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Abstract We consider a system of Fokker-Planck-Kolmogorov (FPK) equations,
where the dependence of the coefficients is nonlinear and nonlocal in time with
respect to the unknowns. We extend the numerical scheme proposed and studied
in Carlini and Silva (SIAM J. Numer. Anal., 2018, To appear) for a single FPK
equation of this type. We analyse the convergence of the scheme and we study its
applicability in two examples. The first one concerns a population model involving
two interacting species and the second one concerns two populations Mean Field
Games.
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1 Introduction

In this note we consider the following system of nonlinear Fokker-Planck-
Kolmogorov (FPK) equations

∂tm
� − 1

2

∑

1≤i,j≤d

∂2xi ,xj

(
a�
i,j (m, x, t)m�

)
+ ∑d�

i=1 ∂xi

(
b�(m, x, t)m�

) = 0, in R
d� × (0, T ),

m�(0) = m̄�
0 in R

d� ,

(FPK)

where � = 1, . . . ,M and d� ∈ N\{0}. In the system above,we look forM unknowns
m = (m1, . . . ,mM) such that for each � = 1, . . . ,M , m� belongs to the space
C([0, T ];P1(R

d�)), where P1(R
d�) is the set of probability measures on R

d� with
finite first order moment. This set is endowed with the standard Monge-Kantorovic
distance (see Sect. 2 below). The coefficients in (FPK) are given by functions

b� :
M∏

�′=1

C([0, T ];P1(R
d�′ ))×R

d� ×[0, T ] → R
d� , a�

i,j=
r�∑

p=1

σ�
i,p ·σ�

j,p ∀ i, j=1, . . . d,

where r� ∈ N \ {0} and for all p = 1, . . . , r�

σ �
i,p :

M∏

�′=1

C([0, T ];P1(R
d�′ )) × R

d� × [0, T ] → R.

Finally, the prescribed initial distributions m̄0 := (m̄1
0, . . . , m̄

N
0 ) are assumed to

be probability measures with finite second order moments, i.e.
∫
R

d� |x|2dm̄�
0 < ∞

for all � = 1, . . . ,M . Note that system (FPK) is highly nonlinear because
the dependence on m of the coefficients b� and a�

i,j can be nonlocal in time. A
priori these coefficients depend of the entire trajectory t ∈ [0, T ] → m(t) ∈∏M

�=1 P1(R
d�).

When M = 1, and the coefficients b1 and σ 1 do not depend on m, the resulting
equation is the classical FPK equation that describes the law of a diffusion process
whose drift and volatility coefficients are given by b1 and σ 1, respectively. We refer
the reader to the monograph [4] for a rather complete account of analytical results
related to this equation and to the references in introduction of [9] for the numerical
approximation of its solutions.

Let us now comment on the probabilistic interpretation of (FPK) when M > 1.
Formally speaking, provided that for each � = 1, . . . ,M , the equation

dX�(t) = b�(m,X�(t), t)dt +
r�∑

p=1

σ�·,p(m,X�(t), t)dW
�
p(t) t ∈ [0, T ], X�(0) = X�

0,

(1.1)
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is well-posed (let us say in a weak sense), system (FPK) describes the time
evolution of the laws of [0, T ] � t 	→ X�(t) ∈ R

d� . In (1.1), the Brownian
motions {W�

p ; p = 1, . . . ,M, m = 0, . . . , r�} are mutually independent

and independent of (X�
0)

M
�=1, where, for each �, the distribution of X�

0 is given
by m�

0. In addition, the map m : [0, T ] → �M
�=1P1(R

d�) is given by m(t) =
(Law(X1(t)), . . . ,Law(XM(t))).

Our aim in this paper is to use this probabilistic interpretation in order to
provide a convergent fully discrete scheme for (FPK). The analysis of the proposed
approximation, that we will present in Sect. 3, is a rather straightforward extension
of the study done in [9], where M = 1. On the other hand, as we will show in the
next section, it is easy to see that solutions of (FPK) can be found as the marginal
laws of a single FPK equation whose solution takes values in P1(

∏M
�=1R

d�) at
each time. Therefore, the scheme in [9] could, in principle, be used to approximate
(FPK). However, from the practical point of view, this roadmap has serious
difficulties because the numerical efficiency of the scheme in [9] depends heavily
on the dimension of the state space. In this sense, the study of a scheme that can be
directly applied to system (FPK) is interesting in its own right.

We implement the scheme in two examples. In the first one we consider
a diffusive version, introduced in [6], of a system of FPK equations proposed
in [12] modelling the evolution of two interacting species under attraction and
repulsion effects. Since in [6] some of the drift terms depend on the densities of
the species distributions, we need to regularize these terms in order to obtain a
convergent approximation in our framework. Our discretization produces rather
similar numerical results to those in [3, Section 5.1]. In the second example,
we consider a particular instance of a two population Mean Field Game (MFG)
(see e.g. [10]). The system we consider, introduced in [1, Section 6.2.1], is
symmetric with respect to both populations and aims to model xenophobia effects
on urban settlements. In [1] it is shown that even if at the microscopic level the
xenophobic effect is small, segregation occurs at the macroscopic level, indicating
that Schelling’s principle (see [17]) is also valid in the context of MFGs. In the
tests that we have implemented, we recover the numerical results in [1] for the
viscosity parameters the authors consider, but we are also able to deal with very
small, or null, viscosity parameters, capturing, for these cases, different segregated
configurations than those in [1]. We believe that the possibility of dealing with small
or null viscosity parameters, as well as large time steps, is an important feature of
the scheme that we propose.

