architectures for the selected lightweight algorithms, which are implemented and
evaluated. Section 3 describes our experimental setup. Section 4 presents our
findings. Section 5 concludes this work.

2 Methods

In this section we focus on encryption functions since these can be used to
encrypt and decrypt data under the CTR mode of operation [7]. We use 128-bit
key sizes for all the block ciphers.

For each lightweight block cipher we study its iterative and serial architec-
tures [8]. We define two types of serial architectures. The first type (serial-1)
targets a reduction in the number of 4-bit substitution boxes (SBOX) from n/4
to two. The second type of architecture (serial-2) seeks to reduce not only the
number of substitution boxes, but also the width of other transformations when
possible.

2.1 Present

The Present block cipher follows a Substitution-Permutation Network (SPN)
construction. It has a block size of 64-bit and supports key sizes of 80-bit and
128-bit. The specification for its encryption function is presented in [6].

We first study the basic implementation of the block cipher with IO ports
of 8-bit described in [8]. That hardware realization of Present requires 17
substitution boxes (SBOX), 77 XOR gates, and 192 Flip-Flops (FF). In regards
to latency, 16 cycles are required to input the plaintext and the cipher key, 31
cycles to encrypt the data, and 8 cycles to produce the output. In total this sums
55 cycles.

In the serial-1 architecture for Present found in [8], the the main optimiza-
tion involves reducing the number of substitution boxes to two. The substitution
boxes used in the key generation are also removed and the number of XOR gates
is reduced. The trade-off is an increment in the number of cycles required to
encrypt the data. The implementation of this design requires 2 SBOX, 21 XOR
gates, and 192 FF. With this design 303 latency cycles are needed to encrypt a
data block.

The serial-2 Present architecture under study is the one reported in [9].
In that design the main strategy was outlined as reducing the whole datapath
to 16-bit, which is a quarter of its block size. The hardware realization for this
design involves the use of 6 SBOX, 21 XOR gates, and 192 FF. The total latency
of the design is of 136 cycles.

https://www.tamps.cinvestav.mx/~hardware/
https://www.tamps.cinvestav.mx/~hardware/
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2.2 Midori

Midori is a lightweight block cipher “that is optimized with respect to the energy
consumed by the circuit per bit in encryption or decryption operation” [2]. This
block cipher operates over data blocks of 64 or 128 bits. A key size of 128-bit is
used in both versions of the algorithm. Midori also has an SPN structure.

The iterative architecture for Midori created in this work is presented in Fig. 1
(left). This design can describe both Midori-64 and Midori-128 realizations. It
follows the algorithm specification closely but uses 8-bit IO ports. In hardware,
this architecture requires 16 SBox (which are of 4-bit for Midori-64 and of 8-bit
for Midori-128), an n−bit transformation which can be simplified as n/2 XOR
gates (MixColumn), an n-bit XOR layer, 16 XOR gates for the key mechanism,
r−2 16-bit round constants, and n+128 FF. In total the iterative architectures
for Midori-64 and Midori-128 have a latency of 41 and 53 cycles, respectively.

Fig. 1. Iterative (left), serial-1 (center), and serial-2 (right) architectures for Midori-64
and Midori-128

Figure 1 (center) illustrates the serial-1 architecture created in this work for
Midori-64 and Midori-128. This version focuses on reducing the SBOX count.
For Midori-64, the SBox illustrated represents two 4-bit SBOX. For Midori-128,
eight 8-bit permutations are also allocated inside the SBox. These permutations
work together with two 4-bit SBOX to produce the output of the substitution
layer. Two of the four permutations are selected depending on the position in
the state of the data nibble being processed. The hardware realization of this
design uses two 4-bit SBOX, the n/2 XOR gates simplification of MixColumn,
an n-bit XOR layer, the 16 XOR gates used in the key generation, r − 2 16-bit
round constants, and 128 + n FF. This Midori-64 architecture has a latency of
169 cycles while the Midori-128 design requires a total of 373 cycles.

The serial-2 architecture developed in this work for Midori is shown in Fig. 1
(right). In this design the datapath width d is reduced to 16-bit for Midori-64
and 32-bit for Midori-128. In both cases the operations which can be serial-
ized are the substitution layer, the MixColumn step, and the key addition. The
n-bit permutation is performed during an extra cycle in the round. In order
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to achieve this design we modified the Midori algorithm so that the SubCell
and ShuffleCell operations are swapped. This allows pushing the ShuffleCell step
from the i iteration back to the i− 1 iteration. From this, the serializable steps
of the algorithm are now grouped at the beginning of the round and can be
processed together in 4 cycles. The non serializable part is left at the end of
the round and performed in the extra cycle. The cost of this modification only
affects Midori-128 due to the 8-bit permutations used inside the SBox which
have to be shuffled. For implementing Midori-64 this design requires four 4-bit
SBOX, an 8 XOR gates version of MixColumn, 32 XOR gates, 14 16-bit round
constants, and 192 FF. The latency of this design amounts to 96 cycles. For
implementing Midori-128 the hardware requirements are four 8-bit SBox, a 16
XOR gates version of MixColumn, 48 XOR gates, 18 16-bit round constants,
and 256 FF. A latency of 112 cycles is required to encrypt the data with this
architecture.

2.3 Gift

The block cipher Gift is said to be a direct improvement to Present “that
provides a much increased efficiency in all domains (smaller and faster)” and also
patches security weaknesses of the latter. Two specifications of the algorithm
were presented in [3] for block sizes of 64 and 128-bit. A key size of 128-bit is
used in both versions of the algorithm.

The iterative architecture created for Gift is presented in Fig. 2 (left). This
design is a direct implementation of the specification with 8-bit IO ports. For
Gift-64 or Gift-128 the design requires n/4 4-bit SBOX, n/2+6 XOR gates, a
NOT gate, and n+134 FF. The latency for Gift-64 is 52 cycles and the latency
for Gift-128 is 72 cycles.

Fig. 2. Iterative (left), serial-1 (center), and serial-2 (right, the value d equals n/4)
architectures for Gift-64 and Gift-128

Figure 2 (center) presents our serial-1 architecture for Gift. This design uses
8-bit IO ports and has a serialized application of the substitution layer based
on two 4-bit SBOX. The architecture illustrated describes both Gift-64 and
Gift-128. In the case of Gift-64 the implementation requires two 4-bit SBOX,
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38 XOR gates, a NOT gate, and 198 FF. For this version 276 latency cycles are
required. For Gift-128, two 4-bit SBOX, 70 XOR gates, a NOT gate, and 262
FF are used. In this case the latency is of 712 cycles.

Our serial-2 architecture for Gift, shown in Fig. 2 (right), was created by
serializing the substitution, permutation, and key addition layers. The datapath
width d was adjusted to 16-bit for Gift-64 and to 32-bit for Gift-128. The
reduction of the substitution layer is straightforward for Gift. We used a regular
pattern found in the original permutation to reduce the permutation layer width
to a quarter of its original width. However, by using this reduction an additional
transposition of the state is required. Let us use a 2-D representation of the
state as described in [3]. The new reduced permutation will yield a transposed
version of the 2-D state, arranged in 16 n/16-bit nibbles. Thus, the additional
permutation is a shuffling of the state in 4-bit nibbles for Gift-64 and 8-bit
nibbles for Gift-128. This strategy is similar to that used in [9] for Present.
The small permutation is applied on a serialized manner while the transposition
is applied over the state during an additional cycle. The round key also needs
to be shuffled to accommodate for this intermediate result. In order to serialize
the key addition step, we separated the addition of the keying materials and the
addition of the round constants. The keying materials are derived from the key
register, shuffled, and serialized, before being applied to the state. The round
constants are applied to the state during the additional cycle while the key
register is updated. Based on this architecture, the implementation of Gift-
64 requires four 4-bit SBOX, 14 XOR gates, a NOT gate, and 198 FF. The
implementation of Gift-128 uses eight 4-bit SBOX, 22 XOR gates, a NOT gate,
and 262 FF. The total latency for Gift-64 and Gift-128 is of 152 and 208
cycles, respectively.

2.4 Gimli

Gimli is a 384-bit permutation “designed to achieve high security with high
performance across a broad range of platforms”. According to its creators, this
permutation can be easily used to build high-security block ciphers. We have
included this algorithm into our review since its authors claim it was designed
for “energy-efficient hardware” and “compactness”. The specification for this
function is presented in [4]. Since the implementations provided in [4] do not
implement a block cipher, a secret key is not used.

In the iterative implementation for Gimli provided in [4] a block size of
384-bit is used. The application of the parallel SP-box requires two 384-bit per-
mutations, 768 XOR gates, 256 AND gates, and 128 OR gates. The Big-Swap
and the Small-Swap can be seen as 384-bit permutations. Finally, 37 XOR gates
are used for the addition of the round constants. This architecture has a latency
of 120 cycles.

A serial-1 architecture for Gimli was also retrieved from [4]. The main strat-
egy for reducing resources consists on serializing the application of the SP-box
layer. In this instance, 96-bit of the state are processed in parallel so that
four cycles are required for each application of the SP-box layer. The other
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transformations are applied to the state in a fifth cycle, which is present for half
of the rounds. The application of the serialized SP-box requires two 96-bit per-
mutations, 192 XOR gates, 64 AND gates, and 32 OR gates. The Big-Swap and
the Small-Swap can still be represented as 384-bit permutations and 37 XOR
gates are also used for the addition of the round constants. A latency of 204
cycles is required for this design.

2.5 Summary

Table 1 provides a summary of the different architectures discussed in this
section.

Table 1. Summary of the different designs reviewed in this section

Label Alg State (bits) Key (bits) RoundsRef Arch. Latency

(cycles)

Hardware resources

SBOX Gates Const. FFs

C01 Present 64 128 31 [8] Iterative 55 17 77 1 192

C02 [8] Serial-1 303 2 21 1 192

C03 [9] Serial-2 136 6 21 1 192

C04 Midori-64 64 128 16 Ours Iterative 41 16 112 14 192

C05 Ours Serial-1 169 2 112 14 192

C06 Ours Serial-2 96 4 40 14 192

C07 Midori-128 128 128 20 Ours Iterative 53 32 208 18 256

C08 Ours Serial-1 373 2 208 18 256

C09 Ours Serial-2 112 8 64 18 256

C10 Gift-64 64 128 28 Ours Iterative 52 16 39 0 198

C11 Ours Serial-1 276 2 39 0 198

C12 Ours Serial-2 152 4 15 0 198

C13 Gift-128 128 128 40 Ours Iterative 72 32 71 0 262

C14 Ours Serial-1 712 2 71 0 262

C15 Ours Serial-2 208 8 23 0 262

C16 Gimli 384 - 24 [4] Iterative 120 0 1189 2 384

C17 [4] Serial-1 204 0 325 2 384

3 Experimental Evaluation

The different designs in Table 1 are used as configurations for our experimental
evaluation. The VHDL description for the Present implementations is the one
used in [8] and [9]. The hardware descriptions for the different Midori and Gift
architectures were created in this work. Lastly, the VHDL description for the
Gimli architectures is the one used in [4].

All the configurations were implemented for the xc6slx16-3csg324 FPGA
using ISE Design Suite 14.2 and for the xc7a15t-1cpg236c FPGA using Vivado
Design Suite 2017.3 Version. The synthesis process was configured with Area as
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optimization goal in both instances. The use of RAM/ROM elements was dis-
abled for all the implementations. We provide Post-Place & Route area results
in terms of slices (SLC), Look-Up-Tables (LUT), and Flip-Flops (FF) for all the
configurations in the two implementation platforms.

In regards to performance, we report the total latency (LAT), the maxi-
mum achievable frequency (Fmax) from the Post-Place & Route report, the
runtime (Time), and the throughput (Thr) for each configuration. The through-
put was calculated for operational frequencies of 100 KHz and Fmax as Thr =
(state size × Freq)/LAT.

A power analysis for the xc6slx16-3csg324 FPGA was performed using the
Xilinx XPower Analyzer tool version 14.2 for operational frequencies of 100 KHz
and Fmax. The power estimations were obtained after place and route using
Xilinx XPower Analyzer 14.3 with HIGH overall confidence level. This analysis
used the Post-Place & Route Design file (ncd), a Physical Constraints file (pcf)
specific for the evaluation target, and a Simulation Activity file (saif) generated
from a Post-Place & Route simulation in Isim. The Simulation Run Time was
of 100 ms for all the 100 KHz instances and of 100µs for all the Fmax instances.
From this evaluation we report the quiescent and dynamic power for each design.
The power dissipation and the performance at 100 KHz and Fmax were then used
to calculate the energy consumption for each configuration.

We use three efficiency (EFF) metrics to evaluate the different configura-
tions. The first figure represents the relation between performance and area and
is given in Kbps per SLC. The second figure represents the relation between
energy and area and is given in µJ per SLC. Lastly, the third efficiency indicator
represents the relation between the energy spent and the bits processed and is
expressed in nJ per bit. These metrics are expected to indicate the prowess of
the configurations for different trade offs, which might be attractive for different
application scopes.

4 Results

The area and performance results for the implementations in the xc6slx16-
3csg324 FPGA are presented in Table 2. The results for the power analysis and
energy consumption calculations for the different configurations implemented
in the xc6slx16-3csg324 FPGA are provided in Table 3. The area results in the
xc7a15t-1cpg236c FPGA are shown in Fig. 3.

4.1 Discussion

The iterative architectures presented for Midori and Gift offer a good balance
between area and performance. While iterative implementations are generally
more efficient, serial architectures can be used in cases where further area reduc-
tion is needed.

The first type of serial architectures described (S1: reduction of the SBOX
count) offers a reduction in the hardware resources over the iterative architec-
tures for all the block ciphers reviewed. But the latency is the least favorable for
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Table 2. Area and performance results for the xc6slx16-3csg324 FPGA using opera-
tional frequencies of 100KHz and Fmax.

Cipher Ref. Conf. Size (bits) Resources LAT
(Cycles)

Fmax
(MHz)

Time (µs) Thr (Mbps) EFF (Kbps/SLC)
State Key IO DP FF LUT SLC 100KHz Fmax 100KHz Fmax 100KHz Fmax

Present
[8] C01 64 128 8 64 200 202 56 55 145.35 550 0.38 0.12 169.13 2.08 3020.24

C02 64 128 8 8 203 157 45 303 131.87 3030 2.30 0.02 27.85 0.47 618.99
[9] C03 64 128 16 16 201 220 61 148 159.21 1480 0.93 0.04 68.85 0.71 1128.65

Midori-64 Ours
C04 64 128 8 64 200 356 118 41 166.17 410 0.25 0.16 259.38 1.32 2198.17
C05 64 128 8 8 203 262 109 169 141.56 1690 1.19 0.04 53.61 0.35 491.83
C06 64 128 16 16 202 268 96 96 157.80 960 0.61 0.07 105.20 0.69 1095.86

Midori-128 Ours
C07 128 128 8 128 264 549 157 53 157.95 530 0.34 0.24 381.47 1.54 2429.75
C08 128 128 8 8 269 390 115 373 139.31 3730 2.68 0.03 47.81 0.30 415.72
C09 128 128 32 32 267 482 155 112 86.07 1120 1.30 0.11 98.37 0.74 634.64

GIFT-64 Ours
C10 64 128 8 64 205 189 58 52 218.10 520 0.24 0.12 268.43 2.12 4628.17
C11 64 128 8 8 209 151 44 276 225.53 2760 1.22 0.02 52.30 0.53 1188.56
C12 64 128 16 16 208 235 67 152 219.44 1520 0.69 0.04 92.40 0.63 1379.06

GIFT-128 Ours
C13 128 128 8 128 270 290 93 72 189.93 720 0.38 0.18 337.66 1.91 3630.75
C14 128 128 8 8 275 286 81 712 144.15 7120 4.94 0.02 25.92 0.22 319.94
C15 128 128 32 32 273 256 66 208 217.63 2080 0.96 0.06 133.92 0.93 2029.16

Gimli [4] C16 384 - 8 384 394 587 174 120 121.34 1200 0.99 0.32 388.30 1.84 2231.62
C17 384 - 8 32 397 493 164 204 148.88 2040 1.37 0.19 280.24 1.15 1708.76

Table 3. Power and energy results for the xc6slx16-3csg324 FPGA using operational
frequencies of 100KHz and Fmax.

Cipher Ref. Conf.
POW@100KHz (mW) ENE@100KHz

(nJ)
EFF@100KHz POW@Fmax (mW) ENE@Fmax

(nJ)
EFF@Fmax

Quiescent Dynamic (nJ/SLC) (nJ/bit) Quiescent Dynamic (nJ/SLC) (nJ/bit)

Present [8]
C01 21.51 0.50 12105.50 216.17 189.15 21.82 31.22 20.07 0.36 0.31
C02 21.51 0.55 66841.80 1485.37 1044.40 21.68 17.48 89.98 2.00 1.41

[9] C03 21.51 0.49 32560.00 533.77 508.75 21.89 37.67 55.37 0.91 0.87

Midori-64 Ours
C04 21.51 0.50 9024.10 76.48 141.00 22.00 48.36 17.36 0.15 0.27
C05 21.51 0.48 37163.10 340.95 580.67 21.69 18.07 47.47 0.44 0.74
C06 19.90 0.47 19555.20 203.70 305.55 20.14 24.72 27.29 0.28 0.43

Midori-128 Ours
C07 21.51 0.52 11675.90 74.37 91.22 22.28 75.15 32.69 0.21 0.26
C08 21.51 0.49 82060.00 713.57 641.09 21.76 24.98 125.14 1.09 0.98
C09 19.90 0.53 22881.60 147.62 178.76 20.38 48.13 89.15 0.58 0.70

GIFT-64 Ours
C10 21.51 0.49 11440.00 197.24 178.75 21.94 42.29 15.31 0.26 0.24
C11 21.51 0.46 60637.20 1378.12 947.46 21.68 17.63 48.11 1.09 0.75
C12 19.90 0.46 30947.20 461.90 483.55 20.10 20.99 28.46 0.42 0.44

GIFT-128 Ours
C13 21.51 0.49 15840.00 170.32 123.75 22.03 51.32 27.81 0.30 0.22
C14 21.51 0.48 156568.80 1932.95 1223.19 21.65 14.24 177.27 2.19 1.38
C15 19.90 0.46 42348.80 641.65 330.85 20.20 30.79 48.73 0.74 0.38

Gimli [4]
C16 21.51 0.58 26508.00 152.34 69.03 21.74 23.39 44.63 0.26 0.12
C17 21.51 0.57 45043.20 274.65 117.30 21.73 21.99 59.91 0.37 0.16

Fig. 3. Area results of lightweight block ciphers using the xc7a15t-1cpg236c FPGA.
Results obtained after place and route
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every instance. The second type of serial architectures (S2: general reduction of
the datapath) offers better performance than the S1 type. The hardware profile
seems to vary from design to design. For Present, the serial-2 architecture (C03)
appears to be ineffective compared to C01 in the xc6slx16-3csg324 FPGA. How-
ever, the improvement for this design (C03) is palpable when implemented on
the xc7a15t-1cpg236c FPGA. Other instances where the serial-2 architecture is
advantageous for area occur for Midori-64 and Gift-128 in the xc6slx16-3csg324
FPGA and for Midori-64 in the xc7a15t-1cpg236c FPGA.

