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Abstract We survey recent asymptotic methods introduced in regularity theory for
fully nonlinear elliptic equations. Our presentation focuses mainly on the recession
function. We detail the role of this class of techniques through examples and results.
Our applications include regularity in Sobolev and Hölder spaces. In addition, we
produce a density result and examine ellipticity-invariant quantities, such as the
Escauriaza’s exponent.

Keywords Fully nonlinear elliptic equations · Regularity Theory · Asymptotic
Methods · Recession Operator

Mathematics Subject Classification (2010) 35J60, 35B65

1 Introduction

In this paper, we examine asymptotic methods in regularity theory for fully
nonlinear elliptic equations. We survey recent developments and prove a density
result.

At the core of our analysis is the notion of recession operator. Given a (λ,�)-
elliptic operator F : S(d) → R, its recession function is denoted by F ∗ and defined
as follows:

F ∗(M) := lim
μ↓0

μF(μ−1M). (1)
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We observe that F ∗ captures the behavior of the operator F at the ends of S(d).
For that reason, we refer to this analysis as asymptotic with respect to the space of
symmetric matrices.

The notion of recession is imported from the realm of free boundary problems;
see for example [1]. In the context of regularity theory for elliptic partial differential
equations (PDEs), it appeared in [19]. In that paper, the authors partially reproduce
the program developed in [22], replacing the fixed-coefficients operator with the
recession function F ∗.

In [18], the authors investigate Sobolev regularity for the solutions to

F(D2u) = f in B1,

with f ∈ Ld(B1), through the recession strategy. They produce estimates in
W

2,p
loc (B1) and p−BMOloc(B1) by assuming that F ∗ has C1,1-estimates. See [2, 3].

Regularity theory in Sobolev spaces, for the parabolic problem, is the subject of [4].
Because of its asymptotic character, the recession strategy accesses two addi-

tional types of consequences. First, we mention density properties for general
(λ,�)-elliptic operators. In addition, it enables us to examine ellipticity-invariant
quantities (e.g., the Escauriaza’s exponent).

The first regularity result for fully nonlinear elliptic equations appeared in the
context of the Krylov-Safonov theory, see [10, 11]. This theory accounts for a
Harnack’s inequality and estimates in C0,α for the solutions of a linear elliptic
equation in divergence form. By linearizing the homogeneous problem

F(D2u) = 0 in B1, (2)

we learn that its solutions and their derivatives satisfy a linear elliptic equation in
divergence form. Hence, the Krylov-Safonov theory implies estimates in C1,α for
the solutions to (2).

Under the assumption of convexity of the operator F , Evans and Krylov proved,
independently, that solutions are indeed of class C2,α. This is the content of the
Evans-Krylov theory.

In [2], Caffarelli introduced a geometric method relating F(M, x) to F(M, x0),
the fixed-coefficients operator. The author supposes that F(M, x0) is convex with
respect to M ∈ S(d), for every x0 ∈ B1 fixed. In addition, he works under the
assumption that the oscillation

β(x, x0) := sup
M∈S(d)

|F(M, x) − F(M, x0)|
1 + ‖M‖

is small in the Lp-sense; that is

‖β(·, x0)‖Lp(B1)
� 1,
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for every x0 ∈ B1. Under those conditions, Caffarelli developed a regularity theory
covering estimates in Hölder and Sobolev spaces.

This corpus of advances entailed several questions. The most important one
regarded the optimal regularity implied by ellipticity alone. In particular, if the
Krylov-Safonov estimates were the best regularity level in the absence of further
structures of the problem.

This class of questions was set in the negative only recently. In [14–16],
Nadirashvili and Vladut produced a number of counterexamples to the theory.
For instance, the authors built singular solutions—failing to be of class C1,1—for
(λ,�)-elliptic operators. Moreover, given a number τ ∈ (0, 1), there exists an
elliptic operator Fτ , whose solutions fail to be of class C1,τ .

Those counterexamples reveal important subtleties of the theory. To access more
general regularity results, finer methods would be necessary. Of particular interest
are techniques capable of accessing general underlying mechanisms governing the
regularity of the solutions.

In this context, asymptotic methods have been successful in producing new
information with consequences to the general theory of nonlinear PDEs. In the
present paper, we detail those methods through examples and applications. Our
approach also highlights further classes of information, such as the weak regularity
theory (see Sect. 4).

1.1 Outline of the Paper

In Sect. 2 we introduce the recession function associated with F . We discuss
properties of this object and address a number of examples; these involve a
perturbation of the Monge-Ampère equation. Section 3 discusses two applications
of the asymptotic analysis to the theory of nonlinear PDEs; first, we study estimates
in Sobolev spaces. Then, we examine the Escauriaza’s exponent. Section 4 puts
forward a theorem on the density of C1,Log−Lip in the class of viscosity solutions.
We refer to this class of results as weak regularity theory.

2 Asymptotic Methods: The Recession Operator

We say that a fully nonlinear operator F : S(d) → R is (λ,�)-elliptic if it satisfies

λ‖N‖ ≤ F(M + N) − F(M) ≤ �‖N‖,

for every M, N ∈ S(d), with N ≥ 0.
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Next we introduce the class of viscosity solutions S(λ,�, f ). To do so, we
present the Pucci’s extremal operators:

M+
λ,�(M) := �

∑

ei>0

ei + λ
∑

ei<0

ei

and

M−
λ,�(M) := �

∑

ei<0

ei + λ
∑

ei>0

ei

where (ei)
d
i=1 are the eigenvalues of the matrix M . Before we proceed, we present

the definition of viscosity solution.

Definition 2.1 (Viscosity Solution) We say that u ∈ C(B1) is a viscosity
subsolution [resp. supersolution] to

F(D2u) = f in B1

if, for every φ ∈ C2(B1) such that u − φ has a local maximum [resp. minimum] at
x0 ∈ B1, we have

F(D2φ(x0) ≥ f (x0)

[resp. F(D2φ(x0) ≤ f (x0) ].

If u is both a viscosity sub and supersolution, we say it is a viscosity solution.