The article is organized as follows. In the next section we introduce some
standard notations and our main assumptions. In Sect. 3 we introduce the scheme
that we propose, which is a straightforward extension of the one in [9], and we
study its main properties, including the convergence analysis. Finally, in Sect. 4,
we present our numerical results for the two examples described in the previous
paragraph.
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2 Preliminaries and Main Assumptions

Let us first set some standard notations and assumptions that we will use in the rest
of the paper. For the sake of notational convenience we will assume that M = 2,
but our results admit straightforward generalizations for arbitrary M ∈ N. The set
Pi (R

d) (d , i ∈ N \ {0}) denotes the set of Borel probability measures over Rd with
finite i-th order moment. We endow Pi (R

d ) with the standard Monge-Kantorovic
metric

di(μ1, μ2) := inf

{(∫

Rd×Rd

|x − y|idγ (x, y)

) 1
i ∣
∣ �x�γ = μ1, �y�γ = μ2

}

,

where �x(x, y) := x, �y(x, y) := y for all x, y ∈ R
d and given a Borel map

� : R
m → R

n and a Borel measure μ on B(Rm), the push-forward measure
��μ is defined as ��μ(A) := μ(�−1(A)). Let K ⊆ Pi (R

d ) be given. A useful
compactness result in Pi (R

d) states that if for a given K ⊆ Pi (R
d) there exists

C > 0 such that
∫

Rd

|x|i+δdμ(x) ≤ C for some δ > 0 and all μ ∈ K, (2.1)

then K is relatively compact (see e.g. [2, Proposition 7.1.5]).
Define M := C([0, T ];P1(R

d1)) × C([0, T ];P1(R
d2)). We say that m =

(m1,m2) ∈ M is a weak solution of (FPK) if for all � = 1, 2, t ∈ [0, T ] and
φ ∈ C∞

0 (Rd�) (the space of C∞ real-valued functions defined on R
d� and with

compact support) we have that

∫
R

d� ϕ(x)dm�(t)(x) = ∫
R

d� ϕ(x)dm̄�
0(x) + ∫ t

0

∫
R

d�

[
b�(m, x, s) · ∇ϕ(x)

]
dm�(s)(x)ds

+ ∫ t

0

∫
R

d�

[
1
2

∑
i,j a�

i,j (m, x, s)∂2xi ,xj
ϕ(x)

]
dm�(s)(x)ds,

(2.2)

provided that the second and third terms in the right hand side are meaningful.
The main assumptions in this paper are continuity and uniform linear growths of

b� and σ�, respectively, with respect to the space variables. More precisely, we will
suppose that
(H) For � = 1, 2

(i) m̄�
0 ∈ P2(R

d ).
(ii) The maps b� and σ� are continuous.
(iii) There exists C > 0 such that

|b�(m, x, t)| + |σ�(m, x, t)| ≤ C(1 + |x|) ∀ m ∈ M, x ∈ R
d�, t ∈ [0, T ].

(2.3)
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Note that system (FPK) can be analysed with the help of a single FPK equation.
Indeed, let m̄0 ∈ P2(R

d1 × R
d2) be such that its marginal in R

d� (� = 1, 2) is given
by m̄�

0. Given μ ∈ C([0, T ];P1(R
d1 × R

d2)) denote by μ̂ := (μ1, μ2) ∈ M
the marginals in R

d1 and R
d2 of t ∈ [0, T ] → μ(t) ∈ P1(R

d1 × R
d2). Writing

x = (x1, x2) ∈ R
d1 × R

d2 define the coefficients

b : C
([0, T ];P1(R

d1 × R
d2)

) × (Rd1 × R
d2) × [0, T ] → R

d1 × R
d2,

σ : C
([0, T ];P1(R

d1 × R
d2)

) × (Rd1 × R
d2) × [0, T ] → R

d1×r1 × R
d2×r2 .

as

b(μ, x, t) :=
(
b1(μ̂, x1, t), b2(μ̂, x2, t)

)
, σ (μ, x, t) :=

(
σ 1(μ̂, x1, t), σ 2(μ̂, x2, t)

)
,

(2.4)

for all μ ∈ C
([0, T ];P1(R

d1 × R
d2)

)
, x ∈ R

d1 × R
d2 and t ∈ [0, T ]. Finally, for

all �1, �2 = 1, 2 we set

a
�1,�2
i,j (μ, x, t) :=

⎧
⎨

⎩

∑d�1
p=1 σ

�1
i,p(μ̂, x�1, t)σ

�1
j,p(μ̂, x�1, t) if �1 = �2,

0 if �1 �= �2.

Consider the problem of finding m ∈ C
([0, T ];P1(R

d1 × R
d2)

)
such that

∂tm − 1
2

∑

1≤�1,�2≤2
1≤i,j≤d�

∂2
x

�1
i

,x
�2
j

(
a

�1,�2
i,j (m, x, t)m

)
+ div (b(m, x, t)m) = 0 in R

d1 × R
d2 × [0, T ],

m(0) = m̄0 in R
d1 × R

d2 .

(FPK ′)

If (H) holds, then the coefficients b and σ , defined in (2.4), also satisfy (H) in the
corresponding spaces. More precisely, b and σ are continuous and there exists C >

0 such that

|b(m, x, t)| + |σ(m, x, t)| ≤ C(1 + |x|) ∀ m ∈ C
(
[0, T ];P1(R

d1 × R
d2 )

)
, x ∈ R

d1 × R
d2 , t ∈ [0, T ].

(2.5)

Thus, by the results in [15, 16] (see also [9, Theorem 4.2]) we have that (FPK ′)
admits at least one solution m ∈ C

([0, T ];P1(R
d1 × R

d2)
)
. Moreover, from the

results in [9] we have the existence of C > 0 such that

sup
t∈[0,T ]

∫

R
d1×R

d2
|x|2dm(t)(x) ≤ C. (2.6)
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Now, for R > 0 and x ′ ∈ R
d2 we set ξR(x ′) := ξ(x ′/R), where ξ ∈ C∞

0 (Rd2)

is such that 0 ≤ ξ ≤ 1, ξ(x ′) = 1 if |x ′| ≤ 1/2 and ξ(x ′) = 0 if |x ′| ≥ 1.
The function ξR belongs to C∞

0 (Rd2) and, as R ↑ ∞, approximate the constant
function equal to 1 in Rd2 . Given ϕ ∈ C∞

0 (Rd1), let us define ϕ1
R : Rd1 × R

d2 → R

as ϕ1
R(x) := ϕ(x1)ξR(x2), which belongs to C∞

0 (Rd1 × R
d2). By considering this

test function in (FPK ′), using (2.5) and (2.6) and letting R ↑ ∞ we obtain that
m1 ∈ C([0, T ];P1(R

d1)) (defined for all t ∈ [0, T ] as the marginal of m(t) with
respect to R

d1 ) satisfies (2.2) with � = 1. A similar construction shows that m2 ∈
C([0, T ];P1(R

d2)) (defined for all t ∈ [0, T ] as the marginal of m(t) with respect
to Rd2 ) satisfies (2.2) with � = 2. As a result (m1,m2) solves (FPK).