The iterative architectures consistently achieved the smaller energy consump-
tion figures. However, the second type of serial architectures dissipated the least
power for Midori and Gift at low operational frequencies (100 KHz). While low
energy consumption is a desirable trait for extending the lifetime of battery-
powered applications such as WSN motes, low power dissipation is required in
passive devices such as RFID tags.

Even though high operational frequencies lead to increased power dissipation,
the execution times obtained from the frequency increment, and the resulting
energy consumption, are greatly improved. For throughput, the variation from
100 KHz to Fmax is generally of three orders of magnitude, which coincides with
the reduction of the execution time. The frequency increment causes the power
dissipation to double for all the configurations, but due to the delay reduction the
final energy consumption is also reduced three orders of magnitude for almost all
the configurations. This experiment presents evidence that constrained devices
can benefit from high operational frequencies, however, the application scope
shall ultimately dictate the operational frequency to be used.

From the results it is possible to note how small IO buffers can be a burden
for an implementation. It is known that most constrained devices can not afford
to implement wide interfaces. But if the IO width selected is too small, the port
interfacing will take longer than the data processing itself. This is more evident
with primitives with large block sizes such as Midori-128, Gift-128 and Gimli.

The efficiency results allow drawing specific comparisons among the different
configurations. From the performance per slice comparison it is possible to note
that the iterative architectures (C01, C04, C07, C10, C13, C16) are consistently
more efficient compared to the serial realizations. From this set, the iterative
implementations of the Gift block cipher, in both 64 (C10) and 128 bits (C13)
instances, resulted to be the most efficient. The results are consistent for both
operational frequencies used.

In terms of energy per slice, the minimal energy expenditure per slice is
observed for the iterative realization of Midori-64 (C04) and Midori-128 (C07).
The maximum energy per slice was observed for the serial architectures of Gift
(C14) and Present (C02), these designs both follow the approach of reducing
the number of substitution boxes in the design. In this case the behavior for
both operational frequencies is similar even though the difference of three orders
of magnitude is noticeable.

Both implementations for the Gimli permutation (C16, C17) obtained the
smaller expenditures in the energy per bit efficiency results. These were followed
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by the iterative implementations of Gift-128 (C13) and Gift-64 (C10). The
same pattern can be discerned for both operational frequencies used.

4.2 Comparison with the State of the Art

In the literature we found one work which implements the Midori block cipher
in FPGA [1]. In that reference the authors propose fault-diagnosis schemes for
Midori-128 and compare them with the “Original Midori128 Encryption” in an
xc7vx330t FPGA. Results in SLC, maximum frequency, power, and through-
put are provided for four Midori-128 implementations. Since a different FPGA
platform is used and not all the information is available (latency, synthesis cri-
teria) it is difficult to have a fair comparison. In regards to area, the imple-
mentations in [1] cost from 155 to 171 SLC while our designs for Midori-128
in the xc6slx16-3csg324 FPGA cost from 112 to 162 SLC. In performance, our
fastest implementation of Midori-128 can reach up to 433 Mbps while the range
in [1] is 42.52 to 47.41 Gbps. The power requirements for our designs range from
20.42 mW to 22.02 mW while the more modest design in [1] requires 340 mW.
Its clear that our implementations were created following different design goals.
While the results in [1] were obtained for improved security and high perfor-
mance, our implementations seek to provide low implementation size and energy
consumption.

No FPGA implementations for Gift were found in our review.

5 Conclusions

In this paper we have studied cryptographic algorithms which can substitute
the use of Present and might be considered for future standardization. Even
though the modern constructions are efficient, they can not improve the resource
requirements of Present for secure state sizes.

We have provided lightweight hardware architectures for the Midori and
Gimli block ciphers. The proposed designs exhibit varying trade-offs which can
be attractive for different applications. In order to increase the usability of our
work the hardware descriptions for these architectures are made public.

To the best of our knowledge, we have obtained the first FPGA results for
the Gift block cipher and the first area-optimized implementations for Midori.

Acknowledgments. This work was supported by CONACyT under grant number
336750 and CINVESTAV. This work was also funded by “Fondo Sectorial de Investi-
gación para la Educación”, CONACyT México, through the project number 281565.
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Abstract. The first CCA secure public key encryption (PKE) on the
learning parity with noise (LPN) assumption was invented by Döttling
et al. (ASIACRYPT 2012). At PKC 2014, Kiltz et al. gave a simpler
and more efficient construction, where a double-trapdoor technique was
introduced to handle the decryption queries in game simulation. Dif-
ferent from the technique, we build in the standard model the CCA
secure PKE on a variant of Extended Knapsack LPN problem (which
is provably equivalent to the standard LPN problem). We abstract out
an ephemeral key from the LPN assumption, which can then be used
to encrypt the underlying plaintext when equipped with several typi-
cal classes of cryptographic primitives. Thanks to these techniques, the
decryption queries can be correctly answered (yet without relying on a
double-trapdoor mechanism) during security reduction from LPN. The
resulting simple proposal appears more modular and efficient.

Keywords: Post quantum cryptography · Low-noise LPN
Extended Knapsack LPN

1 Introduction

In cryptography and learning theory, the Learning Parity with Noise (LPN)
problem has become a well-known problem. The two versions of LPN have been
pointed out to be polynomially equivalent [10]. The decisional one with param-
eter 0 < μ < 1/2 (noise rate), m = poly(n), n ∈ N posulates that (A, 〈A, s〉 + e)
is pseudorandom given A (i.e., computationally indistinguishable from uniform
randomness), where A ∈ {0, 1}m×n, s ∈ {0, 1}n are chosen uniformly at random,
e ∈ {0, 1}m is distributed to Bm

μ , (i.e., concatenation of m independent copies of
the Bernoulli distribution Bμ such that Pr[Bμ = 1] = μ), 〈·, ·〉 denotes the inner
product of two vectors and ‘+’ denotes the XOR operation. The computational

c© Springer Nature Switzerland AG 2018
D. Naccache et al. (Eds.): ICICS 2018, LNCS 11149, pp. 756–766, 2018.
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version assumes that it is computationally infeasible to find out the random
secret binary vector s ∈ {0, 1}n from those noisy linear samples.

LPN Hardness. The computational LPN problem is deemed as a well-known NP-
complete problem “decoding random linear codes” [2], which makes LPN be a
promising candidate for post-quantum cryptography. Furthermore, the simplic-
ity of LPN makes it more suitable for weak-power devices (e.g., RFID tags) than
other post-quantum candidates such as LWE [17]. The best known algorithms
for solving constant noise (noise parameter 0 < μ < 1/2) LPN problem require
2O(n/ log n) time and samples [4,12]. When given only polynomially many poly(n)
samples, the time complexity goes up to 2O(n/ log log n) [13], and even 2O(n) when
given only linearly many O(n) samples [14,19]. Under low-noise rate i.e., the
noise rate μ = O(n−c) (typically c = 1/2), the best LPN solvers need only
2O(n1−c) time when given O(n) samples [3,19].

1.1 Related Work

PKE with CPA security. Retrospectively, Alekhnovich [1] constructed the first
CPA-secure public-key encryption scheme from low-noise LPN (i.e., noise rate
μ = 1/

√
n). Inspired by the schemes of Regev [17] and Gentry et al. [9], Döttling

et al. proposed an alternative one [8]. The work of Yu and Zhang [20] in 2016
made a breakthrough in solving the open problem of constructing public-key
primitives based on constant-noise LPN problem. In their IND-CPA scheme,
they used a variant assumption called LPN on Squared-Log Entropy and gave a
tight requirement of secret key’s distribution.

PKE with CCA security. IND-CCA security [16] is one of the strongest known
notions of security for public-key encryption schemes. Döttling et al. [8] con-
structed the first CCA-secure PKE scheme from low-noise LPN by using the
correlated products approach of [18]. But the complexity of that scheme was
hundreds of times worse than Alekhnovich’s scheme. Kiltz et al. [11] gave a more
efficient CCA-secure construction by means of the techniques from LWE-based
encryption in [15] with some technical changes. Specifically, they used a double-
trapdoor mechanism, together with a trapdoor switching lemma so that there
is always an available trapdoor to answer the decryption queries in game simu-
lation. In [20], Yu and Zhang constructed the first constant-noise LPN problem
based CCA-secure scheme which uses a tag-based encryption technique.

1.2 Our Contributions

In this work, we propose a simple and efficient PKE scheme which is IND-
CCA secure from low-noise LPN . We build a neat construction with noise rate
μ ≈ O(

√
1/n).

With an IND-CPA secure private-key scheme and a collision resistant hash
function H we plug the H(c1, c2, s,Ht) into Enc′

k(m) where k = H(c1, c2, s,Ht)
becomes a secret key of the Enc′ algorithm of an IND-CPA-secure private-key
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scheme Π′. Intuitively, based on the indistinguishability of LPN samples, it holds
that the scheme is IND-sTag-CCA secure (see Definition 4) and can be efficiently
transformed into a CCA-secure encryption scheme [5,11,20].

2 Preliminaries

2.1 Notations and Definitions

We use capital letters (e.g., X,Y ) for random variables and distributions, stan-
dard letters (e.g., x, y) for values. Vectors are used in the column form and
denoted by bold lower-case letters (e.g., a). We treat matrices as the sets
of its column vectors and denote them by bold capital letters (e.g., A). For
a binary string x, |x| refers to the Hamming weight of x. We use Bμ to
denote the Bernoulli distribution with parameter μ, i.e., Pr[Bμ = 1] = μ,
Pr[Bμ = 0] = 1 − μ, while Bn

μ denotes the concatenation of n independent
copies of Bμ. For n, � ∈ N, Un (resp., U�×n) denotes the uniform distribution
over {0, 1}n (resp., {0, 1}�×n) and independent of any other random variables
in consideration. X ∼ D denotes that random variable X follows distribution
D. We use s ← S to denote sampling an element s according to distribution
S. For random variables X and Y , the statistical distance between them is
defined by Δ(X,Y ) = 1

2 ·
∑

x |Pr[X = x] − Pr[Y = x]|. If for probability ensem-
bles X = {Xn}n∈N and Y = {Yn}n∈N, Δ(Xn, Yn) ≤ negl(n) holds, then X and
Y are called statistically indistinguishable, denoted by X

s∼ Y . If for any PPT
distinguisher D, |Pr[D(Xn) = 1] − Pr[D(Yn) = 1] ≤ negl(n)| holds then X and
Y are called computationally indistinguishable, denoted by X

c∼ Y .

Collision Resistant Hash Function. A hash function family H = {H : X →
Y} is collision resistant if for any PPT adversary A, it satisfies that Advcr

H,A(n) =

Pr[H $← H, (x, x′) $← A(H) : H(x) = H(x′) ∧ x �= x′] ≤ negl(n).

2.2 Learning Parity with Noise

Definition 1 (Learning Parity with Noise). The decisional LPNn,m,μ

problem is hard if for every m = poly(n) we have (A, A · s + e) c∼ (A,b)
where A ∼ Um×n, s ∼ Un, e ∼ Bm

μ and b ∼ Um while the secret length is
n and the noise rate is 0 < μ < 1/2. The computational LPNn,m,μ prob-
lem is hard if for every m = poly(n) and every PPT algorithm D we have
Pr[ D(A, A · s + e) = s ] = negl(n) where A ∼ Um×n, s ∼ Un and e ∼ Bm

μ .

Definition 2 (Knapsack LPN-KLPN). The knapsack LPN problem is hard
if for m > n samples we have (A, Aᵀt) c∼ (A, b) where A ∼ Um×n, t ∼ Bm

μ ,
b ∼ Un.

With a standard hybrid argument technique, we have results on the �-fold
LPN and �-fold KLPN that (A,AS + E) c∼ (A,B1) where A ∼ Um×n,S ∼
Un×�,E ∼ Bm×�

μ and B1 ∼ Um×�; (A,TᵀA) c∼ (A,B2) where A ∼ Um×n,T ∼
Bm×�

μ and B2 ∼ U�×n.
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Definition 3 (Extended Knapsack LPN-EKLPN). The Extended Knap-
sack LPN problem is hard if for m > n samples we have (A,Aᵀt, e, tᵀe) c∼
(A,b, e, tᵀe) where A ∼ Um×n,b ∼ Un, t, e ∼ Bm

μ .

Lemma 1. Assume that the Extended Knapsack LPN problem is hard then we
have (A,Aᵀt, e, tᵀe) c∼ (A,Aᵀt′, e, tᵀe).

Proof. From Definition 3 we have (A,Aᵀt, e, tᵀe) c∼ (A,b, e, tᵀe). From Def-
inition 2 we have (A, Aᵀt′) c∼ (A, b) where A ∼ Um×n, t, t′, e ∼ Bm

μ .
By combining these two equations, we immediately obtain (A,Aᵀt, e, tᵀe) c∼
(A,Aᵀt′, e, tᵀe).

The Extended Knapsack LPN to standard LPN problem reduction can be
referenced to [7].

3 CCA Secure PKE from Low-Noise LPN

In this section, we construct a CCA-secure PKE from low-noise LPN problem.
Technically, we construct a tag-based PKE against selective tag and chosen
ciphertext attacks from LPN, which can be transformed into a standard CCA-
secure PKE by using known techniques [5,11,20].

3.1 Tag-Based Encryption

A tag-based encryption (TBE) scheme with tag-space T and message-space M
consists of three PPT algorithms T BE = (KeyGen,Enc,Dec). The randomized
key generation algorithm KeyGen takes the security parameter n as input, out-
puts a public key pk and a secret key sk, denoted as (pk, sk) ← KeyGen(1n).
The randomized encryption algorithm Enc takes pk, a tag t ∈ T , and a plaintext
m ∈ M as input, outputs a ciphertext C, denoted as C ← Emc(pk, t,m). The
deterministic algorithm Dec takes sk and C as inputs, outputs a plaintext m, or
a special symbol ⊥, which is denoted as m ← Dec(sk, t, C). For correctness, we
require that for all (pk, sk) ← KeyGen(1n), any tag t, any plaintext m and any
C ← Enc(pk, t,m), the equation Dec(sk, t, C) = m holds with overwhelming
probability.

We consider the following game between a challenger C and an adversary A.

Init. The adversary A takes the security parameter n as input, and outputs a
target t∗ to the challenger C.

KeyGen. The challenger C computes (pk, sk) ← KeyGen(1n), gives the public
key pk to the adversary A, and keeps the secret key sk.

Phase 1. The adversary A can make decryption queries polynomial times for
any pair (t, C), with a restriction that t �= t∗, and the challenger C returns
m ← Dec(sk, t, C) to A accordingly.

Challenge. The adversary A outputs two equal length plaintexts m0,m1 ∈
M. The challenger C randomly chooses a bit b∗ $← {0, 1}, and returns the
challenge ciphertext C∗ ← Enc(pk, t∗,mb∗) to the adversary A.
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Phase 2. The adversary can make more decryption queries as in Phase 1.
Guess. Finally, A outputs a guess b ∈ {0, 1}. If b = b∗, the challenger C outputs

1, else outputs 0.
Advantage. A’s advantage is defined as Advind−stag−cca

T BE,A (1n) def= |Pr[b = b∗]− 1
2 |.

Definition 4 (IND-sTag-CCA.) We say that a TBE scheme T BE is IND-
sTag-CCA secure if for any PPT adversary A, its advantage is negilible in n.

3.2 The Construction

Our TBE scheme T BE is constructed by using the following parameters and
building blocks. Let k be the security parameter, n = Θ(k2), m ∈ Z such that
m ≥ 2n. A constant 0 < c < 1

6 (recall that we set 6c < α < 1) defining:
The Bernoulli parameter μ =

√
c/m and the bounding parameter β = 2

√
cm

to check consistency during decryption. A generator matrix G ∈ Z
m×n
2 of a

binary linear error-correcting code C = C(G) and has efficient decode algorithm
DecodeG correcting up to αm errors (we refer to [11] for details about error-
correcting code). Let the tag-space T = F2n . We use a matrix representation
Ht ∈ {0, 1}n×n for finite field elements t ∈ F2n [5,6,11] such that H0 = 0, Ht is
invertible for any t �= 0, and Ht1 +Ht2 = Ht1+t2 . A family of collision resistant
hash functions H := {H : Zm

2 × Z
m
2 × Z

n
2 × Z

n×n
2 → Z

�
2}. Let Π′ = (Enc′,Dec′)

be a private-key encryption scheme for messages m ∈ {0, 1}�′
(�′ � n, say

�′ = 128 typically). We present the construction of T BE = (KeyGen,Enc,Dec)
with message space {0, 1}�′

in Fig. 1.

(pk, sk) $← KeyGen(1k) : c
$← Enc(pk, t,m) : //m ∈ {0, 1}�′

, t ∈ F2n m ← Dec(sk, t, c) :

A $← Um×n. Parse pk = (A,B). Parse sk = T.

T $← Bm×m
μ . s $← Un. Parse c := (c1, c2, c3).

B := TA. e1
$← Bm

μ . y := c2 − Tc1.

T′ $← Bm×m
μ . Hts = b := DecodeG(y).

Return pk := (A,B), c1 := As+ e1. Compute s = H−1
t b, and check whether

sk := T. c2 := (GHt +B)s+T′e1. | c1 − As︸ ︷︷ ︸
e1

| ≤ β ∧ | c2 − (GHt +B)s
︸ ︷︷ ︸

T′e1

| ≤ αm
3 .

k = H(c1, c2, s,Ht). If yes, compute k = H(c1, c2, s,Ht),

c3 := Enc′
k(m). m = Dec′

k(c3), otherwise let m =⊥.

Return c := (c1, c2, c3). Return m.

Fig. 1. IND-sTag-CCA secure T BE from low-noise LPN
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3.3 Correctness

Lemma 2 (Chernoff Bound [11,20] ). For any 0 < μ < 1 and any δ > 0, we

have Pr[|Bm
μ | > (1 + δ)μm] < e

−min(δ,δ2)
3 μm, in particular, for δ = 1 Pr[|Bm

μ | >

2μm] < e−μm/3.

Obviously, for the chosen e1
$← Bm

μ , the Chernoff Bound yields: Pr[|e1| >

β
︸︷︷︸
=2μm

] < e−μm/3 = 2−Θ(
√

m).

Theorem 1 (Correctness). Let parameters be chosen as in our construction
then with overwhelming probability over the choice of the public and secret keys
and for all m ∈ {0, 1}�′

, Dec(sk, c) outputs m correctly over c ← Enc(pk,m).

Proof. The scheme’s correctness requires the following:

1. |(T′ − T)e1| ≤ αm (to let DecodeG reconstruct s from y = c2 − Tc1).
2. |c1 − As| ≤ β ∧ |c2 − (GHt + B)s| ≤ αm

3 .