If u ∈ C(B1) is a viscosity solution of

M+
λ,�(D2u) ≥ f in B1,

we say that u ∈ S(λ,�, f ). If u ∈ C(B1) is a viscosity solution of

M−
λ,�(D2u) ≤ f in B1,

we say that u ∈ S(λ,�, f ). The class of viscosity solutions S(λ,�, f ) is defined
as

S(λ,�, f ) := S(λ,�, f ) ∩ S(λ,�, f ).

For any given (λ,�)-elliptic operator, we produce the operator Fμ, defined as

Fμ(M) := μF(μ−1M),
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for μ > 0. Notice that

μμ−1λ‖N‖ ≤ Fμ(M + N) − Fμ(M) ≤ μμ−1�‖N‖. (3)

Therefore, Fμ has the exact same ellipticity constants as the original operator F . To
define the recession function associated with F , we consider Fμ and take the limit
μ ↓ 0.

Definition 2.2 (Recession Operator) Let F be a (λ,�)-elliptic operator and
consider the family (Fμ)μ∈(0,1). The recession function F ∗ associated with F is
defined as

F ∗(M) := lim
μ↓0

Fμ(M). (4)

When the limit in (4) exists, F ∗ has the same ellipticity as F . Moreover, the
operator Fμ acts as a curve in the space of (λ,�)-elliptic operators. For μ ≡ 1, we
have F1 ≡ F ; however, as μ decreases and approaches 0, the path produced by Fμ

approaches the recession operator F ∗.
The rationale behind the use of the recession function is the following. Given F ,

we compute Fμ and produce a path along the space of (λ,�)-elliptic operators. For
small values of μ > 0, this path approaches a neighborhood of F ∗. Suppose this
limiting operator has good properties. The idea is to import information from F ∗
to the original operator along the path parametrized by Fμ. For example, if F ∗ has
C1,1-estimates, we expect to import regularity in W 2,p for the original problem. See
Fig. 1.

F ≡ F1

F ∗
Fμ

μ 01

Fig. 1 Recession strategy. The operator Fμ produces a path, parametrized by μ ∈ (0, 1], in the
space of (λ,�)-elliptic operators. Depending on the regularity available for the PDE driven by F ∗,
we expect to transport information along the path Fμ back to the original operator
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We put forward a result relating ellipticity, the recession operator and the
behavior of the limit in (4). We begin with a simple lemma on the homogeneity
of F ∗.

Lemma 2.1 (Positive Homogeneity of Degree 1) Let F : S(d) → R be a (λ,�)-
elliptic operator. If the recession function F ∗ is unique, it is positively homogeneous
of degree 1.

Proof We start by fixing ρ > 0. From the definition of recession function we have

|F ∗(ρM) − ρF ∗(M)| ≤ |F ∗(ρM) − Fμ(ρM)| + |Fμ(ρM) − ρF ∗(M)|.
(5)

For every δ > 0, there exists ε > 0 such that μ < ε implies

|F ∗(ρM) − Fμ(ρM)| ≤ δ.

In addition, notice that

|Fμ(ρM) − ρF ∗(M)| = ρ
∣∣Fμρ−1(M) − F ∗(M)

∣∣ ;

the uniqueness of recession function yields

ρ
∣∣Fμρ−1 (M) − F ∗(M)

∣∣ → 0

as μ → 0. By gathering the former computations, we conclude that

|F ∗(ρM) − ρF ∗(M)| ≤ ε∗,

for arbitrarily small ε∗. This closes the proof. �

Next, we prove that Fμ converges to F ∗ uniformly in compact sets of S(d). For

ease of presentation, we suppose the recession function is homogeneous of degree
1. The uniqueness of the recession operator may sound as a too strict condition.
However, important applications of this technique involve modifying F outside of
a large ball to coincide with F ∗. This is at the core of the argument behind density
type of results. In this case, the uniqueness of F ∗ is simple to verify.

Proposition 2.1 (Uniform Convergence) Let F : S(d) → R be a (λ,�)-elliptic
operator. Suppose F ∗ is homogeneous of degree 1. Then, Fμ converges locally
uniformly to F ∗. Moreover, for every δ > 0 there exists ε > 0 so that

∥∥Fμ(M) − F ∗(M)
∥∥ ≤ ε(1 + ‖M‖), (6)

provided μ ≤ δ.
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Proof Because Fμ is (λ,�)-elliptic, it is uniformly Lipschitz continuous in S(d);
see [3, p. 12]. By the Arzelà-Ascoli Theorem, we conclude that Fμ converges locally
uniformly, through a subsequence if necessary. The definition of F ∗ implies that
Fμ(M) converges pointwise to F ∗(M), for every M ∈ S(d). Therefore, every
subsequential limit Fμj must coincide, as j → ∞. Then, we conclude that Fμ

converges uniformly locally to F ∗.
As for the estimate in (6), we consider two cases.

Case 1 Suppose that ‖M‖ ≤ 1. In this case, (6) is consequential on from the local
uniform convergence of Fμ.

Case 2 Let ‖M‖ > 1 and consider

μM := μ

‖M‖ .

By assumption, F ∗ is positively homogeneous of degree 1. Then,

1

‖M‖ |Fμ(M) − F ∗(M)| =
∣∣∣∣FμM

(
M

‖M‖
)

− F ∗
(

M

‖M‖
)∣∣∣∣ → 0 (7)

as μM → 0, where we have used Case 1. It stems from (7) that for μ � 1, we have

|Fμ(M) − F ∗(M)| ≤ ε‖M‖,

which completes the proof. �

Remark 2.1 Instead of supposing that F ∗ is homogeneous of degree 1, we could
have assumed uniqueness of the recession operator. In this case, Lemma 2.1 would
produce the homogeneity.

A notable feature of the recession strategy relies on its flexibility. For any (λ,�)-
elliptic operator F , it is possible to fix a number L � 1 and propose the following
modification:

FL(M) :=

⎧
⎪⎪⎨

⎪⎪⎩

F(M) if M ∈ BL

γL(M) if M ∈ B2L \ BL

Tr(M) if M ∈ Bc
2L,

with

γL(M) := 2L − ‖M‖
L

F(M) + ‖M‖ − L

L
Tr(M).