From the analytical point of view, the argument above is useful in order to obtain
existence and properties of solutions to (FPK). On the other hand, as we comment
in Remark 3.2 in the next section, this simplification is useless from the numerical
point of view.

3 The Fully Discrete Scheme

We consider a time step h = T/NT ( NT ∈ N) and space steps ρ1, ρ2 > 0. We
define tk = kh (k = 0, . . . , NT ), the time grid {0, t1, . . . , tNT −1, T } and the space
grids Gρ� := {x�

i = ρ�i | i ∈ Z
d�} (� = 1, 2). We consider two regular lattices Tρ1

and Tρ2 of Rd1 and R
d2 , where the vertices of the square elements belong to Gρ1

and Gρ2 , respectively. Associated to these lattices and their vertices, we consider
two Q1 bases {β�

i ; i ∈ Z
d�} (� = 1, 2) . By definition, for � = 1, 2 and i ∈

Z
d� , the functions β�

i : R
d� → R+ (where R+ denotes the set of non negative

real numbers) are polynomials of degree less than or equal to 1 with respect to
each variable (x1, . . . , xd�) on each square Q ∈ Tρ� , have compact support and
satisfy that β�

i (x
�
j ) = δi,j (where δi,j = 1 if i = j and δi,j = 0, otherwise) and

∑
i∈Zd� β�

i (x) = 1 for all x ∈ R
d� . In order to define a discretization of the initial

condition m̄�
0 we define the sets

E�
i :=

{

x ∈ R
d� ; |x − xi |∞ ≤ ρ�

2

}

.

Since we will let ρ� tend to 0 later, without loss of generality we can assume that
m̄�

0(∂E�
i ) = 0 for all i ∈ Z

d� . We then set

m�
i,0 = m̄�

0(E
�
i ) ∀ i ∈ Z

d� .
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Since m̄�
0(R

d�) = 1, we have that
{
m�

i,0 | i ∈ Z
d�

}
belongs to the simplex

Sρ� :=
⎧
⎨

⎩
μ ∈ [0, 1]Zd� |

∑

i∈Zd�

μi = 1

⎫
⎬

⎭
.

Given μ = {
μi,k | i ∈ Z

d� , k = 0, . . . , NT

} ∈ (Sρ�)NT +1, we identify μ with an
element in C([0, T ];P1(R

d�)) via a linear interpolation

μ(t) :=
(

t − tk

h

) ∑

i∈Zd�

μi,k+1δx�
i
+

(
tk+1 − t

h

) ∑

i∈Zd�

μi,kδx�
i

if t ∈ [tk, tk+1[.

(3.1)

Now,we have all the elements to introduce the discretization of (FPK)we consider.
For the sake of clarity, we first recall the fully-discrete scheme introduced in [9]
when M = 1. In this case the (FPK) system is given by

∂tm − 1
2

∑

1≤i,j≤d

∂2xi ,xj

(
ai,j (m, x, t)m

) + ∑d
i=1 ∂xi

(b(m, x, t)m) = 0, in R
d × (0, T ),

m(0) = m̄0 in R
d ,

(3.2)

where we have omitted the superfluous index � = 1. The fully discrete scheme
for (3.2) reads: Find m ∈ (Sρ)NT +1 such that

mi,0 = m̄0(Ei) ∀ i ∈ Z
d ,

mi,k+1 = 1
2r

r∑

p=1

∑

j∈Zd

[
βi(�

p,+
j,k [m]) + βi(�

p,−
j,k [m])

]
mj,k ∀ i ∈ Z

d , k= 0, . . . ,NT − 1,

(3.3)

where the one-step discrete characteristics starting from xj at time tk are defined as

�
p,+
j,k [m] := xj + hb(m, xj , tk ) + √

rhσp(m, xj , tk ), �
p,−
j,k [m] := xj + hb(m, xj , tk) − √

rhσp(m, xj , tk),

with b and σp being defined, as a function of m, through the extension (3.1).
Existence of at least one solution mρ,h to (3.3) has been proved in [9, Propo-

sition 3.1]. Moreover, under an additional local Lipschitz assumption on b and σ ,
as ρ and h tend to 0 and ρ2 = o(h), the sequence mρ,h in C([0, T ];P1(R

d)),
defined again through the extensions (3.1), has at least one limit point m ∈
C([0, T ];P1(R

d)), and every such limit point solves (FPK) (see [9, Theo-
rem 4.1]).
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Remark 3.1 By regularizing the coefficients b and σ using standard mollifiers, and
modifying the scheme accordingly, this convergence result is also shown to hold
under assumption (H) only (see [9, Theorem 4.2]).

In order to grasp the probabilistic interpretation of (3.3), it is useful to think this
problem as the one of finding a fixed point of a suitable mapping. Indeed, given
μ ∈ C([0, T ];P1(R

d)) and a solution m[μ] ∈ (Sρ)NT +1 to

mi,0 = m̄0(Ei) ∀ i ∈ Z
d ,

mi,k+1 = 1
2r

r∑

p=1

∑

j∈Zd

[
βi(�

p,+
j,k [μ]) + βi(�

p,−
j,k [μ])

]
mj,k ∀ i ∈ Z

d , k = 0, . . . , NT − 1,

(3.4)

we can construct a probability space (�,F ,P) and Markov chain {Xk[μ] | k =
0, . . . , NT }, defined on it, taking values in Gρ and whose marginal laws and
transition probabilities are given, respectively, by m[μ](·),k ∈ Sρ and

P
(
Xk+1[μ]= xi

∣
∣ Xk [μ]= xj

)= 1

2r

r∑

p=1

[
βi (�

p,+
j,k [μ]) + βi(�

p,−
j,k [μ])

]
∀ i, j ∈ Z

d , k = 0, . . . , NT − 1.