For the decryption algorithm we require that the Hamming weight of the inner-
product of a matrix T $← Bm×m

μ and a vector e1
$← Bm

μ is upper bounded by
1
3αm with overwhelming probability. We firstly analyze the inner-product of a

vector t $← Bm
μ and the vector e1

$← Bm
μ whose Hamming weight is at most β

described as above. Since |e1| ≤ β, a necessary condition for tᵀe1 = 1 is that
t[i] = 1 for at least one of the i’s where e1[i] = 1. By a simple XOR-Lemma, it
holds that μ′ = Pr[tᵀe1 = 1] ≤ βμ = 2c.

By the Chernoff Bound (1) and with δ = α/(3μ′) − 1 (where μ′ ≤ 2c < α/3)

Pr
[
|Te1| > 1

3αm
]

= Pr [|Te1| > (1 + δ)μ′m] < e
−min(δ,δ2)

3 μ′m.
Since δμ′ = α/3−μ′ ≥ α/3−2c > 0 and δ = α/(3μ′)−1 ≥ α/(6c)−1 > 0 are

lower bounded by constants and therefore Pr
[
|Te1| > 1

3αm
]

< e
−min(δ,δ2)

3 μ′m =
2−Θ(m).

Finally, in the ciphertext of our construction we have |c1 − As| = |e1| ≤
β ∧ |c2 − (GHt + B)s| = |T′e1| ≤ 1

3αm holds with overwhelming probability
1 − 2−Θ(

√
m). In the decrption operation, y = c2 − T · c1 = (GHt + B) · s +

T′e1 −T(A · s + e1) = GHt · s+ (T′ − T) · e1 it is sufficient to bound the error
item |(T′ − T)e1|. It holds that |(T′ − T)e1| ≤ |T′e1| + |Te1| ≤ 2

3αm < αm.
Therefore, the decoding-procedure DecodeG will successfully recover s.

In all, the message m can be decrypted with overwhelming probability. ��

3.4 Security

Theorem 2. Assume that the LPN problem is hard, H is a collision resistant
hash function and Π′ is an IND-CPA-secure private-key encryption scheme then
our TBE scheme T BE in Fig. 1. is IND-sTag-CCA secure.
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Proof. Let A be any PPT adversary that can attack our scheme T BE with
advantage ε. We show that ε must be negligible in n. We continue the proof by
using a sequence of games, where the first game is the real game, while the last is
a random game in which the challenge ciphertext contains one component from
an IND-CPA secure private-key encryption. Thus if A can win in the last game
he breaks the IND-CPA secure private-key encryption as well which violates
the assumption. The security of T BE can be established by showing that A’s
advantage in any two consecutive games are negligibly close.

Game 1. This is the IND-sTag-CCA experiment. The challenger C honestly
runs the adversary A with the security parameter k and obtains a target tag t∗

from A. Then, it simulates the IND-sTag-CCA security game for A as follows:

KeyGen. First uniformly choose a collision resistant hash function H
$← H and

matrices A $← Um×n, T $← Bm×m
μ . Then, compute B = TA ∈ {0, 1}m×n.

Finally, C sends pk = (A,B) to the adversary A, and keeps sk = T to itself.
Phase 1. While receiving a decryption query c = (t, (c1, c2, c3)) from adversary

A, the challenger C directly returns ⊥ if t = t∗. Otherwise it first computes
y = c2−T·c1 = (GHt + B)·s+T′e1−T(A · s + e1) = GHt ·s+(T′ − T)e1.
Then the challenger reconstructs b = Hts from the error (T′ − T)e1 by
using the error correction peoperty of G and computes s = H−1

t b. Then
the challenger C checks that whether it satisfies that |c1 − As| ≤ β ∧ |c2 −
(GHt + B)s| ≤ 1

3αm. If yes it computes k = H(c1, c2, s,Ht),m = Dec′
k(c3)

otherwise lets m =⊥. Finally it returns m to A.
Challenge. After receiving two equal length plaintexts m0, m1 ∈ {0, 1}�′

from

the adversary A, the challenger C first randomly chooses a bit b∗ $← {0, 1},

and s $← Un, e1
$← Bm

μ ,T′ $← Bm×m
μ . Then, it calculates c∗

1 := As + e1 ∈
{0, 1}m, c∗

2 := (GHt∗ + B)s + T′e1 ∈ {0, 1}m,k = H(c∗
1, c

∗
2, s,Ht∗) ∈

{0, 1}�, c∗
3 := Enc′

k(mb∗) ∈ {0, 1}�′
, and returns the challenge ciphertext

(c∗
1, c

∗
2, c

∗
3) to the adversary A.

Phase 2. The adversary can make more decryption queries and the challenger
C responds to A as in Phase 1.

Guess. Finally, A outputs a guess b ∈ {0, 1}. If b = b∗, the challenger C outputs
1, else outputs 0.

Let Wi be the event that C outputs 1 in Game i for i in {1, 2, 3}.

Game 2. This Game is identical to Game 1 except that the challenge phase is
changed as follows:

Challenge. After receiving two equal length plaintexts m0, m1 ∈ {0, 1}�′
from

the adversary A, the challenger C first randomly chooses a bit b∗ $← {0, 1},

and s $← Un, e1
$← Bm

μ . Then, it calculates c∗
1 := As + e1 ∈ {0, 1}m, c∗

2 :=
(GHt∗ + B)s + Te1 ∈ {0, 1}m,k = H(c∗

1, c
∗
2, s,Ht∗) ∈ {0, 1}�, c∗

3 :=
Enc′

k(mb∗) ∈ {0, 1}�′
, and returns the challenge ciphertext (c∗

1, c
∗
2, c

∗
3) to the

adversary A.
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Lemma 3. |Pr[W1] − Pr[W2]| ≤ negl(n)

Proof. The only difference between Game 1 and Game 2 is that C replaces c∗
2 :=

(GHt∗ + B)s+T′e1 in Game 1 with c∗
2 := (GHt∗ + B)s+Te1 in Game 2. Next,

we introduce a sequence of games {Game1,i}i∈[0,m] between Game 1 and Game
2 to replace T′ in the c∗

2 row by row. Firstly, we define T = (t1, · · · , tm)ᵀ,T′ =
(t′

1, · · · , t′
m)ᵀ.

- Game1,i, i ∈ [m]. This game is a hybrid of Game 1 and Game 2: the challenger
C replaces t′ᵀ

i with tᵀ
i in c∗

2 during the challenge phase and keeps the remain-
ing rows as in Game1,i−1. Let Game1,0 be Game 1. Obviously, Game1,m is
identical to Game 2.

It suffices to show that |Pr[W1,i] − Pr[W1,i−1]| ≤ negl(n) for any i ∈ [m]. The
hardness of the EKLPN problem ensures that the probability for adversary A to
distinguish Game1,i from Game1,i−1 is negligible. Otherwise we can construct an
algorithm B to solve EKLPN problem. Precisely, B is constructed by simulating
Game1,i or Game 1,i−1 for A. B is given a quadruple (A, (t̄ᵀ

i A)ᵀ, e1, z̄i), where
z̄i is either t̄ᵀ

i e1 or t̄′ᵀ
i e1. B’s behavior is as follows.

KeyGen. B picks H
$← H, Ti = (t1, · · · , ri, · · · , tm)ᵀ and then B sets B =(

Aᵀt1, · · · , Aᵀt̄i , · · · ,Aᵀtm

)ᵀ
. Finally, B sends pk = (A,B) to the adver-

sary A, and keeps sk = Ti to itself. Note that the ith row in Ti is chosen
randomly and the ith row in B is independent of it.

Phase 1. While receiving a decryption query c = (t, (c1, c2, c3)) from adver-
sary A, B directly returns ⊥ if t = t∗. Otherwise it first computes y =
c2 − Ti · c1 = (GHt + B) · s + T′e1 − Ti(A · s + e1) = GHt · s +⎛

⎜
⎜⎜⎜⎜⎜
⎝

0
...

(t̄ᵀ
i − rᵀ

i )As
...
0

⎞

⎟
⎟⎟⎟⎟⎟
⎠

+

⎛

⎜
⎜⎜⎜⎜⎜
⎝

(t′ᵀ
1 − tᵀ

1)e1

...
(t′ᵀ

i − rᵀ
i )e1

...
(t′ᵀ

m − tᵀ
m)e1

⎞

⎟
⎟⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
Δi

, Hts = Decode(y).

Let y = GHts + Δi, where |Δi| ≤ 2
3αm + 1 < αm, DecodeG also can handle

correct s from y. Then B checks that whether it satisfies that |c1 − As| ≤
β ∧ |c2 − (GHt + B)s| ≤ 1

3αm. If yes it computes k = H(c1, c2, s,Ht),m =
Dec′

k(c3) otherwise lets m =⊥. Finally it returns m to A. Therefore, the
decryption oracle can behave correctly.

Challenge. After receiving two equal length plaintexts m0, m1 ∈ {0, 1}�′

from the adversary A, B first randomly chooses a bit b∗ $← {0, 1}, and

s $← Un, e1
$← Bm

μ . Then, it calculates c∗
1 := As + e1 ∈ {0, 1}m, c∗

2 =

(GHt∗ + B)s +
(
eᵀ
1t1, · · · , eᵀ

1ti−1 z̄i , eᵀ
1t

′
i+1 · · · , eᵀ

1t
′
m

)ᵀ
∈ {0, 1}m,k =

H(c∗
1, c

∗
2, s,Ht∗) ∈ {0, 1}�, c∗

3 := Enc′
k(mb∗) ∈ {0, 1}�′

, and returns the chal-
lenge ciphertext (c∗

1, c
∗
2, c

∗
3) to the adversary A.



764 H. Cheng et al.

Phase 2. The adversary can make more decryption queries and B responds to
A as in Phase 1.

Guess. Finally, A outputs a guess b ∈ {0, 1}. If b = b∗, B outputs 1, else
outputs 0.

If z̄i = t̄′ᵀ
i e1, then B simulates the behavior of the challenger in Game1,i−1

exactly. Hence, Pr[W1,i−1] = Pr
[
B(A, (t̄ᵀ

i A)ᵀ, e1, t̄
′ᵀ
i e1) = 1

]
.

If z̄i = t̄ᵀ
i e1, then B simulates the behavior of the challenger in Game1,i

exactly. Hence, Pr[W1,i−1] = Pr [B(A, (t̄ᵀ
i A)ᵀ, e1, t̄

ᵀ
i e1) = 1].

Therefore, for i ∈ [m], we have |Pr[W1,i−1] − Pr[W1,i]| ≤ negl(n).

Game 3. This Game is identical to Game 2 except that the challenger C replaces
B = TA with B′ = B − GHt∗ ∈ {0, 1}m×n in the key generation phase.

Lemma 4. Pr[W3] = Pr[W2].

Proof. The only difference between Game 2 and Game 3 is that C replaces
B = TA in Game 2 with B′ = B − GHt∗ in Game 3. This means that the
public key in Game 3 has the same distribution in Game 2. Thus we have
Pr[W3] = Pr[W2].

Game 4. This Game is identical to Game 3 except that the challenger C replaces
c∗
1 = As+ e1 ∈ {0, 1}m with c∗

1 = u ∈ {0, 1}m in the challenge phase. Note that
in Game 2, c∗

2 = (GHt∗ + B)s+Te1 = GHt∗s+Tc∗
1. Therefore, in Game 3 we

have c∗
2 = (GHt∗ + B′)s + Te1 = Tc∗

1.

Lemma 5. | Pr[W4] − Pr[W3] | ≤ negl(n).

Proof. Since the only difference between Game 3 and Game 4 is that C replaces
c∗
1 = As + e1 ∈ {0, 1}m in Game 3 with c∗

1 = u ∈ {0, 1}m in Game 4, we can
construct a distinguisher D that distinguishes the distributions (A,A · s+e) and

(A,u) (where u $← Um) with advantage adv(n) (assuming that A distinguishes
3 and Game 4 with non-negligible adv(n)), contradicting the assumption. Thus
we have | Pr[D(A,A · s + e)] | − | Pr[D(A,u)] | = | Pr[W3] | − | Pr[W4] | =
adv(n), which contradicts the assumption. This means that we have | Pr[W3] |−
| Pr[W4] | ≤ negl(n).

Lemma 6. Pr[W4] = 1
2 + negl(n).

Proof. This lemma follows from that the challenge ciphertext (c∗
1, c

∗
2) in game

4 is uniformly distributed. From A’s view, s is perfectly hidden since c∗
1 is uni-

formly distributed. The collision resistant hash function implies that it’s nearly
impossible for A to guess k correctly. Combining with the IND-CPA secure
private-key encryption scheme it ensures that the advantage of the adversary A
is negligible.

Note that the security requirement of private-key encryption scheme Π′ is
IND-CPA secure, for example an one-time pad scheme, since the replacement of
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the pseudorandomness with randomness makes the challenge ciphertext perfectly
random thus it is impossible for adversary to guess correctly with probability
more than 1/2. Meanwhile it answers the decryption queries correctly. In all,
we have Pr[W1] = 1

2 + negl(n), such that ε = negl(n). Thus we complete the
proof.
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12. Levieil, É., Fouque, P.-A.: An improved LPN algorithm. In: De Prisco, R., Yung,
M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 348–359. Springer, Heidelberg (2006).
https://doi.org/10.1007/11832072 24

https://doi.org/10.1007/978-3-642-22792-9_42
https://doi.org/10.1137/S009753970544713X
https://doi.org/10.1137/S009753970544713X
https://doi.org/10.1007/978-3-642-03356-8_11
https://doi.org/10.1007/978-3-662-46447-2_27
https://doi.org/10.1007/978-3-642-34961-4_30
https://doi.org/10.1007/11761679_6
https://doi.org/10.1007/978-3-642-54631-0_1
https://doi.org/10.1007/11832072_24


766 H. Cheng et al.

13. Lyubashevsky, V.: The parity problem in the presence of noise, decoding random
linear codes, and the subset sum problem. In: Chekuri, C., Jansen, K., Rolim,
J.D.P., Trevisan, L. (eds.) APPROX/RANDOM -2005. LNCS, vol. 3624, pp. 378–
389. Springer, Heidelberg (2005). https://doi.org/10.1007/11538462 32

14. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in Õ(20.054n).
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Abstract. Public key cryptosystems (PKCs) often rely on public key
algorithms based on mathematical problems that currently admit no effi-
cient solution, such as integer factorization and discrete logarithm, which
are relatively computationally costly compared with most symmetric key
algorithms of equivalent security. In this paper, we propose PoS, con-
structing practical and efficient PKCs based on symmetric cryptography
with SGX. To achieve this, we separate private and public operations
into dedicated private and public SGX enclaves, hosted on the recipient
and sender sides respectively, and leverage the security mechanisms pro-
vided by SGX to make symmetric keys shared between private enclave
and public enclave, while being kept secret from the sender, by limit-
ing the shared keys within public enclave and not exportable. PoS gains
security guarantees when the security assumptions of SGX and symmet-
ric cryptography stand. To demonstrate the practicality and efficiency
of the PKCs constructed on PoS, we have constructed, implemented,
and benchmarked two PKCs based on PoS, PKE-PoS and IBE-PoS. The
evaluation results show that both PKE-PoS and IBE-PoS gain excellent
performance: the performance of PKE-PoS is up to 195 times of that of
RSA-2048, and the performance of IBE-PoS is up to 4 orders of magni-
tude higher than that of Boneh-Franklin IBE.

Keywords: Software Guard Extension
Public key cryptosystems · Identity-based encryption
Cryptographic keys

1 Introduction

Public key cryptosystems (PKCs) are fundamental security ingredients in appli-
cations and protocols. They underpin various Internet standards, such as Trans-
port Layer Security (TLS), S/MIME, PGP, and GPG. PKCs often adopt public
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key algorithms relying on cryptographic algorithms based on mathematical prob-
lems, such as integer factorization, discrete logarithm, and elliptic curve, all of
which currently admit no efficient solution and are computationally intensive.
Public key algorithms known so far are relatively computationally costly com-
pared with most symmetric key algorithms of equivalent security.

Intel Software Guard Extensions (SGX) [1–3] enables execution of user-level
sensitive code in an isolated environment, called enclave. The processor iden-
tifies and distinguishes enclaves in hardware-level by the measurement of the
enclaves, which typically is the hash of enclave code. Isolation provided by SGX
prevents other enclaves, other processes, and privileged code such as the OS and
hypervisor, from reading or modifying the memory of an enclave at runtime.
To protect enclave data across executions, SGX provides a security mechanism
called sealing that allows each enclave to encrypt and authenticate data for
persistent storage, with an enclave specific key derived from both processor-
specific secrets and enclave measurement. SGX-enabled processors are equipped
with certified cryptographic keys that can issue remotely verifiable attestation
statements. A statement typically includes enclave measurement, fingerprint of
enclave issuer, as well as user custom data, e.g., temporary public key. A veri-
fied attestation statement indicates that the enclave with given measurement is
securely running on a SGX-enabled platform as expected. Through these secu-
rity mechanisms, namely isolation, sealing, and attestation, SGX hardens the
security of applications and services.

In this paper, we propose PoS, constructing practical and efficient PKCs
based on symmetric cryptography with SGX. PoS provides two type crypto-
graphic interfaces: private interfaces for signing/decrypting on the recipient side,
and public interfaces for verifying/encrypting on the sender side. PoS allows
PKCs to adopt symmetric key algorithms to implement those interfaces. To
achieve this, as paradoxical as it may seem, a big challenge is that making sym-
metric keys shared between the sender side and the recipient side while being
kept secret from the sender. We leverage the security mechanisms provided by
SGX to solve such a challenge: Firstly, we separate private and public interfaces
into two different dedicated SGX enclaves, private enclave and public enclave,
hosted on the recipient and sender sides respectively. The two enclaves are iso-
lated from each other, as well as privileged code like the OS and hypervisor, in
hardware-level, making the code and data of cryptographic operations free from
any modification and misuse. Secondly, we construct a secure private channel
by leveraging remote attestation provided by SGX and provision symmetric keys
to public enclave through it. The provisioned symmetric keys are limited within
public enclave and never be exported. Isolation provided by SGX ensures that
only public enclave can access the keys while preventing access from any other
entities including the sender, other enclaves, or privileged code.

The security of PoS relies on SGX and symmetric cryptography and PoS
gains security guarantees when the security assumptions of SGX and symmet-
ric cryptography stand. To demonstrate the practicality and efficiency of the
PKCs based on PoS, we have constructed PKE-PoS and IBE-PoS: PKE-PoS
acts as traditional public key encryption (PKE) systems like RSA, while IBE-PoS
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acts as traditional identity-based encryption (IBE) systems like Boneh-Franklin
IBE [4].