In this case, it is clear that F ∗
L coincides with the asymptotic profile of the

operator; that is, F ∗
L(M) ≡ Tr(M). Hence, the modification in (2) yields the

Laplacian operator as the recession profile of FL (Fig. 2).
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Fig. 2 Modification strategy.
The recession operator allows
us to modify the original
problem outside of a ball of
large enough radius L � 1.
In this case, the resulting
operator has a recession
profile described by the
Laplacian

BL

B2L

S(d)

F(M)
γ (M)

Tr(M)

Asymptotic modifications of a given operator are useful in producing density
results. We return to this topic in Sect. 4. We close this section with a few examples.
We expect to highlight the strength of the recession analysis as well as its drawbacks
and limitations.

Example 2.1 (Eigenvalue q-Momentum Operator) Let q ∈ 2N + 1 and consider
the operator

Fq(M) :=
d∑

i=1

(
1 + λ

q
i

) 1
q ,

where (λi)
d
i=1 are the eigenvalues of the matrix M . Notice that

μFq(μ−1M) = μq/q
d∑

i=1

(
1 + μ−qλ

q

i

) 1
q =

d∑

i=1

(
μq + λ

q

i

) 1
q ;

therefore,

F ∗
q (M) = lim

μ↓0

d∑

i=1

(
μq + λ

q
i

) 1
q = Tr(M).

This example shows that the recession operator relates Fq to the Laplacian.
Moreover, if we are interested in ellipticity-invariant (or universal) properties of
Fq , it suffices to examine the case of the Laplacian operator.
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Our next example appears in Differential Geometry. It is called special
Lagrangian equation.

Example 2.2 (A Perturbation of the Special Lagrangian Operator) We write the
special Lagrangian operator as follows:

F(M) :=
d∑

i=1

arctan (1 + λi) + αiλi ,

where (αi)
d
i=1 are real numbers. A straightforward computation yields

F ∗(M) =
d∑

i=1

αiλi;

i.e., the operator under analysis relates to a perturbation of the Laplacian.

Example 2.3 (The Log-Monge-Ampère Equation) The log-Monge-Ampère opera-
tor is given by

F(M) := ln [det (M)] .

If we consider uniformly convex solutions, a scaling argument allows us to suppose
the eigenvalues of M are strictly above 1. Consider the following perturbed problem:

Fα(M) := ln [det (M)] +
d∑

i=1

αiλi ,

where αi ∈ R are small. Because λi > 1, the sublinearity of the logarithm implies

μ

[
ln
[
det
(
μ−1M

)]
+

d∑

i=1

αiμ
−1λi

]
≤ C(d)

√
μ +

d∑

i=1

αiλi;

therefore,

F ∗
α (M) =

d∑

i=1

αiλi.

We conclude that a small perturbation of the log-Monge-Ampère equation can be
related to a linear uniformly elliptic operator. If stability results are available for the
strictly convex solutions of the log-Monge-Ampère equation, the recession provides
access to information through approximation results.
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In the previous examples, the recession strategy related arbitrary operators with
simpler ones (e.g., the Laplacian). Since the rationale of our method is to import
information from F ∗ to F , these examples are encouraging. This is because the
regularity theory for the Laplacian operator is well-established in most cases and,
therefore, more information is available in the limit case.

Though promising, this is not a general outcome. In many important examples,
the recession function falls short in producing additional information. Next, we
consider the case of the Isaacs equation.

Example 2.4 (The Isaacs Equation) An important example of fully nonlinear ellip-
tic equation is the Isaacs equation

F(M) := sup
α∈A

inf
β∈B

[−Tr
(
Aα,β(x)M

)]
.

The Isaacs equation is homogeneous of degree 1. Therefore,

μ sup
α∈A

inf
β∈B

[
−Tr

(
Aα,β(x)μ−1M

)]
= sup

α∈A
inf
β∈B

[−Tr
(
Aα,β(x)M

)]

and

F ≡ Fμ ≡ F ∗;

i.e., the recession strategy produces no further information in this case.

The Isaacs equation arises in the study of two-player, zero-sum, (stochastic)
differential games. See [8, 20]. In [17], an approximation method based on the
Bellman equation is introduced to study the regularity of the solutions to the Isaacs
operator.

3 Applications to Regularity Theory

In this section we describe two applications of the asymptotic methods. The first one
regards regularity theory in Sobolev spaces for fully nonlinear equations, based on
the results in [18]. The second application regards an ellipticity-invariant quantity,
namely the Escauriaza exponent; see [5].

In what follows, we recur to the concept of universal constant. From now on, a
universal constant is a real number C > 0 depending only on the dimension d and
the ellipticity constants λ and �.



Asymptotic Methods in Regularity Theory For Nonlinear Elliptic Equations: A Survey 177

3.1 Estimates inW 2,p

In this section we consider the equation

F(D2u) = f in B1, (8)

where F is a (λ,�)-elliptic operator and f ∈ Ld(B1). We prove the following
theorem:

Theorem 3.1 (W 2,p-Regularity) Let u ∈ C(B1) be a viscosity solution to (8) and
suppose that F ∗ is convex. Then, u ∈ W

2,p

loc (B1) and

‖u‖W 2,p(B1/2)
≤ C

(‖u‖L∞(B1) + ‖f ‖Ld(B1)

)
,

where C > 0 is a universal constant.

Theorem 3.1 first appeared in [18]. It can be framed as a Calderón-Zygmund esti-
mate. From a geometric viewpoint, Theorem 3.1 regards controlling the curvature
of paraboloids touching the graph of the solution u. Because our arguments rely on
the measure of sets involving quadratic polynomials, we define these objects in the
sequel.

A quadratic polynomial of opening M > 0 is a map PM : B1 → R of the form

PM(x) := �(x) + M
|x|2

2
,

where � : B1 → R is an affine function.
Next we discuss the main elements of the proof of Theorem 3.1 and highlight the

role of the recession operator. We start with a proposition.

Proposition 3.1 (W 2,δ-Estimates) Let u ∈ C(B1) be a viscosity solutions to (8).
There exist δ > 0 and C > 0, universal constants, such that u ∈ W

2,δ
loc (B1) and

‖u‖
W

2,δ
loc (B1/2)

≤ C
(‖u‖L∞(B1) + ‖f ‖Ld(B1)

)
.