(3.5)

In [9] theMarkov chain defined above is shown to satisfy the consistency conditions
introduced by Kushner (see e.g. [14]). Hence, we can expect that its marginal laws
will approximate the law of a weak solution X[μ] to

dX(t) = b(μ,X(t), t)dt +
r∑

p=1

σ·,p(μ,X(t), t)dWp(t) t ∈ [0, T ], X(0) = X0,

(3.6)

where the distribution of X0 is given by m̄0. As explained in [9], a solution to
(FPK), when M = 1, corresponds to a fixed point m ∈ C([0, T ];P1(R

d )) of
the application C([0, T ];P1(R

d )) � μ → m[μ](·) ∈ C([0, T ];P1(R
d)), where,

for every t ∈ [0, T ], the measure m[μ](t) is defined as the law of X[μ](t). Based
on this interpretation, scheme (3.3) can be interpreted as the analogous fixed point
problem for the approximating Markov chain {Xk[μ] | k = 0, . . . , NT }.

Having the previous observations in mind, the extension of scheme (3.3) to the
caseM = 2 is straightforward.We consider the problem of findingm = (m1,m2) ∈
(Sρ1

)NT +1 × (Sρ2
)NT +1 such that, for � = 1, 2, we have

m�
i,0 = m̄�

0(E
�
i ) ∀ i ∈ Z

d� ,

m�
i,k+1 = 1

2r�

r�∑

p=1

∑

j∈Zd�

[
β�
i
(�

�,p,+
j,k

[m]) + β�
i
(�

�,p,−
j,k

[m])
]
m�

j,k
∀ i ∈ Z

d� , k= 0, . . . , NT −1,

(3.7)
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where

�
�,p,+
j,k [m] := x�

j + hb�(m, x�
j , tk) + √

r�hσp(m, x�
j , tk),

�
�,p,−
j,k [m] := x�

j + hb�(m, x�
j , tk) − √

r�hσp(m, x�
j , tk).

Arguing exactly as in the proof of Proposition 3.1 in [9], the existence of at least one
solution mρ,h is a consequence of (H) and Schauder fixed-point theorem. We also
point out that the scheme is conservative. Indeed, for � = 1, 2 and k = 0, . . . , NT

we have

∑

i∈Zd�

m�
i,k+1 =

∑

j∈Zd�

m�
j,k

1

2r�

r�∑

p=1

∑

i∈Zd�

[
β�

i (�
�,p,+
j,k [m]) + β�

i (�
�,p,−
j,k [m])

]
=

∑

j∈Zd�

m�
j,k = 1,

where the last equality follows from
∑

j∈Zd� m�
j,0 = 1.

Remark 3.2

(i) As we discussed at the end of the previous section, we could approximate a
solution to (FPK) by first approximating a solution of (FPK ′) and then taking
its marginals with respect toRd1 andRd2 . The problem of this approach is that if
we use scheme (3.3) in order to approximate (FPK ′), then we should consider
a discretization of Rd1+d2 instead of discretizing Rd1 and Rd2 separately (as we
do with scheme (3.7)), which affects enormously the computational time. Of
course, in our numerical experiments we must consider bounded space grids
(see the next section), but the same difficulty arises.

(ii) Note that if for each (x, t) ∈ R
d� × [0, T ] (� = 1, 2) the functions

C([0, T ];P1(R
d�))2 � (m1,m2) 	→ b�(m1,m2, x, t) ∈ R

d�

and C([0, T ];P1(R
d�))2 � (m1,m2) 	→ σ�(m1,m2, x, t) ∈ R

d�×r� ,

depend on {(m1(s),m2(s)) | 0 ≤ s ≤ t}, then the scheme (3.7) is explicit
and, as a consequence, it admits a unique solution. On the other hand, if
b�(m1,m2, x, t), or σ�(m1,m2, x, t), depends on values (m1(s),m2(s)), for
some s ∈ [t, T ], then the scheme is implicit and ad-hoc techniques should be
used in order to compute a solution numerically.

3.1 Convergence

In this section we analyse the limit behaviour of solutions (m1
n,m

2
n) to (3.7) with

steps ρ1
n , ρ2

n and hn := 1/Nn
T tending to zero as n → ∞. We work with

the extensions, defined through (3.1), of m1
n and m2

n to C([0, T ];P1(R
d1)) and

C([0, T ];P1(R
d2)), respectively.
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The first important remark is that, as the next result shows, the sequence (m1
n,m

2
n)

is equicontinuous in C([0, T ];P1(R
d1)) × C([0, T ];P1(R

d2)) (see (3.8)) and, for
each t ∈ [0, T ], we have that (m1

n(t),m
2
n(t)) belongs to a fixed relatively compact

subset of P1(R
d1) × P1(R

d2) (see (3.9) and (2.1)).

Proposition 3.1 Suppose that (H) holds true and that, as n → ∞, ρn
1 + ρn

2 =
O(h2n). Then, there exists a constant C > 0 (independent of n) such that

d1(m
1
n(t),m

1
n(s)) + d1(m

2
n(t),m

2
n(s)) ≤ C

√|t − s| ∀ t, s ∈ [0, T ],
(3.8)

∫

R
d1

|x|2dm1
n(t)(x) +

∫

R
d2

|x|2dm2
n(t)(x) ≤ C ∀ t ∈ [0, T ]. (3.9)

The proofs of (3.8) and (3.9) are analogous to the proofs of [9, Proposition 4.1]
and [9, Proposition 4.2], respectively, and will therefore be omitted. As a conse-
quence of the previous result and the Arzelà-Ascoli theorem, there exists at least
one limit point (m1,m2) ∈ C([0, T ];P1(R

d1)) × C([0, T ];P1(R
d2)) of (m1

n,m
2
n).

In order to prove that any limit point of (m1
n,m

2
n) solves (FPK), we will assume in

addition

(Lip) For � = 1, 2, μ ∈ M and compact set K� ⊆ R
d� , there exists C� =

C(μ,K�) > 0 such that

|b�(μ, y, t)−b�(μ, x, t)|+|σ�(μ, y, t)−σ�(μ, x, t)| ≤ C�|y−x| ∀ x, y ∈ K�, t ∈ [0, T ].

Theorem 3.1 Suppose that (H)-(Lip) hold true and that, as n → ∞, ρn
1 + ρn

2 =
o(h2n). Then, every limit point (m

1,m2) of (m1
n,m

2
n) (there exists at least one) solves

(FPK).