We have implemented both PKE-PoS and IBE-PoS with AES-256-GCM
and HMAC-SHA256, and evaluated the performance of them. We also bench-
marked most commonly used PKCs, such as RSA-2048, RSA-4096, DSA-1024,
DSA-2048, ECDSA-p224, ECDSA-p256, ECDSA-p384, and IBE systems with
most commonly used schemes, including Boneh-Franklin scheme (BF) [5] and
NTRU lattices-based scheme (GPV) [6]. All experiments were conducted on
SGX-enabled computers. The benchmark results show that PoS-based PKCs
gain very excellent performance, far better than any other ones: the performance
of PKE-PoS signing and decryption operations is up to 195 times of that of RSA-
2048 while the performance of PKE-PoS verifying and encryption operations is
about 5.4 times of that of RSA-2048; the performance of IBE-PoS decryption is
about 745 times of that of GPV scheme and is more than 4 orders of magnitude
higher than that of BF scheme; the performance of IBE-PoS encryption is about
390 times of that of GPV scheme and is about 4 orders of magnitude higher
than that of BF scheme.

Contributions. In summary, our main contributions are:

– We propose propose PoS, constructing practical and efficient PKCs based
on symmetric cryptography with SGX. To the best of our knowledge, PoS
is the first one that allows constructing practical PKCs based on symmetric
cryptography.

– We have constructed two PKCs on our PoS, PKE-PoS and IBE-PoS, and
demonstrated their practicality.

– We have implemented PKE-PoS and IBE-PoS and evaluated the efficiency
of them on SGX-enabled computers. The results show that PoS-based PKCs
gain excellent performance and are far more efficient than traditional PKCs.

2 Security Assumptions

We consider that PKCs based on our PoS will always employ provably secure
symmetric key algorithms and symmetric keys of sufficient key length. We also
consider that SGX security mechanisms, namely isolation, sealing, and attes-
tation, provided by the processor will not be compromised. Our PoS does not
aim to protect SGX enclaves against side-channel attacks [7,8] and rollback
attacks [3,9]. Such attacks can be mitigated by existing solutions, e.g., [10,11]
for side-channel attacks and [12,13] for rollback attacks. Our PoS is compatible
with those solutions.

3 Principles of PoS

3.1 Overview

PoS consists of two dedicated SGX enclaves, private enclave and public
enclave, hosted on the recipient and sender sides respectively. Both enclaves
are isolated from the untrusted components of the host processes, as well as the
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OS and hypervisor. Private enclave only provides private interfaces, i.e., sign
and decrypt, while public enclave only provides public interfaces, i.e., verify and
encrypt. The attestation and isolation mechanisms provided by SGX make sure
that enclaves act as expected, and any modification to the code and data of the
enclaves will be prevented.

In PoS, a symmetric key is used as a private key in private enclave while
used as a public key in public enclave. Symmetric keys are provisioned to public
enclave, limited within public enclave, and marked as not exportable, so that
access from any other entities including other enclaves, specially private enclave,
privileged code, and the sender are prevented by SGX. As such, the provisioned
symmetric keys can only be used to perform cryptographic operations specified
by public enclave, namely encrypt and verify. The sender is able to encrypt/verify
messages to/from the recipient through the public interfaces while the shared
symmetric keys are kept secret from the sender.

3.2 Typical Cryptographic Interfaces

PoS defines two type cryptographic interfaces: private interfaces, i.e., sign and
decrypt, which use symmetric keys as private keys, and public interfaces, i.e.,
verify and encrypt, which use symmetric keys as public keys. For encrypt and
decrypt, they can be typically implemented the same as in traditional symmetric
key encryption and decryption of secure symmetric key algorithms, e.g., AES.
For sign and verify, they can typically adopt secure Message Authentication
Code (MAC) algorithms, e.g., HMAC. PKCs constructed based on PoS should
implement those cryptographic operation interfaces.

PoS allows PKCs to extend additional interfaces that needed, e.g., key gen-
eration interfaces. The only requirement is that all those additional interfaces
should comply with PoS policies, i.e., porting into different enclaves according
whether the symmetric keys are used as private keys or public keys and not
exporting the shared symmetric keys in enclaves.

3.3 Provisioning Symmetric Keys

Since PoS adopts symmetric key algorithms, to make the sender able to
encrypt/verify messages to/from the recipient through the public interfaces, sym-
metric keys should be shared to public enclave. Before symmetric keys are provi-
sioned, a secure private channel over untrusted network is constructed, leveraging
remote attestation mechanism provided by SGX. To achieve that, public enclave
generates a pair of temporary keys (sktmp, pktmp) and a signed remote attesta-
tion statement, Q = Quote(pktmp), which includes the measurement of public
enclave, fingerprint of enclave issuer, and pktmp as the user custom data. Once
verifying Q successfully, one accepts pktmp with assurance, uses it to protect the
symmetric keys to be provisioned to public enclave.

The shared symmetric keys are limited within public enclave and not
exportable, so that they are kept secret from any other entities.



PoS: Constructing Practical and Efficient Public Key Cryptosystems 771

3.4 Sealing Symmetric Keys

To protect symmetric keys across executions if necessary, PoS leverages the
sealing mechanism provided by SGX to encrypt and authenticate symmetric
keys for persistent storage. SGX ensures that the keys sealed by an enclave can
only be extracted by the enclave that seals them. To make the sealed symmet-
ric keys resist rollback attacks, one can, for example, employ SGX Monotonic
Counter [12].

4 Constructing PKE on PoS

In this section, we construct PKE-PoS, a public key encryption (PKE) system
based on PoS, employing a symmetric key algorithm, e.g., AES.

Like traditional PKE systems, keys are generated on the recipient side in
PKE-PoS, except that a symmetric key (noted as mk) is generated within the
private enclave. To enable a sender to encrypt/verify a message to/from a recip-
ient, mk is provisioned to public enclave online. The key distribution procedure
is as shown in Fig. 1, leveraging SGX remote attestation mechanism to construct
a secure private channel. On success, mk is shared between public enclave and
private enclave and can be sealed for persistent storage across executions. Note
that mk is used as a public key within public enclave on the sender side while
used as a private key within private enclave on the recipient side.

Private Enclave Public Enclave

Generate (sktmp, pktmp)
Q = Quote(pktmp)Q, Public Key Request

Verify Q
C = Encpktmp(mk) C

mk = Decsktmp(C)
Seal mk

Fig. 1. Public key distribution in PKE-PoS

PKE-PoS implements encrypt and decrypt interfaces the same as in tradi-
tional symmetric key encryption and decryption provided by a secure symmet-
ric key algorithm, e.g., AES-256-GCM, while sign and verify interfaces adopt a
MAC algorithm, e.g., HMAC-SHA256.

5 Constructing IBE on PoS

Identity-based public key encryption (IBE) [4] allows an entitys public key to
be derived from an arbitrary identification value (ID), such as name or email
address. In this section, we construct IBE-PoS, an identity-based encryption
(PKE) system based on PoS, employing symmetric key algorithms, e.g., AES,
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Blowfish, Twofish, ChaCha, etc. Formally, IBE-PoS is composed by four algo-
rithms [4], namely Setup, Extract, Encrypt, and Decrypt, as usual IBE
cryptosystems:

Setup. A PKG takes a security parameter l, generates a master key mk, and
outputs public system parameters params. l specifies the key length of user’s
private keys. params includes the security parameter l, a selected symmetric
key algorithm as well as encryption mode, and a key derivation function (KDF)
that used to extract the recipient’s private keys.

Extract. The PKG takes params, mk, and recipient’s ID as inputs, and then
extracts a symmetric key sk = KDF (mk, ID) of length l.

Encrypt. A sender takes params, recipient’s ID, and a message as inputs,
and then outputs the ciphertext. This is done within public enclave. params
is retrieved from the PKG. Specially, mk is also provisioned to public enclave
along with params. Figure 2 shows the procedure of public enclave requesting
params and mk from the PKG. Public enclave first extracts sk = KDF (mk, ID)
of length l, encrypts the message with sk, using the symmetric key algorithm
and encryption mode specified in params, and then outputs the ciphertext. Note
that mk is kept secret from the sender. Both mk and params can be sealed for
persistent storage across executions.

PKG Public Enclave

Generate (sktmp, pktmp)
Q = Quote(pktmp)Q, Params Request

Verify Q
C = Encpktmp

(mk)
C, params

mk = Decsktmp
(C)

Seal mk, params

Fig. 2. System parameter request

PKG Private Enclave

Generate (sktmp, pktmp)
Q = Quote(pktmp)Q, Private Key Request

Verify Q
sk = KDF (mk, ID)

C

sk = Decsktmp
(C)

Seal sk

C = Encpktmp
(sk)

Fig. 3. Private key request

Decrypt. A recipient takes params, sk and ciphertext, and then outputs the
message. params and sk are requested from the PKG. Figure 3 shows the pro-
cedure of a recipient to request a private key from the PKG, the same as usual
IBE systems: the PKG accepts the recipient’s private key request, and after
successfully authenticating the recipient in some way, extracts the private key
sk = KDF (mk, ID) for the recipient, and provisions sk to private enclave.
Private enclave then decrypts the ciphertext with sk, using the symmetric key
algorithm and encryption mode specified in params, and then output the mes-
sage. Note that mk is not provisioned to private enclave. Both sk and params
can be sealed for persistent storage across executions.

6 Implementation

We implemented PKE-PoS and IBE-PoS for the experimental purposes. The
code of PKE-PoS and IBE-PoS is built on top of the popular OpenSSL library,
which incorporates a multitude of cryptographic functions and large-number
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arithmetic primitives, and Intel SGX SDK. Both PKE-PoS and IBE-PoS are
implemented on Linux. Currently, PKE-PoS employs AES-256-GCM for encryp-
tion and decryption, and HMAC-SHA256 for signatures; IBE-PoS employs AES-
256-GCM for encryption and decryption, and HKDF [14] with HMAC-SHA256
for key derivation.

7 Evaluation

The security of PoS relies on SGX and symmetric cryptography and PoS gains
security guarantees when the security assumptions of SGX and symmetric cryp-
tography stand. In this section, we focus on performance evaluation of PKE-PoS
and IBE-PoS.

7.1 Experiment Setup

Our experiments were conducted on a Intel NUC6 with an SGX-enabled i3-
6100U processor and 8 GB DRAM. The processor is designed for low power
(15 W) usage, whose maximum frequency is 2.3 GHz. The operating system was
Ubuntu 16.04 with Linux kernel version 4.13.0.

We benchmarked the speed of PKE-PoS and some commonly used tradi-
tional PKCs, including RSA-2048, RSA-4096, DSA-1024, DSA-2048, ECDSA-
p224, ECDSA-p256, and ECDSA-p384, using openssl speed command. Also, we
benchmarked the speed of IBE-PoS and compared it with most commonly used
implementations of IBE schemes, including Boneh-Franklin scheme (BF) [5] and
NTRU lattices-based scheme (GPV) [6]. All the benchmarks took data of same
length as input.

Fig. 4. Speed benchmarks for PKCs

7.2 Speed Benchmarks

Figure 4 shows the benchmark results of PKE-PoS, RSA, DSA, and ECDSA
systems. We can see that the performance of PKE-PoS is far better than that
of RSA, DSA, and ECDSA—compared with RSA-2048, the performance of
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PKE-PoS decryption is more than 195 times of that of RSA-2048, while that is
more than 182 times for signing, and for public operations, i.e., encryption and
verifying, the performance of PKE-PoS is more than 5 times of that of RSA-2048.

Table 1. Comparing IBE-PoS with most commonly used implementations of IBE
schemes, Boneh-Franklin scheme (BF) and NTRU lattices-based scheme (GPV).

Scheme GPV BF IBE-PoS

Encryption 3.67 ms 204.85 ms 4.929 us

Decryption 1.82 ms 42.41 ms 4.663 us

Table 1 gives the speed benchmarks of GPV, BF, and our IBE-PoS schemes.
It shows that decryption and encryption of our IBE-PoS are very fast, far better
than GPV and BF schemes—the performance of IBE-PoS decryption is about
745 times of that of GPV scheme and is more than 4 orders of magnitude higher
than that of BF scheme; the performance of IBE-PoS encryption is about 390
times of that of GPV scheme and is about 4 orders of magnitude higher than
that of BF scheme.

Besides, we can calculate that for each operation of PKE-PoS and IBE-
PoS, it takes more than 10000 cycles, far more time-consuming than that of
original symmetric key algorithms, which takes only several dozen cycles. Take
decryption operation of PKE-PoS for an example, which is the most efficient,
it takes about 10600 cycles (recall that maximum frequency of the processor on
our platform is 2.3 GHz). This is as expected, since enclave context switching
as well as initialization of symmetric key algorithms would introduce overhead.
The overhead of enclave context switching could be approximated to the time it
takes for an empty enclave call, about 8914 cycles. In addition, it takes several
hundred or thousand cycles for original symmetric key algorithms to setup key
or Initialization Vector (IV), e.g., 1107 cycles for AES-GCM. As such, we can
see that the time spent in a PKE-PoS decryption operation, 84.1% is spent in
enclave context switching, 10.4% is spent in setup key or IV, while only 5.5%
is spent in decryption. Nevertheless, as shown in Fig. 5, such overhead becomes

Fig. 5. The throughput of encryption in PoS-based systems
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less significant when the size of data processed per operation increases as the
throughput of encryption and decryption in PoS-based systems increases fast
when the data size increases.

8 Discussion

In principle, PKE-PoS can employ any secure symmetric key algorithm with
any encryption mode for encrypt and decrypt interfaces, and any secure MAC
algorithm for sign and verify interfaces. However, there would be a risk that
the sender might be able to forge a valid signature through encrypt interface in
some cases. For example, CMAC adopts CBC mode and one is able to generate
a CMAC signature for any message by encrypting the message in CBC mode
with IV set to zero, and thus if PKE-PoS happens to employ a symmetric key
algorithm with CBC mode, the sender would be able to forge signatures. As such,
PKE-PoS should make sure that the selected symmetric key algorithm and MAC
algorithm do not adopt same encryption mode. A preferable solution is to adopt
an HMAC algorithm for sign and verify interfaces, instead of encryption based
MAC algorithms like CMAC and GMAC.

A disadvantage of PKE-PoS is that requiring an online key distribution. A
sender in PKE-PoS has to retrieve recipient’s public key online from private
enclave on the recipient side. This can be mitigated by introducing a provision
enclave hosted on a public service, which keeps online—private enclave provisions
symmetric keys to the provision enclave and then can go offline, while public
enclave can request the symmetric keys after successfully authenticating to the
public service if required. The provision enclave can also be incorporated into a
certificate authority, making PKE-PoS compatible with PKI.

9 Related Work

Prior works have proposed many cryptosystems, leveraging system and network
security mechanisms to equip cryptosystems with dedicated security features.

IB-MKD [15] employed a key distribution center (KDC) equipped with an
RSA key pair to distribute message keys without the need to revoke any keys.
HIBE [16] introduced lower-level PKGs to reduce the workload of the centralized
PKG, in a way that a root PKG need only generate private keys for domain-level
PKGs, who in turn generate private keys for users in their domains in the next
level. [17] proposed solutions to mitigate key escrow problem in an IBE system,
by employing some distributed PKGs to generate the private keys, so that the
keys are still secure when the PKGs are partially compromised. In contrary,
RIKE [18] integrated the ‘inherent key escrow’ of IBE into PKIs to enable key
escrow in PKIs while keeping the complete compatibility with PKI certificates.

Intel SGX provides preferable security mechanisms, namely isolation, seal-
ing, and attestation, in protecting applications on the untrusted OS. VC3 [19]
employed SGX to provide shielded execution to protect the confidentiality and
integrity of the code and data of a program from the hosting untrusted platform.
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REM [20], a new blockchain mining framework, leveraged the partially decen-
tralized trust model inherent in SGX to achieve Proof-of-Useful-Work (PoUW),
reducing the waste of PoW (Proof-of-Work). [21] used SGX to design a proof of
luck consensus protocol and constructed a blockchain based on such a protocol.

10 Summary and Future Work

In this paper, we presented PoS, constructing practical and efficient PKCs based
on symmetric cryptography with SGX. PoS makes this possible by sharing sym-
metric keys between dedicated SGX enclaves and limiting the keys within the
enclaves, so that the keys are kept secret from other processes, privileged code
like the OS, and the sender. PoS gains security guarantees when the security
assumptions of SGX and symmetric cryptography stand. We have constructed
two PKCs based on PoS to demonstrate the practicality and efficiency of PoS-
based systems. The evaluation results have shown that PoS-based systems gain
excellent performance, far better than traditional PKCs.

Our PoS can also be used to construct other PKCs, such as an IBE sys-
tem supporting identity-based signatures with non-repudiation. A more formal
analysis of semantic security of PoS remains for our future work.
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Abstract. Blockchain and similar public ledger structures provide a
new way to publish information in distributed systems. This paper inves-
tigates their application to distributed access control and, more specif-
ically, to distributed group membership management where entities are
represented by public keys and authorization is encoded into signed cer-
tificates. We show that public ledgers with their fundamental security
properties make it easier to handle revocations in distributed settings.
We also present an efficient ledger design for membership revocation.

1 Introduction

Various mechanisms have been proposed to control access in distributed environ-
ments where resources, stakeholders, and users are geographically and organi-
zationally distributed [2,4,5]. Typically they are key-oriented, in which entities
are represented by their public keys and authorizations are encoded into signed
certificates. With these certificates, an entity can delegate some of its authority
to another. The certificates can form a chain or even a complicated hierarchy
that reflects the underlying relations between entities. When attempting access,
a subject presents a certificate chain to the verifier. The verifier then verifies
each certificate to determine the subject’s access rights.

With these systems, all entities can distribute rights to the resources that they
control and act as authorities for those who depend on them for the resources,
which are not possible with centralized approaches (e.g. access control lists).
They, however, are not flexible in terms of revocation. Let us demonstrate the
issues with the following example of group membership management.

“A multi-organizational group has a sub-group of admins and a sub-group
of members. The admins have the authority to add new admins and mem-
bers and to remove existing ones. Alice, as an admin, adds Bob to the
admins. Bob then adds his assistant Carol as an admin. Later, when Alice
is transferred to a new group, Carol removes Alice from the list of admins.”

The hierarchy of certificates mandates a fixed hierarchical structure on the
entities such that revoking access rights of an entity will effectively invalidate
those of everyone below it in the hierarchy. It means that revoking Alice auto-
matically causes the removal of Bob and Carol. Also, typically access rights of
c© Springer Nature Switzerland AG 2018
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an entity can only be revoked by the one granting them or specific authorized
entities. This is an issue because an admin in the scenario should be able to
revoke any member, not just those it added to the group.

Blockchain [9] and similar public ledger structures [1,6,8,10–12] provide a
new way to publish information in a distributed system. They solve several
fundamental problems in the design of secure distributed systems, such as global
time in the form of a strict linear order of past events and globally consistent
and immutable view of the history. The goal of this paper is to apply these ideas
to solving the revocation issues of distributed access control. We use distributed
group membership management as the main case study because it provides more
challenging revocation scenarios than most access control systems. As our main
contribution, we show how a public ledger, as an abstraction, can help to solve
the problems. We also present a ledger design that enables efficient verification
and management of distributed access control. To demonstrate the feasibility
and efficiency of the solution, we implemented a prototype of distributed group
membership management using the public ledger design.