This result was proved in the linear case by Lin in [13]. For the fully nonlinear
setting, see [3]. The recession strategy builds upon Proposition 3.1 to produce a
regime switching of the form δ → p, for p > d . This is based on the decay rate for
the measure of a family of sets. We continue with a definition.

Definition 3.1 Let u ∈ C(B1). For M > 0 and H ⊂ B1, we define

GM(u,H) := {x ∈ H | ∃PM concave paraboloid touching u from below at x}
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and

GM(u,H) := {x ∈ H | ∃PM convex paraboloid touching u from above at x} .

We also set

AM(u,H) := H \ GM(u,H) and AM(u,H) := H \ GM(u,H).

Finally, we have

GM(u,H) := GM(u,H) ∩ GM(u,H)

and

AM(u,H) := AM(u,H) ∪ AM(u,H).

We proceed with a proposition relating the notions of distribution function,
maximal operator and norms in Lebesgue spaces.

Proposition 3.2 Let g ≥ 0 be a measurable function on B1 and denote by μg its
distribution function

μg(t) = |{x ∈ B1 | g(x) > t}| , t > 0.

Fix ζ > 0 and M > 1. For p > 0, we have

g ∈ Lp(B1) ⇐⇒
∞∑

k=1

Mpkμg(ζMk) =: S < ∞.

Moreover, For some C = C(ζ,M,p), we have

C−1S ≤ ‖g‖p

Lp(B1)
≤ C(1 + S).

For more on Proposition 3.2, we refer the reader to [3, Lemma 7.3]. The
following fact is consequential on Proposition 3.2: D2u ∈ Lp(B1/2) is equivalent
to the summability of

∞∑

k=1

Mpk
∣∣AMk(u,B1/2)

∣∣ ,

for some M fixed.
Here we use the recession strategy. By assuming that F ∗ is convex, we infer that

solutions to

F ∗(D2u) = 0 in B1
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have estimates in C2,α, for some α ∈ (0, 1)—because of the Evans-Krylov theory;
see [6, 9]. These estimates set a competing inequality: when the Hessian of the
solutions to (8) starts to grow, the recession profile governs the problem. Because
it has C2,α-estimates, the norm of the Hessian decreases and the original operator
resumes driving the equation. This process repeats itself. It prevents the Hessian
from blowing up in an Lp-sense. To formalize this intuition, we state and prove an
Approximation Lemma.

Proposition 3.3 (Approximation Lemma) Let u ∈ C(B1) be a viscosity solu-
tion to

Fμ(D2u) = f in B1,

where F is (λ,�)-elliptic. Suppose that F ∗ is convex. For every δ > 0, there exists
ε > 0 such that if

μ + ‖f ‖Ld(B1)
≤ ε,

there exists h ∈ C2,α
loc (B1), with

‖h‖C2,α(B9/10)
≤ C ‖h‖L∞(B1) ,

satisfying

‖u − h‖L∞(B9/10) ≤ δ,

where C > 0 and α ∈ (0, 1) are universal constants. Moreover,

u − h ∈ S

(
λ

d
,�, f − F(D2u)

)
.

Proof The last assertion of the proposition follows from elementary facts on the
class of viscosity solutions; see [3, Proposition 2.13]. As regards the approximation
statement, we argue by way of contradiction and use a compactness argument.
Suppose the statement of the proposition is false. In this case, there would exist
δ0 such that every function h ∈ C2,α

loc (B9/10) is such that

‖u − h‖L∞(B9/10) ≥ δ0.

Consider a sequence of real numbers (μn)n∈N and sequences of functions (un)n∈N
and (fn)n∈N such that

μn → 0 and ‖fn‖Ld(B1)
→ 0



180 E. A. Pimentel and M. S. Santos

and

Fμn(D
2un) = fn in B1.

By the Krylov-Safonov theory, the sequence (un)n∈N is equibounded in C1,α
loc (B1).

Therefore, through a subsequence if necessary, un → u∞ in the C1,α-topology.
Standard stability results in the theory of viscosity solutions imply that

F ∗(D2u∞) = 0 in B9/10.

Because of the Evans-Krylov theory, u∞ ∈ C2,α
loc (B9/10) and

‖u − u∞‖L∞(B9/10) → 0,

as n → ∞. By taking h ≡ u∞, we get a contradiction and complete the proof. �

Next, we combine Proposition 3.3 with Proposition 3.1 to control the measure

of GM(u,B1) ∩ Q1. We notice that, throughout the paper, Q� stands for the d-
dimensional cube of side length �.

Lemma 3.1 Let u ∈ C(B1) be a viscosity solution to (8) and suppose

−|x|2 ≤ u(x) ≤ |x|2 in B1 \ B3/4.

Under the assumptions of Proposition 3.3, there exists M > 0, depending only on
the dimension, and ρ ∈ (0, 1) such that

|GM(u,B1) ∩ Q1| ≥ 1 − ρ.

Proof Take h, the function from Proposition 3.3 and consider its restriction to B1/2.
Extend h outside B1/2 continuously in such a way that

h ≡ u in B1 \ B3/4

and

‖u − h‖L∞(B1) = ‖u − h‖L∞(B3/4) .

These choices imply that

−2 − |x|2 ≤ h(x) ≤ 2 + |x|2 in B1 \ B1/2.

It is easy to verify the existence of a number N > 0 so that

Q1 ⊂ GN(h,B1).
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For a constant ρ0 to be determined later, we set

ϑ := ρ0 (u − h) .

We gather Propositions 3.3 and 3.1 to conclude that ϑ ∈ W
2,δ
loc (B1). Therefore,

|At(ϑ,B1) ∩ Q1| ≤ Ct−δ,

which follows from the definition of At . Because AN and GN are complement to
each other, we conclude that

|GN(u − h,B1) ∩ Q1| ≥ 1 − ρ0,

for some N > 1. Finally,

|G2N(u,B1) ∩ Q1| ≥ 1 − ρ0,

which completes the proof. �

An application of Lemma 3.1 yields the following result:

Lemma 3.2 Let u ∈ C(B1) be a viscosity solutions to (8). Under the assumptions
of Proposition 3.3, we have

G1(u, B1) ∩ Q3 �= ∅ �⇒ |GM(u,B1) ∩ Q1| ≥ 1 − ρ,

where M > 0 and ρ > 0 are as in Lemma 3.1.