Proof The proof is analogous to the proof of [9, Theorem 4.1] and so we only
sketch the main steps. Let (m1,m2) ∈ C([0, T ];P1(R

d1)) × C([0, T ];P1(R
d2)) be

a limit point of (m1
n,m

2
n) and consider a subsequence, still labelled by n, such that

(m1
n,m

2
n) → (m1,m2) as n → ∞. Then, for any t ∈ [0, T ] and ϕ ∈ C∞

0 (Rd�)

(� = 1, 2) we have

∫

R
d�

ϕ(x)dm�
n(tn′)(x) =

∫

R
d�

ϕ(x)dm�
n(0)(x) +

n′−1∑

k=0

∫

R
d�

ϕ(x)d
[
m�

n(tk+1) − m�
n(tk)

]
(x),

(3.10)

where n′ ∈ {0, . . . , Nn
T } is such that tn′ = n′hn → t . Using (3.7), we obtain that

∫
R

d� ϕ(x)dm�
n(tk+1)(x) = ∑

i∈Zd� ϕ(xi)m
�
k+1,i

= ∑
i∈Zd� ϕ(xi)

1
2r�

r�∑

p=1

∑

j∈Zd�

[
β�

i (�
�,p,+
j,k [mn]) + β�

i (�
�,p,−
j,k [mn])

]
m�

j,k
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= ∑

j∈Zd�

m�
j,k

2r�

r�∑

p=1

[
I [ϕ](��,p,+

j,k [mn]) + I [ϕ](��,p,−
j,k [mn])

]

= ∑

j∈Zd�

m�
j,k

2r�

r�∑

p=1

[
ϕ
(
�

�,p,+
j,k [mn]

)
+ ϕ

(
�

�,p,−
j,k [mn]

)]
+ O((ρ�

n)2),

where in the last equality we have used that supx∈Rd� |I [ϕ](x)−ϕ(x)| = O((ρ�
n)

2).
By a Taylor expansion, we obtain

ϕ
(
�

�,p,+
j,k [mn]

)
+ ϕ

(
�

�,p,−
j,k [mn]

)
= 2φ(xj ) + 2hn∇ϕ(xj ) · b�(m1

n,m
2
n, xj , tk)

+r�hn

∑

1≤i′,j ′≤d�

∂xi′ ,xi′ ϕ(xj )σ
�
i′,pσ �

j ′,p

+O(h2n),

where we have omitted the dependence of σ�
i′,p and σ�

j ′,p on (m1
n,m

2
n, xj , tk). This

implies that

1
2r�

r�∑

p=1

[
ϕ
(
�

�,p,+
j,k [mn]

)
+ ϕ

(
�

�,p,−
j,k [mn]

)]
= φ(xj ) + hn∇ϕ(xj ) · b�(m1

n,m2
n, xj , tk)

+ hn

2

∑

1≤i ′,j ′≤d�

∂xi′ ,xi′ ϕ(xj )a
�
i ′,j ′ (m1

n,m2
n, xj , tk)

+O(h2n).

Thus, using (3.10), we obtain

∫
R

d� ϕ(x)dm�
n(tn′)(x) = ∫

R
d� ϕ(x)dm�

n(0)(x)

+hn

∑n′−1
k=0

∫
R

d�

[

∇ϕ(x) · b�(m1
n, m2

n, x, tk) + hn

2

∑

1≤i,j≤d�

∂xi ,xi
ϕ(x)a�

i,j (m1
n, m2

n, x, tk)

]

dm�
n(tk)

+O
(
hn + (ρ�

n)2

hn

)
.

Finally, using that m�
n → m� ∈ C([0, T ];P1(R

d�)) by (H) we have that
b�(m1

n,m
2
n, ·, ·) → b�(m1,m2, ·, ·) and a�

i,j (m
1
n,m

2
n, ·, ·) → a�

i,j (m
1,m2, ·, ·)

uniformly in supp(ϕ) × [0, T ] (where supp(ϕ) denotes the support of ϕ, which
is a compact set). Using this fact and assumption (Lip), we can argue in the same
manner than in [9, Theorem 4.1] and pass to the limit in the expression above to
obtain that m� satisfies (2.2). The result follows.

Remark 3.3 As in [9, Theorem 4.2], we can get rid of assumption (Lip) at the
price of regularizing by convolution the coefficients b� and σ� and considering the
associated scheme with the regularized coefficients.

In practice we have not always access to the coefficients b� and a�
i,j and they

have to be approximated. As we will see in the next section, this is the case of
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multi-population MFGs systems. Consider a sequence of space steps ρ1
n , ρ2

n and a
sequence of time steps hn satisfying the assumptions of the previous result. Assume
that for each n we have

b�
n : C([0, T ];P1(R

d�)) × R
d� × [0, T ] → R

d� ,

σ �
n : C([0, T ];P1(R

d�)) × R
d� × [0, T ] → R

d�×r� ,

such that:

(H’)

(i) for each fixed t ∈ [0, T ], the mappings b�
n(·, ·, t) and σ�

n (·, ·, t) are continuous.
(ii) the growth condition (2.5) holds for a constant C > 0 independent of n.
(iii) for any sequence μn ∈ C([0, T ];P1(R

d�)) and μ ∈ C([0, T ];P1(R
d�))

satisfying that μn → μ we have

b�
n(μn, ·, ·) → b�(μ, ·, ·), σ �

n (μn, ·, ·) → σ�(μ, ·, ·)

uniformly on compact subsets of Rd� × [0, T ].
Consider the scheme (3.7) constructed with discrete characteristics

(�
�,p,+
j,k )n[m] := xj + hb�

n(m, xj , tk) + √
rh(σ �

n )p(m, xj , tk),

(�
�,p,−
j,k )n[m] := xj + hb�

n(m, xj , tk) − √
rh(σ �

n )p(m, xj , tk),

which, by similar arguments to those in the case of coefficients independent of n,
admits at least one solution (m1

n,m
2
n). Then, we have the following result, whose

proof is analogous to the proof of Theorem 3.1.

Theorem 3.2 Under (H)-(Lip) and the previous assumptions, the sequence
(m1

n,m
2
n) admits at least one limit point (m1,m2) ∈ C([0, T ];P1(R

d1)) ×
C([0, T ];P1(R

d2)). Moreover, every such limit point solves (FPK).