2 Background

This section gives background and introduces the concept of distributed group
membership management, as well as related literature.

2.1 Public Ledger

A public ledger is basically a public log of events. It can be totally distributed
with no central points of trust. Prominent examples of distributed ledgers
are Bitcoin [9] and other cryptocurrencies. Typically in these cryptocurren-
cies, transactions are communicated as signed messages in a peer-to-peer (P2P)
network with no single party responsible for any critical operation. The trans-
actions are mined into blocks, which are appended into an append-only log,
called blockchain. The systems can use various consensus mechanisms [3,9,13]
to achieve global consistency of ledger content among participants.

While Bitcoin and its variants have achieved a large degree of success, more
centralized ledgers have been proposed in the literature [1,6,8,10–12]. Most of
them aim to provide transparency into the web PKI. The content of these ledgers
is maintained by an untrusted third party (UTP) instead of the P2P network,
and they rely on auditors (or monitors) to audit the UTP’s behaviors. The ledger
design presented in this paper follows this approach.

Regardless of the architecture, a public ledger typically has the following
properties:

– Immutability: The ledger is append-only. It must not be possible to edit the
entered information or to roll back the ledger to an earlier state.

– Consistency: Different parties will not receive conflicting information from
the ledger. Together with immutability, this ensures that different parties
have the same view of the current state and history of the ledger.
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– Constraints: The ledger may define constraints that must hold at all times.
In cryptocurrencies, an important constraint is the over-spending prevention.

– Inclusiveness: The ledger eventually accepts all entries sent to it, except
those violating defined constraints. Inclusiveness is important for access con-
trol because revocations must not be blocked by those maintaining the ledger.

– Linear order: The ledger might define a linear order or have some built-in
concept of time on all data entries. In Bitcoin, for example, a new block is
generated roughly every 10 min.

2.2 Distributed Access Control

In distributed access control systems [2,4,5], entities are typically represented
by public keys (PK ) and access credentials are in the form of signed certificates.
These certificates bind the keys to attributes or access rights:

C = 〈PK issuer ,PK subject , auth, validity ,Sig issuer 〉 (1)

The certificate is signed by the issuer, who gives to the subject an authoriza-
tion, i.e. access rights, for a validity period. With these certificates, an entity
can delegate some of its authority to another. As a result, the certificates may
form a chain or even a complicated hierarchy that reflects the underlying rela-
tions between their issuers and subjects. When a subject requests access to a
resource, it presents a certificate chain to the verifier. The verifier then deter-
mines whether the subject is permitted to perform the requested operation by
recursively verifying each certificate in the chain.

Revocation. Certificate revocations are usually communicated with signed mes-
sages, which are similar to certificates but convey negative information. The veri-
fier usually needs some independent means to check the availability of revocations
because nothing prevents the subject from excluding the negative information
that would cause it to be denied access.

There are some general principles of these revocations. First, revocations
apply to certificates, not to keys. Key revocation would be equivalent to revoking
all certificates issued to or by the key. Second, if any certificate in the chain
is revoked, the chain as a whole becomes invalid. This means that revoking
the access rights of an entity effectively invalidates those of everyone below it
in the hierarchy. Third, typically only the issuer of a certificate can revoke it.
Alternatively, the certificate itself could identify the authorized revocation key.

2.3 Distributed Group Membership Management

The example in Sect. 1 illustrates the group management system that we aim
to define and implement, but in a distributed setting where signed messages
(i.e. certificates and revocations) are the way to communicate. The distributed
access control solution in Sect. 2.2 does not work here because Alice needs to be
revoked by someone below her in the hierarchy and revoking Alice should not
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automatically cause the removal of Bob and Carol. In the system, each entity
belong to one or more groups and is assigned roles in each group. Since we are
interested in systems of devices and services as well as users, we will use the
words leaders and members, respectively, in place of admins and users. Only
the leaders have the authority to add new leaders and members and to remove
existing ones. These two roles are assigned and revoked separately.

The main difference between membership revocation and certificate revoca-
tion in Sect. 2.2 is that membership revocations apply to keys instead of certifi-
cates. A revocation will invalidate a key’s role in a group regardless of how many
certificates have previously been issued to assign it. Also, a group leader has
the authority to revoke any members in its group no matter which leader added
them. Moreover, a key’s role is valid until it is explicitly revoked. It means that
a certificate remains valid even after its issuer is revoked.

To implement such revocation scheme, we aim to achieve the following. First,
all events in the system (i.e. add-member and revoke-member) are consistent and
propagated reliably. This is important because we do not want different parties
to receive conflicting information. Second, it must be possible to determine the
linear order of events related to a group. This helps to answer the question:
Is key PK a current leader when it issues revocation Rev? Third, the system
must enable efficient verification and management of group membership. In this
paper, we will use public ledgers to achieve these goals.

2.4 Related Work

The widely publicized compromises of certifiers, such as Comodo and DigiNotar,
have motivated quite a few proposals for monitoring the security of the web PKI
with the help of public log servers. Our ledger design is inspired by these.

Certificate Transparency (CT) [8] suggests public logs of all web certificates
to bring transparency to the CA operations. The log is structured as an append-
only Merkle hash tree, in which new records are added to the right of the tree.
Revocation Transparency (RT) [7] was suggested as a supplement for CT. It
uses a sparse Merkle tree for storing revocations, which enables proofs of exis-
tence and non-existence for the revocations. Enhanced certificate transparency
[10] replaced the sparse tree of RT with a shallower hash tree to handle revoca-
tion more efficiently. In AKI [6], certificates and revocations are entered into an
integrity log server (ILS). It maintains an ordered Merkle tree, where the data
in the leaf nodes is sorted by the domain name. ARPKI [1] is a redesign of AKI
which provides more prudent security guarantees by combining multiple X.509
certificates from different CAs to one certificate, and by establishing quorum
among a fixed group of n global ILSs. PoliCert [12] is a similar solution with
focus on domain-specific certification policies. PKISN [11] timestamps certifi-
cates and revocations with the public log so that certificates issued by a CA
before the CA’s certificate is revoked do not become invalid. This is done by
maintaining two trees that are similar to those in CT and AKI, respectively.

All of the schemes presented above enforce a fixed hierarchical structure on
the entities, which is not what we want for group management. Specifically,
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except PKISN, revoking an entity’s certificate in these systems automatically
invalidates those of everyone below it in the hierarchy. PKISN, however, still
does not allow an entity to be revoked by those below it in the hierarchy.

3 Definitions

This section defines the building blocks of distributed group membership man-
agement.

Each user or other entity in the system is represented by a public-key pair
[PK ,SK ]. The public key PK is used to identify the entity.

Group. Any user can create a group by generating a key pair [PKO,SKO] and
giving the group a name. The group is then identified by the combination of the
public key and the name: G = G(PKO,name).

Add-Member. Adding a member to a group is represented by a certificate,
which specifies role R of the member and is issued by a leader’s key PKL:

CU = 〈PKL,PKU , G,R, “add”, tL, SigL〉t. (2)

These signed documents represent add-member events that occurred at a
specific time t, when they were issued. They contain the signer’s timestamp tL.
For now, let us assume that we have a global view of the system and know the
time and order of the events. Of course, there are no reliable global clocks in a
distributed system, and we cannot trust the signer’s timestamp tL for ordering
the events. Below, we will resolve this problem by defining t as the order in which
the certificates or revocations were added to the public ledger.

To prove membership in a group, the entity presents to the verifier a certifi-
cate chain CH = C1 . . . Cn, which starts from the group’s key. The certificate
chains are typically maintained in a distributed manner, so that the leader gives
to the new member not only the new certificate but also the preceding chain.

Revoke-Member. Revoking a member is represented by a signed revocation,
which is an event similar to the certificates:

RevU = 〈PKL,PKU , G,R, “revoke”, tL,SigL〉t. (3)

Member-Role Relation. We define who is a group member or leader by iter-
ating through the events in the global time order. By definition, there is an
initial event e0 at time zero which makes the key PKO leader of the group
G = G(PKO,name) for all keys PKO and all names. Consider globally all the
events related to the group G and sort them by their timestamps t: e0 . . . eN . An
event et is authorized if its issuer is a leader in the group after the previous event
et−1 in the global time order. The group membership after the event differs from
the membership before the event as follows: If the event et is authorized and it
is a member certificate, then its subject PKU has new role R in the group G
after the event. If the event is authorized and it is a revocation, then PKU does
not have role R in the group G after the event. These rules determine the group
members and their roles through the global history of events. The current state
of the system is the role assignments after the latest event in the global history.
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4 Group Membership Revocation with Public Ledger

We now consider how the public ledger, as an abstraction, can enable secure
membership revocation. Section 5 will present the ledger design in details.

4.1 Requirements of the Ledger

Naturally, we assume that the ledger content is append-only and globally con-
sistent. In addition, we make the following requirements on the ledger.

First, events are stored with an index value, which is the cryptographic hash
H(G,R,PKU ) of the group, the role and the subject’s public key. Anyone can
query the ledger for the list of events with a given index. The ledger also provides
a proof that the list is complete. With this index, the verifier can easily query
events that are related to an entity in a specific group.

Second, the ledger acts as a time-stamping service that gives all events a
global linear order. In particular, the ledger gives each event a sequence number,
and this number is considered to be the global timestamp t. The ledger must
assign these numbers sequentially.

Third, to detect outdated messages and replay attacks, the issuer of an event
must include in the signed certificate or revocation the latest ledger sequence
number that it knows tL. The ledger requires tL in the event to be greater than
the time of the last event recorded for the same index H(G,R,PKU ). This way,
updates from leaders will be rejected if they are not based on the latest status
of the key in the group and role.

Fourth, the ledger must check the validity of an event before entering it into
the ledger. Besides cryptographic checks, this requires the issuer to prove to the
ledger with a certificate chain that it is a current leader of the group. Note that
validation of events is needed to prevent attackers from filling the ledger with
invalid events. It is not necessary for the correctness of membership management.

Finally, the ledger must store the certificate chains that authorize revoca-
tions. This is needed only for efficiency reasons. Specifically, for a new revocation
Rev , the ledger stores the certificate chain CH rev that authorizes Rev . Later, the
ledger is able to present CH rev as an easily checkable proof that the revocation
Rev was valid. This will enable membership verification with computation and
communication complexity O(n), where n is the length of the longest certificate
chain in the ledger. Without storing CH rev, the ledger might have to traverse
the whole graph of relations between the group’s members to rebuild the chain.
Note that CH rev can be stored either in the ledger or in a secondary storage.

4.2 Fundamental Processes

This section presents the fundamental processes of the system. First, we define
the checkChain subprocess, which is needed by various processes.

checkChain subprocess: A verifier checks whether a certificate chain CH =
C1 . . . Cn authorizes PKU to role R in group G = G(PKO,name) as follows.
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1. Perform general checks on the chain: (1) the certificates form a chain so that
the issuer of the next certificate is always the subject of the previous one,
and the signatures are valid, (2) the root key is PKO, (3) all the certificates
delegate the leader role in G, except the last certificate, which delegates the
role R, and (4) the subject of the last certificate is PKU .

2. For each certificate Ci in CH , retrieve from the ledger its ledger timestamp
ti and the list of events with the index H(G, “leader”,PK i−1), where PK i−1

is the issuer of Ci. Retrieve also a proof of completeness of each list. From
the list retrieved for each i, check that the leader role of the issuer PK i−1

has not been revoked between ti−1 and ti (where t0 = 0). For PKU = PKn,
check that its role R has not been revoked after tn.

3. Return “success” or “fail” depending on whether all the above checks succeed.
If any one of the issuers PK i has been revoked, return the revocation Rev in
addition to the “fail” status.

addMember: A group leader PKL adds PKU to role R in group G as follows.

1. Issue a certificate:

CU = 〈PKL,PKU , G,R, “add”, tL,SigL〉.

2. Submit CU into the public ledger with index H(G,R,PKU ). Send to the
ledger also a certificate chain CH that authorizes PKL as a group leader.

3. Check that CU has been given a timestamp t > tL and that it has been
entered into the ledger.

4. If the ledger declines the certificate because CH is not valid, it must tell the
reason. The only expected reason is that there is a revocation Rev ′ in the
ledger making the chain CH invalid. In that case, the ledger provides Rev ′.
Retrieve from the ledger the chain CH ′ that authorized Rev ′, and check the
correctness of the server’s reason with the checkChain process on CH ′.

5. If the ledger does not respond or refuses to accept CU without a valid reason,
raise an alarm. (This is implementation-specific, and we do not define it in
this paper. A natural choice is to report the case to related parties.)

revokeMember(): How a group leader PKL revokes role R of PKU in group G
is similar to the addMember process above. The main difference is that instead of
a certificate, a revocation is issued and submitted into the ledger by the leader:

RevU = 〈PKL,PKU , G,R, “revoke”, tL, SigL〉.

Also, the ledger needs to store the chain CH rev that authorizes the revocation.

verifyMember(): The verifier checks whether certificate chain CH proves that
PKU has role R in group G as follows.

1. Check CH with the checkChain process. If checkChain returns “success”,
then PKU has role R in G.
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2. If checkChain returns “fail” and includes revocation Rev as the reason,
retrieve from the ledger the certificate chain CH rev that authorized Rev .
Check CH rev with the checkChain process. If this second call to checkChain
returns “success”, then CH does not give PKU the role R in G.

3. If the second call to checkChain returns “fail”, raise an alarm because the
ledger is storing the revocation Rev without a valid authorization for it.

4. If the ledger does not respond or returns a syntactically or cryptographically
invalid revocation record, raise an alarm.

4.3 Security Considerations

Proposition 1. The processes described in Sect. 4.2 enable the verifier to deter-
mine correctly whether a key is a member or leader of a group.

We present informal reasoning to support Proposition 1: In Sect. 3, we defined
the semantics of group membership in the global history membership events. The
certificate chain CH in step 4.2 of the verifyMember process is a subset of the
global history: one path of leader certificates from the initial event e0 at time zero
to the present time. The verifier first checks that, if we look at the subset alone,
it would prove the membership. Now, the only events outside the subset that
could change this outcome are revocations. Step 4.2 of the checkChain subprocess
checks that no effectively timed revocations exist in the global history. Thus,
if CH actually authorizes the membership of PKU in G, the process returns
“success”. On the other hand, if there exists a revocation in the global history
that invalidates CH , then the ledger provides as evidence a such revocation
Rev and the chain CH rev that authorized Rev . The verifier calls checkChain
again to check that CH rev is valid. Again, the only events outside the subset
of CH ∪ {Rev} ∪ CH rev that could change the outcome are further revocations
that invalidate CH rev. The ledger must prove that no such revocations exist
in the ledger. When the ledger does this, the verifier knows that CH does not
authorize role R in G for PKU . The only reason why this might not happen is if
the ledger actually contains a revocation that invalidates CH rev, but that would
be irrefutable evidence of the ledger’s misbehavior because it stores Rev without
having an authorizing certificate chain for it.

While the processes implement the desired semantics, it does not mean that
malicious entities cannot do anything harmful. For example, if a compromised
leader acts fast, it can revoke everyone and thus destroy the group.

5 Ledger Design

This section shows how the public ledger that was used as an abstract service in
Sect. 4 can be implemented at a reasonable cost.

The architecture of the public ledger that we propose to use for member-
ship revocation resembles that of log-based solutions surveyed in Sect. 2.4. We
have one untrusted third party (UTP) that maintains the ledger and multiple
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independent auditors that monitor its honesty. It is assumed that organizations
that deploy the access control solution or independent watchdogs will perform
the role of auditors. Our design goal is to leave heavy work to the UTP, while
keeping the workload of the auditors and clients relatively small.

Ledger Data Structure. The ledger content is structured as a single Merkle
prefix tree, which is basically a binary tree where each path down the tree cor-
responds to a unique bit string x. Each bit in x represents either a left or right
turn on the way down. We denote by Vx the node that corresponds to x.

The events are stored in the leaves indexed by the hash value H(G,R,PKU ).
The events related to the same group G, role R and subject key PKU are bundled
together into an append-only list. The most recent record is at the end of the
list. Each event is additionally stored with a ledger-assigned sequence number
t, which we also call timestamp because it is used in place of global time. Note
that the timestamps create internal constraints to the ledger data structure, and
auditors are needed to enforce their sequential assignment. We use SHA-256 for
the hash function H but only extend each branch of the tree down to the lowest
level where no two input 〈G,R,PKU 〉 map to the same path.

The UTP calculates a hash value hx for each node Vx in the tree as follows.
The hash of a leaf node is a cumulative hash of the event list stored in the leaf
node, including their sequence numbers, and the leaf node’s full index. The value
of a non-leaf node is the hash of its two children. However, if either the left or
right branch of the tree does not continue, the child value is zero.

The hash value of the root of the tree, denoted by hroot , summarizes the
whole tree. Periodically (e.g. once a minute), the UTP appends the latest value
of hroot into a hash chain along with the latest ledger and UTC timestamps:

hi
block = H(hi−1

block , hroot , tlatest, tUTC) (4)

The values of this hash chain are signed and published to the auditors. The
hash chain ensures that if the UTP ever forks or modifies the history, clients can
detect its malicious behavior by comparing notes with the auditors.

Ledger Operations. The UTP must accept valid certificates and revocations
from clients, allow the verifier to query presence of objects in the ledger by their
index values, and send event data to the auditors for auditing.

To check for the presence or absence of an event in the ledger, the UTP
follows the path determined by the event’s index in the Merkle prefix tree. On
the way down, it accumulates a proof as a list of the hashes of the siblings of
the path. If the search down the tree reaches a leaf node Vx and the index stored
in the leaf node matches the full index, the UTP appends the hashes of events
and timestamps stored in the leaf to the list. This list is the proof of presence.
On the other hand, if the index stored in the leaf node does not match the full
index, or if the search down the tree terminates at a non-existing branch, the
so-far accumulated list of hash values becomes the proof of absence. These are
the proofs of completeness received by the client in Sect. 4.

When a client submits a revocation or a certificate to the ledger, the UTP
verifies it before adding it into the tree. The main part of the verification process
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is to check that the issuer of the new event is a current group leader. This check
is similar to checkChain subprocess in Sect. 4.2. The only difference is that the
UTP does not need to prove presence or absence as it trusts its own information.

If the submitted event e is valid, the UTP must immediately return a signed
proof of delivery (POD) before writing any data to the tree:

POD = SigUTP (e, hi
block , tlatest, tUTC) (5)

The purpose of the latest block hashes and the ledger and UTC timestamps
is to bind the receipt to the various notions of time in the system. The POD is
effectively a promise that the UTP will include the certificate in the ledger as
soon as it is technically possible. It will be used as proof of UTP misbehavior
if it fails to enter the event into the ledger. The user then has to wait until the
next block update before it can verify that the event has been included.