Proof For a proof of this result, we refer the reader to [3]; see also [18, Lemma 5.2].
�


The maximal function associated with f ∈ L1
loc(R

d) is denoted by m(f ) and
given by

m(f )(x) := sup
�>0

1

|Q�(x)|
∫

Q�(x)

|f (y)|dy.

Lemma 3.3 Let u ∈ C(B1) be a viscosity solution to

Fμ(D2u) = f in B1.

Suppose

μ + ‖f ‖Ld(B1)
� 1.
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Suppose further the assumptions of Proposition 3.3 are in force. Extend f outside
of B1 by zero. Define

A := AMk+1(u, B1) ∩ Q1

and

B := (
AMk(u,B1) ∩ Q1

) ∪
{
x ∈ Q1 | m(f d)(x) ≥

(
cMk

)d
}

.

Then, there exists ε ∈ (0, 1) such that

|A| ≤ ε|B|.

Proof As before, for the proof of this result we refer the reader to [3] and [18,
Lemma 5.3]. �


Finally, we consider the distribution function of �(x), defined as

�(x) := inf
{
M | x ∈ GM(u,B1/2)

}
.

The integrability of D2u is closely related to the integrability of �, in the sense that

‖�‖Lp(B1) ∼
∥∥∥D2u

∥∥∥
Lp(B1)

.

See, for instance, [12].
Once the former lemmas are available, we present the proof of Theorem 3.1. It

relies on the properties of the maximal function associated with f ∈ Ld(B1).

Proof of Theorem 3.1 We take M > 0 from Lemma 3.3 and define ρ as follows:

ρ := 1

2Mp
.

In addition, set

αk := ∣∣AMk(u,B1) ∩ Q1
∣∣

and

βk :=
∣∣∣
{
x ∈ Q1 | m(f d)(x) ≥ (CMk)d)

}∣∣∣ .

Because of Lemma 3.3,

αk ≤ ρk +
k−1∑

i=0

ρk−iβi .
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Moreover, m(f d) ∈ L
p
d (Rd) and

∥∥∥m(f d)

∥∥∥
L

p
d (Rd)

≤ c ‖f ‖d
Lp(B1)

≤ C.

Therefore, Proposition 3.2 implies

∞∑

k=0

Mpkβk ≤ C.

On the other hand we have

μ�(t) ≤ ∣∣At(u,B1/2)
∣∣ ≤ ∣∣At(u,B1/2) ∩ Q1

∣∣ .

Because of Proposition 3.2, the proof is complete if we verify that

∞∑

k=1

Mpkαk ≤ C.

However,

∞∑

k=1

Mpkαk ≤
∞∑

k=1

(
ρMp

)k +
∞∑

k=1

k−1∑

i=0

ρk−iMp(k−i)Mpiβi

≤
∞∑

k=1

2−k +
( ∞∑

i=0

Mpiβi

)⎛

⎝
∞∑

j=1

2−j

⎞

⎠ ≤ C.

�

We close this section with a number of remarks on the consequences and

applications of Theorem 3.1.

Remark 3.1 Theorem 3.1 implies that, for every p > d , D2u ∈ p − BMOloc(B1),
where

u ∈ p − BMO(B1) ⇔ sup
�>0

∫

B�

∣∣u(x) − 〈u〉�
∣∣p dx < ∞,

and

〈u〉� := 1

|B�|
∫

B�

u(x)dx.
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In fact, ellipticity builds upon Sobolev regularity to produce an integrability level
for the Hessian above Lp, for every p > 1, and strictly below L∞. See [18].

Remark 3.2 Theorem 3.1 extends to operators of the form

F : S(d) × R
d × R × B1 → R,

provided the dependence of F(M,p, u, x) with respect to p, u and x is properly
controlled. In case F is globally Lipschitz with respect to p, has a modulus of
continuity with respect to u and small oscillation with respect to x, Theorem 3.1
extends to equations of the form

F(D2u,Du, u, x) = f in B1.

See [21] for details. Similar arguments produce global estimates, as in [23], under
asymptotic conditions on the problem.

Remark 3.3 We work under the assumption that F ∗ is convex. However, the result
holds even if F ∗ has only W 2,q estimates; see [12]. In this case, estimates in W 2,p

would be available for d < p < q .

3.2 The Escauriaza’s Exponent

Among the assumptions of Theorem 3.1 is the restriction p > d . See [2, 18]; also,
[3, Chapter 7]. In [5], Escauriaza extended Caffarelli’s estimates under the condition
p > d − ε, for some constant ε = ε(λ,�, d).

Proposition 3.4 (Escauriaza’s Exponent) Let u ∈ C(B1) be a viscosity solution
to (8) and suppose that F ∗ is convex. Then, u ∈ W

2,p

loc (B1) and

‖u‖W 2,p(B1/2)
≤ C

(‖u‖L∞(B1) + ‖f ‖Lp(B1)

)
,

for p > d − ε, where C > 0 is a universal constant and ε = ε(λ,�, d) is the
Escauriaza’s exponent.

Proposition 3.4 requires lower integrability of the source term to ensure estimates
in Sobolev spaces. This weaker requirement is quantified by ε. Although a function
of λ, � and the dimension, a precise formula for this quantity remains unknown.
Next, we use the recession strategy to examine some examples of operators and
produce asymptotic information on ε.

The key to the lower integrability of the source term is related to F . In fact, it
comes from the integrability of the Green’s function associated with F through its
linearized operator L. The following proposition accounts for the integrability of the
Green’s function of a linear (λ,�)-elliptic operator. It is due to Fabes and Stroock;
see [7].
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Proposition 3.5 Let L be a (λ,�)-elliptic operator with measurable coefficients.
Let G(x, y) be its Green’s function in B1. Then,

1. There exists C > 0 and ε > 0 such that if p > d − ε,

∫

B1

G(x, y)p
′
dy ≤ C,

for all x ∈ B1, where

1

p
+ 1

p′ = 1.