4 Simulations

We show the performance of our scheme by applying it to approximate the solution
of two instances of (FPK) with M = 2. In the first example we consider a variation
of a PDE system treated analytically in [6] and numerically in [3], which models
the evolution of two interacting species. In our framework, the drifts b1 and b2 have
non local cross interaction terms and also a term that will approximate a nonlinear
diffusion term present in [3, 6]. In the second example, we consider a particular
instance of a two population MFG system modelling segregation (see e.g. [1, 10]).
As discussed in [9], standard MFGs can be seen as a particular (FPK) equation
with M = 1, where the drift term b1 satisfies that for each (x, t) ∈ R

d1 × [0, T ]
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the function C([0, T ];P1(R
d1)) � m 	→ b1(m, x, t) ∈ R

d1 depends on the values
{m(s) | s ∈ (t, T ]}. When M �= 1, the situation is similar and hence, as explained
in Remark 3.2(ii), the scheme is implicit.

Since the scheme (3.7) is defined on the unbounded space grid Gρ , in our
numerical examples we need to change this grid to a bounded one. In order to
maintain the total mass constant, we impose homogeneous Neumann boundary
conditions and near the boundary we approximate the discrete flow by using a
projected Euler scheme, as proposed in [11]. The proof of convergence of the
modified scheme is postponed to a future work.

In all tests that we chose the discretization parameters (ρ, h) satisfying h =
O(ρ3/2), which is less restrictive than the classical parabolic CFL condition for
explicit finite difference schemes. Larger time step would produce loss of accuracy
close to the boundary. The question on how to modify the scheme at the boundary
maintaining large time steps will also be addressed in a future work.

In the examples that we present below, at each time t ∈ [0, T ] the solution
(m1,m2) is shown to admit a density with respect to the Lebesgue measure. For
each � = 1, 2 we approximate the density ofm� by definingm�

ρ,h(x, t) := m�
i,k/ρ

d�

if (x, t) ∈ E�
i × [tk, tk+1). For fixed t , m�

ρ,h is a density which is uniform on each

E�
i .

4.1 Interacting Species

We consider a system of two interacting species proposed first in the first order case
in [12] and then extended in [6] to the case where a nonlinear diffusion term is also
added to the system. The densitiesm1 andm2 of the two species are coupled through
the drift by non local terms. The system studied in [6] reads

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tm
1 − div

(
m1

(∇E′(m1) + ∇U1(m
1,m2, x, t)

)) = 0,

∂tm
2 − div

(
m2

(∇E′(m2) + ∇U2(m
1,m2, x, t)

)) = 0,

m1(·, 0) = m1
0(·), m2(·, 0) = m2

0(·).
(4.1)

In (4.1), m�
0 (� = 1, 2) represent two absolutely continuous probability mea-

sures whose densities are still denoted by m�
0. The term E(m) := 1

2m
3 cor-

responds to an internal energy which introduces the nonlinear diffusion term
−div(m�(∇E′(m�)) = −�(m�)3 in (4.1). It is assumed that

∫
Rd (m

�
0(x))3dx < +∞

for � = 1, 2. The potentials U1, U2 : C([0, T ];P1(R
d ))2 × R

d × [0, T ] → R are
cross interactions terms and they are given by convolution with smooth functions

U1(m
1,m2, x, t) = W11 ∗ [

m1(t)
]
(x) + W21 ∗ [m2(t)](x),

U2(m
1,m2, x, t) = W12 ∗ [m1(t)](x) + W22 ∗ [m2(t)](x),
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where ∗ denotes the space convolution and W11(x) = W21(x) = W22(x) := |x|2
2 ,

W12(x) := −|x|2
2 . With these choices, the drift terms

−∇
(
W11 ∗ m1(t)

)
(x)=

∫

R2
(y − x)dm1(t)(y), −∇

(
W22 ∗ m2(t)

)
(x)=

∫

R2
(y − x)dm2(t)(y)

(4.2)

model self-interactions for the first and second species, respectively, whereas the
terms

−∇
(
W21 ∗ m2(t)

)
(x)=

∫

R2
(y − x)dm2(t)(y), −∇

(
W12 ∗ m1(t)

)
(x)= −

∫

R2
(y − x)dm1(t)(y),

(4.3)

model the facts that the first species is attracted by the second one and that the
latter is repelled by first one, respectively. Note that the drift terms in (4.2)–(4.3)
do not satisfy (H) because the linear growth is not uniform w.r.t. m�. This can be
easily fixed by considering suitable compactly supportedC∞ approximations of the
function y − x. In our simulations, we work on a bounded domain and so we work
directly with the coefficients (4.2)–(4.3). It is easy to see that these drift terms satisfy
(Lip).

Existence and uniqueness results of weak solutions to (4.1) has been proved in
[12] when E1 = E2 = 0. In the diffusive case, existence of at least one weak
solution, which is absolutely continuous w.r.t. the Lebesgue measure, has been
proved in [6]. We refer the reader to [3] for the numerical resolution of (4.1) by
the so-called JKO scheme combined with the augmented Lagrangian method.

Since under (H) the coefficients should be continuous with respect to the weak
convergence of probability measures, we need to regularize the local term E′(m) =
3
2m

2. We do this by convolution. More precisely, given a regularization parameter
δ > 0 we define E′

δ : C([0, T ];P1(R
d))) × R

d × [0, T ] → R as

E′
δ(m, x, t) := 3

2
(m(t) ∗ φδ(x))2,

where φδ(x) = √
2πδ exp (−|x|2/(2δ2)). We then consider the following variation

of (4.1):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tm
1 − div(m1(∇E′

δ(m
1) + ∇U1(m

1,m2))) = 0,

∂tm
2 − div(m2(∇E′

δ(m
2) + ∇U2(m

1,m2))) = 0,

m1(·, 0) = m̄1
0(·), m2(·, 0) = m̄2

0(·),
(4.4)

which satisfies (H), with the suitable modifications of (4.2)–(4.3).
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4.1.1 Numerical Test

We numerically solve system (4.4) with d1 = d2 = 2 on a domain � × [0, T ] =
[−1, 1] × [−1, 1] × [0, 5], with homogeneous Neumann boundary conditions, δ =
0.02 and initial conditions

m1(x, 0) = ν1(x)

ν̄1
and m2(x, 0) = ν2(x)

ν̄2
,

where

ν1(x1, x2) :=
[
0.2 − (x1 − 0.5)2 − (x2+0.5)2

2

]2

+ ,

ν2(x1, x2) :=
[
0.2 − (x1 + 0.5)2 − (x2−0.5)2

2

]2

+ ,

and, for a ∈ R, a+ := max{0, a}, and ν̄1, ν̄2 are two positive constants such that

∫

�

m1(x, 0)dx =
∫

�

m2(x, 0)dx = 1.