Auditor Operations. The task of the auditors is to verify the following: (1) the
append-only property of the ledger and (2) the timestamp t for new events grows
monotonically. To do so, an auditor receives from the UTP a stream of proofs
of updates to the ledger. A proof of update is simply a proof of absence followed
by a proof of presence. The proofs enable the auditor to compute the root hash
before and after each update. Since the two proofs differ only for a very small
part, sending the two does not take much more space than one. Furthermore,
the UTP only needs to send the hashes of the events without any details since
they are sufficient for the auditor to calculate the root hash. With these proofs,
the auditor does not need to save any ledger data. It simply checks that the root
hashes form an unbroken sequence between two consecutive block hashes.

6 Implementation and Evaluation

We implemented a prototype of the ledger and group membership system
to demonstrate its feasibility. It was written with Python (2.7.11) and the
M2Crypto (0.25.1) cryptography library. We used RSA-2048 keys as the entity
identities. We simulated the group management with 106 users in the system,
and groups are gradually formed randomly among them. Membership certificates
and revocations were randomly issued among the users. Since the workload of
the client is relatively small, we only evaluated the performance of the ledger
and the auditor. In all the experiments, except for the estimation of memory
usage, we inserted 107 certificate and revocation entries into the ledger, of which
10% was revocations, before executing the performance measurements.

Memory Usage. The experiments showed that the ledger consumed less mem-
ory when the revocation rate increased: with 107 entries, the ledger used on
average 8.94 GB, 8.8 GB and 8.66 GB of memory when the fractions of revoca-
tions were 10%, 20% and 30%, respectively. The reason is that revocations do
not expand the Merkle tree as certificates do. While the ledger needs to store
the certificate chains that authorized the revocations, pointers to the certificates
in the ledger data are sufficient to represent the chains.
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Cost of Verifying Certificate Chains. When the client submits an event to
the ledger, the ledger only verifies the authorizing certificate chain of the event
(with checkChain) and appends the event to a queue so that it can sequentially
insert them later when it signs the root. We measured the performance of the
UTP server when the length of the certificate chains was relatively large (L =
50). Since the verification does not involve updating the ledger, it is easy to
parallelize. The UTP server was able to perform on average 9385 verifications
per second. We expect the typical length of the chains to be shorter than 50,
which will result in proportionally better performance.

Cost of Adding Events. To insert an event to the Merkle prefix tree, the hash
values of all the nodes on the path from the updated leaf to the root need to
be recalculated. Our UTP server took, on average, 265 ms to insert a new entry
to the tree and to collect the proof of update for the second-type auditors. The
average proof of update was less than 1 KB in size.

Cost of Auditing. Since the auditor verifies the proofs of update step by
step without keeping any ledger data, it does not require any significant storage
space. Regarding the bandwidth, it needs to receive the logarithmic-size proofs
of update, each of which was less than 1 KB in our experiments but grows
logarithmically with the size of the ledger. Our auditor implementation was able
to process on average 10526 updates per second.

7 Discussion

This section describes possible extensions to the proposed revocation solution.

Certificate Validity Times and Temporary Revocations. It is tempting
to include a UTC validity period in the membership certificates, similar to that
in X.509. Handling such validity periods needs to be done with care, however.
In X.509, the verifier is only interested in whether the certificates are valid at
the verification time, which it can do by comparing with a relatively accurate
clock. In distributed group management, however, the verifier needs to know
the order of past events, which cannot be determined from the verifier’s clock.
Moreover, even small differences in clocks or message propagation time could
lead to different interpretations of a revocation. The solution is to let the UTP
to decide the order of all events, including the expiry of certificates. It means
that the certificate expiry event should be entered into the ledger when it occurs.

This further calls our attention to the question whether a revocation can have
a validity period. Such a temporary revocation of access rights can be useful,
for example, when there is uncertainty about whether a device is lost. We can
implement temporary revocation by adding an optional UTC validity period to
the signed revocation message. Just like with the certificates, the UTP should
add the expiry events to the linear order of the ledger when they occur.

Role Inheritance and RBAC Support. We have considered only two kinds
of roles, leader and member, which are assigned independently. In practice, more
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roles could be defined, such as owner or guest. This calls into question the wisdom
of having any fixed roles at all. Also, there could be inheritance between the
roles to make their assignment easier. Indeed, the group-management solution
presented in this paper is structured so that it can be extended with inheritance,
role hierarchies and possibly other role-based access control features. We leave
them as future work to focus on revocation, the main topic of this paper.

8 Conclusion

In this paper, we demonstrate that public ledger is a suibtable abstraction for
solving problems of distributed access control, and in particular those that arise
from revocation and other negative permissions. As the main result, we present
a ledger-based design for distributed group membership management and its
experimental implementation.
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Abstract. Micropayment means the value of transaction is small, i.e.,
payment worths a few pennies. To achieve instant micropayments, Hearn
and Spilman introduced a notion of payment channel. In this paper, we
formally discuss the robustness requirements of a scheme that is suit-
able for micropayments, consider the explicit value of penalty and user
privacy leakage. More precisely, we propose a micropayments scheme
for decentralized blockchain-based payment system based on the notion
of payment channel, which enables a payee to receive funds at several
unsynchronized points of sale and penalize the double-spenders, with
instant confirmation.

Keywords: Micropayments · Bitcoin · Blockchain · Double-spending
User privacy

1 Introduction

There are two main techniques to handle transactions with small value.
Payment channel [1] is emerging in bitcoin community [15,16] that needs two
transactions being confirmed in blockchain network: creating channel transaction
and closing channel transaction. Probabilistic payment [5,20] lets payee receive
a macro-value with a given probability and a micro-value for each transaction
in expectation.

Decentralized Micropayments. In decentralized system, all participants
achieve an agreement together via consensus mechanism, i.e., proofs-of-work.
Realizing micropayments in decentralized system brings us new challenge to
balance efficiency and security.

Double Spending. Micropayments scheme, which requires payee responding
to payer in short time and just doing local confirmation, is easy suffering from
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double-spending attack that payer reuses a valid voucher cert to different unsyn-
chronized payees repeatedly before being detected.

User Privacy. User privacy is not only concealment of identity, such as the
pseudonym in bitcoin system. In this work, we also consider protecting user
transaction message among the unsynchronized points of sale.

We here ask the following question:
Is that possible to strengthen micropayments scheme for decentralized

blockchain-based payment system so that it can be secure even adversary
reuses a voucher repeatedly before being detected and enhance user privacy
among the unsynchronized points of sale?

1.1 Our Contributions

We give an affirmative answer to the above question. Most existing micropay-
ments schemes [5,14,16,20] focus on general setting, where payee is a single
entity. In real word, it is usual that a merchant consists of several geographically
distributed and unsynchronized points of sale. We mainly focus on the security
of micropayments scheme in this complex setting.

General Setting. The first step, we assume that payee B is a single entity and
accepts small payments as shown in micropayment 1 (Fig. 1).

Complex Setting. Based on step one, We go further to explore a complex
setting [19] as shown in micropayment 2 (Fig. 2), where B consists of several
geographically distributed and unsynchronized points of sale. We then propose
our construction micropayment 3 (Fig. 3) that solves the security problems of
micropayment 2.

Robustness Requirements for Achieving Micropayments:

1. Basic requirements in general setting:
(1) Instant Confirmation. Micropayment requires quick response, i.e.,

payer will receive service as soon as he sends valid messages (voucher).
(2) Small Transaction Fees. Payer is unwilling to use a payments system

to handle small transactions, which costs high transaction fess, since the
fees maybe higher than the value of transaction.

2. Additional requirements in complex setting:
(1) Preventing Double-Spending. Security in the presence of reusing a

voucher (cert), i.e., payer spends a cert to different points of sale with
the risk of being detected and losing coins.

(2) Protecting User Privacy. Security in the presence of using the voucher
provided by the last transaction in the current transaction, i.e., payer
spends a voucher cert signed by last payee to current payee without dis-
closing the identity of last payee.

Expiry Time. To solve the above questions, we propose a notion of expiry time,
which means that each voucher is valid during a given time.
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Upper Bound of Penalty. We give a proper value of penalty, which means
that it makes the malicious payer at a disadvantage for his dishonesty and is
reasonable for honest payer. What’s more, we get the upper bound of penalty
as p ≤ (T̂/T̃) ∗u2 (more details are in Sect. 3.3).

For user privacy, we utilize ring signature during the process of
paying through channel to break linkage between singer and signature.

1.2 Related Work

Many off-line micropayments schemes are proposed [8,14,18] with a trusted third
party to sign a voucher for payer and punish cheaters. Bitcoin system is a peer-
to-peer fully decentralized payment system introduced in [13]. Unlike traditional
e-cash system [2,4], where there is a central bank to handle transactions
and detect cheaters. Decentralized system utilizes distributed public ledger
blockchain to record all transactions.

Probabilistic payment was proposed in [12,17] that allows payer to
execute series of small transactions. Rivest [17] and Micali [12] proposed
lottery−based payment to overcome the relative high fees of small transactions.
[12,20] are implementations of this idea. [5] presents a decentralized micropay-
ment scheme by following the way of probability payment.

Creating payment channel was introduced in [1,9]. [21] discusses two major
questions about why we need micropayments. Further studies as [6,16]. Con-
structing anonymity set [11] enhances privacy in some certain situations.
[10] uses TumbleBit, a new unidirectional unlinkable payment hub, to allow
payer to execute payment via an untrusted intermediary. These schemes are
secure if the size of set is big enough and majority of participants are alive. [19]
proposed a micropayment scheme in complex setting, but there are two prob-
lems obviously in this scheme: double-spending and user privacy leakage. More
details are in Sect. 3.2.

1.3 Outline of the Paper

The rest of the paper is organized as follows. In Sect. 2, we give preliminaries
in our construction. In Sect. 3, we show our detailed construction. In Sect. 4,
security proofs are presented. Conclusion is in Sect. 5.

2 Preliminaries

In this section, we give the main techniques behind our construction and the
definitions of security properties are presented in game-based fashion.

2.1 Techniques

Definition 1 (Ring Signature). A ring signature scheme is a triple of p.p.t.
algorithms RS = (Gen, Sign, V rfy) [3]. Formally:
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– Gen(1λ). Takes as input the security parameter λ, outputs a public key pk
and a secret key sk.

– Signsk(R,M). Outputs a signature σ on message M with respect to ring
R = (pk1, ..., pkn).

– V rfyR(M,σ). Takes as input a ring R, a message m, and a signature σ for
M to return a single bit b = 1/0.

Definition 2 (Accountable Assertion). We recall the definition in [19] that con-
sists of four algorithms

∏
= (Gen,Assert, V erify,Extract):

– (pk, sk, auxsk) ← Gen(1λ): Outputs a key pair consisting of a public key pk
and a secret key sk, and auxiliary secret information auxsk.

– τ/ ⊥← Assert(sk, auxsk, ct, st): Takes as input a secret key sk, auxiliary
secret information auxsk, a context ct, and a statement st and returns either
an assertion τ or ⊥ to indicate failure.

– b ← V erify(pk, ct, st, τ): Outputs 1 if τ is a valid assertion of a statement st
in the context ct under the public key pk.

– sk/ ⊥← Extract(pk, ct, st0, st1, τ0, τ1): Takes as input a public key pk, a
context ct, two statements st0, st1, two assertions τ0, τ1 and returns either
the secret key sk or ⊥ to indicate failure.

2.2 Security Properties

According to our goals, the micropayments scheme should satisfy three security
properties: unforgeability, unlinkability and double-spending detection. We
show these security properties in the following three experiments as Expuf

Πm,A(λ),
Expul

Πm,A(λ) and Expds
Πm,A(λ).

Definition 3 (Unforgeability, Unlinkability, double-spending detection). Given
a micropayments scheme Πm in blockchain-based system, a p.p.t. adversary A,
security parameter λ and consider the followings:

Experiment Expuf
Πm,A(λ)

{(pki, ski)}n
1 ← RS.Gen(1λ); Q = Ø; R = {pki}n

1

cert∗ ← AOcert(i,R,state)(R); i ∈ [n] is index of each sale
Q = Q ∪ (., R, state), cert∗ = (state∗, σ∗); (., R, state∗) /∈ Q
if V rfyR(state∗, σ∗) = 1, then return 1, else return 0

Experiment Expul
Πm,A(λ)

{(pki, ski)}n
1 ← RS.Gen(1λ); Q = Ø; R = {pki}n

1 ;
(cert∗, R, i) ← AOlink(cert,R)(R); i ∈ [n] is index of each sale
Q = Q ∪ (cert, R); (cert∗, R) /∈ Q
if Bi is the signer of cert∗, then return 1, else return 0
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Experiment Expds
Πm,A(λ)

{(pki, ski)}n
1 ← RS.RK(1λ); (pkA, skA, auxskA) ← ∏

.Gen(1λ)
Q = Ø; R = {pki}n

1 ; (service, cert′) ← AOspend(tx,τ,cert)(R)
Q = Q ∪ (tx, τ, cert); skA ← Extract(pkA, Q)
if {(tx, τ, cert), (tx′, τ ′, cert)} ∈ Q ∧ (pkA, skA) /∈ ∏

.Gen(1λ)
then return 1, else return 0

We define the advantage of A in the above experiments as:

Advul
Πm,A(λ) = Pr[Expul

Πm,A(λ) = 1] − 1
n

Advuf
Πm,A(λ) = Pr[Expuf

Πm,A(λ) = 1]
Advds

Πm,A(λ) = Pr[Expds
Πm,A(λ) = 1]

3 Micropayments System

In this section, we propose a scheme about achieving micropayments in decen-
tralized blockchain-based system in three steps.

3.1 Micropay 1

Before showing the description of micropay 1, we assume that A has a bitcoin
address pk1 with value v and unforgeable digital signature scheme with algo-
rithms (Gen, Sign, V rfy). We show this scheme in Fig. 1.

Security Analysis. In micropay 1, A succeeds to micropay to B with one
security problem that B can get all knowledge of A′s purchase messages that
breaks A′s privacy.

3.2 Micropay 2

Now we show a scheme in which B is a distributed entity by recalling the con-
struction in [19]. We give a simple description in Fig. 2.

Security Analysis. In micropay 2, A succeeds to micropay to a distributed B,
but with the following security problems:

(1) During Stage 1, it does not specify the size of p, so that A can spend more
than d+ p easily. For example, A reuses a cert signed by B many times and
spends {{bi}n

1 |bi < d} to {Bi}n
1 in time T ′. Consequently

∑n
1 bi > d + p,

which makes penalty useless.
(2) During Stage 2, A sends cert signed by Bj to Bi. So Bi verifies cert by

doing V rfy(pkBj
, cert∗) = 1 and Bi gets knowledge that A has bought

service from Bj , which breaks A′s privacy.
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– Stage 1: creating a payment channel
• Set-up

∗ A generates new key-pairs (pkesc, skesc) and (pk2, sk2) for escrow transac-
tion and revoking deposit after expiry time t respectively.

∗ B generates a new key-pair (pk3, sk3).
• Escrow transaction

∗ A transfers value d (d ≤ v) from address pk1 to address pkesc by trans-
action txesc = (y, πesc, d, t) to create a payment channel with amount d
and sets the release condition π as πesc(x) = 1 if one of the following two
conditions is true:
(1) x = ([tx1], σskesc , σsk3 , t) and V rfypkesc([tx1], σskesc) = 1,

V rfypk3([tx1], σsk3) = 1, current time T < t, where transaction tx1 is
controlled by B

(2) x = ([tx2], σsk2 , t) and V rfypk2([tx2], σsk2) = 1, current time T > t,
where transaction tx2 is controlled by A

∗ B signs a voucher cert and sends it to A after transaction txesc is con-
firmed in bitcoin network, where cert = (state,σ), σ = SignskB (state)
and state = (pkesc, d, b = 0).

∗ A verifies cert with public key pkB.
– Stage 2: paying through the channel

• A agrees to pay b1 to B. A sends transaction tx = (yesc, π, b + b1, σskesc) and
cert to B, where yesc is the index of transaction txesc.

• B receives (tx∗, cert∗), parses state∗ = (pkesc, d
∗, b∗) and verifies the following

conditions:
(1) (tx∗, cert∗) are valid, cert∗ has not been used before and b∗ + b1 ≤ d
(2) pkesc /∈ BL (A is not in blacklist), T < t and T is the current time

• B updates state as state = (pkesc, d, b = b∗ + b1), signs state as σ, records
(tx∗, cert∗) and sends (cert, service) to A.

– State 3: closing the channel
1. B closes payment channel at one of the three conditions:

(1) B detects that A reuses a cert and adds pkesc to BL
(2) b = d or d − b is too small to pay for a transaction
(3) time t is reached

2. A closes payment channel at the conditions:
∗ T > t (T is the current time) and B does not close channel

Fig. 1. A micropays to a single B

3.3 Micropay 3

To overcome the problems in micropay 2, we present micropay 3. In this scheme,
we employ expiry time to control the number of a cert being reused and use
ring signature scheme to hide A′s former purchase messages to current payee.

Notations. d, p is denoted the amount of deposit and penalty respectively.
T is time that escrow transaction is locked and T ′ is the expiry time of voucher
cert. Price of service provided by Bi is vi and we let u1 = min{v1, ..., vn}, u2 =
max{v1, ..., vn}. The average time of each transaction is denoted by T̃, T̄ is time
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slot that B collects all transactions recorded by each point Bi and T̂ is the
working time of each point Bi within time T̄. Let T= lT̄ + Tconf (l = 1, 2, ...)
to ensure that B can close the payment channel before A revokes escrow trans-
action and Tconf is a safety margin to guarantee transactions broadcasted by B
being confirmed on blockchain. The number of transactions that A can have is
	 d

u2

 ≤ k ≤ 	 d

u1

 and g(d, u2) is a function to specify the remaining number of

transactions that A can have. Function f(d, u2) denotes the total number that
A can double-spend in the worst case.

Assumptions. (1) k = 	 d
u2


 > 1. (2) A can only have one transaction syn-
chronously.

Upper Bound of Penalty: Preventing Double-Spending

Case 1

(1) A broadcasts escrow transaction with value d + p.
(2) B computes and signs cert with expiry time T ′ = T̃ k for A.
(3) A sends cert∗ = (state∗, σ∗) to Bi and gets an updated cert′ signed by Bi

with expiry time T ′ = T̃ ∗ (k∗ − 1).

We let g(d, u2) ← g(d, u2) − 1. In the worst case, the number of cert signed
by Bi can be double-spent is (k∗ − 1 − 1), So f(d, u2) = d(d − u2)

2u2
2

and we set

p = f(d, u2) ∗ u2 for f(d, u2)∗T̃ ≤ T̂ or p = (T̂/T̃) ∗u2.