2. There exists β > 0 such that if E ⊂ Br ⊂ B1/2, we have

( |E|
|Br |

)β ∫

Br

G(x, y)dy ≤ C

∫

E

G(x, y)dy.

For the proof of Proposition 3.5 we refer to [7]. Consequential on this result in
the following Harnack’s inequality.

Proposition 3.6 (Harnack’s Inequality) Let u ∈ C(B1) be a nonnegative viscos-
ity solutions to

F(D2u) = f in B1,

where F is a (λ,�)-elliptic operator and f ∈ Ld−ε(B1). Then, there exists C > 0,
a universal constant, such that

sup
Br/2

u ≤ C

(
inf
Br/2

u + r2− d
d−ε ‖f ‖Ld−ε(B1)

)
.

The proof of Proposition 3.6 is in [5]. This result has many consequences to the
general theory of elliptic PDEs. We mention the universal modulus of continuity
produced in [22]. Indeed, solutions to (8) satisfy

‖u‖
C0, d−2ε

d−ε (B1/2)
≤ C

(‖u‖L∞(B1) + ‖f ‖Ld−ε(B1)

)
.

Notice that Escauriaza’s exponent depends only on the integrability of the
Green’s function associated with F and the dimension. Hence, ε is invariant with
respect to the ellipticity. Therefore, for a fixed dimension d , two operators with the
same ellipticity must have the same exponent ε. Here the recession strategy plays a
role.
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When the limit

F ∗(M) = lim
μ↓0

Fμ(M)

exists, the recession operator F ∗ has the same ellipticity as F . If the Green’s
function associated with F ∗ is known, or we infer its integrability, it would be
possible to compute the Escauriaza’s exponent for F ∗, say εF ∗ . By knowing this
quantity, we recover εF . In what follows, we examine an example and explicitly
compute the Escauriaza’s exponent.

Example 3.1 (Eigenvalue q-Momentum Operator) We revisit Example 2.1, where
the operator Fq is defined:

Fq(M) :=
d∑

i=1

(
1 + λ

q
i

) 1
q .

To linearize this operator and evaluate the integrability of the associated Green’s
function in a ball might be not even possible. However, we learned that F ∗

q (D2u) =
�u. In addition, the Escauriaza’s exponent for the Laplacian, ε�, is known to be
d/2. Therefore,

εFq = ε� = d

2
.

Moreover, we conclude that Theorem 3.1 is available for Fq provided the source

term satisfies f ∈ L
d
2 (B1).

In the prior example, εFq = d/2. Every fully nonlinear operator whose recession
profile coincides with the Laplacian has the same exponent ε�.

4 Weak Regularity in C1,Log−Lip

In this section we prove a weak regularity result. We understand weak regularity
result as the density of regular enough solutions in the class of viscosity solutions.
As indicated in the works of Nadirashvili and Vladut, the optimal level of regularity
implied by ellipticity is C1,α. This is due to the Krylov-Safonov theory.

However, for many applications, it is enough that solutions to F(D2u) = f

are approximated by regular functions. For example, in [18] the authors proved
that W

2,p
loc (B1) ∩ S(λ−,�+, f ) is dense in S(λ,�, f ). Therefore, when studying

properties closed under uniform limits, the starting point of the theory shifts to
W 2,p-estimates. We refer to a result in this spirit as a weak regularity result.
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The main result of this section regards C1,Log−Lip-weak regularity. We say that a
function u ∈ C1,Log−Lip(B1) if and only if there exists a constant C > 0 satisfying

sup
x∈Br

|u(x) − [u(0) + Du(0) · x]| ≤ −Cr2 ln r.

In what follows, we consider operators with explicit dependence on the space
variable x ∈ B1. It leads to the following problem:

F(x,D2u) = f in B1. (9)

Theorem 4.1 (Weak Estimates in C1,Log−Lip) Let u ∈ C(B1) be a continuous
viscosity solution to (9). Suppose F is a (λ,�)-elliptic operator and f ∈
L∞(B1). Then, there exists a sequence of functions {uj }j≥1 ⊂ C1,Log−Lip

loc (B1) ∩
S(λ−,�+, f ) that converges locally uniformly to u.

The proof of Theorem 4.1 relies on three main structures. The first one is the
Approximation Lemma (Proposition 3.3). It ensures the existence of a quadratic
polynomial that approximates the solution u. The second main ingredient in the
proof is a further application of Proposition 3.3; in this case, it produces estimates
in C1,Log−Lip for operators whose recession is convex. Finally, an asymptotic
modification of F completes the argument. We start with a lemma.

Lemma 4.1 Let u ∈ C(B1) be a viscosity solution to (9). Under the assumptions of
Proposition 3.3, there exist a second order polynomial P such that ||P || ≤ C and

||u − P ||L∞(Br ) ≤ r2,

where C > 0 and 0 < r � 1 are universal constants.

Proof Let h be the function from Proposition 3.3. Let P denote the second order
Taylor’s expansion of h at the origin. Thus

||u − P ||L∞(Br) ≤ ||u − h||L∞(Br ) + ||h − P ||L∞(Br ) ≤ δ + Cr2+α.

We choose r small enough so that Crα <
1

2
and δ = r2

2
and we obtain

||u − P ||L∞(Br) ≤ r2.

�

Remark 4.1 We notice that the choice of r in Lemma 4.1 determines δ > 0 in
Proposition 3.3 and, therefore, sets the smallness regime involving Fμ and the norms
of the source term.
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The next result regards the regularity of the solutions to (9) in C1,Log−Lip. It
appeared for the first time in [19]. Compare with [22, Theorem 3].

Theorem 4.2 (Regularity) Leu u ∈ C(B1) be a viscosity solutions to (9). Suppose
F ∗ is convex and f ∈ L∞(B1). Suppose further that

lim
μ→0

μF(x,μ−1M) = F ∗(M)

is uniform in M. Then, u ∈ C
1,Log−Lip
loc (B1) and there exists C > 0, universal, such

that

sup
Br

|u(x) − u(x0) − Du(x0) · x| ≤ Cr2 ln r−1,

for every x0 ∈ B1/2.