In Fig. 1 we display the evolution of the two densities at the times t = 0, 1, 2, 3,
4, 5 computed with ρ = 2e−2 and h = 1

3ρ
3/2. The first plot on the top left shows

Fig. 1 Evolution of the two densities m1
ρ,h and m2

ρ,h at the times t = 0, 1, 2, 3, 4, 5
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Fig. 2 3D view of the initial configuration (left), of the final configuration of m1
ρ,h (center) and

m2
ρ,h (right)

the initial configurations:m1
ρ,h is represented by the density located on the bottom

right and m2
ρ,h by the density located on the top left of the numerical domain. As

time evolves, we observe the densitym1
ρ,h moving towards the densitym2

ρ,h, which

is instead repelled by m1
ρ,h. Due to the presence of Neumann boundary conditions,

m2
ρ,h get finally captured in the upper left corner of the domain. We can also observe

the effect of the regularization of the nonlinear diffusion terms along with the effect
of the attraction potential W11: the numerical support of the density m1

ρ,h takes a
circular shape. In Fig. 2, we show a 3D view of the initial configuration (left) and
the final configurations ofm1

ρ,h(center) andm
2
ρ,h(right).

4.2 Two Populations Mean Field Games

In this section, we consider the following MFG system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂t v
1 − ν�v1 + 1

2 |∇v1|2 = V (m1,m2),

−∂t v
2 − ν�v2 + 1

2 |∇v2|2 = V (m2,m1),

v1(·, T ) = 0, v2(·, T ) = 0,

∂tm
1 − ν�m1 − div(∇v1m1) = 0,

∂tm
2 − ν�m2 − div(∇v2m2) = 0,

m1(·, 0) = m̄1
0(·), m2(·, 0) = m̄2

0(·).

(MFG)

In the system above, ν ≥ 0, m̄1
0, m̄2

0 ∈ L∞(Rd) (d ∈ N \ {0}) are densities with
compact support and the local coupling term V : R × R → R is given by

V (m1,m2) =
(

m1

m1 + m2 − 0.7

)−
+ (m1 + m2 − 8)+, (4.5)
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where, for a ∈ R, we set a− := a+ − a. This system has been proposed in [1]
and models interactions between two populations with xenophobia and aversion to
overcrowded regions effects. As in the previous example, we need to regularize the
local coupling term V in order to obtain a function that is continuous with respect to
the weak convergence of probability measures. We proceed as in [1, Section 6.2.1].
Given η, δ > 0, we define Vη,δ : C([0, T ];P1(R

d))2 × R
d × [0, T ] → R as

Vη,δ(m
1,m2, x, t) = �−,η

(
m1(t)∗φδ(x)

m1(t)∗φδ(x)+m2(t)∗φδ(x)+η
− 0.7

)

+�+,η

(
m1(t) ∗ φδ(x) + m2(t) ∗ φδ(x) − 8

)
,

where

�−,η(y) :=
{

−y + η
2 (e

y
η − 1) y ≤ 0,

η
2 (e

− y
η − 1) y > 0,

�+,η(y) :=
{

η
2 (e

y
η − 1) y ≤ 0,

y + η
2 (e

− y
η − 1) y > 0,

are smooth approximations of (·)− and (·)+, respectively, and m1(t)∗φδ(·), m2(t)∗
φδ(·) are defined as the convolutions of m1(t) and m2(t) with R

d � x 	→ φδ(x) =√
2πδ exp (−|x|2/(2δ2)) ∈ R.
When ν > 0 and m̄�

0 (� = 1, 2) are sufficiently regular, the existence of classical
solutions to (MFG) can be proved by standard methods (see [1, Theorem 12], where
the proof is provided when the space domain in (MFG) is bounded and Neumann
boundary conditions are imposed on its boundary).

In order to write (MFG) as (FPK), note that by standard arguments in stochastic
control theory (see e.g. [13]) the first and second equations in (MFG) are equivalent
to

v1(x, t) = infα1 E

(∫ T

t

[
1
2 |α1(s)|2 + Vη,δ

(
m1,m2,X

x,t,α1
1 (s), s

)]
ds

)
,

v2(x, t) = infα2 E

(∫ T

t

[
1
2 |α2(s)|2 + Vη,δ

(
m2,m1,X

x,t,α2
2 (s), s

)]
ds

)
,

(4.6)

where the expectationE is taken in a complete probability space (�,F ,P) on which
two independent d-dimensional Brownian motion W 1 and W 2 are defined, the Rd -
valued processes α1 and α2 are adapted to the natural filtration generated byW 1 and

W 2, respectively, and they satisfy E

(∫ T

0 |α�(t)|2dt
)

< ∞ (� = 1, 2). Finally, the

processes X
x,t,α�

� (� = 1, 2) are defined as the unique solutions of

dX�(s) = α�(s)ds + √
2νdW�(s) s ∈ (t, T ), X�(t) = x. (4.7)

By a verification argument (see e.g. [13, Chapter III, Section 8]), the optimal
dynamics for the problems defining v� (� = 1, 2) are given by the solutions of

dX�(s) = −∇v�(X�(s), s)ds + √
2νdW�(s) s ∈ (t, T ), X�(t) = x.
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Therefore, redefining v� : C([0, T ];P1(R
d ))2 × R

d × [0, T ] → R as

v1(μ1, μ2, x, t) = infα1 E

(∫ T

t

[
1
2 |α1(s)|2 + Vη,δ

(
μ1, μ2,X

x,t,α1
1 (s), s

)]
ds

)
,

v2(μ1, μ2, x, t) = infα2 E

(∫ T

t

[
1
2 |α2(s)|2 + Vη,δ

(
μ2, μ1,X

x,t,α2
2 (s), s

)]
ds

)
,

(4.8)

we have that (MFG), with Vη,δ instead of V on the right hand side of the first and
second equations, is equivalent to (FPK) with d1 = r1 = d2 = r2 = d and

b�(μ1, μ2, x, t) = −∇v�(μ1, μ2, x, t) and σ�(μ1, μ2, x, t) = √
2νId×d,

(4.9)

where Id×d is the d × d identity matrix. Arguing as in [9] for the one population
case, if ν > 0, it is easy to prove that for these drift terms, assumptions (H) and
(Lip) are satisfied.