Case 2

(1) A broadcasts escrow transaction with value d + p.
(2) B computes and signs cert0 with expiry time T ′ = T̃ �P0k0�(0 < P0 ≤

1, k0 = k) for A.
(3) A sends certi−1 = (statei−1, σi−1) to Bi and gets certi signed by Bi with

expiry time T ′ = T̃ �Piki� (ki = ki−1 − 1, 0 < Pi ≤ 1).

In case 2, we let gi(d, u2) ← �Pi(ki−1 − 1)�. So f(d, u2) =
∑n

i=0(Piki − 1)
and we set p = f(d, u2) ∗ u2 for f(d, u2) ∗ T̃ ≤ T̂ or p = (T̂/T̃) ∗u2. In this case,
double-spending attack can be prevented drastically when Pi = 1

ki
and expiry

time of each cert is T̃. But T̃ is short in micropayments scheme, so A is required
to keep on having transactions in case that the voucher expires. Bi can selects
a proper Pi(Pi > 1

ki
) according to demands.

Ring Signature: Protecting User Privacy
The main idea that we apply ring signature scheme [3] in our scheme is as

following. Payee in ring R generates a ring signature σ of state, which contains
of n ciphertexts and a proof π. Proof π is produced by ZAP (the definition can
be referred in [7]) to proof that one of ciphertexts is an encryption of a signature
on the state with respect to the ring members, that corresponds to σ. Finally,
payee sends cert to payer without actually exposing the signature. The formal
construction is given in AppendixA.

Full Protocol Πm. Based on the above analysis, we give our construction that
with higher security in Fig. 3.
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Assumptions: B and its points of sale Bi have corresponding key pairs (pkB, skB),
{(pkBi , skBi)}n

1 respectively. B collects transactions recorded by each Bi at time T .

– Stage 1: creating a payment channel
• A sets up bitcoin key pair (pkA, skA) and accountable assertions keys (apk =

pkA, ask = skA, auxsk) for non-equivocation contracts.
• A creates payment channel with amount d + p and expiry time t (t > T ).
• B provides a signed voucher cert = (state, σ), where state = (t, d, k = 0, b =

0, B), σ = SignskB (state), after escrow transaction is confirmed in network.
– Stage 2: paying through the channel

• A agrees to pay bi to Bi, then Bi selects a fresh nonce r and sends it to A.
• A computes τ ← Assert(ask,auxsk, k, r) and sends (tx, τ, cert) to Bi.
• Bi receives (tx∗, τ∗, cert∗), parses state∗ = (t∗, d∗, k∗, b∗, Bj) and verifies:

∗ V rfy(pkBj , state∗, σ∗) = 1, V erify(apk, k∗, r, τ∗) = 1
∗ tx∗ is a valid transaction with amount b∗ + bi and b∗ + bi ≤ d∗

∗ A /∈ BL(A is not in blacklist) and T < t∗ (T is current time)
• Bi updates k = k∗ + 1, b = b∗ + bi, signs σ = SignskBi

(state), where state =
(t∗, d∗, k, b, Bi), records tx∗, τ∗ and sends (service, cert) to A.

– Stage 3: closing the channel
1. B collects all transactions recorded by each Bi at time T and close the channel

at one of the three conditions:
(1) Expiry time t is reached and A is honest

· B signs and broadcasts the last tx that is sent by A to get funds
(2) B detects A s dishonesty by τ

· B extracts skA from two different assertions τ1, τ2 about k
· B signs a transaction with d+p from payment channel with skB, skA

(3) b = d or d − b is too small to pay a transaction
· B signs and broadcasts the last tx that is sent by A to get funds

2. A signs a transaction with d + p from payment channel to closes the channel:
(1) T > t (T is the current time) and B does not close the channel

Fig. 2. A micropays to a distributed B

4 Security Proofs

Theorem 1. If the ring signature scheme RS = (Gen, Sign, V rfy) is unforge-
able and anonymous, the accountable assertion is extractable efficiently. Then,
for any p.p.t. adversary A and security parameter λ, the micropayments scheme
Πm is secure as defined in Sect. 3.3.

Proof (Unforgeability). Suppose that Πm does not achieve unforgeability, then
it follows that there is a p.p.t. adversary A that succeeds in experiment
Expuf

Πm,A(λ) with non-negligible probability. So there exists polynomial func-
tion p(·) such that for security parameter λ and holds that: Pr[Expuf

Πm,A(λ) =
1] ≥ 1 − 1

p(λ) . Using A as a subroutine, we construct a p.p.t. adversary A′. with
input of (R, state): (1) invoke A with (R, state) and A outputs cert = (state, σ)
(2) if RS.V rfyR(cert) = 1, then halt and output cert, otherwise output a uni-
formly selected number r ∈R {0, 1}λ.
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Cryptographic Primitive: accountable assertions, standard digital signature
scheme, semantically-secure public-key encryption scheme, ZAP
Assumptions:

(2) B has key-pair (pkSB , skSB) for signing transactions and the initial cert.
(3) Points of sale {Bi}n

1 have corresponding key pairs (pkSBi
, skSBi

), (pkEBi
, skEBi

)
and set pkBi := (pkSBi

, pkEBi
).

(4) A has key-pair (pkA, skA) for signing transaction and auxiliary secret information
auxsk for accountable assertions.

(5) B and its points of sale {Bi}n
1 hold corresponding probability {Pi}n

0 .
(6) Public parameters PP = (pkSB , R, pkA, RE , {Pi}n

0 , g(d, u2), f(d, u2), u1, u2, T̂ , T̃,
T̄), R = (pkB1 , ..., pkBn), and RE := (pkEB1

, ..., pkEBn
).

– Stage 1: creating a payment channel
• A and B wish to execute micropayments with amount d.
• B computes p for A according to f(d, u2).
• A broadcasts escrow transaction with amount b + p , expiry time T and well

defined release condition π to create payment channel with B.
• B provides A with cert = (state,σ), where σ = SignskSB

(state), state =

(pkA, d, k = d
u2

, b = 0, T ) and T =T̃ g(d, u2) after the escrow transaction
is confirmed in bitcoin network.

– Stage 2: paying through the channel
• A pays vi to Bi.
• Bi selects a fresh nonce r and sends it to A.
• A computes τ ← Assert(skA, auxsk, k, r) and sends (tx, τ, cert) to Bi.
• Bi receives (tx∗, τ∗, cert∗), parses cert∗ = (state∗, σ∗), state∗ =

(pkA, d∗, k∗, b∗, T ) and verifies the following conditions:
∗ RS .V rfyR(cert∗) = 1 or V rfy (pkSB , cert∗) = 1 for k∗ = d

u2
.

∗ V erify(pkA, k∗, r, τ∗) = 1.
∗ tx∗ is a valid transaction with amount b∗ + vi and b∗ + vi ≤ d∗.
∗ A /∈ BL(A is not in blacklist) and t < T for the current time t.

• Bi updates k = k∗ − 1, b = b∗ + vi, T =T̃g(d,U2), signs σ =
RS.SignskSBi

(state,R), where state = (pkA, d∗, k, b, T ), records (tx∗, τ∗) and
sends (service, cert = (state, σ)) to A.

– Stage 3: closing the channel
1. B collects all transactions recorded by {Bi}n

1 at time T̄ and close the channel
at one of the three conditions:
(1) Expiry time T is reached and A is honest.

· B signs and broadcasts the last tx that is sent by A to get funds.
(2) B detects A s dishonesty by τ .

· B extracts skA from two different assertions τ1, τ2 about k.
· B signs a transaction with d+p from payment channel with skB, skA.

(3) b = d or d − b < u1.
· B signs and broadcasts the last tx that is sent by A to get funds.

2. A signs a transaction with d + p from payment channel to closes the channel:
(1) t > T (t is the current time) and B does not close the channel.

Fig. 3. A micropays to a distributed B with high security
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When A outputs a valid forgery cert, then A′ outputs the same forgery. Note
that A′ outputs a valid signature whenever A does.

since cert = (state, σ) = (state,RS.Signsk(R, state))
implies RS.V rfyR(state, σ) = 1
So A′ can forge a valid signature with respect to ring signature scheme (in

AppendixA) with non-negligible probability, which contracts the unforgeability
property of ring signature scheme. This completes the proof.

Proof (Unlinkability). Suppose that Πm does not achieve unlinkability, then
it follows that there is a p.p.t. adversary A that succeeds in experiment
Expul

Πm,A(λ) with non-negligible probability. So there exists polynomial func-
tion p(·) such that for security parameter λ and holds that: Pr[Expul

Πm,A(λ) =
1] ≥ 1

n + 1
p(λ) . Using A as a subroutine, we construct a p.p.t. adversary A′: (1) A′

selects two public keys pk0, pk1 and a valid state, (2) A′ is given certb, b ∈ {0, 1}
and invokes A with (certb, R), (3) A outputs (certb, R, b′), then A′ halts with
output b′.

Note that A′ outputs b′ whenever A does. By assumption we have that
Pr[A′(certb, state, pk0, pk1) = b′ : b = b′] ≥ 1

2 + 1
p(λ) . So A′ can distinguish

the signatures signed by different members of a ring with non-negligible prob-
ability, which contracts the anonymity property of ring signature scheme (in
AppendixA). This completes the proof.

Proof (Double-Spending Detection). According to the extraction of accountable
assertion that for any p.p.t. adversary A, there exists a negligible function negl(·)
such that for security parameter λ and holds that:

Pr[Extract(pk, ct, st0, st1, τ0, τ1) �= sk ∧ ∀b ∈ {0, 1} , V erify(pk, ct, stb, τb) =
1 ∧ st0 �= st1 : τb ← Assert(sk, auxsk, ct, stb)] < negl(λ).

Suppose that if there is a p.p.t. adversary A′, which spends a cert twice
with the form: (tx0, τ0, cert) and (tx1, τ1, cert) without being detected. It follows
that A succeeds in experiment Expds

Πm,A′(λ) with non-negligible probability.
So we have that for some polynomial function p(·) and security parameter λ:
Pr[Expds

Πm,A′(λ) = 1] ≥ 1 − 1
p(λ) . That implies: Pr[skA′ ← Extract(pkA′ , Q):

(pkA′ , skA′) /∈ ∏
.Gen(1λ)|(tx0, τ0, cert) ∈ Q∧ (tx1, τ1, cert) ∈ Q] ≥ 1−negl(λ).

So that contracts to the extraction property of accountable assertion. This
completes the proof.

5 Conclusion

In this paper, we analysed previous works, extracted the robustness require-
ments for achieving micropayments in decentralized blockchain-based system
and explored efficient solutions to achieve these requirements.

A Ring Signature

We now recall the construction of a ring signature in [3] and modify it to be
suitable for our scheme.
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– Gen(1k): Payee Bi (i ∈ {1, 2, .., n}) generates key-pairs.
1. Generate signing key-pair (pkSBi

, skSBi
) ← Gen′(1k), encryption key-pair

(pkEBi
, skEBi

) ← Gen(1k)
2. Output public key pkBi

= (pkSBi
, pkEBi

), secret key skBi
= (skSBi

,
skEBi

).
– SignskBi

(state,R): Payee Bi signs message state with secret skBi
in ring

R = {pkB1 , pkB2 , ..., pkBn
}

1. Set RE :=
{
pkEB1

, ..., pkEBn

}
, state′ = state|R, where ”|” denotes con-

catenation. Bi computes the signature σ′
i ← Sign′

skSBi

(state∗)

2. Choose random coins ω1, ..., ωn: (1) computes ci = Enc∗
RE

(σ′
i, ωi) and (2)

for j ∈ {1, ..., n} \ {i}, computes cj = Enc∗
RE

(0|σ′
i|, ωj)

3. For i ∈ [n], let xi denote the statement: “(pkSBi
, state∗, RE , ci) ∈ L”, let

x := ∨n
i=1xi Compute the proof π ← Pr(x, (σ′

i, ωi))
4. The signature is σ = (c1, ..., cn, π) and return cert := (state, σ).

– VrfyR(cert): Payee Bj verifies cert in ring R
1. Parse cert as (state, σ), and set state′ := state|R, RE := {pkEB1

, ...,
pkEBn

} and σ := (c1, ..., cn, π)
2. For i ∈ [n], let xi denote the statement: “(pkSBi

, state∗, RE , ci) ∈ L” and
set x := ∨n

i=1xi

3. Output Vr(x, π).
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Abstract. Revealing the security flaws of existing cryptographic pro-
tocols is the key to understanding how to achieve better security. At
ICICS’17, Xu et al. proposed an efficient two-factor authentication
scheme for multi-server environment to cope with the vulnerabilities in
Amin et al.’s scheme. However, in this paper, we reveal that Xu’s new
scheme actually is as vulnerable as Amin et al.’s scheme: anyone can
impersonate any legitimate user. At FC’17, Wu et al. also developed an
improvement over Irshad et al.’s scheme and this improved scheme is
alleged to be practical and have a number of appealing merits. Yet, Wu
et al.’s scheme still fails to achieve truly two-factor security (which is
the most important goal of a two-factor scheme), and the leakage of a
session-specific parameter will lead to the leakage of the user’s long-term
secret key.

Besides security, efficiency is another great concern. Recently, Leu-
Hsieh showed that Lee et al.’s two-factor scheme fails to achieve truly
two-factor security, and further suggested an enhanced anonymous
scheme which is claimed to be robust against various attacks, while
only using lightweight symmetric-key techniques. In this work, we show
that Leu-Hsieh’s enhanced scheme still fails to achieve truly two-factor
security once again. Moreover, it cannot preserve user privacy. Our
results invalidate any use of these three schemes for practical applica-
tions without further improvement, and underscore some new challenges
(e.g., attacks arising from the leakage of session-specific parameters and
from malicious insiders) in designing practical password authentication
schemes.
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1 Introduction

User authentication plays a crucial part in ensuring that resources and services
at the remote server can only be accessed by legitimate parties. In 1991, Chang
et al. [5] suggested the first two-factor authentication scheme based on passwords
and smart cards, and this influential study has given rise to a series of enhanced
proposals with each diversified in aspects of usability [23], security [14] efficiency
[9] and anonymity [20].

However, most of these schemes are designed for the single-server architec-
ture, which means that the user needs to memorize n pairs of identity and
password to login n different service servers. As the number of services increases
rapidly, e.g., common users generally have 25–67 such pairs [12]. This is a great
burden for use to maintain (memorize) such an amount of password pairs.
Accordingly, a number of two-factor authentication protocols for multi-server
architecture has been developed [13,19,22].

In a two-factor scheme1 for multi-server architecture, there are three par-
ticipants (i.e. a set of users, a control server CS and a set of service servers)
involved. User U can login any service server under the same control server
by using the same (identity, password)-pair. User U holds a memorable pass-
word and a smart card stored with some initial security parameters; The servers
(including CS and service server S) only need to keep some secret key material
of the system (but not the user). Since there is no need to keep a table with
password-related verification information on the server side, the server is free
from the threat of password dataset leaks and ameliorated from the burden of
maintaining a large password dataset. This feature makes this type of schemes
rather desirable, considering the incessant leakages of password databases from
large websites [1].

The most important security goal of a two-factor authentication scheme is
the so-called “two-factor security” [14]. This security concept essentially means
that only the user that has the smart card as well as knows the correct password
can be verified by the server. Nevertheless, past research [6,16,17,20] have, again
and again, proved that designing a two-factor authentication scheme with “two-
factor security” for single-server architecture is a hard task, and the design of a
truly two-factor scheme for multi-server architecture can only be harder.

In 2017, Amin et al. [4] developed an anonymous two-factor authentication
scheme relying on the intractability of large integer factoring problem (i.e., RSA),
and stated that their scheme is able to support “two-factor security” under the
hypothesis that smart cards can be tampered. Later on, Xu et al. [22] found
that Amin et al.’s scheme cannot resist against user impersonation attack if
the parameters kept in the smart cards can be extracted, invalidating Amin et
al.’s claim of ensuring “two-factor security”. Accordingly, Xu et al. [22] further
proposed a new scheme based on the same cryptographic primitive (i.e., RSA)
at ICICS’17. In addition, their scheme was “proved secure” in the random oracle

1 As with [17,23], in this work we mainly consider the most typical kind of two-factor
schemes that are composed of password and smart card.
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model. Surprisingly, we find that Xu et al.’s scheme [22] is subject to a damaging
security hole: anyone can impersonate any legitimate user.

At FC’17, Wu et al. [19] demonstrated that various security drawbacks
existed in both Irshad et al.’s [7] and Zhu’s [24] schemes. More specifically,
Irshad et al.’s scheme is vulnerable to stolen-verifier attack and insider attack,
and provides no user anonymity; Zhu’s scheme suffers from insider attack, pro-
vides no user anonymity, and has the de-synchronization problem in case the
malicious attacker M simply modify the third message flow. Wu et al. [19] also
put forward an improved scheme and argued that their scheme is robust under
the condition that the sensitive data in smart card has been revealed by M. It
should be noted that, recent rapid developments in side-channel attacks have
proved that the sensitive information stored in general commercial smart cards
could be extracted by power analysis [11] or reverse engineering [3]. Based on a
weak yet realistic assumption, Wu et al.’s scheme [19] appears very practical.

However, as we will show, this scheme is prone to a much more serious prob-
lem (i.e., no truly two-factor security) than the original schemes (i.e., Irshad et
al.’s [7] and Zhu’s [24] schemes). Besides, Wu et al.’s scheme will leak the user’s
long-term secret key once a session-specific parameter is leaked. This is rather
undesirable, because session-specific data is often less well protected than long-
term keys, and the leakage of the former should not affect the latter. Our attack
highlight the challenges arising from the leakage of session-specific data.

Besides robust security guarantees, protocol efficiency is also an important
concern due to the resource-constrained nature of user devices. Leu-Hsieh [9]
presented an anonymous two-factor scheme, which is claimed to ensure user
privacy and robust security while only requiring a few lightweight hash opera-
tions. Unlike their claims, we show that their scheme still cannot provide truly
two-factor security and user anonymity. In addition, forward secrecy cannot be
attained. We note that Maitra et al. [10] have also analyzed Leu-Hsieh’s scheme
and presented some attacks, but their attacks are different from ours. Besides,
Maitra et al. [10] further gave an improved scheme, which suffers some critical
issues as pointed out in [13].

2 Adversary Models

Since a series of influential work [17,21,23], generally three assumptions are made
about M’s capabilities against two-factor authentication.

Assumption 1. M completely manipulates the public channel (e.g., eavesdrop,
delete, insert, modify or block any transcripts).

Assumption 2. M can somehow obtain the victim’s smart card and exploit side-
channel attacks [3,11] to extract sensitive data from the card memory.

Assumption 3. Users’ passwords are selected from a very constrained space and
M can brutal force it. To increase usability, most schemes (e.g., the ones in [14,
20,23]) allow the users to choose passwords at their discretion during registration
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phase or password change phase. Generally, human beings are only capable of
memorizing 5–7 different passwords, and tend to select popular passwords, use
personal info to build passwords and reuse passwords. Therefore, user-chosen
passwords follow the Zipf’s law [15] and come from a small space.