Proof We split the proof in several steps

Step 1 We prove the result for x0 = 0. For all M ∈ S(d), we can find ε > 0 such
that for all μ < ε we have ||Fμ(M) − F ∗(M)|| ≤ δ, where δ > 0 is the number
from Lemma 4.1. We choose r0 ∼ √

ε and define

u0(x) = ε max{1, ||u||L∞, ||f ||L∞}−1u(r0x).

It is clear that ||u0||L∞ ≤ 1 and

D2u(r0x) = 1

εr2
0

max{1, ||u||L∞, ||f ||L∞}D2u0(x);

thus, u0 satisfies

τF
(
τ−1D2u0(x)

)
= τf (r0x),

where

τ = εr2
0

max{1, ||u||L∞, ||f ||L∞} .

Note that f̃ = τf (r0x) satisfies ||f̃ ||L∞ ≤ ε.

Step 2 Let 0 < r < r0. Next, we show the existence of a sequence of quadratic
polynomials (Pk)k∈N,

Pk(x) := ak + bk · X + 1

2
xtMkx,
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such that

F ∗(Mk) = 0 (10)

sup
B

rk

|u0 − Pk| ≤ r2k (11)

|ak − ak−1| + rk−1|bk − bk−1| + r2(k−1)|Mk − Mk−1| ≤ Cr(2(k−1)). (12)

The constant r in (11) and (12) is the one from Lemma 4.1. We shall verify (10)–
(12) by induction. We set P0 = P−1 = 0, and the first step k = 0 is immediately
satisfied, since F ∗(0) = 0 and ||u0||L∞ ≤ 1. Suppose we have verified the thesis of
induction for k = 0, 1, . . . , i. Define the function

v(x) = u0(r
ix) − Pi(r

ix)

r2i
.

From (11), we have |v| ≤ 1, and furthermore

D2v(x) = D2u0(r
ix) − Mi;

thus v satisfies

μF(μ−1(D2v + Mi)) = f̃ (rix).

If we define Fi(M) = F(M + Mi) and F ∗
i (M) = F ∗(M + Mi), it follows

that ||Fμ,i(M) − F ∗
i (M)|| ≤ δ. Furthermore, since F ∗(Mi) = 0, the equation

F ∗(D2ζ ) = 0 has the same estimates as F ∗. Now, since Fμ,i(D
2v) = 0, from

Lemma 4.1 there exists a quadratic polynomial P̃ such that ||v − P̃ ||L∞(Br ) ≤ r2.
Then

|u0(r
ix) − Pi(r

ix) − r2iP̃ (x)|
r2i

≤ r2

and

|u0(x) − (Pi(x) + r2i P̃ (r−1x))| ≤ r2(i+1);

taking

Pi+1(x) := Pi(x) + r2iP̃ (r−ix),

we verify (11).
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Step 3 We define Pi+1(x) = Pi(x) + r2i P̃ (r−ix) and since P0 = 0 we obtain

Pk(x) =
k∑

j=1

r2(j−1)h(0) +
k∑

j=1

r(j−1)Dh(0)x + k
xtD2h(0)x

2
.

Indeed, we shall verify this by induction. For k = 1 we have

P1 = h(0) + Dh(0)x + xtD2h(0)x

2
= P̃ (x).

Now, suppose we have verified for k = 1, 2, . . . , i. Since Pi+1(x) = Pi(x) +
r2i P̃ (r−ix), we obtain

Pi+1(x) =
i∑

j=1

r2(j−1)h(0) +
i∑

j=1

r(j−1)Dh(0)x + i
xtD2h(0)x

2
+ r2ih(0)

+ riDh(0)x + xtD2h(0)x

2

=
i+1∑

j=1

r2(j−1)h(0) +
i+1∑

j=1

r(j−1)Dh(0)x + (i + 1)
xtD2h(0)x

2
,

thus we conclude the induction.

Step 4 In addition,

|ak+1 − ak| + rk|bk+1 − bk| + r2k|Mk+1 − Mk| ≤ Cr2k,

since

|ak+1 − ak| =
∣∣∣∣∣∣

k+1∑

j=1

r2(j−1) −
k∑

j=1

r2(j−1)

∣∣∣∣∣∣
|h(0)| = r2k|h(0)| ≤ Cr2k,

|bk+1 − bk| =
∣∣∣∣∣∣

k+1∑

j=1

r(j−1) −
k∑

j=1

r(j−1)

∣∣∣∣∣∣
|Dh(0)| = rk|Dh(0)| ≤ Crk,

and

|Mk+1 − Mk| = |k + 1 − k| = 1.

This proves (12).
From (11) we have |u0 − ak| < r2k. Futhermore |Du0(0) − bk| ≤ Crk and

|Mk| = |kD2h(0)| ≤ Ck.
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Finally, for any 0 < ρ <
1

4
, let k such that rk+1 < ρ ≤ rk . From estimates

above, we obtain

supB
rk

|u0(x) − (u0(0) + Du0(0) · x)| = supB
rk

∣∣(u0 − Pk) + ak − u0(0)

+ bk · x − Du0(0) · x + xtMkx

2

∣∣∣

≤ r2k + Cr2k + Cr2k + C

2
kr2k

≤ C(r2k + kr2k)

= C

r2 (r2(k+1) + r2kr2k)

≤ C

r2 (ρ2 + kρ2)

= Cρ2(1 + k).

Since ρ < rk we obtain k <
ln ρ

ln r
and

supB
rk

|u0(x) − (u0(0) + Du0(0) · x)| ≤ Cρ2
(

1 + ln ρ

ln r

)

= cρ2(1 + ln ρ − ln r)

≤ cρ2(− ln r),

provided ρ < 1
4 .

Since ρ ≤ rk we have − 1
k

ln ρ ≥ − ln r , and thus

sup
B

rk

|u0(x) − (u0(0) + Du0(0) · x)| ≤ −c
1

k
ρ2 ln ρ = −Cρ2 ln ρ.