As (4.6) shows, at the equilibrium (MFG) a typical player of population �

minimizes a cost that penalizes its speed, modelled by the quadratic penalization
on α�, as well as a cost depending of its position, and the distribution of his and the
other populations. Recalling that Vη,δ is an approximation of V , defined in (4.5), the
cost Vη,δ models a xenophobia effect (the regularization of the first term in V ) and
penalizes overcrowded regions taking into account the sum of both populations (the
regularization of the second term in V ).

Note that the coefficients b� in (4.9) depend on the value functions v�, which do
not admit an explicit expression.Moreover, as (4.8) shows, b�(μ1, μ2, x, t) depends
on the values (μ1(s), μ2(s)) with s ∈ (t, T ), and so the scheme (3.7) is implicit
(see Remark 3.2(ii)). In order to obtain an implementable scheme, we approximate
b by computable vector fields. More precisely, we use a Semi-Lagrangian scheme
to approximate v1 and v2, as described in [8] and in Section 5.3 of [9] for the case
of a single population.We then call v�,ρ,h : C([0, T ];P1(R

d ))2×R
d ×[0, T ] → R

(� = 1, 2) the resulting interpolated discrete value functions and we regularize them
by using space convolution

v�,ρ,h,ε[μ1, μ2](·, t) := φε ∗ v�,ρ,h[μ](·, t) ∀ t ∈ [0, T ],

where φε(x) = √
2εδ exp (−|x|2/(2ε2)). Next, we approximate the drifts in (4.9)

by

b�[μ1, μ2](x, t) := −∇xv
�,ρ,h,ε[μ1, μ2](x, t).

Consider sequences ρn, hn and εn converging to 0 as n → ∞ and define (m1
n,m

2
n)

as the sequence in C([0, T ];P1(R
d ))2 constructed with the scheme (3.7) and the

extension (3.1), by considering discrete characteristics computed with the drifts
b�
n[μ1, μ2](x, t) := −∇xv�,ρn,hn,εn[μ1, μ2](x, t). Then, arguing exactly as in [9,

Section 5.3], we can prove that if ν > 0 and ρ2
n = o(hn) and ρn = o(εn)
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and (μ1
n, μ

2
n) → (μ1, μ2) in C([0, T ];P1(R

d ))2 we have that (H’) is satisfied.
Therefore, we can apply Theorem 3.2 to deduce that (m1

n,m
2
n) admits at least one

limit point (m1,m2) and every such limit point solves (FPK). When ν = 0, the
situation is more delicate because we need to construct approximations which are
absolutely continuous with respect to the Lebesguemeasure (see [9, Remark 4.2 and
Remark 5.1(ii)]). The resulting scheme is the natural extension of the one proposed
in [7] to the multipopulation case. Arguing as in the proof of Theorem 3.12 in [7],
we can obtain a convergence result under the additional assumptions that d = 1 and
hn = o(εn).

4.2.1 Numerical Tests

As in [1, Section 6.2.1], we solve system (MFG), with V replaced by Vη,δ , on the
one dimensional space domain � = [−0.5, 0.5]. We set the final time T = 4 and
we consider homogeneous Neumann boundary conditions. The initial densities are
given by

m1(x, 0) = 3/4 + 1/2I[−1/2,−1/4]∪[0,1/4](x) and m2(x, 0) = 3/4 + 1/2I[−1/4,0]∪[1/4,1/2](x),

where for A ⊆ R, IA(x) = 1 if x ∈ A and IA(x) = 0, otherwise. We choose
ρ = 0.02 and h = ρ

3
2 . The regularizing parameters are set to δ = ε = 0.025 and

η = 10−5.
In order to compute the solution of the fully discrete system, we have used the

learning procedure proposed in [5] in the continuous framework.We point out that a
rigorous study of the convergence of this method for the resolution of discretizations
of MFG systems has not been established yet and remains as an interesting research
subject. We stop the procedure when the difference between two successive discrete
densities, measured in the maximum discrete norm, is smaller than 5 × 10−3.

Due to the symmetry of the initial conditions and to the form of the coupling
terms, the evolutions of the two populations are symmetric to each other. This
symmetry can be observed in all the simulations. We also observe that the evolutions
present a turnpike property since most of the time after and before the t = 0 and
t = T = 4, respectively, the distribution is near a stationary configuration.

In Fig. 3, computed with ν = 0.05, we show the evolution of the two densities
at the times t = 0, 0.1, 0.5, 2, 3, 4. We can observe that the two densities separate
from each other, with only a small overlap region at the end. We also observe that
the configurations at times t = 2 and t = 3 have the same shape, which is near
a stationary configuration (see [1, Section 6.1]). For this viscosity parameter, our
results are almost identical to those in [1, Section 6.2.1, Figure 8].

In Fig. 4, computed with ν = 0.001, we show the configuration at the times
t = 0, 0.1, 0.2, 1, 2, 4. The two densities separate faster than the previous case,
reaching a nearly steady-state solution already at time t = 1. We can observe that
the resulting segregated configurations differ considerably from the previous case,
computed with ν = 0.05.
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In Fig. 5, computedwith ν = 0, we show the configuration of the two measures at
the times t = 0, 0.1, 0.5, 1, 2, 4. As expected in the deterministic case, the evolution
is much less smooth. Compared to the diffusive cases, at the final time T , the
supports of the densities m1

ρ,h and m2
ρ,h are disjoint and separated by much larger

sets. We insist that, for the previous and the current tests, the solutions captured
by the scheme differ importantly from the ones computed with larger viscosity
parameters (see Fig. 3 and [1, Section 6.2.1]).
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