Note that, if all Assumptions 2 and 3 hold at the same time, then the attacker
(with no need of other abilities) is able to impersonate any victim user and can
trivially breach any scheme. Thus, it is common practice to do not assume
that the attacker acquires a victim user’s both (all) authentication factors when
analyzing security [6,17,20].

Also note that, an attacker might be an insider of the system, and it is prac-
tical for her to obtain both her own card and password. As shown in Sect. 5.2.3
of [16], such an attacker is really powerful and poses great threat to the security
of the system. Overlooking the threats from this kind of attacker is likely to
open large security loopholes. Many previous password authentication schemes
employing smart cards (e.g., [8,18,21]) fail to achieve “two-factor security” or
user un-traceability, when confronted with such a malicious insider. In this
work, special attention are devoted to this kind of attacker and we show its
perniciousness.

According to the abilities that are exploited by an attacker to launch a attack,
four types of attackers can be further classified as follows:

(I) Basic attacker. This attacker is only based on Assumption 1.
(II) Attacker with the target user’s smart card. This attacker rest on

the Assumption 1 and 2.
(III) Attacker with the target user’s password. This attacker rests on the

Assumption 1 and 3.
(IV) Attacker with her own smart card and password. This attacker

rests on the Assumption 1–3, being a malicious insider.

It is evident that the basic attacker is with the least capabilities, while the
three remaining attackers are all realistic according to the aforementioned dis-
cussions. Consequently, any scheme aiming for practical use shall be able to
withstand these four attackers. All the three schemes examined in this work are
claimed to be secure under the above three assumptions. Actually, as we will
show, this is not the case.

3 Cryptanalysis of Xu et al.’s Scheme

We first review Xu et al.’s scheme [22] proposed at ICICS’17, and then show that
it is subject to a damaging security flaw: anyone can impersonate any legitimate
user without guessing the victim’s password or obtaining the victim’s device.

3.1 A Brief Review of Xu et al.’s Scheme

Xu et al.’s scheme [22] is composed of four phases. For simplicity, the notations
employed throughout this paper are listed in Table 1; We will comply with the
abbreviations in Xu et al.’s scheme closely.
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Table 1. Notations and abbreviations

Symbol Description Symbol Description

Ui ith user Sj jth server

RC The register center Sx The foreign server

Sy The home server kxy Secret key shared by Sx and Sy

ky The secret key of Sy M The malicious adversary

d The secret key of RC e The public key of RC

IDi Identity of Ui PWi Password of Ui

⇒ A secure channel ⊕ Bitwise XOR operation

→ A common channel h(·) One-way hash function

Server Registration Phase. This phase proceeds as follows:

Step 1. Sj ⇒ RC: {ej , nj , SIDj}. Sj computes nj = pj × qj , φ(nj) = (pj −
1)(qj − 1) where both p and q are large prime numbers, then chooses a
public key ej(1 < ej < φ(nj)) where gcd(φ(nj), ej) = 1, and computes
dj ≡ e−1

j mod φ(nj) as its private key.
Step 2. RC ⇒ Sj : {Cerj}. RC computes Cerj = h(ej ‖ SIDj ‖ nj)d.

User Registration Phase. This phase proceeds as follows:

Step 1. Ui ⇒ RC: {IDi}.
Step 2. RC ⇒ Sj : {di}. RC computes di = h(IDi)d mod nj .

Login and Authentication Phase. This phase proceeds as follows:

Step 1. Ui → Sj : a random number Ti.
Step 2. Sj → Ui: {ej , nj , Cerj , Aj} where Aj = h(Ti)dj .
Step 3. Ui → Sj : {PIDi, Ri, Si, x}. If Cerej mod nj equals h(SIDj ‖ ej ‖ nj)

and A
ej
j equals h(Ti), Ui computes PIDi = (IDi ⊕ ai ‖ ai)ej mod nj ,

Ri = h(IDi)r mod nj , x = h(m,Ri) and Si = dr−x
i where ai, r,m are

three random numbers.
Step 4. Sj computes S

ej
i = h(IDi)r−x, PID

dj

i mod nj = IDi ⊕ ai‖ai, ID′
i =

IDi ⊕ ai‖ai. If S
ej
i h(ID′

i)
x equals Ri, Sj authenticates Ui.

3.2 Flaws in Xu et al.’s Scheme

User Impersonation Attack. Xu et al. claimed that their “proposed scheme
can provide proper mutual authentication”, but we show this is not the case:
Anyone can impersonate any legitimate user without guessing password or
accessing the victim’s device:

Step 1. M chooses a random number Ti ∈R (1, nj ];
Step 2. M receives {ej , nj , Cerj , Aj} that comes from Sj ;
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Step 3. M chooses a random number X ∈R (1, nj ];
Step 4. M sets Si = X, Ri = Xejh(IDi)X ;
Step 5. M → Sj : {PIDi, Ri, Si, x = X}, where PIDi is intercepted.

Note that the above attack will succeed, because {PIDi, Ri, Si, x = X} will
be accepted by the the service server Sj . More specifically, according to attack
Step 4, we have S

ej
i h(IDi)x = Xejh(IDi)X , which equals Ri and passes Step 4

of login phase. This demonstrates that even a Type-I attacker (see Sect. 2) can
completely break the scheme.

Poor Repairability. In Xu et al.’s scheme, there should be times that a user
suspects (or realizes) that her smart card might be power analysed and the
secret di = h(IDi)d mod n has been leaked. However, even if Ui has detected this
abnormality and changes her password to a new one, no means can be employed
to deter M from using the master secret di to login the server Sj . In other words,
Ui cannot be easily repaired [17]. More detailedly, since di = h(IDi)d mod n is
uniquely defined by Ui’s identity IDi and RC’s long-term private key d, RC
is unable to update di for Ui unless either IDi or d is updated. Nevertheless,
because d is usually utilized for all legitimate users of the entire system rather
than only one user Ui, it would be irrational and inefficient to change d to
restore the security of a single user, i.e. Ui. Furthermore, since IDi is typically
bound with Ui in many application systems, it is also unreasonable to change
IDi to address the problem. In summary, the repairability of Xu et al.’s scheme
constitutes a realistic issue.

4 Cryptanalysis of Wu et al.’s scheme

Here we first review Wu et al.’s scheme [19]. This scheme is an improvement
over existing schemes aims to attain user anonymity lacked in [7,24]. Wu et al.’s
scheme can preserve user anonymity, however, we observe that it still remains
feasible for an attacker to break “truly two-factor security”. In addition, the
scheme cannot provide sound repairability.

4.1 A Brief Review of Wu et al.’s scheme

Wu et al.’s scheme [19] is composed of four phases: initialization, registration,
login and authentication, and one activity: password change. The notations and
initial system parameters employed in Wu et al.’s scheme are same as employed
in the scheme of Xu et al. (see Table 1).

Initialization Phase. Let kxy(1 ≤ x, y ≤ n, x 	= y) be the common secret key of
each pair of servers (Sx, Sy) (x 	= y), and s be their common parameter, ky be
the secret key of Sy.
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User Registration. This phase proceeds as follows:

Step 1. Ui ⇒ Sy: {IDi,HPWi}, where HPWi = h(PWi ‖ bi) and b is a random
number.

Step 2. Sy ⇒ Ui: {PIDi, B1, B2, s, h(·)}. Sy selects PIDi, then computes:
B01 = h(PIDi ‖ ky ‖ IDSy

), B1 = B0 ⊕ HPWi, B02 = h(IDi ‖
ky ‖ IDSy

) and B2 = B02 ⊕ h(IDi ‖ HPWi), and stores IDi.
Step 3. Ui inputs (PIDi, B1, B2, B3, s, h(·)) into mobile device, where B3 =

bi ⊕ h(IDi ‖ PWi).

Login and Authentication Phase. This phase proceeds as follows:

Step 1. Ui → Sx: M1 = {PIDi, C1, C2, C3, C5, SIDj , IDSy
}. Ui inputs IDi and

PWi, then the device calculates bi = B3 ⊕h(IDi ‖ PWi) and HPWi =
h(PWi ‖ bi), C1 = TrU (s), C2 = B1 ⊕HPWi ⊕NU , C3 = h(NU )⊕IDi,
C4 = B2 ⊕ h(IDi ‖ HPWi) and C5 = h(C1 ‖ NU ‖ C4), where rU and
NU are two randomly chosen nonces.

Step 2. Sx → Sy: M2 = {PIDi, C1, C2, C3, C5, C6, C7, SIDj}. Sx computes C6

= TrSx
(s) and C7 = h(C6‖kxy‖SIDj), where rSx

is a nonce.
Step 3. There are further messages flows Sy → Sx: M3 = {C8, C9, C10, C11}

and Sx → Ui: M4 = {C6, C9 ∼ C12}, but they have litter relevance to
our discussions and are omitted.

4.2 Flaws in Wu et al.’s scheme

We now show the flaws of Wu et al.’s scheme [19]. Recall that the three assump-
tions listed in Sect. 2 are also explicitly made when Wu et al. analyzing Irshad
et al.’s [7] and Zhu’s [24] schemes.

Smart Card Loss Attack. Based on Wu et al.’s own security assumptions
(i.e., the three ones in Sect. 2), we now cryptanalyze the security provisions of
their scheme. More specifically, in what follows we assume that M can extract
the private data {B1, B2, B3, h(·)} kept in Ui’s smart card, and can also eaves-
drop the messages {PIDi, C1, C2, C3, C5, SIDj , IDSy

} exchanged between the
parties. M obtains Ui’s password PWi as follows:

Step 1. Guesses the value of IDi to be ID∗
i from dictionary space Did and the

value of PWi to be PW ∗
i from dictionary space Dpw;

Step 2. Computes b∗
i = B3 ⊕ h(ID∗

i )
PW∗

i , where B3 is revealed from Ui’s card;
Step 3. Computes N∗

u = C∗
2 ⊕ B1 ⊕ h(PWi‖b∗

i ), where C2 is intercepted from
the channel and B1 is revealed from Ui’s card;
Step 4. Computes C∗

3 = h(N∗
u) ⊕ ID∗

i ;
Step 5. Verifies the correctness of (ID∗

i , PW ∗
i ) by checking if C∗

3 equals the
intercepted C3;
Step 6. Repeats Steps 1–5 until the right (ID∗

i , PW ∗
i ) is found.
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The time complexity of the attack is O(|Did| ∗ |Dpw| ∗ 3TH), where TH is
the running time for Hash operation. Recently, it has been found that user-
chosen password follow the Zipf’s law and the dictionary size is very restricted,
e.g., |Did| ≤ |Dpw| ≤ 106 [15]. Further, regarding the timings in Table 5 of
[17], A may figure out the password within 24.6 days on a common PC, or
costs $30.36 and spends 16.37 h by using the Amazon EC2 C4.4X-large cloud
computing service [2]. The above attack means that, once the smart card factor
is breached, then the password factor will also be compromised. This indicates
that truly two-factor security cannot be achieved in Wu et al.’s scheme.

Temporary Information Leakage Attack. As session-specific info are gen-
erally of large volume and deemed less sensitive than long-term secret keys, the
former will be much less well protected than the latter and thus more easily
leaked (e.g., through improper erasing, memory leakage or even poor implemen-
tations). Therefore, it is desirable that the security impact of the leakage of such
session-specific info can be limited to just session-specific secret keys, but not
the long-term secret keys.

However, in Wu et al.’s scheme [19], the leakage of session-specific information
will make the long-term secret key dangerous:

Step 1. M somehow obtains the session-specific Nu during one session;
Step 2. Computes B01 = C2 ⊕ Nu = h(PIDi ‖ ky ‖ IDSy

).

Note that, B01 = h(PIDi ‖ ky ‖ IDSy
) is just Ui’s long-term authenticator.

After obtaining B01, M can further guess Ui’s passwords:

Step 1. Computes IDi = C3 ⊕ h(Nu), where C3 is from open channel;
Step 2. Guesses the value of PWi to be PW ∗

i from space Dpw;
Step 3. Computes C∗

2 = B01⊕h(PW ∗
i ‖b∗

i )⊕Nu, where B01 is obtained as shown
above;
Step 4. Verifies the correctness of PW ∗

i by comparing if C∗
2 equals C2;

Step 5. Repeats Step 1–4 until the right value of PW ∗
i is found.

The time complexity is O(|Dpw| ∗ 2TH), which can be completed in 1.39 s
on a common PC according to the timings that TH ≈ 0.693μs (see Table 5 of
[17]). That is, the leakage of session-specific info will lead to the leakage of user
identity and passwords. This is rather dangerous.

5 Cryptanalysis of Leu-Hsieh’s Scheme

We now cryptanalyze Leu-Hsieh’s scheme [9].

5.1 Review of Leu-Hsieh’s Scheme

Due to space constraints, the details of the scheme are referred to [9].



Revisiting Anonymous Two-Factor Authentication Schemes 813

5.2 Flaws in Leu-Hsieh’s Scheme

No User Anonymity. With the concern of user privacy rising rapidly nowa-
days, user anonymity is becoming a primary feature to be considered in the
design of authentication protocols, especially in wireless environments. In Leu-
Hsieh’s scheme, the exchanged messages are different in every session due to the
use of fresh random nonces and user identity is dynamic in every session by hid-
ing the true identity IDi into shadow identities CIDi. In this way, anonymity
service is claimed to be provided in [9] by arguing that an attacker M “cannot
distinguish between different sessions corresponding to a certain user and can-
not obtain any clue to the real identity.” However, Leu-Hsieh’s scheme fails to
consider that the attacker M may be a malicious insider (i.e., a legitimate but
malicious user – a type IV attacker, see Sect. 2). In the following we show that
such a type IV attacker M is able to breach Ui’s untraceability as follows:

Step 1. M eavesdrops a login request {Pij , Ni} sent by Ui;
Step 2. M calculates Ti = Pij ⊕ h(h(y)‖Ni‖SIDj), where h(y) is shared among
all users and service serviers.

Note that, Ti = h(Ri‖x) is specific to Ui and static in all of user Ui’s login
sessions, and thus it can be used to link the different session participated by Ui,
breaching the user untraceability.

The above procedure shows that, a type IV attacker (see Sect. 2) is capable of
disclosing the activity of any legitimate user in the system without the sensitive
info from user’s smart card. Instead, M only needs the sensitive info from her
own knowledge. This is a much weaker condition as compared with the condition
that M needs the sensitive info from Ui’s smart card. This is contrary to Leu-
Hsieh’s claim that M “cannot obtain any clue to the real identity.” Thus, their
scheme cannot preserve user anonymity and is not a true dynamic-ID based
scheme. Our attack highlights the seriousness of threat arising from malicious
insiders.

Smart Card Loss Attack I. We show that once M obtains Ui’s smart card,
a Type-I attacker M can obtain Ui’s password PWi as follows:

Step 1. M extracts {Vi,Hi, h(·)} from Ui’s smart card.
Step 2. M picks a candidate PW ∗

i from the password dictionary Dpw, and a
candidate ID∗

i from the identity dictionary Did.
Step 3. M computes T ∗

i = Vi ⊕ h(ID∗
i ‖h(b‖PW ∗

i ));
Step 4. M computes H∗

i = h(T ∗
i );

Step 5. M examines the validity of PW ∗
i by comparing if the computed H∗

i is
equal to Hi which is extracted from the card memory.
Step 6. M goes to Step 2 until the right PWi is obtained.

The time complexity is O(|Did| ∗ |Dpw| ∗ (2TH +TX)). Based on the results in
[17], this attack is able to be carried out in a few days on a common computer.
This attack has been given extensive attention is the literature [16,17]. As shown
in [13], Maitra et al.’s scheme [10], an improvement of Leu-Hsieh’s scheme [9],
suffers exactly the same issue.
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Smart Card Loss Attack II. We further show that a Type-I attacker M can
obtain Ui’s password PWi via another attacking procedure as follows:

Step 1. M extracts {Bi, Zi, Vi, b, h(·)} from Ui’s smart card by side channel
attacks [3,11].
Step 2. M picks a candidate PW ∗

i from the password dictionary Dpw, and a
candidate ID∗

i from the identity dictionary Did.
Step 3. M computes R∗

i = Zi ⊕ ID∗
i ⊕ h(b‖PW ∗

i );
Step 4. M computes O∗

i = h(b‖PW ∗
i ) ⊕ ID∗

i ⊕ R∗
i ;

Step 5. M computes A∗
i = h(Ti‖h(y)‖Ni), where Ni is from the open channel

and h(y) from a legitimate yet curious user/server;
Step 6. M computes Q∗

i = h(O∗
i ‖A∗

i ‖Ni);
Step 7. M examines the validity of PW ∗

i by comparing if the computed Q∗
i equls

Qi which is intercepted from the open channel.
Step 8. M goes to Step 2 until the right PWi is obtained.

The time complexity is O(|Did| ∗ |Dpw| ∗ (4TH + 3TX)). It can be carried
out in a few days on a common computer according to the timings in [17].
Note that, our attack involves the parameter h(y) but not h(x‖y), which is
different from Maitra et al.’s attack (see Sect. 6.3 of [10]). When compared with
the above “smart card loss attack I”, this attack is less effective as it requires
that M colludes with a malicious insider. Still, this attack invalidates the claim
of achieving truly two-factor security in [9].

No Forward Secrecy. When analyzing their scheme, Leu and Hsieh do not
consider (mention) forward secrecy. We now show that this desirable property
cannot be preserved: Supposing an attacker M manages to obtain the long-
term keys h(y) and h(x‖y) from a compromised/malicious service server and
eavesdropped the messages {CIDi, Pij , Qi, Ni, Nj} exchanged during Ui and S
authentication process from the public channel. For convenience of presentation,
assume it is Ui’s mth login. M can calculate Ui and S’s session key during the
jth communication as follows:

Step 1. M calculates Ti = Pij ⊕h(h(y)‖Ni‖SIDj), Ai = h(Ti‖h(y)‖Ni)), where
{Pij , Ni} is from the open channel.
Step 2. M computes h(b⊕PWi ⊕Ri) = CIDi ⊕h(Ti‖Ai‖Ni) and Oi = h(h(b⊕
PWi ⊕ Ri)‖h(x‖y)), where {CIDi, Ni} is intercepted.
Step 3. M calculates SKm = h(Oi‖Ni‖Nj‖Ai‖SIDj), where {Ni, Nj} is from
the open channel.

Once the session key SKm leaks, the entire mth communication will be leaked
to M. Maitra et al.’s scheme [10] suffers exactly the same issue.

6 Conclusion

Considerable efforts have been spent on designing an efficient, secure and privacy-
preserving two-factor authentication scheme for multi-server environments under
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the assumption that smart cards can be extracted. Very recently, Xu et al., Wu
et al. and Leu-Hsieh made three new attempts. However, through systematic
evaluation we reveal that all of them are still subject to various serious defects.
Most importantly, our results underscore some new challenges (e.g., attacks aris-
ing from the leakage of session-specific information and from malicious insid-
ers) in devising a practical two-factor authentication scheme for multi-server
environments.
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