This finishes the poof. �

Proof of Theorem 4.1 We construct a sequence of operators Fj as follows: given
δ > 0, define

Lδ(M) := (� + δ)
∑

ei>0

ei + (λ + δ)
∑

ei<0

ei ,

where ei are the eigenvalues of M ∈ S(d). Now, define

Fj (x,M) := max{F(x,M),Lδ(M) − Cj },
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where Cj is a sequence of positive numbers to be determined. From the (λ,�)-
ellipticity, we obtain

F(x,M) ≥ λ
∑

ei>0

ei + �
∑

ei<0

ei

≥ λ
∑

ei>0

ei − �||M||

= Lδ(M) − Lδ(M) + λ
∑

ei>0

ei − �||M||

= Lδ(M) − (� + δ − λ)
∑

ei>0

ei − (λ − δ)
∑

ei<0

ei − �||M||

= Lδ(M) − (� + δ − λ)

⎡

⎣
∑

ei>0

ei −
∑

ei<0

ei

⎤

⎦− �
∑

ei<0

ei − �||M||

= Lδ(M) − (2� + δ − λ)||M|| − �
∑

ei<0

ei

≥ Lδ(M) − (2� + δ − λ)||M||
≥ Lδ(M) − Cj

provided we set Cj := j (2� − λ + δ) and ||M|| ≤ j . Here, we use ||M|| :=∑d
i=1 |ei |.
This shows that

Fj = F in Bj ⊂ S(d).

To compute the recession function of Fj , we find

Fj
μ(x,M) = μF(x,μ−1M) = max{Fμ(x,M),Lδ(M) − μCj }.

Now, since Fμ is (λ,�)-elliptic, we have

Fμ(x,M) ≤ �
∑

ei>0

ei + λ
∑

ei<0

ei

= Lδ(M) − Lδ(M) + �
∑

ei>0

ei + λ
∑

ei<0

ei

= Lδ(M) − δ
∑

ei>0

ei + δ
∑

ei<0

ei

= Lδ(M) − δ||M||
≤ Lδ(M) − μCj ,

provided ||M|| ≥ μCj

δ
.
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Then, we have F
j
μ = Lδ(M) − μCj outside the ball of radius Cj and

(F j )∗ = lim
μ→0

Fj
μ = lim

μ→0
(Lδ(M) − μCj ) = Lδ(M).

Thus, from Theorem 4.2 for each j fixed, the operator Fj have a priori estimates in
C1,Log−Lip(�).

Finally, we constructed uj to be the viscosity solution of the Dirichlet problem

{
Fj (x,D2uj ) = f (x) in B1

uj = u on ∂B1.

Thus, each uj is locally in C1,Log−Lip, and since Fj = F in Bj , we have that up
to a subsequence, uj → u locally in the C0,α-topology. The convergence is ensured
by stability results in the theory of viscosity solutions. �


References

1. Amaral, M., Teixeira, E.: Free transmission problems. Commun. Math. Phys. 337(3), 1465–
1489 (2015)

2. Caffarelli, L.: Interior a priori estimates for solutions of fully nonlinear equations. Ann. Math.
130(1), 189–213 (1989)

3. Caffarelli, L., Cabré, X.: Fully Nonlinear Elliptic Equations. American Mathematical Society
Colloquium Publications, vol. 43. American Mathematical Society, Providence (1995)

4. Castillo, R., Pimentel, E.: Interior Sobolev regularity for fully nonlinear parabolic equations.
Calc. Var. Partial Differ. Equ. 56, 127 (2017)

5. Escauriaza, L.: W 2,n a priori estimates for solutions to fully nonlinear equations. Indiana Univ.
Math. J. 42(2), 413–423 (1993)

6. Evans, L.C.: Classical solutions of fully nonlinear, convex, second-order elliptic equations.
Commun. Pure Appl. Math. 35(3), 333–363 (1982)

7. Fabes, E., Stroock, D.: The Lp-integrability of Green’s functions and fundamental solutions
for elliptic and parabolic equations. Duke Math. J. 51(4), 997–1016 (1984)

8. Fleming, W., Souganidis, P.: On the existence of value functions of two-player, zero-sum
stochastic differential games. Indiana Univ. Math. J. 38(2), 293–314 (1989)

9. Krylov, N.: Estimates for derivatives of the solutions of nonlinear parabolic equations. Dokl.
Akad. Nauk SSSR 274(1), 23–26 (1984)

10. Krylov, N., Safonov, M.: An estimate for the probability of a diffusion process hitting a set of
positive measure. Dokl. Akad. Nauk SSSR 245(1), 18–20 (1979)

11. Krylov, N., Safonov, M.: A property of the solutions of parabolic equations with measurable
coefficients. Izv. Akad. Nauk SSSR Ser. Mat. 44(1), 161–175, 239 (1980)

12. Li, D., Zhang, K.: W 2,p interior estimates of fully nonlinear elliptic equations. Bull. Lond.
Math. Soc. 47(2), 301–314 (2015)

13. Lin, F.: Second derivative Lp-estimates for elliptic equations of nondivergent type. Proc. Am.
Math. Soc. 96(3), 447–451 (1986)

14. Nadirashvili, N., Vladut, S.: Nonclassical solutions of fully nonlinear elliptic equations. Geom.
Funct. Anal. 17(4), 1283–1296 (2007)



194 E. A. Pimentel and M. S. Santos

15. Nadirashvili, N., Vladut, S.: Singular viscosity solutions to fully nonlinear elliptic equations.
J. Math. Pures Appl. (9) 89(2), 107–113 (2008)

16. Nadirashvili, N., Vladut, S.: Singular solutions of Hessian fully nonlinear elliptic equations.
Adv. Math. 228(3), 1718–1741 (2011)

17. Pimentel, E.: Regularity theory for the Isaacs equation through approximation methods. Ann.
Inst. H. Poincaré C Anal. Non Linéaire (2018, to appear)

18. Pimentel, E., Teixeira, E.: Sharp Hessian integrability estimates for nonlinear elliptic equations:
an asymptotic approach. J. Math. Pures Appl. 106(4), 744–767 (2016)

19. Silvestre, L., Teixeira, E.: Regularity estimates for fully non linear elliptic equations which
are asymptotically convex. In: Contributions to Nonlinear Elliptic Equations and Systems, pp.
425–438. Springer, Berlin (2015)

20. Świ
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